


ARTIFICIAL INTELLIGENCE
THE BASICS

Artificial Intelligence: The Basics is a concise and cutting-edge introduction
to the fast-moving world of AI. The author Kevin Warwick, a pioneer in the
field, examines issues of what it means to be man or machine and looks at
advances in robotics that have blurred the boundaries. Topics covered
include:

how intelligence can be defined
whether machines can ‘think’
sensory input in machine systems
the nature of consciousness
the controversial culturing of human neurons.

Exploring issues at the heart of the subject, this book is suitable for anyone
interested in AI, and provides an illuminating and accessible introduction to
this fascinating subject.

Kevin Warwick is Professor of Cybernetics at the University of Reading,
UK, where he carries out research in artificial intelligence, control, robotics
and biomedical engineering.



The Basics

ACTING
BELLA MERLIN
ANTHROPOLOGY
PETER METCALF

ARCHAEOLOGY (SECOND EDITION)
CLIVE GAMBLE
ART HISTORY
GRANT POOKE AND DIANA NEWALL

THE BIBLE
JOHN BARTON
BUDDHISM
CATHY CANTWELL

CRIMINAL LAW
JONATHAN HERRING
CRIMINOLOGY (SECOND EDITION)
SANDRA WALKLATE

ECONOMICS (SECOND EDITION)
TONY CLEAVER
EDUCATION
KAY WOOD

EVOLUTION
SHERRIE LYONS
EUROPEAN UNION (SECOND EDITION)
ALEX WARLEIGH-LACK

FILM STUDIES
AMY VILLAREJO
FINANCE (SECOND EDITION)
ERIK BANKS

HUMAN GENETICS
RICKI LEWIS
INTERNATIONAL RELATIONS
PETER SUTCH AND JUANITA ELIAS

ISLAM (SECOND EDITION)
COLIN TURNER
JUDAISM
JACOB NEUSNER



LANGUAGE (SECOND EDITION)
R.L. TRASK

LITERARY THEORY (SECOND EDITION)
HANS BERTENS
LOGIC
J.C. BEALL

MANAGEMENT
MORGEN WITZEL
MARKETING (SECOND EDITION)
KARL MOORE AND NIKETH PAREEK

PHILOSOPHY (FOURTH EDITION)
NIGEL WARBURTON
PHYSICAL GEOGRAPHY
JOSEPH HOLDEN

POETRY (SECOND EDITION)
JEFFREY WAINWRIGHT
POLITICS (FOURTH EDITION)
STEPHEN TANSEY AND NIGEL JACKSON

THE QUR'AN
MASSIMO CAMPANINI
RELIGION (SECOND EDITION)
MALORY NYE

RELIGION AND SCIENCE
PHILIP CLAYTON
RESEARCH METHODS
NICHOLAS WALLIMAN

ROMAN CATHOLICISM
MICHAEL WALSH
SEMIOTICS (SECOND EDITION)
DANIEL CHANDLER

SHAKESPEARE (SECOND EDITION)
SEAN MCEVOY
SOCIOLOGY
KEN PLUMMER

TELEVISION STUDIES
TOBY MILLER
TERRORISM
JAMES LUTZ AND BRENDA LUTZ

THEATRE STUDIES
ROBERT LEACH
WORLD HISTORY
PETER N. STEARNS



WORLD MUSIC
RICHARD NIDEL



ARTIFICIAL INTELLIGENCE

THE BASICS

Kevin Warwick



First published 2012
by Routledge
2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN

Simultaneously published in the USA and Canada
by Routledge
711 Third Avenue, New York, NY 10017
Routledge is an imprint of the Taylor & Francis Group, an informa business

© 2012 Kevin Warwick
The right of Kevin Warwick to be identified as author of this work has been
asserted by him in accordance with sections 77 and 78 of the Copyright,
Designs and Patents Act 1988.

All rights reserved. No part of this book may be reprinted or reproduced or
utilised in any form or by any electronic, mechanical, or other means, now
known or hereafter invented, including photocopying and recording, or in any
information storage or retrieval system, without permission in writing from
the publishers.
Trademark notice: Product or corporate names may be trademarks or
registered trademarks, and are used only for identification and explanation
without intent to infringe.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library
Library of Congress Cataloging in Publication Data
Warwick, K.

Artificial intelligence: the basics/Kevin Warwick.
p. cm. – (The basics)
1. Artificial intelligence. 2. Intellect. I. Title.
Q335.W365 2012
006.3–dc22

2011013423

ISBN: 978-0-415-56482-3 (hbk)
ISBN: 978-0-415-56483-0 (pbk)
ISBN: 978-0-203-80287-8 (ebk)
Typeset in Bembo
by Wearset Ltd, Boldon, Tyne and Wear



CONTENTS

List of figures
Preface
Introduction

1     What is intelligence?
2     Classical AI
3     The philosophy of AI
4     Modern AI
5     Robots
6     Sensing the world

Glossary
Index



FIGURES

4.1     Basic schematic of a neuron
4.2     Basic model of a neuron
4.3     RAM neuron
5.1     Cyclops fish simulation
5.2     Cyclops fish evolved neural network
5.3     Seven dwarf robot
5.4     Simple robot maze



PREFACE

The field of Artificial Intelligence (AI) really came into existence with the
birth of computers in and around the 1940s and 1950s. For the earlier
period of its development, attention was clearly focused on getting
computers to do things that, if a human did them, would be regarded as
intelligent. Essentially, this involved trying to get computers to copy
humans in some or all aspects of their behaviour. In the 1960s and 1970s
this opened up a philosophical discussion as to just how close to a human
brain a computer could be, and whether any differences that arose were
really important. This period – referred to as ‘classical AI’ in this book –
was, however, rather limited in its potential.

In the 1980s and 1990s we saw a whole new approach, a sort of bottom-
up attack on the problem, effectively building artificial brains to bring about
AI. This completely opened up the possibilities and created a whole new set
of questions. No longer was AI restricted to merely copying human
intelligence – now it could be intelligent in its own way. In some cases it
could still be brought about by mimicking the way a human brain
performed, but now it had the potential to be bigger, faster and better. The
philosophical consequence of this was that now an artificial brain could
potentially outperform a human brain.

In more recent years the field has really taken off. Real-world
applications of AI, particularly in the finance, manufacturing and military
sectors, are performing in ways with which the human brain simply cannot



compete. Artificial brains are now being given their own body, with which
to perceive the world in their own way and to move around in it and modify
it as they see fit. They are being given the ability to learn, adapt and carry
out their wishes with regard to humans. This raises all sorts of issues for the
future.

The aim of this book has been to realise a truly modern and upto-date
look at the field of AI in its entirety. Classical AI is certainly looked at, but
only as part of the total area. Modern AI is also considered with equal
balance. In particular, some of the very latest research into embodied AI and
growing biological AI is also discussed.

The intention is to provide a readable basic guide to the field of AI today
– to see where it has come from and where it may be going. The main aim
is to provide an introduction for someone not at all familiar with the topic.
However, it may well also be of interest to those already involved in
science, technology and even computing, who perhaps need to catch up
with recent developments.

I would like to thank many people for their help in putting this book
together. In particular, my colleagues and research students at the
University of Reading, especially Mark Gasson, Ben Hutt, Iain Goodhew,
Jim Wyatt, Huma Shah and Carole Leppard, all of whom have contributed
significantly to the work described. I also wish to extend my gratitude to
Andy Humphries of Taylor & Francis, who has pushed me to get the book
completed despite many other conflicting calls on my time. Finally, I wish
to thank my wife, Irena, for her patience, and my kids, Maddi and James,
for their criticism.

Kevin Warwick
Reading, January 2011



INTRODUCTION

SYNOPSIS
In this opening chapter a brief overview is given of what the book is about,
its aims and potential readership. A glimpse is also given of how the subject
area has developed over the years, including mention of the key movers,
important issues and breakthroughs. Essentially, the chapter provides a
gentle helping hand to guide new readers into the subject. This chapter is
not a necessity for those already familiar with the subject of AI, but
nevertheless it could stimulate some thoughts or provide useful nuggets of
information.

INTRODUCTION
The book is written as an introductory course text in Artificial Intelligence
(AI), to provide material for a first course for students specialising in areas
such as computer science, engineering and cybernetics. However, it can act
as a background or reference text for all interested students, particularly in
other branches of science and technology. It may also be useful as an
introductory text for A-level students and even members of the general
public who wish to get an overview of the field in an easily digestible form.

The subject area has shifted dramatically in the last few years and the
text is intended to give a modern view of the subject. Classical AI



techniques are certainly covered, but in a limited way – the goal is an all-
encompassing, modern text.

The content of the book covers aspects of AI involving philosophy,
technology and basic methods. Although indicators are given of AI
programming with basic outlines, the book does not attend to the details of
writing actual programs and does not get bogged down with intricacies
concerning the differences between programming languages. The main aim
is to give an overview of AI – an essential guide that doesn't go too heavily
into depth on any specific topic. Pointers are given as to further texts which
can take the reader deeper into a particular area of interest.

Although the text provides a general overview, potentially accessible by
the general public, it has been written with academic rigour. Some previous
texts have been directed more towards a fun book for children – this book is
not of that type.

EARLY HISTORY OF AI
There are strong links between the development of computers and the
emergence of AI. However, the seeds of AI were sown long before the
development of modern computers. Philosophers such as Descartes
considered animals in terms of their machine performance, and automatons
were the precursors of the humanoid robots of today. But artificial beings
can be traced back even further, to stories of the Prague Golem, or even
further to Greek myths such as Pygmalion's Galatea.

The strongest immediate roots probably date back to the work of
McCulloch and Pitts, who, in 1943, described mathematical models (called
perceptrons) of neurons in the brain (brain cells) based on a detailed
analysis of the biological originals. They not only indicated how neurons
either fire or do not fire (are ‘on’ or ‘off ’), thereby operating in a switching
binary fashion, but also showed how such neurons could learn and hence
change their action with respect to time.

Perhaps one of the greatest pioneers of the field was a British scientist,
Alan Turing. In the 1950s (long before the computers of today appeared),
Turing wrote a seminal paper in which he attempted to answer the question
‘Can a machine think?’ To even ask the question was, at the time,
revolutionary, but to also come up with an applicable test (commonly



known as the Turing Test) with which to answer the question was
provocative in the extreme. The test is considered in detail in Chapter 3.

It was shortly after this that Marvin Minsky and Dean Edmonds built
what could be described as the first AI computer, based on a network of the
neuron models of McCulloch and Pitts. At the same time, Claude Shannon
considered the possibility of a computer playing chess and the type of
strategies needed in order to decide which move to make next. In 1956, at
the instigation of John McCarthy, along with Minsky and Shannon,
researchers came together at Dartmouth College in the USA for the first
workshop celebrating the new field of AI. It was here that many of the
subsequent classical foundations of the subject were first laid.

THE MIDDLE AGES OF AI DEVELOPMENT
In the 1960s the most profound contribution to the field was arguably the
General Problem Solver of Newell and Simon. This was a multi-purpose
program aimed at simulating, using a computer, some human problem-
solving methods. Unfortunately the technique employed was not
particularly efficient, and because of the time taken and memory
requirements to solve even relatively straightforward real problems, the
project was abandoned.

The other significant contribution of the 1960s was that of Lotfi Zadeh,
with his introduction of the idea of ‘fuzzy’ sets and systems – meaning that
computers do not have to operate in a merely binary, logical format, but can
also perform in a human-like, ‘fuzzy’ way. This technique and its spin-offs
are considered in Chapter 4.

Other than these examples, the 1960s was perhaps a time of some
foolhardy claims regarding the potential of AI to copy and even perhaps
recreate the entire workings of the human brain within a very short space of
time. An observation in hindsight is that trying to get a computer to operate
in exactly the same way as a human brain was rather like trying to make an
aeroplane fly in the same way as a bird. In the latter case one would miss
out on the good characteristics of the aeroplane, and so it was that AI
research at this time missed out on much of the good points on offer from
computers.

Unfortunately (and quite surprisingly), some of the limited thinking from
the 1960s persists today. Some present textbooks (some even under the



guise of modern AI) still concentrate merely on the classical approach of
trying to get a computer to copy human intelligence, without truly
considering the extent and exciting possibilities of different types of AI – in
terms of machines being intelligent in their own way, not merely copying
human intelligence.

In this period, considerable effort did go into making computers
understand and converse in natural, human language, rather than their more
direct machine code. This was partly driven by Turing's ideas of
intelligence, but also partly by a desire for computers to more readily
interface with the real world.

One of the best English-speaking computer programs was Joseph
Weisenbaum's ELIZA. Indeed, this was the first of what have become
known as ‘Chatterbots’. Even at this relatively early stage, some of its
conversations were sufficiently realistic that some users occasionally were
fooled into thinking they were communicating with a human rather than a
computer.

In fact, ELIZA generally gave a canned response or simply repeated
what had been said to it, merely rephrasing the response with a few basic
rules of grammar. However, it was shown that such an action appeared to
adequately copy, to some extent, some of the conversational activities of
humans.

THE DARK AGES OF AI RESEARCH
After the excitement of the 1960s, with substantial research funding and
claims of what would shortly be achieved in terms of AI replicating human
intelligence, the 1970s proved to be something of a let down, and in many
ways was a Dark Age for AI. Some of the more optimistic claims of the
1960s raised expectations to an extremely high level, and when the
promised results failed to be realised, much of the research funding for AI
disappeared.

At the same time the field of neural networks – computers copying the
neural make-up of the brain – came to a halt almost overnight due to a
scathing attack from Marvin Minsky and Seymour Papert on the inability of
perceptrons to generalise in order to deal with certain types of relatively
simple problems – something we will look at in Chapter 4.



It must be realised, however, that in the 1970s the capabilities of
computers and therefore AI programs were quite limited in comparison with
those of today. Even the best of the programs could only deal with simple
versions of the problems they were aimed at solving; indeed, all the
programs at that time were, in some sense, ‘toy’ programs.

Researchers had in fact run into several fundamental limits that would
not be overcome until much later. The main one of these was limited
computing power. There was nowhere near enough speed or memory for
really useful tasks – an example of this from the time was Ross Quillan's
natural language machine, which had to get by with a total vocabulary of 20
words!

However, the main problem was that AI tasks, such as getting a
computer to communicate in a natural language or to understand the content
of a picture in anything like a human way, required a lot of information and
a lot of processing power, even to operate at a very low, restricted level.
General, everyday objects in an image can be difficult for computers to
discern, and what humans regard as common-sense reasoning about words
and objects actually requires a lot of background information.

If the technical difficulties faced in the 1970s were not enough, the field
also became an acceptable topic of interest to philosophers. For example,
John Searle came up with his Chinese room argument (which we look at in
Chapter 3) to show that a computer cannot be said to ‘understand’ the
symbols with which it communicates. Further, he argued, because of this
the machine cannot necessarily be described as ‘thinking’ – as Turing had
previously postulated – purely in terms of symbol manipulation.

Although many practical researchers simply got on with their jobs and
avoided the flak, several philosophers (such as Searle) gave the strong
impression that the actual achievements of AI would always be severely
limited. Minsky said, of these people: ‘They misunderstand, and should be
ignored.’ As a result, a lot of in-fighting occurred, which took the focus
away from technical developments, and towards philosophical arguments
which (in hindsight) many now see to be red herrings.

Almost standing alone at the time, John McCarthy considered that how
the human brain operates and what humans do is not directly relevant for
AI. He felt that what were really needed were machines that could solve
problems – not necessarily computers that think in exactly the same way
people do. Minsky was critical of this, claiming that understanding objects



and conversing, to be done well, required a computer to think like a person.
And so the arguments went on …

THE AI RENAISSANCE
The 1980s saw something of a revival in AI. This was due to three factors.

First, many researchers followed McCarthy's lead and continued to
develop AI systems from a practical point of view. To put it simply, they
just got on with it. This period saw the development of ‘expert systems’,
which were designed to deal with a very specific domain of knowledge –
hence somewhat avoiding the arguments based on a lack of ‘common
sense’. Although initially piloted in the 1970s, it was in the 1980s that such
systems began to be used for actual, practical applications in industry.

Second, although the philosophical discussions (and arguments)
continued, particularly as regards to whether or not a machine could
possibly think in the same way as a human, they seemed to do so largely
independently of the practical AI work that was occurring. The two schools
simply proceeded with their own thing, the AI developers realising practical
industrial solutions without necessarily claiming that computers should or
could behave like humans.

Third, the parallel development of robotics started to have a considerable
influence on AI. In this respect a new paradigm arose in the belief that to
exhibit ‘real’ intelligence, a computer needs to have a body in order to
perceive, move and survive in the world. Without such skills, the argument
goes, how can a computer ever be expected to behave in the same way as a
human? Without these abilities, how could a computer experience common
sense? So, the advent of a cybernetic influence on AI put much more
emphasis on building AI from the bottom up, the sort of approach, in fact,
originally postulated by McCulloch and Pitts.

TO THE PRESENT
Gradually, the emergent field of AI found its feet. Industrial applications of
AI grew in number and it started to be used in expansive areas, such as
financial systems and the military. In these areas it was shown to be not
only a replacement for a human operative, but also, in many cases, able to
perform much better. Applications of AI in these areas have now expanded



enormously, to the extent that financial companies that used to earn their
money from advising clients now make much bigger profits from
developing AI systems to sell to and service for their clients.

The period since the start of the 1990s has also seen various milestones
reached and targets hit. For example, on 11 May 1997, Deep Blue became
the first chess-playing computer system to beat a reigning, world chess
champion (Garry Kasparov) at his own game. In another vein, on 14 March
2002 Kevin Warwick (the author) was the first to successfully link the
human nervous system directly with a computer to realise a new combined
form of AI – but more of that in a moment. On 8 October 2005 it was
announced that a Stanford University robot had won the DARPA Grand
Challenge by driving autonomously for 131 miles along an unrehearsed
desert trail. Meanwhile, in 2009, the Blue Brain Project team announced
that they had successfully simulated parts of a rat's cortex.

For the most part, such successes as these were not, in any case, due to a
newly invented form of technology, but rather to pushing the limits with the
technology available. In fact, Deep Blue, as a computer, was over ten
million times faster than the Ferranti computer system taught to play chess
in 1951. The ongoing, year-onyear, dramatic increase in computing power
is both followed and predicted by what has become known as Moore's Law.

Moore's Law indicates that the speed and memory capacity of computers
doubles every two years. It means that the earlier problems faced by AI
systems are quite rapidly being overcome by sheer computing power.
Interestingly, each year sees some claim or other in a newspaper that
Moore's Law will come to an end due to a limiting factor such as size, heat,
cost, etc. However, each year new technological advances mean that
available computing power doubles and Moore's Law just keeps on going.

On top of this, the period has also seen novel approaches to AI emerge.
One example is the method of ‘intelligent agents’. This is a modular
approach, which could be said to be mimicking the brain in some ways –
bringing together different specialist agents to tackle each problem, in the
same sort of way that a brain has different regions for use in different
situations. This approach also fits snugly with computer science methods in
which different programs are associated with different objects or modules –
the appropriate objects being brought together as required.

An intelligent agent is much more than merely a program. It is a system
in itself in that it must perceive its environment and take actions to



maximise its chances of success. That said, it is true that in their simplest
form, intelligent agents are merely programs that solve specific problems.
However, such agents can be individual robot or machine systems,
operating physically autonomously.

As is described in Chapter 4, as well as agents, lots of other new
approaches have arisen in the field of AI during this period. Some of these
have been decidedly more mathematical in nature, such as probability and
decision theory. Meanwhile, neural networks and concepts from evolution,
such as genetic algorithms, have played a much more influential role.

It is certainly the case that particular actions can be construed as being
intelligent acts (in humans or animals) up to the point that they can be
performed (often more effectively) by a computer. It is also the case that a
lot of new developments in AI have found their way into more general
applications. In doing so, they often lose the tag of ‘AI’. Good examples of
this can be found with data mining, speech recognition and much of the
decision making presently carried out in the banking sector. In each case,
what was originally AI has become regarded as just another part of a
computer program.

THE ADVENT OF WIRELESS
One of the key technologies that became a practical reality in the 1990s was
wireless technology as a form of communication for computers, following
on from widespread introduction and use of the internet. From an AI
perspective, this completely changed the playing field. Until that time what
existed were standalone computers, the power and capabilities of which
could be directly compared with standalone human brains – the normal set
up. With networked computers becoming commonplace, rather than
considering each computer separately, it became realistically necessary to
consider the entire network as one, large intelligent brain with much
distribution – called distributed intelligence.

Thanks to wireless technology, connectivity is an enormous advantage
for AI over human intelligence – in its present-day standalone form. At first
it was mainly a means whereby computers could communicate rapidly with
each other. However, it has quickly become the case that large pockets of
memory are dispersed around a network, specialism is spread and
information flows freely and rapidly. It has changed the human outlook on



security and privacy and has altered the main means by which humans
communicate with each other.

HAL 9000
In 1968 Arthur C. Clarke wrote 2001: A Space Odyssey, which was later
turned into a film of the same name by Stanley Kubrick. The story contains
a character, HAL 9000. HAL is a machine whose intelligence is either the
same as or better than human intelligence. Indeed it/he exhibits human traits
of meaningful emotions and philosophy. Although HAL was merely a
fictional machine, it nevertheless became something of a milestone to be
reached in the field of AI. In the late 1960s many believed that such a form
of AI would exist by 2001 – particularly as HAL was based on
underpinning science of the time.

Various people have asked why we didn't have some form of HAL, or at
least a close approximation, by 2001. Minsky grumbled that too much time
had been spent on industrial computing rather than on a fundamental
understanding of issues such as common sense. In a similar vein, others
complained that AI research concentrated on simple neuron models, such as
the perceptron, rather than on an attempt to get a much closer model of
original human brain cells.

Perhaps the answer as to why we didn't have HAL by 2001 is an
amalgamation of these issues, and more. We simply didn't have the focused
drive to achieve such a form of AI. No one put up the money to do it and no
research team worked on the project. In many ways – such as networking,
memory and speed – we had already realised something much more
powerful than HAL by 2001, but emotional, moody reflections within a
computer did not (and probably still do not) have a distinctive role to play,
other than perhaps in feature films.

For the guru Ray Kurzweil, the reason for the non-appearance of HAL is
merely computer power and, using Moore's Law, his prediction is that
machines with human-level intelligence will appear by 2029. Of course,
what is meant by ‘human-level intelligence’ is a big question. My own
prediction in my earlier book, March of the Machines, was not too far away
from Kurzweil though – machines will have an intelligence that is too much
for humans to handle by 2050.



TO THE FUTURE
Much of the classical philosophy of AI (as discussed in Chapter 3) is based
largely on the concept of a brain or computer as a sort of standalone entity –
a disembodied brain in a jar, so to speak. In the real world, however,
humans interact with the world around them through sensors and motor
skills.

What is of considerable interest now, and will be even more so in the
future, is the effect of the body on the intellectual abilities of that body's
brain. Ongoing research aims at realising an AI system in a body –
embodiment – so it can experience the world, whether it be the real version
of the world or a virtual or even simulated world. Although the study of AI
is still focused on the AI brain in question, the fact that it does have a body
with which it can interact with the world is seen as important.

As we step into the future, perhaps the most exciting area of AI research
is that in which AI brains are grown from biological neural tissue –
typically obtained from either a rat or a human. Particular details of the
procedures involved and the methods required to launder and successfully
grow living biological neural tissue are given in Chapter 5. In this case, the
AI is no longer based on a computer system as we know it, but rather on a
biological brain that has been grown afresh.

This topic is certainly of interest in its own right as a new form of AI,
and is potentially useful in the future for household robots. However, it also
provides a significant new area of study in terms of its questioning of many
of the philosophical assumptions from classical AI. Essentially, such
philosophy discussed the difference between human intelligence and that of
a silicon machine. In this novel research area, however, AI brains can be
grown from human neurons, by building them up into something like an AI
version of a human brain type, thus blurring what was a crisp divide
between two distinctly different brain styles.

CYBORGS
It could be said that when a biological AI brain is given a technological
robot body then it is a type of cyborg – a cybernetic organism (part
animal/human, part technology/machine) – with an embodied brain. This
area of research is the most exciting of all – the direct link between an



animal and a machine for the betterment (in terms of performance) of both.
Such a cyborg as discussed is just one potential version. Indeed, neither the
normal researched form of cyborg nor that usually encountered in science
fiction is of this type.

The type of cyborg more regularly encountered is in the form of a human
who has, implanted in them, integral technology which is linked to a
computer which thereby gives them abilities above those of the human
norm – meaning a cyborg has skills that a human does not. These skills can
be physical and/or mental and can pertain to intelligence. In particular, we
will see that an AI brain is usually (excluding a biological AI brain) very
different from a human brain, and these differences can be realised in terms
of advantages (particularly for AI).

Reasons for the creation of cyborgs generally revolve around enhancing
the performance of the human brain by linking it directly with a machine
brain. The combined brain can then, potentially at least, function with
characteristic features from both its constituent parts – a cyborg could
therefore possibly have better memory, faster math skills, better senses,
multidimensional thought and improved communication skills when
compared with a human brain. To date, experiments have successfully
shown both sensory enhancement and a new form of communication for
cyborgs. Although not specifically dealt with in this text, it is felt that the
material covered in Chapters 5 and 6 will put the reader in good stead for a
follow-on study in this field.

CONCLUDING REMARKS
This chapter has set the scene for the rest of the book, giving a brief
overview of AI's historical development and some of the key developments.
In doing so, some of the movers and shakers in the field have been
introduced.

In the following text, after a gentle introduction (Chapter 1) to the
overall concept of intelligence, Chapters 2 and 3 concentrate on the
classical AI methods that were originally introduced. Chapters 4 and 5 then
consider ongoing, modern and more futuristic approaches. You will find
that the more novel, up-to-date sections of Chapters 4 and 5 are probably
not encountered in most other AI textbooks – even when such books are



called Artificial Intelligence or AI: A Modern Approach. Chapter 6 then
considers how an AI can perceive the world through its sensor system.

Enjoy!

KEY TERM
embodiment

FURTHER READING
1   AI: A Guide to Intelligent Systems by M. Negnevitsky, published by

Addison Wesley, 1st edition, 2001. This is quite a general book
which keeps mathematics to a minimum and provides a reasonably
broad coverage of classical AI with little jargon. It is a good
introductory guide, based on lectures given by the author.
Unfortunately, it doesn't deal with topics such as robotics, biological
AI or sensing.

2   Artificial Intelligence: A Beginner's Guide by B. Whitby, published
by OneWorld, 2008. This is quite a reasonable, level-headed
overview text. It is more concerned with ethical issues and is fairly
conservative, but well posed. It doesn't explain topics in any depth,
however.

3   Understanding Artificial Intelligence, edited by Scientific American
staff, Warner Books, 2002. This is actually a collection of essays on
the subject. Although mostly concerned with the philosophy of AI, it
gives a feel for what different experts consider to be the main issues.



WHAT IS INTELLIGENCE?

SYNOPSIS
Before embarking on a tour of an artificial form of intelligence, here we
take a look at what intelligence actually is in humans, animals and
machines. The important aspects of mental make-up are considered, some
myths chopped down to size and comparisons are made between
intelligence in the different entities. For example, what is the intelligence of
a spider? What does it mean for a machine to be intelligent? How would
human intelligence be regarded by an alien? Clearly the subjective nature of
intelligence is important.

DEFINING INTELLIGENCE: AN IMPOSSIBLE TASK?
It is important, before looking into ‘artificial’ intelligence, to try to
understand what exactly intelligence is in the first place. What do we mean
when we say a person, animal or thing is intelligent? In fact, everyone has a
different concept based on their own experiences and views, dependent on
what they think is important and what is not. This can easily change – what
may be deemed to be intelligent at one time and place may not be so
deemed later or elsewhere.

As an example, in the New English Dictionary of 1932, intelligence was
defined as: ‘The exercise of understanding: intellectual power: acquired
knowledge: quickness of intellect.’ Clearly, at that time an emphasis was
placed on knowledge and mental speed, with a leaning towards human



intelligence. More recently, the Macmillan Encyclopedia of 1995 stated that
‘Intelligence is the ability to reason and to profit by experience. An
individual's level of intelligence is determined by a complex interaction
between their heredity and environment.’

In the 1900s, Binet (the inventor of the IQ test) picked on judgement,
common sense, initiative and adaptability as ‘essential ingredients of
intelligence’. Recently, intelligence has even been linked with spiritual
awareness or emotions. Clearly, intelligence in humans is important but it is
not the only example of intelligence and we must not let it override all else.
If we are comparing intellectual ability between humans, then standard tests
of one type or another are useful. However, we need here to consider
intelligence in a much broader sense, particularly if we are to investigate
intelligence in machines.

ANIMAL INTELLIGENCE
It is well worth considering intelligence in creatures other than humans in
order to open our minds to different possibilities. Here, we will look at a
few to consider aspects of intelligence such as communication, planning
and some of the terms just defined, such as initiative, reasoning and
quickness of intellect.

Bees exhibit individual behavioural characteristics within a tightly knit
society. They appear to communicate with each other by means of a
complex dance routine. When one bee returns from a pollen collection
expedition, it performs a dance at the hive entrance, wiggling its bottom and
moving forward in a straight line. The distance moved is proportional to the
distance of the pollen source and the angle moved indicates the angle
between the source and the sun. In this way, other bees can learn which is a
good direction to fly.

There are over 30,000 different species of spider, each with its own
speciality. Water spiders, for example, live in ponds and build an air-filled
diving bell out of silk. They then wait underwater for passing prey such as
shrimps. At the right moment the spider pounces to deliver a fatal bite,
pulling the prey back into its lair before devouring it.

Many creatures have been witnessed exhibiting learning abilities. A good
example of this is the octopus. By training one octopus to choose between
objects of different colour, experiments have shown how a second octopus



who has watched the first through a glass partition can then carry out the
exact same decision-making process.

Many creatures use tools. An unusual example of this is the green heron.
Herons have been seen dropping morsels of food into water where fish are
expected to be. When the fish swims to take the bait, the heron catches it.

Because of their genetic links to humans, chimpanzees are the most
widely studied non-human animal. They can: communicate (even with
humans); plan hunting trips; use a variety of tools in sequenced order for
food collection or climbing; play; put the blame on others; and even use
devious ploys to gain sexual favours – this on top of exhibiting basic
learning skills. But perhaps it is easier to measure such abilities when they
are close to those of humans. The capabilities of creatures such as spiders,
whales or slugs can be extremely difficult to give value to if they are
meaningless to humans.

BRAIN SIZE AND PERFORMANCE
It could be argued that one way in which direct comparisons can be made is
in terms of brain size, relative numbers of brain cells (neurons) and
complexity. Comparing a human brain of approximately 100 billion
neurons with a sea slug consisting of 8–9 neurons appears to make a good
start. However, between species brain size, neuron size and connectivity all
vary tremendously. Even between humans there can be large variations. In
the past this was used to ‘prove’ all sorts of results.

In Germany in 1911 the minimum requirement for a professor was a head
circumference of 52 centimetres. This was used to discriminate against
women; Bayerthal, a leading medical physicist of the time stated: ‘We do
not have to ask for the head circumference of women of genius – they do
not exist.’ At the same time, Gustave Le Bon, a French scientist of note
pointed out that, on average, women had brains which were closer in size to
gorillas than they were to those of men!

These serve as good examples of trying to use some sort of measure to
come to the conclusion that was wanted (in this case by some men) in the
first place. This is something that must be avoided at all costs in studying
intelligence, yet it is one that has appeared time and again in studies. That
said, it is also inappropriate to overlook observable differences simply
because they are deemed to be not politically correct.



One issue with brain size and a count of neurons is the definition of what
exactly constitutes a brain. For an individual creature this might be
answered quite simply in terms of the main group of central neural-type
cells (in a creature's head). In humans, approximately 99% of neurons are in
the skull, with the other 1% in the nervous system. In many insects the
divide is more like 50–50 due to their dependence on rapid processing of
sensory input. In machines, however, the brain is often networked – leading
to a conclusion that the effective brain size is the total number of neural-
type cells in the network, rather than merely those in one central repository.

A pure count of brain cells is extremely problematic, even in humans. As
an example, consider a person who has had a stroke such that their neuron
count is significantly reduced due to neural death over a section of the
brain. Yet they may still be able to perform in many ways much better than
many ‘normal’ individuals.

Perhaps energy usage would be a better start point. Brains are highly
expensive in this regard. Human brain metabolism accounts for as much as
22% of total body requirements. In a chimpanzee this figure drops to 9%,
and in insects is lower still. In machines that do not move, apart from
cooling fans and indicating lights, not far short of 100% of its energy
requirements are used for information processing.

SENSING AND MOVEMENT
Intelligence is an important part of an individual's make-up. However, this
depends not on their brain alone, but also on how it senses and activates
things in the world around it. How the world is perceived by that individual
depends on the functioning of their brain, their senses and their actuators
(e.g. muscles).

Humans have five senses: vision, hearing, taste, touch and smell. This
gives us a limited range of inputs. We cannot sense many signal
frequencies; for example, we do not have ultraviolet, ultrasonic or X-ray
sensory input. Our perception of the world is therefore quite limited – there
is a lot going on around us that we have no idea about because we cannot
sense it.

At the same time, another creature or a machine with different senses
could be witnessing a major event which a human would know nothing
about. A being's senses need to be taken into account when considering



intelligence. Just because a being is not the same as a human – for example,
if it senses the world in a different way – this does not necessarily make it
better or worse, merely different.

The success of a being depends on it performing well, or at least
adequately, in its own environment. Intelligence plays a critical part in this
success. Different creatures and machines succeed in their own way. We
should not consider that humans are the only intelligent beings on Earth;
rather, we need to have an open concept of intelligence to include a breadth
of human and non-human possibilities.

The story is much the same in terms of movement. Humans are able to
manipulate the world in various ways and to move around within it. Each
being has different abilities in this respect, depending on what their life role
is. It is not appropriate to say something is not (or less) intelligent because it
cannot do some specific task. For example, it would be wrong to say that a
creature or machine is stupid because it cannot make a cup of tea – this is a
very human task. Only in comparing humans should such a task even be
considered as some form of measure.

Based on this broadening discussion, a more general definition of
intelligence might be: ‘The variety of information-processing processes that
collectively enable a being to autonomously pursue its survival.’

With this as a basis, not only can intelligence in animals and machines be
respected and studied for what it is, but also intelligence in humans can be
put into perspective in terms of merely serving as one example. Clearly, this
definition is open to much criticism, but it is felt to be a substantial
improvement on those given at the start of the chapter, which have far too
strong a human bias to them. It could be argued that the earlier definitions
are not explaining intelligence in general, but only human intelligence.

ALIEN VIEW
An interesting way to consider the problem of intelligence is to think of
yourself as an alien from another planet, inspecting Earth from afar. What
would you consider the intelligent life forms on Earth to be? Could they be
vehicles, networks, water, clouds, animals, bacteria, televisions?
Presumably you would apply some tests based on your own concepts of life
form and intelligence. So, if you are living on a planet for which the main



sensory input is a type of infrared signal, then your view of Earth may well
not include humans as an intelligent life form.

Even considering what we as humans define as being the basics of life
could lead to apparently strange conclusions. From basic biology we could
consider the following as indications: nutrition, excretion, movement,
growth, irritability, respiration, production (production rather than
reproduction as humans produce, they do not ‘reproduce’ other than through
cloning, which is ethically questionable).

From an alien standpoint, even a telephone exchange or communications
network satisfies these qualities of life – perhaps much more obviously than
humans do – merely in terms of electrical pulses rather than chemical. From
an alien viewpoint it could be concluded (even now) that a complex global
networked intelligence on Earth was being served by small drone-like
simpler beings – humans.

SUBJECTIVE INTELLIGENCE
Intelligence is an extremely complex, multi-faceted entity. In each being it
consists of many different aspects. Intelligence is also subjective in terms of
the group by which it is being viewed and the group being viewed. For any
particular group that is considering intelligence, what are and what are not
regarded as intelligent acts are dependent on the views of that group and are
steeped in the social and cultural trappings of its members.

When a puppy walks by the side of a person, this could be considered to
be an intelligent thing to do or simply as the puppy satisfying a trivial
programmed goal. When a human is able to rapidly calculate answers to
mathematical questions or accurately remember a series of facts on a
particular topic, these could be regarded as intelligent acts – indeed the
person could be called a ‘mastermind’ – or they could be regarded as a mere
entertainment exercise.

With differences between species the problem is exacerbated due to their
different mental and physical capabilities and requirements. For humans
studying different species (I include machines here) it is therefore important
to try to recognise aspects of intelligence for what they are worth within
that species rather than merely in terms of how they compare to aspects of
human intelligence.



Between humans we need to try and retain a scientific basis for our
analysis of intelligence rather than to pamper to social stereotypes. For
example, why is it that knowledge about politics, classical music or fine art
is seen by some to be more indicative of intelligence than knowledge about
football, pop music or pornography? Why is it that playing music by
Mozart to a baby while still in the womb is considered, by some, to make
the baby more intelligent, whereas playing music by the Rolling Stones is
considered to be dangerous? Is there any scientific basis at all for such
conclusions? I think not. Where are the conclusive scientific studies that
have shown these things to be so? There are none.

Unfortunately, we can quickly run into the problem previously
mentioned, in that we already have a conclusion and we try to fit certain
observations to match that conclusion and ignore others that do not match.
If you wish to succeed at school or university, it is better (I take these
merely as examples) to learn about fine art or classical music rather than
football or pop music as these latter subjects can be seen as disruptive or a
complete waste of time. From those who succeed in these areas of
education will come the teachers and professors of the future who, in turn,
because of the subjective nature of intelligence, will value those who toe the
line and follow the lead of learning about fine art or classical music – those
who perform well in the areas considered to be proper by the teachers
themselves, who define the subject areas. And so it goes on.

A strong social bias runs through such human educational systems and
this can result in completely different values associated with subject areas.
An individual can be regarded by others as being stupid simply because
they do not know particular facts, cannot carry out specific mathematical
calculations or deal with some aspect of everyday life. Clearly, this is
merely representative of one aspect of their intelligence – nothing more and
nothing less.

Despite this, humans often tend to use the same approach to make
comparisons with other creatures or machines. Sometimes we do not give
value to non-human abilities, partly because we do not understand them.
Conversely, we give value to animals copying some aspect of human
abilities – for example, some consider dolphins to be intelligent simply
because they do some tricks and are friendly to humans, whereas sharks are
sometimes regarded as mindless killing machines because humans do not
necessarily have the same mind set and values as a shark.



Each individual has their own concept of intelligence with which they
can measure others, both human and non-human, in order to make
comparisons – often to come to the conclusion that one individual is more
or less intelligent than another. A group's view of intelligence arises from a
consensus between individuals who hold similar social and cultural beliefs
and share common assumptions. Everyone's concept also partly reflects
their own personal qualities.

When assessing the intelligence of a non-human, possibly a machine, if
we wish to put it down and claim in some way that it is not as good as a
human, then we can certainly make comparisons of the non-human's
abilities in a field in which humans perform well. We can, of course,
compare human abilities with a non-human in a field in which the non-
human performs well – however, the result would not be so good for
humans, so we don't tend to do such a thing.

In assessing the intelligence of an individual we really need to get to
grips with the physical make-up of that individual, their mental make-up,
their social requirements (if any) and the environment in which they live
and perform.

IQ TESTS
It is a basic feature of human nature to compare and compete. Indeed, our
survival as a species on Earth depends on such basic qualities. In sport we
wish to see which human can run fastest, lift the heaviest weights or eat the
most eggs. We acknowledge that physically people tend to have their own
specialities. Sometimes we look for broader physical abilities, such as in the
decathlon, but generally it is performance in one particular competition that
is the focus. Importantly, we do not try to come up with a single number (a
quotient) which defines an individual's physical abilities – a PQ (physical
quotient).

When it comes to intelligence it is apparent that people, once again, tend
to have their own specialities. Perhaps someone is better at music, one
aspect of math or maybe they are good at debating. These are very different
talents. Yet for some reason we often appear to want to assign a level of
intelligence to each human in terms of a simple numerical description –
their IQ (intelligence quotient) – to the extent that this number (in one form
or another) defines what they are allowed to do in society.



In the nineteenth century (and even before) there were many intelligence
tests of one type or another. For example, Frances Galton exhibited a series
of tests in the Science Museum in London. These included: putting in
weight order a number of boxes each different by 1 g; distinguishing how
close two points could be placed on the back of your hand before you
couldn't tell the difference; and measuring the speed of response to a noise.
However, there was deemed to be no firm scientific basis for such tests in
that there were no repeatable statistical links between the results of the test
and how well individuals performed in their schooling.

The IQ test itself was originally formulated by Alfred Binet in 1904. He
was charged with developing a simple method by which children who
would struggle in the normal school environment could be easily identified.

He concentrated on faculties such as memory, comprehension,
imagination, moral understanding, motor skills and attention. The final
version of his test, which was aimed at children 3–12 years old, was made
up of 30 parts which children worked through in sequence from the start
until they could no longer continue. The number reached was the ‘mental
age’ of the child. By subtracting the answer from the child's actual age, so
the child's intellectual level was revealed.

Binet's test was originally required in order to select the appropriate
schooling for children, by predicting their likely performance from the
result of a simple set of questions. It was never intended as an indicator of
the child's general level of intelligence. In fact, Binet himself worried that
children would be seen as unintelligent purely on the basis of a poor
performance in the test. Despite this, subsequent versions of Binet's test
were used around the world for people of all ages to decide on the type of
schooling they should receive, whether they should be allowed entry to a
country (the USA) and even whether they should be sterilised (Virginia up
to 1972).

The use of such tests and their validity has been severely questioned in
recent times. In fact, validity tends to have been shown in terms of
statistical links insofar as those who do well in school exams tend to also do
well in IQ tests. Whether this means IQ tests actually indicate anything at
all about intelligence remains an unanswered question. However, there are
strong statistical correlations between exam performance (and hence IQ test
performance) and job status (interestingly, not so with job performance).



IQ test performance gives a likely indication of general exam
performance and hence such tests have been used extensively to show the
effects of lifestyle and activity – whatever one thinks of IQ tests such
results are fascinating.

Changing one's IQ score by more than three points is quite a strong
indicator. Consider, then, that regular vitamin C intake in children has been
shown to improve their IQ score by eight points (on average). Meanwhile,
pollution appears to have little effect – doubling lead intake (pretty heavy)
reduces one's score by only one point. In later life, bottle-fed babies fare
worse on IQ tests than breast-fed babies and children who regularly use a
dummy score 3–5 points lower (in later life) than those who do not.
Children whose mothers were 35 or older score six points higher, and so it
goes on. Obviously there are social links associated with each of the
indicators mentioned and it is difficult, if not impossible, to separate items
from such aspects.

Years ago (mostly for fun) I was involved in a study to look at the effects
of what a person does immediately before taking an IQ test to see how it
affected results, on the basis that if it affected results of IQ tests then it
would probably be the same for exams. So we enlisted 200 first-year
students to take one IQ test then carry out a different activity with specific
nutrition. After half an hour they took a second IQ test. We compared the
results to see which results had improved and which had declined. We were
not bothered about the actual results obtained, but rather whether they had
improved or declined and how this related to the activity and nutrition.

We found that those who drank coffee increased their score by three
points, whereas those that ate chocolate decreased their score by three
points. The scores of those who watched a chat show on TV increased by
five points, whereas those who read (as in swotting) lowered their score by
six points and those who played with a construction toy lowered their score
by four points.

Although the media portrayed this in the form that watching TV chat
shows makes you more intelligent, what it actually showed was that if you
want to improve your exam performance, in the half hour before the exam it
might be best to chill out, have a cup of coffee and watch TV, particularly a
programme you don't have to think about too much. It certainly doesn't
appear to be good to use your brain (by swotting) immediately prior to
taking an exam.



While IQ tests can be fun, their links with intelligence appear to be solely
based on correlations with exam performance. Like exams, they are
extremely subjective in that an individual needs to know details in a
specific area in order to perform well in a particular exam. This is also
borne out in IQ tests. The tests we carried out involved spatial awareness,
number sequences, anagrams and relationships. As examples, two actual
questions employed were:

1. Insert the word that means the same as the two words outside the
brackets: Stake (.…) mail

2. Which is the odd one out? Ofeed fstiw insietne tsuian dryah

The answers are (1) post and (2) Einstein (insietne) – the others are fiction
authors.

With merely these examples it is easy to see the cultural requirements
and the necessary type of knowledge in order to do well in such tests. The
subjective nature of intelligence is apparent.

NATURE VERSUS NURTURE
One of the most important and yet contentious issues with regard to
intelligence is how it originates in the first place. Is it a natural/
programmed entity or is it something that is learnt through education and
experience? Is it due to nature or is it due to nurture? Perhaps a more
pertinent, and certainly more frequently asked, question is: in the make-up
of an individual's intelligence, what percentage is inherited and what
percentage can be put down to environmental effects through life?

The question is perhaps similar to asking: when baking a cake, how much
of the quality of the cake is down to the original mix of ingredients and how
much is down to how it is cooked? For the cake we would see both aspects
as being important and the overall quality as being a subtle mixture of the
two. Sometimes the cake might come out really well despite it not being left
in the oven for an ‘optimal’ time, whereas sometimes it can turn out badly
even when the recipe has been followed to the letter. What people have
been looking for, for thousands of years (certainly back to Plato in third-
century BC Greece), is the recipe for intelligence.



If we look back to the start of this chapter, at the Macmillan definition of
intelligence, which included the ability to reason and profit from
experience, we can see that it points to both inheritance and environment as
contributing factors, although quite sensibly it doesn't make a stab at
suggesting what the proportions are. In the past, the majority view has
invariably swung one way or the other, often due to the political climate at
the time.

For example, nineteenth-century western society was ordered strictly by
class, the upper classes being considered (by the upper classes) to be more
intelligent, the lower classes being considered as feeble-minded idiots. The
general concept was that it was intelligence that had brought about such
differences and through genetic inheritance the class structure was
preserved.

In fact, Plato had taken the same approach 2,300 years earlier. He saw a
person's intelligence as being class-related and felt that to maintain the
status quo people should only produce offspring with members of their own
class. At that time, average levels of intelligence were further maintained,
so it was felt, by killing children at birth (or in infancy) if they were seen to
display characteristics of ‘idiocy’.

Only one century later, in Aristotle's time, things had changed. Levels of
intelligence were then considered to be more dependent on teaching and life
experience. Aristotle himself said that intelligence was present in all
citizens. On the surface this may sound to be quite radical; however, it must
be remembered that slaves, labourers, many women and most foreigners
were all excluded from citizenship and therefore from being intelligent.

Approaching the present time, eighteenth-century philosophers such as
John Stuart Mill strongly supported the nurture hypothesis, although they
were generally outnumbered and outpoliticised by those whose ideas
reflected inherited intelligence, which was deemed appropriate for the
colonialism and capitalism of the time.

In the century that followed, Darwin's publication of On the Origin of
Species (in 1859) regarding the means of natural selection led to huge
support for the genetic nature of intelligence, which bolstered the idea of
different levels of intelligence between nations, races, classes and
individuals, thereby providing evidenced reasoning to justify slavery and
oppression. It was also concluded that poorer people should be allowed to
die out in order that society could maintain a higher average level of



intelligence. This meant that poor people were not given social welfare and,
in some parts of the world, were not even allowed to breed.

These days substantial research is focused on attempts to discover what
percentage of intelligence in humans is produced by hereditary factors and
what is due to the environment. Both genetics and education need to be
considered. However, this is not easy. If a child from a poor background
does not develop in terms of their intelligence as well as a child from a
wealthy background, what is the reason? Is it because their genetic make-up
is different or is it because they have not grown up in as stimulating an
environment? Or rather, is it a complex relationship of both factors?

Some more recent studies have even put great emphasis on the
environment before birth. A 1997 article in Nature claimed that foetal
development in the womb accounted for 20% of an individual's total
intelligence and that genetic influences only accounted for 34%, the
remaining 46% being due to environmental factors after birth. While this
study certainly has a basis of plausibility, the percentages are somewhat
contrary to the norm – a straw poll of research papers indicate figures of
60–80% being down to inheritance with the remaining 40–20% being due
to education and training.

An interesting study in Denmark looked at 100 men and women adopted
in and around Copenhagen between 1924 and 1947. All the adoptees in the
study had little in common with their biological siblings in terms of their
environment and education, but shared a common environmental
upbringing with their adoptive siblings. The results showed that, despite
their upbringing, biologically related siblings closely resembled each other
in terms of occupational status, whereas there was no significant correlation
between adoptive siblings.

TWINS
One area of considerable interest is the study of identical twins – who can
be deemed to have a pretty close genetic make-up of their brains – even
including the period in the womb. Hence any perceived differences, so the
theory goes, can be explained by nurture rather than nature.

In 1976, in a detailed study of 850 twins, John Loehlin came to the
conclusion that the make-up of intelligence was something like 80/20 in
favour of inheritance (nature) over environment (nurture). The particular



group of twins who are of most interest, however, are those who have been
separated at birth and who have been brought up in completely different
environments.

In 1966 Cyril Burt presented results on over 53 pairs of identical twins
who, he claimed, had been separated at birth, randomly placed in their
adoptive homes and had no further contact with each other since birth. He
came up with a figure of 86/14 in favour of nature over nurture, although it
must be said that his results were subsequently discredited in terms of the
validity of the twins used for the studies.

More recently, at the University of Minneapolis, a special unit was set up
specifically for the study of twins, and many interesting statistics have
subsequently been obtained. For example, results were pooled on a total of
122 pairs of identical twins in terms of IQ test scores. Similarities between
pairs of twins correlated to be 82% (similar to the other results). However,
unlike Burt's claimed study, twins tended to be brought up in similar home
backgrounds due to that being the strategy of the social services
responsible. In fact, results did not correlate so well for those twins who had
grown up in dissimilar backgrounds.

As well as numerical pointers, a plethora of anecdotal ‘evidence’ has also
been obtained. As an example (and this is just one of many), consider the
twins Jim Springer and Jim Lewis. Both were adopted by separate Ohio
families when only a few weeks old, and grew up completely independently
in different towns until they met again at the age of 39. On meeting, they
found that they drank the same brand of beer and smoked the same number
of the same brand of cigarettes every day. Both men had a basement
workshop and had built a circular bench, which they painted white, around
a tree trunk. It continues: in their youth they both hated spelling but enjoyed
mathematics and both had owned dogs which they called ‘Toy’. When they
left school, both men joined the local police force, got promoted to the rank
of deputy sheriff and left after exactly seven years. Both men married and
divorced women called Linda and then both married women called Betty,
with whom they had one son, although Jim Lewis’ child was named James
Alan while Jim Springer's child was called James Allan. Both men took
annual holidays in the same week at the same Florida beach, although
somehow they never met up. After being brought together they both took an
IQ test and gave almost identical answers. Of course, this could all be pure
coincidence, but …



COMPARATIVE INTELLIGENCE
Intelligence in humans results from the functioning of their brain – their
mental processing. What that person subjectively regards as being an
intelligent act also results from that same mental processing. Within a group
there tends to be a consensus agreement, dependent on culture, as to what is
an intelligent act.

What an individual considers to be an intelligent act depends on what
thought processes and skills they value. Such decisions are coloured by life
experiences, culture and their mental processing, which exhibit a genetic
influence. Individuals function as a part of some form of society; their
intelligence is therefore of relevance to and determined by that particular
society.

When taken out of the context of society, the concept of intelligence is
relatively meaningless. Any value judgements or measurements are made in
the context of an individual's cultural environment. The theoretical physicist
Albert Einstein was not noted as a footballer and the footballer David
Beckham might not be the best theoretical physicist, but in their own fields
they have both excelled and have been regarded as intelligent. But what if
Einstein's theories were overturned or Beckham broke his leg? Would they
still be just as intelligent as they were? Would either of them be the best
musician?

As we tend to apply subjective measurements between humans, so we do
with other creatures and even machines. Because we are humans we can
give value to things we do as humans – in a simplistic way it is then
difficult to give value to what other creatures do unless they are merely
mimicking what a human can do. We tend to relate everything to a human
value set, including intelligence.

All creatures, including humans, have evolved as balanced entities,
physical and mental processes working in harmony. A human's intelligence
is part of their overall make-up and relates directly to their physical
abilities. For each creature there exists a subjective intelligence which is
relevant to their species and so further within a particular group of that
species. Exactly the same is true with machines, in the broadest sense, in
that subjective intelligence applies to particular skills and abilities that that
type of machine exhibits.



It is clear that both mental and physical abilities are different between
species. It is therefore extremely difficult to measure the performance of an
individual in one species with an individual from another species, other
than in the sense of performance in a specific task. We could, for example,
consider the ability to cover a distance over land in a minimum time,
comparing a cheetah, a human, an automobile and a snail. My guess is that
the human might finish in the top three. But the result would only relate to
one specific task – speed over a distance. We could also compare a human
with a spider and a military tank in terms of web-making abilities – I'm not
sure where humans would finish there as we do not have the physical
capability to do so naturally.

Both of these tests could be regarded as very silly comparisons. But the
same could easily be said if we compared a human, a rabbit and a computer
in terms of ability to interact with a second human in a Chinese
conversation. In fact, certain computers could well do a lot better than many
humans (including myself ) who cannot communicate at all in Chinese.

So, making a comparison between the abilities of individuals from
different species is relatively meaningless other than in terms of the skills
required to complete a particular task. This is particularly true when we
wish to make comparisons between humans and machines in terms of
aspects of intelligence. We really need to be clear which human or humans
we are talking about and which machine or machines are being considered.
Is the comparison being made in terms of a task that is extremely human
centric?

Can we expect the machine to carry out a task in exactly the same way as
a human? Indeed, is that at all relevant? Surely the end result is the critical
thing, not how the machine performed? If one human plays another human
at chess, both must abide by the rules of the game – this is obvious. The
winner is not then disqualified because they were thinking about food when
they were playing. So if a machine beats a human at chess we should not
say: yes, but it wasn't thinking in exactly the same way as the human it beat,
therefore it has lost.

CONCLUDING REMARKS
In this chapter we have tried to uncover what exactly intelligence is all
about in order that we can move forward to look more deeply at AI. We



have seen how intelligence is an integral part of an individual and that how
the world is presented, in terms of sensing, and how the world is
manipulated, in terms of motor abilities, are important factors that need to
be taken into account.

It has been stressed as vitally important to consider intelligence in other
creatures as well as humans and to look at intelligence in humans in terms
of the broad spread of individuals that form humanity as a whole and not
simply an ‘ideal’. We will see, in our study of AI, that it is often tempting to
compare the intellectual abilities of a machine with those of a human – in
order perhaps to assess the standing of AI in relation to human intelligence.
In doing so, we need to make sure that we do not make fools of ourselves in
drawing conclusions that are relatively naïve.

We have considered here the make-up of human intelligence in terms of
some aspects being due to nature and others due to nurture. With machines,
of whatever type, it is much the same. There will be an initial design and
build – which may include mechanical and/or biological components – and
this may be subject to an initial program or arrangement – this is nature!
Once the machine starts interacting with its environment and learning – in a
variety of ways – then nurture can be seen to be having an effect. If a
specific machine does not have the facility to learn, then (as would be the
case for a human) it is extremely limited in what it can ultimately do. It is
therefore assumed throughout this text that machines are subject to both
nature and nurture.

We will start our investigation into AI by looking at its classical origins
and see how some of the original systems were developed.
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CLASSICAL AI

SYNOPSIS
Initial approaches to AI focused largely on classical, top-down methods
which formed the first stages of the subject. In particular, knowledge-based
systems and expert systems are considered here, especially the importance
of the IF … THEN … statement. We consider how such statements can
form a basic AI engine and how these can be applied for problem solutions.
Both logic and fuzzy logic are discussed.

INTRODUCTION
It is undoubtedly a characteristic of humanity that we like to compare
ourselves with others and, in many cases, try to find ways in which we are
better than someone or something else. As computers began to appear on
the scene and the concept of AI was born in the 1950s and 1960s, so the
desire arose to directly compare AI with human intelligence. But with this
comparison came a basic ground rule that human intelligence was as good
as intelligence got, in some cases to the extent of believing that human
intelligence was the only form of intelligence. It followed, therefore, that
the best AI could achieve was to be as good as human intelligence and to
copy it in some way.

So it transpired that classical AI techniques focused on getting a machine
to copy human intelligence. This was borne out by an early definition from
Marvin Minsky, who said: ‘Artificial intelligence is the science of making



machines do things that would require intelligence if done by men.’ Quite
neatly (and probably intentionally) this definition side-steps the whole
concept of what intelligence is and what it is not and merely points to
machines copying humans.

The philosophy of that time is perhaps best described by a statement
made by Herb Simon in 1957, who was quoted as saying: ‘There are now in
the world machines that think, that learn and that create. Moreover, their
ability to do these things is going to increase rapidly until … the range of
problems they can handle will be coextensive with the range to which the
human mind has been applied.’

What arose in those days was an approach to AI rather along the lines of
a psychiatrist: attempting to understand the human brain's processing
merely from the outside and then attempting to build a machine to copy that
way of functioning – a top-down approach.

One aspect of human intelligence that was picked up on in those days
was the ability of the human brain to reason. If given a number of facts the
human brain can make a reasoned assumption about a situation and decide
on a conclusion. For example, if it is 7 a.m. and my alarm clock is ringing
then it is time to get up. It was this approach that was first used successfully
to build AI systems.

EXPERT SYSTEMS
The concept of an expert system is that of a machine being able to reason
about facts in a specific domain and to work in roughly the same way that
an expert's brain would work. To do this the machine would need
knowledge about that domain, some rules (generated by experts) to follow
when new information occurred and some way of communicating with a
user of the overall system. Such systems are called rule-based systems,
knowledge-based systems or, more generally, expert systems.

One of the first successful working systems was called MYCIN, which
was a medical system to diagnose blood infections. MYCIN contained
approximately 450 rules and was claimed to be better than many junior
doctors and as good as some experts. It had no theoretically generated rules
but rather was built up by interviewing large numbers of experts who could
report from direct experience. The rules could therefore, partially at least,
reflect the uncertainties apparent with medical conditions.



The general structure of MYCIN was similar to that of all expert systems.
In an expert system, each rule is of the basic form:

IF (condition) THEN (conclusion).

For example, a rule in MYCIN could be IF (sneezing) THEN (flu).
However, it may be that several conditions must exist at the same time

for a condition to be apparent (for the rule to be true) or, conversely, one of
a number of conditions could exist in order that a conclusion can be drawn.
So, it may be that a rule looks more like:

IF (condition1 and condition2 or condition3) THEN (conclusion).

In the medical example this might become:

IF (sneezing and coughing or headache) THEN (flu).

The actual rules employed are obtained by questioning a number of
experts as to their opinion. In this case it was medical experts: what are the
symptoms of flu? Or, if a patient is sneezing and coughing what does this
mean?

It might be that there are several possible conclusions that can be drawn
from the same set of facts. This would be a problem for an expert just as it
is for an expert system. In order to deal with such a situation, the system has
to have further rules purely for such instances in order to decide what
course of action to take – this is referred to as conflict resolution.

CONFLICT RESOLUTION
There are many situations in which several conditions are met but that only
one conclusion is required. In such cases a decision is necessary as to which
of the rules (all of which have conditions that have been fully met) takes



precedence. The conflict between these rules must be resolved. There are a
number of possibilities; the actual one to be employed depends on the
expert system itself. When several rules have all their conditions met, the
one selected depends on one of the following criteria being applied:

1. Highest priority rule – each rule has a priority associated with it and
if several rules apply, the one with the highest priority is chosen.

2. Highest priority conditions – each condition has a priority
associated with it. For a rule to be chosen it must contain the
highest priority conditions.

3. Most recent – the rule whose condition has most recently been met
is chosen.

4. Most specific – the rule which has most conditions met is selected.
This is also referred to as ‘longest matching’.

5. Context limiting – rules are split into groups, only some of which
are active at a certain time. To be chosen a rule must belong to an
active group – in this way the expert system can adapt over time to
different conditions.

Which conflict resolution method is employed depends entirely on the
application – for simple systems the resolution itself will most likely be
very simple.

In certain circumstances the expert system may be expected to draw
several conclusions from the same set of conditions, and may merely be
required to inform the user that these conditions all apply at that time. Any
further decisions, and hence any conflict resolution, can then be carried out
by the user.

MULTIPLE RULES
Most expert systems involve several rules which depend on each other.
These are structured in layers. Hence, when all the conditions are met for
one rule such that its conclusion is drawn, that conclusion can in turn meet a
condition for a rule in the next layer, and so on. As an example, consider an
engine management system for a vehicle:



Layer 1 Rules:
IF (start button pressed) THEN (start engine)
IF (gear selection made) THEN (engage gears)

Layer 2 Rule:
IF (engine started and gears engaged) THEN (vehicle drive)

It is clear that both layer 1 rules must have fired in order that both
conditions are met for the layer 2 rule to fire such that the vehicle can drive.
It could be considered that the condition for rule 2 to fire has become a fact
because both necessary rules in layer 1 have fired. There is, of course, no
conflict resolution required in this case as the rules are independent.

It is obvious from this example, however, that if we include other factors
such as brakes depressed, minimum fuel level in the tank, direction
selected, object in front of the vehicle and so on, the expert system rapidly
becomes more complex, with many layers of rules dealing with often
conflicting requirements. It is interesting to consider the total number of
rules that would be necessary for an expert system to drive a vehicle on the
normal road network.

In this case the original facts (data) entering our expert system are: first,
the start button has been pressed; and second, that the gear selection has
been made. Further facts are then realised in that the engine starts and the
gears are engaged. Subsequently, the overall goal is realised as the vehicle
drives. So we start with a set of facts which are input to our expert system
and a goal which is achieved, which could be said to be the output.

FORWARD CHAINING
With an expert system in normal operation, a set of facts will be apparent at
a particular time and these will fire a number of rules, realising further facts
which fire other rules and so on until an end conclusion is reached, much as
has been described in the engine management example. This way of
working from the input data to the end goal is referred to as ‘forward
chaining’. The purpose is to discover all that can be deduced from a given
set of facts.



BACKWARD CHAINING
Expert systems can also be used in a reverse fashion. In this sense, when a
goal has been achieved the rules are then searched to investigate what facts
(data) occurred in order for the system to reach the conclusion that it did. It
is also possible to look backwards through the system to assess what facts
we must input to the system in order for a specific goal to be realised.

In the given example, the question could be asked: what happened to
cause the vehicle to drive? Backward chaining would then be employed to
provide the answer that the start button was pressed and the gear selection
had been made.

Backward chaining is good for system verification, particularly where the
expert system must be safety critical and cannot arrive at a ‘wrong’
conclusion. It is also useful to assess the overall performance of the system
in order to find out if further rules are necessary or if a strange set of (input)
circumstances can cause an unexpected conclusion to be drawn.

GOOD POINTS
Expert systems have a number of advantages over other AI methods.

First, it can be seen that they are fairly easy to programme into a
computer (uniform lines of code in an IF–THEN structure). Each rule is a
separate entity with its own required data to fire and its own individual
conclusion drawn. If a new rule is deemed necessary it can be added to the
overall system, although sometimes this might mean also altering rules
governing conflict resolution.

The system is ideal for dealing with natural real-world information. After
all, it is the same information dealt with by experts. So when an expert says
‘in such a situation this is what I do’, this can readily be entered into the
expert system.

The system structure is separate from the data, and hence the problem
area, in the sense that the same expert system structure could be employed
in very different domains. It is merely the rules themselves and how they
are combined that would differ. Hence the same expert system structure in a
computer could be used for the medical diagnosis system as well as the
engine management system, although different rules would need to be



entered, different data would cause the rules to fire and different
conclusions would be drawn.

An expert system can deal with uncertainty, as we will see when we
consider fuzzy logic. In this case, when a series of facts are presented the
conclusion of the system might be that, given those facts, it is 75% certain
about the conclusion it is drawing. This may well be indicative of other
useful evidence that is missing that could otherwise make the system 100%
certain. Medical diagnosis is one example where confidence values are
useful. Given the symptoms input as facts, the expert system could give an
output which indicates that it is only 50% sure of the diagnosis. In such a
situation the experts themselves are rarely (if ever) 100% certain about a
diagnosis – this is merely reflected in the system itself.

One big advantage of such a system, as with most AI systems, is speed of
response, especially when compared to the speed of a human expert. When
the last piece of necessary information arrives it may take only a small
fraction of a second for the machine to come to its conclusion. A human
expert may take several seconds or, in some circumstances, many minutes
to arrive at the same conclusion for the same problem. This could mean
significant financial savings or that the safety of individuals is enhanced.
Expert systems to deal with machine or supply failure alarms or financial
dealing systems are excellent examples.

PROBLEMS WITH EXPERT SYSTEMS
There are a number of problems with expert systems. First, gathering the
rules can prove to be rather awkward. Often it is difficult for a person to put
into simple terms what it is they do in an everyday situation. On top of this,
if several experts are asked, they may well think about the problem in
different ways, such that it is difficult to standardise the rules. This may
mean that they differ completely on a solution. In some cases it may be
possible to average results, but in other cases it may not. Consider, for
example, an expert system designed to drive a vehicle: in the situation of an
object directly in front, one expert may suggest steering to the left while
another may prefer steering to the right. Averaging these responses and
steering directly ahead would not be sensible!

It is also worth pointing out that human experts, particularly specialists,
can be quite expensive, particularly if several of them are needed, and it can



be problematic to book them up and obtain answers from them. All this
time and expense goes towards the cost of realising the overall system.

One of the biggest problems with expert systems is what is referred to as
‘combinatorial explosion’. Quite simply, the expert system becomes too
big. One main aim of such a system is to deal with problems and to draw a
conclusion no matter what the situation. But in order to deal with absolutely
every eventuality, rules must be continually added to cover every possible
situation, no matter how unlikely. As an example, consider the case of the
expert system to drive a vehicle on normal roads: it is unlikely that an
elephant will walk in front of the vehicle, it is unlikely there will be lots of
mud and it is unlikely there will be a settee, but there may be and the rules
must take care of each of these circumstances.

Because some expert systems may contain many thousands of rules, even
to deal with something that may, to a human, be relatively straightforward,
at each occurrence many (if not all) of these rules must be tested, along with
any necessary conflict resolution and chaining. So rather than being much
faster than a human expert, when many rules are present such a system may
well be much slower than a human in making a decision. Debugging such a
system to ensure that it works in each and every eventuality can also be
difficult, with rules interacting and possibly cancelling each other out.

One final point to make here is that expert systems are merely one type
of AI, being indicative of simply one aspect of intelligence in general. In
particular, they attempt to mimic the reasoning function of the human brain
in terms of how decisions are reached given a number of facts at a
particular time, based on expert knowledge about what to do with those
facts.

It is important not to see such systems as merely programmed decision-
making mechanisms that will always perform as we expect. It is certainly
possible to operate them in this way, but it is also possible to enable them to
learn as they draw conclusions and experience their domain. Clearly this
depends on the function for which they are required. Such learning will be
considered in greater detail later.

Suffice here to say that if such a system draws a number of conclusions
then the rules which resulted in the ‘winning/selected’ conclusion can be
‘rewarded’ in the sense of making them more likely to fire and/or be part of
the overall conclusion next time around. Conversely, if a fired rule results in
a conclusion which is not chosen then it will be less likely to fire again.



Success is rewarded and failure is punished! This could also be achieved
through prioritising for conflict resolution.

FUZZY LOGIC
With the expert systems we have considered thus far in this chapter it has
been assumed that either a condition exists or it doesn't. This is
straightforward logic. A fact is either true or false.

Yet, as we saw, it was found useful in certain circumstances for
conclusions to be partially true or rather for a confidence percentage to be
applied to results. Indeed, this is how many things in human life actually
appear. If someone is having a shower they want the water to be warm. The
water is not simply hot or cold, it is warm. Fuzzy logic provides a basis for
this.

Let us assume for a moment that for shower water to be completely cold
it will be at a temperature of 0°C, whereas for it to be completely hot it will
be at a temperature of 50°C. If the actual water we are measuring has a
temperature between 0°C and 50°C then we can say, for example, that it is
65% hot, meaning that it is fairly warm, but has some way to go before it is
hot. If it is 12% hot, then it is pretty cold.

Although I have given the shower water values as percentages, using
fuzzy logic does not necessarily mean that the actual measured temperature
would be 65% of 50°C (32.5°C). Fuzzy logic is more directed to a human
concept of the temperature – remember it is a form of AI. So we can, if we
wish, draw up a relationship between the actual temperature and the
percentage value we will assign it, between 0% and 100%.

FUZZIFICATION
In a fuzzy logic system the first step is to take an actual real-world value
and make it fuzzy – this is referred to as ‘fuzzification’. If we are dealing
with the temperature of water, the actual water temperature would be
measured and then fuzzified. For example, a temperature of 20°C might
become a fuzzy value of 45%. This fuzzy value can then be input to our
fuzzy expert system.



The relationship between the actual value and fuzzy value needs to be
well defined for a particular problem – this could be done through graphical
means or possibly a look-up table or even through mathematical
relationships. As an example we could have, for our water temperature, the
following:

0°C becomes 0%, 10°C becomes 20% – in between add 2% for
every 1°C, so 3°C would become 6%.
10°C becomes 20% and 30°C becomes 80% – in between add 3%
for every 1°C, so 24°C would become 62%.
30°C becomes 80% and 50°C becomes 100% – in between add 1%
for every 1°C, so 43°C would become 93%.

The actual fuzzification routine depends entirely on the particular
application. This example has merely been given to show what is possible.

FUZZY RULES
Once a value has been fuzzified it is passed to the rules for evaluation.
Fuzzy rules are the same as those we have already seen:

IF (condition) THEN (conclusion)

However, we now have the situation that the condition may be only
partially true. For an expert system in which the water is either hot or cold,
we may have had the rules:

IF (water is cold) THEN (turn water heater on)
IF (water is hot) THEN (turn water heater off)

Now we can replace these rules with one fuzzy rule:



IF (water is hot) THEN (turn water heater on)

This may appear strange at first glance, but it must be remembered that we
are dealing with fuzzy rules – so the condition part will be a percentage
value (not simply ‘yes’ or ‘no’). As a consequence, the conclusion part will
also be a percentage value. Now the water heater will not simply be turned
on or off, but will be turned on to a certain extent – as we will see.

As we saw before, with straightforward expert systems, it may be that a
rule has several conditions that need to be satisfied before the rule can fire,
or conversely any one of a number of conditions might occur for a rule to
fire. For example:

IF (water is hot AND energy tariff is high) THEN (turn water heater
on)

This would require both conditions to be true for the water heater to turn on.
Alternatively:

IF (water is cold OR energy tariff is low) THEN (turn water heater
on)

This would require either (or both) of the conditions to be true for the water
heater to turn on.

But with fuzzy rules, each of the conditions has a percentage assigned to
it. Most fuzzy systems operate as follows. Where the AND term appears the
minimum percentage value of the condition is carried forward. Where the
OR term appears the maximum percentage value of the condition is carried
forward.

As an example, we might have the fuzzy rule:

IF (water temperature is hot AND energy tariff is high) THEN (turn



water heater on)

For this example, let's imagine that after fuzzification the water temperature
has been assigned a value of 62% and the (also fuzzified) energy tariff has
been assigned a value of 48%. The value carried forward, as this is an AND
operation, will be the minimum of the values 62% and 48% – i.e. it will be
48%. Conversely, if the condition contained an OR operation then the value
taken forward would be the maximum of the values involved, in this case
62%. We will see shortly what happens with the value taken forward.

It may be that only one rule fires in an expert system; however, it is more
normally the case that a number of different rules will fire. Each of the rules
will then result in a different value taken forward and these values must be
aggregated to provide a single end value that means something in the
outside world. In the example we are considering here, we require an
overall percentage output which will indicate how much the water heater
needs to be turned on.

DEFUZZIFICATION
There are a number of ways in which the different percentage values taken
forward can be aggregated. Perhaps the simplest, and most obvious, is
merely to average the values.

If we have three rules – R1, R2 and R3 – which have produced the
resultant percentage values R1 = 23%, R2 = 81% and R3 = 49%, then the
average value would be the three percentages added together and divided by
three (i.e. 51%). In our example, this refers to how much the water heater
must be turned on – just over half way.

However, as discussed previously it is often the case that some rules will
be more important that others. The most typical defuzzification method is
therefore a weighted average method – referred to as the ‘centre of gravity’
(COG) method. In this case each resultant percentage value is multiplied by
an associated weighting value, the answers being added together and
divided by the total of all the weighting values added together.

In the example just considered let us assume that R1 is more important
than the others, so we'll give it a weighting of 5; R2 gets a weighting of 2;
and R3 a weighting of 3. R2 is therefore the least important of the rules.



When we add these weights together the answer is 10. Now we multiply our
values for R1–R3 by their weighting (23 × 5, 81 × 2 and 49 × 3), the result
of which is 424, which, when we divide it by 10 (the sum of the weights we
applied) gives us a defuzzified value of 42.4%. This is lower than the
previous unweighted calculation because more emphasis, through the
weighting, was placed on the output of rule R1 which was much lower than
the outputs of the other two rules. Because of this the water would not be
heated to the same extent.

FUZZY EXPERT SYSTEM
In building an expert system it is simply the case that rules must be
generated and arranged in layers with an appropriate conflict resolution
scheme put in place.

With fuzzy expert systems we certainly need rules, but in this case they
must be fuzzy rules. It may be that a conflict resolution scheme is also
necessary; however, this may well not be so as the defuzzification technique
can, in this case, take into account things such as prioritisation between the
rules and can even reflect the time that a rule fires by making the
defuzzification weighting values time-dependent. As an example, when a
fuzzy rule first fires its relative weighting value might be high, but as time
passes the weighting might diminish with respect to time. This can be to the
extent that if a particular rule has not fired for a long time, it is weighted as
zero, i.e. it will be ignored by the system. So even if a rule has fired, when a
certain period of time has elapsed, it can be overlooked in the
defuzzification routine.

In the case of fuzzy expert systems, as well as a set of fuzzy rules, also
required are appropriate fuzzification and defuzzification schemes.
Defuzzification needs to take into account what the output value is actually
intended for – possibly controlling a motor or pump to a proportion of its
full capabilities or maybe driving a vehicle at a percentage of its full speed.

Fuzzification can be more problematic as the different quantities being
fuzzified can be very different terms in reality, such as voltages,
temperature or flow rate, which are all measured differently. Unfortunately,
there is not really a well-defined, tried-andtested systematic way to build up
either the fuzzification method or the subsequent fuzzy rules. Hence, in



order to obtain a successful fuzzy expert system quite a bit of trial and error
is necessary to obtain the best performance.

PROBLEM SOLVING
We have looked at one aspect of AI in which we can enter a set of rules for
the system to follow, such that all eventualities are covered. A different type
of situation occurs when we need to realise an AI system to solve problems
for us. One simple example of this exists in a satellite navigation system as
used for vehicle guidance. We (hopefully) know where our start point is and
we also know where we wish to get to, but we don't know how to get there.

This is rarely a trivial problem as many different solutions exist. So it is
usually the case that we have further requirements, such as wishing to know
the quickest route or possibly the shortest one, or we could even require the
most scenic route – in fact, there are all sorts of potential requirements
when travelling from place to place. This type of problem is typical of many
and is something that AI can be very good at solving – very quickly.

Let's assume that we wish to travel from the town of Reading to
Newcastle via several other towns. There are many possible routes to take.
For example, we could start by travelling from Reading to Oxford or
possibly Reading to London. Both of those routes would have costs
associated with them in terms of the time the route would take, the fuel
used, the distance travelled and so on. From Oxford one could travel to
Banbury or possibly Stratford and so on; each path from one town to the
next has costs associated with it. Finally, the end goal of Newcastle is
reached.

On the assumptions that we limit the number of possible towns to be
considered on our trip from Reading to Newcastle and that we only visit a
town once, then there are a number of ways that an AI system could search
for the best solution.

BREADTH-FIRST SEARCH
In order to decide which is the best solution to our travel problem, it is
necessary to consider all possibilities. In our example with Reading as a
start point we could search for the best route by first looking at all the
possible towns to travel to from Reading – Oxford and London included.



For each of those towns we could then look at all the possible choices from
them. At each stage we would evaluate the total cost of taking that route.

We would eventually arrive at Newcastle via a number of different
routes, but as we have a record of the total cost of each of these routes, a
comparison could be made between them to decide which is best in terms of
distance, time or whatever is the requirement. Essentially, we would have
looked at all possible solutions and after making a comparison, as long as
the costing information was accurate, we would definitely be able to find
the best solution.

In some cases, particularly for simple routes with only a few towns, such
a search is perfectly acceptable. However, because of the number of
potential solutions it can prove to be problematic in terms both of the
amount of computer memory required and the time taken, even on a very
powerful computer, for all routes to be considered and associated costs
calculated. The memory problem is caused by the fact that all information
about all routes must be saved until we reach the goal town of Newcastle,
when the final comparison can be made.

DEPTH-FIRST SEARCH
In a depth-first search, one complete route is tried initially from the start
point to finish at the goal. Then a different route is tried from start to finish.
Immediately a cost comparison can be made between the two and the best
one retained. Other routes can be systematically tried in the same way. If we
are only looking for the best solution then only one route needs to be
retained in memory. If, on comparison, another route is found to be better in
terms of cost (assuming this is our focus), then that simply replaces the
original. For this type of search, computer memory requirements are
therefore of little significance.

One big issue with depth-first searches is that if a poor initial choice is
made, it can produce a direction that results in a very long and expensive
path involving hundreds of towns. Other similar poor, long, paths may well
then be searched next. Meanwhile, it might be that the best solution only
involved starting in a different initial direction such that low-cost routes
could be taken. With depth-first searches such a solution might not be
discovered for some time. A breadth-first search, for the same problem,
would have found such a solution very quickly.



DEPTH-LIMITED SEARCH
The problem of a depth-first search looking into extremely long and costly
routes can be alleviated by a depth-limited search. A defined number of
towns, the depth limit, on a journey is first selected. The search then
commences in depth-first fashion until the defined number is reached. That
particular search is given up on and the next one started in depth-first mode.

Clearly, an amount of common sense and, where possible, knowledge of
the particular problem needs to be applied with a depth-limited search. The
previous two techniques (breadth-first and depth-first) are known as ‘blind
searches’ because little needs to be known about the problem for the search
to go ahead. With a depth-limited search it would be stupid, for example, to
choose a very low limit when the solution might be expected to produce a
result of two or three steps. A brief study of the problem may well tell us
that a solution is likely in, say, nine or ten steps, so a good choice for the
limit in this case might be 10–11 – if a solution doesn't look good after that
number of steps it is very unlikely to be the best solution, so let's give up
and try another path.

BIDIRECTIONAL SEARCH
An alternative strategy is to split the search in two and to commence one
search (forwards) from the start point and simultaneously to commence a
second search (backwards) from the goal. The big advantage of this
technique is that it can save a lot of time in finding a solution; however, it
can require significant memory.

In order to succeed, as part of one of the searches, a routine must also be
included to check on whether or not a point reached has also just been
reached on the fringe of the other search. Knowledge of the problem is
therefore useful here, as such a fringe-checking exercise, which can be time
consuming, does not need to be carried out until such a depth has been
reached that a solution is either likely or possible.

SEARCHING PROBLEMS
One enormous potential time waste is to repeatedly explore points that have
already been reached and fully explored. This can result in never finding a



solution or concluding with a poor or incorrect solution. For some problems
(particularly simple ones) such a situation should not occur, but other
problems can be complex and there may be several intermingling routes to
consider.

To explain the problem in a little more detail, consider again attempting
to travel from Reading to Newcastle. We may take one path from Reading
to Oxford then on to Coventry, and subsequently explore all the possibilities
from Coventry. As part of the search we may then try Reading to Banbury
then on to Coventry – having arrived at Coventry by a different route. All
possible paths out of Coventry, with their associated costs, have already
been searched, so there is no point doing the same exercise again. However,
it does mean that memory of all the different paths, with associated costs, is
required until an overall solution has been found.

As part of the search it is necessary, when a new point is reached, to
compare the point with those that have already been expanded. Apart from
not expanding the point again, the two routes to that point can be compared,
the best one selected and the loser discarded. As with intelligence in
general, an AI search that forgets or ignores its past is likely to make the
same mistakes over and over again.

PRACTICAL SEARCH EXAMPLES
Although a travelling example has been given here to explain some of the
principles, the searching techniques described can be applied to find the
solution to puzzles. One example is a Rubik's cube, where the initial start
point is usually a random assortment of coloured squares on different faces
of the cube, the end goal being when each of the faces of the cube consists
of squares of only one colour.

Breaking down the problem, it is best to find a state that the cube can be
in from which a known solution exists to reach the problem, and then a
further state back from that, and so on. At any point in time it is then merely
a case of taking a small step to get from one state to another, and thereby to
reach the goal.

Maze-solving is another example, in this case where a human would
typically use a depth-first strategy when a breadth-first strategy would most
likely be much better. In fact, for a maze as encountered in a puzzle book
the best strategy is almost surely a bidirectional search – working



backwards from the goal as well as forwards. Unfortunately this usually
makes the problem trivial and spoils all the fun.

In Jerome K. Jerome's Three Men in a Boat, Harris’ solution to finding
the centre of Hampton Court Maze was ‘it's very simple … you keep on
taking the first turning on the right’. Unfortunately this resulted in his party
repeatedly returning to the same point, to the extent that ‘some of the
people stopped and waited for the others [Harris] to walk round and come
back to them’.

At a more complex level, games such as chess present themselves as
prime examples. The present state at any time is the situation on the chess
board, and the goal is to achieve checkmate. The added complexity in this
case arises from the uncertainty as to what the opponent is likely to do. At
any instant in time, therefore, the search must include costings that are
based on probabilities rather than fixed values. So, unlike the travelling
problem in which (traffic jams excluded) costs are assumed to be pretty
much fixed, in chess the likely response of the opponent must be taken into
account as much as possible.

In May 1997 the IBM computer Deep Blue beat the erstwhile human
world chess champion, Garry Kasparov, over a six-match series. The
computer was capable of extensively searching and analysing 200 million
positions every second – thereby indicating a distinct advantage of AI over
human intelligence in terms of speed of calculations. Kasparov said at the
time: ‘There were many, many discoveries in this match, and one of them
was that sometimes the computer plays very, very human moves. It deeply
understands positional factors.’

HEURISTIC SEARCHING
If some information is already held about the problem then different
strategies exist to modify the search procedures as described. The actual
technique used in any particular case depends very much on the nature of
information held. One obvious method, referred to as a best first search,
expands the search from a particular point based on the minimum expected
cost of a solution. This can be extended, where cost estimations or
probabilities need to be made, to finding the minimum of a mathematical
function in which estimates of costs are drawn up for different solutions.



A greedy best first search merely expands the search by finding the
minimum cost for the next step taken. This does not always produce the
best solution but it is generally efficient and can be very quick.

Other techniques involve finding a list of all possible solutions and
starting with one initial solution. This solution is then only dropped in order
to select an alternative if the overall cost is better, which, in turn, is retained
until it is bettered. This is generally referred to as hill climbing or steepest
descent. It is what is referred to as a local search method as the list of
solutions will be ordered such that similar solutions lie near to each other,
with small changes being made to each solution. One problem of the
technique therefore is that it will find the best solution which is only the
best locally to those solutions around it – in other words, it may not find the
overall (global) best solution. This is referred to as ‘getting stuck in a local
minimum’. Ways of getting around this involve randomly jumping to
another part of the solution list.

KNOWLEDGE REPRESENTATION
One important aspect of the types of AI systems we are looking at here is
how information or knowledge about the problem faced is stored and dealt
with. Essentially, we have to decide what content to put in the knowledge
base and how best to represent the world at large within a computer. In
particular, we are faced with very different requirements depending on the
type of information we are storing.

We must deal with the likes of physical objects, time, actions and beliefs
we hold to be true in all sorts of different environments. Trying to model
and represent everything in the world would be quite a significant task –
humans cannot do this so we cannot expect an AI system to do so. But what
can be represented is a limited domain of knowledge, focusing on a specific
area or topic of interest.

There are several different approaches used in the world of AI to
represent knowledge. Here we will look at one of the most widely used, a
method called frames. Frames are used to represent large amounts of
general purpose, common sense knowledge, in a structured way.

FRAMES



A frame represents necessary everyday typical knowledge about an entity. It
is a file within the computer, with a number of pieces of information stored
in slots in the file. Each of those slots is itself a sub-frame (or sub-file) with
further embedded levels of information.

Let us assume that we have a frame-based AI system which is being used
to describe a house. The initial frame is the house. Within the house are a
number of slots, e.g. dining room, kitchen, lounge, etc. Each of these slots
is then itself a frame. So we have a kitchen frame which contains a number
of slots, e.g. refrigerator, cooker, sink, etc. These slots are, in turn, frames in
themselves with slots of their own. And so on until a sufficient depth of
knowledge is realised for the problem at hand.

Exactly the same basis is used for actions, with each potential action
being described by a frame with slots containing sub-actions. If we had a
frame for going outside, this might contain action slots such as put on
shoes, put on coat, take car keys, etc. As you can see, this type of
knowledge representation is very much like the way humans might think. If
I am going outside, what must I remember to do?

Sometimes in everyday life, if the task we are faced with is unusual or is
some time in the future, it is likely that we (as humans) might forget some
of the slots. So we write down a list of what we need to do in order to
accomplish the task. This list is essentially the principle of a frame-based
knowledge store in an AI system.

A frame can contain (in its slots) all sorts of different pieces of
information pertaining to the subject of the frame. These can be facts about,
or objects within, a situation. Conversely, they could be knowledge about
procedures or actions to be carried out. On the other hand, a frame could
contain a mixture of this information.

If a frame describes an action then some of its slots describe the sub-tasks
to be performed in order to carry out the overall action. But there also needs
to be an actor slot, to indicate who or what is to carry out the action. It is
also necessary for there to be an object slot, to indicate what or who will be
acted upon; a source slot to indicate the start point; and a destination slot to
describe the end point destination for this action.

METHODS AND DEMONS



Thus far we have seen how knowledge can be dealt with in the frame
method. However, to employ this within an AI system we need to be able to
manipulate and interrogate the knowledge. Methods and demons are the
way in which appropriate actions can be carried out.

A method is a series of commands that is associated with a particular
entity in a slot either to find out something about the entity or to carry out a
series of actions when the value of the entity changes in a certain way.
Methods can either be of the type when changed or when needed.

In a ‘when changed’ method, the appropriate procedure will be carried
out when the value of the entity changes. For example, in a share-trading AI
system, the value of a particular company's shares could be monitored.
When it changes a procedure is then automatically carried out to test
whether the share value is now above or below previously set threshold
figures. If the value has gone outside these bounds then the shares may be
automatically sold or bought as appropriate.

In a ‘when needed’ method, the appropriate procedure will be carried out
when a request appears to find out what the value of the entity is. In our
share-price example, at the time of a ‘when needed’ request, possibly from a
potential investor, the value of the company's shares will be determined.

Demons are IF (condition) THEN (conclusion) statements which are
fired when the value of the condition term changes. In this way demons and
‘when changed’ methods are very similar.

There are distinct similarities between expert systems – of the rule-based
type considered earlier in this chapter – and the mode of operation of a
frame system in terms of its methods and demons. Indeed, it is quite
possible to operate a frame-based expert system.

The differences between the methods are slight and it is more down to
the philosophy behind each approach. In a frame system the frames try to
match to the present situation, the aim of the reasoning process carried out
is then to find which frames apply at any time, i.e. which situation, action or
object is the focus. If there is no match then another frame is given control,
the attention is pointed elsewhere. A piece of data or value could change,
but if it is nothing to do with the frame in control then it may have no
impact.

A rule-based expert system is usually much more data driven. If a value
changes then it may fire some rules which will create conclusions which



could fire further rules, and so on. However, by employing conflict
resolution, priorities can be set and this can effectively block certain rules
from having any effect at certain times – which results in a similar method
to a frame system. It must be pointed out, however, that for practical AI
systems, a rule-based expert system is much more widely encountered,
particularly within an industrial environment.

MACHINE LEARNING
One of the biggest misconceptions many people hold about computers is
that they are unable to learn and adapt to new opportunities. It is certainly
true that this may be the case for some computers in that they are merely
programmed and are expected to perform only as they have been
programmed. However, many computers can learn from experience,
significantly alter their mode of operation and change their behaviour in
fundamental ways. Of course, they must have been given the ability to do
so, but do so they can.

In fact, an important aspect of the field of AI is the ability of computers
to learn. With the classical types of AI that have been considered in this
chapter, while they are perhaps not as well suited as some of the methods
described in later chapters to adapting, other than through human input,
they are nevertheless quite capable of doing so.

A rule-based expert system is, by definition, originally set up by
extracting a series of rules from human experts, along with other pieces of
information, e.g. data sheets on the problem domain.

What is produced is a bank of rules, some of which lead on to other rules
when they fire. So upon certain data being input, a winning series of rules
may involve 6, 7 or more rules firing in series, each one triggering the next
to fire until the final conclusion of the final rule is reached. It follows that
for an end rule to draw a conclusion, all the previous rules in the series
needed to fire.

It may be that the conclusion drawn is a good one, as far as any action
taken in the outside world is concerned – maybe shares are sold and a profit
is made or perhaps an alarm is sounded in good time. Each of the rules that
have taken part in the successful conclusion can then be rewarded such that
when a similar set of input data occurs, the rules are even more likely to
fire. This reward mechanism can be brought about either through



prioritising via conflict resolution or by increasing condition percentage
values in a fuzzy rule-based system. The opposite is true if the end
conclusion turned out to be a bad one, whereby the rules are punished by
decreasing probabilities.

The general method used is referred to as a bucket brigade technique,
because the reward or punishment is passed back, in some measure, from
the output conclusion. The method employed, the weightings applied and
the amount of flexibility involved in the rules is all dependent on the
problem domain. It may be, for example, that some rules must necessarily
not change for safety or reliability reasons and these can then take no part in
the learning process.

It is also possible for the computer to generate new rules by itself. A new
rule can be brought about simply by allowing small mutations to the
condition probabilities or the conflict resolution procedure. If the new rule
then takes part in a successful end conclusion it will receive a reward and
will strengthen. If, however, it takes part in any unsuccessful conclusions it
will be punished on each occasion until it withers away. How much of this
learning is allowed depends entirely on the problem and how much trial and
error is allowed in the real world.

DATA MINING
Humans operate by obtaining facts, termed data, about the world around us
and making informed, reasoned choices based on that information. This
may be simply deciding which loaf of bread to buy based on the price or
which train to catch depending on timing and venue. However, the extent of
information available to us now is, for many decisions, far more than our
human brains can cope with – it's a case of information overload. Hence
many companies exist simply to advise us, at a price, as to, for example,
which insurance to purchase and how to go about it. We rely on them to do
the ‘difficult’ thinking for us.

Even when buying a simple product we are faced with a plethora of
different types of data. Different suppliers, prices and products with
different performance measures, insurance deals, delivery offers and so on.
We don't want to make a fool of ourselves and waste our time and money.
However, we would like to get that special deal, a bargain because we had
the right advice at the right time.



Whether it is carried out by a human or a machine, extracting vital pieces
of knowledge from the complexity of available data on a particular topic is
referred to as data mining. AI systems are well suited to this because of
their ability to store enormous quantities of data and to draw out all sorts of
relationships within that data in order to realise patterns, connections and
links that are meaningful.

It is said that the amount of data in the world (approximately) doubles
each year – this means that over a ten-year period (e.g. 2002 to 2012) there
is a 1,000 times increase in data! Many new areas of study arise because of
improvements in technology, and each of these inputs significantly to the
data available – data that are not well understood and often with meanings
that are not readily drawn out. In recent years the Human Genome Project
has opened up the complexities of DNA, and now we are able to look into
the functioning of brains (even human brains) and try to make sense of what
is going on based on the new forms of data obtained. There are, as a result,
new business opportunities to seize, new medical techniques to develop
and, most important of all, a more in-depth understanding of the scientific
world around us is available. But we need to understand the data collected.

CORRELATIONS
There are a lot of situations in which many different pieces of data exist.
What we may wish to discover are similarities, links and relationships
between these pieces. Or, it may be that we wish to discover the most
important pieces. On the other hand, it is possible that we wish to predict
likely outcomes in the future based on the data available to this time – so
we need to know which pieces of data are useful for the prediction and
which are not.

One example is supermarket shopping. For many people such shopping is
a regular exercise, e.g. the main weekly shop is carried out every Thursday
evening. There are approximately 100 different types of produce available
in a typical (mainly food) supermarket, and every time such a person uses
the supermarket, data is obtained on what they have purchased.

Over a period of time statistical links can then be drawn up for an
individual as to what they buy and how often they buy it. Similarly for the
different products, links can be drawn from the data to indicate which
people buy certain products and when they buy them. A clear aim here is to



be able to say: ‘Next Thursday a certain person will enter the supermarket,
they will buy this product and that product – if we make them available the
person will also buy other products based on our predictions.’ The
prediction may not be 100% accurate for a particular person at a particular
time, but over 100 or 1,000 people it may well be sufficiently accurate (on
average) for a significant profit to be made. This is how profit can be made
from data mining.

One basic statistical technique that can be applied is that of correlation –
to see how one piece of data is linked to another piece of data. As an
example, let's consider our person visiting the supermarket over a period of
one year, and look at their purchases of milk and cheese. The data on how
much milk and cheese was purchased by that person, week by week, over
the one-year period can then be analysed to see how the two pieces of data
are related to each other. When one increases does the other increase, when
one decreases does the other? A number of statistical tools are available for
this, such as Principal Component Analysis, which detects the main links
between different pieces of data, e.g. for one person the purchasing of shoe
polish may be closely linked to buying pickles. But using a computer this
analysis can be carried out for all 100 (or more) different products.

Such techniques have been used to discover many strange facts about
regular purchasing patterns in supermarkets. One intriguing example is the
link, particularly on Friday nights, for young male adults to purchase both
nappies (diapers) and beer – I will leave you to draw your own conclusions
about this!

DECISION TREES
One technique used to reduce the complexity of problems, and hence to
make an enormous database a little easier to analyse, is the use of decision
trees. It is essentially a method whereby the entire database is chopped up
into more manageable proportions, based on the requirements of the user.
This makes it easy to follow a path through the tree.

In the example regarding purchases from a supermarket, we could decide
that we only wish to consider female purchasers. This would be a user-
specified branch, such that only data associated with female purchasers
need be considered from the outset. The branch (section of the total data



set) dealing with male purchasers can be completely ignored by the AI
system.

However, we may also input other requirements, the resultant branches of
which could be discovered as a part of the analysis. For example, only those
purchasers who spend more than £60 per visit, regularly purchase soup and
buy fresh vegetables. Rather than dealing with a large number of people
(say 50,000), we may, with such a small subset generated by the specific
criteria, only need to consider 1,000 or even less, which will dramatically
reduce the time taken for the analysis, and at the same time will improve the
accuracy of the results and subsequently any predictions made.

FUZZY TREES
I've already described the tree as a logical decision routine to chop up the
entire database. This need not be the case as we can have fuzzy trees. In the
example I mentioned ‘regularly’ in terms of the frequency of purchasing
soup. We could define ‘regularly’ in a straightforward (logical) way, e.g. at
least once per month is regular, less than that (on average) is not.
Conversely, we could define ‘regularly’ in a fuzzy way, e.g. never is 0% and
every week is 100%, and any frequency in between these values is fuzzified
with an associated percentage – so an individual who purchases soup once
every two months might be associated with a fuzzy value of 26% (for
example).

Fuzzifying the decision tree in this way still reduces the complexity of
the analysis in terms of the number of different parameters (food products
in this case) considered. However, any final results will have a level of
confidence associated with them. Someone who scores 26% on soup
purchasing will not be as strong a member of the final group as someone
who scores 84%.

Similar fuzzifying can be carried out in terms of other quantities. In our
example one person could spend £10 per week on fresh vegetables while
another might spend £25 per week on the same produce. Both individuals
could purchase fresh vegetables every week, but clearly we might be more
interested in one shopper than the other. We may wish to put more emphasis
on the high-spending shopper, especially when it comes to making a
prediction.



One option is to increase the dimensions of the database by simply
recording more separate values. This is not such a good idea as, in these
circumstances, at any one time, an entry will appear in only one of the new
split sections (e.g. high spender on vegetables or low spender on
vegetables). More appropriate is the fuzzy concept of assigning a
percentage value to the person with regard to the amount spent. This
quantity can then be linked with the frequency of purchase to provide an
overall percentage value for an individual. So, an individual may be given a
total membership value of (say) 47% in the vegetable-purchasing database
because they spend £18 on vegetables, but only buy them once per
fortnight.

APPLICATIONS
As we have seen, data mining is very useful for marketing products as it is
possible to analyse purchasing patterns and behaviour and then to target any
offers to a specific group of people in a way appropriate for that group.
Data mining is also useful for analysing business movements and finance,
such as the stock market. Trends can be predicted and potential outcomes
can be estimated if certain deals are carried out.

One relatively new area for data mining to be used is in detecting
criminal activity. First, typical behaviours of groups of people, and even of
certain individuals, can be accurately monitored and then any deviations
can be quickly highlighted as the activity will not correlate well with
previous behaviour. In this way crimes such as fraud can be identified or
usage of a stolen credit card can be flagged.

CONCLUDING REMARKS
The classical AI techniques described here have been based more on trying
to get machines/computers to copy humans in tasks that, when humans do
those tasks, we deem them to be intelligent acts. The discussion has ranged
from the ways we store information, as described in the frame technique, to
the ways we reason and make decisions, as considered in rule-based expert
systems. After all, such an expert system is merely trying to mimic how an
expert deals with certain problems.



A motivation for such developments has been evidenced by some of the
advantages of AI when compared with human intelligence, which gives us a
practical reason to use machines in this context – to replace humans! These
include speed of processing, accuracy of mathematical calculations, extent
of memory, relating complex data and the ability to function 24 hours per
day, seven days per week. Clearly, computers think in a different way to
humans!

The concept of intelligence is in itself a controversial topic, but when we
consider machines as being intelligent this raises enormous debate. What
does this mean? How does machine intelligence compare with human
intelligence? Can a machine actually be alive? In the next chapter we look
at the important philosophical issues that underpin the subject area.
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THE PHILOSOPHY OF AI

SYNOPSIS
The philosophy behind AI has played a critical role in the subject's
development. What does it mean for a machine to think? Can a machine be
conscious? Can a machine fool you, in conversation, into thinking it is
human? If so, is this important? This whole topic emphasises the
importance of the subject by asking fundamental questions about ourselves.
We look in this chapter specifically at the Turing Test, the Chinese room
problem and conscious machines.

INTRODUCTION
The most important issue when considering arguments about intelligence,
whether it is of the human, animal or artificial kind is what exactly
intelligence is in the first place. This is something that we looked at in
Chapter 1, and in doing so attempted to consider intelligence in a general
sense rather than simply the human version.

Unfortunately, as we will see through a number of key examples, the
philosophical study of AI has been dogged by the desire to regard human
intelligence as something special, and simply to try and show how
computers can't do some of the things that human brains do, and therefore
the conclusion has been drawn that computers are somehow inferior. This is
probably understandable — after all, we are human and it is easy to fall into
the trap of thinking that the human way of doing things is the best way.



It is extremely difficult to be objective about something when you are
immersed in it on a daily basis. Ask any company whose product is best
and, naturally, they will tell you it is theirs. Ask any academic researcher
whose research programme is the most important and deserves to be funded
and they will tell you it is theirs. In order to get around this, external
assessment is required.

Many magazines on the high street are sold simply because in their pages
one can read about comparisons between products such as vehicles or
washing machines. We respect the magazines’ authors as knowledgeable,
independent sources who will give us an unbiased view on all the aspects of
the products we are interested in. We can then make up our own minds on
which product is best (in some way) by analysing all the facts.

In a sense we do this in a scientific way — balancing price with
performance with reliability and so on. In doing so, perhaps some aspects
are more important to one person than they are to another.

In order to study the philosophy of AI we need to start by carrying out an
independent assessment of intelligence. We need, for a moment, to try to
forget that we are human and to look at human intelligence from the
outside. Perhaps it might be easiest to imagine that you are an alien from
another planet, with no preconceived bias towards humans, and you must
assess the intelligence of the entities that you observe on Earth.

STARTING POINT
First, let's have a look at some of the misconceptions and biases that can
occur and some important points to draw. With AI we are, as we will see,
not necessarily trying to copy (simulate) the workings of the human brain.
Nevertheless, one interesting initial question might be: could we
simulate/copy the human brain with an AI brain?

One approach might be to take human brain cells and to grow them in a
laboratory and, when they are connected and developed, put them in a body.
This would, we assume, come pretty close to being a human brain. But even
then, would it be exactly the same as a human brain if it was in a robot or
animal body? It would not have experienced life as a human, with the range
of experiences and education. But then, not all humans have a wide range of
experiences and there are considerable differences in performance between



different human brains. We will look at this particular type of AI, in a
practical sense, in Chapter 5.

However, if we take a computer form of AI, which historically has been
that most widely considered, then, as John Searle stated, ‘a computer
simulation of a physical process (e.g. a human brain) is a very different
thing from the actual process itself’. Unless we build the brain of exactly
the same material, we will never get it to be exactly the same, although, in
theory, we might get very close.

With a computer-based AI there will, as a result, always be, the argument
goes, some differences between it and a human brain. It is worth
remembering, though, that human brains are diverse in their nature and
performance — we need to include in our analysis humans who have
autism, Alzheimer's disease, cerebral palsy and so on. It must also be
remembered, for example, that some humans have a limited or even no
form of communication with other humans — however, they are still
humans.

PENROSE'S PITFALL
We can all fall into simple traps when studying AI and the human brain. As
an example, consider random behaviour. It might be said that computers
think in a mechanistic, programmed way, whereas humans can think
randomly. This is incorrect — all human thoughts are from and in our
brains and are therefore based on the genetic make-up of our brains and
what we have learnt in our lives. While an act may appear random to an
outside observer, this is simply because they do not understand the
reasoning behind it. Anything you do or say will have been based on the
signals in your brain. As a simple test, do something random, say something
at random. Whatever your action or utterance, you will have made a
decision to make that specific response.

Roger Penrose, a mathematical physicist, said: ‘There is a great deal of
randomness in the (human) brain's wiring.’ This is simply not true. A human
brain is certainly an extremely complex network of highly connected brain
cells, but the connections have been made due to biological growth, partly
as directed by our genetic make-up and partly down to learning
experiences, which physically change the strengths of the connections.



Just because something is complex and difficult to understand does not
mean it is random. For example, if you do not understand what is going on,
the functioning of a telephone exchange can appear complex to an observer
— but it does not act randomly, otherwise we would almost never be able to
make a telephone call, we could be connected with absolutely anyone else
(at random).

Let us take another argument from Roger Penrose, which is laced with
human bias and a desire for humans in general to have something extra. By
comparing merely humans and computers we will first look at Penrose's
argument — see if you agree with it! We start by considering some form of
communication and/or instructions:

1. ‘Genuine intelligence requires that genuine understanding must be
present’ or quite simply ‘intelligence requires understanding’. In
other words, if you don't understand things then you cannot be
intelligent.

2. ‘Actual understanding could not be achieved by any computer.’ Put
another way, computers will never be able to understand.

3. As a result: ‘Computers would always remain subservient to us
[humans], no matter how far they advance.’

The general argument of points 1 and 2 appears to be that humans
understand things, whether it be communication or an inspection of the
world around us, and that this is the critical element necessary for
intelligence. The argument continues that computers may indeed be able to
do things, such as communicate, but they do not understand what they are
doing, so they cannot be intelligent. Point 3 then follows with the
conclusion that computers will always be subservient to humans, on the
basis that human intelligence is superior to AI, because AI will never be
able to reach the human standard of understanding.

To counter the argument let us broaden the discussion to intelligence in
general, including animals. Many creatures appear to communicate or give
instruction to each other: we can readily observe this in creatures such as
cows, bees and ants, as well as chimpanzees, bats and so on. When one bat
screeches to another or when one cow moos to another they presumably
have some concept of what is being uttered; indeed, they often seem to
respond and interact with each other. One bat appears to understand another



bat; one cow appears to understand another cow. But do we humans
understand them, can we communicate with them? No.

Using the same arguments put forward by Penrose — as humans do not
genuinely understand bats, cows, etc., we are not as intelligent as they are.
As a result we will always be subservient to them — bats or cows will rule
the Earth! Clearly, such an argument is silly — as, in exactly the same way,
is Penrose's argument for computers always being subservient to humans.

Computers may well understand things in a different way to humans;
animals probably understand things in different ways to humans; some
humans probably understand some things in different ways to other
humans. This doesn't make one intelligent and another not. It merely means
that one is intelligent in a different way to another. It's all subjective, as was
pointed out in Chapter 1.

As for Penrose's third point. Well, that is pure Hollywood, total fiction. It
may make someone feel nice to say that machines will always be
subservient to humans, but there is no logic to it at all. When the Aztecs and
the Native Americans were defeated by Europeans it could be said that the
‘better’, more intelligent culture lay with the home teams. What the
invaders brought with them though, apart from disease, was a vastly
superior technology that the home teams didn't understand and never got to
grips with. We must conclude that just because something is not intelligent
in the same way as we humans are does not mean it will always be
subservient to us!

WEAK AI
There exist different schools of thought as to the actual nature of AI. These
differing philosophical ideals are generally split into three camps, although
there may be some overlap.

The possibility that machines can act intelligently as a human does or act
as if they were as intelligent as a human is referred to as weak AI. This
concept stems from Marvin Minsky's definition of AI cited in Chapter 1,
whereby machines do things that appear to be intelligent acts. This concept
of weak AI is not accepted by some, however.

Computers can, in fact, even now do many things better than (all)
humans do, including things that we feel require understanding — playing
chess, for example. Humans use computers on a daily basis because of their



memory and mathematical abilities, because they can perform in a better
way than humans in many aspects of these fields.

STRONG AI
The possibility that a machine can actually think in exactly the same way as
a human, as opposed simply to appearing to simulate human thinking, is
referred to as strong AI. For this to hold, it would mean that it would be
possible to build a computer that completely replicated the functioning of
the human brain in every aspect.

There are a number of important issues here if it is to be possible for a
machine to think in exactly the same way as a human. In particular, a
computer will most likely not have had life's rich experiences, as a human
would have done, over many years. It would not have grown up
experiencing different sensations, realising different values, being faced
with moral dilemmas. It may well not have been treated in the same way as
a human has. Perhaps most important of all, the computer's body, if it has
one (possibly in a robot form), may well be completely different to a human
body. It could have wheels rather than legs and an infrared sensor rather
than eyes.

A major issue, therefore, with the concept of strong AI is the mind–body
problem and the concept of consciousness, with associated questions
relating to understanding, as we have been discussing, and awareness.
Perhaps the best argument brought to bear here is the brain-in-a-vat
experiment. Imagine there are two versions of your brain. Version 1 is the
normal version, the one you are used to. Version 2 can be considered as
discussed in the following section.

BRAIN-IN-A-VAT EXPERIMENT
When you are born your brain is removed and placed in a vat, where it is
kept alive and fed with suitable nutrients to allow it to grow and develop
connections. Electro-chemical signals are sent to the brain over this period
to feed it with a purely fictional world, and motor signals from the brain are
sent to the world such that you (your brain) are able to modify it and,
apparently, move around in it. The Matrix-like world appears to you to be



real. In theory, your brain, in this state, could have the same sort of feelings
and emotions as a brain which has developed in a body in the usual way.

Assuming that the two versions of brain in this discussion have been
physically able to develop in identical ways (same temperature, same
knocks, same stimulation, etc.) then it all rests on the nature of the fictional
world. If it was absolutely identical to the real world then there would be no
way to tell the difference and the brains must have developed in exactly the
same way. In practice, however, all simulations are not quite the same as the
real thing and therefore there would be, in reality, very small discrepancies
— referred to as ‘qualia’, intrinsic experiences.

A supporter of the strong AI argument would believe that any differences
between the two versions of your brain are so slight as not to matter;
however, an opponent of the argument would feel that no matter how small
they are, such differences are absolutely critical.

Underpinning this philosophical discussion is the standpoint that each
individual takes. There are those who approach the subject from a
materialist viewpoint, assuming that there are no spiritual aspects involved,
there is no such thing as the immortal soul, and that ‘brains cause minds’.
Conversely, there are those who believe that no matter what physical
elements are involved, where the (human) brain is concerned, there is
something else that cannot be measured and it is this that is the important
thing.

From a scientific basis, the first case is the more obvious. There may be
some very small differences, but the brain in the simulation could be near
enough the same as the actual brain.

In the second case it can be pointless to argue with someone who says
that no matter what we witness, no matter what we can experience or
measure, there is something else — possibly God-like — at work and that
overrides all else. This is not a scientific approach.

As a result there are two closely related topics which come up for
discussion. The first of these is the concept of free will. How can a mind,
restricted by physical constructs, achieve freedom of choice? One purely
materialistic argument to this swiftly concludes that free will is merely the
decisions taken by an individual — and that these are based on their genetic
make-up, their experience and the sensed environment at that time.



The other, more widely discussed topic is the general issue of the deeper
operation of the inner functioning of the brain: consciousness, with related
questions of understanding and self-awareness. Example questions can be
posed, such as: what does it feel like to smell a rose? This can be followed
up with: how can a computer possibly feel such a thing? Further points can
be made, such as: why does it feel like something to have brain states
whereas presumably it does not feel like anything to be a shoe? As a result,
conclusions can then be drawn that a shoe (and hence a computer) cannot
be conscious!

Issues raised regarding consciousness are often liberally laced with
human-centric bias which, to view the subject scientifically, we need to
overcome. First, as a human we know what it is like to be ourselves. We do
not know what it is like to be anything else, such as a bat, a computer,
another human, a cabbage, a rock or a shoe. We should not therefore
presume we know what someone or something else is thinking. We
certainly should not conclude that because something else is not the same as
us, therefore it doesn't think in as good a way as us or even that it cannot
think at all.

Second, the arguments considered often apply human bias to the nature
of any effect being felt. What is required to ‘smell’ a rose is the human
sense of smell. Smelling a rose is something of value to a human; it may or
may not be of value to a dog. A shoe, from scientific analysis thus far, does
not appear to have a sense of smell.

Third, a (presumably normal) human is (in the argument) compared with
a shoe, with a supposed follow-on assumption that a computer is similar to
a shoe, allowing the conclusion to be drawn regarding the consciousness of
a shoe to also apply to a computer. The argument states: if a shoe is not
conscious then a computer cannot be conscious! I have to say that I have
not yet witnessed a shoe that is similar to a computer.

Comparing a human with a shoe in this way and likening the shoe to a
computer is akin to comparing a computer with a cabbage and then likening
the cabbage to a human. Can the cabbage deal with mathematics,
communicate in English or control a jet aircraft?

Exactly the same logic as used in the shoe–computer consciousness
argument for humans would mean that if a cabbage can't do these things
then neither can a human. Clearly these are ridiculous comparisons, but so



too is comparing a human with a shoe, or other such inanimate object, in
this way.

RATIONAL AI
The possibility that a machine can act as if it was as intelligent as a human
is referred to as weak AI, whereas the possibility that a machine can
actually think in exactly the same way as a human is referred to as strong
AI. Both of these positions suffer from the fact that a human-centric
comparison is going on, to the extent that a starting point is taken that there
is only one intelligence — human intelligence — to which all other forms
of intelligence (including presumably that of aliens if they exist!) must
aspire.

In fact, the distinction drawn here appears to have been proposed back in
the early days of AI, when computers merely operated on symbols. Clear
links could then be shown between the embodied biological form of
intelligence of humans and the disembodied symbolic processing of
computers, no matter how fast and accurate those computers might have
been.

What is needed now is an up-to-date viewpoint that is not only
representative of the computers, machines and robots of today, but that also
encapsulates the different forms of intelligence witnessed in life in its
broadest sense. A modern, open view of consciousness, understanding, self-
awareness and free will is required for us to really get to terms with modern
AI.

As a start, assume for a moment that an alien being lands on Earth,
having travelled billions of miles from its own planet in order to do so.
Most likely it will have intellectual properties way beyond those of humans
as humans have not yet figured out how to travel as far in the opposite
direction and stay alive. But if the alien is of a completely different form to
humans — maybe the alien is a machine — then would we say that it is not
aware of itself because it is not like me, a human? Would we say it is not
conscious because it does not think in exactly the same way as we do? It is
doubtful that the alien would bother too much about our idle thoughts. Yet
the alien may well not come up to scratch against our definition of weak AI,
never mind in terms of strong AI.



We need a viewpoint on AI that is much less anthropomorphic than the
classical AI considered thus far. We need to include features such as
distributed information processing, agent autonomy, embeddedness, sensory
motor coupling with the environment, various forms of social interaction
and more. In each case humans exhibit such features but so too do other
animals and some machines.

We need to incorporate psychological and cognitive characteristics, such
as memory, without which it is unlikely that a truly intelligent behaviour
can be observed. We also need to be open to the fact that any behaviour that
can be characterised in this way is truly intelligent regardless of the nature
of the being that generated it.

Rational AI means that any artefact fulfilling such a general definition
can act intelligently and think in its own right, in its own way. Whether this
turns out to be in any sense similar to the intelligence, thought,
consciousness, self-awareness, etc. of a human is neither here nor there.
Concepts such as weak AI and strong AI therefore retain their meaning in
the limited sense in which they have been generated, i.e. with regard to the
human form of intelligence.

In the same way, other creatures conforming to such a rational definition
of AI are intelligent and think in their own way, dependent on their
particular senses and how their brain is structured.

AI, in the sense of machines, whether they be of silicon or carbon forms,
then takes its place as one version of intelligence, different in some ways,
appearance and characteristics from human and animal intelligence. Indeed,
just as humans are intelligent in different ways from each other, so AI is
diverse in itself in terms of the different types of machines that are apparent.

BRAIN PROSTHESIS EXPERIMENT
Quite a number of interesting philosophical arguments using AI as a basis
have arisen and no book on AI would be complete without taking a look at
some of them. The first of these is the brain prosthesis experiment. For this
argument we must presume that scientific understanding has progressed to
such an extent that we can fully understand the working of human brain
cells (neurons) and can perfectly engineer microscopic devices which
perform exactly the same function.



Surgical techniques have, the argument continues, developed at an
equally astounding pace to the extent that it is possible to replace individual
neurons in a human brain with their microscopic equivalents without
interrupting the workings of the brain as a whole. Cell by cell the whole
brain is replaced. Once complete it is then gradually restored to its original
self by reversing the process again cell by cell.

So the question is, for the individual involved, would their consciousness
remain the same throughout the whole process? Some philosophers argue
one way and some the other.

If the individual smells a flower when in both versions, either:

1. consciousness that generates the resultant feelings still operates in
the technological version, which is therefore conscious in the same
way as the original; or

2. conscious mental events in the original brain have no connection to
behaviour and are therefore missing in the technological version,
which as a result is not conscious.

Presumably, once the reversal occurs the individual will be conscious
although they may or may not suffer memory loss in the meantime.

Version 2 is what is called epiphenomenal, something which occurs but
which has no effect whatsoever in the real world. This has little/no
scientific basis at all. It is a case of no matter what results are obtained and
no matter how much the technological brain is an exact copy of the original,
the human original simply must have something extra, even if we cannot
measure it and cannot witness any action which results from it.

Version 1 requires that the replacement neurons, and their connections,
are identical to the original. If we assume that we can, using present-day
physics, completely and accurately form a mathematical model of the
human brain (which actually appears not to be possible at the present time)
then surely, in time, we would be able to carry out the experiment in this
way.

One argument against version 1 says that although we might be able to
copy the neurons extremely closely, we would never be able to copy them
exactly. It goes on that subtle differences due to chaotic behaviour or
quantum randomness would still exist and it is these differences that are
critical. Note: an older argument along the same lines (that you might come



across) also suggested that it was the continuous nature of the human brain
as opposed to the digital nature of a computer that was critical. The advent
of the type of AI based on grown biological brains, as discussed in Chapter
5, has put paid to that argument.

Another more plausible argument, by Roger Penrose, says that it is our
present-day understanding of physics that is to blame. He feels that for the
very small elements that cannot be copied ‘such non-computational action
would have to be found in an area of physics that lies outside the presently
known physical laws’. He goes on to suggest that if we could discover these
laws then version 1 would be quite possible.

In the brain prosthesis argument we are not concerned as to whether or
not the technological brain is conscious, but whether or not it is conscious
in the same way as the original human brain. In the previous discussion of
rational AI, the possibility of AI to be conscious, in its own way, is not in
question. What is in question here is whether this could be identical to
human consciousness.

As a reality check, a number of issues need to be raised: first, as pointed
out earlier, no matter how good the technological neuron models, there will
in practical terms be differences between the human and technological brain
unless the replacement neurons happen to actually be the same human
neurons that were removed in the first place. On the other hand, the model
could be very close, which means that the form of consciousness exhibited
by the technological brain could be extremely close to that of the original
human brain, to the degree that (in an engineering sense) it makes no
difference.

A further point, however, is that this is a purely philosophical exercise.
The human brain is an extremely complex organ, full of highly connected
neurons. If even just one neuron is removed through surgery then the
overall effect may be negligible, but it can be dramatic, with the
individual's behaviour changing completely. As an example: such dramatic
changes can be readily witnessed in the human brain as a result of deep
brain stimulation treatment for Parkinson's disease.

THE CHINESE ROOM PROBLEM
The Chinese room is the scene for an argument originated by John Searle in
an attempt to show that a symbol-processing machine (a computer) can



never be properly described as having a mind or understanding or being
conscious, no matter how intelligently it may behave. It has become a
cornerstone argument in the philosophy of AI, with researchers either
supporting his case or attempting to provide counter arguments. Let us start
by considering the argument itself.

A computer (inside a room) takes Chinese characters as input and follows
the instructions of a program to produce other Chinese characters, which it
presents as output.

The computer does this so convincingly that it comfortably convinces an
external human Chinese speaker that it is itself a human Chinese speaker —
effectively it passes the Turing Test (discussed in a later section), it fools
another human into believing that it is, itself, human.

It could be argued by a supporter of strong AI that the computer
understands Chinese. However, Searle argues that if the machine doesn't
have understanding we cannot describe what the machine is doing as
thinking. If this is the case then because it does not think, it does not have a
mind in anything like the normal sense of the word. Therefore, ‘strong AI’
is mistaken.

Consider that you are in a closed room and that you (an English speaker
who understands no Chinese) have a rule book with an English version of
the same program. You can receive Chinese characters, process them
according to the instructions, and as a result you produce Chinese
characters as output. As the computer has convinced a human Chinese
speaker that it is itself a Chinese speaker it is fair to deduce that you will be
able to do so as well.

There is in essence no difference between the computer's role in the first
case and the role you play in the latter. Each is simply following a program
which simulates intelligent behaviour. Yet (as we have presumed) you do
not understand a word of Chinese, you are merely following instructions.
Since you do not understand Chinese we can infer that the computer does
not understand Chinese either — as both you and the computer perform
exactly the same function. The conclusion drawn by Searle is therefore that
running a computer program does not generate understanding.

THE EMERGENCE OF CONSCIOUSNESS



Searle's argument is essentially that you (a human) have something more
than the machine; you have a mind which could learn to understand
Chinese and that your mind is realised through the type of brain that you
have. Searle said: ‘The [human] brain is an organ. Consciousness [and
understanding] is caused by lower-level neuronal processes in the brain and
is itself a feature of the brain. It is an emergent property of the brain.’ He
continued: ‘Consciousness is not a property of any individual elements and
it cannot be explained simply as a summation of the properties of those
elements.’ He concluded: ‘Computers are useful devices for simulating
brain processes. But the simulation of mental states is no more a mental
state than the simulation of an explosion is itself an explosion.’

The very last line (Searle's conclusion) here is importantly and
appropriately refuting the concept of strong AI — much as was discussed
earlier. However, in the argument made, Searle opens up a number of other
important considerations.

First is the concept that you (a human) have something extra that the
computer does not have (consciousness) and that this comes about as an
emergent property of your brain — through your human neurons and their
connections! This could be seen as epiphenomenal, in that there are
‘properties’ in human neurons that give rise to the mind, but these
properties cannot be detected by anyone outside the mind, otherwise they
could possibly be simulated in a computer, thus realising strong AI. These
extra differences in the human brain are perhaps the qualia referred to by
Penrose.

One point here is that this is a good example of an argument in AI in
which human intelligence is seen to be something special. It appears that
even if we can't measure it, the human brain is deemed to have something
more than a machine brain. The argument is human-centric. It is concerned
with a human language, with all the nuances and life experiences that that
conjures up. Without having lived a human life, could a machine possibly
understand such a language in the same way as a human? This is indeed
Searle's point — no matter how much the computer is used in an attempt to
copy the human brain, it will never be exactly the same — unless perhaps it
is itself made up of human neurons and experiences some aspects of human
life.

The Chinese room argument can be refuted in a number of ways. As an
example, the argument can be turned on its head and posed in a favourable



way for a machine by considering a machine code communication — with
exactly the same type of argument. You now have to follow a set of
instructions with regard to machine code rather than Chinese. On the basis
that no matter what you might learn, the machine code will still mean
nothing to you, you will not understand it, whereas, for all we know, a
computer may well understand the machine code. The end conclusion of
such an argument would be that while a machine can be conscious, it is not
possible for a human to be conscious.

Searle has used his Chinese room argument in a number of different
ways. He has said that while ‘humans have beliefs, thermostats and adding
machines do not’ or (as discussed earlier) ‘if a shoe is not conscious then
how can a computer be conscious?’. As indicated earlier, the exact same
logic would argue that if a cabbage is not conscious then how can a human
be conscious?

Perhaps the most important aspect of human understanding and
consciousness to conclude from this is that they are likely (as Searle
postulated) emergent properties from the collective behaviour of human
neurons. We will investigate this further, with intriguing consequences, in
Chapter 5.

TECHNOLOGICAL SINGULARITY
One of the interesting and vitally important features to be gleaned from the
study of machine intelligence is its potential not simply to be the same as,
but to surpass human intelligence at some stage. The argument goes that it
is intelligence that has put humans in their relatively powerful position on
Earth and if something comes along that is more intelligent then this could
pose a threat to human dominance. Already, computers outperform humans
in a number of ways — aspects of mathematics, memory, sensory faculties,
etc. Perhaps it is just a matter of time before a superintelligent machine
appears, which can then design and produce even more superintelligent
machines and so on.

Such a situation, where humans could lose control, was referred to as the
‘technological singularity’ by Vinge in 1993. He said: ‘Within 30 years we
will have the technological means to create superhuman intelligence.’
Moravec contributed: ‘Robots will match human intelligence in 50 years
then exceed it — they will become our Mind Children.’



Because of this potential threat some people interestingly turn (for
safety?) to the three laws of robotics, introduced by the science fiction
writer Isaac Asimov, as though they have some scientific basis. The laws
are:

1. A robot may not injure a human being or through inaction allow a
human being to come to harm.

2. A robot must obey the orders given by a human unless this conflicts
with law 1.

3. A robot must protect its own existence unless this conflicts with
laws 1 or 2.

Although these laws are purely fictional they have been taken by some as
though they are strict regulations to which robots must adhere. Let us be
clear — they are simply fictional ideas, nothing more, nothing less. Further,
it is not apparent that any real-world robot has ever operated under these
rules. Indeed, if we consider many military robotic machines of today, they
blatantly break all three of the laws in their everyday use.

Because of the potential loss of control by humans to machines, as a
means perhaps to combat such an eventuality, various researchers have
suggested a merger between humans and technology. Kurzweil predicted ‘a
strong trend toward the merger of human thinking with the world of
machine intelligence’, indicating further that ‘there will no longer be any
clear distinction between humans and computers’.

Steven Hawking poignantly commented:

In contrast with our intellect, computers double their performance every
18 months. The danger is real that they could develop intelligence and
take over the world. We must develop as quickly as possible
technologies that make a direct connection between brain and computer.

Research in the area suggested by Hawking has in fact been going on for
some time, partly with regard to using such technology to assist those
humans with a disability of one type or another. However, the area of
human enhancement has also sprung up, investigating new sensory input
and new means of communication for humans. The age of the cyborg —
part human, part machine — has commenced.



THE TURING TEST
Arguably the most contentious and certainly the best known philosophical
discussion relating to AI is what has become known as the Turing Test. In
fact, it was originally proposed by Alan Turing in 1950 as an imitation
game. His intention was to look at the question of ‘Can a machine think?’
or, indeed, ‘Is a machine intelligent?’ in the same way as we might consider
whether or not another human can think or is intelligent.

If we wished to test another human with regard to their intelligence, we
might ask them questions or discuss topics with them, drawing our
conclusions on this basis — much as is normally done in a standard job
interview. So maybe we could do the same sort of thing with a machine!

When considering the intelligence of a computer, rather than listing a
whole string of features characteristic of intelligence, many of which would
be controversial and some irrelevant, what Turing proposed was to test a
machine as to its indistinguishability from humans, the idea being that if
you converse with a computer for a period and can't tell the difference
between it and a human, then you must credit it with the same sort of
intelligence as you would credit a human.

The test in its basic form is as follows. An interrogator faces a keyboard
attached to a split computer monitor. Behind one half of the screen is a
computer respondent, behind the other is a human respondent. Both the
human and computer respondents are hidden from view, possibly in another
room, and the only interaction allowable is communication via the keyboard
and monitor. The interrogator has five minutes to discuss whatever he/she
likes with the two unknown entities. At the end of that period the
interrogator must decide which hidden entity is the human and which is the
computer. The goal of the computer is to fool the interrogator, not that they
are human but that they are more human than the hidden human.

In 1950 Turing said:

I believe that in about fifty years’ time it will be possible to programme
computers … to make them play the imitation game so well that an
average interrogator will not have more than 70% chance of making the
right identification after five minutes of questioning.

This is what has become known as the Turing Test.



The wording Turing used was a little confusing. What it means is that to
pass the Turing Test a computer needs to fool an average interrogator into
making an incorrect decision at least 30% of the time.

In the computer's favour is the fact that the computer does not actually
have to fool the interrogator that it is human and that the hidden human is a
machine, although that is the best result for the computer. Rather, to score in
the computer's favour it is sufficient for the interrogator to be unsure which
is which or to think both hidden entities are the same, either human or
machine — as these would also be incorrect decisions.

But looked at another way, it is actually a very tough task for the
computer. Consider, for example, that instead of a machine and a human
sitting behind the monitor, we have two humans, both trying to get the
interrogator to believe that they are human but that the other entity is a
computer. Effectively, the interrogator would choose which entity of the
two he/she thought was most human-like. Achieving a score of 50% for one
of the humans would be expected from average scoring; however, anything
higher would mean that the other human has scored less than 50%. Clearly
it is quite possible (in fact very likely) for a reasonably intelligent human,
pitted against another human, to fail the Turing Test by scoring less than
30%. Looked at in this way the Turing Test is quite a challenge in that a
computer must fool interrogators that it is more human than many humans.

The test is normally expected to be conducted in English, although any
language would prove the point. But what about the hidden humans taking
part? Are they adults, children, native English speakers, experts, do they
have illnesses (e.g. dementia), do they try to be human or machine? Turing
did not stipulate the exact nature of these hidden humans, which poses
interesting questions in itself as to who (what sort of humans) the computer
is competing against.

Another problem area with the test (in terms of practically carrying out
such a study) is the concept of an average interrogator. In any actual
practical tests that occur it is invariably interested parties who are involved
as interrogators. These include professors of computer science,
philosophers, journalists and even students of AI — none of which, in the
circumstances, can be considered average.

To obtain a true statistical ‘average’ an extremely large number of
interrogators would need to include some people who cannot use a
computer, some who are not able to understand what they are supposed to



do, some non-native language interrogators, some very young children,
people from all different walks of life and so on. In terms of actual results
this would most likely help towards the computer's apparent performance,
as any uncertainty or inability to make the ‘right identification’ helps the
computer's cause.

WHAT DOES THE TURING TEST ACTUALLY TEST?
Turing posed the game instead of answering the question ‘Can machines
think?’. The test/game indicates that a machine ‘appears’ to think in the
same way as a human (if it passes)! We might ask, though, could we do any
better if we tested a human — how do we know that they think?

The test does not, however, deal with issues such as consciousness or
self-awareness, other than can be gleaned through questioning. The nature
of the interrogation carried out is therefore an important factor.

Turing himself said ‘Intelligent behaviour presumably consists in a
departure from the completely disciplined behaviour involved in
computation, but rather a slight one, which does not give rise to random
behaviour, or to pointless repetitive loops.’ It is therefore down to a Turing
Test interrogator to bring such aspects into play during a conversation.

At the time of this book going to press, no computer has officially passed
the Turing Test. So what about Turing's conjecture that by the year 2000, it
would be possible for a computer to be programmed to pass his test? It is
interesting to consider what Turing actually said. First (in 1950), he said in
‘about’ 50 years’ time, not ‘exactly’; and second, he said that it would be
possible to programme computers to pass the test — not that necessarily a
computer would have passed the test by 2000. It is very useful, however, to
take a look at where things stand now.

LOEBNER COMPETITION
Occasionally an ‘official’ Turing Test is carried out under strict rules, to
assess the state of play. Every year, however, an open competition
sponsored by Hugh Loebner is held, following some of Turing's
stipulations. Although usually it is not exactly as directed by Turing
himself, it does give us some idea of where things stand. Most important of



all, it gives an intriguing insight into conversational features of the
interrogators, the machines and even the hidden humans.

Each year the Loebner competition is aimed at finding the best
conversational machine from those that are entered. The format of the event
is that parallel-paired comparisons (as just described — one human/one
machine) are made between each of four hidden machines pitted in turn
against each of four hidden humans in a 25-minute test. The task of each
interrogator is to identify the machine and human in each test pair,
assigning a total mark out of 100 to the pair (so a mark of Entry A 49/Entry
B 51 would mean that in that particular paired interrogation entry B is
deemed to be very slightly more human than A, whereas a mark of Entry A
94/Entry B 6 would mean the interrogator believes that entry A is almost
certainly the human and entry B the machine).

It might be expected that over time as AI and machine technology
improve so the top score achieved by a machine in the annual Loebner
competition will generally improve year on year. Yet in the 2001
competition, one machine was deemed by two out of the five interrogators
to be more human than any of the hidden humans present. However, in the
same competition in 2006, no machine was deemed to be more human than
any of the hidden humans. In fact, over the three-year period 2004–2006 the
highest score obtained by any machine from any one of the interrogators
was: 2004 = 48; 2005 = 45; 2006 = 28.

It is not easy to pinpoint the reasons for this. Perhaps the expectations of
Loebner judges/interrogators are increasing as they gain in knowledge of
how to trick the machines, or could it be that the machines themselves are
getting worse? On top of this, no machine from 2003 to 2007 deceived any
interrogator that it was human, whereas this was a regular occurrence prior
to 2003.

One reason appears to be that Hugh Loebner has insisted that each test
lasts for 25 minutes, as opposed to Turing's stipulation of five minutes.
Another major factor is that networking (a big advantage of AI) has been
disallowed due to the possibility of a linked-in human pretending to be a
machine pretending to be a human in order to win the prize money offered
by Hugh Loebner!

CAN A MACHINE TELL A JOKE?



How can a machine be caught out in conversation? For example, could
humour catch the machine out? Surely, you might argue, a machine cannot
have a sense of humour. One philosopher (Rickman) asserted in 1999 that
‘computers, whatever artificial intelligence they may display, cannot make
jokes’. If he is right then this would be an easy give away. Could it be
possible for a machine to ‘create’ (produce from its linguistic armoury) an
original response that the human receiver may deem witty during
conversational interaction? A point to ponder on here is that many of the
machines which take part actually learn to communicate through numerous
discussions with humans.

What about these examples taken from Loebner transcripts? These were
actual responses during the competition in conversation with the machine
called ‘Jabberwacky’:

INTERROGATOR: Ok, but are you always right?
JABBER WACKY: Sometimes I am left.

INTERROGATOR: How small is small anyhow?
JABBER WACKY: Small.
INTERROGATOR: Yes but exactly how small?
JABBER WACKY: Very small.

INTERROGATOR: So why don't you take over the world?
JABBER WACKY: I wouldn't know what to do with it.… Anyway, I'm pretty

busy already.

These examples have been included to show how such machines can cope
surprisingly well with some very human conversation and even perhaps
upset a philosopher or two.

TURING 2008
In 2008, in order to assess the state of play, the Loebner competition was
held at the University of Reading. Under special circumstances and the
agreement of Hugh Loebner, strict Turing Test rules were invoked, so a
series of five-minute paired machine/human tests were performed with a
variety of interrogators. The winning machine was Fred Roberts’ Elbot,



which succeeded in fooling 25% of its interrogators (30% is the Turing
‘pass mark’) into thinking it was human. So possibly the machines are
almost there as far as the Turing Test is concerned, but perhaps not quite.
Curiously, Elbot openly admits to interrogators, when asked, that it is a
robot!

Interrogators who took part in 2008 included software engineers,
scientists, philosophers and newspaper journalists — certainly not the
‘average interrogator’ that Turing spoke of.

Various ploys have been used over the years in an attempt to trip up the
machines competing. Asking mathematical questions does not work as the
machines are not stupid, they are just as unlikely as a human to attempt to
give a mathematical answer. It is perhaps better to ask topical or local
questions; for example, to discuss what the weather is like or what colour
the walls are painted. The point is not whether a machine gives a ‘correct’
answer, but if it gives one that a human would.

Perhaps you can see for yourself how good you would be as an
interrogator. At the Reading competition, one interrogator asked the same
question of a number of hidden entities:

What did you think about the weather this morning?

Three different responses came from a male human, a female human and a
machine. Which is which? Keep in mind that the event was held in October
2008 and they all knew it was autumn/fall in England. The responses were:

1. ‘I do tend to like a nice foggy morning, as it adds a certain
mystery.’

2. ‘Not the best, expecting pirates to come out of the fog.’
3. ‘The weather is not nice at the moment, unless you like fog.’

So which is which? Find the answer at the end of this chapter.
What follows is part of the conversation for which the machine

Ultra Hal was scored ‘human’ by the interrogator concerned:

INTERROGATOR: Morning.



ULTRA HAL: Good morning judge.
ULTRA HAL: It's eight something, maybe you ate something.
ULTRA HAL: Get it?
INTERROGATOR: Yes.

If an entity was deemed to be a machine, the interrogator was also asked to
mark the humanness of their conversation out of 100. What follows is part
of the conversation for which a non-native English-speaking female
(human) was scored ‘machine’ by the interrogator and was awarded 40/100
for their humanness — the interrogator was pretty certain that they were a
machine:

INTERROGATOR: So let's cut to the point. Are you the human or the
computer?

HIDDEN HUMAN: What do you think?
INTERROGATOR: That's just the sort of answer I would expect from a

computer.

Here's a successful double bluff from the eventual winner, Elbot, during
one of the conversations for which Elbot was adjudged by the interrogator
to be an adult male:

INTERROGATOR: Okay, fair enough, I'll stop with the slang. How are you?
ELBOT: Just a moment! I'll start my self-diagnosis algorithm and let you

know the results.
INTERROGATOR: Very funny, that's exactly what you'd say if you were a

computer, right?

One interesting feature from the 2008 competition is that several times
when an interrogator was fooled by a machine into thinking that the
machine was human, the interrogator not only did not realise their mistake
but even considered that they had done very well in easily selecting which
entity was human and which was machine in each case.

One interrogator, a journalist for the Times newspaper, subsequently
wrote a newspaper article describing how it was simple to detect which



were the machines — even though he had been fooled on several occasions.
Exactly the same was true of a university philosopher, another of the
interrogators, who subsequently wrote in an academic paper that a ‘couple
of questions and answers were usually sufficient to confirm’ which was the
machine. The philosopher (and his co-workers) actually achieved a 44%
wrong identification rate, well above Turing's 30%!

From the 2008 exercise overall, it is clear that machines are not yet at the
level of conversational performance set by Turing. However, the best of
them are getting quite close. What a machine will have achieved when it
passes Turing's target is difficult to say — other than it will have passed the
Turing Test. The game is an interesting exercise as well as being an
important milestone in AI. As you can see from the examples and related
stories, it also tells us quite a bit more about ourselves.

It could be argued that the test is very tough for any machine to pass.
Turing himself said:

The game may be criticised because the odds are weighted too heavily
against the machine. If the man were to try and pretend to be the
machine he would clearly make a very poor showing. He would be
given away at once by slowness and inaccuracy in arithmetic. May not
machines carry out something which ought to be described as thinking
but which is very different from what a man does? This objection is a
very strong one, but at least we can say that if, nevertheless, a machine
can be constructed to play the imitation game satisfactorily, we need not
be troubled by this objection.

ARGUMENT FROM DISABILITY
It is apparent when comparing humans and machines that computers can
now do many things better than humans do — in particular, things we feel
require understanding, such as playing chess, mathematics, recalling from
an extensive memory and so on.

The ‘argument from disability’, as Turing called it, is the type of
argument put up by humans against the abilities of a machine in a defensive
fashion. We know that machines can do many things well; however, this
appears to provoke a defensive attitude in some people to conclude that no



matter what machines can do, humans still have something more. Indeed,
this is the foundation of the Chinese room problem.

As Turing put it, some will say ‘a machine can never…’ Examples given
by Turing are: ‘be kind, resourceful, beautiful, friendly, have initiative, have
a sense of humor, tell right from wrong, make mistakes, fall in love, enjoy
strawberries and cream, etc.’.

In fact, there is no reason that a computer could not do any of these
things — indeed, in this chapter we have specifically looked further into
one such example: the sense of humour. Whether a computer does them in
the same way as a human and whether it ‘understands’ what it is doing in
the same way that a human would and whether or not the act is at all
meaningful to the machine are quite different questions.

However, we can't know whether another human ‘understands’ or ‘feels’
things in the same way that we do. Another person may say and think that
they understand — but do they? How can we be sure?

There are many things that machines can do that humans cannot do —
flying being a good example. This doesn't make the machine better than
humans at everything, it is just one feature. It would be silly to conclude
that humans are already generally inferior to machines because we cannot
fly.

So when we point to something that a human can do but that apparently a
machine may not be able to do, we need to be sensible about what
conclusions we draw from that. Is the task an important, defining issue in
some sense? After all, most machines are pretty specific in what they are
required to do — we would not necessarily expect an aeroplane to smell a
rose or to have a dry sense of humour.

If we were trying to build a machine that was an exact replica of a human
(both physically and mentally), then it might be appropriate to criticise a
particular feature of the machine as not being quite the same. However, no
machine has ever been so designed. So why should anyone expect a
machine to do absolutely everything that a human can do, as well as a
human can do and then go on to do more?

When we consider the argument from disability, the Chinese room and
the Turing Test we need to be clear most of all as to what the comparison is
meant to prove. Which machine is being compared with which human?
Both machines and humans have many different versions with many



different abilities, so can we make generalisations as we might like to?
Perhaps most important of all, is the comparison important in some sense?
If a machine cannot smell a rose or enjoy a cup of tea will this save humans
from an intelligent machine take over?

CONCLUDING REMARKS
In the previous chapter we looked at classical AI in which a top-down
approach is taken. In this sense a view is taken of human intelligence, like a
psychiatrist's testing, from the outside. Hence the basic rules performed in
this way by a human, and the way the brain appears to work are copied, to
some extent, by the artificially intelligent computer.

As a result of the classical approach taken, it was a natural step to see
how close the computer could come to actually performing in exactly the
same way as a human in terms of their intelligence. What sprung up was
therefore a human-centric philosophical comparative analysis, as we have
seen in this chapter. In some ways computers have been able to outperform
humans for many years, whereas in other ways — human communication
for example, as witnessed by the Turing Test — computers are perhaps not
quite yet able to perform in exactly the same way as humans.

The defensive nature of the philosophy that has arisen from classical AI
is significant. The basic argument underpinning much of the philosophy
encountered appears to be: ‘The computer can do lots of things that a
human can do but surely humans have something more!’ This something
more has been called consciousness — an abstract term and therefore
something that probably cannot be scientifically proven one way or the
other. Unfortunately, as we will see, many of the philosophical arguments
that appear to hold water as far as classical AI is concerned come unstuck
all too quickly as we move forward to a bottom-up, modern approach to AI.

Alan Turing witnessed this over 60 years ago in his categorisation of the
argument from disability: machines can do all sorts of things, but they can't
… (whatever). Despite Turing's insightful observation, much of the
classical AI philosophy falls foul of exactly that. As an example, this is
exactly the conclusion drawn from the Chinese room problem.

In the next chapter we will look at a number of modern approaches to AI,
which can be employed on their own, in combination or, if it provides a
desired end result, in combination with one of the classical approaches



already considered. So onward into neural networks, evolutionary
computing and genetic algorithms!
Did you guess correctly that A was the machine, B the male and C the
female?

KEY TERMS
average interrogator, brain-in-a-vat experiment, consciousness,
epiphenomenal, free will, strong AI, symbolic processing, three laws of
robotics, weak AI
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MODERN AI

SYNOPSIS
In recent years the modern approach to AI has focused more on bottom-up
techniques – that is, to take some of the basic building blocks of
intelligence, put them together and get them to learn and develop over a
period of time and see where we are. In this chapter you will be gently
introduced to artificial neural networks, genetic algorithms and evolutionary
computation. Mathematics can easily play a major role in applying these
methods – this is not the case in the presentation here. Rather, the aim is to
provide a minimally complex guide to the subject without losing meaning –
an in-depth mathematical consideration can follow for those who wish to
delve deeper.

INTRODUCTION
In Chapter 2 we saw how, with classical AI, the approach is to look at the
workings of a brain from the outside and, as a result of our observations, to
attempt to replicate its performance in an AI system. This approach is
particularly successful at dealing with well-defined tasks for which a set of
clear rules are appropriate, particularly when a lot of such rules need to be
processed and acted upon in a relatively short time frame. The machine's
advantage in speed of memory recall plays an important role in this.

However, the classical AI technique is not so good when it comes to
awareness of a situation and making a rough comparison with previously



learnt experiences – something which is an extremely important aspect of
intelligence. Indeed, for many creatures it is an everyday feature of
intelligence. Experiencing life, finding out what works and what doesn't and
then when a new, slightly different situation comes along, dealing with it in
as good a way as possible, based on the previous experiences. This problem
is much better dealt with by looking at how the brain works in a
fundamental way.

The first underpinning concept of modern AI is to consider how a
biological brain operates in terms of its basic functioning, how it learns,
how it evolves and how it adapts over time. The second point is a need to
obtain relatively simple models of the fundamental elements – the building
blocks, if you like – of the brain. Third, these building blocks are mimicked
by a technological design – possibly a piece of electronic circuitry, possibly
a computer program, the aim of which is to simulate the building blocks.
The artificial building blocks can then be plugged together and modified in
different ways to operate in a brain-like fashion.

It may be that the aim of such a study is to copy the original brain in
some way, using an artificial version. However, most likely it will simply be
a case of taking inspiration from the biological way of working and using
that in the technological design. In doing so, the artificial version will
benefit from some of the advantages of the original biological brain – for
example, the ability to generalise about a result or quite easily classify an
event into one category or another.

Initially we will have a look at the basic components of a biological brain
such that we can then consider piecing together models of some of the
fundamental elements.

BIOLOGICAL BRAIN
The basic cell in a biological brain, a nerve cell, is referred to as a neuron
(sometimes you may see it written as neurone – it's the same thing). In a
typical human brain there are about 100 billion of these. Each neuron is
very small, typically being 2–30 micrometres in diameter (one-thousandth
of the size of a small coin). The neurons are connected together to form an
extremely complex network, each neuron having upwards of 10,000
connections.



Different creatures have different numbers of neurons with varying
complexities of networks. Slugs and snails can have just a few (9–10 for a
sea slug) up to a few hundred. Even in these cases the structure and
functioning of such a brain is not simple. The neurons are all a little bit
different – although some are very different – from each other, not only in
terms of size, but also in terms of the strength of their connections with
other neurons and which neurons they are connected to.

As far as human neurons are concerned, those that deal with information
as it is captured by human senses (sensory neurons) are specialised in
dealing with the signals obtained for sight, sound, etc. Meanwhile, those
that are employed to send signals out to move muscles (motor neurons) are
specialised to achieve that end. There are also neurons that deal with
planning, reasoning and so on. Each neuron has a relatively simple
structure, but with many of them acting together in a complex way, a
biological brain is a powerful tool indeed.

Each neuron consists of a cell body with a nucleus at its centre. A number
of fibres, called dendrites, stimulate the cell body with signals from other
neurons, as shown in Figure 4.1. Meanwhile, signals are transmitted from
the neuron along an axon, which subsequently branches out and connects to
the dendrites of other neurons, at points called synapses.

Ordinarily a neuron will be at a resting state, and will receive stimulating
signals in the form of electro-chemical pulses (pulses which are both
electrical and chemical in nature) along some of the dendrites from other
neurons. Each of the pulses received changes the electrical potential (a
voltage) of the cell body – some of the dendrites add to the cell potential
signal (these are called excitatory), whereas some subtract from it (these are
called inhibitory). If the total signal on the dendrites at any time reaches a
particular threshold value then that cell will fire an electrochemical pulse,
referred to as an action potential, onto its axon and hence out to other
neurons to help them to fire in turn. Shortly after the neuron has fired in this
way it returns to its resting state and waits for the pulses on its dendrites to
build up again. If, conversely, the threshold value is not reached, then the
neuron will not fire. It is an all-or-nothing process – the neuron either fires
or it doesn't.



Figure 4.1 Basic schematic of a neuron.

Observation of a cross-section of a portion of the brain indicates neurons
of different sizes connected together in an extremely complex network –
some axons are very long, others very short; one neuron may connect to
another which connects back to it in turn; the connections may be of
completely different size and strength and, as discussed, may add to the
threshold summation (excitatory) or subtract from it (inhibitory). Purely due
to location, a lot of connections from one neuron are to nearby neurons, but
some can be to neurons quite a distance away.

This structure arises partly for genetic reasons, due to the make-up of the
brain of parents and ancestors, and partly from the brain development of the
individual themselves, due to life experience. As an individual learns, the
axon–dendrite connections in their brain strengthen (positively) or weaken
(negatively), making the individual more or less likely to perform in a
certain way. A brain is therefore extremely plastic in that it adapts and can
function differently, dependent on the patterns of signals it receives and the
rewards or punishments associated with them.

Doing something correctly in response to a particular event means that
the neural pathways involved with the decision are likely to be
strengthened, such that the next time the same event occurs, the brain is
even more likely to make a similar choice. Meanwhile, doing something
incorrectly in response to a particular event means that the neural pathways
involved are likely to be weakened, such that next time that event occurs,
the brain is less likely to make the same mistake!



This is the basis of biological brain growth, operation and development.
It is ideas taken from both the structure of such a network and its method of
learning that form the essential ingredients of an artificial neural network
(ANN), the aim of which is to employ technological means to realise some
of the characteristics of the original biological version.

Before taking a look at ANNs it is important to realise that it is, almost
surely, not the aim to exactly copy an original biological brain, but rather to
employ some of the ideas obtained from its method of operation in building
the ANN. For a start, while the human brain has 100 billion cells, a typical
ANN may have only a hundred or even less. This said, ANNs have been
found to be extremely powerful and versatile AI tools capable of making
decisions on, for example, rerouting power transmission lines, identifying
forged signatures, recognising and understanding speech and spotting
devious behaviour in credit card usage.

BASIC NEURON MODEL
We have already seen how a biological neuron works. A starting point for
building an artificial network of neurons is to form a simple model of an
individual neuron that can either be programmed into a computer – so that
we can form an ANN by means of a computer program – or that can be
built using electronic circuitry. In either case the overall aim is to build an
ANN by connecting together lots of individual neuron models.

A neuron receives a number of signals on its inputs (its dendrites in the
biological case), each one of which can be more or less influential. It adds
these signals up and compares them with a threshold level. If the total sum
is the same as or more than the threshold value then the neuron fires; if the
sum is below the threshold then it does not fire. In this basic sense an
artificial neuron operates in the same way as a biological neuron.

The neuron model shown in Figure 4.2 is commonly known as the
McCulloch and Pitts model, named after the two scientists (Warren
McCulloch and Walter Pitts) who proposed it in 1943. It operates as
follows. The inputs x and y are multiplied by their associated weightings W1
and W2 and are summed together. The total is then compared to the bias
value (b). The bias is effectively a negative value that the sum of the
weighted inputs must surpass. So, if the sum of the weighted inputs is the



same as or more than b, the neuron fires, giving an output of 1; if the sum is
less than b, the neuron does not fire, giving an output of 0. The output can
then be multiplied by its own further weighting before being in turn input to
the next neuron.

As an example, assume that at some time, x is 2 and y is 1, W1 is 2 and
W2 is –2, with the bias term b equal to 1. So W1 multiplied by x is 4,
whereas W2 multiplied by y is –2, giving a sum of 2. Comparing the sum
with the bias term b means that in this case the output would fire as 2 is
greater than the value of b, which is 1 – i.e. the sum is more than the
threshold.

Figure 4.2 Basic model of a neuron.

Of course, we do not have to be limited to two inputs (in Figure 4.2 they
are x and y); we can have any number, each one being multiplied by their
own weighting value. For the comparison with the threshold to occur,
however, all of the inputs must first be multiplied by their respective
weighting value before being summed.

Although the threshold action is very much like that of an actual neuron,
it is just one possibility when it comes to describing the functioning of a
neuron model. Another possibility exists if the output swings between 1
when fired and –1 (rather than 0) when not fired. This alternative model is
just as plausible as they are both based on simple ideas from the operation
of a biological neuron.



In fact, what appears to be the most popular choice, for research
purposes, happens to use what is called a sigmoid (also called a leaky
threshold) rather than a straightforward yes/no type of threshold. In this
case, as the sum starts to increase, so the output will itself increase a little in
value from its original 0, continuing to slowly increase as the sum
increases, until its final value (1) is realised. Although this action is in fact
less like that of an actual neuron it exhibits some nice mathematical
characteristics which have been found to be useful. Essentially, the output
travels more gently from 0 to 1 rather than being an immediate firing when
the sum reaches exactly the threshold.

PERCEPTRONS AND LEARNING
The particular form of neuron model just described is referred to as a
perceptron. Another way of looking at such a model (and using it in a
practical way) is in terms of its ability to pigeon-hole pieces of information
into particular classes (referred to as ‘classifying’). In this sense, with any
set of input values, the output of the neuron will be either 1 or –1, indicating
to us that the input falls into one of two classes, Class 1, when the output is
1, or Class 2, when the output is –1.

When a perceptron has been set up appropriately it can be used to test
inputs applied to assess whether they belong to Class 1 or Class 2. As an
example, consider a (very) simple test to see if an applicant should receive a
loan. Input x is 0 if they have never paid off a loan before and 1 if they
have; input y is 0 if they have savings below some minimum and 1 if their
savings are above the minimum. Let's assume that if an applicant satisfies
the criteria both x and y being 1, then they will be given a loan, otherwise
they will not.

One solution to this would be to make both weights, W1 and W2, equal to
2 and to have a bias term b of 3. To achieve the loan, both x and y would
need to be 1 for the sum to reach 4 – a figure of greater than 3 – to achieve
an output of 1, indicating Class 1. In this case, if x and/or y is zero the
output for that item will be zero (0 Ã—2). This is referred to as the AND
function as it needs both x AND y to be 1 for the output to be 1. In fact, with
these same weights both equal to 2, simply lowering the threshold, b, to 1
means that the OR function is achieved in that, with the weights the same as



before, when functioning in this way either x OR y OR both of them can be
1 for the output to be 1.

With only two inputs and one output the problem is not a particularly
difficult one – this example was given merely to show how the perceptron
can operate as a classifier. Even with only one perceptron it is quite possible
for the number of inputs to be much higher, but with just one such neuron it
is only possible to decide between two classes, nothing more complex, no
matter how many inputs are applied. It is referred to as a linearly separable
problem. If we wish to achieve a solution where lots of different
classifications can be made, something referred to as linearly inseparable,
then several perceptrons would need to be included – it is not possible with
only one perceptron.

One issue, even with this simple case, is how we can know what
weighting and bias values to use to obtain the classification action we want.
For this we need a rule by which means the perceptron can learn – a
technique to train the neuron's weights to satisfy the performance required
from them. The idea is to start with any arbitrary selection of weights and
for our learning technique, if it is a good one, to find for itself a set of
weights that will provide the wanted solution by making small adjustments.

Let us consider training a perceptron to perform the AND function as an
example. Assume the two inputs can only be either 0 or 1 and that the bias,
b, is 3. For any particular set of inputs we know what we want the output to
be – for the AND function when x is 1 AND y is 1 we want the output to be
1; for any other combination (e.g. when x is 1 and y is 0, the output will be
0). But assume initially that we do not know what value of weights, W1 and
W2, are needed to achieve this. We need to find out.

Let us try some initial weights – a rough guess. Say W1 is 1 and W2 is 1,
then the actual output found for the input pair (x is 1 and y is 1) would be 2,
which is clearly less than the bias of 3, so the output would be 0, whereas
we want it to be 1 – these weights are not a good choice. So, there is an
error – our guess was not a good one. If we subtract the actual output (0)
from the output we want (1) the resultant error is 1. We multiply the error
by the inputs applied and add the result to the weight values selected to
provide new weight values and then try the test again, so now the weights
are both 2. When we try the inputs again we find this time the answer is



correct – for these inputs, this selection of weights provides us with the
function we wanted.

This process must normally be repeated with all the different input
possibilities time and time again until eventually we find that the error has
dropped to a very small value (hopefully zero) for all input possibilities, at
which point the weights will be the correct ones for that input/output
selection. It is useful when updating the weight values to also apply a value
which signifies the rate of learning – the amount of updating can be either
greater or, as is normal, much less than we used in the example. So the
weight values would change much more slowly, eventually reaching a
satisfactory solution.

For a simple example, as this one, it is not so critical what we choose for
a learning rate factor, as long as it is somewhere between 0 and 1. A small
number (e.g. 0.1) means the neuron will learn slowly, whereas a larger
number (e.g. 0.5) means it will change (maybe too) quickly. Nevertheless,
for the simple AND example here, no matter what initial weight selections
we choose, after possibly six or seven adjustments over all of the input
possibilities our weights should have settled down to a steady solution.
Applying the weight update procedure described one more time will then
result in no change in weight values. Indeed, this is often the best way to
decide that learning has completed, in that the weight values do not change
from one adjustment to the next (or at least change by a very small amount).

SELF-ORGANISING NEURAL NETWORK
Different parts of a brain carry out different functions. Various ANN
schemes aim at copying, to a certain extent at least, some specific aspects of
the brain's activity. One example is the area of the brain in humans, called
the cerebral cortex, part of which deals with sensory input. In this region of
the brain, sensory input is mapped to different regions of the cortex, which
has organised itself to understand the variety of signals that arrive.

Ideas from this have been used in the development of a self-organising
(winner-takes- all) ANN which consists of a single layer of neurons.
Usually these do not have a strict threshold as has been previously
described. They can operate on a more complex function, such as a
sigmoid, but it might be best initially to consider them quite simply as



outputting a value related to the sum of their input signals – possibly the
sum itself.

These neurons are formed into a square matrix of possibly 100 neurons in
a 10 Ã— 10 array. The idea is that a particular input pattern will excite a
specific region of the neurons in the array. In this way, when the network is
operating, if it is witnessed that a particular region of the neurons is excited
then the input pattern that caused this can be inferred, i.e. that particular
piece of input information must have caused the output. The network is
called a feature map in that by considering the different regions of the
network, each region (when excited) infers that a particular input pattern, a
feature, has been applied.

In this type of network, the same input signals – we have been
considering two, x and y up to now, but there may well be more – are
applied to all of the neurons in the array in exactly the same fashion. What
is different here, however, is that the outputs from each of the neurons are
also fed back to form further inputs to each of the neurons in turn – these
are referred to as lateral connections.

Each of the signals applied to a neuron, both directly from the inputs
themselves and also those fed back from neuron outputs, will have a weight
associated with them. Initially these weights can be set to random values.
When a particular input pattern is then applied, one of the (100) neurons
will have an output signal which is higher than all the other neurons. This
neuron is selected as the winner and its weights are adjusted to make its
output even higher for that input pattern. In turn, the neurons in its vicinity
also have their weights adjusted (but not quite so much) so that their outputs
are also a little higher, and so on as we radiate out from the winning neuron,
until neurons further away actually have their weights modified so that their
outputs decrease.

For this reason the learning function is said to resemble a ‘Mexican hat’
shape, with the winning neuron at the centre/ pinnacle of the hat and
neurons further away on the brim. The hat shape defines how much an
output is increased by a change of weights if it is close to the winning
neuron, and how much the output is decreased when that neuron is further
away. When trained in this way, if that specific input appears again then the
neuron map will ‘recognise’ the input because the specific area around the
winning neuron will be far more excited than the rest of the map.



Another input pattern is applied and a different neuron in another sector
of the map is selected as the winner. Again, the Mexican hat learning
function is employed in order to modify the weights, and as a result another
area of the map will recognise this new input if it is applied again. This
process is repeated with more, different inputs. In each case a new sector of
the map is excited by the new input. So the map organises itself such that
when training has been completed and the weights are fixed, the overall
network can monitor a set of inputs such that when a particular input pattern
is applied, or at least something close to it, one specific region of the neuron
map will be excited.

It turns out that where there are some similarities or links between the
different input signals then they are likely to excite adjacent regions of the
neuron map. This means that if a sequence of input signals is applied, the
result is that the area of excitation moves around the map as the inputs
change.

Although such a map could be useful for recognising a whole range of
different input types, one area of application in which it has been found to
be successful is that of speech recognition. As a speech signal is input to the
network – in terms of energy at different frequencies – phonemes can be
recognised and the initial uttered words can be reconstructed from their
frequency components by means of the map. Perhaps surprisingly, the
Chinese language is one of the best to employ in such a test due to its
logical phoneme structure.

N-TUPLE NETWORK
One final type of neural network we will consider here is the N-Tuple
network, also referred to as a ‘weightless’ network because it operates in a
distinctly different way, being (as one might guess) devoid of weights.
Indeed, its principles of operation are substantially different to those looked
at already and its method of learning is also dissimilar. However, in many
ways it is a lot easier to actually build in electronics/hardware and possibly
even to understand in terms of its mode of operation.

The basic building block (neuron) of an N-Tuple network is a standard
computer random access memory (RAM) chip, as depicted in Figure 4.3.
Further, for this technique all of the signals at both the input and output are
binary, i.e. they are either 0 or 1 (no or yes). Such a restriction is not



particularly limiting when it is remembered that when a signal is digitised,
as required by a computer, then it is readily available in terms of 0s and 1s.
The input connections to the neuron are actually the address lines of the
RAM chip, and the output is the value of data (0 or 1) stored at that address.

Figure 4.3 RAM neuron.

When the RAM neuron is in learning mode, the pattern being taught is
input in terms of 1s and 0s on the memory address lines, with the
appropriate value being stored – either 1 or 0. The number of inputs used to
address the RAM neuron is referred to as a Tuple – if there are eight bits
(eight 0s and 1s) then this would be an 8-Tuple. Subsequently, when in
analysis mode, the neuron is addressed with the same input pattern and the
data extracted will be either the 1 or 0 that was previously learnt. This is
essentially a different – yet powerful – way of employing a RAM chip.

This type of neuron can be particularly useful for learning to recognise an
image. If the image is split up into pixels, with each pixel having a value
either of 1 or 0, then the pixels can be taken four at a time (if it is a 4-Tuple
network) and fed into RAM neurons. Different RAM neurons are required
for each Tuple.

To see how it works, let us initially store a 0 as data for all possible
addresses in a RAM neuron. Then assume that we have an image which
simply consists of four pixels, with each pixel either being black (0) or
white (1). For this example let us say the four pixels will have value 1010



and a RAM neuron will be so addressed, with a 1 being stored at that
address.

If we subsequently test the neuron with an image 1011 then the neuron
will output 0, indicating that it does not recognise that image. If, however,
we input an image 1010 then the neuron will output 1, indicating that it
does recognise that image as the one it originally learnt.

Of course, a typical image consists of many more pixels than this, even
with merely a black and white image. So a whole bank of such neurons are
needed, with every pixel being fed into at least one neuron, although it is
usual to over-sample and feed each (0/1) pixel value into four or more
different neurons, often in a pseudo-random way in order to generalise and
mix up the inputs. For a particular image, the first N bits are fed into the
first neuron, the second N bits into the next neuron and so on until the
whole image input pattern has been dealt with.

For a specific image fed into the neurons in this way, all of the neurons
have their outputs set to 1 for this particular pattern. In this case, because so
many neurons are involved, when it comes to the analysis stage and a
subsequent image is presented, because of small changes such as light
discrepancies or noise, the image will probably not be exactly the same at
any later time – it may be that for what we think is the same image, only
83% of the neurons give a 1 as output. In fact, this is probably near enough.
Because the percentage is so high, it is likely the case that the image is just
about the same as the one originally learnt. If only 25% of the outputs had
given a 1 as output then we could be pretty sure that it was a different image
to the first one.

For a bank of neurons, therefore, we simply need to sum up all of the
outputs and make a judgement ourselves as to what value we feel is
sufficient to convince us that the image is near enough to the original.

In practice it is best for the neurons not simply to learn one specific
image but to learn a number of similar images.

If the neurons were learning to recognise the image taken of a person's
face, for example, it might be that the person could move their head slightly
or open and close their mouth, with a different image fed in to the bank of
neurons in each case – each of the different images causing some extra
neurons to have their data lines set to 1. Subsequently, the sum of neuron
outputs would then be more likely to give a high percentage value even if



the person's head was not in exactly the same position as it was at first –
possibly due to the wind blowing their hair or the sun reflecting differently.

One issue is that if too many different images are learnt by a bank of such
neurons, then in analysis mode it tends to recognise absolutely everything it
is tested with – its discrimination is impaired. It is usual, therefore, to have
a different bank of RAM neurons for each different image, with slight
variations on that image. For this reason, such a bank of neurons is referred
to as a ‘discriminator’. If it is, at a later time, desired to clear the entire
discriminator and teach it a completely new input pattern then it is
relatively straightforward to simply set all neuron outputs for all address
inputs to 0 and start again.

It is clear that RAM neurons are not a particularly accurate model of a
human neuron. However, their performance in input (particularly image)
recognition has certainly been inspired by the neural processes of the
human brain – as a result such performance itself results in further
questions being asked as to the actual nature of human neurons themselves
– perhaps, in some cases, they are more like the RAM neurons than we
initially thought.

EVOLUTIONARY COMPUTING
In Chapter 2 we considered problem solving in terms of searching for a
solution. Various search techniques were investigated. In recent years
inspiration has been taken from the study of biological evolution to provide
an alternative, very powerful strategy when it is required to search for a –
possibly the best – solution to a problem by selecting from a number of
potential solutions. Even, if required, realising new solutions not previously
considered – i.e. being creative.

In the biological evolutionary process, at one point in time a population
of individuals in a species exists, forming a generation. These individuals
are mixed together (usually by mating) to produce a new generation, and so
over time the species survives and (hopefully) thrives. As the environment
changes, to stay in existence the species must adapt to those changes. But
this overall process is extremely slow, possibly taking millions of years.

By copying (modelling) in a computer some of the general processes
involved in the biological form of evolution, it is possible to achieve a
technique which adapts (improves) the solution to an AI problem, from a



population of potential solutions, either towards the best possible solution
or at least to achieve a solution that works.

Different solutions in one generation of the population of solutions are
mixed (genetically by mating) to produce a new, improved generation. The
solutions in that new generation can in turn be mixed, in a number of ways,
to realise the next generation and so on, until many – possibly thousands –
of generations later a much better solution to the original problem is arrived
at. Fortunately, computer generations can be brought about within a much
shorter time frame – possibly seconds or even milliseconds – so we don't
have to wait millions of years for a solution to appear.

GENETIC ALGORITHMS
The best-known approach to evolutionary computing is the method of
genetic algorithms (GAs). In this technique, each member of a population is
defined in terms of a genetic make-up (computer chromosomes) which
describes it uniquely. This can be written in binary fashion, in terms of 1s
and 0s. To get from one generation to the next, the chromosomes of one
member are mixed/mated with those of another by procedures such as
crossover and mutation, which were inspired by their biological
counterparts.

As we will see, a binary chromosome code relates directly to the
characteristics of each member. Differences between members’
chromosomes relate to the actual differences between their properties. As a
simple example, one member – let's say A – may be described by the code
0101, whereas another – we'll call it B – could be described by 1100. The
process of crossover involves taking part of the code of A and mixing it
with part of the code of B to make a new member for the next generation.
For example, the first part (first two digits) of A mixed with the second part
(last two digits) of B would realise 0100 – a new code. For longer codes,
which is the usual case, the process is exactly the same; it's just that more
digits are involved.

Mutation, which is generally used less frequently, involves taking one
digit (possibly at random) and changing it. So we might take A as 0101 and
mutate this by changing the third digit for it to become 0111 in the next
generation. In a piece of code with only four digits, as in our example, this



has quite a dramatic effect, whereas if only one digit is mutated out of a 24-
digit code description then the effect is much less apparent.

It needs to be remembered here that the original members of the
population might well be quite reasonable solutions in any case, so we most
likely would not wish to change them much from one generation to the
next, just some small tweaks to improve them slightly. In nature, mutation
occurs sparingly and this is perhaps the best case with a GA also – in fact,
too much mutation can seriously disrupt a GA, leading to it never finding a
good solution.

When operating a GA, the first task is to construct fixed-length
chromosomes which are representative of the problem and which uniquely
characterise each individual in the total population. Also, one needs to
choose a population size and decide if this is going to be allowed to grow in
any way (probably not). When the population size is fixed from generation
to generation it means that some of the entities in a generation will need to
be killed off – i.e. they will not proceed further. They will most likely be the
weakest individuals, though it may be that some diversity is required and
hence individuals that are very similar to others, but not quite as good, can
be killed off along with clones – a population full of identical individuals is
not desirable.

It also needs to be decided how much crossover and how much mutation
will occur. The probability of either of these occurring can usually be
determined from experience with a particular problem – too much of either
and the population will not settle down and converge on a good solution;
not enough of either and the population can get trapped with only bad
solutions.

Perhaps the most important aspect is determining how the individuals are
to be measured – what is good and what is bad. For this an overall function
which defines the fitness of individuals needs to be constructed (a fitness
function). This depends on the problem for which the GA is being applied.
The function may therefore be arrived at by a combination of different
factors – e.g. speed, cost, power or length, whatever is important for the
problem.

To start the algorithm off, an initial population is required. This might be
obtained randomly or it could be obtained through a number of rough
guesses at a solution. The fitness of each member of the first generation in
the population is found by means of the fitness function. A pair of



chromosomes can then be selected for mating – those achieving a better
fitness score are more likely to mate. Crossover and mutation operators are
applied depending on their probability in each case. As a result, one or more
offspring are produced. This process may well then be repeated with other
pairs of chromosomes.

What results is a new population consisting of the original chromosomes
and the new offspring. Each of the chromosomes is then tested against the
fitness function and the population is slimmed down to the population size
by killing off some chromosomes (simply eliminating them from the
proceedings). These chromosomes take no further part in the process. The
fitness function may indeed include a factor dependent on age, such that for
each generation a chromosome may be deemed a little less fit simply
because it is ageing. This aspect depends on the application, however, and it
may be that chromosome age is not deemed important.

This whole process is repeated, generation after generation – possibly
many thousands of generations – until there is little or no change in the
fitness function calculations for the best chromosomes. At this point it can
be deemed that a solution has been arrived at.

Sometimes it may be that there is little change in the best chromosome's
fitness function calculation for several generations – indeed, the value may
deteriorate – and then it can start to improve again. It really depends on the
complexity of the problem. It could therefore be that it is simply better to
stop the algorithm after a specified number of generations have been
realised or when the best fitness reaches a certain value – the result will
then be deemed to be ‘good enough’.

GENETIC ALGORITHM: SIMPLE EXAMPLE
In this simple example we wish to use a GA to find the best robot to
perform a package carrying task. The robot can have one of two motors,
one of two chassis, one of two power supplies and one of two grippers. For
the first type of each item this will be denoted by 0, with the second type
denoted by 1. Let's have a population of three possible robots and let's start
them off as 1010, 0111 and 1000. Each of these chromosomes actually
represents a different physical robot made up of the four different possible
components.



Each robot performs in terms of speed (S), manoeuvrability (M) and load
carrying (L), due to the way it is constructed. Our fitness function (F ) can
therefore be made up of some aspects of each of these features – let's say F
= xS + yM + zL, where x, y and z are umbers we choose to denote the
importance of each feature. In the first generation we calculate F for each of
the three robots – to do so we need a mathematical model which relates S, L
and M to each of the robot designs. Assume that, as a result, we find that
1010 and 0111 have better values of F. We then apply crossover to these to
obtain 1011 and subsequently apply mutation to the third digit of 0111 to
obtain an offspring 0101.

On testing it is found that 1000 from the original population and 1011
have the worst fitness functions (F ) – so our population at the start of the
second generation consists of 1010 and 0111 from the original population,
along with the offspring 0101.

Now we test each of these robots against F using the model (which we
assume we have) and find that 0111 and 0101 are the best two in this case.
Applying crossover gives us 0101 again, while applying mutation to the
fourth digit of the first of these (0111) gives us 0110.As a result, we find the
new population of three robots to be 0111, 0101 and 0110.

So the process continues. Perhaps we eventually find that 0110 turns out
to be the best solution in terms of satisfying the fitness function and we
simply cannot obtain a better design of robot. In this case we have found the
components we need to build the actual, physical robot, which we can go
ahead and do.

One of the first tests for the robot will be to check its actual speed,
manoeuvrability and load-carrying performance. In this way the
mathematical model relating these features to the actual robot components
(which we assumed we already had) can be checked. If the model is found
to accurately relate to the actual performance characteristics then we can be
pretty sure that the GA has found the best solution for the design of the
robot. If, however, the model is found to be in error, then it may be the case
that a different fitness function would have been better and that the GA has
found the right solution to the wrong problem. What is needed, though, is a
more accurate model so that the fitness function is more realistic.

This example points to a number of important characteristics inherent in
the use of GAs for problem solving. First, the chromosomes must
accurately represent the individuals – in the case of the robot the motor,



gripper and so on must be accurately represented. Second, the fitness
function must accurately be related to the performance of the individuals in
the population.

In a realistic version of a problem such as this, each chromosome could
be made up of 20 or more digits (not four as in the example), the population
might contain hundreds of different chromosomes (not just the three in the
example) and the fitness function could represent a complex mathematical
description relating each individual's make-up to its performance, consisting
of many more than the three terms in the example.

GENETIC ALGORITHMS: SOME COMMENTS
In natural selection, individuals who are not so fit in terms of their
performance do not survive; as they age, they die off. Although this was
originally referred to as ‘survival of the fittest’, perhaps a better description
might be non-survival of the unfit. Those that are fit enough survive and
mate, and in that fashion pass on their genes to the next generation. In many
ways, GAs are based on the same principles. For example, the chromosome
size (length) does not change from generation to generation.

One difference with nature is that the size of a GA population normally
remains fixed. This is rather akin to managing a group of animals on a
wildlife reservation – the strongest animals survive and the weakest and/or
oldest are culled. The main reason for retaining population size in a GA is
simply management of the algorithm – letting the size expand would mean
that for each generation, the fitness function for every individual would
have to be calculated, which takes up computer time, so as generations
passed the amount of computation time required would increase
considerably.

However, restricting the population size in a GA, while helping on time,
does create problems. What can tend to happen is that individuals in the
population can become similar, leading to a lack of diversity. If we wish to
find the best solution it can be good to have some different individuals in
the population to vary the solution to an extent.

In some instances the GA can be operated adaptively to deal with
changing circumstances, such as when a robot has to deal with different
environmental conditions. In these cases diversity in the population is



important such that quite large changes in individuals can occur if and when
necessary, relatively quickly.

Although the desire is for a GA to find the overall (global) best solution,
it may be that there are several potential solutions, some of them better than
others. This situation occurs when the fitness function is quite complex. It is
then possible for the GA to converge on a local maximum rather than the
global solution. It can be that a different start point (i.e. different initial
conditions) will allow the global solution to be found, but there again we
don't know what those conditions are if we don't know the final/global
solution.

In biological evolution local maxima can in some circumstances be good
solutions. Such is the case for different species that have developed to fill a
niche for which they physically and mentally evolve with specific
characteristics to deal with a particular situation. This same feature may
also be useful with some GA applications, with the GA providing a neat
solution to a specific problem. In essence, whether we are looking at a niche
solution – a good thing – or merely a local maximum – possibly not such a
good thing – really depends on the particular application.

AGENT METHODS
If we take a look at the general approach to AI discussed in this chapter so
far it is one of the emergence of an overall complex intelligent behaviour
through a collection of simpler interacting entities which are, themselves,
semi-autonomous – agents. It may be, as we have seen with ANNs, that
these agents, in the form of neurons, merely link together and, by their
sheer numbers achieve intelligent behaviour. Alternatively, as we have seen
with GAs, it may be that a population of genes, as agents, improves through
an evolutionary process with an external assessor – the fitness function.

In either case we can see that each agent has little/no knowledge of what
other agents do. They are relatively independent and are only affected, in
turn, by other agents in terms of achieving environmental goals. An end
result may then be realised in terms of one agent alone (in the case of a GA)
or by a collection or community of agents (in the case of an ANN).

One approach to AI is to specifically focus on the idea of agents in
particular and their individual identities to produce an overall emergent
behaviour. Each element can be considered as a member of a society that



can usually perceive limited aspects of its environment, which it can in turn
affect either singly or in cooperation with other agents. In this way an agent
coordinates with other agents to achieve a specific task. A key difference
between this approach and classical AI is that with agents the overall
intelligence is distributed between the agents rather than being housed in
one centralised depository.

AGENTS FOR PROBLEM SOLVING
We saw in Chapter 2 how classical AI systems can be very good at solving
problems. An alternative solution is to employ an agent-based approach. In
this way a complex problem can be chopped up into a number of smaller
problems, each one of which is much easier to deal with. Agents can then
be used to find solutions to these smaller problems – combining together to
realise the final solution. One advantage of this is that each agent can
contain information about its own smaller problem – it doesn't need to
know anything about the problem in general.

Such an approach is often taken between humans to tackle a difficult
task, each human only dealing with their specific part of the problem,
usually not understanding the full complexity of the overall situation. So it
seems quite reasonable to apply the same technique to an AI system. But of
course, there are many different ways in which this can be brought about.
As such, you will encounter several different definitions of what an agent is
and what it can do.

Some agents have a fixed action, while others are flexible and adaptive.
Some are autonomous, while some are completely dependent on the
decisions of others. Most are responsive to the environment in which they
exist, although this can mean environment in the sense of the outside world
or it can mean the actions of other surrounding agents – think of one of your
neurons in the middle of your brain, for example – it is only affected by
other neurons, not directly by any external influence.

It may be that in a particular design all agents have the same power and
capabilities; however, it may be that some agents can override the decisions
of others – this is referred to as subsumption architecture as the action or
decision of one, lower-priority agent is subsumed by that of an agent of
higher priority. As an example, we will shortly consider this further in terms
of a mobile robot application.



SOFTWARE AGENTS
An agent can take the form of a physical hardware entity or it can be a piece
of code in the computer as part of an overall program. In either case it
exhibits some or all of the characteristics already discussed. In a moment
we will look at hardware agents. First, however, let us consider the software
version.

There are a wide range of possible software agents – sometimes referred
to as softbots. For example, such agents are presently used to monitor the
financial markets, checking on the real-time movements of stocks and share
prices. An agent may well be responsible for buying and selling
commodities, in which case it needs to know if the (human) dealer has any
up-to-the-minute instructions as to which trades it should be especially
interested in and which to avoid – in this case the agent may need to
‘understand’ certain natural language instructions.

Agents are ideal for such transactions because they can simply sit
monitoring activity, only carrying out an action when the right conditions
are apparent. Not only is this very difficult for a human to do, but once a
decision is needed the agent can make it almost instantly. In the time it
would take for a human broker to make the same decision (several seconds
or even minutes) the deal may well have been lost.

As a result, a large proportion of daily financial transactions around the
world are actually carried out, not by humans, but by software agents. The
office floors of financial houses in the city market places (London/New
York) are smothered in computers. Brokers that formerly were involved in
carrying out the transactions are now involved in monitoring AI agents and
feeding them with information and occasionally instructions – then they let
them get on with it. Meanwhile, others are involved in new AI agent design
– it is no longer the company making the best deals that makes the money,
but rather the company that realises the best AI agents.

Such an agent may well monitor numerous factors at the same time:
keeping a historical record of the value of shares over a period;
investigating trends; correlating these with other shares; linking them with
financial exchange rates and other external information translated from up-
to-date news items. As many factors are brought together it may be that
some of the data mining techniques discussed earlier need to be either



directly incorporated into an agent or the agent needs access as and when it
is required.

The basic action of an agent is to take in information from one or a
number of inputs, process this information, relate it to historical data and to
make a decision which can be acted on either physically or in terms of a
further software output, possibly even by another agent. This could be
achieved simply through the agent consisting of a rule base or a look-up
table. If historical data is ignored then the agent is referred to as a reflex
agent.

It may be that the agent contains elements concerned with planning in
order to achieve either an internal goal or to direct itself towards an external
goal – in which case it is referred to as a goal-based agent. Meanwhile, if
the planning elements themselves are adapted appropriately in response to
external influences from the environment, possibly due to the performance
of the agent itself, then this is referred to as a learning agent. Finally, an
agent can be based on models obtained from the real world, which it
attempts to mimic in its performance, in which case it is referred to as a
model-based agent.

MULTIAGENTS
We have looked thus far more at single agents acting, in some way, as a part
of a collective whole. It may well be in some cases that a single agent is
required to deal with a task (many industrial monitoring systems are of this
ilk), merely checking on a measured level, pressure or flow and sounding
an alarm or triggering a valve to open/close if the measured value deviates
outside previously defined bounds.

If a single agent is appropriate to deal with a problem, then so be it –
there is no point making the solution more complex than it needs to be.
However, there are many cases in which a number of agents are required; in
fact, it is more than likely that this will be the case as it is such situations in
which AI agent systems are applied.

Where multiagents are involved they may need to operate in a
cooperative fashion such that each agent provides a partial answer to a
problem, an overall solution being provided by bringing together the
cohesive outputs from a number of agents. Alternatively, the agents may



operate competitively, either singly or in groups, with only one or a small
group of active agents providing the final overall solution.

To deal with multiagent systems, a form of selection is required. This can
be carried out either in terms of a simple calculation; for example, each
agent can be assigned a priority grading (can be called an ego), with such
gradings being merely added together if groups of agents are involved. The
winning active agent(s) is then the one(s) with the ‘best’ grading.
Alternatively, a critic or superagent is also required in order to choose, by
means of its comparative calculations, which is the winning agent to be
applied. The superagent itself does not therefore affect the outside world; its
role is to select which agents can do so.

HARDWARE AGENTS
Historically, computer systems were fed information by users. In many
cases this is still true. However, it is also the case that many computer
systems (acting as agents) obtain their information directly from sensing the
environment and are both expected and trusted to act on that information
without any form of human intervention. The result of this may well mean
the actuation of some entity which directly affects and influences the real
world. As an example, a peacekeeper missile system receives information
regarding incoming enemy missiles and their range and trajectory. The AI
system itself then decides when to deploy a missile – humans merely have a
veto but no direct control.

The computer system requires an accurate up-to-date picture of the state
of the external world. If it senses inaccurate information then any decisions
it makes will themselves be inaccurate. Such data, on collection, may need
processing to reduce the possibility of error, so data may need to be
averaged or filtered to remove noise. One good example of a
computer/agent system operating in this way is the case of a mobile robot.
The robot senses information related to its position and whether any objects
are in its vicinity. It may then need to plan a course of action and
subsequently attempt to carry out that action, taking into account any
environmental changes or newly sensed information – maybe an object has
suddenly appeared in front of it.

Such a robot can also learn a reliable procedure or behaviour depending
on potential actions it tries itself being ‘rewarded’ when it gets things right



and ‘punished’ when it gets things wrong. We will look at this in more
detail in the next chapter.

SUBSUMPTION ARCHITECTURE
In order to describe the subsumption architecture method, it is best to stick
with the mobile robot as our example agent because the robot has a number
of levels of operation. At one level the robot may need to form a map of its
environment – in practice this may be by means of a laser range-finding
mechanism or perhaps ultrasonic sensors. In order to do this it will need to
move around in the environment.

Another task the robot might have is to go to one point on the map to
take an object from that point to another point. Of course, the desire would
probably be that if any objects get in its way then it must avoid them (in an
industrial setting) or possibly destroy them (in a military setting). It might
be, however, that its role will change depending on the object sensed and
the function the object is carrying out. Hence, it might be required that on
encountering a specific object, the robot stops taking its load from one place
to another, changes its direction and goes somewhere else.

Each of the tasks of the robot has a level of required competence –
avoiding collisions is of high priority but requires a low competence.
Following a path requires a high competence but is not so high in terms of
priority. Other functions of the robot can similarly be defined, such as
building a map, travelling relatively aimlessly, sensing changes in the
environment and so on.

Overall, at any point in time, the robot will be collecting data but will
also need to decide on a course of action for that point in time – what does
it do? To this end the controller has several layers of action, each with its
own level of competence and each with its own priority. It is important that
at each point in time there will be only one selected action.

It will most likely be the case that a number of possible actions are active
– maybe the robot is presently carrying an object from one place to another
(high competence) when it encounters an object blocking its path requiring
avoidance (low competence).

The basic rules of subsumption architecture are that: first, a lower
competence action will always subsume (or suppress) a higher competence
action; second, the ‘default behaviour’ is always the lowest competence



one. In this way different levels of possible action are subsumed into the
immediate, necessary action which simply must be taken.

CONCLUDING REMARKS
In this chapter we have looked at some of the modern approaches to AI. In
doing so we have taken more of a bottom-up approach, looking at the basic
building blocks of intelligence and investigating how these can be plugged
together, rather like the neurons in our brains, in order to function as an
intelligent collective whole. This is in direct contrast to classical AI in
which an external, top-down approach is taken.

As we have travelled through the chapter, so ANNs, evolutionary
computing and agent architectures have all been considered, each with their
own distinctly different mode of operation. We have seen that robotics has
proved to be a good example to consider where and how AI systems
operate. As a result we will continue our investigation into AI by looking at
robots in more detail, considering how they sense the world and operate
within it, focusing on how they exhibit intelligence in the form of AI.

KEY TERMS
artificial neural network, fitness function, goal-based agent, learning agent,
linearly separable problem, model-based agent, multiagents, perceptron,
reflex agent, subsumption architecture
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ROBOTS

SYNOPSIS
Some of the most exciting developments in the field of AI have appeared
through the development of robotics. Indeed, it could be argued that an
intelligent robot is merely the embodiment of an artificially intelligent
entity – giving a body to AI. Topics to be covered here include artificial life,
collective and swarm intelligence, and biologically inspired techniques.
However, we also look at an exciting new form of AI in the sense of
growing biological brains, as the AI, within a physical robot body. This can
even mean culturing human brain cells as the AI!

ARTIFICIAL LIFE
In Chapter 1, when we were trying to pin down intelligence by defining it,
the proposal was: ‘The variety of information-processing processes that
collectively enable a being to autonomously pursue its survival.’ At first
glance this definition can appear a bit bland – a similar, but more direct
alternative might be: ‘The variety of mental processes that act together to
make up those necessary for life.’ Again, we are looking here at a general,
all-encompassing concept rather than something that is specific to (or
biased towards) humans. However, in this latter definition we have tied
intelligence to being something to do with mental (of the mind) processes,
but more importantly have given it a central role in terms of life and living



entities, including properties such as success and gain as well as mere
survival.

Immediately, though, we can expect to have follow-up questions as to
what is meant by ‘the mind’ and, somewhat more importantly, what is
meant by ‘life’? In Chapter 3 we attempted to tackle some of the
philosophical arguments that relate to what a mind is and how a computer
mind compares with a human mind. It is, however, relatively
straightforward to regard a mind as merely being a brain, a physical entity
which carries out the mental processes exhibited by an intelligent being. In
this sense, discussing what a ‘mind’ is becomes more of a fun parlour game
– the real question relates to what life is all about.

We can, as we did in Chapter 1 with regard to intelligence, have a look at
what dictionaries say about life. However, arguably the best definition one
finds is actually taken from Wikipedia and can be expressed succinctly by
saying that life is a characteristic that distinguishes entities that have self-
sustaining processes from those that do not.

In terms of a biological perspective, these self-sustaining processes for an
entity involve regulation of its internal environment, organisation in itself,
metabolism (e.g. energy), growth, adaptability, response to stimuli,
production (not ‘reproduction’ – as mentioned earlier, humans do not
reproduce other than in cloning) and other things such as excretion and
nutrition, which are perhaps subsets of the previous categories.

So, to be considered to be alive an entity must exhibit the majority, if not
all, of the characteristics mentioned – to go further we would be defining a
specific form of life, such as organic or human, and in this look at AI we are
trying to take a general approach to life, just as we are taking a general
approach to intelligence. As with our analysis of intelligence, it is worth
thinking about the variety of entities we witness on our planet when we
consider life. It is certainly not necessary to exhibit ALL of the processes
mentioned to be alive – for example, not all humans produce offspring, but
this doesn't mean they are not alive.

A-LIFE
Having considered, to some extent at least, what life is all about, we can
now look at the exciting topic of artificial life, otherwise known as A-life.
This can mean a number of things to different people, depending on the



approach being taken. However, what is common between these approaches
is that some aspects of life as we know it are taken as the basis (or
inspiration) for the A-life study.

Essentially, what happens in life can be modelled and used as a basis, or
inspiration, for an AI technique. Alternatively, the role of an AI system can
be to perform some or all aspects of life itself – which can be in terms of
hardware (e.g. an actual physical robot) or in terms of a computer
simulation of a world within the computer. In the latter case this can mean
an attempt at representing the real world or it can be merely in terms of a
toy/virtual world within software.

A-life approach 1 (merely inspirational): in the previous chapter we
looked at neural networks, evolutionary computing, GAs and software
agents. These computing AI methods are all inspired by a look at what
happens in nature, either (as in the case of a neural network) how a brain
works or (as in the case of evolutionary computing) how life evolves.
Whether it be in terms merely of computer simulations of these forms of AI,
to some people such techniques are considered to be part of the field of A-
life.

A-life approach 2 (again merely inspirational): other, different aspects of
life can be picked on and employed along with more standard forms of AI
of the type considered in earlier chapters (e.g. planning) to improve
performance or simply to take a different approach. Examples of this would
be the use of models of social and cultural change to affect what would be
otherwise standard forms of machine learning. In common with GAs, an
attempt is made to cause a resultant behaviour to emerge through a
perceived evolutionary process. This can be achieved in a simple way
through merely having a number of potential solutions to a problem, being
able to put a value on each solution and progressively (in an evolving way)
to improve the best solution selected.

SIMULATED A-LIFE
What I have described so far is merely the use of inspirational ideas,
gleaned from life, to influence the way either classical or modern AI
methods operate. On first encountering the term ‘artificial life’, however,
the immediate concept that would probably spring up in most people's
minds is not this at all, but rather the idea of actually putting



together/building an artificial life form. This is something that could be in
terms of a simulation or in terms of a real-world, physical robot.

A simulated A-life can be quite complex (possibly a model of some
aspects of life), containing behavioural models of individuals living within
a simulated world, or it can be very simple in its construction. The amazing
thing is that even with simple rules and simple behaviours, extremely
complex overall population effects can arise.

CELLULAR AUTOMATA
Perhaps the best example of simulated A-life is the approach called cellular
automata (also known as finite-state machines). One straightforward way to
understand this is to consider a chess/ draughts board as the simulated
world, but in this case each of the squares can be either black or white and
their status can change over time. Each square (described as a cell) is then
considered to be an individual member of the world, which is the board
itself.

If we consider a square in the middle of the board, it has eight
neighbouring squares, four to the north (N), south (S), east (E) and west
(W), and also four to the northwest (NW), northeast (NE), southwest (SW)
and southeast (SE). At a specific time (t) then that square (in our simulated
world) will be either black or white, which we can also call being in the
state 1 or 0.

If we then consider the same square the next time we look at it (t + 1)
then its state at the new time will depend both on what its own state was at
time t and what the state of its neighbours was at time t. At the next time (t
+ 2) so things will depend on the states at time t + 1, and so on.

Although this sounds a very simple operational description, when viewed
over a sequence of such time steps, extremely complex patterns can emerge
dependent on the choice of relationships between an individual square at a
certain time, its previous self and its previous neighbours. Essentially,
complexity emerges from simple behaviours even when the population (in
this case the total number of squares) is relatively small.

What such a relatively simple set up does allow us to do is to study the
effects of society, in that the state of an individual not only depends on itself
but also on those around it. The type of relationships between a single cell
and its surrounding cells can take a variety of forms, as we will see shortly,



and in certain circumstances this can lead to cell ‘death’. In this sense,
‘death’ means that a cell no longer changes its state over time and no longer
has an effect on other cells around it – the speed with which this occurs (if it
occurs) depends on the relationships themselves.

One thing that transpires from such a study is that the evolution of the
total population over time, including the patterns that emerge, may not have
an ‘intent’ about it (i.e. there may be no apparent, selected goal for the
population), but rather a supposed ‘intent’ emerges from the simple
interactions between the cells (i.e. regular patterns clearly emerge).

Conclusions from this can be drawn and posed back on our own human
society. For example, such evolution may well not result in a ‘better’
existence (a better pattern) but merely a different one. Perhaps more
importantly, mere survival seems to be the key factor (for a cell) – as long
as you survive then you still have a role to play and can change things – this
can be considered to be success in itself.

GAME OF LIFE
In looking at cellular automata it is worth considering how such
evolutionary behaviour can occur in terms of a simple example. To start
with, let's look again at a cell (square) in the middle of the board, along with
its eight near neighbours. We need to define the relationships which will
transform the state of the cell from time t to time t + 1. For this example, let
us merely use three rules to encompass the whole arrangement.

1. If a cell is in state 1 at time t and has exactly two (no more, no less)
of its neighbours also in state 1 at time t, then at time t + 1 it will
remain in state 1.

2. Whatever the state of a cell at time t, if exactly three (no more, no
less) of its eight neighbours are in state 1 at time t, then at time t + 1
it will be in state 1.

3. For any other situation at time t, then at time t + 1 the cell will be in
state 0.

Consider for a moment the meaning of the rules in this example. If two or
three neighbouring cells are 1 then the cell will itself result as a 1, whereas
if more than three or less than two neighbouring cells are 1 then the cell



itself will result as a 0. The cell needs just the right amount of activity
around it – too much or too little and it will become 0. Even with such a
simple set of rules, which all cells adhere to, seemingly rich and complex
patterns can emerge in the population as a whole.

To see what can happen over just one time step with these rules it is
worth simply drawing out a small grid (say 5 × 5), scattering some 1s and
0s around the grid and applying the rules repeatedly over a small number of
time steps. From this it should be apparent that, dependent on the initial set
up you selected, the grid may well, in this case, quickly fill up entirely with
0s or 1s or could, very quickly, simply become a stable, non-changing
pattern. On further study it is realised that a larger population with a more
diverse initial arrangement can easily lead to more complex patterns
forming over time, possibly with waves, repeated cycles and shape changes.

WRAP-AROUND
It is quite straightforward, computationally, to extend the two-dimensional
world cell picture considered thus far by operating a wrap-around policy. In
the simple two-dimensional board case, the cells along an edge only have
five neighbours. These cells either need to be given slightly different rules
or their status will most likely have a biasing effect on the whole
population.

It can be best for a cell on the right-hand edge to regard those respective
cells on the left-hand edge as its neighbours and vice versa, with the same
applying to cells on the top/bottom. Cells in the corner positions of a two-
dimensional board meanwhile would nominally only have three neighbours.
Wrapping around a corner cell in terms of right/left and top/bottom realises
a further two neighbours in each case. Such corner cells therefore need to
be wrapped around diagonally such that the opposite diagonal corner cell
will also be a neighbour. In this way a corner cell will have all three other
corner cells considered as its neighbours.

Interestingly, when wrap-around is applied, waves and what are termed
‘gliders’ (apparent objects with evolving shape) can move across the world
and disappear off one edge only to reappear on the opposite edge. It is
possible, in this way, to get gliders to continually circle the world in a
stable, time-locked loop.



REAL-LIFE MODIFICATION
Just as AI can take inspiration from the real world in terms of its
construction and operation, the same is true with A-life. However, it is also
apparent that results from A-life can make us think in an alternate way
about real life and our understanding of evolution. This is particularly true
because of the ‘bottom-up’ aspect of A-life, in that simple individual cells
realise a complex overall social and evolutionary behaviour simply through
their interaction.

With cellular automata, a small change to individual cell rules,
particularly in terms of how they are affected by their neighbours, can often
result in distinctly different population developments, leading to a
conclusion that in the real world if we all behaved slightly differently then
the human race would realise very different outputs and evolve differently.

One input from the field of A-life to other subject areas is to stimulate a
simplistic view of what may at first appear to be complex behaviour.
Whatever the field (e.g. biology, physics, chemistry), an approach to
studying complex behaviour as observed in those fields can be to try to
realise a similar behaviour in terms of simple (cell) interactive behaviours.
If this is possible, approximately at least, then it may be possible to modify
the complex behaviour more to what we want by changing the cell
behaviour.

REAL-LIFE INSPIRATION
What we have considered thus far in terms of cellular automata has
involved all cells having the same set of (relatively simple) rules and
behaving in exactly the same way. If we study a group of ants, for example,
it may be that we conclude that all ants (or groups of ants at least) behave in
the same sort of way. We can therefore draw an analogy between the ants
and our game of life in that just as we see complex societal effects resulting
from our simple cellular automata, so we see complex population output
from a group of ants. In both cases the population may appear to exhibit an
overall goal or driving force as a result of the individual behaviour of its
members.

But if we consider instead populations that we can perhaps understand (at
least we think we understand) a little more about, such as humans, then we



can see immediately that we may well need to change our specific set of
rules for each individual and even groups of individuals in one or a number
of ways, some of which are:

1. Different cells can operate on different sets of rules.
2. Groups of cells can operate with similar/collective rules. Such cells

can be positioned geographically adjacent or can be scattered over
the population in a structured or unstructured way.

3. Rules for cells can change as time progresses. In this way learning
can be incorporated.

4. Rule sets can be goal directed, even on an individual basis.
Different cells can have different goals.

5. Not all cells need to be updated on every time step.
6. Related to point 5, some cells can be updated every second or third

time step, although this update frequency can change with respect
to time.

7. A cell's update in terms of its neighbours’ status can be quite
different, resulting in either a much simpler or more complex rule
set. For example, a cell could be affected by its neighbours’
neighbours, or it could be affected by cells which are not
geographically local, or it could be affected by only a select number
of its neighbours – perhaps those at NW, NE, SW and SE only, not
those at N, S, E, W.

Adding one or more of these features to the study of cellular automata
immediately makes the overall population evolution more complex.
However, as all cells are not then, strictly speaking, equal, it does mean that
pockets of different behaviours can appear. This can easily mean that
various different behaviours appear in one overall world, sometimes
clashing and affecting each other both temporally and spatially.

TOTALISTIC CELLULAR AUTOMATA
As we have seen in the previous section, from the basic foundation of
cellular automata, there are many variations possible. One special case
exists when, rather than being 1 or 0, the state of each cell can be
represented by a number (usually an integer). In the same sort of way as we



have witnessed thus far, the state of each cell at time t + 1 then depends on
some relationship with the state of that cell at time t along with the state of
its neighbours. For example, it may be that the new state of the cell at time t
+ 1 is simply a summation of the states of the cell and its neighbours at time
t, divided by nine – the number of cells being employed.

It is apparent that very quickly totalistic cellular automata can become
extremely complicated. Not only can the updating rule for a cell be much
more complex – involving mathematical functions of considerable depth –
but also some of the variations discussed in the previous section can be
brought to bear. This is an area that has, perhaps surprisingly, to this time
only been researched to a limited extent and we are yet to discover many
patterns and numerical phenomena that could easily exist, some possibly by
the use of very straightforward rule extensions.

REVERSIBLE CELLULAR AUTOMATA
A further special case of cellular automata worth looking at is when they are
reversible. This is the situation if, for every possible configuration of a
cellular automata world at a particular time (t + 1), there is one and only
one immediately previous configuration (t). These reversible cellular
automata are directly useful in studying physical phenomena such as fluid
or gas dynamics, an important aspect being that they obey the laws of
thermodynamics.

Cellular automata of this type have specific sets of rules which enable the
reversibility to occur. The types of rules that achieve this are therefore also
a feature of study. Even for very simple, 1/0 types of cellular automata it is
not an easy task to prove that only one previous state could have resulted in
the present state. Some techniques, such as partitioning the entire world into
specific groupings, can bring about such proofs more easily, although in
doing so they can change the general definitions applied.

For non-reversible cellular automata, patterns can exist for which there
are no previous states. Such patterns are referred to as Garden of Eden
patterns, because they are patterns which no previous pattern can lead to
through the evolution of the world. Garden of Eden patterns can only be
realised as start-up arrangements input by the user.



EVOLVING SOFTWARE A-LIFE
As we have seen in the previous section, considerable complexity can arise
even from simple beginnings by following simple rules. All that is needed is
a world populated by entities of some kind, which are affected not only by
themselves but also socially by those around them. With cellular automata
the entities were merely squares on a board, which could be in a particular
state at any time. It is quite possible, however, for the entities to be more
complex and to have something of a biological or real-world link. This is
much more difficult to do if we actually want to create the entities in real
life; however, within a computer, as simulations, it is possible.

It is not only the case that entities can be simulated but also that they can
exist within a virtual world. The world can have its own set of rules, some
of which are to do with the state of each of the entities within the world, and
hence their evolution, and some are to do with how the entities interact –
not something that was apparent with cellular automata. The entities can be
based on biological beings, living in a representation of the real world, or
they can be purely imaginary, living in an imaginary world.

In particular, different techniques in AI, as discussed thus far, can be
applied to the entities in a virtual world, so each entity can make its
decisions using a neural network or through a fuzzy expert system. This
decision making can itself evolve due to some of the GAs guiding the
changes – as long as the decision making can be encoded for the algorithm
to use. The added advantage here is that entities can be mixed together to
(genetically) form the next generation of entities. For example, the virtual
world could be populated by cyclops fish as shown in Figure 5.1. Here, a
fish can move around by means of rocket thrusters on its right and left side.
It has one eye which has a retina based on an ANN. To survive, the fish
needs to learn to recognise food pellets and then to coordinate its thrusters
in order to move towards a pellet and eat it.



Figure 5.1 Cyclops fish simulation.

This learning can partly be carried out by means of straightforward AI,
but partly it can also be carried out by genetic means – successful cyclops
fish ‘mating’ with other successful cyclops fish in order to produce
offspring which form the next generation. The big advantage of computer
simulation here is that the time taken to calculate a new generation is very
short – in fact, within a few seconds, for a small population, thousands of
generations could be investigated. A small change to the initial population
and a whole new evolutionary pathway can be investigated very quickly.

Simulated evolution has the big advantage of being extremely fast. As we
will see shortly, this technique can also be used to play an important role in
developing much-improved hardware, including real-world entities such as
robots.

In Figure 5.2 we can see an example of what can occur even with a
relatively simple neural network. Here the cyclops fish ANN brain has
evolved over 200 generations into quite a complex decision-making
mechanism – linking sensory input from the retina to motor thrusters.
Hence it has learnt what to do when it can ‘see’ food in order to move itself
towards the food pellets and eventually to capture them.

Even though it only consists of ten neurons, the network is extremely
complicated and attempting to figure out exactly how the fish will behave
in certain circumstances is by no means a simple task. The network has
evolved on a genetic basis, successful traits being strengthened, with
failures tending to cause a weakening of connections that brought them
about.



Figure 5.2 Cyclops fish evolved neural network.

Although the sensory input and motor output of each of the fish are
identical in software, due to different successes with different food pellets at
different times, each fish developed in this way has a slightly different
network set-up after 200 generations and therefore the fish behave
differently – some perhaps better at their form of life than others. A change
in the environment at any time – for example, different sized pellets – may
well mean that some of the fish are not as well adapted as before and they
may die off, whereas others may become better suited to the changed
surroundings.

PREDATOR–PREY CO-EVOLUTION
Rather than evolving software A-life as merely one species, it is interesting
to consider virtual worlds in which one species acts as predator while
another is its prey. For the predator to be successful, it must catch
reasonable prey without expending too much energy. For the prey to be
successful it must avoid the predator, again without expending too much
energy. However, if the predator is too successful this also causes problems
as there will soon be no prey left for it to feed on.

Typical first generations of both predators and prey can exhibit a
relatively random behaviour. With the predators trying to get close to the
prey and the prey trying to get a good distance from the predators, after just



a few generations the predators effectively pursue the prey; however, the
prey is also quite effective at evading the predators. So it goes on. If, over
the course of several generations, the predators improve considerably, then
the less effective prey strategies will quickly die out, leaving the more
successful strategies to have more of an impact on future generations.

Essentially, a co-evolution occurs, the evolution of both the predator and
prey being dependent on the external environment which, in this case,
includes the other species. Any dramatic change in either species could
completely destroy the happy balance of the system.

Although what has been described here has been merely two species, this
is really just to serve as a simple example. Much more complex virtual
worlds are easily constructed with both cooperating species and/or prey
which is in turn predator of its own prey.

VIRTUAL WORLDS
A considerable volume of virtual world software is readily available online
and it is well worth a search to view different alternatives. For example, you
will find ‘Gene Pool’ in which the swimmers are evolved over generations
in terms of colour, length, motion and so on. You will also discover virtual
creatures in which software genes are employed to describe both the neural
network of each creature as well as its body as a whole. Technological
creatures have been evolved for various simple tasks, such as swimming,
walking, jumping and following.

Another example is the Golem project in which both the body and brain
of technological entities are evolved in terms of designs which are
physically accurate representations of real-world artefacts. Concluding
designs have then actually been fabricated using a rapid prototype machine
– only real motors need to be added. Therefore, an artefact is evolved in a
simulation to perform an act, such as moving across a table. The evolved
solution in the simulation is then fabricated into a real item and it can
perform the movement in the real world.

This feature indicates a distinct advantage of evolution through
simulation. If hardware robots or machines were built and evolved through
real-world interaction, it could take quite some time before improvement is
witnessed. As long as the simulation is reasonably representative of the real
world and a robot can also be accurately represented in the simulation, then



evolution can occur within the simulation over thousands of generations –
possibly merely taking a few real-world seconds – with the final solution
being realised by means of a real-world build.

HARDWARE ROBOTS AS A FORM OF A-LIFE
An A-life simulation can be, as we have seen, an extremely powerful tool,
particularly due to its advantage of the speed of calculation of each new
generation. However, even though it provides a wonderfully flexible test
bed for AI algorithms, it is merely a virtual world within the computer with
no tangible output unless time is halted while a real-world analogy of an
entity within the software is manufactured. In a simulation, entities are
‘alive’ (in some sense) within the computer, but it is difficult to argue that
they are really alive! In the true sense of A-life, what we need are physical
entities that exist in the real world.

AI and its relation with sensory input and motor output, particularly in
terms of providing the thinking power for a robot, will be investigated in
the next chapter. Here, however, a brief look is taken at some of the main
issues affecting the realisation of hardware A-life entities by means of a
robot base.

SEVEN DWARF ROBOTS
In order to consider some fundamental aspects of A-Life, some simple
robots have been constructed, as shown in Figure 5.3, called the seven
dwarf robots (mainly because there were seven of them initially built). They
have relatively few sensors and move around by means of two independent
drive wheels at their rear with a small (non-drive) castor ball-wheel for
stability, at their front.

The drive wheels can go forwards or backwards, so the robot can move
around and turn quickly. Typically, the forward-only sensors are ultrasonic
which means that the robot obtains an indication of objects to its front left,
front centre and/or front right as appropriate, as can be seen in Figure 5.3.
With a relatively simple mode of operation they provide an ideal platform
on which to study some of the principles of A-life.

At any particular time the robot's sensors will provide specific
information on the robot's position with regard to other objects. For



example, the readings could be: object close front right; object medium
distance front centre; no object front left. This is a state of the robot at a
certain time. In this case it probably means there is something to the front
right of the robot. If the robot continued to move forwards and turn right,
then it would likely hit the object. The robot's situation can therefore be
categorised in terms of the state it is in – as just described in terms of the
sensor readings at a particular time.

In each state the robot has a probability of performing a particular action
with its wheels. For example, left wheel forwards fast, right wheel
backwards slow, which would cause the robot to spin to the right. When
first initialised, all possible such actions have a roughly equal probability of
being performed.

Figure 5.3 Seven dwarf robot.

REINFORCEMENT LEARNING
When any specific action is taken (the robot will of course be in some state)
the resulting state situation is examined and categorised as being either
‘good’ or ‘bad’. For actions taken which result in a ‘good’ state, a positive
reinforcement takes place; i.e. the probability of the same action being
taken when the robot is in the same situation in the future is increased. For
actions which result in a ‘bad’ state, a negative reinforcement takes place;
i.e. the probability of that action being taken when the robot is in the same
situation in the future is decreased.

Over time, as the robot moves around and interacts with the environment,
so different actions in different situations (different states) are evaluated. If
(for example) the robot is given a target goal to move forwards but not to
bump into anything, the robot will quickly learn by positive reinforcement
that going forward in the open is ‘good’. Under repeated reinforcement,



suitable wheel movements that achieve this action will develop a very high
probability of being taken.

In terms of the state of the robot, this means that when all three of the
robot's sensors indicate that there is no object apparent, both wheels will
move forward fast as a learned action. Consequently, other possible actions
will become very unlikely in this state. The robot will also learn that going
forward near a wall is ‘bad’ due to negative reinforcement. Under repeated
reinforcement this action will develop a low probability in this state,
meaning other possible actions will be far more likely to be taken.

Each time the robot is switched off and switched back on again its
memory is erased. As a result of this, depending on the environment, the
robot can exhibit different behaviours at the end of each run. This often
depends on what it tries, in a certain state, early on and whether this action
results in a good or bad conclusion. As an example, if the first time the
robot moved into a corner the attempted action was to spin to the right and
this succeeded, then the robot would be more likely to attempt the same
action next time – as a result, the action would become even more likely
still. So the robot can pick up particular behaviours through a successful
sequence of results.

REINFORCEMENT LEARNING: PROBLEMS
Assessing when the robot is being successful and when not can be very
difficult to achieve in practice. In the example described it is not
particularly problematic – for example, when the robot's sensors indicate
the presence of an object, that is a direct measure. If, as a result of an
action, an object gets closer (according to the sensor readings) then the
action taken was a bad one. In a more complex environment, however, the
evaluation of robot behaviour can need much ‘tweaking’ in order to get it to
work correctly. This is especially true when the overall goal of the robot is
not (apparently) directly connected to its immediate behavioural action.

In some situations it is not possible to know whether an action is good or
bad until some time after a decision event; that is, the reward or punishment
may be delayed. For example, consider a robot mouse finding its way
through a maze, such as that depicted in Figure 5.4.



Figure 5.4 Simple robot maze.

Such a robot is slightly more complicated than the seven dwarf robot we
have just looked at in that it requires elements of memory and planning to
find its way to the end goal. In this case the robot mouse receives no reward
until it has found its way to the ‘cheese’ at the end (goal) of the maze. In
such cases it is not always possible to use simple reinforcement, as the
rewards are delayed.

In our example, each square represents a position or state the robot
mouse can be in at any time. The robot is free to move in any of the
directions: north, south, east or west from each square. For any start point,
the arrows in Figure 5.4 show the optimum/ fastest path to the end/goal
state which is square 1. When the robot reaches the goal it obtains a reward.

Many intermediate steps are required to be taken by the robot in order for
it to reach the goal, where it receives its reward. The question is: how
should correct actions in previous states be rewarded? In this case, for
example, if the robot starts from square 8 it is best for it to move in
sequence to squares 9, 7, 6, 3, 2 and finally to 1 in order to reach the goal.

TEMPORAL DIFFERENCE ALGORITHMS
In an example such as the maze of Figure 5.4, how best should an overall
reward, which is goal driven, be divided amongst the many actions and
states that ultimately lead the robot to the goal? A common solution to such
problems is to use a temporal difference algorithm.



Let us assume that if the robot eventually gets to the end goal it will
receive a reward of +100 for arriving at square 1. However, if square 1 is
the perfect end point solution then perhaps being in state 2 isn't that bad as
it can readily lead to state 1, simply by the robot moving west. So we could
assign a reward value for getting to state 2 based on its own reward (if there
is one) AND some element of the reward that is expected when it reaches
state 1.

In turn, as we now have an updated version of the reward for getting to
state 2, we could reason that going west from state 3 might not be so bad
and so on. Temporal difference learning allows for such a reward to slowly
filter down through a chain of states as exploration proceeds. In the case of
the very simple maze considered, it is all relatively straightforward.
However, in problems like this parallel or even multiple paths may exist, so
one route may be much better/faster than another route. This can be
reflected in the rewards assigned at different points throughout the maze.

The overall key element is for the robot mouse to find its way to the goal,
even if it takes a round-about route. Once it has found a solution then
maybe it can improve on that solution by trying a different route next time it
has a go. This can even be seen in Figure 5.4, where the robot could travel
east when in state 9 to get to state 10, then travel west from state 10, back to
state 9 and then north from state 9 to state 7.

While this is by no means a sequence of moves which fits into the best
solution, nevertheless it can result in the robot subsequently arriving at the
goal. Filtering down rewards, as in the case of the temporal difference
algorithm, must therefore also take into account changing the value of a
particular reward over time. Here, we would wish to deter the robot from
going the route just described, in which it would unnecessarily take in state
10. We need it to be more attractive to move from state 9 directly to state 7,
rather than to 8 or 10.

However, if the robot did (by mistake!) move from state 9 to state 10, we
would still wish to encourage it, through reward, to move back to state 9 as
quickly as possible. This means punishing a robot for retracing its steps is
probably not a good idea – if the robot felt it was not good to move back to
9 from 10 then it might just sit at 10 and never move, so it needs to be
encouraged to shift in a good direction.

The complexity of such algorithms can include an overall energy value
which depletes with respect to time – simply by moving the robot can pick



up energy. This strategy ensures that the robot keeps going. The norm is
then for the robot to take several attempts to find the goal – the route with
the greatest reward will be the one it subsequently performs in later trials. It
can in these cases be best for the robot to try different possibilities at
different attempts, such that it might eventually ‘stumble’ across a better
solution. The time taken in searching for a solution, the need for the optimal
solution and actual energy expended by the robot are all factors in the
practical realisation of this problem.

COLLECTIVE INTELLIGENCE
As we saw from our previous discussion of cellular automata, an overall
complex behaviour can emerge from the interaction of relatively simple
cellular elements. It could be said that this is the sort of process that goes on
in a neural network such as the human brain. It does, however, point to a
more general type of intelligence, namely collective intelligence. This is the
type of group or shared intelligence that emerges from the collaboration and
competition of many individuals which are not, in themselves, necessarily
simple.

Such intelligence can be observed in animals, especially humans, even
bacteria and, importantly, in computer networks. It stems from the concept
that seemingly independent individuals can cooperate so closely as to
become indistinguishable from a single organism, as is the case of an ant
colony, with each ant acting as the cells of a single ‘superorganism’. H.G.
Wells referred to this phenomena as a ‘World Brain’. It can be witnessed
regularly in humans and other creatures as group behaviour – even
explained by/as mass suggestion.

One everyday appearance of collective intelligence is in the area
generally referred to now as new media. With this, the ability to store and
retrieve information through databases and the internet allows for
information to be shared without difficulty. Thus knowledge easily passes
between cells (humans). It is a form of networking and high-speed
information passing enabled by the internet.

In a sense the collective merger of groups of humans and networked
computers allows both the manipulation and use of the knowledge therein
for both individual and collective benefit. Overall, however, it is the ability
of networked technology to enhance community knowledge and make it



readily available that is a powerful tool. Indeed, because of its community
basis, knowledge repositories linked into the network take on a group
viewpoint (as shown by Wikipedia), rather than the heavily biased
perspectives previously exhibited by tools such as encyclopaedias and the
like (biased towards the publishers, for example).

One excellent example of this form of AI is the use of collective
intelligence to predict stock market prices and their movement. This has
become more than just a viable option for human operatives; it has
completely taken over from them in many cases. In some cases aggregated
current stock market information is presented along with views from both
human stock analysts and AI predictions. Human investors can submit their
financial opinions, with the end result being that an amalgamated human–
machine opinion is created. The opinion of humans and machines can be
weighed to reflect a broad spectrum of stock market expertise, which can
ultimately be utilised to more accurately predict the behaviour of financial
markets.

On the basis of considerable evidence in terms of financial gain, funds of
this type have become very popular investment options using the collective
intelligence of the market, rather than simply the judgement of professional
fund managers, as an investment strategy.

SWARM INTELLIGENCE
A different form of intelligence results from collective or collaborative
behaviour when each of the individuals connected into the network are no
longer extremely simple elements but rather have at least some limited
intellectual abilities. Indeed, it may be that each individual has its own
goals and maintenance program that even involves self-organisation. A key
point here is that they are a member of a collective and it is (as the name
suggests) the operation of the collective that is the critical factor.

In AI systems swarm intelligence has, thus far, been mainly focused on in
terms of either hardware, real-world cellular robotic systems or software
agents performing a particular task within an overall program. In the case of
robots, they are often relatively small in size and of the same type, but this
is more for ease of implementation.

Swarm intelligence is typically made up of a population of relatively
simple robots or agents interacting locally with one another as well as with



their environment. Indeed, depending on the nature of the network
connection between them, the environment can be a different one for each
of the agents. The agents tend to follow simple rules, and although there is
no centralised control structure dictating how individual agents should
behave, interactions between such agents lead to the emergence of
apparently intelligent, global behaviour, which may well be unknown to the
individual agents. A natural example of this phenomenon can be seen in
bird flocking.

When employed with robots, such principles are generally referred to as
‘swarm robotics’, while the term ‘swarm intelligence’ usually refers to the
more general set of procedures employed or decisions taken. ‘Swarm
prediction’, meanwhile, has been used in the specific context of forecasting
problems. Biological inspiration is also behind several different
optimisation techniques, where an attempt is made to find the best solution
to a problem based on a method observed in the biological world. The most
popular and successful of these will now be described in general terms.

ANT COLONY OPTIMISATION
By taking inspiration from the function of an ant colony, software methods
can be obtained which are useful in problems that need to find paths to
goals. Artificial ‘ants’, in the form of software agents, find optimal
solutions to sub-problems by moving through a space which represents all
possible solutions. In the real world, ants lay down pheromones, a chemical
trail directing each other to resources while exploring their environment.

In a similar fashion the simulated ‘ants’ record their positions and the
quality of their solutions and pass on this information to other ‘ants’. As a
result, in later iterations more such ants can locate better solutions. A slight
variation on this approach is the Bees algorithm, which is analogous to the
foraging patterns of the honey bee – nevertheless, much of the same
principles apply.

PARTICLE SWARM OPTIMISATION
Particle swarm optimisation (PSO) is a global search and optimisation
method for dealing with problems in which the best solution can be
represented as a point in multidimensional space. Different hypotheses are



first plotted in the space and are seeded with what is referred to as an ‘initial
velocity’, as well as a communication channel between the particles.
Particles then move through the solution space and are evaluated according
to a fitness criterion.

Over time, particles are accelerated towards those particles within their
communication grouping which exhibit better fitness values. The main
advantage of such an approach over other global optimisation strategies is
that due to the large number of members that make up the particle swarm,
the technique is extremely unlikely to be caught up in local minima – a
global solution is by far most likely.

STOCHASTIC DIFFUSION SEARCH
Stochastic diffusion search (SDS) is an agent-based global search and
optimisation technique best suited to problems where the objective goal can
be broken down into independent partial-goals. Each agent maintains its
own hypothesis, which is iteratively tested by evaluating a randomly
selected partial-goal parameterised by the agent's current hypothesis. In the
standard version of SDS such partial evaluations are binary, resulting in
each agent becoming either active or inactive.

Information on hypotheses is diffused across the population of agents by
means of a one-to-one inter-agent communication strategy which is similar
to the technique used by a tandem-running ant to lead another ant from nest
to food. A positive feedback mechanism ensures that, over time, a
population of agents stabilises as the agents flock around the globally best
solution. SDS is both efficient and robust in relation to the problem to be
solved.

INTELLIGENT WATER DROPS
This is a swarm-based, nature-inspired optimisation method, which is based
on the observed changes in routing of natural rivers and how they find
close-to-optimal paths between source and mouth. The end result is at least
a reasonable one, even if not exactly optimal. The near-optimal path of a
river, at a point in time, follows from actions and reactions which occur
both between water droplets and between the water and the riverbed.



In the IWD software procedure, artificial water drops cooperate to
change their environment in such a way that the optimal path for the drops,
acting as a collective, is eventually revealed. Solutions are incrementally
constructed by the IWD algorithm based on a population of water drops.

HYBRID SYSTEMS
In many cases an artificially intelligent system is developed to tackle a
specific task, which is a real-world problem. It may well be that the
designer has their own particular type of AI that they are well versed in and
that they like to use. However, one technique may not provide a good
solution to the problem. What is usually wished for is the best possible
solution, regardless of the method employed. In many cases it is therefore
typical that not just one AI method is employed, but rather an amalgam of
several techniques, combined together in a hybrid solution to best tackle the
problem in hand.

BIOLOGICAL AI BRAINS
Until recently it has been the case that the whole concept of AI has been
associated with its employment on a silicon machine base – a computer
system made up of technological elements. In fact, up to now this book has
focused on this specific type of AI because historically the philosophy and
construct of AI systems has been targeted on that basis.

In Chapter 3 it was seen that most philosophical ideas of consciousness
have been rooted largely in the emergent nature of a collective of biological
neurons, principally with the aim of distinguishing it from anything
apparently emanating from a machine. Recently, however, this boundary
has been blurred by the introduction of biological brains, a form of AI
realised by growing biological neurons.

While it has for some time been quite possible to culture (grow)
biological neurons in a dish, the critical developments of late have involved
embodying the culture within a robot body. Essentially, the brain is grown
and is given a robot body with which it can sense the world and move
around in it. It must be acknowledged that such development is still in its
infancy, but already it has a role to play in the field of AI and raises
numerous questions with regard to its future development.



As this approach is distinctly different to that considered thus far in this
book, here we will first take a look at the basic technique involved and then
consider some of the implications as the technology is developed,
particularly insofar as they affect the philosophy and deployment of AI
systems in general.

CULTURING NEURONS
A cultured brain is created by collecting and separating the neurons found
in cortical (biological) brain tissue using enzymes, and then growing them
in an incubator, providing suitable environmental conditions and nutrients
at a constant temperature (typically 37°C). In order to connect a culture
with its robot body, the neurons are grown in a small dish, on the base of
which is an array of flat micro electrodes. This provides an electrical
interface with the neuronal culture.

Once spread out on the array and fed, the neurons in such cultures
spontaneously begin to grow and shoot branches. They connect with nearby
neurons and commence both chemical and electrical communication. This
propensity to spontaneously connect and communicate demonstrates an
innate tendency to network. The neuronal cultures themselves form a layer
over the electrode array, effectively growing into a two-dimensional brain.

The electrode array enables output voltages from the brain to be
monitored from each of the electrodes and for the brain to be stimulated by
the application of appropriate voltage signals. In this way both motor output
and sensory input can be achieved. The monitored signals can be employed
to drive the motors of a robot body and move the robot around, while
sensory signals from the robot body can be used to apply different
stimulating, sensory pulses. A feedback loop is formed, incorporating the
robot body with its new cultured brain.

Several different schemes have thus far been constructed in order to
investigate the ability of such systems. These vary in terms of both the
method of applying signals to stimulate the culture (how big, how frequent,
etc.) and in terms of how the response of the brain is interpreted (how many
electrodes are monitored, whether they are filtered, averaged, etc.). The
input–output relationship between the culture and its robot body is a focus
of ongoing research as better methods are realised.



PRESENT-DAY EMBODIMENT
Present-day ongoing research usually involves the removal of the neural
cortex from the foetus of a rat in order to provide the initial neural culture.
The culture must be fed with a drink of minerals and nutrients which are
inserted into the culture's dish, which acts as a bath. This bath must be
refreshed every two days in order to both provide a food source for the
culture and to flush away waste material.

By the time the culture is only one week old, electrical activity can be
witnessed to appear relatively structured and pattern forming in what is, by
that time, a very densely connected matrix of neurons. Typically, the arrays
presently employed consist of an 8 × 8 or 10 × 10 array of electrodes
measuring approximately 50 mm × 50 mm. Each of the electrodes is
approximately 30 micrometres in diameter.

Thus far a modular closed-loop system between a (physical) mobile
robotic platform and a cultured neuronal network has been successfully
achieved using the electrode array method described, allowing for
bidirectional communication between the culture and the robot. It is
estimated that presently each culture typically consists of approximately
100,000 densely connected neurons. This can be compared with 100 billion
neurons in a typical human brain or a few hundred, or less, in the brain of a
slug or snail.

BIOLOGICAL AI BRAIN: CHALLENGES
Apart from generally improving the reliability of an overall robot with a
biological brain, several challenges are presently being targeted, not the
least of which is getting the robot to learn.

Habitual learning has been recognised; this is the type of learning that
occurs when something is done repetitively. A human often says that
something becomes automatic or they are performing a task without even
thinking about it. In fact, such learning is due to specific neural pathways in
the brain being repetitively stimulated, causing the pathways to strengthen
until a particular set of sensory signals causes a particular response –
effectively, the brain is sort of programmed. By requiring a robot with a
biological brain to behave in a particular way – say, avoiding an object



when it moves towards it – this type of habitual learning can be witnessed
in the brain, the neural pathways physically strengthening.

It is also possible to apply different chemicals to parts of the brain of the
robot to either enhance neural development or to restrict neural growth. In
this way the robot can (chemically) be made to improve its performance – a
different type of learning. Meanwhile, the more standard form of
reinforcement learning – rewarding and punishing the robot to get it to
improve its behaviour in some way – is presently problematic. Questions
being faced are: how do you reward such a robot with electrical or electro-
chemical signals? How can such signals be made meaningful to the robot?

Another challenge is the use of human neurons, taken from human
embryos, rather than rat neurons. This certainly throws up some technical
issues, mainly in terms of development time – while rat neurons tend to
develop over a 21–28-day period, human neurons take 18 years or so. While
a one-month time span is very useful for laboratory purposes, carrying out
an experiment over 18 years can prove rather expensive! The point to be
made here, though, is that human neurons can be employed to form a
biological brain within a robot body.

Some present research is aimed at providing a small encapsulated,
pseudo-incubator that sits on top of a robot. The aim is for the culture to
exist within this attempt at a robot head. So instead of growing in a remote
incubator, linking up with its robot body through a wireless connection, it
may well be possible for the brain to actually travel around on top of its
body. At present, however, numerous practical problems exist with this, not
the least of which is dealing with the vibrations that are caused when the
robot moves around.

A more direct technical challenge is presently to increase the overall size
of the culture in terms of the total number of neurons contained. A primary
step in this move is a shift towards a three-dimensional growth rather than
the two-dimensional method described earlier. Lattice methods are now
being researched for just this purpose. While this has the potential to
increase the overall power of the brain, it does present a significant problem
in understanding what exactly is going on in the central area of the volume.

ROBOT CONSCIOUSNESS



In Chapter 3 we looked at the question of consciousness in a human and the
possibility of consciousness in an AI system. Some of the stronger
defensive philosophical arguments (particularly those of Searle and
Penrose) essentially place the emphasis on the need for the collective
operation of human brain cells in order to realise consciousness.

Searle claimed that consciousness emerges from the collective operation
of human neurons, while Penrose asserted that no matter how closely we
might be able to copy these brain cells with silicon technology, we will
always miss out by a little bit, and that is the critically important bit for
consciousness to occur in a robot. Essentially, the argument is that because
a robot silicon brain is not exactly the same as a human brain, we can
conclude that it is not conscious.

In this chapter we have discussed the culture of a biological brain,
possibly from human neurons, and its placement within a robot body. The
lattice-culturing methods being investigated allow for a three-dimensional
brain to be kept alive and embodied, which means we will, before long,
have a robot brain with (typically) 30 million neurons. In fact, looking
ahead a little, it is not completely out of bounds to speculate on the
realisation of a three-dimensional volume brain consisting of over 60 billion
neurons – more than half the size of a typical human brain.

So how do we now consider the consciousness of our robot when it has a
brain that consists of 60 billion densely packed, highly connected and
developed human neurons? Can we endow it with genuine understanding
and therefore genuine intelligence? If so, we will definitely have to think
about giving the robot voting rights and allowing it to live its own life,
whatever that means – possibly even putting it in prison if it does something
it shouldn't.

Indeed, it is difficult – based on the philosophical arguments employed
thus far – to argue against such a biologically brained robot being
conscious. It might be for some that 60 billion is still not 100 billion and
that's all there is to it. If so, then maybe we need to start counting the
number of brain cells in each human's head such that those whose total falls
below a threshold (let's say 80 billion) will find themselves dropped from
the human race on the grounds that they are no longer a conscious being!

The point here is that in placing a biological brain (particularly when
made up of human neurons) within a robot body, it bridges the gap between
the operation of a human brain and that of a computer/machine brain. It also



undermines many of the philosophical arguments (as we can see), which
conclude some sort of superlative for the human brain. Perhaps it makes us
think again, this time a little more deeply, about the differences between
robots, AI and humans. Perhaps it also makes us ask more pertinent
questions about what being a human actually means.

CONCLUDING REMARKS
In this chapter we have taken a look at embodied AI in terms of robotics. In
particular, by considering A-life, we took a look both at life within a
computer simulation and actual physical life within a body, moving around
in the real world.

As soon as A-life is considered in terms of the existence of an individual,
whether that individual exists inside a computer or indeed if the computer
exists as a brain inside the individual, then that individual's role within a
society becomes important. Fundamental studies on relationships can be
carried out by looking at cellular automata – relatively simple entities which
interact with other nearby similar entities. It can be seen that even if the
entities are basic and the relationships with other entities are relatively
trivial, extremely complex social behaviours can apparently emerge. Such
results make one reflect on the nature of human society, where the
individuals and the relationships are far more complex and much less
standardised. This is an area where much further study can be carried out.

The same complexity in interaction is true for other collective robot
behaviours, and here we looked briefly at collective intelligence, swarm
intelligence and hybrid intelligence – all in terms chiefly of their practical
realisation.

The latter part of this chapter is the most novel area of AI at this time –
the concept of growing a biological form of AI. In this case, what is
described here merely takes a glimpse at future possibilities. As the support
technology is developed, so larger cultures will be grown with more sensory
input and with more powerful motor outputs. Even in their present form it is
impossible to claim that such robots are not alive – particularly in terms of
brain life. It is expected that this area of AI will expand dramatically in the
years ahead.
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SENSING THE WORLD

SYNOPSIS
When considering intelligence it is worth remembering that a large
proportion of the human brain is devoted to sensory input. In insect brains
the proportion is even greater – often exceeding 90% of the total
operational cells. Sensing the world therefore has a huge impact on
intelligence. Without input how can an entity perceive the world, respond,
learn or communicate? The nature of the sensory input dictates the nature of
the entity. In this chapter we consider how sensory input is dealt with in
machine systems. We look here at the processes involved in computer
vision and other sensing systems such as audio, ultrasonics, infrared and
radar.

VISION
As far as human brains are concerned, by far the overriding sensory input is
that of vision. The nature of human visual input, by means of stereo (two
eyes) sight near the top of our bodies, which can be rotated and scanned, is
often regarded as the single most important aspect of the human success
story on Earth. That, of course, and the associated brain development that
has gone along with it. Some scientists even estimate that two-thirds of the
neurons in the human brain are devoted entirely to dealing with visual
input.



If machines are to operate in a world which has been constructed by
human ingenuity, largely for human use, then it seems sensible that vision
systems which form part of an AI system are capable of a similar
performance when dealing with viewing the world and understanding what
is seen. It has to be said that although much research has gone into
developing computer vision systems, by far the bulk of work in the design
of AI has been focused on central problem solving, planning and decision-
making aspects rather than sensory signal processing. Also, as we saw in
Chapter 3 when looking at the philosophy of AI, this has concentrated more
on abstract internal issues such as consciousness rather than arguably more
important topics such as how AI comprehends what it is looking at.

Partly because of technological developments in terms of cameras
(television and charge coupled devices – CCDs), AI vision is a relatively
new field of study. In the early days of computing, it was difficult to process
large sets of image data. However, as cameras became much smaller,
cheaper and robust, and hardware memory became more powerful and cost-
effective, in the 1970s and 1980s a stronger research effort was targeted in
the field.

Interestingly, there is not a well-focused directive for the techniques to
apply; rather, there is an abundance of specialised methods for solving well-
defined computer vision problems. Each method is often task-specific and
can seldom be generalised over a wide body of applications. Many of the
methods and applications are, at this time, still in the research arena.
However, several methods have found their way into the commercial sector,
either as one solution to a particular problem or as part of a library of
techniques in a larger system aimed at solving complex tasks such as
medical imaging or industrial processes. Usually, in practical computer
vision applications, the computers are previously programmed to deal with
a particular task, although methods that incorporate some aspects of
learning are also becoming quite common.

In this chapter we will take a look at the different elements involved in a
computer-based vision system. At this point the discussion will be focused
on light acquisition techniques – machine-based versions of the human eye.
Other sensory signals which can aid visual understanding, such as radar and
range sensors, are dealt with in their own right, separately, later in the
chapter.



There are three main elements to dealing with a visual image: first, image
acquisition and transformation; second, image analysis; and third, image
understanding. Here we take a look at each of these in turn.

IMAGE TRANSFORMATION
Image acquisition and transformation in AI involves converting light
images into processed electrical signals that can be used by a computer.
This is generally performed by a camera of some type. In fact, the camera is
merely replacing the human eye in carrying out the same sort of treatment
towards photons of light, and so it is worthwhile briefly looking at how an
eye works for comparative purposes.

Light energy enters the eye via the transparent cornea, where it is
directed through the pupil. The iris controls the amount of light entering by
increasing or decreasing the size of the pupil. The lens then focuses the
energy onto the retina. The retina consists of cells called rods (which deal
with brightness) and cones (which deal with colour). It is here that an
external image, represented by photons of light, in terms of different energy
levels, is converted into electrochemical signals which are transported to the
brain along the optic nerve. The principle of operation of a camera is very
similar to this.

The vast majority of cameras employed with robots nowadays are based
on CCD arrays. The reasons for this are that they are small and lightweight,
consume little power and are very sensitive. They are made up of an array
of small transistors called MOSFETs (metal oxide semiconductor field
effect transistors). In these arrays, cells operate rather like individual
electric charge-storing capacitors. Light photons pass through a lens and
then strike the array, resulting in different positive charges across the array,
each charge being directly proportional to the light intensity at that point in
the image.

The overall image is, in this way, recorded in the array at a specific time
in terms of the different charges across the array. These charges are then
transferred (coupled) from one cell to the next by switching the cells
positively/negatively, such that the light image is ultimately transferred into
an image (frame) buffer as an array of charges. The frame array stores the
image temporarily until it is collected and stored by the computer. Typical
common CCD arrays consist of 400 × 500 cells.



IMAGE PIXELS
At a specific time the frame array contains analogue signal elements which
are proportional to the light energy across the image. In order for the
computer to deal with the image, each analogue element needs to be
converted into a digital value. Once in digital form each of the values is
referred to as a pixel. If we consider merely a black and white image in the
first instance, then typically each pixel will be converted by either an 8-bit
or 16-bit analogue-to-digital converter.

Hence, for an 8-bit converter, a perfectly white pixel would become 0
(actually binary 00000000), whereas a perfectly black pixel would become
256 (actually binary 11111111). Different shades of grey are thus
represented by all codes in between – converted values are therefore
referred to as grey level values. A pixel of value 200 would be quite dark;
one of 40 would be quite light.

For an image frame array at a particular time, the values stored are
converted into a matrix referred to as a picture matrix, which is essentially a
matrix of greyscale values representative of the image viewed at that
instant. To give a typical idea of speed, it may well be that 50 complete
frames in a camera are being converted every second, although this figure
can be higher if required. However, in some applications – some video
games, for example – frame rates of six per second have proven to be
sufficiently fast.

Colour images are merely made up of three times what has been
described. Effectively, using filters, separate red, green and blue image
frames can be obtained and dealt with separately, being mixed together
again as required. Many computer vision systems do not deal with colour
(and some deal with it only trivially), and hence this facility is not always
required. However, if understanding of an image does depend on an
analysis of colour values then this can be carried out in terms of the basic
red, green and blue constituent components.

IMAGE ANALYSIS
Having obtained a picture matrix which is representative of the external
scene being viewed by the camera, the next stage is a requirement to



analyse the image. Here the aim is merely to give a basic idea of what is
involved.

Image analysis is all about trying to extract meaningful information from
the image frames obtained thus far, remembering that now we have
digital/binary values that can be operated on by the computer. A task may
be very simple, such as reading a barcode tag, or it could be as complex as
identifying an individual from a picture of their face. Here we will look at a
few fairly general tools that may (or may not) be applicable to a particular
problem.

What we are trying to do at this stage of the process is to obtain
characteristic information that can ultimately be recognised as being part of
an image. Our start point is merely an array of numbers. It is worth
remembering that we may be dealing with an array of 400 × 500 numbers
that are arriving (and need to be dealt with in their entirety) 50 times per
second. So, in carrying out such an analysis one would tend to look for
relatively simple rapid solutions. If time is not a problem, in an offline
situation, then clearly more sophisticated techniques may well be possible.

Because the human visual cortex is very good at dealing with vision,
ideas about its operation have been taken on board for analysing images. As
an example, we considered neural networks in Chapter 4. Different versions
of these can be particularly useful in this respect – the N-tuple network
being able to deal readily with the required 50 frames per second processing
speed.

However, it may be that we consider building fundamental images from
the digital greyscale numbers we have to start with, using a sort of line
drawing caricature of the image content. In order to build such a picture we
need to first extract information on where the lines and edges are in our
picture matrix, which is to turn the numerical representation of the matrix
into a more graphical, pictorial version.

PRE-PROCESSING
Noise can affect the image in a number of ways (noise being any unwanted
signal), particularly because of changes in light intensity over time. What
we don't want is to waste time searching for lines and edges in an image
only to find that they are not lines at all, but merely distortions due to



changing light patterns – importantly, these will shift over time, so they can
be filtered out by preprocessing the matrix values before looking for edges.

The simplest form of filtering in one frame is local averaging, wherein
the value of a pixel is replaced by the average value of that pixel and its
neighbours. This considerably reduces the effect of noise in a frame,
although it does tend to blur what could otherwise be crisp edges. Consider
a section of the picture matrix containing nine greyscale elements:

9  7  6
9  8  5
4  4  2

In this case the central pixel value 8 is replaced by the average of all the
nine values shown – the value 6 in this case. Merely considering the central
value, this section of the matrix would become:

9  7  6
9  6  5
4  4  2

However, apart from the edge values in the overall picture matrix, this
procedure would need to be done across the whole image, working
systematically. This can be extremely time consuming and in time-critical
situations it may well simply be out of the question.

Another form of pre-processing is an attempt to remove what is called
salt-and-pepper noise, which amounts to odd changes in the picture matrix
that only last for one or two frames and are then gone – maybe due to a
conversion error or a brief glint of light. The technique used here is
ensemble averaging.

In this case the same pixel is viewed over a window of several time steps,
essentially four or five versions of the same pixel. An average value is taken
over these different versions of the same pixel, so any pixel value changes
merely due to salt-and-pepper noise are averaged out.



Once again, this can greatly increase the computational effort and hence
the time taken to process an image, especially if many pixels are filtered in
this way over many time steps. For both local and ensemble averaging it is
best therefore to consider employing such techniques only if they appear
necessary given the problem domain.

IMAGE SPECTRUM
It really does depend very much on what the robot could possibly be
looking for as to what happens next. Almost surely the robot must focus its
attention on a particular spectrum of possible objects in the picture. For
example, if the robot is looking for a ball then it is best to focus the image
analysis on looking for round objects with a relatively uniform distribution
in the shape of a circle.

But even if there are only a relatively small number of potential objects
to encounter, their outlines may well be complex. For example, a robot
vehicle may need to spot humans, other vehicles, trees, road signs and so
on. Each of these shapes is fairly distinct but, depending on the robot's
distance from the object, the sizes could be quite different.

FINDING EDGES
As a general approach, unless only one specific object is being searched for,
once any apparent noise has been filtered out the next step is to look for any
edges or lines in the picture matrix. Ultimately, any edges detected can then
be joined together to form a rough outline (a sort of caricature) of an object,
which can be compared with a spectrum of shape and object possibilities
such that a decision can be made as to what and where the object is.
Obviously, other information – such as speed of movement or colour – can
be employed to assist in narrowing down the search. Here we look briefly at
how to find edges in an image, if these are required.

The characteristic of an ideal edge is a distinct change in pixel value over
a very short distance. If the image is scanned, what we are looking for is a
large step change in value from one pixel to the next – if this occurs then it
is likely that that point is on a line which forms an edge. But for any given
image, an edge could appear at any angle, dependent on the orientation of
the object. So the step change needs to be checked in all directions.



For this we can use pixel differentiation, which simply checks for large
changes in pixel magnitude from one pixel to the next, in all directions.
Several versions of pixel differentiation exist; a straightforward indicator is
shown here for example purposes – called the Roberts Cross Operator.
Alternatives can be far more complex. It is found as follows:

A  B
C  D

A, B, C and D are values of four pixels next to each other in the picture
matrix. First, we calculate (A – D) and square the answer, then calculate (B
– C) and square the answer. The two results are added together and the
square root of the total is found. A large final answer indicates that that
point is likely to be part of an edge; a small answer indicates that it is
unlikely to be part of an edge.

In theory the whole image needs to be scanned at each time step such that
all pixels are taken into account. In practice, once an object has first been
identified it may only be pixels around where the object is expected to be
that need to be used on each scan, although this does depend on how fast an
object is likely to be moving, which direction it is moving in and whether
the robot is likely itself to be moving to or from the object (hence whether
the object is getting bigger or smaller).

At a particular instant in time, for a picture frame, we now have a set of
differentiated values. Next, these values are thresholded to decide if they
are an edge candidate or not. What this means is that each value from the
differentiator is compared with a previously selected threshold value. If it is
above the value then it is replaced by a 1, meaning it is an edge candidate,
whereas if it is below the value it is replaced by a 0, meaning it is not an
edge candidate.

The threshold value may well depend on ambient lighting and the clarity
in definition of objects – square-type, sharp objects in strong light may well
have crisp edges, whereas squidgy, soft objects in fuzzy light may well have
indistinct edges. Nevertheless, it is generally the case that the higher the
threshold value is, the fewer edge candidate points there will be; a low
threshold value will of course realise a lot of edge points.



Looking at the small example output from a pixel differentiator,

    3      41   126    18
  38    162     57    23
147      29     17      5
  31      10       6      2

we can see that a threshold value of 100 applied to this would produce a
binary output image of:

0  0  1  0
0  1  0  0
1  0  0  0
0  0  0  0

which shows a crisp diagonal line of 1s, depicting the partial edge of an
object, whereas threshold values of 9 or 200, respectively, would produce
binary output images of:

0  1  1  1   0  0  0  0
1  1  1  0     and    0  0  0  0
1  1  1  0   0  0  0  0
1  1  0  0 0  0  0  0

At best, you might say that the left-hand image (relating to a threshold
value of 9) depicts a very thick edge, whereas in the right-hand image
(relating to a threshold value of 200) the edge has gone altogether.

FINDING LINES
Once a collection of potential edge points have been obtained, these need to
be joined together in some fashion in order to decide on what sort of objects



are being looked at. To this point in the process the procedures for image
capture and processing have been relatively straightforward. Once clear
lines have been obtained it can again be a direct process to decide whether
it is object A or B that is in front of the robot and where exactly the object
is. So, in many ways, accurately finding lines is the most difficult yet
important part of a robot's visual portfolio.

What is expected to be in the robot's view can be a main driver at this
point in the analysis. The approaches discussed here are therefore merely
aimed at presenting the general ideas behind finding lines; the actual
approach taken will largely depend on the situation and the spectrum of
objects expected. If an object comes into view in general, it will ultimately
either be regarded as being like a type of object in memory (e.g. it is a
human or tree or vehicle) or it will simply be ignored as being spurious.
Learning to recognise completely new objects is an extremely interesting
task, but one that is well beyond the scope of the simple tools we consider
here.

TEMPLATE MATCHING
A bank of line and object shape templates (a mask) can be stored in
memory (e.g. a circle of 1s to represent a ball). A template can then be
passed across an image frame to see if it fits any shape of 1s that are
apparent. A match is made when a number of 1s in the frame matches those
in the template – the actual number chosen to be necessary for it to be
considered a good fit depends on the size of the template and the total
number of 1s it contains.

This approach can be extremely time-consuming, even to simply pass
one template across one frame of the entire image, particularly if this needs
to be done every time a new frame arrives, which may well be the case for a
moving object. If several templates need to be separately trialled, the time
taken can rocket and this can restrict its use if the robot needs to move
around and make decisions in real time in the presence of many possible
objects – unless large quantities of computing power can deal with it.

It also presents a problem if the robot is moving in relation to the object
in view, in that the apparent size and shape of the object may well vary over
a relatively short time, requiring a versatile, adaptive template.



However, once an object has been initially spotted it is then possible,
from frame to frame over time, to merely inspect the region in the image
where the object is roughly expected to be – indeed, this can also take into
account changes in size and shape to a large extent. In this way several
objects in view can be tracked over time, so it really becomes a case of
applying background prior knowledge to the task rather than simply
inspecting each frame afresh. The technique can thus also allow for
directional movement of the robot and likely directional movement of the
object, based on knowledge about the object and its likely pattern of
movement.

It may be that rather than an entire object shape being templated, simply
a specific arc or region of the outline is considered. The process then is
referred to as model matching or pattern matching. It works by fitting
several edges to different models so the overall object picture can be built
up. This procedure is useful when information about the size or alignment
of the object within the image frame is lacking.

POINT TRACKING
As its name suggests, the method of point tracking is extremely basic; in
essence, any prior knowledge about the object is largely ignored. Quite
simply, the image frame is scanned in a disciplined manner and when a 1 is
encountered all neighbouring (not previously scanned) pixels are inspected.
If a further 1 or 1s are discovered, these are joined together with the original
and the local area around each of the new 1s is inspected. This process is
repeated until no further 1s are found – the search then moves on to another
region of the image.

This procedure does have a number of advantages. For example, lines do
not have to be of a specific thickness which, due to lighting and shadows, is
invariably the case in reality – one-pixel-wide perfectly straight lines of 1s
in an image are indeed a rarity. Lines also do not have to be a specific shape
– straight or circular – which can be particularly useful if we are not sure
what angle a robot may approach the viewed object from.

In a practical scanning situation, due to imperfect lines, there may be odd
pixels missing. This may appear when two or three separate lines are
initially discovered – these lines can be joined together by bridging the
gaps. However, it may take further analysis to decide if they are in fact lines



belonging to outlines of different objects. Hence different possible
outcomes may need to be stored until further details materialise.

It can also be the case that as part of the procedure, when a 1 is
encountered, rather than inspecting the immediately neighbouring pixels, a
two- or even three-pixel-wide search can be carried out – although clearly
there may be time constraints with this. The problem of bridging a gap as
opposed to potential separate objects still needs to be resolved, however.

In scanning an image, odd 1s may be encountered that either do not link
at all with any other 1s or only link up with a small number of local 1s in an
unexpected way. The simplest way of dealing with such instances is to
regard these as noise to be ignored.

It could be that a small group of 1s in fact indicates the presence of a tiny
and/or distant object in the line of vision. It may well be best to ignore this,
even though it is not, strictly speaking, noise – simply because either the
object is not relevant to the robot's task in hand or it does not need to be
dealt with directly.

However, when a group of 1s is located near a previously detected line, it
may be an indication that the line needs to be longer. Both heuristics and (in
some form) statistics, particularly involving prediction and comparison with
a knowledge base, need to be employed as part of a good vision system.

THRESHOLD VARIATION
One possibility when there are either missing 1s or there exists a small,
unconnected group of 1s is to change the threshold value of the specific
pixels concerned. For missing 1s, a slight lowering of the threshold may
cause these 1s to appear, whereas for unexpected 1s, by slightly increasing
the threshold value these 1s may well disappear – in either case this would
give more information on the nature of the pixels at the points of interest.

The same routine of threshold variation can also be attempted in the
region directly around the pixels of attention. Such an analysis can either
confirm that any 1s do potentially link to a previously discovered line or
conversely that a line is perhaps not as long as was previously thought. It is
worth remembering that the original selection of threshold value is a fairly
ad hoc, yet extremely critical, choice and that small variations in the
threshold value can severely alter the nature of the image revealed.



SEGMENT ANALYSIS
In many ways the approach to segment analysis is the opposite to that of
edge detection in that rather than looking for differences between pixels, the
aim is to look for similarities. A located segment or region of the image can
then be bordered by an edge, which can be confirmed, if desired, by means
of the techniques just discussed.

Although the greyscale value (probably not thresholded) of pixels is one
of the factors in shaping out a segment, other aspects such as colour may
well help to finalise the analysis. A segment can then signify a specific area
of the image which relates directly to an object, such as a person, vehicle or
building. The segment can have a well-defined shape and size which is
defined by the type and nature of the object in question.

Characteristics and likely performance of that segment can then be linked
directly to those of the object. Hence, if it is a building it is not likely to
move from one image frame to the next, whereas if it is a vehicle it is likely
to move at a particular speed which can be associated with that vehicle
under certain conditions.

The big advantage of region analysis is that once a particular region has
been identified it is relatively straightforward (and therefore fast) to locate
the same region in subsequent image frames. It is also possible to study its
relationship with other regions and hence to predict future scenarios –
follow on image frames can then be compared with their predicted, or rather
expected, behaviour.

FORMING SEGMENTS
Segments can be formed in an image either by splitting or growing. In
splitting, an image is first broken up into areas with similar pixel values –
this can be achieved by banding the greyscale values into ranges such as 0–
50, 50–100 and so on, then investigating where there are regions of pixels
within a certain band. Each region that is so formed can then itself be
subdivided into smaller regions on the same basis following tighter bands,
until segments are formed exhibiting little variation in greyscale value
within them. It may well be that certain of these smaller segments are
linked together again – rather like Lego bricks, in the analysis that follows.



In the method of segment growing, the opposite approach is taken in that
tight pixel value bounds are started with and from these very small atomic
segments are formed. These may well each consist of just a small handful of
pixels. The process continues by selecting one atomic segment and
investigating its neighbouring segments. Where the next segment is similar
or is linked by means of prior information – possibly constituent segments
of an overall object – these segments can be merged. The neighbouring
segments to the merged area are then investigated and further merging may
occur. This continues, building up into a final object.

In both segment splitting and segment growing, heuristics are employed
extensively to dictate the size of the bands used, the minimum pixel
groupings for atomic segments, the segments expected in forming an
overall object (which itself can subsequently be a big segment) and so on.

COLOUR
Colour can be used to help detect edges and segments as well as providing
an assist in the identification of objects. For AI it is rarely a main line of
attack, however. Rather, it adds one more piece of information in helping to
understand an image.

With the human eye, it appears that to interpret a colour the human brain
integrates the three colour signals (red, blue and green) into a blended
whole.

A colour camera indicates signals which relate to the amount of red, blue
and green in an image – each pixel being depicted by three separate values.
If it is required, an overall colour value for each pixel can be obtained by
combining (adding together) the three terms by means of a simple colour
equation.

It follows, therefore, that all of the image analysis described thus far for
black and white images can be carried out three-fold for the red, green and
blue values and/or for overall colour values.

What is particularly useful is the use of colour to indicate uniform areas
in terms of the segmentation which has just been described. Analysis of an
image can then be further assisted by the use of colour to identify objects,
although this has limited application in practice. If a tank is attacking you,
deciding whether it is pink or apricot is not as important as deciding that it
is a tank.



IMAGE UNDERSTANDING
Image understanding is perhaps the most complex aspect of visual sensory
input. Indeed, it is usual for visual information to be combined with other
sensory input, which we will shortly look at, to get an overall understanding
of what is being viewed. As was just pointed out, colour can sometimes
assist in the overall process, as can heuristic knowledge (i.e. what we are
expecting to see); the main problem is trying to make sense of the object
outlined. A lot of computational effort can be employed on this task alone –
indeed, such is the case with human intelligence.

It is worth stating here that many books have been written on this subject
alone. The intention here is merely to take a very brief look at what is
involved.

If the potential scenarios are fairly well known then it may simply be a
case of deciding which one of a small number of potential objects is being
viewed. The aim in this case is to compare the image as it stands with a
small number of possibilities and see which of these fits most closely. It
may be that specific information about likely objects can be used for a
simple comparison – a particular shape or size, for instance. However, if a
more general understanding is necessary we need to look a little deeper.

BLOCKS WORLD
Up to now we have obtained an image in terms of lines – a sort of
caricature. All sorts of shape profiles can then be constructed from these
lines, the actual features most likely being dependent on the potential
scenario being viewed. One of the simplest approaches in general is to
assume that all lines must be straight (no curves) and the world being
viewed consists merely of block-shaped objects – a sort of Toytown view of
the world.

If lines exist in the image, to be part of an object they must link up with
other lines. The first task is therefore to put aside lines that do not link up
and focus on lines that link together to form solid objects. The next decision
is then about which lines are boundary lines – outlining an object – and
which are internal lines depicting convex (sticking out) or concave (leaning
in) object features. Such decisions can be taken for all the lines in view in
turn, and a number of block-shaped objects will result.



Further decisions then need to be taken as to whether one object is resting
on another object or if it casts a shadow over another object and so on, i.e.
giving an idea of the relationship between one object and another.

MOVEMENT
It is often the case that either the AI/camera system is attached to a moving
vehicle, possibly a robot, or that some of the objects in view will be
travelling in a different direction and/or at a different speed. In most cases,
therefore, an object in view will move in the image, relative to the AI
system. Once an object has been selected it can be segmented in the
subsequent images that appear later and tracked from image to image with
regard to time.

In a way, this makes subsequent image analysis easier as the object can
be looked for in the vicinity of where it appeared in the previous images,
taking into account any direction or pattern of movement. This has the
added advantage that even if a particular image is badly affected by light or
the object is occluded/hidden, the actual shape and identity of the object
will already be known – it does not have to be regarded as an unknown
object.

Detecting movement is not as easy as it may first appear. What it requires
is to find corresponding points, regions and possibly even pixels from one
image frame to another. Identifying and subsequently segmenting an object
makes this process a lot easier.

TRIANGULATION
Cameras can also be employed to give a reasonably accurate idea of the
distance to an object. This can be performed simply by means of stereo
vision through the use of two adjacent cameras, as would be the case if they
were positioned rather like eyes in a head. If both cameras are then looking
at the same object and the angle between each camera and the object can be
either measured or calculated – which can be simply found from the
position of the object in the two images – then the distance to the object can
be calculated by the sine rule which applies to triangles. This is referred to
as triangulation.



The only other piece of information necessary before an accurate
calculation of the distance to the object can be made is the distance between
the cameras, which usually would be known precisely. Where two cameras
are used, as described, this is referred to as passive triangulation. The main
problem with this technique is in establishing the exact position of a
specific point on the object as it appears separately in the two camera
images, something which needs to be found accurately. This is referred to as
the correspondence problem.

The correspondence problem exists because we need to match a specific
point in the image of the object from one camera with the same point in the
object's image in the second camera. This is difficult as it cannot be
guaranteed that pixels with a particular greyscale value in one image
correspond to pixels with the same greyscale value in the second image.
The problem is often worsened due to the difference in light intensity
between the two cameras.

ACTIVE TRIANGULATION
One way around the correspondence problem is to replace one camera with
an active source such as a laser projector. A laser spot is then projected onto
the object and the remaining camera can be employed to clearly pick out
this spot in the image. The triangulation method can then be used in a
similar way to calculate the distance to the object. The known distance
between the laser and the camera is very small (a fraction of a foot) in
relation to the distance to the object (many feet).

LASERS
Lasers can also be used on their own (without cameras) in order to
accurately find the distance to an object. In this case the system emits a
short burst of light and measures the time it takes for the light to be
reflected off an object and return. As the speed of light is known, simply
dividing the total out-and-back time in half indicates the distance to the
object. Other aspects of the returning waveform (such as the phase) can also
be employed both to simplify the measurement process and to indicate the
amount of light absorbed by the object.



It is often the case that a laser can be used to rapidly scan the path ahead
in order to get an indication of the distance to objects in the foreground – a
sort of laser image. A laser has a very narrow beam width and hence quite
an accurate indication of the distance to foreground objects can be obtained,
even helping to identify what the objects are from their laser image. This
type of system is particularly useful for larger mobile vehicles driving
around externally.

SONAR
For closer indications of the distance to objects, especially within buildings,
sonar (ultrasound) is often a better option. Indeed, this is the technique used
by bats to obtain an accurate picture of distance. On top of this, sonar
sensors are relatively cheap, robust and small, and so are ideal for
laboratory-scale AI-based robots. Ultrasound also travels at a much lower
velocity than light, which means that it is far easier to obtain an accurate
measurement of distance. On the negative side, however, the beam width is
quite broad. Sonar is therefore not so good at discerning what objects are,
but is very good at indicating if there is an object there or not.

Ultrasonics can be used for objects up to 50 feet away, but it works better
over just a few feet at most. The procedure requires several pulses of high-
frequency sound to be transmitted (usually around twice the highest
frequency that the human ear can discern, which is 20 kHz, so a value of 40
kHz can be used), and a calculation is made of the time taken for the signal
to travel out and return. As the speed of sound is well known, the distance
to an object can be accurately found by dividing the total time in half. If the
signal does not return, then there is deemed to be no object present – care
does have to be taken in some instances, however, as the signal can
sometimes bounce off an object at a strange angle or even be absorbed by
an object to some degree.

On the negative side, the signal can be disrupted by other higher
frequency sounds, such as jangling keys! Nevertheless, it is relatively easy
to operate such sensors and difficult to break them! Usually they are
purchased in pairs (sometimes packaged together) with one element
transmitting the signal and the second element receiving the reflected
signal.



RADAR
Electro-magnetic measurement of distance employs radio signals. This is
called radar. The basic principle is the same as that described for both laser
and sonar – a radio signal is transmitted and if an object is present the signal
is reflected back. The distance to the object can then be calculated by
dividing the total out-and-back time in half.

Radar is particularly good at detecting the distance to highly reflective
metallic objects and not so good (but by no means out of the question) for
non-metallic objects over short distances. Unfortunately, many objects are
good at absorbing radio signals, which means that high power is required to
increase the strength of the signal. On top of this, a fairly large antenna is
usually needed to focus the signal into a narrow beam width. On the
positive side, once operative the signal is not so easily disrupted.

Although radar has not been employed for AI-based robotic systems to
any great extent in the past, some smaller, reliable units are now available at
relatively low cost, making it a viable alternative for some particular
applications.

MAGNETIC SENSORS
Rather than giving an indication of the distance to an object, magnetic
sensors such as reed switches can be used to detect objects that are in close
proximity. The switch consists of two magnetic contacts in a small tube.
When a magnetic field is nearby (possibly due to the presence of a magnet)
the contacts close together, thereby completing an electrical circuit.

Although single switches can be used quite simply to detect the presence
or absence of an object, it is more usual for an object to have a magnet
attached or to be part of it. As the object moves past several switches so the
switches close and open in turn, giving an idea of the speed of the object as
it passes by. This technique can be employed for a variety of purposes.

MICRO SWITCH
There are a number of tools a machine can use to detect that something else
is nearby. Perhaps the simplest of these is a mechanical switch that operates
when it comes into contact with an object. Such switches are relatively



cheap, generally robust, simple to arrange and passive, in that, unlike laser
beams and even sonar, they do not give away the presence of the robot. This
is a positive point for military systems in particular.

Such switches can be placed on various parts of a robot that are likely to
come into contact with other objects. When the switch is pressed a simple
decision can be taken. Such switches are very useful as a safety feature for
factory robots. The switches are linked to the robot's bumpers so that when
the bumper comes into contact with an object, a human maybe, a decision
such as ‘stop moving’ can be immediately made. For certain types of
military machines, the decision may be to self-explode when the switch is
operated – a mine for example.

PROXIMITY SENSORS
One problem with micro switches is that actual contact with an object must
be made for the switch to operate and hence for a decision to be made. One
advantage of this is that it works with any object – the object to be detected
does not have to be modified in any way. Magnetic switches are one
alternative for close measurement, but this technique does require magnets
to be positioned in or on the objects to be detected.

The same problem is true for other methods that can be used for close
proximity measurement, such as inductive or capacitive approaches. For
example, in the capacitive technique, one plate of the capacitor must be
positioned on the robot and the other plate on a specific object – the
electrical capacitance between the plates varies dependent on their distance
apart. As an object comes close to the robot so the measured capacitance
indicates this. Importantly, the robot and the object do not need to touch
each other.

RADIO FREQUENCY IDENTIFICATION DEVICE
Perhaps one of the most widely used proximity sensing methods nowadays
is the technique employing a radio frequency identification device,
commonly referred to as an RFID. It is based on the mutual induction
between two coils of wire – one in the RFID and one in a stimulating
transmitter. The RFID itself can be in the form of a smart card or a small
tube that can be implanted in an object – either biological or technological.



The stimulating transmitter has electrical power connected to it. When
the RFID is in close proximity, electrical current is induced in the coil
within the RFID by means of a radio frequency signal. This power is merely
used to transmit a previously programmed identifying code back to the
original stimulating transmitter, which can be connected to a computer. In
this way the computer is aware when a specific object carrying a particular
RFID is nearby.

This is the basis for identifying tags used in many pets (pet passports),
for which the transmitter and RFID need to be within a few inches for
sufficient power to be transmitted. The RFID can be the size of a grain of
rice for this to work well. Transmitters can also be positioned throughout a
building (e.g. in door frames) such that as RFID-carrying entities move
around a (computer-integrated) building, so the computer will receive
information on where the entity is at any time and hence can respond
appropriately. This technique can be used for building security, doors being
opened or closed depending on the clearance of an individual or object. In
this case the RFID needs to be much larger, typically an inch long or in the
form of a smart card. It may be that it is used to indicate objects passing a
specific point – to sound an alarm if an item is being stolen from a shop.
But the most exciting use is for ‘intelligent’ buildings, where a computer
operates a building's infrastructure depending on RFID information –
possibly opening doors, switching on lights and even communicating with
individuals, depending on where they are, which way they are heading and
so on.

TOUCH
Technology is rapidly being developed either to create (human-like) hands
for robots or as replacement hands for human amputees. The mechanical
design of such hands is obviously important, along with their gripping
abilities, but so too is the sensory feedback that can be obtained. Micro
switches in the fingers are perhaps the easiest method, simply detecting
whether or not an object is being touched.

It is possible to arrange a small grid of micro switches in a pad to get an
indication of the shape of the object being touched – or at least how a
particular object is being touched – depending on which of the switches is
operated. Conversely, rather than use a simple on/off switch it is quite



possible, through a force sensor, to obtain an indication of how much force
is being applied by a finger when it is touching an object. This can be very
useful in indicating how much force is necessary if a robot hand needs to
maintain a grip.

Other techniques can be used to indicate slippage, and hence that perhaps
more force needs to be applied so an object is not dropped. One method
involves a type of roller in the finger – as an object slips so the roller
rotates. Another approach employs a small microphone – object slippage
causes an audio signal to be fed back, with the degree of loudness
indicating the amount of slip.

MATERIAL FOR TOUCH
For a particular application it may be that the material coming into contact
with an object is not of immediate importance – possibly only a simple
switch is involved. However, for general touch-sensing the type of material
employed is critical. For example, it usually needs to be very sensitive and
respond quickly, yet needs to be robust and deal with different
temperatures. Conductive rubber is one type of material that is fairly
versatile, but this area is definitely one where ongoing research is critical.

FORCE SENSING
It is also possible to obtain a concept of the force being applied to an object
indirectly by measuring the effect of the force on an arm joint or wrist. The
most common means of such a measurement is the use of a strain gauge. A
strain gauge is an extremely reliable, robust and relatively low-cost device
that is fairly easy to connect and operate. It gives information on the three
rotational forces that can be applied – pitch, roll and yaw.

A strain gauge is essentially a wound length of resistance wire. As its
length changes due to a force being applied, so the change in resistance,
which is proportional to the length change, can be directly measured.
Although the gauge is very sensitive, unfortunately it is also affected by
even slight changes in temperature.

OPTICAL SENSORS



Optical sensors tend to be employed for measuring the distance moved by
such things as robot joints or wheels. The main principle is that an optical
encoder – a set of alternative transparent and opaque stripes – makes use of
light detected by a phototransistor. The system generates a series of pulses
as the optical encoder, which is directly connected to a robot arm, moves
between the light source and the phototransistor, thereby giving an
indication of the robot's movement.

The optical encoder can be linear (essentially a flat package) or angular
(a disc). The same type of circuit can be used for proximity sensing, in
which case it detects when an object enters or exits the beam of light. An
infrared light source and phototransistor can be purchased in a single
package, with the phototransistor on one side of a slot and the infrared light
source on the other side. This is called an optical interrupter.

INFRARED DETECTORS
Infrared detectors are extremely powerful sensing devices in their own
right; they detect infrared radiation. Infrared is basically an indication of the
heat being transmitted by a body. An infrared detector typically consists of a
phototransistor or photodiode, whereby the electrical characteristics of the
device are directly affected by the intensity of the infrared signal being
measured. They are generally relatively low-cost and fairly robust.

Because the device is measuring infrared signals it is particularly useful
at night, and hence has direct military applications. Indeed, in bright
sunlight or under high internal lighting such sensors do not operate
particularly well. For robot AI uses they are therefore very useful as an
additional sensor to detect the heat of a body. They can also be used in a
similar way to sonar sensors, by bouncing an infrared signal off an object to
detect the presence of (and distance to) the object. However, within a
laboratory environment, light intensity can cause considerable problems,
even to the extent of making the sensor almost useless.

AUDIO DETECTION
We have previously discussed the possibility of an AI system
communicating with a human to the extent that the human cannot
distinguish between the system and a human – this was the basis of the



Turing Test discussion in Chapter 3. But that was based on the concept of
keyboard entry and screen output. It is also quite possible for a computer
system to detect and respond to different sounds.

The more pronounced the sound, the easier the problem becomes to
resolve. To this extent, onset detection can be used merely when a signal
rises sharply in amplitude to an initial peak. A hand clap or loud bang is a
good example of a signal that can readily be detected. However, more of
interest in terms of robot interaction is voice activity detection (VAD).

With VAD, specific values or features of the audio signal are used to
cause a robot or computer system to operate in different ways. Once the
audio features have been obtained, the result can be classified as to the
nature of the signal that has been witnessed, particularly if it has overcome
previously specified threshold levels which characterise the signal type.

VAD IN NOISE
Often with audio input, considerable noise is present (e.g. background
noise). This means that a compromise needs to be drawn between a human
voice being detected as noise and/or noise being detected as a voice. In such
circumstances it is often desirable that VAD should be fail-safe, indicating
speech has been detected even when the decision is in doubt, thereby
lowering the chances of losing speech segments.

One problem for VAD under heavy noise conditions is the percentage of
pauses during speech and the reliability in the detection of these intervals
and when speech starts up again. Although it can be useful to have a low
percentage of speech activity, clipping, which is the loss of the start of
active speech, should be minimised to preserve quality.

TELEMARKETING AI
One interesting application of VAD in AI systems is the employment of
predictive diallers, used extensively by telemarketing firms. To maximise
(human) agent productivity, such firms use predictive diallers to call more
numbers than they have agents available, knowing most calls will end up in
either ringing out with no answer or an answering machine will come on
line.



When a person answers, they typically speak very briefly, merely saying
‘Hello’ perhaps, and then there is a short period of silence. Answering
machine messages, on the other hand, usually contain 10–15 seconds of
continuous speech. It is not difficult to set VAD parameters to determine
whether a person or a machine answered the call, and if it is a person,
transfer the call to an available agent. The important thing is for the system
to operate ‘correctly’ in the vast majority of cases – it doesn't have to be
perfect.

If the system detects what it believes to be an answering machine, the
system hangs up. Sometimes the system correctly detects a person
answering the call, but no agent is available, leaving the person shouting
‘Hello, Hello’ into the phone, wondering why no one is on the other end.
Due to its cost-effectiveness it is anticipated that AI will be used far more
extensively in this field in the years ahead – particularly in terms of
detecting (potential purchasing) characteristics of the person answering the
telephone based on the first words they utter.

SMELL
An automated sense of smell is referred to as machine olfaction. As with
classical AI techniques, in practice it is based mainly on attempting to copy,
in some way, the human sense of smell, even though this is a very
individual, subjective entity. The underlying technology is still in the
relatively early stages of development, but the wide range of potential
application areas indicates that a commercial drive may not be far away.
There are application opportunities with drug and explosives detection, for
example, as well as uses in food processing, perfumery and chemical
compound monitoring.

The main implement is the electronic nose. This consists of an array of
sensors with associated electronics to convert scents to digital signals and
for data processing such as in a computer. The overall nose system is then
expected to convert the sensor responses into an odour output. A nose is
‘trained’ by subjecting it to a target odour; it is then required to ‘recognise’
future smells as being either alike or not to the original.

Electronic noses are also useful for olfactive nuisance monitoring of the
environment, particularly surveying notorious sewerage systems in an
attempt to keep them in check. However, for the most part such sensor



systems are rather large and in many cases not very readily portable. They
are also rather slow in carrying out an analysis and may take some time
before they are ready for a second or further analysis. As such, their role in
AI systems is somewhat limited at present.

TASTE
Just as there are electronic noses for smell, so there are electronic tongues
(e-tongues) for taste. Again, it is more a question of copying human taste.
Sensors detect the same organic or inorganic compounds perceived by
human taste receptors. For a particular taste, information from the separate
sensors is fused together to fit a unique identifying pattern. In this case it is
apparent that the detection abilities of an e-tongue are far more sensitive
(i.e. much better) than those of its human counterpart.

The sensory results from an e-tongue are dealt with in a similar way to
the human case. Electronic signals produced are perceived in terms of
pattern recognition – attempting to match a new set of sensor readings with
a database of memorised taste spectra. Due to the nature of the sensors,
liquid samples can usually be analysed directly, whereas solids require
dissolving before they can be dealt with. The difference between each
sensor's actual reading and the value of a reference electrode is obtained
and used for calculations.

E-tongues (which don't tend to look anything like biological tongues!)
have numerous application areas, particularly, as one might expect, in the
food and drink industry. These include the assessment of flavourings, as
well as analysing drinks of both the alcoholic and non-alcoholic variety for
quality purposes. The range of uses also includes sweet syrups, various
powders and dissolvable tablets. Salt and caffeine detectors are relatively
easy and cheap to operate when required.

It is the case, however, that e-tongues are not normally designed to be
carried around on a small mobile robot. The sense of taste is quite specific
to human nutrition and hence it only has a limited role to play in AI systems
– indeed, no real role at all in A-life! Its main function is as a technical
assistance to human taste testing due to its standardising properties and
reliability.



ULTRAVIOLET DETECTION
Ultraviolet light is a form of electro-magnetic radiation. It has a shorter
wavelength than visible light but longer wavelength than X-rays. It is
referred to as ultraviolet as it is made up of electromagnetic waves with
frequencies higher than those identified with the colour violet. It is not
something that is apparently directly sensed and acted upon by humans. It is
found in abundance in sunlight and appears in electric arcs and other
phenomena.

Ultraviolet light can be detected by photodiodes relatively easily; indeed,
a variety of relatively low-cost detection devices is available. For the most
part they are fairly small and certainly portable. Often they are based on an
extension of sensors used to detect visible light – as a result they can
sometimes be troubled by an undesirable response to visible light and
inherent instabilities.

Ultraviolet sensors can potentially be employed for AI systems. They are,
in this case, particularly useful if a robot's energy supply contains solar cells
that need recharging from sunlight – hence making them useful for real A-
life robots, as the sensor can be used, for example, to indicate the direction
the robot needs to face in order to charge its energy supplies.

X-RAY
X-rays have a shorter wavelength than ultraviolet rays, but a longer
wavelength than gamma rays. They are generally regarded as invisible to
the human eye, although extreme experiments have indicated that there may
be some slight recognition in certain circumstances. In medical applications
X-rays are produced by firing electrons at a metal target – the resultant X-
rays are absorbed by human bones but not so much by tissue, so a sensitive
photographic plate can be employed to obtain a two-dimensional visual
image of the result from firing X-rays at parts of a human body.

There is a wide range of X-ray sensors available, such as semiconductor
array detectors. These are mainly small, portable and generally accurate and
reliable. They can therefore be employed for AI systems, should the
application need arise!



CONCLUDING REMARKS
It is a big advantage of AI in comparison with human intelligence that the
potential range of sensory input is extremely broad, whereas human senses
are limited. On top of this limitation, the frequency range of signals sensed
by humans is very small – the visible light spectrum (humans’ main sensory
input) is nowhere near as broad as the infrared spectrum alone.

AI can potentially sense signals not directly available to humans (other
than by means of a conversion to a human sense, such as X-ray converted to
a two-dimensional visual image). As we have seen, X-rays and ultraviolet
light can be used as sensory input by a machine, but so too can sensed
gamma radiation, microwaves, water vapour detection and so on – all that
was done in this chapter was to give a brief overview of some of the most
obvious.

One issue, however, as we saw with classical AI, in terms of intelligence
in general, is the limited capabilities of human thought in conceiving of
non-human applications such as those that might be useful for a robot.
Therefore, most present-day applications of non-human sensors are to
convert signals into energy that humans can sense, such as an X-ray visual
image. The employment of the potential wide range of sensory input by AI
systems in their own right will clearly increase their range of abilities as
time passes.
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GLOSSARY

artificial life  the recreation of biological life by technological means.
artificial neural network  an interconnected group of artificial neurons
(brain cells) using computational, mathematical or technological models.
atomic segments  used in image segment growing; initially small groups
of pixels with very similar greyscale values are identified.
average interrogator Alan Turing's name for a typical individual
involved as a judge in his imitation game, trying to differentiate a
machine from a human.
best first search exploring a problem by expanding the best (most
promising) option in the next level.
brain-in-a-vat experiment a philosophical argument involving a
disembodied brain, kept alive, yet fully experiencing life.
bucket brigade a system used to pass on rewards from one rule to
another.
cellular automata a regular grid of cells in which each one has finite
states that can be affected by neighbouring cells.
collective intelligence shared or group intelligence arising from
cooperation between individuals.
common sense knowledge the collection of facts and information that an
ordinary person would know.



consciousness subjective experience, awareness and executive control of
the mind.
embodiment giving a brain (or artificial neural network) a body in order
for it to interact with the real world.
ensemble averaging the average value of the same pixel taken over
several time steps.
epiphenomenal mental states can be caused by physical effects but cause
no resultant physical output themselves.
fitness function used to calculate the overall value of a member of the
population in a genetic algorithm in terms of its different characteristics.
frames an AI structure used to divide knowledge into sub-structures.
free will the ability to make choices, free from constraints.
fuzzy trees method of splitting a database into different regions, where
the same piece of information can appear (to some extent) in several
branches.
Garden of Eden patterns in cellular automata, particular patterns which
cannot be realised from any previous pattern.
goal-based agent an autonomous entity which observes and acts upon an
environment and directs its activity towards achieving goals.
greedy best first search use of a heuristic to predict how close the end of
a path is to a solution; paths which are closer to a solution are extended
first.
grey level representation of an image pixel between black and white.
growing (segments) the method used to grow regions in an image from
atomic segments by associating areas with similar pixel values.
hill climbing an iterative procedure that attempts to find a better solution
to a problem by making small changes. If a change produces a better
solution, the new solution is retained, repeating until no further
improvements can be found.
learning agent an agent which can operate in unknown environments
and improve through learning, using feedback to determine how its
performance should be modified.
linearly separable problem when represented as a pattern space, it
requires only one straight cut to separate all of the patterns of one type in
the space from all of the patterns of another type.



local averaging the value of a pixel is replaced with the average value of
local pixels.
local search moving from solution to solution amongst candidate
problem solutions until an optimal solution is found.
machine olfaction sense of smell in a machine.
model matching matching edge candidates in an image with an edge
model.
model-based agent an agent which can handle a partially observable
environment. Its current state is stored, describing the part of the world
which cannot be seen. This knowledge is called a model of the world.
multiagents use of several agents in a cooperative fashion, each
providing a partial answer to a problem.
new media media which emerged in the latter part of the twentieth
century. On-demand access to (digitised) content any time, any where, on
any digital device, with user feedback and creative participation.
passive triangulation distance measurement to an object using a two-
camera system; it requires the position of a corresponding point in the
two images to be known, along with the distance between the cameras.
pattern matching in image processing, comparing a number of edge
candidates with a previously defined edge pattern.
perceptron a binary classifier as the simplest form of neuron model.
picture matrix an array of image pixel values representing the scene
viewed.
pixel differentiation the rate of change/difference of values between
picture elements.
point tracking tracing an image object outline by joining the points that
have been selected as edge candidates.
radio frequency identification device technology using radio
communication to exchange data between a tag and a reader (computer)
for the purpose of identification.
reed switches electrical switches operated by applying a magnetic field.
reflex agent an agent in which historical data is ignored.
splitting (segments) the method used to divide an image into regions by
breaking up the image into areas with similar pixel values.
steepest descent to find a local minimum of a function using steepest (or
gradient) descent, steps taken are proportional to the gradient of the



function at a point.
strain gauge a device used to measure the strain of an object, usually due
to a change of electrical resistance as the material changes in length.
strong AI machines can think in the same way as humans.
subsumption architecture intelligent behaviour is decomposed into
several simple behavioural layers; each layer has its own goal; higher
layers are more abstract.
symbolic processing creating AI using high-level symbols, as in
conventional computer programming.
temporal difference algorithm a method of learning in which the
difference between the estimated reward and the actual reward received
is paired with a stimulus that also reflects a future reward.
three laws of robotics a set of three rules written by author Isaac Asimov
by which robots are programmed to behave with regard to humans.
triangulation determining the distance to a point by measuring angles to
it from known points.
voice activity detection technique in which the presence or absence of
human speech can be detected.
weak AI machines can demonstrate intelligence but are not necessarily
conscious like a human mind.
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