
Since most datasets contain a number of variables, multivariate meth-
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Preface

Why does this book exist? Well, essentially because (1) multivariate statistical 
methods can be very useful to people doing applied research or learning how to 
do it (by this I mean exploring data and using it to answer research questions); 
(2) most other books on multivariate methods are aimed at statisticians or 
researchers who are comfortable with (and enjoy?) mathematics and formulae. 
The aim of this book is to explain the usefulness of multivariate methods in a 
way which is accessible to students and researchers who would not consider 
themselves statisticians or mathematicians. They may be put off by the whole 
idea of quantitative analysis of the formulae they see in other books. Here they 
will find very few formulae, and those that cannot be left out are made to seem 
less scary than they might look.

“But surely most researchers have been trained in statistics?” I hear you 
say. This is true. Students may also have had some statistics training before 
they find this book. However, their training may have concentrated on topics 
like summary statistics, graphical displays, confidence intervals, hypothesis 
testing, correlation and regression. Although multivariate data may have had 
a look when studying multiple regression, most of the statistical training will 
have considered one variable at a time rather than many variables together. 
An exception to this may be factor analysis which is widely used in the social 
sciences but the other topics discussed in this book are less likely to have been 
encountered. Most datasets are multivariate (containing a number of variables) 
and as a result, multivariate methods are useful to explore and to use them to 
answer research questions.

“But surely we have to use complicated computer packages to do 
multivariate analyses?” I hear you say. Well, not if you are trying to do straight-
forward analyses. Accompanying this book is an add-in for Microsoft® Excel® 
which can be used to do the analyses shown here. Sure, if you are looking to 
do more complicated things, then you will need to move to a specialist package 
such as Minitab®, R, SAS®, SPSS®, Stata®, etc. However, if you have already 
learnt the essentials from this book, then the transition will not be too hard and 
you may find you do not need to get involved with these at all.

“But surely there are other multivariate statistical methods which you 
have not included in your book?” I hear you say. Absolutely true. There are 
lots of methods out there but this book concentrates on the most commonly 
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used ones; it  is titled Essentials of Multivariate Data Analysis rather than 
A  Comprehensive Guide to Multivariate Data Analysis. Sticking to the 
essentials is what makes this book useful and, although it is a good introductory 
read for students studying more mathematical/statistical courses, there are 
already plenty of books which will give them the depth and breadth they want. 
A number are suggested in the “More Information” sections at the end of each 
topic.

Dr Neil H Spencer
University of Hertfordshire



1

1Frequently 
Asked 
Questions

1.1  WHAT QUESTIONS?

I start the book by trying to answer two frequently asked questions: (1) What anal-
ysis should I do? and (2) What data do I need?. These two questions are of course 
very closely linked to each other with the answer to the ‘‘What analysis should I 
do?’’ restricting the range of possible answers for ‘‘What data do I need?’’.

Of course, before this, I hope that you have a ‘research hypothesis’ of some 
kind. This sounds rather grand, but what it really means is, ‘What are you try-
ing to find out about?’. This should be the starting point for any study, and the 
answer to this question will lead to the answer to ‘What analysis should I do?’.

Next in this chapter is the answer to the question: What data is the author 
using in this book? Perhaps this is not a frequently asked question but I hope 
the reader will forgive me for this. Certainly if I do not explain the dataset 
somewhere, then ‘What data is the author using in this book?’ would become 
a frequently asked question from readers.

I conclude this chapter by answering a few questions about missing data, 
the choice of topics for this book and the issue of computer packages.

1.2  WHAT ANALYSIS SHOULD I USE?

You will not be surprised that in a book I cannot answer this question com-
pletely for your particular research. What I am able to do, however, is give 
some outline examples of the sorts of things you might be wanting to do and 
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point you in the direction of the multivariate techniques that are contained in 
this book. In this way, this section is more like the American television quiz 
show Jeopardy, in which the contestants are given answers and have to guess 
the questions. In this book, the following chapters give the answers and here 
I am suggesting questions to which they are the answer.

At this point I should also say, ‘Please consult a Statistician’. I am saying 
this, not because I am trying to make Statisticians such as myself seem impor-
tant and clever people (which we are!) or create jobs for Statisticians (described 
in 2009 as “the sexy job in the next 10 years” by Google’s Chief Economist, 
Hal Valerian), but because a Statistician is (hopefully!) going to have a better 
idea of whether you are choosing the correct analysis than you will, even after 
you have read this section of the book. At the very least a consultation with a 
Statistician will give you confidence that the analysis you are embarking upon 
is able to answer the questions you want answered. The consultation may even 
point you in new directions which are even more beneficial to your work.

•	 I want to look at the data to detect patterns, groups and unusual 
cases. What analysis should I use? If your analysis aims to explore 
the data, then have a look at Chapter 2: “Graphical Presentation 
of Multivariate Data”. You may also want to think about non-
multivariate numerical summaries, looking at one variable on its 
own at a time (univariate analyses) or the relationship between pairs 
of variables (bivariate analyses).

•	 I want to check if differences between groups across a number 
of variables in terms of averages or the amount of variation are 
real or just random fluctuations. What analysis should I use? If 
your analysis aims to test hypotheses about whether groups are the 
same or different from each other, then have a look at Chapter 3: 
“Multivariate Tests of Significance”. You may also be interested in 
seeing if there are differences between groups in terms of just one 
variable at a time. For this, traditional univariate hypothesis tests 
(not discussed in this book but covered in innumerable others) can 
be used.

•	 I have a number of variables and want to understand the underlying 
causes of the responses I have – what factors are at work that come 
together to bring about the observed data. What analysis should I 
use? If your analysis aims to explore the data and try and discover 
underlying reasons for the data being as they are, then have a look 
at Chapter 4: “Factor Analysis”, thinking in terms of undertak-
ing exploratory factor analysis. You may also want to examine the 
available literature to see if there are any theories applicable to your 
data that might suggest particular factors exist. If so, then you might 
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want to undertake the factor analysis from a confirmatory point of 
view.

•	 I have a number of variables and want to test a theory about the 
underlying causes of the responses I have – are the factors that 
come together to bring about the observed data what the theory 
suggests? What analysis should I use? If your analysis aims to try 
and confirm that particular underlying reasons exist for the data 
being as they are (or suggest that the theory is wrong), then have a 
look at Chapter 4: “Factor Analysis”, thinking in terms of undertak-
ing confirmatory factor analysis. You may also want to look at the 
topic of Structural Equation Modelling (SEM), particularly if you 
want to test a theory which involves a complex relationship between 
the underlying factors and observed variables. This is an advanced 
topic which is not discussed in this book. For a good introduction, 
I recommend Bartholomew et al. (2008).

•	 I want to understand my data better by discovering any groups 
that might exist and looking at their characteristics. What analysis 
should I use? If your analysis aims to find groups which may exist 
in your data and examine them, then have a look at Chapter 5: 
“Cluster Analysis”. You may also want to initially undertake some 
graphical analyses which may reveal possible clusters (see Chapter 
2: “Graphical Presentation of Multivariate Data”).

•	 I have information in my data which tells me the cases are in 
particular groups and I want to be able to allocate any new cases to 
one of these groups based on particular characteristics which have 
been recorded. What analysis should I use? If your analysis aims 
to work out which of a number of groups is the most likely for any 
new cases to belong to, then have a look at Chapter 6: “Discriminant 
Analysis”. You may also want to look at logistic regression (if you 
have two groups) or multinomial regression (if you have more than 
two groups). I am not discussing regression-based techniques in this 
book but, for a good introduction, I recommend Field (2009).

•	 I have information in my data which tells me the cases are in 
particular groups and I want to understand how being in one 
group or another is related to values of particular variables in 
the dataset. What analysis should I use? If your analysis aims to 
find out whether a case’s data for particular variables are related 
to the chances of being in one group or another, then have a look 
at Chapter 6: “Discriminant Analysis”. You may also want to look 
at model building techniques in relation to logistic regression (if 
you have two groups) or multinomial regression (if you have 
more than two groups). As mentioned above, I am not discussing 
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regression-based techniques in this book but recommend Field 
(2009) for some introductory reading on these topics.

•	 I have data which are measures of similarity/dissimilarity (or 
distances) and I want to have an overall graphical view of how simi-
lar or dissimilar the cases are. What analysis should I use? If your 
analysis aims to plot the cases in a two-dimensional scatterplot (or 
more than two dimensions might just be feasible) in such a way that 
the measures of similarity/dissimilarity in the data are represented 
on the plot as closely as possible, then have a look at Chapter  7: 
“Multidimensional Scaling”. You may also want to examine the 
scaled eigenvectors which are used to create the plot. They may be 
able to give you additional insight into any underlying factors which 
are bringing about the observed measures of similarity/dissimilarity.

•	 I have data which are measures of similarity/dissimilarity (or 
distances) and I want to understand the underlying causes of these 
measures. What analysis should I use? If your analysis aims to try 
and discover underlying reasons for the data being as they are, then 
have a look at Chapter 7: “Multidimensional Scaling”. You may also 
want to consider producing plots of the scaled eigenvectors that you 
will be examining in order to gain a better understanding of which 
cases are similar or dissimilar.

•	 I have a number of categorical variables and want to explore 
the relationships that exist between the different categories of 
the different variables. What analysis should I do? If you want a 
graphical representation of the relationships between the different 
variables and their categories, then have a look at Chapter 8: 
“Correspondence Analysis”. You may also want to look at log-
linear modelling which aims to build a model to explain the data. As 
mentioned a couple of times above, I am not discussing regression-
based techniques in this book but, again, a good introduction to this 
topic can be found in Field (2009).

1.3  WHAT DATA DO I NEED?

As the answer to this question depends largely on the answer to ‘What analysis 
should I do?’, you will find in each of the following chapters a section entitled 
“What Data Do I Need for [topic]?”. However, many of the multivariate 
techniques in this book require continuous data, or data which can be treated 
as continuous. This is any data for which calculating a mean or a standard 
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deviation is sensible. Discussing the mean or standard deviation of people’s 
hair colour makes no sense, so data of this type are not continuous (and are 
sometimes called nominal: the data represent categories, and these categories 
have no meaningful order in which they can be put).

I should mention binary data at this point. This is categorical data for 
which there are just two categories, such as “male” and “female”. In this case, 
if “male” is coded 1 and “female” is coded 0, then the mean does have an 
interpretation: it is the proportion of the sample that is male. However, this 
does not make it continuous data. If a coding system other than 0/1 had been 
used, the mean would not be interpretable. However, having said this, some 
of the techniques discussed in this book can use this binary data as if it were 
continuous.

Some categorical data can be treated as if it were continuous data, 
providing care is taken. If the categories can be placed into a natural order, then 
scores can be given to each category and these scores treated as continuous 
variables. For instance, take the example of data collected from a survey where 
respondents have been asked to state how satisfied they are with a service 
they have purchased. They may be asked to put themselves into one of the 
following categories: “very satisfied”, “satisfied”, “neither satisfied nor dis-
satisfied”, “dissatisfied” or “very dissatisfied”. This kind of question is some-
times referred to as a Likert scale question. What we have here is a categorical 
variable where the categories have a natural order to them. We could then 
proceed to give scores to these categories, so “very satisfied” might score 10, 
“satisfied” might score 8, “neither satisfied nor dissatisfied” might score 5, 
“dissatisfied” might be given a score of 2 and “very dissatisfied” might score 0. 
We could then treat these scores as if they were a continuous variable.

However, before you go off and launch into giving scores to any Likert 
scale data you possess, let me sound a note of caution. The scoring system I 
have constructed above is just one of many scoring systems that I could have 
used. Hopefully when you give scores to your Likert scale questions, you will 
be able to use some expert knowledge about the situation from which your 
data have been collected, and devise a scoring system that can be defended if 
necessary.

Please (and I beg of you) do not do the following. Frequently, Likert 
scale responses are coded so that, for instance, 1 indicates “very satis-
fied”, 2 indicates “satisfied”, 3 is the code for “neither satisfied nor dissatis-
fied”, 4 means “dissatisfied” and 5 means “very dissatisfied”. This coding is 
normally done to make data entry easier and because statistical analysis pack-
ages prefer to operate with numbers as data. Time and time again, you will 
see analyses conducted where this 1 to 5 coding is used as the scoring system. 
This implies that, for example, moving from “satisfied” to “very satisfied” (an 
upward change of one unit in this scoring system) is the same as moving from 
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“dissatisfied” to “neither satisfied nor dissatisfied”. Now, if you are happy that 
for your Likert scale this is an appropriate scoring system to use, then by all 
means go ahead and use it. But please do think about whether it is an appropri-
ate scoring system and do not simply use the 1 to 5 coding system as a scoring 
system because it is already there.

1.4  WHAT DATA IS THE AUTHOR 
USING IN THIS BOOK?

The dataset being used in this book is entirely fictitious. I did not decide to do 
this because I did not want the data to be realistic, but rather because I need it 
to be relatively straightforward and have useful features which help explain the 
multivariate techniques. It needs to be straightforward because if I choose a 
dataset which is unusual or difficult to understand, then your attention will be 
distracted from the multivariate techniques which are (I am assuming!) what 
you want to understand. It needs to have useful features which help explain 
the multivariate techniques because there is little point in trying to explain, for 
instance, cluster analysis with a dataset which does not contain any clusters.

Although I fully admit that the data are fictitious, I have nevertheless made 
efforts to ensure that they are realistic. The data have been generated with 
means, standard deviations and correlations that are similar to those found in 
the UK adult population. The data can be downloaded from the publisher’s 
website at http://www.crcpress.com/product/isbn/9781466584785.

The dataset consists of 100 people for whom we have created the following 
data:

•	 Gender: 48 are male, 52 are female;
•	 Age: the youngest is 18 and the oldest is 69 – we have this data 

both in terms of age in years and age-groups 18–29, 30–39, 40–49, 
50–59, 60+;

•	 Height and weight: in metres and kilogrammes, respectively;
•	 Blood pressure: systolic and diastolic, in mmHg;
•	 Pulse rate at rest: in beats per minute;
•	 Smoking history categorised as “never smoked”, “occasional 

smoker”, “ex-smoker” and “current smoker”;
•	 General knowledge scores in nineteen subject areas (see below for 

more details); and
•	 Opinions about similarity of seven nations’ foreign policies (see 

below for more details).
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1.4.1  General Knowledge Scores

The general knowledge scores were created for nineteen subject areas, as 
below. These areas have been used in Irwing et  al. (2001) and Lynn et  al. 
(2001) to examine gender differences in general knowledge. Mean scores 
and standard deviations for males and females from Lynn et  al. (2001) and 
correlations between variables from Irwing et al. (2001) have been used in the 
creation of the scores for the 100 cases in the dataset.

	 1.	History of science
	 2.	Politics
	 3.	Sports
	 4.	History
	 5.	Classical music
	 6.	Art
	 7.	Literature

	 8.	General science
	 9.	Geography
	 10.	Cookery
	 11.	Medicine
	 12.	Games
	 13.	Discovery and 

exploration

	 14.	Biology
	 15.	Film
	 16.	Fashion
	 17.	Finance
	 18.	Popular music
	 19.	Jazz and blues

1.4.2 � Opinions about Similarity of 
Nations’ Foreign Policies

We imagine that the 100 people in the dataset are asked to judge how similar 
they believe the foreign policies of different countries to be. We have seven 
countries: United Kingdom (U.K.), United States (U.S.A.), France, Germany, 
Russia, China and Australia. For each pair of countries, each person has 
assigned a score to how similar they believe the countries’ foreign policies to 
be, with 1 indicating very similar and 10 indicating very dissimilar. There are 
twenty-one pairs that can be created from the list of seven countries (7 × 6 ÷ 2 
= 21), and thus twenty-one variables.

1.5  WHAT ABOUT MISSING DATA?

Detailed information about how to deal with missing data is missing from 
this book, quite intentionally. The reason is this is a book about the essentials 
of multivariate data analysis and cannot cover everything. Of course you are 
almost bound to have some missing data in any real dataset you handle, partic-
ularly if human beings have been involved in any part of the process of creating 
it. We are clumsy, free-willed creatures who are bound to occasionally enter 
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rubbish data (‘Is this person really 234 years old?’), refuse to answer questions 
(‘It is no concern of yours how much I earn – mind your own business’) and use 
equipment which malfunctions (“This person has a blood pressure reading of 
zero – call an ambulance!”). The default position of any statistical analysis is to 
say, ‘This line of the dataset does not contain all the information needed so we 
cannot use this line at all’. It’s not a brilliant strategy because you are throwing 
away perfectly good information just because a little bit is missing. There are 
methods that exist to cope better with missing data but they are beyond the 
scope of this book. In any event, the best advice that can be given is to try 
and do all you can to avoid missing data in the first place. You can use data 
entry procedures that prevent impossible ages being entered; you can design 
questionnaires that explain why the research needs to know about income and 
will protect the information; you can make sure that equipment malfunctions 
are spotted at once and measurements retaken.

1.6  WHAT ABOUT OTHER TOPICS?

The topics included in this book are ones that I consider to be the most essen-
tial topics in multivariate analysis. There are numerous other topics which 
could come under the heading of “multivariate analysis” but are not included 
because they are less commonly used. This book is not trying to be an exhaus-
tive guide to the subject area and, although there are bound to be some people 
who disagree with my choice, I am convinced that I have included all the most 
important topics.

1.7  WHAT ABOUT COMPUTER 
PACKAGES?

Accompanying this book is an add-in for Microsoft® Excel® which can be 
used to carry out the analyses shown in the different chapters. Some people 
will be horrified at the idea of Excel being used to do any sort of statisti-
cal analysis, let alone multivariate analysis. Excel is not a statistics package 
and has been shown to produce some inaccuracies in certain situations. An 
Internet search will find a number of websites and papers which point out 
some of the flaws and inconsistencies. However, just because it is not perfect 
does not mean it is useless. The add-in accompanying this book uses Excel 
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mainly as a rather extensive calculator rather than relying solely on its in-
built statistical functions. I may not be completely confident in its performance 
when it comes to the eighth decimal place in some calculations, but we should 
not be worrying about or reporting that level of accuracy. As you will find 
as you read this book, many multivariate analyses include a good amount 
of subjective decision making and interpretation by the researcher, and the 
numbers are there as a guide to help this process. The eighth decimal place 
should not really matter.

Having said this, it is undoubtedly the case that if you know how to use 
it properly, dedicated statistical software is superior to Excel and to the Excel 
add-in. These packages (e.g. Minitab®, R, SAS®, SPSS®, Stata®) are not only 
superior when it comes to the precision of their calculations, but also have 
the capacity to go beyond the basic analyses available in the Excel add-in and 
undertake more refined analyses. Hopefully, having understood the material 
in this book and the results from the Excel add-in, readers who need to take 
this route will be in a good position to get a grip on whichever package they 
choose to use.
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2Graphical 
Presentation 
of Multivariate 
Data

2.1  WHY DO I WANT 
TO DO GRAPHICAL 
PRESENTATIONS OF 

MULTIVARIATE DATA?

Before conducting any data analysis, it is always a good idea to look at the 
data first. No matter how well you feel you know the data, there is always the 
possibility that it contains some unexpected characteristic. One very good 
reason for doing this data examination before any analysis is that the results 
of looking at the data may cause you to change the dataset. If you look and 
see an unusual case in the dataset (perhaps it has very high or low values 
for one or more variables), then you may want to check it out in some way. 
Perhaps there has been a problem in data entry and the case in question has 
had its data input incorrectly. For instance, in a study involving children, 
one would be surprised to find a 99-year-old. However, closer inspection 
may reveal that the child was in fact 9 years old and the 99 recorded is due 
to a slip of the finger when inputting the data. Alternatively, you may dis-
cover that you have cases in your dataset that should not be there. If you are 
conducting a study involving children and discover a genuine 99-year-old 
in the dataset (that is, the 99 is correct and not a data input error), then you 
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will probably want to remove him or her because they do not belong to the 
population you want to study.

Another reason for looking at the data is to try and spot patterns 
and relationships between variables. Perhaps there are groups of cases in 
your data that you had not suspected. The discovery of such groups may 
affect the hypotheses you then examine and the nature of the analyses you 
undertake.

So how do you actually go about looking at the data? This is easy to do 
in a univariate situation. There are plots like a histogram, bar chart, box plot, 
and the like which will give a visual display of a single variable. Summary 
statistics such as the mean, standard deviation, minimum, maximum, median, 
and upper and lower quartiles can also be easily calculated.

We can also easily move outside the univariate framework to a bivari-
ate situation where we examine two variables at once. Scatterplots can 
show the relationships between the variables and summary statistics such 
as correlation can be calculated. It is even possible to create scatterplots 
of three variables and thus simulate a three-dimensional representation. 
However, care must be taken with these because on a computer screen or 
a printed page, one only ever sees one two-dimensional image at any time. 
Clever computer animations can be used to rotate an image on a screen 
to give it a three-dimensional appearance, and this may help interpreta-
tion. It is also sometimes the case that a three-dimensional plot can hide 
characteristics as well as display them (e.g. one bar on a chart may be hid-
den behind another). It is also possible to expand upon a two-dimensional 
scatterplot by adding a third variable which governs the size of the marker 
displayed on the plot. These are sometimes called “bubble” plots because 
the third variable makes the markers look like different sized “bubbles”. 
You can even add a fourth dimension to these bubble plots if your dataset 
includes time and has animations which show how things are changing as 
the days/weeks/months/years go by. However, although these graphs can 
be very informative and even beautiful at times, they are not truly mul-
tivariate because they are still restricted to a relatively small number of 
variables.

This is a book about multivariate methods so you might think that I 
will simply ignore these univariate and bivariate techniques and refer you 
to other books. Well, while I am indeed going to send you in the direc-
tion of other books for the details of these techniques, I am not going to 
ignore them altogether. For the graphical presentation of multivariate data, 
it can be useful to combine a number of univariate and bivariate graphs, 
as you will see below. However, if you want to read more about the non-
multivariate use of these univariate and bivariate methods, do look at books 
such as Field (2009).
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2.2  WHAT DATA DO I NEED FOR 
GRAPHICAL PRESENTATIONS 

OF MULTIVARIATE DATA?

I suppose the answer to this is, ‘It depends’. For all the methods described 
here, continuous data (or data that can be treated as continuous) are preferred. 
See Chapter 1 for a discussion of types of data. For the star plots and Chernoff 
faces, it is possible to use categorical data, although their usefulness is com-
promised slightly by this. For categorical data, we need a whole topic in its 
own right – see Chapter 8 on correspondence analysis.

2.3  THE REST OF THIS CHAPTER

I present here seven different methods of graphical display for multivariate 
data – three which are based on using univariate and bivariate techniques, 
three which are genuinely multivariate in their own right and one which is mul-
tivariate but does not display all the information in the dataset. However, before 
going any further, I should say that there is no really good way of displaying 
multivariate data. In our three-dimensional world, the best we can hope for in a 
graphical display is a three-dimensional model. In practical terms, we are most 
often restricted to a two-dimensional display on a computer screen or on paper. 
The methods described below are thus ways of overcoming our universe’s 
physical limitations, and are therefore limited in what they are able to achieve.

The first three methods (comparable histograms, multiple box plots and 
the trellis plots – the ones that are based on univariate and bivariate graphs) 
are all good for comparing variables and the relationship between pairs of 
variables. However, they are not very helpful if you want to be able to see how 
individual cases in the dataset vary across the different variables in the dataset. 
Of the three truly multivariate methods, star plots and Chernoff faces struggle 
when there are even moderate numbers of cases in the dataset but can display 
a small number of variables with some degree of clarity. Andrews’ plots cope 
better with larger datasets but the meaning of individual variables is lost to a 
large degree. The last method, a principal components plot, suffers from not 
being able to display all the information in the data. Sometimes, quite a lot of 
information can be missing but on other occasions, the plot can include almost 
all the information available in the data. If that sounds a bit vague, then do not 
worry because it is explained further in Section 2.14.
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2.4  COMPARABLE HISTOGRAMS

You may feel a bit cheated by this method of graphical presentation. All 
we do is create a histogram for each of the variables and look at them all to 
spot patterns, outliers, etc. What is multivariate about this, and why the title 
“Comparable Histograms”? Well, the trick used here that makes it multivari-
ate is to make sure that the horizontal and vertical axes on all the different 
histograms are the same. From the dataset discussed in Chapter 1, Figure 2.1 
shows comparable histograms for the four variables history of science score, 
politics score, sport score and history score. Because the horizontal and verti-
cal axes are the same in all the univariate graphs that make up Figure 2.1, we 
can clearly see that the sport score and politics score are more spread out than 
the history of science score and the history score. If we were to simply use the 
default settings for the horizontal and vertical axes for each of the histograms, 
we would get Figure 2.2. This makes the variables look like they all have very 
similar distributions.

2.5  A STEP-BY-STEP 
GUIDE TO OBTAINING 

COMPARABLE HISTOGRAMS USING 
THE EXCEL ADD-IN

	 1.	You must have a column in Excel that contains the names by which 
your cases are known. These are called the “case identifiers”. They 
may be names or codes that you can use to identify the different 
cases, or may be simply case numbers (e.g. case 1, case 2, etc.). You 
must also have columns of data containing the variables for which 
you want to create comparable histograms.

	 2.	Go through the multivariate analysis add-in’s menus until you get 
the dialogue box for comparable histograms.

	 3.	 In the “Case identifiers:” (e.g. names) box, put the range of cells cor-
responding to the column in which the case names, labels or what-
ever (see Step 1) are located.

	 4.	 In the “Variables for histograms:” box, put the range of cells cor-
responding to the columns that contain the variables for which you 
want to create the histograms.



2  •  Graphical Presentation of Multivariate Data  15

20

H
is

to
ry

 o
f S

ci
en

ce
 S

co
re

15 10 Number of Cases

5 0
≤4

.7
5

≤9
.5

≤1
4.

25
 to

≤1
9 

≤2
3.

75
≤3

8≤
42

.7
5

≤5
7 

≤6
1.

75
≤7

6 
≤8

0.
75

≤2
8.

5
≤3

3.
25

 to
≤5

2.
25

 to
≤7

1.
25

 to
≤9

0.
25

to
to

to
to

≤4
7.

5
≤6

6.
5

≤8
5.

5

>1
4.

25
>2

3.
75

>3
3.

25
>4

2.
75

>4
7.

5 
to

>5
7 

to
>5

2.
25

>6
1.

75
>6

6.
5 

to
>7

1.
25

>7
6 

to
>8

5.
5 

to
>8

0.
75

>9
0.

25
>2

8.
5 

to
>3

8 
to

>1
9 

to
>4

.7
5 

to
 >

9.
5 

to

FI
G

U
R

E 
2.

1 
C

om
pa

ra
bl

e 
hi

st
og

ra
m

s.



16  Essentials of Multivariate Data Analysis﻿

20

Po
lit

ic
s S

co
re

15 10 Number of Cases

5 0
≤4

.7
5

≤9
.5

≤1
4.

25
 to

≤1
9≤

23
.7

5
≤3

8≤
42

.7
5

≤5
7 

≤6
1.

75
≤7

6 
≤8

0.
75

≤2
8.

5
≤3

3.
25

 to
≤5

2.
25

 to
≤7

1.
25

 to
≤9

0.
25

to
to

to
to

≤4
7.

5
≤6

6.
5

≤8
5.

5

>1
4.

25
>2

3.
75

>3
3.

25
>4

2.
75

>4
7.

5 
to

>5
7 

to
>5

2.
25

>6
1.

75
>6

6.
5 

to
>7

1.
25

>7
6 

to
>8

5.
5 

to
>8

0.
75

>9
0.

25
>2

8.
5 

to
>3

8 
to

>1
9 

to
>4

.7
5 

to
 >

9.
5 

to

FI
G

U
R

E 
2.

1 
(C

o
n

ti
n

u
ed

)



2  •  Graphical Presentation of Multivariate Data  17

20

Sp
or

t S
co

re

15 10 Number of Cases

5 0
≤4

.7
5

≤9
.5

≤1
4.

25
 to

≤1
9 

≤2
3.

75
≤3

8 
≤4

2.
75

≤5
7 

≤6
1.

75
≤7

6 
≤8

0.
75

≤2
8.

5
≤3

3.
25

 to
≤5

2.
25

 to
≤7

1.
25

 to
≤9

0.
25

to
to

to
to

≤4
7.

5
≤6

6.
5

≤8
5.

5

>1
4.

25
>2

3.
75

>3
3.

25
>4

2.
75

>4
7.

5 
to

>5
7 

to
>5

2.
25

>6
1.

75
>6

6.
5 

to
>7

1.
25

>7
6 

to
>8

5.
5 

to
>8

0.
75

>9
0.

25
>2

8.
5 

to
>3

8 
to

>1
9 

to
>4

.7
5 

to
 >

9.
5 

to

FI
G

U
R

E 
2.

1 
(C

o
n

ti
n

u
ed

)



18  Essentials of Multivariate Data Analysis﻿

20

H
is

to
ry

 S
co

re

15 10 Number of Cases

5 0
≤4

.7
5

≤9
.5

≤1
4.

25
 to

≤1
9 

≤2
3.

75
≤3

8 
≤4

2.
75

≤5
7 

≤6
1.

75
≤7

6 
≤8

0.
75

≤2
8.

5
≤3

3.
25

 to
≤5

2.
25

 to
≤7

1.
25

 to
≤9

0.
25

to
to

to
to

≤4
7.

5
≤6

6.
5

≤8
5.

5

>1
4.

25
>2

3.
75

>3
3.

25
>4

2.
75

>4
7.

5 
to

>5
7 

to
>5

2.
25

>6
1.

75
>6

6.
5 

to
>7

1.
25

>7
6 

to
>8

5.
5 

to
>8

0.
75

>9
0.

25
>2

8.
5 

to
>3

8 
to

>1
9 

to
>4

.7
5 

to
 >

9.
5 

to

FI
G

U
R

E 
2.

1 
(C

o
n

ti
n

u
ed

)



2  •  Graphical Presentation of Multivariate Data  19

2025
H

is
to

ry
 o

f S
ci

en
ce

 S
co

re

15 10 Number of Cases

5 0
≤4

.7
5

≤9
.5

≤1
9

>1
4.

25
 to

≤2
8.

5
>2

3.
75

 to
≤3

3.
25

≤4
2.

75
>2

8.
5 

to
≤3

8
>3

8 
to

≤6
1.

75
>5

7 
to

≤5
7

>5
2.

25
 to

≤5
2.

25
>4

7.
5 

to
≤4

7.
5

>4
2.

75
 to

>3
3.

25
 to

≤1
4.

25
>9

.5
 to

≤2
3.

75
>1

9 
to

>4
.7

5 
to

FI
G

U
R

E 
2.

2 
N

on
-c

om
pa

ra
bl

e 
hi

st
og

ra
m

s.



20  Essentials of Multivariate Data Analysis﻿

1618
Po

lit
ic

s S
co

re

14 1012 Number of Cases

2468 0
≤4

.7
5

≤9
.5

≤1
9

>1
4.

25
 to

≤2
8.

5
>2

3.
75

 to
≤3

3.
25

≤4
2.

75
>2

8.
5 

to
≤3

8
>3

8 
to

≤6
1.

75
≤6

6.
5

>6
6.

5 
to

≤7
1.

25
≤7

6
≤8

0.
75

>7
6 

to
>7

1.
25

 to
>6

1.
75

 to
>5

7 
to

≤5
7

>5
2.

25
 to

≤5
2.

25
>4

7.
5 

to
≤4

7.
5

>4
2.

75
 to

>3
3.

25
 to

≤1
4.

25
>9

.5
 to

≤2
3.

75
>1

9 
to

>4
.7

5 
to

FI
G

U
R

E 
2.

2 
(C

o
n

ti
n

u
ed

)



2  •  Graphical Presentation of Multivariate Data  21

16
Sp

or
t S

co
re

14 1012 Number of Cases

2468 0
≤4

.7
5

≤9
.5

≤1
9

>1
4.

25
>2

3.
75

≤3
3.

25
 to

≤4
2.

75
>2

8.
5 

to
≤3

8
>3

8 
to

≤6
1.

75
≤6

6.
5

≤4
7.

5
≤2

8.
5

>6
6.

5 
to

≤7
1.

25
 to

≤7
6

≤8
0.

75
>7

6 
to

>8
0.

75
>8

5.
5 

to

≤8
5.

5

>9
0 

25
≤9

0.
25

>7
1.

25
>6

1.
75

>5
7 

to
≤5

7
>5

2.
25

≤5
2.

25
 to

>4
7.

5 
to

>4
2.

75
>3

3.
25

≤1
4.

25
to

>9
.5

 to
≤2

3.
75

to
to

to
to

>1
9 

to
>4

.7
5 

to

FI
G

U
R

E 
2.

2 
(C

o
n

ti
n

u
ed

)



22  Essentials of Multivariate Data Analysis﻿

1618
H

is
to

ry
 S

co
re

14 1012 Number of Cases

2468 0
≥4

.7
5

≥9
.5

≥1
9

>1
4.

25
 to

≥2
8.

5
>2

3.
75

 to
≥3

3.
25

≤4
2.

75
>2

8.
5 

to
≥3

8
>3

8 
to

≤6
1.

75
≤6

6.
5

>6
1.

75
 to

>5
7 

to
≤5

7
>5

2.
25

 to
≤5

2.
25

>4
7.

5 
to

≤4
7.

5
>4

2.
75

 to
>3

3.
25

 to
≥1

4.
25

>9
.5

 to
≥2

3.
75

>1
9 

to
>4

.7
5 

to

FI
G

U
R

E 
2.

2 
(C

o
n

ti
n

u
ed

)



2  •  Graphical Presentation of Multivariate Data  23

	 5.	Make sure the choice for “Titles in the first row” or “No titles in the 
first row” is appropriate for the ranges you have entered at Steps 3 
and 4.

	 6.	Click “OK”.

The comparable histograms should now be created and shown in a new work-
book in Excel.

2.6  MULTIPLE BOX PLOTS

Like the comparable histograms, you may think that multiple box plots is a 
very straightforward idea. All we do is create a separate box plot for each of 
the variables in which we are interested and plot them on one graph. However, 
although it is not rocket science, it is easy to forget how useful these box plots 
can be – in one graph you can have information on a number of variables pre-
sented in such a way that you can compare the variables easily as well as see 
the distribution of each individual variable.

From the dataset discussed in Chapter 1, Figure 2.3 shows multiple box 
plots for the four variables history of science score, politics score, sport score 
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FIGURE 2.3  Multiple box plots.
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and history score. As with normal univariate box plots, the thick lines across 
the middle of the boxes indicate the position of the medians, with the tops 
of the boxes being the upper quartiles (75% of the way through the data) and 
the bottoms of the boxes being the lower quartiles (25% of the way through 
the data). Here we have “whiskers” extending to the minimum and maximum 
values for each of the variables. You will sometimes see computer packages 
with shorter whiskers, and “outliers” and “extreme values” indicated by mark-
ers beyond the whiskers. The definitions of an “outlier” and what is “extreme” 
are, however, arbitrary ones and we thus prefer to have our whiskers cover the 
entire range of variables.

2.7  A STEP-BY-STEP 
GUIDE TO OBTAINING 

MULTIPLE BOX PLOTS USING 
THE EXCEL ADD-IN

	 1.	You must have a column in Excel that contains the names by which 
your cases are known. These are called the “case identifiers”. They 
may be names or codes that you can use to identify the different 
cases, or they may be simply case numbers (e.g. case 1, case 2, etc.). 
You must also have columns of data containing the variables for 
which you want to create comparable histograms.

	 2.	Go through the multivariate analysis add-in’s menus until you get 
the dialogue box for multiple box plots.

	 3.	 In the “Case identifiers:” (e.g. names) box, put the range of cells cor-
responding to the column in which the case names, labels or what-
ever (see Step 1) are located.

	 4.	 In the “Variables for box plots:” box, put the range of cells cor-
responding to the columns that contain the variables for which you 
want to create the box plots.

	 5.	Make sure the choice for “Titles in the first row” or “No titles in the 
first row” is appropriate for the ranges you have entered at Steps 3 
and 4.

	 6.	Click “OK”.

The multiple box plots should now be created and shown in a new workbook 
in Excel.
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2.8  TRELLIS PLOT

If you have not heard of this type of plot before, you may be imagining that 
the name has something to do with gardening and plants climbing up and over 
a wooden trellis. I am sorry to disappoint but the connection has to do with 
how these garden trellises are usually constructed with horizontal and vertical 
pieces of wood making up a grid pattern. A trellis plot is made up of a number 
of univariate and bivariate graphs arranged in a grid in such a way that visual 
comparisons can be made. There is no one particular definition of what a trel-
lis plot should contain but typically a scatterplot is created of each variable of 
interest against each of the other variables of interest.

Thus if we have four variables from the dataset discussed in Chapter 1 – 
history of science score, politics score, sport score and history score – we have 
4 × 3 = 12 scatterplots. These can be arranged in a 4 × 4 grid (see Figure 2.4) 
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FIGURE 2.4  Trellis plot.
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with the first variable (history of science score) being involved in all the plots 
in the first row and in the first column, the second variable (politics score) 
being involved in all the plots in the second row and in the second column, etc. 
For the top left part of the grid, we could show a scatterplot of history of sci-
ence score against history of science score but that would be rather pointless. 
We could instead leave that cell of the grid blank but here we have included a 
comparable histogram (see Section 2.4) and have also done the same for the 
other parts of the grid on the diagonal from top left to bottom right.

You might complain that the graphs in the trellis plot do not have any 
scales or proper titles on them and that the axis labels are rather small. You 
would be correct in noting these shortcomings. However, the purpose of the 
trellis plot is to gain a visual understanding of the patterns and relationships 
between the variables and this can be done easily enough from Figure 2.4. If 
you want to go on to examine any of the graphs in more detail, then simply 
create larger versions of the ones you want.

2.9  A STEP-BY-STEP GUIDE TO 
OBTAINING A TRELLIS PLOT 
USING THE EXCEL ADD-IN

	 1.	You must have a column in Excel which contains the names by 
which your cases are known. These are called the “case identifiers”. 
They may be names or codes that you can use to identify the differ-
ent cases, or may be simply case numbers (e.g. case 1, case 2, etc.). 
You must also have columns of data containing the variables for 
which you want to create comparable histograms.

	 2.	Go through the multivariate analysis add-in’s menus until you get 
the dialogue box for the trellis plot.

	 3.	 In the “Case identifiers:” (e.g. names), box, put the range of cells 
corresponding to the column in which the case names, labels or 
whatever (see Step 1) are located.

	 4.	 In the “Variables to plot:” box, put the range of cells corresponding 
to the columns that contain the variables which you want to include 
in the trellis plot.

	 5.	Make sure the choice for “Titles in the first row” or “No titles in the first 
row” is appropriate for the ranges you have entered at Steps 3 and 4.

	 6.	Click “OK”.

The trellis plot should now be created and shown in a new workbook in Excel.
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2.10  STAR PLOTS

Star plots are so called because of the way in which they are meant to look like 
stars. A picture is created for each observation in the dataset, consisting of a 
point with rays coming out of it (supposedly like light radiating from a star). 
Figure 2.5 shows examples for three imaginary cases. Each star has five rays 
coming from it, each representing a different variable. For instance, in terms 
of the dataset described in Chapter 1, the ray at roughly the 11 o’clock position 
might represent height, the ray at 1 o’clock might represent weight, the ray at 
4 o’clock might represent systolic blood pressure, the ray at 7 o’clock might rep-
resent diastolic blood pressure and the ray at just after 9 o’clock might represent 
pulse rate. The lengths of the rays represent the values recorded for each case for 
these five variables. Sometimes the ends of the rays are joined, as in Figure 2.6.

Whether the star plot is formed as in Figure 2.5 or Figure 2.6, the idea is 
that once formed, you can look at them and be able to see what characteristics 
are similar or different across a range of cases. You may look at the figures 
yourselves and wonder just how that might be done, and I have sympathy with 
your confusion. It is quite difficult to spot similarities and differences, but the 
key thing is that you have a greater chance of spotting such characteristics than 
if you are simply looking at a load of numbers.

FIGURE 2.5  Star plots for three imaginary cases.

FIGURE 2.6  Joined star plots for three imaginary cases.
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2.11  CHERNOFF FACES

If you think star plots are a little odd, then you will be even more surprised by 
Chernoff faces. Here, rather than having rays coming from a star, each variable 
is represented by features on a face, as in Figure 2.7. Here, one variable might 
be represented by the width of the face, one might be represented the size 
of the face, one might be represented by the “smileyness” of the mouth, one 
might be represented by the length of the mouth and one might be represented 
by the distance between the eyes.

The idea, as with the star plots, is that you can look at the faces and spot 
similarities and dissimilarities. In theory, this should be easier than looking at 
star plots because we are used to looking at human faces. However, this does 
have a drawback because certain features (e.g. width of face) are more notice-
able than others, and this attaches more importance to the variables being 
represented by these more noticeable features.

2.12  ANDREWS’ PLOTS

Rather than produce a separate plot for each case in a dataset (as is done by 
star plots and Chernoff faces), Andrews’ plots produce one graph on which is 
plotted a single curve for each case in the dataset. This curve is a summary of 
however many variables are being investigated, and is produced by applying 
the following formula:
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FIGURER 2.7  Chernoff faces for three imaginary cases.
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Now, to those readers not terribly at ease with calculus, the appearance of 
sine and cosine functions at this early stage of the book may be alarming. 
However, do not panic. We can be grateful to D. F. Andrews (1972) and a paper 
he published for coming up with this formula and showing that it can be used 
for the purpose explained in this section. You may also be glad to know that 
the Microsoft Excel add-in included with this book will create these plots for 
you, without you needing to do the calculus yourself.

In the formula, the x1, x2, x3, etc. are the different variables being con-
sidered. If there are more than seven variables, the function continues in the 
same pattern as shown, with even-numbered variables associated with the sine 
function and odd-numbered variables with the cosine function. The “t” is what 
makes up the horizontal axis of the graph and ranges from −π to +π. The 
reason for these starting and finishing values for t will be obvious to those 
familiar with sine and cosine functions. For those of you who are not, let me 
just say that this range covers all relevant values because once we get larger 
than +π, the sine and cosine functions start repeating what they give for values 
of t above −π. The curves would then be repeating themselves, which is rather 
pointless.

What we do in practice for each case in the dataset is calculate x(t) for 
a whole range of values of t from −π to +π, using the values of x1, x2, x3, etc. 
that exist for that case. We then plot these x(t) on a graph against t, as in 
Figure 2.8.

There is a further complication in that in the formula to create the curve, 
the first variable, x1, has more influence over the appearance of the curve than 
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FIGURE 2.8  Andrews’ plot for one case.
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any of the other variables. Similarly, x2 has more influence than any of x3, x4, 
etc., and x3 has more influence of any of x4, x5, etc. Now, for datasets where it 
is the case that some variables are naturally more important than others, this is 
not a problem. When applying the formula, the most important variable must 
be assigned to be x1, the next more important x2 and so on.

However, what if there is no way to say that some variables are more 
important than others in a dataset? Fortunately, another multivariate statistical 
technique can come rushing to our aid. This is called principal components 
analysis, and we will be dealing with it in more detail in Chapter 4 when we 
discuss factor analysis. Those readers who wish to do so can of course dash off 
to that chapter now. However, if you are staying with me here for now, let me 
just briefly explain what principal components analysis does. Basically, princi-
pal components analysis takes the variables that are being used in the analysis, 
and creates a completely new set of variables by performing calculations based 
on the original variables. So, if originally there were three variables, for exam-
ple, we end up with three new variables. Each of these new variables (say, z1, z2, 
z3) is a simple linear combination of the original three variables: for instance, 
z1 = 0.39x1 + 0.47x2 + 0.79x3. The variable z2 would also be a linear combination 
of the original variables but the multipliers for x1, x2 and x3 would be different, 
and would be chosen so that the new variables z1 and z2 were not correlated 
with each other. Then z3 would be another linear combination of x1, x2 and x3 
with multipliers chosen so that z3 was not correlated with either z1 or z2.

Without going into the mathematics that prove it, once we have our three 
new variables z1, z2, and z3 that are all independent of each other, then all the 
information that was originally contained in x1, x2 and x3 would now be con-
tained in z1, z2, z3. Also (and this is the important bit for our Andrews’ plots), 
z1 would contain more of the information originally available from all of x1, 
x2 and x3 than z2 or z3 and would therefore be the most important of the new 
variables. Similarly, z2 would contain more information than z3 and therefore 
be more important than z3. We can then use z1, z2 and z3 in our formula to cre-
ate the Andrews’ plots.

So now that we know how to create the curve in Figure 2.8, what does it 
tell us? Well, on its own, the answer is, “not a lot”! The power of Andrews’ 
plots really comes when lots of cases are plotted. From the dataset discussed 
in Chapter 1, Figure 2.9 shows Andrews’ plots for four variables – history of 
science score, politics score, sport score and history score – with principal 
components being used as there is no sensible way of saying that these scores 
can be put into an order of importance.

I will forgive you for wondering what that jumble of lines in Figure 2.9 
is meant to represent. It does not look too illuminating. There are 100 curves 
in Figure 2.9, corresponding to the 100 cases in the dataset. However, closer 
inspection reveals that although most curves are jumbled up with each other, 
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there are some which are not. These are unusual in some way. If they were 
not unusual, then the curves would be like the others. We can identify which 
case these unusual curves belong to and investigate further. In Figure 2.9, 
we see the curve created by case 17 highlighted (this has been done by 
simply hovering the mouse over the curve). Looking into the details of this 
case reveals an unusual pattern. For most cases in the dataset, if they score 
well in history of science, they also score well in history, and vice versa. 
However, for case 17, we find that he or she has the 16th highest score out 
of 100 for history of science but only the 98th highest score out of 100 for 
history.

Other unusual cases revealed by the Andrews’ plots can also be inves-
tigated. The key thing to remember is that cases are identified as unusual 
because of an unusual profile across all the variables being considered, rather 
than just because they have unusually high or low scores on individual vari-
ables. It is this consideration of the profile which makes Andrews’ plots a use-
ful tool for multivariate data.

In Figure  2.9 it is only unusual cases which can be detected. In other 
circumstances, it may be the case that different groups of similar curves can 
be identified. This is then showing that the dataset can be divided into groups 
according to the variables under investigation. If you see this pattern in your 
Andrews’ plots, you may want to further examine this aspect of your data 
using cluster analysis (see Chapter 5).
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FIGURE 2.9  Andrews’ plot for all cases.
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2.13  A STEP-BY-STEP GUIDE TO 
OBTAINING ANDREWS’ PLOTS 

USING THE EXCEL ADD-IN

	 1.	You must have a column in Excel that contains the names by which 
your cases are known. These are called the “case identifiers”. They 
may be names or codes that you can use to identify the different 
cases, or may be simply case numbers (e.g. case 1, case 2, etc.). You 
must also have columns of data containing the variables which you 
want to include in the construction of the Andrews’ plots.

	 2.	Go through the multivariate analysis add-in’s menus until you get 
the dialogue box for Andrews’ plots.

	 3.	 In the “Case identifiers:” (e.g. names) box, put the range of cells cor-
responding to the column in which the case names, labels or what-
ever (see Step 1) are located.

	 4.	 In the “Variables to plot:” box, put the range of cells corresponding 
to the columns that contain the variables to be used in the plots.

	 5.	 If there is no particular order of importance for the variables you 
wish to plot, then make sure the “Make Andrews’ plots of princi-
pal components” option is selected. If the data do have an order of 
importance, then make sure the “Make Andrews’ plots of data in 
order given” option is selected, but also make sure that in Excel, the 
first column from the left contains the most important variable, fol-
lowed by the next most important, and so on.

	 6.	Make sure the choice for “Titles in the first row” or “No titles in the first 
row” is appropriate for the ranges you have entered at Steps 3 and 4.

	 7.	Decide whether you want colour or black-and-white plots, and select 
the appropriate option.

	 8.	Click “OK”.

The analysis should now take place. The results will be shown in a new work-
book in Excel.

2.14  PRINCIPAL COMPONENTS PLOT

I am a bit reluctant to include this section in the book because it deals with 
producing a plot which deliberately throws away some of the information in 
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the dataset. Put like this, it does sound like a daft idea but when you under-
stand that what is retained in the plot is the most that can be contained in a 
two-dimensional plot and what is thrown away is as little as possible, then it 
does not sound so bad.

A principal components plot is just a two-dimensional scatterplot but rather 
than plotting two variables, it is the first two principal components that are plot-
ted. What are “principal components”? Well, if you have read Section 2.12 about 
Andrews’ plots, then you will have seen them mentioned there along with a brief 
explanation. For obvious reasons, I am not going to repeat myself in this section 
so if you have skipped Section 2.12, then do please go back and find my explana-
tion there. There is one important difference between what we do for Andrews’ 
plots and what we do for a principal components plot. With an Andrews’ plot we 
transform the existing variables into principal components in such a way that if 
we have, say, four original variables, then we get four principal components and 
use them all when creating the Andrews’ plot. For a principal components plot, 
we do the same thing, in that the number of principal components we create is 
the same as the number of variables we start with but we only use the first two 
principal components to create the plot. The remaining components, no matter 
how many of them there are, are simply discarded. This does not sound very sat-
isfactory and indeed is not ideal. However, the principal components are created 
such that the first component contains more information about the data than 
any of the other components. The second component contains more informa-
tion than any of the others apart from the first component. So, although we are 
throwing away some components, we are keeping the two most important ones.

You may already have reached the stage of thinking that, ‘If we’re throw-
ing away information, is there any way we can have an idea of how much we 
are getting rid of?’ The answer is, ‘Yes’. Each principal component that is 
created has associated with it a thing called an eigenvalue. This is just a num-
ber resulting from the mathematics behind creating the principal components 
but it is directly related to the amount of information contained in its associ-
ated principal component. Let me explain further by pointing you towards 
an example. From the dataset discussed in Chapter 1, Figure 2.10 shows the 
principal components plot for four variables: history of science score, politics 
score, sport score and history score. But before we discuss that, let us look at 
Table 2.1. This shows us that the first component contains almost 62% of the 
information that is held by the four variables and the second component con-
tains an additional 17%. Together, they contain almost 79% of the information 
in the original four variables. Thus, although we are throwing away informa-
tion in the third and fourth components, we are only throwing away 21% of the 
overall information. This is not ideal, of course. It would be more comforting 
to find that we were throwing away a very small percentage but on the other 
hand, it could be a lot more that we were losing.
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Having dealt with the issue of how much information we are throwing 
away and thus how much is displayed in Figure 2.10, let us turn to what it 
is showing us. The first principal component (which in this case contains 
62% of the information) is on the horizontal axis, and the second principal 
component (which in this case contains 17% of the information) is on the 
vertical axis. Cases in the dataset which are similar to each other (on the 
basis of these two components) will have points on the plot which are close to 
each other. Cases which are unusual in some way (on the basis of these two 
components) will have points on the plot which are not very near other points. 
As such, the principal components plot is able to show similar patterns to the 
Andrews’ plots.

PC
2

PC1

FIGURE 2.10  Principal components plot.

TABLE 2.1  Percentage of Information Accounted for by Components

COMPONENT EIGENVALUE

PERCENTAGE OF 
INFORMATION IN ORIGINAL 

FOUR VARIABLES 
ACCOUNTED FOR BY 

COMPONENT
CUMULATIVE 
PERCENTAGE

1 2.470 61.753 61.753
2 0.685 17.123 78.876
3 0.509 12.722 91.598
4 0.336 8.402 100.000
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2.15  A STEP-BY-STEP GUIDE TO 
OBTAINING A PRINCIPAL COMPONENTS 

PLOT USING THE EXCEL ADD-IN

	 1.	You must have a column in Excel that contains the names by which 
your cases are known. These are called the “case identifiers”. They 
may be names or codes that you can use to identify the different 
cases, or may be simply case numbers (e.g. case 1, case 2, etc.). You 
must also have columns of data containing the variables which you 
want to include in the construction of the principal components plot.

	 2.	Go through the multivariate analysis add-in’s menus until you get 
the dialogue box for principal components plots.

	 3.	 In the “Case identifiers”: (e.g. names) box, put the range of cells cor-
responding to the column in which the case names, labels or what-
ever (see Step 1) are located.

	 4.	 In the “Variables to plot”: box, put the range of cells corresponding 
to the columns that contain the variables to be used in the plots.

	 5.	Make sure the choice for “Titles in the first row” or “No titles in the 
first row” is appropriate for the ranges you have entered at Steps 3 
and 4.

	 6.	Click “OK”.

2.16  MORE INFORMATION

Over the years, there have been many different graphical displays developed 
for multivariate data. Those shown in this chapter are some of the better-
known ones. Readers interested in finding out more about this topic may like 
to look at Manly (2005) and Brown et al. (2012).
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3Multivariate 
Tests of 
Significance

3.1  WHY DO I WANT TO DO 
MULTIVARIATE TESTS OF SIGNIFICANCE?

If you have reached this stage of reading this book, then it is likely that you 
already know something about what can be called univariate tests of signifi-
cance. These are just the t-tests, F-tests, and simple ANOVA and related meth-
ods of analysis. Here we are calling these univariate because they only have 
one variable which is being analysed at a time. For instance, we may want to 
know if the blood pressure measurements for two groups of patients are the 
same or different. Although we have two bits of information on each patient 
(blood pressure reading and to which group they belong), it is only one vari-
able – the blood pressure – which has its data subjected to various calculations. 
Further information about univariate tests is beyond the scope of this book, 
and if you want to know more, I can recommend Field (2009). However, there 
are an immense number of other books available that discuss these subjects.

Having read the above, you have probably already guessed that multivari-
ate tests of significance are tests which have the same aims as univariate tests 
but have more than one variable being analysed. Hence, expanding the exam-
ple above, rather than just seeing whether or not two groups of patients differ 
in respect to blood pressure readings, a multivariate test could see whether or 
not they differ in respect to both blood pressure and pulse rate. You may now 
be wondering why for this example we do not simply do two univariate tests: 
one for blood pressure and one for pulse rate. This is straying into territory 
that is discussed more thoroughly in Section 3.4, but for now let me simply 
explain that a multivariate test examines both of these variables at the same 
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time, taking into account any relationship between them, whereas doing two 
univariate tests ignores any relationship that exists. On the basis that deliber-
ately ignoring information concerning our variables cannot be a good idea, we 
would prefer the single multivariate test over the two univariate tests.

3.2  WHAT DATA DO I NEED FOR 
MULTIVARIATE TESTS OF SIGNIFICANCE?

As with univariate tests, we need continuous data to be able to undertake mul-
tivariate tests of significance, or at least data which can be regarded as continu-
ous. A discussion of what continuous data is can be found in Chapter 1.

However, having said that all we need is data which are continuous or 
can be treated as continuous, I must point you towards the assumptions that 
are necessary for the multivariate tests of significance that are detailed in the 
various subsequent sections of this chapter. If the data do not satisfy these 
assumptions, then it is irrelevant whether or not the data are continuous or can 
be treated as continuous.

As well as continuous data, we also need to have information about groups 
which exist in the data. The multivariate tests of significance outlined in this 
chapter are all about comparing groups with each other. We must therefore 
have some means of identifying which cases are in which groups.

3.3  THE REST OF THIS CHAPTER

There are many different multivariate tests of significance, and I am not 
attempting to give a comprehensive list here. Instead, I am showing just a few 
tests that between them do the job of testing hypotheses concerning means and 
covariance matrices. The reason I have included these rather than other tests 
which aim to do the same thing is because of the clear parallels they have with 
univariate analyses. This does not necessarily make them the “best” tests but 
they do the job in an understandable way and simply “getting the job done” is 
often sufficient.

The sections that follow in this chapter deal with this comparing of means 
and variation. In the univariate case, we have different tests that we use, 
depending on whether we are comparing two means or variances or we are 
comparing more than two means or variances. It is the same in the multivariate 
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framework. Hence, we start by comparing means for two groups in Section 
3.4 and comparing variation for two groups in Section 3.5. We then follow on 
to compare means for more than two groups in Section 3.6 and variation for 
more than two groups in Section 3.7. As this all sounds a bit complex, I have 
included a flowchart in Figure 3.1 to help. The chapter finishes by pointing 
you towards more information on the topic, should you want it, in Section 3.8.

3.4  COMPARING TWO 
VECTORS OF MEANS

3.4.1  What Are We Testing?

From the dataset discussed in Chapter 1, let us concentrate on three variables: 
systolic blood pressure, diastolic blood pressure and pulse rate. Let us also 
consider the two groups in the dataset defined by gender: male and female. The 
hypotheses that we wish to examine are as follows.

•	 H0:	 males and females have the same means for systolic blood pres-
sure, diastolic blood pressure and pulse rate.

•	 H1:	 H0 is not true.

Have you got 2
GROUPS or MORE
THAN 2 GROUPS?

Is your null hypothesis
about equality of

MEAN VECTORS or
COVARIANCE

MATRICES?

Is your null hypothesis
about equality of

MEAN VECTORS or
COVARIANCE

MATRICES?

 MORE THAN
2 GROUPS2 GROUPS

MEAN
VECTORS

COVARIANCE
MATRICES

Section 3.5

MEAN
VECTORS

COVARIANCE
MATRICES

Section 3.4 Section 3.7Section 3.6

FIGURE 3.1  Flowchart for test.
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3.4.2  What Is a Vector of Means?

Do not be scared by the word vector. It is indeed a mathematical term, but 
essentially it is just another word for “list”. So, when we say we are going to 
compare two vectors of means, it simply implies that we have two groups and 
we want to see if the list of means for one group has the same values as the list 
of means for the other group.

3.4.3  Univariate Tests

In a univariate setting, the vector or list of means for each group would sim-
ply contain one value: the mean for whatever variable is being analysed. We 
would then carry out a t-test (with pooled variance or with separate variances 
if the assumption of equal variances was not appropriate). If the data were not 
normally distributed, we would consider using a non-parametric method of 
analysis instead.

So what would happen if we carried out three separate t-tests for the sys-
tolic blood pressure, diastolic blood pressure and pulse rate? With H0: males 
and females have the same means, H1:  males and females have different 
means, we are operating with a two-sided test. Histograms of the variables 
indicate that they follow a normal distribution sufficiently enough, and as 
the standard deviations are sufficiently similar, pooled variance t-tests are 
appropriate. The results of the three analyses are shown in Table 3.1 which 
shows the relevant means, standard deviations, t-statistics and p-values. We 
conclude that we have insufficient evidence to reject the null hypothesis for 
systolic blood pressure and pulse rate at the 5% level of significance (p-values 
are larger than 0.05), but we do have sufficient evidence to reject the null 

TABLE 3.1  t-Tests of Results

MALE FEMALE

VARIABLE MEAN
STD. 
DEV. MEAN

STD. 
DEV. t-STATISTIC p-VALUE

Systolic 
blood 
pressure

112.25 9.782 110.54 10.468 0.843 0.401

Diastolic 
blood 
pressure

64.88 6.313 62.37 5.573 2.111 0.037

Pulse rate 70.94 9.336 68.85 9.566 1.105 0.272
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hypothesis for diastolic blood pressure at the 5% level of significance (p-value 
is less than 0.05).

Now, one could argue that we have a solution to the hypotheses set out 
in Section 3.4.1 without the need to conduct a multivariate test of signifi-
cance: we can reject the null hypothesis because males and females have 
different diastolic blood pressures. However, by conducting three tests each 
at the 5% level of significance, we have an inflated chance of making what 
is sometimes called a type I error: rejecting the null hypothesis when in 
reality for the population (as opposed to the sample for which we have data 
available for analysis), the null hypothesis is true. When we rejected the null 
hypothesis for the diastolic blood pressure above, we did so on the basis that 
the p-value was 0.037 (3.7%), less than 0.05 (5%). What this 3.7% p-value 
is telling us is that there is a 3.7% chance that what we are observing for 
the diastolic blood pressure could be observed by chance if in fact the true 
means for males and females in the population were the same. When draw-
ing a conclusion about significance, we are in effect saying that because 
3.7% is so small (that is, less than the 5% significance level cut-off we are 
using), we do not believe the differences observed could have happened by 
chance, and must be due to males and females having different mean values 
in the population as a whole.

By conducting three tests, each at the 5% level of significance, we are 
allowing ourselves to have a 5% risk of making a type I error for each test. 
Overall, if we assume that the three tests are independent of each other (not a 
valid assumption, but please wait until a later paragraph for me to pick up this 
issue again), this means that we have a 14.26% chance of making a type I error 
at some point in our triple analysis (1 − (1 − 0.05)3 = 0.1426). This does not 
sound as acceptable as a 5% chance that we normally deal with in hypothesis 
testing!

One solution to this inflated chance of making a type I error would be to 
reduce the significance level we use for each individual t-test to 1.695%, mean-
ing that the overall chance of making a type I error is 5% (1 − (1 − 0.01695)3 
= 0.05). Doing this would now mean that we would accept the null hypothesis 
for the diastolic blood pressure and conclude that instead of rejecting the null 
hypothesis of Section 3.4.1, we now accept it!

Now, above I promised to return to the issue of whether the tests can be 
considered independent of each other. The calculations of the 14.26% and the 
1.695% in the preceding paragraphs were based on this assumption. But how 
realistic is this? If we examine the data, we find that the correlation between 
systolic and diastolic blood pressure in our sample is 0.59. Thus, if there are 
really differences between males and females for diastolic blood pressure, then 
surely that might imply that there could be a difference for systolic blood pres-
sure as well. Looking again at Table 3.1, we see that the p-value for the systolic 
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blood pressure t-test is 40.1%. Although this is not at all near the 5% level 
of significance cut-off, it is nevertheless not terribly high. And indeed this is 
what we would expect: where two variables have a reasonable correlation (such 
as systolic and diastolic blood pressure here), we would expect the p-values 
resulting from identical tests on them to be similar.

So, if we accept that the assumption of independence of the t-tests shown 
in Table 3.1 is not sustainable, what is the probability of at least one type I 
error previously calculated to be 14.26%? What should we use instead of the 
1.695% level of significance above to try and adjust the overall probability 
of a type I error to 5%? To all intents and purposes, the answer to both of 
these questions is, ‘We do not know’. It is possible to do rather gruesome 
calculations to give some sort of idea but this is not a terribly practical way 
of proceeding.

Instead, a neater solution would be to conduct a single multivariate test 
that assesses the equality of the means in one go. We could then use a 5% 
level of significance for this one test. This approach would also have an addi-
tional advantage because we could take into account information about the 
relationships between the three variables being tested. When we did the three 
univariate tests above, we were ignoring the fact that we had access to this 
information, and that cannot be a good thing! In Section 3.4.5 we discuss the 
most popular way of conducting a multivariate test of significance to compare 
two vectors or means: Hotelling’s T 2 test. But before that, in Section 3.4.4 we 
discuss the important topic of what assumptions are being made when con-
ducting the test.

3.4.4  Assumptions Made for Multivariate Test

Before undertaking any hypothesis test, it is wise to consider the assump-
tions being made. For Hotelling’s T  2 test, there are three key assumptions, 
as follows.

	 1.	The cases in the data are independent of each other.
•	 In an ideal world, the cases that make up your data would be 

a random selection from the population of interest in your 
study. In the real world, your sample is likely to consist of 
those who responded to a survey, or those who you were able 
to interview or cases that for some other reason were available 
for data collection purposes. It is important that this data col-
lection stage is undertaken with an appreciation that for most 
statistical analyses, you will need to assume that the data are 
independent of each other. You should thus try and plan your 
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data collection so that your final sample contains cases that are 
as independent of each other as is practically possible. So, for 
example, if you are collecting data from one particular person, 
try to avoid also collecting data from their partner or friend, 
even if it is convenient to do so at the same time. For the data 
we are using here, we can be happy that the independence 
assumption is valid.

	 2.	The data come from a multivariate normal distribution.
•	 In a univariate setting, an assumption that often must be 

made is that a particular variable has a normal distribution. 
This can be checked by looking at a histogram of the variable 
and seeing if it looks roughly like a normal distribution. For 
a multivariate test, it is difficult to create a three-dimensional 
distribution for two variables and see if it looks like a normal 
distribution from all relevant angles. It is even more difficult 
to create a four-dimensional distribution for three variables 
or deal with more dimensions for more variables! In practice, 
if each of the variables being investigated in the multivariate 
test has a normal distribution itself, then we can be reassured 
that jointly they will have a multivariate normal distribution. 
Histograms of all three variables being used here reveal pat-
terns near enough to a classic normal distribution shape for us 
to be happy with this assumption.

	 3.	The covariance matrices for the two populations being investigated 
are the same.
•	 When conducting a univariate t-test using pooled variances, 

one must assume that the variance is the same in both popula-
tions of interest. For Hotelling’s T  2 test, the same assumption 
must be made, but now instead of just considering variances, 
we must consider the entire covariance matrix. The subject of 
what a covariance matrix consists of is addressed in Section 
3.4.5. For now, let me state that what we need to assume is not 
only that the variance for each variable is the same in both 
populations, but also the various covariances. The validity of 
this assumption can be checked by simple inspection of the 
variances and covariances obtained from the data available 
for analysis. We can see from this that the standard devia-
tions (and thus variances) are fairly similar for males and 
females in our sample for all three variables. Inspection of 
the covariances between the variables reveals figures that are 
sufficiently similar for both genders for us to be content with 
this assumption.
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3.4.5  What Is a Covariance Matrix?

The word matrix sounds like another scary mathematical term but it really just 
means a table with rows and columns. An example of a covariance matrix is 
given in Matrix 3.1 for a three-variable situation. It is simply a grid showing 
the variances for each of the variables down the diagonal from top left to bot-
tom right and covariances in the off-diagonal positions. The first column and 
first row is where you will find the covariances involving the first variable. 
The second variable is associated with entries in the second row and column, 
and the third variable corresponds to entries in the third row and column. It is 
easy to see what the pattern will be for situations where there are more than 
three variables.

The matrix is also symmetric. That is, an entry in the first row, second 
column will be identical to the entry in the second row, first column. This is 
because the covariance between variable 1 and variable 2 is the same as the 
covariance between variable 2 and variable 1. The symmetric nature of the 
covariance matrix can be seen more clearly in Section 3.4.6 where the covari-
ance matrices for the three variables being examined here are given.

The practice of putting brackets around the covariance matrix is one of 
convention and need not be of concern. It is a convenient way of showing that 
the matrix is a single entity. Without the brackets, it might not be clear that all 
the figures belong together.

3.4.6  Hotelling’s T 2 Test

We start with the technical bit so that you know what is going on when you do 
Hotelling’s T  2 test. It is not essential that you feel comfortable in undertaking 
each and every step of the calculations yourself, as the add-in provided with 
this book will do it for you. However, it is a good idea if you have at least some 
idea what is going on behind the scenes.

MATRIX 3.1  Example covariance matrix

variance of
variable 1

covariance for
variables 1 and 2

covariance for
variables 1 and 3

covariance for
variables 1 and 2

variance of
variable 2

covariance for
variables 2 and 3

covariance for
variables 1 and 3

covariance for
variables 2 and 3

variance of
variable 3


























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The initial stage is to combine the covariance matrices for the two groups 
in our example: males and females. The separate covariance matrices are 
below. The first row/column corresponds to the systolic blood pressure, the 
second row/column refers to the diastolic blood pressure and the third row/
column refers to the pulse rate. The S notation is to indicate that these are 
covariance matrices obtained from our samples of data.

=
−

−

















S
95.681 37.266 4.303
37.266 39.856 28.439

4.303 28.439 87.166
,male

	

. . .
. . .

. .
S

109 587 33 701 20 210
33 701 31 060 14 979
20.210 14 979 91 505

female =
−

−

















In a univariate setting, when we want to combine two variances to undertake a 
pooled variances t-test, we calculate a weighted average:

	
s

n s n s

n n

1 1
2

2 1 1
2

2 2
2

1 2

( ) ( )= − + −
+ −

where s1
2 is the sample variance from the first group; s2

2
 is the sample variance 

from the second group; and n1, n2 are the number of cases in the data for the groups.
To pool the covariance matrices for Hotelling’s T 2 test, we follow the 

same approach:

	
n n

n n
S

S S1 1
2

male male female female

male female

( ) ( )= − + −
+ −

To multiply a matrix by a constant, as is required here, all you do is mul-
tiply each individual element of the matrix (that is, each number in the matrix) 
by the constant. With nmale being 48 and nfemale being 52 for this data, we obtain 
the following pooled covariance matrix:

S
102.918 35.411 12.581
35.411 35.279 21.434
12.581 21.434 89.424

=
−

−
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To calculate Hotelling’s T 2 statistic, we use the formula 

	
T

n n x x x x

n n

S2 male female male female

T 1
male female

male female

( ) ( )
=

− −
+

−

where x male is the mean vector for the first group, x female is the mean vector for 
the second group and S−1 is the inverse of the pooled covariance matrix. The 
computation of this from S is not straightforward and is not discussed here. 
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However, it is a standard mathematical technique, and further information 
about how we obtain S−1 from S can be found in many places. Here,

=

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








=

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
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
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
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x x
112.25
64.88
70.94

and
110.54
62.37
68.85

male female

so − =














x x
1.71
2.51
2.09

male female

by simply taking each element of x female away from the corresponding element 
of x male. The first row corresponds to the systolic blood pressure, the second 
row refers to the diastolic blood pressure and the third row refers to the pulse 
rate.

The “T” superscript in the x xmale female

T( )−  part of the formula for 
Hotelling’s T 2 statistic means that the vector of differences is written as a row: 

x x 1.71 2.51 2.09male female

T ( )( )− = . Carrying out the appropriate calcula-
tions gives a value of T 2 = 4.708.

Once Hotelling’s T 2 has been calculated, we create an F-statistic so that 
we can compare it with an F-distribution. To create the F-statistic, we use the 
formula

F
n n p T

n n p

1

2
1 2

2

1 2

( )
( )=
+ − −

+ −

where n1 and n2 are defined as above and p is the number of variables involved 
(3 in this example). In our example here, this gives F = 1.537.

The relevant numbers of degrees of freedom to use when we compare this 
F-statistic with an F-distribution are p and n1 + n2 – p – 1, which here are 3 and 
96, respectively. This yields a p-value of 0.210.

As the p-value is more than 5%, we conclude that we have insufficient 
evidence to reject the null hypothesis of Section 3.4.1 at the 5% level of 
significance.

We have arrived at this conclusion whilst maintaining our 5% chance of 
a type I error and also taking into account the information we know about 
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the relationships between the variables. Of course, if we had rejected the null 
hypothesis here, it would not mean that all the mean values are different for 
males and females – it could be that the mean values for some of the variables 
were the same and for others were different. In order to examine what differ-
ences did exist, we would have to investigate further, possibly using univariate 
t-tests.

3.4.7 � A Step-by-Step Guide to 
Comparing Two Vectors of Means 
Using the Excel Add-In

	 1.	You must have a column in Excel that contains the names by 
which your cases are known. These are called the “case identi-
fiers”. They may be names or codes that you can use to identify 
the different cases, or may be simply case numbers (e.g. case 1, 
case 2, etc.). You must also have columns of data in Excel con-
taining the variables whose means you want to include in the 
comparison and a column that tells Excel which of the two groups 
each case is in.

	 2.	Go through the multivariate analysis add-in’s menus until you get 
the dialogue box for multivariate tests of significance.

	 3.	 In the “Case identifiers:” box, put the range of cells correspond-
ing to the column in which the case names, labels or whatever (see 
Step 1) are located.

	 4.	 In the “Variables to use in analysis:” box, put the range of cells cor-
responding to the variable you are using in the analysis.

	 5.	 In the “Group identifiers:” box, put the range of cells corresponding 
to the column that indicates which of the two groups each case in 
the dataset is in.

	 6.	Make sure the Yes/No choice for “Variable names in first line of 
data?” is appropriate for the ranges you have entered at Steps 3, 4 
and 5.

	 7.	Make sure “Means” is selected for “Compare vectors of means or 
covariance matrices?”.

	 8.	Click “OK”.

The analysis should now take place. The results will be shown in a new work-
book in Excel.
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3.5  COMPARING TWO 
COVARIANCE MATRICES

3.5.1  What Are We Testing and How?

When we set about comparing two covariance matrices, we are of course talk-
ing about comparing the variances and covariances contained in the matrices. 
So if we decide that two covariance matrices are similar to each other, then 
what we are really saying is that the variances in the first matrix are similar 
to the corresponding variances in the second, and also that the covariances 
in the first matrix are similar to the corresponding covariances in the second 
matrix.

In the univariate world, the equivalent test is to compare two variances. We 
ask if the variation in a variable for one group is the same as it is for another group. 
This is a question that is asked when undertaking a two-sample t-test: if the vari-
ances for the two groups can be assumed to be equal, then the pooled-variance 
t-test can be undertaken. If that assumption is not justified, then a version of the 
test is used which keeps the variances separate. One way of assessing whether 
or not the assumption is reasonable is to perform Levene’s test. This operates by 
looking at how far each value for a variable is from the mean or median of its 
group. If a group has a high variance, then the values in that group will be, on 
average, quite far away from its mean/median and so its average deviation will be 
high. If a group has a low variance, then the values in that group will be, on aver-
age, quite near its mean/median and so its average deviation will be low. Levene’s 
test simply compares these averages using a standard t-test. If the groups have 
variances which are sufficiently different, then the t-test will give a p-value small 
enough to reject the null hypothesis of equal variances. Of course, when calculat-
ing the average deviation, something must be done to avoid negative deviations 
cancelling out positive deviations. For Levene’s test, absolute values are taken (that 
is, negative deviations are made positive by having their minus signs removed).

In a multivariate setting, the idea behind Levene’s test can again be used. 
Here, we again use the dataset discussed in Chapter 1 and the three variables: 
systolic blood pressure, diastolic blood pressure and pulse rate. We again con-
sider the two groups in the dataset defined by gender: male and female. The 
hypotheses that we wish to examine are as follows.

•	 H0:	 males and females have the same covariance matrices for sys-
tolic blood pressure, diastolic blood pressure and pulse rate.

•	 H1:	 H0 is not true.
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3.5.2	Assumptions Made

Again, as we are undertaking a hypothesis test, it is wise to consider the 
assumptions being made. For the multivariate Levene’s test, there are three 
key assumptions, as follows:

	 1.	The cases in the data are independent of each other.
•	 See Section 3.4.4 for a discussion of this assumption.

	 2.	The data come from a multivariate normal distribution.
•	 Again, please read the relevant part of Section 3.4.4 for a discus-

sion of this assumption but here, instead of the original data for 
systolic blood pressure, diastolic blood pressure and pulse rate, 
it is now the absolute deviations from the mean or median which 
need to be normally distributed.

	 3.	The covariance matrices for the two populations being investigated 
are the same.
•	 It is perhaps a bit odd to have to make an assumption about 

two covariance matrices being the same when the object of 
the test is to compare two covariance matrices. However, here 
the assumption is about the covariance matrices of the abso-
lute deviations rather than the original variables. As described 
in Section 3.4.4, an assessment of this assumption can best be 
made by looking at the two covariance matrices involved and 
seeing whether or not they look similar.

3.5.3  Multivariate Levene’s Test

As with Hotelling’s T 2 test, we start with the technical bit so that you know 
what is going on when the test is undertaken. The Excel add-in provided 
with this book will do the difficult work for you, but it is a good idea for 
you to know something of what is going on. In fact, so much is a repeat of 
a Hotelling’s T 2 test that there is not a lot of additional technical detail to 
present here.

The multivariate Levene’s test starts by taking the group means or medi-
ans away from each variable and taking absolute values. Thus, we take the 
mean or median systolic blood pressure for the males away from actual values 
of systolic blood pressure for each of the males, and ignore any minus signs. 
We also take away the mean or median systolic blood pressure for the females 
from each of the actual values of systolic blood pressure for the females and 
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again ignore any minus signs. This process is then repeated for the diastolic 
blood pressure and pulse rate.

You have no doubt realised by now that I have been very non-committal 
about whether it is the mean or median that should be deducted. This is 
deliberate but I will now explain why. In Section 3.5.2 we stated that the 
absolute deviations from the mean or median had to follow a multivariate 
normal distribution. In reality, no variable is going to have a pattern which 
looks exactly like a normal distribution, but hopefully we will have distri-
butions that are “not too bad” when compared with normality. If this is the 
case, then when choosing between the mean and median for the multivariate 
Levene’s test, we might as well use the mean. A philosophical advantage it 
has over the median is that all the data for the group in question are used to 
calculate it, whereas the median is just one value that happens to be in the 
middle of the distribution. However, this advantage is also its disadvantage 
when it comes to data that have a distribution which is not as close to normal 
as one would wish. In these cases of dubious normality, the calculation of 
the mean might be influenced by some unusually small or large values. The 
median, however, is little affected by these unusual values, and is then to be 
preferred when undertaking the multivariate Levene’s test. To use technical 
language, using the median instead of the mean leads to a more robust test. 
Because of this robustness property, we proceed here by taking away the 
median values.

The vectors of medians (as opposed to the vectors of means shown in 
Section 3.4.6) are

=














=














� �x x
112.0
66.0
70.0

and
111.0
63.0
70.5

male female

The first row corresponds to systolic blood pressure, the second row refers to 
diastolic blood pressure and the third row refers to pulse rate. Once these val-
ues are taken away from the respective variables for each group and absolute 
values taken, we have the following vectors of mean absolute differences and 
associated covariance matrices:
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S
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Inspection of the distributions of the absolute deviations reveals patterns 
similar enough to normal distributions to be happy with this necessary 
assumption, and the covariance matrices are also similar enough for us to 
be happy to proceed. We then proceed to undertake a Hotelling’s T 2 test as 
in Section 3.4.6.

We obtain a T   2 statistic of 4.198 and thus an F-statistic of 1.371 with 3 and 
96 degrees of freedom. This yields a p-value of 0.256.

As the p-value is more than 5%, we conclude that we have insuf-
ficient evidence to reject the null hypothesis of Section 3.5.1 at the 5% 
level of significance. We are thus content that the covariance matrices 
for males and  females are sufficiently similar as to be regarded as the 
same. This gives added justification for the assumption that was made in 
Section 3.4 when we were comparing the two vectors of means for males 
and females.

3.5.4 � A Step-by-Step Guide to Comparing 
Two Covariance Matrices 
Using the Excel Add-In

	 1.	You must have a column in Excel which contains the names by 
which your cases are known. These are called the “case identifiers”. 
They may be names or codes that you can use to identify the dif-
ferent cases, or may be simply case numbers (e.g. case 1, case 2, 
etc.). You must also have columns of data in Excel containing 
the variables whose covariance matrices you want to include in the 



52  Essentials of Multivariate Data Analysis﻿

comparison and a column that tells Excel which of the two groups 
each case is in.

	 2.	Go through the multivariate analysis add-in’s menus until you get 
the dialogue box for multivariate tests of significance.

	 3.	 In the “Variables to use in analysis:” box, put the range of cells 
corresponding to the variable you are using in the analysis.

	 4.	 In the “Group identifiers:” box, put the range of cells corresponding 
to the column that indicates which of the two groups each case in 
the dataset is in.

	 5.	Make sure the Yes/No choice for “Variable names in first line of 
data?” is appropriate for the ranges you have entered at Steps 3 and 4.

	 6.	Make sure “Covariance matrices” is selected for “Compare vectors 
of means or covariance matrices?”

	 7.	Click “OK”.

The analysis should now take place. The results will be shown in a new work-
book in Excel.

3.6  COMPARING MORE THAN 
TWO VECTORS OF MEANS

3.6.1  What Are We Testing, and How?

When we carried out the Hotelling’s T 2 test in Section 3.4, we were compar-
ing the mean vectors for two groups. When we want to compare the mean 
vectors for more than two groups, we have to use something different. It is 
a similar story in the univariate framework: to compare two means we use 
a t-test, but to compare more than two means, we use one-way analysis of 
variance.

The test described in this section does have similarities to the univari-
ate one-way analysis of variance. In that method of analysis, we have to 
consider sums of squares and ratios of mean squares. In the Wilks’ lambda 
test described in Section 3.6.3, we again consider matrices that are sums of 
squares.

We are again going to consider the three variables used in Sections 
3.4 and 3.5 from the dataset described in Chapter 1, namely systolic blood 
pressure, diastolic blood pressure and pulse rate. However now, rather 
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than consider two groups defined by gender, we consider the four groups 
defined by smoking history: “never smoked”, “occasional smoker”, “ex-
smoker”, “current smoker”. The hypotheses that we wish to examine are 
as follows.

•	 H0:	 groups defined by smoking history have the same means for 
systolic blood pressure, diastolic blood pressure and pulse rate.

•	 H1:	 H0 is not true.

3.6.2  Assumptions Made

The assumptions being made are identical to those required for Hotelling’s T 2 
test, as follows. See Section 3.4.4 for more details.

	 1.	The cases in the data are independent of each other.
	 2.	The data come from a multivariate normal distribution.
	 3.	The covariance matrices for the different populations being investi-

gated are the same.

3.6.3  Wilks’ Lambda Test

To give you an idea of the logic behind the Wilks’ lambda test, let us start 
by showing the formula for the test statistic. It may look weird and wor-
risome but do not be overly concerned. The logic is relatively straightfor-
ward, and the Excel add-in provided with this book will do all the necessary 
calculations.

Λ = |W| / |T|

In order to assess the size of this test statistic, a further adjustment must 
be made, as below. The resulting φ can then be compared with a chi-square 
distribution with p(m – 1) degrees of freedom.

n p m1 ln1
2 ( ) [ ]ϕ = − − −  Λ

In this formula, n is the total number of cases in the dataset (100 in this 
case), p is the number of variables being dealt with (3 in this case), and m is 
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the number of groups (4 in this case). The T can be called the total sum of 
squares and cross-products matrix; but rather than let you worry about what 
this means, let me tell you it is just the covariance matrix (the sort of thing 
described in Section 3.4.5), but without any dividing being done. That is, the 
formula for a sample variance in the covariance matrix is

n
x x

1
1

i

i

n
2

1
∑( )

−
−

=

and for a sample covariance is

n
x x x x

1
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i i
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1
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In creating the T matrix, these variances and covariances are calculated but 
the division by n – 1 does not take place. When doing this calculating of T, the 
entire dataset is used in one go. That is, the means x1 , x2 , etc. are calculated 
for all the data together (ignoring the fact that they are in groups), and the 
variances and covariances are created using all the cases in the dataset and 
deliberately not dividing by n – 1.

The W matrix is the within-samples sum of squares and cross-products 
matrix. That is, the covariance matrix without the divisors (i.e. the T matrix) 
is created separately for each group (the four types of smoking habit here). The 
means x1, x2, etc. are now calculated separately for each group, and the indi-
vidual group-specific covariance matrices (without dividing by n – 1) are cal-
culated using them. These individual matrices are then simply added together 
to get the final W matrix.

The notation | T | and | W | is used to indicate the determinant of the T and 
W matrices, respectively. It is beyond the scope of this book to describe the 
determinant in detail – it is a standard mathematical technique which you can 
find out about in many different places if you wish. For the present purposes, 
it is sufficient to explain that the determinant is a single-number measure that 
summarises the matrix. Of particular relevance is the fact that if T and W are 
exactly the same, then | T | and | W | will be identical, meaning that W Tln /[ ]  
= ln[1] = 0 and so φ = 0.

But under what circumstances would T and W be the same? The answer to 
this is, “If the null hypothesis of Section 3.6.1 is true”. Each group contributes 
to the W matrix via calculations that use the vector of means of the variables 
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which are specific to each group. If these vectors of means are identical across 
the groups, then all the W calculations are using the same vector of means, and 
this will be identical to the vector of means used to calculate the T matrix. The 
T and W matrices will then be identical.

Of course, in reality, even if the null hypothesis of Section 3.6.1 is 
true, the data in our sample are never likely to give a vector of means that 
is absolutely identical in each group. However, the more similar the vectors 
of means are, the more similar T and W will be, and hence the nearer to 
zero W Tln /[ ]  will be. The more dissimilar the vector of means, the more 
dissimilar T and W will be, and the further from zero W Tln /[ ]  will be. 
Multiplying W Tln /[ ]  by n p m1 1

2 ( )− − −   gives a test statistic φ which 
can be compared with a chi-square distribution with p(m − 1) degrees of 
freedom.

Here, the four vectors of means for the smoking habit groups are

=
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











x
107.15
59.55
65.30

never smoked

 

=














x
109.75
63.44
73.81

occasional smoker

=
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







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x
111.70
64.75
71.20

ex-smoker

  

=














x
119.17
69.38
73.67

current smoker

Inspection of the distribution of the variables being used shows that 
they follow a normal distribution sufficiently for us to be happy with the 
assumption of multivariate Normality. We also inspect the covariance 
matrices to see if they are sufficiently similar for us to be satisfied with 
the equal covariance matrices assumption, and conclude that although there 
are some differences, they are not so great that they mean we cannot under-
take the test:

S
112.438 31.044 39.482
31.044 27.126 9.856
39.482 9.856 97.241

never smoked =
−

−
















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S
51.267 7.583 15.517
7.583 21.729 8.154
15.517 8.154 56.429

occasional smoker =
−

−

















S
61.589 6.763 26.463
6.763 15.250 15.263
26.463 15.263 71.958

ex-smoker =
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−
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
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
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S
70.406 15.152 11.159
15.152 19.897 6.435
11.159 6.435 60.928

.current smoker =
−

−
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
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







Calculation of the W and T matrices gives

W
7943.633 1801.450 2532.017
1801.450 2131.213 944.713
2532.017 944.713 7407.371

=
−

−




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

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





and

T
10159.040 3577.480 1143.600
3577.480 3614.510 2231.550
1143.600 2231.550 8872.750

.=
−

−

















The (rather large!) determinants that result from these are | W | = 71,993,825,597 
and | T | = 138,673,536,666, giving Λ = 0.519. Put together with the rest of the 
formula for φ gives φ = 65.266 with p(m − 1) = 9 degrees of freedom. This 
yields a p-value of 0.000 to three decimal places.

As the p-value is less than 5%, we conclude that we have sufficient 
evidence to reject the null hypothesis of Section 3.6.1 at the 5% level 
of  significance. We thus say that the four smoking habit groups do differ 
in their means for systolic blood pressure, diastolic blood pressure and 
pulse rate.
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3.6.4 � A Step-by-Step Guide to Comparing 
More than Two Vectors of Means 
Using the Excel Add-In

	 1.	You must have a column in Excel that contains the names by which 
your cases are known. These are called the “case identifiers”. They 
may be names or codes which you can use to identify the different 
cases, or may be simply case numbers (e.g. case 1, case 2, etc.). You 
must also have columns of data in Excel containing the variables 
whose means you want to include in the comparison and a column 
that tells Excel which group each case is in.

	 2.	Go through the multivariate analysis add-in’s menus until you get 
the dialogue box for multivariate tests of significance.

	 3.	 In the “Variables to use in analysis:” box, put the range of cells cor-
responding to the variable you are using in the analysis.

	 4.	 In the “Group identifiers:” box, put the range of cells corresponding 
to the column that indicates which group each case in the dataset is 
in.

	 5.	Make sure the Yes/No choice for “Variable names in first line of 
data?” is appropriate for the ranges you have entered at Steps 3 
and 4.

	 6.	Make sure “Means” is selected for “Compare vectors of means or 
covariance matrices?”.

	 7.	Click “OK”.

The analysis should now take place. The results will be shown in a new work-
book in Excel.

3.7  COMPARING MORE THAN 
TWO COVARIANCE MATRICES

3.7.1  What Are We Testing, and How?

If you have read the previous Sections 3.4, 3.5 and 3.6, you can probably 
guess everything that will be written in this section. When comparing two 
covariance matrices in Section 3.5, we first transformed the data by taking 
absolute deviations from the group medians and then applying Hotelling’s 
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T 2 test (the test used to compare two vectors of means in Section 3.4). Here 
we are going to employ a similar approach: transforming the data by taking 
absolute deviations from the group medians and then applying the likeli-
hood ratio test that we used to compare more than two vectors of means in 
Section 3.6.

Yet again we consider the three variables used in Sections 3.4, 3.5, and 
3.6 from the dataset described in Chapter 1: systolic blood pressure, diastolic 
blood pressure and pulse rate. We consider the four smoking habit groups as 
in Section 3.6 but rather than compare mean vectors, we are now comparing 
covariance matrices for the four groups. The hypotheses we examine are as 
follows.

•	 H0:	 groups defined by smoking history have the same covariance 
matrices for systolic blood pressure, diastolic blood pressure and 
pulse rate.

•	 H1:	 H0 is not true.

3.7.2  Assumptions Made

For the final time in this chapter, let us consider the assumptions that we need 
to make before bothering to carry out all the necessary calculations for the 
test. They are essentially the same as for the three previous tests discussed in 
this chapter, as follows.

	 1.	The cases in the data are independent of each other.
	 2.	The data come from a multivariate normal distribution.

•	 That is, the absolute deviations from the medians need to follow 
normal distributions.

	 3.	The covariance matrices for the different populations being investi-
gated are the same.
•	 As we remarked upon when comparing two covariance matri-

ces in Section 3.5, it feels slightly odd to have to make an 
assumption about the different covariance matrices being the 
same when we want to compare different covariance matrices 
to see if they are the same. However, as before, the assump-
tion is about the covariance matrices of the absolute deviations 
from the group medians rather than the original variables. This 
assumption can best be examined by looking at the different 
covariance matrices involved and seeing whether or not they 
look similar.
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3.7.3 � Combining Levene’s Method and 
the Likelihood Ratio Test

Before undertaking the Wilks’ lambda test of Section 3.6, we need to trans-
form the data we are using in the same manner as when carrying out the 
multivariate Levene’s test in Section 3.5. That is, for each group’s data, we 
deduct the median for each variable. We could use the means instead of the 
medians, but for reasons discussed in Section 3.5, using the medians gives 
a test that is more robust if our assumption of multivariate normality is a bit 
doubtful.

Having transformed the data by taking away the group medians for each 
variable, we get the following four vectors of means for the smoking habit 
groups:

=



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




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abs. diff
8.35
4.15
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abs. diff
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abs. diff
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abs. diff
6.92
3.46
5.83

current smoker

The distributions of these absolute deviations reveal that they are similar to 
normal distributions, so we can be happy with this assumption.

The four covariance matrices are listed below. Although there are some 
differences between them, they are not so great that we feel convinced we need 
to abandon the test at this point.

S
44.438 5.767 7.264
5.767 9.464 1.521
7.264 1.521 32.921

abs. diff,never smoked =
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S
17.516 1.221 5.326

1.221 3.503 2.200
5.326 2.200 26.779
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0.178 7.824 1.841
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We calculate the W and T matrices and work out the determinants to be | W | = 
5,599,990,843 and | T | = 6,225,677,243, giving Λ = 0.899. With the rest of the 
formula for φ, these yield a value of φ = 10.539 with p(m – 1) = 9 degrees of 
freedom again. This gives a p-value of 0.309.

As the p-value is more than 5%, we conclude that we have insufficient 
evidence to reject the null hypothesis of Section 3.7.1 at the 5% level of signifi-
cance. We thus believe that the covariance matrices for the four smoking habit 
groups are sufficiently similar as to be regarded as the same. This gives added 
justification for the assumption that was made in Section 3.6 when we were 
comparing the mean vectors means for the four groups.

3.7.4 � A Step-by-Step Guide to Comparing 
More than Two Covariance 
Matrices Using the Excel Add-In

	 1.	You must have a column in Excel that contains the names by which 
your cases are known. These are called the “case identifiers”. They 
may be names or codes which you can use to identify the different 
cases, or may be simply case numbers (e.g. case 1, case 2, etc.). You 
must also have columns of data in Excel containing the variables 
whose covariance matrices you want to include in the comparison 
and a column that tells Excel which group each case is in.

	 2.	Go through the multivariate analysis add-in’s menus until you get 
the dialogue box for multivariate tests of significance.

	 3.	 In the “Variables to use in analysis:” box, put the range of cells cor-
responding to the variables you are using in the analysis.

	 4.	 In the “Group identifiers:” box, put the range of cells corresponding 
to the column that indicates which group each case in the dataset 
is in.
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	 5.	Make sure the Yes/No choice for “Variable names in first line of 
data?” is appropriate for the ranges you have entered at Steps 3 
and 4.

	 6.	Make sure “Covariance matrices” is selected for “Compare vectors 
of means or covariance matrices?”.

	 7.	Click “OK”.

The analysis should now take place. The results will be shown in a new work-
book in Excel.

3.8  MORE INFORMATION

More information about the topics addressed in this chapter can be found in 
a surprisingly smaller number of places than you might expect. Many books 
about multivariate analysis concentrate on topics discussed elsewhere in this 
book and do not attempt to address the issue of multivariate tests of signif-
icance at all. However, I can recommend the books by Manley (2005) and 
Morrison (2005).
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4Factor Analysis

4.1  WHY DO I WANT TO DO 
FACTOR ANALYSIS?

In many areas of research, the concepts of interest are not directly measurable. 
This is particularly true in the social sciences where intelligence, social class, 
etc. cannot be measured. Often the researcher will, instead, collect other data 
which may be indicators of the unmeasured variable. For example, IQ or edu-
cational attainment can be measured as an indicator for intelligence, and occu-
pation is often used as an indicator of social class.

Factor analysis is designed for just this situation. A set of variables is 
taken and the interrelationships between them are analysed to see whether a 
relatively small number of underlying, unobservable factors give rise to the 
data collected. Factor analysis is similar to multiple regression except that 
the dependent variables are the observed variables, and the regressors are the 
unobserved factors.

Take, for example, the correlation matrix in Matrix 4.1. It is called a 
matrix but a correlation matrix is really just a table of correlations as shown in 
Matrix 4.2. The correlation of a variable with itself is automatically 1 so that 
is what is appearing in the top left to bottom right diagonal in Matrix 4.1. It is 
also symmetric with the correlation between V1 and V2 being the same as the 
correlation between V2 and V1.

In Matrix 4.1, five variables have been recorded. The first two variables 
are very highly correlated with each other but not with the other variables. 
The last three variables are also very highly correlated with each other but not 
with the first two variables. It thus looks like we have a situation where there 
are two underlying factors at work. The first factor is what is behind the results 
for the first two variables: we might suppose that if someone has a high score 
for this unknown factor, then this will show itself through high values for both 
the first and second variables that we know about and have been measured. 
Similarly, there is a second factor which is behind the results for the last three 
variables.
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But what are these two factors? Because they have not been measured 
themselves, we do not really know. However, we can guess at what sort of 
thing they are by looking at what variables they are behind. For instance, say 
that the first variable in Matrix 4.1 was the result of a mathematics test involv-
ing addition, and the second variable was the result of a test involving multi-
plication. We might then suppose on the basis of these two variables that the 
first factor had something to do with the ability of a person to do mathematics. 
Similarly, the third variable in Matrix 4.1 might be the result of a reading test, 
the fourth variable the result of a spelling test and the fifth variable the result 
of a reading comprehension test. We might then suggest that the second factor 
which underlies these three variables has something to do with the ability of a 
person with language.

There is a further issue concerning how these two underlying factors are 
related to each other. In Matrix 4.1, the first two variables have very low cor-
relations with the last three variables, and this suggests that the mathematics 
and language factors are therefore not related to each other. Now, it is not 
sensible for me to speculate in this book about whether or not this sounds 
reasonable. On the basis of the made-up example in Matrix 4.1, it is the case, 
and we shall leave that argument to one side. However, this issue does raise an 
important point, which is that the factors obtained in factor analysis are usu-
ally assumed to be independent of each other. This is a constraint that may not 

MATRIX 4.1  A Hypothetical Correlation Matrix

1·00 0·90 0·05 0·05 0·05
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0·05 0·05 1·00 0·90 0·90
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0·05 0·05 0·90 0·90 1·00
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MATRIX 4.2  Structure of a Correlation Matrix
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be appropriate in some situations, but fortunately there is a way around this. In 
Section 4.7 we look at factor rotation, and although the most common form of 
factor rotation preserves the independence of factors, there are also methods 
that allow factors to be correlated after rotation has taken place.

There are two reasons why you might want to undertake a factor analy-
sis. One is to explore the data and try to identify any underlying factors that 
bring about the data observed. This is termed exploratory factor analysis. 
Alternatively, you might already have an idea of what factors exist behind the 
data which are being measured. You might then be conducting an analysis 
to try to confirm that the data observed match with this idea. This is called 
confirmatory factor analysis. Both exploratory and confirmatory factor analy-
sis can be carried out using the methods described in this chapter. The main 
difference is in how one draws conclusions. The example used here concerns 
exploratory factor analysis but for confirmatory factor analysis, one would go 
through exactly the same decisions and thought processes except for at the end, 
where one would compare what has been discovered with what is said by the 
theory that is being tested.

4.2  WHAT DATA DO I NEED 
FOR FACTOR ANALYSIS?

For factor analysis, we need to have correlations between variables with which 
to work. For continuous data (or data which can be treated as continuous), the 
standard Pearson correlations can be calculated. For ordinal data (categorical 
data where the categories can be put in a meaningful order), Spearman’s rank 
correlations can be calculated. See Chapter 1 for a discussion of types of data.

A correlation matrix can be calculated for a dataset with only a handful 
of cases. However, the more cases that exist in a dataset, the more reliable the 
correlations will generally be because of the additional information about the 
relationships between the variables that exists. There are lots of suggestions 
as to how much data is needed for a factor analysis to be reliable. I will not 
attempt to give a detailed review of all these suggestions, but merely list some 
below. They are not to be treated as firm rules that must be adhered to, but 
should instead be considered guidelines. Some appear to be almost contra-
dicting others, and you should only be concerned if your dataset is distinctly 
smaller than the minimum they suggest.

•	 You should have ten times more cases in your dataset than the num-
ber of factors you wish to interpret.
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•	 You should have five times more cases in your dataset than the num-
ber of variables in your dataset.

•	 You should have at least 100/200 cases in your dataset (take your 
pick!).

4.3  THE REST OF THIS CHAPTER

As the factors underlying the observed data are by their very nature unobserv-
able, you will not be too surprised to hear that undertaking a factor analysis 
to understand more about them is not an exact science. There are a variety 
of ways of extracting the factors, and Section 4.4 deals with two of the more 
common methods. Once we have an idea about what the factors are, we can 
construct scores that we reckon the cases in our dataset might have if we were 
able to measure these unmeasureable factors. This is dealt with in Section 
4.11. In Section 4.7 the issue of factor rotation is addressed. This is essentially 
finding a way of displaying the solution that is easier to interpret. Section 
4.12 gives a step-by-step guide to undertaking a factor analysis. The chapter 
finishes with Section 4.13, where we give sources of more information about 
factor analysis.

4.4  HOW DO WE EXTRACT 
THE FACTORS?

To find out what factors underlie the observed data, the only clues we have 
are the relationships between the observed variables. We thus need to look 
at the correlations between all the variables. We could look at the covari-
ances but these are scale dependent. This means that if we changed our 
measurement units (e.g. from centimetres to metres), the covariances would 
change in magnitude. However, the correlations do not change just because 
the measurement scale changes and so they are normally preferred for factor 
analysis.

Because the factors are unknown, we have to impose some sort of con-
straint on what they might be like in order for us to get anywhere with the 
analysis. Even in confirmatory factor analysis where we might have some idea 
about what the factors might be, it is best practice at this stage to treat them as 
unknown. One of these constraints is that we are able to express our observed 
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variables as linear combinations of the factors, as in Equation 4.1, the general 
factor analysis model:

	

1 11 1 12 2 1 1

2 21 1 22 2 2 2

1 1 2 2

= λ + λ + + λ +

= λ + λ + + λ +

= λ + λ + + λ +

x f f f u

x f f f u

x f f f u

k k

k k

p p p pk k p

�

�

�

�

	 (4.1)

In Equation 4.1, the x1, x2, …, xp are the p observed variables and the f1, f2, …, 
fk are the k unobserved factors. The λs are like regression coefficients, and the 
u1, u2, …, up are like the error terms in regression equations. In factor analysis 
language, the λs are called loadings.

So we have a regression situation and can easily work out the coef-
ficients, λ, right? Well no – although this looks like regression, in reality 
we know nothing about the right-hand side of the equations. We know nei-
ther the λs nor the values of the factors or the error terms. It is because of 
this difficulty that a number of ways of proceeding exist. These are called 
extraction methods. Two of the most common methods are principal com-
ponents analysis and principal axis factoring, and these are discussed in 
Sections 4.4.1 and 4.4.2, respectively. Which is the better method to use? 
I am afraid that this is not a question that can be answered. The two meth-
ods are simply different ways of trying to accomplish the same ends, and 
discussion as to which is better is rather pointless. The issue of which solu-
tion should be believed is addressed in Section 4.10. However, at this point 
it is worthwhile mentioning that on some occasions, an extraction method 
may fail. Many of them operate on the basis of coming up with a solution 
using an iterative method. At some point in the iterative process, an impos-
sible solution may be obtained, and thus the extraction process may fail. If 
this is the case, you then become very grateful that there are a number of 
alternative extraction methods available!

4.4.1  Using Principal Components Analysis

Principal components analysis (PCA) is sometimes treated as a separate topic in 
its own right, outside the topic of factor analysis. Its aim is to take a multivariate 
dataset and reduce its dimensionality. That is, rather than have p variables in 
a dataset, PCA manipulates the data into p components. These are just linear 
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combinations of the original p variables as in Equation 4.2. The coefficients aij 
are just simple multipliers like regression coefficients.
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	 (4.2)

On the face of it, simply replacing the p original variables with p new compo-
nents does not seem such a great advance. However, there are some character-
istics of the components z1, z2, …, zp that make them useful.

The first characteristic is that all the information that is contained in the 
variables x1, x2, …, xp is still retained in the components z1, z2, …, zp, so that 
nothing has been lost in creating the components. The second characteristic 
is that there is an ordering to the components. Of all the z1, z2, …, zp, the first 
component, z1, contains a greater amount of the information originally avail-
able through x1, x2, …, xp than any of the other components. Similarly, z2 con-
tains more information than any of the components other than z1, z3 contains 
more information than any of the components except z1 and z2, and this pattern 
continues through all the components. This is very useful because it means 
that the bulk of the information in the original x1, x2, …, xp is contained in the 
more important components, and some of the components can be discarded.

For instance, let us consider the dataset discussed in Chapter 1 and the 
scores from eighteen areas of general knowledge. From these eighteen vari-
ables we create eighteen components (I will get to the bit about how we do 
this later on – please stick with me for now). Having done this, we find that the 
first component can, on its own, account for over 38% of the information in the 
original eighteen variables. A list of the amount of information accounted for 
by each component can be seen in Table 4.1 (please do not worry about the col-
umn headed “Eigenvalue” at the moment – I will explain it later). This shows 
us that once we consider the first seven components, together they account for 
three-quarters of the information in the eighteen original variables (see the last 
column of the table). Depending on the needs of any analysis we are carrying 
out, we may then decide to disregard the last eleven components. This has 
reduced the dimensionality of the dataset from eighteen to seven components.

Table 4.1 also demonstrates another characteristic of the components. You 
will notice that the percentage of the information in the original data which 
they explain reaches 100% once the last, eighteenth, component is included. 
Now this may not seem too surprising to you but it does have an important 
implication. It means that each tiny bit of the information contained in the 
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original variables finds its way into just one of the principal components. 
There is no sharing of information between components, and this means that 
they are independent of each other. This has important implications for how 
we interpret the results of a factor analysis, and we will return to this later in 
Section 4.7.

How do we do this principal components analysis? What is actually hap-
pening is a mathematical transformation of the eighteen variables into eigh-
teen components. This is often known as an eigenanalysis. Now, the details 
behind this mathematical method are beyond what I am trying to accomplish 
in this book. If you are interested in the details, I would suggest you look at one 
of the books mentioned in Section 4.13, but if you do so and are scared by what 
you see, please do not worry. The important thing to know is that this eigena-
nalysis produces things called eigenvalues and eigenvectors. The eigenvalues 
are things that tell us how much of the information in the original data each 
component accounts for. For our eighteen-variable dataset, they are shown 
in  Table  4.1 and were used to calculate the last two columns of  that  table. 

TABLE 4.1  Percentage of Information Accounted for by Components

COMPONENT EIGENVALUE

PERCENTAGE OF 
INFORMATION IN ORIGINAL 
18 VARIABLES ACCOUNTED 

FOR BY COMPONENT
CUMULATIVE 
PERCENTAGE

1 6.847 38.040 38.040
2 1.797 9.981 48.021
3 1.471 8.172 56.194
4 1.182 6.566 62.760
5 0.908 5.046 67.806
6 0.854 4.745 72.551
7 0.705 3.917 76.467
8 0.639 3.547 80.015
9 0.580 3.224 83.239
10 0.529 2.937 86.175
11 0.453 2.514 88.690
12 0.401 2.227 90.916
13 0.378 2.098 93.015
14 0.343 1.908 94.922
15 0.299 1.661 96.583
16 0.237 1.314 97.897
17 0.221 1.229 99.126
18 0.157 0.874 100.000
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The eigenvectors are the aij coefficients of Equation 4.2 and tell us how each 
variable is related to each of the components. These are the things that we try 
to look at to get an idea of what each of the factors is about. We will get around 
to doing this in Section 4.5.

4.4.2  Using Principal Axis Factoring

There is an important conceptual difference between the approaches taken 
by PCA and principal axis factoring (PAF). If you look back at Equation 4.1, 
you will see that each variable is “explained” by factors f1, f2, etc., with λs 
as weights, but there is also a final error term associated with each variable. 
In PCA, these error terms are discarded, and the principal components are 
derived as straightforward mathematical rearrangements of the original vari-
ables (see Equation 4.2). PAF does not discard these error terms.

PAF uses a concept called a reduced correlation matrix. This is the origi-
nal correlation matrix but instead of having ones on the diagonal, it has val-
ues called communalities. If we consider the general factor analysis model in 
Equation 4.1, we see that it suggests the variables are made up of contributions 
from two sources: the factors and the error term. Thus, any variation we see 
in a variable comes from two sources: the factors and the error term. The pro-
portion of the variation due to the factors is called the communality because 
it comes from a common source: the factors. The variation due to the error 
term is called the unique or specific variation as each error term is particularly 
related to one variable only.

Thus, by replacing the ones on the diagonal of the correlation matrix with 
the communalities, PAF is saying that all it will try to do is explain the varia-
tion as expressed by the communalities. By contrast, PCA, by having ones on 
the diagonal, is trying to explain all the variation. It could thus be said that 
PAF is less ambitious in its aims but more realistic. By posing this as a nega-
tive and a positive, I am trying to show that it cannot easily be said that one 
method is better than another. They are simply two different ways of trying to 
tackle the same problem.

Some readers may have already spotted a problem with PAF. If we want 
to replace the ones on the diagonal of the correlation matrix with the commu-
nalities, then we obviously need to know what these communalities are. But 
in order to find out what the communalities are, we need to know how much 
of the variation is due to the factors, and we do not yet know what the factors 
are. To overcome this, an iterative procedure is used. If we can find an initial 
guess for what the communalities could be, then we could use this as a starting 
point. Going back to basics, we recall that a communality is the proportion of 
the variation for a variable that can be explained by the factors. Given that the 
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factors are supposed to bring about the observed variables, why do we not start 
by considering how much of the variation in a variable can be explained by the 
other variables in the dataset? To do this, we can undertake a straightforward 
multiple regression. For the variable x1, we undertake a regression where all 
the other variables x2, x3, …, xp are explanatory variables. We can then see how 
much of the variation in x1 is explained by the regression by considering the 
coefficient of determination or R2 value. This can be our initial guess of the 
communality for x1. We repeat the process for all the other variables and thus 
obtain an initial guess of the communality for each. The hypothetical correla-
tion matrix of Matrix 4.1 then looks like that shown in Matrix 4.3. The main 
diagonal elements have been replaced by communalities while the correlations 
in the off-diagonal positions have remained the same.

A PCA factor analysis of the reduced correlation matrix is then under-
taken. However, this is not the end of the story because the communalities 
used so far have just been initial guesses. The results of the PCA factor analy-
sis on the reduced correlation matrix are now taken and new communalities 
are calculated. For a particular variable, this is done by taking the eigenvec-
tors resulting from the PCA factor analysis, squaring all the elements relating 
to this variable and adding them. Strictly speaking, it is elements of scaled 
eigenvectors (such as shown in Table  4.2) which are squared and summed. 
If this explanation sounds rather brief, then I apologise, but it is beyond the 
scope of this book to start showing the steps of the calculations in too much 
detail. I hope that it gets across the idea of what goes on rather than the detail. 
Readers who are still frustrated could look at one of the books mentioned in 
Section 4.13.

The new communalities are then put into the reduced correlation matrix 
to replace the initial guesses, and the whole process is repeated. In fact, it is 
repeated and repeated until eventually the changes between each iteration are 
so small that they are not important. We then have a final PAF solution that we 
can then go on to interpret (see Section 4.7).

There is one issue which I have carefully ignored in the above descrip-
tion of how the PAF method works. Once we have done one lot of PCA on 
the reduced correlation matrix and replaced the initial guessed communalities 

MATRIX 4.3  Hypothetical Reduced Correlation Matrix
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with ones calculated from the scaled eigenvectors, the next lot of communali-
ties calculated will be identical to those just calculated if we use all the factors 
extracted by the PCA of the reduced correlation matrix. This is because using 
all the factors extracted by a PCA does, by the nature of its mathematics, com-
pletely reproduce what it started with. However, we know from the eigenvalues 
(such as shown in Table 4.1) that not all the factors extracted by the PCA will 
actually account for much of the information in the dataset, and many can be 
considered to be no more than noise. By excluding these noise factors from the 
calculation of the new communalities in PAF, we overcome this problem of the 
iterating procedure getting stuck because the PCA solution without the noise 
factors will not exactly reproduce the same communalities again and again. So 
what are the noise factors? This is something we tackle in Section 4.6, but for 
now let us rest our investigation of PAF until Section 4.7 with the knowledge 
that it can be carried out if we know how many factors we want to include in 
our final solution.

TABLE 4.2  PCA Loadings for General Knowledge Area Data

GENERAL 
KNOWLEDGE AREA

COMPONENT

1 2 3 4 … 18

History of science 0.603 0.019 0.024 −0.339 −0.098
Politics 0.729 0.263 0.169 −0.234 −0.013
Sport 0.573 0.343 0.328 0.313 0.070
History 0.740 0.366 0.024 −0.267 −0.044
Classical music 0.435 −0.078 −0.752 −0.085 −0.052
Art 0.600 −0.359 0.061 −0.289 0.155
Literature 0.623 0.108 −0.369 −0.253 0.027
General science 0.663 −0.076 0.015 0.330 0.104
Geography 0.559 0.252 −0.387 0.408 −0.053
Cookery 0.501 −0.492 −0.291 0.206 0.078
Medicine 0.444 −0.662 −0.174 0.190 −0.112
Games 0.584 0.297 0.040 0.428 −0.035
Discovery and 
exploration

0.744 0.238 −0.140 −0.137 0.195

Biology 0.728 −0.022 0.206 0.233 −0.079
Film 0.665 −0.245 0.151 −0.216 0.007
Fashion 0.605 −0.380 0.373 −0.102 −0.137
Finance 0.738 0.271 0.089 −0.056 −0.103
Popular music 0.403 −0.394 0.360 0.137 0.081
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4.5  INTERPRETING THE RESULTS 
OF A PCA FACTOR ANALYSIS

Let us return to our principal components analysis. The eigenvalues of 
the correlation matrix are shown in Table 4.1. If we want to try to identify 
what the underlying factors might be, we need to look at the eigenvectors 
(also known as loadings) created in the eigenanalysis. They are shown in 
Table 4.2. First, just take a look at the columns of numbers in this table and 
see if there is a pattern. If you look closely, you will spot that the loadings 
for the first component tend to be larger (further from zero – in a positive 
or negative direction) than those for the second component, which in turn 
are a bit larger than those for the third component, and so on. There is a 
good reason for this: the eigenvectors have been displayed in such a way 
that the importance of the component has been taken into account. The 
first component is the most important, so its loadings are larger than the 
others. Similarly, the second component is more important than those that 
follow it, and so on. The loadings for the eighteenth component are all very 
near zero.

We now try and work out from Table  4.2 what the underlying factors 
might  be. If we look at the first component, we see that a lot of the load-
ings are relatively similar in size, in the range 0.5 to 0.75. Only three of them 
are below 0.5: those for Classical music, Medicine and Popular music. Is it 
a coincidence that both of the music-related general knowledge areas are in 
this group? Probably not. We might interpret this component as revealing that 
the first (and therefore most important) factor in determining the scores is a 
person’s knowledge about “things in general”, excluding music and medicine. 
Some people simply know lots about “things in general”. It is not a skill that 
can be easily measured but the results of the general knowledge tests and our 
subsequent use of factor analysis has revealed it as an important factor.

What about medicine and music? Why are they excluded? Well, if we now 
look at the second component, we see that the area which is most important is, 
in fact, Medicine. The fact that the loading is negative is not significant when it 
comes to importance. It is the fact that it is not near zero that makes it impor-
tant. This implies that someone’s knowledge of medicine is a factor in its own 
right. OK, so there are some other areas whose loadings are not an awfully 
long way away from the loading for Medicine, but this interpreting of factors 
is not an exact science – we need to be able to talk in generalities, and gener-
ally speaking, the second factor is much more closely connected to someone’s 
knowledge of medicine than anything else.
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By the time you get to this paragraph, some of you may already have an idea 
of what to do next, and have spotted that in the third component, there is again 
just one area which has a high loading: Classical music. Thus, the third factor is 
apparently associated with how much knowledge of classical music a person has.

The fourth factor is more difficult to interpret. High loadings are observed 
for Geography and Games, with loadings for History of science, Sport and 
General science not far behind. However, the loadings are not really that high. 
This indicates that this is a less important factor than the previous ones. Also of 
great importance is the fact that although the loadings for Geography, Games, 
Sport and General science are all positive, the loading for History of science is 
negative. This has an impact on how we interpret the factor. We could say that 
the fourth factor is thus associated with how great a knowledge of geography, 
games, sport and general science a person has AND how little knowledge they 
have of the history of science.

We could go on and on but we would find that it would become more 
and more difficult to make sensible interpretations. This is hardly surprising 
because as we go through the components, we find ourselves dealing with 
underlying factors that are increasingly unimportant. Once we reach the last 
component, there is nothing of note at all. What do we conclude? We conclude 
that it is just random noise and does not really mean anything.

4.6  HOW MANY FACTORS ARE THERE?

In Section 4.5 we saw that the interpretation of the results of the factor analysis 
was not too bad when we were examining the first few components/factors. 
However, when we came to the less important factors, things started to get 
difficult; and by the time we were at the last component/factor, we simply 
regarded it as noise. This raises the question about when we should we stop 
trying to interpret factors. I am afraid to say that there is no simple answer. 
There are a number of suggested rules, but none are perfect.

One suggestion is that we should only bother looking at factors if the eigen-
value associated with it is greater than one. Thus, in Table 4.1 we see that we 
have four eigenvalues greater than one, and should therefore try and interpret 
just four factors and disregard the rest. However, the fifth eigenvalue is 0.908, 
and thus the fifth factor explains only slightly less than the fourth factor. It could 
then also be argued that the sixth eigenvalue is only slightly smaller than the 
fifth, and we should therefore try and interpret the sixth factor as well. It would 
be more difficult to continue on with this reasoning to the seventh factor as the 
seventh eigenvalue is noticeably smaller than the sixth factor. Anyway, the above 
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argument shows that having an arbitrary cut-off of one is sometimes difficult to 
justify. So why is it mentioned? The reason for using one as the suggested cut-off 
is that it is the average eigenvalue. The sum of the eigenvalues always equals the 
number of variables (eighteen in this case), so the average is exactly one.

Another suggestion to determine the number of factors is to say that we 
want to have enough factors so that cumulatively they account for at least 80% 
of the information in the original variables. In our example, Table 4.1 shows 
that we would need eight factors. Of course, there is nothing special about the 
80% cut-off, so we might quite justifiably choose 70% (six factors) or 75% 
(seven factors) instead.

A third suggestion is something called a scree plot. This is a simple plot of 
the sizes of the eigenvalues against their order. A scree plot for the eigenvalues in 
our example (in Table 4.1) is shown in Figure 4.1. Now, a scree plot is so called 
because it is trying to identify the rubbish at the bottom of a cliff-face (which is 
called scree). At least a cliff-face is what we would like our scree plot to look like. 
If our scree plot looked like Figure 4.2, then we could say that the first three eigen-
values are at the top of the cliff and the remaining sixteen are the rubbish at the 
bottom of the cliff. However, all we can say from our real scree plot in Figure 4.1 
is that the first factor is definitely important, and beyond that we are unsure!

So, how many factors should we interpret for the dataset we are examin-
ing here? The answer is, “It’s up to you!” So long as you can defend what you 
are doing should someone challenge you, then you are at liberty to go along 
with any of the above ways of deciding how many factors you should have. 
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FIGURE 4.1  Scree plot for eigenvalues of correlation matrix for general knowl-
edge data.
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For some readers, this may be an uncomfortable message, but I am afraid you 
are stuck with it.

It is tempting for me to finish this section here and not actually commit 
myself to saying what I would do when faced with the general knowledge 
dataset. However, this would be unfair to readers and, anyway, I need to make 
a decision before I go on to Section 4.7. I am going to choose six factors to 
extract because although only the first four eigenvalues are above one, the fifth 
and sixth are not too far behind. There is then a bit of a drop to the seventh 
eigenvalue, and thus I am going to regard this as part of the noise and not 
related to a real factor. Also, including the fifth and sixth factors increases the 
amount of information accounted for from just 63% with four factors to over 
70% (see cumulative percentage column of Table 4.1). It would be nice for this 
figure to be higher, but we will have to live with this relatively low figure.

4.7  INTERPRETING THE RESULTS OF 
A PAF FACTOR ANALYSIS

As explained in Section 4.4.2, we need to decide how many factors we are 
going to extract before undertaking a principal axis factoring (PAF) factor 
analysis. As explained in my concluding remarks in Section 4.6, I have decided 
that six factors are appropriate here.
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FIGURE 4.2  Ideal scree plot.
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The first thing to be aware of when interpreting a PAF factor analysis is 
that the eigenvalues associated with the final solution are not the same eigen-
values that are associated with the correlation matrix. This is hardly surprising 
as the PAF eigenvalues are obtained from a matrix which is different from 
the correlation matrix (recall Section 4.4.2). Examining Table 4.3, we see that 
now the five factors cumulatively only account for about 59% of the varia-
tion, which is considerably less than the 73% that Table 4.1 suggested might 
be obtained. The eigenvalues for Factors 5 and 6 have become much lower 
than one, indicating that they might not be so important after all. Even the 
eigenvalue for Factor 4 has descended to well below one. This suggests that 
maybe we should only concern ourselves with three factors, and the PAF factor 
analysis rerun with this information used when calculating the communalities 
at each iteration. However, this would make very little difference to the figures 
in Tables 4.3 and 4.4, so we continue our interpretation of the output shown in 
these tables.

The pattern of loadings shown in Table 4.4 is quite similar to that for PCA. 
For the first factor, there are three low loadings that stand out: for Classical 
music, Medicine and Popular music. It could be argued that the loading for 
Cookery is now also low enough to be classed with these, but the interpretation 
of this first factor is essentially unchanged: it is how much people know about 
“things in general” apart from Music and Medicine (and possibly Cookery).

Just as with the PCA factor analysis, the second factor is undoubtedly 
connected to knowledge of Medicine, and the third factor is connected with 
Classical music. For the fourth factor, not much stands out: mainly games and 
geography. Here, the solution differs slightly from the PCA solution which had 
other variables coming into this factor as well. The fifth factor is rather tricky 
to interpret, and I will leave this to one side as it is one of the least important 
factors extracted and quite possibly should be regarded as just noise. Rather 

TABLE 4.3  Percentage of Information Accounted for by Five Factors Using PAF

FACTOR EIGENVALUE

PERCENTAGE OF INFORMATION 
IN ORIGINAL 18 VARIABLES 

ACCOUNTED FOR BY 
6 EXTRACTED FACTORS

CUMULATIVE 
PERCENTAGE

1 6.459 35.881 35.881
2 1.384 7.688 43.569
3 1.094 6.077 49.646
4 0.778 4.322 53.968
5 0.478 2.658 56.626
6 0.446 2.477 59.103
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conveniently though, the sixth factor is more easily interpreted, with Biology 
having the highest loading. However, this loading is not very large. We will 
return to the issue of how easy it is to interpret factors in Section 4.9 when we 
consider rotating factor solutions.

4.8  COMMUNALITIES BRIEFLY REVISITED

In Section 4.4.2 we explained about communalities. For a particular vari-
able, the communality represents the proportion of its variation that can 
be accounted for by the factors extracted. For a PCA factor analysis where 

TABLE 4.4  PAF Loadings for General Knowledge Area Data

GENERAL 
KNOWLEDGE 
AREA

FACTOR

1 2 3 4 5 6

History of 
science

0.573 −0.012 0.007 −0.229 −0.282 0.105

Politics 0.714 0.248 0.120 −0.223 −0.158 −0.031
Sport 0.558 0.311 0.267 0.236 −0.126 −0.267
History 0.734 0.356 −0.009 −0.251 −0.066 0.090
Classical 
music

0.425 −0.103 −0.685 −0.053 0.104 −0.065

Art 0.568 –0.294 0.058 –0.181 0.060 0.073
Literature 0.598 0.075 −0.309 −0.186 0.147 −0.132
General 
science

0.639 −0.076 0.018 0.263 −0.221 0.173

Geography 0.538 0.198 −0.323 0.310 −0.070 −0.143
Cookery 0.477 −0.424 −0.205 0.125 −0.152 −0.149
Medicine 0.430 −0.603 −0.123 0.157 −0.121 0.130
Games 0.566 0.243 0.038 0.363 0.249 −0.089
Discovery and 
exploration

0.725 0.194 −0.127 −0.092 0.109 0.146

Biology 0.732 −0.033 0.230 0.288 0.210 0.339
Film 0.643 −0.219 0.132 −0.183 0.258 −0.015
Fashion 0.597 −0.363 0.366 −0.139 0.149 −0.256
Finance 0.713 0.236 0.051 −0.060 −0.081 0.017
Popular music 0.372 −0.273 0.232 0.026 −0.112 −0.167
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all the factors are considered worth extracting, the communalities will be 
exactly one for all the variables. However, this never happens in reality, so 
communalities associated with a final solution will be less than one. For 
the PCA factor analysis and PAF factor analysis of the general knowledge 
data, with six factors extracted, the final communalities are displayed in 
Table 4.5.

You will notice from Table  4.5 that the communalities from the PAF 
factor analysis are smaller than those from the PCA factor analysis. This 
is not surprising as in the PCA factor analysis, the first five factors manage 
to account for about 73% of the variation in the data, whereas the first five 
factors in the PAF factor analysis only manage to account for 59% of the 
variation.

It can also be seen that there is considerable variation between the 
variables in the size of their communalities. There is also considerable 
variation between the extraction methods. Popular music has the highest 
communality for the PCA analysis but the smallest for the PAF analysis. 

TABLE 4.5  Final Communalities for General Knowledge Area Data

COMMUNALITIES

GENERAL KNOWLEDGE 
AREA

PCA FACTOR 
ANALYSIS

PAF FACTOR 
ANALYSIS

History of science 0.763 0.471
Politics 0.709 0.661
Sport 0.685 0.623
History 0.764 0.741
Classical music 0.791 0.678
Art 0.654 0.454
Literature 0.716 0.532
General science 0.714 0.563
Geography 0.735 0.554
Cookery 0.655 0.511
Medicine 0.757 0.620
Games 0.773 0.583
Discovery and exploration 0.683 0.622
Biology 0.765 0.832
Film 0.724 0.579
Fashion 0.740 0.730
Finance 0.635 0.578
Popular music 0.795 0.308
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This highlights one “feature” of factor analysis: the method of analysis you 
choose can have an effect on the results you obtain. We return to this issue 
in Section 4.10.

4.9  ROTATING FACTOR LOADINGS

Consider for a moment a hologram, such as you may well have on a bank card. 
If you look at the hologram from one angle, you get one view of the picture. 
However, if you move the card around, then you see the picture from a differ-
ent angle, and see a different view of whatever is pictured.

What does this have to do with factor analysis? Well, the results of extract-
ing factors using a principal components analysis or principal axis factoring 
method give us one view of the solution. If we imagine the results as a holo-
gram, we could perhaps look at the solution from a different angle and see a 
different view of the solution. If we could do this, it might well be possible that 
we would find a view of the solution that actually gives us a “better” view. In 
terms of interpreting the results of a factor analysis, a “better” view would be 
one which can be more easily interpreted.

This idea of looking at a factor analysis solution from a different angle 
is called rotation. If we go back to the hologram on your bank card, hold it 
in front of you and imagine three axes: one pointing straight up, one pointing 
right and one pointing straight at you. Now, when you move the card around to 
see a different view of the hologram, you can imagine the axes moving around, 
or rotating.

Another way of thinking about rotation is to imagine the televising of 
a football match. At certain points in the football match, different cameras 
are used to give different views of the action. Depending on the action, some 
cameras give a better view of what is occurring than others although all the 
cameras are recording the same action. What we want to do is find the angle 
that shows us the action best.

So far I have used the words “better” and “best” about the results of 
rotating a factor analysis solution, and just mentioned that this means a 
more interpretable solution. However, if we want to actually implement a 
rotation, we have to know how to do it mathematically. That is, for instance, 
we want to know exactly where to move the axes when you are looking 
at your bank card’s hologram. So what makes one factor analysis solution 
more interpretable than another one? Let us return briefly to Sections 4.5 
and 4.7. When interpreting these solutions, the easiest factors to interpret 
were probably Factors 2 and 3. Factor 2 was related to mainly just one of 
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the general knowledge areas: Medicine, and Factor 3 was similarly related 
to just one area: Classical music. This then gives us a clue as to what makes 
a factor interpretable: it is very useful if a factor has high loadings (in abso-
lute value terms, ignoring minus signs) for a small number of variables and 
low loadings (near zero) for the rest of the variables. So, can we come up 
with a way of rotating a solution so that the rotated solution has these char-
acteristics? The answer is, ‘We can try’. What we want to do is make the 
loadings for a factor as different from each other as possible and, from a 
mathematical point of view, this can be likened to making the variance as 
large as possible. This is the basis behind the varimax rotation. This is, by 
far, the most commonly used of all rotations. The exact mathematics behind 
it is beyond the scope of this book but the principles involved are those just 
outlined above.

The results of applying the varimax rotation to the PCA loadings of 
Table 4.2 are shown in Table 4.6. The results of applying varimax rotation to 
the PAF loadings of Table 4.4 are shown in Table 4.7. You should not let the 
fact that we call the columns “components” for PCA and “factors” for PAF 
worry you. It is merely a convention that is not very important.

For the PCA analysis, the rotated components are quite different from the 
unrotated ones. The first component has high loadings for History of science, 
Politics, History, Discovery and exploration, and Finance. Thus we might 
think of this component as being how “well-read” the subjects in the dataset 
are. That is, the component differentiates between people who have obtained 
information (about both past and current events) and those who have not. The 
second component has high loadings for Sport and Games which have a clear 
link, but there is also a high loading for Biology. It might be suggested that 
people who are interested in sport and games might also have a knowledge 
of how the human mind and body perform in such events and may thus know 
about biology as well. The third component is much easier to interpret: high 
loadings for Art, Film and Fashion indicate that this component has something 
to do with knowing about artistic trends. The high loadings for General sci-
ence, Cookery and Medicine for the fourth component do not appear at first 
glance to have much to do with each other. Perhaps this component could 
be termed “general knowledge” as these three subject areas are things that 
everyone comes into contact with on a regular basis. The fifth component has 
high loadings for Classical music and Literature and is clearly related to arts 
culture (as opposed to the third component which might be thought of as more 
contemporary arts culture). The sixth factor is clearly related to knowledge of 
Popular music.

For the PAF analysis, the interpretation of the first three factors follows 
quite closely that of the PCA analysis. There is absolutely no difference in 
interpretation of Factor 1. In Factor 2, the PAF analysis does not have a high 
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loading for Biology and thus the factor is just related to knowledge of sport 
and games. In Factor 3, Film and Fashion are again important. However, Art 
is less important in the PAF analysis and at the same time, Popular music is 
more important. None of these differences, though, really change the basic 
interpretation of what the factor is about. For the fourth factor in the PAF 
analysis, we do see a complete disagreement with the PCA analysis. It is the 
fifth component in the PCA analysis which becomes the fourth in the PAF 
analysis, being associated with Classical music and Literature. This “promo-
tion” of the factor is not a shock. When you consider the eigenvalues for the 
fourth and fifth components/factors, they are very similar, so the fact that 
they are swapped around is not too surprising. The fifth PAF factor is quite 
like the fourth PCA component, although the loading for Medicine is more 
dominant than for the PCA analysis. The PCA and PAF analyses completely 

TABLE 4.6  PCA Loadings for General Knowledge Area Data after Varimax 
Rotation

GENERAL 
KNOWLEDGE 
AREA

COMPONENT

1 2 3 4 5 6

History of 
science

0.792 −0.092 0.107 −0.333 −0.047 −0.050

Politics 0.730 0.270 0.238 0.018 −0.137 −0.165
Sport 0.398 0.635 −0.013 0.032 0.044 −0.348
History 0.744 0.291 0.205 0.071 −0.276 −0.058
Classical music 0.095 0.015 0.071 −0.275 −0.828 0.121
Art 0.316 0.009 0.649 −0.354 0.090 0.026
Literature 0.344 0.131 0.273 0.032 −0.701 −0.112
General 
science

0.413 0.435 0.015 −0.589 0.005 −0.081

Geography 0.210 0.542 −0.231 −0.227 −0.525 −0.130
Cookery 0.046 0.062 0.128 −0.650 −0.358 −0.285
Medicine −0.020 0.023 0.300 −0.804 −0.114 −0.087
Games 0.074 0.830 0.217 −0.030 −0.173 0.031
Discovery and 
exploration

0.537 0.384 0.310 −0.098 −0.349 0.141

Biology 0.291 0.613 0.433 −0.337 0.051 0.023
Film 0.208 0.200 0.745 −0.107 −0.206 −0.179
Fashion 0.178 0.153 0.657 −0.170 −0.010 −0.473
Finance 0.611 0.412 0.193 −0.044 −0.190 −0.130
Popular music 0.104 0.056 0.187 –0.212 0.011 –0.837
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disagree on the sixth factor. Whereas it was Popular music for the PCA analy-
sis, it is Biology for the PAF analysis. The reason for this may be due to the 
previous five factors. Whereas the information about Biology was incorpo-
rated into the second component in the PCA analysis, it is not accounted for 
by any of the first five PAF factors and therefore still needs to be accounted 
for in the sixth factor. At the same time, Popular music was never likely to be 
the sixth factor for the PAF analysis as it had already been incorporated into 
its third factor.

We have solutions from the PCA and PAF analyses which give us partially 
different interpretations (although there are many clear points of agreement as 
well). We will discuss how we overcome this slight difficulty in Section 4.10. 
One thing that is very clear though is that interpreting all six components/fac-
tors has been easier when looking at the rotated solutions than when looking at 

TABLE 4.7  PAF Loadings for General Knowledge Area Data after Varimax 
Rotation

GENERAL 
KNOWLEDGE 
AREA

FACTOR

1 2 3 4 5 6

History of 
science

0.596 0.029 0.170 −0.089 −0.279 0.018

Politics 0.710 0.276 0.256 −0.104 −0.050 0.050
Sport 0.357 0.669 0.199 0.078 −0.041 0.007
History 0.762 0.238 0.144 −0.230 0.029 0.168
Classical music 0.134 0.028 −0.016 −0.774 −0.245 0.027
Art 0.315 −0.044 0.446 −0.173 −0.287 0.203
Literature 0.371 0.165 0.229 −0.556 −0.038 0.066
General 
science

0.365 0.325 0.077 −0.043 −0.498 0.261

Geography 0.226 0.528 −0.085 −0.401 −0.230 0.062
Cookery 0.069 0.134 0.269 −0.294 −0.572 −0.047
Medicine 0.014 −0.055 0.260 −0.165 −0.701 0.174
Games 0.149 0.613 0.150 −0.201 −0.009 0.350
Discovery and 
exploration

0.549 0.229 0.154 −0.360 −0.070 0.332

Biology 0.310 0.346 0.273 −0.012 −0.276 0.683
Film 0.296 0.063 0.584 −0.222 −0.131 0.283
Fashion 0.192 0.153 0.789 −0.015 −0.202 0.080
Finance 0.601 0.347 0.187 −0.158 −0.096 0.164
Popular music 0.127 0.156 0.411 0.080 −0.302 −0.038
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the unrotated solutions. We can thus see that the process of rotating the solu-
tions has achieved its goal.

The amount of variation in the data accounted for by each rotated factor is 
different from that accounted for by the unrotated factors. The percentages for 
each component/factor are shown in Tables 4.8 and 4.9. If you compare these 
tables with Table 4.1 and Table 4.3, you will see that the six rotated compo-
nents/factors cumulatively account for the same amount of information as the 
unrotated components/factors. The main difference is that the first rotated fac-
tor is not as dominant as the first unrotated factor and that, as a result, the other 
components/factors have become more important than before.

There are several other rotation methods that try to do things similar to 
the varimax rotation. It is beyond the scope of this book to discuss these but 
I must stress again the fact that, by far, the most common rotation method to 
use is varimax.

TABLE 4.9  Percentage of Information Accounted for by Varimax Rotated PAF 
Factors

FACTOR EIGENVALUE

PERCENTAGE OF INFORMATION IN 
ORIGINAL 18 VARIABLES 

ACCOUNTED FOR BY FACTOR
CUMULATIVE 
PERCENTAGE

1 2.933 16.296 16.296
2 1.736 9.645 25.941
3 1.847 10.263 36.204
4 1.542 8.567 44.771
5 1.585 8.807 53.578
6 0.994 5.525 59.103

TABLE 4.8  Percentage of Information Accounted for by Varimax Rotated PCA 
Components

COMPONENT EIGENVALUE

PERCENTAGE OF 
INFORMATION IN ORIGINAL 
18 VARIABLES ACCOUNTED 

FOR BY COMPONENT
CUMULATIVE 
PERCENTAGE

1 3.155 17.527 17.527
2 2.521 14.003 31.529
3 2.161 12.005 43.534
4 1.998 11.098 54.633
5 1.936 10.755 65.388
6 1.289 7.163 72.551
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4.9.1  Non-Orthogonal/Oblique Rotations

The results of using a principal components or principal axis factoring method 
for extracting the factors give us factors that are independent of each other. 
This means that there is no correlation between these underlying factors. Now, 
while that may well be a perfectly rational position to take in many circum-
stances, there may also be occasions on which this does not seem so realistic. 
In these circumstances, a type of rotation can be undertaken which gives fac-
tors that can be correlated with each other. These are called non-orthogonal 
or oblique rotations (whereas rotations where independence is maintained 
are called orthogonal). There are various sorts of rotation that give this result 
but one of the most commonly used is promax. Further coverage of this here 
would take this book beyond its scope of covering the essentials of multivari-
ate analysis.

4.10  SO WHICH SOLUTION 
DO WE BELIEVE?

In the above sections we have seen four solutions: unrotated PCA, unrotated 
PAF, rotated PCA and rotated PAF. I have also mentioned that there are other 
extraction and rotation methods. Which should you believe?

The answer to this question is partly philosophical and partly practical. 
From a philosophical point of view, you either believe in rotating a solution or 
you do not. Most people who carry out factor analysis are happy to carry out 
rotation but there are some who see it as not being good practice. They argue 
that just because a solution is not easily interpreted, this is not a good reason to 
throw it away and find something that is easier. However, a counter-argument 
could be that so long as you have decided to rotate the solution before you 
begin the analysis, and stick to this decision no matter what the unrotated 
solution looks like, then you are not simply picking the solution that fits your 
preconceptions best. So my advice would be to make a decision about rotat-
ing and stick to it. If you have decided to rotate, then do not bother looking at 
the unrotated solution. Similarly, if you have decided not to rotate, then go no 
further than interpreting the unrotated solution.

That philosophical part of the answer helps us cut down the number of 
solutions to either rotated or unrotated ones. We still have a number of possible 
extraction methods available; and although in this chapter our example dataset 
gives very similar solutions whether PCA or PAF methods are used, this is not 



86  Essentials of Multivariate Data Analysis﻿

necessarily always going to be the case. If you are faced with competing solu-
tions that are sufficiently different from each other so as to be confusing, then 
you need to come up with some means of getting a majority decision made. 
That is, if you can do a number of analyses, you may well find that a lot give 
similar solutions, and this can then be what you decide to choose as your final 
solution. How might we get several solutions? One way is to use a variety of 
extraction methods. Another is to carry out your analysis on different subsets 
of your data. That is, randomly divide your dataset into a number of smaller 
datasets and carry out factor analyses on each part. You may then find that 
you get similar solutions being given on several occasions, and this can help 
you make a decision on what solution is most reliable. Of course, you need 
a large enough dataset in the first place to use this tactic. Ultimately, if your 
analyses cannot yield a solution that is obtained on several occasions, then 
you have to be honest and simply report that you have solutions that compete 
with each other.

4.11  FACTOR SCORES

Once factors have been identified, factor scores can be created. These are 
measures of the supposed unmeasureable factors and are obtained by treating 
the loadings in the factor analysis solution as kind of regression coefficients. 
Because the variables in the dataset are correlated with each other, the load-
ings are initially scaled by the correlation matrix (technically speaking, the 
matrix of loadings is pre-multiplied by the inverse of the correlation matrix, 
but please do not worry about this if you are not so familiar with matrix 
calculations). This process gives coefficients which are used to multiply the 
standardised original data. The original data are standardised (for each value, 
the mean of the variable is subtracted and the result is divided by the vari-
able’s standard deviation) because they may be measured on different scales, 
and not standardising would mean that variables with larger values (in gen-
eral) would have an influence on the factor scores that was more than would 
be appropriate.

The factor scores which are obtained can be used to examine the cases in 
the dataset and, for instance, rank them according to the levels of the factor 
scores. Sometimes factor scores are used in further analyses (such as regres-
sions) as if they were variables in their own right. If you want to do this, 
I should issue a caution here. In the further analyses, it must be remembered 
that the factor scores are not something which have been carefully measured, 
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and a different factor analysis solution would give difference factor scores. 
There is thus a good degree of uncertainty in the factor scores that should be 
remembered when subsequently using them.

4.12  A STEP-BY-STEP GUIDE TO FACTOR 
ANALYSIS USING THE EXCEL ADD-IN

	 1.	You must have a column in Excel that contains the names 
by  which your cases are known. These are called the “case 
identifiers”. They may be names or codes which you can use 
to identify the different cases, or may be simply case numbers 
(e.g. case 1, case 2, etc.). You must also have columns of data in 
Excel containing the variables which you want to use in the fac-
tor analysis.

	 2.	Go through the multivariate analysis add-in’s menus until you get 
the dialogue box for factor analysis.

	 3.	 In the “Case identifiers:” box, put the range of cells corresponding 
to the column in which the case names, labels or whatever (see Step 
1) are located.

	 4.	 In the “Variables to use in analysis:” box, put the range of cells cor-
responding to the variables you are using in the analysis.

	 5.	Make sure the Yes/No choice for “Variable names in first line of 
data?” is appropriate for the ranges you have entered at Steps 3 and 4.

	 6.	Put nothing in the “Number of factors to extract:” box at this stage 
and click “OK”.

	 7.	From the results of the eigenanalysis that are produced, decide 
how many clusters you want in your factor analysis solution (see 
Section 4.6).

	 8.	Return to your original dataset and go through Steps 2, 3, 4 and 5 again.
	 9.	Now, in the “Number of factors to extract:” box, put the number you 

decided on at Step 7.
	 10.	Make sure that the extraction method chosen matches with what you 

want to use.
	 11.	 If you are happy to interpret a rotated solution, make sure that “Varimax” 

is selected for “Rotation method:”. If not, make sure “None” is chosen.
	 12.	Click “OK”.
	 13.	 Interpret the output you get. If you want to try another analysis, 

perhaps using a different extraction method, return to Step 8.
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4.13  MORE INFORMATION

There are many different books that have been written about factor analysis 
over time. Some are general books on multivariate analysis and cover factor 
analysis well [see, for instance, Afifi et al. (2012), Bartholomew et al. (2008) 
and Everitt and Dunn (2001)]. Others are books about factor analysis alone and 
are able to go into great depth about the subject. One that I can recommend is 
Fabrigar and Wegener (2012).
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5Cluster 
Analysis

5.1  WHY DO I WANT TO DO 
CLUSTER ANALYSIS?

If you want to investigate whether or not there are groups of cases in your data-
set and what the characteristics of these groups are, then cluster analysis is the 
tool for you. It may be that you reckon that there are groups, and you may even 
have a good idea about how these groups are made up. In this case, you can do 
a cluster analysis to see if you are right. Alternatively, you may have very little 
idea about what groups exist and may then want to use cluster analysis as an 
exploratory process.

There are three main ways of approaching cluster analysis. Hierarchical 
clustering is the most commonly used and is thus the one discussed in this 
book. The others are non-hierarchical clustering and model-based clustering. 
Non-hierarchical clustering used to be more popular in the past because it is 
less computationally demanding for a computer than hierarchical clustering. 
These days, advances in computing make it possible to undertake hierarchical 
clustering in a mere fraction of the time that it used to take. Non-hierarchical 
clustering has thus fallen out of favour to some extent, although it is still very 
useful for enormous datasets where computing time still matters even today. 
We discuss non-hierarchical clustering briefly in Section 5.10. Model-based 
clustering is a much more technical affair. It works by fitting different models 
to the data and seeing which one fits best. I will not say more than that as it is 
beyond the scope of this book. However, those interested in pursuing this idea 
might want to look, in the first instance, at Everitt et al. (2011).

The idea of cluster analysis is to find “natural” groups of cases that exist in 
a dataset. I put the word natural in quotation marks because the word makes it 
sound like we are investigating biological or physical processes. Of course, if 
your data does involve this, then the word is quite appropriate – cluster analysis 
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looks for naturally occurring clusters that exist out there in the world (or at 
least in the world as far as your dataset goes). In other contexts, the word “natu-
ral” is a little less obvious to use but essentially we are still talking about the 
same thing – it is clusters of cases that do actually exist in the dataset that are 
(hopefully) being revealed by the cluster analysis.

I indicated above that we would concentrate on hierarchical cluster analy-
sis in this chapter. A typical cluster analysis of this type consists of three stages:

	 1.	Starting with each case in the dataset as a cluster all on its own, join 
the two clusters that are closest to each other. Then with the new 
setup of clusters that results, join two of these clusters that are closest 
to each other. Continue doing this until all the cases are joined up in 
one cluster. Figure 5.1 gives a graphical representation of this stage, 
starting at the bottom with seven individual cases which gradually 
join together until they are all in one cluster at the top.

	 2.	Decide how many “natural” clusters exist and identify which cases 
are in which cluster.

	 3.	 Interpret the characteristics of the clusters.

These three stages are addressed in this chapter. Stage 1 occupies Sections 
5.4 and 5.5. Stage 2 is discussed in Section 5.6 and Stage 3 in Section 5.8.
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FIGURE 5.1  Graphical representation of Stage 1 of hierarchical cluster analysis.
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5.2  WHAT DATA DO I NEED 
FOR CLUSTER ANALYSIS?

For cluster analysis, continuous data (or data which can be treated as continu-
ous) is required. See Chapter 1 for a discussion of types of data. You can use 
binary data as if it were continuous but there are, in fact, some special adapta-
tions of cluster analysis possible for binary data. This is mentioned a bit more 
in Section 5.4.

5.3  THE REST OF THIS CHAPTER

We continue this chapter by discussing the issue of how we measure the dis-
tance between two cases in a dataset (Section 5.4) and between two clusters 
(Section 5.5). Having given you various options in these two sections, I try in 
Section 5.6 to help you decide what to choose. Once these issues are resolved, 
the issue of how many clusters exist in the data is addressed in Section 5.7. 
Interpreting the clusters is discussed in Section 5.8. To conclude the chapter we 
have a section outlining non-hierarchical clustering (Section 5.9) before giv-
ing a step-by-step guide to undertaking a cluster analysis using the Microsoft® 
Excel® add-in that accompanies this book (Section 5.10) and sources of further 
information about cluster analysis (Section 5.11).

5.4  HOW DO WE DECIDE HOW CLOSE 
TOGETHER TWO CASES ARE?

In Figure 5.1 we can see that when cases or clusters join together, there is also 
an axis showing how far there was between the cases or clusters when they 
were joined together. In this section I show you some ways of defining dis-
tances between cases. Linked with this is the idea of distances between clusters 
where there are multiple cases in the clusters. This is discussed in Section 5.5.

Let us consider the dataset discussed in Chapter 1 and look at the variables 
systolic blood pressure, diastolic blood pressure and pulse rate to see if we can 
find any groups in the dataset. However, before considering all 100 cases in 
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the dataset, let us look in more detail at just the first three cases. Their data are 
listed in Table 5.1.

There are a number of ways of defining the distance between the cases. The 
following Sections 5.4.1 through 5.4.6 explain some of the more common meth-
ods. A decision must be made when undertaking a cluster analysis as to which 
distance measure is going to be used. This question is discussed in Section 5.6.

5.4.1  Distances by Absolute Value

How far is Case 1 from Case 2? Well, we could say that for systolic blood 
pressure, they are thirty-six units apart; for diastolic blood pressure, they are 
seven units apart; and for pulse rate, they are fourteen units apart. Put all these 
together and we conclude that they are fifty-seven units apart (36 + 7 + 14). 
Similarly, we can conclude that Cases 1 and 3 are thirty-one units apart (17 + 3 
+ 11) and that Cases 2 and 3 are twenty-six units apart (19 + 4 + 3). This is a nice 
intuitive way of thinking of distances. Mathematically, we are taking absolute 
values. That is, we are taking the values of one case away from another and 
ignoring minus signs before adding them. The distance between Cases 1 and 2 
on systolic blood pressure can be written as 94 − 130 = −36. For diastolic blood 
pressure, the difference is 63 − 70 = −7 and for pulse rate is 82 − 68 = 14. If we 
just added these, we would have some negatives cancelling out positives and get 
a distance of −29. If we take absolute values and ignore the minus signs, we get 
36 + 7 + 14 = 57. It is important that we do this. If not, we could get negatives 
cancelling out positives completely in some cases. We would then say that two 
cases had no distance between them when their data could be quite different.

5.4.2  Standardising

Despite having been clever enough to be taking absolute values in Section 
5.4.1, we are still making an important error when calculating the distances. 
In the dataset as a whole, the systolic blood pressure has a mean of 111.36 and 

TABLE 5.1  Data for First Three Cases in Dataset

CASE NUMBER

SYSTOLIC BLOOD 
PRESSURE 
(mm Hg)

DIASTOLIC 
BLOOD PRESSURE 

(mm Hg)

RESTING PULSE 
RATE (BEATS PER 

MINUTE)

1 94 63 82
2 130 70 68
3 111 66 71
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a standard deviation of 10.13. What this tells us is that a change of one unit in 
the systolic blood pressure is a change of less than 10% in its standard devia-
tion (1/10.13 = 9.87%). However, a one-unit change in diastolic blood pressure 
(mean = 63.57; standard deviation = 6.04) is a change of over 16.5% of its stan-
dard deviation (1/6.04 = 16.56%). In Section 5.4.1 we were treating a change 
of one unit in systolic blood pressure as being of the same importance as a 
one-unit change in diastolic blood pressure. This cannot be a good thing to do.

The solution to this problem is to work with standardised data rather than 
the raw data of Table 5.1. In Table 5.2 we see the standardised data for the first 
three cases in the dataset. To standardise the data, I have deducted the mean 
and divided by the standard deviation. That is, the 94 from Table 5.1 for Case 
1’s systolic blood pressure has been standardised by deducting the mean for 
systolic blood pressure (111.36, giving 94 − 111.36 = −17.36) and dividing by 
the standard deviation (10.13, giving −17.36/10.13 = −1.714). The other values 
have been standardised in the same way.

5.4.3 � Distances by Absolute Value 
Using Standardised Data

With the standardised data, the distance between Cases 1 and 2 using absolute 
values is 6.190. This comes from −1.714 minus 1.840, giving −3.554 which is 
3.554 in absolute value; −0.094 minus 1.064, giving −1.158 which is 1.158 in 
absolute value; and 1.283 minus −0.195, giving 1.478. The 6.190 comes from 
summing the absolute values: 3.554 + 1.158 + 1.478.

The distance between Cases 1 and 3 by the same method is 3.336 and that 
between Cases 2 and 3 is 2.854.

5.4.4  Euclidean Distances

I am aware that by using the name of an ancient Greek mathematician (Euclid) 
in the title of this section, I may have caused a bit of panic in some readers. 

TABLE 5.2  Standardised Data for First Three Cases in Dataset

CASE NUMBER

SYSTOLIC BLOOD 
PRESSURE 
(mm Hg)

DIASTOLIC 
BLOOD PRESSURE 

(mm Hg)

RESTING PULSE 
RATE (BEATS PER 

MINUTE)

1 −1.714 −0.094 1.283
2 1.840 1.064 −0.195
3 −0.036 0.402 0.121
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As we will see, there is really nothing more natural than this distance measure. 
I will explain how we work out Euclidean distances first and then explain why 
they are so natural.

Having learnt the lesson of Section 5.4.2, we will use standardised data. 
When we calculated distances using absolute values in Sections 5.4.1 and 5.4.3, 
the reason for using absolute values was so that negative differences did not 
cancel out positive differences. Another way of accomplishing the same task 
is to square the differences instead. This always gets rid of negative numbers. 
Having removed the negative numbers by squaring the differences, we add up 
these squared values and finally take the square root to get rid of all that squar-
ing that we have been doing.

For example, from Table  5.2, what is the Euclidean distance between 
Cases 1 and 2? We start with a difference of −3.554 on the systolic blood pres-
sure (−1.714 − 1.840 = −3.554) and square it to get 12.631. Similarly, the dif-
ference for diastolic blood pressure is −1.158 (−0.094 − 1.064 = −1.158), which 
we square to get 1.341. Lastly, the difference for pulse rate is 1.478 (1.283) 
− (−0.195) = 1.478), which is 2.184 when it is squared. Adding these squared 
values gives 16.156. The Euclidean distance is then obtained by taking the 
square root of this and getting 4.019.

The distance between Cases 1 and 3 by the same method is 2.100 and 
between Cases 2 and 3 is 2.014.

Hopefully having reached this paragraph, you now realise that despite 
a Greek mathematician being involved, it is not too difficult to calculate 
Euclidean distances. But now I should try and convince you that they are also 
quite natural. In order to do so, I am going to have to involve another Greek 
mathematician, but you are quite likely to have heard of this one: Pythagoras. 
In Figure 5.2 we see a right-angled triangle. Those of you who remember what 
you might have learnt about Pythagoras’ theorem will recall that the length 
of the hypotenuse (side A to C) can be calculated by squaring the difference 
between A and C horizontally (the side of the triangle A to B), squaring the 
difference between A and C vertically (the side of the triangle B to C), adding 

C

B A

FIGURE 5.2  A right-angled triangle.
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these together and taking the square root. This is exactly what we just did to 
work out the Euclidean distance: we worked out the difference between Cases 
1 and 2 according to one direction and squared it (the systolic blood pres-
sure can be thought of as a “direction” in multivariate data). We did the same 
for the other two directions we had (diastolic blood pressure and pulse rate) 
and summed the squared values before finally taking the square root. Thus, 
Euclidean distance is just what we have in our world as natural distances. In 
one, two or three dimensions, we can measure distances with a ruler, and these 
distances are Euclidean distances. The reason we call this Euclidean distance 
rather than Pythagorean distance is because Euclid went beyond the work of 
Pythagoras into many dimensions. So, no matter how many variables we want 
to work with to calculate distances, Euclidean distances can be calculated.

5.4.5  Squared Euclidean Distances

You might be able to guess what I am going to explain in this section just by 
examining its title. Squared Euclidean distances are just Euclidean distances 
which have been squared. Or rather, from a computational point of view, they 
are Euclidean distances where we have not bothered to take the square root 
after adding all the squared bits.

Why bother with squared Euclidean distances? One good reason is that 
they are often used, but a stronger reason is that sometimes you might want to 
exaggerate distances. Two Euclidean distances of 2 and 4, for instance, would 
be squared Euclidean distances of 4 and 16. Using this distance measure rather 
than ordinary Euclidean would have the effect of discouraging the joining of 
two clusters that have any cases some distance apart, even if most of the cases 
in the two clusters are near each other. It produces a different pattern to the 
joining up of cases and clusters. Whether this is a better pattern or a worse 
pattern is not really a question that can be answered. We return to this issue in 
Section 5.6.

5.4.6  Distances for Binary Data

Most cluster analyses involve continuous data or data that can be treated as 
continuous, and the distance measures discussed above are suitable for these 
sort of data. It is possible to use binary data (where the values are either zero 
or one) with these methods, but it is not ideal. For a particular binary variable, 
two cases either have the same value or they do not. This is a different con-
cept from continuous data when the idea of “how near” naturally gives rise to 
distances such as those discussed above.
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Where all the variables in a dataset are binary, an alternative approach is 
to ask what proportion of the variables do two cases have the same values for. 
This gives us an idea of how similar two cases are. For instance, if two cases 
have the same values for seven out of ten binary variables, then they have a 
similarity of 70%. This may also be viewed as a dissimilarity of 30%. This 
dissimilarity can be viewed as a type of distance. The more differences exist 
between two cases, the larger the dissimilarity will be, just like a distance 
measure for continuous data.

There are a number of variations on this idea that have been suggested 
over the years. It is beyond the scope of this book to go into the details of these 
but interested readers might look at books mentioned in Section 5.11.

5.5  HOW DO WE DECIDE HOW CLOSE 
TOGETHER TWO CLUSTERS ARE?

Section 5.4 has given us some ideas as to what distance measures we might 
want to use when considering how close two cases are to each other. However, 
how do we go about defining the distance between a case and a cluster, or 
between two clusters? There are many different possibilities or linkage meth-
ods to choose from. Some of the most commonly used are shown below. When 
undertaking a cluster analysis, a decision as to which linkage method to use 
must be made. This question is discussed in Section 5.6.

5.5.1  Average Linkage between Groups

Let us start by thinking how we might define the distance between a single 
case and a cluster of cases. Figure 5.3 illustrates the position we are thinking 
about.

When considering how far Case D is from the Cluster A/B/C, we have 
three individual distance measures involved: A to D, B to D, C to D. These will 
be defined by whatever distance measure it has been decided will be used for 
the analysis. Perhaps the most intuitive way of defining the distance between 
the case and the cluster is to use the average of these three distances. This 
method is average linkage between groups.

When considering the distance between two clusters, we have a situation 
like Figure 5.4. There are now six distances between the two clusters: A to D, 
A to E, B to D, B to E, C to D, C to E. The average linkage between groups 
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method takes an average of all six of these distances to measure the distance 
between the two clusters.

5.5.2  Complete Linkage

For complete linkage, rather than taking averages, the largest distances are 
used. Thus for Figure 5.3, the distance between the case and the cluster would 
be the largest of A to D, B to D and C to D. For Figure 5.4, the distance between 
the two clusters would be the largest of A to D, A to E, B to D, B to E, C to D 
and C to E.

By using just one distance rather than all, complete linkage ignores most 
of the distances, and in particular ignores small distances. Thus, although 
two clusters might have cases which are relatively close to each other, the dis-
tances between the clusters will be determined only by cases which are far 
away from each other. So, if you judge that you want to have clusters containing 
cases which are as tightly bunched together as possible, this may be the method 
for you.
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D

FIGURE 5.3  A case and a cluster.
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FIGURE 5.4  Two clusters.
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5.5.3  Single Linkage

This linkage method can be regarded as the opposite of complete linkage. 
Instead of taking the largest distances from the selection available, single link-
age takes the smallest. For Figure 5.3, single linkage chooses the smallest of 
the distances A to D, B to D and C to D. For Figure 5.4, it chooses the smallest 
of A to D, A to E, B to D, B to E, C to D and C to E.

In contrast to complete linkage, it disregards all distances apart from the 
smallest ones. Thus, although some of the cases in one cluster may be a con-
siderable distance from some cases in another cluster, all it takes is one case 
from each cluster to be near each other for the distance between the clusters to 
be regarded as small. You might choose to use this method if one of the most 
important criteria for you is that cases which are near to each other are in the 
same cluster, regardless of the fact that some cases in the cluster may be a long 
way from each other.

5.5.4  Forward-Thinking Linkage Methods

In Sections 5.5.1 through 5.5.3, we have seen linkage methods which cal-
culate distances between clusters based on the situation that exists at one 
point in the process of turning separate cases (at the bottom of Figure 5.1) 
into clusters of cases and eventually into one large cluster (at the top of 
Figure 5.1). There are other linkage methods worth mentioning which do not 
work on this principle, but instead consider what would be the case if two 
clusters were joined.

In Figure 5.5 we see the state of a hierarchical clustering at some point 
in the clustering process between the bottom of something like Figure 5.1 and 
the top of something like Figure 5.1. The linkage methods in Sections 5.5.1 
through 5.5.3 would calculate all the distances between the two clusters and 
Case D (A/B/C to D, A/B/C to E/F, D to E/F), and whichever gave the smallest 
result would be the next step in the movement from the bottom to the top of a 
figure like Figure 5.1.

By contrast, forward-thinking linkage methods consider the three pos-
sible scenarios that could occur (see 1, 2, 3 below). They look at the clusters 
which are formed if the proposed joining together from 1, 2 or 3 takes place 
and assesses how compact the clusters are that are formed.

	 1.	A/B/C joins with D. This leaves us with two clusters (A/B/C/D 
and E/F).
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	 2.	A/B/C joins with E/F. This leaves us with one cluster (A/B/C/E/F) 
and one case (D).

	 3.	D joins with E/F. This leaves us with two clusters (A/B/C and D/E/F).

Let us take possibility 1. We have a cluster A/B/C/D. How good is A/B/
C/D as a cluster of cases? One way of measuring this is to look at all the dis-
tances between cases in this cluster. That is, A to B, A to C, A to D, B to C, B 
to D, C to D. Taking an average of these would be what the forward-thinking 
linkage method average linkage within groups does. The smaller this average, 
the closer together the cases are in the cluster. The larger the average, the more 
spaced out the cases are. We then define the distance from A/B/C to D as the 
average we have just calculated from the cluster that would be formed if we put 
them together. We do the same for possibility 2 (A/B/C joining with E/F) and 
possibility 3 (D joining with E/F). The possibility that we decide to implement 
is the one that has given us the smallest distance.

Another forward-thinking method looks not just at the new cluster that 
would be formed, but at all the other clusters as well. Going back to possibility 1, 
we have our new cluster A/B/C/D but also our existing cluster E/F. The linkage 
method called Ward’s method looks at how far each case is from the centre of 
its cluster. That is, for the cluster A/B/C/D, we calculate the centre (that is, the 
means of the variables, calculated from the cases in the cluster) and calculate the 
squared Euclidean distance of each of A, B, C and D to this centre. We also do 
the same for the cluster E/F, finding its centre and then calculating the squared 
Euclidean distance from E and F to the cluster centre. We add up all the squared 
Euclidean distances obtained from A, B, C, D, E and F, and define that as being 
the resulting distance measure associated with going ahead with possibility 1.

We then carry out the same sort of calculations for possibilities 2 and 3, 
and end up with a resulting distance measure for each. We then see which of 
possibilities 1, 2 and 3 give the smallest distance measure and implement that as 
the next step in going from the bottom to the top of something like Figure 5.1.
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F

E

FIGURE 5.5  Two clusters and a case.
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5.6  HOW DO WE DECIDE 
WHICH DISTANCE 

MEASURE AND LINKAGE 
METHOD TO USE?

I suppose the answer to this question is that you should use whichever distance 
measure and linkage method is most appropriate to the aims of your analysis. 
So, for example, if the exaggeration of normal distances caused by using the 
squared Euclidean distance measure is appropriate (see Section 5.4.5), then 
you should use this. Also, for example, if it is appropriate to define distances 
between clusters along the lines that complete linkage uses (see Section 5.5.2), 
then this should be the linkage method you use.

However, you are more likely to be in a situation where you are not sure what 
distance measure and linkage method to use. There may be no way of deciding 
that some decisions are more appropriate than others for your analysis. How do 
you proceed in these circumstances? Well, you must recognise the situation you 
are in and that by choosing a distance measure and linkage method, you will get 
just one of a number of possible sets of results. This sounds bad but if you repeat 
the analysis using different distance measures and linkage methods, then you 
get a range of results and can see what the general consensus is regarding the 
number of clusters and the characteristics of these clusters. You will hardly ever 
get identical solutions from different distance measures and linkage methods, 
but hopefully you can spot common patterns. You may then choose one combi-
nation of distance measure and linkage method which produces results typical 
of the general consensus. When you finally report the results of the analysis, you 
can say that a range of cluster analyses gave results similar to the ones presented. 
This gives added weight to the conclusions you draw.

5.7  HOW DO WE DECIDE HOW 
MANY CLUSTERS THERE ARE?

5.7.1  Using First Seven Cases in the Dataset

The picture in Figure 5.1 is often called a dendrogram. It shows how the clus-
tering of cases occurs with them starting off as individuals at the bottom and 
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then joining up until they are all in one cluster at the top. The scale shows the 
distance between clusters when they are joined. Thus, in Figure 5.1, we see that 
Cases 2 and 6 join together at a distance of just under 0.75. Case 7 then joins 
the cluster containing Cases 2 and 6. There is then a bit of a jump in distances 
to about 1.75 when Case 4 joins up with Cases 2, 6 and 7. Cases 1 and 3 then 
join up with a distance of about 2. There is then another jump in distances 
until Case 5 joins with Cases 2, 4, 6 and 7 at a distance of about 2.6 and then 
shortly thereafter, these cases join with the cluster containing Cases 1 and 3. 
The original seven cases are now in just one cluster.

This clustering can be represented in a table, such as Table 5.3. You can 
reproduce this for yourself – it is a clustering of the first seven cases in the 
dataset of Chapter 1, with systolic blood pressure, diastolic blood pressure and 
pulse rate as the variables used. The data is standardised before use with the 
Euclidean distance measure, and average linkage between groups is the link-
age method.

But how many clusters exist? The answer must be between one and seven 
inclusive, and the dendrogram can help us decide. If we look at Figure 5.6, we 
see the various possibilities marked on the dendrogram. If we were to decide 
on the seven cluster solution, then we would be saying that none of the cases 
were anything like each other and should be regarded as completely separate. 
This is rarely the case in reality, and here we have cases joining together at 
a relatively small distance (0.680), and so reject this seven cluster solution. 
We also reject the six cluster solution because shortly after going from seven 
clusters to six clusters, we then go to five clusters. However, to go from five 
clusters to four clusters, we need to increase our joining distance from 1.003 
to 1.768. In terms of proportion, this is quite an increase and may indicate 
that we are joining two clusters which are quite different from each other. We 
can therefore construct an argument which says we have five clusters in our 
dataset. However, we should carry on in case we find an even more compel-
ling argument for a different number of clusters. Once we are at four clusters, 

TABLE 5.3  Table of Clustering Shown in Figure 5.1

STEP
JOINING 

DISTANCE JOINING JOINING
NEW CLUSTER 

CALLED

1 0.680 Case 2 Case 6 Case 2/Case 6
2 1.003 Case 2/Case 6 Case 7 Case 2, etc.
3 1.768 Case 2, etc. Case 4 Case 2, etc.
4 1.948 Case 1 Case 3 Case 1/Case 3
5 2.614 Case 2, etc. Case 5 Case 2, etc.
6 2.734 Case 1/Case 3 Case 2, etc.
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we go to three clusters quite quickly, and so reject four clusters as a possible 
solution. However, now we again note a sizeable jump if we wish to go to two 
clusters (from 1.948 to 2.614). Perhaps we should conclude that going from 
three clusters to two clusters is unwise and we should stick to three clusters. 
We thus have a second possible answer for ‘How many cluster are there?’. 
Continuing on, we see that going from two clusters to one cluster involves only 
a small change in distance and thus there is no good reason to suggest that two 
clusters exist. Of course, we could decide that all the cases are so similar that 
only one cluster exists, but as we already have two possible solutions, we do 
not pursue this idea.

So, for Figure 5.1 and its tabular form Table 5.3, we have decided that 
there are either three or five clusters. Which do we choose? Well, we should 
look at our interpretations of both possibilities (see Section 5.8) and decide 
which seems more appropriate. It is entirely possible that we have to end up 
presenting both as possible solutions.

Additionally, we should really try out other distance measures and link-
age methods as well (see Section 5.6). They may give different suggestions for 
the number of clusters. Even if they suggest the same number of clusters, we 
should remember that there is no guarantee that the same cases are grouped 
together in the different solutions. The real test is to interpret the results (see 
Section 5.8) and see if the same story is being told by the different methods, or 
at least try to find some consensus from the majority of methods tried.
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FIGURE 5.6  Dendrogram for first seven cases with possible numbers of clusters 
marked.
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5.7.2  Using All Cases in the Dataset

If instead of using just the first seven cases in the dataset we now use all 100 cases, 
we obtain the dendrogram of Figure 5.7. As before, the data are standardised 
before use with the Euclidean distance measure and average linkage between 
groups as the linkage method. It is much more difficult to assess from this den-
drogram how many clusters we should choose. If we had many more cases (after 
all, 100 is not a very large dataset), the dendrogram would be completely useless.

So what do we do if we cannot use the dendrogram to assess how many 
clusters we have? The answer lies in doing exactly the same sort of thing as in 
Section 5.7.1. There, we considered the sizes of the jumps in distances, and we 
can do the same again now, using the tabular form of the dendrogram. For the 
dendrogram of Figure 5.7, we have Table 5.4. It does not show all the stages of 
the clustering, but only the final ten steps. Why only the last ten? Are we not 
interested in jumps in the joining distances at earlier steps? Well, these ques-
tions are very good ones, and the only answer is that of practicality. We could 
look at the joining distances and decide that there was a large jump between 
steps 40 and 41 for instance, but that would mean we would choose to have sixty 
clusters in the dataset. If we were to decide this, then the next step in the analy-
sis would probably be throwing our arms in the air and giving up. Who can 
really try and interpret what sixty different clusters are telling us? Usually in 
cluster analysis, we are expecting a relatively small number of clusters to exist 
in the dataset, so it makes sense to concentrate on the later steps of the cluster-
ing procedure and look for jumps in distances there rather than at earlier steps.
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FIGURE 5.7  Dendrogram for all cases.
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To help us look at the changes in joining distances shown in Table 5.4, 
we construct another table that is, Table 5.5. We now see that the increases 
in joining distances are relatively stable for steps 90 through to 94, but then 
almost doubles at step 95. The percentage change shows this even more dra-
matically. We could thus suggest that we should stop at step 94 and have six 

TABLE 5.4  Table of Clustering Shown in Figure 5.7

STEP
JOINING 

DISTANCE JOINING JOINING
NEW CLUSTER 

CALLED

⋮ ⋮ ⋮ ⋮ ⋮
90 1.587 Case “14”, etc. Case “20”/Case “21” Case “14”, etc.
91 1.654 Case “2”, etc. Case “12”, etc. Case “2”, etc.
92 1.721 Case “1”, etc. Case “3”, etc. Case “1”, etc.
93 1.795 Case “9”, etc. Case “18”/Case “25” Case “9”, etc.
94 1.883 Case “5”/Case “56” Case “88” Case “5”, etc.
95 2.046 Case “1”, etc. Case “2”, etc. Case “1”, etc.
96 2.680 Case “1”, etc. Case “38” Case “1”, etc.
97 2.723 Case “1”, etc. Case “9”, etc. Case “1”, etc.
98 2.879 Case “1”, etc. Case “5”, etc. Case “1”, etc.
99 3.167 Case “1”, etc. Case “14”, etc.

TABLE 5.5  Changes in Joining Distances from Table 5.4

STEP
JOINING 

DISTANCE

NUMBER OF 
CLUSTERS LEFT 

AFTER THIS STEP

INCREASE IN 
JOINING 

DISTANCE FROM 
PREVIOUS STEP

PERCENTAGE 
INCREASE IN 

JOINING 
DISTANCE

⋮ ⋮ ⋮ ⋮ ⋮
90 1.587 10 0.0918 6.14%
91 1.654 9 0.0664 4.18%
92 1.721 8 0.0674 4.07%
93 1.795 7 0.0740 4.30%
94 1.883 6 0.0881 4.91%
95 2.046 5 0.1631 8.66%
96 2.680 4 0.6333 30.95%
97 2.723 3 0.0433 1.62%
98 2.879 2 0.1561 5.73%
99 3.167 1 0.2882 10.01%
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clusters in our results. However, it could also be suggested that we should 
examine one further step. The change in joining distance from step 95 to step 
96 is large by comparison with those that precede it, and again the percentage 
increase shows this dramatically. Perhaps then we should choose a five cluster 
solution.

Of course, as mentioned in the final paragraph of Section 5.7.1, we should 
remember that other distance measures and linkage methods may give differ-
ent results. Rather than pretend that other methods of doing the clustering do 
not exist, it is better to try a variety of methods and see if agreement can be 
reached by a number of these methods.

5.8  INTERPRETING CLUSTERS

Once you have decided how many clusters your analysis is showing you exist, 
you want to then go on and find out more about these clusters. A straight-
forward way of doing this is to calculate summary statistics for each cluster. 
Tables 5.6 and 5.7 show the number of cases in each of the six clusters that 
might be thought to exist as a result of the discussions of Section 5.7.2. Perhaps 
of most importance is Table  5.6 which shows the number of cases in each 
cluster and also the mean of the standardised values for the three variables 
involved in the clustering: systolic blood pressure, diastolic blood pressure and 
pulse rate. From examining this table, we can immediately see that “Cluster 1” 
contains thirty-nine people with lower than average systolic blood pressure 
(mean is negative), higher than average pulse rate (mean is positive) and about 
average diastolic blood pressure (mean is near zero). The other large cluster 

TABLE 5.6  Summary Statistics Using Standardised Data for Six Cluster Solution 
of Section 5.7.2

NUMBER OF 
CASES IN 
CLUSTER

MEAN BLOOD 
PRESSURE 
(SYSTOLIC)

MEAN BLOOD 
PRESSURE 

(DIASTOLIC)

MEAN PULSE 
RATE 

(RESTING)

Cluster 1 39 −0.461 0.092 0.801
Cluster 2 34 0.772 0.524 −0.071
Cluster 3 1 0.754 2.388 1.495
Cluster 4 15 0.076 −0.944 −1.618
Cluster 5 3 1.708 1.230 −1.357
Cluster 6 8 −1.911 −1.667 −0.248
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is “Cluster  2”, and it has cases with above average readings for both blood 
pressure variables. “Cluster 3” is an individual case on its own which has dia-
stolic blood pressure and pulse rate readings that are a long way above aver-
age. “Cluster 4” is a group of fifteen cases which have average systolic blood 
pressure readings but have diastolic blood pressure and pulse rate readings 
well below average. “Cluster 5” has three cases that are way above average for 
the blood pressure readings but below average for pulse rate. The final cluster, 
“Cluster 6”, has lower than average readings for all three variables.

Table 5.7 shows the same patterns but now the units involved are appropri-
ate for the variable being considered. It is therefore less easy to see what are 
above and below average readings but, on a more positive note, the values in 
the table do have a substantive meaning.

Further investigations could be carried out trying to link things like gen-
der, age and smoking history to the different clusters to see if any patterns 
emerged. The Excel add-in that accompanies this book produces information 
on which cluster each case in the dataset belongs to. This can then be cross-
tabulated with these other variables just as you would produce any other cross-
tabulation (e.g. age against smoking history). As this is fairly standard data 
manipulation, we do not go into further details here.

5.9  NON-HIERARCHICAL 
CLUSTER ANALYSIS

As explained in Section 5.1, non-hierarchical clustering is not used nearly as 
much as it used to be. Hierarchical clustering, discussed above, is far and away 

TABLE 5.7  Summary Statistics Using Unstandardised Data for Six Cluster 
Solution of Section 5.7.2

NUMBER OF 
CASES IN 
CLUSTER

MEAN BLOOD 
PRESSURE 
(SYSTOLIC)

MEAN BLOOD 
PRESSURE 

(DIASTOLIC)

MEAN 
PULSE RATE 
(RESTING)

Cluster 1 39 106.692 64.128 77.436
Cluster 2 34 119.176 66.735 69.176
Cluster 3 1 119.000 78.000 84.000
Cluster 4 15 112.133 57.867 54.533
Cluster 5 3 128.667 71.000 57.000
Cluster 6 8 92.000 53.500 67.500
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the most popular method of clustering. However, it is worth outlining here in 
brief the concept behind non-hierarchical clustering.

To start with, you need to decide how many clusters you intend to look 
for in your data before you start non-hierarchical clustering. This immediately 
makes it more awkward than hierarchical clustering unless you have some 
good reason for knowing this information. The general procedure for non-
hierarchical clustering is then as follows:

	 1.	Assuming that m clusters have been decided upon, the first step is 
to find m individual cases in the dataset which are as different from 
each other as possible. These act as initial “centres of gravity” for 
the clusters.

	 2.	All the remaining cases are then put into one of the m clusters 
according to which of the m “centres of gravity” they are nearest.

	 3.	For each of the m clusters, the “average” position is calculated. 
These average positions then act as new centres of gravity.

	 4.	All the cases in the dataset are reallocated to one of the m clusters 
according to which of the new m centres of gravity they are nearest.

	 5.	Steps 3 and 4 are repeated until each time the reallocation of cases 
is carried out, the same centres of gravity and allocations of cases to 
clusters are achieved.

5.10  A STEP-BY-STEP GUIDE TO CLUSTER 
ANALYSIS USING THE EXCEL ADD-IN

	 1.	You must have a column in Excel that contains the names by which 
your cases are known. These are called the “case identifiers”. They 
may be names or codes that you can use to identify the different 
cases, or may be simply case numbers (e.g. case 1, case 2, etc.). You 
must also have columns of data containing the variables which you 
want to use in the cluster analysis.

	 2.	Go through the multivariate analysis add-in’s menus until you get 
the dialogue box for cluster analysis.

	 3.	 In the “Case identifiers:” box, put the range of cells correspond-
ing to the column in which the case names, labels or whatever (see 
Step 1) are located.

	 4.	 In the “Variables to use in analysis:” box, put the range of cells 
corresponding to the variables you are using in the analysis.
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	 5.	Make sure the Yes/No choice for “Variable names in first line of 
data?” is appropriate for the ranges you have entered at Steps 3 and 4.

	 6.	Make sure the Yes/No choice for “Standardise data?” reflects 
whether or not you want to standardise the data before calculating 
distance measures.

	 7.	There are three options for “Distance measure:” and three options 
for “Linkage method:” provided. Ensure that the combination you 
want to use is selected.

	 8.	 If you want to produce a dendrogram, make sure the “Yes” option is 
selected for “Produce dendrogram?”.

	 9.	 If you want to investigate the characteristics of clusters, then put the 
number of clusters in the box for “Display cluster membership and 
summary statistics” and make sure the “Yes” option is selected.

	 10.	Click “OK”.

5.11  MORE INFORMATION

For more information about hierarchical and non-hierarchical clustering meth-
ods, there are few books which can approach that of Everitt et al. (2011). In this 
text, titled (not surprisingly) Cluster Analysis, the topic is discussed in some 
depth. However, other books that deal with the topic well are Bartholomew 
et al (2008) and (not surprisingly) Everitt and Dunn (2001).
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6Discriminant 
Analysis

6.1  WHY DO I WANT TO DO 
DISCRIMINANT ANALYSIS?

Discriminant analysis is all about what makes groups different from each 
other. You know that you have groups in your dataset but can you tell what 
group a case should belong to just from the variables you have? If you can, 
then you have variables that discriminate between the groups. But are all the 
variables useful for doing this, or just some? And how good are the variables 
at discriminating? Are they so great that they will always predict the correct 
group, or is there some uncertainty involved? Maybe for some cases you do 
not know the group to which they belong. Can information about cases whose 
group you do know help you allocate these other cases to groups?

All these questions and issues are addressed in discriminant analysis.

6.2  WHAT DATA DO I NEED FOR 
DISCRIMINANT ANALYSIS?

As with many of the topics in this book, you need to have data which is con-
tinuous, or at least can be regarded as continuous. See Chapter 1 for a discus-
sion of types of data. You can also use binary data as if it were continuous. Of 
course, in addition to this, you need to have a variable which tells you about 
the groups you are investigating. There are no restrictions on the number of 
groups which can be handled, although you do need data for at least two cases 
from each group.
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6.3  THE REST OF THIS CHAPTER

This chapter proceeds by initially discussing (in Section 6.4) the issue of 
deciding how close an individual case is to the different possible groups. 
This then leads to linear discriminant functions in Section 6.5 and how we 
might allocate individual cases to one of the possible groups. In Section 6.6 
we tackle the issue of deciding which variables are useful for discriminating 
between groups. Section 6.7 discusses how accurate the allocation decisions 
are, and Section 6.8 deals with how we might judge how well a discriminant 
analysis performs. Section 6.9 briefly discusses some other methods of 
discriminant analysis before the chapter concludes, in Section 6.10, with 
directions as to how to use the Excel add-in which comes with this book to 
undertake a discriminant analysis and sources of more information on the 
topic in Section 6.11.

6.4  HOW DO WE DECIDE HOW CLOSE 
A CASE IS TO DIFFERENT GROUPS?

If we want to assess how well the variables we have can discriminate between 
groups, then we need to look at the characteristics of the groups in terms of the 
variables available.

Let us consider starting with an extremely trivial example. In the dataset 
discussed in Chapter 1, we have data on gender and height. We find that the 
mean height for males is 1.76 metres and for females is 1.61 metres. So, if 
someone else came along who had a height of 1.76 metres, we would guess 
that they belonged to the group “male”; and if they had a height of 1.61 metres, 
we would guess that the belonged to the group “female”. Of course, it is not 
impossible for these allocations to be incorrect. It is perfectly possible for a 
male to have a height of 1.61 metres or a female to have a height of 1.76 metres. 
Just how accurate the allocation to the male or female group is likely to depend 
on how varied the height data are. We will return to this issue in Section 6.7.

I said the above example was trivial and indeed it was because we are 
really quite unlikely to have someone new turn up with a height of exactly 
1.76 metres or exactly 1.61 metres. What is more likely is that they will have a 
height which is not exactly equal to one of the means for the two groups. So, 
what if the new person had a height of 1.69 metres? The intuitively obvious 
thing to do is to see how far away this measurement is from each of the group 
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means we have. We find that this 1.69 metres is 8 centimetres away from the 
mean for the female group and 7 centimetres away from the mean for the male 
group. We would thus say that the new person is more likely to be male than 
female.

As a brief aside, the above decision to allocate the new person to the male 
group does make an assumption about the variability of the heights in the two 
groups. If we had an absurd situation where all the males were exactly 1.76 
metres but the females could take a wide range of heights from, say, 1.2 metres 
up to 2.02 metres, then we might change our minds about the new person 
being most likely male. We would probably conclude that the person could be 
female as the height was within the range of other females for which we had 
data, but could not possibly be male as the height was not exactly 1.76 metres. 
We would thus allocate them to the female group. However, here, a more rea-
sonable assumption would be that the variation in height amongst the female 
group would be similar to that amongst the male group. In this case, arguing 
that the 1.69 metre tall person was more likely to be male because their height 
was nearer to the mean for the male group than the mean for the female group 
is reasonable. We discuss this sort of assumption further in Section 6.4.2.

Of course, in reality we are going to be operating with more than one vari-
able, and quite possibly with more than two groups. We thus have to come up 
with a way of measuring the distance between an individual case and a group on 
the basis of multivariate data. In Chapter 5 when we were dealing with cluster 
analysis, we discussed a number of possible distance measures. However, in 
discriminant analysis, there is another distance measure not covered in Chapter 
5 which is commonly used. This is called the Mahalanobis distance (after the 
Indian statistician P. C. Mahalanobis). It is similar to the squared Euclidean 
distance using standardised data mentioned in Chapter 5, and in fact is identi-
cal to it if the variables being used have correlations between them of exactly 
zero. However, I can guarantee that you will never have a dataset in front of you 
where the variables have correlations of exactly zero, unless the dataset has been 
manufactured in some way to have this characteristic. Even where two variables 
are not associated with each other, simple random fluctuations will dictate that 
their correlation will not be exactly zero (although it may be quite close to zero).

The reason that the Mahalanobis distance is often used in discriminant 
analysis is because of the allowances it makes for correlations between the 
variables. Let us return for now to our example of two groups (males and 
females) and the variable height. We can now make this a multivariate 
example by adding two new variables: left foot length and right foot length. 
You are probably thinking, ‘Isn’t it a bit stupid to use both of these – won’t 
they be almost the same?’ Well, you are correct; you are indeed unlikely to 
do something like this in practice, but what is the precise reason? The answer 
you might give after a little thought would be that if you used both left foot 
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length and right foot length, then you would be duplicating information. Their 
correlation will be near one, indicating the close relationship they have.

But what if instead of having left foot length and right foot length, we had 
systolic blood pressure and diastolic blood pressure? It does not seem silly to 
include both of these but they are certainly not independent of each other. Their 
correlation in the dataset of Chapter 1 is 0.590 – not as close to one as we might 
expect from left foot length and right foot length but nevertheless a correlation 
which is a long way from being zero. Does this not mean that we are duplicating 
information if we use both systolic and diastolic blood pressures in an analysis? 
The answer is, ‘Yes’. The Mahalanobis distance overcomes this duplication of 
information by not just having a mechanism similar to dividing by the variance 
(thus achieving a standardising of the variables), but also by doing something 
similar to dividing by the covariance (which is closely related to the correlation 
– see Chapter 3). There may be some readers familiar with the workings of the 
Mahalanobis distance who are currently cringing at this description. I admit that 
a phrase such as “doing something similar to” is not often found in statistical 
books. However, for the purposes of this book, I am going to leave the explana-
tion of the Mahalanobis distance at this stage. I cannot avoid showing the for-
mula for the Mahalanobis distance in Section 6.4.1 (Equation 6.1), but a detailed 
knowledge of how the matrix calculations work is not necessary for someone 
who wants to use a straightforward discriminant analysis in their research.

Some of you who have read Chapter 5 on cluster analysis might be won-
dering why we are putting all this effort into avoiding the duplication of 
information in a discriminant analysis when we did not mention it in cluster 
analysis. The reason is the different emphasis placed on the variables in each 
type of analysis. In cluster analysis, the variables are not really important in 
their own right. We simply use them to try to identify clusters which are the 
objects of interest. In discriminant analysis, we already know what the groups 
involved are, so a lot of the attention is on the variables – which are the ones 
that are useful to discriminating between groups, and how good are they at 
discriminating? We could use the Mahalanobis distance as a distance measure 
in cluster analysis, but this is rarely done.

6.4.1  Linear Discriminant Functions

Although I am trying to avoid the use of too many formulae in this book, I am 
afraid that what is shown in Equation 6.1 cannot really be excluded. However, 
please do not worry about all the superscripts and subscripts – it is not neces-
sary for you to understand the entirety of what is going on here but it is impor-
tant that you, the reader, are aware, at least in part, of how we get from the 
Mahalanobis distance to the linear discriminant functions.
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Independent of i

d2
x,mi = (x – mi)T S*–1(x – mi)

= xTS*
–1x – 2mi

T S*
–1x + mi

TS*
–1mi

= xTS*
–1x – 2[mi

T S*
–1x – 1/2mi

TS*
–1mi]

Linear Function of x Constant for i

	 (6.1)

In Equation 6.1, the first line is the Mahalanobis distance between an indi-
vidual case and a group. The values of the variables for the individual case are con-
tained within the vector x and the averages of the variables over the cases known to 
be in group i are contained within the vector mi. If you are unsure about the word 
vector, please do not worry, and have a look at Chapter 3. The x mi( )−  indicates 
that for each variable, we are finding the difference between the value for the 
individual case and the mean for the group. The fact that x mi( )−  appears twice is 
because we are squaring the differences, just as when we calculate a variance or a 
Euclidean distance (see Chapter 5). The fact that one of the x mi( )−  terms has a 
“T” superscript should not concern you – it all has to do with matrix multiplication 
and is simply a way of writing it correctly so that the mathematics makes sense.

The S* in the middle of Equation 6.1 is the pooled covariance matrix. That 
is, the covariance matrix for each group in the dataset has been calculated, and 
the weighted average of each cell in the matrix has been calculated. In Chapter 3 
we calculated a pooled covariance matrix for two groups when carrying out 
Hotelling’s T 2 test. Now we calculate a pooled covariance matrix for any num-
ber of groups in the same way:

	
=

( – 1) ( – 1) ( – 1)

( – 1) ( – 1) ( – 1)
1 1 2 2

1 2

S
n S n S n S

n n n
g g

g

+ + +
+ + +∗

�
�

where we have g groups and n1 cases in Group 1, n2 in Group 2, etc. The fact 
that the S* is raised to the power of −1 means that we are effectively dividing 
by S*. In matrix mathematics, instead of dividing by a matrix, you multiply by 
its inverse. This is just the same as multiplying by 2−1 instead of dividing by 2 
in normal mathematics. If you need reminding about what a covariance matrix 
is, please see Chapter 3.

The last two lines of Equation 6.1 show how the Mahalanobis distance 
can be amended so that it takes the form in the last line where there are three 
different parts making up the distance which is written as ,

2dx mi
: the squared 

distance between the vector x and the vector of means, mi. This transformation 
of the Mahalanobis distance is generally attributed to the famous statistician, 
R. A. Fisher.
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The key thing behind this change is that the three parts which make up the 
distance have difference characteristics. The first in Equation 6.1 only involves 
x, the data from the individual case and the pooled covariance matrix, S*. Thus, 
if we are finding the distance between the individual case and Group 1 and also 
its distance from Groups 2, 3, etc., then this part of the distance only needs to be 
calculated once and then reused each time. Also, very importantly, if we want to 
find out which group the individual case is nearest, we can ignore it completely 
– all the distances between the case and the different groups have this compo-
nent, so it tells us nothing about which group the individual case is nearest.

The final term in Equation 6.1 only involves mi and the pooled covariance 
matrix, S*. It thus needs to be calculated for the distance between the indi-
vidual case and Group 1, and also for each of the individual case’s distances 
to Group 2, 3, etc. This term does have an important role to play in deciding 
which group is nearest the individual case. However, because this term does 
not depend on the data for the individual case (there is no vector x in the term), 
then once we have calculated the term for the distances from one individual 
case to however many groups we have, we do not need to calculate it again if 
we happen to have more individual cases to examine.

The middle term in Equation 6.1 contains all of x, mi and S*. However, 
because 1m Si

T
∗
−  only needs to be calculated once (for each group), no mat-

ter how many individual cases we want to work with, and the vector x only 
appears once in the term, then we say that this term is a linear function of x. 
That is, it is like a regression equation with each of the variables that make up 
x having coefficients which are 1m Si

T
∗
− .

The part of the last line of Equation 6.1 in square brackets is what is com-
monly known as the linear discriminant function. In Section 6.5 we see it in 
use when we allocate individual cases to groups, and in Section 6.6 we see how 
it can be used to indicate how useful different variables are in discriminating 
between groups.

6.4.2  Assumptions Made

In a sense, we have not made any assumptions in creating the linear discriminant 
functions in Section 6.4.1 which are of the same importance as assumptions we 
were making in Chapter 3 when undertaking tests of significance. However, 
on the other hand, if we cannot assume that the covariance matrices for the 
different groups are sufficiently similar, then the action of pooling them to 
create the Mahalanobis distance makes little sense. It is not that the covari-
ance matrices for the different groups have to be identical for us to be happy, 
but more that they should have figures which are at least of the same order of 
magnitude and sign (positive/negative).
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The other thing that should be mentioned here is the fact that the 
Mahalanobis distance works best if the data have at least approximately a mul-
tivariate Normal distribution (see Chapter 3 for more details). This is not an 
essential requirement for the discriminant analysis to be valid, but if a simple 
transformation of the data can be done to achieve a better fit to Normality, then 
it is probably a good idea to do it.

6.5  ALLOCATING INDIVIDUAL 
CASES TO GROUPS

6.5.1 � Creating the Linear Discriminant Functions

Let us consider the dataset of Chapter 1. One of the variables recorded is smok-
ing history, and has four groups: “never smoked”, “occasional smoker”, “ex-
smoker” and “current smoker”. Using the variables age, weight, systolic blood 
pressure, diastolic blood pressure and pulse rate, let us construct the linear 
discriminant function for each group and then use them to allocate individual 
cases to the groups. Will the allocations be correct? Well, if the variables we 
are using do discriminate well between the groups, then we would expect a 
lot of correct allocations. However, if the variables have little to do with what 
groups the cases are in, then we can expect a lot of wrong allocations.

To construct the linear discriminant functions, we need to create the 
pooled covariance matrix. The individual covariance matrices for the four 
smoking history groups are as follows for the variables age, weight, systolic 
blood pressure, diastolic blood pressure and pulse rate.

	

153.885 42.831 31.141 25.962 26.795
42.831 210.964 7.744 6.478 36.763
31.141 7.744 112.438 31.044 39.482
25.962 6.478 31.044 27.126 9.856
26.795 36.763 39.482 9.856 97.241

never smokedS =

− − −
−

− − −
−
− −





















174.600 53.467 17.133 26.717 66.483
53.467 469.143 24.313 15.840 66.527
17.133 24.313 51.267 7.583 15.517
26.717 15.840 7.583 21.729 8.154
66.483 66.527 15.517 8.154 56.429

occasional smokerS =

− − −
− −

− −
− −
− − −




















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177.516 64.769 43.400 35.789 41.663
64.769 331.837 25.199 18.764 2.514
43.400 25.199 61.589 6.763 26.463
35.789 18.764 6.763 15.250 15.263
41.663 2.514 26.463 15.263 71.958

ex-smokerS =

− − − −
− −
− −
−
− − −





















	

115.520 62.603 6.920 16.929 37.942
62.603 299.812 47.666 5.792 33.641
6.920 47.666 70.406 15.152 11.159

16.929 5.792 15.152 19.897 6.435
37.942 33.641 11.159 6.435 60.928

current smokerS =

− − − −
− − −
− − −

− −
− −





















While these covariance matrices are by no means identical to each other, they 
do have similar patterns of small and large, positive and negative values. The 
variables involved are not so far from being Normally distributed, which causes 
us to worry about carrying out a test of significance such as Wilks’ lambda test 
(see Chapter 3) to assess whether or not they are sufficiently similar to allow 
us to pool them together. The p-value resulting from this test is 0.252, which is 
greater than 5% so we conclude that we have insufficient evidence to claim that 
the covariance matrices are different from each other. We can thus pool them 
and get the result shown below:

	

152.607 2.063 25.576 25.861 38.610
2.063 296.514 5.780 2.483 12.103

25.576 5.780 82.746 18.765 26.375
25.861 2.483 18.765 22.200 9.841
38.610 12.103 26.375 9.841 77.160

S =

− − − −
− −

− − −
−
− −





















∗

I am now going to use some technical terms that are relevant when 
dealing with matrices and vectors. The linear discriminant functions, 

1 1
2

1m S x m S mi
T

i
T

i−∗
−

∗
− , are made up of these so they cannot be avoided. 

However, please do not get scared off by the use of terms such as invert, 
pre-multiplied, post-multiplied and transpose. It is not necessary to know the 
details of these mathematical procedures in order to understand the basics of 
what is going on.

To get the linear discriminant functions 1 1
2

1m S x m S mi
T

i
T

i−∗
−

∗
− , we need 

to invert this pooled covariance matrix. This inverse of the pooled covariance 
matrix is pre-multiplied by the transpose of the vector of means for each of 
the smoking history groups. To get the second term of the linear discriminant 
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functions, this result is then post-multiplied by the vector of means for each of 
the smoking history groups and this is then multiplied by.

I will now illustrate what results from the previous paragraph using just one of 
the groups: “never smoked”. The procedures for the other groups would be exactly 
the same, just using the vector of means appropriate to the group in question.

For the “never smoked” group, the vector of means for the variables age, 
weight, systolic blood pressure, diastolic blood pressure and pulse rate is as follows:

	

33.75
70.50

107.15
59.55
65.30

never smokedx =





















To get the first half of the linear discriminant functions (the 1m S xi
T

∗
− ), we 

do the inverting and pre-multiplying specified above to get the 1m Si
T

∗
−  and then 

post-multiply by x. Now this vector x contains the actual values of the variables 
for a particular case. Rather than discuss one particular case right now, let us 
just use x1, x2, x3, x4 and x5 to represent the values of age, weight, systolic blood 
pressure, diastolic blood pressure and pulse rate. The 1m Si

T
∗
−  and x are then as 

follows:

	

1.327 0.192 1.945 1.708 1.9271

1

2

3

4

5

m S

x

x
x
x
x
x

i
T ( )=

=



















∗
−

If you are not familiar with vectors and matrices, please do not worry as to 
why the 1m Si

T
∗
−  is written as a row and the x as a column. The important thing 

is to multiply these two vectors together, and the result is as follows:

	 1.327 0.192 1.945 1.708 1.9271
1 2 3 4 5m S x x x x x xi

T = + + + +∗
−

To get the second half of the linear discriminant functions (the 1
2

1m S mi
T

i− ∗
− ), 

we do the inverting, pre-multiplying and post-multiplying specified above, and 
obtain the figure –247.159. This means that the final linear discriminant func-
tion (ldf) for the group “never smoked” is as follows:

	 247.159 1.327 0.192 1.945 1.708 1.927never smoked 1 2 3 4 5ldf x x x x x= − + + + + +
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For the other smoking history groups, we get the following linear dis-
criminant functions:

285.401 1.462 0.182 2.040 1.877 2.118

300.280 1.538 0.210 2.053 2.017 2.104

338.679 1.656 0.182 2.165 2.223 2.211

occasional smoker 1 2 3 4 5

ex-smoker 1 2 3 4 5

current smoker 1 2 3 4 5

ldf x x x x x

ldf x x x x x

ldf x x x x x

= − + + + + +

= − + + + + +

= − + + + + +

6.5.2  Allocating Cases to the Groups

All this creating of the linear discriminant functions in Section 6.5.1 is rather 
pointless if we do not then go on to use them. One way of using them to get 
an idea of which variables discriminate between the groups is discussed in 
Section 6.6. Here, we are going to concentrate on using them to decide to 
which group cases should be allocated.

Let us take as an example Case 1 from the dataset of Chapter 1. It has 
values for age (x1) of 21, weight (x2) of 51.1, systolic blood pressure (x3) of 94, 
diastolic blood pressure (x4) of 63 and pulse rate (x5) of 82. If we put these 
values of x1 to x5 into each of the linear discriminant functions for the four 
smoking history groups which we created in Section 6.5.1, we get the following:

	

239.013

238.288

235.377

230.375

never smoked

occasional smoker

ex-smoker

current smoker

ldf

ldf

ldf

ldf

=

=

=

=

So what does this mean? Which of the four groups is Case 1 nearest? Let 
us return to Equation 6.1 and examine the transformation of the Mahalanobis 
distance into the linear discriminant functions. This shows that the linear 
discriminant functions (the bit in the square brackets in the bottom line) is 
actually doubled and taken away from 1x S xT

∗
−  to create the Mahalanobis 

distance. Thus, larger linear discriminant functions make smaller distances. 
So, looking at the linear discriminant functions for Case 1, we see that the larg-
est is for the “never smoked” group, which means that Case 1 is nearest to the 
“never smoked” group according to the Mahalanobis distance. We would thus 
allocate Case 1 to this group on the basis of these linear discriminant functions.

Of course, for Case 1 we know what smoking history group he or she 
really belongs to, and it is in fact the “never smoked” group. The discriminant 
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analysis has therefore successfully allocated Case 1 to the correct group. If we 
do this same allocating to a group for all 100 cases in the dataset of Chapter 1, 
we find that we end up allocating 73 correctly and 27 incorrectly: a 73% 
success rate. This shows us that although the variables age, weight, systolic 
blood pressure, diastolic blood pressure and pulse rate are reasonably good 
at discriminating between the four smoking history groups, they do not give 
perfect results.

6.6  WHICH VARIABLES DISCRIMINATE 
BETWEEN GROUPS?

In Section 6.5.2 we found that the variables age, weight, systolic blood pressure, 
diastolic blood pressure and pulse rate managed to join together in linear 
discriminant functions to correctly allocate 73% of the cases in the dataset of 
Chapter 1. But are they all useful, or only some of them?

To answer this question, we can examine the following linear discrimi-
nant functions created in Section 6.5.1.

247.159 1.327 0.192 1.945 1.708 1.927

285.401 1.462 0.182 2.040 1.877 2.118

300.280 1.538 0.210 2.053 2.017 2.104

338.679 1.656 0.182 2.165 2.223 2.211

never smoked 1 2 3 4 5

occasional smoker 1 2 3 4 5

ex-smoker 1 2 3 4 5

current smoker 1 2 3 4 5

ldf x x x x x

ldf x x x x x

ldf x x x x x

ldf x x x x x

= − + + + + +

= − + + + + +

= − + + + + +

= − + + + + +

If one of the variables was completely useless in discriminating between 
the groups, then we would expect their impact in the linear discriminant 
functions to be very low compared with the other variables. Here we see 
that the coefficients in the linear discriminant functions for x2 (weight) are, 
in fact, quite low, whereas the other variables have coefficients that are quite 
similar in size. However, before we go off and draw conclusions directly, 
we must remember that these coefficients are being multiplied by the values 
of the variables, and thus the units in which the variables are measured are 
important. That is, if we have a variable which has very large numbers (for 
instance, if we measured weight in grammes), then it could have very small 
coefficients in the linear discriminant functions while still being useful at 
discriminating between the groups. Similarly, if we had a variable with 
very small numbers (such as measuring pulse rate in beats per second), 
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then it could have relatively large coefficients in the linear discriminant 
functions  and still not be all that useful at discriminating between the 
groups.

To overcome this problem, what we need to look at are the linear dis-
criminant function coefficients that would result from using standardised data. 
If we standardised each of the variables age, weight, systolic blood pressure, 
diastolic blood pressure and pulse rate (by deducting their means and dividing 
by their standard deviations), then the linear discriminant functions that would 
be calculated are as follows:

1.551 2.114 0.007 0.907 1.283 1.269

0.130 0.113 0.161 0.054 0.261 0.533

0.345 1.015 0.322 0.187 0.582 0.406

2.746 2.753 0.172 1.320 1.828 1.421

never smoked 1 2 3 4 5

occasional smoker 1 2 3 4 5

ex-smoker 1 2 3 4 5

current smoker 1 2 3 4 5

ldf x x x x x

ldf x x x x x

ldf x x x x x

ldf x x x x x

= − − + − − −

= − − − + − +

= − + + + + +

= − + − + + +

Now we can see that all of x1 (age), x3 (systolic blood pressure), x4 (diastolic 
blood pressure) and x5 (pulse rate) have relatively large coefficients for at least 
one or more of the linear discriminant functions. However, x2 (weight) has 
small coefficients in all the linear discriminant functions. We can thus con-
clude that weight is not a good variable at discriminating between the smoking 
history groups, but the other variables are.

6.7  HOW ACCURATE ARE 
THE ALLOCATIONS?

In Section 6.5.2 we allocated Case 1 to the “never smoked” group because 
this group had the largest value for the linear discriminant function, and 
thus Case 1 was nearer to the “never smoked” group than to any of the 
other groups (on the basis of the Mahalanobis distance). However, we 
could not be sure that we were making the correct allocation to the group. 
Were we as much as 90% sure that Case 1 belonged to the “never smoked” 
group? Or was it that we were very uncertain and we allocated Case 1 to the 
“never smoked” group simply because it was marginally more likely than 
any other group? If we are able to make certain assumptions (see Section 
6.7.1), then we can calculate the probability of a case belonging to each of 
the groups.
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6.7.1  Assumptions

In order for the calculations of the probabilities to be believable, we have to make 
some assumptions about the data. If the assumptions do not hold, then we should 
not take any notice of the probabilities calculated. This does not mean that the 
whole of the discriminant analysis is invalid as we have not made any assump-
tions in previous sections that are absolutely required. There are some that are 
useful for the linear discriminant function method to perform to its full potential 
(independence and that the group covariance matrices are similar); but if they 
are not satisfied, then we do not have to scrap the whole analysis. However, the 
assumptions required for the probability calculations are as follows. Actually 
the first three assumptions are the same as are required when undertaking a 
hypothesis test to see whether or not the mean vectors for the groups involved 
are the same (see Chapter 3). These assumptions are discussed in more detail in 
that chapter, so we just concentrate on the fourth assumption here.

	 1.	The cases in the data are independent of each other.
	 2.	The data come from a multivariate normal distribution.
	 3.	The covariance matrices for the groups being investigated are the 

same.
	 4.	The prior probability of a case belonging to a group is the same for 

all groups.

The last assumption means that before we examine the data for a particular case, 
we have no idea what group the case may belong to. Using the smoking histories as 
an example, we are saying that before we looked at the data for Case 1 in Section 
6.5.2, it was equally likely that Case 1 belonged to the “never smoked”, “occasional 
smoker”, “ex-smoker” or “current smoker” group. Sometimes this may not be a 
very realistic assumption to make. For instance, in the dataset of Chapter 1, 40% 
of the cases are in the group “never smoked”, with 16% in “occasional smoker”, 
20% in “ex-smoker” and 24% in “current smoker”. On the basis of these figures, 
we would probably guess that Case 1 is more likely to be in the “never smoked” 
group. If this assumption of equal prior probabilities cannot be sustained, then 
there  are some methods of calculating probabilities which can overcome this. 
These are more complicated to calculate and are outside the scope of this book.

6.7.2  Probabilities

To calculate the probabilities of a case belonging to the different groups, we need 
to have not just the values of the linear discriminant functions for the case, but 
also the actual Mahalanobis distance between the case and the group. However, 



122  Essentials of Multivariate Data Analysis﻿

thanks to working out Equation 6.1, we can calculate these quite easily. To get 
the Mahalanobis distance from the linear discriminant function, the last line of 
Equation 6.1 shows us that we need to calculate 1x S xT

∗
−  and then take away twice 

the value of the linear discriminant function. For Case 1, we find that 1x S xT
∗
−  = 

485.303. I deliberately leave out the details of how we get this but it is just the 
same sort of thing that we went through to get the 1m S xi

T
∗
−  and 1

2
1m S mi

T
i− ∗

−  
in Section 6.5.1. The values of the linear discriminant functions for Case 1 are 
shown in Section 6.5.2. Taking away twice these values from 485.303 gives the 
following Mahalanobis distances between Case 1 and the different groups.

	

7.277

8.727

14.548

24.754

,never smoked
2
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2

,ex-smoker
2
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2

d

d

d

d

x

x

x

x

=

=

=

=

For reasons connected with the multivariate normal distribution, we now 
take the exponential of −1/2 of each of these distances. For the “never smoked”, 
we obtain e−0.5 × 7.277 = 0.0263; for the “occasional smoker” group, we obtain 
0.0127; for the “ex-smoker” group, we obtain 0.000693; and for the “current 
smoker” group, we obtain 0.00000422.

The probabilities are then worked out for the “never smoked” group 
by dividing its 0.0263 by the sum of these values for all the groups. This 
is 0.0263 / (0.02623 + 0.0127 + 0.000693 + 0.00000422), which comes to 
0.662. Thus, when we allocated Case 1 to the “never smoked” group, there 
was a 66.2% chance of this being correct (if the assumptions of Section 6.7.1 
are correct). We can get probabilities for the other groups as well. For the 
“occasional smoker” group, the calculations give 0.0127 / (0.0263 + 0.0127 + 
0.000693 + 0.00000422) = 0.321. For the “ex-smoker” group, the probability is 
0.017; and for the “current smoker” group, the probability is 0.0001.

6.8  TESTING A DISCRIMINANT ANALYSIS

In Section 6.5.2 we said that the variables age, weight, systolic blood pressure, 
diastolic blood pressure and pulse rate together had a 73% success rate when 
allocating the cases of the dataset in Chapter 1 to the smoking history groups.
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However, when we allocated Case 1 to the “never smoked” group, it could 
be considered that we were cheating a bit. We decided that the nearest group to 
Case 1 was “never smoked” on the basis that it had the smallest Mahalanobis 
distance (and equivalently the largest linear discriminant function value). But 
as Case 1 did belong to the “never smoked” group, it actually contributed to the 
calculation of the mean vector for the “never smoked” group. It is thus not too 
surprising that we decided Case 1 was near the “never smoked” group because 
it contributed to how the “never smoked” group was defined. Of course, Case 1 
was only one of forty cases making up the “never smoked” group, so its influ-
ence on what the whole group looked like could be considered relatively small. 
However, for smaller groups, such as “occasional smokers”, each of the sixteen 
cases does have a relatively important impact on how what characteristics the 
group has.

Thus, the 73% success rate we observed in Section 6.5.2 may be a bit 
of an overestimate of how well the linear discriminant functions might do 
when faced with the task of trying to allocate completely new cases to one of 
the four smoking history groups. The next two sections suggest ways in which 
the discriminant analysis may be modified so as to avoid this overestimating 
of the allocation success rate.

6.8.1  Splitting the Dataset

If you have a sufficiently large number of cases in your dataset, you might 
consider splitting it into two parts. You could use one part of the dataset to 
come up with the linear discriminant functions, and then see what happens 
when these functions are applied to the other part of the dataset. This is likely 
to give you a better idea of how the linear discriminant functions will perform 
when allocating new cases that come along.

6.8.2  Cross-Validation

An alternative to splitting the dataset is to perform the discriminant analysis 
many times. On each occasion, one of the cases in the dataset is left out when 
the calculations are done to create the linear discriminant functions. This one 
case is then allocated to a group on the basis of the functions which it had no 
part in creating. If this procedure is done so that each case in the dataset has 
been left out on one occasion, then at the end of the process you have a good 
idea of how often the linear discriminant functions can correctly allocate 
new cases.
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The main problem with this method is that it is very computer intensive. 
For our dataset with 100 cases, we would, in effect, be doing 100 separate 
analyses. While this may be possible if you are prepared to wait long enough 
for your computer to do all the work, sometimes it will not be a practi-
cal way of operating. However, if your dataset is large enough to give you 
problems with how long it would take to operate this procedure, then it may 
well be large enough to use the method of splitting the dataset discussed in 
Section 6.8.1.

6.9  OTHER METHODS OF 
DISCRIMINANT ANALYSIS

There are methods of carrying out a discriminant analysis other than using 
linear discriminant functions. A couple of methods are discussed below, 
but  readers wanting to know more could look at Tabachnick and Fidell 
(2013).

6.9.1  Canonical Discrimination

In canonical discrimination for just two groups, a “linear discriminant equa-
tion” is created using the p variables chosen. It looks like a regression equa-
tion: y = β0 + β1x1 + β2x2 + ⋮ + βpxp. The β parameters are estimated so that the 
two groups contain y-values that are as different as possible. Another way of 
thinking of it is that we are undertaking a one-way analysis of variance with 
the response variable being the y-values, and the groups being the factors. We 
want to choose values of β to maximise the difference in y-values between 
the two groups, and so we maximise Between Groups SS/Within Groups SS. 
To do this maximising, we find the eigenvalues and eigenvectors of W−1B, 
where B is the matrix of Between Groups SS and W is the matrix of Within 
Groups SS.

With one linear discriminant equation, y has been created so that the 
groups are as separated out as possible in a one-dimensional manner, as in 
Figure 6.1.

If we have more than two groups in the discriminant analysis, then it is 
possible to define multiple discriminant equations, uncorrelated with each 
other. For example, two equations separate the groups in two dimensions in 
Figure 6.2. In general, for k groups, k − 1 equations are possible.
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6.9.2  Stepwise Discrimination

In canonical discrimination, the linear discriminant functions that were 
used looked like regression equations. If the independence and multivariate 
normality assumptions mentioned in Section 6.7.1 are reasonable, then 
a series of discriminant analyses can be undertaken to come up with a 
“best fit” model, just as is done in stepwise multiple regression. That is, 
variables are added to the discriminant functions (and/or taken out), until it 
is found (by carrying out significance tests) that adding extra variables or 
taking any away does not give significantly better discrimination between 
the groups.

6.10  A STEP-BY-STEP GUIDE 
TO DISCRIMINANT ANALYSIS 

USING THE EXCEL ADD-IN

	 1.	You must have a column in Excel that contains the names by which 
your cases are known. These are called the “case identifiers”. They 
may be names or codes that you can use to identify the different 
cases, or may be simply case numbers (e.g. case 1, case 2, etc.). You 

FIGURE 6.1  Groups separated in one dimension.

FIGURE 6.2  Groups separated in two dimensions.
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must also have columns of data containing the variables which you 
want to use in the cluster analysis and a column that tells Excel 
which group each case is in.

	 2.	Go through the multivariate analysis add-in’s menus until you get 
the dialogue box for discriminant analysis.

	 3.	 In the “Case identifiers:” box, put the range of cells correspond-
ing to the column in which the case names, labels or whatever (see 
Step 1) are located.

	 4.	 In the “Variables to use in analysis:” box, put the range of cells 
corresponding to the variables you are using in the analysis.

	 5.	 In the “Group identifiers:” box, put the range of cells corresponding 
to the column that indicates which group each case in the dataset 
is in.

	 6.	Make sure the Yes/No choice for “Variable names in first line of 
data?” is appropriate for the ranges you have entered at Steps 3, 4 
and 5.

	 7.	Click “OK”.

6.11  MORE INFORMATION

In various parts of this chapter, I have pointed you towards other sources if you 
want to find out more about the intricacies of discriminant analysis. Books that 
deal well with the subject include Everitt and Dunn (2001) and Manley (2005). 
Tabachnick and Fidell (2013) go into the topic in more depth.
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7Multidimensional 
Scaling

7.1  WHY DO I WANT TO DO 
MULTIDIMENSIONAL SCALING?

Most data that you are likely to have when undertaking a study of some kind 
are information about individual cases. That is, you have a number of cases 
(e.g. people, organisations, businesses, objects) and you have a number of vari-
ables associated with them which come from a process of measuring, asking, 
observing, etc.

However, sometimes you may have data which is information about 
pairs or groups of items. For instance, you may have asked a number of 
people to compare different brands of soft drink, or you might be asking 
people how similar they think pairs of nations are in the way they con-
duct international politics. What you then have is information about the soft 
drinks or nations themselves, and how similar or dissimilar they are from 
each other. The people who gave you this information are not the focus of 
the study you are carrying out, but instead it is these other “units” which 
are important.

Multidimensional scaling can help you analyse this sort of data. On the 
one hand, it can be thought of in a way similar to factor analysis (see Chapter 4). 
In factor analysis, you have a matrix of correlations/covariances which are 
analysed to create a number of different factors. You then try to interpret the 
factors. You can use multidimensional scaling to do a similar thing, although 
instead of starting with a correlation or covariance matrix, you start with a 
different sort of matrix which shows the similarities or dissimilarities. You 
need to decide how many “dimensions” adequately represent the similarities/
dissimilarities in the same way that in factor analysis you need to decide how 
many factors adequately represent the correlation/covariance matrix. These 
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“dimensions” have different values for each of the items of interest (e.g. brands 
of soft drink, nations) which can be examined in a similar way to the loadings 
produced by a factor analysis.

However, sometimes the object of multidimensional scaling is not to nec-
essarily go as far as trying to interpret the dimensions, but instead it is to try to 
achieve a picture of the similarities/dissimilarities. This is usually a scatterplot 
of the first two dimensions, and is thus two-dimensional. If these first two 
dimensions do quite well in explaining the similarities/dissimilarities, then 
you have a good “picture” of the data. However, if you need more than two 
dimensions to get an adequate representation of the similarities/dissimilarities, 
then this aim is difficult to achieve with any satisfaction. Three dimensions 
might just be possible if you can use software to spin the three-dimensional 
plot on a two-dimensional screen, but four or more dimensions are impossible 
to deal with in any straightforward way.

7.2  WHAT DATA DO I NEED FOR 
MULTIDIMENSIONAL SCALING?

As mentioned in Section 7.1, ultimately what you need for multidimensional 
scaling is a matrix of similarities or dissimilarities. However, it is often the 
case that this matrix is created from variables collected from people, organ-
isations, etc. In the situation where people are being asked about how differ-
ent nations conduct international politics, they may have been asked to name 
which two nations were most similar. So, if there were only three nations 
being asked about, say the United Kingdom (U.K.), United States (U.S.A.), 
and Germany, then each respondent would either reply U.K./U.S.A. or U.K./
Germany or U.S.A./Germany. Once data from a number of respondents had 
been collected, we could simply count the number of times that each of these 
three possible responses had been given. This would then have given us a 
matrix of similarities, with high numbers where lots of people thought the 
countries were similar, and low numbers where few people thought they were 
similar.

Alternatively, rather than asking people which pair of countries they think 
are most similar, a different approach would be to ask for a score to be given 
to each pair of countries. Low scores could mean that it is thought that nations 
have similar approaches to international politics and high scores mean that it 
is thought they have different approaches. If the scores for each of the pairs 
of countries are averaged over all the respondents, then the resulting averages 
would be entries in a dissimilarity matrix.
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Another situation in which a matrix of similarities/dissimilarities can be 
created is where a person (or other sort of respondent) has ranked a number 
of items. Thus, to use the soft drinks brand example again, the respondents 
were asked to put the brands in order of how much they like the taste. For 
every possible pair of brands, the difference in the rankings can be calculated. 
Thus, if there are four brands, A, B, C and D that have been given the order-
ing 1st = B, 2nd = D, 3rd = C, 4th = A, then A/B are three places apart, A/C 
are one place apart, A/D are two places apart, B/C are two places apart, B/D 
are one place apart and C/D are one place apart. This process is repeated for 
each of the respondents in the study, and the distances between the pairs of 
brands averaged over all of them. The result is a matrix of dissimilarities, with 
brands which are consistently ranked similarly having small dissimilarities 
and brands which are consistently ranked differently having large dissimilari-
ties. It is also possible to carry out the same sort of process when instead of 
ranks being defined for the brands, scores out of 10 or something similar are 
awarded for each brand.

In the topic of cluster analysis (see Chapter 5), one of the first steps in 
hierarchical clustering is to construct a distance matrix according to some 
measurement criteria. This distance matrix could be used as the dataset for 
a multidimensional scaling. In this situation, the multidimensional scaling 
would be used to try and obtain a good two-dimensional picture of the data-
set. The idea of interpreting the dimensions in a similar way to the factors 
in factor analysis is unlikely to be very illuminating as in multidimensional 
scaling, each case in the dataset would have a loading whereas in factor analy-
sis the loadings would be attached to the variables which makes interpreting 
them easier. However, it is not impossible that studies might exist where a 
multidimensional scaling of a cluster analysis type distance matrix could give 
meaningful dimensions.

It is possible that the data you obtain does not need to be converted into 
a matrix of similarities or dissimilarities because it is already made up of 
distances. Consider the situation where you have the time it takes to travel 
between various towns and cities of the U.K. by train. The data are measures 
like dissimilarities already, and you may then use them straightaway in a mul-
tidimensional scaling. The resulting analysis may give you a two-dimensional 
picture of the U.K. according to train times. This would have the effect of 
squashing the U.K. in a north/south direction as fast trains cover these routes, 
but may also spread out places that are more awkward to get to by train, such 
as the west coast of Wales and the east coast of Norfolk.

Above, I have been trying to consistently mention that we need a “matrix 
of similarities/dissimilarities”. In essence, this is true but in practice, methods 
of undertaking multidimensional scaling need the matrix to be dissimilarities. 
However, if you have a matrix of similarities, it is usually quite straightforward 
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to convert it into a matrix of dissimilarities. Usually, you only have a matrix 
of similarities if you are counting how many times people are choosing a pair 
of items, or you have a scoring system where high scores are used to indicate 
that items are similar to each other. In the first case, similarities can be con-
verted to dissimilarities by counting how many people do not choose a pair of 
items. For instance, if 89 out of 100 people have judged two items to be similar 
to each other, then this is equivalent to 11 out of 100 judging them not to be 
similar. We then get a situation where small numbers are associated with pairs 
of items that are judged to be similar, and large numbers are associated with 
pairs of items that are not judged to be similar. We thus have dissimilarities. 
For the second case, imagine we are using a scoring system of 1 to 10, where 
1 indicates that items are dissimilar and 10 indicates that items are similar. We 
can collect the data from all the respondents and then carry out a conversion 
to reverse the scale. By calculating 11 minus the score given, we then get 1 
indicating items that are similar and 10 indicating items that are dissimilar. 
The averaged scores are then dissimilarities.

7.3  THE REST OF THIS CHAPTER

Much of this chapter deals with the method of multidimensional scaling called 
classical multidimensional scaling. Section 7.4 deals with this in some detail, 
but also mentions some difficulties with this method in Section 7.4.1. Methods 
of multidimensional scaling that help overcome these problems are discussed 
in Section 7.5. In Section 7.6, a step-by-step guide to using the multidimen-
sional scaling part of the Microsoft Excel add-in is given, and in Section 7.7, 
sources of information are given for those readers who want to learn more 
about the topic.

7.4  CLASSICAL MULTIDIMENSIONAL 
SCALING

The object of multidimensional scaling can be thought of as taking a matrix 
of dissimilarities and then trying to identify “variables” (or “dimensions”) 
that recreate the dissimilarity matrix when distances between them are 
calculated.
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In classical multidimensional scaling, this is exactly what we do. We start 
with a distance matrix that we can call D. What we want to find is a dataset X 
that is made up of a number of unknown variables. The cases in this dataset will 
be the items which make up the rows and columns of the distance matrix D.

Let us consider the dataset of Chapter 1. In particular, we are going to focus 
on the responses that the 100 people gave when asked to give scores to pairs of 
nations according to how similar/dissimilar they thought their foreign policies 
were. They were asked to give a score between 1 and 10, with 1 indicating 
very similar and 10 indicating very dissimilar. The average score for each 
pair of nations over the 100 people form the distance matrix in Table 7.1. It is 
a dissimilarity matrix rather than a similarity matrix because larger numbers 
indicate that people thought the nations were more dissimilar in their foreign 
policies. There is a lot of repetition in the matrix because the distance from, 
say the U.K. to the U.S.A., is the same as the distance from the U.S.A. to the 
U.K. Table 7.1 is the matrix D for the purposes of this analysis.

So we are looking to create a dataset X which would give us the matrix 
D in Table  7.1. If we actually had X to start with, then we could calculate 
D straightaway using some distance measure. In classical multidimensional 
scaling, this distance measure is assumed to be Euclidean distance (see 
Chapter 5 for further discussion of this measure). However, of course, we do 
not have X but only have D. If we can easily go from X to D, can we easily go 
from D to X and thus obtain the dataset we want? Well, it might not be all that 
easy but it can be done without too much difficulty, as we can see below.

Although we cannot go directly from D to X, there is a trick we can use. 
As well as being able to calculate D directly from X, we can break down the 
calculations into two parts. The first part would be to create a matrix that is 
generally called B and is equal to XTX. This is a bit of matrix multiplication 
wizardry. If you are not familiar with matrix arithmetic, please do not worry. 
In effect, all we are doing is squaring the matrix. Squaring is something that is 
done as part of the calculation of Euclidean distances, so it is not such a weird 
thing to do.

TABLE 7.1  Distance Matrix for Nations

U.K. U.S.A. FRANCE GERMANY RUSSIA CHINA AUSTRALIA

U.K. 0.000 2.350 7.600 6.430 7.600 7.520 2.930
U.S.A. 2.350 0.000 7.000 4.000 8.560 8.140 3.190
France 7.600 7.000 0.000 3.870 3.910 4.150 6.130
Germany 6.430 4.000 3.870 0.000 4.020 7.230 3.930
Russia 7.600 8.560 3.910 4.020 0.000 3.180 3.940
China 7.520 8.140 4.150 7.230 3.180 0.000 3.250
Australia 2.930 3.190 6.130 3.930 3.940 3.250 0.000
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Once we have this matrix B, then the elements of the matrix D can be 
calculated directly from it. Similarly, if we have D, we can calculate B directly 
from D. Each number in B can be calculated using parts of the matrix D via 
the following formula:

	

1
2

2 2 2 2{ }= − δ − δ − δ + δ• • ••bij ij i j

Do not worry about this formula – the important thing is that you know that 
B can be calculated directly from D, rather than the details of how it is done. 
However, because it is really not all that complicated, let me explain the parts 
of this formula in a bit more detail. The bij is the number which is on the i-th 
row and j-th column of the matrix. It does not matter which way around we 
regard the rows and columns as both D and B are symmetric. That is, if we 
consider the line going from the top left corner to the bottom right corner of the 
matrix, then this is a line of symmetry and values above the line are mirrored 
by values below the line. Have a look at D in Table 7.1. In a similar way, the 
δij is just the part of the D matrix in the i-th row and j-th column. You might 
wonder why I am using δij instead of dij for the elements of D. The reason is 
that in Section 7.5, I will be using both δij and dij, with δij being the elements of 
D. It is a convention that is common in multidimensional scaling, and if I were 
to change it here, then I would run the risk of confusing you if you looked at 
any other book on the subject.

So, δij is one of the observed/calculated distances from the matrix D. The 
2δij is just the square of the δij. The 2δ •i  is calculated by squaring each value in 

the i-th row of D and taking an average of these figures. Similarly, the 2δ• j is 
calculated by squaring each value in the j-th column of D and taking an aver-
age. The 2δ•• is calculated by squaring all the values in every row and column 
of D and taking an average. So, although it does involve a bit of calculation, the 
process of creating B from D only involves relatively simple arithmetic. The 
matrix D of Table 7.1 becomes the matrix B shown in Table 7.2.

We have managed to get the matrix B = XTX from the matrix D, but can 
we get X from the matrix B? Yes, we can, but unfortunately it is not a case 
of directly calculating the X from B. What we need to do is to calculate the 
eigenvalues and eigenvectors of B. We have done this before for a matrix when 
doing factor analysis. As in Chapter 4 when discussing factor analysis, I am not 
going to go into the details of eigenanalysis here. What is important for multi-
dimensional scaling is that the eigenvectors that result from the eigenanalysis 
can be thought of as our variables that make up X. To be more specific, it is the 
scaled eigenvectors that make up X. The eigenvectors that usually result from 
an eigenanalysis are in normalised form. That is, if you square the values in 
an eigenvector and add them up, you get exactly one. Scaled eigenvectors are 
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obtained by multiplying each of the values in an eigenvector by the square root 
of the eigenvalues associated with it. This is exactly what happens in factor 
analysis when the principal components method is used to extract the factors. 
The eigenvalues of the B matrix in Table 7.2 are shown in Table 7.3 with the 
first two associated scaled eigenvectors in Table 7.4.

There are two negative eigenvalues shown in Table  7.4. Ideally, there 
would not be any negative eigenvalues at all. The reason for this is that when 
you scale the normalised eigenvectors, you need to use the square root of the 
eigenvalue. If your eigenvalue is negative, then you cannot take the square root 
without resorting to the mathematical field of imaginary numbers, and this 
does not really make sense from a statistical point of view.

Negative eigenvalues constitute one of the major problems that classical 
multidimensional scaling has to face. In most analyses you are going to find 
that some of the eigenvalues are negative. However, if you only have a small 
number of negative eigenvalues, and these themselves are not too far from 
zero, then this issue can be ignored. On the other hand, if you have a lot of 

TABLE 7.4  First Two Scaled 
Eigenvectors of B Matrix for 
Nations

EIGENVECTOR

1 2
U.K. 3.888 −1.697
U.S.A. 4.443 0.813
France −2.650 1.973
Germany 0.305 3.289
Russia −3.594 0.034
China −3.314 −2.691
Australia 0.921 −1.720

TABLE 7.3  Eigenvalues of B Matrix for Nations

EIGENVALUE
APPROXIMATE AMOUNT OF INFORMATION IN 

DISTANCE MATRIX REPRESENTED BY EIGENVALUE

1 66.716 51.311%
2 28.451 21.881%
3 11.947 9.189%
4 4.138 3.183%
5 0.000 0.000%
6 −9.198 7.074%
7 −9.573 7.362%
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negative eigenvalues or there are some which are a long way from zero, then 
perhaps you should abandon classical multidimensional scaling and use one of 
the alternative methods of analysis discussed in Section 7.5.

Also shown in Table 7.3 alongside the eigenvalues themselves is the pro-
portion of the information in the distance matrix D that the eigenvalues and 
associated eigenvector represents. This is the same idea as in factor analysis 
where we can identify the proportion of the variation in the data which each 
factor can account for. In Table 7.3 we have calculated the proportion by divid-
ing the eigenvalue itself by the sum of all the eigenvalues. Or rather, because 
we have some negative eigenvalues here, we have used the sum of the absolute 
values of the eigenvalues (that is, we have ignored the minus signs on the last 
two eigenvalues). This sum is 130.024 (= 66.716 + 28.451 + 11.947 + 4.138 + 
0.000 + 9.198 + 9.573 allowing for rounding). The first eigenvalue is 66.716, so 
the proportion of the information in the distance matrix which it represents is 
66.716/130.024 = 51.311%. Or rather, as we are using a bit of a cheat because 
of the negative eigenvalues, we should regard this as an approximate figure, as 
the label for the column in Table 7.3 indicates.

How many of the eigenvalues do we need to worry about? Well, one way 
of gauging this is to look at a scree plot of the eigenvalues, just as we did in 
Chapter 4 when considering the number of factors which we wanted to include 
in a factor analysis. Such a plot is shown in Figure 7.1. From this scree plot 
we might conclude that the first two eigenvalues are sufficiently large to be of 
interest, but from eigenvalues number three onwards, they are all quite close to 
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FIGURE 7.1  Scree plot of eigenvalues in Table 7.3.
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zero. Another way of deciding how many dimensions to bother with is to look 
at the cumulative percentage of information in D that is represented by the 
dimensions. I have decided not to include another column in Table 7.3 to show 
this because with the negative eigenvalues, the percentages already there are 
only approximate. However, it is easily calculated that the first two dimensions 
together represent over 70% of the information in the distance matrix. The 
third dimension adds a bit more but its importance is questionable.

As we have decided that we only need to bother with two dimensions, 
we can produce a plot to show the nations according to the first two scaled 
eigenvectors. This plot is shown in Figure  7.2. This shows the relative 
positions of the seven nations according to these first two, most important, 
dimensions and shows in one picture the story of the distances of Table 7.1. 
We see that the U.K. and U.S.A. have been placed near each other and a 
long way from China, Russia and France. Germany and France have been 
placed relatively near each other, and Australia is almost midway between 
the U.K. and China. In the context of this dataset being analysed, being near 
means that the respondents regard nations as having similar foreign policies 
and being far apart means the respondents regard them as having dissimilar 
foreign policies.

We can also try to interpret the scaled eigenvectors of Table 7.4 in the 
same way we try to interpret factors in factor analysis (see Chapter 4). Here, 
for the most important eigenvector (eigenvector one), we see that we have large 
positive values for the U.K. and U.S.A. and large negative values for Russia and 
China (and to a slightly lesser extent, France). I am no expert on international 

4

3
Germany

France

Russia

China

Australia UK

USA

2

1

0

–1

–2

–3

–2 –1 1 2 3 4 5–3–4

FIGURE 7.2  Plot of first two scaled eigenvectors.



7  •  Multidimensional Scaling  137

politics but perhaps we could view this underlying factor as people viewing 
countries’ foreign policies as either Anglo-centric or not. The second eigen-
vector has large positive values for France and Germany and large negative 
values for the U.K., China and Australia. Could this be seen as people viewing 
countries’ foreign policies as either collegiate or more isolationist?

7.4.1 � Problems with Classical 
Multidimensional Scaling

Having gone to some lengths to show how classical multidimensional scaling 
works, I must point out that it has fallen out of favour with many analysts. 
Because it assumes that the distances are Euclidean, it is quite restrictive, 
and often there is no good reason to make this assumption. Having Euclidean 
distances implies that the distances are continuous data and can (theoretically) 
be measured to an infinite degree of accuracy. However, if the distances have 
been created from a ranking process (e.g. ranking soft drinks in order of 
preference), then this is not really the case. The analysis can proceed with the 
false assumption, but the dimensions produced may not be as representative of 
the true underlying dimensions as would otherwise be the case.

There is also the problem of negative eigenvalues which was mentioned in 
Section 7.4. If there are a relatively large number of negative eigenvalues or if 
any of them are large (in a negative direction), then the whole classical multi-
dimensional scaling solution may be called into question.

There are other methods of multidimensional scaling which can get around 
the problems faced by classical multidimensional scaling. In Section  7.5 we 
briefly discuss these other methods.

7.5  OTHER METHODS OF 
MULTIDIMENSIONAL SCALING

As with many multivariate methods of analysis, there is not just one method 
that can be used to undertake multidimensional scaling. Classical multidi-
mensional scaling (Section 7.4) is a relatively straightforward method from a 
computational point of view and, because of this, has been widely used in the 
past. However, modern computing power has opened the possibilities of using 
other methods which overcome some of the problems associated with classical 
multidimensional scaling.
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The broad aim of multidimensional scaling is to come up with a dataset X 
which would recreate the observed distance matrix D if some sort of distance 
measure were used. Thus, for each observed element of D, which we will call δij, 
we have a distance, dij which is calculated from the dataset X. We want these δij 
and dij to be as close as possible, so we can define the multidimensional scaling 
problem as one that creates a dataset X such that the differences between the δij 
and the dij are as small as possible. To summarise the differences between the 
δij and the dij, the sum of squared differences between them is frequently used. 
Although the formula below looks a bit complicated, it is really not that bad. 
The bit in brackets with the squared sign is simply the difference between the 
observed distance, δij and the distance dij that comes from the matrix X. This 
gives us the summary of the differences between the δij and the dij, with squaring 
taking place so that negative differences do not cancel out positive differences. 
The Σ symbols are simply telling us to add up all these squared distances.
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In the formula above, only part of the distance matrix D, and the associ-
ated matrix of distances estimated from X, is used. This is because in the 
distance matrix, elements below the main diagonal which runs from the top 
left corner of the matrix to the bottom right corner are repeated above the main 
diagonal (see, for example, Table 7.1). We do not want to include distances 
twice, so we only count values above (or below) the main diagonal. Values on 
the main diagonal are not included in the calculation either. However, these 
would all be zero (the distance from a case to itself is always zero), so it makes 
no difference whether you include or exclude them.

Often, rather than use this sum of squared distances, a measure called 
stress, standing for standardised residual sum of squares is used. This stan-
dardises the sum of squared distances by dividing by the sum of the squared 
observed distances, and takes the square root:
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A mathematical algorithm is used to minimise the value of the stress by 
finding a dataset X. There are many different algorithms available. The choice 
of algorithm depends on what you believe about the nature of the distances. 
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If they are measured on the ratio level of measurement (the size of differences 
between distances have a concrete meaning and it makes sense to talk about 
one distance being some multiple of another), then you might use one of a 
number of algorithms. If they are measured on the interval level of measure-
ment (the size of differences between distances have a concrete meaning but 
it does not make sense to talk about one distance being some multiple of 
another – differences in temperature are an example of this because, for exam-
ple, 4°C cannot be said to be twice 2°C), then you have a choice of another 
set of algorithms. If the distances result from some ranking or ordering of 
items, then the distances can be thought of as ordinal (they indicate the order 
in which items are placed rather than actual distances) and yet another set of 
algorithms may be used. More information about some of the various algo-
rithms available can be found in Lattin et al. (2003).

Whatever algorithm is chosen, the aim is to minimise the stress. Once this 
is finally accomplished by the algorithm, you will have a set of dimensions, 
just as with classical multidimensional scaling. In addition, you can assess how 
good the created dataset X is at recreating the original distance matrix D by 
looking at the final, minimised, value for the stress. As a rule of thumb, if the 
stress is as much as 20%, then this is fairly poor; if it gets down to about 10%, 
then this is not too bad. If it gets down as far as 5%, then you have a very good 
solution. The ultimate would be a stress of 0%, which would indicate that the 
dataset X can exactly recreate the original distances in D.

7.6  A STEP-BY-STEP GUIDE TO 
MULTIDIMENSIONAL SCALING 

USING THE EXCEL ADD-IN

	 1.	You must have a distance matrix in Excel. This matrix must have 
zeros or blanks on the main diagonal (top left cell to bottom right 
cell) which indicate the distances between an item and itself. It must 
also have distances between all other pairs of items. These can 
be in the upper triangle (the area above the main diagonal), or the 
lower triangle (the area below the main diagonal) or both. If both 
are given, then they must match each other. Distances must not be 
negative.

	 2.	Your distance matrix may also have labels in a top row and left-hand 
column that give the names of the items which form the distance 
matrix. If given, these must be in the same order for the rows and 
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columns. If not given, labels will be created for the items, and it will 
be assumed that the ordering of items is the same in the rows as in 
the columns.

	 3.	Go through the multivariate analysis add-in’s menus until you get 
the dialogue box for multidimensional scaling.

	 4.	 In the “Distance matrix” box, put the range of cells corresponding 
to the distance matrix you wish to analyse.

	 5.	Make sure the Yes/No choice for “Item names in first row and col-
umn of matrix?” is appropriate for the range you have entered at 
Step 4.

	 6.	Click “OK”.

7.7  MORE INFORMATION

Many modern books that deal with multidimensional scaling will completely 
ignore classical multidimensional scaling because it is not used as commonly 
as it used to be. However, if you want to know more about classical 
multidimensional scaling, I suggest you look at Everitt and Dunn (2001), which 
also discusses metric and non-metric multidimensional scaling. Other books 
that will let you know more about non-classical methods of multidimensional 
scaling are Bartholomew et al. (2008), Lattin et al. (2003) and Manly (2005).
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8Correspondence 
Analysis

8.1  WHY DO I WANT TO 
DO CORRESPONDENCE 

ANALYSIS?

All the topics discussed in other chapters of this book have been dealing with 
data which is continuous, or at least can be treated as continuous. I have not 
discussed any methods for categorical data other than by having to, first of 
all, treat them as continuous by allocating some sort of scoring system to the 
categories (see Chapter 1). In correspondence analysis, we fill this gap to some 
extent.

For categorical data, the typical method of analysis used time and 
time again is to produce tables. For two variables, one variable’s categories 
make up the rows and the other variable’s categories make up the columns 
(e.g.  Table  8.1). For more than two variables, rows and columns may be 
made up of various combinations of the categories of the different variables 
(e.g. Table 8.2).

These tables show the information clearly but it is sometimes difficult to 
see patterns that exist. The human eye is much better at assessing pictures than 
figures, so it would be nice to have graphical versions of tables to look at. This 
is what correspondence analysis creates for us.
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8.2  WHAT DATA DO I NEED FOR 
CORRESPONDENCE ANALYSIS?

For correspondence analysis, we need categorical data. These may be variables 
which have ordered categories (e.g. the age-groups in Table 8.2) or unordered 
categories (e.g. gender). Correspondence analysis can be carried out with two 
categorical variables, or more than two. Continuous data can be used, but first 
it must be grouped into categories. This can sometimes be done by examining 
a histogram of the continuous variable and seeing where it makes sense to put 
breaks between categories.

8.3  THE REST OF THIS CHAPTER

Although correspondence analysis is a multivariate technique, much of 
this chapter focusses on methods for dealing with just two variables. This 
is because the ideas behind the technique can be most easily explained in 
this context, and the method which we discuss here for dealing with more 
than two variables is a relatively straightforward extension of the two-variable 
ideas. In Section 8.4 we start our exploration of correspondence analysis by 
going back to the basic chi-square test of independence which is carried out 
so often on tables of categorical data. We end up obtaining a graphical display 
of the information in the table. In Section 8.5 we consider how this graphi-
cal display may be obtained when we have variables with numerous catego-
ries. Section 8.6 deals with the various forms of plots that can be obtained, 
and we eventually reach a truly multivariate scenario in Section 8.7 when 

TABLE 8.1  Counts for Smoking History and Gender

GENDER

MALE FEMALE TOTAL
Smoking Never smoked 15 25 40
History Occasional smoker 11 5 16

Ex-smoker 9 11 20
Current smoker 13 11 24
Total 48 52 100
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we consider correspondence analysis of more than two variables. We con-
clude with a step-by-step guide to undertaking correspondence analysis using 
this book’s Microsoft Excel add-in in Section 8.8 and give further sources of 
information in Section 8.9.

8.4  CHI-SQUARE DISTANCES, 
INERTIA AND PLOTS

8.4.1  A Chi-Square Test of Independence

Let us consider the data for smoking history and gender in Table 8.1. A sta-
tistical analysis that is often carried out on such data is a chi-square test of 
independence. The null hypothesis for this test is that there is no association 
between smoking history and gender. The alternative is that there is an asso-
ciation. The chi-square test of independence is a very well-known technique, 
so details will not be given here. However, the numbers of “expected” cases 
that are used in the necessary calculations are shown in Table 8.3. None of the 
“expected” numbers are less than 5, so we can be happy that the chi-square 
approximation is appropriate for this analysis.

Combining the observed numbers in Table 8.1 and expected numbers in 
Table 8.3 in the usual way for the chi-square test of independence, we obtain 
a chi-square value of 4.965. The number of degrees of freedom associated 
with this test are the number of smoking history categories minus one, mul-
tiplied by the number of gender categories minus one. This is 3 × 1 which is, 
of course, 3. The p-value that results from a chi-square value of 4.965 with 
3 degrees of freedom is 0.174. As this is more than 0.05, we conclude that 

TABLE 8.3  “Expected” Counts for Smoking History and 
Gender

GENDER

MALE FEMALE TOTAL

Smoking Never smoked 19.20 20.80 40
History Occasional smoker 7.68 8.32 16

Ex-smoker 9.60 10.40 20
Current smoker 11.52 12.48 24
Total 48 52 100
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we have insufficient evidence to reject the null hypothesis at the 5% level of 
significance.

8.4.2  Inertia

The chi-square value of 4.965 from Section 8.4.1 reflects the amount of infor-
mation in Table 8.1 about the association between age group and gender. In 
correspondence analysis, the average contribution to this chi-square value 
by each case in the dataset is called the inertia. This is the chi-square value 
divided by the number of cases, which in this case is 4.965/100 = 0.04965. 
In Section 8.5, the importance of inertia in correspondence analysis will 
become clear.

8.4.3  Plotting Chi-Square Distances

How might we go about plotting the information contained in Table 8.1 in a 
graph? As the counts of people in each cell of the table would change depending 
on the size of the dataset, perhaps it would be better to consider percentages, as 
in Tables 8.4 and 8.5. In Table 8.4 we have calculated the percentages so that 
they relate to the proportion of each gender which is in each smoking history 
group. In Table 8.5 we have calculated the percentages so that they relate to the 
proportion of each smoking history group which is male or female.

From Table  8.5 we can construct Figure  8.1 which shows the different 
smoking history groups plotted according to the percentages that are calcu-
lated for male and female.

The first thing that strikes you about Figure 8.1 is that the points are all 
in a straight line. Is this a coincidence? No it is not. The male percentage and 
female percentage have to add up to 100%, so that forces the points to lie 

TABLE 8.4  Percentages in Each Smoking History Group for 
Each Gender

GENDER

MALE FEMALE TOTAL

Smoking Never smoked 31.25% 48.08% 40.00%
History Occasional smoker 22.92% 9.62% 16.00%

Ex-smoker 18.75% 21.15% 20.00%
Current smoker 27.08% 21.15% 24.00%
Total 100% 100% 100%
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on a straight line. Looking beyond this, we see that the “Never smoked” and 
“Ex-smoker” groups lie quite close together, indicating that they have simi-
lar male/female percentages, and they are also near the overall “Total” male/
female percentage in the dataset. “Occasional smokers” appear to have a quite 
different male/female split, with males dominating this group to a greater 
extent than any other group.

However, this section is entitled “Plotting Chi-Square Distances”. What 
we have in Figure 8.1 when we consider how close points are to each other 
are Euclidean distances between them. We have discussed Euclidean dis-
tances elsewhere in this book (Chapter 5). If we consider the Euclidean dis-
tance between the closest two categories in Figure 8.1, “Never smoked” and 

TABLE 8.5  Percentages in Each Gender for Each Smoking 
History Group

GENDER

MALE FEMALE TOTAL

Smoking Never smoked 37.50% 62.50% 100%
History Occasional smoker 68.75% 31.25% 100%

Ex-smoker 45.00% 55.00% 100%
Current smoker 54.17% 45.83% 100%
Total 48.00% 52.00% 100%
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FIGURE 8.1  Gender percentages for smoking history groups.
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“Ex-smoker”, we get the following. The Euclidean distance is calculated by 
taking the square of the difference in the male percentages, adding the square 
of the difference in the female percentages and then taking the square root:

	
Euclidean distance 37.50 68.75 45.00 55.00 10.6072 2) )( (= − + − =

This calculation of the Euclidean distance treats the male percentage 
and female percentage on the same basis. It takes no account of the fact that, 
in general, we would expect the female percentages to be (slightly) higher 
because there are (slightly) more females than males in the dataset. We need to 
standardise the figures in some way so that female figures are made to be no 
more important in the calculation than the male figures. The sort of standardis-
ing that is done when calculating distances in cluster analysis (see Chapter 5) 
is not appropriate here as our data are counts of people. Instead, what is done 
is to divide each of the squared differences in the calculation by the overall 
percentage in the dataset who are male or female. We thus get a distance which 
is called a chi-square distance, as follows:

	
Chi-square distance

37.50 68.75
48

45.00 55.00
52

1.501
2 2) )( (= − + − =

The actual value of the chi-square distance is quite different from the value 
of the Euclidean distance, but this need not be a concern. They are measuring 
the distance in different ways, so it is not surprising that they produce quite 
different figures.

There is another reason why we choose the chi-square distance in prefer-
ence to the Euclidean distance. This is because of the way in which categories 
are frequently capable of being combined or divided. Suppose that originally, 
instead of having just a “female” category, we had a “young female” and an 
“older female” category. If we created a table showing the percentages of each 
gender category that was in each smoking history category, we might dis-
cover Table 8.6. This indicates that there is no difference between the “young 
female” and “older female” groups in terms of their smoking history, and we 
might as well combine the categories, as in Table 8.4.

However, what if we did not combine the categories and instead pro-
ceeded to produce Table 8.7 showing the percentage of each gender category 
which was in each smoking history group? If we were now to calculate the 
distance from the “Never smoked” category to the “ex-smoker” category, there 
is no reason for us to expect to get any different result from the calculations 
above when the “young female” and “older female” groups were combined. 



148  Essentials of Multivariate Data Analysis﻿

There is no difference in the relationships between Table 8.5 and Table 8.7, so 
why should the differences between the smoking history groups change?

The Euclidean and chi-square distances between the “Never smoked” 
and “Ex-smoker” categories can be calculated in exactly the same way as for 
Table 8.5, as follows.

Euclidean distance

37.50 45.00 18.75 16.50 43.75 38.50 9.4272 2 2) ) )( ( (

=

− + − + − =

Chi-square distance

37.50 45.00
48

18.75 16.50
15.6

43.75 38.50
36.4

1.501
2 2 2) ) )( ( (

=

− + − + − =

TABLE 8.6  Percentages in Each Smoking History Group for Each Expanded 
Gender Category

GENDER

MALE
YOUNG 
FEMALE

OLDER 
FEMALE TOTAL

Smoking Never smoked 31.25% 48.08% 48.08% 40.00%
History Occasional smoker 22.92% 9.62% 9.62% 16.00%

Ex-smoker 18.75% 21.15% 21.15% 20.00%
Current smoker 27.08% 21.15% 21.15% 24.00%
Total 100.00% 100.00% 100.00% 100.00%

TABLE 8.7  Percentages in Each Expanded Gender Category for Each Smoking 
History Group

GENDER

MALE
YOUNG 
FEMALE

OLDER 
FEMALE TOTAL

Smoking Never smoked 37.50% 18.75% 43.75% 100%
History Occasional smoker 68.75% 9.38% 21.88% 100%

Ex-smoker 45.00% 16.50% 38.50% 100%
Current smoker 54.17% 13.75% 32.08% 100%
Total 48.00% 15.60% 36.40% 100%
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We see that the Euclidean distance has changed from 10.607 to 9.427 but the 
chi-square distance has remained the same at 1.501. So, both for the reason of 
wanting to undertake some standardisation of the percentage differences and 
to ensure that the way in which we define the categories does not affect the 
distances, we prefer to use chi-square distances when undertaking correspon-
dence analysis.

However, we live in a world where distances between points on a graph 
are Euclidean. How can we change Figure 8.1 so that the distances between 
categories are chi-square distances? The answer is to amend Table  8.5 
by dividing each percentage by the square root of the total percentage in 
the dataset that is male or female, as appropriate. The result is Table 8.8, 
which  can then be displayed in a graph as Figure  8.2. The result is very 
much like Figure 8.1, so the conclusions drawn from that graph are equally 
valid here.

A further feature of the chi-square scaled percentages shown in Table 
8.8 will come as no surprise if you consider that we are calling them “chi-
square” scaled. If we take the squared Euclidean distance from one of the 
smoking history categories to the “Total”, multiply this by the number of 
people in that smoking history group, and add this to the same quantity for 
all the other smoking history groups, then we get the original chi-square 

TABLE 8.8  Chi-Square Scaled Percentages in Each Gender for Each Smoking 
History Group

GENDER

MALE FEMALE
Smoking History Never smoked 37.50%

48%
0.541= 62.50%

52%
0.867=

Occasional 
smoker

68.75%
48%

0.992= 31.25%
52%

0.433=

Ex-smoker 45.00%
48%

0.650= 55.00%
52%

0.763=

Current smoker 54.17%
48%

0.782= 45.83%
52%

0.636=

Total 48.00%
48%

0.693= 52.00%
52%

0.721=
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value of 4.965 from the test of independence carried out in Section 8.4.1, as 
shown below.

) ) )

) ) )

) )

( ( (

( ( (

( (
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2 2 2 2

2 2 2
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8.4.4  Adding Extreme Categories to the Plots

Figure 8.2 gives us a graphical view of how similar the different smok-
ing history groups are to each other, but does not give us any information 
about how they relate to gender. To add gender to the graph, we amend 
Table 8.5 to show two additional categories in the rows: one relating to a 
hypothetical  group where 100% of the people are male, and one relating 
another hypothetical group where 100% of the people are female. The result 
is Table 8.9.
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If we create a graph of chi-square distances between the row categories like 
Figure 8.2, we get Figure 8.3. It shows that the “Female” category is the one that 
is nearest to the “Never smoked” and “Ex-smoker” groups, whereas the “Male” 
category is nearest to the “Occasional smoker” and “Current smoker” groups. 
We can thus see in the graph the associations that exist in the data. In this case, 
the associations are not very strong – the extreme categories in Figure 8.3 are 
not particularly near any of the smoking history groups, and the chi-square test 
of independence was not significant at the 5% level of significance.

TABLE 8.9  Percentages in Each Gender for Each Smoking 
History Group with Extreme Categories

GENDER

MALE FEMALE TOTAL

Smoking Never smoked 37.50% 62.50% 100%
History Occasional smoker 68.75% 31.25% 100%

Ex-smoker 45.00% 55.00% 100%
Current smoker 54.17% 45.83% 100%
Male 100% 0% 100%

Female 0% 100% 100%

Total 48.00% 52.00% 100%

1.50

1.25

1.00

0.75

Fe
m

al
e

Female

0.50

0.25

0.0
0.00 0.25 0.50 0.75 1.00

Never smoked

Male

Ex-smoker
Current smoker

Occasional
smoker

Male
1.501.25

FIGURE 8.3  Chi-square scaled gender percentages for smoking history groups 
with extreme categories.
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8.5  MORE DIMENSIONS

In Section 8.4 the graphs that were produced all contained the points for the 
various smoking history groups (and extreme categories) in a straight line. 
This means that although the graphs we produced were two dimensional, we 
could have just had a one-dimensional plot. The distances between the points 
would have been the same in the one-dimensional plot, so no information 
would have been lost.

Consider now Table 8.10 which shows a table of smoking history against 
age group. It is not appropriate to undertake a chi-square test of independence 
on this table because for many of the cells, the expected count under the null 
hypothesis of no association is rather small. An “exact test” which tries to con-
duct the hypothesis test using probability theory runs into problems because of 
the non-trivial number of cells in the table and the size of the dataset, and so can-
not overcome this problem. Combining the 50–59 and 60+ age groups appears 
to be a possible solution as they have similar profiles over the smoking history 
categories. However, the resulting table still cannot be analysed appropriately 
with a chi-square test of independence, and exact tests are still problematic.

To try to examine the relationship between smoking history and age 
group, let us consider Table 8.11. This is the same sort of table as Table 8.5, 
showing (in this case) the percentage of each smoking history group that lies in 
each age group. For Table 8.5, because there were just two column categories, 
we were able to produce a plot showing the percentages (Figure 8.1). We later 
amended this plot to show chi-square distances (Figure 8.2) for the reasons 
explained in Section 8.4.3. However, we now have five column categories in 
Table 8.11. How many dimensions would we need to plot these? Well, initially 

TABLE 8.10  Counts for Smoking History and Age Group

AGE GROUP

18–29 30–39 40–49 50–59 60+ TOTAL

Smoking Never 
smoked

17 11 8 2 2 40

History Occasional 
smoker

3 5 6 0 2 16

Ex-smoker 2 3 5 5 5 20
Current 
smoker

1 2 4 8 9 24

Total 23 21 23 15 18 100
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we might consider that we need five dimensions because we have five cat-
egories. However, if we go back to Figure 8.2, we see that although we were 
plotting in two dimensions, we could have represented the plot in just one 
dimension as the points were in a straight line. Thus, to completely represent 
the percentages in Table 8.11, we do not need five dimensions but can get away 
with one less: four dimensions.

You may be less than impressed with the idea that we “only” need four 
dimensions to completely represent the percentages in Table 8.11. If so, you 
are right – using the paper (or perhaps screen) on which you are reading this, 
we can only represent two dimensions with any satisfaction. We might try and 
get away with three dimensions with some clever computer-aided spinning of a 
plot that is meant to be three-dimensional, or (if it was worth the effort) make 
a hologram. However, attempting to represent four dimensions is not a realistic 
aim. If we had a variable with even more categories than age group, we would 
need even more dimensions.

In Section 8.5.1 we try to overcome this problem of living in a world with 
limited physical dimensions. There is a price to pay for coping with this but the 
amount of information we lose can be quantified.

8.5.1  Reducing a Plot to Two Dimensions

What we want to do is reduce a plot that would normally take more than two 
dimensions down to just two dimensions whilst keeping as much of the infor-
mation about the chi-square distances between the points as possible. In a way, 
it is similar to the task of multidimensional scaling (see Chapter 7) where we 
might want to represent a multidimensional solution in just two dimensions. 
To do this in correspondence analysis, we use a mathematical technique called 

TABLE 8.11  Percentages in Each Smoking History Group for Each Age Group

AGE GROUP

18–29 30–39 40–49 50–59 60+ TOTAL

Smoking Never 
smoked

42.50% 27.50% 20.00% 5.00% 5.00% 100%

History Occasional 
smoker

18.75% 31.25% 37.50% 0.00% 12.50% 100%

Ex-smoker 10.00% 15.00% 25.00% 25.00% 25.00% 100%
Current 
smoker

4.17% 8.33% 16.67% 33.33% 37.50% 100%

Total 23.00% 21.00% 23.00% 15.00% 18.00% 100%
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singular value decomposition. You will be grateful to hear that I am not going 
to go into how this works, but it is a technique that is applied to matrices 
and has connections with eigenanalysis that we encounter elsewhere in this 
book (see Chapter 4 on factor analysis, Chapter 6 on discriminant analysis 
and Chapter 7 on multidimensional scaling). If you want to know more about 
the singular value decomposition procedure, there are many books and other 
resources available.

What the singular value decomposition does for us is produce the co-
ordinates that we need for the two-dimensional plot. In fact, it will produce 
the co-ordinates not only for the two dimensions that we want, but also for all 
the possible dimensions. So, for Table 8.11, will it produce four dimensions 
for us? No it will not, because mathematically the table of four rows and five 
columns can, in fact, be represented by only three dimensions. This is because 
although we can represent five columns with four dimensions, the four rows 
can be represented with three dimensions. The singular value decomposition is 
so efficient that it can represent all the information in the table with just these 
three dimensions.

We will consider the co-ordinates for the two-dimensional plot in 
Section 8.6 but for now let us still consider the problem that faces us of hav-
ing a three-dimensional solution that we wish to display in two dimensions. 
If you have read other chapters of this book which include discussion of the 
results of an eigenanalysis, you will not be surprised to hear that as well as 
supplying co-ordinates for three dimensions, the singular value decomposi-
tion supplies them in order so that most of the information from the table 
is contained in the first dimension, followed by the second dimension and 
then the third dimension. Table 8.12 shows the inertia supplied by each of 
the dimensions. In total, the inertia is 0.3918, which is the chi-square value 
(39.18) that would be calculated from Table 8.10, divided by the number of 
cases (100). We see that the first dimension supplies over 87% of the total 
inertia and the second dimension over 11%. Between them, these first two 
dimensions account for almost 99.5% of the total inertia and thus of the 
information in Table 8.10. A plot of these first two dimensions thus displays 

TABLE 8.12  Analysis of Inertia for Table of Smoking 
History and Age Group

DIMENSION INERTIA % OF INERTIA CUMULATIVE %

1 0.3442 87.857% 87.857%
2 0.0456 11.631% 99.488%
3 0.0020 0.512% 100.000%
Total 0.3918
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almost all the available information. However, we postpone any discussion 
of this plot until Section 8.6.

8.6  ROW, COLUMN AND 
SYMMETRIC NORMALISATIONS

Some readers will have noted that in Sections 8.4 and 8.5, I have been dealing 
with tables by calculating percentages such that the rows add up to 100%. In 
Section 8.4, this eventually led to a plot (Figure 8.3), where co-ordinates cal-
culated for each smoking history group with extreme points for each gender. 
However, what if I calculated percentages so that the columns added up to 
100% instead? Would I then obtain a different plot where co-ordinates were 
calculated for each gender, and each smoking history group had an extreme 
point? The answer is, “Yes, it would”.

What we have done in Sections 8.4 and 8.5 is apply what is called a row 
normalisation to the tables so that percentages add up to 100% over each row. 
We could equally have applied a column normalisation to the tables so that the 
percentages add up to 100% for each column. For Table 8.10, a plot resulting 
from the row normalisation is shown in Figure 8.4. For the column normalisa-
tion, the plot is shown in Figure 8.5. A third type of normalization, called a 
symmetric normalization, can also be produced as a kind of summary of the 
row and column normalisations. In Figure 8.4 the age groups are represented 
as extreme categories. In Figure 8.5 they are represented as non-extreme cat-
egories. While this is happening, the smoking history groups are represented 
the other way around. To put them both on the same footing, the extreme and 
non-extreme points can be averaged to produce Figure 8.6 for the symmetric 
normalisation. The co-ordinates for the points in Figure 8.6 are obtained by 
multiplying together the co-ordinates for the extreme and non-extreme points 
and then taking the square root.

Why do we have three different sorts of normalisation? Well, some-
times it is easier to interpret the relationships between the variables from 
one plot than from another. It is not unusual for a row normalisation plot or 
column normalisation plot to produce a bunch of points very close together 
in the middle, a long way from the extreme points. Looking at the symmet-
ric normalisation plot can often resolve this. In Figures 8.4 through 8.6, we 
get the same interpretation whichever plot we consider. Being an ex-smoker 
or current smoker is more closely related to the older age groups (50–59 
and 60+), while never smoking is more associated with the youngest age 
group (18–29).
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8.7  CORRESPONDENCE ANALYSIS 
WITH MORE THAN TWO VARIABLES

What we have considered so far in this chapter has been rather restricted 
because we have only been considering two variables. For this technique to 
be truly classed as multivariate, it must be able to cope with more than two 
variables, and indeed it can. However, this multiple correspondence analysis 
does have some shortcomings, as discussed in Section 8.7.1.

8.7.1  The Burt Matrix

To undertake correspondence analysis with more than two variables, a table 
called a Burt matrix is created. For the variables gender, age group and smok-
ing history in the dataset of Chapter 1, this Burt matrix is shown in Table 8.13. 
It is created by taking all the categories for all the variables being used and 
using this entire list as the categories in both the rows and columns of a table. 
In Table 8.13, the first two lines of figures in the table are individual tables of 
gender against gender, gender against age group and gender against smoking 
history. The next five lines are individual tables of age group against gender, 
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age group against age group and age group against smoking history. The final 
four lines are individual tables of smoking history against gender, smoking 
history against age group and smoking history against smoking history. To 
analyse this matrix, the same methods as in Sections 8.4 through 8.6 are used, 
as if we simply had a table of one variable against another.

The Burt matrix contains much of the information that you would want 
to include in an analysis of the relationships between gender, age group and 
smoking history. Specifically, it contains information about gender against age 
group, gender against smoking history and age group against smoking history. 
However, the Burt matrix contains all this information twice because it has 
each of these tables twice (that is, it has age group against gender as well as 
gender against age group, for example). It also has rather a lot of redundant 
information in it. The individual tables of gender against gender, age group 
against age group and smoking history against smoking history are not ter-
ribly interesting! Because of these issues, correspondence analysis of the Burt 
matrix is sometimes subject to some criticism. Alternative methods for corre-
spondence analysis of multiple variables have been proposed but they are not 
pursued here as the Burt matrix approach is still used quite often and the other 
more advanced methods are beyond the scope of this book.

8.7.2  Analysing the Burt Matrix

When analysing the Burt matrix, the choice of whether to look at the row, col-
umn or symmetric normalisation becomes straightforward. As the categories 
in the rows of Table 8.13 are the same as those in the columns, a plot of either 
the row or column normalisation would have all the categories in both extreme 
and non-extreme positions. This makes no sense. It is thus the symmetric nor-
malisation plot that we wish to study. For the Burt matrix of Table 8.13, we 
obtain the following analysis of inertia (Table 8.14) and plot of the first two 
dimensions (Figure 8.7).

From Figure  8.7 we see that the relationships between age group and 
smoking history observed in Section 8.6 can still be seen, with older people 
more likely to be ex-smokers or current smokers, and younger people more 
likely to be in the never smoked group. We can also see the relationships 
between gender and smoking history observed in Section 8.4, with females 
more likely than males to have never smoked. However, we should note from 
Table 8.14 that this plot of the first two dimensions only accounts for just over 
48% of the information in the Burt matrix. This is not particularly good, so 
we should be aware that there may be patterns that exist in the data which are 
not shown in Figure 8.7.
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TABLE 8.14  Analysis of Inertia for Burt Matrix of Table 8.13

DIMENSION INERTIA % OF INERTIA CUMULATIVE%

1 0.2821 28.475 28.475
2 0.1958 19.768 48.244
3 0.1246 12.577 60.821
4 0.1203 12.145 72.965
5 0.1111 11.217 84.182
6 0.0805 8.122 92.304
7 0.0578 5.834 98.137
8 0.0185 1.863 100.000
9 0.0000 0.000 100.000
10 0.0000 0.000 100.000
Total 0.9906
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FIGURE 8.7  Symmetric normalisation plot for Burt matrix in Table 8.13.
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8.8  A STEP-BY-STEP GUIDE TO 
CORRESPONDENCE ANALYSIS 

USING THE EXCEL ADD-IN

	 1.	You must have a column in Excel that contains the names by which 
your cases are known. These are called the “case identifiers”. They 
may be names or codes that you can use to identify the different 
cases, or may be simply case numbers (e.g. case 1, case 2, etc.). You 
must also have columns of data containing the variables which you 
want to use in the correspondence analysis. These should be cat-
egorical variables.

	 2.	Go through the multivariate analysis add-in’s menus until you get 
the dialogue box for correspondence analysis.

	 3.	 In the “Case identifiers:” box, put the range of cells corresponding to 
the column in which the case names, labels or whatever (see Step 1) 
are located.

	 4.	 In the “Variables to use in analysis:” box, put the range of cells cor-
responding to the variables you are using in the analysis.

	 5.	Make sure the Yes/No choice for “Variable names in first line of 
data?” is appropriate for the ranges you have entered at Steps 3 and 4.

	 6.	Click “OK”.

8.9  MORE INFORMATION

Correspondence analysis is one of the least used of all the multivariate tech-
niques discussed in this book but there is still quite a lot of literature that exists 
for those readers who want to know more. Books I would recommend that 
discuss the topic in varying degrees of depth are ones by Bartholomew et al. 
(2008), Everitt and Dunn (2001), and Manly (2005).
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Since most datasets contain a number of variables, multivariate meth-
ods are helpful in answering a variety of research questions. Acces-
sible to students and researchers without a substantial background in 
statistics or mathematics, Essentials of Multivariate Data Analysis 
explains the usefulness of multivariate methods in applied research. 

Unlike most books on multivariate methods, this one makes straight-
forward analyses easy to perform for those who are unfamiliar with ad-
vanced mathematical formulae. An easily understood dataset is used 
throughout to illustrate the techniques. The accompanying add-in for 
Microsoft Excel® can be used to carry out the analyses in the text. The 
dataset and Excel add-in are available for download on the book’s 
CRC Press web page.

Providing a firm foundation in the most commonly used multivariate 
techniques, this text helps readers choose the appropriate method, 
learn how to apply it, and understand how to interpret the results. It 
prepares them for more complex analyses using software such as 
Minitab®, R, SAS®, SPSS®, and Stata®.
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