
Practical
Enterprise Data
Lake Insights

Handle Data-Driven Challenges
in an Enterprise Big Data Lake
—
Saurabh Gupta
Venkata Giri

Practical Enterprise
Data Lake Insights

Handle Data-Driven Challenges
in an Enterprise Big Data Lake

Saurabh Gupta
Venkata Giri

Practical Enterprise Data Lake Insights

ISBN-13 (pbk): 978-1-4842-3521-8		 ISBN-13 (electronic): 978-1-4842-3522-5
https://doi.org/10.1007/978-1-4842-3522-5

Library of Congress Control Number: 2018948701

Copyright © 2018 by Saurabh Gupta, Venkata Giri

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Nikhil Karkal
Development Editor: Laura Berendson
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-3521-8.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Saurabh Gupta
Bangalore, Karnataka, India

Venkata Giri
Bangalore, Karnataka, India

https://doi.org/10.1007/978-1-4842-3522-5

iii

About the Authors���xi

About the Technical Reviewer��xiii

Acknowledgments���xv

Foreword���xvii

Table of Contents

Chapter 1: �Introduction to Enterprise Data Lakes���������������������������������1

Data explosion: the beginning��3

Big data ecosystem��6

Hadoop and MapReduce – Early days��7

Evolution of Hadoop��8

History of Data Lake���11

Data Lake: the concept���12

Data lake architecture��13

Why Data Lake?��15

Data Lake Characteristics��16

Data lake vs. Data warehouse���19

How to achieve success with Data Lake?��21

Data governance and data operations��22

Data democratization with data lake���25

Fast Data - Life beyond Big Data���28

Conclusion���30

iv

Chapter 2: �Data lake ingestion strategies���33

What is data ingestion?���34

Understand the data sources���35

Structured vs. Semi-structured vs. Unstructured data�����������������������������������37

Data ingestion framework parameters���39

ETL vs. ELT��45

Big Data Integration with Data Lake��47

Hadoop Distributed File System (HDFS)���48

Copy files directly into HDFS��49

Batched data ingestion���49

Challenges and design considerations��51

Design considerations��52

Commercial ETL tools���57

Real-time ingestion��58

CDC design considerations���60

Example of CDC pipeline: Databus, LinkedIn’s open-source solution�������������61

Apache Sqoop��64

Sqoop 1��64

Sqoop 2��65

How Sqoop works?���66

Sqoop design considerations���67

Native ingestion utilities��71

Oracle copyToBDA��72

Greenplum gphdfs utility��73

Data transfer from Greenplum to using gpfdist��76

Table of ContentsTable of Contents

v

Ingest unstructured data into Hadoop���77

Apache Flume���77

Tiered architecture for convergent flow of events���79

Features and design considerations��80

Conclusion���85

Chapter 3: �Capture Streaming Data with Change-Data-Capture���������87

Change Data Capture Concepts���88

Strategies for Data Capture���89

Retention and Replay���91

Retention Period���92

Types of CDC��93

Incremental��94

Bulk��94

Hybrid���95

CDC – Trade-offs��95

CDC Tools���97

Challenges��98

Downstream Propagation���98

Use Case���99

Centralization of Change Data��100

Analyzing a Centralized Data Store��101

Metadata: Data about Data���102

Structure of Data��104

Privacy/Sensitivity Information���104

Special Fields���104

Data Formats��105

Table of ContentsTable of Contents

vi

Delimited Format��105

Avro File Format���106

Consumption and Checkpointing��107

Simple Checkpoint Mechanism��107

Parallelism��107

Merging and Consolidation���108

Design Considerations for Merge and Consolidate���������������������������������������109

Data Quality��110

Challenges��111

Design Aspects���112

Operational Aspects��112

Publishing to Kafka��115

Schema and Data���117

Sample Schema���118

Schema Repository��119

Multiple Topics and Partitioning���120

Sizing and Scaling��121

Tools���122

Conclusion���123

Chapter 4: �Data Processing Strategies in Data Lakes�����������������������125

MapReduce Processing Framework��126

Motivation: Why MapReduce?��127

MapReduce V1 Refresher and Design Considerations���������������������������������128

Yet Another Resource Negotiator – YARN���136

Hive��141

Hive – Quick Refresher���143

Hive Metastore (a.k.a. HCatalog)��146

Table of ContentsTable of Contents

vii

Hive – Design Considerations���148

Hive LLAP��158

Apache Pig���160

Pig Execution Architecture���161

Apache Spark���166

Why Spark?��167

Resilient Distributed Datasets (RDD)��169

RDD Runtime Components���171

RDD Composition��174

Datasets and DataFrames��175

Deployment Modes of Spark Application��178

Design Considerations��180

Caching and Persistence of an RDD in Spark���182

RDD Shared Variables���183

SQL on Hadoop���184

Presto���186

Oracle Big Data SQL���194

Design Considerations��197

Conclusion���199

Chapter 5: �Data Archiving Strategies in Data Lakes��������������������������201

The Act of Data Governance���202

Data lake vs. Data swamp��204

Introduction to Data Archival��205

Data Lifecycle Management (DLM)���208

DLM policy actions���210

DLM strategies���211

DLM design considerations��213

Table of ContentsTable of Contents

viii

Amazon S3 and Glacier storage classes��217

Design considerations��219

DLM Case Study – Archiving with Amazon���220

Conclusion���222

Chapter 6: �Data Security in Data Lakes���225

System Architecture���226

Network Security��227

Hadoop Roles within a cluster��230

Host Firewalls for operating system security��232

Data in Motion��233

Communication Problem��233

Data at Rest���237

Procedure to generate and verify key in LUKS���238

Access flow for the user���238

Performance using LUKS��243

Multiple passphrases with LUKS��243

Kerberos���244

Kerberos Protocol overview���244

Kerberos components��246

Kerberos flow���247

Kerberos commands��249

HDFS ACL���256

HDFS Authorization with Apache Ranger���257

What Ranger does?��258

Conclusion���259

Table of ContentsTable of Contents

ix

Chapter 7: �Ensure High Availability of Data Lake�����������������������������261

Scale Hadoop through HDFS federation���262

High availability of Hadoop components��267

Hive metastore���267

HiveServer2 and Zookeeper integration���268

Setup HA for Kerberos��269

NameNode high availability��272

Architecture��273

Data Center disaster recovery strategies���280

Data replication strategies���287

Active-passive data center replication���289

Active-active data center replication��290

Conclusion���295

Chapter 8: �Managing Data Lake Operations��������������������������������������297

Monitoring Architecture���299

Hadoop metrics architecture��300

Identification of source components��301

YARN metrics��301

MapReduce metrics���302

HDFS���302

Metric collection tools��303

Metrics and log storage��305

Logs and Metrics visualization���307

Kibana��308

Table of ContentsTable of Contents

x

Apache Ambari���309

Data lake operationalization��311

Conclusion���315

Index��317

Table of ContentsTable of Contents

xi

About the Authors

Saurabh Gupta is a technology leader,

published author, and database enthusiast

with more than 11 years of industry

experience in data architecture, engineering,

development, and administration. Working

as a Manager, Data & Analytics at GE

Transportation, his focus lies with data lake

analytics programs that build digital solutions

for business stakeholders. In the past, he

has worked extensively with Oracle database design and development,

PaaS and IaaS cloud service models, consolidation, and in-memory

technologies. He has authored two books on advanced PL/SQL for Oracle

versions 11g and 12c. He is a frequent speaker at numerous conferences

organized by the user community and technical institutions. He tweets at

@saurabhkg and blogs at sbhoracle.wordpress.com.

Venkata Giri currently works with GE Digital

and has been involved with building resilient

distributed services on a massive scale. He

has worked on Bigdata tech stack, relational

databases, high availability, and performance

tuning. With over 20 years of experience in

data technologies, he has in-depth knowledge

of big data ecosystems, complex data ingestion

pipelines, data engineering, data processing,

and operations. Prior to GE, he worked with

the data teams at LinkedIn and Yahoo.

xiii

About the Technical Reviewer

As Director in LinkedIn’s site reliability

engineering organization, Sai Selvaganesan

brings close to two decades of experience in

data, from design, engineering, and operations

to site reliability. With experience across

multiple Silicon Valley companies including

Apple, Yahoo, and LinkedIn, Sai’s focus areas

have been around scaling and optimizing data

infrastructure and he holds multiple patents in

the space.

Sai spearheaded strategic projects that helped forge multi-colo

operations at LinkedIn. Previously, he worked on key initiatives including

Yahoo's Panama project to overhaul search. Sai has a proven track record

of building high-impact global teams focused on execution excellence and

fuelling growth.

Sai holds a BA in Electrical Engineering from NIIT in India and is

currently pursuing his MBA from UCLA.

xv

Acknowledgments

We would like to thank Apress for giving us the opportunity to work on this

project. A big shout goes out to the entire editorial team who have been

extremely supportive throughout. Thanks Nikhil, Divya, and Laura. Trust

me, it was not an episode, rather a journey.

Thanks Sai for accepting our request to review our content. It was

indeed a great learning experience for us to have feedback from someone

so humble and a master of the subject. We acknowledge your efforts in

questioning us and ensuring quality of the product. We would like to

graciously thank Janardh Bantupalli and Aditya for their distinguished

contribution on change data capture and data operation topics.

Needless to say, all this would have never been possible without

organizational support. Special thanks to GE legal for allowing us to pursue

our interest. We would like to express our gratitude to Data & Analytics

staff for their faith and encouragement. Thank you, Rick, Vijay, Libby,

Jayadeep, Mayukh, and Diwakar.

Thanks to my family for bearing me all this time. It's not easy but

whatever I am, is all because of your love and support. You are the life

in me!

xvii

When I was 10 years old, I would spend hours in the local library poring

over books and recording pages and pages of notes, trying to soak up

all the information I could. I was steadily building my knowledge bank

so I would be ready with all the answers, whether I was applying that

knowledge to write a book report or impress my parents with my rapid

recall of statistics and facts about the world. I fast forward to today when

my 8-year-old son calls out questions to the device on my kitchen counter

and immediately gets answers, without having to access any websites, dig

through books, or even leave his own house looking for that exact fact.

In essence, learning from data that may be housed in a data lake instead

of a structured data warehouse or in a book. The world has changed. We

have volumes of data generated simply because of our ability to capture

it – we are no longer limited to transactional systems or data captured

only by written form. While the amount of data available is exponentially

increasing, however, truly capitalizing on its value is dependent on having

access when and how we need it. As technology leaders, we have the

responsibility to make this data accessible so that it can be transformed

into even more valuable information.

As a popularly covered topic in tech and management publications,

some may ask, haven’t we solved for that? Well, we’ve had a good start,

but I would argue that new challenges have emerged. Information is not

structured in the way it used to be instead it is being captured as both

structured and unstructured data sets. As we lead our organizations

forward, we must empower users through data democratization – putting

the data in the hands of the end users so they can transform it into

information in a relevant and meaningful way. The concept is powerful,

Foreword

xviii

and many organizations are embracing it, but the challenge of how to

do it effectively remains a barrier. What are the stages of capturing the

unstructured data, processing it and then allowing access to query it. On

top of that, how do you manage the access and levels of security. These are

challenging new questions that technology leaders face today.

The good news is that the challenges are not insurmountable.

Importantly, though, is that, as the volume of data increases, the need

to manage data processing with speed becomes paramount. Enterprise

users have expectations of “consumer-like” experiences where speed and

ease-of-use are key. What we need now is a practical approach to address

this reality. From my experience, it starts with a cohesive enterprise data

lake strategy. The data lake strategy needs to be architected with end user

in mind and the opportunity to enable a variety of problem statements

to be tackled. Unlike traditional transactional reporting where a problem

statement is articulated at the beginning of the journey, the data lake

attempts to fundamentally approach this in the inverse. Data is no longer

a byproduct. Instead it is waiting for the user to apply a context and

connect and discover data to convert it into information that can drive

outcomes. The age of a data-driven culture has arrived and the principles

and architecture of an enterprise data lake need to be ready to handle to

volume, complexity, and flexibility.

Monica Caldas
CIO & SVP, GE Transportation

“Digital Leader of the Year” 2018
(http://womeninitawards.com/new-york/2018-usa-winners/)

ForewordForeword

https://womeninitawards.com/new-york/2018-usa-winners/

1© Saurabh Gupta, Venkata Giri 2018
S. Gupta and V. Giri, Practical Enterprise Data Lake Insights,
https://doi.org/10.1007/978-1-4842-3522-5_1

CHAPTER 1

Introduction to
Enterprise Data Lakes

“In God, we Trust; all others must bring data”

—W. Edwards Deming, a statistician who devised
“Plan-Do-Study-Act” method

It was in 1861 when Charles Joseph Minard, an 80-year-old French civil

engineer, attempted to develop a visual that can narrate Napoleon’s

disastrous Russian campaign of 1812. Figure 1-1 depicts people movement

and exhibits details on geography, time, temperature, troop count, course,

and direction.

2

From the above chart, in 1812, the Grand Army consisted of 422,000

personnel started from Poland; out of which only 100,000 reached Moscow

and 10,000 returned. The French community describes the tragedy as

“C’est la Bérézina”.

The chart depicts the tragic tale with such clarity and precision. The

quality of the graph is accredited to the data analysis from Minard and a

variety of factors soaked in to produce high-quality map. It remains one of

the best examples of statistical visualization and data storytelling to date.

Many analysts have spent ample time to analyze through Minard’s map

and prognosticated the steps he must have gone through before painting a

single image, though painful, of the entire tragedy.

Data analysis is not new in the information industry. What has grown

over the years is the data and the expectation and demand to churn

“gold” out of data. It would be an understatement to say that data has

brought nothing but a state of confusion in the industry. At times, data gets

Figure 1-1.  Minard’s map of Napolean’s russing campaign in 1812
Source: “Worth a thousand words: A good graphic can tell a story,
bring a lump to the throat, even change policies. Here are three of
history’s best.” The Economist, December 19, 2007, https://www.
economist.com/node/10278643.

Chapter 1 Introduction to Enterprise Data Lakes

https://www.economist.com/node/10278643
https://www.economist.com/node/10278643

3

unreasonable hype, though justified, by drawing an analogy with currency,

oil, and everything precious on this planet.

Approximately two decades ago, data was a vaporous component of

the information industry. All data used to exist raw, and was consumed

raw, while its crude format remained unanalyzed. Back then, the dynamics

of data extraction and storage were dignified areas that always posed

challenges for enterprises. It all started with business-driven thoughts like

variety, availability, scalability, and performance of data when companies

started loving data. They were mindful of the fact that at some point, they

need to come out of relational world and face the real challenge of data

management. This was one of the biggest information revolutions that

web 2.0 companies came across.

The information industry loves new trends provided they focus on

business outcomes, catchy and exciting in learning terms, and largely

uncovered. Big data picked up such a trend that organizations seemed

to be in a rush to throw themselves under the bus, but failed miserably

to formulate the strategy to handle data volume or variety that could

potentially contribute in meaningful terms. The industry had a term for

something that contained data: data warehouse, marts, reservoirs, or lakes.

This created a lot of confusion but many prudent organizations were ready

to take bets on data analytics.

�Data explosion: the beginning
Data explosion was something that companies used to hear but never

questioned their ability to handle it. Data was merely used to maintain

a system of record of an event. However, multiple studies discussed

the potential of data in decision making and business development.

Quotes like “Data is the new currency” and “Data is the new oil of Digital

Economy” struck headlines and urged many companies to classify data as

a corporate asset.

Chapter 1 Introduction to Enterprise Data Lakes

4

Research provided tremendous value hidden in data that can give deep

insight in decision making and business development. Almost every action

within a “digital” ecosystem is data-related, that is, it either consumes or

generates data in a structured or unstructured format. This data needs

to be analyzed promptly to distill nuggets of information that can help

enterprises grow.

So, what is Big Data? Is it bigger than expected? Well, the best way to

define Big Data is to understand what traditional data is. When you are

fully aware of data size, format, rate at which it is generated, and target

value, datasets appear to be traditional and manageable with relational

approaches. What if you are not familiar with what is coming? One doesn’t

know the data volume, structure, rate, and change factor. It could be

structured or unstructured, in kilobytes or gigabytes, or even more. In

addition, you are aware of the value that this data brings. This paradigm

of data is capped as Big Data IT. Major areas that distinguish traditional

datasets from big data ones are Volume, Velocity, and Variety. “Big” is

rather a relative measure, so do the three “V” areas. Data volume may

differ by industry and use case. In addition to the three V’s, there are two

more recent additions: Value and Veracity. Most of the time, the value

that big data carries cannot be measured in units. Its true potential can

be weighed only by the fact that it empowers business to make precise

decisions and translates into positive business benefits. The best way to

gauge ROI would be to compare big data investments against the business

impact that it creates. Veracity refers to the accuracy of data. In the early

stages of big data project lifecycle, quality, and accuracy of data matters

to a certain extent but not entirely because the focus is on stability and

scalability instead of quality. With the maturity of the ecosystem and

solution stack, more and more analytical models consume big data and

BI applications report insights, thereby instigating a fair idea about data

quality. Based on this measure, data quality can be acted upon.

Chapter 1 Introduction to Enterprise Data Lakes

5

Let us have a quick look at the top Big Data trends in 2017 (Figure 1-2).

The top facts and predictions about Big Data in 2017 are:

	 1.	 Per IDC, worldwide revenues for big data and

business analytics (BDA) will grow from $130.1

billion in 2016 to more than $203 billion in 2020.

	 2.	 Per IDC, the Digital Universe estimated is to grow

to 180 Zettabytes by 2025 from pre-estimated 44

Zettabytes in 2020 and from less than 10 Zettabytes

in 2015.

Revenue Value

Size Growth

(Global Revenue to
grow from $130 Billion
in 2016 to $203 Billion

in 2020)

($150 Billion worth
business by 2017)

(180 Zettabytes of
Digital Universe by

2025)

(Data production to
grow by 44 times by

2020)

Figure 1-2.  Top big data trends in 2017. Source: Data from “Double-
Digit Growth Forecast for the Worldwide Big Data and Business
Analytics Market Through 2020 Led by Banking and Manufacturing
Investments, According to IDC,” International Data Corporation
(IDC), October, 2016, https://www.idc.com/getdoc.jsp?container
Id=prUS41826116.

Chapter 1 Introduction to Enterprise Data Lakes

https://www.idc.com/getdoc.jsp?containerId=prUS41826116
https://www.idc.com/getdoc.jsp?containerId=prUS41826116

6

	 3.	 Traditional data is estimated to fold by 2.3 times

between 2020 and 2025. In the same span of

time, analyzable data will grow by 4.8 times and

actionable data will grow by 9.6 times.

	 4.	 Data acumen continues to be a challenge.

Organization alignment and a management mindset

are found to be more business centric than data

centric.

	 5.	 Technologies like Big Data, Internet of Things,

data streaming, business intelligence, and cloud

will converge to become a much more robust data

management package. Cloud-based analytics to

play key role in accelerating the adoption of big data

analytics.

	 6.	 Deep Learning, one of Artificial Intelligence’s (AI)

strategies, will be a reality. It will be widely used for

semantic indexing, and image and video tagging.

	 7.	 Non-relational analytical data stores will grow by

38.6% between 2015 to 2020.

�Big data ecosystem
Big data IT strategy becomes critical when the nature of datasets goes

beyond the capabilities of traditional (rather relational) approaches of

handling data. At a high level, let us see what challenges Big Data brings to

the table.

	 1.	 Data can be structured, semi-structured, or not

structured at all. It is to impossible to design

a generic strategy that can cater datasets of all

structures.

Chapter 1 Introduction to Enterprise Data Lakes

7

	 2.	 Data from different sources can flow at different

change rates. It may or may not have a schema.

	 3.	 How to process disparate datasets of sizes ranging

from multi terabytes to multi petabytes together?

	 4.	 Common infrastructure must be cost effective and

reliable, and should be fault tolerant and resilient.

Total cost of ownership should be controllable to

achieve high returns.

For a Big Data IT strategy to be successful, data must flow from a

distinctive and reliable source system at a pre-determined frequency. Data

must be relevant and mature enough to create critical insights and achieve

specific business outcomes. From the cost perspective, enterprises were

investing huge, in infrastructure to support storage, computing power, and

parallelization.

�Hadoop and MapReduce – Early days
In 2004, Google, in an effort to index the web, released white papers on

data processing for large distributed data-intensive applications. The

intent was to address two problem statements directly: storage and

processing.

Google introduced MapReduce as the data processing framework

and Google File System (GFS) as a scalable distributed file system.

What makes the MapReduce framework highly scalable is the fact that

a parallelized processing layer comes down all the way to the data layer

that is distributed across multiple commodity machines. Google File

System was designed for fault tolerance that can be accessed by multiple

clients and achieve performance, scalability, availability, and reliability at

the same time.

Chapter 1 Introduction to Enterprise Data Lakes

8

MapReduce proved to be the game changer for data process-intensive

applications. It’s a simple concept of breaking down a data processing

task into a bunch of mappers that can run in parallel on thousands

of commodity machines. Reducers constitute a second level of data

processing operations that runon top of output generated from mappers.

�Evolution of Hadoop
In the year 2002, the Yahoo! development team started a large-scale

open-source web search project called Nutch. While Hadoop was still

in the conceptual phase, Nutch’s primary challenge was its inability to

scale beyond a certain page limit. Then the concept of Google’s GFS was

introduced to project Nutch. A GFS-like file system resolved

storage-related issues by allowing large files to sit in a system that was fault

tolerant and available. By 2004, an open source implementation of GFS

was ready as Nutch Distributed Filesystem (NDFS).

In 2004, Google introduced the MapReduce processing framework,

which for obvious reasons, was immediately added into project Nutch.

By early 2005, Nutch algorithms were already working with NDFS

and MapReduce at an enterprise level. Such instrumentation was the

combination of NDFS and MapReduce that, in 2006, Yahoo! took this

package out of project Nutch. Doug Cutting was fascinated by a little stuffy

yellow elephant and named this package Hadoop for the ease of memory

and pronunciation. In 2008, Apache Software Foundation took over

Hadoop to work beyond web-search optimization and indexing.

In a series of events starting in 2008, Hadoop stack has been pulling

some magical numbers to prove its power of processing and worth at

the enterprise level. In February 2008, Yahoo! claimed to generate a web

search index on 10,000 core Hadoop cluster. In April 2008, Apache Hadoop

set a world record as the fastest platform to process terabyte of data with

a 910-node cluster. Hadoop could sort one terabyte of data in just 209

seconds, beating the previous benchmark of 297 seconds.

Chapter 1 Introduction to Enterprise Data Lakes

9

Hadoop 1.0 was introduced by end of the year 2011. The basic flavor

of Hadoop focused on providing the storage and processing framework.

The concept, MapReduce processing coupled with Hadoop Distributed

Filesystem (HDFS), gained wide traction and quick adoption in the

industry. Though this setup was largely appreciated due to flexibility and

ease of implementation, concerns over resource management, scalability,

security, and availability were still on. These drawbacks restricted the

enterprise level adoption of HDFS. A high-level architecture of Hadoop

1 exhibits key components of HDFS storage layer and MapReduce

processing layer. (Figure 1-3).

Later in 2013, Hadoop 2.0 came out with brand new features that

addressed availability and security. However, the major component in

Hadoop 2.X was YARN (Yet Another Resource Negotiator). Resource

management in Hadoop 1.x used to be carried out by a job tracker. Hadoop

2.x lays down another layer for resource management through YARN

and segregates load management from job execution. YARN becomes

responsible for resource allocation for all operations within the cluster.

The MapReduce operation runs in a shell called Application Master who

seeks and receives resources through YARN. It is backward compatible

Client

Sec Name
Node

Name Node Job Tracker

HDFS (Distributed File System) MapReduce (Distributed Data Processing)

Data Node Data Node Data Node Task Tracker Task Tracker

Figure 1-3.  Hadoop 1 high-level architecture

Chapter 1 Introduction to Enterprise Data Lakes

10

with Hadoop 1.x as well. Figure 1-4 positions storage and processing

components of Hadoop 2. Key callouts from the below architecture are:

•	 Standby NameNode to support high availability of

primary NameNode

•	 YARN for cohesive resource management and efficient

job scheduling

Figure 1-5 highlights the difference between Hadoop 1.x and

Hadoop 2.x at the skeleton level.

Clinet

HDFS YARN

Sec Name
Node

Name Node
(Active)

Name Node
(Standby)

Shared Edit Logs

Resource Manager

Node ManagerData Node Data Node Data Node

Container
App

Master

Figure 1-4.  Hadoop 2 high-level architecture

Chapter 1 Introduction to Enterprise Data Lakes

11

�History of Data Lake
Since the time Big Data trends have become buzzwords, several marketing

terms have been coined to describe data management strategies.

Eventually, all of them happen to represent a version of the Big Data

ecosystem.

In 2010,1 James Dixon came up with a “time machine” vision of data.

Data Lake represents a state of enterprise at any given time. The idea is to

store all the data in a detailed fashion in one place and empower business

analytics applications, and predictive and deep learning models with

one “time machine” data store. This leads to a Data-as-an-Asset strategy

wherein continuous flow and integration of data enriches Data Lake to

be thick, veracious, and reliable. By virtue of its design and architecture,

Data Lake plays a key role in unifying data discovery, data science, and

enterprise BI in an organization.

1�Woods, Dan; “James Dixon Imagines a Data Lake that Matters,” Forbes,
https://www.forbes.com/sites/danwoods/2015/01/26/james-dixon-
imagines-a-data-lake-that-matters/#1dd2c5e34fdb

Pig Hive
Pig Hive

MapReduce processing
framework

0 1
0
0
0

00
0

011

11
1

1

01
0
0
0

00
0

011

11
1

1

hadoop
HDFS

hadoop
HDFS

Hadoop 1.X Hadoop 2.X

MapReduce

YARN resource
management

Figure 1-5.  Head to head comparison of Hadoop 1 and Hadoop 2

Chapter 1 Introduction to Enterprise Data Lakes

https://www.forbes.com/sites/danwoods/2015/01/26/james-dixon-imagines-a-data-lake-that-matters/#1dd2c5e34fdb
https://www.forbes.com/sites/danwoods/2015/01/26/james-dixon-imagines-a-data-lake-that-matters/#1dd2c5e34fdb

12

According to James Dixon2 “If you think of a datamart as a store

of bottled water—cleansed and packaged and structured for easy

consumption—the data lake is a large body of water in a more natural state.

The contents of the data lake stream in from a source to fill the lake, and

various users of the lake can come to examine, dive in, or take samples.”

The adoption rate of Data Lake reflects the progression of open-source

Hadoop as a technology and its close association with the Big Data IT

trend. Keep in mind that although data lake is presumed to be on Hadoop

due to the latter’s smooth equation with Big Data IT, it’s not mandatory.

Don’t be surprised if you Find Data Lake hosted on relational databases.

You must factor in the cost of standing a non-Hadoop stack, data size, and

BI use cases.

�Data Lake: the concept
Data Lake is a single window snapshot of all enterprise data in its raw

format, be it structured, semi-structured, or unstructured. Starting from

curating the data ingestion pipeline to the transformation layer for analytical

consumption, every aspect of data gets addressed in a data lake ecosystem.

It is supposed to hold enormous volumes of data of varied structures.

Data Lake is largely a product that is built using Hadoop and a

processing framework. The choice of Hadoop is as direct as it can be. It not

only provides scalability and resiliency, but also lowers the total cost of

ownership.

At a broader level, data lake can be split into a data landing layer and

an analytical layer. From the source systems, data lands directly into the

data landing or mirror layer. The landing layer contains the as-is copy

of the data from source systems, that is, raw data. It lays the foundation

for the battleground for the analytical layer. The analytical layer is a

2�https://jamesdixon.wordpress.com/2010/10/14/pentaho-Hadoop-and-
data-lakes/

Chapter 1 Introduction to Enterprise Data Lakes

https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/

13

highly dynamic one in the Data Lake world as it is the downstream

consumer of raw data from the mirror layer. The landing or mirror layer

data is fed through a transformation layer and builds up the analytical

or consumption layer. The analytical layer ensures data readiness for

data analytics sandbox and thus, acts as a face-off to data scientists and

analysts. Pre-built analytical models can be directly plugged in to run over

the consumption layer. Perhaps, dynamic analytics like data discovery

or profiling models can also be made to run directly on the consumption

layer. Data visualization stacks can consume data from the consumption

layer to present key indicators and data trends.

Another split of data lake can be based on temporal dimensions of

data. Historical raw data can be archived and stored securely within the

data lake. While it will still be active to the data lake consumers, it can

be moved to a secondary storage. Mirror layer that we discussed above

can hold incremental data given a pre-determined timeline. In this case,

consumption layer is built upon augmented mirror layer only.

This model doesn’t need to have physical data marts that are custom

built to serve a singular static model. Rather they transform the data in a

usable format to enable analytics and business insights. On the other hand,

data warehouse provides an abstract image of a specific business wing.

�Data lake architecture
Cost and IT simplification are the biggest features of Data Lake. Inexpensive

Hadoop storage with schema-less-write capability and in-house processing

framework using hive, pig, or python largely the success of data lake.

Figure 1-6 lays out a high-level wireframe of an enterprise Data Lake.

Chapter 1 Introduction to Enterprise Data Lakes

14

In the above architecture diagram, there may be multiple source

systems dumping data into the Enterprise Data Lake. Source systems can

be of variety of nature and structure. It may come from relational sources,

static file systems, web logs, or time-series sensor data from Internet of

Things devices. It may or may not be structured. Without hampering

the structure of data from the source and without investing into data

modeling efforts in Hadoop, all source systems ingest data into Data Lake

in stipulated real time.

Once data comes in the purview of Data Lake frontiers, it propagates

through the processing layer to build the analytical layer. At this stage,

it may be required to define the schema and structure for raw data.

Thereafter, depending upon the data exchange guidelines laid down by

the data governance council, data gets consumed by predictive learning

models, BI applications, and data science tracks. Meanwhile, the anatomy

of data discovery continues to provide a visual and exploratory face to big

data in Hadoop Data Lake by directly working on raw data.

ENTERPRISE DATA LAKE
HR

(structured)

Data
Visualization

Data
Consumption

Data Acquisition
Layer BI Applications

HR/Fin/Business
Analytics

f (x)

Hadoop

Data
Science/Deep

learning models

Finance
(structured)

ERP
(structured/files)

Seismic
(unstructured)

Analytical models

Source-to-Data Lake
integration

Data Landing
layer

Analytics
layer

Data
Discovery/Exploration

Change data capture
Batched ETL
Unstructured data
ingestion

Ad-hoc queries
BI analytics

Figure 1-6.  Enterprise Data Lake Architecture

Chapter 1 Introduction to Enterprise Data Lakes

15

�Why Data Lake?
Big Data IT is driven by competition. Organizations want to exploit

the power of data analytics at a manageable cost to stand out to their

competitors. Data Lake provides a scalable framework to store massive

volumes of data and churn out analytical insights that can help them in

effective decision making and growing new markets. It brings in a shift

of focus from protracted and laborious infrastructure planning exercise

to data-driven architecture. Data ingestion and processing framework

becomes the cornerstone rather than just the storage.

Another perspective that comes with Data Lake building is the

simplified infrastructure. Organizations spend a lot in building reliable

stack for different nature of data and usually follow best fit approach

to manage data. For example, relational databases have been the

industry de-facto for structured data for ages. For the semi-structured

and unstructured data coming through sensors, web logs, social media,

traditional file systems were being used widely. At the end of the day, they

have data marts bracketed by data structure, use cases, and customer

needs but incur high capital and operational expenses. All such scenarios

are easily addressed with Data Lake with a simplified infrastructure.

Data Lake induces accessibility and catalyzes availability. It warrants

data discovery platforms to soak the data trends at a horizontal scale

and produce visual insights. It largely cuts down the time that goes into

data preparation and exhaustive data analysis. Figure 1-7 shows the key

attributes of Data Lake.

Chapter 1 Introduction to Enterprise Data Lakes

16

�Data Lake Characteristics
Let us understand key characteristics of an enterprise data lake.

	 1.	 Data lake must be built using a scalable and fault

tolerant framework – the data lake concept focusses

upon simplification and cost reduction without

compromising on quality and availability. Apache

Hadoop provides cost benefits by running on

commodity machines and brings resiliency and

scalability as well.

	 2.	 Availability – data in the data lake must be accurate

and available to all consumers as soon as it is

ingested.

	 3.	 Accessibility – shared access models to ensure

data can be accessed by all applications. Unless

required at the consumption layer, data shards are

not a recommended design within the data lake.

Data Analytics

Data Lineage &
Discovery

Data
Democratization

Data Operations

Data Governance

Data Lake
attributes

Figure 1-7.  Data Lake attributes

Chapter 1 Introduction to Enterprise Data Lakes

17

Another key aspect is data privacy and exchange

regulations. Data governance council is expected

to formulate norms on data access, privacy and

movement.

	 4.	 Strategy to track data lineage, right from the source

systems up to consumption – the data lineage

tracker provides a single snapshot of life cycle of

data. Starting from its source onset, the tracker

would depict data’s movement and consumption

through layers and applications.

	 5.	 Data reconciliation strategy from the source

systems – from the data operations perspective, data

reconciliation is a critical facet of quality.

	 6.	 Data governance policies must not enforce

constraints on data – Data governance intends

to control the level of democracy within the data

lake. Its sole purpose of existence is to maintain the

quality level through audits, compliance, and timely

checks. Data flow, either by its size or quality, must

not be constrained through governance norms.

	 7.	 Data in the data lake should never get disposed.

Data driven strategy must define steps to version

the data and handle deletes and updates from the

source systems.

	 8.	 Support for in-place data analytics – the data lake

is a singular view from all the source systems to

empower in-house data analytics. Downstream

applications can extract the data from the

consumption layer to feed a disparate application.

Chapter 1 Introduction to Enterprise Data Lakes

18

	 9.	 Data security – security is a critical piece of

Data Lake. Enterprises can start with a reactive

approach and strive for proactive ways to detect

vulnerabilities. Data-centric security models should

be capable of building real-time risk profiles that can

help detect anomalies in user access or privileges.

	 10.	 Archival strategy – as part of ILM strategy

(Information Lifecycle Management), data retention

policies must be created. Retention factor of data,

that resides in a relatively “cold” region of lake, must

be considered, which is not a big deal in the Hadoop

world though, but storage consumption multiplied

by new data exploration, brings a lot of wisdom to

formulate a data archival strategy.

Figure 1-8 draws out the steps involved in the data lake planning and

construction exercises. In the construction phase, you would note that

tasks are more data centric compared to the ones in the planning phase.

Chapter 1 Introduction to Enterprise Data Lakes

19

�Data lake vs. Data warehouse
Data warehousing, as we are aware, is the traditional approach of

consolidating data from multiple source systems and combining into one

store that would serve as the source for analytical and business intelligence

reporting. The concept of data warehousing resolved the problems of data

heterogeneity and low-level integration. In terms of objectives, a data lake

is no different from a data warehouse. Both are primary advocates of terms

like “single source of truth” and “central data repository.”

In basic terms, a data lake ingests all data in its raw format,

unprocessed and untouched to build a huge data store. It goes super

trendy with Hadoop due to its sheer volume and affinity for distributed

computing. A data warehouse, on the other hand, extracts data from

the source systems that pass through a processing layer before settling

Data Lake Planning

Operational
strategy

Data Consumption

Plan your
Infrastructure

Data Analytics

Data acquisition
strategyData ingestion

strategy

Predict the
data growthSolution

strategy
(develop and
deploy)

Identify the
challenges

Identify data
sources and
consumers

Data Lake construction

Figure 1-8.  Steps involved in data lake planning and execution

Chapter 1 Introduction to Enterprise Data Lakes

20

down in different schemas (schema on-write). All data in a warehouse is

processed, well modeled, and structured. In fact, the building paradigm

that both the stores follow can be closely associated to its target users. Data

warehouse targets business professionals, management, and business

analysts who expect structured analysis reports at the end of the day. On

the contrary, a data lake opens a war room for data scientists, analysts, and

data engineering specialists from multiple domains for data crunching,

exploration, and refining.

Open-source Hadoop cannot be the first choice to build a data

warehouse. A data warehouse runs on relatively expensive storage to

withstand high-scale data processing. Data lake is primarily hosted on

Hadoop, which is open source and comes with free community support.

Total cost of ownership and return on investments need to be factored in

while comparing a data warehouse and a data lake. Figure 1-9 shows use

case differences between warehouses and data lakes.

Warehouse

Legacy
filesystem

ERP
ETL

CDC

Incremental
ingestion

OBIEE
reporting

Schema on Write Schema on Read

Data Lake

Sales App

Legacy
filesystem

ERP

Sales App

Pattern
analysis

predictive
analytics

Ad-hoc
query

Figure 1-9.  Data warehouse versus Data Lake

A data warehouse follows a pre-built static structure to model source

data. Any changes at the structural and configuration level must go

through a stringent business review process and impact analysis. Data

lakes are very agile. Consumption or analytical layer can be modified to

fit in the model requirements. Consumers of a data lake are not constant;

therefore, schema and modeling lies at the liberty of analysts and

scientists.

Chapter 1 Introduction to Enterprise Data Lakes

21

Various analogies have been drawn to clarify the difference between

the two worlds. What differentiates a Cricket World Cup from the Olympics

is exactly how a warehouse is different from a data lake.

�How to achieve success with Data Lake?
The strategy to hold the data and extract its real value plays a vital role in

justifying the capital and operational expenses incurred upon building up

the data lake. There might be questions around data classification and its

criticality quotient. How long is the data valuable to a business? What’s the

measure of potential in a data slice? Let us check out a few key drivers that

can ensure a data lake’s success.

Facebook works with 30+ Petabytes of user-generated data. Google

is concerned with every bit that we do in a day. Data-driven companies

never shy away from gathering and storing data. Vision is loud and clear –

data has no expiration date. Every bit of data carries a value that can be

maximized. Therefore, you must have a clear understanding of who the

consumers are, what use cases are served by the data lake currently, and

most importantly, what’s the vision?

Vision drives a lot of data strategies. Data late curators need to

understand what is being consumed and what is needed. First, the pace

at which data acquisition occurs determines the measure of data lake

enrichment as an asset. This lifts the data ingestion barriers, allowing data

to grow centrally and restrict duplication and proliferation of data. Second,

the rate at which raw data gets consumed indicates the measure at which

it becomes dormant. This will push data stewards to rethink data archival

strategy and create space for fresh data from existing and new sources.

Chapter 1 Introduction to Enterprise Data Lakes

22

�Data governance and data operations
Data-driven enterprises are emerging as ardent agile practitioners and

DevOps transformers for one common objective. The code deployment

process becomes faster and enables business users to analyze the impact

of “tiny” incremental fixes. Facebook adopted a “quasi-continuous release

cycle” to eliminate the need for hotfixes, empower global engineering team

to support development and deployment, and quantify the user experience.

C3
100% production

C2
2% production

Push-blocking alerts
Push-blocking tasks
Crashbot for WWW
Emergency button

Flytrap
anomaly

alerts

Push-blocking alerts
Push-blocking tasks
Emergency button

C1
employees

Continuous commits

Sandcastle/test automation

Master

Figure 1-10.  Rapid release at massive scale. Source: Rossi, Chuck;
“Rapid Release at Massive Scale,” August 31, 2017, https://code.
facebook.com/posts/270314900139291/rapid-release-at-
massive-scale/

Data Lake, in its initial stages, acts as a playgroup to try out pre-built

analytical models that are well versed with the resident data. As data lake

matures to an instrumental level, it opens a war room for data scientists

and analysts to be ruthless with data churning exercise.

Situations like this give a glimpse of the pace at which “changes”

move. And this calls out for a need of an administrative body that can

operationalize these changes with negligible impact. The framework,

Chapter 1 Introduction to Enterprise Data Lakes

https://code.facebook.com/posts/270314900139291/rapid-release-at-massive-scale/
https://code.facebook.com/posts/270314900139291/rapid-release-at-massive-scale/
https://code.facebook.com/posts/270314900139291/rapid-release-at-massive-scale/

23

known as data operations, becomes extremely critical to ensure smooth

data lake functions in terms of availability, performance, and security. Data

operations eventually become the gatekeeper of the data lake with respect

to code deployments, platform upgrades, and application support. All code

changes officiating for production promotion pass through the operations

process layer. Key deliverables of data operations are listed below.

	 1.	 DevOps handshake – Data lake operations desk

accompanies DevOps team at critical stages of

development and deployment

	 2.	 Availability and maintenance – Operations shoulder

the responsibility of ensuring availability of the data

lake infrastructure. They plan and execute platform

upgrades and coordinate periodic maintenance

activities.

	 3.	 Release management – Codebase maintenance

and production releases are guarded by data lake

operations.

	 4.	 Monitoring of data flows and capture key data lake

metrics – Data lake operations employ a layered

support model for continuous monitoring of data

movement from mirror to analytical and further

consumption.

	 5.	 Runbook and standard operating procedures –

Documents that describe formal and ad-hoc

exercises to be carried out by data lake operations.

When Facebook acquired WhatsApp, both had different privacy norms,

which further called for an investigation on data sharing. The Electronic

Privacy Information Center and the Center for Digital Democracy filed a

complaint with the Federal Trade Commission (FTC) stating “Specifically,

Chapter 1 Introduction to Enterprise Data Lakes

24

WhatsApp users could not reasonably have anticipated that by selecting a

pro-privacy messaging service, they would subject their data to Facebook’s

data collection practices,” leading to violation of Section 5 of the FTC Act,

15 U.S.C. § 45(n). It led to the revision of data governance laws at Facebook.

Figure 1-11 shows the tasks carried out by data governance and data

operations at different layers of an enterprise data lake.

The data governance council comprises key stakeholders of the data

who are aware with the nuances of data privacy, engineering, processing,

and movement. In its document form, it can be a questionnaire before the

team promotes a change or a fix to the data lake. Questionnaires or rules

may include a run-book for the change, risk evaluation metric, impact

analysis, and sign-off from the key stakeholders. The council can also audit

the data lake to keep track of changes being made in a period rather than

just at deployment. The below list builds the portfolio of an effective data

governance policy.

Data Source

Predictive
analytics

Regression
model

Pattern
analysis

Data Source

Data life cycle
Data acquisition
Auditing
Compliance & Security

Data Landing layer

Data Governance
Data operations

Data operations

Interim/staging
layer Analytical

consumption layer

Guard and support data lake
Release management
Data lake availability and platform maintenance

Figure 1-11.  Concentration of data governance and data operations
in a data lake

Chapter 1 Introduction to Enterprise Data Lakes

25

	 1.	 Data Acquisition – Formulate a strategy to idealize

the data lake as an asset. This piece of governance

council defines what organizational data can be

lodged within the lake. When should it come

and how?

	 2.	 Data catalog – Cataloging is a critical piece when

explicating data lake roadmap and vision. Data

scientists and analyst can be crucial in providing

feedback and proposing council on what data could

be vital for effective analytics.

	 3.	 Data organization – The governance council should

also focus on structure and format of data to enrich

and maintain synergy within the data lake.

	 4.	 Metadata management – Data governance stewards

keep an eye on data quality, profiling, and lineage.

It helps in the evolution of data categories like

internal, confidential, public, and others.

	 5.	 Compliance and security – Deal with data security,

access management, and abide by the organization’s

compliance policies.

Effective data governance elevates confidence in data lake quality

and stability, which is a critical factor to data lake success story.

Data compliance, data sharing, risk and privacy evaluation, access

management, and data security are all factors that impact regulation.

�Data democratization with data lake
One of the appreciative traits of a data warehouse is that each ETL process

or development holds a definite business objective. Every penny of data

in a warehouse undergoes a thorough validation and approval process.

Chapter 1 Introduction to Enterprise Data Lakes

26

On the other hand, data lake has been an ardent supporter of data

democratization.

To withstand today’s data-driven economy, organizations tend to work

with lots of data. The datasets exist in different shapes and sizes and may

follow different routes of consumption. However, this data is discoverable

to only those who are familiar with data lineage. Non-data practitioners

may find it tedious to explore and play with data of interest. Half of their

time is wasted in data discovery, data cleansing, and hunting down reliable

sources of data. Data dwelling in silos prevents liberation of data to its full

potential.

Data democratization is the concept of diluting data isolation and

ensuring that data is seamlessly available to the appropriate takers on

time. In addition to data agility and reliability, data democratization lays

down a layer of data accessibility that helps in discovering data quickly

through custom tools and technologies. The objective is to empower data

analysts with swift access to the veracious data set, so as to enable rapid

data analysis and decision making.

Let us discuss a few of the approaches.

	 1.	 Curated data layers – Curated data layers help in

flattening out data models for functional users. These

users may be interested in only 10% of total raw

information but could struggle in narrowing down

the data of interest. The objects contained in curated

layers are intended to provide sliced and diced data

in a flattened-out structure. Figure 1-12 shows the

SALES curated layer built on top of six base layer

tables.

Chapter 1 Introduction to Enterprise Data Lakes

27

	 2.	 Self-service platforms – Self-service portals may

act as a data marketplace wherein a user can

traverse through data sets, discover based on

functional implications, mold and transform data

representations, and download them for personal

records. In the backend, the framework can work

through with APIs for dataset transformation, data

discovery, and extraction.

By collating all the key elements, data democratization cuts across the

concepts of data nirvana and open data paradigms. Data democratization

can be achieved in an enterprise data lake. The basic idea behind data lake

is to treat all the data equally relevant and insource into a single platform

without the barriers of architecture, models, or predefined framework.

Mirror Data Layer

Sales

Sales by region

Sales by products

Curated Data Layer

Regions

Employees

Orders

Products

Time

Figure 1-12.  SALES layer curated from base data layer

Chapter 1 Introduction to Enterprise Data Lakes

28

Let us now talk about concerns connected to data democratization. An

argument that has gained community support states that democratization

catalyzes the ability of a data lake to become a data swamp. Keep in mind

that swamps are created when data movement is unregulated and a lot of

irrelevant data houses are in the lake for no reason. However, we need to

democratize data to affiliate an open data concept by easing data discovery

through self-service frameworks. Subject matter experts with diversified

expertise can access required data easily and contribute to organizational

insights. Few organizations have raised security and integrity concerns

of democratizing data for the entire workforce. This adds to the

responsibilities of the data governance council who are in charge of data

categorization. Although data security has been on the rise over the last

few years, the surface area of the company’s internal and confidential data

should still be restricted.

�Fast Data - Life beyond Big Data
Today, Big Data analytics is popular. Enterprises not into data analytics

are extinct or endangered. While there are many still getting their feet

wet, there were organizations who not only achieved “big data” milestone

well before, but also came up with cases that demanded stretched-out

capabilities of big data.

One of the facts that we realized in this chapter is that Big Data is

not just “Big”, but it is fast, precious, and relatively mysterious. Big Data

is an abstract trend while Data Lake is an ecosystem that implements

big data analytics. Data from the source systems, in its original format,

be it structured or unstructured, flows into the data lake at different

magnitudes. It may be in the scale of gigabytes per second or terabytes

per hour. However, the data settles down first and then gets processed to

build an analytical layer. Consumption models are oblivious to the fact

Chapter 1 Introduction to Enterprise Data Lakes

29

that what they consume has gone through levels of functional and logical

transformation. A lineage tracking exercise will reflect the lag between the

data generation phase and the consumption phase. This lag is accredited

to the ETL pipeline in the data acquisition layer and the time consumed

during transformation, which leads to delayed analytics. Let us see a few

use cases.

A telecom company monitors all international calls in the country. It

applies the NLP algorithm on voice intercepts to filter out suspicious calls

and send out a notification to the security agencies. The expectation is to

have monitoring in real time and any delayed alert will be treated as an

opportunity missed. Although data volume and velocity are high, ingestion

and analysis are critical.

Another scenario could be a cricket analytics website that needs to

predict if a batsman will be bowled or run out on the next ball (depending

on his current as well as last 10 outings). Cases like these share a common

trait. It is not the data size that matters but what matters is how fresh the

data is at the time of producing actionable insights.

Use cases like those described above have led to the emergence of a

revolution known as Fast Data Analytics. Fast data takes a leap ahead of

Big Data and strives for “fresh” data for mining. While Big Data struggled

with the challenges of distributed storage and computing, fast data focuses

on the time-sensitivity of data for analytics. Hadoop provided a batch

processing platform but it’s inability to process data in near real-time or

real-time has been under scrutiny. Nevertheless, real-time processing will

be difficult for Hadoop. Fast data analytics works on the data as soon as it

gets into the data lake.

Chapter 1 Introduction to Enterprise Data Lakes

30

What fast data analytics achieves is proactive real-time insights. It

can play a significant role in reducing latency, enhancing accuracy, faster

decision making, and improved customer experience. Applications that

leverage data from sensors and machine to machine communication in

the Internet of Things provide the best fit use case for fast data analytics.

�Conclusion
Let us quickly revisit the concepts covered to introduce a data lake. Big

data can be structured or unstructured and is relatively big in terms of

volume, velocity, and value. Market analysts predicted big data to be a

key aspect to several business insights, provided it is appropriately stored

and analyzed. The Organizations realize the value hidden in this heap

but huge investments in storage and building efficient computing models

was a challenge. In 2004, Google’s concept of distributed file systems and

distributed processing frameworks comes to the rescue. The evolution

of the Hadoop distributed file system has been a rapid expedition as it

enabled storage on relatively cheap commodity hardware. MapReduce, the

distributed computing framework, instantiated processing framework to

connect with data for processing.

loT Low
latency

Large
volumes
of data

Fresh Data for
mining

Mobile

Streaming
Data

Real Time Analytical
Decisions

Fast Data Analytics

Web

Time-series

Logs

Sensor

Figure 1-13.  Fast data analytics is the next gen analytics engine
where it focuses on time-sensitivity factor of data for analytics

Chapter 1 Introduction to Enterprise Data Lakes

31

Data lake is an ecosystem for the realization of big data analytics. What

makes data lake a huge success is its ability to contain raw data in its native

format on a commodity machine and enable a variety of data analytics

models to consume data through a unified analytical layer. While the data

lake remains highly agile and data-centric, the data governance council

governs the data privacy norms, data exchange policies, and the ensures

quality and reliability of data lake.

While big data trends on a run, fast data analytics is the one that is

picking up the speed lately. It is different from big data and deals with the

same volumes and structures of data but endeavors data freshness more

than data volume. Recently, enterprises have started realizing the true

essence of data usage. All big data cannot be fast and at the same time, all

fast data need not be big. The data lake ecosystem can complement the

two concepts entirely and empower organizations with both big and fast

flavors of data.

In the next chapter, we will start off with a deep dive into data

ingestion principles. We will understand batched ingestion, real-time data

movement, and change data capture concepts along with architecture and

design considerations.

Chapter 1 Introduction to Enterprise Data Lakes

33© Saurabh Gupta, Venkata Giri 2018
S. Gupta and V. Giri, Practical Enterprise Data Lake Insights,
https://doi.org/10.1007/978-1-4842-3522-5_2

CHAPTER 2

Data lake ingestion
strategies

“If we have data, let’s look at data. If all we have are opinions,
let’s go with mine.”

—Jim Barksdale, former CEO of Netscape

Big data strategy, as we learned, is a cost effective and analytics driven

package of flexible, pluggable, and customized technology stacks.

Organizations who embarked into Big Data world, realized that it’s not just

a trend to follow but a journey to live. Big data offers an open ground of

unprecedented challenges that demand logical and analytical exploitation

of data-driven technologies. Early embracers who picked up their journeys

with trivial solutions of data extraction and ingestion, accept the fact that

conventional techniques were rather pro-relational and are not easy in the

big data world. Traditional approaches of data storage, processing, and

ingestion fall well short of their bandwidth to handle variety, disparity, and

volume of data.

In the previous chapter, we had an introduction to a data lake

architecture. It has three major layers namely data acquisition, data

processing, and data consumption. The one that is responsible for building

and growing the data lake is the data acquisition layer. Data acquisition

lays the framework for data extraction from source data systems and

34

orchestration of ingestion strategies into data lake. The ingestion

framework plays a pivotal role in data lake ecosystem by devising data as

an asset strategy and churning out enterprise value.

The focus of this chapter will revolve around data ingestion

approaches in the real world. We start with ingestion principles and

discuss design considerations in detail. The concentration of the chapter

will be high on fundamentals and not on tutoring commercial products.

�What is data ingestion?
Data ingestion framework captures data from multiple data sources and

ingests it into big data lake. The framework securely connects to different

sources, captures the changes, and replicates them in the data lake. The data

ingestion framework keeps the data lake consistent with the data changes at

the source systems; thus, making it a single station of enterprise data.

A standard ingestion framework consists of two components,

namely, Data Collector and Data Integrator. While the data collector

is responsible for collecting or pulling the data from a data source, the

data integrator component takes care of ingesting the data into the data

lake. Implementation and design of the data collector and integrator

components can be flexible as per the big data technology stack.

Before we turn our discussion to ingestion challenges and principles,

let us explore the operating modes of data ingestion. It can operate either

in real-time or batch mode. By virtue of their names, real-time mode

means that changes are applied to the data lake as soon as they happen,

while a batched mode ingestion applies the changes in batches. However,

it is important to note that real-time has its own share of lag between

change event and application. For this reason, real-time can be fairly

understood as near real-time. The factors that determine the ingestion

operating mode are data change rate at source and volume of this change.

Data change rate is a measure of changes occurring every hour.

Chapter 2 Data lake ingestion strategies

35

For real-time ingestion mode, a change data capture (CDC) system

is sufficient for the ingestion requirements. The change data capture

framework reads the changes from transaction logs that are replicated

in the data lake. Data latency between capture and integration phases is

very minimal. Top software vendors like Oracle, HVR, Talend, Informatica,

Pentaho, and IBM provide data integration tools that operate in real time.

In a batched ingestion mode, changes are captured and persisted every

defined interval of time, and then applied to data lake in chunks. Data

latency is the time gap between the capture and integration jobs.

Figure 2-1 illustrates the challenges of building an ingestion framework.

�Understand the data sources
Selection of data sources for data lake is imperative while enriching

analytical acumen for a business statement. Data sources form the basis

of the data acquisition layer of a data lake. Let us look at the variety of data

sources that can potentially ingest data into a data lake.

Data change rate

Heterogenous data
sources

Data ingestion
frequency

Data
Ingestion
Challenges

Data fomat
(structured, semi or

unstructured)
Data Quality

Figure 2-1.  Data Ingestion challenges

Chapter 2 Data lake ingestion strategies

36

•	 OLTP systems and relational data stores – structured

data from typical relational data stores can be ingested

directly into a data lake.

•	 Data management systems – documents and text files

associated with a business entity. Most of the time,

these are semi-structured and can be parsed to fit in a

structured format.

•	 Legacy systems – essential for historical and regulatory

analytics. Mainframe based applications, customer

relationship management (CRM) systems, and

legacy ERPs can help in pattern analysis and building

consumer profiles.

•	 Sensors and IoT devices – devices installed on

healthcare, home, and mobile appliances and large

machines can upload logs to a data lake at periodic

intervals or in a secure network region. Intelligent

and real-time analytics can help in proactive

recommendations, building health patterns, and

surmising meteoric activities and climatic forecast.

•	 Web content – social media platforms like Facebook,

Twitter, LinkedIn, Instagram, and blogs accumulate

humongous amounts of data. It may contain free text,

images, or videos that is used to study user’s behavior,

business focused profiles, content, and campaigns.

•	 Geographical details – data flowing from location data,

maps, and geo-positioning systems.

Chapter 2 Data lake ingestion strategies

37

�Structured vs. Semi-structured vs.
Unstructured data
Data serves as the primitive unit of information. At a high level, data flows

from distinct source systems to a data lake, goes through a processing

layer, and augments an analytical insight. This might sound quite smooth

but what needs to be factored in is the data format. Data classification

is a critical component of the ingestion framework. Data can be either

structured, semi-structured, or unstructured. Depending on the structure

of data, the processing framework can be designed effectively.

Structured data is an organized piece of information that aligns

strongly with the relational standards. It can be searched using a structured

query language and the result containing the data set can be retrieved.

For example, relational databases predominantly hold structured data.

The fact that structured data constitutes a very small chunk of global data

cannot be denied. There is lot of information that cannot be captured in a

structured format.

Unstructured data is the unmalleable format of data. It lacks a

structure; thus, making basic data operations like fetch, search, and

result consolidation quite tedious. Data sourced from complex source

systems like web logs, multimedia files, images, emails, and documents

are unstructured. In a data lake ecosystem, unstructured data forms a pool

that must be wisely exploited to achieve analytic competency. Challenges

come with the structure and volume. Documents in character format

(text, csv, word, XML) are considered as semi-structured as they follow

a discernable pattern and possess the ability to be parsed and stored in

the database. Images, emails, weblogs, data feeds, sensors, and machine-

generated data from IoT devices, audio, or video files exist in binary format

and it is not possible for structured semantics to parse this information.

Chapter 2 Data lake ingestion strategies

38

“Unstructured information represents the largest, most current,

and fastest growing source of knowledge available to businesses and

governments. It includes documents found on the web, plus an estimated

80% of the information generated by enterprises around the world.” -

Organization for the Advancement of Structured Information Standard

(OASIS) - a global nonprofit consortium that works towards building up the

standards for various technology tracks (https://www.oasis-open.org/).

Each of us generate a high volume of unstructured data every day.

We are connected to the web every single hour as share data in one or

the other way via a handful of devices. The amount of data we produce

on social media or web portals gets proliferated to multiple downstream

systems. Without caring much, we shop for our needs, share what we

think, and upload files to share. By data retention norms, data never gets

deleted but follows the standard information lifecycle management policy

set by the organization. At the same time, let’s be aware that information

baked inside unstructured data files can be enormously useful for data

analysis. Figure 2-2 lists the complexities of handling unstructured data

in the real world. Data without structure and metadata is difficult to

comprehend and fit into pre-built models.

No structure

Data Duplication

Storage and Resource
limitations

Figure 2-2.  Unstructured data complexities

Chapter 2 Data lake ingestion strategies

https://www.oasis-open.org/

39

Apache Hadoop is a proven platform that addresses the challenges of

unstructured data in the following ways:

	 1.	 Distributed storage and distributed computing –

Hadoop’s distributed framework favors storage and

processing of enormous volumes of unstructured

data.

	 2.	 Schema on read – Hadoop doesn’t require a schema

on write for unstructured data. It is only post

processing that analyzed data needs a schema on

read.

	 3.	 Complex processing – Hadoop empowers the

developer community to program complex

algorithms for unstructured data analysis and

leverages the power of distributed computing.

�Data ingestion framework parameters
Architecting data ingestion strategy requires in-depth understanding of

source systems and service level agreements of ingestion framework. From

the ingestion framework SLAs standpoint, below are the critical factors.

•	 Batch, real-time, or orchestrated – Depending on

the transfer data size, ingestion mode can be batch

or real time. Under batch mode, data movement will

trigger only after a batch of definite size is ready. If

the data change rate is defined and controllable (such

that latency is not impacted), real-time mode can be

chosen. For incremental change to apply, ingestion

jobs can be orchestrated at periodic intervals.

Chapter 2 Data lake ingestion strategies

40

•	 Deployment model (cloud or on-premise) – data lake

can be hosted on-premise as well as public cloud

infrastructures. In recent times, due to the growing

cost of computing and storage systems, enterprises

have started evaluating cloud setup options. With a

cloud hosted data lake, total cost of ownership (TCO)

decreases substantially while return on investment

(ROI) increases.

An ingestion strategy attains stability only if it is able enough to handle

disparate data sources. The following aspects need to be factored in while

understanding the source systems.

•	 Data lineage – it is a worthwhile exercise to maintain

a catalog of the source systems and understand

its lineage starting from data generation until the

ingestion entry point. This piece could be fully owned

by the data governance council and may get reviewed

from time to time to align and cover catalog registrants

under the ongoing compliance regulations.

•	 Data format – whether incoming data is in the form of

data blocks or objects (semi or unstructured)

•	 Performance and data change rate – data change rate

is defined as the size of changes occur every hour. It

helps in selecting the appropriate ingestion tool in the

framework.

Chapter 2 Data lake ingestion strategies

41

•	 Performance is a derivative of throughput and latency.

•	 Data location and security

•	 Whether data is located on-premise or in a public

cloud infrastructure, network bandwidth plays an

important role.

•	 If the data source is enclosed within a security layer,

the ingestion framework should be enabled and

establishment of a secure tunnel to collect data for

ingestion should occur.

•	 Transfer data size (file compression and file splitting) –

what would be the average and maximum size of block

or object in a single ingestion operation?

•	 Target file format – Data from a source system needs to

be ingested in a Hadoop compatible file format.

Table 2-1 compiles the list of file formats, their features, and scenarios

in which they are preferred for use.

Chapter 2 Data lake ingestion strategies

42

Table 2-1.  File formats and their features

File type Features Usage

Parquet • �Columnar data

representation

• Nested data structures

• Good query performance

• Hive supports schema evolution

• Optimized for Cloudera Impala

• Slower write performance

Avro • �Row format data

representation

• Nested data structures

• Stores metadata

• �Supports file splitting and block

compression

ORC • �Optimized Record

Columnar files

• �Row format data

representation as

key-value pair

• �Hybrid of row and columnar

format

• �Row format helps to keep

data intact on the same node

• �Columnar format yields

better compression

• Good for data query operations

• Improved compression

• Slow write performance

• Schema evolution not supported

• �Not supported by Cloudera

Impala

SequenceFile • �Flat files as key-value pairs • Limited schema evolution

• Supports block compression

• �Used as interim files during

MapReduce jobs

CSV or Text

file

• �Regular semi-structured

files

• Easy to be parsed

• �No support for block

compression

• Schema evolution not easy

(continued)

Chapter 2 Data lake ingestion strategies

43

Why ORC is a preferred file format? ORC is a columnar storage format

that supports optimal execution of a query through indexes which help

in quick scanning of files. ORC supports indexes at the file level, stripe

level, and row level. File and stripe indexes work similar to storage indexes

from a relational perspective in that they help in quick scanning of data by

narrowing down the scan surface area. They help in pruning out the stripes

from scans during query execution.

Stripe indexes – An ORC file of a table is organized into stripes of

default 64MB size. Stripe size can be configured at the table level. Each

stripe implicitly indexes the column and holds meaningful details like

min/max value or a dictionary for quick lookup. Some of the key ORC

configuration parameters are listed below. Note that these parameters

should be set at table level within TBLPROPERTIES clause.

	 1.	 orc.compress – Compression codec for ORC file

	 2.	 orc.compress.size – Size of a compression chunk

	 3.	 orc.create.index – whether or not the indexes should

be created?

	 4.	 orc.stripe.size – Size of memory buffer (bytes) for writing

	 5.	 orc.row.index.stride – Rows between index entries

	 6.	 orc.bloom.filter.columns – BLOOM_FILTER stream

created for each of the specified column

Table 2-1.  (continued)

File type Features Usage

JSON • �Record structure stored as

key-value pair

• �No support for block

compression

• �Schema evolution easier than

CSV or text file as metadata

stored along with data

Chapter 2 Data lake ingestion strategies

44

For more details on ORC parameter, you can refer to ORC Apache

page – https://orc.apache.org/docs/hive-config.html.

For example, ORC file storage of CUSTOMER table (Figure 2-3)

A user issues the below query. The query filters the results on “state”

column.

SELECT ID, NAME

FROM CUSTOMER

WHERE CUSTOMER.state = 'CA';

For CUSTOMERS table, the two stripes have 10,000 rows each. The

number of rows in a particular stripe is configurable while creating a

table. Each stripe contains inline indexes such as min, max, and lookup/

dictionary for the data within that stripe. ORC’s predicate pushdown will

consult these inline indexes to identify if an entire block can be skipped

all at once. The second stripe will be discarded because its index does not

have the value “CA” in state column.

If a column is sorted, relevant records will get confined to one area on

disk and the other pieces will be skipped very quickly. Skipping works for

number types and for string types. In both instances, it’s done by recording

a min and max value inside the inline index and determining if the lookup

ID
(min = 1, max=10000)

ID
(min = 10001, max=20000)

1
First

10,000
Rows

Stride
Index

Second
10,000
Rows

2

3

10001

10002

10003

Name
(dictionary, min, max)

Name
(dictionary, min, max)

Bob

Larry

Sue

State
(dictionary, min, max)

NJ

CA

TX

Steve

Alan

Mary

State
(dictionary, min, max)

OR

ND

FL

Figure 2-3.  Stripes of CUSTOMER table

Chapter 2 Data lake ingestion strategies

https://orc.apache.org/docs/hive-config.html

45

value falls outside that range. Sorting can lead to very nice speedups, but

there is a trade-off with the resources needed in order to facilitate the

sorting during insertion.

ORC usage best practices

	 1.	 Hive queries must be analyzed to explore usage

patterns and track down columns that frequently

occur in predicates.

	 2.	 Hive tables must be timely analyzed to keep the

statistics updated

	 3.	 Data should be distributed and sorted during

ingestion. This will help in effective resource

management during query processing.

	 4.	 If the filtering column in a query has high cardinality,

then lower stripe size works well. If the cardinality

is low, then a higher stripe size is preferred.

	 5.	 Starting hive 1.2, support for bloom filters was

included to ORC semantics to provide granular

filtering. It is used on sorted columns.

The ORC file format is supported by Hive, Pig, Apache Nifi, Pig, Spark,

and Presto. On the adoption fronts, Facebook and Yahoo use ORC file

storage format in production and have observed significant performance

compared to other formats.

�ETL vs. ELT
It would be an understatement that Extraction, Transformation, and Loading

(ETL) protocol under-sufficed the data motion requirements for traditional

data warehouses. It has been a standard de-facto process since the evolution

of data movement strategies. However, with the next-gen data warehousing

strategies and big data trends, the ETL approach tends to require tweaks.

Chapter 2 Data lake ingestion strategies

46

Contrary to the traditional ETL approach, the data lake ingestion

strategy adopts the ELT approach. With this approach, data gets loaded

directly into the data lake after being collected. Transformation lies in the

purview of the consumption or analytical layer (Figure 2-4).

Data lake is ideated to hold data from a variety of sources in its rawest

form. A thin data scrubbing layer may optionally exist to clean raw data

before it gets ingested into the data lake and consumed by analytical

models. However, having a wide layer of data transformation is not

recommended as it may restrict the surface area of data exploration,

thereby narrowing down the data agility. Other rationale behind the ELT

approach is the performance factor. Running transformation logic on huge

volumes of data may foster a latency between the data source and data

lake. The transformation layer can instead be flexed down to a curated

layer to empower analytical models to retrofit the data stance. Figure 2-5

shows the data movement in an ELT model.

Transform

Data LakeData Source

LoadExtract

Figure 2-4.  Data agility is reduced in a typical ETL process

Chapter 2 Data lake ingestion strategies

47

Other factors that stand in support of ELT in data lakes are cost

effectiveness and maintenance. Since the time data lake concept has

caught all the eyes of data world, ELT has been the most trusted approach.

�Big Data Integration with Data Lake
Data is a ubiquitous entity. Until the big data trend acquired the waves, it

was the relational databases who held the system of records in a structured

format. Although relational data store vendors are finding ways to address

unstructured data, adoption is majorly driven by factors like cost, ease of

processing, and use-cases.

Data lakes are designed to complement contemporary data

warehousing systems by empowering analytical models to churn out

the real value of “data” irrespective of its format. In this chapter, we

will cover techniques and best practices of bringing structured as well

as unstructured data into data lake. This section focuses on bringing

structured data into data lake. We will walkthrough ingestion concepts,

best practices, and tools and technologies used in the process.

Data LakeData Source

Load

Extract

Transformations

Analytics

Figure 2-5.  Data agility remains intact in a typical ELT process

Chapter 2 Data lake ingestion strategies

48

�Hadoop Distributed File System (HDFS)
Although we assume the readers of this book to be proficient with Hadoop

concepts and HDFS, but to maintain the logical flow of concepts, let us get

a high-level overview of HDFS.

The Hadoop Distributed File System constitutes a layer of abstraction

on top of POSIX (or like) file system. During a write operation, a file is

split into small blocks and apparently replicated across the cluster. The

replication happens transparently within the cluster while the replicas

cannot be distinctly accessed. Replication ensures fault tolerance and

resiliency. Whenever a file gets processed in the cluster, all its replicas are

processed in parallel; thus, bettering the computational performance and

scalability.

The hdfs dfs command-line utility can be used to issue the file system

commands in the Hortonworks distribution of Hadoop. In addition to this

utility, you can also use Hadoop’s web interface, WebHDFS REST API, or

Hue to access the HDFS cluster.

hdfs dfs [GENERIC_OPTIONS] [COMMAND_OPTIONS]

	 1.	 Shell commands are similar to common Linux file

system commands such as ls, mkdir, cat

	 2.	 Help commands –

	 a.	 $ hdfs dfs

	 b.	 $ hdfs dfs -help

	 c.	 $ hdfs dfs -usage <shell command>

	 3.	 Directory commands like cd and pwd not supported

in HDFS.

Chapter 2 Data lake ingestion strategies

49

�Copy files directly into HDFS
One of the simplest methods to bring data into Hadoop is to copy the files

from local to HDFS. If there are bunch of csv spreadsheets, JSON, or raw

text files on the local system, you can copy the files directly into HDFS

using put command.

$ hdfs dfs mkdir /user/hdfs/sales_2017

Copies sales.csv from local to HDFS cluster

$ hdfs dfs -put sales_Q1.csv sales_2017

$ hdfs dfs -put sales_Q2.csv sales_2017

List the cluster files

$ hdfs dfs -ls /user/hdfs

Once the file is available in the Hadoop cluster, it can be consumed

by Hadoop processing layers like hive data store, pig script, mapreduce

custom programs or spark engine.

�Batched data ingestion
In simple terms, batch is a frequency based incremental capture that

kicks off as per the preset schedule. For most of the ETL frameworks, the

implementation of the “extract” phase works on similar principles. Data

collector fires a SELECT query (also known as filter query) on the source

to pull incremental records or full extracts. Performance of the filter query

determines how efficient a data collector is. The query-based approach to

extract and load data is easy to implement with minimal failures.

Chapter 2 Data lake ingestion strategies

50

From a relational data source, data can be extracted using the filter

query by following either of the techniques listed below.

•	 Change Track flag – if each changed record (insert/

update/delete) on the source database can be flagged,

the filter query can capture just the flagged records

from the source table.

•	 Primary key will be required to merge the changes

at the target

•	 If primary key exists on target

•	 Delete the existing record

•	 Insert the fresh record from changed data set

•	 If primary key doesn’t exist on target

•	 Insert the record from changed data set

•	 If the target table is modeled as type 2 SCD (slowly

changed dimension), all changed records can

be directly inserted to target table. A timestamp

attribute or transaction id can be maintained on

target to trace change history of a primary key.

•	 Incremental extraction – the filter query pulls the

differential data based on a column that can help in

identifying changes in the source table. It can be a

timestamp attribute or even a serialized id column.

•	 To apply the changes, primary key is a must

•	 If PK exists, delete old and insert the new record

•	 If PK doesn’t exist, insert the new record

Chapter 2 Data lake ingestion strategies

51

•	 Incremental extraction frequency – from the data

consistency perspective, it is important to be aware

when the source table is active for transactions and

what is data change rate. If the change rate is high,

incremental job should be periodically orchestrated.

•	 Full extraction – if the source database table is not

very large and change frequency is low, target table

can undergo full refresh every time the ETL runs. This

ensures data consistency between source and target

until source data gets modified. For source tables

with master data and configuration data, full refresh

approach can be followed.

Once captured from the source via filter query, the data extract needs

to be staged on the edge node or ETL server, before its gets merged into

Hadoop. This brings up the need for an additional storage system prior

to the Hadoop cluster. The dual write approach adds to the latency and

brings inconsistency in data lake.

�Challenges and design considerations
An organizational data lake deals with all formats of data. Data, whether

structured or unstructured, struggles with mutable data on Hadoop.

Hadoop, being a distributed system relies on concurrency for functionality

but dealing with mutability and concurrency could be meaty challenge.

The ingestion framework must ensure that only one process updates the

mutable object at a given time and avoids dirty read problems.

Other problems include datatype mismatch between source systems

and hives, precision field handling, special character handling and

efficient transfer of data with table size varying from Kilobyte (KB) to

Terabyte (TB).

Chapter 2 Data lake ingestion strategies

52

�Design considerations
The issues discussed above are common in the target system, namely

Hadoop data lake. The design considerations discussed in this section

must be practiced on Hadoop objects.

	 1.	 Table partitioning – Splitting the data into small

manageable chunks provides better control in

terms of resource consumption and data analysis.

Partitioning strategy should factor in the following

parameters –

	 a.	 Low-cardinality columns

	 b.	 Frequently used in joins and query predicates

	 c.	 Columns that can create interval based

partitions

	 2.	 File storage format – ORC file storage format

gives better compression compared to other file

formats. In addition, it also stores index headers for

optimized read access from files.

	 3.	 Full load or incremental - Full load integration

should be practiced if change data capture is not

possible. Data size and refresh frequency must be

kept in mind while planning full load for objects.

	 4.	 Change merge strategy – If the target landing table

is partitioned, then the changes can be tagged by

table and the most recent partition. During the

exchange partition process, the recent partition can

be compared against the “change” data set to merge

the changes. Figure 2-5 shows the process flow of

strategy to merge change using exchange partition

for partitioned hive tables.

Chapter 2 Data lake ingestion strategies

53

Let us consider a simple case of merging the changes using Piglatin.

We have an interval partitioned hive table. The below code piece will show

how to merge incremental changes from source data into a hive partition.

---sample data in a hive partition---

[bda@datalake sample-merge]$ cat hive_part4.txt

"20001""delhi"

"20002""mumbai"

"20003""bangalore"

"20004""chennai"

"20005""hyderabad"

"20006""pune"

"20007""kochin"

"20008""kolkata"

"20009""jaipur"

"20010""chandigarh"

Changes are captured via a change capture tool. The changed data

set has a delimiter “ctrl A”. Below is the change dataset that needs to be

merged with most recent partition in hive table.

[bda@datalake sample-merge]$ cat change_dataset.txt

"I"^A"20089"^A"1"^A"2014-09-04 12:38:08.000"^A"20015"^A"noida"

Exchange
Partition

Prepare final data set
with merged changes

P1

P2

P3

P4

#Changes

P4

1

Change capture

2 Pull most recent partition for Compare and Merge

3 4

Data source
Hive Table with

partitions

Figure 2-6.  Merge changes through exchange partition

Chapter 2 Data lake ingestion strategies

54

"D"^A"20089"^A"2"^A"2014-09-04 12:38:08.000"^A"20003"^A\N

"I"^A"20089"^A"3"^A"2014-09-04 12:38:08.000"^A"20003"^A"bengaluru"

"D"^A"20089"^A"5"^A"2014-09-04 12:38:08.000"^A"20001"^A\N

Pig script to merge the changes with original file.

A = LOAD '/user/bda/merge_change/hive_p4_merged_set.txt'

using PigStorage('\u0001')

AS (

opcode:chararray

, seqno:chararray

, row_id:chararray

, commit_timestamp:chararray

, id:chararray

, place:chararray);

B = GROUP A BY id;

C = foreach B {

D = order A by seqno, row_id desc;

top = limit D 1;

generate flatten(top);

};

Check and verify the changes in main file. Note that [id = 20001] has been

deleted, [id=20003] has been updated, and [id=20015] has been inserted.

[bda@datalake sample-merge]$ cat hive_p4_merged_set.txt

"20002""mumbai"

"20003""bengaluru"

"20004""chennai"

"20005""hyderabad"

"20006""pune"

"20007""kochin"

"20008""kolkata"

"20009""jaipur"

Chapter 2 Data lake ingestion strategies

55

"20010""chandigarh"

"20015""noida"

Let’s take another use case to demonstrate change-merge using Spark.

We’ll work with a main data set and changed data set. Master Data in

Target Location

val main_data = spark.table(t.tablename).filter(cond) //filter

on the specific partition

We’ll create two expressions using primary keys in the below fashion.

•	 Combining primary keys – pk1 AND pk2 … pkn

•	 Combining primary keys having null – pk1 is null AND

pk2 is null … pkn is null

Below is the sample of Main Dataset A

P.K. Name VALUE TIME_ID DELETE_FLAG

1 Pranav 13341 10001 0

2 Shubham 18929 10002 0

3 Surya 12931 10003 0

4 Arun 12313 10004 0

5 Rita 12930 10005 0

6 Kiran 12301 10006 0

7 John 82910 10007 0

8 Niti 218930 10008 0

9 Sagar 82910 10009 0

10 Arjun 92901 10010 0

Below dataset represents the incremental changes captured via CDC

mechanism

Chapter 2 Data lake ingestion strategies

56

P.K. Name VALUE TIME_ID DELETE_FLAG

1 Pranav 13341 10020 1

2 Shubham 18929 10022 1

3 Surya 453202 10034 2

4 Tarun 489503 10098 0

5 Pranav 129789 10099 2

Here P.K. is the primary key column, TIME_ID is the defined value

for timestamps and DELETE_FLAG is the value where 0 is termed as New

Insert, 1 as Delete and 2 as an Update. The following spark code will merge

the data and store it as a temporary view

main_data.as("m").join(broadcast(incr_data.as("k").

filter(cond)), expr(str1), "left_outer").filter(str2).

select("m.*").union(incr_data.filter("del_flag != 1")).createOr

ReplaceTempView(mergedTable)

Figure 2-7 shows the merge workflow process.

SET B

COMPACTION

COMPACTED

MERGING

UPDATED

SET B*
SET A

RESULT
SET

Figure 2-7.  Merge operation workflow process

Chapter 2 Data lake ingestion strategies

57

Below is the data set produced after merge.

P.K. Name VALUE TIME_ID DELETE_FLAG

1 Pranav 129789 10099 0

3 Surya 453202 10034 0

4 Arun 12313 10035 0

5 Rita 12930 10036 0

6 Kiran 12301 10006 0

7 John 82910 10007 0

8 Niti 218930 10008 0

9 Sagar 82910 10009 0

10 Arjun 92901 10010 0

11 Tarun 489503 10098 0

�Commercial ETL tools
While the underlying principle of most of the 3rd party commercial ETL

tools remain as discussed above, implementations can be different. For

example, Informatica PowerCenter stores metadata in an Oracle database

repository while Talend generates java code to do the job. Pentaho, on the

other hand, provides a user-friendly interface.

Because data lake is a new opportunity, data integration software

vendors have started complementing their ETL products with Hadoop

centric capabilities. Modern-day ETL tools are flexible, platform agnostic, and

capable of optimized extraction, through reusable code generation, and much

more.

The 2017 Gartner magic quadrant (Figure 2-8) compares the data

integration tools and positions Informatica as a leader.

Chapter 2 Data lake ingestion strategies

58

�Real-time ingestion
A batched data ingestion technique is fool-proof as far as data sanity

checks are concerned. However, it fails to paint the real-time picture of

the business due to the lag associated with it. To enhance the business

readiness of analytical frameworks, it is expedient to process a business

transaction as soon as it occurs. In (near) real-time processing, changes

are captured either at very low latency or in real-time. A log-based real-

time processing exercise is known as change data capture.

CHALLENGERS

Microsoft

Adeptia Attunity

Syncsort
Pentaho

Actian

COMPLETENESS OF VISION

AB
IL

IT
Y

TO
 E

XE
CU

TE

Source: Gartner (August 2017)

As of August 2017

Information Builders

Cisco
Denodo

Informatica

IBM

SAP
Talend

Oracle
SAS

LEADERS

NICHE PLAYERS VISIONARIES

Figure 2-8.  Gartner’s magic quadrant for commercial data
integration products. https://www.informatica.com/in/data-
integration-magic-quadrant.html

Chapter 2 Data lake ingestion strategies

https://www.informatica.com/in/data-integration-magic-quadrant.html
https://www.informatica.com/in/data-integration-magic-quadrant.html

59

Change data capture refers to the log mining process to capture only

the changed data (insert, update, delete) from the data source transaction

logs. A real-time or micro-batch CDC detects the change events by

scanning the database logs as they occur. With minimal access to enterprise

sources, CDC incurs no load on source tables; thereby minimizing latency

and ensuring consistency between source and target systems.

So, why CDC? As we discussed in the last section, conventional

ETL tools use SQL to extract and batch the incremental data. Query

performance may be impacted due to continuous growth in source

database’s volume and its concurrent workload. In addition, the query

incurs its portion of the workload on the source system.

Figure 2-9 shows a change data capture workflow between source and

target systems.

As part of business intelligence and data compliance initiatives, CDC

helps in aligning with data-as-a-service principles by providing master

data management capabilities and enabling quicker data quality checks.

Summing up the points, the CDC ingestion pipeline helps in –

•	 Eliminating the need to run SQL queries on source

system. Incurs no load overhead on a transactional

source system.

•	 Achieves near real-time replication between source

and target

Capture

Scan DB
Transaction logs
to capture
changes

Transform as per
data type
compatibility

Detect uniqueness
based on Source
PK

Extract Apply

Figure 2-9.  Change Data capture workflow

Chapter 2 Data lake ingestion strategies

60

•	 Log mining helps in capturing granular data operations

like truncates as well

�CDC design considerations
To design a CDC ingestion pipeline, the source database must be enabled

for logging. All relational databases follow a roll forward approach by

persisting the changes in logs. Each and every event is persistently logged

with a change id (or system change number) in a log and will never get

purged. An Oracle database allows enabling supplement logging at the

table level. Similarly, SQL Server allows logging at the database level.

Without logging, transaction logs cannot be mined to capture the changes.

The tables at the source database must hold a primary key for

replication. It helps the capture job in establishing uniqueness of a record

in the changed data set. A source PK ensures the changes are applied to

the correct record on target. If the source table doesn’t have primary key

defined, CDC job can designate a composite primary key to uniquely

identify a record in the change table.

It would be a terrible design to establish uniqueness based on a unique

constraint as it allows multiple NULLs in a column. In the apply phase, a

change record with null identity will fail to pick a matching null record at

the target.

Trigger based CDC –Another method of setting up change-data-

capture is through triggers at the table level. A trigger helps in capturing

row changes in a separate table synchronously, which apparently gets

replicated to the target. Either the entire record is captured or just the

changed attributes along with the primary key. The downside of this

approach is that it induces overhead of one more transaction before the

original transaction is deemed complete.

Chapter 2 Data lake ingestion strategies

61

This method usually works in two scenarios –

•	 Logging not enabled on the source database

•	 Reading transaction logs is a tedious task due to its

binary format

•	 T-logs not available for scanning due to software

restriction or small retention time

So, should you always prefer CDC over batched ingestion? No. Real-

time integration or CDC should be set up only when business demands it.

It is a feature to be contemplated based on multiple factors like business’s

service-level agreement, change size, and target readiness.

�Example of CDC pipeline: Databus, LinkedIn’s
open-source solution
Databus, a real-time change data capture system, was developed by

LinkedIn in the year 2006. In 2013, LinkedIn released the open-source

version of Databus. Since its development, Databus has been an essential

component of the data processing framework at LinkedIn. Databus

provides a real-time data replication mechanism with the ability to handle

high throughput and latency in milliseconds. The Databus source code is

available at its git repo at https://github.com/linkedin/databus.

Databus is a source agnostic framework that scales seamlessly to

multiple consumers, while the transactional sources are still operational.

The source code includes the adaptors for different relational sources

like Oracle and MySQL. Figure 2-10 shows the working components of

Databus.

Chapter 2 Data lake ingestion strategies

https://github.com/linkedin/databus

62

Databus works with these three most important pieces – relays,

bootstrap, and client library. At a high level, the following list outlines the

steps of Databus workflow.

•	 Relay is responsible for pulling the most recent

committed transactions from the source

•	 Relays are implemented through tungsten

replicator

•	 Relay stores the changes in logs or cache in compressed

format

•	 Consumer pulls the changes from relay

•	 Bootstrap component – a snapshot of data source on

a temporary instance. It is consistent with the changes

captured by Relay. (Refer to Figure 2-11)

Primary
DB

Updates

Standardi-
zation

Search
Index

Data Change Events on Databus

Graph
Index

Read
Replicas

Figure 2-10.  Databus component diagram. Source: https://
engineering.linkedin.com/data-replication/open-sourcing-
databus-linkedins-low-latency-change-data-capture-system

Chapter 2 Data lake ingestion strategies

https://engineering.linkedin.com/data-replication/open-sourcing-databus-linkedins-low-latency-change-data-capture-system
https://engineering.linkedin.com/data-replication/open-sourcing-databus-linkedins-low-latency-change-data-capture-system
https://engineering.linkedin.com/data-replication/open-sourcing-databus-linkedins-low-latency-change-data-capture-system

63

•	 If any consumer falls behind and can’t find the

changes in relay, bootstrap component transforms

and packages the changes to the consumer

•	 A new consumer, with the help of client library, can

apply all the changes from bootstrap component

until a time. Client library will point the consumer

to Relay to continue pulling most recent changes

Figure 2-12 branches out the benefits of LinkedIn’s Databus solution.

Source-agnostic

Low latency
consumption

Scalable,
reliable and high

available

Maintains
commit order of

the source

ACID properties
preserved

Databus

Figure 2-12.  Linkedin’s Databus differentiators

Relay LogWriter Log Storage

LogApplier
Snapshot

Storage

Consolidated changes

Consistent Snapshot

Figure 2-11.  Bootstrap component in Databus

Chapter 2 Data lake ingestion strategies

64

�Apache Sqoop
Sqoop or “SQL to Hadoop” has been one of the top Apache projects that

addresses the data integration requirements of Hadoop. It is a native

component of the HDFS layer that allows bi-directional “batched” flow

of data from the Hadoop distributed file system. Not just the users can

automate data transfer between relational databases and Hadoop, but a

reverse operation empowers enterprise data warehouses to augment their

consumption layer with map-reduced data from data lake.

Apache Sqoop is available in two versions – sqoop 1 and sqoop 2.

�Sqoop 1
The very first version of Sqoop was introduced in 2009. In August 2011, the

project moved under Apache and quickly, Sqoop became one of the most

sought-after ingestion tools.

Connectors are the motivation behind the working of Sqoop 1. The

JDBC based connectors to different source systems are responsible for

deriving metadata of source objects and data transfer. Let us list down the

key highlights of Sqoop:

•	 Java based utility (web interface in Sqoop2) that

spawns Map jobs from MapReduce engine to store data

in HDFS

•	 Provides full extract as well as incremental import

mode support

•	 Runs on HDFS cluster and can populate tables in Hive,

HBase

•	 Can establish a data integration layer between NoSQL

and HDFS

Chapter 2 Data lake ingestion strategies

65

•	 Can be integrated with Oozie to schedule import/

export tasks

•	 Supports connectors to multiple relational databases

like Oracle, SQL Server, MySQL

�Sqoop 2
Sqoop2 succeeded sqoop with a major focus on optimizing data transfer,

easing of using extension framework, and ensuring security. Sqoop2 works

on client-server architecture (service-based model) in which the server

acts as the host for two critical components, the connectors and the jobs.

Sqoop2 features are as follows–

•	 Sqoop 2 can act as a generic data transfer service

between any-to-any systems.

•	 Sqoop 2 comes with a web interface for better

interactivity. Command line utility still works. Sqoop

2 web interface uses REST services running on sqoop

server. It helps in easy integration with Oozie and other

frameworks.

•	 Sqoop 2 employs both mapper and reducer jobs during

data transfer activity. Mapper jobs extract the data,

while the reducer operation transforms and loads the

data into the target.

•	 Connectors will be setup on Sqoop 2 server which

requires connection details to the source and targets.

Role-based access to connection objects mitigates

the risk of unauthorized access on source and target

systems.

Chapter 2 Data lake ingestion strategies

66

•	 The metadata repository stores connections and jobs.

Connectors register metadata on the sqoop server to allow

the connection to the source and the creation of jobs.

•	 The connector consists of partitioning API (create splits

and enabled parallelism), Extract API (Mappers), and

Loading API (Reducers)

Figure 2-13 differentiates Sqoop1 and Sqoop2 in terms of components

at sqoop processing layer.

�How Sqoop works?
Sqoop adopts quite a simple approach to extract data from a relational

database. In a nutshell, it builds up an SQL query that runs at the source to

capture the source data, which later gets ingested into Hadoop. Let us look

at the internals of Sqoop.

Sqoop leverages mapper jobs of MapReduce processing layer in

Hadoop, to extract and ingest data into HDFS. By default, a sqoop job has

four mappers; this number is configurable though. Each of these mappers

is given a query to extract data from the source system. Query for a mapper

Enterprise
Data

warehouse

Relational
Databases

NoSQL

Enterprise
Data

warehouse

Relational
Databases

NoSQL Job Mgr

Connection Mgr

Repository Mgr

Sqoop

Sqoop2

Hive/HBase

HDFS
Hive/HBase

HDFS

Sqoop 1 Sqoop 2

Map-1

Map-2

Map-3

Map-4

Map-5

Map-1

Map-2

Map-3
Reduce

Task

Map-4

Map-5

Figure 2-13.  Sqoop 1 vs Sqoop2

Chapter 2 Data lake ingestion strategies

67

is build using a split rule. As per the split rule, the values of --split-by

column must be equally distributed to each mapper. This implies that

--split-by column should be a primary key. The entire range of PK is

equally sliced for the mappers. Once the mapper jobs capture source data,

either it is dumped in HDFS storage or loaded into hive tables.

Figure 2-14 demonstrates the primary key split mechanism.

�Sqoop design considerations
Below are the key factors that can help in designing sqoop tasks effectively.

	 1.	 Specify number of mappers in --num-mappers [n]

argument

	 2.	 Number of mappers

	 a.	 Note that mappers run in parallel within

Hadoop, just like parallel queries

	 b.	 Large number of mappers might increase the

load on source database. Decision should be

taken based on size of the table and workload

on the source database

min

Mapper-1 Mapper-2 Mapper-3 Mapper-4

--split-by [column]

Split-1 Split-2 Split-3 Split-4

max

PK range

Figure 2-14.  Sqoop split mechanism

Chapter 2 Data lake ingestion strategies

68

	 c.	 Depends upon –

	 i.� � Handling of concurrent queries in the

source database

ii.� � Varies by table, split configuration, and

run time

	 3.	 If the source table cannot be split on a column, use

--autoreset-to-one-mapper argument to perform

unsplit full extract using single mapper

	 4.	 If the source table has all character columns with or

without a defined primary key, we can have go with

the below approaches –

	 a.	 Add surrogate key as primary key and use it for

splits

	 b.	 Create manual data partitions and run multiple

sqoop jobs with one mapper for each partition.

This may cause data skewness and jobs will run

for irregular durations depending upon the data

volume per split

	 c.	 Character based key column can be used as

--split-by column as usual, if the column has –

	 i.� � Unique values (or a partitioning key like

location, gender)

ii.�  Integer values that can be implicitly type casted

	 5.	 Sparse split-by column

	 a.	 Use --boundary-query to create splits

	 b.	 It works similar to retrieving split size from

another lookup table

Chapter 2 Data lake ingestion strategies

69

	 c.	 For text attributes, set

-Dorg.apache.sqoop.splitter.allow_text_

splitter=true

	 6.	 Export data subsets

	 a.	 If only subset of columns is required from the

source table, specify column list in --columns

argument.

	 i.� � For example, --columns “orderId, product,

sales”

	 b.	 If limited rows are required to be “sqooped”,

specify --where clause with the predicate

clause.

	 i.  For example, --where “sales > 1000”

	 c.	 If result of a structured query needs to be

imported, use --query clause.

	 i.� � For example, --query ‘select orderId,

product, sales from orders where

sales>1000’

	 7.	 Good practice to stage data in a hive table using

--hive-import

	 a.	 If table exists, data gets appended. Data can be

overwritten using --hive-overwrite argument to

indicate full refresh of the table

	 b.	 If table doesn’t exist, it gets created with the

data

	 c.	 Use --hive-partition-key and --hive-

partition-value attributes to create partitions

on a column key from the import

Chapter 2 Data lake ingestion strategies

70

	 d.	 By default, data load is append in nature. Data

load approach can be incremental by

	 e.	 Delimiters can be handled through either of the

below ways –

	 i.� � Specify --hive-drop-import-delims to

remove delimiters during import process

ii.� � Specify --hive-delims-replacement

to replace delimiters with an alternate

character

	 8.	 Connectivity – ensure source database connectivity

from the sqoop nodes

	 a.	 Create and maintain a dedicated user at source

with required access permissions

	 9.	 Always prefix table name with the schema name as

[schema].[table name]

	 a.	 Supply table name in upper case

	 10.	 Connectors – common (JDBC) and direct (source

specific)

	 a.	 Direct connector yields better performance

	 b.	 Use --direct mode argument with MySQL,

PostgreSQL, and Oracle

	 11.	 Use --batch argument to batch insert statements

during export

	 a.	 Uses JDBC batch API

	 b.	 Native properties of database (like locking,

query size) apply

Chapter 2 Data lake ingestion strategies

71

	 c.	 Sqoop.export.records.per.statement

(10) – collates multiple rows in a single insert

statement

	 d.	 Sqoop.export.statements.per.transaction

(10) – number of inserts in a transaction

	 12.	 Approaches to secure Sqoop jobs

	 a.	 For secure data transfer, use useSSL=true and

requireSSL flags

	 b.	 Enable Kerberos authentication

	 13.	 You can even create a Sqoop Spark job to enhance

sqoop job performance

	 a.	 MapReduce engine might get slow with

increased number of splits

	 b.	 No changes to the connectors. Enables

pluggable processing engine

	 c.	 Spark job execution –

	 i.� � Data splits are converted to Resilient

Distributed Dataset (RDD)

ii.� � Extract API reads records, while Load API

writes data

�Native ingestion utilities
Ever since the Hadoop ecosystem reached a thoughtful stage, the tech

stack has been able to provide extremely flexibility to implementers

and practitioners. The big data ecosystem, in itself, comprises multiple

pluggable components, which in turn, opens up a wide space for

exploration and discovery. Ingestion patterns have evolved from tightly

coupled utilities to standard and generic frameworks.

Chapter 2 Data lake ingestion strategies

72

Many of the database software vendors who are planning their move to

data lake, have developed home-grown utilities to facilitate transfer of its

own data to Hadoop. What differentiates these native utilities from generic

tools is the deep expertise in data placement strategy and the ability to

capitalize on database architecture. In this section, we will cover utilities

provided by the Oracle database and Greenplum to load data into HDFS.

�Oracle copyToBDA
The copy to BDA utility helps in loading Oracle database tables to Hadoop

by dumping the table data in Data Pump format and copying them into

HDFS. The utility serves a full extract and load operation to Hadoop. If the

data at the source changes, the utility must be rerun to refresh the data

pump files. Once the data pump files are available in Hadoop, data can be

accessed through Hive queries.

Note that the utility works on Oracle Big Data stack comprising

Oracle Exadata and Oracle Big Data appliance, preferably connected via

Infiniband network. It is licensed under Oracle Big Data SQL.

Under the hood, the utility uses ORACLE_DATAPUMP access driver and

Hadoop client on Exadata to transfer the data. Figure 2-15 shows the

workflow of the CopyToBDA utility.

Additional notes –

	 1.	 Copy to BDA utility works well for static tables

whose data change rate is not frequent. Reason

being it doesn’t allow the continuous refresh

between source data and target.

Create database
directory for
data pump

Create external
table in Oracle to
dump table data

Copy the file to
Hadoop cluster

Create Hive
external table in

Hadoop

Figure 2-15.  CopyToBDA utility workflow

Chapter 2 Data lake ingestion strategies

73

	 2.	 If the table size is large, data can be dumped in

multiple .dmp files

	 3.	 For a Hive external table to access the dump files

and prepare the result set, specify appropriate

SerDe, InputFormat and OutputFormat

	 a.	 SERDE 'oracle.Hadoop.hive.datapump.

DPSerDe'

	 b.	 INPUTFORMAT ‘oracle.Hadoop.hive.datapump.

DPInputFormat’

	 c.	 OUTPUTFORMAT ‘org.apache.Hadoop.hive.ql.io.

HiveIgnoreKeyTextOutputFormat’

�Greenplum gphdfs utility
Greenplum offers the gphdfs protocol to enable batched data transfer

operations between the Greenplum and Hadoop clusters. For Greenplum

as a source, the utility has been a de-facto mechanism for data movement

as it fully exploits the MPP capability of the database. On the target side,

it can work with various flavors of Hadoop like Cloudera, Hortonworks,

MapR, Pivotal HD, and Greenplum HD.

The gphdfs utility must be setup on all segment nodes of a Greenplum

cluster. During a data transfer operation, all segments concurrently

push the local copies of data splits to the Hadoop cluster. The number

of segment nodes in the Greenplum cluster measure the degree of

parallelism of data transfer. Data distribution on segments plays a key role

in determining the effort at a segment level process. If a table is unevenly

distributed on the cluster, the gphdfs processes will have an irregular split

size, which will impact the performance of the data ingestion process.

Chapter 2 Data lake ingestion strategies

74

The utility must be installed on each of the segment nodes. Installation

steps are as follows:

	 1.	 Create repo file using

wget -nv http://public-repo-1.hortonworks.com/HDP/

centos7/2.x/updates/2.6.1.0/hdp.repo

	 2.	 Install the libraries using YUM

yum install Hadoop Hadoop-hdfs Hadoop-libhdfs Hadoop-

yarn Hadoop-mapreduce Hadoop-client openssl -y

	 3.	 Set the Hadoop configuration parameters

	 a.	 gpconfig -c gp_Hadoop_home -v " '/usr/

hdp/2.6.1.0-129'”

	 b.	 gpconfig -c gp_Hadoop_target_version -v

"'hdp2'"

	 c.	 Set java home and Hadoop home

Figure 2-16 demonstrates a schematic of a the gphdfs utility.

Greenplum cluster Hadoop cluster

Segment 1
DataNode

GP
 M

as
te

r N
od

e

Na
m
eN

od
e

Writeable
Ext Table

Segment 2

Segment 3

Segment 4

Segment 5

Writeable
Ext Table

Writeable
Ext Table

Writeable
Ext Table

Writeable
Ext Table

DataNode

DataNode

DataNode

DataNode

DataNode

Figure 2-16.  How GPHDFS utility works

Chapter 2 Data lake ingestion strategies

75

Design considerations

	 1.	 JVM and gphdfs – The gphdfs protocol uses JVM

on each segment host to access and write data into

HDFS. While the writable external table is created

on segment host and accessed via gphdfs, each

segment instance initializes the JVM process with

1GB of memory.

In case of high workloads during reading and

writing multiple tables at the same time, JVM Heap

memory issue might occur. You can decrease the

value of the parameter GP_JAVA_OPT in $GPHOME/

lib/Hadoop/Hadoop_env.sh from 1GB to 500MB.

	 2.	 Kerberos and gphdfs – The gphdfs protocol supports

Kerberos authentication for Hadoop cluster.

Kerberos authentication details are required to be

updated in below files –

•	 Yarn-site.xml

•	 Core-site.xml

•	 Hdfs-site.xml

In addition, the /etc/krb5.conf must be present

in the Greenplum cluster. In case you are facing

GSSAPI errors while accessing HDFS, install the Java

Cryptography extension (JCE) on Greenplum nodes

($JAVA_HOME/jre/lib/security).

	 3.	 Trigger gphdfs via ETL – The gphdfs utility can be

embedded in Python script and fired through a

standard ingestion tool like Informatica, Talend,

Appworx, etc.

Chapter 2 Data lake ingestion strategies

76

	 4.	 The LOCATION parameter of the writable external

table must have either the Hadoop cluster name or

HDFS namenode’s hostname and port details.

	 5.	 Compression support – Use compress and

compression_type arguments in writable external

table to load data in compressed format into HDFS.

	 6.	 Custom loading framework is possible that loads

group of tables (batch tables by schema or category)

using python or any other scripting language

�Data transfer from Greenplum to using gpfdist
In addition to gphdfs, the Greenplum utility gpfdist can be used to transfer

the data from the Greenplum to HDFS.

The gpfdist utility offers parallel file operations in the Greenplum

database. It can be used to move data from Greenplum segments to

Hadoop clusters via edge node. You can create a writable external table in

Greenplum using the below script.

CREATE WRITABLE EXTERNAL TABLE schemaname.tablename_ext

(LIKE schemaname.tablename)

LOCATION ('gpfdist://<edge_node_ip>:<port>/<location>')

FORMAT 'TEXT' (DELIMITER E'\x01' NULL '')

Once the table data gets exported to edge node, it needs to be pushed

to the Hadoop cluster. There are two ways to copy this file to the Hadoop

cluster –

	 1.	 Use Hadoop put command to copy file in HDFS

	 2.	 Secure copy (scp) the file to Hadoop name node

Chapter 2 Data lake ingestion strategies

77

�Ingest unstructured data into Hadoop
The technological and analytical advances sparked by machine textual

analysis prompted many businesses to research applications, leading to the

development of areas like sentiment analysis, speech mining, and predictive

analytics. The emergence of Big Data in the late 2000s led to a heightened

interest in the applications of unstructured data analytics in contemporary

fields like natural language processing, and image or video analytics.

Unstructured data is information that either does not have a pre-defined

data model or is not organized in a pre-defined manner. Unstructured

information is typically text-heavy, but may contain data such as dates,

numbers, and facts as well. This results in irregularities and ambiguities that

make it difficult to understand using traditional programs as compared to

data stored in fielded form in databases or annotated in documents.

�Apache Flume
Apache Flume is a distributed system to capture and load large volumes

of log data from different source systems to the data lake. Traditional

solutions to copy a data set securely over network from one system

to other, work only when data set is relatively small, easy and readily

available. Given the challenges of a near real-time replication, batched

loads, and volume, the urge to have a robust, flexible, and extensible tool

cannot be ignored. Flume fits the bill appropriately as a reliable system

that can transfer streaming events from different sources to HDFS.

Flume had its roots at Cloudera since 2011 and is packaged as a native

component of Hadoop stack. It is used to collect and aggregate streaming

data as events. Built upon a distributed pipeline architecture, the framework

consists a Flume agent (or multiple independent federated agents) consisting

of a channel that connects sources to sink. What flume guarantees is end-

to-end reliability by enabling transactional exchange between agents and

configurable data persistency characteristics of channels. The flume topology

can be flexibly tweaked to optimize event volume and load balancing.

Chapter 2 Data lake ingestion strategies

https://en.wikipedia.org/wiki/Machine_learning#Machine learning
https://en.wikipedia.org/wiki/Plain_text#Plain text

78

Figure 2-17 shows a simple data flow model from source to channel to

sink via Flume. Flume agent is nothing but a JVM daemon process running

on a machine.

Components –

•	 A flume event is a byte size data object, along with

optional headers as key-value pair of distinctive

information, transporting through the agent.

•	 Source is a scalable component that accepts data

from the data source and writes to the channel. It

may, optionally, have an interceptor to modify events

through tagging, filtering, or altering. Events pushed to

the channel are PUT transactions.

•	 The channel, depending on its configuration, queues the

flume events persistently as received. It helps in persisting

the events and controls fluctuations in data loads.

•	 The sink pulls the data from channel and pushes to

the target data store (could be HDFS or another flume

agent). Events pulled by sink from the channel are

TAKE transactions.

Incoming
Events

Outgoing
DataSource Sink

Flume Agent

Channel

Source Transaction SinkTransaction

Client
PUT TAKE

Figure 2-17.  Apache Flume architecture

Chapter 2 Data lake ingestion strategies

79

Data flow from source to sink is carried out using transactions which

eliminates the risk of data loss in the pipeline. Flume works best for

sources that generate streams of data at a steady rate. Source data can be

synchronous like Avro, Thrift, spool directory, HTTP, Java message service,

or asynchronous like SYSLOGTCP, SYSLOGUDP, NETCAT, or EXEC. For

synchronous sources, client can handle failures, while for asynchronous,

it cannot. Similarly, sinks can be HDFS, HBase (sync and async), Hive,

logger, Avro, Thrift, File roll, morphlineSolr, ElasticSearch, Kafka, Kite, and

more flume agents.

�Tiered architecture for convergent flow of events
A tiered framework of multiple agents can be setup to enable convergent

flow of events to multiple sinks. There can be multiple motivations behind

the tiered approach. The primary motivation is to optimize the data

volume distribution and insulate sinks from uneven data loads. Other

reasons could be to relieve sources from holding large volumes of events

for long time.

Loosely connected independent flume agents in the outermost tier

(Tier-1) hold event streams from the sources. In the subsequent tier,

sources consolidate the event streams received from preceding tier’s sinks.

The process of consolidation and aggregation continues until the last tier,

before the sinks in the innermost tier route the events to HDFS. Agent

count is maximum in the outermost tier while event volume is highest in

the innermost tier.

Figure 2-18 shows three tiers, each containing multiple flume agents

that read event streams from multiple web sources and transport data into

HDFS cluster. Each sink pushes the event stream to the source of the agent

in the successive tier. Tier-1 sources into Tier-2, which sources into Tier-3.

This presents the scenario of Consolidation.

Chapter 2 Data lake ingestion strategies

80

A tiered architecture achieves load balancing and enables a

distinguished layer between collector, storage, and aggregator agents.

�Features and design considerations

	 1.	 Channel type – Flume has three built-in channels,

namely, MEMORY, JDBC, and FILE.

	 a.	 MEMORY – events are read from source to

memory. Being a memory based operation,

event ingestion is very fast. On contrary, since

the changes captured are volatile in nature,

incidents like agents crash or hardware issue

can result into data loss. Business critical events

are not a good choice but low category logs can

be set of memory channel.

Source Channel

Source

Sink

Sink

Source Channel Sink

Source Channel Sink

Source Channel Sink

Source Channel Sink

Source Channel Sink

Source Channel Sink

Source Channel

Tier-1 Tier-2 Tier-3

HDFS

Sink

Channel

Figure 2-18.  Apace Flume tiered model

Chapter 2 Data lake ingestion strategies

81

	 i.� � You can set the event capacity using

agent.channels.c1.capacity. Java

heap space should also be increased in

accordance with the capacity.

ii.� � Use keep-alive to determine wait time

for the process that writes event into the

channel.

iii.�� � Low put and take transaction latencies

but not a cost-effective solution for a large

event

	 b.	 FILE – events are read from source and written to

files on a filesystem. Though slow, it is considered

as durable and reliable option amongst the three

channels as it uses Write Ahead Log mechanism

along with storage directory to track events in the

channel. Set the checkpointDir and dataDirs

attributes of the channel to set directories where

events are to be held.

	 c.	 JDBC – events are read and stored in Derby

database. Enables ACID support as well but acute

adoption trends due to performance issues.

	 d.	 Kafka channel – events get stored in a Kafka

topic in a cluster. This is one of the recent

integrations that can be retrofitted into multiple

scenarios:

	 i.� � Flume source and sink available – event

written to Kafka topic

ii.� � Flume source – event captured in a Kafka

topic. Integration with other applications

is use-case driven.

Chapter 2 Data lake ingestion strategies

82

iii.� � Flume sink – While Kafka captures the

events from source systems, the sink

helps in transporting events to HDFS,

HBase, or Solr.

	 2.	 Channel capacity and transaction capacity –

Channel capacity is the maximum number of

events in a channel. Transaction capacity is the

maximum number of events passed to a sink

in single transaction. Attributes capacity and

transactionCapacity are set for a channel.

	 a.	 Channel capacity must be large enough to

queue many events. It depends on the size of an

event, memory or disk size.

	 b.	 For MEMORY channel, channel capacity is

limited by RAM size.

	 c.	 For FILE, channel capacity is limited by disk size.

	 d.	 Transaction capacity depends on batch size

configured for the sinks

	 3.	 Event batch size – The transaction capacity or batch

size is the maximum number of events that can be

batched in a single transaction. It is set at the source

and sink level.

	 a.	 Set at source – number of events in a batch

written to channel

	 b.	 Set at sink – number of events captured by sink

in single transaction before flush

	 c.	 Batch size <<channel>>.batchSize must be less

than or equal to channel transaction capacity

for proper resource management.

Chapter 2 Data lake ingestion strategies

83

	 d.	 Larger the batch size at sink, faster the channels

function to free up space for more events. For a

file channel, post flush operation may be time

consuming for fat batches.

	 e.	 Best practice to have transaction capacity that

yields optimum performance. Not fixed formula

but a gradual exercise.

	 f.	 If a batch fails in between, entire batch is

replayed; which may cause duplicates at

destination

	 4.	 Channel selector (Replicator/Multiplexer) – An event

in flume, can either be replicated to all channels

or conditional-copied to selected channels. For

instance, if an event to be consumed by HDFS,

Kafka, HBase, and Spark, channels can be marked as

replicator. Replication is the default channel selector

type. If an event needs to be routed to different

channels based on a rule or context, selected

channels can be marked as multiplexer. Selector

applies before event stream reaches the channel.

agent.sources.example.selector.type = multiplexing

agent.sources.example.selector.mapping.healthy =

mychannel

agent.sources.example.selector.mapping.sick =

yourchannel

agent.sources.example.selector.default = mychannel

agent.sources.example.selector.header = someHeader

In case replicator and multiplexer do not suffice the

requirements, custom replication strategy can also

be developed.

Chapter 2 Data lake ingestion strategies

84

	 5.	 Channel provisioning – if the channels are

insufficiently provisioned in the topology, it will

create a bottleneck in the event flow, in terms of

event load per agent and resource utilization.

	 6.	 In a multi-hop flow or a tiered farm, keep note

of the hops that an event makes before landing

to destination. Note that the channels within the

agents, at a given time, act as event buffers. In case

of many hops, if any one agent goes faulty, the

impact can get cascaded until source.

	 7.	 Flume follows extensible framework. Custom flume

components are required to add their jars to FLUME_

CLASSPATH in flume-env.sh file. Other way is the

plugins.d directory under $FLUME_HOME path. If plugins

follow the defined format, flume-ng process will read

the compatible plugins from plugins.d directory.

	 8.	 Flume topology is highly dependent on use case.

For a time-series evenly generating data, flume can

work wonders. If source data pipeline is wrecked,

flume is not a good choice as it might potentially

break flume topology and cause prolonged outages.

Frequent configuration changes to flume topology

are not recommended.

	 9.	 Due to global spread out, time zones have become

indispensable piece of data ingestion strategy. All

timings and schedules must be normalized a single

time zone UTC in its standard format.

Chapter 2 Data lake ingestion strategies

85

�Conclusion
In this chapter, we discussed different approaches to bring data into a the

Hadoop data lake. The chapter kicks off with the principles of ingestion

framework and a quick brush up on basic ETL and ELT concepts. We

discussed batched ingestion concepts and its design considerations.

Under real-time processing, we explored how change data capture works

and what its key drivers are in real-world scenarios. Key takeaways from

this chapter would be two apache foundation products: sqoop and flume.

Both have proved useful in integrating structured and unstructured data in

data lake ecosystems.

In the next chapter, we’ll cover data streaming strategies, focusing

majorly on Kafka.

Chapter 2 Data lake ingestion strategies

87© Saurabh Gupta, Venkata Giri 2018
S. Gupta and V. Giri, Practical Enterprise Data Lake Insights,
https://doi.org/10.1007/978-1-4842-3522-5_3

CHAPTER 3

Capture Streaming
Data with Change-
Data-Capture

“Data will talk to you, if you’re willing to listen to it”

—Jim Bergeson, President and CEO of Bridgz Marketing Group

It would be fruitless to design a data lake without factoring in the velocity

of data flowing from data sources. Streaming data sources are becoming

increasingly critical from a real-time or “freshness” perspective. The era

where the internet of things and mobile trends carries as much prevalence

as human rights, demands a system that not only matches the pace of

data flow, but also puts it into action. Data lake beneficiaries and analytics

consumers face the tough task of ingesting the continuous motions of data.

With challenge comes the techniques to overcome it. As the

complexity of data and its producer sources grow at a steady rate, the data

engineering community has evolved to a level where data streams can

be ingested successfully. As mentioned earlier, the big data ecosystem is

highly flexible and solution trends are under continuous evolution. This

chapter will uncover the principles of change, data capture, and event

88

stream processing using Kafka. We’ll try to understand the categories of

change data capture approach while ingesting data into data lake. In the

second half of the chapter, we see how to publish events using Kafka. At a

broader level, the chapter is structured as below –

•	 Change Data Capture

•	 What and Why?

•	 Strategies and tradeoffs

•	 Retention and Replay

•	 CDC Tools

•	 Operation and Challenges

•	 Downstream Propagation

•	 Centralization of Change Data

•	 Analysis: Centralized Data Store

•	 Metadata: Data about Data

•	 Data Formats

•	 Consumption and Checkpointing

•	 Merging and Consolidation

•	 Data Quality and challenges

•	 Publishing to Kafka

�Change Data Capture Concepts
Change data capture (abbreviated as CDC) is a key process within any

company’s overall data management and consolidation strategy. A simple

definition of change data capture is, the extraction of a committed state

changes for a piece of data from its host data store. Data stores can be

Chapter 3 Capture Streaming Data with Change-Data-Capture

89

traditional enterpsie databases like Oracle, MySql, or NoSQL stores like

Mongodb or Cassandra. In reality any proprietary format, as rudimentary

as a pipe-delimited data store, can potentially be a source of truth for

change data capture. The term “committed” is significant in this context

because it (or the lack of) could lead to data inconsistency, such as

capturing the changed data before the final state transition (specifically

rollback in this case) results in data mismatch between the source systems

and the downstream applications.

Most of the time, an input record or byte of data collected by a system

doesn’t fulfill its existential promise just by serving the read traffic on

that data. It needs to flow to other downstream systems to serve a larger

big-picture purpose. In fact, even when the sole purpose of existence for

a piece of data is to serve the read clients querying the original data store,

there could still be a valid change data capture requirement for it, for

validation and tracking/compliance purposes.

�Strategies for Data Capture
There are different ways of capturing changes to data in a data store. The

best approach depends on various parameters like the nature of data

and the rate of flow of input data. The capture strategy could span across

multiple phases including synchronous data capture and aggregation of

capture data from synchronous capture.

The optimal strategy also depends on the requirements driving the

data capture itself that boils down to a few questions listed below.

•	 What’s the purpose/goal of capturing change data?

•	 Is it for tracking/compliance purposes (or) aggregation/

analytic reporting?

•	 What are the SLAs for data availability for the

destinations that consume from this data capture?

Chapter 3 Capture Streaming Data with Change-Data-Capture

90

All of the above factors are critical in determining the strategy for

capturing and propagating the data to the next step of the data flow

process/pipeline.

Following are some of the attributes that would help drive the change

data capture strategy.

	 1.	 Nature of Input Data

•	 Data Type - integer, float, string, binary, etc.

•	 Size - average record size, average field size

•	 Nature of change - percentage of inserts, updates,

deletes

•	 Rate of change - frequency of each of the types of

changes (insert, update, etc.)

Following are a few examples of the possible impact of

the above attributes.

•	 Free text data types like string could topple size

and capacity estimates as they could potentially

accommodate wide size ranges of data. This becomes

even more unpredictable with large text data types

like CLOBs. Therefore, a synchronous capture strategy

(ex: trigger) on widely varying size ranges could end

up derailing latency numbers for the write clients.

•	 Similar size issues could surface based on row sizes.

Some downstream systems (like KKafka) may have

message size limits; this could potentially alter our

data capture strategy depending on how we want to

handle this scenario.

•	 Update, inserts, and deletes could result in vastly

different message sizes in cases where we capture

“before” and “after” images.

Chapter 3 Capture Streaming Data with Change-Data-Capture

91

	 2.	 Drivers of CDC

•	 Purpose - Tracking/Compliance, Bulk Aggregation,

Analytics etc.

•	 SLA - (Near) real-time, Within the Hour, Within the

day etc.

•	 Following are a few examples of how the above

attributes could drive CDC decisions.

a.	 Tracking/Compliance systems typically

need less information to be logged when

compared to, say, data aggregation

purpose. Therefore, synchronous capture

may be a feasible strategy because of lower

data processing latencies involved.

b.	 SLA is obviously a key driver because it

dictates how close the data capture should

be to actual data commit time.

�Retention and Replay
Data Retention for extracted data typically adds a lot of value in a CDC

pipeline. Its main purpose is to facilitate re-use of extracted data in case of

failures and delays, and thereby avoid expensive re-extraction of data in

terms of resources and time.

Retention is leveraged due to the typically high cost of data extraction.

Depending on the mode of data extraction, synchronous or asynchronous,

the source system incurs extra “cost” as significant resources are used to

extract data. In case of any failure, re-doing the entire process would be

expensive and/or infeasible.

Chapter 3 Capture Streaming Data with Change-Data-Capture

92

Data retention allows for replay of data, namely, reuse of extracted data

for downstream processes. Different downstream processes can replay

from different points in the past with basic checkpointing mechanisms in

place. Checkpointing, here, means saving the point until which a given

consumer has successfully consumed data.

�Retention Period
The retention period should be determined from the ETL pipeline

requirements. Typically, there would be quite a few factors at play, but

arriving at a retention number should be straightforward once all the

dependencies are resolved.

For example, in a simple ETL flow data is extracted from source

database, asynchronously through queries, and saved in a delimited

format within files. Later, a downstream process consumes these files at

an hourly frequency and merges this data into hadoop. In this simple use

case, the key factors that determine data retention are –

	 1)	 Source data volume/transaction rate

	 2)	 Source data extraction frequency

	 3)	 Organic/expected growth in data volume

	 4)	 Hadoop merge frequency

	 5)	 Analysis of storage cost vs data extraction cost

There could be other factors like host capacity on which the

data extraction process runs, but let’s assume other factors are easily

addressable, for simplicity’s sake.

The impact of factors #1 and #2 is straightforward. These numbers

determine how much data will be produced because of data extraction,

every time the extraction process runs. That will give us an estimate of how

much storage we would need to meet the data requirements.

Chapter 3 Capture Streaming Data with Change-Data-Capture

93

Factor #3 is essential to determine the storage requirements for future

growth. For example, if the company is rolling out a new feature in the next

few months that could drastically increase data and transaction volumes,

this would obviously need to be factored into the retention planning. Also,

there should always be some buffer room for unexpected spikes or growth

in data volume.

Factor #4 is important because it provides the minimum retention

required for the extraction flow to be practically useful for the

downstream process. For example, if the Hadoop merge process runs

daily and change data extraction happens hourly, then the extracted data

from CDC needs to be stored for at least a day, for the Hadoop merge

process to be able to consume without gaps in data. Further, this would

provide an estimate of possible replay requests from the downstream

process, if the merge fails.

Factor #5 is to determine if it’s a trade-off between storing lot of data

for a long period and re-extracting it as required (for failure and replay

scenarios). Most of the time, extra retention for extracted data would be

the better option compared to re-extraction of data from the source.

This approach can be extended to any data flow pipeline. There

could be other factors relevant to specific use cases like host capacity

and network bandwidth. They have to be factored in, as applicable, in

determining the data retention policy.

�Types of CDC
Let us look at the different modes of change data capture – incremental,

bulk, and hybrid.

Chapter 3 Capture Streaming Data with Change-Data-Capture

94

�Incremental
The mode works on capturing changes at commit time or close to that.

The primary intention here is to extract data when change happens so

that the capture load becomes manageable. Incremental mode can be

synchronous or asynchronous.

Synchronous capture captures data changes as they happen at the

source. While this approach has the advantage of the lowest possible

capture load and delay time, it could add to the latency of applications or

systems that persist data to the source data store. Clients that write to the

source data store will have to sign off the extra latency of capture time, for

this approach to be feasible. The extra latency incurred by clients also will

change with input data volumes and commit chunk sizes. All these factors

must be considered for this approach to be successful and scale over time.

Asynchronous capture captures the changes from the transaction logs

after the changes have been committed in the source database. It has no

effect on the transaction as the changes are read form the logs after the

transaction is committed. Supplement logging must be enabled at the

appropriate level to achieve asynchronous capture.

�Bulk
Bulk capture captures data in chunks of extraction spread over time, like

hourly data extracts. This bulk extraction could be on the source data

store itself or on aggregation/ETL preparation on data extracted through

synchronous capture.

If bulk extraction happens on the source data store, there will be

an extra load of data extraction when the extraction process is run. The

impact of this strategy on the source data store will depend on the resource

usage level on the data store and related hardware. High impact will

translate to latency impact on clients as well, albeit in an indirect way.

Chapter 3 Capture Streaming Data with Change-Data-Capture

95

�Hybrid
You could leverage a mix of both incremental and bulk strategies for

change data capture. You could go with multiple layers of CDC that include

incremental and bulk change capture. While this approach will bring with

it the disadvantage of increased latency on the data store clients, it also has

the advantage of incremental data capture discussed earlier. In addition,

the approach can potentially optimize change data that is propagated to

downstream or intermediate centralized systems.

For example, if your incremental capture is synchronous and extracts

all changes to a given database record, this could result in significant

amounts of change data for downstream systems to consume because

of potentially numerous versions of a given record. This will result in an

increased data footprint in multiple downstream destinations.

While a lot of data is good in general, it could also lead to data

overload if your downstream is just interested in merging all changes and

maintaining a consolidated copy of the source systems. In this use case, a

second layer of bulk capture can consolidate and de-duplicate over a given

time period, say, hourly, and propagate it to the next downstream layer, if

SLA increase is agreeable

In general, the change data capture approach needs to consider

various parameters within and around the data pipeline. The decision here

will have to balance pros and cons, to arrive at an optimal strategy. Let’s

look at some key trade-offs in the CDC strategies we discussed.

�CDC – Trade-offs
As the case with all theoretical principles, there will always be tradeoffs

to be factored in during practical implementation. The best choice may

not be an ideal one; but it’s the most favorable and desired one that

travels through. We did hint at a few trade-offs in our general discussion

Chapter 3 Capture Streaming Data with Change-Data-Capture

96

of strategies and means to coming up with a good change data capture

process. Let’s look at them in detail.

Synchronous-incremental capture offers the fastest and most true-

to-the-original means of extracting system changes. Truthfulness to the

original, in this context, means minimal or no chance for corruption

because we extract changes as part of the persisting process itself. The

trade-off is the latency; the data writer process takes the hit in terms of

latency. This can be mitigated to some extent by making the incremental

extraction slightly delayed or asynchronous, that is, we still extract data

incrementally within a short time of persistence (few seconds or minutes),

but it’s still isolated from the original writer. However, to be able to do this,

we’ll need a place to go to for the original transaction details.

With relational databases like Oracle and MySQL, redo logs and bin logs

respectively have the running trail of transaction activity on the database.

Change capture process could, in theory, extract data asynchronously from

these logs with minimal or no impact on the online database. Of course, in

some cases log format could be proprietary, and extraction of data from logs

may require some additional tools. We will talk more about these tools in a

later section. But this asynchronous approach is a good trade-off because

it still offers extraction capabilities close to source data persistence time,

without significantly impacting the performance of source data store.

This trade-off could also be hybrid where synchronous extraction

can be restricted to bare minimum data volume, namely, to just the raw,

simple data, which can be later, asynchronously processed to meet the full

data capture requirements.

For instance, if the data capture requirement is to send point-in-time

representation of a data record across three customer related tables, we

could synchronously extract individual records (ex: through triggers) and

later asynchronously join these records to provide a full version of de-

normalized records to the data capture process. With bulk capture, the

frequency of running the bulk process could significantly contribute to the

efficiency of the process.

Chapter 3 Capture Streaming Data with Change-Data-Capture

97

For example, the amount of data that will get processed within a 1-hour

capture interval could be manageable 80% of the time, but if it still is too big

20% of the time, it could significantly impact the reliability of the overall ETL

pipeline. If this 20% use case causes significant delays in data availability

through the CDC pipeline, increasing the frequency of data capture (to say,

once every 30-minutes) could result in a much smoother CDC pipeline.

�CDC Tools
Change data can be extracted through off-the-shelf tools as well as through

simple query-based extraction. These queries could be in SQL or API

calls based on the type of source database. Run the queries on the “delta”

column (a timestamp column that tracks changes) periodically, at the

desired frequency, to extract data and write it to a location (shared storage

like netapp, filer, another data store, etc.) that would feed downstream

processes. The query frequency has to be set based on other factors like

desired SLA, load on the source database, peak volume of incremental data.

There are a variety of tools available, free and licensed, for incremental

data extraction from RDBMS and NoSQL databases. Here are some of the

commonly used ones.

•	 Database triggers can provide good data extraction

mechanism for relational databases like Oracle or

MySQL. However, as we discussed earlier, triggers are

synchronous and could result in increased latency

for data writers. In general, since triggers would have

performance implications on the source database, the

logic within triggers should be kept very lightweight. If

required, an extra asynchronous layer of data extraction

can be applied on top of data extracted through trigger

to accomplish further aggregation needs on data,

within the ETL pipeline.

Chapter 3 Capture Streaming Data with Change-Data-Capture

98

•	 Oracle GoldenGate Adapters (Big data and Java

adapters) for Oracle and MySQL. However, these tools

need extra licensing, on top of Oracle GoldenGate

license.

•	 Open source tools like Open Replicator, Tungsten

Replicator for MySQL.

•	 Views for Couchbase

�Challenges
The key challenge in a CDC system is to scale it appropriately for current

and future needs. Scaling strategies depend on current data volume and

speculative growth combined with data retention. These factors could vary

for different use cases, as we discussed under the data retention section.

Failure to appropriately scale and plan for expansion will result in huge

operational overhead for the system as well as significant new effort for

enhancing the system to meet the new state of things.

Ease of operation is another key factor that typically gets ignored during

development phase. A system that is operationally heavy with low availability

index on a day-to-day basis, is practically a non-functional system.

�Downstream Propagation
Data captured from source data stores will need to flow to different

destinations depending on the goal of overall ETL (extract, transform,

load) process.

For example, if the goal is to get all data from various source data

stores into a bulk data store like hadoop, you’ll need a strategy to capture

(incremental or bulk) data at the sources and direct them to hadoop.

Depending on the granularity of data required on hadoop, there could be

intermediate stages in this end-to-end data pipeline.

Chapter 3 Capture Streaming Data with Change-Data-Capture

99

Further, there could be other downstream consumers that need the

same data. In this case, the optimal approach would be to leverage the

captured data for all downstream consumers, without having to setup

multiple capture processes for different destination flows. Let’s dive into

this scenario further, through a simple, practical use case.

�Use Case
Company A is a consumer web company that stores online data, from

user-facing applications, into MySQL databases.

Downstream #1:

Source MySQL data should flow into Hadoop where the data is

combined with data from third-party data from online user activity

tracking company.

Downstream #2:

Online applications need to display user data from MySQL databases.

For scaling purposes, applications use caching layer to speed up data

access. So, the data from MySQL databases also needs to flow to these

application caches.

Let’s say, there’s a data capture process that does bulk extraction every

hour by running queries on the source databases. These queries are run on

read-only slaves of the online databases.

Assumptions – Granularity of data in Hadoop is at record levels

within MySQL database i.e, the records from source databases need to

be propagated as they are into hadoop. Granularity of data in cache is at

record levels as well.

Now, if the overall ETL strategy is to extract data, process it in

chunks, and then dump into the destination environment Hadoop (or)

cache. We’ll need two pipelines that extract, process, and load data into

destination.

Chapter 3 Capture Streaming Data with Change-Data-Capture

100

But since we extract the source data in its original granularity in at least

one of the flows, this extracted data can clearly be re-used across both the

pipelines. To do this, we can extract once and reuse the captured data to

direct it into multiple downstream destinations. In other words, having a

central repository of data obtained through change data capture would

save a lot of time and resources, and benefit our ETL strategy immensely.

�Centralization of Change Data
Centralization of data enables a one-to-many consumption pattern

for source data. It avoids duplication of data flows and facilitates easy

consumption of data by downstream systems, for example, publisher-

subscriber model. In addition, for a slow moving external data,

centralization acts as a “staging” layer, that holds all the changes and

efforts to search through the changes are eliminated. This layer yields

much more benefits than its operational overheads. Figure 3-1 shows how

multiple consumers can be served through single capture from source data

systems.

Further, even if downstream destinations need data at different

granularities, a centralized store maintained at the lowest required

granularity could feed all or some of them. For example, a centralized

data store with record level granularity could feed a full-aggregated-data

downstream data store as well as a monthly roll-up downstream data

store that combines monthly rollups of the same data with data from other

sources.

Centralized data stores offer many other advantages as listed below –

•	 Better manageability because of fewer locations from

which data fans out, compared to the case of several

independent ETL pipelines.

•	 Control over downstream consumers through

checkpointing and watermarks.

Chapter 3 Capture Streaming Data with Change-Data-Capture

101

•	 Replay capabilities, without having to re-extract from

source; if CDC runs on live/online systems, this also

means reduced impact on live systems.

�Analyzing a Centralized Data Store
For low transaction-volume use cases, the centralized store could be

an aggregation of flat files. Data extracted from source data stores could

be dumped into flat files that can be retained for a period that serves

the pipeline requirement of consumption and replays across multiple

consumers.

For slightly complex use cases that require better organization, query

capabilities, and consumer checkpointing the centralized store can be a

bigger data repository modeled after one of the source data stores.

Database

Consumer1

Database

Central Data
Repository (HUB)

Documents

Input Data Sources

Consumer2

ConsumerN

Figure 3-1.  Centralized data hub helps in serving multiple
consumers through a single capture

Chapter 3 Capture Streaming Data with Change-Data-Capture

102

For example, if you’re building an ETL pipeline for MySQL source

databases that does not have high data volume (few GBs incremental data

per day, at most), you could persist all the incremental data from various

sources in a central MySQL database. You could run incremental SQLs

on each of the source databases and channel the output to one central

database. Multiple consumers could consume data through a checkpoint

or watermark mechanism built on top of this data. Data retention in this

central data repository will be driven by the maximum retention that’s

required across all the consumers.

For high and very high-volume scenarios, a more scalable and

distributed centralized data store would be the way to go. Publisher-

Subscriber mechanism of consumption can be used to facilitate data

consumption for multiple clients. Kafka and other queue systems like

RabbitMQ and ActiveMQ can be employed to accomplish this. Some of

these systems provide distributed storage of centralized data, efficient

checkpointing for multiple consumers, and parallel consumption

capabilities.

�Metadata: Data about Data
For any data pipeline to be fruitful, actual data that flows within it should

be accompanied by metadata that defines the data. Metadata is the key

to effective data governance. Metadata in this context is the data that

defines the structure and attributes of data. This could mean data types,

data privacy attributes, scale, and precision. In general, quality of data

is directly proportional to the amount and depth of metadata provided.

Without metadata, consumers will have to depend on other sources and

mechanisms.

The metadata management holds a critical piece from a compliance

and security standpoint as well. The General Data Protection Regulation

targets control over personal data for companies worldwide (who have EU

Chapter 3 Capture Streaming Data with Change-Data-Capture

103

citizens) to strengthen data protection. Figure 3-2 shows the areas where

metadata can help in adhering to governance guidelines.

Metadata can be synchronous or asynchronous to the data itself. In

case of asynchronous delivery, care should be taken to provide metadata

as close as possible to the time of availability of the source data; otherwise

it could break some downstream systems. But asynchronous mode

prevents tight coupling of metadata with data especially in cases where

metadata is not available at the time of data extraction and must be fetched

separately.

When a CDC tool is used for data extraction, if the tool doesn’t provide

complete metadata at the time of data extraction, there will need to be a

separate process that extracts metadata from the source system(s).

The nature of metadata extraction (synchronous or not) should be

determined based on the criticality of metadata. If downstream systems

are okay with occasional increased latency for metadata availability (at

least some of it), asynchronous mode would be the better choice since it

reduces dependencies and thereby the chances of overall failure. However,

Access rights for personnel - Metadata helps in locating data and access control mapping

Data retention - Metadata helps in capturing data movement through the systems

Data portability - Awareness about data movement

Data privacy - Helps in ensuring security of systems through metadata management

Altering mechanism - In the event of breach, alerts and notifications to affected audience

Figure 3-2.  Metadata management plays critical role in data
regulation

Chapter 3 Capture Streaming Data with Change-Data-Capture

104

clear SLAs need to be defined for availability of metadata. The general

requirements of scalability and high availability are applicable to metadata

as well. Even if one downstream consumer fails because of non-availability

of metadata along with data, overall data pipeline becomes unavailable.

Let’s look at some features of metadata that typically would be required

along with data.

�Structure of Data
Data type precision (especially for numeric types, such as dates) is a key

requirement for consumers, to preserve data fidelity. For example, scale

and precision information for numeric data types is very important in

financial aggregations and calculations on data.

�Privacy/Sensitivity Information
Many data stores that store any member data would have few sensitive

fields that need to be masked/scrubbed when exposed to few downstream

systems, for example, SSN, credit card, and revenue info. These fields

should be tagged with required metadata for appropriate downstream

handling.

�Special Fields
Another common use case is contextually relevant fields that are used

across a set of consumers.

For example, the last modified timestamp is a common value that

would be used for incremental data consumption and merges, within

downstream systems. In these cases, metadata should identify the

attribute that has this value. Another example is an attribute that identifies

if a record is active or not.

Chapter 3 Capture Streaming Data with Change-Data-Capture

105

�Data Formats
Data pipelines are practical only when they contain the data and relevant

metadata that consumers can use to make sense of the data.

As we discussed earlier, there are different ways to propagate metadata

within the pipeline, along with the data. Whatever way we choose, it brings

up a new problem of data size: the practical aspect of bundling metadata

information with the data. The more metadata, the bigger the overall data

set size for the records, and the slower the throughput (all other things

being the same).

This is where the data format we choose becomes paramount. As

always, there are trade-offs in the process and practicality has to drive the

decision of choice. Let’s look at some practical choices.

�Delimited Format
The delimited format is very commonly used: comma/space delimited or

some custom sequence delimited text. This choice is a very simple and

efficient one w.r.t data size; there’s very minimal storage overhead w.r.t

actual data size (just the extra space for delimiters). However, delimited

format prints just the data and metadata needs to flow through a different

pipeline.

The advantage of isolation between data and metadata and no-

dependency could be a disadvantage in the following scenarios:

	 1)	 Downstream consumers need the metadata to make

any sense of the data.

	 a)	 In this case, consumers will be blocked until

metadata arrives.

	 b)	 However, if the metadata is fairly static,

consumers could cache metadata locally and

use it to process data. When the metadata

Chapter 3 Capture Streaming Data with Change-Data-Capture

106

changes, there could still be some delay in

processing; but if this change is very infrequent,

this may be an ok trade-off for the benefit of

compact and high-throughput delimited data

	 2)	 Metadata changes frequently.

	 a)	 When metadata changes frequently, consumers

will have to look up metadata very frequently,

from a different place (that stores the metadata).

This will increase the pipeline latency and

possible points of failure.

�Avro File Format
Avro is a very commonly used format that embeds metadata along with

the data itself. This allows for synchronous metadata propagation and

validation as well. When an Avro schema is defined for data, the data that

comes in against the schema is validated at run time.

For example, if a field is defined as number, any attempt to encode a

string into that field, at run time, will be rejected. This strict validation of

data type and structure goes a long way in terms of data standardization

and provides great reliability for the pipeline when there are multiple

consumers. Lack of validation could result in frequent failures due to type

mismatches and improper communication between teams that manage

data source and downstream destinations.

Avro encoded storage format is reasonably compact as well especially

with binary encoding. With Avro, JSON encoding can be used as well.

While Avro is an efficient encoding format, how much metadata

to encode synchronously is still a tradeoff that needs to be evaluated

practically. For example, data type information is required for defining the

Avro structure and for validation as well. However, extra metadata,

Chapter 3 Capture Streaming Data with Change-Data-Capture

107

like sensitivity information, would have to be provided explicitly.

The mode of propagation for this extra metadata, synchronous or

asynchronous, still has to be driven by practicality considerations.

�Consumption and Checkpointing
Once a centralized data store is built to host data from source data stores,

there needs to be well-defined processes to support multiple consumers.

�Simple Checkpoint Mechanism
A simple organizational mechanism is to maintain a table of consumers

with their current checkpoint information. Checkpoint itself could be a

timestamp value that denotes the last record timestamp value a given

consumer has extracted. It could also be an increasing number that

denotes the last consumption point. Databases like Oracle provide a

number that could potentially be used downstream for checkpointing.

A similar number can also be generated for other data stores during

extraction (CDC) process.

�Parallelism
The consumption and checkpointing process becomes complicated

when consumers need parallelism. For example, if one consumer can

run multiple consumption threads in parallel to consume the same data,

managing checkpoints can be a lot more difficult.

There are many publisher-subscriber model stores like Kafka that

support parallel consumption, across distributed nodes. They have

efficient ways to deal with data scaling across multiple nodes and facilitate

multiple consumers and checkpoints as well.

Chapter 3 Capture Streaming Data with Change-Data-Capture

108

�Merging and Consolidation
Once data is available in a central hub or repository from various data

sources, the next step in the data pipeline would be to build a sub-pipeline

to consolidate this data with destination data store(s).

The exact nature of consolidation would depend on the nature of

incoming data and the desired state of the destination data set/store.

For example, if the data comes in through incremental dumps and the

requirement is to maintain a consolidated, point-in-time version of the

entire data set, the incremental incoming data sets need to be merged with

destination data sets to arrive at the desired state of data at the destination.

If the incoming data set is a full data set every time, that is, if full dump

of source data arrives every time, we can delete and replace the destination

data set every time. We can move the target to a different place or data

store if we want to retain old versions as well. This approach generally

works for small to medium data sets because generating a full data dump

of large source data sets requires a lot of resources; further, delays in

processing could pile up to impractical data volumes to be processed.

Figure 3-3 depicts the merging and consolidation process from centralized

data hub to consumer to consumer processes.

Central Data
Repository (HUB)

Consumer 1

Consumer 2 Merge and
Consolidate data

Target data and
(or) partitions

Bulk data consumer
processes

Merge process

Consumer N

Figure 3-3.  Merging and consolidation workflow

Chapter 3 Capture Streaming Data with Change-Data-Capture

109

�Design Considerations for Merge and
Consolidate
Merging and consolidation are key phases of building the destination data

set or data store that in turn can serve various end client use cases. These

use cases can be for on-the-fly analytics or bulk processing. Typically, this

destination data set becomes the source of critical reports that provide

significant value to end users or internal customers.

For example, destination Hadoop data store can serve internal

business analytics or user analytics on a web site. Any error in

consolidation will have repercussive effects on the use cases that use this

data. So, it is very important to make sure the consolidation process is

robust and scalable. Let us list some key design considerations.

	 1)	 Simplicity of consolidation/merge logic - This goes

a long way in making sure the destination data set is

reliable and easy to debug, in case of issues. Simplicity,

here, means less scope for data corruption or loss, and

a clean and simple set of rules to consolidate data.

For example, if you are required to resolve conflicts as

part of a data merge, make sure the conflict resolution

process is plain and simple (as in case of last-writer-

wins i.e., record with latest timestamp wins). Avoid

providing too many options as much as possible.

	 2)	 Repeatability of apply/merge process – Things could

fail within a data pipeline from time to time, for

various reasons. Apply process should allow for data

replay i.e., running the apply process for same data

(all or some of already applied data) multiple times

should not result in data corruption or loss at the

destination. This feature also allows for isolation of

tasks within the data pipeline. Apply process would be

able to run independent of other upstream processes.

Chapter 3 Capture Streaming Data with Change-Data-Capture

110

	 3)	 Manageability of Target Data – Data in many

enterprises typically flows from transactional

data stores to bulk data stores. This is because

the destination data stores are meant to serve

the purpose of facilitating analytics and bulk

aggregation on data from disparate sources. Target/

destination data store size would be typically much

larger than any individual source data store. More

importantly, destination data stores allow for bulk

operations on large volumes of data.

Most of the bulk operations benefit a lot from parallel processing of

underlying data. If underlying data has inherent parallelism built within it,

this factor would optimize the data processing significantly. Partitioning

the data set appropriately could provide considerable performance

benefits in bulk processing of destination data. Partitioning should be

done based on attributes that participate in bulk operations.

For example, if there’s an analytic query use case of “number of

comments per user” that is generated on a bulk social network data set

(of comments), partitioning the data set by user ID ranges will allow for

parallel processing of underlying aggregate computation.

�Data Quality
The quality of data that flows within a data pipeline is as important as the

functionality of the pipeline. If the data that flows within the pipeline is not

a valid representation of the source data set(s), the pipeline doesn’t serve

any real purpose. It’s very important to incorporate data quality checks

within different phases of the pipeline. These checks should verify the

correctness of data at every phase of the pipeline. There should be clear

isolation between checks at different parts of the pipeline. The checks

include checks like row count, structure, and data type validation.

Chapter 3 Capture Streaming Data with Change-Data-Capture

111

For example, quality of data should be verified w.r.t source data store

after extraction; likewise, data in centralized data store should be verified

against consolidation/merge output. If there are other intermediate

stages within the pipeline, similar quality checks should be incorporated

to compare input and output of each phase. This demarcation allows for

clear and practical debugging of data quality issues, when there’s data

corruption.

Continuous quality checks along the pipeline provide maximum

reliability. Continuous checks, here, mean data quality checks as data

flows through the pipeline. Since there could be multiple versions of the

same record, continuous checks provide rigorous verification of quality

for all or a majority of record versions, thereby minimizing issues that

appear randomly, without any pattern. But if data volume is too high and

continuous verification is impractical, quality checks can be done in a bulk

manner. Data output within a specific time interval (with the latest version

of a given record) can be selected in bulk and compared against bulk data

input from the previous phase, for correctness.

For example, data output from extraction phase for records between

1pm and 3pm could be compared to data input from source data store,

for the same time interval. An attribute/field that specifies this timestamp

(like the last modified timestamp) can be used to extract required records.

Data can also be sampled across the full data set, to reduce comparison

volume. This sample could be based on a range of some column domain

values or timestamp.

�Challenges
The complexity of a data pipeline within any organization cannot

be determined in a generic way, based on a fixed set of factors.

Different parameters have different kinds of impact on the design and

implementation of end to end data pipelines.

Chapter 3 Capture Streaming Data with Change-Data-Capture

112

�Design Aspects
Factors like transaction volume and data size typically have similar

impacts in many data environments, in their contribution towards

increased complexity. However, factors like data privacy, sensitivity that is

different within different companies and vary with the type of data could

make the design complex, even with manageable transaction volumes and

data sizes.

For example, handling data with personal information like SSN or

sensitive data like credit cards requires a lot more checks and security

measures to be in place. This could contribute to more phases and access

restrictions within the data pipeline from source to destination. In some

cases, like CLOBs, Images, and NoSQL documents, data could have low to

medium transaction volumes, but very large data sizes.

While overall data size volume may be manageable within extraction

and other processes, downstream stores may have restrictions or

performance degradation with large records. For example, Kafka’s typically

optimized for message sizes in low megabytes; performance typically

degrades for large messages. Large messages slow down the brokers as

they impose memory pressure on the broker. Similarly, in cases where the

centralized repository is a custom hub using some database like MySQL,

query performance could degrade for very large message sizes.

�Operational Aspects
It’s very important to thoroughly monitor and measure every part of the

data pipeline. It’s practically impossible to maintain and operate a data

pipeline without clear visibility into its operational aspects. We’ll delve into

more details on operational aspects of data propagation and consolidation

in a separate section; but below is the list of typical challenges that need to

be addressed for any data pipeline to be practically useful.

Chapter 3 Capture Streaming Data with Change-Data-Capture

113

	 1.	 Reliable Monitoring – Monitoring needs to be

available for every component of a data pipeline.

High-level monitoring of the entire pipeline, without

granular health checks at the sub-component level,

will not be sufficient to provide a robust and reliable

data pipeline. Sub-component level monitoring

is required to be able to debug and address issues

effectively especially when the data pipeline is

complex and/or involves multiple phases.

Monitoring should be embedded within each

component process, every program, job, SQL, etc.

that needs to run to facilitate a functional data

pipeline. Things can only be fixed when they’re

actively monitored and attended to. Delay in

reaction time could complicate recovery process

and recovery time from failures. Further, active

monitoring on various aspects of functionality and

supporting processes could allow for pro-active

detection and prevention of failures. For example,

detection of a continuously increasing load pattern

on a data extraction host can help prevent complete

system failure by pro-active action to mitigate or

recovering from the issue.

	 2.	 Metrics – Metrics facilitate constant visibility into the

functioning of the system. Some constituent process

within the data pipeline could be running, without

failure, without really accomplishing the intended

goal. Without appropriate metrics, it’s impossible to

manage data flows efficiently and guarantee

high availability of the pipeline to the consumers.

Chapter 3 Capture Streaming Data with Change-Data-Capture

114

Loss of functionality detected too late can be hugely

detrimental to consumers and the recovery process

as well.

Metrics allow us to constantly track the functioning

of various aspects and compare them to baseline

metrics. Baseline metrics are the expected standard-

state numbers for any system. For example, if an

ETL system on top of a company’s user database is

expected to extract approximately 500 transactions/

sec on Monday morning, this would be the baseline

number for ETL metrics, for this database, on

Monday. Any significant deviations can be tracked

and acted upon. Sometimes, even if the deviation is

not negative in terms of functional impact, it could

result in further refinement of the baseline itself,

probably due to variation in traffic, features, or some

other factor.

Metrics also enable quantification of the impact of

external factors on the core system. For example,

percent change in transaction volume metric can

quantify the impact of a new feature rolled out on

the company’s website or some other change in the

application flow process. This kind of measurement

enables clear visibility into impact and facilitates

appropriate planning. It also provides the flexibility

to ramp up changes and new features slowly and

gradually based on impact across various system

metrics.

Chapter 3 Capture Streaming Data with Change-Data-Capture

115

Different environments could have different challenges but designing

a data pipeline by considering key factors specific to the environment

(data types, sizes, etc.) is very important to ensure the pipeline functions

and scales well. Another important challenge is to make sure to provide

operational visibility, through monitoring and metrics, with appropriate

granularity and within individual components of the system.

�Publishing to Kafka
As we discussed earlier, there are different ways to centralize and

consolidate the source data extraction part of the pipeline. This promotes

efficient reuse and distribution of source data across downstream data

flows, and avoids redundancy in data collection and aggregation. There

are few choices for the centralized data store model, from simple hub

data store (flat files, database) to a highly distributed and scalable data

store that provides scalability and support for multiple consumers, with

parallelism.

Apache Kafka is a great option as a central data store for high-volume

use cases and can provide streaming data for downstream consumption.

Following details, extracted from Kafka’s official web site, describe the key

capabilities and features of Kafka. Apache Kafka is a distributed streaming

platform. What exactly does that mean? What is Kafka good for?

We think of a streaming platform as having three key capabilities –

	 1.	 It lets you publish and subscribe to streams of

records. In this respect, it is similar to a message

queue or enterprise messaging system.

	 2.	 It lets you store streams of records in a fault-tolerant

way.

	 3.	 It lets you process streams of records as they occur.

Chapter 3 Capture Streaming Data with Change-Data-Capture

116

It gets used for two broad classes of application –

	 1.	 Build real-time streaming data pipelines that

reliably get data between systems or applications

	 2.	 Build real-time streaming applications that

transform or react to the streams of data

To understand how Kafka does these things, let’s dive in and explore

Kafka’s capabilities from the bottom up.

	 1.	 Kafka runs as a cluster on one or more servers.

	 2.	 The Kafka cluster stores streams of records in

categories called topics.

Each record consists of a key, a value, and a timestamp. Kafka has four

core APIs –

	 1.	 The Producer API allows an application to publish a

stream of records to one or more Kafka topics.

	 2.	 The Consumer API allows an application to

subscribe to one or more topics and process the

stream of records produced to them.

	 3.	 The Streams API allows an application to act as

a stream processor, consuming an input stream

from one or more topics and producing an output

stream to one or more output topics, effectively

transforming the input streams to output streams.

	 4.	 The Connector API allows building and running

reusable producers or consumers that connect

Kafka topics to existing applications or data systems.

For example, a connector to a relational database

might capture every change to a table.

Chapter 3 Capture Streaming Data with Change-Data-Capture

117

In Kafka, the communication between the clients and the servers is

done with a simple, high-performance, language agnostic TCP protocol.

This protocol is versioned and maintains backwards compatibility with

older version. Kafka clients are available in many languages. For more

details on the anatomy of topics, partitioning, messages within Kafka,

please refer to the official documentation or the immense wealth of

information available on the Internet.

Let’s focus on practical aspects of leveraging Kafka as a centralized

data store, within the data pipeline.

In general, data can be published to Kafka in any format. Data can

be pushed, through Kafka producer, in a delimited or even unstructured

format to Kafka. But the structure/format of data pushed is very critical in

facilitating reliable data consumption for downstream consumers. It’s

very important to minimize isolation between producers and consumers

of data by publishing data in a standardized format. If the format is

self-defined like Avro, it makes life a lot easier for data consumers since

they can consume data along with its metadata, using a predefined

schema. Data encoded with the schema is guaranteed to comply with

defined data types and constraints defined within the schema definition.

�Schema and Data
As we discussed earlier, one of the key advantages of using a defined

schema is to enable enforcement of schema and constraint validation on

data. Let’s take the example of using Avro schema to publish data to Kafka.

Data extracted from sources is processed and encoded to Avro format.

Avro serialized records are published to Kafka as events that can be

consumed by downstream consumers. The granularity of events published

depends on the specific use case. What this means is: same source data

can be written at the same record granularity (or) after some level of

aggregation, depending on the requirement. Same data with different

aggregation levels can be written to different Kafka topics as well.

Chapter 3 Capture Streaming Data with Change-Data-Capture

118

Data is written to Kafka topics that consumers can subscribe to. Kafka

also allows for ACLs and thereby access security to be implemented on

data topics.

�Sample Schema
Data should be written to Kafka using a generic schema, for better

scalability. If the requirement is to publish data from source MySQL

databases to Kafka, as part of the data pipeline then let’s assume the

required granularity is at source record level.

If the source MySQL database has 1,000 tables, the Avro schema that’s

used to encode data before publishing to Kafka will be different for these

1,000 tables because the table structures will be different. Obviously, this

could get complicated, with a greater number of data sources/tables.

An efficient way to address this problem is to use a generic schema, as

shown below:

{

 "type" : "record",

 "name" : "generic_payload",

 "namespace" : "test.Kafka_producer",

 "fields" : [{

 "name" : "table_name",

 "type" : "string"

 }, {

 "name" : "schema_id",

 "type" : "long"

 }, {

 "name" : "payload",

 "type" : "bytes"

 }]

Chapter 3 Capture Streaming Data with Change-Data-Capture

119

The schema above uses a generic format to publish data for all tables.

The payload field takes the actual payload that will be different for different

tables. For the payload schema specified by the “schema_id” field will

be used. This schema will be different for different tables. Downstream

consumers can reference the schema ID value and use it to de-serialize

payload data.

Of course, this process flow also needs a place for consumers to get the

actual schema corresponding to the value of the schema_id field. There

needs to be a central repository for consumers to get schemas for different

schema IDs. We’ll get into more details on this schema repository, in a

later section.

In general, the same generic payload can be used to publish payload1

with schema s1 for table t1 and payload2 with schema s2 for table t2.

This also allows for schema evolution for a given table where schema s1

for table t1 could change to s1_new. Since the ID itself is included within

the payload, downstream consumers can use the new id to get the new

schema.

�Schema Repository
As we discussed earlier, there needs to be a central schema repository for

the generic payload and consumption process flow to work seamlessly.

The repository could be a simple table and/or API that can be accessed

by all consumers. The Avro schema corresponding to a data set will be

published with an ID (could be simple hash of the schema itself) to the

schema repository. This is the ID that will be embedded with the data

(schema_id field value, from the sample schema provided).

As part of publishing data into Kafka, it’s the responsibility of Kafka

producers to keep this schema repository up-to-date with latest schema

information. New schemas from new data sources and evolution of

existing sources need to be persisted to schema repository before data

is published into Kafka so that consumers can continue to consume

Chapter 3 Capture Streaming Data with Change-Data-Capture

120

data seamlessly. Of course, if the new schema is backward compatible,

consumers can continue to access data even if the new schema is not

readily available. In general, it’s a good approach to make new versions of

Avro schema for a given data set backward compatible.

�Multiple Topics and Partitioning
Data published to Kafka is consumed from Kafka topics that provide

parallel consumption capabilities to multiple consumers. Technically, this

means you could publish all the data to one topic and ask all consumers to

read from that one topic.

But there are practical limits and considerations to this approach. For

example, data from 100 tables is published to the single Kafka topic in question.

A specific consumer needs from just one of the 100 tables. This consumer

may need to process a lot of data, corresponding to 100 tables, to get to its

data of interest. This could introduce unnecessary latency for the consumer.

Source: data from
central repository,
from multiple
sources

Process source
transactions

Replay capability

KAFKA

Kafka APIKafka publisher

Avro serializationSchema repository

Source data

Data processor

Watermark
maintenance

Perform Avro
serialization

Figure 3-4.  Process flow from source data to data processor via Avro
serialization

Chapter 3 Capture Streaming Data with Change-Data-Capture

121

This pipeline could be made a lot more efficient by writing that

one table to a different topic. This will enable faster processing and

consumption for the consumer described above. In general, this approach

of organizing required data within different topics, will help a lot in

minimizing consumer latencies. This may not translate to a single table

writing to a different topic, all the time; but the publishing strategy needs

to be optimized to minimize consumption latency, without any consumer

having to process and skip a lot of data.

Similarly, when it comes to parallel consumption, partitions within

Kafka topics can be leveraged to further advance this optimization

strategy. Data written to a topic can fe partitioned by specific field. For

example, data within a source table has multi-tenant data for different

clients; each client is identified by a client ID. In this scenario, the Kafka

topic that receives data for this table could be partitioned by client ID

so that different clients can be processed efficiently in parallel. Similar

optimization can be achieved by smartly partitioning data across

appropriate fields within source data sets.

�Sizing and Scaling
In general, Kafka scales very well for heavy workloads because of its

inherent distributed nature. But performance may start to degrade when

the average size of data event goes up. Specifically, if there are events with

large message sizes (> 1MB), they could adversely impact consumption

across the entire topic.

There are a few settings that could be tweaked to allow for large

message sizes; but like many other parameters, these comes with trade-

offs as well. Worst case, one very large message could end up degrading

the performance of an entire Kafka topic.

Chapter 3 Capture Streaming Data with Change-Data-Capture

122

Practical workarounds need to be adopted for use cases with large

message sizes. One of the solutions to this event size problem is to

partition the large message into multiple small messages and re-assemble

it during consumption. You could develop your own custom Kafka client

(consumer and producer combination) that handles partitioning and re-

integration that meets your requirements. Few open-source Kafka clients

provide this partitioning capability.

�Tools
The most convenient way to publish data to Kafka is to implement and

maintain your own publishing code that leverages Kafka clients for

the Kafka version used. There are appropriate versions of Kafka clients

available for every version of Kafka. Companies that actively invest in

Kafka infrastructure and contribute back to the open source community

release their custom Kafka versions and clients. Though this approach

requires the owner to implement and maintain code and infrastructure to

manage publishing data to Kafka, it gives the most flexibility in terms of

schema and data management, and possibly performance.

There are a lot of available tools that plug into source data stores and

publish data to Kafka. They provide the ability to specify the Kafka setup

parameters and have data published directly to Kafka topics.

However, they come with limitations on schema management, topic

and partition management. The data pipeline will have to work around

these limited capabilities to fit data flow into available options within these

tools.

For example, Oracle GoldenGate provides a big data adapter plugin

that publishes data from Oracle and MySQL tables directly to Kafka. This

plugin provides the capability to publish to a single topic and one-topic-

per-table. It also provides a generic schema with payload (similar to the

one discussed above) and the ability to publish schema changes to a

schema topic.

Chapter 3 Capture Streaming Data with Change-Data-Capture

123

Tools like this provide instant ability to easily publish source data. But

obvious limitations and trade-offs exist in terms of ability to spread data

across topics and partitions in a flexible way. Further, the generic payload,

currently, is rigid and lacks flexibility to add more descriptive fields like

event identification timestamps, as required.

Similar tools exist for other data stores. But they almost always come

with limitations in functionality and design. If what they provide is good

enough, the best approach is to leverage them and simplify the data

pipeline.

�Conclusion
The chapter talks about the principles of change data capture and event

streaming mechanism using Kafka. Throughout the chapter, we have

maintained the fact that fundamentals and strategy are much more critical

than execution. If we understand data sources well and how the changes

have to be flown further to the consumers, we can plan an efficient and

stable implementation.

In the next chapter, we are going to start off with the data processing

strategies in a data lake. It will be of great interest for the readers who

arrive from a database development background. Readers will understand

the ways to work with the data in a data lake using Hive, Pig, and Spark.

Chapter 3 Capture Streaming Data with Change-Data-Capture

125© Saurabh Gupta, Venkata Giri 2018
S. Gupta and V. Giri, Practical Enterprise Data Lake Insights,
https://doi.org/10.1007/978-1-4842-3522-5_4

CHAPTER 4

Data Processing
Strategies in Data
Lakes

In pioneer days they used oxen for heavy pulling, and when
one ox couldn’t budge a log, they didn’t try to grow a larger ox.
We shouldn’t be trying for bigger computers, but for more
systems of computers

—Grace Hopper, an American computer scientist

Data analytics trends have been disruptive. It would be an understatement

to say that within the data analytics practitioner community, there exists

a lean school of thoughts for data processing and drawing insights that

are meaningful for business. With the steep increase in data appetite,

data management practices have folded to multi times; which in turn has

reinforced advanced analytics expertise and data management policies in

the industry. The thought process behind crafting a data strategy is driven

by use-cases and adjunct to technical capacity, learning momentum,

and most importantly, the ability to cherry pick key discoveries that can

be magnified into actionable insights to engage customers and drive

126

business. The success mantra for a data analytics practice to excel is to

maintain a “preamble” that envisions end goals aligned with the business

use cases; both in the short run as well as the longer run. In our earlier

chapters, we discussed the pillars of data analytics, i.e., data engineering,

data discovery, data science, and data visualization. Data engineering

offers relatively a bigger playground encapsulating ingestion principles,

processing techniques, and development.

Approaches of data engineering encapsulate data ingestion as well

as data processing. Ever since Google has published whitepapers on

distributed frameworks, the gamut of data analytics has attained a definite

maturity level through a series of sparkling innovations. These innovations

have cut across different layers like data ingestion, processing, engineering

approaches, and data representation. In the last two chapters, we tackled

the challenges of bringing data into data lake. The focus of this chapter

is to understand how to access data in a data lake. We will start with the

classical parallel computing framework and cover key topics including

datawarehousing in data lake using hive, data operations using pig, and

modern-day processing framework i.e. spark.

�MapReduce Processing Framework
In 2004, Google engineers Jeffrey Dean and Sanjay Ghemawat published

a white paper1 on distributed processing framework. The white paper

illustrated a framework, operationally distributed, and aimed to process

massive volumes of data. Here is what they quoted:

1�Dean, Jeffrey; Ghemawat, Sanjay; MapReduce: Simplified Data Processing on
Large Clusters, https://static.googleusercontent.com/media/research.
google.com/en//archive/MapReduce-osdi04.pdf

Chapter 4 Data Processing Strategies in Data Lakes

https://static.googleusercontent.com/media/research.google.com/en//archive/MapReduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/MapReduce-osdi04.pdf

127

“Our abstraction is inspired by the map and reduce primitives
present in Lisp and many other functional languages. We
realized that most of our computations involved applying a
map operation to each logical “record” in our input in
order to compute a set of intermediate key/value pairs, and
then applying a reduce operation to all the values that shared
the same key, in order to combine the derived data
appropriately.”

In simple words, MapReduce is a massively parallel processing

framework for large data sets. Let us have a cursory look at the

programming model. In a dedicated processing paradigm, data

computation layer is static. During processing, data moves from the

storage layer to the processing layer. On the other hand, in a distributed

processing framework, the computation logic is pushed down to the

storage layer. This means that a processing unit gets instantiated and

each “processing” instance comes down to the node where data resides.

The approach yields huge benefits from stability to the optimization

perspective. An instance of program unit runs locally on the data node

within a java container (JVM). It consumes a subset of data that resides

locally on disk. Since the processing runs on multiple nodes in parallel,

load gets spread out across the cluster; thereby greatly improving the

performance. In addition, unlike in the past, the network never has a

bottleneck because there is no data movement.

�Motivation: Why MapReduce?
“The beauty of MapReduce is that any programmer can
understand it, and its power comes from being able to harness
thousands of computers behind that simple interface”

—David Patterson, a distinguished computer scientist.

Chapter 4 Data Processing Strategies in Data Lakes

128

Why do we need a distributed processing framework? The motivation

is as sharp and simple as the paradigm. In a standard process-oriented

architecture, two systems interact through messages (message processing

interface). In a distributed environment, every node interacts via SEND

and RECEIVE messages. Once issued, another node must receive

and send back the acknowledgement bit. Not only does network-tied

communication add to the latency but also, any loss in communication

between the cluster nodes impacts cluster health. When working with

huge volumes of data, network does become a bottleneck. Consider

scenarios such as when an algorithm processes huge amounts of data or

you need to sort petabytes and terabytes of data.

To prevent network congestion, processing can be pushed to the nodes

of commodity cluster. With the subset of data on a node, a processing

operation generates intermediate output files. A reducer operation works

on these intermediate output files to aggregate or consolidate the final

output. The “push down” operation is a step to assign a process instance to

a data node and map values against the keys, while aggregation of values

is a reducer operation on multiple intermediate outputs to final output.

The operation comprising of map and reduce tasks is, thus, known as

MapReduce.

The MapReduce flavor available until Hadoop 0.20 is considered the

first version of MapReduce. In Hadoop 0.23, MapReduce framework had a

resource management component known as YARN (Yet Another Resource

Negotiator). We will cover YARN after a concept refresher on MapReduce

version 1.

�MapReduce V1 Refresher and Design
Considerations
Figure 4-1 shows the components involved in a classical MapReduce

operation.

Chapter 4 Data Processing Strategies in Data Lakes

129

As a quick refresher, let us focus on key highlights of the MapReduce

framework –

	 1.	 Two broader phases – map and reduce. Input

and output data format for both the phases is a

key-value pair.

	 a.	 Key-value based data distribution is crucial

from a data access and availability perspective

	 b.	 Key and value are java objects.

i.	 Values implement Writable.

1.	 Writable makes quick and easy

serialization.

2.	 IntWritable, LongWritable,

FloatWritable, DoubleWritable, Text

ii.	 Keys implement WritableComparable.

1.	 WritableComparable can be compared

to determine order.

Client

Sec Name
Node

Data Node

Name Node

Data Node Data Node Task Tracker Task Tracker

Job Tracker

HDFS (Distributed File System) MapReduce (Distributed Data Processing)

Figure 4-1.  A classical MapReduce operation

Chapter 4 Data Processing Strategies in Data Lakes

130

	 2.	 Mapper jobs run concurrently on nodes where

required data blocks are located. This avoids data

transfer over the network and brings up the power

of parallelism. Mapper jobs generate intermediate

output files either locally on the nodes or at a

defined location.

	 a.	 Map is a stateless operation.

	 b.	 Extend Mapper base class. LongWritable and

Text are input key and value types. Text and

IntWritable are output key-value types. Keys

are WritableComparable while values are

writable.

public class SampleMap extends Mapper

<LongWritable, Text, Text, IntWritable>

	 c.	 Map method can be created for actual

implementation.

	 3.	 Mapper class –

	 a.	 Transforms input key-value pair to an

intermediate pair based on the mapper class

logic.

	 b.	 Input and output file formats may differ in types

and counts.

	 c.	 One map task per input split generated by

inputFormat. InputFormat is specified in

driver code which contains –

i.	 Input data location over HDFS

ii.	 How input split has to be created

Chapter 4 Data Processing Strategies in Data Lakes

131

iii.	 Creates RecordReader that parses data into

key-value pairs before consumed by mapper

iv.	 TextInputFormat creates LineRecordReader

object

v.	 Other standard input formats –

	1.	 FileInputFormat – Abstract base class

for all file based InputFormats

	2.	 KeyValueTextInputFormat – Lines

terminated with ‘\n’ are treated as

[key value] pair (tab separator)

	3.	 SequenceFileInputFormat – [key value]

pair binary file

	4.	 SequenceFileAsTextInputFormat –

[key value] as maps key.toString ()

and value.toString ()

	 4.	 Only after all mapper jobs are finished, reducer jobs

kick off in parallel on the nodes.

	 a.	 Mapper output can be stored in HDFS by

writing output key-value pair using context

method.

	 5.	 Reducer operations internally employ intermediate

stages like combiner, and sort and shuffle to

optimize the function.

	 a.	 Single reducer or multiple reducers

Chapter 4 Data Processing Strategies in Data Lakes

132

	 b.	 Extend Reducer class and override the Reduce

function. Note the input and output key value

pair parameters. Keys are writableComparable

and values are Writable.

public static class Reduce extends Reducer

 <Text, IntWritable, Text, IntWritable>

	 6.	 Reducer class –

	 a.	 Shuffle and sort phase starts after mapper phase

is over and while fetching the input for reduce

operation.

i.	 Shuffle – collates all values associated with a

key on a single machine

ii.	 Sort – applies merge sort on input keys

	 b.	 Reducer invokes aggregate function(s)

(sequential) on all values associated with each

key. Reducer output associated with a key,

written to RecordWriter via a context object.

	 c.	 Parallelism realized by concurrent reducer

operations on multiple keys.

	 7.	 Map and Reduce classes must be packaged into a

job to submit to the JobTracker.

	 8.	 JobTracker and TaskTracker

	 a.	 JobTracker is a master daemon, responsible

to assign mappers and track task execution

progress

	 b.	 TaskTracker is a slave daemon, runs on data

nodes, and responsible to fire a JVM to execute

mapper/reducer operation

Chapter 4 Data Processing Strategies in Data Lakes

133

	 9.	 MapReduce process architecture (Figure 4-2)

	 10.	 SETUP and CLEANUP methods

	 a.	 SETUP method is used to perform pre-mapper

operations like initializing data structures,

external data read, set custom parameters, or

stats check. For the first time, it runs before map

method is executed.

	 b.	 CLEANUP is used to perform specific action

after job operations get over.

	 11.	 Map-only operations

	 a.	 Data sampling, ETL, or image processing

require only mapper phase

	 b.	 Set reducer count to 0

	 c.	 Job.setNumReduceTasks (10)

User Defined Program

Workers[n]

Input Splits

Input Splits

Input Splits

Input Splits

Master (Job Tracker)

Workers[n]
Mapper Output

Final Output

Data Input Map phase Reducer phaseIntermediate files Output

Assign Reducers Assign Mappers

Read

Read

Write Write

Figure 4-2.  MapReduce process oriented architecture

Chapter 4 Data Processing Strategies in Data Lakes

134

	 d.	 Use job.setOutputKeyClass and

job.setOutputValueClass in place

of job.setOutputKeyClass and

job.setMapOutputValueClass

	 e.	 Therefore, context.write will write output Key-

Value pair on to HDFS and not on data nodes

	 12.	 Number of Reducers

	 a.	 Single reducer by default

	 b.	 If all keys in the final output, are required to be

sorted, use single reducer only.

	 c.	 Single reducer may become a bottleneck if –

i.	 Mapper output has multiple keys

ii.	 Data volume ready for processing is hue

iii.	 Good practice to partition keys of mapper

	 13.	 Compression – yield better performance by

compressing output after map and reduce phase.

	 a.	 Set mapred.output.compress to TRUE to enable

compression at job output level

	 b.	 Set mapred.comperss.map.output to TRUE to

enable compression of mapper output.

	 c.	 Compression codecs supported – Java zlib, LZO,

bzip2.

	 14.	 Speculative execution – if a task is running slow,

Hadoop will try to run its multiple instances.

Whichever tasks finish fast, is considered a success

and the rest of all instances are suspended.

Chapter 4 Data Processing Strategies in Data Lakes

135

To enable speculative execution at map and reduce

phase, set below two parameters –

	 a.	 Mapred.map.speculative.execution = true

	 b.	 Mapred.reduce.speculative.execution = true

	 15.	 Limitations –

	 a.	 Restricted scalability – JobTracker runs on a

single data node performing and responsible

for tasks like resource management, task

scheduling, and monitoring.

	 b.	 JobTracker exposes single point of failure. All

mapper operations abort, if job tracker fails.

	 c.	 Suboptimal resource management –Number

of mapper and reducer processes are fixed

in advance for a tasktracker and cannot be

leveraged flexibly. TaskTrackers cannot add

mappers beyond a ceiling, even though unused

reducer slots are available.

	 16.	 Other frameworks that work along the lines of

MapReduce

	 a.	 Microsoft Dryad – Directed graph based

processing with programs as vertices and

channels as edges. Multiple programs are

connected via one-way channels.

	 b.	 Yahoo! S4 – it is a general purpose distributed

streaming computing platform used for

processing unbounded data streams.

	 c.	 Google Pregel

	 d.	 Twitter Storm

Chapter 4 Data Processing Strategies in Data Lakes

136

�Yet Another Resource Negotiator – YARN
MapReduce 2.0 (MR2) or YARN was introduced in Hadoop-0.23 to revamp

MapReduce V1 (MR1) by resolving its complications. In the classical

MapReduce framework, critical factors like cluster utilization, resource

management, and job monitoring were reallocated to find the best level.

Unlike the MR1, a cluster must instead be treated as a resource grid

wherein the resources can be allocated or released as and when required.

In MR2, resource allocation and job operation gets organized by

maintaining a central body for resources management and job schedule.

Figure 4-3 lists the benefits of using YARN.

For a cogent resource management, YARN architecture employs two

components – global resource manager (RM) and application master (AM).

The global resource manager is a central body that is primarily responsible

to control resource utilization in the Hadoop cluster. The application

master takes care of task operations for an application that are being

executed on a data node. It is launched by global resource manager (RM)

to supervise resources for a task and talk to node manager to schedule,

execute, and monitor a task.

Efficient resource management
Task execution within a Container

Detects and handles failures that may impact a task
Default actions if container dies or hardware fails

Leverages HDFS storage for data processing

Job priority as per the SLA defined

Fine grained resource allocation as per the node
capacity and application priority

Strong fault tolerance

Smart job operation

Figure 4-3.  YARN benefits

Chapter 4 Data Processing Strategies in Data Lakes

137

YARN ensures availability of task execution by checkpointing the status

of applicationMaster. If need be, ApplicationMaster can reboot from the

status from its last execution. Zookeeper helps in implementing failover

mechanism from primary ResourceManager to backup RM.

�YARN concepts

The way YARN works is that every MapReduce operation instantiates into a

YARN application. Let’s have a quick refresher of key YARN concepts –

	 1.	 Global ResourceManager – It is responsible for end

to end resource management at the cluster level.

	 a.	 Dumps its current state attributes in zookeeper

for high availability

	 2.	 Two main components –

	 a.	 Scheduler – does the resource allocation for

applications. It receives and collates all requests

from ApplicationMasters and further allocates

the resources as per the priority and capacity.

	 b.	 ApplicationsManager – manages job operations

through ApplicationMasters. It ensures jobs are

alive, optimized, and AM is through a smooth

lifecycle.

	 3.	 NodeManager – Proxy agent that runs on each slave

node and is responsible for launching application

container, scheduling task in coordination with

Scheduler and resource monitoring. The joint act of

nodeManager and ResourceManager classifies into

a stable data processing framework.

Chapter 4 Data Processing Strategies in Data Lakes

138

	 4.	 Application master – Cooperates with NodeManager

on the direction of ApplicationManager to assign

tasks to containers. It can be custom developed

per application to fit the needs and coordinates job

operations as per the defined SLAs.

	 5.	 Container – A container is a JVM that acts as a home to

a task execution for an application. In MapReduce-1,

the JobTracker used to assign slots for mappers and

reducers; and these slots being fixed, didn’t ensure

optional resource utilization. A container replaces

the fixed-slot approach by getting exchanged during

task execution and enabling allocation based on

parameters like memory and compute capacity.

A ContainerLaunchContext indicates an object

containing resources required to launch a container

along with the commands to be executed.

Scheduler

AppManager

Resource Manager

Client

Master Node

NodeManager

Container

App Master

NodeManager

Container

Container

NodeManager

Container

Container

App MasterContainer

Data Node Data Node Data Node

Figure 4-4.  Subcomponent level design of YARN

Chapter 4 Data Processing Strategies in Data Lakes

139

YARN application execution goes through the below

steps –

i.	 Client submits an application to Resource

Manager (RM).

ii.	 ApplicationManager daemon starts and

registers with RM. It estimates the resources

required by the application.

iii.	 RM coordinates with NodeManager (NM) to

launch ApplicationMaster (AM) on one of

the nodes.

iv.	 AM gathers request details from NameNode

and submits resource request to RM for task

execution.

v.	 RM queues the request from AM until the

resources get freed up on worker nodes

vi.	 AM receives containers from RM to execute

application tasks on specific hosts (slave

nodes).

vii.	 AM coordinates with NodeManager to

assign task to the containers. NodeManager

helps with the task scheduling and resource

monitoring.

viii.	 After successful execution, AM confirms the

job status to global resource manager.

	 6.	 Resource model and resource negotiation

highlights:

	 a.	 Multiple containers sized 512M or 1G can be

started on each node.

Chapter 4 Data Processing Strategies in Data Lakes

140

	 b.	 Per application ApplicationMaster requests

for containers depending upon resource

requirements, subject to the capacity limits for

an application.

	 c.	 In its protocol, ApplicationMaster specifies

hostname, resource requirement, container, and

priority.

	 d.	 In MR2, cluster resources are not split into

mapper or reducer slots.

	 e.	 RM’s scheduler keeps an eye on cluster resource

utilization and prevents resources from getting

over allocated by checking the limit metric for

an application, user, or queue.

	 f.	 Resource Monitoring – NodeManagers send out

the resource usage metric to RM Scheduler.

	 7.	 YARN implementation highlights are:

	 a.	 Start a YARN client of YarnClient type

i.	 YarnClient.createYarnClient();

	 b.	 Create application of YarnClientApplication

type

i.	 testYarnClient.createApplication ()

	 c.	 Set application context

i.	 testYarnClientApp.

getApplicationSubmissionContext;

	 d.	 Set resource requirements for an application

context using Resource object

i.	 Resource.newInstance (memory, cores);

Chapter 4 Data Processing Strategies in Data Lakes

141

	 e.	 Launch a container of ContainerLaunchContext

object

i.	 ContainerLaunchContext.newInstance

(localResource, environment, byteBuffer

Tokens, application acls)

ii.	 applicationContext.setAMContainer

([ContainerLaunchContext])

	 f.	 Set application priority of Priority object

i.	 Priority.newInstance (priority)

ii.	 applicationContext.setPriority ([Priority])

	 g.	 Submit application

i.	 testYarnClient.submitApplication

(testAppContext)

	 8.	 YARN web UI provides a more detailed view of task

execution than Hue. It runs on ResourceManager

host which becomes its entry point as well on

UI. Note that none of the YARN execution can be

controlled from UI.

	 9.	 YARN doesn’t keep track of job history. Spark and

MapReduce provide job history server that archives

job details (metadata and metric) and can be

accessed via Hue or its own UI.

�Hive
The fact is widely accepted that Hadoop platform has well addressed the

challenge of data volume; be it storage capacity or data processing. The

manifestation of data has changed drastically since the emergence of

Chapter 4 Data Processing Strategies in Data Lakes

142

non-traditional data sources. Data centric challenges are not just volume

and velocity, but processing and operational processing add to the

complexity of so called “data challenge”.

Most of the data processing layers are written in low level language.

There were growing schools of thought which highlighted the fact that

primary implementers and executors of data processing layer are data

development and analyst professionals who may or may not be handy

with java or other low-level languages. Database professionals feel at

home with a structured data processing language. This need led to

the conceptualization of query languages that can retrofit the Hadoop

processing layer and provide a layer of abstraction over MapReduce.

The project Hive was started by Facebook in 2007. It provides a

solution to non-java practitioners who perform data warehousing over

hadoop. Hive employs a SQL like declarative query language, HiveQL

to communicate with Hadoop cluster. Its close resemblance with SQL

semantics remains heavily responsible for its wide adoption amongst the

data analyst community.

Hive was created for scalability and ease of use for data professionals.

The performance of a Hive query might be much slower than expected as

low latency never fell under the list of objectives for Hive. It is not designed

for online transaction processing. However, with the most recent works

like Tez and Live Long and Process (LLAP), Hive performance can be

optimized for low latency requirements. We shall discuss these topics later

in the chapter.

Chapter 4 Data Processing Strategies in Data Lakes

143

�Hive – Quick Refresher
In this section, we will have a quick refresher of Hive architecture,

abilities, and concepts. Since Hive forms a layer of abstraction on top of

MapReduce, all HiveQL statements are converted into MapReduce jobs

which are then executed on the Hadoop cluster.

The anatomy of a standard query states that it must have data sources

in a structured format and not in flat files. Hive has the ability to give

structure to various data formats, i.e., Schema on Read to unorganized

data sets. This is achieved through Hive metastore that acts as a catalog

containing table definitions.

Data warehousing applications

Timely measures and aggregations

Adhoc data analysis and reporting

Data Mining

Figure 4-5.  Data-centric capabilities of Hive align with key data
warehousing objectives

Chapter 4 Data Processing Strategies in Data Lakes

144

�Hive Components

Below is the list of components involved in a query execution through hive.

	 1.	 Interactive shell – environment from where the

query is initiated.

	 2.	 Hive Driver – receives the query requests and is

liable for query operations like creating a session

handler and passing over query to compiler.

	 3.	 Compiler – Parses the query, looks up to metastore

for object validation, and generates an optimized

execution plan.

	 a.	 Consists of parser, semantic analyzer, logical

plan generator, and query plan generator

i.	 Semantic analyzer does sanity check for

query by accessing metastore for table

definition and column properties.

ii.	 Plan generators responsible for converting

execution plan to MapReduce tasks

	 b.	 The optimization includes performance analysis

of different query blocks and achieve plan

transformations. For example, metastore lookup

can reveal tables’ partitioning strategy and query

predicates can determine if partitions can be pruned

out or not. Similarly, implicit data type conversions

are also taken care of at compilation level.

	 c.	 Execution plans a direct acyclic graph (DAG) of

operational stages involved in query execution.

	 4.	 Execution engine – physical operations to fetch data

and prepare query result set.

Chapter 4 Data Processing Strategies in Data Lakes

145

	 5.	 Hive metastore – It is the nucleus of Hive operations.

It constructs a layer of data abstraction and the

ability to distill down data variability into defined

shapes and structures i.e. schema and table

definitions.

	 a.	 HiveServer or HiveServer2 provides thrift

interface for external applications to connect via

JDBC/ODBC.

The architecture diagram in Figure 4-6 shows the connection between

different components of Hive.

CLI/GUI JDBC/ODBC

Thrift Server

Hive Metastore (relational data store)

Hive driver (Compiler/Optimizer/Executor)

NameNode JobTracker

Figure 4-6.  Hive architecture

Chapter 4 Data Processing Strategies in Data Lakes

146

�Hive Metastore (a.k.a. HCatalog)
Hive metastore is the central schema repository of Hive query system that

stores metadata of Hive data models (tables, partitions, and buckets),

serializers and deserializers, and information about HDFS file location

(Figure 4-7). A relational database store serves as the backend of a Hive

metastore. The backend piece is implemented by an object-relational

mapping solution called Data Nucleus. Hive metastore can be packaged

with relational databases like Derby, MySQL, SQL server, Oracle, and

Postgres. Relational data paradigm catalyzes the reliability and brings the

ability to query metadata.

Metastore is tightly coupled with the Hive service or a high query

processing system. As soon as a table is created in Hive shell, its definition

gets stored in Hive metastore immediately. This way Hive service ensures

the sync between data and metastore. On the other hand, Hive metastore

can be leveraged by other processing frameworks like Pig and Spark and

reuse predefined schema definitions and data models.

Hive metastore exposes a metastore API service for the Hive service

and external clients. Hive service uses metastore service to store table and

partition metadata in the metastore. External clients invoke metastore

service to access metastore for table or partition information during a

query execution.

A Hive metastore can operate in the three modes below –

	 1.	 Embedded metastore – All three services – hive,

metastore API, and database service run inside a

single JVM container. It uses derby as the default

database. Only one Hive session can be opened

at a time.

Chapter 4 Data Processing Strategies in Data Lakes

147

	 2.	 Remote metastore – All three services – hive,

metastore API, and database service run in

separate containers. External clients can connect

to metastore via thrift service. To setup a remote

metastore, metastore URIs must be configured at

Hive service level (set hive.metastore.uris =

thrift://host:port).

	 3.	 Local metastore – Hive and metastore API service

run within a single JVM. Its underlying database

is MySQL which runs in a separate JVM. Multiple

metastore API requests can connect to database

using JDBC or ODBC driver libraries. Please note –

	 a.	 Driver libraries are available in Hive’s classpath.

	 b.	 javax.jdo.option.ConnectionDriverName to

com.mysql.jdbc.Driver

HDFS
coordinates

Row format
of file

Table name,
column name,

data types

Table
definitions

Hive
Meta Store

Storage
format of file

InputFormat
and

OurputFormat

Figure 4-7.  Hive metastore serves more than the table metadata

Chapter 4 Data Processing Strategies in Data Lakes

148

�Hive – Design Considerations
Abiding by its pro-data warehouse principles and mimicking SQL

semantics, Hive finds wide application in ad-hoc reporting, log processing,

text mining, predictive modeling, business intelligence, and analytics. In

an enterprise data lake, Hive occupies a critical spot as data analysts and

data scientists, who eventually emerge as primary consumers of data, are

extremely fond of SQL to speak data. MapReduce stands well from a pre-

determined application standpoint but ad-hoc data centric exercises in

a java can be nightmarish. Before we jump on to the bulleted factors that

impact Hive design and development, let us understand the relevance of

exercises like partitioning, bucketing, and denormalization in hive.

	 1.	 Partitioning – Partition works on divide-and-

rule mechanism by reducing the amount of I/O

by a significant margin during data processing.

In a traditional data warehousing environment,

processing performance becomes an equation of

data modeling and tuning practices like indexing,

statistics, etc. Hadoop has no place for indexes and

that helps in optimizing data ingestion pipelines.

However, it also implies that each and every query

has to scan and read the entire data set, even though

the requirement was really a tiny data set. With

growing data sets, the table scans may negatively

impact the query performance. In such scenarios,

partitioning could play a sheet anchor role by

reducing the surface area of processing and allowing

space for other data-centric operations. In a Hadoop

cluster, partition or a sub-partition will be present

as directories within the table directory. If the query

contains predicates using partitioning key column,

Chapter 4 Data Processing Strategies in Data Lakes

149

chances of partition pruning grow even brighter.

Keep this in mind while electing the partitioning key

to avoid small file handling in hadoop.

	 2.	 Bucketing – Like partitioning, bucketing is another

way of handling a large data set by slicing it down

in evenly sized subsets. If you have heard and

worked with hash partitioning, bucketing is a very

similar concept. Bucketing not only helps in even

distribution, but also while joining more than

one table. If tables participate in a join based on

bucketing key, the bucketed connect in a much

simpler and optimal fashion. If the size of buckets

being joined is small, chances of a map-side join in

the mapper phase increases. Reducer joins, being

resource intensive, should generally be avoided.

	 3.	 Once again, keep an eye on the resultant files

and ensure that bucketed files do not become too

small as to allow slippage of cluster resources. An

optimum bucket size should be a multiple of HDFS

block size or as an exponential of two.

	 4.	 Denormalization – This is a technique to produce

flattened data structures that hold maximum

information required for data processing. In

hadoop, query joins are the most resource intensive

operations, within which reducer join is the most

notorious one. If a data set can be modeled, de-

normalized, and refreshed periodically in curated

data layer, it can potentially avoid expensive joins.

While partitioning and bucketing help in slicing

down large data sets to support parallel operations,

Chapter 4 Data Processing Strategies in Data Lakes

150

denormalization helps in avoiding expensive query

joins in data lake. Denormalization can be as simple

as projecting columns from multiple tables jointly,

or have aggregation and derived column at the

table level.

Below are the key highlights of practical Hive from the design and

development space.

	 1.	 Hive interface options are:

	 a.	 Command line

1.	 Hive shell

2.	 Beeline shell

	 b.	 Web UI

1.	 Ambar

2.	 Hue

	 2.	 Hive data models – Hive data model consists of

databases, tables, partitions, and buckets

Database

Table Table

Partition Partition

Bucket

Partition

Bucket Bucket

Figure 4-8.  Hive data model

Chapter 4 Data Processing Strategies in Data Lakes

151

	 3.	 File handling best practices – supports parquet, text,

Avro, RCfile, and sequenceFile file formats.

	 a.	 For landing, Avro is preferred

1.	 JSON can be used but requires dedicated

SerDe processing

	 b.	 For staging, use parquet for columnar data

processing

1.	 Use sequenceFile or RCfile for row oriented

data processing

	 c.	 For publishing, parquet is used with Hive or

impala for better performance

	 4.	 Use native data types for columns that can be

mapped to a native type in java. Large object data

types (BLOB and CLOB) are not supported.

	 a.	 Complex data types like maps, arrays, and

structs are supported

	 5.	 Hive supports views, but no support for subqueries.

	 6.	 Hive supports aggregate as well as window

analytical functions.

	 7.	 Hive support for DML

	 a.	 Supports insert, update, and delete

	 b.	 Below parameters need to be set in Hive

configuration file and restart the server

1.	 set hive.support.concurrency=true;

2.	 set hive.enforce.bucketing=true;

3.	 set hive.exec.dynamic.partition.

mode=nonstrict;

Chapter 4 Data Processing Strategies in Data Lakes

152

4.	 set hive.txn.manager=org.apache.

hadoop.hive.ql.lockmgr.DbTxnManager;

5.	 set hive.compactor.initiator.on=true;

6.	 set hive.compactor.worker.threads=2;

	 c.	 Only transactional tables are updateable. You

must create table with an additional storage

clause - TBLPROPERTIES('transactional'=

'true');

	 8.	 SORT BY, ORDER BY, DISTRIBUTED BY,

CLUSTER BY

	 a.	 If more than one reducers are available,

SORT will sort data in each reducer. This will

not guarantee if the final result set will be sorted

or not

	 b.	 ORDER by employs a single reducer to ensure

the final result set is ordered.

	 c.	 DISTRIBUTE BY distributes the rows amongst

reducers based on a key column. However,

this is nowhere related to clustering or sorting

actions. It is useful while distributing data

amongst the reducers. All rows with the similar

pattern will be assigned to a single reducer.

1.	 DISTRIBUTED along with SORT will sort

rows within each reducer (cluster by).

2.	 DISTRIBUTED along with ORDER will sort

the final output.

Chapter 4 Data Processing Strategies in Data Lakes

153

	 d.	 DISTRIBUTED along with SORT BY constitutes a

CLUSTER BY operation on a single key column.

All rows with the same cluster key will be assigned

to a single reducer. In case the distribution and

sort keys are different, you need either explicit

grouping or DISTRIBUTED + ORDER clause.

	 9.	 In order to batch multiple rows together for

processing, set the configuration parameter

hive.vectorized.execution.enabled to true.

	 10.	 Hive partitioning

	 a.	 Partitioning enables splitting of large volumes

of data into small chunks depending upon

partitioning key column.

1.	 Support for horizontal partitioning for both

hive-managed and external tables

2.	 Partitions stored as sub-directories within

table folder.

	 b.	 Partitioning key should be a column with a

controllable cardinality. If the cardinality of the

column is very high (like timestamp), it will

create too many directories within the system

and may lead to data fragmentation issues.

	 c.	 Partitioning helps in data organization and

refining the data traversal at the input path level.

Queries that use partitioning key in predicates

are helped by partition pruning that greatly

optimizes the query performance.

1.	 Queries that do not make use of partitioning

key go for a full scan.

Chapter 4 Data Processing Strategies in Data Lakes

154

	 d.	 Partition key column should not be specified in

the table column specification. It gets displayed

though, while describing the objects.

CREATE TABLE dataLake_sor

 (

 sorId INT

 ,sorName STRING

)

PARTITIONED BY (userId STRING)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY ’\t’

	 e.	 Static partitioning indicates that partitioning key

column value was pre-known and used while

loading.

	 f.	 Dynamic partitioning helps when moving data

from non-partitioned table to a partitioned one.

Instead of running load for each distinct value

of partitioning key column, column name can

be directly used.

	 g.	 Dynamic Partition Insert – if the partition key

columns are already available in the source

table, then explicit partition value can be

skipped during inserts.

1.	 For every distinct value of the partition key, a

partition will be added automatically within

the RDS table.

Chapter 4 Data Processing Strategies in Data Lakes

155

	 h.	 Below parameters control the Dynamic

Partition Insert feature –

1.	 hive.exec.max.dynamic.partitions.

pernode (default 100) - Maximum number

of dynamic partitions that can be created by

any given Mapper or Reducer

2.	 hive.exec.max.dynamic.partitions

(default 1000) - Total number of dynamic

partitions that can be created by one HiveQL

statement

3.	 hive.exec.max.created.files (default

100000) - Maximum total files created by

Mappers and Reducers

	 11.	 Hive bucketing or clustering

	 a.	 It is an optimization technique to distribute

table data evenly amongst multiple buckets and

control wide data scans. Bucketing operation is

carried out by series of MapReduce jobs.

	 b.	 Buckets must be created based on a column that

has relatively high cardinality and can assure

evenly data distribution.

	 c.	 Buckets are created and stored as subdirectories

within the table folder. Data is assigned to a

bucket based on the hash value of the bucket

key column.

	 d.	 Bucketing helps in logical data organization and

optimizes the queries that use clustering key

column in predicates or joins.

Chapter 4 Data Processing Strategies in Data Lakes

156

	 e.	 Set below two parameters before inserting data

into bucketed table

1.	 SET mapred.reduce.tasks = <no. of

buckets>

2.	 Set hive.enforce.bucketing=true

	 f.	 SET hive.optimize.bucketmapjoin=true will

direct Hive to leverage a bucket level join during

map stage join

	 12.	 Hive partition and bucketing used together

	 a.	 Buckets can be created within partitions to

optimize data storage and hence, the data scans

within partitions.

	 b.	 For example, the below table will create

partitions by YEAR and within each partition,

there will be 25 buckets of areas containing their

population details.

CREATE TABLE city_population_store

 (

 area STRING,

 record_date STRING,

 last_count INT,

 current_count INTO

)

PARTITIONED BY (year STRING)

CLUSTERED BY (area) INTO 200 BUCKETS;

	 c.	 Once again, partitioning must be done on a

column with low cardinality.

Chapter 4 Data Processing Strategies in Data Lakes

157

	 d.	 If the clustering key column has low cardinality

(less than the number of buckets specified),

there are chances that buckets will remain

unused (i.e., no data).

	 13.	 TABLESAMPLE can be used to pick up portion of

data as a sample for query processing.

	 a.	 Block sampling - Sample can be specified as

a percentage of total rows or a finite count of

rows.

For example, in the below query the input size

of 5% or more of abcTelecom_logs will be used

in the query processing.

SELECT *

FROM abcTelecom_logs

TABLESAMPLE (5 percent)

Sample can also be specified as 1000 rows or

100M.

	 b.	 Bucketized sampling – Buckets can be created

on a designated column or randomly to prepare

sample data for query. Keep note that this query

can run even for a non-clustered table, it is not

very efficient though.

SELECT *

FROM abcTelecom_logs

TABLESAMPLE (BUCKET 5 OUT OF 50 ON city)

If abcTelecom_logs would have been clustered

on CITY column, bucketized sampling would

have been more efficient.

Chapter 4 Data Processing Strategies in Data Lakes

158

�Hive LLAP
In an enterprise data lake ecosystem, data visualization tools like Tableau,

Qlikview, or SiSense connect to Hadoop data lake and users can slice and

dice the data set to gain insights in real-time from various gradients. Query

performance heavily impacts the real-time experience and decision-

making ability. Hive, as we know, forms an abstraction layer on top of

MapReduce processing layer. It cannot afford to provide the degree of

performance that a relational database SQL can promise. One of the latest

trends to beat performance is to marinate caching technologies with disk

operations. This is what, in a nutshell, Hive LLAP is all about. LLAP stands

for Live Long and Process.

LLAP joined Hive 2.0 to warrant for query performance in Hive

with Tez without compromising the native features of Hive. Keep in

mind, it doesn’t replace the existing execution model of Hive; instead

complements it to fit the bills of faster data processing. Structurally, it

consists of a daemon and a DAG based framework, orchestrated by Tez

execution engine.

LLAP daemons run on YARN in a standard Hadoop cluster. It consists

of two components, namely, query executor and in-memory cache. Query

executors control some of the essential stages of query execution like

query processing, query fragment execution, pre-fetching, access control,

metadata, and result caching. Fragments that are lined up executed by

their priority are capped as queue fragments.

Tez and Hive client coordinate LLAP engagement by determining

which query needs to be pushed to LLAP daemon for execution.

Hive facilitates the processing and query fragments like HDFS location

and metadata. YARN, clearly, remains the caretaker of resources for LLAP

daemons. Query fragments are nothing but the bits required for query

processing like operators, metadata, expressions, primary data types, and

input and output channels. Operators in reference are joins, SQL clauses,

Chapter 4 Data Processing Strategies in Data Lakes

159

and scan methods. Expressions could be the functions of all nature (SQL,

scalar, numeric).

So, what queries can run in LLAP? The decision of running queries

in LLAP can be configured in Hive client as all, none, or hybrid. In auto

mode, preliminary criteria are data source (HDFS), file format (ORC),

and data size. Small queries can be processed directly by the daemon.

However, for large queries, YARN takes over as usual and drives through

normal query processing stages.

ODBC/JDBC HiveServer2

Tez AM
(orchestrates query)

LLAP daemons

Coordinator

Executor

In-Mem Cache

Executor

In-Mem Cache

Executor

In-Mem Cache

Coordinator

Figure 4-9.  Hive LLAP architecture

Design considerations are:

	 1.	 Hive LLAP is available only via Tez execution

engine.

	 2.	 Daemons are extensible through APIs to all such

processing frameworks (Spark and Pig) who prefer

relational views of data over file-based processing.

	 3.	 Currently, only ORC data qualifies to be cached.

Rest all file formats can still be processed in LLAP

daemons but cannot be cached.

Chapter 4 Data Processing Strategies in Data Lakes

160

	 4.	 Cache eviction policy – configurable eviction policy

for different type of workloads.

	 5.	 By default, low latency queries are favored over

heavy and complex queries. Queries keep waiting in

a queue unless priority is specified.

	 6.	 LLAP daemon failure - Since the LLAP daemons are

not primary executors, Tez AM can process query

fragments on other data nodes of the cluster.

	 7.	 LLAP daemons can contribute to a query getting

processed at the cluster level by executing small

portions of a bigger query. Result can then be

passed on to main Hive query or a further to a task.

	 8.	 Security – fine grained access security up to column

level.

�Apache Pig
Like Hive, pig provides a layer of abstraction for data processing on

Hadoop. It provides an alternative to write MapReduce programs in

low level language by facilitating a scripting layer that gets translated

into instructions which follow execution on HDFS cluster. Pig simplifies

the MapReduce layer by reducing thousands of lines of code to mere

countable instructions.

Pig uses high level language Pig Latin to design data transformation

and flow expression. It is the language interpreter which converts Pig

Latin instructions into MapReduce or spark jobs and submits them for

execution. The Pig engine consists of a parser, optimizer, and a distributed

query execution. A program in Pig sustains an analogous data-centric

approach as each and every instruction is connected to data streams.

Chapter 4 Data Processing Strategies in Data Lakes

161

Pig eliminates the challenge of breaking down computation into map

and reduce phase. If a problem can be expressed as chain of tasks or Direct

Acyclic Graph (DAG) using standard operators and clauses like filters,

joins and aggregation, Pig stands out due to inherent advantages of swift

development cycle.

Though procedural, Pig uses SQL-like declarative constructs to

develop scripts for data processing. It may not be as optimal as spark

or Hive, but given the factors like flattened learning curve and fast

development, it is preferred for its low-cost development, flexed out data

model, and quick results.

�Pig Execution Architecture
The following diagram represents the execution architecture of Pig

processing (Figure 4-11).

Data curation Pig can enrich upstream curated layers
by transforming input data

Pig can help in data discovery by
discovering contexts, data mining,
classification and data exploration

Pig can be used for data integration,
data cleansing, and transformation

Data discovery

Data processing

Figure 4-10.  Capabilities of Pig

Chapter 4 Data Processing Strategies in Data Lakes

162

From the above architecture diagram,

	 1.	 Logical plan – It is an interim representation of task

chain as sequenced in the script. Pig uses ANTLR

parser (Another Tool for Language Recognition)

to conduct semantic and sanity check of script,

following which it generates an Abstract Syntax

Tree (AST). Once AST is converted into logical plan,

certain optimization opportunities are implemented

like column pruning and process pushdown.

	 2.	 Physical plan – Logical plan is converted into

multiple physical plans indicating bifurcation of

physical computations for each logical operator.

For example, JOIN is broken down into LOCAL

REARRANGE and GLOBAL REARRANGE along with

PACKAGE.

SQL

Logical Plan

Parse Logical Plan to
physical
translation

Physical to MR
translation
Launch
MapReduce

Semantic check
Logical
optimization

Physical Plan MR Plan

MR
Hadoop
cluster

Pig Latin

engine

Figure 4-11.  Pig execution flow

Chapter 4 Data Processing Strategies in Data Lakes

163

	 3.	 MR plan – Physical plan gets converted into

MapReduce jobs with phase identification and data

inputs and outputs. Physical computation steps

are branched out in map, combiner, and reduce

phase. In this stage, MR jobs are also inspected from

optimization perspective. For example, mappers can

be consolidated to reduce data transfer or modifying

the number of reducers. Once frozen, MR jobs are

submitted to Hadoop cluster for execution.

Pig provides EXPLAIN operator to generate the detailed execution plan

of a script.

Key concepts and design considerations

	 1.	 Pig data model – consists of atoms, tuples, bags,

and maps.

	 a.	 Atom is a scalar value of a primitive data

type like INT, FLOAT, LONG, DOUBLE, or

CHARARRAY.

	 b.	 Tuple is analogous to a row from relational data

world. It’s a sequence of attributes enclosed

within parenthesis.

	 c.	 Bag represents a group of tuples and is

analogous to a table from relational data world.

	 d.	 Map represents a flexi-schema data structure of

key-value pairs.

	 2.	 Input data stream model – no schema required

while importing data into the script. As long as

Pig execution engine can identify tuples in the

data stream, there is no need to flatten down the

HDFS files.

Chapter 4 Data Processing Strategies in Data Lakes

164

	 3.	 Although Pig doesn’t require schema at runtime,

type conversion can be critical during data buffering

and processing. Pig may predict the data type of

an atom or tuple attribute based on the nature of

processing logic.

	 4.	 Extensibility – Pig supports user defined functions

which are designed for specialized processing of

data.

	 5.	 Pig can be installed on an edge node that has

connectivity to big data lake. Since Pig core is built

on java, it becomes the primary pre-requisite to

run Pig.

	 a.	 If Pig uses UDFs, the native compiler must be

available on the host. For example, python or

javascript based UDF must have the python and

java script component installed.

	 b.	 For testing integration and build automation,

respective components like Ant, Chef, or Junit

must be installed.

	 6.	 Pig run modes

	 a.	 Local – Connects to local file system where

developers can play around with scripts, debug,

and test features. No parallelism realized

in local mode.

$ pig -x local

	 b.	 MapReduce – Connects to Hadoop cluster of

data lake. Pig scripts can be deployed and run

on wide data. Note that only query execution

Chapter 4 Data Processing Strategies in Data Lakes

165

can be parallelized on cluster nodes. Query

sanity and semantic operations are still carried

out locally.

$ pig -x MapReduce

	 7.	 STORE vs DUMP – Pig follows lazy execution

approach during script execution. Unless output

action is not encountered in the script, the engine

pipelines all statements in memory. Output actions

can be either of a diagnostic operator – STORE,

DUMP, ILLUSTRATE, EXPLAIN, or DESCRIBE,

which indicate the creation of physical and

logical execution plans to kick-start Pig Latin code

execution. Bag scanning instructions may cause

spill over to the disk.

	 a.	 Use STORE, if the script result needs to be

written on HDFS.

	 b.	 Use DUMP, if the script output just needs to be

displayed on command line.

	 c.	 For debugging purposes and quick testing,

developers can also use ILLUSTRATE which

applies a sampling algorithm to create small

test data, apply transformation, and achieve

performance.

	 8.	 PARALLEL – Maneuver reduce phase of clauses such

as ORDER, DISTINCT, JOIN, GROUP, COGROUP,

and CROSS by specifying reducer count in

PARALLEL clause. Reducer count can also be set at

the script level by including the command below –

SET default_parallel [reducer_count]

Chapter 4 Data Processing Strategies in Data Lakes

166

Note that statement level parallel setting will

override script level configuration. For map phase,

parallelism becomes the function of input data

splits. If reducers cannot be explicitly added to

the script, you can modify the two two parameters

below to tune reduce operation.

	 a.	 pig.exec.reducers.bytes.per.reducer –

Number of input bytes per reducer. It is set to 1G

by default. For large data sets and depending on

operation, this can be increased beyond 1G.

	 b.	 pig.exec.reducers.max – Maximum number of

reducers. By default, it is 999.

	 9.	 SAMPLE – The SAMPLE operator, allows script to

play with subset of data, can be very useful in data

profiling works. Scripts in Pig Latin can contain

logic to perform data quality checks and build data

profile.

	 10.	 Pig can be used to load data streams into hadoop.

They are benefitted by the ability to scale by node

count on Hadoop cluster.

�Apache Spark
Spark is a scheduling, monitoring, and distributing engine that provides a

next-gen processing framework just like MapReduce. It has slowly started

replacing classical MapReduce models and has become a defacto in the

big data world. Spark came out of the University of California, Berkeley’s

AMPlab project in Jan 2011. Reynold Xin, the Development Lead at

Berkeley AmpLab Shark, quotes about Spark as – “Spark … is what you

might call a Swiss Army knife of Big Data analytics tools.”

Chapter 4 Data Processing Strategies in Data Lakes

167

�Why Spark?
The MapReduce framework has been a trustworthy implementer of

distributing computing for large volume data. It helped in solving complex

problems through a series of mapper and reducer stages, distributed over the

cluster, and executed in coordination with the distributed storage platform.

What it mainly dealt in was the large on-disk data sets, which undoubtedly was

great for batch processing, but not so well for low-latency models. One of the

key traits of MapReduce processing is the ability to store interim as well as final

datasets on cluster. MapReduce performs a lot of reading and writing (I/Os) to

the disk throughout the transformation. This could be an expensive operation

as it incurs both the replication of a dataset in the disk I/O and the network

I/O as it starts a new JVM for each task which takes time for loading JARs and

parsing XML configurations. Developers building MapReduce framework

for a problem, need to code manually, which could turn into a cumbersome

exercise, given the complexity of the job. Apache Spark overcomes these

issues by introducing a completely different processing model through a

combination of batch, streaming, and interactive computation.

Spark, an open source framework was initially started by Matei Zaharia

at UC Berkeley’s AMPLab in 2009, and open sourced in 2010. In 2013 the

project was donated to the Apache Software Foundation. It can be used

for processing humongous volumes of data in a data lake environment,

hosted on premise or cloud. It offers developers an application framework

that works around a centralized data structure. Keep in mind that spark is

designed to enhance the computational speed, also covers wide range of

workloads for example batch, interactive, iterative, and streaming.

Spark’s approach towards processing has been largely influenced

by Microsoft’s Dryad 2paper on parallel and distributed execution. It

2�Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks
[https://www.microsoft.com/en-us/research/wp-content/uploads/2007/03/
eurosys07.pdf]

Chapter 4 Data Processing Strategies in Data Lakes

https://www.microsoft.com/en-us/research/wp-content/uploads/2007/03/eurosys07.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2007/03/eurosys07.pdf

168

introduced an in-memory caching abstraction that makes it ideal for

workloads where multiple operations try to access the same input data. A

user can cache data sets in memory which overcomes disk I/O overheads.

Spark maintains an executor JVM on each node so launching a task

regardless of MapReduce operations comes down to making a remote

procedure call (RPC) to it and passing a runnable to a thread pool.

Before Spark 2.0 came into practice, the main programming interface

of Spark was the Resilient Distributed Datasets (RDD). After Spark 2.0

it got replaced by Dataset which is strongly written like RDD, but with

higher optimizations under the engine. Spark provides interactive shells

in Python or Scala, it helps a simple way to learn various functionalities of

Spark API.

Spark core and its member libraries form the building blocks of Spark

stack. The libraries are optimized to fit into all stages of data management.

For data integration, Spark streaming fits the bill. For data science

requirements, Mlib and SparkR are available. For graphical processing,

GraphSX is part of the stack. For data engineering, SparkSQL can be used

by data analysts. Spark core acts as the brain of the stack. Figure 4-12

shows what constitutes the core engine of Spark.

Chapter 4 Data Processing Strategies in Data Lakes

169

�Resilient Distributed Datasets (RDD)
RDDs are immutable collections distributed across the cluster that

are created via data transformation and can be cached across parallel

operations. The resilient distributed datasets are fault-tolerant as they

are oriented in a graphical structure which makes it easier to re-compute

partitions that got damaged during node failures. Let us check key

characteristics of RDD –

	 1.	 Lazy evaluation – Data in a RDD is not populated

until an action is triggered

	 2.	 Fault-tolerance – RDD preserves lineage

information which helps in rebuilding lost

partitions.

BlinkDB

Approximate SQL

Spark SQL
Spark

Streaming

Spark Core Engine

MLib

Machine
Learning

GraphSX

Graph
computation

SparkR

R on Spark

Figure 4-12.  Spark Stack

Chapter 4 Data Processing Strategies in Data Lakes

170

	 3.	 In-memory and cacheable – RDD resides as a

memory structure restricted by the retention

time and capacity of the memory. These datasets

remain cached until flushed to the disk to achieve

persistency.

	 4.	 Immutable or read-only – An RDD can only

be transformed to a new RDD, which ensures

consistency of the datasets.

	 5.	 Parallel, partitioned, and typed – RDDs can be

processed in parallel as they are logically partitioned

and distributed over the cluster. Records are typed

as well.

	 6.	 Quite importantly, RDDs can be owned by one

and only one SparkContext. They cannot be shared

between more than one SparkContext.

	 7.	 An RDD can be made persistent by using persist

() or cache () methods at different storage levels

like disk or memory. A node can persist the partition

of an in-memory dataset that it computes for future

operations. This gives tremendous performance

boost for the future actions on the dataset.

An RDD can be created in two ways –

	 1.	 Parallelize a collection - Parallelized collections are

created by calling SparkContext’s parallelize method

on an existing collection in your driver program.

Here in the parallelize method second argument

denotes the number of RDD partitions in memory.

val data = Array(1, 2, 3, 4, 5)

val distData = sc.parallelize(data, 4)

Chapter 4 Data Processing Strategies in Data Lakes

171

	 2.	 Spark can create distributed datasets from any

storage source supported by Hadoop, including your

local file system, HDFS, Cassandra, HBase, Amazon

S3, etc. It supports files as per Hadoop inputformat

like text files, SequenceFiles. For example, the below

code snippet creates an RDD using SparkContext’s

textFile method.

val distFile = sc.textFile(“data.txt”)

distFile: org.apache.spark.rdd.RDD[String] = data.txt

MapPartitionsRDD[10] at textFile at <console>:26

An RDD can either go through an action or a transformation.

Transformation creates a brand-new dataset from an existing RDD, while

an action on a dataset runs a computation logic and returns a value.

A map function on an RDD is a transformation as it passes a dataset

element to return a new RDD, while reduce becomes an action that

performs aggregation of RDD elements. Similarly, operations like filter,

sample, union, join, cache, groupByKey, or reduceByKey transform an

RDD into a new RDD. A reducer, collect, count, or save are the actions

which will return a result to the driver. An RDD transformation is always a

lazy evaluation which gets triggered on an action.

�RDD Runtime Components
A Spark application can be run in a distributed mode. The resource

management can be done either by spark cluster manager or

YARN. However, it is always better to integrate it with YARN which has

better knowledge of data locality on the Hadoop cluster. Apache Mesos can

also perform push-based resource management but Spark can accept or

reject the resources offered by mesos.

Chapter 4 Data Processing Strategies in Data Lakes

http://wiki.apache.org/hadoop/AmazonS3
http://wiki.apache.org/hadoop/AmazonS3
http://hadoop.apache.org/common/docs/current/api/org/apache/hadoop/mapred/SequenceFileInputFormat.html

172

At runtime, Spark engages drives and workers to complete a task.

While drivers define and invoke actions on RDDs, workers work toward

storing RDD partitions and perform transformations. Figure 4-13 shows

the engagement of driver and executors when a spark job is submitted.

Let us go through the chain of processes during this event.

Driver (SparkContext)

Cluster Manager

Worker (Executor) Worker (Executor) Worker (Executor)

Figure 4-13.  Spark driver to executor communication

Once a spark application is submitted to the cluster –

	 1.	 A spark driver is initiated and takes end to end

responsibility of application execution. It is a

JVM process which acts as a master node to host

SparkContext for an application. It is responsible

for breaking down an application into tasks and

schedule them to run on executors, when available.

If the driver dies, the process dies for some reason,

executors also shut down.

Chapter 4 Data Processing Strategies in Data Lakes

173

	 a.	 SparkContext is the Spark application master

which is responsible for setting up internal

services and establish a connection to Spark

execution environment.

	 b.	 It is used to create RDDs, accumulators,

broadcast variables, access spark services, and

run tasks.

	 c.	 RDDs reside within a logical boundary of

SparkContext and is differentiable by its unique

ID in a SparkContext.

	 2.	 Spark driver invokes application’s main () method.

	 3.	 Driver coordinates with cluster manager for

resources or executors to run tasks on worker nodes.

	 4.	 Cluster manager launches executors, identified by

an ID and the host. Executors are worker slaves that

run in a JVM process on spark compute nodes and

perform serial execution of the tasks assigned to

them by the driver.

	 a.	 Executors register themselves with the driver to

establish communication and receive tasks for

execution.

	 b.	 Executors emit a heartbeat along with task

metrics to the driver.

	 5.	 Spark driver executes the application and assigns

tasks to executors.

	 6.	 Executors work on the assigned tasks and save

results

Chapter 4 Data Processing Strategies in Data Lakes

174

	 7.	 Executors are terminated after main () method

finishes or Spark driver runs SparkContext.stop ().

Thereafter, the resources are released back to the

cluster manager.

�RDD Composition
An RDD interface consists of –

	 1.	 Set of Partitions – Maintains the number of splits

created for given RDD over the datasets.

	 2.	 List of dependencies – Maintains the dependency of

the given RDD with the parent RDDs.

	 a.	 Dependencies could be either narrow or wide.

A dependency where each partition in the

parent RDD is used by a maximum of one child

RDD is termed as narrow dependency. If there

are multiple child RDDs dependent on a single

parent partition, the dependency is wide.

	 b.	 Wide dependency can shuffle the data across

nodes while narrow dependency follows

pipelined execution.

	 3.	 GetPartitions – Compute the number of partitions

on given RDD.

	 4.	 Data Locality – To avoid high shuffling of data it

creates resultant datasets on the preferred locations.

	 5.	 Optional Partition information for creating key value

paired RDD for accessing specific data at ease.

Chapter 4 Data Processing Strategies in Data Lakes

175

�Datasets and DataFrames
A new interface was added in Spark 1.6 that provides the benefits of RDDs

(strong typing and ability to use powerful lambda functions) and Spark

SQL’s optimized execution engine. Dataset can be constructed by JVM

objects and then manipulated using Spark actions (map, flatMap, filter,

etc). Currently Java and Scala support dataset whereas Python doesn’t

support it yet, but due to its dynamic nature it already provides many

benefits of the Dataset API.

A DataFrame is a dataset structured into named columns. It is an

enhanced feature to give a feel of tables in a relational database over

structured data, files, tables in Hive, external databases, or existing RDDs,

but with a richer optimization under the hood. DataFrame is available in

Scala, Java, Python, and R with different types of representations.

Let us run through a small demo to create and perform basic functions

with a DataFrame in Spark –

	 1.	 Create a Spark Session – to get all functionalities

easily.

import org.apache.spark.sql.SparkSession

val spark = SparkSession

 .builder()

 .appName("Spark SQL basic example")

.config("spark.some.config.option",

"some-value")

 .getOrCreate()

// For implicit conversions like converting

RDDs to DataFrames

import spark.implicits._

Chapter 4 Data Processing Strategies in Data Lakes

176

	 2.	 In a spark session, create a DF from a file, existing

RDD, Hive tables, etc.

val df = spark.read.json("examples/src/main/

resources/people.json")

// Displays the content of the DataFrame to

stdout

df.show()

// +----+-------+

// | age| name|

// +----+-------+

// |null| James|

	 3.	 DataFrame Operations

	 i.	 Print Schema of the DataFrame

// Print the schema in a tree format

df.printSchema()

// root

// |-- age: long (nullable = true)

// |-- name: string (nullable = true)

	 ii.	 Select specific column

// Select only the "name" column

df.select("name").show()

// +-------+

// | name|

// +-------+

// | James|

// | Ben|

Chapter 4 Data Processing Strategies in Data Lakes

177

	 iii.	 Select all columns, increment age column by 1.

// Select everybody, but increment the age

by 1

df.select($"name", $"age" + 1).show()

// +-------+---------+

// | name|(age + 1)|

// +-------+---------+

// | James| 22|

// | Ben| 31|

	 iv.	 Filter the dataframe with age >25.

// Select people older than 21

df.filter($"age" > 21).show()

// +---+----+--+

// |age| name|

// +---+----+--+

// | 31| Ben|

// +---+----+--+

	 v.	 Count people by age.

// Count people by age

df.groupBy("age").count().show()

// +----+-----+

// | age|count|

// +----+-----+

// | 22| 1|

// | 31| 1|

// +----+-----+

Chapter 4 Data Processing Strategies in Data Lakes

178

	 4.	 Loading Hive tables

val table1 = spark.sql("[db_name].[table_name]")

table1: org.apache.spark.sql.DataFrame = [col1:

datatype, col2: datatype... 71 more fields]

	 5.	 Running SQL queries

// Register the DataFrame as a SQL temporary view

df.createOrReplaceTempView("people")

val sqlDF = spark.sql("SELECT * FROM people")

sqlDF.show()

// +----+-------+

// | age| name|

// +----+-------+

// | 21| James|

// | 31| Ben|

// +----+-------+

�Bucketing, Sorting, and Partitioning

In a file based data source, it is also possible to bucket and sort or partition

the output.

peopleDF.write.bucketBy(42, "name").sortBy("age").

saveAsTable("people_bucketed")

usersDF.write.partitionBy("favorite_color").format("parquet").

save("namesPartByColor.parquet")

�Deployment Modes of Spark Application
A Spark application has quite a few options for deployment. It can

be either submitted in local mode, standalone mode, or cluster mode.

The mode must be specified in the master parameter of a SparkContext.

Chapter 4 Data Processing Strategies in Data Lakes

179

	 1.	 Local Mode – In local mode, all spark job related

tasks run in the same JVM.

	 a.	 local uses 1 thread only.

	 b.	 local[n] uses n threads.

	 c.	 local[*] uses as many threads as the number of

processors available to the Java virtual machine.

For example,

Run application locally on 8 cores

./bin/spark-submit --class org.apache.

spark.examples.SparkPi -–master local[8]

/path/to/examples.jar

	 2.	 Standalone Mode – In standalone cluster mode,

spark allocates resources based on cores. By default,

a spark application will try to consume all the

cores in a cluster. The standalone cluster mode is

subject to a constraint that only one executor can

be allocated on each worker per application. In this

mode, users can define containers for the worker

and Spark master to run in your machine.

Run on a Spark standalone cluster in client

deploy mode

./bin/spark-submit --class org.apache.

spark.examples.SparkPi --master

spark://207.184.161.138:7077 --executor-memory

20G --total-executor-cores 100 /path/to/

examples.jar

Chapter 4 Data Processing Strategies in Data Lakes

180

Run on a Spark standalone cluster in cluster

deploy mode with supervision

./bin/spark-submit --class org.apache.spark.

examples.SparkPi --master spark:

//207.184.161.138:7077 --deploy-mode cluster

--supervise --executor-memory 20G --total-

executor-cores 100 /path/to/examples.jar

	 3.	 Cluster Mode – A Spark application on YARN can

be launched either in cluster mode or client mode.

In cluster mode, the Spark driver becomes the part

of application master, which is entirely managed

by YARN. In client mode, the Spark driver runs as a

client process which coordinates with application

master to manage resources for the Spark application.

Run on a YARN cluster

./bin/spark-submit --class org.apache.spark.

examples.SparkPi --master yarn --deploy-

mode cluster # can be client for client

mode --executor-memory 20G --num-executors 50

/path/to/examples.jar

A Spark application can also be deployed using mesos, but due to

its ability to offer Spark driver to choose resources, it has been restricted

to a push-based resource allocation mechanism. For mesos, the master

parameter will be mesos: //host:port.

�Design Considerations
Below are the key design considerations for deploying spark applications

on a Hadoop cluster.

Chapter 4 Data Processing Strategies in Data Lakes

181

	 1.	 Oversubscribing cores is a useful way in Spark to

avoid time in context switching in assigning tasks.

There are internal threads in JVM that will run

shuffle, GC operations which uses the same cores

assigned to the application.

	 2.	 If the Resource Manager(RM) crashes application

will not get affected until any running container is

crashed or in case of dynamic allocation it tries to

negotiate resources to RM.

	 3.	 RM has as scheduler which has the information

about each application running on cluster, it knows

which node is assigned as Application Master (AM)

for the respective application, if any AM is crashed

RM will assign to other Node Manager (NM) by

round robin scheduling.

	 4.	 Data locality comes into the picture for big clusters,

if the application is started on fewer executors.

	 5.	 Running in client mode on cluster environment has

a drawback. It will terminate the application if the

remote client gets disconnected from the network. It

becomes a single point of failure.

	 6.	 Running in cluster mode minimizes network latency

between the drivers and the executors, the chance

of network disconnection between “driver” and

“Spark infrastructure” reduces. Since they reside in

the same infrastructure. It also, reduces the chance

of job failure.

Chapter 4 Data Processing Strategies in Data Lakes

182

	 7.	 If the executor gets crashed or lost then Spark’s

DAGScheduler and its lower level cluster manager

implementation (Standalone, YARN, or Mesos) will

notice a task failed and will take care of rescheduling

the said task as part of the overall stages executed.

�Caching and Persistence of an RDD in Spark
Re-computation of RDD after each action call affects the performance of

the program based on consumption of resources and time. To enhance

this process Spark came up with two optimization techniques Cache

and Persists. The aim of both of the methods is to store the dataset into

memory/disks temporarily and to reuse the results iteratively over multiple

computations in multistage applications. It provides multiple ways of

storing and replication of data. Below are the scenarios for when caching

should be switched on for usage –

	 1.	 In Standalone spark applications

	 2.	 In Machine Learning applications

	 3.	 In expensive RDD computations in a resource

constraint environment, caching helps reducing the

cost of recovery, if any executor gets failed.

RDD Cache is used to speed up the apps that access the same RDD

several times. With cache you use only the default storage level MEMORY_

ONLY.

RDD Persist provides multiple options to store dataset either on

memory or on disk. The difference between cache and persists is purely

syntactic. The persist method takes place in respective storage levels

including:

Chapter 4 Data Processing Strategies in Data Lakes

183

•	 MEMORY_ONLY (default level) – It stores the data as

a deserialized object, if there is insufficient memory

some of the data partitions may not be cached, that

uncached data will be computed next time when we

need it.

•	 MEMORY_AND_DISK – RDD stored as deserialized

data objects, if RDD may not fit in the memory cluster,

it stores the remaining part on the disk.

•	 MEMORY_ONLY_SER – RDD are stored as serialized

Java objects in memory. Serialized object means

one-byte array per partition. This is much more space

efficient, which saves memory.

•	 MEMORY_AND_DISK_SER – Similar to MEMORY_

ONLY_SER but it saves the leftover part in the disk.

•	 DISK_ONLY – Stores the RDD partition only on Disk.

•	 MEMORY_ONLY_2, MEMORY_AND_DISK_2 – These

two levels work the same as the above two, but these

two replicate each partition on cluster nodes.

Spark implicitly monitors the cache usage per node and purges old

data based on the least recently used approach. An RDD can be manually

removed using RDD.unpersist () method.

�RDD Shared Variables
If a spark operation requires a function for execution on the cluster,

separate copies of function variables are created and copied on each

machine. Any changes to these variables do not propagate back to the

spark driver. To overcome this situation, spark provides two categories of

shared variables, namely, broadcast variables and accumulators.

Chapter 4 Data Processing Strategies in Data Lakes

184

	 1.	 Broadcast variables – instead of creating a copy

of function variables, it will keep a read-only

copy cached on each worker nodes. Broadcasting

becomes an operation-in-demand when the

common data needed by the tasks on different

nodes can be shared between stages. Efficient

broadcasting algorithms help in optimizing

internode communications.

	 2.	 Accumulators – Accumulators are the variables

that result from an associative or commutative

operation. Spark supports named or unnamed

accumulators of numeric value types.

�SQL on Hadoop
Imagine you have just migrated your relational data warehouse to a

Hadoop platform. The business users who were comfortable with SQL

queries, are now finding it difficult to perform routine data checks. In

another instance, data analysts want to run ad-hoc queries for interactive

analysis, but feel restricted by the transition curve from a SQListic

approach to a developer one. So, what’s the solution?

Having learned the motivation behind Hive in this chapter and its

adoption and makeover from traditional MapReduce, the fact that classical

database community is still going strong cannot be understated. There are

two challenges while accessing the data in a lake, the language and data

scale. While a ‘language’ is required for interactive data exploration, the

ability to cope with peta-scale data sets makes a lot of difference.

Chapter 4 Data Processing Strategies in Data Lakes

185

SQL on Hadoop provides a platform to enable database community

to play around with data in Hadoop without knowing much about

MapReduce and cluster computing. By no means, does it replaces data

warehouse with a “low-cost” excuse or mimic a database processing

engine, rather it provides an abstraction over HDFS and YARN to empower

data analysts. The figure below shows the usage patterns of SQL on

Hadoop. Depending on the usage pattern, the architectural guidelines

differ for the platforms and their usage.

Figure 4-14.  SQL on Hadoop layout in a data lake

Analytical

Interactive ad-hoc analysis

Acceptable latency

Apache Drill, HAWQ, Splice

Oracle BigData SQL, Presto

ETL operations

Select and DMLs

Acceptable latency

Hive, SparkSQL

ACID support

Select and DMLs

Acceptable latency

Apache Trafodion, Splice, Phoenix

Batched Transactional

Figure 4-15.  Operation modes of a SQL on Hadoop framework

Chapter 4 Data Processing Strategies in Data Lakes

186

The key aspect of SQL on Hadoop is the engine responsible for parsing

the query and processing it for data extraction. An ideal SQL on Hadoop

engine should be a distributed one and must possess the ability to scale

out seamlessly. While the data movement in and out of a data lake should

be minimal, it must overcome the latency and concurrency bottlenecks.

Unlike a typical MapReduce operation, it should reduce latency while

maximizing concurrency.

Another important characteristic of SQL on the Hadoop framework

is extensibility or the ability to query other data sources. An interactive

query may require data from other sources as well to generate a report or

feed a dashboard. This can be achieved either through query federation or

franchising, or pull agents to stage data at a centralized repository.

In the next few sections, we are going to discuss how to position Presto,

Oracle Big Data SQL, or Cloudera Impala in a data lake ecosystem.

�Presto
Presto is a distributed query engine which was started by Facebook in 2012

to enable faster and scalable queries on very large-scale datasets. Being

developed in java, it supports ANSI SQL semantics including complex

joins, aggregations, and analytical functions. Presto was designed to suffice

low latency data analysis and data warehousing requirements.

How does a Presto engine work? Unlike Hive, presto doesn’t use

MapReduce for query execution. It implements a standard MPP query

processing engine comprising of coordinators, a discovery service,

workers, and connector plugins. Discovery service, as the name suggests,

acts as an engine coordinator which receives heads-up from the

participating nodes (or servers) at the time of startup. Presto coordinator

is responsible for statement parsing, plan generation, and managing

workers. A client submits a SQL statement to the coordinator via REST API,

Chapter 4 Data Processing Strategies in Data Lakes

187

who works with the connector plugin to receive table metadata and split

details for building the query plan. Once the query plan is generated, it

breaks them into a series of stages and further into tasks, and distributes

them over to the worker nodes. Workers work with the connector plugin

for the execution of tasks within memory. They fetch data splits from

the connector plugin, and run parallel drivers for processing as per the

operation. Once completed, task output is transferred over to another

worker interchangeably. Workers follow pipelined aggregation, i.e., each

worker performs aggregation and transfers task output to the next worker.

Once the aggregated data reaches the last worker, it is sent back to the

client via coordinator.

Connectors are nothing but the drivers to access meta information

and data from the data stores. Presto can access data not just from HDFS,

but also other disparate data sources. Connectors are available for Hive,

Cassandra, and Postgres, and a few more data stores. Each connector

has access to its metadata. For example, Hive connector can access

Hive metastore. MySQL connector will have access to its own catalog

information. Figure 4-16 shows the flow of query execution from the client

submission until the result set.

Chapter 4 Data Processing Strategies in Data Lakes

188

�Presto Statement Execution Model

Figure 4-17 shows the steps followed during execution of a SQL statement.

Client

1

3

2

5

4

Query coordinator (parsing, plan building, execution)

Worker (W1)

Discovery Service

1. Client send a query using HTTP
2.Coordinator build query plan. Receives
metadata through connector plugin
3.Coordinator sends tasks to workers
4. Workers read data via connector
plugin and run tasks in memory
5. Client gets result through workers

Worker (W2)

Connector
plugin

HDFS (storage/metadata)

Worker (Wn)

Figure 4-16.  Presto query execution architecture

SQL statement

Coordinator
(parser)
creates
distributed
query plan

Query
execution
broken down
into
hierarchical
stages (DAG)

Stages as a
sequence of
tasks by
workers on
data splits
Tasks run
parallel
drivers for
processing

Tasks run as
pipelined
actions
Workers
exchange data
at different
stages of a
query

Receives
meta and data
split info from
connector

Query Stage Task Exchange

ANSI SQL
compliant
statement

Figure 4-17.  Presto statement execution steps

Chapter 4 Data Processing Strategies in Data Lakes

189

Consider a scenario where a SALES dataset from Hive needs to be

joined with the PRODUCTS dataset in MySQL. Let us check how the

catalog entries look like –

$ cat etc/catalog/mysql.properties

connector.name=mysql

connection-url=jdbc:mysql://localhost:3306

connection-user=root

connection-password=*****

$ cat etc/catalog/hive.properties

connector.name=hadoop2

hive.metastore.uri=thrift://localhost:8180

The below Presto query joins two datasets to count the point in sales

per product. This query is self-explanatory and follows ANSI SQL code

practices.

SELECT

 p.prod_code

 ,COUNT(*) AS num_sales

FROM hive.sales.sales_ds s

 JOIN mysql.products.prod_desc p

ON s.prodid = u.prodid

GROUP BY p.prod_code

�Presto – Design Considerations

	 1.	 Presto is not a database, but provides SQL capability

for data processing through a pipelined execution

model.

	 2.	 A SQL statement is converted into query, stages,

tasks, and splits running in parallel.

Chapter 4 Data Processing Strategies in Data Lakes

190

	 a.	 Query plan is dynamically compiled into an

optimized m-code

	 3.	 Performance management

	 a.	 Presto uses direct memory management.

	 b.	 Memory assigned to a worker must be a

function of workload running on the node.

If you run relatively complex queries, cluster

might report latency issues.

	 c.	 Presto performs multiple in-memory operations

throughout the query execution and relies on

network for transfer of data. It doesn’t take care

of implicit fault-tolerance.

	 d.	 Use ANSI SQL best practices for query tuning

i.	 A CTAS command works faster than SELECT *.

ii.	 To optimize joins, reduce the data surface

area by reducing the size of data sets being

joined. Note that Presto runs broadcast

joins by default, which means a fact table

can be distributed, while a dimension table

can be copied over to the worker nodes for

processing.

iii.	 Inline views can be accommodated in a

WITH clause subquery.

iv.	 Single node operations could be memory

intensive like DISTINCT count, ordering,

and stitching data using UNION must be

avoided. Use APPROX_DISTINCT in place of

DISTINCT.

Chapter 4 Data Processing Strategies in Data Lakes

191

v.	 Multiple LIKE can be replaced with

REGEXP_LIKE.

vi.	 More than 1000 AND/OR in a query may

result in a compiler exception.

	 4.	 Ensure the version compatibility between connector

and Hadoop version while creating catalog

properties. For example, a Hive connector should be

able to access Hive metastore as well as fetch data

splits of a table from the cluster.

	 5.	 Catalog – A query in presto is run against one of

the registered catalogs. A data source catalog must

be registered by creating a catalog properties file

in /etc/catalog/ directory. A connector can be

mounted using connector.name parameter, which

indicates that the catalog manager will create a

connector using this catalog.

	 a.	 Create multiple catalogs of similar data

source type with different configurations. For

example, two Hive cluster catalogs will have the

same connector.name i.e. Hive, but different

configuration.

connector.name=hive-cdh4

hive.metastore.uri=thrift://[master]:10000

connector.name=hive-hadoop1

hive.metastore.uri=thrift://[master]:10020

	 6.	 Monitoring – Presto provides an interactive web

interface, Presto-Admin, for the management and

monitoring of queries.

Chapter 4 Data Processing Strategies in Data Lakes

192

	 a.	 Check status of all presto nodes

presto-admin server status

	 b.	 Presto clients – Airbnb designed a query

execution tool, Airpal for easy query writing and

object browsing.

	 c.	 The presto page https://prestodb.io/

resources.html collates all information

regarding management tools, clients, drivers,

plugins, and libraries. It is maintained by

Facebook.

	 d.	 For uninterrupted operations, deploy a periodic

monitoring script to take proactive actions in

case it detects a configuration issue, and sends

out alerts and notifications.

	 7.	 Configuration properties

	 a.	 Cluster

i.	 task.info-refresh-max-wait – optimize

coordinator workload

ii.	 task.max-worker-threads – split and assign

process to worker nodes

iii.	 distributed-joins-enabled – Enable

distributed hash joins

iv.	 query.max-memory and query.max-memory-

per-node – max allocation of distributed

memory at engine and node level

v.	 discovery-server.enabled and

discovery.uri – Discovery service URI

specification.

Chapter 4 Data Processing Strategies in Data Lakes

https://prestodb.io/resources.html
https://prestodb.io/resources.html

193

	 b.	 Coordinator

i.	 query.initial-hash-partitions –

maximum hash buckets of an aggregation

ii.	 node-scheduler.min-candidates – max

parallel workers to run a stage

iii.	 node-scheduler.include-coordinator –

should coordinator run tasks?

iv.	 query.schedule-split-batch-size – Stage

to task split size

	 c.	 Worker

i.	 task.cpu-timer-enabled – detailed statistic

collection

ii.	 task.max-memory – memory restriction for

CPU intensive operations like joins and

sorts.

iii.	 task.shard.max-threads – worker threads

to run active splits. Set it as (4*CPU cores).

	 d.	 Performance

i.	 Hive.empty-bucketed-partitions.

enabled=true

ii.	 Hive.bucket-execution=true

iii.	 Hive.assume-canonical-partition-keys=true

iv.	 Hive.multi-file-bucketing.enabled=true

v.	 Hive.immutable-partitions=true

Chapter 4 Data Processing Strategies in Data Lakes

194

	 8.	 Hive to Presto migration

	 a.	 Note the difference between HiveSQL and ANSI

SQL

	 b.	 Follow ANSI SQL guidelines while using arrays,

quoted identifiers, and SQL operators. For

example,

i.	 Use UNNEST in Presto to expand arrays,

instead of LATERAL VIEW in hive

ii.	 ‘2APR2014’ is not valid in Presto, but

“2APR2014” is

	 c.	 For troubleshooting, focus on operator usages

in query predicates. For example, [column =

NULL] is different from [column is NULL]

	 d.	 The VALUES clause could be effective in testing

Presto query. It helps in preparing a sample data

set for testing

�Oracle Big Data SQL
Oracle Big Data SQL is a SQL on Hadoop solution from Oracle that allows

issuing a query against Hadoop, Hive, Oracle NoSQL, and HBase from

Oracle database. Put it simply, it brings non-relational data under one roof

of Oracle system catalog. As a result, Hive table access benefits from most

of the smart features of Oracle database like query offloading, smart scan

on Hadoop, network resource management, data redaction, and other

Oracle advanced security features, without any compromise. Existing users

of Oracle advanced analytics and security can expand their data coverage

by switching on Big Data SQL and all their running models will start

considering data from Hadoop data lake.

Chapter 4 Data Processing Strategies in Data Lakes

195

Figure 4-18 shows the benefits of Oracle Big Data SQL product.

How Oracle Big Data SQL works? Well, contrary to conventional

techniques of data federation, Oracle Big Data SQL uses the query

franchising approach for unified processing across relational and Hadoop

source. Query franchise promotes driver based query execution, rather

than dispatching subqueries to different data systems for their native

processing engines to work upon. Drivers or agents are compute agents

on different systems (Hadoop data nodes) which assist the execution of

a task in Big Data SQL. What this franchisee model achieves is unified

resource management and effective query planning as Oracle optimizer

understands data location and structure, spanning across multiple

systems. The agent or Oracle Big Data SQL cell optimizes query execution

through smart scan and storage indexes.

Big Data SQL follows external table mechanism to access table

metadata via Hive metastore. Subsequently, it also uses the underlying

Hadoop APIs to access data from HDFS. The driver, also called storage

Query offloading to Oracle Big Data appliance

Unified query to access Oracle RDBMS and hadoop objects

Predicate pushdown for Oracle NoSQL, HBase, Parquet, and ORC

Storage indexes, Bloom filters, Hive partition pruning

Bring Oracle and hadoop sources under the same security realms

Figure 4-18.  Oracle Big Data SQL benefits

Chapter 4 Data Processing Strategies in Data Lakes

196

handlers, must be specified while creating external table in Oracle

database. To access Hadoop cluster, there are two access drivers available

in Oracle –

	 1.	 ORACLE_HIVE – Allows creation of Oracle external

tables using Hive metadata information. It can also

access HBase, if a Hive table is defined on HBase

store.

	 2.	 ORACLE_HDFS – Allows creation of external table

in Oracle using HDFS file system, without the

explicit creation of a Hive table. The access driver

implicitly imitates the Hive syntax and assigns a

schema structure to the data from filesystem.

The below CREATE TABLE script creates an external table for Hive

table social_cmt_hv.

CREATE TABLE ratings_db_table (

 col0 VARCHAR2(4000),

 col1 VARCHAR2(4000),

 col2 VARCHAR2(4000)

)

ORGANIZATION EXTERNAL

 (TYPE ORACLE_HIVE DEFAULT DIRECTORY DEFAULT_DIR

 ACCESS PARAMETERS

 (

 com.oracle.bigdata.cluster=hadoop

 com.oracle.bigdata.tablename=default.social_cmt_hv

)

) PARALLEL 2 REJECT LIMIT UNLIMITED

Chapter 4 Data Processing Strategies in Data Lakes

197

The ACCESS_PARAMETERS clause can be used to specify a

replacement action in place of its default behavior. For example,

•	 if table names are different in Oracle and Hive, specify

Hive table name in com.oracle.bigdata.tablename

•	 if column names are different, specify column mapping

in com.oracle.bigdata.colmap

�Design Considerations

	 1.	 Oracle data dictionaries [USER] DBA_HIVE_TABLES

contain Hive table metadata details.

	 2.	 Oracle Big Data SQL is a separately licensed product

and compatible with Oracle database version

12.1.0.2.0 and higher.

	 3.	 Oracle SQL Developer 4.0.3 comes with the

capability of connecting to Hive metastore.

	 4.	 Functions that can be offloaded to Hadoop can be

queried from v$sqlfn_metadata dictionary.

	 5.	 You can generate DDL of an external table to access

a Hive table in Oracle database using dbms_hadoop.

create_extddl_for_hive subprogram

	 6.	 Big Data SQL 3.0 and onwards can be installed on

commodity hardware with cloudera CDH 5.5 or

hortonworks HDP 2.3 distribution of Hadoop.

	 a.	 Network optimization due to infiniband fabric

in engineered systems cannot be leveraged.

Chapter 4 Data Processing Strategies in Data Lakes

198

	 7.	 Smart scan – The full scans of Oracle external

tables that use access drivers for Hive or HDFS, are

optimized through smart scan capabilities by the

BigData SQL cell running on Hadoop data nodes.

Smart scan is a feature of Oracle engineered systems

that optimizes query execution by pushing down

processing to the storage layer.

	 8.	 Storage indexes – Oracle Big Data SQL cell

maintains storage indexes for the data distribution

over HDFS. Storage index helps in eliminating

the scans of those disk sectors which don’t

have the required data blocks. Smart scan and

storage indexes complement each other for query

optimization. For effective use of storage indexes,

use frequently used column to sort the query. A

query using equality (=), non-equality (<, >, <>),

null (IS NULL, IS NOT NULL), or less than/greater

than (<=, >=) operators are benefitted from storage

indexes

	 9.	 Queries against ORC and parquet file format are

further benefitted by the stripe indexes within the

file structures.

	 10.	 Oracle database 12c has developed native capability

to store and parse JSON data. Pushdown of CLOB

processing is possible with Oracle Big Data SQL.

Chapter 4 Data Processing Strategies in Data Lakes

199

�Conclusion
Data processing has been through multiple innovations in the recent

times. Modern day cutting edge frameworks like Spark, presto, and SQL

on Hadoop technologies have eased the life of data practitioners who are

transitioning from relational world to unstructured space. What remains

common within newcomers is extensibility and integrity.

This chapter tried to discuss the data processing techniques in data

lake. Many of you might be working on these platforms but understanding

the design considerations and impactful factors is the key to a successful

implementation. Within the scope of this book, we discussed classical

MapReduce, Hive, Pig, Spark, and presto. However, there could be multiple

other frameworks and designs like cloudera impala or open source

products, which serve a similar purpose.

In the next chapter, we are going to introduce data governance along

with one of its key accountables: data retention and archival strategy.

Chapter 4 Data Processing Strategies in Data Lakes

201© Saurabh Gupta, Venkata Giri 2018
S. Gupta and V. Giri, Practical Enterprise Data Lake Insights,
https://doi.org/10.1007/978-1-4842-3522-5_5

CHAPTER 5

Data Archiving
Strategies in Data
Lakes

‘Data is like garbage. You’d better know what you are going to
do with it before you collect it’

—Mark Twain, an American writer and entrepreneur

The linearly growing data lake sophistication trend has empowered

the rise of data analytics from descriptive to predictive, and further to

prescriptive. The strategies that drive meaty business outcomes, rely

heavily on data initiatives that offer quality and relevance. An enterprise

data lake, being the mainstay of modern cognitive data analytics, banks

upon a body that guards its lifecycle through the stages of transformation

and consumption. How often do you see an analyst questioning data

sufficiency for a data model? How often does security analysts mark risk

zone for data lake applications to measure their vulnerabilities? Here

comes the role of data governance – a key pillar to overall data strategy in

an organization.

202

In this chapter, we’ll draw our focus on one of the deliverables of data

governance, namely, data archival strategy. We’ll understand why data

archival is crucial for an enterprise and in a data lake ecosystem. Later,

we’ll explore design considerations that potentially drive data lifecycle

management strategy in an organization.

�The Act of Data Governance
Data governance is the “council” who is aware of the mission and vision

of business outcomes and is entrusted with the task of aligning enterprise

data initiatives with those outcomes. Data governance owns the entire

gamut of data lake and formulates the vision, strategy, and framework

within the organization. As per the Forbes research in 2016,1 78% of

leading BI Executives recognize the importance of governance in BI, while

65% accept that governance offers useful means to empower end-users to

uncover new insights. Mike Saliter, VP, Global Industry Solutions at Qlik,

realizes the importance of governance council and explains:

Governance requires a really fine balance - governing to the
point where consistency is assured, but flexibility remains. There
is no perfect formula, but finding the right governance level
within your organization’s culture is a critical component to
making the most of BI opportunities.

The council, headed by a chief data officer (CDO), folds in key

stakeholders from data teams to form a data leadership guild. Data

leadership guild takes the decision on:

1�https://www.forbes.com/sites/forbespr/2016/10/24/strong-data-
governance-enables-business-intelligence-success-says-new-forbes-
insights-study/#6832a44f582d

Chapter 5 Data Archiving Strategies in Data Lakes

https://www.forbes.com/sites/forbespr/2016/10/24/strong-data-governance-enables-business-intelligence-success-says-new-forbes-insights-study/#6832a44f582d
https://www.forbes.com/sites/forbespr/2016/10/24/strong-data-governance-enables-business-intelligence-success-says-new-forbes-insights-study/#6832a44f582d
https://www.forbes.com/sites/forbespr/2016/10/24/strong-data-governance-enables-business-intelligence-success-says-new-forbes-insights-study/#6832a44f582d

203

	 1.	 Streamline data approach across organization – lay

down best practices, models, and process flow for

data engineering, ingestion, and visualization

	 2.	 Data privacy and compliance – Verify if data sources

are compliant.

	 3.	 Data inventory practices

	 a.	 Data acquisition linked with business

deliverables – Procure new data sources to

transform data lake into a data asset. Advise

curation layer as information libraries to hold

prepared data for business analytics teams.

	 b.	 Data retention – devise evaluation strategy to

retain or suspend data system from data lake

	 c.	 Data security – implement security fencing

around data and platform to mitigate risks

associated with data in company and public

networks

	 i.  Data masking

ii.  User authentication and authorization

	 4.	 Infrastructure planning

	 a.	 Storage – Implement information lifecycle

management (ILM) policies to archive data

	 b.	 Capacity planning – Depending on the user

base and business forecasting, plan the

infrastructure to ensure business continuity

Figure 5-1 shows a typical data governance council organizational

structure.

Chapter 5 Data Archiving Strategies in Data Lakes

204

�Data lake vs. Data swamp
Data lake follows an ordered way of bringing in the data. It strikes “one-

for-all” approach to lay down data ingestion strategy, data organization,

and architecture. Data governance council reviews the data patterns and

practices from time to time and ensures that data lake follows secure,

steady and sustainable approaches. A methodological approach to soak in

all complexities (data sources, types, conversion) under a common layer is

vital for successful data lake operations.

Data swamp, on the other hand, presents the devil side of a lake.

A data lake in a state of anarchy is nothing but turns into a data swamp.

It lacks stable data governance practices, lacks metadata management, and

plays weak on ingestion framework. Uncontrolled and untracked access to

source data may produce duplicate copies of data and impose pressure on

storage systems.

Figure 5-2 shows key differentiators between data lake and data

swamp.

Business
Leadership

Data Governance
Council

Define strategy and roadmap for data products

Business authority for the data

Design framework for data standards, compliance,

security, metadata management and archiving

SMEs responsible for data ingestion, modeling,

tuning, and security

Liaison between business and DevOps to define data-

centric milestones, run sprints, and support business
functions

Coordinate with data governance council on framework,

capability matrix, and resource pooling

Data Product Owner

Data Engineering

Figure 5-1.  Data governance organizational structure

Chapter 5 Data Archiving Strategies in Data Lakes

205

To prevent data swamp situation, enterprises can adopt best practices

listed as below.

	 1.	 Advocate data governance – Data governance

ensures appropriate sponsorship of all resident

data and tags data initiatives with visible business

outcomes. Looks after security aspects and

participates in capacity planning of data lake.

	 2.	 Build and maintain metadata – Metadata

management should be encouraged to ease data

access and support qualitative data search.

	 3.	 Prioritize DevOps charter – DevOps keeps

the ingestion pipeline intact and shields data

complexities under generic framework.

�Introduction to Data Archival
Data archival refers to the techniques to retain infrequently used data at

a lower cost. For huge data sets, massive storage is required. For efficient

data access, smart storage is warranted. Faster and smarter storage

Data Lake

High
Quality

Streamlined
Ingestion

Metadata
management

Ungoverned

Operations
Overhead

Data
Governance

Broken
Ingestion

Data Swamp

Data
driven

Scalable

Uneasy
Access

Complex

Rigid

Figure 5-2.  Comparison between data lake and data swamp

Chapter 5 Data Archiving Strategies in Data Lakes

206

systems may increase the operational expenses and thus, the total cost of

ownership (TCO). Data council keeps an eye on the data relevance and

draws a timeline for the analytical models to enable a time-bound data

visibility. Data lake, by itself, is principled to act as a data archival platform

but a “swampy” situation needs to be prevented. Not all data can be of

equal relevance. It becomes dormant by age and time.

Data relevance and quality drive strong motivation for data archival

strategy. Data sources and quality of data evolve with time and age.

A 10-year-old data set could be of suboptimal quality and may offer

no material when fed to a learning based analytical model. Keep in

mind that easy and rapid data access is one of the highlights of data lake

flyers. Having said that, dormant data sets may still reside in the lake for

regulatory and compliance reasons, but at a cost-effective storage. The

ability to manage data lake lifecycle depending upon age and relevance

of data draw a thin line between a costly data lake and the one that is

“spot on” economical.

As data grows on the scale of terabytes and petabytes on tier-1 storage

systems, it may impact primary applications by slowing down the data

access. Obviously, underlying storage systems face cost and space pressure

due to this data growth. In addition, data operations like backup, restore,

analyze, or clone run longer due to sheer volume of data. Such scenarios

directly impact IT budget and bring down the return on investment (ROI).

Data archival practice helps in making room for new data. Not only archival

strategy optimizes load on primary storage system, but it may also result in

improved performance. Performance optimization is attained by reducing

the surface area of active data volume in lake and not by deploying any

tuning techniques. Figure 5-3 shows a flyer of data archival benefits.

Chapter 5 Data Archiving Strategies in Data Lakes

207

Cloud based storage could be a big relief for enterprises. Public

cloud vendors claim to offer elastic storage services at reasonably low

rates. Although it depends and differs case by case, but cloud storage

and archival services assure better returns on affordable capital because

of lower operational expenses (no site space required and minimal

operations). Let us quickly go through few factors which an architect must

consult before positioning cloud archival strategy –

	 1.	 Recovery turn-around time – Cloud service model

must support quick data recovery. Recovery

approach must be simple and interactive

	 2.	 Data lifecycle integrated management – Archival

service must have the capability to be integrated

with other cloud storage classes. A unified lifecycle

policy can be defined to implement storage tiering

using primary as well as archival storage class.

	 3.	 DLM Compliance and regulations – Archival service

must align with the DLM considerations like data

awareness, data search, and cost optimization.

Data Compliance linked storage tiering

Better control over data lifecycle management

Prevents data loss

Improved data lake performance

Faster backups

Cost optimization

Figure 5-3.  Benefits of data archival strategy

Chapter 5 Data Archiving Strategies in Data Lakes

208

	 4.	 Security – One of the key parameter of cloud versus

on-premise debate. Security is largely subjected

to data governance council’s definition of data

confidentiality and compliance. However, a cloud

service vendor must support security techniques

like data encryption, access management, and

authentication.

�Data Lifecycle Management (DLM)
Data lifecycle management is the ability to classify data by its age and

business relevance and define policies to move data across the storage

tiers. Factors that drive an effective data lifecycle management are:

	 1.	 Data awareness – Very important to have sound

understanding of business service level agreements

and data model awareness. It helps in determining

what the data is, opposed to where it is situated.

Data awareness helps in learning legality and

sensitivity of data.

	 2.	 Data retention, transition, and expiration

policies – Storage and compression tiering can be

implemented through lifecycle rule definitions.

The rules may define ageing policies, which when

triggered, may execute appropriate action like data

movement or deletion. Figure 5-4 shows the circle of

life of data in a lake.

Chapter 5 Data Archiving Strategies in Data Lakes

209

	 3.	 Familiarity with the data sources for business-

relevant classification – Unless and until one

understands the significance of data, he/she will not

be able to determine the impact of data archival. For

instance, retail transactions older than two years

can be archived but retail contractors can never be

archived.

	 a.	 It is not a good approach to put hard timeline

for all objects in data lake. It could have an

adverse impact on the business relevance of

data. For example, a customer profile created

prior to the hard timeline may no longer be

visible in the lake and thus to the models that

implement consumer analytics.

Data
Ingestion

Distributed
Storage

Consume/Reuse
(Processing/Analysis)

Cold
Archive

Warm
Archive

(Historical)

(Less active)

Figure 5-4.  Data Lifecycle Management flow in a data lake

Chapter 5 Data Archiving Strategies in Data Lakes

210

	 b.	 Archive data as per the business dependency –

Viable approach to archive data after

reading through all dependencies. Customer

transactions before a stipulated date may be

archived. However, customer data will still be

active and visible to the system.

	 4.	 Frequency of data access – Helps in defining ageing

rules for data.

	 5.	 Effective governance and compliance – Data

governance has the full view of data and their

storage classes.

�DLM policy actions
DLM policies can be defined to act based on business needs and data

relevance. Data archives can be online or offline. Data can either be moved

to a connected low-cost storage or purged to a storage that is disconnected

from the active data lake. While most enterprises give preference to online

data archives, offline archives come to play in two situations:

	 1.	 Source system retires or gets decommissioned and

its footprints in the lake needs to be archived.

	 2.	 Source system goes through a transformation via

digitization initiative and legacy raw data sets need

to be archived.

For online data archives, DLM policies can implement storage tiering

and compression tiering. A storage tier refers to the bucket that holds data

of a defined classification and abides by a DLM policy. Storage tiers may

have different underlying storage and related attributes like compression

mode and disk speed.

Chapter 5 Data Archiving Strategies in Data Lakes

211

�DLM strategies
Data lifecycle management should rather be a stepwise approach for

defining archival policies than an instantaneous action. Below are the

steps to be followed to design a strategy:

	 1.	 Data prioritization – Selection and classification of

data should be the first exercise of DLM strategy.

Data can be zoned out based on its business

criticality and dependencies it shares upon other

entities. The categories and parameters are fully

dependent upon the data council regulations.

However, standard data catalog can be build be

classification of data under below categories:

	 a.	 Master data – data of high and consistent

business importance needs to be preserved

unless and until data governance approves

for archival. Master data can be sensitive

information like Personal Identifiable

Information (PII) data (SSN, customer,

employee, patient) or company’s internal

data (products, vendors, suppliers, deals, and

agreements). For healthcare industry, HIPAA

privacy rule specifies the number of years for

which a patient record must be retained. Baking

industry mixes multiple parameters like last

transaction date and balance to classify an

account as dormant.

Chapter 5 Data Archiving Strategies in Data Lakes

212

	 b.	 Transactional data – data that can be archived

without any issues. Policies can be defined to

archive daily transactional data after it attains

certain age.

	 i.� � Machine or sensor generated data older

than two years

ii.  Location data older than 30 months

iii.  Bank transactions older than five years

iv.  Educational data older than one year

	 c.	 Social data – social data can be archived more

often than other categories because most of

the analytical models that consume social

data acquire intelligence through continuous

and progressive learning. And as these models

mature, they marinate raw data streams with

their insights, only to enrich them. Therefore,

data from social media has the tendency to grow

dormant faster. Monthly archival policy to move

web logs to a secondary storage may suffice the

storage requirements.

	 2.	 Data age by classification – for each classification

of data, the age parameter may differ by the data’s

relevance or governmental norms. Setting the time

dimension per classification would establish the link

between archival policy and data classification.

	 3.	 Define archival policy – archival policy can be

declared for each data source at storage level. Each

policy carries a name, rule, and an action. Policies

can be triggered implicitly or manually.

Chapter 5 Data Archiving Strategies in Data Lakes

213

�DLM design considerations
Let us check out key design considerations that can be tactical while

implementing a comprehensive data archival strategy (Figure 5-5).

	 1.	 Data backups as data archives – Avoid using data

backups as data archives. It has been a long running

debate that periodic data backups can be treated

as archives. However, the reality is backups and

archives are two different worlds. Backups are

like data fillers when lost, while archives are data

finders.

	 a.	 Backups are used if when you are restoring or

cloning a system or during disaster recovery.

Archives enable data discovery at the cost of

performance.

Classify Understand and classify data

Set ageing
rule

Archival
policy

Understand data relevance

Set policy per classification

Figure 5-5.  Data Archival strategy foundation

Chapter 5 Data Archiving Strategies in Data Lakes

214

	 b.	 Data backups are disconnected from the active

data while archives are well connected with the

lake.

	 c.	 For example, if a customer needs bank

transaction older than a quarter, bank would

pull up from the archives. Should it be pulled

from the backups in the absence of archives,

one must restore all the backups before

accessing the required piece of data.

	 2.	 Archive performance – Accessing data from the

archives may give a suboptimal performance

because data has to be pulled from a secondary

storage.

	 a.	 Crucial factor while mapping data classification

to a storage tier in a DLM policy. For an

archive, performance becomes the function

of disk speed of secondary storage, network

bandwidth, and compression mode.

	 b.	 If archive stay in compressed format, it would

further degrade the performance as it has to be

decompressed before access.

	 3.	 Archiving unstructured data – for unstructured

data, you can set up an archival hadoop cluster

of secondary storage systems. Storage paradigm

remains the same as in primary hadoop cluster.

There are multiple commercial vendors who offer

products to archive unstructured data to a file

system.

Chapter 5 Data Archiving Strategies in Data Lakes

215

	 4.	 Discover data dependencies – you must fully

understand the relationships between different

data types before implementing the archival plan.

We saw the example of customer profiles in DLM

section. There are a few more listed below.

	 a.	 Master business entities should never

be archived unless the entities are

decommissioned or suspended

	 b.	 Avoid fixed timelines for archiving – “All data

until year 2000 will be archived” – this rule will

sunset all master data fed before 2000. Is it

expected? Data governance needs to take the call.

	 c.	 Call data can be archived after 15

	 5.	 Hadoop archives (HAR) – A mapreduce based utility

to archive multiple small files on HDFS cluster into

an immutable file. It is designed to tackle small file

problem in hadoop.

	 a.	 hadoop archive –archiveName dummy.har /

input/location /output/location

	 6.	 Cloud based archives – Public cloud vendors offer

archival storage service at affordable rates. Cloud

based storage not only serves as a replacement to

tape mechanisms, but also offers better availability,

enterprise security, easy management, and

compliance.

	 a.	 Durability – On-premise archiving provides

complete control but could impost cost pressure

on enterprises. In addition, archive durability,

availability, and security are some of the

pressing issues to be addressed.

Chapter 5 Data Archiving Strategies in Data Lakes

216

	 b.	 Security – Though it is difficult to draw consent

from everyone on the topic like “cloud” security,

it might be good to know how cloud vendors

are tackling security. Cloud vendors claim to

encrypt the data as soon as it comes. Keeping

in mind the level of skill artillery that cloud

companies possess and level of compliance

they comply with, they possess encryption keys

for their customers. However, it might not be a

bad idea to encrypt data once before pushing to

the cloud; so that one set of encryption level is

entirely owned by the customer.

	 c.	 Can be used to archive legacy data or

unstructured data.

	 d.	 Commercial vendors that offer archival services

	 i.� � Amazon Simple Storage Service and AWS

Glacier

ii.  Microsoft Azure Archival Storage

iii.�  Oracle Cloud Infrastructure Archive Storage Classic

	 7.	 Tiering levels – distribution of data into cold, warm,

and hot buckets

	 a.	 Hot data refers to the most active one residing

on primary storage. All data drive actions and

analytical models access hot data from the lake.

	 b.	 Warm data is the dormant one which can be

selected at times but never really participates in

a transaction.

Chapter 5 Data Archiving Strategies in Data Lakes

217

	 c.	 Cold data is the one that exists just for

regulatory and compliance purposes. It doesn’t

participate in data access or transactional

exercises.

	 8.	 Retrieval approach – for both on-premise as well as

cloud based archival, make sure that one is aware of

how to retrieve the archives when required.

�Amazon S3 and Glacier storage classes
Amazon offers S3 storage containers for object storage with high durability

and finds variety of fitment. It offers data management console for

monitoring and lifecycle control, data protection through versioning and

replication, event and alert notifications, and security controls. We’ll not

deep dive into Amazon S3 service to abide by the scope and purpose of the

book. However, we’ll focus on the storage classes of Amazon S3.

Amazon offers a low-cost archive storage service, known as AWS

Glacier. It is used for deep archival of data which is infrequently accessed

but retained for compliance. If you are looking for a long-term backup

solution, Glacier might well fit your bill. Amazon Glacier provides three

methods to access data, namely, expedited, standard, and batched service.

Depending on the data access requirements, appropriate retrieval mode

can be selected (Figure 5-6).

Expedited Retrieval

Standard Retrieval

Bulk Retrieval

Emergency access within 1-5 minutes

Standard retrieval (3-5 hours)

Bulk retrieval (5-12 hours)

Figure 5-6.  AWS data retrieval policies

Chapter 5 Data Archiving Strategies in Data Lakes

218

From the security standpoint, all data within the glacier is encrypted.

In addition, access control can be configured through AWS IAM service.

Lifecyle features of Amazon S3 are listed below.

	 1.	 Tiered data management –Amazon S3 storage

classes can be S3-Standard, S3-Standard-IA, or S3-

Glacier.

	 a.	 S3 Standard – It is the primary object level

storage class for general purpose data storage.

It serves data access requests which generally

need low latency and high throughput. All hot

and active data resides on this storage class.

	 b.	 S3 Standard – Infrequent Access – The object

level storage class is used for warm or less-

frequently used data. Data access requests of

low latency and manageable throughput can be

served rapidly using Standard-IA storage class.

Minimum storage duration is 30 days.

	 c.	 Glacier – the object level storage class is used

to archive cold data which is retained for

compliance and regulatory purposes. Minimum

storage duration is 90 days.

	 2.	 Lifecycle rules – Data lifecycle policies can be

defined as rules to take appropriate action on data

ageing. Data age is defined as number of days or a

fixed date. The nature of action can be:

	 a.	 Transitional – Enables data movement from S3

to infrequent access and then to Glacier. What

it means is the transition of object storage class

from S3 to STANDARD-IA or GLACIER.

Chapter 5 Data Archiving Strategies in Data Lakes

219

	 b.	 Expiration – Enables deletion of data in S3

storage based on a date or age. Since AWS

follows queueing approach to delete objects

asynchronously, there could be a lag between

expiration date and actual expiration.

The reason one should go for a cloud archival service lies in the

fact that total cost of ownership for cloud is way less than on-premise.

Compared to traditional archiving approaches like tape libraries, drives,

media, or specialized frameworks, AWS Glacier achieve intelligent

archiving at a reduced cost. Other major consideration would be

durability. AWS guarantees 99.9% of data durability along with regular

checks on fixity and automatic recovery during failures.

�Design considerations
As a cloud architect, one must bear the following points in mind before

executing data archival strategy in an enterprise data lake:

	 1.	 Storage classes can only be moved further. For

example, an object in STANDARD class can

only transition to STANDARD-IA or further to

GLACIER. An object in STANDARD-IA cannot be set

back to STANDARD. In such scenarios, archives can

only be restored from Glacier archives.

	 2.	 An object with age less than 30 days cannot

transition to STANDARD-IA

	 3.	 An object sized less than 128KB cannot be

transitioned to STANDARD-IA

Chapter 5 Data Archiving Strategies in Data Lakes

220

	 4.	 Based on the lifecycle action, pricing may differ.

	 a.	 If you are deleting objects from STANDARD-

IA storage class within 30 days, you might get

charged for early deletion.

	 b.	 Every archival as well as retrieval request in

Amazon Glacier is chargeable.

	 5.	 Objects that are encrypted continues to be

encrypted throughout the transitioning process.

	 6.	 Restoration from Glacier archives is a time-

consuming process.

Figure 5-7 shows Amazon AWS storage class portfolio.

�DLM Case Study – Archiving with Amazon
An image processing company IPC has provisioned their enterprise data

lake on AWS. While the legacy data store had 10-year data, but data council

has mandated data lake to hold 3-year worth of image and actions data.

With respect to data archival, there could be two possible scenarios:

	 1.	 Data archival can be triggered via ageing policy

	 2.	 Data can be directly uploaded for archiving

AWS EC2

Block File Object

Amazon EFS Amazon S3 Amazon Glacier

AWS EBS

Figure 5-7.  Amazon AWS storage class portfolio

Chapter 5 Data Archiving Strategies in Data Lakes

221

In a typical DLM framework using AWS, the Amazon Glacier acts as the

converging point in an archival strategy. In both of the above scenarios, data

archives can be stored on AWS Glacier. In the first scenario, Amazon AWS

allows lifecycle integration with S3 storage. Lifecycle rules can be defined

and configured in AWS management console to move object data from S3

to Infrequent-access storage layer, and then to Glacier. Figure 5-8 shows

the storage tiering within data lifecycle management starting from data

creation in S3 to data archival in Glacier based on rules. All the lifecycle

rules are checked as per their trigger settings. If the condition is met, data is

progressively moved from one layer to another.

Lifecycle by Access

AWS S3 Infrequent Access
AWS Glacier

Active

90 days

365 days

Warm

Cold

Figure 5-8.  Storage class tier support in data lifecycle management

Chapter 5 Data Archiving Strategies in Data Lakes

222

For the second scenario, legacy data can be directly uploaded into AWS

Glacier through a direct upload technique. Predominantly, there are three

methods to bulk upload the data into Glacier:

	 1.	 Data transfer over public internet via a secure tunnel

	 2.	 AWS Direct Connect for dedicated network

bandwidth between site and AWS

	 3.	 AWS Snowball edge – AWS Snowball-edge is a high

scale device with local compute and storage which

is used for physical transfer of data from or into

AWS. Equipped with an Amazon EC2 (m4.4xlarge)

equivalent compute and storage, snowball can be

used for cloud migration, disaster recovery, data

center decommissions, and data proliferation.

Should DLM be always practiced through lifecycle rules? Can this

process be exercised manually? Well, the benefit of S3 lifecycle managed

Amazon Glacier is realized by the fact that index entries stay on S3, while

only the object data moves from S3 to Glacier. Object metadata remains

with the S3 storage, which means that an object can be referred by its user

defined name. It can be retrieved using S3 APIs and not Glacier APIs.

�Conclusion
Business are facing continuous pressure to store large amounts of data.

Managing this data growth can be a real challenge for enterprises. There

are multiple commercial archival solutions available in the market who

assure of full-proof archival for an organization but what differentiates

a successful and flop data archival is the data understanding. Archiving

products may offer some drastic outputs in no time but issues due to a

broken data archival strategy may pop up in the context of the future.

Chapter 5 Data Archiving Strategies in Data Lakes

223

Key to data archival framework lies in the study of data dependencies,

prioritization, and awareness with business SLAs. An efficient data archival

strategy helps in optimizing the IT investments, improves data access

performance, and increase returns on your investments.

In the next chapter, we are going to shift our focus to yet another

critical component of data governance, namely, security. We will focus on

data lake security principles and architect’s considerations.

Chapter 5 Data Archiving Strategies in Data Lakes

225© Saurabh Gupta, Venkata Giri 2018
S. Gupta and V. Giri, Practical Enterprise Data Lake Insights,
https://doi.org/10.1007/978-1-4842-3522-5_6

CHAPTER 6

Data Security in Data
Lakes

“Data matures like wine, applications like fish.”

—James Governor, Principal Analyst and founder of RedMonk

With enormous volume and high value of data, comes the responsibility

to secure data from external intrusions and mitigate the chances of

unwanted attacks. Every year, the world sees through ample cases of cyber

thefts, security breaches, and digital attacks. As per Gartner’s report1 in

Q1 2017, worldwide expenditure on security in 2017 was estimated to be

$90 billion, which was 7.6% more than 2016 numbers. The need to have a

robust security framework was well summarized by one of the Forrester

researchers, who explained2:

Perimeter-based approaches to security have become out-
dated. Security and privacy pros must take a datacentric
approach to make certain that security travels with the data
itself—not only to protect it from cybercriminals but also to
ensure that privacy policies remain in effect.

1�Gartner press release, March 14, 2017 - https://www.gartner.com/newsroom/
id/3638017

2�https://www.forbes.com/sites/gilpress/2017/10/17/
top-10-hot-data-security-and-privacy-technologies/

https://www.gartner.com/newsroom/id/3638017
https://www.gartner.com/newsroom/id/3638017
https://www.forbes.com/sites/gilpress/2017/10/17/top-10-hot-data-security-and-privacy-technologies/
https://www.forbes.com/sites/gilpress/2017/10/17/top-10-hot-data-security-and-privacy-technologies/

226

In the last couple of years, security has strengthened its footprint in

organizational information strategy. Top market players in data lines

have nodded to the fact that a threat diagnosis holds a stronger relevance

than threat mitigation. To prevent vulnerable areas from being exploited,

organizations employ techniques like data encryption and redaction

policies, proactive monitoring, and fine-grain access control. Figure 6-1

shows the key factors that play a vital role in determining a stable security

strategy for an enterprise.

This chapter takes a deep dive on to security aspects of a Hadoop data

lake. It starts with a standard system architecture and familiarizes readers

with components of network security, firewall, and Hadoop cluster.

�System Architecture
In our earlier chapters, we have learned that Hadoop offers distributed

storage and distributed processing paradigm to handle large data sets.

While handling large clusters, the areas that we must keep in mind

are the operating environment, its mode of operation, and network

Figure 6-1.  Key factors that play a vital role in determining a stable
security strategy

Chapter 6 Data Security in Data Lakes

227

bandwidth. There are multiple factors that contribute to the choice of

operating environment for Hadoop. Because of rapid advancement in

the network and server technologies, Hadoop can live in few different

environments.

	 1.	 Inhouse – Hadoop can be setup in the data center

under the ownership and control of the business.

They are setup with set of physical boxes (bare

metal).

	 2.	 Managed – Managed setup is a variation of inhouse

that consists of physical servers but not owned or

operated by the organization. They are leased from

an external vendor, who handles the provisioning,

operations, and maintenance.

	 3.	 Cloud service models – This happens to be the

talk of the town. Several technology giants have

started offering virtualized servers for public use

as “cloud” services. The virtualized infrastructure

can be leveraged to run systems, as large as data

center or as small as a simple application. As a cloud

customer, companies pay what they subscribe and

use; just like you enjoy buffet or al-a-carte lunch at

restaurants.

�Network Security
Network segmentation separates a cluster environment physically and

logically, from a larger network. Physical network segmentation is

separating the physical devices such as network switches, routers, VLANs,

and firewalls, while the logical network segmentation could be achieved by

using the separate Internet Protocol addresses.

Chapter 6 Data Security in Data Lakes

228

Figure 6-2.  Physical Segmentation with Router

Figure 6-3.  Logical Separation with IP Subnets

Chapter 6 Data Security in Data Lakes

229

Network firewalls protect the internal network from unauthorized

and malicious access from external agents. It can be configured to limit

access to the outside from internal users. Firewall constantly monitors

all incoming and outgoing traffic. It might restrict specific applications

from accessing the network, block URLs from loading, and prevent traffic

through certain network ports.

There could be network firewalls which block everything except the one

(or few) which has been explicitly enabled for access. This practice helps

in safeguarding the network from malicious threats. Firewall analyzes and

hence protects the intranet based on the incoming IP, ports, and protocols.

Intrusion Detection and prevention is the process of monitoring the

events occurring in your network and analyzing them for signs of possible

incidents, violations, or imminent threats to your security policies. On

the other hand, prevention is the process of detecting an intrusion and

stopping such incident. These security measures are available as intrusion

detection systems (IDS) and intrusion prevention systems (IPS), which

become part of your network to detect and stop potential incidents. IDS

logs can be captured, analyzed, and sent to monitoring systems for alerts.

Intrusion detection can be signature based or anomaly based. Intrusion

Prevention Systems monitors and tries to stop the intrusion.

Intrusion Prevention
Systems (IPS)

Switch
(Distributed)

Reactive monitoring

Monitoring
system

Intrusion
Detection
System

Cluster
Proactive monitoring

Internet

Router

Figure 6-4.  Reactive monitoring versus Proactive monitoring using
IPS and IDS processes

Chapter 6 Data Security in Data Lakes

230

�Hadoop Roles within a cluster
Security policies can be applied to node groups in the cluster based on

the roles each group plays and the services they provide. In a typical

Hadoop Cluster, the various groups can be Master nodes, Worker nodes,

Management Nodes, and Edge Nodes.

�Master Node Group

This group includes all those nodes which host the master services like,

Namenode, Standby name node, Resource Manager, Hive Server, and

zookeeper. These services should be able to access other services, also

since they are the important services, the security on these nodes should

be high.

Client

Sec Name
Node

Data Node

Name Node

Data Node Data Node Task Tracker Task Tracker

Job Tracker

HDFS (Distributed File System) MapReduce (Distributed Data Processing)

Figure 6-5.  Hadoop storage and processing framework

A normal user/program should not be permitted to access these

nodes, as it may cause the accidental vulnerabilities and situations such as

confidential data access and service outages.

Chapter 6 Data Security in Data Lakes

231

�Worker Node Group

This group includes all those nodes which host the worker services such as

Data Node services, Node Managers, and Task Trackers. Worker nodes need

network level access to the respective master nodes as they communicate

through RPC and TCP IP. Like master nodes, worker nodes also need a high

security. Only the administrators should be allowed to access these nodes.

�Management Nodes

Management nodes facilitate the seamless operation of the cluster by

providing the configuration management, monitoring, and alerting. These

nodes will typically contain the initial repositories from which the whole

cluster will be built. It could be hive metastore, oozie, or Ambari server.

Apache Ambari is a management software of Hortonworks

distribution. The server on which the Ambari is installed is a management

node. It needs a backend database which again will be a management

node. Since the security vulnerabilities on these nodes could cause the

disturbance in the whole cluster, careful access management is needed.

�Edge Nodes

The edge nodes host various clients with which the user interacts, such

as Hive/Spark Clients, Gateways, Sqoop, Oozie clients, and Hue/Ambari

views. Users can be classified based on their cluster usage.

�Data security layers

For large enterprise systems, it is difficult to implement a data security

solution that spans across different layers of data lake ecosystem.

A system may offer multiple entry points like storage, network, and the

user community. Therefore, it is a good practice to follow layered approach

to secure all such points that can potentially expose vulnerability.

Chapter 6 Data Security in Data Lakes

232

Let us go through the phases of data movement and see how unsecure

points can be prevented from being attacked.

	 1.	 Data enters into lake via network – Network security

layer prevents malicious attacks by authenticating users

before they are allowed to access Hadoop data lake.

	 2.	 Storage – Data that resides within the lake is of

huge business value and in order to secure this

data, a strong encryption layer is a recommendable

solution. We may go with Transparent Data

Encryption (TDE), Ranger KMS, and many others

who assure storage level encryption.

	 3.	 Data currently being accessed – The data which is

selected from the lake should travel securely within

data lake. Ranger offers wide variety of security features

at the granular data level and can be used to implement

dynamic column masking or row filtering for hive.

�Host Firewalls for operating system security
Host firewalls can be iptables also called as Packet Filters, in Linux kernels,

or the set of programs that intercept network traffic. A proxy server enables

the connection on behalf of a specific network application from one

network to another. Proxies are usually slower than packet filters.

IPTables policies can be configured to intercept the Hadoop cluster

traffic. A typical Hadoop cluster will have certain common ports for

different services. Iptables rules can be configured to restrict the traffic,

through the IPs and these ports. The rules can be tightened or relaxed

based on the requirement. For example,

iptables -A hdfs -p tcp -s 0.0.0.0/0 --dport 50070- -j ACCEPT

Chapter 6 Data Security in Data Lakes

233

The above command will allow all the servers (0.0.0.0) to connect

to the node, as the incoming IPs are not restricted. But the below one is

stricter where it allows only a server with the IP 10.230.224.18 to connect.

iptables -A hdfs -p tcp -s 10.230.224.18/32 --dport 50070- -j

ACCEPT

Above command will be useful in a setup where all the

communications to the cluster are done via edge node. The edge node IP

must be added to the iptables policy.

�Data in Motion
Data in motion is holds primary relevance due to its ability to drive

actionable intelligence. However, beware of the fact that data is most

vulnerable when in motion during the communication. It is the time

during which data leaves the network and routes through unknown

network components leaving it open for various forms of attack, hence

data in motion must be protected.

Research has been published to tackle this problem and the core idea

revolves around creating an encrypted channel. There are various layers of

OSI stack on which this channel can be created but the most popular ones

are built around Transport Layer of Open Systems interconnection (OSI)

stack. Encrypting transport layer has benefits around encryption reuse

across the applications.

�Communication Problem
A typical communication can be showcased using scenario depicted by

Figure 6-6.

Chapter 6 Data Security in Data Lakes

234

Sender A wants to send data to Receiver B securely. We don’t want

Attacker C to decipher or manipulate the communication between A and B.

This can be achieved by encrypting the data between A and B so that C

cannot understand and hence can’t manipulate the data. Along with the

confidentiality, it is also necessary that both A and B authenticate each

other first before communicating as attacker C posing as either A or B can

compromise the system.

Hence, there are 3 major problems which need to be addressed for a

secured communication.

	 1.	 Authentication - Proving that you are who you claim

to be

	 2.	 Confidentiality – Ensuring that only authenticated

and intended user can read the data

	 3.	 Integrity – Ensuring that data is not tampered

How to solve this? Well, all three problems are currently being ensured

by a class of algorithms called as Asymmetric key algorithms. It is also

publicly known as public/private key cryptography.

Sender A

Attacker C

Receiver B

Figure 6-6.  Security attack on the communication channel set
between A and B

Chapter 6 Data Security in Data Lakes

235

A message encrypted with a public key can only be decrypted with a

private key and vice versa. The private key is held as secret and the public

key is open to public. This solves following problems

	 1.	 Authentication, which is done by Digital signatures.

In this a message signed by sender using his private

key. Anybody with sender’s public key can decrypt

the message and if successful can be confident that

only the person with private key would have been

able to encrypt that data.

	 2.	 Integrity is ensured by the encryption. The message

becomes the input for the encryption algorithm and

thus the decryption will only be successful if the

intended message was same.

	 3.	 Confidentiality is maintained by signing the

message with a person’s public key. Hence the

message can only be decrypted by a person who has

the secret private key.

Two algorithms which are commonly used in the industry for this are

RSA and Elliptic Curve Cryptography. Both are based on public / private

key encryption. The keys by themselves are stored in files called as

certificates. The most common of this are X.509 certificates which contain

the public keys.

To digitally sign data hash functions are used. Hash functions have

following properties.

When applied on a message the resulting message is very difficult to

decipher and don’t give a clue about the message hence impossible to

reverse. Secondly, they have less collision factor, which is two messages

with same hash function returns different results commonly used hash

functions are MD5, SHA1, and SHA2.

Chapter 6 Data Security in Data Lakes

236

The process goes like, sender creates message hash, encrypt it

with private key. The receiver receives the message use hash function

to generate the public key and decrypts the received message. If both

the messages match than it can only be generated used the same hash

functions also the one who possesses the private key would have only

been able to encrypt the message hence authentication and integrity are

maintained.

The validity of a public key is ensured by a centralized authority called

as Certificate Authorities (CA). Public Key Infrastructure (PKI) maintains

the validity and lifecycle of a certificate.

The problem with asymmetric cryptography is it is expensive for large

data. The current infrastructure that is publicly available, can encrypt

about 100kb of data efficiently, much lower than current market needs.

To cater to this problem that are separate class of algorithms called as

symmetric key algorithms where data is encrypted/ decrypted using

the same key. They are much faster than asymmetric key algorithms.

Common examples of these algorithms are AES (64- and 128-bit),

Blowfish, DES (Internal Mechanics, Triple DES), Serpent, and Twofish.

The problem with these method is to give same key to both the parties

which is very difficult task between two unknown parties. It is formalized

by exchange called as Diffie Hellman.

The overall idea is to use both the class of algorithms for their

strong points. We generally use asymmetric key algorithms for

authentication and passing the symmetric key to both the parties. And

then encrypt bulk of the messages with the symmetric keys that were

passes between each other.

This strategy is implemented at transport layer using protocols

like TLS and IPSec. TLS is successor of the old methodologies called

SSL. These strategies play an important role in giving security to data in

motion.

Chapter 6 Data Security in Data Lakes

237

�Data at Rest
Data at Rest refers to the data lying physically in a data store, warehouse,

archives, online or offline backups, or any other device. It may or may

not be under active operation but serves a decent purpose of drawing

historical insights. LUKS or Linux Unified Key Setup, can be used to

encrypt data at rest on a disk. It specifies a platform-independent standard

on-disk format which provides compatibility via standardization. The

reference implementation for LUKS operates on Linux and is based on

enhanced version of cryptsetup, using dm-crypt as the disk encryption

backend. Dm-crypt is a transparent disk encryption subsystem which uses

cryptographic routines from the Linux kernel’s Crypto API. This includes

most popularly used encryption algorithms such as AES, hash functions

such as SHA-256.

We need to encrypt data resting on a disk to prevent physical/offline

attacks on the devices. The disks may be remote locations, which makes

it necessary for us to anticipate and prevent attacks such as theft of disks

by external organizations. In an event where a LUKS-encrypted disk is

stolen, an attacker will be unable to mount this device without the valid

passphrase. Mounting the device through cryptsetup, will also require a

passphrase. Due to the protection provided by LUKS in insisting on strong

passwords, as well as use of salts to increase security against low-entropy

passwords, most of the attacks faced by other key management systems are

eliminated. LUKS also provides support for up to 8 passphrases for a disk

(Figure 6-7).

LUKS phdr KM1 KM2 KM8.... Bulk Data

Figure 6-7.  Disk layout of LUKS

From the above image, KM stands for [Key Material], while bulk data is

the user data.

Chapter 6 Data Security in Data Lakes

238

�Procedure to generate and verify key in LUKS
The user provides a passphrase. This passphrase is appended with a salt

value. The password based key derivation function (PBKDF) generates a

key from this value. With the help of encrypted master key, it is converted

into the actual master key (MK).

For the verification of key, we provide master key and the salt values to

PBKDF2 function and compare with the master key digest value as shown

in Figure 6-8.

User Mount point
LUKS encrypted

/dev/mapper/crypt
Physical Disk

/dev/sda1

Figure 6-9.  User access flow through cryptsetup

Salt and Iterations

Password/Key PBKDF2 Cipher

Master Key PBKDF2 MK Digest

MK Salt & Iterations

Key Verification

Encrypted Master
Key

Figure 6-8.  Key generation and verification in LUKS

�Access flow for the user
The user interacts with the mapper to the physical disk through the mount

point upon successful authentication through cryptsetup (Figure 6-9).

Below, we have used b-tree file system (btrfs) to measure read/write

performances before and after LUKS encryption. The below steps give

information on installation of btrfs, creating a mount point and checking

read/write performances.

Chapter 6 Data Security in Data Lakes

239

Step 1 - Install btrfs

$ yum install btrfs-progs

Step 2 - Create btrfs filesystem on disk

$ mkfs.btrfs /dev/sda1

Step 3 - For testing purpose, we mount this to /mnt

$ mount /dev/sda1 /mnt

$ chmod 777 /mnt

Step 4 - checking for write speed (file size: 948MB, total size allocated

to file system was 1GB, so we could not try for larger files)

$ dd if=/dev/sdf/test1 of=/mnt/dd-test1 bs=1M conv=fsync

Result - 72MB/s

Running the same command again,

Result - 69MB/s

Step 5 - Checking for read speed(file size:948MB)

$ dd if=/mnt/dd-test1 of=/dev/null bs=1M

Result - 79.6MB/s

Running the same command again,

Result: 3.3GB/s

Reason: Data is cached.

For using LUKS, follow the below steps:

Step1 - Unmount the filesystem

$ umount /dev/sda1

Chapter 6 Data Security in Data Lakes

240

Steps to encrypt disk using LUKS:

	 1.	 Install cryptsetup on machine

$ yum install cryptsetup-luks

	 2.	 The above command will install cryptsetup – which

is the frontend we will use to encrypt the disk with

LUKS.

Setting up LUKS on the disk /dev/sda1:

	 1.	 Format the disk, take necessary backup beforehand.

$ sudo cryptsetup luksFormat /dev/sda

	 2.	 The first time to setup luks encryption, we use

the command luksOpen as follows. The output

of this command is a prompt for the user to enter

passphrase. This is the key which will be in Key

slot 0.

$ sudo cryptsetup luksOpen /dev/sda1 crypt

	 3.	 We then use the mkfs command with the specified

filesystem – since we have btrfs(B-tree filesystem)

on /dev/sda1, we use mkfs.btrfs to create the

filesystem mapping as follows: (dev/mapping is the

directory where we store the logical mapping of the

filesystem)

$ sudo mkfs.btrfs /dev/mapper/crypt

	 4.	 We now mount the filesystem from the mapper as

follows:

$ sudo mount /dev/mapper/crypt /mnt

Chapter 6 Data Security in Data Lakes

241

	 5.	 We add necessary permissions to the directory using

chmod:

$ sudo chmod 777 /mnt

After LUKS encryption:

	 1.	 After encrypting the disk /dev/sda1 with Luks, check

for luks dump to see the key slots which are active

and cipher text

$ cryptsetup luksDump /dev/sda1

	 2.	 Output of luksDump is seen in Figure 6-10.

Figure 6-10.  LUKS dump output

Chapter 6 Data Security in Data Lakes

242

	 3.	 As sda1 is encrypted, mounting it is not possible

$ mount /dev/sda1 /mnt gives us the error: “unknown

filesystem type:crypto-LUKS”

	 4.	 We have to open /dev/sda1 with cryptsetup, it

requires the passphrase provided earlier

$ cryptsetup open /dev/sda1 crypt – this

command requests a passphrase, providing the wrong

passphrase makes it prompt again, Correct passphrase

lets the device be accessible through the logical

mapping that we have named crypt.

	 5.	 Mount /dev/sda1 through the logical volume /dev/

mappercrypt

$ mount /dev/mapper/crypt /mnt

	 6.	 You can now access the files on sda1 through the

mount point /mnt.

Figure 6-11.  Using cryptsetup to access the device

Chapter 6 Data Security in Data Lakes

243

�Performance using LUKS
Below commands can give you read and write speed of LUKS

implementation. Note that these numbers are system dependent and may

show different values on your system.

Checking for write speed:

$ dd if=/dev/sdf/test1 of=/mnt/dd-test1 bs=1M conv=fsync

Result - 71MB/s

Checking read speed:

$ dd if=/mnt/dd-test1 of=/dev/null bs=1M

Result - 91MB/s

�Multiple passphrases with LUKS
To add a new key, use the following command. It requires one of the

existing passphrases to allow setting a new passphrase.

	 1.	 $ cryptsetup luksAddKey /dev/sda1 prompts

for existing passphrase and then allows us to

setup a new one. This will make Key Slot 1 active.

Run luksDump command again to check active

key slots.

	 2.	 We can set up to 8 passphrases for a single device.3

3�https://wiki.archlinux.org/index.php/Dmcrypt/Device_encryption#
Cryptsetup_passphrases_and_keys

Chapter 6 Data Security in Data Lakes

https://wiki.archlinux.org/index.php/Dmcrypt/Device_encryption#Cryptsetup_passphrases_and_keys
https://wiki.archlinux.org/index.php/Dmcrypt/Device_encryption#Cryptsetup_passphrases_and_keys

244

�Kerberos
Kerberos is a computer network and authentication protocol that works

based on tickets to allows nodes to communicate over a non-secure

network to prove their identity to one another in a secure manner. In

simple terms, it employs strong authentication methods to establish a

user’s identity to allow secure access in data lake.

Users, devices, and services that deploy Kerberos security framework

need only to trust the Key Distribution Centre (KDC). It runs as a single

process and offers two services, namely, an authentication service and a

ticket granting service. KDC tickets enable mutual authentication which

allows nodes to securely prove their identity to one another.

Kerberos derives its name from a Greek mythology character Kerberos,

the three-headed guard dog of Hades. Primarily, it was designed for client-

server model to provide mutual authentication to users and servers for

identity verification. Kerberos was originally developed for Project Athena

at the Massachusetts Institute of Technology (MIT).

�Kerberos Protocol overview

	 1.	 The identities on Kerberos is called principals. Every

user and service that participates in the Kerberos

authentication protocol requires a principal to

uniquely identify itself.

	 2.	 Principals are of two categories.

	 a.	� User principals - User principals relate to

username and accounts in a OS.

	 b.	� Service principals - Service principals represents

services that a user need to access, such as a

specific server or a database.

Chapter 6 Data Security in Data Lakes

245

	 3.	 Kerberos realms - A Kerberos realm is an

authentication administrative domain. All the

principals are assigned to a realm.

	 4.	 Key Distribution center (KDC) - The KDC has three

components.

	 a.	� Kerberos database - It stores all the information

about the principal and realm they belong to,

along with other information.

i.	� Kerberos principals in the database are

stored with the below naming convention:

	 1)	� greg@TEST.COM - A user principal that is

distinctly identifies the user - Greg in the

realm TEST.COM. Always the realm name

is in the upper case.

	 2)	� Julie/admin@TEST.COM - A different

way to put the user principal. Here the

administrator Julie in the realm TEST.

COM. The “/” (slash) separates the short

name and the admin.

	 3)	� hdfs/node02.test.com@TEST.COM - This

is a example of server principal from the

HDFS service on the host node02.test.

com in the TEST.COM.

	 b.	� Authentication service - An authentication

service, also known as a ticket-granting

ticket (TGT), is a small amount of encrypted

data that is issued by a server in the

Kerberos authentication model to begin the

authentication process. When a client receives

an authentication ticket, it sends back the

Chapter 6 Data Security in Data Lakes

246

ticket to the KDC server along with its identity

information. The KDC server generates a

service ticket and a session key (which includes

a form of password), thereby completing the

authorization process for that session.

	 c.	 Ticket granting service (TGS) - TGS is

responsible for validating ticket-granting tickets

and granting service tickets. Service tickets

enable authenticated principals to use the

service provided by the application server and

identified by the server principal.

�Kerberos components
Let us check out the Kerberos components before discussing the flow.

	 1.	 TGT: Ticket Granting Ticket or Ticket to Get Tickets

(TGT) is a small, encrypted identification file with

a limited validity period. After authentication, this

file is granted to a user to establish a secure client-

server session for the needed service.

	 2.	 Kerberos Principal - A principal is an identity in the

cluster for any service, node or user.

	 3.	 Kerberos Realm - The term realm indicates an

authentication administrative domain, that defines a

group of systems that are under the same master KDC

(Key Distribution Center/Kerberos Domain Controller)

Server. KDC server runs two functional service.

	 a.	� AS - Authentication Service – Authenticates

Kerberos principals

	 b.	� TGS: Ticket Granting Service - Grants access to

specific services

Chapter 6 Data Security in Data Lakes

247

�Kerberos flow
A user Greg is trying to connect to a domain test.com on a particular

node (node02) through a service. Let us understand how Kerberos will

authenticate Greg before allowing him to access the desired domain.

Let us distinctly identify the kerberos components from our example.

•	 Kerberos Realm is the domain, i.e., TEST.COM.

•	 USER of a System with Kerberos user principal

greg@TEST.COM, i.e., Greg

•	 A service within the cluster that will be hosted on node,

node02.test.com identified by testservice/node02.

test.com@TEST.COM

The KDC Server for the Kerberos realm TEST.COM - kdc.test.com

	 1.	 Greg needs to obtain a TGT. To do this, he initiates a

request to the AS at kdc.test.com, identifying himself

as the principal greg@TEST.COM.

	 2.	 The Authentication service responds by providing a

TGT that is encrypted with Greg’s secret key.

	 3.	 Upon receipt of the encrypted message, Greg is

prompted to enter the correct password for the

principal greg@TEST.COM in order to decrypt the

message.

	 4.	 After successfully decrypting the message

containing the TGT, Greg now requests a service

granting ticket from the TGS at kdc.test.com for the

service within the realm (TEST.COM) identified as

hdfs/node02.test.com@TEST.COM, presenting the

TGT along with the request.

Chapter 6 Data Security in Data Lakes

248

	 5.	 The TGS validates the TGT and provides Greg a

service ticket encrypted with the hdfs/node02.

test.com@TEST.COM principal key

	 6.	 Greg now presents the service ticket to server

hosting the service, which then decrypt it using the

hdfs/node02.test.com@TEST.COM key and validate

the ticket. Thus, the server allows access to the client

(Greg) to use the service by establishing a client-

server session after a successful authentication has

been achieved.

Kerberos Realm for bigger organizations - While a single realm

works well for an organization but often but it often not realistic for

some bigger enterprises. Over a period, larger organizations end up

setting multiple realms just to simplify and to segregate different part

of the organization. By default, KDC is known for its own realm,

principals and database. If a user from one realm wants to use a service

that is controlled by another realm then a Kerberos trust is needed

between the two realms. Let’s say a FINANCE and an HR professional

need to talk to each other then they need to trust the information of

each other realms.

So basically, there are two kinds of trust, one-way and two-way trust.

Let’s say Finance realm needs to access the HR realm. This scenario

requires one-way trust. To establish two-trust, i.e., full trust, the principals

need to exist on both the realms. For example - for the HR.TEST.COM

realm to have a full trust with the FINANCE.TEST.COM realm, both the

principals krbtgt/FINANCE.TEST.COM@HR.TEST.COM and kbrtgt/HR.TEST.

COM@FINANCE.TEST.COM.

Chapter 6 Data Security in Data Lakes

249

�Kerberos commands
Below is the list of Kerberos administrative commands.

	 1.	 KINIT – kinit obtains and caches an initial ticket-

granting ticket for principal.

	 2.	 Kinit using keytab file – A keytab is a file

containing pairs of Kerberos principals and

encrypted keys (which are derived from the

Kerberos password). You can use a keytab file

to authenticate to various remote systems using

Kerberos without entering a password. However,

when you change your Kerberos password, you

will need to recreate all your keytabs. Keytab

files are commonly used to allow scripts to

automatically authenticate using Kerberos,

without requiring human interaction or access to

password stored in a plain-text file. The script is

then able to use the acquired credentials to access

files stored on a remote system.

	 3.	 KLIST - klist lists the Kerberos principal and

Kerberos tickets held in a credentials cache, or the

keys held in a keytab file.

	 4.	 KDESTROY - The kdestroy utility destroys the user’s

active Kerberos authorization tickets by overwriting

and deleting the credentials cache that contains

them. If the credentials cache is not specified, the

default credentials cache is destroyed.

Chapter 6 Data Security in Data Lakes

250

Kerberos principles mapping to usernames – Kerberos uses two

principals (greg@TEST.COM) or three parts (hdfs/node02.test.com@TEST.COM),

that contains short name, realm and optional instance name or hostname.

To simplify working with usernames, Hadoop maps Kerberos principal

names to local usernames by using auth_to_local setting in the krb5.conf

file, or Hadoop specific rules can be configured in the Hadoop.security.

auth_to_local parameter in the core-site.xml.

A mapping consists of a set of rules that are evaluated in the order

listed in the Hadoop.security.auth_to_local property. The first rule

that matches a principal name is used to map that principal name to a

short name. Any later rules in the list that match the same principal name

are ignored. You specify the mapping rules on separate lines the Hadoop.

security.auth_to_local property as follows:

<property>

 <name>Hadoop.security.auth_to_local</name>

 <value>

 RULE:[�<principal translation>](<acceptance filter>)

<short name substitution>

 RULE:[�<principal translation>](<acceptance filter>)

<short name substitution>

 DEFAULT

 </value>

</property>

Hadoop user to group mapping – The groups of a user are determined

by a group mapping service provider. Hadoop supports various group

mapping mechanisms, configured by the Hadoop.security.group.

mapping property. This means that only the groups that are configured on

the server where the mapping is called are visible to Hadoop. In practice

it is very important for all the servers in your Hadoop cluster to have a

consistent view of the users and groups that will be accessing the cluster.

Chapter 6 Data Security in Data Lakes

251

<property>

<name>Hadoop.security.group.mapping</name>

<value>org.apache.Hadoop.security.LdapGroupsMapping</value>

</property>

Users to group mapping using LDAP - For the environment where

the groups are only available from the LDAP or Active Directory server

not from the cluster nodes. Hadoop provides LdapGroupsMapping

implementation. This method can be configured by setting parameters in

the core-site.xml on the namenode, jobtracker, or resourceManager.

This provider supports LDAP with simple password authentication

using JNDI API. The parameter Hadoop.security.group.mapping.ldap.

url must be set. This refers to the URL of the LDAP server for resolving

user groups.

The Hadoop.security.group.mapping.ldap.base configures the

search base for the LDAP connection. This is a distinguished name, and

will typically be the root of the LDAP directory. Get groups for a given

username first looks up the user and then looks up the groups for the user

result. If the directory setup has different user and group search bases, use

the parameters Hadoop.security.group.mapping.ldap.userbase and

Hadoop.security.group.mapping.ldap.groupbase configs.

If the LDAP server does not support anonymous binds, set the

distinguished name of the user to bind in Hadoop.security.group.

mapping.ldap.bind.user parameter. The path to the file containing the

bind user’s password is specified in Hadoop.security.group.mapping.

ldap.bind.password.file. This file should be readable only by the Unix

user running the daemons.

It is possible to set a maximum time limit when searching and awaiting

a result. Set Hadoop.security.group.mapping.ldap.directory.search.

timeout to 0 if infinite wait period is desired. Default is 10,000 milliseconds

(10 seconds). This is the limit for each LDAP query. If Hadoop.security.

group.mapping.ldap.search.group.hierarchy.levels is set to a positive

Chapter 6 Data Security in Data Lakes

252

value, then the total latency will be bounded by max(Recur Depth in LDAP,

Hadoop.security.group.mapping.ldap.search.group.hierarchy.

levels) * Hadoop.security.group.mapping.ldap.directory.search.

timeout.

The Hadoop.security.group.mapping.ldap.base configures how far

to walk up the groups hierarchy when resolving groups. By default, with a

limit of 0, in order to be considered a member of a group, the user must be

an explicit member in LDAP. Otherwise, it will traverse the group hierarchy

Hadoop.security.group.mapping.ldap.search.group.hierarchy.

levels levels up.

<property>

<name>Hadoop.security.group.mapping.provider.ad4usersX.ldap.

url</name>

<value>ldap://ad-host-for-users-X:389</value>

 <description>

 �ldap url for the provider named by 'ad4usersX'. Note this

property comes from

 'Hadoop.security.group.mapping.ldap.url'.

 </description>

</property>

<property>

<name>Hadoop.security.group.mapping.provider.ad4usersY.ldap.

url</name>

<value>ldap://ad-host-for-users-Y:389</value>

 <description>

 �ldap url for the provider named by 'ad4usersY'. Note this

property comes from

 'Hadoop.security.group.mapping.ldap.url'.

 </description>

</property>

Chapter 6 Data Security in Data Lakes

253

Hadoop Users – In a Hadoop environment all the Hadoop users of a

cluster must be provisioned on all the servers of the cluster. These users

can exist on the local /etc/passwd password file or, more commonly can

be provisioned by having the servers access a network based directory

service like open-LDAP or Active Directory.

Authentication – If Hadoop is configured with all its defaults, Hadoop

doesn’t do any authentication of users. This is an important realization to

make, because it can have serious implications in a corporate data centre.

Let’s say Greg User has access to a Hadoop cluster. So far, no security

regulations have been imposed on the Hadoop cluster. Users can interact

without any authentication. Although Greg is neither a superuser nor

has hdfs user password, but he has access to the client machine which is

configured to access the cluster. Irresponsibly, he issues two commands:

sudo useradd hdfs

sudo -u hdfs Hadoop fs -rmr /

Needless to say, the cluster has gone off and deleted everything. So,

what has just happened? In an unsecured cluster, by default, NameNode or

JobTracker don’t require any sort of authentication. This implies that you

can do all those operations that fall under the bucket of hdfs and mapred

users.

In a distributed system, it is important that all requests by a user is

validated by user identity. We need to authenticate every interaction.

For example, in a mapreduce job, the authentication happens between

the client and the namenode and between client and the job tracker.

In order to submit the job, a jobtracker then creates multiple tasks that

are launched by each taskTracker in the cluster. Each tasktracker has to

communicate with the namenode in order to open the files that make up

its input split. For the NameNode to enforce filesystem permissions, each

task should authenticate against the NameNode. Hadoop adopts token-

based authentication approach to whitelist a client and allow it to issue an

action on the cluster.

Chapter 6 Data Security in Data Lakes

254

Hadoop solves this problem by issuing authentication tokens that can

be distributed to each task but are limited to a specific service. Let us check

how this delegation tokens work –

	 1.	 A client issues an RPC to request a delegation token

via Kerberos ticket for authentication.

	 2.	 NameNode receives and responds with a delegation token.

	 3.	 Once authentication is done, client is allowed

to issue an action using the delegation token for

authentication.

	 4.	 After the token gets validated, NameNode acts to the

command issued by the client

Authorization – Authorization is an approach to define what you can

access and what not. Remember authentication gives a technique to prove

one’s identity, while authorization is a post-authentication activity that

justifies your access rights within a Hadoop cluster. In HDFS authorization

is realized through file permissions.

If you run ls -l in a directory, you will get the listing as below.

[etl@ip-etl]$ Hadoop fs -ls /apps/hive/warehouse/db/

Found 3 items

drwxrwxrwx -etl hdfs 0 2018-02-22 10:13 /apps/hive/

warehouse/db/employees

drwxrwxrwx -etl hdfs 0 2018-02-22 10:13 /apps/hive/

warehouse/db/departments

drwxrwxrwx -etl hdfs 0 2018-02-22 10:13 /apps/hive/

warehouse/db/locations

[etl@ip-etl]$ Hadoop fs -ls /apps/hive/warehouse/db/employees

Found 1 items

-rwxrwxrwx 3 hive hdfs 21839221 2018-02-25 13:40 /apps/hive/

warehouse/db/employees/000000_0

Chapter 6 Data Security in Data Lakes

255

How a client authorizes its access to a block situated on a datanode?

It is done through a block access token mechanism. A standard

authorization process goes through the following steps:

	 1.	 An authenticated client issues a read request

	 2.	 NameNode gathers the information about the data

blocks, data nodes, and the closest data node from

the meta-information memory structure

	 3.	 NameNode sends the block address information to

the client along with the block access token

	 4.	 Client selects the closest data node based on the

information received from the NameNode

	 5.	 Client requests the block with block access token

from the closest data node

	 6.	 Data node that receives the request verifies

authenticated information of the requested block

	 7.	 Token authenticator is created out of block access

token and secret key shared by the NameNode.

Secret key is an authentication token between

a NameNode and data node. It is renewed

regularly and shared by NameNode via heartbeat

communication channel. The secret key encrypts

the block access token requested by a client.

	 8.	 Created and Received token authenticators are

compared. When matched, the requested block is

sent to the client.

The Hadoop Distributed File System (HDFS) implements a

permissions model for files and directories that shares much of the POSIX

model. Each file and directory is associated with an owner and a group.

Chapter 6 Data Security in Data Lakes

256

The file or directory has separate permissions for the user that is the owner,

for other users that are members of the group, and for all other users. For

files, the r permission is required to read the file, and the w permission is

required to write or append to the file. For directories, the r permission is

required to list the contents of the directory, the w permission is required

to create or delete files or directories, and the x permission is required to

access a child of the directory.

In contrast to the POSIX model, there are no setuid or setgid bits for

files as there is no notion of executable files. For directories, there are no

setuid or setgid bits directory as a simplification. The sticky bit can be set

on directories, preventing anyone except the superuser, directory owner

or file owner from deleting or moving the files within the directory. Setting

the sticky bit for a file has no effect. Collectively, the permissions of a

file or directory are its mode. In general, Unix customs for representing

and displaying modes will be used, including the use of octal numbers

in this description. When a file or directory is created, its owner is the

user identity of the client process, and its group is the group of the parent

directory

�HDFS ACL
With the release of Hadoop 2.4, we can now use extended ACL’s. These

ACL’s work very much the same way as in any unix OS. ACLs are useful

for implementing permission requirements that differ from the natural

organizational hierarchy of users and groups. An ACL provides a way to set

different permissions for specific named users or named groups, not only

the file’s owner and the file’s group.

By default, support for ACLs is disabled, and the NameNode disallows

creation of ACLs. To enable support for ACLs, set dfs.namenode.acls.

enabled to true in the NameNode configuration.

Chapter 6 Data Security in Data Lakes

257

�HDFS Authorization with Apache Ranger
Apache Ranger provides a user synchronization utility to pull users and

groups from Unix or from LDAP or Active Directory. The user or group

information is stored within Ranger portal and used for policy definition.

HDFS is core part of any Hadoop deployment and to ensure that data

is protected in Hadoop platform, security needs to be baked into the HDFS

layer. HDFS is protected using Kerberos authentication, and authorization

using POSIX style permissions/HDFS ACLs or using Apache Ranger.

Apache Ranger is a centralized security administration solution for

Hadoop that enables administrators to create and enforce security policies

for HDFS and other Hadoop platform components. Apache Ranger offers

a federated authorization model for HDFS. Ranger plugin for HDFS

checks for Ranger policies and if a policy exists, access is granted to user.

If a policy doesn’t exist in Ranger, then Ranger would default to native

permissions model in HDFS (POSIX or HDFS ACL). This federated model

is applicable for HDFS and Yarn service in Ranger.

Fallback to HDFS native
permissions if no Ranger
policy exists

Ranger policies for
HDFS

POSIX permissions/
HDFS ACL

Deny

Grant
Access

Ranger

Figure 6-12.  Apache Ranger’s federated authorization model

Chapter 6 Data Security in Data Lakes

258

For other services such as Hive or HBase, Ranger operates as the sole

authorizer which means only Ranger policies are in effect. The option

for fall back model is configured using a property in Ambari ➤ Ranger ➤

HDFS config ➤ Advanced ranger-hdfs-security.

�What Ranger does?
Apache Ranger offers a centralized security framework to manage fine-

grained access control across HDFS, hive, hbase, storm, Knox, Solr, Kafka,

Nifi, and Yarn. Apache Ranger console, security administrators can easily

manage policies for access to files, folders, databases, tables, or column.

These policies can be set for individual users or groups and then enforced

consistently across Hadoop stack.

The Ranger Key Management Service (Ranger KMS) provides a scalable

cryptographic key management service for HDFS “data at rest” encryption.

Ranger KMS is based on the Hadoop KMS originally developed by the

Apache community and extends the native Hadoop KMS functionality by

allowing system administrators to store keys in a secure database.

Ranger also provides security administrators with deep visibility

into their Hadoop environment through a centralized audit location that

tracks all the access requests in real time and support multiple destination

sources including HDFS and Solr.

HBase Ranger Plugin
Range policy server

Range Audit server

Range
Administrator

Ranger Plugin

Ranger Plugin

Ranger Plugin

Ranger Plugin

Ranger Plugin

Kafka

Hive Server 2

HDFS

YARN

Presto

Figure 6-13.  Ranger setup for Hadoop stack

Chapter 6 Data Security in Data Lakes

259

Ranger Admin – The ranger admin portal provides an interactive

interface for security administration. Security admins can create or modify

policies via portal. It has an audit server that collects and ships audit data

from plugins to HDFS database.

Ranger Plugin – Ranger plugins are java-based programs which are

embedded within each component process. Figure 6-13 shows individual

ranger plugin embedded within hive server2, YARN, Kafka, or Presto.

Plugins pull policies from a central over and store it locally. During the

event of a user request, plugin intercept the request for evaluation against

the policy definition. It is also responsible for sending data to the audit

server.

User group sync – Ranger helps with the user synchronization by

pulling users and groups from LDAP or active directory and storing them

within ranger.

�Conclusion
The chapter talks about data lake security in an offbeat manner. The reason

for being offbeat is that it doesn’t dive into the layers of data masking in

hive or password protection. Instead, it makes a fair attempt at developing

the security awareness and thought process behind architecting a security

framework for data lakes. We discussed the security aspect of data in

motion as well as at rest. The use-case showcasing Kerberos security

framework will help the readers to understand how Kerberos helps in

establishing identity for clients, hosts, and services, without any chance of

network leakage. Not just that, it can be extended and integrated with other

identity management tools like LDAP and active directory.

In the next chapter, we are going to cover high availability of data

lakes. Not just the high availability to Hadoop components, we’ll also see

how to setup multi-site data sites in active-passive and active-passive

configurations.

Chapter 6 Data Security in Data Lakes

261© Saurabh Gupta, Venkata Giri 2018
S. Gupta and V. Giri, Practical Enterprise Data Lake Insights,
https://doi.org/10.1007/978-1-4842-3522-5_7

CHAPTER 7

Ensure High
Availability of
Data Lake

“When human judgment and big data intersect, there are
some funny things that happen”

—Nate Silver, founder and editor in chief of FiveThirtyEight

Such is the power of data analytics, that enterprises are almost resting on

to the daily nuggets of information that can unlock and drive new business

opportunities. The art and exercise of data accumulation, real-time

processing, and data crunching help businesses with the most distilled

format of information. It keeps them at pace with the market information,

understand industry trend and act fast. With such a dependency on day

to day life with data, organizations pay utmost attention towards support

functions of enterprise data lake. Data lake support functions include

data quality, governance, architecture, and administration. One of the

administrative aspects of data lake is availability and disaster recovery.

262

Why availability of data lake is critical to the business? Think of a heavy

part production unit whose assembly line is dependent on data which is

an analytical function of enterprise resource planning, data warehouse,

customer services, and few statistical models. If the consumption layer

data is stale or unavailable, it may incur direct impact on the business.

Similarly, if retail analytics run deep, the learning model on consumer

behavior and releases purchase vouchers to potential buyers, it will fail to

contemplate if data lake is unavailable. In another peculiar case of data-

driven forecasting, regular and in-advanced seismic updates are required

by weather forecasters to act swiftly, ensure safety, minimize capital losses,

and plan remedy actions well in advance. Data lake must be available to

certain the continuity of daily analytical insights.

Disaster recovery is yet another term that gets associated with high

availability of a data lake ecosystem. As “data lakes” become more

business-critical in nature, grow in terms of volume, multi-fold data

ingestion and egression, and operate in continuous streams, conventional

disaster recovery strategies no longer go well with enterprises. The fact

is imperative that organizations are implementing a data lake disaster

recovery plan that can prepare for outages during failure events.

This chapter will shift gears to one of the crucial aspect of data

governance, i.e., data availability. We will discuss high availability patterns

of a Hadoop cluster and what could be the strategy to mitigate risks during

outages. We will cover disaster recovery strategies in the context of data lake.

�Scale Hadoop through HDFS federation
Data scaling is one thing which is gripping within the organizations who

are dealing with deluge of data sets. A scalable data lake builds strong

immunity against the meteorically growing and rapidly changing data

sets. If you hear your users complaining about service outages or slow

performance due to high disk usage or low memory, you must be ready

Chapter 7 Ensure High Availability of Data Lake

263

with the toolkit for data scaling. We assume that the readers would be

aware of scale-up and scale-out approaches of data scaling.

Before getting into the intricacies of Hadoop high availability, let

us understand how Hadoop maintains and promotes the quotient of

scalability in business-critical environments. Hadoop 1 was, by far,

presented a suboptimal framework that assured of restrained availability

and scalability. Some of the major challenges with Hadoop 1 architecture

are listed below.

	 1.	 Availability constraints due to single NameNode –

Single NameNode exposes the risk of single point

of failure. If it fails, Hadoop cluster goes through an

outage until NameNode is brought up.

	 2.	 Scalability – Hadoop DataNodes are well scalable

and data can cut across multiple data nodes

depending upon block size and replication

factor. However, it can have a single namespace.

A NameNode holds the namespace volume in

memory, which is opaque to data nodes. To

accommodate a larger namespace volume,

NameNode can only be scaled vertically. Impact of

limited scalability are listed as below.

a.	 Ability to contain namespace volume of large size

and long duration is restricted by the compute

capacity of NameNode.

b.	 All data access requests are served by single

NameNode. NameNode and hence system’s

performance used to depend upon its throughput

capacity.

Chapter 7 Ensure High Availability of Data Lake

264

A NameNode acts as the brain of Hadoop file system. It manages a

namespace volume which facilitates an abstraction layer over namespace

and physical storage layer. Key points include:

•	 Namespace holds the metadata of Hadoop file system,

directories, and blocks.

•	 Block pool is the block management layer through

which a NameNode carries out critical block

operations like create, update, delete, underreplication,

overreplication, and block reporting.

•	 Block pool neither store data blocks nor data

blocks; they are physically stored in data nodes.

Data nodes send heartbeats to the NameNode on

periodic basis.

Hadoop 2 addressed above challenges by introducing two changes.

First, there is a provision for a standby NameNode to survive failures

in active NameNode. The editLogs maintained by active NameNode

are replicated to standby NameNode and in case of outage, standby

NameNode assume the role of primary NameNode.

Second, Hadoop 2 introduced a federated architecture of multiple

NameNodes to share namespace volumes among them. Each NameNode

manages a chunk of namespace volume and is isolated from other

contemporary NameNodes. HDFS or NameNode federation brings the

ability to scale horizontally and mitigates the memory constraint at

NameNode level. Namespace volume comprises of a namespace and pool

of blocks pertaining to that namespace.

Chapter 7 Ensure High Availability of Data Lake

265

Figure 7-1 shows the NameNode federation setup.

Key highlights and design considerations:

	 1.	 NameNode federation doesn’t hinders the working

architecture of Hadoop. Each active NameNode has

its standby counterpart.

	 2.	 If active NameNode goes down, standby NameNode

takes over and manages respective namespace volume

	 3.	 If both active and standby NameNode undergo

a failure, only the pool of blocks managed by a

NameNode become inaccessible

	 4.	 Configuration

a.	 Specify comma separated NameNode in dfs.

nameservices parameter. This should be done in

the event of initial configuration or addition of a

NameNode to the cluster.

Namespace volume
Namespace.1

NameNode1

Block Pool

Namespace.2

NameNode2

Data Nodes

Scalability
Isolation
NameNode performance

Hadoop storage

Block Pool

Namespace.3

NameNode3

Block Pool

Figure 7-1.  HDFS federation architecture

Chapter 7 Ensure High Availability of Data Lake

266

b.	 Configuration of NameNode, secondary

NameNode, and backup node must be suffixed

by the nameservice id. For example, if NS0214 is a

nameservice ID,

i.	 dfs.namenode.rpc-address.NS0214

ii.	 dfs.namenode.servicerpc-address.

NS0214

iii.	 dfs.namenode.http-address.NS0214

iv.	 dfs.namenode.https-address.NS0214

v.	 dfs.namenode.keytab.file.NS0214

vi.	 dfs.namenode.name.dir.NS0214

vii.	 dfs.namenode.edits.dir.NS0214

viii.	 dfs.namenode.checkpoint.dir.NS0214

ix.	 dfs.namenode.checkpoint.edits.dir.

NS0214

c.	 When adding a new NameNode to the cluster

i.	 Add nameservice parameter and modify

configuration file

ii.	 Start primary and secondary namenodes

iii.	 Refresh datanodes to identify new

NameNode

$HADOOP_PREFIX/bin/hdfs dfsadmin -refreshNameNodes

<DN_host>:<DN_rpcPort>

Chapter 7 Ensure High Availability of Data Lake

267

�High availability of Hadoop components
In our earlier chapter, we have discussed the Hadoop storage as well

as processing architecture. From the storage perspective, NameNode

becomes the gatekeeper of all read and put requests. Similarly, from a

processing standpoint, Hadoop offers multiple entry points to enable

data processing as per the skill knowhow, expertise with data-play, and

ability to align data exercises with service level agreements. This section

will highlight high availability configuration for different components of

Hadoop.

�Hive metastore
Hive metastore is the repository that contains metadata of all the tables

created in hive. It is used to put data in shape (or schema) while reading

data from the Hadoop cluster. Other processing frameworks like spark,

Cloudera Impala, and Oracle Big Data SQL can also leverage hive

metastore for schema readiness. Therefore, it becomes critical to ensure

that the metastore service is available to its consumers.

Standby metastore – Hive can be configured on hosts, where metastore

replication should happen. All the hosts can be specified as a list in a

configuration property hive.metastore.uris in /etc/hive/conf.server/

hive-site.xml.

<property>

 <name>hive.metastore.uris</name>

 �<value>thrift://hims1.domain.com,thrift://hims2.domain.com

</value>

 �<description> URI for hive metastore replication

</description>

</property>

Chapter 7 Ensure High Availability of Data Lake

268

By default, hive metastore client treats the first server from the list

as the primary host to run metastore service. In case the primary host

in unavailable, the client randomly picks up a server to run metastore

runs. Note that the metastore relational database should also be enabled

for high availability. Similar approach can be followed to setup high

availability of WebHcatServer and HiveServer2.

In a security-enabled cluster that requires host authentication, you can

allow hive token store by configuring hive.cluster.delegation.token.

store.class to org.apache.Hadoop.hive.thrift.DBTokenStore on all

the nodes where metastore service has been running. This setting can be

made either through Ambari, if configured, or hive-site.xml.

�HiveServer2 and Zookeeper integration
A hiveserver2 instance can be made highly available after integrating

with zookeeper. Multiple hiveserver2 instances register themselves with

zookeeper. Zookeeper returns a randomly selected instance upon client

request. Not just high availability but this also ensures appropriate load

balancing.

A hive query getting processed through zookeeper follows below steps.

	 1.	 Hive client issues a hive query

	 2.	 Hive client connects with zookeeper to receive

hiveserver2 details.

jdbc:hive2://<zookeeper_hs2_list>;serviceDiscoveryMode=

zooKeeper;zooKeeperNamespace=<hs2_namespace>

	 3.	 Zookeeper returns hiveserver2 host and port after

random selection

	 4.	 Client connects to the host and port

	 5.	 Normal query processing steps

Chapter 7 Ensure High Availability of Data Lake

269

�Setup HA for Kerberos
Key Distribution Center (KDC) being used can be setup in master-slave

mode to server HA requirements of kerberos. Follow the below steps to

setup high-availability of Kerberos key distribution center (KDC).

	 1.	 Chose a master node as slave KDC and install krb5-

server, krb5-libs, krb5-workstation

sudo yum install -y krb5-server

sudo yum install -y krb5-libs

sudo yum install -y krb5-workstation

	 2.	 Backup krb5.conf on KDC master and create its copy

on slave KDC node

	 3.	 Backup kdc.conf on slave KDC node

	 4.	 Edit kdc.conf on master and slave KDC nodes as

below

sudo vi /var/kerberos/krb5kdc/kdc.conf

[kdcdefaults]

kdc_ports = 88

kdc_tcp_ports = 88

[realms]

DLSEC-SAMPLE.DOMAIN.COM = {

#master_key_type = aes256-cts

acl_file = /var/kerberos/krb5kdc/kadm5.acl

dict_file = /usr/share/dict/words

admin_keytab = /var/kerberos/krb5kdc/kadm5.keytab

supported_enctypes = aes256-cts:normal aes128-cts:normal

des3-hmac-sha1:normal arcfour-hmac:normal des-hmac-

sha1:normal des-cbc-md5:normal des-cbc-crc:normal

}

sudo chmod 655 /var/kerberos/krb5kdc/kdc.conf

Chapter 7 Ensure High Availability of Data Lake

270

	 5.	 Update kadm5.acl on master and slave KDC nodes

vi /var/kerberos/krb5kdc/kadm5.acl

*/admin@DLSEC-SAMPLE.DOMAIN.COM *

sudo cp /var/kerberos/krb5kdc/kadm5.acl /tmp/

sudo chmod 777 /tmp/kadm5.acl

scp /tmp/kadm5.acl hdp@10.256.39.70:/tmp

scp /tmp/kadm5.acl hdp@10.256.13.2:/tmp

sudo cp /tmp/kadm5.acl /var/kerberos/krb5kdc/kadm5.acl

sudo chmod 655 /var/kerberos/krb5kdc/kadm5.acl

	 6.	 Update file /var/kerberos/krb5kdc/kpropd.acl on

Kerberos Master and Slave

sudo vi /var/kerberos/krb5kdc/kpropd.acl

host/ip-10-256-38-70.ec2.internal@DLSEC-SAMPLE.DOMAIN.COM

host/ip-10-256-13-2.ec2.internal@DLSEC-SAMPLE.DOMAIN.COM

sudo chmod 655 /var/kerberos/krb5kdc/kpropd.acl

	 7.	 Install xinetd on Kerberos and initialize kerberos

internal database on master and slave KDC nodes

sudo yum install -y xinetd

sudo kdb5_util create –s

KDC Database MAster Key: xxxxxx

	 8.	 Create an administrator principal to manage

Kerberos realm

sudo kadmin.local -q "addprinc kdcadmin/admin"

Principal password: xxxxxxx

	 9.	 Create host keytabs for slave KDC on master KDC

kadmin.local

addprinc -randkey host/ip-10-256-38-70.ec2.internal

addprinc -randkey host/ip-10-256-13-2.ec2.internal

Chapter 7 Ensure High Availability of Data Lake

271

10.	 Extract the host key for slave KDC and update the

hosts keytab file /etc/krb5.keytab.slave. Copy to

slave KDC.

-------on Master KDC--------

ktadd –k /etc/krb5.keytab host/ip-10-256-38-70.ec2.

internal

ktadd –k /etc/krb5.keytab host/ip-10-256-13-2.ec2.

internal

sudo chmod 644 /etc/krb5.keytab

-------on Slave KDC--------

scp /etc/krb5.keytab hdp@10.256.13.2:/tmp

sudo cp /tmp/krb5.keytab /etc/krb5.keytab

sudo chmod 644 /etc/krb5.keytab

	 11.	 Update /etc/services on both KDC hosts

sudo vi /etc/services

krb_prop 754/tcp # Kerberos slave propagation

	 12.	 Configure kpropd on both the KDC nodes in /etc/

xinetd.d/krb5_prop

sudo vi /etc/xinetd.d/krb5_prop

service krb_prop

{

disable = no

socket_type = stream

protocol = tcp

user = root

wait = no

server = /usr/sbin/kpropd

port = 754

}

Chapter 7 Ensure High Availability of Data Lake

272

	 13.	 Start KDC and kadmin processes on master KDC

sudo systemctl enable krb5kdc

sudo systemctl start krb5kdc

sudo systemctl status krb5kdc

sudo systemctl enable kadmin

sudo systemctl start kadmin

sudo systemctl status kadmin

	 14.	 Run xinetd as persistent service on both the KDC

hosts

sudo systemctl enable xinetd.service

sudo systemctl start xinetd.service

sudo systemctl status xinetd.service

	 15.	 Replicate KDC database to slave KDC node and start

the slave KDC

sudo kdb5_util dump /var/kerberos/krb5kdc/slave_datatrans

sudo kprop -f /var/kerberos/krb5kdc/slave_datatrans ip-

10-256-13-2.ec2.internal

sudo systemctl enable krb5kdc

sudo systemctl start krb5kdc

sudo systemctl status krb5kdc

	 16.	 Setup a cron to propagate the updates from master

KDC node to slave KDC

�NameNode high availability
Until Hadoop 1, the Hadoop cluster used to be controlled through a single

NameNode. if NameNode becomes unavailable due to machine failure,

process corruption, or even planned maintenance, the entire cluster used

to suffer an outage. With Hadoop 2, NameNode can be replicated to a hot

Chapter 7 Ensure High Availability of Data Lake

273

standby NameNode. The standby NameNode remains passive until active

NameNode goes down. In case of outages, the architecture supports both

manual as well as automatic failover to the standby NameNode.

�Architecture
In a Hadoop cluster, the active and standby NameNodes reside on two

physically different hosts; one of which actively serves data block requests

while other remains in standby mode. Standby NameNode always remains

in sync with the state of active NameNode. How this synchronization

happens? Let’s check out.

Active NameNode logs all system changes (file create/update/delete)

that are done to its namespace in editLogs. The edit log contains the

incremental system changes after the last purge to fsimage. These edits

are synchronously written over to a separate cluster of nodes, known as

journal nodes. Journal nodes are distributed set of nodes to store the edits.

The edits are replicated over the cluster of journal nodes. Standby node

scans the new changes from any of the edit replica on journal nodes and

applies them to its namespace. This achieves synchronization between

active and standby namespaces. In a cluster, minimum of three light

weighted nodes can be designated as journal nodes.

In addition to namespaces, another key aspect of high availability

architecture is data block coordinates on data nodes. Data nodes are

configured for both active and standby nodes. Data nodes communicate

heart beat to both the nodes and send block information to both

concurrently. This allows standby nodes to be data aware and helps it to

assume primary role during fast failover. The architecture diagram shown

in Figure 7-2 is for reference.

Chapter 7 Ensure High Availability of Data Lake

274

Keep in mind that active-active configuration of name nodes will not

be possible as it may lead to split-brain situations. Journal nodes allow

only one writer process at a time. If the NameNodes and journal are not in

sync, it may cause a huge risk to data precision and availability.

Below is the sample configuration in hdfs-site.xml for high availability

of NameNodes.

---------Logical name for new Nameservice---------

<property>

 <name>dfs.nameservices</name>

 <value>dl_clustr</value>

</property>

---------Configure list of NameNode identifiers in each

nameservice---------

<property>

 <name>dfs.ha.namenodes.dl_clustr</name>

 <value>nn_active,nn_stby</value>

</property>

Active

Write edits

Edits

Read edits

Standby

NameNode NameNode

Edits

Journal Nodes

Data block details and heart beat

Data Nodes (Physical storage)

Edits

Figure 7-2.  NameNode high availability architecture

Chapter 7 Ensure High Availability of Data Lake

275

---------RPC address for each NameNode---------

<property>

 <name>dfs.namenode.rpc-address.dl_clustr.nn_active</name>

 <value>dlmc1.machine.com:8020</value>

</property>

<property>

 <name>dfs.namenode.rpc-address.dl_clustr.nn_stby</name>

 <value>dlmc2.machine.com:8020</value>

</property>

---------HTTP address for each NameNode---------

<property>

 <name>dfs.namenode.http-address.dl_clustr.nn_active</name>

 <value>dlmc1.machine.com:50070</value>

</property>

<property>

 <name>dfs.namenode.http-address.dl_clustr.nn_stby</name>

 <value>dlmc2.machine.com:50070</value>

</property>

---------JN URI where the edits would be written and read by

NameNodes-----

<property>

 <name>dfs.namenode.shared.edits.dir</name>

 <value>qjournal://jnode1.machine.com:8485;jnode2.machine.

com:8485;

jnode3.machine.com:8485/dl_clustr</value>

</property>

---------JN local directory where edits could be

persisted---------

<property>

 <name>dfs.journalnode.edits.dir</name>

Chapter 7 Ensure High Availability of Data Lake

276

 <value>/dfs/journal/localdata</value>

</property>

---------Java class to ping Active NameNode---------

<property>

 <name>dfs.client.failover.proxy.provider.dl_clustr</name>

 <value>org.apache.Hadoop.hdfs.server.namenode.ha.ConfiguredFa

iloverProxyProvider

</value>

</property>

---------HA fencing configuration using shell method---------

<property>

 <name>dfs.ha.fencing.methods</name>

 <value>shell(/path/to/my/script.sh arg1 arg2 ...)</value>

</property>

�Design considerations

Below are the factors that play a vital role while panning high availability of

Hadoop NameNodes.

	 1.	 Generally, it is a good practice to maintain odd number

of journal nodes to survive maximum failures.

	 2.	 Currently, only two nodes, can be provisioned to

achieve high availability. Out of the two configured

NameNodes, whichever starts first is considered

active.

	 3.	 Guidelines for HA configuration

a.	 All nameservices should be added to dfs.

nameservices. This list should include all the

nameservices which are used for NameNode

federation.

Chapter 7 Ensure High Availability of Data Lake

277

b.	 Maximum of two namenodes associated with a

nameservice should be added for each nameservice

in dfs.ha.namenodes.[nameservice ID]

c.	 Add group of journal nodes in dfs.namenode.

shared.edits.dir for storing shared edits.

d.	 If you are not using custom class to determine

active NameNode, set dfs.client.failover.

proxy.provider.[nameservice ID] to org.

apache.Hadoop.hdfs.server.namenode.ha.Confi

guredFailoverProxyProvider.

e.	 Quorum Journal Manger prevents multiple

NameNodes to write edits on to journal nodes.

	 4.	 Fencing active NameNode inhibits split brain

situation by restraining two NameNodes from

writing edits on journal nodes at the same time.

It is always a good practice to fence NameNode even

when using quorum journal manager (QJM). During

failover, fencing ensures that the dying NameNode

doesn’t serve any few read requests before shutting

down completely. Hadoop provides two configurable

fencing methods namely, shell and sshfence.

a.	 Custom fencing logic can be specified in org.

apache.Hadoop.ha.NodeFencer

b.	 shell enables users to run a shell command in lieu

of what a usual NameNode operation could be. The

shell command may not be business relevant but

will proxy the data node request for a NameNode.

i.	 Connection timeout can be configured

using ssh.connect-timeout. Connection

timeout indicates failed fencing.

Chapter 7 Ensure High Availability of Data Lake

278

c.	 sshfence allows ssh to a target node and kills the

NameNode process using fuser. Passphrase key

to the target node must be owned by hdfs user

and should be available in dfs.ha.fencing.ssh.

private-key-files.

d.	 The result of fencing operation must be a success;

else failover to standby node might not happen

	 5.	 Manual failover – on the candidate (target)

NameNode, execute

hdfs haadmin /

-failover /

--forcefence /

--forceactive <serviceId> <namenodeId>

	 6.	 Automatic failover configuration – Done through

zookeeper quorum and ZKFailoverController

(ZKFC) process.

a.	 Apache zookeeper is a high availability service

in Hadoop cluster that monitors the cluster

component for failures. Automatic failover

mechanism requires detection of the event

when active NameNode fails and election of next

active node. The zookeeper service stays in a

live session with all NameNodes. As soon as the

session expires when active NameNode undergoes

failure, zookeeper triggers a failover notification.

Simultaneously, the successor target node acquires

an exclusive lock on zookeeper to indicate it as the

next primary NameNode.

Chapter 7 Ensure High Availability of Data Lake

279

b.	 ZKFC is a zookeeper client which is responsible for

health monitoring of NameNode by pinging and

managing the session with the active NameNode.

During active namenode election, ZKFC helps

healthy NameNode in acquiring lock.

---------Automatic failover configuration for a

nameservice-------

<property>

 �<name>dfs.ha.automatic-failover.enabled.[NameService_

ID]</name>

 <value>true</value>

</property>

---------List of hosts running zookeeper

service---------

<property>

 <name>ha.zookeeper.quorum</name>

 �<value>zookee1.machine.com:2181,zookee2.machine.

com:2181</value>

</property>

c.	 Zookeeper security – setup zookeeper

authentication and ACL for zookeeper access in

core-site.xml

d.	 Use the following command can also be used to

query the HA state of a NameNode

hdfs haadmin -getServiceState

Chapter 7 Ensure High Availability of Data Lake

280

�Data Center disaster recovery strategies
Until now, what we focused on was the high availability of Hadoop

components. Practically, in an enterprise big data lake, what we need to

prevent from losing is data and analytical models. Data lake may lose data

in the events of logical error or hardware failure. While logical errors lie in

the purview of developers and analysts, hardware failure can be further

classified as a function of risk and cost. With cost playing an adjudicator,

incidents like hardware failure due to system crashes, media failure, or

node failure have high risk but low-cost impact. Therefore, they can be

prevented by handling failure situations are the platform level. However,

there could be occasions where entire data lake becomes inaccessible

due to hardware failures, mass power outage or network failure or site

Write edits

Edits

Read edits
NameNode (A) NameNode (S)

ZKFCZKFC

Monitor NN
health & HA state

Maintain and acquire active lock

Zookeeper HA service

Zookee1 Zookee2 Zookee3

Edits

Journal Nodes

Data block details and heart beat

Data Nodes (Physical storage)

Edits

Figure 7-3.  Integrate NameNode HA services with zookeeper for
continuous monitoring and proactive alerting

Chapter 7 Ensure High Availability of Data Lake

281

shuts down under civilian circumstances. Disaster recovery targets those

instances where a data center can take over a primary data center within

permissible service outage thresholds.

For data management professionals, disaster prevention and recovery

is not a new term. While the objective remains same, the disaster

prevention strategy does changes based on service level agreements, and

platform architectures. In this section, we are going to discuss disaster

prevention and recovery strategies pertaining to Hadoop data lake.

Why to replicate a data lake? Setting up a data lake demands huge

efforts in cost, planning, defining technical design and architecture, and

streamlining daily operations. Standing up another infrastructure will

shoot up the capital investment as well as operational overhead. Therefore,

before moving on to planning phase, one must have a strong use-case and

clear objective behind setting up a replica (s). There are two parameters

that justify a replication exercise: availability and recoverability. You

tend to achieve availability by having redundant or additional supply

of resources for tolerating a fault or an outage without (or minimally

accepted) incurring any loss to the business. Recoverability can be

achieved through an alternate standby site that holds as-of-outage state

of data and can be quickly restored. High availability can be achieved by

planning high availability of member components of a site. Recoverability

addresses bigger concern when entire site has to be failed over to its

standby. Therefore, availability happens to be the subset of recoverability.

An active-passive site could be an optimal approach that achieves

recoverability and availability. An active-active setup attains the state of

nirvana by enabling active replicas to the business users, while both treat

each other as standby.

With cloud service models decently prevalent into IT these days, most

of the cloud vendors promise high availability (as high as ~99.999%) for

cloud hosted applications. Recoverability may vary by nature and service

level agreements of applications. For example, a “customer feedback”

application can compromise an outage of couple of hours, but a “sales”

Chapter 7 Ensure High Availability of Data Lake

282

application cannot. A business-critical application needs immediate

restore to its standby site in order to prevent business disruption.

Although cost of investment becomes a driving consideration, but the

organizations must determine a calculated measure of both the factors,

while justifying the proposal for a standby site. Companies with global

footprints and reginal governance laws, are forced to have an active replica

for uninterrupted analytics. In a similar scenario, a data center located

in a place which is frequent hit by natural hazards, might be looking for a

passive replica for recoverability purposes.

�Disaster recovery factors

At a high level, disaster recovery strategy involves a backup site and

switchover strategy. The nature of backup for disaster recovery is slightly

different as the expectation from disaster recovery is to cope up from

critical incidents. Let us list down the factors that play their part in

formulating an efficient disaster recovery strategy.

	 1.	 Understand data sources and data awareness –

While setting up a disaster recovery site, it is always

a better idea to understand ingredients of data lake.

How critical are the system of records? Where do

the source system exist? What is the impact if a data

mirror layer is lost?

	 2.	 Copying versus mirroring – Backup mode is an

essential parameter of restoration exercise from

disaster recovery site. Mirror images restore faster

than backup copies.

	 3.	 Backup frequency – The data change factor and

service level agreements determine the frequency at

which data flows into the disaster recovery site.

Chapter 7 Ensure High Availability of Data Lake

283

�Disaster recovery approaches

Let us start looking at the building blocks of disaster recovery strategies.

Keeping the above considerations in mind, there could be two possible

approaches to start with.

	 1.	 Dual path ingestion or Teeing – Under this method,

all distinct source systems follow a T-like two-way

ingestion pipeline and push data in production

as well as standby (or replica) data lake. Ingestion

pipeline may or may not be the same as between

data source and primary data lake. Though it can

be reused to throw data into standby site, but

parameters like scalability, cost, and performance

need to be factored in before channeling it

for standby purposes. Nevertheless, modern

commercial tools give flexibility to enable two-way

replication at different frequencies.

The model shown in Figure 7-4 invites more

arguments within the architect community than

benefits. However, in a typical “data as an asset”

world, it makes sense to ingest just the mirror layer.

Consumption layer can either be built in parallel or

whenever required by running business models to

consume mirror layer data and produces analytical

insights.

Chapter 7 Ensure High Availability of Data Lake

284

There are quite a few challenges with the parallel data

ingest approach.

a.	 Parallel data ingestion pipeline will shoot up the

resource consumption. Ingestion framework

configuration like bandwidth, network resources

needs to be re-evaluated and most possibly,

stretched out. A load balancer would be desirable

in the implementation model.

b.	 In an active-passive setup, active site is presumed

to be critical. If parallel writes are run in

asynchronous mode, maintaining standby site

as actual as primary becomes an operational

overhead. The chances of standby site getting

diverged from primary are high.

c.	 Only source data can be ingested in parallel to

both sites and not the processed data (stage or

consumption layer). Data processing models may

Data
Source

Primary Data Lake

Ing
es

tio
n Ingestion

Data Lake DR site

Figure 7-4.  T-ingestion approach to ingest data in production as well
as replica cluster

Chapter 7 Ensure High Availability of Data Lake

285

run on standby sites; however, data consistency

cannot be guaranteed. In case, business users

agree on using read-only standby site for ad-hoc

exercises, data operations must employ regular

checks and balances in place to safeguard the

sanity levels.

	 2.	 Data Center replication or Copying – This is a most

prominent approach which is practiced quite often

while planning disaster prevention measures of an

enterprise data lake. With this technique, data from

source systems gets ingested into primary data lake

only. From the active data lake, data moves to its DR

site as shown in Figure 7-5.

Data
Source

Primary Data Lake

Ing
es

tio
n

Ingestion
Data Lake DR site

Figure 7-5.  Copy approach to replicate data from production to
replica

Chapter 7 Ensure High Availability of Data Lake

286

This approach provides the flexibility of replicating

mirror as well as consumption layer to the standby

site. In case of disaster, standby can quickly resume

the role of active data lake without prolonged outage

cycles. In addition, since no processing is required

to run on replica cluster, it can be used for ad-hoc

analytics and visualization.

Contrary to the previous approach, it requires less

resources and thus, source-to-mirror ingestion

framework remains untouched. At the same time,

it puts the pressure on active data lake to replicate

data to the standby site.

While planning for large data from the production data lake to its

replica site, consider the below points.

Data awareness

Data Compression

Bandwidth requirements

Security Assessment

Recoverability SLAs

Data Compression can optimize the
data transfer operation

Identify and classify “base” data

Can optimize data ingestion rate

Data governance must classify
data as it moves over global
network

SLA for recoverability defines what
to replicate

Figure 7-6.  Key considerations when replicate large volume data
from production to replica clusters

Chapter 7 Ensure High Availability of Data Lake

287

�Data replication strategies
The dual path approach for high availability is a straightforward one. We

will stick our focus on the second approach that requires development of

new ingestion framework between active data lake and its standby site.

Factors that impact the ingestion pipeline are nearly same – data volume,

frequency, impact on data lake, resource management, and batched

ingestion versus change data capture. In this section, we will walkthrough

data replication strategies that can be practiced on a production data lake

site. These techniques form the base of many commercial and open source

replication tools as well.

	 1.	 DistCp – DistCp or Distribution Copy is one of

the most common copy solutions for Hadoop file

systems within the same data center or remote data

centers. Under the hoods, it uses mapreduce for

data distribution and recovery. It translates list of

directories and files under a namespace into map

tasks and taskTrackers copy them over to target

namespace.

Although the utility usage is pretty simple, but the

approach has some obvious limitations. The utility

being a mapreduce operation, may consume few

map slots that may impact the business operations

in data lake. In addition, since each datanode on

the source site should have write access on target

sites, the communication pattern between the two

clusters is SN*TN [SN is the count of source data

nodes, TN is the count of target data nodes]. In case

the communication channel is not setup one-on-

one between data nodes, data replication from

source to target may get impacted.

Chapter 7 Ensure High Availability of Data Lake

288

Another key consideration of distcp usage is

Hadoop version on source and target. With hdfs://

connection protocol, the source and target versions

must be same. To switch on version independent

transfer between source and target sites, enable

data transfer over HTTP by using wedhdfs://.

Another method of enabling HTTP-based transfer

is using httpfs:// protocol, which uses HTTPfs proxy

daemon for cluster communication. However, keep

in mind that both webhdfs:// and httpfs:// need to

be configured manually and are relatively slower

than native hdfs:// connection.

	 2.	 HDFS Snapshots – snapshots represent state of data

lake at a point in time. HDFS snapshots can be build

an as-is image of data lake. In addition, they can be

used to stitch data during accidental losses.

	 3.	 Hive metastore replication – Hive supports

metastore replication to other clusters with simple

configuration in hdfs-site.xml file. Although

custom replication frameworks are possible, but by

default, system uses org.apache.hive.hcatalog.

api.repl.exim.EximReplicationTaskFactory

implementation for data capture, movement, and

ingestion commands.

	 4.	 Kafka mirror maker – Apache Kafka service that acts

as a consumer in active Kafka cluster and producer

to standby Kafka cluster.

With global footprints becoming more routine, companies strive

for data availability for globally situated teams and for this, they require

a robust data replication solution that can encompass geographically

Chapter 7 Ensure High Availability of Data Lake

289

located sites and carries the ability to handle voluminous data sets in near

real-time (real-time would be incredibly welcomed though!).

With hive as a data warehousing realtor in the data lake world, it makes

a lot of sense to setup change integration between two regional data lakes.

The change integration layer accomplishes two tasks. First, it captures and

emits the changes to the standby site. Second, it instructs or mimics the

in-built writer process to ensure timely merging of changes. With a stable

integration layer, we can enable multi-directional replication and setup a

multi-site data lake. The implementation of integration layer demarcates

availability versus recoverability parameters of data lake. Let us go through

design considerations of active-passive and active-active models of setting

up high availability sites.

�Active-passive data center replication
In an active-passive setup, the standby data lake site remains in passive

state until the event of disaster on primary site. During disaster, the

primary site suffers outage and standby presumes the role of the active

site. Once the originally active site comes up, it operates in standby mode.

Since the changes must flow unidirectionally, replication can be

achieved via periodic synchronization through DISTCP. A custom

integration layer can also help in batching the changes and pushing them

over to the secondary site.

Active-passive approach appears more like backing up the site

for future recoverability, rather than available. It is read-only replica

of primary which, due to periodic synchronization, may become

inconsistent. As a result, it becomes an operational overhead to catch up

the data lags and bring in pace with the primary.

Chapter 7 Ensure High Availability of Data Lake

290

�Active-active data center replication
Not so long ago, multi-site live data lakes were a concept unexplored, but

the drastic rise in expectations, audience, and agreements has kept things

moving since last couple of years. With data democratization becoming

a thing and evolution of “citizen” data scientists out of blogs and books,

multi-site “live” data lakes have started hitting the practice.

Active-active replication allows you to ingest data from any regionally

located site. Fresh data will be replicated to all other sites in the network.

Although it challenges data governance to its limits, but you can ingest

anywhere, and analyze anywhere. It enables maximum resource utilization

within a site, brings data consistency, offers disaster coverage, shares

workload, and fences regionally located users on a democratized platform.

High level architecture diagram of active-active replication between

regional sites is shown in Figure 7-7. Note the “Change Coordination

Engine” component. It is a distributed coordination engine which is

responsible for emitting changes across all data lake sites. Changes are

nothing but any write request from the client. The change coordination

engine serves two purposes:

	 1.	 Synchronously replicates metadata across data

centers

	 2.	 Maintains order of transactions and replicates data

asynchronously

Chapter 7 Ensure High Availability of Data Lake

291

The idealistic architecture depicted in Figure 7-7 is implemented by

WANDisco Fusion. In the next couple of sections, we are going to highlight

the active-active replication capabilities of the product.

�WANDisco Fusion

WANDisco Fusion provides an active-active replication technology across

data centers. It maintains an illusionary server system, cutting across the

data lake sites and can perform at LAN speed over widely distributed

environment. Its proxy server architecture replicates every change for

selected HDFS folders.

WANDisco replicates data in block and sub-block increments and

does not require a file to be fully written and closed before replication.

Under the layers, it uses a highly efficient and fault tolerant coordination

engine that achieves ordered transaction management in a distributed

environment. It deploys a quorum-based configurable approach to freeze

the order of transactions. A quorum is a subset group of participating

nodes of the coordination cluster.

Distributed coordination is decentralized engine that manages the

transactions processing across all sites. A dedicated central coordinator

can also fit the bill but exposes the risk of single point of failure and

Data Lake Center 1 Data Lake Center 2 Data Lake Center 3

W W W

Change emit Change emit

Change Coordination Engine

Figure 7-7.  Active-active replication across data lake sites using
distributed coordination engine

Chapter 7 Ensure High Availability of Data Lake

292

becomes scalability bottleneck at times. Let us briefly understand the

distributed coordination algorithm.

�Distributed coordination

Distributed coordination engine is an implementation of Paxos consensus

algorithm.1 Under the Paxos algorithm,2

A replicated state machine is installed with each node in a
distributed system. The replicated state machines then function
as peers to deliver a cooperative approach to transaction
management that ensures the same transaction order at every
node.

Distributed coordination engine has an agent installed on nodes

of a distributed cluster, which forms a virtual namespace. While virtual

namespace of fusion nodes is consistent with respect to events, the agents

or nodes can attain the role of either proposer, or learner, or an acceptor.

You can understand these roles as the phases of the process for reaching

consensus on an active transaction. Proposer phase marks the election

of a node from the virtual namespace. Broadcast phase submits the

“transaction” proposal to other fusion nodes in the cluster for consensus.

Under accept phase, quorum of nodes accepts the proposal emitted by

the proposer; thereby reaching the consensus and establishing the order

of global sequence of events. Once consensus is reached, the proposer

broadcasts the commit messages to all fusion nodes to indicate “go-ahead”

with the transaction. Keep in mind that only cluster writes are coordinated

by the engine and not he reads. The flow and function of fusion node roles

are described in Figure 7-8.

1�The Paxos algorithm was designed by Leslie Lamport to provide a fault tolerant
and decentralized framework for enabling active-active replication.

2�Refer - https://www.wandisco.com/assets/blt1d792cb4d9252692/WANdisco_
DConE_White_Paper.pdf

Chapter 7 Ensure High Availability of Data Lake

https://www.wandisco.com/assets/blt1d792cb4d9252692/WANdisco_DConE_White_Paper.pdf
https://www.wandisco.com/assets/blt1d792cb4d9252692/WANdisco_DConE_White_Paper.pdf

293

Learn agreement in the
same order

Proposing node submits
events to a group of
acceptors

Proposer Acceptor Learner

Give agreement to the
event ordering in a global
sequence

Figure 7-8.  Roles and phases of a distributed coordination engine

�Design considerations

Below are the key characteristics and factors that can help in

understanding the replication mechanism better.

	 1.	 No changes in the working model of existing

Hadoop components. NameNode, DataNode, and

MapReduce continue to operate as usual.

	 2.	 Fusion employs Inter Hadoop Communication

Service with the storage systems like Isilon,

Hadoop, MapR, and Amazon S3. It also supports

heterogeneous storage zones that could possibly

execute storage tiering policy for data lifecycle

management.

	 3.	 Performance and fault tolerance is achieved through

the concept of quorum-based agreement.

Chapter 7 Ensure High Availability of Data Lake

294

	 4.	 Consistency model

a.	 Fusion nodes coordinate to preserve the order of

deterministic updates

b.	 Proposal lifecycle is exercised on global sequence

of agreements. State of the folders that are set

for replication may have different states due to

the difference in agreement consumption rate.

However, all fusion replicated folders carry the

same state at a specific global sequence number.

c.	 Election of a proposer – A node issues a fresh

proposal with its sequence number higher than

the last that it was aware of. Upon proposal

broadcasting, if quorum of nodes reply affirming

the high value of proposal sequence number,

the issuer node is elected as the leader. Once the

leader of a proposal is elected, the contending and

pretending coordinators cannot proceed until its

consensus settlement.

d.	 If multiple nodes pretend to be coordinators for the

same proposal, the algorithm restricts their choice

of value selection through ordering.

	 5.	 WANDisco Fusion supports replication of selective

data across data lake sites – Complex replication

use cases like regional data governance laws, data

restrictions, can be configured.

Figure 7-9 outlines the flow of a transaction proposal from Distribution

Coordination Engine’s local instance to consensus state.

Chapter 7 Ensure High Availability of Data Lake

295

�Conclusion
Enterprise data lake is no less than a sea of information. With asset comes

the responsibility and challenges. Availability and scalability are two of the

top mission level considerations of data lake strategy. In this chapter, we

discussed how Hadoop natively handles scalability through NameNode

federation and shares the load with other ones. From the high availability

standpoint, Hadoop has no defined strategy but as a user, guidelines can

be laid down for business continuity and disaster prevention.

The next chapter is going to talk about how to achieve operational

success in a data lake. A full-blown data lake demands a body who not just

monitors the health of data lake and send out notifications, but also acts as

the custodian to platform upgrades, data lake scalability, and documents

and deployments.

(Local) Proposal manager
generates transaction
proposal

(Local) Proposal manager
assigns local sequence
number (LSN)

(Local) Local Sequencer logs
proposal along with LSN

Local sequencer pulls most
recent proposal from the
log to submits

Agreement log indicates
which proposal GSN to start
with

(Global) Agreement Manager
determines agreement no.
(proposal’s GSN)

(Global) Reach consensus
using agreement no. to set
transaction order

(Local) Agreement number
added to agreement log

(Local) Agreement manager initiates the protocol to get peer’s agreement on the proposal to align
with global sequencer

N/W
outage

N/W
outage

Figure 7-9.  Achieving consensus through quorum-based approach
with Coordination engine

Chapter 7 Ensure High Availability of Data Lake

297© Saurabh Gupta, Venkata Giri 2018
S. Gupta and V. Giri, Practical Enterprise Data Lake Insights,
https://doi.org/10.1007/978-1-4842-3522-5_8

CHAPTER 8

Managing Data Lake
Operations

“Without big data analytics, companies are blind and deaf,
wandering out onto the web like deer on a freeway.”

— Geoffrey Moore, Author, “Crossing The Chasm”

By now, the readers would have got a fair understanding of data analytics

in real world and how data lake caters to the needs of data analytics. All

organizational data assets converge under one hood and conceptualize

complex data sets into a full-blown data lake. It is essential to understand

how to strive for a healthy, stable, and secure data lake. How an

organization tackles security, stability, and availability challenges to

ensure data lake remains live and adheres to compliance guidelines?

As they say, it is easy to create, but difficult to sustain. Managing

a production cluster can get as complex as it can be. Lack of platform

understanding, application SLAs and an efficient monitoring framework

can bring opacity in data lake operations. As soon as data lake ecosystem

stabilizes and becomes operational, it becomes critical to attend

its pressing requirements as listed below. Keep in mind that these

requirements, eventually formulate into key processes of operations desk.

298

The list compiles the standard operations checklist, while there could be

more granular and precise tasks as agreed during regular handshakes

between data management and operations.

	 1.	 Gatekeeper of data lake platform – Operations

remain the owner of production environments.

Liaison with internal IT teams, data governance

council and data lake development to be aware of

data lake objectives and its primary stakeholders.

	 2.	 Support data lake availability in line with SLAs

defined by downstream consumers – Introduction

of a layer for proactive monitoring and alerting

keeps a constant check on platform availability.

	 3.	 Provide operational intelligence and publish metrics

to highlight areas of risk – Setup regular rhythm to

perform incident analysis and health checkup of

the platform and business application. Publish key

metrics that highlight availability numbers, issue

trends, and application readiness scorecard.

	 4.	 Integrated support through regular

communication – Communication holds the key

to quick turnaround on issue resolutions. Over the

time, it polishes the ability to sense risk swiftly and

display smart acts during remedy actions. Bridge

development and stakeholders to get their feedback

and issues, if any.

	 5.	 Be agile and nurture the culture of “continuous

integration” and streamline deployment process –

Encourage continuous integration, continuous

delivery and continuous deployment principles to

smoothen delivery pipeline.

Chapter 8 Managing Data Lake Operations

299

This chapter will primarily focus on the principles of monitoring

architecture that will allow administrators to incubate operational

excellence with data lake ecosystem. It will give them an insight of how

compelling functions of data lake can be optimized and made robust to

enhance transparency and accountability. Within the scope of the chapter,

it will not deep dive into Hadoop operational structure.

�Monitoring Architecture
Data lake operations teams are often confronted with questions from

application users like ones shown in Figure 8-1.

How many CPU cores are consumed by distributed
SQL?

Would the available storage suffice for next one
year?

What services have gone down? And why?

Why is causing slowness to Spark/Hadoop jobs?

Figure 8-1.  Questions that data lake operations often encounter

A good monitoring architecture not only empowers administrators

with cluster monitoring capabilities, but also with performance

measurement of applications. Basic cluster monitoring only tells you what

has failed but does not answer why it has failed.

Chapter 8 Managing Data Lake Operations

300

�Hadoop metrics architecture
For any system, trace logs, audit logs, or any sort of statistic information is

important to understand system’s health and behavior. This informative

statistical data which reveals system’s state is known as metrics. Metric

is generated by daemons that run on components of a system and can

be used to monitor component’s health, tuning, and troubleshooting. In

Hadoop, there are plenty of metrics that are generated by default. However,

for additional metrics, separate agents can be installed on specific

components.

In a Hadoop based data lake ecosystem, metrics are grouped under

focused contexts. Metric is a line level information in a context. A context

can be configured with a plug-in that operates on a particular component

of Hadoop, thereby generating all metrics grouped under the context.

Each metric is tagged with the hostname so as to differentiate from rest of

the metrics. Let us see what are the critical contexts available in Hadoop

metric architecture.1

	 1.	 jvm – It groups metrics that are published by java

processes and reveal information related to memory

used and committed, thread details, and process

trace logs.

	 2.	 rpc – The metrics under rpc context are generated

during handshake between remote procedure calls

and the host. It could be related to authentication,

data volume transfers, RetryCache, and open

connections. Another related context rpcdetailed

generates additional metric for rpc methods. It is not

included in the rpc metric record.

1�https://Hadoop.apache.org/docs/r2.7.2/Hadoop-project-dist/Hadoop-
common/Metrics.html

Chapter 8 Managing Data Lake Operations

https://hadoop.apache.org/docs/r2.7.2/Hadoop-project-dist/Hadoop-common/Metrics.html
https://hadoop.apache.org/docs/r2.7.2/Hadoop-project-dist/Hadoop-common/Metrics.html

301

	 3.	 dfs – This context contains metric for NameNode,

FSNamesystem, JournalNode, and DataNode. One

of the most important context that collects metric

for namenode operations, capacity, journal sync,

and data node operations.

	 4.	 yarn – Yarn context captures metric for

NodeManager, cluster, and queue manager.

	 5.	 mapred – This context generates metrics through

MapReduce daemons. It contains metrics related to

jobtrackers and tasktrackers.

In addition to the above contexts, there could be contexts to give

additional metrics like ugi, metricsystem, and default contexts. The ugi

context groups metric related to users and groups like successful and failed

kerberos logins, and group resolutions. The metricsystem context reveals

metrics about the metric sources.

�Identification of source components
This is the first step towards developing a good monitoring framework.

An organization’s data-lake could be built using any technology stack

(Hadoop, Cassandra etc), Hadoop being the most notable. All necessary

services must be identified that are running on technology stack platform.

For instance, some of the essential Hadoop components that should be

monitored and whose metrics are to be collected are listed as below.

�YARN metrics
Active nodes or Lost nodes list - This metric should give us the count of

nodes operating without any problem. Nodes can lose contact with a

resource manager for variety of reasons ranging from network issues to

lack of hardware resources (cpu, memory, etc.).

Chapter 8 Managing Data Lake Operations

302

If a NodeManager (NM) is unable to reach a ResourceManager (RM)

for a given timeout threshold, that NM will be marked as lost and its

resources unavailable for the cluster. We should take action once the node

is marked “lost”.

Total amount of memory allocated - This metric gives a high-level

overview of cluster memory usage. If we are frequently hitting close to

the cluster capacity, it is good time to investigate which jobs could be

consuming and enough attention to be paid to tune such jobs. The other

option is to add NodeManager and/or increase the amount of memory

reserved for YARN.

�MapReduce metrics
To optimize or find bottlenecks in their application, developers should

keep track of

	 1.	 Number of failed maps

	 2.	 Number of failed reducers

	 3.	 Data-locality counters – Hadoop also exposes a set

of metrics that tells how closely does a job create a

map to its data. If many map tasks are created on

nodes where the data is not available locally, it gives

a good indication of degraded performance.

�HDFS
There are multiple parameters that give a good indication of health of

HDFS such as:

	 1.	 Total count of files

	 2.	 underReplicatedBlocks

	 3.	 StaleDataNodes

Chapter 8 Managing Data Lake Operations

303

	 4.	 CapacityRemaining

	 5.	 BlocksTotal: Current number of allocated blocks in

the system

For an exhaustive list of metrics exposed by each service in HDFS

(NameNode and DataNode), please refer to apache documentation:

https://Hadoop.apache.org/docs/r2.6.0/Hadoop-project-dist/

Hadoop-common/Metrics.html

The data lake in your organization could end up with multiple

ecosystem components like HBase, Hive, Spark, and other SQL-on-

Hadoop technologies like Apache Drill, Presto etc. For each such

component, you must include certain necessary metrics that will help

monitor them in the next stage we will be seeing soon.

The key point to note here is that almost every Hadoop ecosystem

component exposes its metrics via a JMX port that we can connect and

track those metrics for monitoring and performance measurement.

Apart from metrics which will help us in monitoring and measurement of

performance, it is important to collect the logs generated by every Hadoop

component.

�Metric collection tools
One of the important tools that does all the hard work of collecting the

metrics is CollectD. A daemon collects system performance metrics

periodically and provides mechanisms to store the values in a variety of

ways or to send to the next stage where data is aggregated by other tools

and eventually ready for consumption by a visualization tool. It runs on

every node in the cluster.

Chapter 8 Managing Data Lake Operations

https://hadoop.apache.org/docs/r2.6.0/hadoop-project-dist/hadoop-common/Metrics.html
https://hadoop.apache.org/docs/r2.6.0/hadoop-project-dist/hadoop-common/Metrics.html

304

Note – Enable the following default plugins which help collect the

relevant metrics:

[root@vm75-132 ~]# cat /etc/collectd.conf | grep '^Load'

LoadPlugin syslog

LoadPlugin cpu

LoadPlugin df

LoadPlugin disk

LoadPlugin interface

LoadPlugin load

LoadPlugin memory

LoadPlugin network

LoadPlugin swap

If you come from a traditional database background these are very

similar to the agent processes, ex: Oracle agent in Oracle world or Nagios

agents that runs on every node send the metrics to a Manager process. In

fact, they are known as “collection agents”.

The other well-known enterprise-ready component is Ganglia. It has

been in use at some of the biggest cloud infrastructures and is supported

by an active community.

Similar to metrics collection agents, other Log collection agents are

FluentD and Logstash.

FluentD is a daemon process that runs on each node to collect

and parse the logs. These logs can then be sent to data stores like

OpenTSDB or backend stores like ElasticSearch. FluentD sees through

wide adoption these days as it is known for its built-in reliability and

less memory usage.

Chapter 8 Managing Data Lake Operations

305

Logstash is mostly known as being part of ELK stack (ElasticSearch-

Logstash-Kibana). Users should make a good comparison of how each tool

works and make an informed decision to go for a particular tool in favor

the other.

�Metrics and log storage
OpenTSDB is a distributed time-series database running on top of

HBase. It can be used to store and aggregate the logs and metrics

received by agents like Fluentd and collectd. The schema of openTSDB

is highly optimized for fast aggregations of a time-series data. Apart from

being distributed in nature, it can store huge amounts of data in fine-

grained nature.

But the implementation of openTSDB is a bit more complex than

installing and configuring systems like Graphite. Nevertheless, if you plan

to deploy HBase as one of the ecosystem components in your data lake,

you should seriously consider it as a datastore for your logs and metrics.

ElasticSearch(ES) is an open-source distributed full text search and

analytics engine that can be one of your Hadoop components in a data

lake. Complex search facilities and analyses of logs are one of the best

use-cases of ElasticSearch. It is very useful if you want to analyze and mine

the data to look for trends, statistics, summarizations, or anomalies. You

can also use Logstash, part of the ELK stack to collect, aggregate, and parse

your data, and then have Logstash feed this data into Elasticsearch.

It indexes the logs received via collection agents so that they can be

easily accessed and searchable. For instance, FluentD uses round robin

method when writing the logs to ES. If for some reason, one of the nodes

is not available, fluentd can failover to one of the surviving ES nodes. You

don’t need additional configuration for setting failover for fluentd to work

with ES. But it is recommended to have a minimum of 3 nodes for running

ElasticSearch. You must size the cluster with one of more nodes as per your

requirements.

Chapter 8 Managing Data Lake Operations

306

By default, it indexes the data (received logs and metrics) for 2 days.

But can be easily configured for higher retention period. ES is also known

to be memory intensive and uses a minimum of 2Gb RAM heap size. This

can again be configurable as per your needs. With all the aggregated data

placed in Elasticsearch, you can search for any combination of nodes,

services, or message severity levels that you want to monitor and further

develop alerting and visual analytics on top of this.

The repo location for ElasticSearch may not be available for CentOS/

RHEL systems by default. Therefore, import the Public GPG key of

ElasticSearch into rpm and then install it as per the below steps.

//Import GPG Key//

[root@vm75-132 ~]# rpm --import http://packages.elastic.co/

GPG-KEY-elasticsearch

[root@vm75-132 ~]#

//Add a repo location//

[root@vm75-132 ~]# vi /etc/yum.repos.d/elasticsearch.repo

[root@vm75-132 ~]# cat /etc/yum.repos.d/elasticsearch.repo

[elasticsearch-2.x]

name=Elasticsearch repository for 2.x packages

baseurl=http://packages.elastic.co/elasticsearch/2.x/centos

gpgcheck=1

gpgkey=http://packages.elastic.co/GPG-KEY-elasticsearch

enabled=1

//Install ElasticSearch and start the service//

[root@vm75-132 ~]# yum -y install elasticsearch

[root@vm75-132 ~]# systemctl start elasticsearch

There is no explicit configuration required for ElasticSearch here. The

only items to be edited are NodeName and cluster name. Modify them as

per your cluster/node names.

Chapter 8 Managing Data Lake Operations

307

�Logs and Metrics visualization
This layer has seen some rapid advancements recently. There are some

awesome front-end tools and libraries with rich feature sets supported by

both OpenTSDB and Elasticsearch.

Graphite has been very popular in this category for some time. But like

all things with Hadoop, there are other tools like Grafana and Kibana that

are very active these days with an active user base.

For the scope of this article, we will only provide an overview of

capabilities of Grafana and Kibana. Grafana uses REST API to access metrics

data from OpenTSDB. Using a single instance of Grafana, users can build

custom dashboards or use sample dashboards to visualize the metric. It also

supports many different datastores like Elasticsearch and Graphite.

Grafana has the ability to combine data from multiple data sources and

display them in a single dashboard. Each data source is closely tied to a

single pane/frame in the dashboard. Since there are a variety of backends,

the query language to be used is different as well.

Figure 8-2 shows a Grafana console showing Node level CPU, Memory,

Network, and Swap usage which are the some of the indicators of load on

the system.

Figure 8-2.  Grafana console showing key system metrics

Chapter 8 Managing Data Lake Operations

308

You can also tweak the console context to show running metrics

(Figure 8-3).

�Kibana
Kibana is another visualization platform that runs on top of Elasticsearch.

It uses REST API to access and search the logs available in Elasticsearch.

Using a single instance of Kibana, users can create visualizations and

dashboards to analyze their logs.

Kibana connects to a single Elasticsearch node to read logs. In

the event that Kibana is unable to read logs due to the failure of an

Elasticsearch node, we have to configure Kibana to connect to an available

Elasticsearch node. In case, you want to run Kibana when the configured

ES node is down, you can do this by running a Coordinating only ES

node on the same node where Kibana is running on the cluster. These

coordinators act as load balancers and distribute the incoming connection

requests from Kibana to other ES nodes, gather the results and return them

back to Kibana for visual representation.

Figure 8-3.  Grafana console context can be modified to show current
metrics

Chapter 8 Managing Data Lake Operations

309

�Apache Ambari
Apache Ambari is an open source platform to manage and monitor a

Hadoop cluster. The capabilities are not only restricted to operations, but

it also enables provisioning and controls security framework of the cluster.

Architecturally, it is no different from other contemporary management

applications. The server works with agents per component deployed on it

to receive back their state as metrics and logs.

Ambari offers the below features for platform monitoring and

operation management:

	 1.	 Ambari alerts – Apache Ambari raises pre-

defined and centrally-managed alerts. Alerts

can be modified to control threshold, recipients,

frequency, and notification. Alerts offer complete

view of cluster health. Ambari offers variety of

configurations to customize alerting mechanism.

	 2.	 Ambari metrics – Consists of metrics collector,

metric monitor, and grafana. Grafana includes

multiple pre-build dashboards for visualizing key

metrics. Below is the flow of metric flow from its

generation to visualization.

	 a.	� Metric monitor publishes system metrics to the

collector

	 b.	 Sink pushes Hadoop metrics to collector

	 c.	 Metric collector aggregates the metrics

	 d.	� Metrics displayed over Ambari UI through REST API

	 e.	� With Ambari 2.2, grafana serves as native

interface for metrics

	 i.	� Dashboards for HDFS home, namenode, data

node, YARN, applications, job history, etc

Chapter 8 Managing Data Lake Operations

310

	 3.	 Kerberos – Ambari enables wizard-driven

Kerberos administration from the interface.

One can create kerberos principals and keytabs,

distribute keytabs, and undertake cluster

configuration tasks.

	 4.	 Role-based access control – access to the cluster

can be controlled through roles and permissions.

For example, a role admin may perform the role of a

service as well as cluster administrator.

	 5.	 Log Search – Apache Solr enables the component

logs to be rapidly searched without any hassle

from within Ambari. Search criteria can consist of

keywords, time range or logging level.

	 6.	 Extensibility – While Ambari stays agile, it can be

extended to add or modify a service for custom

environments. Ambari interface views can be

extended to modify web components.

	 7.	 SmartSense – It is an auto diagnostic tool that

collects incident information, creates a “bundle,”

and uploads it to the Hortonworks support. This

expedites the incident resolution with reduced

turn-around time. Furthermore, it analyzes

the bundle and produces recommendations

for each cluster. Recommendations aim at

reducing operational issues and better cluster

performance.

Figure 8-4 branches out the capabilities of Apache Ambari.

Chapter 8 Managing Data Lake Operations

311

�Data lake operationalization
Integrally, the journey of a data lake from ideation to planning,

provisioning, and operationalization requires subtle business acumen and

organizational vision. Keeping aside the efforts invested in ground work,

leadership consensus, and alignment to organizational strategy, some

of the critical stages of a data lake are capacity planning, provisioning,

monitoring, and security.

The below list discusses design considerations that could be able to

run a data lake. More than the considerations, the list can be treated as

best practices to ensure platform stability of ecosystem.

	 1.	 Cluster planning – A Hadoop-based data lake can be

provisioned either on an on-premise site or in the

cloud. Both on-premise and cloud have gone through

several debates of pros and cons. While cloud is meant

to provide stability, availability, and better return on

investment (ROI), on-premise gives the flexibility to be

ductile as per requirement and use case.

Configuration
management

Apache Ambari
benefits

Service
management

Cluster
provisioning

Extensibility

Platform
monitoring

Figure 8-4.  Apache Ambari benefits

Chapter 8 Managing Data Lake Operations

312

	 2.	 Cluster design

	 a.	� Chose more number of light-weight nodes and

not small number of large nodes.

	 b.	� More nodes enhance resilience, parallelism, and

power

	 c.	� Less number of large nodes expose several

issues like longer recovery time

	 3.	 Component layout

	 a.	� Master components should be distributed

across the rack to mitigate the risk

	 b.	� Worker components should be identical across

worker nodes

	 c.	� Deploy multiple gateway nodes for load

balancing and distribution of client services

	 d.	� Increase the zookeeper instance count to

5 from 3 (default)

	 i.	 Ease in maintenance

	 ii.	� Greater than 5 will slow down the operations

due to more voters

	 4.	 Components like hive, Ambari, Oozie, and ranger

require relational databases as metastore

	 a.	 Support for Oracle, MySQL, PostgreSQL

	 b.	� Consider uniformity in databases for easy

management

	 c.	 Provision all metastores on the same server

	 d.	� Align metastore database management with the

usual database administration operational tasks

Chapter 8 Managing Data Lake Operations

313

	 5.	 Capacity planning parameters

	 a.	� Capacity planning becomes a function of below

parameters

	 i.	� Initial data size – historical and current data

that will be moved into data lake

	 ii.	 YOY growth – Per year data growth rate

	 iii.	� Compression ratio – the factor by which the

data gets compressed

	 iv.	� Replication factor – number of replicas in a cluster

	 b.	� Higher replication factor impacts query

performance and data availability. A replication

factor of 3 is an optimum number that can

balance availability with performance.

	 c.	� Measurement of compression factor varies by

data types.

	 d.	� Intermediate data size – Hadoop creates

multiple temporary files during intermediate

stages. Temp data size accounts for 30-40% of

raw data size.

	 e.	� Total storage required

[(initial data size + YOY growth + intermediate

data size) * replication factor * 1.2]

__

(compression factor)

Note - *1.2 – random buffer factor to account for

HDFS storage

Chapter 8 Managing Data Lake Operations

314

	 f.	 Storm and Kafka

	 i.	� Storm is compute bound, while Kafka is disk

bound

	 1.	� For storm monitoring, set alerts for

capacity, latency, and failed event count

	 2.	� For Kafka monitoring, set alerts for

available disk space and lag between

reads and writes

	 ii.	� If using Kafka, you must plan Kafka log

retention period of 2-3 days

	 6.	 Provisioning and deployment

	 a.	� Automate the provisioning and deployment

processes through chef, puppet, jenkins, ansible,

or cfengine

	 b.	� Encourage the use of provisioning through

management consoles like Ambari or cloudera

manager

	 c.	� After node addition, make sure you re-balance

HDFS in an operational window to bring down

node threshold levels

	 7.	 Manage active operations

	 a.	� Tune the heap size (~200 bytes per object) as the

cluster grows

	 b.	 Use parallel garbage collection

	 c.	� Set high availability for metastores, namenode,

and security components

Chapter 8 Managing Data Lake Operations

315

	 d.	� Use Ambari to monitor HDFS disk usage,

DataNodes, cluster load, CPU usage, and others

	 e.	� If the application uses Hbase, monitor the below

metrics

	 i.	 callQueueLength

	 ii.	 memstore size

	 iii.	 compaction queue size

	 iv.	 slowHLogAppendCount

	 v.	 GCTime, CPU Load, CPU Allocation, IOPS

	 f.	 Key logs for troubleshooting

	 i.	 HDFS audit log

	 ii.	 Component logs (/var/log/Hadoop*)

	 iii.	 Application logs (/app-logs/)

	 iv.	 Hive logs (/tmp/<user>/hive.log)

�Conclusion
A smooth and stable operations strategy forms the backbone of data lake

journey. It gives the confidence to the data and analytics community to

come onboard and start playing around with data without any nuisance.

A broken scheme to operationalize data lake poses a tough challenge for

data governance council and business leadership to realize the essence of

data democratization.

Chapter 8 Managing Data Lake Operations

317© Saurabh Gupta, Venkata Giri 2018
S. Gupta and V. Giri, Practical Enterprise Data Lake Insights,
https://doi.org/10.1007/978-1-4842-3522-5

Index

A
Accessibility, 16
Acquisition layer, 33
Active nodes/Lost nodes list, 301
Active-passive approach, 289
Amazon offers S3 storage

AWS IAM service, 218
classes, 217
design considerations, 219
DLM case study

AWS Snowball-edge, 222
Glacier, 222
scenarios, 220
storage class tier, 221

lifecyle features, 218
retrieval mode, 217

Analytical layer, 12
Analytics, 17
Apache Flume, see Flume, Apache
Apache Hadoop, see Hadoop
Apache Kafka, see Kafka
Apache Pig, 160

capabilities, 161
engine, 160
execution architecture, 161–166

Apache Ranger, see Ranger
Apache Spark, see Spark
Apache Sqoop, see Sqoop

Application Master, 9
Architecture, 13–14
Archival strategy, 18
Availability, 16
Avro file, 42

B
Batched ingestion mode, 34–35,

49–51
Big Data

contained data, 3
ecosystem, 6–7
facts and predictions, 5–6
integration, 47
IT, 4
three V’s, 4
traditional data, 4
trends in, 5

C
Centralization, 100
Certificate Authorities

(CA), 236
Change data capture (CDC)

broader level, 88
centralized store (see Data

storage centralization)

https://doi.org/10.1007/978-1-4842-3522-5

318

concepts, 88–89
Databus, 61–64
design, 60–61
framework, 35
Kafka (see Kafka)
LinkedIn, 61–62, 64
pipeline, 59–60
strategies, 89

attributes, 90
drivers of, 91
replay and retention, 91
requirements, 89
retention period, 92

tools, 97
assumptions, 99
centralization, 100
downstream propagation, 98
key challenge, 98
RDBMS and NoSQL

databases, 97
user-facing applications, 99

trade-offs, 95
trigger based, 60
types of

advantage, 95
bulk extraction, 94
disadvantage, 95
incremental mode, 94

workflow, 59
Change merge strategy, 52
Cloud service models, 227
Code deployment process, 22
Compliance policies, 25

Consumption layer, 13
Consumption models, 28
copyToBDA utility, 72–73
Cricket analytics website, 29
CSV file, 42
Curated data layers, 26

D
Data analysis, 26–27
Data analytics, 125
Data archival strategies

benefits of, 207
cloud based storage, 207
DLM (see Data lifecycle

management (DLM))
meaning, 205
relevance and quality drive, 206
terabytes and petabytes, 206

Database triggers, 97
Databus, 61–64
Data-centric security, 18
Data challenge, 142
Data change rate, 40
Data collector, 34
Data democratization, 26
Data engineering, 126
Data explosion, 3–6
Data governance, 22–25
Data integrator, 34
Data lake

architecture, 13–14
attributes, 15–16
characteristics, 16–19

Change data capture (CDC) (cont.)

Index

319

concept, 12–13
vs. data swamp, 204
vs. data warehouse, 19–21
history, 11–12

Data lifecycle management (DLM)
access, 210
awareness, 208
data flow, 209
data sources, 209
design considerations

archive performance, 214
backups, 213
cloud based archives, 215
dependencies, 215
Hadoop, 215
retrieval approach, 217
tiering levels, 216
unstructured data, 214

factor of, 208
governance and

compliance, 210
policies, 210
retention, transition and

expiration, 208
strategies, 211

archival policy, 212
classification, 212
foundation, 213
master data, 211
prioritization, 211
social data, 212
transactional data, 212

Data operations, 22–25
Data retention, 91, 92

Data storage centralization
Avro file format, 106
challenges, 111
checkpoint

mechanism, 107
consumption, 107
data formats, 105
delimited format, 105
design aspects, 112
design considerations, 109
ETL pipeline, 102
fields, 104
merge and consolidation, 108
metadata, 102
operational aspects, 112
parallelism, 107
pipeline requirement, 101
privacy/sensitivity

information, 104
quality of data, 110
structure of, 104

Data warehouse, 19–21
Deployment model, 40
DevOps, 205
Digital ecosystem, 4
Disaster recovery strategies

approaches, 283
Data Center replication/

copying, 285
dual path ingestion/

Teeing, 283
key considerations, 286
parallel data ingest

approach, 284

Index

320

production-replica, 285
T-ingestion approach, 284

E
ElasticSearch(ES), 305
ElasticSearch-Logstash-Kibana

(ELK), 305
Event streaming mechanism,

see Kafka
Extraction, transformation, and

loading (ETL) process,
45–46, 57–58, 98

F
Facebook, 21
Fast data, 28–30
Federal Trade Commission

(FTC), 23
Filter query, 50–51
FluentD, 304
Flume, Apache

agent, 77
architecture, 78
channel capacity, 82
channel provisioning, 84
channel type, 80
components, 78
event batch size, 82
memory channel, 81–82
replicator/multiplexer, 83
sink, 78

tired architecture, 79
topology, 84

G
Gartner magic quadrant, 57–58
Global resource manager

(RM), 136
Google, 21
Google File System (GFS), 7
Governance

chief data officer (CDO), 202
council, 202
data lake vs. data swamp, 204
data leadership guild, 202–203
ILM policies, 203
infrastructure planning, 203
organizational structure,

203–204
policies, 17
strategies, 201

gpfdist protocol, 76
gphdfs protocol, 73–76
Greenplum

gpfdist protocol, 76
gphdfs protocol, 73–76

H
Hadoop, 29

comparision of 1.x and
2.x, 10–11

high-level architecture, 9–10
objects, 52

Disaster recovery strategies (cont.)

Index

321

stack, 8
unstructured data into, 77
YARN, 9

Hadoop archives (HAR), 215
Hadoop Distributed File System

(HDFS), 9, 255
authorization (see Ranger)
copy files, 49
hdfs dfs command-line, 48
metrics, 302
replication, 48

Hellman, Diffie, 236
High availability, 262

architecture, 273
Apache zookeeper, 278
architecture diagram, 273
design considerations, 276
editLogs, 273
hdfs-site.xml, 274
journal nodes, 273
monitoring and

proactive, 280
NameNode, 273
ZKFC, 279

disaster recovery, 262
approaches, 283
availability, 281
cloud service models, 281
driving consideration, 282
factors, 282
logical errors/hardware

failure, 280
recoverability, 281
strategies, 281–282

functions, 261
Hadoop components, 267

Hive metastore, 267
HiveServer2, 268
Zookeeper integration, 268

Kerberos setup, 269
NameNode, 272
replication strategies, 287

active-active replication, 290
active-passive setup, 289
design considerations, 293
DistCp, 287
distributed coordination

engine, 291–292
dual path approach, 287
HDFS snapshots, 288
Hive metastore

replication, 288
Kafka–Apache Kafka

service, 288
taskTrackers copy, 287
WANDisco Fusion, 291

scaling
design considerations,

265–266
Hadoop 1 architecture, 263
HDFS federation

architecture, 265
meaning, 262
namespace, 264
physical storage layer, 264

Hive, 141
data centric capabilities, 143
data model, 150

Index

322

design
considerations, 148–157

LLAP, 158–160
metastore, 146–147, 267
performance, 142
Quick Refresher

architecture, 145
components, 144–145

for scalability, 142
HiveServer2, 268

I
Information lifecycle

management (ILM), 203
Ingestion

batched mode, 34–35, 49–51
data collector, 34
data integrator, 34
data sources, 35–36
file formats, 41, 43
native utilities, 71–72
real-time mode, 34–35, 58–60
SLAs, 39
source systems, 40–41

Intrusion detection
systems (IDS), 229

Intrusion prevention
systems (IPS), 229

J
JSON file, 43

K
Kafka

channel, 81
classes of, 116
clients and servers, 117
core APIs, 116
key capabilities, 115
schema and data, 117

central schema
repositories, 119

generic schema, 118
partition, 120
process flow, 120
scales, 121
size of data, 121
tools, 122–123

source data, 115
Kerberos

administrative commands
authentication, 253
authorization, 254–255
delegation tokens, 254
distributed system, 253
group mapping, 250
Hadoop.security.auth_to_

local property, 250
Hadoop.security.group.

mapping.ldap.base, 252
KDESTROY, 249
keytab file, 249
KINIT, 249
users/group

mapping, 251

Hive (cont.)

Index

323

components, 246
derives, 244
flow, 247
high availability, 269
non-secure network, 244
protocol overview, 244
TEST.COM, 247

Key Distribution Center/Kerberos
Domain Controller
(KDC), 244–246, 269

Kibana, 308

L
Landing layer, 12
Legacy systems, 36
Lineage, 40
Lineage tracker, 17
LinkedIn, 61–62, 64
Live Long and Process (LLAP), 142
Logical Separation, 228
Logs and metrics visualization, 307

Grafana console, 307–308
Kibana, 308
OpenTSDB, 307

Logstash, 305

M
Management systems, 36
MapReduce, 7–8
MapReduce metrics, 302
MapReduce processing

framework, 126

motivation, 128
V1 refresher and design

considerations, 128–135
YARN, 136

ApplicationMaster, 137
benefits, 136
concepts, 137–141
RM, 136
subcomponent level

design, 138
Metadata management, 25, 102
Metric collection tools, 303
Metrics, 113
Metrics and log storage, 305
Minard’s map, 2
Mirror layer, 13
Monitoring architecture

metrics, 300
questions, 299
source components, 301

N
NameNode, 272
NodeManager (NM), 302
Nutch Distributed Filesystem

(NDFS), 8
Nutch project, 8

O
One-for-all approach, 204
Open Systems interconnection

(OSI) stack, 233

Index

324

Operational structure
Apache Ambari, 309
capacity planning

parameters, 313
cluster planning and

design, 311
component layout, 312
data analytics, 297
data management, 298
design considerations, 311
logs and metrics

visualization, 307
manage active

operations, 314
monitoring architecture

metrics, 300
questions, 299

provisioning and
deployment, 314

source components, 301
Storm and Kafka, 314

Optimized Record Columnar
(ORC)

CUSTOMER table, 44
features and usage, 42
format, 45
storage format, 52
stripe indexes, 43
TBLPROPERTIES clause, 43
usage practices, 45

Oracle copyToBDA, 72–73
Oracle GoldenGate

Adapters, 98
Organizational data lake, 51

P
Packet filters, 232
Parquet file, 42
Password based key derivation

function (PBKDF), 238
Paxos algorithm, 292
Perimeter-based

approaches, 225
Personal Identifiable Information

(PII) data, 211
Physical Segmentation, 228
Piglatin, 53–54
Presto, 186–187

design considerations, 189–194
query execution

architecture, 188
statement execution

model, 188–189
Primary key, 60
Public Key Infrastructure

(PKI), 236

Q
Quorum journal manager

(QJM), 277

R
Ranger, 257

authorization model, 257
Hadoop deployment, 257
HDFS (POSIX/HDFS ACL), 257
plugins, 259

Index

325

Ranger KMS, 258
user group sync, 259

Raw data, 12–14, 21
Reactive monitoring vs. Proactive

monitoring, 229
Real-time ingestion

mode, 34–35, 58–60
Reconciliation strategy, 17
Reliable monitoring, 113
Replicator/multiplexer, 83
Resilient Distributed Datasets

(RDD), 169–171
caching and persistence,

182–183
composition, 174
runtime components, 171–173
shared variables, 183–184

ResourceManager (RM), 302
Return on investment (ROI), 206

S
Scale-up and scale-out

approaches, 263
Security, 18, 25
Security policies

access flow
b-tree file system

(btrfs), 238–239
cryptsetup, 238, 242
disk/dev/sda1, 240
encryption, 241
LUKS, 240
LUKS dump output, 241

Apache Ranger
authorization model, 257
Hadoop deployment, 257
HDFS (POSIX/HDFS

ACL), 257
plugins, 259
Ranger KMS, 258
user group sync, 259

architecture (see System
architecture)

communication
asymmetric

cryptography, 236
collision factor, 235
hash functions, 235
Hellman, Diffie, 236
key encryption, 235
private key and

vice versa, 235
problems, 234
processes, 236
scenario, 233

Data at Rest
access flow, 238
disk layout, 237
dm-crypt, 237
encrypt data, 237
key generation and

verification, 238
LUKS, 237
passphrase, 238

data in motion, 233
HDFS ACL, 256
host firewalls, 232

Index

326

Kerberos (see Kerberos)
key factors, 226
LUKS

multiple passphrases, 243
performance, 243

Self-service platforms, 27
Semi-structured data, 37, 39
SequenceFile, 42
Source systems, 14, 40–41
Spark, 55, 57, 166

bucketing, sorting and
partitioning, 178

datasets and dataframes,
175–177

deployment modes of
application, 178–180

design considerations, 180–181
MapReduce framework, 167
purpose, 167–168
RDD, 169–171

caching and persistence,
182–183

composition, 174
runtime components,

171–173
shared variables, 183–184

stack, 169
SQL on Hadoop, 184

characteristics, 186
design considerations, 197–198
layout, 185
operation modes, 185
Oracle Big Data, 194–195

benefits, 195
Hadoop cluster, 196
query franchising

approach, 195
Presto, 186–187

design considerations,
189–194

query execution
architecture, 188

statement execution
model, 188–189

usage patterns, 185
Sqoop

batch argument, 70
connectivity, 70
connectors, 70
export data subset, 69
hive-import, 69–70
number of mappers, 67
source table, 68
Spark job, 71
sparse split-by

column, 68
split rule, 67
versions, 64–66

Streaming data sources, 87
Stripe indexes, 43
Structured data, 37, 39
Swamps, 28, 204
System architecture, 226

cluster, 230
edge nodes, 231
management nodes, 231
master node, 230

Security policies (cont.)

Index

327

security layers, 231
worker node, 231

Hadoop, 227
network segmentation

intrusion detection and
prevention, 229

IPS and IDS
processes, 229

IP subnets, 228
physical network, 227
router, 228

T
Text file, 42
Three V’s, see Volume, Velocity, and

Variety
Ticket granting service

(TGS), 246
Ticket granting ticket/Ticket to get

tickets (TGT), 245, 246
Total cost of ownership

(TCO), 206
Transparent Data Encryption

(TDE), 232

U
Unstructured data, 37, 39, 77

V
Veracity, 4
Volume, Velocity, and Variety, 4

W, X
WANDisco Fusion, 291
Web content, 36
WhatsApp, 23–24

Y
Yahoo!, 8
YARN, 9
YARN metrics, 301

Z
ZKFailoverController (ZKFC)

process, 278
Zookeeper integration, 268

Index

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Foreword
	Chapter 1: Introduction to Enterprise Data Lakes
	Data explosion: the beginning
	Big data ecosystem
	Hadoop and MapReduce – Early days
	Evolution of Hadoop

	History of Data Lake
	Data Lake: the concept

	Data lake architecture
	Why Data Lake?
	Data Lake Characteristics

	Data lake vs. Data warehouse
	How to achieve success with Data Lake?
	Data governance and data operations

	Data democratization with data lake
	Fast Data - Life beyond Big Data
	Conclusion

	Chapter 2: Data lake ingestion strategies
	What is data ingestion?
	Understand the data sources
	Structured vs. Semi-structured vs. Unstructured data
	Data ingestion framework parameters
	ETL vs. ELT

	Big Data Integration with Data Lake
	Hadoop Distributed File System (HDFS)
	Copy files directly into HDFS
	Batched data ingestion

	Challenges and design considerations
	Design considerations
	Commercial ETL tools
	Real-time ingestion
	CDC design considerations
	Example of CDC pipeline: Databus, LinkedIn’s open-source solution

	Apache Sqoop
	Sqoop 1
	Sqoop 2
	How Sqoop works?
	Sqoop design considerations

	Native ingestion utilities
	Oracle copyToBDA
	Greenplum gphdfs utility
	Data transfer from Greenplum to using gpfdist

	Ingest unstructured data into Hadoop
	Apache Flume
	Tiered architecture for convergent flow of events
	Features and design considerations

	Conclusion

	Chapter 3: Capture Streaming Data with Change-Data-Capture
	Change Data Capture Concepts
	Strategies for Data Capture
	Retention and Replay
	Retention Period

	Types of CDC
	Incremental
	Bulk
	Hybrid

	CDC – Trade-offs
	CDC Tools
	Challenges
	Downstream Propagation
	Use Case
	Centralization of Change Data

	Analyzing a Centralized Data Store
	Metadata: Data about Data
	Structure of Data
	Privacy/Sensitivity Information
	Special Fields
	Data Formats
	Delimited Format
	Avro File Format
	Consumption and Checkpointing
	Simple Checkpoint Mechanism
	Parallelism
	Merging and Consolidation
	Design Considerations for Merge and Consolidate
	Data Quality
	Challenges
	Design Aspects
	Operational Aspects

	Publishing to Kafka
	Schema and Data
	Sample Schema
	Schema Repository
	Multiple Topics and Partitioning
	Sizing and Scaling
	Tools

	Conclusion

	Chapter 4: Data Processing Strategies in Data Lakes
	MapReduce Processing Framework
	Motivation: Why MapReduce?
	MapReduce V1 Refresher and Design Considerations
	Yet Another Resource Negotiator – YARN
	YARN concepts

	Hive
	Hive – Quick Refresher
	Hive Components

	Hive Metastore (a.k.a. HCatalog)
	Hive – Design Considerations
	Hive LLAP

	Apache Pig
	Pig Execution Architecture

	Apache Spark
	Why Spark?
	Resilient Distributed Datasets (RDD)
	RDD Runtime Components
	RDD Composition
	Datasets and DataFrames
	Bucketing, Sorting, and Partitioning

	Deployment Modes of Spark Application
	Design Considerations
	Caching and Persistence of an RDD in Spark
	RDD Shared Variables

	SQL on Hadoop
	Presto
	Presto Statement Execution Model
	Presto – Design Considerations

	Oracle Big Data SQL
	Design Considerations

	Conclusion

	Chapter 5: Data Archiving Strategies in Data Lakes
	The Act of Data Governance
	Data lake vs. Data swamp

	Introduction to Data Archival
	Data Lifecycle Management (DLM)
	DLM policy actions
	DLM strategies
	DLM design considerations

	Amazon S3 and Glacier storage classes
	Design considerations
	DLM Case Study – Archiving with Amazon

	Conclusion

	Chapter 6: Data Security in Data Lakes
	System Architecture
	Network Security
	Hadoop Roles within a cluster
	Master Node Group
	Worker Node Group
	Management Nodes
	Edge Nodes
	Data security layers

	Host Firewalls for operating system security
	Data in Motion
	Communication Problem

	Data at Rest
	Procedure to generate and verify key in LUKS
	Access flow for the user
	Performance using LUKS
	Multiple passphrases with LUKS

	Kerberos
	Kerberos Protocol overview
	Kerberos components
	Kerberos flow
	Kerberos commands

	HDFS ACL
	HDFS Authorization with Apache Ranger
	What Ranger does?

	Conclusion

	Chapter 7: Ensure High Availability of Data Lake
	Scale Hadoop through HDFS federation
	High availability of Hadoop components
	Hive metastore
	HiveServer2 and Zookeeper integration
	Setup HA for Kerberos
	NameNode high availability
	Architecture
	Design considerations

	Data Center disaster recovery strategies
	Disaster recovery factors
	Disaster recovery approaches

	Data replication strategies
	Active-passive data center replication
	Active-active data center replication
	WANDisco Fusion
	Distributed coordination
	Design considerations

	Conclusion

	Chapter 8: Managing Data Lake Operations
	Monitoring Architecture
	Hadoop metrics architecture

	Identification of source components
	YARN metrics
	MapReduce metrics
	HDFS
	Metric collection tools
	Metrics and log storage

	Logs and Metrics visualization
	Kibana

	Apache Ambari
	Data lake operationalization
	Conclusion

	Index

