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Preface

Over the past several decades statistical methods for the analysis of univariate failure
time data have become well established, with Kaplan–Meier (KM) curves, censored
data rank tests, and especially Cox regression, as core analytic tools. These tools arise
substantially from nonparametric and semiparametric likelihood considerations. The
likelihood developments have mostly started with a focus on the survivor function
F , defined by F(t) = P(T > t), for a random failure time variate T > 0; or, in con-
junction with a corresponding covariate p-vector z = (z1,z2, . . . ,zp), on the survivor
function given z, defined by F(t;z) = P(T > t;z).

Because of the usual presence of right censoring, the hazard function λ , de-
fined with absolutely continuous failure times by λ (t : z) = f (t;z)/F(t;z), where
f (t;z) =−dF(t;z)/dt is the failure time density (given z) at follow-up time t, plays
a key role in the likelihood-based developments. In fact, a focus on hazard rates
over time allows considerable modeling flexibility compared to that for F given z,
since hazard rates can be allowed to depend, not just on a set of “baseline” covari-
ates, but also on covariate changes and on the occurrence of events of various types
arising during the follow-up of study subjects. As a result, hazard, and more specif-
ically intensity, rate regression analyses are sometimes referred to as event history
analyses. The Cox (1972) model stands as the major tool for univariate failure time
regression analysis. Under this model λ (t;z) is written as a product of a baseline
rate λ{t;z = (0, . . . ,0)}, hereafter λ (t;0), and a hazard ratio factor that is usually
expressed in exponential form as exp(zβ ), with column vector β = (β1, . . . ,βp)

′.
The hazard ratio parameter β is often the principal target of estimation in univari-
ate failure time analysis, and efficient and reliable procedures are available for its
estimation, via Cox’s (1975) partial likelihood method. There are other classes of
hazard rate regression models, including accelerated failure time models that allow
covariates to affect the “speed” at which an individual traverses the failure time axis,
and transformation models that combine these and other classes of regression mod-
els, but the vast majority of applications in various disciplines and settings focus on
the Cox model. This model is quite comprehensive when the time-dependent covari-
ate feature is fully exercised. While it is clearly useful to have more than a single
framework for failure time regression analysis, other classes of semiparametric re-
gression models typically do not enjoy the same utility of parameter interpretation,
ease of modeling, and computational efficiency as does the Cox model. There are
a number of books that provide excellent accounts of many of these univariate fail-
ure time analysis developments, including early books by Kalbfleisch and Prentice
(1980, 2002), Breslow and Day (1980, 1987), Lawless (1983, 2002), Cox and Oakes

xi



xii PREFACE

(1984), Fleming and Harrington (1991), and Andersen, Borgan, Gill, and Keiding
(1993), among several others. These books vary in the extent of their coverage and
in their degree of technical formality. Some of them provide a rather thorough ac-
count of asymptotic distribution theory via counting process and martingale meth-
ods. For example, Andersen et al. (1993) present comprehensive distribution theory
using martingale and counting process convergence theory for a fairly broad range
of topics, from an event history analysis perspective.

The methods just alluded to can be obtained alternatively by plugging empiri-
cal hazard rate estimators into a representation for F given Z, where Z is a possibly
evolving covariate history, or by using a mean parameter estimating equation ap-
proach (e.g., Liang & Zeger, 1986) for parameter estimation. The utility of each of
these approaches can be considered for the analysis of multivariate failure time data.

A mature theory for the analysis of multivariate failure time data has been slow
to develop. Most of the books just mentioned include some account of analysis
methods for select types of multivariate failure time data; for example, Kalbfleisch
and Prentice (2002) include chapters on correlated failure time methods and on
recurrent event methods. However, consensus is still lacking on such basic top-
ics as the preferred means of estimating the joint survivor function F , defined by
F(t1, t2) = P(T1 > t1,T2 > t2), for a pair of failure time variates (T1,T2), even in
the homogeneous (non-regression) situation. Also, a compelling semiparametric ap-
proach to the conceptualization and modeling of dependency among failure time
variates, that is suited to right censored data, has yet to be established.

In more recent times, specialized books have been devoted to multivariate fail-
ure time data analysis. Hougaard (2000) provides a thorough account of multivariate
failure time methods proposed up to that point in time, with considerable emphasis
on the use of frailty models to induce dependencies, and on the use of transformation
models for marginal distributions in conjunction with copula models for dependency.
Crowder (2012) provides an update on these same approaches along with a detailed
account of parametric methods for multivariate failure time data analysis. Cook and
Lawless (2007) provide an excellent account of the more specialized topic of recur-
rent event data analysis methods.

The frailty approach has also been the subject of specialized books (Duchateau &
Janssen, 2010; Wienke, 2011) on data modeling and analysis. Frailty models are usu-
ally formulated by multiplying univariate hazard rate models by a positive random ef-
fect, or frailty, variate that is shared by failure time outcomes that may be dependent.
These methods are well suited to assessing comparative hazard rates for individuals
in predefined clusters, which could be an important application goal. Frailty models,
on the other hand are not so well suited to estimating population-averaged regres-
sion effects. Regression coefficients in frailty models have an interpretation that is
conditional on the random effect for the correlated outcomes, while corresponding
marginal regression associations typically have a complex form. Additionally, frailty
factors may need to be allowed to vary over the follow-up period of the study to
span a broad range of dependencies among failure times, adding further complexity.
Nevertheless, much useful information can often be extracted by the careful applica-
tion of frailty models. Therneau and Grambsch (2000), provide a valuable account of
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Cox model extensions using frailty models with emphasis on model testing and the
adaptation of existing software.

The copula approach to multivariate failure time data analysis has also received
considerable attention. This approach embraces univariate survivor function mod-
els, including those incorporating time-dependent covariates, for marginal survivor
functions, and brings these together using a parametric copula model to yield a joint
survivor function for a multivariate failure time variate given covariates. As such
marginal regression parameters retain the usual population averaged interpretation
that attends corresponding univariate data analyses. The models are typically applied
in a two-stage fashion (e.g., Shih & Louis, 1995) so that dependency assumptions im-
posed through the choice of copula neither bias or enhance the efficiency of marginal
hazard rate regression analyses compared to univariate failure time data analyses.
With a choice of copula function that is in good agreement with the data, this ana-
lytic approach can lead to useful summary measures of dependence between depen-
dent failure times, as is a major goal in some application settings, such as family
studies in genetic epidemiology. As typically applied, however, copula models tend
to impose strong assumptions on the nature of dependencies among failure times,
and are not convenient for allowing such dependencies to depend on covariates that
may be evolving over the study follow-up period(s).

Counting process intensity modeling provides an important approach to the re-
gression analysis of multivariate failure time data, with Andersen and Gill’s (1982)
development of distribution theory for semiparametric intensity models of multi-
plicative (Cox model) form standing out as a major development. When individual
study subjects have multiple failure times, of the same or different types, on the
same failure time axis, intensity modeling can lead to valuable insights into how fail-
ure rates at a given follow-up time depend on the preceding covariates and failure
histories for the individual. Often, however, primary interest resides in the depen-
dence of hazard rates on preceding covariate, but not preceding “counting process”
history, requiring a different regression methodology. Also the counting process in-
tensity modeling is not suited to multiple failure types for an individual with failure
types each having different potential censoring times, as may occur if failure types
have their own outcome ascertainment processes. Furthermore, the nice martingale
convergence results that attend multivariate failures on a single failure time axis have
not been extended to multiple time axis (see Andersen et al., 1993 for discussion).
Also see Aalen, Borgan, and Gjessing (2010) for an account of the various modeling
approaches mentioned above, with a major emphasis on counting process intensity
modeling, as well as the comprehensive recent book by Cook and Lawless (2018) on
multistate models for life history data analysis.

A marginal modeling approach can substantially fill the gap left by the previ-
ously mentioned modeling approaches. This approach, championed by Danyu Lin,
L. J. Wei and colleagues considers semiparametric models for the single failure haz-
ard rates for a multivariate failure time response (e.g., Spiekerman & Lin, 1998;
Lin, Wei, Yang, & Ying, 2000). Estimating equations have been developed for haz-
ard rate parameters, and empirical process convergence results lead to corresponding
distribution theory. The present authors have recently proposed an extension of these
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methods using semiparametric models for both single and dual outcome hazard rates
for correlated failure time outcomes. This extension leads to novel survivor function
estimators for pairs of failure time outcomes that may be accompanied by evolving
covariates, and to semiparametric estimates of dependency between pairs of failure
time variates. Importantly, these dual outcome hazard rate methods can provide ad-
ditional insight into the effects of the treatments or exposures under study, beyond
single outcome analyses. A primary aim of the presentation here is to provide a sum-
mary of these marginal methods. The frailty, copula and counting process intensity
approaches have been well covered in other venues, but we provide sufficient cov-
erage here to offer the reader an introduction to these methods, and to provide some
comparisons and contrasts with the marginal modeling approach.

While it is not feasible to provide a thorough account of asymptotic distribu-
tion theory for the estimators presented, we sketch the main elements of such theory
development, based mainly on empirical process theory, and make some use also
of martingale convergence results. While our account does not provide a complete
and rigorous development, we hope to provide enough detail to provide insight into
associated distributional results, and to provide a useful linkage to sources that pro-
vide such rigor and completeness. Also, our presentation emphasizes the modeling
of observable quantities, with little attention given, for example, to the counterfactual
approach to causal inference with observational data, the latent failure time approach
to competing risks, or even to random effects models generally. These approaches
each involve assumptions about unobservable quantities. As such they may be best
thought of as adjuncts to observable data modeling methods that may be consid-
ered to address further data analytic questions, but typically do so under additional
untestable model assumptions.

The present effort is essentially a research monograph. We do not attempt to
present a compendium of the rather voluminous set of methods that have been pro-
posed for some aspect of multivariate failure time data analysis, and we apologize to
other authors if their methodologic contributions are not discussed comprehensively,
or even at all. Furthermore, the data analysis methods emphasized require moderately
large numbers of pairs of outcome events during cohort follow-up, precluding useful
illustrations using classroom-type data sets. Partly for this reason we have chosen
to illustrate these multivariate methods using data from large cohorts in the national
Women’s Health Initiative in which we are engaged. The methods emphasized may
require novel software. We provide a description of, and link to, the software used in
most of our illustrations in appendix materials.

This book is intended primarily for statistical and biostatistical researchers as a
source of useful and interpretable data analysis methods, and as a basis for ideas
for further methodology development. The book could also serve as a text for a
graduate-level course in statistics or biostatistics among students having a reason-
able command of calculus and probability theory. Prior exposure to univariate failure
time methods for such students would also be helpful, though a presentation of the
“core” univariate methods mentioned above is included here. A set of exercises is in-
cluded with each chapter to enhance the usefulness of the presentation as a graduate
text. Many of the examples used to illustrate the methods described are drawn from
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epidemiologic cohort studies or from randomized controlled clinical trials, and this
book may also serve as a useful reference source for quantitative epidemiologists,
and for biomedical scientists more generally, who are working with data of the type
discussed here. Statistical and biostatistical practitioners can derive utility from our
presentation, since we attempt to describe the analytic procedures and underlying
concepts in terms that are mostly not highly technical.

The authors would like to thank Aaron Aragaki for help with Women’s Health
Initiative illustrations, including creation of the platter plots shown on the front cover;
and to thank Noelle Noble for tremendous help with manuscript preparation.

Ross L. Prentice and Shanshan Zhao
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1.1 Failure Time Data and Distributions

This book is concerned with methods for the analysis of time-to-event data, with
events generically referred to as failures. Typically there is an underlying study popu-
lation from which a cohort of individuals is selected and followed forward to observe
the times to occurrences of events of interest. Data analysis goals may include esti-
mation of the failure time distribution, and study of dependencies of failure times on
study subject characteristics, exposures, or treatments, generically referred to as co-
variates. The nature and strength of dependencies among the failure times themselves
may be also of interest in some settings. The types of mean and covariance models
used for the analysis of multivariate quantitative response data more generally can be
considered for multivariate failure time data analyses, but there are some important
features of multivariate time to response data that need to be acknowledged, as is
elaborated below.

1



2 INTRODUCTION AND CHARACTERIZATION

Failure time methods have application in many subject matter and research ar-
eas, including biomedical, behavioral, physical, and engineering sciences, and vari-
ous industrial settings. Most of the illustrations in this book will be drawn from the
biomedical research area in which the authors are engaged.

A major reason for specialized statistical methods for failure time data analysis is
the usual presence of right censoring since some, or perhaps most, study subjects will
not have experienced the event or events of interest at the cutoff date for data analysis,
and some may have discontinued participation in study follow-up procedures used to
ascertain failures prior to such cutoff date. The usual assumption about censoring
is that of independence, which requires the set of subjects who are uncensored and
continuing to be monitored for failures at any follow-up time to be representative of
individuals at risk for failure in the study population in terms of their failure rates,
conditional on a specified set of covariates.

Most failure time methods have focused on a single failure time variate T > 0.
The distribution of T can be characterized by its survivor function F , where F(t) =
P(T > t) and P denotes probability, which can be thought of in terms of frequencies
in the underlying, typically conceptual, study population. To accommodate contin-
uous, discrete and mixed failure times, F is usually assumed to be continuous from
the right with left-hand limits, whence the probability function corresponding to F is
defined at time t by −F(dt) where

−F(dt) =

lim
∆t↓0

[{F(t)−F(t +∆t)}/∆t]dt if t is a continuity point of F

F(∆t) if t is a mass point of F,

and where F(∆t) = F(t−)−F(t), with F(t−) = lim
s↑t

F(s).

The need to accommodate right censoring in data analysis leads naturally to a
focus on the corresponding (cumulative) hazard function Λ, specified by

Λ(dt) =−F(dt)/F(t−).

Λ(dt) is referred to as the hazard rate at follow-up time t. It is the failure probability,
or failure probability element if t is a continuity point of F , at time t conditional
on lack of failure prior to t. The absolutely continuous, discrete and mixed special
cases can be combined using Stieltjes integrals so that, for example, the probabil-
ity distribution function F and the (cumulative) hazard function at time t are given,
respectively, by

F(t) = 1−F(t) = 1+
∫ t

0
F(ds) and Λ(t) =

∫ t

0
Λ(ds).

Also F can be written in product integral notation as

F(t) =
t

∏
0
{1−Λ(ds)} (1.1)
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where
b
∏
a

denotes the product integral over (a,b]. Expression (1.1) reduces to

F(t) = exp
{
−
∫ t

0
Λ(ds)

}
(1.2)

if T is absolutely continuous. Product integrals are quite useful for likelihood con-
struction, and for data analysis more generally, with failure time data. In part this
utility arises because product integration allows discrete and continuous components
of the distribution of F to be included in a single notation. Appendix A provides
some background on the definition and properties of Stieltjes integrals and product
integration.

One could speculate that failure time data would be analyzed mostly using linear
models, or generalized linear models, or other standard statistical procedures, were
it not for the presence of right censoring. This would be an oversimplification, how-
ever, since a focus on hazard functions is helpful for statistical modeling and leads
to useful parameter interpretation regardless of the presence of censoring. Impor-
tantly, hazard rate modeling allows inference to be made on failure rates that evolve
over the cohort follow-up period in a manner that may depend on covariates that are
also changing over time, or on other types of events that are experienced by indi-
viduals during the study follow-up period. Also, in some contexts the inclusion of
time-varying covariates may be necessary for an independent censoring assumption
to be plausible. The simplest type of covariate is a fixed vector z = (z1, . . . ,zq) as-
certained at time zero (e.g., at or before the date of enrollment in a cohort study) for
each study subject. Such a “baseline” covariate q-vector can include various aspects
of the individual’s preceding history that may be of interest in relation to subsequent
survival probabilities or hazard rates. In an observational epidemiology context, for
example, z may include exposures or characteristics that may be associated with the
risk of occurrence of a study disease. In an industrial accelerated lifetime product
testing situation z may include the temperature, or stress level, applied to a prod-
uct to produce early breakdowns of various types. In a randomized controlled trial
(RCT) z would typically include indicator variables for treatment assignments, pos-
sibly along with product terms between these indicator variables and other factors
that may influence the magnitude of any treatment effect on a failure time outcome.

In general there may be a covariate process, Z, that evolves over the study follow-
up period. For notation, one can denote by z(s) = {z1(s),z2(s), . . .} the covariate
value at follow-up time s ≥ 0 and write Z(t) = z(0)∨ {z(s);0 < s < t} to denote
the collection of an individual’s covariate data up to time t, including baseline co-
variates that can include exposures and characteristics that pertain to the time period
prior to study enrollment. Here Z(t) is usually defined to involve sample paths that
are continuous from the left; that is Z(t) = lim

s↑t
Z(s) when t > 0, so that the history

Z(t) does not include covariate “process” jumps occurring at time t. It is often useful
to specify a statistical model for Λ given Z. In fact many, perhaps most, univariate
failure time data analysis applications involve the modeling and estimation of hazard
rates of this type. This statistical approach, and the use of the Cox (1972) regres-
sion model specifically with its nonparametric “baseline” hazard function, will be
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described in Chapter 2. There are many variants of the simple cohort study design
in which data are ascertained on a random sample of a study population conditional
on Z(0); for example, study subjects may enter the cohort late (t > 0), or be ascer-
tained with varying selection probabilities according to their covariate histories, or
according to their failure experience during study follow-up; there may be variations
in how and when covariates are measured, and in the reliability of those measure-
ments. Also subjects may cease continued study participation, censoring their failure
times, for complex reasons, possibly including their experiences during the study
follow-up period. These and other study features necessitate a corresponding rich
class of statistical models and methods for data analysis. Hazard rate models provide
a major unifying concept, and related methods have come to be known as event his-
tory analysis methods. The usual presence of right censoring has implications for the
types of statistical models that can be reliably applied, even if the covariates are time-
independent. For example linear regression models and maximum likelihood-based
regression parameter estimators have valuable robustness properties in that consis-
tent estimators of regression parameters typically arise even if the parametric form
for the linear model error variable is misspecified, in the absence of censoring or
other forms of missing or incomplete data. Unfortunately, this robustness is not re-
tained in the presence of right censoring, motivating the application of nonparametric
or semiparametric models, and estimation procedures that will have good behavior
regardless of the value of a nonparametric model component. This topic, too, will be
elaborated in Chapter 2 for univariate failure time data.

1.2 Bivariate Failure Time Data and Distributions

Multivariate failure time data arise when univariate failure times for individuals in
the study cohort need not be statistically independent, or when multiple events of
the same or of different types are recorded for the same individual in a study cohort.
Noteworthy special cases include RCTs where the treatment(s) may affect two or
more failure time outcomes; epidemiologic follow-up studies of family members in
an attempt to learn about inherited and shared environment in relation to the risk of a
disease; studies of the timing of multiple disease recurrences among treated patients;
or studies of the sequence of breakdown times for a manufactured product. While
univariate failure time data analysis methods can be regarded as well-established
and mature, the same cannot be said for multivariate failure time analysis methods.
Even such basic topics as nonparametric estimation of the bivariate survivor function
remain the topic of continuing statistical research.

Let T1 > 0 and T2 > 0 denote a pair of failure time variates that may be dependent.
Their joint survivor function F is given by F(t1, t2) = P(T1 > t1,T2 > t2). The two
variates may be subject to the same, or different, censoring patterns complicating the
estimation of F . F can be characterized by its marginal survivor functions, given by
F(t1,0) and F(0, t2), and its so-called double failure hazard function Λ11, where

Λ11(dt1,dt2) = F(dt1,dt2)/F(t−1 , t−2 ). (1.3)
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Here the bivariate probability element F(dt1,dt2) can be written

F(dt1,dt2)=



{∂ 2F(t1, t2)/∂ t1,∂ t2}dt1dt2 if (t1, t2) is a continuity point of F
{−∂F(t1,∆t2)/∂ t1}dt1 if F is continuous in t1 but not in t2 at (t1, t2)
{−∂F(∆t1, t2)/∂ t2}dt2 if F is continuous in t2 but not in t1 at (t1, t2)
F(∆t1,∆t2) = F(t−1 , t−2 )−F(t1, t−2 )−F(t−1 , t2)+F(t1, t2)

if F is discontinuous in both components at (t1, t2),

where ∂ denotes partial derivative.
Specifically, since F(t1, t2) = 1−P(T1 ≤ t1)−P(T2 ≤ t2)+P(T1 ≤ t1,T2 ≤ t2),

one can write

F(t1, t2) = F(t1,0)+F(0, t2)−1+
∫ t1

0

∫ t2

0
F(s−1 ,s

−
2 )Λ11(ds1,ds2), (1.4)

defining a Volterra integral equation for F , in terms of F(·,0),F(0, ·) and Λ11, that
has a unique solution. That solution is in a rather inconvenient Péano series form.
Nevertheless, the fact that F is determined by its marginal hazard rates, and its double
failure hazard rate provides useful background for bivariate failure time data mod-
eling. See Appendix A for the definition of two-dimensional Stieltjes integrals. The
Péano series solution to (1.4) is given in §3.2.1.

It is natural to consider the joint probability distribution for (T1,T2) as comprised
of its marginal survivor functions, or equivalently its marginal hazard functions, and
a component that measures dependency between T1 and T2 given the marginal dis-
tributions. In fact, the copula approach to bivariate distribution modeling uses this
conceptualization through specification of a parametric model that brings together
the marginal survivor functions for T1 and T2 to form their joint survivor function.

Dependency between T1 and T2 at follow-up time (t1, t2) can also be character-
ized by comparing the double failure hazard rate Λ11(dt1,dt2) to the product of cor-
responding single failure hazard rates at (t1, t2). The single failure hazard rate func-
tions Λ10 and Λ01 are defined respectively by Λ10(dt1, t−2 ) = −F(dt1, t−2 )/F(t−1 , t−2 )
and Λ01(t−1 ,dt2) =−F(t−1 ,dt2)/F(t−1 , t−2 ) for t1 ≥ 0 and t2 ≥ 0; and by Λ10(t1, t2) =∫ t1

0 Λ10(ds1, t2) and Λ01(t1, t2) =
∫ t2

0 Λ01(t1,ds2). In particular one can compare
Λ11(dt1,dt2) to Λ10(dt1, t−2 )Λ01(t−1 ,dt2) at any t1 > 0, t2 > 0 through the ratio

α(t1, t2) = Λ11(dt1,dt2)/{Λ10(dt1, t−2 )Λ01(t−1 ,dt2)}, (1.5)

which expresses double failure rate departure from local independence on a rela-
tive scale. The function α is referred to as the cross ratio function, terminology that

reflects the expression α(t1, t2) =
F(dt1,dt2)F(t−1 ,t−2 )

F(dt1,t
−
2 )F(t−1 ,dt2)

. It provides a possible means of

characterizing dependency between T1 and T2 in that its set of possible values is
essentially unrestricted by the corresponding marginal hazard rates Λ10(dt1,0) and
Λ01(0,dt2). In fact α(t1, t2) may take any value in [0,∞) for absolutely continuous
failure times.

It turns out that the bivariate survivor function F is completely determined also
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by its marginal hazard rate Λ10(·,0) and Λ01(0, ·) and its cross ratio functions. The
joint modeling and estimation of marginal hazard rates and cross ratios, however, is
complicated by the lack of a closed form expression for F in terms of these distribu-
tional components.

There is, however, a closed form expression for the survivor function in terms of
its single failure hazard rates more generally and its cross ratio function. Specifically
F is given, in product integral notation (see Appendix A), by

F(t1, t2) =
t1

∏
0
{1−Λ10(ds1,0)}

t2

∏
0
{1−Λ01(0,ds2)}

t1

∏
0

t2

∏
0

[
1+

Λ11(ds1,ds2)−Λ10(ds1,s−2 )Λ01(s−1 ,ds2)

{1−Λ10(∆s1,s−2 )}{1−Λ01(s−1 ,∆s2)}

]
=

t1

∏
0
{1−Λ10(ds1,0)}

t2

∏
0
{1−Λ01(0,ds2)}

t1

∏
0

t2

∏
0

[
1+
{α(s1,s2)−1}Λ10(ds1,s−2 )Λ01(s−1 ,ds2)

{1−Λ10(∆s1,s−2 )}{1−Λ01(s−1 ,∆s2)}

]
. (1.6)

The first expression is Dabrowska’s (1988) representation of the bivariate sur-
vivor function in terms of single and double failure hazard rates, while the second
simply substitutes (1.5). The first two product integrals in (1.6) are the marginal sur-
vivor functions, while the third involves the cross ratios α , but also the single failure
hazard rates away from the coordinate axes. However, straightforward calculations
give

Λ10(dt1, t2) = 1−{1−Λ10(dt1,0)}
t2

∏
0

[
1+
{α(t1,s2)−1}Λ10(dt1,s−2 )Λ01(t−1 ,ds2)

{1−Λ10(∆t1,s−2 )}{1−Λ01(t−1 ,∆s2)}

]
from which one sees that Λ10(dt1, t2) is determined by the marginal hazard rate
Λ10(dt1,0), the cross ratios α(t1,s2) for 0 < s2 ≤ t2, the single failure hazard
rates Λ10(dt1,s2) for 0 < s2 < t2, and single failure hazard rates Λ01(t−1 ,ds2) for
0 < s2 ≤ t2. Note that the right side of this expression does not involve single
failure hazard rates Λ10(ds1,s2) or Λ01(s1,ds2) at (s1,s2) = (t1, t2). This, and a
corresponding expression for Λ01(t1,dt2), support an inductive proof that F is de-
termined by its marginal hazard rate and cross ratio functions for discrete fail-
ure times (T1,T2). The induction hypothesis specifies this to be true for all points
{(s1,s2);0 ≤ s1 ≤ t1,0 ≤ s2 ≤ t2,(s1,s2) 6= (t1, t2)}. The single failure hazard rate
expressions at (t1, t2) then show the hypothesis to hold also at (t1, t2). Since the in-
duction hypothesis holds trivially along the coordinate axes, it follows that it holds
also throughout the set of grid points (t1, t2), where P(T1 = t1)> 0 and P(T2 = t2)> 0,
and hence for the discrete failure time survivor function as a whole.

If the distribution of (T1,T2) includes continuity points then the T1 and T2 axes
can each be partitioned with F , by definition of the product integrals in (1.6), given
by the limit of discrete distributions formed by these partitions as the mesh of the grid
decreases to zero. Each such approximating discrete distribution can be characterized
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by its marginal hazard rate and cross ratio functions, and these functions converge to
those from F as the partition mesh becomes small. It follows that F is uniquely de-
termined generally by its marginal hazard rate and cross ratio functions. In fact, one
could regard marginal hazard rates and cross ratios as key building blocks for bivari-
ate survival data modeling. Note that if F is absolutely continuous (1.6) simplifies
to

F(t1, t2) = exp
[
−
∫ t1

0
Λ10(ds1,0)−

∫ t2

0
Λ01(0,ds2)+∫ t

0

∫ t2

0
{Λ11(ds1,ds2)−Λ10(ds1,s2)Λ01(s1,ds2)}

]
= exp

[
−
∫ t1

0
Λ10(ds1,0)−

∫ t2

0
Λ01(0,ds2)+∫ t1

0

∫ t2

0
{α(s1,s2)−1}Λ10(ds1,s2)Λ01(s1,ds2)

]
.

The survivor function F can be characterized also in terms of its marginal hazard
rate functions Λ10(·,0) and Λ01(0, ·) and its “covariance rate” function Ω11, defined
by Ω11(t1, t2) =

∫ t1
0
∫ t2

0 Ω11(ds1,ds2) where

Ω11(ds1,ds2) =
Λ11(ds1,ds2)−Λ10(ds1,s−2 )Λ01(s−1 ,ds2)

{1−Λ10(∆s1,s−2 )}{1−Λ01(s−1 ,∆s2)}
.

This characterization, from (1.6), expresses F(t1, t2) as a product of its marginal sur-
vival probabilities F(t1,0) and F(0, t2) and a factor reflecting dependency between
T1 and T2 over (0, t1]× (0, t2]. With absolutely continuous failure times the denomi-
nator terms in Ω11 equal one, and Ω11(dt1,dt2) is simply the difference between the
double failure hazard element at (t1, t2) and the “local independence” product of the
corresponding single failure hazard elements.

Often with bivariate failure time data, primary interest will focus on marginal
hazard rates and their dependence on covariates. The reader might logically ask, why
not simply apply the well-established univariate failure time methods that were pre-
viously mentioned for inference on marginal hazard rates, while bringing in a com-
plementary dependency function only if there is additional interest in the nature of
any dependency between T1 and T2. In fact, much of the available literature on copula
models uses this type of two-stage modeling with a parametric “copula” model for F
given its marginal hazard rates. This same approach will be considered in Chapter 4,
but with semiparametric and parametric regression models for marginal hazard rates
and for cross ratios, respectively.

A simple, but important, special case of a bivariate survivor function is provided
by the Clayton–Oakes model

F(t1, t2) = {F(t1,0)−θ +F(0, t2)−θ −1}−1/θ ∨0, for θ ≥−1. (1.7)

This joint survivor function (Exercise 1.1) has marginal survivor functions
given by F(t1,0) and F(0, t2) and is an example of a copula model, wherein the
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marginal survival probabilities are brought together through a copula function C,
here C(u1,u2) = {u−θ + u−θ

2 − 1}−1/θ ∨ 0, to give the joint survivor function. The
parameter θ measures dependence between T1 and T2 with (1.7) approaching the
independence special case, F(t1, t2) = F(t1,0)F(0, t2), as θ → 0, and the so-called
upper Fréchet bound of F(t1,0)∧F(0, t2) as θ →∞. Also the distribution for (T1,T2)
is everywhere absolutely continuous for θ >−0.5. For θ ≤ 0.5 probability begins to
accumulate along the lower Fréchet bound F(t1,0)+F(0, t2)− 1∨ 0, but with each
(t1, t2) a continuity point away from this lower bound. As θ → −1 all probability
is eventually assigned to the Fréchet lower bound, and the probability density con-
verges to zero away from this bound. In these expressions, ∧ and ∨ refer to minimum
and maximum, respectively.

At any continuity point (t1, t2) the cross ratio from (1.7) is simply α(t1, t2) =
1+θ . Hence the cross ratio function from (1.7) is assumed to take a constant value,
independently of t1 or t2. This illustrates a potential limitation in using a copula model
with dependencies between T1 and T2 characterized by one or a few parameters:
Such models may make efficient use of data, for example for marginal hazard rate
estimation, but in doing so they may introduce biases if the dependency modeling
assumptions are not in agreement with available data. For example, if cross ratios
tend to be relatively larger at small compared to large follow-up times, then use of
(1.7) may lead to biased estimates of marginal hazard rates. A modeling challenge
then is to avoid unduly strong assumptions on cross ratios, and on other dependency
functions, in the estimation of F . Nonparametric estimation of F will be discussed
in Chapter 3.

1.3 Bivariate Failure Time Regression Modeling

Suppose now that the failure times (T1,T2) are accompanied by a covariate z =
(z1,z2, . . .) available at t1 = 0, t2 = 0. The arguments of the preceding section gen-
eralize directly to show that the survivor function F given z defined by F(t1, t2;z) =
P(T1 > t1,T2 > t2;z), is uniquely determined by its marginal hazard rate functions
given z and its cross ratio function given z. For example, the marginal hazard rates
are defined by

Λ10(dt1,0;z)=−F(dt1,0;z)/F(t−1 ,0;z) and Λ01(0,dt2;z)=−F(0,dt2;z)/F(0, t−2 ;z).

More generally (T1,T2) may be accompanied by an evolving covariate process Z.
Let z(t1, t2) = {z1(t1, t2),z2(t1, t2), . . .} denote the covariate value at time (t1, t2) for
t1 ≥ 0 and t2 ≥ 0 and denote by

Z(t1, t2) =

{z(s1,s2);s1 = 0 if t1 = 0, s1 < t1 if t1 > 0; and s2 = 0 if t2 = 0, s2 < t2 if t2 > 0}

the covariate history up to (t1, t2). One can define single and double failure hazard
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rates at (t1, t2) given Z(t1, t2), respectively, by

Λ10{dt1, t−2 ;Z(t1, t2)}= P{T1∈ [t1, t1+dt1);T1 ≥ t1,T2 ≥ t2,Z(t1, t2)},
Λ01{t−1 ,dt2;Z(t1, t2)}= P{T2∈ [t2, t2+dt2);T1 ≥ t1,T2 ≥ t2,Z(t1, t2)}, and

Λ11{dt1,dt2;Z(t1, t2)}= P{T1∈ [t1, t1+dt1),T2∈ [t2, t2+dt2);
T1≥ t1,T2≥ t2,Z(t1, t2)},

and corresponding single and double failure hazard processes Λ10,Λ01 and Λ11 by

Λ10{t1, t−2 ;Z(t1, t2)}=
∫ t1

0
Λ10{ds1, t−2 ;Z(s1, t2)},

Λ01{t−1 , t2;Z(t1, t2)}=
∫ t2

0
Λ01{t−1 ,ds2;Z(t1,s2)}, and

Λ11{t1, t2;Z(t1, t2)}=
∫ t1

0

∫ t2

0
Λ11{ds1,ds2;Z(s1,s2)}.

Regression modeling can focus, for example, on marginal hazard rates
Λ10{dt1,0;Z(t1,0)} for t1 ≥ 0 and Λ01{0,dt2;Z(0, t2)} for t2 ≥ 0, and cross ra-
tios α{t1, t2;Z(t1, t2)} = Λ11{dt1,dt2;Z(t1, t2)}/ [Λ10{dt1, t−2 ;Z(t1, t2)}Λ01{t−1 ,dt2;
Z(t1, t2)}] for t1 > 0 and t2 > 0. Given the common focus on mean and covariance
parameter modeling with uncensored data a focus on marginal hazard rates and a
complementary dependency function seems natural for bivariate failure time mod-
eling. A conceptualization based on a marginal hazard rates and the double failure
hazard rate pattern of co-occurrence for the two failure time events is also very nat-
ural. For example, in a clinical trial context there may be interest in whether a treat-
ment influences the rate of development of two important clinical outcomes jointly.
The joint modeling of marginal single and double failure hazard rates is useful for
these types of applications, and will be a major focus of the presentation in this book
beginning in Chapter 3, with regression extensions in Chapter 4 and in later chapters.

1.4 Higher Dimensional Failure Time Data and Distributions

The concepts of the preceding sections can be generalized to more than two failure
time variates, as will be elaborated in Chapters 5 and 6. For the present, consider
three absolutely continuous failure time variates T1,T2 and T3. The survivor function
F , defined by F(t1, t2, t3) = P(T1 > t1,T2 > t2,T3 > t3) for ti ≥ 0, i = 1,2,3 can be
written using concepts given in Dabrowska (1988) as

F(t1, t2, t3) = exp{−
∫ t1

0
Λ100(ds1,0,0)−

∫ t2

0
Λ010(0,ds2,0)−

∫ t3

0
Λ001(0,0,ds3)

+
∫ t1

0

∫ t2

0
Ω110(ds1,ds2,0)+

∫ t1

0

∫ t3

0
Ω101(ds1,0, ts3)+

∫ t2

0

∫ t3

0
Ω011(0,ds2,ds3)

−
∫ t1

0

∫ t2

0

∫ t3

0
Ω111(ds1,ds2,ds3)}, (1.8)



10 INTRODUCTION AND CHARACTERIZATION

where, for example, Ω110(ds1,ds2,s3) = {∂ 2 logF(s1,s2,s3)/∂ s1∂ s2}ds1,ds2 is the
covariance rate for (T1,T2) at (s1,s2,s3) and

Ω111(ds1,ds2,ds3) ={−∂
3 logF(s1,s2,s3)/∂ s1∂ s2∂ s3}ds1ds2ds3

=Λ111(ds1,ds2,ds3)−Ω110(ds1,ds2,s3)Λ001(s1,s2,ds3)

−Ω101(ds1,s2,ds3)Λ010(s1,ds2,s3)

−Ω011(s1,ds2,ds3)Λ100(ds1,s2,s3)

−Λ100(ds1,s2,s3)Λ010(s1,ds2,s3)Λ001(s1,s2,ds3).

In this expression Λ111 is the triple failure hazard rate function given by

Λ111(ds1,ds2,ds3) = [{−∂
3F(s1,s2,s3)/∂ s1∂ s2∂ s3}/F(s1,s2,s3)]ds1ds2ds3.

Note that Ω111(ds1,ds2,ds3) contrasts the triple failure hazard rate at (s1,s2,s3)
with that under local independence after allowing for dependencies at (s1,s2,s3) that
emanate from the pairwise marginal covariance rates.

In Chapter 5 we will consider modeling the trivariate survivor function, and re-
gression extensions thereof. As a specific survivor function consider

F(t1, t2, t3) ={F(t1, t2,0)−θ +F(t1,0, t3)−θ +F(0, t2, t3)−θ

−F(t1,0,0)−θ −F(0, t2,0)−θ −F(0,0, t3)−θ +1}−1/θ ∨0 (1.9)

for −1 ≤ θ < ∞, which is a trivariate generalization of (1.7). Expression (1.9)
has marginal survivor functions given by F(t1,0,0),F(0, t2,0),F(0,0, t3) and cor-
responding pairwise marginal survivor functions given by F(t1, t2,0),F(t1,0, t3) and
F(0, t2, t3). For example, Clayton–Oakes models (1.7) could be specified for these
pairwise marginal survivor functions, each with its own cross ratio parameter. The
parameter θ in (1.9) governs dependencies among the three failure times beyond
those attributable to the pairwise dependencies. As θ → 0, (1.9) approaches

F(t1, t2,0)F(t1,0, t3)F(0, t2, t3)/{F(t1,0,0)F(0, t2,0)F(0,0, t3)}.

Also (1.9) approaches the upper Fréchet bound F(t1, t2,0)∧F(t1,0, t3)∧F(0, t2, t3)
as θ → ∞, and the lower Fréchet bound

{F(t1, t2,0)+F(t1,0, t3)+F(0, t2, t3)−F(t1,0,0)−F(0, t2,0)−F(0,0, t3)+1}∨0

as θ →−1. All (t1, t2, t3) values away from this lower bound are continuity points
for (T1,T2,T3) for any θ ∈ [−1,∞).

Straightforward calculations from (1.9), at continuity points, show

Ω111(dt1,dt2,dt3) = θ{Ω110(dt1,dt2, t3)Λ001(t1, t2,dt3)

+Ω101(dt1, t2,dt3)Λ010(t1,dt2, t3)

+Ω011(t1,dt2,dt3)Λ100(dt1, t2, t3)}
−θ

2
Λ100(dt1, t2, t3)Λ010(t1,dt2, t3)Λ001(t1, t2,dt3) (1.10)
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under (1.9), so that the parameter θ governs the magnitude of any trivariate depen-
dency among the three variates.

In the very special case in which each of the three pairwise marginal survivor
functions adheres to (1.7) with the same θ value as in (1.9), this trivariate survivor
function reduces to

F(t1, t2, t3) = {F(t1,0,0)−θ +F(0, t2,0)−θ +F(0,0, t3)−θ −2}−1/θ ∨0,

which some authors have considered as the trivariate generalization of (1.7). How-
ever, this survivor function may be too specialized for many applications: not only
are the pairwise cross ratios independent of their respective time arguments, but these
marginal cross ratios take the identical value (1+ θ) for each pair of failure times.
Generalization of (1.9) to an arbitrary number of failure time variates will be given
in Chapter 6, along with estimation procedures for trivariate and higher dimensional
failure time data analysis more generally.

1.5 Multivariate Response Data: Modeling and Analysis

Historically multivariate response data analysis methods have relied on a multivari-
ate normal modeling assumption. Estimation procedures focusing on parameters in
the response mean vector and covariance matrix have long ago been derived using
multivariate t-distributions and Wishart distributions. Many problems of scientific
interest can be formulated in terms of multivariate mean regression parameters, or
covariance matrix patterns. Many of these developments are summarized in the clas-
sic book by Anderson (1984). Because many response variables are decidedly non-
normal in distribution, estimating equations for mean parameters, and for mean and
covariance parameters, subsequently came to provide a central approach to the mod-
eling and analysis of multivariate response data, with major stimulus from the work
of Liang and Zeger (1986) and Zeger and Liang (1986). By construing censored fail-
ure time data as a set of binary variates, “generalized estimating equations” may be
considered also for the analysis of univariate and multivariate failure time data, as
will be illustrated in subsequent chapters. Appendix A provides a brief account of
generalized estimating equations for mean parameter estimation.

Analysis methods based on multivariate normal theory, on more general paramet-
ric maximum likelihood theory or M-estimation, or based on generalized estimat-
ing equations enjoy some valuable robustness to departure from distributional form
working model assumptions. With right censoring however, or with other forms of
censoring or missing data, this robustness is typically lost, providing a reason to em-
phasize nonparametric and semiparametric models and estimation procedures. Also,
as with generalized estimating equations for mean and covariance parameters, with
censored data it is valuable to consider models and estimation procedures for de-
pendency parameters that do not compromise the properties of marginal distribution
parameter estimates. Hence the approach emphasized in subsequent chapters will
estimate marginal distribution parameters using the associated univariate data, with
additional estimating procedures for multivariate parameter estimation. Related pro-
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cedures using dependency parameter estimates to weight unbiased marginal distribu-
tion parameter estimating functions will also be mentioned.

The discussion of this section focuses on marginal, or population-averaged, quan-
tities. There is also a substantial multivariate failure time literature on the modeling
and estimation of evolving failure rates that include each study subject’s prior failure
time history in the failure rate specification. Such rates are referred to as intensities,
and the associated modeling and estimation procedures play a major role in recurrent
event methods and in more general multistate modeling methods.

1.6 Recurrent Event Characterization and Modeling

In an important subclass of applications there is a single failure time axis with indi-
viduals experiencing a failure continuing to be followed for second and subsequent
failures. Such recurrent failure time process data T1,T2, . . . may be subject to a single
censoring process that discontinues the follow-up for the study subject. In many re-
spects the modeling and analysis of this type of recurrent event data is more like the
univariate failure time data modeling mentioned in §1.1 than the correlated failure
time modeling discussed in §§1.2–1.4. For example, recurrent event modeling can
focus on failure rates

Λ{dt;H (t)}= P{failure in [t, t +dt);H (t)} (1.11)

where the conditioning event H (t) includes not only the covariate history Z(t) prior
to time t, but also the failure history for the individual prior to time t. This latter
history is conveniently described by the counting process N, where N(dt) equals the
number of failures experienced by the individual at time t and N(t) =

∫ t
0 N(ds). Re-

current event data frequently involve a large number of failures on individual study
subjects, and the modeling of (1.11) sometimes involves simplifying assumptions as
to how the intensity at time t depends on the preceding failure history {N(s),s < t}
for the individual, with Markov and semi-Markov assumptions commonly imposed.
Of course, there may be recurrent events for several types of failure time variates in
which case the concepts of this and the preceding sections can be combined leading
to the modeling of marginal failure rate processes (1.11), along with corresponding
cross ratio processes for example, in each case with the conditioning event including
not only the covariate, but also the preceding failure history for each event type. The
modeling and analysis of recurrent event data will be discussed in Chapter 7. Impor-
tantly, marginal modeling approaches in which one models failure rates at follow-up
time t as a function of the preceding failure, but not the preceding counting process
history, will also be considered in Chapter 7, along with generalizations to include
failures of various types on the same or different failure time axes.

Chapter 8 considers a variety of additional important topics in the modeling and
analysis of multivariate failure time data, including censoring schemes that are “de-
pendent;” cohort sampling procedures where some components of covariate histories
are assembled only for failing individuals and a subcohort of individuals who are
without failure during certain follow-up periods; data analysis procedures when co-
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variate values are subject to measurement error or missing values, and joint models
for covariate histories and failure times, among other topics.

We end this chapter by describing a few application areas encountered in our
applied work. These settings will be used to illustrate modeling and analysis methods
in subsequent chapters.

1.7 Some Application Settings

1.7.1 Aplastic anemia clinical trial

Table 1.1 shows failure time data for 64 patients having severe aplastic anemia. These
data are from Storb et al. (1986) as presented in Kalbfleisch and Prentice (2002, Ta-
ble 1.2). Patients were conditioned with high-dose cyclophosphamide followed by
bone marrow cell infusion from a human lymphocyte antigen (HLA)–matched fam-
ily member. Patients were then randomly assigned to receive either cyclosporine plus
methotrexate (CSP + MTX) or methotrexate alone (MTX) with time from assign-
ment to the diagnosis of stage 2 or greater acute graft versus host disease (A-GVHD)
as a key outcome. Table 1.1 also shows whether (LAF = 1) or not (LAF = 0) each
patient was assigned to a laminar air flow isolation room, and the patient’s age in
years, both at baseline (t = 0). Note that 44 of the 64 patients had right censored
times to A-GVHD, with censored times indicated by an asterisk. A principal study
goal was to assess whether the addition of CSP to the MTX regimen reduced the
A-GVHD risk. An independent censoring assumption requires patients who are still
alive without A-GVHD at the cutoff date for data analysis to be representative of
patients who are without an A-GVHD diagnosis at this censoring time, conditional
on treatment, LAF assignments and age (assuming that these variables are included
and well modeled in the data analysis). This independent censoring assumption is
satisfied for patients alive and without A-GVHD at the time of data analysis. Many
of the asterisks in Table 1.1, however, attend the days from randomization to death
for patients who died without having an A-GVHD diagnosis. It may seem like Table
1.1 provides censored bivariate failure time data on time (T1) from randomization to
A-GVHD and time from randomization to death (T2), but the table only gives times
to the smaller of T1 and T2. Competing risk methods (e.g., Kalbfleisch & Prentice,
2002, Chapter 8) indicate that A-GVHD hazard rates (among surviving patients) can
be estimated simply by regarding death times as additional censored observations.
Hence these data can be analyzed as censored univariate failure time data to relate
treatment assignment and other study subject characteristics to A-GVHD incidence,
as will be illustrated in Chapter 2. Genuinely bivariate data could be obtained in this
application by recording also the time to death for patients experiencing A-GVHD.
These more comprehensive data would support estimation of double failure hazard
rates (for A-GVHD followed by death) and their comparison among randomization
groups, as well as analyses of dependency between time to A-GVHD and time to
death at specified values of randomization assignment and other covariates.
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Table 1.1 Time in days to severe (stage≥ 2) acute graft versus host disease (A-GVHD), death,
or last contact for bone marrow transplant patients treated with cyclosporine and methotrexate
(CSP + MTX) or with MTX onlya

CSP+MTX MTX
Time LAF Age Time LAF Age Time LAF Age Time LAF Age

3∗ 0 40 324∗ 0 23 9 1 35 104∗ 1 27
8 1 21 356∗ 1 13 11 1 27 106∗ 1 19

10 1 18 378∗ 1 34 12 0 22 156∗ 1 15
12∗ 0 42 408∗ 1 27 20 1 21 218∗ 1 26
16 0 23 411∗ 1 5 20 1 30 230∗ 0 11
17 0 21 420∗ 1 23 22 0 7 231∗ 1 14
22 1 13 449∗ 1 37 25 1 36 316∗ 1 15
64∗ 0 20 490∗ 1 37 25 1 38 393∗ 7 27
65∗ 1 15 528∗ 1 32 25∗ 0 20 395∗ 0 2
77∗ 1 34 547∗ 1 32 28 0 25 428∗ 0 3
82∗ 1 14 691∗ 1 38 28 0 28 469∗ 1 14
98∗ 1 10 769∗ 0 18 31 1 17 602∗ 1 18

155∗ 0 27 1111∗ 0 20 35 1 21 681∗ 0 23
189∗ 1 9 1173∗ 0 12 35 1 25 690∗ 1 9
199∗ 1 19 1213∗ 0 12 46 1 35 1112∗ 1 11
247∗ 1 14 1357∗ 0 29 49 0 19 1180∗ 0 11

Source: Kalbfleisch and Prentice (2002, Table 1.2)
aAsterisks indicate that time to severe A-GVHD is right censored; that is, the patient died without severe A-GVHD or
was without severe A-GVHD at last contact.

1.7.2 Australian twin data

Duffy, Martin, and Mathews (1990) present analyses of ages at appendectomy for
twin pairs in Australia. This study was conducted, in part, to compare monozygotic
(MZ) and dizygotic (DZ) twins with respect to the strength of dependency in ages
of occurrence between pair members for various outcomes, including vermiform ap-
pendectomy. Twin pairs over the age of 17 years were asked to provide information
on the occurrence, and age at occurrence, of appendectomy and other outcomes. Re-
spondents not undergoing appendectomy prior to survey, or suspected of undergoing
prophylactic appendectomy, give rise to right-censored ages at appendectomy. There
were 1953 twin pairs, comprised of 1218 MZ and 735 DZ pairs. Among MZ pairs
there were 144 pairs in which both members, 304 pairs in which one member, and
770 in which neither member underwent appendectomy. The corresponding numbers
for DZ twins were 63, 208 and 464, respectively.

Comparison of strength of dependency between MZ and DZ twins may provide
insight into the importance of genetic factors for the outcome under consideration,
though the possibility that environmental factors (e.g., diet, physical activity patterns)
are more closely shared by MZ than by DZ twins also needs to be entertained. Also,
the twin pair ascertainment process may need to be modeled for some analytic pur-
poses. Here, for purposes of illustration (Chapter 3), as in Prentice and Hsu (1997),
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we will regard these data as a simple cohort study of twin pairs without allowing
for the possible analytic impact of ascertainment criteria, continued survival, and
willingness (of both pair members) to respond to the study survey.

1.7.3 Women’s Health Initiative hormone therapy trial

A setting that we will use for illustration in various chapters is the Women’s Health
Initiative (WHI) hormone therapy trials. The WHI, in which the authors are engaged,
is a National Institutes of Health–sponsored disease prevention and population sci-
ence research program among post-menopausal women in the United States. It in-
cludes a multifaceted randomized controlled trial (RCT) of four different preventive
interventions (treatments) in a partial factorial design, and a prospective observa-
tional cohort study. The RCT included 68,132 women, each of whom enrolled ei-
ther in a postmenopausal hormone therapy (HT) trial (27,347 women) or a low-fat
dietary pattern intervention trial (48,835 women), or both, while the observational
study enrolled 93,676 women from essentially the same catchment populations in
proximity to 40 clinical centers across the United States. The HT trials included two
separate randomized, placebo controlled comparisons: conjugated equine estrogen
(CEE-alone; 0.625 mg/d continuous) among women who were post-hysterectomy
(10,739 women), or the same estrogen preparation plus medroxyprogesterone acetate
(CEE + MPA; 2.5 mg/d MPA continuous) among women having a uterus (16,608
women). Postmenopausal estrogens became widely used in the 1960s as an effective
means of controlling vasomotor symptoms associated with the menopause. Proges-
tational agents were added starting in the late 1970s to protect the uterus, when a 5-
to 10-fold increase in uterine cancer risk was observed among CEE-alone users. By
the time the WHI trials began in 1993, about 8 million women were using the pre-
cise CEE-alone regimen studied and about 6 million women were using the precise
CEE + MPA regimen studied, in the United States alone. These potent hormonal
preparations lead to approximate doubling of blood estrogens (estradiol, estrone, es-
trone sulfate) and an approximate doubling of their offsetting sex-hormone binding
globulin, whether or not progestin is included. In a mass spectrometry-based serum
proteomic profiling study, evidence emerged that CEE-alone and/or CEE + MPA
changed circulating protein concentrations for nearly half of the 350 proteins quanti-
fied, including proteins involved in growth factors, inflammation, immune response,
metabolism and osteogenesis, among other biological pathways. Hence it may not be
surprising that the use of these preparations has implications of the risk of important
chronic diseases. The CEE + MPA trial intervention (active treatment or placebo)
was stopped early, in 2002, on the recommendation of the external Data and Safety
Monitoring Committee for the WHI, when an increase in breast cancer risk was ob-
served, and a designated global index, defined as the time to the earliest of coronary
heart disease (CHD), stroke, pulmonary embolism, (invasive) breast cancer, col-
orectal cancer, endometrial cancer, hip fracture or death from any other cause, was
also in the unfavorable direction. These results were quite a shock to researchers
and practitioners, especially concerning CHD, for which an early hazard ratio (HR)
elevation was observed. In fact CHD was the designated primary outcome in the
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HT trials, and a major risk reduction was hypothesized for both regimens, primarily
based on an extensive observational epidemiology literature. A more sustained HR
elevation in stroke risk was also observed, as was a substantial early HR elevation in
pulmonary embolism, and in venous thromboembolism more generally. On the other
side of the ledger, the rate of colorectal cancer diagnosis was lower in the active treat-
ment compared to the placebo group, and the incidence of hip fracture, and of bone
fractures more generally, were lower with active treatment. Nevertheless, the global
index mentioned above was decidedly in the unfavorable direction, contributing to
the early trial stoppage decision.

The CEE-alone trial intervention was also stopped early, in 2004, about a year be-
fore the planned completion of its intervention phase, substantially because a stroke
risk elevation of similar magnitude to that for CEE + MPA was observed. However,
the global index was essentially null for this trial, due to a balancing of health bene-
fits and risks. In particular breast cancer risk was somewhat lower in the CEE-alone
treatment versus the placebo group, and fracture risk reduction of similar magnitude
to that with CEE + MPA was observed. Follow-up continues, to explore the long-
term effects of an average 5.6 years of CEE + MPA treatment, or an average of 7.1
years of CEE-alone treatment, more than 14 years after the conclusion of the HT
trial’s intervention phase.

In these controlled trials it is natural to define failure times for each woman as the
time from trial enrollment to disease event occurrence. Individual women can be fol-
lowed to observe the time to occurrence of CHD (T1), breast cancer (T2), stroke (T3),
hip fracture (T4), among other clinical outcomes. Even though these are among the
most common chronic diseases among postmenopausal women, only a few percent
of trial enrollees experienced any one of these types of failures during trial follow-up,
with other women having censored times, as determined by death, loss to follow-up,
or alive and under active follow-up without the study disease at the cutoff time for
data analysis. Analyses to date have mostly looked at hazard rates for clinical out-
comes one at a time, with follow-up continuing even after the occurrence of nonfatal
events of other disease types. Some univariate failure time data analyses from the HT
trials will be described in Chapter 2 and multivariate analyses will be considered in
Chapters 5 and 6.

The availability of multivariate failure time data (T1,T2, . . .) opens up some ad-
ditional data analytic opportunities: Women at elevated risk for stroke also tend to
be at elevated risk for other cardiovascular diseases, including CHD. One can ask
whether the incidence data on CHD can be used to increase the precision of hazard-
based treatment evaluation for stroke, or whether some composite CHD and stroke
outcomes may be informative. This type of “strength borrowing” is commonplace
in other data analytic contexts, for example, using generalized estimating equations,
but is it of practical importance for failure time data and, if so, how should analyses
be carried out? Any such strength borrowing would require, for example, continued
follow-up for T1 following a T2 event, and events of a particular disease type may
then need to distinguish fatal from non-fatal disease events. The nature and strength
of dependencies between non-fatal disease occurrences could be of some interest it-
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self in this type of setting, particularly if the study treatment had an influence on such
dependencies.

Some of the diseases relevant to hormone therapy may occur on more than one
occasion during the follow-up of a particular woman as for venous thromboembolic
events, fractures, or even cancers of certain types either through recurrence or a new
primary diagnosis. One can ask whether treatment assessments can be more infor-
mative if the total event history during follow-up, rather than time to the first event
of each specific type, is included for each woman; and whether data summaries, such
as comparisons of estimated mean numbers of events over a follow-up period of a
certain duration may be helpful.

An additional goal of multivariate failure time data analysis in some contexts
may be a summary of the effects of a treatment or an exposure across a range of
health-related outcomes, or across a set of failure-types more generally. While the
construction of summaries of this type may require data beyond that available in a
given study, or judgments by subject matter specialists concerning the severity or
impact of each failure type, the value of suitable summary measures, or indices, is
quite evident for study monitoring and reporting purposes, and it is useful to examine
methodologic approaches to addressing statistical aspects of such data summaries.
See Anderson et al. (2007) for further detail on statistical aspects of the monitoring
and reporting on the WHI hormone therapy trials.

The multivariate failure time variables T1,T2, . . . defined above can be considered
in this context as correlated failure times on the same time from randomization axis.
The potential censoring times for failures of different types may vary however, since
outcome ascertainment procedures and outcome data sources may vary by failure
type.

1.7.4 Bladder tumor recurrence data

Table 1.2, obtained from Table 9.2 of Kalbfleisch and Prentice (2002), shows data
from a randomized trial of patient recurrences of superficial bladder tumor recur-
rence as conducted by the Veterans Administration Cooperative Urological Group.
As discussed in Byar (1980) these data were used to compare the frequency of re-
currences among 48 patients assigned to placebo, among whom there were a total
of 87 post-randomization recurrences, and 38 patients assigned to treatment with a
drug called thiotepa, among whom there were 45 recurrences during the trial follow-
up period, which averaged about 31 months. Tumors present at baseline were re-
moved transurethrally prior to randomization. In addition to studying the influence
of thiotepa on recurrence frequency, there was interest in the dependence of such
recurrence rates on the number and size of prerandomization tumors. Note that some
patients experience multiple recurrences during the study follow-up period, and use-
ful data analyses may focus on the mean number of recurrences during a specified
follow-up period. However, care may be needed in the modeling of data of this type
since patients experiencing recurrences could be more likely to cease trial participa-
tion prematurely, giving rise to censoring rates that could depend on the preceding
failure time history for the patient. Also note in Table 1.2 that recurrence times have
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Table 1.2 Bladder tumor recurrence data

Initial Tumorsa Initial Tumors
Censoringb Recurrence Timesb Censoring Recurrence Times

Number Size Time T1,T2 . . . Number Size Time T1,T2 . . .

Placebo Group
1 1 0 1 5 30 2,17,22
1 3 1 2 1 30 3, 6, 8, 12, 26
2 1 4 1 3 31 12, 15, 24
1 1 7 1 2 32
5 1 10 2 1 34
4 1 10 6 2 1 36
1 1 14 3 1 36 29
1 1 18 1 2 37
1 3 18 5 4 1 40 9, 17, 22, 24
1 1 18 12, 16 5 1 40 16, 19, 23, 29, 34, 40
3 3 23 1 2 41
1 3 23 10, 15 1 1 43 3
1 1 23 3, 16, 23 2 6 43 6
3 1 23 3, 9, 21 2 1 44 3, 6, 9
2 3 24 7, 10, 16, 24 1 1 45 9, 11, 20, 26, 30
1 1 25 3, 15, 25 1 1 48 18
1 2 26 1 3 49
8 1 26 1 3 1 51 35
1 4 26 2, 26 1 7 53 17
1 2 28 25 3 1 53 3, 15, 46, 51, 53
1 4 29 1 1 59
1 2 29 3 2 61 2, 15, 24, 30, 34, 39, 43, 49, 52
4 1 29 1 3 64 5, 14, 19, 27, 41
1 6 30 28, 30 2 3 64 2, 8, 12, 13, 17, 21, 33, 49

Thiotepa Group
1 3 1 8 3 36 26, 35
1 1 1 1 1 38
8 1 5 5 1 1 39 22, 23, 27, 32
1 2 9 6 1 39 4, 16, 23, 27, 33, 36, 37
1 1 10 3 1 40 24, 26, 29, 40
1 1 13 3 2 41
2 6 14 3 1 1 41
5 3 17 1, 3, 5, 7, 10 1 1 43 1, 27
5 1 18 1 1 44
1 3 18 17 6 1 44 22, 20, 23, 27, 38
5 1 19 2 1 2 45
1 1 21 17, 19 1 4 46 2
1 1 22 1 4 46
1 3 25 3 3 49
1 5 25 1 1 50
1 1 25 4 1 50 4, 24, 47
1 1 26 6, 12, 13 3 4 54
1 1 27 6 2 1 54 38
2 1 29 2 1 3 59

Source: Kalbfleisch and Prentice (2002, p. 292)
aInitial number of tumors of 8 denotes 8 or more; Size denotes size of largest such tumor in centimeters.
bCensoring and recurrence times are measured in months.

been grouped into months, giving a moderate number of tied recurrence times. Data
analysis methods that can accommodate these types of tied times without incurring
appreciable bias are needed for this and other applications.
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1.7.5 Women’s Health Initiative dietary modification trial

As introduced in §1.7.3 a total of 48,835 post-menopausal US women were assigned
to either a low-fat dietary pattern intervention (40%) or to a usual diet comparison
group (60%) as a part of the multifaceted Women’s Health Initiative clinical trial. In-
tervention group women were taught nutritional and behavioral approaches to mak-
ing a major dietary change, in groups of size 10–15 led by nutritionists. The dietary
goals included fat reduction to 20% of energy (calories), fruit and vegetable increase
to 5 servings/day, and grains increase to 6 servings/day. The comparison group re-
ceived printed health-related materials only. Breast and colorectal cancer incidence
were designated primary outcomes for disease risk reduction, and coronary heart
disease (CHD) and total cardiovascular disease (CVD) incidence were designated
secondary trial outcomes.

The trial proceeded to its planned termination (March 31, 2005) at which time
breast cancer incidence results were in the favorable direction for intervention versus
comparison-group women, but not statistically significant (p = 0.09) at conventional
levels. There was no evidence of an intervention influence on colorectal cancer inci-
dence; and CHD and overall CVD results were also neutral in spite of evidence of
favorable change in low-density lipoprotein cholesterol among intervention, but not
comparison group, women.

These findings were somewhat disappointing, given the magnitude of effort re-
quired to mount such a large, complex trial. However, the adherence of intervention
women to dietary fat goals was only about 70% of that anticipated in the trial de-
sign resulting in loss of power for trial outcomes, and the differential breast cancer
incidence in the intervention versus the comparison group was also about 70% of
that projected in the trial design. Also, this nutritional and behavioral intervention
can be projected to favorably influence a range of other important outcomes, includ-
ing disease-specific and total mortality. This opens the possibility of more definitive
results for composite outcomes, such as breast cancer followed by death from any
cause. In spite of much reduced incidence rates for composite outcomes (double fail-
ures) of this type, randomization comparisons may have greater power than either
of the marginal hazard rate comparisons, depending on the strength or relationship
between the double failure hazard rates and the randomization indicator variable. HI
investigators have recently conducted further trial analyses of this type, finding nom-
inally significant intention-to-treat effects on breast cancer followed by death, and on
diabetes requiring insulin injections. The related bivariate failure time analyses will
provide illustration in Chapters 4 and 7. Another valuable development in a recent
round of data analysis was the identification of post-randomization confounding by
differential use of statins between randomization groups among women who were
hypertensive at baseline or who had prior cardiovascular disease. Statin use in the
trial cohort increased markedly during the trial follow-up period, and these potent
preparations are known to have a strong influence on low-density lipoprotein choles-
terol concentrations in the blood, and on coronary heart disease incidence. In contrast
there was no evidence of such confounding among baseline healthy (normotensive,
without prior CVD) women, and in this stratum intervention group, women experi-
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enced a Bonferroni–adjusted significantly lower CHD incidence compared to com-
parison group women. Trial women have continued to be followed for clinical out-
comes during the post-intervention period, and new information is still emerging on
the effects of this low-fat intervention program on clinical outcomes during the com-
bined intervention and post-intervention follow-up periods. Statistical methods are
needed to take full advantage of the wealth of data obtained in this type of enterprise,
including analyses of single and double hazard failure rates in relation to random-
ization indicator variables and in relation to other study subject characteristics and
exposures over the trial follow-up period.

BIBLIOGRAPHIC NOTES

There is a long history of modeling failure time data using survivor and hazard
functions. The preface lists a number of books that describe these functions, and
their estimation under independent censorship, in some detail, including early books
by Kalbfleisch and Prentice (1980, 2002), Breslow and Day (1980, 1987), Lawless
(1983, 2002), Cox and Oakes (1984), Fleming and Harrington (1991), and Andersen
et al. (1993). A thorough account of product integration, as in (1.1), is given by
Gill and Johansen (1990) with applications to failure time data (see Appendix A).
Dabrowska (1988) provided the nice representation (1.6), which expresses the sur-
vivor function in terms of its marginal hazard rates and dependency rates that contrast
the double failure hazard rate to the product of corresponding single failure hazard
rates locally. Dabrowska (1988) also alludes to higher dimensional representation
from which (1.8) derives. See also Gill and Johansen (1990) and Prentice and Zhao
(2018) for such higher dimensional representation. Clayton (1978) introduced the
bivariate survivor function model (1.7) with θ > 0, which was further developed
by Oakes (1982, 1986, 1989). This model was generalized to higher dimensions in
Prentice (2016). The focus here on modeling marginal hazard rates, and on marginal
single and double failure hazard rates, will be used in an attempt to provide a unified
presentation throughout this book. Key references for marginal hazard rate analyses
for single failure hazard rates include Wei, Lin, and Weissfeld (1989), Spiekerman
and Lin (1998), and Lin et al. (2000). The literature on the modeling and analysis of
recurrent events is described in some detail in Cook and Lawless (2007) while the
same authors have recently provided (Cook & Lawless, 2018) a detailed account of
multistate models for event history analyses more generally. Anderson (1984) pro-
vides a unified record of multivariate normal-based modeling and estimation proce-
dures. Key references for mean and covariance estimation with (uncensored) discrete
and continuous data include Liang and Zeger (1986), Zeger and Liang (1986), and
Prentice and Zhao (1991).
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EXERCISES AND COMPLEMENTS

Exercise 1.1

Show that the Clayton–Oakes bivariate survivor function (1.7) for failure time vari-
ates T1, and T2 given by

F(t1, t2) = {F(t1,0)−θ +F(0, t2)−θ −1}−1/θ ,

for θ > 0 has marginal survivor functions given by F(t1,0) and F(0, t2) and a time-
independent cross ratio function equal to 1+ θ . Also, by considering logF(t1, t2),
show this survivor function converges to the independence special case F(t1, t2) =
F(t1,0)F(0, t2) as θ ↓ 0. Further show that this survivor function can be extended to

F(t1, t2) = {F(t1,0)−θ +F(0, t2)θ −1}−1/θ ∨0

to allow negative dependencies (θ < 0), that this distribution approaches the upper
Fréchet bound of F(t1,0)∧F(0, t2) for maximal positive dependency as θ → ∞, and
approaches the lower Fréchet bound of {F(t1,0)+F(0, t2)−1}∨0 for maximal neg-
ative dependency as θ →−1. Comment on the extent to which absolute continuity
is retained as θ becomes increasingly negative.

Exercise 1.2

The trivariate survivor function, for failure time variates T1,T2 and T3 given by

F(t1, t2, t3) = {F(t1,0,0)−θ +F(0, t2,0)−θ +F(0,0, t3)−θ −2}−1/θ ∨0

θ ≥ −1 is sometimes considered as the trivariate generalization of the Clayton and
Oakes model (1.7). Show that the pairwise marginal cross ratio functions are each
constant and equal to 1+θ at all continuity points. Discuss whether this model would
be suited to the analysis of a family breast cancer data set in which T1,T2, and T3
denote ages of breast cancer occurrence for an index case (T1), her sister (T2) and
her daughter (T3).

Consider the more general trivariate survivor function (1.9). Show that the pair-
wise marginal survivor functions are given by F(t1, t2,0), F(t1,0, t3) and F(0, t2, t3).
Suppose that these marginal distributions have time-independent cross ratios of
1+ θ110, 1+ θ101 and 1+ θ011 respectively at continuity points for the three vari-
ates. Derive the trivariate hazard rate function Λ111 and show that Λ111 approaches
zero at all continuity points as θ →−1. From this calculate the trivariate dependency
function Ω111 given in (1.10). Discuss any implications for modeling the distribution
of (T1,T2,T3).
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Exercise 1.3

For absolutely continuous failure time variates T1,T2 and T3 show that∫ t1

0

∫ t2

0

∫ t3

0
{d3 logF(s1,s2,s3)/ds1,ds2,ds3}ds1,ds2,ds3

= logF(t1, t2, t3)− logF(t1, t2,0)− logF(t1,0, t3)− logF(0, t2, t3)
+ logF(t1,0,0)+ logF(0, t2,0)+ logF(0,0, t3).

Also show that

d3F(s1,s2,s3)

ds1ds2ds3

/
F(s1,s2,s3) =

d3 logF(s1,s2,s3)

ds1ds2ds3

+
d2 logF(s1,s2,s3)

ds1ds2

d logF(s1,s2,s3)

ds3

+
d2 logF(s1,s2,s3)

ds1ds3

d logF(s1,s2,s3)

ds2

+
d2 logF(s1,s2,s3)

ds2ds3

d logF(s1,s2,s3)

ds1

+
d logF(s1,s2,s3)

ds1

d logF(s1,s2,s3)

ds2

d logF(s1,s2,s3)

ds3
.

Integrate this latter expression over (0, t1]× (0, t2]× (0, t3] and combine with the
former expression to yield the absolutely continuous survivor function representation
(1.8).

Exercise 1.4

Derive a test for whether the censoring times in Table 1.2, in a given treatment group,
depend on the preceding bladder tumor recurrence pattern for each patient as ob-
served during trial follow-up.

Exercise 1.5

Consider discrete failure time variates (T1,T2). Show that the quantity in square
brackets in the double product integral on the right side of (1.6) can be expressed
as F(s−1 ,s

−
2 )F(s1,s2)/{F(s−1 ,s2)F(s1,s−2 )} and thereby show through massive can-

cellation that this double product integral reduces to F(t1, t2)/{F(t1,0)F(0, t2)}, so
that the right side of (1.6) equals F(t1, t2).

Exercise 1.6

Consider m > 2 failure time variates T1, . . . ,Tm having joint survivor function (θ ≥
−1) (Prentice, 2016) given by
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F(t1, . . . , tm) = {F(t1, . . . , tm−1,0)−θ

+F(t1, . . . , tm−2,0, tm)−θ + · · ·+F(0, t2, . . . , tm)−θ

−F(t1, . . . , tm−2,0,0)−θ −F(t1, . . . , tm−3,0, tm−1,0)−θ −·· ·−
F(0, t2, . . . , tm−1,0)−θ −·· ·−F(0,0, t3, . . . , tm)−θ

+F(t1, . . . , tm−3,0,0,0)−θ + · · ·+F(0,0,0, t4, . . . , tm)−θ−·· ·−
+(−1)m−2F(t1,0 . . . ,0)−θ+(−1)m−2F(0, t2,0 . . . ,0)−θ+ · · ·+

(−1)m−2F(0, . . . ,0, tm)−θ+(−1)m−1}−1/θ ∨0

where, for example, the second component of this expression consists of all
m(m− 1)/2 pairs with two arguments equal to zero and the third component is
composed of all m(m− 1)(m− 2)/6 triplets with three arguments equal to zero.
Show that the upper bound for this survival probability given by F(t1, . . . , tm−1,0)∧
F(t1, . . . , tm−2,0, tm)∧ . . .F(0, t2, . . . , tm) is approached as θ → ∞, and that the lower
bound is given by the expression above evaluated at θ = −1. Also show that as
θ → 0 this survival probability approaches the product of marginal survival proba-
bilities having a positive coefficient divided by the product of all survival probabili-
ties having a negative coefficient on the right side of the above expression. Can you
develop an expression for F(t1, . . . , tm) in terms of marginal survival probabilities of
dimension q or less, where 1≤ q < m upon assuming that all marginal probabilities
of dimension more than q have a survivor function of this same form, with the same
θ value?

Exercise 1.7

Suppose that failure time variates T1 and T2 are statistically independent given the
value of a shared random effect W , where W is a gamma variate rescaled to have
mean one and variance θ > 0 that acts multiplicatively on the hazard rate. Show that
the Clayton (1978) model

F(t1, t2) = {F(t1,0)−θ +F(0, t2)−θ −1}1/θ

then arises by integrating over the joint distribution of the random effect, which is
often referred to as a “frailty” variate in this context. Generalize this result to m > 2
failure time variates and derive pairwise marginal cross ratio functions for each pair
of the m variates.

Exercise 1.8

Consider the WHI hormone therapy trial context of §1.7.3 with T1 defined as time
from randomization to CHD and T2 time from randomization to stroke. Describe
the difference in interpretation between the marginal T1 hazard process Λ10 given
by Λ10{dt1,0;Z(t1,0)} and the recurrent event intensity process for T1, given by
Λ1{dt1;Ht}= P{CHD event in [t, t +dt);Ht} as in (1.11).
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Exercise 1.9

In the same WHI hormone therapy trial context (§1.7.3) define T1 as time from ran-
domization to breast cancer diagnosis, and T2 as time from breast cancer diagnosis
to death following breast cancer. Write down expressions for hazard rate processes
for T1 and for T2 given T1 ≤ t1. Can you develop an expression for the hazard rate
for the composite time from randomization to death following breast cancer outcome
T3 = T1 +T2 in terms of these component hazard functions. Discuss the advantages
and disadvantages of comparing randomization groups in terms of T3 hazard rates
versus separate analyses for T1 and T2 hazard rates.
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2.1 Overview

There is an extensive literature on statistical modeling and estimation for a univari-
ate failure time variate T > 0. In this chapter some core methods, which we will
build upon in subsequent multivariate failure time methods presentations, will be de-
scribed. The core methods include Kaplan–Meier survivor function estimation, Cox
model hazard ratio parameter estimation with its associated logrank test, as well as
other censored data rank tests. The presentation will focus on nonparametric and
semiparametric likelihood formulations for estimator development for reasons men-
tioned in Chapter 1. A brief account of asymptotic distribution theory for these testing
and estimation procedures will also be given.

2.2 Nonparametric Survivor Function Estimation

Consider a failure time variate with T > 0 having survivor function F , so that F(t) =
P(T > t) for any t ≥ 0. Suppose that n individuals are chosen at random from a study

25
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population, and are followed forward from t = 0 to observe individual failure times,
subject to independent right censoring. Here, independent right censoring means that
the set of individuals without prior failure or censoring has a hazard rate equal to that
for the study population, at any follow-up time t > 0. Denote by t1 < t2 < · · · < tI
the ordered distinct failure times in the sample, and suppose that di individuals fail
at ti, out of the ri individuals who are without failure or censoring prior to time
ti, i = 1, . . . , I. A nonparametric likelihood function for F can be written

L =
n

∏
k=1

[
{−F(dsk)}δk F(sk)

1−δk
]
, (2.1)

where sk is observed and is the smaller of the failure or censoring time for the kth
individual in the sample and δk takes a value of 1 if sk is uncensored and a value
0 if sk is censored. Expression (2.1) can be maximized within the class of discrete,
continuous and mixed survivor functions by placing mass (probability) only at the
observed uncensored failure times, or on the half line beyond the largest sk value if
uncensored. Doing so yields a discrete, step function estimator of F , starting with
F(0) = 1. Substituting

F(ti) = ∏
`≤i
{1−Λ(dt`)} and −F(dti) = ∏

`<i
{1−Λ(dt`)}Λ(dti)

using the discrete special case of (1.1) and collecting terms, then gives a partially
maximized likelihood of

L =
I

∏
i=1

[Λ(dti)di{1−Λ(dti)}ri−di ], (2.2)

which is maximized at Λ(dti) = di/ri, i = 1, . . . , I, yielding the well-known Kaplan–
Meier (1958) product limit survivor function estimator

F̂(t) = ∏
ti≤t
{1−di/ri}. (2.3)

Of course F is not identifiable at times where no individuals are “at risk” for
failure, so F̂ is undefined beyond the largest follow-up time (i.e., the largest sk value)
observed in the sample. The corresponding hazard function estimator Λ̂ is given by

Λ̂(t) = ∑
ti≤t

di/ri,

which is often referred to as the Nelson–Aalen estimator. Note that, in keeping with
(1.1)

F̂(t) =
t

∏
0
{1− Λ̂(ds)}.

Informally, the ith factor in (2.2) can be recognized as a binomial likelihood for
Λ(dti). Conditioning on all failure and censoring information prior to ti, thereby fix-
ing ri, shows Λ̂(dti) = dir−1

i to have a conditional, and hence an unconditional, mean
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of Λ(dti). Similarly, for i < j, conditioning on all failure and censoring information
prior to t j fixes Λ̂(dti) and shows Λ̂(dti) and Λ̂(dt j) to be conditionally, and hence
unconditionally, uncorrelated. Application of the delta method then leads to

ˆvarF̂(t) = F̂(t)2
∑
ti≤t
{di/(ri−di)}

as a variance estimator for F̂(t), referred to as the Greenwood formula. To avoid
influences from the range restrictions, 0≤ F(t)≤ 1, one can apply a normal distribu-
tion approximation to the unconstrained function given by log{−logF(t)} leading,
for example, to an approximate 95% confidence interval for F(t) of

F̂(t)exp{±1.96v̂(t)} (2.4)

where v̂(t)2 = ˆvarF̂(t)/{logF̂(t)}2 at times where F̂(t)> 0.
One can also obtain the Kaplan–Meier estimator using mean parameter estimat-

ing equations as follows: Reconstrue the censored failure time data (sk,δk) as a se-
quence of uncorrelated binary variates

Wki =

{
1 if sk = ti and δk = 1
0 otherwise

and also define “at-risk” indicator variables

Yki =

{
1 if sk ≥ ti
0 otherwise

for i = 1, . . . , I, for each k = 1, . . . ,n. Under a discrete failure time model with hazard
rate Λ(dti) at T = ti, i = 1, . . . , I one has

µki =E(Wki) = YkiΛ(dti), partial derivatives ∂ µki/∂Λ(dti) = Yki,

and cov{(Wki−µki)(Wk j−µk j)}=

{
µki(1−µki) if i = j
0 otherwise.

This leads to mean parameter estimating equations (see Appendix A, expression
A.5)

n

∑
k=1

Yki(Wki−µki) = 0, for i = 1, . . . , I

and to the Kaplan–Meier (KM) estimator. Hence the nonparametric maximum like-
lihood, the survivor function or hazard function representation plug-in, and the mean
parameter estimating equation approaches each lead to the same nonparametric sur-
vivor function estimator (2.3). F̂ has been shown to be strongly consistent for F ,
and n1/2(F̂ −F) has been shown to be weakly convergent to a mean zero Gaussian
process over a time period [0,τ], where τ is in the support of the observed follow-up
times. Moreover, in keeping with its nonparametric maximum likelihood develop-
ment, F̂ has also been shown to be nonparametric efficient as an estimator of F over
[0,τ]. Some detail on these asymptotic results will be given in §2.9.
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2.3 Hazard Ratio Regression Estimation Using the Cox Model

Suppose now that a covariate history {Z(t), t ≥ 0} is recorded for each individual in
the study sample. The hazard rate regression model introduced by Sir David Cox rev-
olutionized the analysis of censored failure time data, and Cox (1972) is one of the
most highly cited statistical papers of all time. The Cox model, for an absolutely con-
tinuous failure time variable T , specifies a hazard rate at time t given the preceding
covariate history Z(t), having the multiplicative form

λ{t;Z(t)}= λ0(t)exp{x(t)β}, (2.5)

where x(t) = {x1(t), . . . ,xp(t)} is a modeled covariate p-vector comprised of data-
analyst-defined functions of Z(t) and possibly product terms between such functions
and t. This modeled regression variable, with sample paths that are continuous from
the left with limits from the right, is intended to “capture” the dependence of the
hazard rate at time t on the preceding covariate history, through the value of the
hazard ratio parameter β ′ = (β1, . . . ,βp), where a prime (′) denotes vector transpose.
The function λ0 in (2.5) is referred to as the baseline hazard function, and λ0(t) is the
hazard rate at a reference covariate history Z0(t) for which the modeled covariate is
x(t)≡ 0, a zero vector for all t. The hazard process model given Z is semiparametric
with the p-vector β and the nonparametric function Λ0, where Λ0(t) =

∫ t
0 λ0(s)ds, as

parameters to be estimated.
Denote by T1, . . . ,Tn the underlying failure times for a random sample of size

n from a study population followed forward in time from t = 0. Suppose that Tk is
subject to right censoring by a variate Ck, so that one observes Sk = Tk∧Ck and non-
censoring indicator variable δk = I[Sk = Tk]. Suppose also that covariate histories
Zk(Sk) are recorded, k = 1, . . . ,n. An independent censoring assumption requires the
hazard rate λ{t;Z(t)} in (2.5) to equal the same hazard rate, but with Ck ≥ t added to
the conditioning event. That is, independent censorship implies that the subset of in-
dividuals who are without prior failure or censoring at any follow-up time t, referred
to as the “risk set” at time t and denoted R(t), is representative of the study popu-
lation in terms of hazard rate at t given Z(t). This assumption needs to be carefully
considered in the context of specific applications, and may be able to be relaxed as
necessary.

A semiparametric likelihood function, analogous to (2.1), can be written

L =
n

∏
k=1

[{
λ0(sk)exk(sk)β

}δk
exp
{
−
∫ sk

0
exk(u)β λ0(u)du

}]
,

where (sk,δk) and Zk(sk),k = 1, . . . ,n are the observed data in the study sample.
Several approaches have been considered for dealing with the nonparametric as-

pect of this model, including partial likelihood (Cox, 1972, 1975), marginal likeli-
hood (Kalbfleisch & Prentice, 1973), and approximate likelihood (Breslow, 1974)
methods.

The Breslow (1974) approach begins by noting that the above likelihood can be
maximized by placing all failure probability within the risk region of the data, de-
fined by R = {t;sk ≥ t for some k ∈ (1, . . . ,n)}, on the observed uncensored failure
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times t1 < t2 < · · · < tI in the sample. This implies that censored sk values can be
replaced by censored values at the immediately preceding uncensored failure time in
the sample without diminishing the likelihood. Now if one approximates the base-
line rate function by λ0(t) = λi whenever t ∈ (ti−1, ti], i = 1, . . . , I one can write the
likelihood, following the censored data shifting just mentioned, as

L =
I

∏
i=1

[
∏

k∈D(ti)
λiexi(ti)β ∏

k∈R(ti)
exp
{
−exk(ti)β λi∆ti

}]
(2.6)

where D(ti) denotes the set of di individuals having uncensored failures at T = ti, and
∆ti = ti− ti−1, i = 1, . . . , I, with t0 = 0. In this form L can be recognized as having the
form of a parametric likelihood to which application of standard likelihood methods
can be considered.

Specifically, one can solve the equations ∂ logL/∂λi = 0, i = 1, . . . I explicitly
giving

λ̂i(β ) = di/

{
∆ti ∑

k∈R(ti)
exk(ti)β

}
, i = 1, . . . , I,

which can be inserted into (2.6) to give the profile likelihood

L(β ) =
I

∏
i=1

 ∏
k∈D(ti)

exk(ti)β

/{
∑

k∈R(ti)
exk(ti)β

}di
 , (2.7)

which is Breslow’s tied data approximation to the Cox partial likelihood.
The corresponding estimating function for β is

U(β ) = ∂ logL(β )/∂β

=
I

∑
i=1

Ui(β )

=
I

∑
i=1

[
∑

k∈D(ti)
xk(ti)′−di ∑

k∈R(ti)
xk(ti)′ exp{xk(ti)β}

/
∑

k∈R(ti)
exp{xk(ti)β}

]
.

(2.8)

Conditional on all failure, censoring and covariate information up to ti, one can
see, under (2.5), that the conditional, and hence also the unconditional, expectation
of Ui(β ) is zero for all, i = 1, . . . I, so U(β ) = 0 provides an unbiased estimating
equation for β . Similarly for i< j conditioning on all failure, censoring and covariate
information up to t j fixes Ui(β ) and gives a conditional, and hence unconditional
expectation of zero for Ui(β )U j(β ), all (i, j). Hence I(β ) = −∂ 2 logL/∂β∂β ′ has
expectation equal to the variance matrix for U(β ). Direct calculation gives

I(β ) =
I

∑
i=1

di

[
∑k∈R(ti) xk(ti)′xk(ti)exk(ti)β

∑k∈R(ti) exk(ti)β

−
∑k∈R(ti) xk(ti)′exk(ti)β ∑k∈R(ti) xk(ti)exk(ti)β

{∑k∈R(ti) exk(ti)β}2

]
. (2.9)
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Under mild conditions β̂ that maximizes (2.7), which is sometimes referred to as
the maximum partial likelihood estimate of β , has an asymptotic distribution, with
consistent variance matrix estimator, given by

n
1
2 (β̂ −β )∼N {0,nI(β̂ )−1}

where N denotes a normal distribution. Also, the corresponding baseline hazard
estimator Λ̂0, where

Λ̂0(t) = Λ̂0(t, β̂ ) = ∑
ti≤t

[
di

/
∑

k∈R(ti)
exp{xk(ti)β̂}

]
(2.10)

is such that n
1
2 {Λ̂0(·)−Λ0(·)} converges jointly with n

1
2 (β̂ − β ) to a zero mean

Gaussian process over a time period [0,τ], where τ is in the support of the follow-up
times (S values). The estimator β̂ has also been shown to be semiparametric efficient
under (2.5) in the special case of time-independent covariates.

The Cox likelihood can be derived similarly by setting the overall sample empir-
ical hazard rates di/ri equal to the model-based average ∑`∈R(ti) λ0(ti)ex`(ti)β/ri and
solving for λ0(ti) at each i = 1, . . . , I. Plugging these values into the semiparametric
likelihood gives (2.7).

A mean parameter estimating equation development can also be considered: As
above set

Wki =

{
1 Sk = ti, and δk = 1
0 otherwise

, and Yki =

{
1 Sk ≥ ti
0 otherwise

, for all (k, i).

Under a model of the form (2.5) one has µki =E(Wki) =Ykieαi+xk(ti)β , where αi =
logΛ0(dti), the uncorrelatedness of Wki, i = 1, . . . , I for each k, and mean parameter
estimating equations (Appendix A, A.5) for (α1, . . . ,αI) that solve

n

∑
k=1

(Wki−µki) = 0, for i = 1, . . . , I.

Solving these equations gives

eαi = di

/ n

∑
k=1

Ykiexk(ti)β , i = 1, . . . , I,

which can be inserted into the estimating equation for β giving ∑
I
i=1 Wkixki(ti)′−

di ∑
I
i=1{∑n

k=1 Ykixk(ti)′exk(ti)β/∑
n
k=1 Ykiexk(ti)β} = 0, yielding (2.8) and (2.10). Also

the model-based variance estimator, using the notation of Appendix A, is(
n

∑
k=1

I

∑
i=1

YkiD̂′kiV̂
−1
ki D̂ki

)−1

,
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where ˆ denotes evaluation at (α̂1, . . . , α̂I , β̂ ) solving these equations, which equals
I(β̂ )−1 from (2.9).

It follows that maximum likelihood, empirical hazard plug-in, and mean param-
eter estimating functions again agree for this rather general regression estimation
problem. Generalizations of these approaches will be considered in later chapters
to manage nonparametric aspects of models specified for multivariate failure time
regression estimation.

The asymptotic developments mentioned above assume absolutely continuous
failure times, so that technically we should have di = 1, i = 1, . . . , I. However (β̂ , Λ̂0)
as described above can tolerate some tied failure times without incurring appreciable
asymptotic bias. A rule of thumb may be that the number of ties di should not be
more than a few percent (e.g., 5%) of the size, ri, of the corresponding risk set at
uncensored failure times. Nearly all available computer software for the Cox model
allows tied failure times, and applies the expressions given above, even though more
sophisticated approximations have been proposed for handling tied failure times.

2.4 Cox Model Properties and Generalizations

A few points can be made about the Cox model estimation procedure described
above. First, it is easy to see that the hazard ratio function comparing covariate his-
tories Z1 and Z2 is given by

λ{t;Z1(t)}/λ{t;Z2(t)}= exp{x1(t)− x2(t)}β

at time t, and does not depend on the choice of baseline covariate history Z0.
Also, it is worth commenting that the time-varying feature of (2.5) can be quite

powerful. This feature allows hazard ratios for a specific covariate to vary in a user-
defined fashion as a function of follow-up time, and it allows hazard rates to be
defined that condition on stochastic covariates that are recorded during study follow-
up.

From (2.10) one can specify

F̂{t;Z(t)}= ∏
ti≤t

{
1−di exp{xi(t)β̂}

/
∑

k∈R(ti)
exk(ti)β̂

}
,

which has a survivor function interpretation with time-independent covariates Z(t)≡
z, or with evolving covariates that are external to the failure process in the sense that
the covariate paths are unaffected by the failure time process under study. Note that
F̂ reduces to the Kaplan–Meier estimator at β̂ = 0.

A simple, but very useful, relaxation of the Cox model (2.5) allows the baseline
hazard function to vary among strata, which also may be time-dependent. Specifi-
cally, one can write

λ{t;Z(t)}= λ0u(t)exp{x(t)β}, (2.11)

where stratum u= u{t,Z(t)} ∈ {1, . . . ,m}, has sample paths that are continuous from
the left with limits from the right. Under (2.11) the study population is partitioned
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into m mutually exclusive strata at each follow-up time t. For example, this stratifi-
cation feature can allow the baseline hazard rate at time t to vary in an unrestricted
manner for some variables defined by {t,Z(t)}, while imposing a parametric hazard
ratio model on variables of principal interest that are used to define x(t). The hazard
ratio parameter β can be estimated under (2.11) using a product of factors (2.7), one
from each stratum, while U(β ) and I(β ) are given by sums over the strata of (2.8) and
(2.9). For example, in large epidemiologic cohort studies with most observed times
censored it is often possible to incorporate extensive baseline stratification, thereby
enhancing confounding control, with little effect on the efficiency with which hazard
ratio parameters of primary interest are estimated.

In some settings a univariate failure time variate T > 0 may be accompanied by a
failure type J ∈ {1, . . . ,q}, sometimes referred to as a “mark.” The hazard ratio meth-
ods of the preceding section extend readily to failure type–specific hazard models

λ j{t;Z(t)}= λ0 j(t)exp{x(t)β j}, j = 1, . . . ,q (2.12)

simply by applying a (partial) likelihood function that is a product of terms (2.7)
for each type-specific hazard ratio parameter, following the imposition of additional
censorship wherein follow-up times for estimating β j are additionally censored at the
time of failure of any type other than j. Data of this type are sometimes formulated
in terms of potential failure times, say U1, . . . ,Uq with T = min(U1, . . . ,Uq), and the
estimation of marginal hazard rates, or other distributional characteristics, for these
latent failure times is referred to as the competing risk problem. However, the joint
distribution of (U1, . . . ,Uq) given Z, for a time-independent covariate, is not identifi-
able without strong additional assumptions, such as independence among such times,
unless genuinely multivariate failure time data are available. Genuinely multivariate
failure time data arise when individuals continue to be followed beyond the time of
their first failure to observe second and subsequent failure times for the individual.
The analysis of such multivariate failure time data is a major focus of this book.

If the failure time variate, T , includes discrete elements then some care may be
needed in applying (2.5) since the hazard rates at a mass point cannot exceed one.
Depending on the distribution of the modeled covariate x(t), a different regression
model form, such as a logistic hazard rate model, may be preferable if T has some
large point masses. This topic will be elaborated in §2.11.

2.5 Censored Data Rank Tests

In addition to Kaplan–Meier survival curves and Cox regression, censored data rank
tests that are used to test equality of two or more survival curves, can be included
among core univariate failure time methods.

The score test

U(0) =
I

∑
i=1

[
∑

k∈D(ti)
xk(ti)′−

di

ri
∑

k∈R(ti)
xk(ti)′

]
(2.13)

from (2.8) can be used to test β = 0, by comparing

U(0)′V (0)−1U(0)
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to an asymptotic chi-square distribution on p degrees of freedom where V (0) is a
variance estimator for U(0) with x(t) is composed of indicator variables for p of
p+1 samples whose failure rates are being compared. This p+1 sample comparison
test is referred to as the logrank test. The corresponding hazard rates under (2.5)
are proportional to each other, so it should not be surprising that the logrank test
has attractive power properties for testing the null hypothesis against proportional
hazards alternatives. This class of null hypothesis tests can be broadened to

I

∑
i=1

{
∑

k∈D(ti)
h(ti)xk(ti)′−

di

ri
∑

k∈R(ti)
h(ti)xk(ti)′

}
(2.14)

by introducing a weight function h, where h(t) can depend on failure and censoring
information prior to t, in order to provide, for example, greater sensitivity to hazard
rate differences early versus late in the follow-up period, or vice versa. A correspond-
ing variance estimator under β = 0 is given by

V (0) =
I

∑
i=1

h(ti)2Vi

where (Vi) j j = ri j(ri − ri j)di(ri − di)r−2
i (ri − 1)−1, j = 1, . . . , p and (Vi) jk =

−ri jrikdi(ri−di)r−2
i (ri−1)−1, j 6= k , where, for example, ri j is the size of the risk set

in the jth sample at ti. Tests of the form (2.14) are known as weighted logrank tests.
In addition to h(t) ≡ 1, another commonly used test specifies h(t) = F̂(t), with F̂
a survivor function estimator under the null hypothesis. This generalized Wilcoxon
test applies greater weight to early failures, compared to the logrank test. Weight
functions h that may depend on failure, but not censoring, distribution estimates are
preferable for test interpretation.

2.6 Cohort Sampling and Dependent Censoring

There are many variations in the criteria for study subject selection and follow-up
with univariate failure time data. For example, if T is defined to be age at disease
occurrence in an epidemiologic cohort study with a minimum age criterion, there
would typically be late entry into the cohort as study subjects are enrolled at ages
beyond the specified minimum. The hazard rate methods described above readily
adapt to such late entries by adjusting the risk sets R(t) to include only subjects who
are under active follow-up at time t.

Since some cohort studies involve very heavy censorship, with only a few per-
cent of study subjects experiencing the failure time outcome under study, it may be
inefficient or impractical to assemble cohort histories on the entire study cohort. Such
assembly, for example, may involve expensive laboratory analysis of stored biospeci-
mens. Cohort sampling methods, such as matched case–control or case–cohort meth-
ods are often applied. Hazard ratio parameter estimates under sampling in which each
failing individual (a case) is matched to one or more cohort members (controls) who
are without failure at the time of case failure occurrence (t) can be derived by ap-
plying (2.7) with D(t) and R(t) respectively the case and the combined case and its
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matched controls. Similarly if cases arising in a cohort are ascertained along with a
random subsample of the cohort, hazard ratio parameters can be estimated by apply-
ing (2.7) with R(t) comprised of the case(s) occurring at time t and the subcohort
members at risk at time t, though a refinements of (2.9) is needed for variance esti-
mation to acknowledge dependencies among the scores Ui(β ), i = 1, . . . , I. Missing
data methods, which make fuller use of the available data, including covariate data
subsets that are available for the entire cohort, can provide efficiency improvements
for hazard ratio parameter estimation, and the subcohort can be selected in a more
refined fashion so that cases and their comparison group align closely for some im-
portant potential confounding variables.

Other sampling variations include interval censorship, rather than right censor-
ship only, and observation only of whether or not failure has occurred prior to an
individual-specific assessment time (current status data). Many of these variations
have a substantial corresponding statistical literature and are of considerable applied
importance.

Covariate measurement error is another important aspect of many univariate fail-
ure time data sets, particularly in such areas as nutritional or physical activity epi-
demiology where covariates (e.g., exposures) of interest may be poorly measured. In
many such settings failure probabilities during the study follow-up period are small,
and a simple regression calibration approach that replaces x(t) in (2.5) by an estimate
of the conditional expectation E{x(t)|Z∗(t)}, where Z∗(t) is equal to Z(t) aside from
the substitution of error-prone versions of the variables used to form x(t). For exam-
ple, if a biomarker assessment w(t) that equals x(t) aside from classical mean zero
measurement error is available on a random biomarker subsample of the cohort, this
expectation can typically be estimated by linear regression of w(t) on an error-prone
assessment of x(t) that is available on the entire cohort along with other components
of Z∗(t) as needed. Though technically inconsistent, such regression calibration es-
timators of β in (2.5) typically exhibit little bias and tend to be more efficient than
available nonparametric measurement error correction alternatives. A sandwich, or
bootstrap, variance estimator is needed to acknowledge uncertainty in calibration
equation parameter estimates.

Scientific interest may focus on hazard rate dependencies on a specific covari-
ate, with low-dimensional modeled covariates. However, an independent censoring
assumption may be justified only if Z includes additional covariates that may be re-
lated to censoring rates. The methods described above will then require Z to include
these additional variables, and for their association with hazard rates to be accommo-
dated by regression modeling or stratification. This can sometimes be accomplished
without requiring undue model complexity and without materially affecting hazard
ratio parameter interpretation.

More generally consider Z1 and Z2, where Z1(t) is composed of the covariates at
time t (e.g., treatments, exposures) of primary interest and variables needed to control
confounding, Z2(t) is composed of additional variables needed to justify an indepen-
dent censoring assumption. The type of Cox model application just described would
examine hazard rate dependencies on Z = (Z1,Z2). An alternate analytic approach
would define Z = Z1 and would modify the estimating function (2.10) by weighting
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each x1(ti) in Ui(β ) by the inverse of the estimated probability of not being cen-
sored prior to ti, i = 1, . . . , I. This inverse probability weighting aims to recover a
representative risk set in terms of their modeled covariate values, at each uncensored
failure time. For example, a Cox model of the form (2.5) could be applied to the
censoring, rather than the failure hazard, to produce estimates of the non-censoring
probability at each follow-up time. Since these estimates at time t will depends only
on information prior to t, needed modifications of (2.8) and (2.9), simply replace each
xk(t) by the ratio of xk(t) to the inverse of the estimated non-censoring probability
at follow-up time t. Sampling variation in estimating the non-censoring probabilities
may affect the estimation procedure, so it is wise to avoid weights that are unneces-
sarily grainy or noisy, as these could reduce the efficiency of the resulting estimates
of β and Λ0, at least with a moderate sample size n. Estimation procedures of the
type just described, with inverse non-missingness probability weighting, are some-
times referred to as marginal structural modeling procedures (e.g., Robins, Hernan,
& Brumback, 2000).

The topics of this subsection will be considered further in Chapter 8, with em-
phasis on multivariate failure time generalizations.

2.7 Aplastic Anemia Clinical Trial Application

Figure 2.1 shows Kaplan–Meier survivor function estimates (2.3) separately for the
CSP and CSP + MTX arms of the randomized trial data given in Table 1.1 with
times from randomization for patients who are alive without A-GVHD at the time
of data closure, or for patients who died without an A-GVHD diagnosis regarded as
censored. Application of the Cox model (2.5) to these data with a simple modeled
covariate x = 0 for CSP + MTX and x = 1 for MTX gives β̂ = 1.143, with an esti-
mated standard error of I(β̂ )−1/2 = 0.517. Hence under this simple model the hazard
ratio for severe A-GVHD is estimated by exp(1.143) = 3.14, with approximate 95%
confidence interval of exp{1.143±1.96×0.517}= (1.14,8.64), supporting a bene-
fit for the addition of CSP to the severe A-GVHD prevention regimen. The addition
of indicator variables for the age categories 16–25 and ≥ 26 years at randomization,
along with a treatment× follow-up time interaction variable provides evidence (like-
lihood ratio test significance level of P = 0.05) based on (2.7) for a treatment hazard
ratio that increases with follow-up time, as is suggested by Figure 2.1, and also shows
higher A-GVHD incidence among patients in the older two age categories compared
to the youngest category of age ≤ 15 years. See Kalbfleisch and Prentice (2002, p
112–114) for additional detail on the analysis of these data. Note that the number of
failures here is only 20, so asymptotic distributional approximations may be some-
what inaccurate. Because of their invariance under 1-1 parameter transformations,
likelihood ratio procedures can be expected to provide better approximations com-
pared to those (i.e., Wald procedures) based on an asymptotic normal approximation
for the distribution of β̂ . Also note that the interpretation of the hazard ratio com-
paring treatments could be affected by treatment effects on death without A-GVHD
in this application, pointing to the value of bringing data on time of death following
A-GVHD into the data analysis.
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Figure 2.1 Kaplan–Meier survivor function estimates for time to severe acute graft-versus-
host disease for patients randomized to cyclosporine and methotrexate (CSP + MTX) or
methotrexate only (MTX). From Kalbfleisch and Prentice (2002).

2.8 Women’s Health Initiative Postmenopausal Hormone Therapy
Application

Now consider the application of the univariate failure time regression methods de-
scribed above to the analysis of the two WHI hormone therapy trials described in
§1.7.3. A major advantage of the randomized, double blind, placebo controlled de-
sign of these trials is the absence of confounding by pre-randomization factors. The
comparability of active treatment and placebo groups at baseline carries through to
the comparison of failure time outcomes between the randomized groups in so-called
intention-to-treat (ITT) analyses, in which x(t) = x in model (2.5) is defined as an in-
dicator variable for assignment the active hormone therapy group. The validity of
ITT tests of the null hypothesis (e.g., β = 0 in (2.5)) requires only that failure time
outcome data be obtained accurately obtained or, at least, be obtained in an identical
manner between randomized groups. The incorporation of masking (or blindedness)
is often crucial to ensuring equal outcome ascertainment between groups. The base-
line stratification feature of the Cox model (2.5) is quite valuable in this setting,
since risks for outcomes of interest vary considerably among women according to
age at randomization and other factors. The application of (2.5) to the WHI hor-
mone therapy trial data described below stratified baseline disease rates on age at
randomization in 5-year age groups, prior history of the outcome in question, and
on randomization status (intervention group, control group, not randomized) in the
companion WHI Dietary Modification trial (see §1.7.5).

Figures 2.2–2.4 present some Cox model analyses for several important disease
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Figure 2.2 Intention-to-treat hazard ratio parameter estimates and (asymptotic) 95% confi-
dence intervals for various clinical outcomes, during the intervention phase of the Women’s
Health Initiative CEE + MPA and CEE-Alone postmenopausal hormone therapy randomized,
placebo controlled trial. Adapted from a pre-publication version of Manson et al. (2013).

outcomes in both the estrogen plus progestin (CEE + MPA) and estrogen-alone
(CEE-alone) trials. These figures were adapted from a pre-publication version of
Manson et al. (2013) that describes results over the intervention phase (5.6 years
on average, ended July 7, 2002 for CEE + MPA trial; 7.2 years on average, ended
February 29, 2004 for the CEE-alone trial) and post-intervention phase (additional
8.2 years of follow-up on average for CEE + MPA trial; additional 6.6 years on aver-
age for the CEE-alone trial) data through September 30, 2010. Participating women
were re-consented following the planned intervention phase with 81.1% of surviving
women agreeing to additional non-intervention follow-up. See Manson et al. (2013)
for additional detail, including the number of disease events, for each outcome listed,
by randomization group and trial phase.

Figure 2.2 shows intervention phase estimated active versus placebo hazard ratios
and (asymptotic) 95% nominal confidence intervals (CIs) for the trials primary out-
come coronary heart disease, for the primary “safety” outcome invasive breast can-
cer, and for other major outcomes (stroke, pulmonary embolism, colorectal cancer,
endometrial cancer, hip fracture and all-cause mortality), that were included along
with the two primary outcomes in defining a “global index.” The global index aimed
to provide a useful single health benefit versus risk index for trial monitoring and
reporting. In fact the global index was itself a failure time variate defined as the time
to the earliest of the listed outcomes (with death from causes other than the diseases
listed above it substituted for all-cause mortality). For each outcome the observed
times (S) were days from randomization until the first occurrence of the specific out-
come (δ = 1), or until death from other diseases, loss to follow-up, or to date last
known to be alive (δ = 0).
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Contrary to the hypothesis, there was a non-significant elevation (stratified lo-
grank p = 0.13) in CHD incidence in the group randomized to CEE + MPA during
the intervention phase, with an estimated hazard ratio (HR) of 1.18 with 95% CI of
(0.95, 1.45). The corresponding CHD HR (95% CI) for CEE-alone was 0.94 (0.78,
1.14) with a stratified logrank p = 0.53. An elevated breast cancer risk with CEE
+ MPA (HR=1.24; 95% CI of 1.01–1.53, p=0.04) was consistent with earlier obser-
vational studies, but the possibility of a reduced breast cancer risk with CEE-alone
(HR=0.79, 95% CI of 0.61 to 1.02, p =0.07), which became significant (p =0.02)
with longer follow-up, was unexpected. Both CEE + MPA and CEE-alone yielded
elevated stroke risk during the intervention phase, along with a reduced risk of hip
fractures. Colorectal cancer risk may also be reduced with CEE + MPA, but any
such reduction was restricted to early-stage cancers, and no colorectal cancer mor-
tality difference emerged with longer-term follow-up. All-cause mortality was not
significantly affected by either preparation, while the global index was in the adverse
direction for CEE + MPA, and approximately balanced for CEE-alone.

Figure 2.3 provides corresponding information from disease events occurring
during the post-intervention phase of the trials. These analyses also relied on the
Cox model (2.5), with baseline stratification as in the intervention phase, with time
from randomization as the basic time variable, and with entry into the “risk set” oc-
curring at the end of the intervention period. The hazard ratios for most of the listed
outcomes gravitated toward the null following the cessation of treatment, with some
longer-term elevation in breast cancer risk with CEE + MPA as an exception. The in-
terpretation of these post-intervention HRs is complicated by any selection that took
place during the intervention phase. See Manson et al. (2013) for corresponding in-
tervention evaluations over the combined intervention and post-intervention periods,
evaluations that compare randomized groups and therefore have greater reliability
and a simpler interpretation.

Naturally with a large-scale clinical trials of this type there are many relevant
analyses beyond those ITT comparisons. For example, some HRs are decidedly vari-
able over follow-up time within a particular study phase. For example, the CHD
HR with CEE + MPA was large during the first 1–2 years from randomization, less
so thereafter, while the corresponding breast cancer HR was somewhat less than one
during the first two years from randomization, probably due to the treatment masking
some tumor diagnoses on mammography, and increased rapidly and approximately
linearly to about 2.2 by the end of the intervention period. Other relevant analyses at-
tempt to estimate HRs among women who were adherent to their assigned hormone
pills (whether active or placebo), though such analyses cannot be carried out with
the purity of ITT analyses. Still other analyses attempt to explain treatment effects
in terms of blood biomarkers measured at baseline and at one or more times during
follow-up. The Cox model (2.5) can provide the framework for a wide range of anal-
yses of these types, with much flexibility afforded by the semiparametric aspect of
the model and by the time-varying stratification and regression variable features.

It is a mark of the value attributed to randomized controlled trial data that the
WHI trials and a preceding secondary CHD prevention trial of CEE + MPA led
to a sea change in the use of postmenopausal hormones in the United States and
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Figure 2.3 Intention-to-treat hazard ratio parameter estimates and (asymptotic) 95% con-
fidence intervals for various clinical outcomes, during the post-intervention phase of the
Women’s Health Initiative CEE + MPA and CEE-Alone postmenopausal hormone therapy
randomized, placebo controlled trial. Adapted from a pre-publication version of Manson et al.
(2013).

around the world. The major change in CEE + MPA use has been hypothesized to
have brought about a reduction by about 15,000–20,000 in the number of women in
the United States alone who develop breast cancer each year since 2003, and to a
cumulative reduction in medical care costs in excess of $32 billion.

Another prominent component of data analysis from this type of study involves
treatment comparisons in study subsets. For example, only about 33% of women in
the CEE + MPA trial, and 31% of women in the CEE-alone trial were in the age range
50–59 where decisions concerning the use of hormone therapy, especially after the
sea change mentioned above, are typically made. Figure 2.4 shows HRs correspond-
ing to Figure 2.2 according to baseline age in categories 50–59, 60–69 and 70–79.
Most CIs are quite wide with modest numbers of disease events for some outcomes,
particularly in the 50–59 age group. This type of subset analysis is accompanied by
important multiple testing considerations. Nonetheless, it is evident that more pre-
cise information is needed among younger women to adequately inform hormone
therapy decisions, concerning use of these preparations, that are very effective for
control of vasomotor symptoms in spite of longer-term health concerns. The joint
analysis of multiple failure time outcomes is one place to look for additional insight
into the health effects of these prominent hormone therapy preparations, as will be
considered in Chapters 5 and 6. The reader is referred to Manson et al. (2013) for
information on numbers and crude rates for these various clinical outcomes, and for
additional hormone therapy trial detail.
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Figure 2.4 Intention-to-treat hazard ratio parameter estimates and (asymptotic) 95% con-
fidence intervals for various clinical outcomes by age group at randomization, for various
clinical outcomes during the intervention phase of the Women’s Health Initiative CEE + MPA
and CEE-Alone randomized, placebo controlled trial. From Manson et al. (2013).

2.9 Asymptotic Distribution Theory

The nonparametric and semiparametric aspects of the statistical models considered
in this chapter preclude the application of standard parametric likelihood procedures
to develop asymptotic theory for testing and estimation. The needed developments
can, however, be based on empirical process distribution theory, or more specialized
martingale convergence theory. A brief account of these approaches will be described
here in a manner that will apply to some of the multivariate failure time testing and
estimation procedures that will be described in subsequent chapters.

The estimates considered so far can be viewed as functions of processes that
count failures over the cohort follow-up period. Let Nk(t) denote the number of fail-
ures observed for the kth study subject over [0, t], with Nk(0) = 0, including the pos-
sibility that Nk(t)> 1 for multivariate failure time counts, k = 1, . . . ,n. The counting
process Nk is defined as a step function having right-continuous sample paths, so that
the count Nk(t) includes any failures at T = t. One can also define corresponding
“at-risk” processes Yk having left-continuous sample paths, so that Yk(t) = 1 if the
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kth individual is without prior censoring and still at risk for an observed failure at
T = t, and Yk(t) = 0 otherwise. Similarly, the covariate process Zk may be defined to
have left-continuous sample paths, so that Zk(t) can be “predicted” by the preceding
values Zk(u),u < t, precluding the inclusion of any jump in the covariate at T = t in
the specification of Zk(t),k = 1, . . . ,n.

A standard approach to distribution theory development assumes {Nk,Yk,Zk} to
be independent and identically distributed (IID) for the n individuals in the study
sample. Empirical process asymptotic results then apply to the types of transforma-
tions of these basic variables that appear in the specification of estimators for targeted
parameters. These methods apply to the estimators considered in this chapter, as well
as to many of the estimation procedures for multivariate failure time data to be de-
scribed in subsequent chapters, even if the coordinate time axes for the multivariate
failure times are unrelated.

When multivariate failure times arise through continued follow-up of individuals
for second and subsequent failures on a single failure time axis, martingale meth-
ods can often be applied to derive asymptotic distributional results for estimators of
interest. These methods can even somewhat relax the identically distributed assump-
tion that attends the empirical process methods, and additionally can yield analytic
variance estimators for tests and estimators of interest.

Here we give a brief, informal account of both approaches for the Cox model,
by extracting key concepts and approaches from the seminal paper by Andersen and
Gill (1982). Denote by Ht the collective failure, censoring and covariate information
in the study cohort prior to time t. The Cox model (2.5), extended to allow a discrete
failure probabilities at some t values, and extended to allow continued follow-up
beyond a first failure to second and subsequent failures for individual study subjects,
can be written

E{Nk(dt);Ht}= Yk(t)Λk{dt;Zk(t),Nk(t−)}
= Yk(t)Λ0(dt)exp{xk(t)β}, (2.15)

where independence of {Nk,Yk,Zk} among the study subjects has been assumed
along with independent censorship, and the modeled covariate xk, with left-
continuous sample paths, is defined such that xk(t) is a p-vector of functions derived
from Zk(t) and Nk(t−), and possibly product terms between such functions and t.

Each counting process Nk can be decomposed into signal and noise process com-
ponents such that

Nk(t) = Λk(t)+Mk(t),

where Λk(dt) = Yk(t)Λ0(dt)exp{xk(t)β}, and Mk(dt) = Nk(dt)−Λk(dt) has expec-
tation zero. In fact, the “noise” process Mk has the structure of a mean zero martingale
for each k, meaning that E{Mk(t)} = 0 and E{Mk(t);Hs} = Mk(s) for every t and
s < t. The (predictable) covariation process 〈Mk,M`〉 for martingales Mk and M` is
defined by

〈Mk,M`〉(t) = E{Mk(t)M`(t);Ht}.

The above independence assumption among {Nk,Yk,Zk},k = 1, . . . ,n leads to
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〈Mk,M`〉(t) = 0 for all t and k 6= `, whence the martingales Mk,k = 1, . . . ,n are said
to be orthogonal. Also denote 〈Mk〉(t) = 〈Mk,Mk〉(t).

With this background the estimating function (2.8) for β , based on data through
follow-up time t, can be expressed as

U(β , t) =
n

∑
k=1

∫ t

0
{xk(u)′−E (β ,u)}Nk(du) =

n

∑
k=1

∫ t

0
{xk(u)′)−E (β ,u)}Mk(du),

(2.16)
where E (β ,u) = ∑

n
j=1 Yj(u)x j(u)′ exp{x j(u)β}/∑

n
j=1 Yj(u)exp{x j(u)β}.

Expression (2.16) is in the form of a stochastic integral of a predictable process
with respect to a (square integrable) martingale, due to the left continuity (with right-
hand limits) of xk and Yk, for each k = 1, . . . ,n and one can apply a central limit theo-
rem due to Rebolledo to show that n−1/2U(β , t) converges in probability, at the “true”
β value, to a mean zero Gaussian process for t ∈ (0,τ] for any τ such that there is
positive probability for an observed failure beyond τ for each k = 1, . . . ,n. Sufficient
conditions for this convergence are that the covariation process for n−1/2U(β , ·),
given by

〈n−1/2U(β , t)〉(t) =n−1
n

∑
k=1

∫ t

0
{xk(u)−E (β ,u)}⊗2

[1−Λ0(∆u)exp{xk(u)β}]Yk(u)Λ0(du)exp{xk(u)β},

where a⊗2 denotes a′a for a row vector a, converges in probability to a fixed function
V (β , t) as n→ ∞, and that the covariation process for related processes

n−1/2Uε(β , t) = n−1/2
n

∑
k=1

∫ t

0
[{xk(u)−E (β ,u)}′1{‖xk(u)−E (β ,u)‖}> ε]Mk(du)

converge in probability to zero, where ‖A‖ denotes the maximum element of matrix
A, and 1(·) is an indicator variable, for any ε > 0. The first condition is fulfilled under
the stability of n−1

∑
n
k=1 Yk(t)exp{xk(t)β} and its first and second partial derivatives

with respect to β , over 0 < t ≤ τ as n→∞, while the second is a Lindeberg condition
that requires the influence of each study subject’s data on the estimation of β to
diminish to zero as the sample size becomes large. The Rebolledo theorem also gives
V (β , ·) as the covariation process for n−1/2U(β , ·).

The development just described applies under the extended Cox model (2.15), at
the “true” value β . As a special case at β = 0 it provides asymptotic theory for the
logrank test (2.11), and with minor modifications its weighted extension (2.12) with
predictable weights.

Martingale convergence results can also be used to establish the consistency of
β̂ solving (2.16) for this true β , which we now denote by β0. For β in an open
neighborhood of β0, the logarithm of the likelihood in (2.7) relative to that at β0, for
data through follow-up time t, with 0 < t ≤ τ , can be written
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n−1 log{L(β , t)/L(β0, t)}=

n−1
n

∑
k=1

∫ t

0

(
xk(u)(β −β0)− log

[
n−1

∑
n
j=1 Yj(t)exp{xk(t)β}

n−1 ∑
n
j=1 Yj(t)exp{xk(t)β0}

])
Λk(du)

+n−1
n

∑
k=1

∫ t

0

(
xk(u)(β −β0)− log

[
n−1 ∑

n
j=1 Yj(t)exp{xk(t)β}

∑
n
j=1 Yj(t)exp{xk(t)β0}

])
Mk(du)

(2.17)

The second term in (2.17) is a martingale with covariation process that converges
to zero under stability conditional on n−1

∑
n
k=1 Yk(t)exp{xk(t)β} and its first and

second derivatives with respect to β , over 0 < t ≤ τ and over an open neighborhood
for β about β0. An inequality due to Lenglart shows that the supremum over 0 <
t ≤ τ of this second term converges in probability to zero at each β value in this
open ball, so that the asymptotic behavior of (2.17) is governed by the first term.
Under the stability conditions already mentioned and modest regularity conditions,
this term converges to a function of β having unique maximum at β0 with probability
approaching one as n→ ∞, giving the desired consistency result.

Aside from a term that converges in probability to zero as n→ ∞ one can write,
since U(β̂ ,τ) = 0, that

0 = n−1/2U(β0,τ) = {n−1/2(β̂ −β0)}{n−1I(β ∗,τ)}

where I(β ,τ) = n−1 ∂U(β , t)
∂β ′

= n−1
n

∑
k=1

∫ t

0
νk(β ,u)Nk(dt),

where νk(β ,u) =
∑

n
j=1 Yj(u)x j(u)′x j(u)exp{x j(u)β}

∑
n
j=1 Yj(u)exp{x j(u)β}

−E (β ,u)⊗2,

and where each element of β∗ is between the corresponding elements of β̂ and β0.
The consistency of β̂ for β is the key step in showing I(β ∗,τ) to be a consistent
estimator of I(β0,τ) for every such β ∗ and in showing

V̂ (β̂ ,τ) =n−1
n

∑
k=1

∫ t

0
{xk(u)−E (β̂ ,u)}⊗2[1− Λ̂0(∆u)exp{xk(u)β̂}]

Yk(u)Λ̂0(du)exp{xk(u)β̂} (2.18)

to be a consistent estimator of V (β0,τ), where

Λ̂0(t) =
∫ t

0
Λ̂0(du) =

n

∑
k=1

∫ t

0

[
n

∑
j=1

Yj(u)exp{x j(u)β ′}

]−1

Nk(du). (2.19)

It follows that n1/2(β̂ −β0) converges in distribution to a mean zero normal distri-
bution as n→ ∞, with variance consistently estimated by I(β̂ ,τ)−1V̂ (β̂ ,τ)I(β̂ ,τ)−1
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assuming that I(β0,τ) converges to a positive definite matrix. With absolutely contin-
uous failure times, one can set Λ̂0(∆u) = 0 in (2.19) and replace V̂ (β̂ ,τ) by I(β̂ ,τ),
giving the variance estimator I(β̂ ,τ)−1 for n1/2(β̂ − β0) that is calculated in most
software packages for the Cox model.

Martingale convergence results apply also to the baseline hazard process esti-
mator Λ̂0 and yield an asymptotic mean zero Gaussian process for {n1/2(β̂ − β0),
n1/2(Λ̂0−Λ0)} as n→ ∞. At β0 = 0 the asymptotic distribution of n1/2(Λ̂0−Λ0)
applies to the Nelson-Aalen estimator, and to the corresponding Kaplan–Meier es-
timator n1/2(F̂ −F) where F̂(t) = ∏

t
0{1− Λ̂0(du)}, and can be used to show the

consistency of the Greenwood formula for estimating the variance process for F̂
over 0 < t ≤ τ .

The need to stop the follow-up at a finite τ < ∞ in the support of the observed
follow-up times is somewhat limiting in the developments sketched above. However,
asymptotic results over the entire positive real line require additional assumptions
and more complex developments. From a practical perspective there does not seem
to be a risk in applying asymptotic formulae to all available data, without restricting
the follow-up period, as is done with available Cox model software.

If one makes an identically distributed, as well as an independent, assumption
for {Nk,Yk,Zk},k = 1, . . . ,n, then the stability conditions alluded to above are sat-
isfied for 0 < t ≤ τ and β in an open neighborhood of β0. The asymptotic results
listed above then hold under the conditions that the expectation of the supremum of
Y (t)|x(t)|2 exp{x(t)β} is less than infinity, for all 0 < t ≤ τ and β in an open neigh-
borhood of β0, to ensure that the Lindeberg condition holds, and the condition that
I(β0,τ) converges in probability to a positive definite matrix. See Andersen and Gill
(1982) for additional detail.

2.10 Additional Univariate Failure Time Models and Methods

While the Cox model (2.5) is by far the most widely used regression model for the
analysis of univariate absolutely continuous failure time data, a variety of other haz-
ard rate regression models have been proposed, and may yield parsimonious models
and valuable parameter interpretations in some settings. For example, the hazard rate
model

λ{t;Z(t)}= λ0{te−x(t)β}e−x(t)β (2.20)

specifies a linear relationship U = logT = x(t)β + ε , if x(t)≡ x with “error” variate
ε having a fixed distribution. As a semiparametric class of models, this “accelerated
failure time (AFT) model” is somewhat difficult to work with, as estimating func-
tions for β are discontinuous. Nevertheless, these estimation challenges have been
substantially addressed (e.g., Jin, Lin, Wei, & Ying, 2003), and this class of models
may merit consideration for use in addition to the Cox model, toward ensuring that
principal findings are not unduly model-dependent.

Other authors, rather than having logT on the left side of a regression model,
consider linear models for an unspecified monotone transformation of T . These types
of “transformation” models can incorporate considerable modeling flexibility, though
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parameter interpretation may be an issue. See, for example, Zeng and Lin (2007) for a
substantial class of semiparametric regression models and their maximum likelihood
estimation.

A rather different class of linear hazard rate models

λ{t;Z(t)}= λ0(t)+ x(t)β (t),

with regression parameters that may be time-dependent was introduced by Aalen
(1980). The parameters in this model are restricted by λ{t;Z(t)} ≥ 0, all (t,Z), but
the additive form of the model makes it convenient for some purposes, such as for
covariate measurement error correction; or for mediation analysis where one exam-
ines the ability of time-varying covariate measurements to provide an explanation
for an observed relationship between hazard rates and a study treatment or exposure
variable.

2.11 A Cox-Logistic Model for Continuous, Discrete or Mixed Failure Time
Data

As previously noted, the Cox model (2.5) can be extended to include mass points at
some values of t by writing

Λ{dt;Z(t)}= Λ0(dt)exp{x(t)β}

and applying the asymptotic formulae given above, including the sandwich-type esti-
mator for the variance of β̂ . Some caution may be needed however, since Λ{dt;Z(t)}
is necessarily equal to or less than one at any mass point, possibly restricting the
range of corresponding β -values. With small failure probabilities at any follow-up
time t this constraint can likely be managed by careful specification of the regression
variable. If there are large mass points, however, it may be preferable to instead apply
a Cox-Logistic (CL) model given by

Λ{dt,Z(t)
1−Λ{∆t,Z(t)}

=
Λ0(dt)

1−Λ0(∆t)
exp{x(t)β}, (2.21)

where the failure time variate may have either a mass point or a continuity point
at any t > 0, and the regression parameter β has an odds ratio interpretation. Note
that (2.21) reduces to the Cox model (2.5) if T is everywhere absolutely continuous.
More generally the semiparametric likelihood for (Λ0,β ) in (2.21), where Λ0(t) =∫ t

0 Λ0(ds), based on data as described in §2.3, can be written

L =
I

∏
i=0

(
∏

k∈D(ti)
Λ{dti;Zk(ti)} ∏

k∈R(ti)−D(ti)

ti+1∧Sk

∏
ti

[1−Λ{du;Zk(u)}]

)
(2.22)

where the product integral on the right ranges from ti < u≤ ti+1∧Sk, with t0 = 0 and
tI+1 = ∞, while D(t0) is empty. The maximum likelihood (ML) estimator places pos-
itive mass at each of t1, . . . , tI , since otherwise L = 0, and the placement of any mass
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within the risk region away from these uncensored failure times can only diminish
L on the basis of the product integral factors. Therefore the ML estimator places all
mass within the risk region of the data at t1, . . . , tI .

Set λk(ti) = Λk{dti;Z(ti)}, for all (k, i), and αi = log[Λ0(dti)/{1−Λ0(dti)}], i =
1, . . . , I. The ML estimators of (Λ0,β ) then maximize

logL =
I

∑
i=1

(
∑

k∈D(ti)
{αi + xk(ti)β}+ ∑

k∈R(ti)
log{1−λk(ti)}

)
,

and satisfy

∂ logL/∂αi = di− ∑
k∈R(ti)

λk(ti) = 0, i = 1, . . . , I and

∂ logL/∂β =
I

∑
i=1
{ ∑

k∈D(ti)
xk(ti)′− ∑

k∈R(ti)
xk(ti)′λk(ti)}= 0, while (2.23)

while the elements of the corresponding Hessian are

−∂
2 logL/∂αi∂αm = I(i = m) ∑

k∈R(ti)
λk(ti){1−λk(ti)},

−∂
2 logL/∂αi∂β = ∑

k∈R(ti)
xk(ti)′λk(ti){1−λk(ti)}, and

−∂
2 logL/∂β∂β

′ =
I

∑
i=1

( ∑
k∈R(ti)

xk(ti)′xk(ti)λk(ti){1−λk(ti)}).

The ML estimator of η = (α1, . . . ,αI ,β
′)′, and hence of (Λ0,β ), can be obtained

by iteratively updating a trial value η0 to

η0 +(−∂
2 logL/∂η0∂η

′
0)
−1

∂ logL/∂η0

until convergence is achieved, perhaps using starting values of αi = {di/(ri−di)}, i=
1, . . . , I and β = 0. At convergence to η̂ the inverse of −∂ 2 logL/∂ η̂∂ η̂ ′ pro-
vides a candidate variance estimator for η̂ , and hence for (Λ̂0, β̂ ), where Λ̂0(t) =
∑ti≤t exp(α̂i)/{1− exp(α̂i)} for all t ∈ R.

These ML estimators, under the Cox-Logistic model, do not require any spe-
cialized likelihood procedures, or specialized maximum likelihood definitions and
they allow for tied failure times, though the odds ratio parameter β in (2.21) differs
somewhat from the hazard ratio parameter in (2.5), more so if there are large mass
points.

In the absolutely continuous special case, these ML estimates differ slightly from
the maximum partial likelihood estimates satisfying (2.8), and involve an iterative
calculation for (α1, . . . ,αI) as well as β . The absolutely continuous special case of
(2.21) can also be embedded in a discrete-continuous model of the form (2.5). If this
model form, say λk(ti) = exp{γi+xk(ti)β}, all (k, i), is substituted into the estimating
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functions (2.23) one obtains exp(γ̂i) = di/∑k∈R xk(ti)exp{xk(ti)β}, i = 1, . . . , I and
estimating function for β that is precisely (2.8).

The corresponding Hessian-based variance estimator for β , following this sub-
stitution, agrees with the sandwich form variance estimator for β̂ shown in §2.9.

The counting process approach to deriving asymptotic distribution theory for
(β ,Λ0), under a mixed discrete and continuous version of (2.5) as outlined in §2.9,
undoubtedly can be adapted to ML estimation of (β ,Λ0) under the Cox-Logistic
model (2.21), though such adaptation has yet to appear in the literature.

BIBLIOGRAPHIC NOTES

Much more detailed accounts of many of the univariate failure time topics consid-
ered in this chapter can be found, for example, in Kalbfleisch and Prentice (2002),
Andersen et al. (1993) and Fleming and Harrington (1991) among other books and
review articles. Cox (1972), including its discussion component, provides insight
into the stimulus and innovation arising from this seminal paper. Kalbfleisch and
Prentice (1973), Breslow (1974), Cox (1975) and Johansen (1983) provide efforts to
establish a likelihood basis for (2.7), while vigorous efforts to develop corresponding
distribution theory for (β̂ , Λ̂0) culminated in the elegant paper of Andersen and Gill
(1982), which provided developments using both martingale convergence theory
and empirical process convergence theory as outlined in §2.9. Begun, Hall, Huang,
and Wellner (1983) show the maximum partial likelihood estimate solving (2.8) to
be semiparametric efficient, with time-independent covariates and absolutely contin-
uous failure times. Asymptotic distribution theory for the Kaplan–Meier estimator
(2.3) was given in Breslow and Crowley (1974), and later in a simplified form using
martingale methods (e.g., Andersen et al., 1993). See Kalbfleisch and Prentice (2002,
Chapter 7) for an account of the history and application of the AFT model. A discrete
and continuous hazard rate model of the form (2.5) was considered by Prentice and
Kalbfleisch (2003). They showed that the solution to (2.8) consistently estimates β in
this enlarged model, but that the correction noted above was needed to I(β̂ )−1 from
(2.9) for variance estimation to allow for discrete components. Cox (1972) described
the Cox-Logistic model (2.21) for discrete data, though its extension to a model for
mixed discrete and continuous failure time data, as in (2.21) appears to be novel. The
asymptotic distribution theory presented in §2.9 is adapted from a more complete
version in Kalbfleisch and Prentice (2002). Marginal structural models were pro-
posed by Robins et al. (2000). Detailed estimates of the US medical care cost saving
resulting from the reduced use of CEE + MPA following the initial publication of
the WHI hormone therapy trial results (Rossouw et al., 2002) is given in Roth et al.
(2014).
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EXERCISES AND COMPLEMENTS

Exercise 2.1

Plot the Kaplan–Meier estimates (2.3) for the CSP + MTX and MTX groups using
the aplastic anemia A-GVHD data of Table 1.1. Calculate corresponding 95% con-
fidence intervals F(t) at t = 180 days using (2.4). Plot log {− log F̂(t)} versus t for
the two treatment groups. Are these separated by about the same distance across t,
as would be expected under proportionality of hazard ratios between the two ran-
domization groups? Apply the weighted logrank test (2.13) with h(t)≡ 1 to formally
compare A-GVHD rates between the two treatment groups. Repeat the comparison
with h(t) = F̂(t), where F̂(t) is the Kaplan–Meier estimator for the A-GVHD data
for the two treatment groups combined. Do the two tests yield similar (asymptotic)
significance levels for this comparison?

Exercise 2.2

Calculate the partial likelihood function L(β ) in (2.7) for the aplastic anemia data
of Table 1.1 with binary covariate x1(t) ≡ x1 that takes value zero for the groups of
patients randomized to CSP + MTX and value one for those randomized to MTX
alone. Plot log L(β1) versus β1 over a fine grid of β1 values. Is log L(β1) approxi-
mately quadratic and centered at the maximum partial likelihood estimator β̂1 with
curvature −I(β̂1)? Calculate an asymptotic 95% confidence interval for β1, and for
the treatment hazard ratio eβ1 . Add x2 = x1 log t to the regression model and test
β2 = 0. Does this test yield evidence of departure from proportionality over follow-
up time in the hazard ratio for A-GVHD?

Exercise 2.3

Augment the Cox model of Exercise 2.2 by defining x1(t) = x1 as before, but with
x2(t) = x2 as an indicator variable for laminar air flow room (LAF) isolation (x2 = 1)
or not (x2 = 0), and with x3(t) = x3 equal to the patient age in years at randomiza-
tion. Does A-GVHD incidence appear to depend on LAF isolation or age? Was the
estimated MTX versus CSP + MTX hazard ratio affected by the inclusion of these
other variables? Repeat these analyses dropping x2 from the regression model while
stratifying baseline A-GVHD incidence on LAF isolation and on whether patient age
at randomization was less than 20 years. How did this stratification affect the other
regression parameter estimates?

Exercise 2.4

Show that inserting λ̂i(β ), i = 1, . . . , I into (2.6) gives (2.7) up to a multiplicative
factor that does not involve β . Suppose that the observation period for the kth study
subject may begin at time t0

k > 0. Show that expressions (2.6)–(2.10) apply to (β ,Λ0)
estimation under (2.5) with R(t) redefined to include only study subjects under active
follow-up at time t.
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Exercise 2.5

Suppose that rather than using the profile likelihood (2.7), that has maximized
over λi, i = 1, . . . , I, that one proceeds with maximum likelihood estimation of the
parameter η = (β ,λ1, . . . ,λI) from the “parametric” likelihood (2.6). Show that
the resulting maximum likelihood estimator of β is the same β̂ that maximizes
(2.7). Also using partition matrices show that the upper left p × p sub-matrix of
I(η̂)−1 = −∂ 2 logL/λη̂∂ η̂ ′ is precisely the inverse of (2.9). Would the asymptotic
inference on β be unaffected if one carried out profiling over Λ0 numerically rather
than analytically as in (2.7)?

Exercise 2.6

Consider the failure type–specific hazard rate models (2.12). Using an approximate
likelihood of the form (2.6), show that the type-specific hazard ratio parameters
β1, . . . ,βq can be estimated by maximizing a profile likelihood that is the product of
factors of the form (2.7) for each j = 1, . . . ,q with the jth factor derived by censor-
ing the follow-up period for an individual when failure of a type other than j occurs.
Show that the type j baseline hazard function can be estimated by an expression like
(2.10) with the failure times restricted to type j failures and with R(t) redefined to
include this additional censorship (Prentice et al., 1978).

Exercise 2.7

Show, under (2.5), that (2.8) provides an unbiased estimating function for β if R(t) is
composed only of cases occurring at time ti and their matched controls, under nested
case control sampling. Assuming that matched controls are drawn randomly from
cohort members at risk for failure at each ti, and independently for each case, show
that the inverse of (2.9) provides a variance estimator for β̂ under nested case–control
sampling (Thomas, 1977; Prentice & Breslow, 1978).

Exercise 2.8

Show, under (2.5), that (2.8) provides an unbiased estimating function for β with
R(ti) comprised of cases occurring at time ti and subcohort members at risk for fail-
ure, under case–cohort sampling with subcohort a random sample of the entire co-
hort. Can you derive a variance estimator for this case–cohort regression parameter
estimator (Prentice, 1986; Self & Prentice, 1988)?

Exercise 2.9

Suppose that x(t)≡ x in (2.5), and that x is measured with error, so that one observes
w = x+ ε where x and ε are independent and normally distributed with ε having a
mean of zero. Show that the induced hazard rate model for T given w is approxi-
mately of the same form (2.5) with E(x|w) in place of x if the outcome is rare (i.e.,
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F(t;x) is close to one for all individuals and for all t in the study follow-up period).
How could E(x|w) be estimated if replicate w values having independent errors were
available on a random subset of the study cohort? Devise a suitable variance estima-
tor for the regression calibration estimator that replaces x in (2.5) by an estimator of
E(x|w) based on replicate data, and applies (2.8) (Prentice, 1982; Wang, Hsu, Feng,
& Prentice, 1997; Carroll, Ruppert, Crainiceanu, & Stefanski, 2006)

Exercise 2.10

Show by direct calculation that the second equality in (2.16) holds. Also derive the
expression for 〈n1/2U(β , ·)〉(t) given a few lines later.

Exercise 2.11

Apply Rebolledo’s central limit theorem to derive the asymptotic distribution of
(β̂ , Λ̂0) solving (2.23) under the Cox-logistic model (2.21). What conditions are
needed to ensure a mean zero asymptotic Gaussian distribution for ∂ logL/∂η at
the true β and Λ0 values?
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3.1 Introduction

This chapter considers the long-standing statistical problem of nonparametric esti-
mation of the bivariate survivor function F , given by F(t1, t2) = P(T1 > t1,T2 > t2),
for failure time variates T1 > 0 and T2 > 0 subject to independent right censorship,
and the estimation of associated hazard rates. The application of these estimators to
assess the nature and strength of association between the failure time variates will
also be considered.

We have seen in Chapter 2 that the univariate survivor function can be estimated
nonparametrically by plugging the empirical estimator of the hazard function into a
product integral representation, which expresses the survivor function as a transfor-

51
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mation on the hazard function, giving the familiar KM estimator. A similar approach
applies to nonparametric estimation of the bivariate survivor function.

Bivariate failure time data allow empirical estimation of the marginal hazard rates
for T1 and T2, as well as empirical estimation of the double failure hazard function
Λ11 defined by

Λ11(t1, t2) =
∫ t1

0

∫ t2

0
Λ11(ds1,ds2), (3.1)

where Λ11(ds1,ds2) = P{T1 ∈ [s1,s1 + ds1),T2 ∈ [s2,s2 + ds2);T1 ≥ s1,T2 ≥ s2} =
F(ds1,ds2)/F(s−1 ,s

−
2 ) as in (1.3). These empirical estimators are the principal build-

ing blocks for estimation of F , as will be elaborated in §3.2, and are also the principal
building blocks for Cox-type regression extensions, as will be described in Chapter
4.

The bivariate survivor function estimator that arises from plugging empirical
marginal single and double failure hazard estimators into a corresponding represen-
tation for F , however, has a distracting feature; namely, the estimator typically incor-
porates negative mass (probability) assignments. Such assignments occur because of
a possibly poor correspondence between the single failure empirical and the double
failure empirical hazard rate estimators. One response to this issue has been to con-
sider alternate representations that express F in terms of its empirical single failure
hazard rates and a modified double failure hazard rate estimator that adapts somewhat
to the marginal hazard rate estimators. Popular estimators due to Dabrowska (1988)
and Prentice and Cai (1992) fall in this category, but these do not fully resolve the
negative mass issue (§3.2). It is natural to consider a nonparametric maximum like-
lihood approach to enforce probability function positivity requirements. However, a
maximum likelihood approach that allows a separate parameter at each point on the
grid formed by the uncensored T1 and T2 failure times is typically overparameterized,
and does not yield a unique estimator of F unless additional constraints are imposed.
Similarly, a mean parameter estimation approach is overparameterized if a free pa-
rameter is included in the nonparametric model at each uncensored grid point in the
risk region of the data, and this approach also does not yield a unique estimator of F .
These approaches will be briefly described in §3.3.

One use of a nonparametric estimator of F is characterization of the dependency
between T1 and T2. Nonparametric estimation of cross ratio and concordance rate
functions for this purpose is described in §3.4. Section 3.5 mentions some additional
approaches to the estimation of F , and provides a general perspective on bivariate
hazard rate and survivor function estimation.

3.2 Plug-In Nonparametric Estimators of F

3.2.1 The Volterra estimator

Suppose that (T1,T2) is subject to independent right censoring by variate (C1,C2). For
example (C1,C2) may arise from a censoring “survivor” function G, where G(t1, t2)=
P(C1 > t1,C2 > t2) for all t1 ≥ 0 and t2 ≥ 0, with (T1,T2) independent of (C1,C2),
a so-called random censorship model. The usual convention is that failures precede
censorings in the event of tied times.
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(T1,T2) subject to independent right censoring by (C1,C2), so observe
Si = Ti ∧Ci and δi = I[Si = Ti], i = 1,2, for a sample of size n

Risk region: {(t1, t2);S1 ≥ t1, and S2 ≥ t2 for one or more (S1,S2) in sample}
t11, . . . , t1I – ordered uncensored T1 failure times (t10 = 0)
t21, . . . , t2J – ordered uncensored T2 failure times (t20 = 0)

Figure 3.1 Bivariate failure time data structure (with) ⊗ indicating double failure, ↑ indicat-
ing failure on T1 and censoring on T2,→ indicating failure on T2, and censoring on T1 and↗
indicating censored value for both T1 and T2. A • denotes a grid point in the risk region of the
data.

Consider an independent random sample of size n from a study cohort, where
one observes

S1k = T1k ∧C1k,δ1k = I[T1k = S1k],S2k = T2k ∧C2k,δ2k = I[T2k = S2k]

for k = 1, . . . ,n. For convenience these data will be referred to as arising from “indi-
vidual” k, for k = 1, . . . ,n. Denote by t11 < t12 < · · ·< t1I and by t21 < t22 < · · ·< t2J
the respective ordered uncensored T1 and T2 values in the sample, and set t10 = t20 =
0, as illustrated in Figure 3.1. The marginal (single failure) hazard rate functions can
be denoted by Λ10(·,0) and Λ01(0, ·) where, for example,

Λ10(t1,0) =
∫ t1

0
Λ10(ds1,0) and Λ10(ds1,0) = P{T1 ∈ [s1,s1+ds1);T1 ≥ s1}. (3.2)

Product integral transformations give corresponding marginal survivor functions
F(·,0) and F(0, ·) via

F(t1,0) =
t1

∏
0
{1−Λ10(ds1,0)} and F(0, t2) =

t2

∏
0
{1−Λ01(0,ds2)}.

These marginal distributions have an equivalent expression in the form of Péano
series. For example, one can write

F(t1,0) = 1+
∞

∑
j=1

∫ t1

0

∫ t1

s1

∫ t1

s2

· · ·
∫ t1

s j−1

j

∏
m=1
{−Λ10(dsm,0)}. (3.3)
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This Péano series representation derives from the fact that F(·,0) satisfies a homo-
geneous integral equation

F(t1,0) = 1+
∫ t1

0
F(s−1 ,0){−Λ10(ds1,0)}

for all t1 ≥ 0, that has (3.3) as its unique solution.
The reason for mentioning the more complex expression (3.3) here is that it gen-

eralizes to bivariate and higher dimensional survivor functions. Specifically, the bi-
variate survivor function, F , can be seen, as in (1.4), to satisfy the inhomogeneous
Volterra integral equation

F(t1, t2) = ψ(t1, t2)+
∫ t1

0

∫ t2

0
F(s−1 ,s

−
2 )Λ11(ds1,ds2), (3.4)

for all t1 ≥ 0 and t2 ≥ 0, where ψ(t1, t2) = F(t1,0) +F(0, t2)− 1, which also has
unique solution in Péano series form given by

F(t1, t2) = ψ(t1, t2)+
∞

∑
j=1

∫ t1

0

∫ t1

s11

· · ·
∫ t1

s1, j−1

∫ t2

0

∫ t2

s21

· · ·
∫ t2

s2, j−1

ψ(s−11,s
−
21)

j

∏
m=1

Λ11(ds1m,ds2m) (3.5)

for all t1 ≥ 0 and t2 ≥ 0. This expression shows that F is uniquely determined by
its marginal single failure hazard rate and its double failure hazard rate functions. F
can be estimated nonparametrically by inserting empirical estimators for each such
hazard rate function. The resulting “Volterra” estimator has been attributed to Peter
Bickel (Dabrowska, 1988).

In spite of the complex form of (3.5) this estimator is simply calculated recur-
sively. To see this, denote by d11

i j ,d
10
i j ,d

01
i j and d00

i j the 2×2 table counts for the num-
ber of double failures at (t1i, t2 j), the number of “individuals” having T1 = t1i with
T2 known to be greater than t2 j, the number of individuals having T2 = t2 j with T1
known to be greater than t1i, and the number of individuals known to have T1 greater
than t1i and T2 greater than t2 j in the sample, respectively. Explicitly

d11
i j = #{k;S1k = t1i,δ1k = 1, and S2k = t2 j,δ2k = 1},

d10
i j = #{k;S1k = t1i,δ1k = 1, and S2k > t2 j if δ2k = 1, or S2k ≥ t2 j if δ2k = 0}

d01
i j = #{k;S1k > t1i if δ1k = 1, or S1k ≥ t1i if δ1k = 0; and S2k = t2 j,δ2k = 1},

d00
i j = #{k;S1k > t1i if δ1k = 1, or S1k ≥ t1i if δ1k = 0; and S2k > t2 j if δ2k = 1,

or S2k ≥ t2 j if δ2k = 0}.

Also denote by ri j = #{k;S1k ≥ t1i,S2k ≥ t2 j}= d11
i j +d10

i j +d01
i j +d00

i j the size of the
risk set at uncensored data grid point (t1i, t2 j) for all i ≥ 0, j ≥ 0. The step function
empirical marginal hazard function estimators Λ̂10(·,0) and Λ̂01(0, ·) are determined
by Λ̂10(∆t1i,0) = d10

i0 /ri0 for i = 1, . . . , I and Λ̂01(0,∆t2 j) = d01
0 j /r0 j, for j = 1, . . . ,J,
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and the step function empirical double failure hazard rate function Λ̂11 is determined
by Λ̂11(∆t1i,∆t2 j) = d11

i j /ri j for all (t1i, t2 j) ∈ R. The Volterra nonparametric estima-
tor F̂ arises by inserting these empirical estimators into (3.5). As such it is readily
calculated, starting with the KM marginal survivor function estimators

F̂(t1,0) = ∏
{t1i≤t1}

{1−d10
i0 /ri0} and F̂(0, t2) = ∏

{t2 j≤t2}
{1−d01

0 j /r0 j},

using the recursive form

F̂(t1i, t2 j) = F̂(t1i, t−2 j)+ F̂(t−1i , t2 j)− F̂(t−1i , t
−
2 j){1− Λ̂11(∆t1i,∆t2 j)}, (3.6)

which derives from the fact that F̂(∆t1i,∆t2 j) = F̂(t−1i , t
−
2 j)Λ̂11(∆t1i,∆t2 j), at all grid

points away from the coordinate axes in the risk region of the data.
While the Volterra estimator has the desirable asymptotic properties that one

might expect from its empirical single failure and double failure hazard rate com-
ponents, it also has the distracting feature of typically incorporating negative prob-
ability assignments. This occurs because of a possibly poor agreement between the
marginal single failure hazard rates and the double failure hazard rates. Figure 3.1
shows the four types of observations according to whether δ1k and δ2k take values
zero or one. The KM marginal survivor functions assign positive mass along all un-
censored data grid lines in each direction, but the empirical double failure hazard
rate function assigns positive point mass within the risk region of the data only at
grid points where d11

i j > 0. As a result, for example, the probability assignment along
a grid line where there are no doubly censored observations is entirely pushed to the
half-line beyond the risk region of the data by F̂ , causing the mass assignments along
half-lines where there are doubly censored observations to compensate through pos-
sible negative probability assignments beyond the risk region. Gill, van der Laan,
and Wellner (1995) noted that nonparametric plug-in estimators due to Dabrowska
(1988) and Prentice and Cai (1992) have the property of nonparametric efficiency
if T1,T2,C1,C2 were completely independent, whereas this did not appear to be the
case for the Volterra estimator, and those authors speculated that the Volterra esti-
mator may be “much inferior” to these other estimators. These other estimators are
perhaps the most widely used of available nonparametric estimators of F .

3.2.2 The Dabrowska and Prentice–Cai estimators

These estimators use the KM marginal survivor function estimators, but do so in
conjunction with a double failure estimator that acknowledges the KM estimators
to some extent. Both estimators focus on representations for the ratio of F to the
product of its corresponding marginal survivor functions.

Denote this ratio by Q, so that

Q(t1, t2) =

{
F(t1, t2)/{F(t1,0)F(0, t2)} if F(t1,0)F(0, t2)> 0
0 otherwise.
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The Dabrowska (1988) representation expresses this ratio by the two-dimensional
product integral

Q(t1, t2) =


∏s1≤t1 ∏s2≤t2 [1+

Λ11(ds1,ds2)−Λ10(ds1,s
−
2 )Λ01(s

−
1 ,ds2)

{1−Λ10(∆s1,s
−
2 )}{1−Λ01(s−)1,∆s2)}

]

if {1−Λ10(∆s1,s−2 )}{1−Λ01(s−1 ,∆s2)]> 0.
0 otherwise

(3.7)
The Dabrowska estimator arises by inserting empirical hazard rates into (3.7).

Note that the integral in (3.7) involves a comparison between the double
failure hazard rate Λ11(ds1,ds2) and the product of single failure hazard rates
Λ10(ds1,s−2 )Λ01(s−1 ,ds2) that would obtain under local independence between T1
and T2 at (s1,s2). These single failure hazard rates can be estimated empirically by
Λ̂10(∆t1i, t−2 j) = (d11

i j + d10
i j )/ri j and Λ̂01(t−1i ,∆t2 j) = (d11

i j + d01
i j )/ri j at uncensored

data grid point (t1i, t2 j) ∈ R in defining the Dabrowska estimator. As a result the
Dabrowska estimator differs from the Volterra estimator. Specifically the Volterra
representation (3.5) fully determines the single failure hazard rates away from the
coordinate axes via

Λ10(ds1,s−2 ) = F(ds1,s−2 )/F(s−1 ,s
−
2 ) and Λ01(s−1 ,ds2) = F(s−1 ,ds2)/F(s−1 ,s

−
2 )

at all s1 > 0 and s2 > 0, but the estimators of these hazard rates induced from empir-
ical estimators for marginal single failure and double failure hazard rates generally
do not agree with the single failure empirical rates used by the Dabrowska estimator.
Note that if either Λ̂10(∆t1i, t−2 j) = 0 or Λ̂01(t−1i ,∆t2 j) = 0 then the product integral
factor in (3.7) takes the local independence value of one at all such grid points away
from the boundary of the risk region. Hence, the Dabrowska estimator defines mass
assignments via a modified double failure hazard rate function that makes a local in-
dependence assignment at grid point (t1i, t2 j) when there are no empirical data along
one or both of T1 = t1i and T2 = t2 j at or beyond (t1i, t2 j). This helps to explain the
nonparametric efficiency of the Dabrowska estimator under the complete indepen-
dence of the failure and censoring variates. In doing so, however, the Dabrowska
estimator typically assigns substantial negative mass within the risk region of the
data, even as sample size n becomes large.

The Dabrowska estimator is a step function taking value

F̂(t1i, t2 j) = ∏
`≤i
{1−d10

`0 /r`0}∏
m≤ j
{1−d01

0m/r0m}∏
`≤i

∏
m≤ j

{
d00
`mr`m

(d10
`m +d00

`m)(d
01
`m +d00

`m)

}
(3.8)

at grid point (t1i, t2 j)∈ R where d00
i j > 0. It can be calculated recursively starting with

KM marginal survivor function estimators, with

F̂(t1i, t2 j) =


F̂(t1i,t

−
2 j)F̂(t−1i ,t2 j)

F̂(t−1i ,t
−
2 j)

{
d00

i j ri j

(d10
i j +d00

i j )(d
01
i j +d00

i j )
} if d00

i j > 0

0 otherwise
(3.9)

at grid points (t1i, t2 j) ∈ R away from the coordinate axes. The Prentice–Cai (1992)
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representation derives from the fact that Q satisfies the homogeneous Volterra inte-
gral equation

Q(t1, t2) = 1+
∫ t1

0

∫ t2

0
Q(s−1 ,s

−
2 )B(ds1,ds2), (3.10)

where

B(ds1,ds2) ={Λ11(ds1,ds2)−Λ10(ds1,s−2 )Λ01(0,ds2)−Λ10(ds1,0)Λ01(s−1 ,ds2)

+Λ10(ds1,0)Λ01(0,ds2)}/[{1−Λ10(ds1,0)}{1−Λ01(0,ds2)}]

which has Péano series solution

Q(t1, t2) = 1+
∞

∑
j=1

∫ t1

0

∫ t1

s11

· · ·
∫ t1

s1, j−1

∫ t2

0

∫ t2

s21

· · ·
∫ t2

s2, j−1

j

∏
m=1

B(ds1m,ds2m). (3.11)

The Prentice–Cai estimator starts with KM marginal survivor function estima-
tors and is readily calculated recursively by setting Q̂(t1i,0) = 1, i = 1, . . . , I and
Q̂(0, t2 j) = 1, j = 1, . . . ,J and then calculating

F̂(t1i, t2 j) =

{
F̂(t1i,0)F̂(0, t2 j)Q̂(t1i, t2 j) if F̂(t1i,0)F̂(0, t2 j)> 0,
0 otherwise

where Q̂(t1i, t2 j) = Q̂(t1i, t−2 j)+ Q̂(t−1i , t2 j)− Q̂(t−1i , t
−
2 j){1− B̂(∆t1i,∆t2 j)}, with

B̂(∆t1i,∆t2 j) ={Λ̂11(∆t1i,∆t2 j)− Λ̂10(∆t1i, t−2 j)Λ̂01(0,∆t2 j)

− Λ̂10(∆t1i,0)Λ̂01(t−1i ,∆t2 j)+ Λ̂10(∆t1i,0)Λ̂01(0,∆t2 j)}/
[{1− Λ̂10(∆t1i,0)}{1− Λ̂01(0,∆t2 j)}],

at all grid points i > 0 and j > 0 with (t1i, t2 j) ∈ R where F̂(t1i,0)F̂(0, t2 j)> 0. This
estimator also uses empirical estimators of single failure hazards away from the coor-
dinate axes, but includes these in a different manner than does the Dabrowska estima-
tor. It is of interest to examine whether these plug-in estimator variations materially
affect their performance as estimators of F .

3.2.3 Simulation evaluation

Table 3.1 gives simulation summary statistics for the three nonparametric estima-
tors described above with failure times generated under a Clayton–Oakes model
(1.7) with unit exponential marginal survivor functions, given by F(t1,0) = e−t1

and F(0, t2) = e−t2 , at values θ = 0 (independence between T1 and T2) and θ = 2
(constant cross ratio of 3), and various sample sizes n. The censoring variates C1 and
C2 were taken to have exponential distributions, with C1 and C2 independent of each
other and of (T1,T2). The common censoring hazard rate, c, was chosen to give a
specified fraction of T1 and T2 values that were uncensored: either 1/6, 1/3, or 1. All
three estimators are evidently quite accurate at the T1 and T2 (marginal) percentiles



58 BIVARIATE FAILURE TIMES

Table 3.1 Simulation summary statistics for the Volterra, Dabrowska, and Prentice–Cai esti-
mators (F̂V , F̂D, F̂PC) under Clayton–Oakes model (1.7) at parameter values θ = 0 (indepen-
dence) and θ = 2 (cross-ratio of 3), and certain sample sizes n and censoring rates.

{F(t1,0),F(0, t2)} F F̂ Sample mean (sample standard deviation)∗
Clayton–Oakes Parameter θ = 0
Sample Size n 500 1000 250 250
% Uncensored: T1,T2 and (T1,T2) 16.7 16.7 2.8 16.7 16.7 2.8 33.3 33.3 11.1 100 100 100

(0.85,0.85) 0.723 F̂V 0.722 (0.025) 0.722 (0.018) 0.722 (0.031) 0.722 (0.028)
F̂D 0.722 (0.025) 0.722 (0.018) 0.722 (0.031) 0.722 (0.028)
F̂PC 0.722 (0.025) 0.722 (0.018) 0.722 (0.031) 0.722 (0.028)

(0.85,0.70) 0.595 F̂V 0.594 (0.038) 0.595 (0.026) 0.594 (0.037) 0.595 (0.031)
F̂D 0.594 (0.037) 0.595 (0.026) 0.594 (0.037) 0.595 (0.031)
F̂PC 0.593 (0.037) 0.595 (0.026) 0.594 (0.037) 0.595 (0.031)

(0.85,0.55) 0.468 F̂V 0.467 (0.064) 0.468 (0.043) 0.468 (0.045) 0.468 (0.031)
F̂D 0.466 (0.066) 0.468 (0.041) 0.468 (0.044) 0.468 (0.031)
F̂PC 0.462 (0.063) 0.466 (0.041) 0.468 (0.044) 0.468 (0.031)

(0.70,0.70) 0.490 F̂V 0.489 (0.050) 0.490 (0.033) 0.489 (0.041) 0.489 (0.032)
F̂D 0.488 (0.047) 0.491 (0.031) 0.490 (0.040) 0.489 (0.032)
F̂PC 0.489 (0.046) 0.491 (0.031) 0.490 (0.040) 0.489 (0.032)

(0.70,0.55) 0.385 F̂V 0.381 (0.075) 0.386 (0.053) 0.386 (0.049) 0.385 (0.030)
F̂D 0.380 (0.086) 0.387 (0.054) 0.386 (0.046) 0.385 (0.030)
F̂PC 0.379 (0.066) 0.385 (0.046) 0.386 (0.045) 0.386 (0.030)

(0.55,0.55) 0.303 F̂V 0.298 (0.095) 0.299 (0.076) 0.303 (0.057) 0.303 (0.028)
F̂D 0.303 (0.117) 0.306 (0.084) 0.303 (0.048) 0.303 (0.028)
F̂PC 0.316 (0.072) 0.313 (0.058) 0.305 (0.047) 0.303 (0.028)

{F(t1,0),F(0, t2)} F F̂ Sample mean (sample standard deviation)
Clayton–Oakes Parameter θ = 2
Sample Size n 500 1000 250 250
% Uncensored: T1,T2 and (T1,T2) 16.7 16.7 5.3 16.7 16.7 5.3 33.3 33.3 16.3 100 100 100

(0.85,0.85) 0.752 F̂V 0.752 (0.025) 0.752 (0.018) 0.752 (0.030) 0.752 (0.027)
F̂D 0.752 (0.025) 0.752 (0.018) 0.752 (0.030) 0.752 (0.027)
F̂PC 0.752 (0.025) 0.752 (0.017) 0.752 (0.031) 0.752 (0.027)

(0.85,0.70) 0.642 F̂V 0.642 (0.037) 0.643 (0.026) 0.641 (0.036) 0.642 (0.030)
F̂D 0.642 (0.036) 0.643 (0.025) 0.641 (0.036) 0.643 (0.030)
F̂PC 0.641 (0.036) 0.643 (0.025) 0.641 (0.035) 0.643 (0.030)

(0.85,0.55) 0.521 F̂V 0.520 (0.064) 0.522 (0.043) 0.522 (0.044) 0.521 (0.031)
F̂D 0.520 (0.063) 0.522 (0.041) 0.522 (0.043) 0.521 (0.031)
F̂PC 0.517 (0.060) 0.521 (0.041) 0.521 (0.043) 0.521 (0.031)

(0.70,0.70) 0.570 F̂V 0.571 (0.050) 0.569 (0.033) 0.569 (0.039) 0.569 (0.031)
F̂D 0.571 (0.046) 0.569 (0.030) 0.569 (0.037) 0.569 (0.031)
F̂PC 0.570 (0.044) 0.569 (0.030) 0.569 (0.037) 0.569 (0.031)

(0.70,0.55) 0.480 F̂V 0.479 (0.086) 0.480 (0.055) 0.481 (0.044) 0.480 (0.031)
F̂D 0.480 (0.084) 0.481 (0.054) 0.481 (0.043) 0.480 (0.031)
F̂PC 0.477 (0.071) 0.479 (0.045) 0.481 (0.043) 0.480 (0.031)

(0.55,0.55) 0.422 F̂V 0.412 (0.111) 0.414 (0.087) 0.424 (0.048) 0.422 (0.031)
F̂D 0.422 (0.118) 0.423 (0.094) 0.424 (0.048) 0.422 (0.031)
F̂PC 0.423 (0.076) 0.423 (0.060) 0.424 (0.046) 0.422 (0.031)

∗Sample mean and sample standard deviation based on 1000 simulated samples at each sampling configuration. Samples
contributed to summary statistics at all (t1, t2) values that were in the risk region of the data. The three estimators reduce
to the ordinary empirical estimator in the absence of censoring.
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Figure 3.2 Empirical double failure hazard function estimators Λ̂11 with failure time gen-
erated under the Clayton–Oakes model (1.7) with unit exponential marginal and cross ratio
C(t1, t2)≡ 1+θ , at sample size n = 500 and mutually independent censoring times with each
failure time having a 2/3 probability of censoring. The dots denote double failure times.

shown, as was also the case under these same configurations, but with smaller sample
size. Note also that the moderate sample size efficiencies evidently do not differ ma-
terially among the three estimators. In fact, it is not likely possible to much improve
on the efficiencies of these estimators nonparametrically in spite of the previously
mentioned negative mass assignments. Also, it seems that the Volterra estimator is
likely to be quite competitive as a nonparametric estimator of F , especially if the ex-
pected number of double failures in the sample is not too small (e.g., 13.89 at θ = 0
in the first configuration of Table 3.1). With this reassurance we will build on empir-
ical marginal single and double hazard functions that yield the Volterra estimator in
regression extensions described in later chapters.

Figure 3.2 displays the double failure hazard rate estimator for random samples
generated as above at both θ = 0 and θ = 2, with n = 500 and a 2/3rds probability
of censoring for both T1 and T2. Note the greater concentration of probability and of
double failures around the t1 = t2 diagonal at θ = 2 compared to θ = 0.

3.2.4 Asymptotic distributional results

Empirical process methods apply to each of the estimators described in §3.2.2 to
show strong consistency and weak convergence to a Gaussian process and to show
bootstrap applicability.

Briefly, consider a failure time region [0,τ1]× [0,τ2] with F(τ1,τ2)G(τ1,τ2)> 0.
For a sufficiently large sample size n the risk region of the data includes (τ1,τ2) with
probability arbitrarily close to one. Hence we assume [0,τ1]× [0,τ2]⊂ R. Denote by
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N10,N01 and N11 counting processes defined by

N10(t1, t2) = n−1#{k;S1k ≤ t1,S2k > t2,δ1k = 1}
N01(t1, t2) = n−1#{k;S1k > t1,S2k ≤ t2,δ2k = 1}
N11(t1, t2) = n−1#{k;S1k ≤ t1,S2k ≤ t2,δ1k = 1,δ2k = 1}

and by Y the “at-risk” process defined by

Y (t1, t2) = n−1#{k;S1k ≥ t1,S2k ≥ t2}.

The Glivenko–Cantelli and Donsker theorems (see Appendix A) apply to the
empirical processes (N10,N01,N11,Y ) to show these processes to be supremum norm
consistent for, and weakly convergent in a Gaussian manner to, their target over
[0,τ1]× [0,τ2] as n→ ∞.

Also define hazard processes Λ10,Λ01 and Λ11 according to

Λ̂10(t1, t2) =
∫ t1

0
Y (u1, t2)−1N10(du1, t2),

Λ̂01(t1, t2) =
∫ t2

0
Y (t1,u2)

−1N01(t1,du2),

Λ̂11(t1, t2) =
∫ t1

0

∫ t2

0
Y (u1,u2)

−1N11(du1,du2).

The continuity and (weakly continuous) compact differentiability of these haz-
ard process transformations (Gill & Johansen, 1990) then show (Λ̂10, Λ̂01, Λ̂11)
to be strongly consistent for and weakly convergent to its corresponding target
(Λ10,Λ01,Λ11) over [0,τ1]× [0,τ2]. As evidenced by the representations (3.5), (3.7)
and (3.11), the three plug-in nonparametric estimators of F each derive from transfor-
mation on the hazard function estimators (Λ̂10, Λ̂01, Λ̂11) over [0,τ1]× [0,τ2]. In fact,
each such representation is a continuous and (weakly continuously) compact differ-
entiable transformation on the hazard functions (Λ10,Λ01,Λ11), so that the properties
of strong consistency; that is,

sup
(t1,t2)∈[0,τ1]×[0,τ2]

|F̂(t1, t2)−F(t1, t2)|
P→ 0,

weak convergence of n1/2(F̂−F) to a mean zero Gaussian process, and bootstrap ap-
plicability for variance estimation (among other purposes) follow from correspond-
ing properties for the hazard function estimators. See Gill et al. (1995) for a thorough
account of these developments for each of the three estimators, including the use of
empirical process convergence results to establish bootstrap applicability.

3.3 Maximum Likelihood and Estimating Equation Approaches

There is a long history of attempts to estimate F via maximum likelihood. The non-
parametric likelihood
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L =
n

∏
k=1

[
F(dS1k,dS2k)

δ1kδ2k{−F(dS1k,S2k)}δ1k(1−δ2k)

{−F(S1k,dS2k)}(1−δ1k)δ2k F(S1k,S2k)
(1−δ1k)(1−δ2k)

]
(3.12)

can be maximized by placing mass (probability) at uncensored failure time grid
points (t1i, t2 j) within the risk region R = {(t1, t2);S1k ≥ t1,S2k ≥ t2 for some k} and
along grid half-lines beyond the risk region in each direction.

However, L as a nonparametric likelihood with parameters that include
{F(t1i, t2 j), at all (t1i, t2 j) ∈ R} is overparameterized and, without further restriction,
generally does not yield a unique maximizer.

The overparameterization occurs because of the inability to determine a meaning-
ful double failure hazard rate estimator at grid points (t1i, t2 j) ∈ R where d10

i j = d01
i j =

d11
i j = 0. The response to this overparameterization has primarily been to impose

constraints so that F has a reduced set of parameters that can be uniquely estimated.
One semiparametric approach involves copula models that express F in terms of its
marginal survivor functions and a fixed dimensional parameter that governs depen-
dence between T1 and T2. This formulation embraces certain regression generaliza-
tions, as discussed below in Chapter 4, but it typically embraces only a limited class
of dependencies between the two failure time variates. Another approach involves the
imposition of smoothness constraints, or data reduction, so that a unique maximizer
for a smaller set of parameters emerges with high probability as sample size increases
(e.g., Tsai, Leurgans, & Crowley, 1986). Van der Laan’s (1996) repaired maximum
likelihood procedure stands out among such estimators, as being nonparametric ef-
ficient if a certain data reduction bandwidth goes to zero at a sufficiently slow rate
as sample size increases. However, this estimator has some practical limitations, and
has not proven to have moderate sample size properties that are better than those for
simpler plug-in estimators. Additionally, this type of estimator does not reduce to the
standard empirical bivariate survivor function estimator in the absence of censoring.

Similarly, a mean parameter estimation approach is overparameterized if a free
parameter is included at each uncensored data grid point in the risk region of the
data. Hence, this approach also does not yield a unique nonparametric estimator.

A topic closely tied to the nonparametric estimation of F concerns whether or
not the bivariate failure time data are useful, beyond the respective univariate failure
time data, for nonparametric estimation of the marginal survivor functions F(·,0)
and F(0, ·). For example, in the absence of censoring the empirical joint survivor
function, with its empirical (Kaplan–Meier) marginal survivor function estimators is
the accepted nonparametric estimator. Estimators that impose smoothing constraints
on the bivariate survivor function may be able to slightly enhance the efficiency of
marginal survivor function estimators, but in doing so may run the risk of introducing
bias into these survivor function estimators. Hence, it is natural to focus on two-stage
estimators that first estimate marginal distribution parameters using only the pertinent
marginal censored data, followed by estimation of joint distribution parameters at
specified marginal distribution parameter estimates.
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3.4 Nonparametric Assessment of Dependency

3.4.1 Cross ratio and concordance function estimators

Now consider the application of nonparametric survivor function estimators of the
type described in §3.2 for assessing the nature and magnitude of any dependence
between the failure time variates T1 and T2.

The presence of right censoring implies that it will typically only be possible to
assess dependency over a finite sample space for (T1,T2). Accordingly, consider the
estimation of pairwise dependency over [0,τ1]× [0,τ2] where (τ1,τ2) is in the support
of the observation times (S1,S2). Local dependence at (t1, t2) in this region can be
defined in terms of the cross ratio α(t1, t2), or equivalently its reciprocal

α
−1(t1, t2) = Λ10(dt1, t−2 )Λ01(t−1 ,dt2)/Λ11(dt1,dt2)

= F(dt1, t−2 )F(t−1 ,dt2)/{F(dt1,dt2)F(t−1 , t−2 )},

which can be integrated with respect to the failure time probability element,
F(dt1,dt2)/

∫ τ1
0
∫ τ2

0 F(ds1,ds2), over this space to give an average cross ratio mea-
sure C(τ1,τ2) over [0,τ1]× [0,τ2], where

C(τ1,τ2) =
∫

τ1

0

∫
τ2

0
F(dt1,dt2)

/∫ τ1

0

∫
τ2

0
α
−1(t1, t2)F(dt1,dt2)

=
∫

τ1

0

∫
τ2

0
F(t−1 , t−2 )Λ11(dt1,dt2)

/
∫

τ1

0

∫
τ2

0
F(t−1 , t−2 )Λ10(dt1, t−2 )Λ01(t−1 ,dt2). (3.13)

Empirical estimates Ĉ(τ1,τ2) of the average cross ratio measure C(τ1,τ2) are
readily obtained by inserting estimators that derive from a suitable survivor function
estimator F̂ , such as the Volterra, Dabrowska or Prentice–Cai estimators. Note that
the weighting function F(ds1,ds2) in (3.13) derives from the failure time distribu-
tion, and does not involve the censoring rates, so that average cross ratio estimates
arising from studies having different censoring patterns can be compared.

As a process over [0,τ1]× [0,τ2], the average cross ratio estimator Ĉ, defined
by Ĉ(t1, t2) for (t1, t2) ∈ [0,τ1]× [0,τ2], has the form of a function of a stochastic
integral that inherits such properties as a strong consistency, weak convergence to a
Gaussian process, and applicability of bootstrap sampling procedures, from those for
the generating survivor function estimator F̂ .

Another nonparametric dependency measure is Kendall’s tau, which in the ab-
sence of censoring assesses concordance between the paired (T1,T2) values via
E{sign(T (1)

1 −T (2)
1 )(T (1)

2 −T (2)
2 )}where (T (1)

1 ,T (1)
2 ) and(T (2)

1 ,T (2)
2 ) are independent

variates having survivor function F . Oakes (1989) proposed the corresponding local
dependence measure at (t1, t2) as

tau(t1, t2) = E{sign (T (1)
1 −T (2)

1 )(T (1)
2 −T (2)

2 )|T (1)
1 ∧T (2)

1 = t1,T
(1)

2 ∧T (2)
2 = t2},
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which can be estimated with right censored data. In fact, the cross ratio and local
concordance dependency measures have the simple monotonic relationship

tau(t1, t2) = {α(t1, t2)−1}/{α(t1, t2)+1} (3.14)

so that values of α(t1, t2) of one (local independence), zero (maximal negative de-
pendence) and ∞ (maximal positive independence) correspond to tau (t1, t2) values
of 0,−1 and 1, respectively. A summary concordance measure T (τ1,τ2) can be ob-
tained by averaging tau(t1, t2) according to the probability element,

2F(t−1 , t−2 )F(dt1,dt2)+2F(t−1 ,dt2)F(dt1, t−2 ),

of the componentwise minima T (1)
1 ∧T (2)

1 and T (1)
2 ∧T (2)

2 giving

T (τ1,τ2) =

∫ τ1
0
∫ τ2

0 F(t−1 , t−2 )F(dt1,dt2)−
∫ τ1

0
∫ τ2

0 F(t−1 ,dt2)F(dt1, t−2 )∫ τ1
0
∫ τ2

0 F(t−1 , t−2 )F(dt1,dt2)+
∫ τ1

0
∫ τ2

0 F(t−1 ,dt2)F(dt1, t−2 )
(3.15)

which also takes values in [−1,1]. The concordance estimator T̂ (τ1,τ2) is obtained
by everywhere inserting F̂ for F in (3.15). As a process T̂ inherits strong consis-
tency, weak convergence to a Gaussian process and bootstrap applicability from
these same properties for F̂ . Of course, dependency estimators over other subsets
of the risk region of the data are readily specified from Ĉ or T̂ . For example, an
average cross ratio estimator over a rectangular region (t1,τ1]× (t2,τ2] is given by
Ĉ(τ1,τ2)−Ĉ(τ1, t2)−Ĉ(t1,τ2)+Ĉ(t1, t2).

3.4.2 Australian twin study illustration

These data were described in §1.7.2. Here we regard the ages at appendectomy or
censoring for the 1218 MZ and the 735 DZ twins as random samples from respec-
tive twin pair cohorts for illustration purposes. The joint survivor function F for the
paired ages at appendectomy occurrence can be characterized by its marginal single
and double failure hazard rates. Table 3.2 shows average cross ratio and average con-
cordance estimates using the cumulative data through certain specified ages, based on
the Dabrowska survivor function estimator, under an arbitrary designation of first and
second membership within each pair. It is evident that cross ratios and concordances
are larger at younger ages, and they appear to be somewhat larger for MZ than for DZ
twins. For example for MZ twins an asymptotic 95% confidence interval for the aver-
age cross ratio, C(10,10) up to age 10 is exp{log(7.69±1.96(0.36)}= (3.85,16.67)
indicating quite a strong dependency. The corresponding confidence interval for DZ
twins is (1.75,10.0). Over the region (20,60]× (20,60] the average cross ratio es-
timate is 1.32 with 95% CI of (0.80,2.22) for MZ twins and 1.30 with 95% CI
of (0.61,2.78) for DZ twins, indicating rather limited association between ages at
appendectomy for either MZ or DZ twins after age 20. As elaborated in Table 3.2
footnotes, bootstrap procedures were used for confidence interval calculation.

One can use the asymptotic distributions for Ĉ or T̂ to test equality of average
cross ratios between MZ and DZ twins. For example, a comparison at age 30 based
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Table 3.2 Average cross ratio and concordance estimators of ages at appendectomy occur-
rence, through selected ages for the members of monozygotic (MZ) and dizygotic (DZ) twin
pairs in the Australian twin Study (Duffy et al., 1990).

Age of Second Twina

Age of First Twina 10 30 50
Average Cross Ratio Estimate (Ĉ)

10 MZ 7.69 (0.36)b 4.17 (0.22) 3.70 (0.24)
DZ 4.17 (0.44) 1.59 (0.47) 1.85 (0.54)

30 MZ 3.13 (0.26) 3.03 (0.10) 2.78 (0.10)
DZ 2.94 (0.27) 1.92 (0.16) 1.64 (0.17)

50 MZ 2.56 (0.27) 2.56 (0.11) 2.38 (0.10)
DZ 2.70 (0.26) 1.72 (0.17) 1.69 (0.15)

Average Concordance Estimate (T̂ )
10 MZ 0.78 (0.083)c 0.62 (0.067) 0.59 (0.075)

DZ 0.61 (0.150) 0.26 (0.205) 0.30 (0.203)
30 MZ 0.53 (0.095) 0.51 (0.031) 0.48 (0.036)

DZ 0.50 (0.101) 0.32 (0.071) 0.28 (0.071)
50 MZ 0.47 (0.107) 0.46 (0.039) 0.43 (0.038)

DZ 0.47 (0.107) 0.29 (0.071) 0.28 (0.063)

Source: (Fan, Prentice, & Hsu, 2000)
aThe designations first and second are arbitrary within a pair.
bIn parentheses are bootstrap estimates of the standard deviation of logĈ(t1, t2), based on 200 bootstrap samples.
cIn parentheses are bootstrap estimates of the standard deviation of T̂ (t1, t2), based on 200 bootstrap samples.

on logĈ(30,30) would compare {log(3.03)− log(1.92)}/{(0.10)2 +(0.16)2}1/2 =
2.41 to a standard normal distribution, providing evidence for stronger dependency
between MZ twins than DZ twins in ages of appendectomy through age 30. A cor-
responding test of equality of average concordance rates T (30,30) through age 30
for MZ and DZ twins takes value 2.45, in good agreement with the test based on
Ĉ(30,30). These analyses may suggest a genetic component to the appendectomy
risk given the complete sharing of genetic material for MZ twins versus partial shar-
ing for DZ twins, though the possibility of greater “environmental” factor sharing by
MZ versus DZ twins may also need to be considered, as may the details of ascer-
tainment and follow-up of the study cohort, in making a substantive interpretation of
these data.

This illustration points to the need for more flexible methods to accommodate
various statistical features and generalizations. For example, it is natural to restrict
marginal hazard rates to be identical for twin pair members, possibly enhancing the
efficiency of the dependency assessments shown in Table 3.2. Also the data set in-
cluded year of births for each twin pair, as well as additional pair, and pair member,
characteristics and exposures. These and other features will be included in regres-
sion generalizations in later chapters, culminating in Chapter 6 where semiparametric
models for marginal single and double failure hazard rates will be considered, with
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nonparametric components that coincide for failures, such as those for members of a
twin pair here, that are defined to be of the same “type.”

3.4.3 Simulation evaluation

Table 3.3 gives simulation summary statistics for the average cross ratio estimator Ĉ
and average concordance estimator T̂ with data generated as for Table 3.1. Table 3.2
shows simulation results at θ = 2 using the Prentice–Cai estimator F̂PC, with sam-
ple means and sample standard deviations at the same (t1, t2) values as in Table 3.1.
Note that Ĉ tends to slightly overestimate C and T̂ tends to somewhat underestimate
T at these configurations. Also the cross ratio and concordance rate estimators are
not very precisely estimated, especially in the heavier censoring scenarios, as is to
be expected since the estimator precision at (t1, t2) depends directly on the number
of double failures in [0, t1)× [0, t2). The precision also depends on the reliability of
F̂(t1, t2), leading to some instability as (t1, t2) move into the tails for the failure dis-
tribution. These simulations suggest that rather precise estimators of marginal single
and double failure hazard functions are needed for a nonparametric assessment of
dependency between a pair of censored failure time variates. The same features seen
in Table 3.3 were evident if the Volterra or Dabrowska estimators substituted for the
Prentice–Cai estimator.

3.5 Additional Estimators and Estimation Perspectives

3.5.1 Additional bivariate survivor function estimators

As noted above, semiparametric estimators may also be considered for estimation
of the survivor function F . For example, with absolutely continuous failure times
(T1,T2) one could use likelihood maximization to apply the Clayton–Oakes model
(1.7) with nonparametric marginals. The related constancy of the corresponding cross
ratio function may be too restrictive for many applications, but this model can be
extended (Nan, Lin, Lisabeth, & Harlow, 2006) to allow the cross ratio to vary over
a fixed grid defined by the elements of partitions of the T1 and T2 axes. Specifically,
if a11,a12, . . . denote the cut points for a partition of the T1 axis, while a21,a22, . . .
denote T2 axis cut points, while a10 = a20 = 0, then a constant cross ratio 1+ γ`m at
all continuity points in Ω`m = (a1,`−1,a1`]× (a2,m−1,a2m] is implied by the survivor
function model

F(t1, t2) = {F(t1,a2,m−1)
−γ`m +F(a1,`−1, t2)−γ`m −F(a1,`−1,a2,m−1)

−γ`m}−1/γ`m ∨0.
(3.16)

for all (`,m).
This class of models can presumably provide a good fit to many data sets. Log-

likelihood derivatives can be calculated recursively for joint estimation of marginal
hazard rates in intervals defined by uncensored observations for the two time vari-
ables, and corresponding asymptotic theory for marginal hazard rate and cross ratio
parameters is available and can be expected to provide good approximations to the
distribution of parameter estimates if the number of double failures within each Ω`m
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rectangle is not too small. The related calculations, however, are somewhat tedious
and results may depend on choice of failure time axis partitions. Consequently this
class of estimators does not appear to have received much use in applications.

Note that the Dabrowska estimator avoids negative mass if there is censoring on
only one of the two failure time variates. Prentice (2014) considered a nonparametric
estimator of F that applied the Dabrowska estimator to all data except doubly cen-
sored observations that are interior to the risk region of the data in a first stage, fol-
lowed by the inclusion of the omitted doubly censored data using a self-consistency
argument. Some benefit from this maneuver for estimating the failure distribution
function F , where

F(t1, t2) = F(t1, t2)−F(t1,0)−F(0, t2)+1

were suggested by simulation studies, but the possibility of negative mass assign-
ments remained.

3.5.2 Estimation perspectives

While this chapter focuses on bivariate survivor function estimation, it seems that a
focus on marginal single and double failure hazard rates may be preferable, with the
Volterra nonparametric survivor function estimator from (3.5) and (3.6) as a conse-
quence. This perspective is supported by the natural empirical estimators that obtain
for the of set marginal hazard function estimators, and by the apparent competitive
moderate and large sample properties of the Volterra estimator compared to other
nonparametric survivor function estimators.

Additionally one can see that bivariate failure time data under independent right
censorship directly support the estimation of these marginal single and double hazard
rates, nothing more, nothing less. In fact the minimal requirement for the censoring
to be “independent” is that the condition of no T1 censoring in [0, t1) can be added
without changing the marginal hazard rate Λ10(dt1,0), the condition of no T2 censor-
ing in [0, t2) can be added without changing the marginal hazard rate Λ01(0, t2), and
the condition of no T1 censoring in [0, t1) and no T2 censoring in [0, t2) can be added
without altering the double hazard rate Λ11(dt1,dt2), for all t1 ≥ 0 and t2 ≥ 0.

Along the same lines, one can consider that the principal value of bivariate failure
time data, as compared to separate univariate failure time data sets, is in the ability to
examine the double failure occurrence patterns. Such double failures may be of clin-
ical interest as patients develop each of two important outcomes, or of public health
interest as cohort study participants develop each of two study diseases. The rates
of occurrence of such dual events may provide information and insights into inter-
vention and disease mechanisms beyond marginal hazard rate analyses. Furthermore
the marginal single and double failure hazard rate estimators come together to al-
low nonparametric estimation of related pairwise dependency functions as important
byproducts. Perhaps most importantly, the nonparametric marginal single and double
failure hazard rates of this chapter generalize readily to semiparametric models for
these hazard rates given covariates, including covariates that are evolving in time.
This approach is central to subsequent chapters.
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Independent censoring relative to Λ11 requires censoring rates for the later of
the two outcomes to be unaffected by the occurrence of the former. The plausibility
of this assumption needs to be carefully considered for pairs of non-fatal outcomes,
or for pairs comprised of a non-fatal followed by a fatal outcome. The assumption
would be implausible if T1 and T2 were each composite outcomes having both fatal
and non-fatal components, with fatal components that are not nested for the two
variates. These issues will be discussed further in §4.9.2.

BIBLIOGRAPHIC NOTES

There is a long history of studies of nonparametric maximum likelihood approaches
to bivariate survivor function estimation (Campbell, 1981; Hanley & Parnes, 1983;
Tsai et al., 1986; van der Laan, 1996; Akritas & Van Keilegom, 2003; Prentice,
2014). Plug-in nonparametric estimators of this survivor function have been stud-
ied in Dabrowska (1988), Prentice and Cai (1992), and Gill et al. (1995). Gill and
Johansen (1990) provide a detailed account of product integration, and describe the
use of empirical process theory and stochastic integration to develop distribution the-
ory for the Dabrowska estimator. Gill et al. (1995) extend this approach in a thorough
manner to include each of the Volterra, Dabrowska and Prentice–Cai estimators. See
Kalbfleisch and Prentice (2002, Chapter 10) for additional simulation comparisons,
including other plug-in estimators (e.g., Campbell & Földes, 1982), whose moder-
ate sample size efficiency is unfavorable compared to the three plug-in estimators
highlighted here. Prentice (2014) applied self-consistency to develop an approach
to the bivariate survivor function estimation, building on the work of (Efron, 1967)
and (Tsai & Crowley, 1985). This approach relieved but did not eliminate the neg-
ative mass assignment issue. Van der Laan showed the potential of nonparametric
maximum likelihood approaches to address this bivariate survivor function estima-
tor problem in a nonparametric efficient manner. Nan et al. (2006) considered the
use of constant cross ratio models over a grid for the analysis of bivariate failure
time data as did Bandeen-Roche and Ning (2008). Fan, Hsu, and Prentice (2000) and
Fan, Prentice, and Hsu (2000) consider estimators of dependency over a finite failure
time region, including the average cross ratio and concordance measures described
in §3.4.

EXERCISES AND COMPLEMENTS

Exercise 3.1

Develop the Volterra integral equation (3.4) from first principals for a discrete, con-
tinuous or mixed discrete and continuous failure time variate (T1,T2).

Exercise 3.2

By repeatedly replacing F(s−1 ,s
−
2 ) on the right side of (3.4) using this same integral

equation, and reversing the order of integration, see the Péano series representation
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(3.5) emerge. Also show the equivalence of (3.3) and the usual product integral ex-
pression for the univariate survivor function.

Exercise 3.3

Consider discrete failure times (T1,T2). Show by massive cancellations that Q(t1, t2)
in (3.7) reduces to F(t1, t2)/{F(t1,0)F(0, t2)}. See Dabrowska (1988) for the devel-
opment of (3.7) with mixed discrete and continuous failure times.

Exercise 3.4

Show that inserting empirical estimators for all hazard rates in (3.9) into (1.6) gives
the Dabrowska estimator (3.8). Show that the recursive calculation (3.9) then follows.

Exercise 3.5

Show that the concordance estimator (3.15) follows from (3.14) and the distribution
shown for the componentwise minima.

Exercise 3.6

Show that each of the Volterra, Dabrowska and Prentice–Cai estimators reduces to
the usual empirical estimator in the absence of censoring.

Exercise 3.7

Compute and display the empirical marginal single and double failure hazard rate
estimators for the three small data sets (n= 50) shown below, obtained by generating
observations randomly from the Clayton–Oakes model (1.7) with respective θ values
of 3, 0 and −0.5 (θ +1 is the constant cross ratio). Unit exponential marginal failure
distributions, and independent exponentially distributed censoring times that were
independent of each other with a 1/3 probability of censoring, apply to each data set.
Comment on, and contrast, the pattern of double failures, and the pattern of double
hazard rate contours, for the three data sets.
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Table 3.4 Data simulated under Clayton–Oakes model (1.7) at various θ values and n = 50,
with each observed time having a 1/3 probability of being censored.

θ = 3 θ = 0 θ =−0.5
S1 δ1 S2 δ2 S1 δ1 S2 δ2 S1 δ1 S2 δ2

0.647 1 0.363 1 0.410 1 0.084 0 0.078 0 0.744 1
0.370 1 0.091 1 0.623 1 0.236 1 0.405 1 2.150 1
0.099 1 0.036 1 0.062 1 0.157 1 0.313 0 0.429 1
0.522 1 0.425 1 0.220 1 1.076 0 0.381 1 1.017 1
0.100 1 0.726 1 0.643 1 1.086 1 1.003 1 1.305 0
0.043 1 0.461 0 0.358 1 0.972 0 2.112 1 0.339 1
1.777 0 1.509 0 0.933 1 0.500 1 0.072 1 0.214 1
0.298 0 2.479 1 0.139 1 0.927 1 0.131 1 0.670 0
0.032 1 0.055 1 0.703 0 0.306 1 0.773 1 0.051 0
0.261 1 0.051 1 0.792 1 0.672 1 0.158 1 2.342 0
0.507 1 0.192 1 0.504 1 0.527 1 1.116 0 0.284 1
0.426 1 0.244 1 0.498 0 0.432 1 0.003 1 0.469 1
0.826 1 1.331 1 0.363 0 2.126 1 0.032 1 0.905 1
0.143 1 0.369 1 1.134 1 0.121 1 0.485 1 1.391 1
1.622 1 1.499 1 1.193 0 0.503 1 0.611 1 1.132 0
2.400 0 0.713 0 1.006 1 0.009 1 0.665 1 0.635 1
0.050 1 0.363 1 0.316 1 1.158 0 0.102 0 0.194 1
0.357 1 0.088 1 0.805 1 0.045 0 2.151 0 0.118 1
1.560 1 1.392 0 0.270 0 0.039 1 1.309 0 0.756 0
0.774 1 0.905 1 1.763 1 0.779 1 0.553 0 1.100 1
0.337 1 0.432 1 0.301 1 0.374 1 0.037 1 2.251 0
0.294 1 0.144 1 0.602 0 0.259 1 0.475 1 1.173 1
1.090 1 0.381 1 0.164 1 1.679 0 1.902 0 0.165 1
0.074 1 0.168 1 0.100 1 0.067 1 0.611 1 0.801 0
0.338 1 0.917 1 0.741 0 0.152 1 0.075 1 3.647 1
0.536 0 3.755 0 0.119 0 0.664 1 1.672 0 0.412 0
0.295 1 0.130 1 0.147 0 0.752 0 0.339 0 0.495 1
1.432 1 0.028 0 0.541 0 0.323 1 0.498 1 0.741 1
0.510 1 0.402 1 0.912 1 0.542 1 0.121 1 0.532 1
1.253 1 1.428 1 0.067 1 0.099 1 0.140 1 2.699 1
0.283 1 0.043 1 0.152 1 0.351 0 0.966 0 0.156 1
0.883 1 1.097 0 1.856 0 1.343 1 0.013 1 0.833 0
0.365 0 3.164 1 0.034 1 0.102 1 0.498 1 0.713 1
0.102 1 0.290 1 0.674 1 0.246 0 0.123 1 0.374 0
0.088 1 0.769 1 0.706 1 0.213 1 0.099 0 0.265 1
0.037 1 0.142 0 1.436 1 1.462 0 1.750 1 0.217 1
0.536 1 0.388 0 0.047 1 1.925 1 0.253 1 0.165 1
0.766 1 0.164 0 0.054 1 0.102 1 0.213 1 0.181 1
0.136 1 0.952 0 0.648 0 0.581 1 0.136 0 0.457 1
0.685 1 0.386 1 0.193 1 0.368 1 0.095 0 0.090 1
0.690 0 0.871 1 2.272 1 1.869 1 0.119 0 1.177 0
0.863 1 1.299 1 1.483 1 0.168 1 0.877 1 1.042 1
1.988 1 1.640 1 0.841 0 0.268 1 0.034 0 0.245 0
0.287 0 0.224 1 0.253 0 2.875 0 0.11 1 0.784 1
0.681 0 0.811 1 0.921 1 0.246 1 0.113 0 0.905 0
1.408 0 1.713 1 0.003 1 1.430 1 1.020 0 0.136 1
0.192 0 0.527 1 3.294 1 0.312 1 0.042 1 1.720 1
3.208 1 0.055 0 0.072 1 0.383 1 1.827 1 0.240 1
0.194 1 0.353 0 0.118 1 1.613 0 0.289 0 1.091 0
1.932 1 1.637 0 0.975 0 3.030 1 0.441 0 0.192 1
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rates for two failure time variates T1 > 0 and T2 > 0. The time axes for these two
variates may be the same or entirely unrelated. Some simplifications occur when the
two time axes are the same, as will be discussed in Chapter 7.

As noted in Chapter 2, failure time regression data analysis methods are well de-
veloped for univariate failure time data, including analyses that examine hazard rates
in relation to a preceding covariate history that may be evolving in time. With bivari-
ate failure times we would like to extend these methods to the analysis of hazard rates
in relation to a bivariate covariate z(t1, t2) that takes value {z1(t1 , t2),z2(t1, t2), . . .}
at follow-up time (t1, t2). Let Z denote the (bivariate) covariate history up to time
(t1, t2), so that Z(t1, t2) = {z(s1,s2);s1 = t1 if t1 = 0,s1 < t1 if t1 > 0, and s2 = t2
if t2 = 0,s2 < t2 if t2 > 0}. The sample paths for Z will be assumed to be continu-
ous from the left, so that Z(t1, t2) does not include jumps in the covariate process at
(t1, t2). In this Chapter methods will be considered for relating hazard rates for T1
and T2 separately and jointly to their preceding covariate history.

Of particular interest will be methods for estimating marginal hazard rates
Λ10{dt1,0;Z(t1,0)} for t1 ≥ 0 and Λ01{0,dt2;Z(0, t2)} for t2 ≥ 0 and double failure
hazard rates Λ11{dt1,dt2;Z(t1, t2)} for t1 ≥ 0 and t2 ≥ 0 in relation to their preced-
ing covariate histories. Analyses of this type will permit an assessment of covariate
effects on marginal single and double failure hazard rates; and may also permit an
assessment of the nature of dependency between T1 and T2 given Z, throughout the
study follow-up period. It is useful to consider first the independent censoring condi-
tions needed for estimating these hazard rate processes, and their relationship to the
likelihood function for failure time distribution parameters.

4.2 Independent Censoring and Likelihood-Based Inference

Consider observations S1k = T1k ∧C1k, δ1k = I[T1k = S1k], S2k = T2k ∧C2k, δ2k =
I[T2k = S2k] and Z(S1k,S2k), k = 1, . . . ,n, for a randomly selected cohort from a study
population. As above, denote by Λ10 given Z and Λ01 given Z the marginal single
outcome hazard processes given Z, and by Λ11 given Z the dual outcome hazard
process given Z, so that

Λ10{t1,0;Z(t1,0)}=
∫ t1

0
Λ10{ds1,0;Z(s1,0)} with

Λ10{ds1,0;Z(s1,0)}= P{T1 ∈ [s1,s1 +ds1);T1 ≥ s1;Z(s1,0)},

Λ01{0, t2;Z(0, t2)}=
∫ t2

0
Λ01{0,ds2;Z(0,s2)} with

Λ01{0,ds2;Z(0,s2)}= P{T2 ∈ [s2,s2 +ds2);T2 ≥ s2,Z(0,s2)}, and

Λ11{t1, t2;Z(t1, t2)}=
∫ t1

0

∫ t2

0
Λ11{ds1,ds2;Z(s1,s2)} with

Λ11{ds1,ds2;Z(s1,s2)}= P{(T1,T2) ∈ [s1,s1 +ds1)× [s2,s2 +ds2);
T1 ≥ s1,T2 ≥ s2,Z(s1,s2)}. (4.1)

Independent censoring requires that absence of T1 censoring in [0,s1), of T2 cen-
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soring in [0,s2), and of T1 or T2 censoring in [0,s1)× [0,s2) can be added, respec-
tively, to the conditioning events in the above expressions without changing these
hazard rates. These conditions ensure that marginal single and dual outcome hazard
rates can be estimated by individuals at risk in the study cohort at (t1,0),(0, t2) and
(t1, t2) respectively for all (t1, t2) in the study follow-up period. Estimation of dual
outcome hazard rates can add to information about the influence of treatments or
exposures, encoded in Z, on the outcomes under consideration, beyond the standard
single outcome hazard rate analyses described in Chapter 2.

In §4.6 we consider semiparametric Cox-type regression models for each of the
hazard rates in (4.1), and a plug-in estimating equation approach is described for
parameter estimation. In contrast, nearly all of the multivariate failure time liter-
ature uses a likelihood-based approach for regression modeling and estimation. A
likelihood approach can begin with a specification of a joint probability model for
the failure time and covariate processes, to which censoring is brought in under a
“coarsening-at-random” assumption (e.g., van der Laan & Robins, 2003 ). This ap-
proach is attractive conceptually and offers the potential of efficient estimation of
failure distribution parameters. However it can be quite challenging to develop the
requisite probability models in the correct context; for example, dual outcome hazard
rates Λ11 given Z are typically constrained in a complex manner by corresponding
single outcome hazard rates and vice versa. To explore this interface further sup-
pose that the covariate process is time-independent, so that Z(t1, t2) ≡ z(0,0) or, if
stochastic covariates are included they are external to the failure process in the sense
that sample paths for Z are unaffected by the failure times (T1,T2). One can then
entertain a joint survivor function F given Z, defined by

F{t1, t2;Z(t1, t2)}= pr{T1 ≥ t1,T2 ≥ t2,Z(t1, t2)}.

This joint survivor function can be expressed in terms of single and dual outcome
hazard rates according to

F{t1,0;Z(t1,0)}=
t1

∏
0
[1−Λ10{ds1,0,Z(s1,0)}], and

F{0, t2;Z(0, t2)}=
t2

∏
0
[1−Λ01{0,ds2,Z(0,s2)}]

on the coordinate axes, and

F{t1, t2;Z(t1, t2)}= F{t1,0;Z(t1,0)}+F{0, t2;Z(0, t2)}−1

+
∫ t1

0

∫ t2

0
F{s−1 ,s

−
2 ;Z(s1,s2)}Λ11{ds1,ds2;Z(s1,s2)}

away from these axes. The latter expression is an inhomogeneous Volterra integral
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equation at any specified covariate history Z, with Péano series solution

F{t1, t2;Z(t1, t2)}= Ψ{t1, t2;Z(t1,0),Z(0, t2)}

+
∞

∑
j=1

∫ t1

0

∫ t1

s11

· · ·
∫ t1

s1, j−1

∫ t2

0

∫ t2

s21

· · ·
∫ t2

s2, j−1

(4.2)

Ψ{s−11,s
−
21;Z(s11,s21)}

j

∏
m=1

Λ11{ds1m,ds2m;Z(s1m,s2m)},

where Ψ{t1, t2;Z(t1,0),Z(0, t2)} = F(t1,0;Z(t1,0)}+ F{0, t2;Z(0, t2)} − 1, which
generalizes (3.5). It follows that the joint survivor function F given Z is identifiable
over the follow-up period of the study under the independent censoring conditions
described above. In fact, the likelihood for F given Z can be written

L =
n

∏
k=1

(
F{dS1k,dS2k;Zk(S1k,S2k)}δ1kδ2k [−F{dS1k,S2k;Zk(S1k,S2k)}]δ1k(1−δ2k)

[−F{S1k,dS2k;Zk(S1k,S2k)}](1−δ1k)δ2k F{S1k,S2k;Zk(S1k,S2k)}(1−δ1k)(1−δ2k)

)
.

(4.3)

The discerning reader might ask at this point “Since (4.3) is conveniently ex-
pressed in terms of the function F given Z, why not simply specify a convenient
model for F{t1, t2;Z(t1, t2)}, rather than specifying single and dual outcome hazard
functions given Z, and estimate model parameters by maximizing (4.3)?” This is
essentially the copula approach to bivariate failure time regression.

4.3 Copula Models and Estimation Methods

4.3.1 Formulation

Still with fixed or external covariates, any of the univariate hazard rate regression
models discussed in Chapter 2 could be used to define marginal hazard rate models
Λ10{dt1,0;Z(t1,0)} and Λ01{0,dt2;Z(0, t2)}, from which standardized variates

V1 =
∫ T1

0
Λ10{dt1,0;Z(t1,0)} and V2 =

∫ T2

0
Λ01{0,dt2;Z(0, t2)}

can be defined. With absolutely continuous failure times, V1 and V2 will have unit
exponential distributions. The copula approach to absolutely continuous bivariate
failure time modeling then specifies a joint survivor function, F0(·, ·;θ) for (V1,V2)
with parameter θ that governs the dependence between V1 and V2 given Z. Under this
specification one can write

F{t1, t2;Z(t1, t2)}=F0

[∫ t1

0
Λ10{du1,0;Z(u1,0)},

∫ t2

0
Λ01{0,du2;Z(0,u2)};θ

]
,

(4.4)
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and can apply (4.3) for maximum likelihood estimation of marginal hazard rate pa-
rameters and the dependency parameter θ . The formulation is not conducive to allow-
ing dependence between T1 and T2 given Z to depend on an evolving covariate, but
the parameter θ can be allowed to depend on a baseline covariate vector z = z(0,0).

There is a wealth of literature on possible choices of copula functions, with cor-
responding discussion of the nature of the dependencies between T1 and T2 that are
implied by specific copula model specifications (e.g., Nelsen, 2007). Prominent ex-
amples include the Clayton–Oakes copula

F0(v1,v2;θ) = (ev1θ + ev2θ −1)−1/θ ∨0 (4.5)

for θ ∈ [−1,∞), and the normal transformation copula

F0(v1,v2;θ) = φ{φ−1(1− e−v1),φ−1(1− e−v2);θ} (4.6)

for θ ∈ [−1,1], where φ(·) is the univariate standard normal density and φ{·, ·;θ}
is the standard bivariate normal survivor function with correlation θ between the
two standard normal variates. These are special cases of the class of Archimedean
copulas. Both models approach the lower Fréchet and upper Fréchet boundaries as
θ approaches the lower and upper extremes of its parameter space respectively, and
both are absolutely continuous at all points away from these boundaries.

4.3.2 Likelihood-based estimation

The application of a copula model (4.4) to absolutely continuous, independently cen-
sored failure time regression data through maximization of (4.3) is conceptually sim-
ple since

F{t1, t2;Z(t1, t2)}= F0{v1,v2;θ(z)},
−F{dt1, t2;Z(t1, t2)}=−F0{dv1,v2;θ(z)}dt1/dv1,

−F{t1,dt2;Z(t1, t2)}=−F0{v1,dv2;θ(z)}dt2/dv2, and
F{dt1,dt2;Z(t1, t2)}= F0{dv1,dv2;θ(z)}(dt1/dv1)(dt2/dv2),

where

v1 =
∫ t1

0
Λ10{du1,0;Z(u1,0)},dt1/dv1 = 1/Λ10{dt1,0;Z(t1,0)},

v2 =
∫ t2

0
Λ01{0,du2;Z(0,u2)}, and dt2/dv2 = 1/Λ01{0,dt2;Z(0, t2)}.

Maximum likelihood estimation with parametric models for marginal hazard rate
and copula parameters then involves summing, over the sample, derivatives of the
logarithms of these quantities with respect to parameters in Λ10{·,0;Z(·,0)} and
Λ01{0, ·;Z(0, ·)}, and θ . The maximum likelihood estimating function involves the
derivative functions F0{dv1,v2;θ(z)},F0{v1,dv2;θ(z)} and F0{dv1,dv2;θ(z)} in a
rather intimate fashion, for all model parameters, suggesting a possible sensitivity
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of marginal hazard rate parameter estimates to the choice of F0. This sensitivity can
be avoided by a two-stage estimation procedure wherein parameters in the marginal
hazard rate models are estimated first based on the respective marginal failure time
data, then θ is estimated by maximizing (4.3) with all marginal hazard rate parame-
ters fixed at the first stage estimates (e.g., Shih & Louis, 1995).

Much of the development work on bivariate failure time regression methods
based on copula models has assumed the Clayton–Oakes copula (4.5), usually with
θ ≥ 0 thereby precluding negative dependency between T1 and T2 given Z. This em-
phasis seems appropriate based on the useful interpretation of the copula parameter θ

in terms of the cross ratio, which under the Clayton–Oakes model does not depend on
the follow-up times, either in terms of the original variates (T1,T2) or the transformed
variates (V1,V2). However, it may be awkward to specify fully parametric models for
marginal hazard rates, and inadequate modeling may lead to biased estimators of
marginal hazard rate regression parameters. Hence, regression estimation procedures
in this context have typically used semiparametric procedures for marginal hazard
rates, most notably Cox models. Pipper and Martinussen (2003), building on the ap-
proach used in Glidden and Self (1999), express the Clayton–Oakes model in a frailty
model form (see §4.4) and derive likelihood-based estimating equations for marginal
regression parameters and for the single cross ratio parameter that is assumed to not
depend on covariates. Their development allowed clusters of more than two failure
time variates under a rather restrictive higher dimensional version of the Clayton–
Oakes model. Asymptotic distributional results required a specialized development
because of the semiparametric modeling of marginal hazard rates. In simulation stud-
ies these authors showed that meaningful efficiency gain in marginal hazard ratio pa-
rameters relative to analyses based on marginal T1 or T2 data only, could be achieved
under the assumed Clayton–Oakes model, if dependencies between T1 and T2 given
Z were strong. However, this form of data analysis needs to be accompanied by the
requirement that the cross ratio function is a constant independent of follow-up time
for the failure time variates, and is also independent of regression variables, since
otherwise bias may attend marginal hazard ratio parameter estimates.

Glidden (2000) considered this same statistical model, and focused on estimation
of the cross ratio. Marginal hazard rates were estimated using standard Cox model
estimating equations with a working independence model (given Z) between failure
times. Asymptotic distributional results were obtained, and the cross ratio estimator
behaved well in simulation studies. Simulations in Pipper and Martinussen (2003)
show similar performance of Glidden’s cross ratio parameter estimator with theirs.

4.3.3 Unbiased estimating equations

Prentice and Hsu (1997) consider a mean and covariance parameter estimating equa-
tion approach for marginal hazard ratio and corresponding dependency parameters.
Specifically Cox model estimating equations, expressed in terms of marginal mar-
tingales as in (2.16), were considered for two or more failure time variates. The
elements of these equations were weighted according to the inverse of the estimated
covariance matrix for the set of marginal martingales for each study subject, with a
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corresponding set of unbiased estimating equations for marginal martingale covari-
ance parameters. The pairwise covariance models were assumed to the take a form
derived from a copula model for each pair of failure time variates. For example a
Clayton–Oakes model could be assumed, with cross ratio of the form 1+θex(0,0)γ ,
where x(0,0) = {x1(0,0),x2(0,0), . . .} is defined from z(0,0) with possibly distinct
θ and γ parameters for each pair of failure time variates. Asymptotic distribution the-
ory was provided for estimates of marginal hazard ratio parameters, that may benefit
in efficiency from the inverse covariance weighting, and for the dependency (e.g.,
cross ratio) parameters, which may be derived from estimating equations having an
identity working weight matrix. Estimator performance was satisfactory in simula-
tion studies.

The main limitation of this estimating equation approach is the need to specify
a copula model to generate the model for marginal martingale covariances, and the
related inability to allow dependencies between failure time variates given Z to de-
pend on covariates that evolve over time. Simulation studies under pairwise Clayton–
Oakes models indicated that the estimated cross ratio parameters approximately tar-
get an average cross ratio value over the study follow-up period, under departure
from a cross ratio model that is time-independent.

Note that this estimating equation approach allows marginal hazard ratio regres-
sion parameters to have some components in common across failure times, and is
readily adapted to settings in which baseline marginal hazard ratio functions are
common among certain failure time variates. All of the methods described in this
section also adapt readily to stratification of the baseline marginal hazard rates on
covariate values, as in (2.11).

To summarize, the copula approach to bivariate failure time regression has some
attractive features in terms of ease of application and parameter interpretation when
the copula is well chosen. There are also some limitations: Most substantially, a
copula model with a single or a low-dimensional parameter typically embraces only
a modest class of dependencies between T1 and T2, given Z. For example, (4.5) gives
a cross ratio of the form 1+θ(z), where z = z(0,0), at all continuity points (t1, t2).
While this simple form is attractive for the interpretation of θ , it follows that the
cross ratio function not only doesn’t allow for an evolving covariate, but importantly
does not depend on either time component throughout the failure time space. This
may be acceptable with short follow-up periods and small failure rates, but some
provision for temporal variations in the cross ratio can be expected to be needed in
applications, as was evident for example, in the illustration of §3.4.2.

Related to this, Nan et al. (2006) generalize the Clayton–Oakes model to allow
the cross ratio 1+θ(z) to vary over the elements of a grid formed by fixed partitions
of the time axes, in conjunction with Cox model marginals. This model, carefully
applied, can presumably provide a good fit to many data sets, and can also allow the
cross ratio to depend on covariate data Z(a1,a2) where (a1,a2) is the lower left corner
of rectangles in the failure time grid. However, the method requires the specification
of time axis partitions that may be somewhat arbitrary, and may also require a mod-
erately large number of double failures in each element of the failure time grid for
good estimator behavior (Bandeen-Roche & Ning, 2008). Before considering even
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more general semiparametric models for single and dual outcome hazard rates it is
instructive to consider the common approach to generating dependency models in
statistics by means of random effects, which in the context of multivariate failure
time data are usually referred to as frailties.

4.4 Frailty Models and Estimation Methods

A frailty modeling approach to bivariate failure time data analysis would assume
that T1 and T2 are independent, given Z and a hypothetical shared frailty variate W ,
which is usually assumed to affect the hazard rates, given Z and W , in a multiplicative
fashion. For example, Cox-type model marginal hazard rate models

Λ10{dt1,0;Z(t1,0),W}= Λ10(dt1,0)W exp{x(t1,0)β10}, and
Λ01{0,dt2;Z(0, t2),W}= Λ01(0,dt2)W exp{x(0, t2)β01} (4.7)

may be considered. The frailty variate W is hypothetical and not observed, and
models for the joint survivor function F given Z, and for its related marginal single
and dual outcome hazard rate functions, need to be induced by integrating over a
specified distribution for W , a distribution that is usually taken to have mean one to
allow parameter identifiability. A popular choice of frailty model is a gamma distri-
bution that has been rescaled to have mean one and variance θ ≥ 0. Andersen et al.
(1993, Chapter 9) give a detailed account of the induced hazard rates under a gamma
frailty distribution, and note that an additional assumption that censoring rates are
non-informative concerning W needs to be made. The induced marginal hazard rates
under a gamma frailty distribution, as with most other mixing distributions involves
the parameters in the frailty distribution. Hence, in this class of models the frailty
parameters are not simply reflecting dependencies between T1 and T2 given Z, but
also influence the marginal hazard rates. For this reason a frailty modeling approach
may not be the best approach if primary interest resides in marginal hazard rate re-
gression parameters. Hougaard (1986) proposed the use of an infinite mean positive
stable frailty distribution to avoid implications of the frailty model parameter for
marginal rates of proportional hazards form. Also, under a gamma frailty distribu-
tion a θ -dependent transformation on T1 and T2 leads to a copula model form (4.5)
with θ ≥ 0 for the transformed variates in (4.7), providing another way of avoiding
this problem in the special case of (4.5).

As a means of inducing marginal single and dual outcome hazard rate regres-
sion models frailty models with few parameters, like copula models, tend to embrace
a rather limited class of dependencies, and are not conducive to allowing such de-
pendencies to depend on evolving covariates. In addition the models induced for
marginal single and dual outcome hazard rates are typically complex and related
parameters may lack a ready interpretation.

Fundamentally, these issues arise because frailty models derive their parameter
interpretation from models (4.7) that condition on the hypothesized frailty variate.
As such they are suited to such purposes as the assessment of failure rate regression
effects within “clusters” of correlated failure times, and to the estimation of frailty
factors for specific clusters. These may be important analytic foci in some contexts
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as is illustrated by applications in the books by Hougaard (2000) and Duchateau and
Janssen (2010). Also, the limited class of dependencies mapped out by a frailty dis-
tribution having a small number of parameters could potentially be offset by allowing
the frailty factor in (4.7) to depend in some way on (t1, t2).

Rather than further reviewing these aspects of the frailty modeling approach, in
§4.6 we consider models and methods for directly estimating marginal single and
dual outcome hazard rate parameters, with bivariate failure time regression data.
These are population-averaged inference targets. Univariate failure time regression
data analyses are likely to apply hazard rate regression models, as discussed in Chap-
ter 2. In many applications it would seem undesirable to change the target of marginal
distribution inference, simply because data on one or more companion failure time
variates and related covariates are also available for use in data analysis, arguing
against a frailty modeling approach for these inferential targets.

4.5 Australian Twin Study Illustration

In §3.4.2 we saw that average cross ratios for age at appendectomy were larger
at younger compared to older ages, for both monozygotic and dizygotic twins, in
the Australia Twin Study illustration. Glidden (2000) applied a constant cross ra-
tio model to these data, with marginal hazard ratio parameters estimated using Cox
models as applied to the respective univariate failure time data. Cross ratio estimates
(standard errors) of 2.80 (0.27) for MZ twins and 1.83 (0.25) for DZ twins were
obtained. The unweighted estimating equation approach of Prentice and Hsu (1997)
yielded similar values of 2.69 (0.25) and 1.82 (0.25) for MZ and DZ twins respec-
tively. These cross ratio estimates presumably have an interpretation as average cross
ratios over the study follow-up period, with averaging that is somewhat dependent
on censoring, but they fail to reveal the noteworthy age dependencies for the cross
ratio function, which may be important to the interpretation of study results.

4.6 Regression on Single and Dual Outcome Hazard Rates

4.6.1 Semiparametric regression model possibilities

In Sections 4.3 and 4.4 bivariate failure time regression models were considered,
with dependency between T1 and T2 given Z modeled parametrically. One might
alternatively hope to apply semiparametric regression models to describe such de-
pendency, in conjunction with semiparametric regression models for marginal single
failure hazard rates. Additionally, it would be desirable for the dependency models to
accommodate external covariates that are evolving in relation to the time axes. Upon
specifying such models, one could consider a likelihood-based estimation procedure
that maximizes (4.3) over its semiparametric parameters.

While this likelihood maximization approach is simple conceptually, its applica-
tion is not at all straightforward. For example, one could consider a semiparametric
regression model for Λ11{dt1,dt2;Z(t1, t2)}, along with semiparametric regression
models for marginal hazard rates Λ10{dt1,0;Z(t1,0)} and Λ01{0,dt2;Z(0, t2)}. How-
ever, even though F given Z can be uniquely expressed in terms of these quantities
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alone, as shown in §4.2, probability function positivity requirements place substantial
constraints on the modeling of Λ11 given Λ10 and Λ01 (and given pertinent covariate
histories), and vice versa, greatly complicating model specification for a likelihood-
based approach. Alternatively, one could consider modeling covariance rates

Ω11{dt1,dt2;Z(t1, t2)}

=
[Λ11{dt1,dt2;Z(t1, t2)}−Λ10{dt1, t−2 ;Z(t1, t2)}Λ01{t−1 ,dt2;Z(t1, t2)]

[1−Λ10{∆t1, t−2 ;Z(t1, t2)}][1−Λ01{t−1 ,∆t2;Z(t1, t2)}]

in addition to marginal hazard rates, as F{·, ·;Z(·, ·)} has an explicit expression as
a function of these quantities. However, these covariance rates are also substantially
restricted by the marginal single failure hazard rate specifications, and by related
negative mass avoidance requirements, again complicating a likelihood maximiza-
tion approach.

Semiparametric regression modeling of the cross ratio process α{t1, t2;Z(t1, t2)}=
Λ11{dt1,dt2;Z(t1, t2)}/[Λ10{dt1, t−2 ;Z(t1, t2)}Λ01{t−1 ,dt2;Z(t1, t2)}] is evidently free
from such constraints with absolutely continuous failure times, but the absence of an
explicit expression for F{t1, t2;Z(t1, t2)} in terms of marginal hazard rates and cross
ratios substantially complicates likelihood maximization using this modeling idea,
and no such methodology has appeared in the literature.

In summary, there is currently no available likelihood maximization–based ap-
proach to bivariate failure time regression with flexible semiparametric models for
marginal single failure hazard rates and corresponding dependency functions.

4.6.2 Cox models for marginal single and dual outcome hazard rates

Fundamentally, regression analysis of independently censored bivariate failure time
data allows estimation of marginal single and double failure hazard rates, given
corresponding, possibly evolving, covariate values. Hence, an alternative approach,
building on the plug-in estimation approach described in Chapter 3, simply applies
empirical-type estimators to regression models for marginal single and dual outcome
hazard rates, and brings these together to estimate F{·, ·;Z(·, ·)} and related quanti-
ties.

For absolutely continuous, discrete or mixed failure time variates (T1,T2), con-
sider marginal single outcome hazard rate models

Λ10{dt1,0;Z(t1,0)}= Λ10(dt1,0)exp{x(t1,0)β10} for t1 ≥ 0, (4.8)

and
Λ01{0,dt2;Z(0, t2)}= Λ01(0,dt2)exp{x(0, t2)β01} for t2 ≥ 0, (4.9)

and also consider a Cox-type dual outcome hazard rate model

Λ11{dt1,dt2;Z(t1, t2)}= Λ11(dt1,dt2)exp{x(t1, t2)β11} for t1 ≥ 0 and t2 ≥ 0.
(4.10)

There are connections between (4.10) and the single outcome hazard models
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(4.8) and (4.9), but the time-dependent modeling options for the regression vector
x(t1, t2) = {x1(t1, t2),x2(t1, t2) . . .} formed from {(t1, t2) and Z(t1, t2)} provides the
potential for a good fit of (4.10) to available data, as is the case also for the single
outcome hazard rates through the specification of x(t1,0) = {x1(t1,0),x2(t1,0), . . .}
and x(0, t2) = {x1(0, t2),x2(0, t2), . . .}. Baseline stratification in (4.8)–(4.10) can add
further valuable flexibility. If (4.8)–(4.10) each provide a good fit to available data,
so will the corresponding estimator of F given Z and related quantities.

The parameters in (4.8)–(4.10) can be readily estimated in a manner analogous
to (2.8) and (2.10) even when Z includes internal time-varying covariates. Specifi-
cally, subject to the adequacy of their respective models, β10 can be estimated as the
solution, β̂10, to

I

∑
i=1

{
∑

k∈D(∆t1i,0)
xk(t1i,0)−d10

i0
∑k∈R(t1i,0) xk(t1i,0)exk(t1i,0)β10

∑k∈R(t1i,0) exk(t1i,0)β10

}
= 0, (4.11)

with Λ̂10(t1,0) = ∑t1i≤t1{d
10
i0 /∑k∈R(t1i,0) exk(t1i,0)β̂10}, for all (t1,0) ∈ R;

β01 can be estimated as the solution, β̂01, to

J

∑
j=1

 ∑
k∈D(0,∆t2 j)

xk(0, t2 j)−d01
0 j

∑k∈R(0,t2 j) xk(0, t2 j)exk(0,t2 j)β01

∑k∈R(0,t2 j) exk(0,t2 j)β01
= 0

 , (4.12)

with Λ̂01(0, t2) = ∑t2 j≤t2{d
01
0 j /∑k∈R(0,t2 j) exk(0,t2 j)β̂01} for all (0, t2) ∈ R; and β11 can

be estimated as the solution, β̂11, to

I

∑
i=1

J

∑
j=1

 ∑
k∈D(∆t1i,∆t2 j)

xk(t1i, t2 j)−d11
i j

∑k∈R(t1i,t2 j) xk(t1i, t2 j)exk(t1i,t2 j)β11

∑k∈R(t1i,t2 j) exk(t1i,t2 j)β11

= 0,

(4.13)
with Λ̂11(t1, t2) = ∑t1i≤t1 ∑t2 j≤t2{d

11
i j /∑k∈R(t1i,t2 j) exk(t1i,t2 j)β̂11} for all (t1, t2) ∈ R,

where, for example, D(∆t1i,0) is the set of d10
i0 individuals failing at T1 = t1i, and

D(∆t1i,∆t2 j) is the set of d11
i j individuals having double failure at (t1i, t2 j).

With fixed or external time-dependent covariates the single and dual outcome
hazard rate estimators can be brought together to estimate the survivor function semi-
parametrically, under (4.8)–(4.10), in a manner that extends the plug-in Volterra es-
timator of Chapter 3. At any uncensored data grid point (t1i, t2 j) ∈ R away from the
coordinate axes one has

F̂{∆t1i,∆t2 j;Z(t1i, t2 j)}= F̂{t−1i , t
−
2 j;Z(t1i, t2 j)}Λ̂11{∆t1i,∆t2 j;Z(t1i, t2 j)}

from which

F̂{t1i, t2 j;Z(t1i, t2 j)}= F̂{t1i, t−2 j;Z(t1i, t2 j}+ F̂{t−1i , t2 j;Z(t1i, t2 j)}

− F̂{t−1i , t
−
2 j;Z(t1i, t2 j)}[1− Λ̂11{∆t1i,∆t2 j;Z(t1i, t2 j)}],



82 BIVARIATE FAILURE TIME REGRESSION

with Λ̂11{∆t1i,∆t2 j;Z(t1i, t2 j)} = Λ̂11(∆t1i,∆t2 j)exp{x(t1i, t2 j)β̂11}, giving a simple
recursive procedure, starting with

F̂{t1i,0;Z(t1i,0)}=
i

∏
`=1

[1− Λ̂10(∆t1`,0)ex(t1`,0)β̂10 ] and

F̂{0, t2 j;Z(0, t2 j)}=
j

∏
m=1

[1− Λ̂01(0,∆t2m)ex(0,t2m)β̂01 ],

for estimating F by the step function F̂{t1, t2;Z(t1, t2)} at any (t1i, t2 j) ∈ R at any
covariate history Z.

4.6.3 Dependency measures given covariates

From these estimates, one can estimate average cross ratios C{τ1,τ2;Z(τ1,τ2)} given
Z, over [0,τ1]× [0,τ2] with (τ1,τ2) ∈ R, analogous to (3.13) via

Ĉ{τ1,τ2;Z(τ1,τ2)}=
∫

τ1

0

∫
τ2

0
F̂{t−1 , t−2 ;Z(t1, t2)}Λ̂11{dt1,dt2;Z(t1, t2)}

/
∫

τ1

0

∫
τ2

0
F̂{t−1 , t−2 ;Z(t1, t2)}Λ̂10{dt1, t−2 ;Z(t1, t2)}Λ̂01{t−1 ,dt2;Z(t1, t2)}

and estimate concordances between T1 and T2 over [0,τ1]× [0,τ2], given Z, analogous
to (3.15), by

T̂ {τ1,τ2;Z(τ1,τ2)}=
[∫ τ1

0

∫
τ2

0
F̂{t−1 , t−2 ;Z(t1, t2)}F̂{dt1,dt2;Z(t1, t2)}

−
∫

τ1

0

∫
τ2

0
F̂{dt1, t−2 ;Z(t1, t2)}F̂{t−1 ,dt2;Z(t1, t2)}

]/
[∫ τ1

0

∫
τ2

0
F̂{t−1 , t−2 ;Z(t1, t2)}F̂{dt1,dt2;Z(t1, t2)}

+
∫

τ2

0

∫
τ2

0
F̂{dt1, t−2 ;Z(t1, t2)}F{t−1 ,dt2;Z(t1, t2)}

]
.

These estimates can be used, for example, to examine how the strength of depen-
dency between T1 and T2 varies with Z, or to examine how the strength of depen-
dency, given Z, varies over the follow-up period of a study.

If Z includes internal stochastic covariates then F given Z typically lacks a sur-
vivor function interpretation. Whether or not the estimators Ĉ given Z and T̂ given
Z provide useful basis for assessing residual dependence between T1 and T2 after
allowing for Z that includes internal covariates, is a question for future research.

4.6.4 Asymptotic distribution theory

Any of the hazard rate models (4.8)–(4.10) may be misspecified, and the dual
outcome hazard rate regression model need not be mutually consistent with
the single outcome hazard rate regression models. Nonetheless the solutions
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{β̂10, β̂01, β̂11, Λ̂10(·,0), Λ̂01(0, ·), Λ̂11(·, ·)} quite generally have a joint asymptotic
Gaussian distribution over (t1, t2) ∈ [0,τ1]× [0,τ2] with (τ1,τ2) in the support of
the observed times (S1,S2). In applications one can expect some asymptotic bias in
these estimators relative to parameters in (4.8)–(4.10) because of regression model
misspecification, but as noted above, if each such model is in reasonably good agree-
ment with the data, then this agreement can also be expected to extend to estimators
F̂ given Z and to related processes derived from F̂ , such as average cross ratio and
concordance estimators, given Z with fixed or external covariates.

The block diagonal Hessian matrix Î(β ) = diag{Î10(β10), Î01(β01), Î11(β11)},
where, for example,

Î10(β10) =
I

∑
i=1

d10
i0

[
∑k∈D(t1i,0) xk(t1i,0)′xk(t1i,0)exk(t1i,0)β10

∑`∈R(t1i,0) exk(t1i,0)β10

−

{
∑k∈R(t1i,0) xk(t1i,0)′exk(t1i,0)β10

∑k∈R(t1i,0) exk(t1i,0)β10

}⊗2]
,

and

Î11(β11) =
I

∑
i=1

J

∑
j=1

d11
i j

[
∑k∈R(t1i,t2 j) xk(t1i, t2 j)

′xk(t1i, t2 j)exk(t1i,t2 j)β11

∑`∈R(t1i,t2 j) exk(t1i,t2 j)β11

−

{
∑k∈R(t1i,t2 j) xk(t1i, t2 j)exk(t1i,t2 j)β11

∑k∈R(t1i,t2 j) exk(t1i,t2 j)β11

}⊗2]
,

that derives from differentiating the negative of left sides of (4.11)–(4.13) with
respect to β = (β ′10,β

′
01,β

′
11)
′, can be used in a Newton procedure to compute

β̂ = (β̂ ′10, β̂
′
01, β̂

′
11)
′.

Note, however, that Î(β̂ )−1 will typically not provide a consistent variance es-
timator for β̂ because of the possibility of discrete elements in the distribution of
(T1,T2) given Z, and because of a lack of complete ordering of the bivariate space,
precluding the type of conditioning argument used in §2.3 for estimating the variance
of β̂11. However, as detailed below, a sandwich-form variance estimator for β̂ can be
calculated.

For asymptotic distribution theory development, over a follow-up period [0,τ1]×
[0,τ2], where (τ1,τ2) is in the support of (S1,S2) given Z, it is convenient to recon-
strue (4.11)–(4.13) as

n

∑
k=1

∫
τ1

0
{xk(t1,0)−E10(t1,0;β10)}M10k(dt1,0;β10) = 0 (4.14)

n

∑
k=1

∫
τ2

0
{xk(0, t2)−E01(0, t2;β01)}M01k(0,dt2;β01) = 0, and (4.15)

n

∑
k=1

∫
τ1

0

∫
τ2

0
{xk(t1, t2)−E11(t1, t2;β11)}M11k(dt1,dt2;β11) = 0 (4.16)



84 BIVARIATE FAILURE TIME REGRESSION

where, for example,

E10(t1,0;β10) = n−1
n

∑
`=1

Y1`(t1)x`(t1,0)exp{x`(t1,0)β10}
/

[
n−1

n

∑
`=1

Y1`(t1)exp{x`(t1,0)β10}

]
, (4.17)

E11(t1, t2;β11) = n−1
n

∑
`=1

Y1`(t1)Y2`(t2)x`(t1, t2)exp{x`(t1, t2)β11}
/

[
n−1

n

∑
`=1

Y1`(t1)Y2`(t2)exp{x`(t1, t2)β11}

]
, (4.18)

M10k(dt1,0;β10) = N1k(dt1)−Y1k(t1)exp{xk(t1,0)β10}Λ10(dt1,0),
M01k(0,dt2;β01) = N2k(dt2)−Y2k(t2)exp{xk(0, t2)β01}Λ01(0,dt2),

M11k(dt1,dt2;β11) =N1k(dt1)N2k(dt2)−Y1k(t1)Y2k(t2)exp{xk(t1,t2)β11}Λ11(dt1,dt2),

and where N1k,N2k,Y1k and Y2k are the counting and at-risk processes for the kth
individual. See Exercise (4.6) for elaboration of the arguments leading to (4.14)–
(4.16).

It turns out that the centering processes E10,E01 and E11 in (4.14)–(4.16) can be
replaced under mild conditions by e10,e01, and e11 where, for example, e10 is the
ratio of the expectation of the numerator to the expectation of the denominator in
(4.17) and e11 is similarly the ratio of the numerator expectation to denominator ex-
pectation in (4.18), without affecting the asymptotic distribution of the left sides of
(4.14)–(4.16). This property is shown for (4.14) and (4.15), in a more general con-
text using empirical process methods, in Spiekerman and Lin (1998), and their meth-
ods extend readily to two dimensions for (4.16). Having made these replacements,
and assuming that {N1k,Y1k,N2k,Y2k,Z(S1k,S2k)} are independent and identically dis-
tributed for k = 1, . . . ,n, one has that the left sides of (4.14)–(4.16) are summations
over IID random variables to which, following standardization by n−1/2 factors, the
central limit theorem can be applied. It follows readily that the standardized left sides
of (4.14)–(4.16) converge to a mean zero Gaussian process under (4.8)–(4.10), with
variance

A(β ) = E

 ∫ τ1
0 {x(t1,0)− e10(t1,0;β10)}M10(dt1,0;β10)∫ τ2
0 {x(0, t2)− e01(0, t2;β01)}M01(0,dt2;β01)∫ τ1
0
∫ τ2

0 {x(t1, t2)− e11(t1, t2;β11)}M11(dt1,dt2;β11)

⊗2

where E denotes expectation.
The consistency of β̂10, β̂01, and β̂11 as estimators of β10,β01 and β11 follows

from the fact that the solutions to (4.11)–(4.13) each maximize a function that can
be shown to be uniquely maximized at the true regression parameter with probability
approaching one as the sample size becomes large. The arguments are very simi-
lar to those applied to (2.17), using the mean zero properties of M10,M01 and M11
under (4.8)–(4.10), almost sure bounded total variation constraints on the modeled
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covariates, and the strong embedding theorem of Shorack and Wellner (1986) (see
Appendix A).

A Taylor series expansion

n1/2(β̂ −β ) = {I(β ∗)/n}−1n−1/2U(β )

where U(β ) refers to the left sides of (4.11)–(4.13) and the elements of β ∗ are on the
line segment between the true β element and the corresponding element of β̂ , then
yields an asymptotic distribution for n1/2(β̂ − β ) that has mean zero and variance
consistently estimated by

{Î(β̂ )/n}−1Â(β̂ ){Î(β̂ )/n}−1 (4.19)

assuming that the semidefinite matrices Î10(β10), Î(β01) and Î(β11) each approach a
positive definite matrix at the pertinent true β -value as n→∞. Also in this sandwich
variance formula is the empirical estimator

Â(β̂ ) =
1
n

n

∑
k=1

 ∫ τ1
0 {xk(t1,0)−E10(t1,0; β̂10)}M̂10k(dt1,0; β̂10)∫ τ2
0 {xk(0, t2)−E01(0, t2; β̂01)}M̂01k(0,dt2; β̂01)∫ τ1
0
∫ τ2

0 {xk(t1, t2)−E11(t1, t2; β̂11)}M̂11k(dt1,dt2; β̂11)

⊗2

and the hat on M10k,M01k and M11k refers to evaluation at baseline rates Λ̂10, Λ̂01
and Λ̂11 respectively. In fact, the asymptotic Gaussian convergence extends to joint
mean zero Gaussian field convergence for n1/2(Λ̂10 −Λ10), n1/2(Λ̂01 −Λ01) and
n1/2(Λ̂11 −Λ11) under a small extension of the empirical process–based develop-
ments in Spiekerman and Lin (1998). Specifically, these standardized processes col-
lectively converge in probability to a sum of IID mean zero random processes to
which the central limit theorem applies. A corresponding sandwich covariance func-
tion estimator leads to pointwise confidence intervals for baseline hazard rates. These
results extend to hazard processes at a general covariate history Z by suitable recen-
tering of the modeled regression variables. Furthermore, these asymptotic Gaussian
results for parameters in any one of (4.8)–(4.10) continue to apply under departure
from the other two hazard rate models. Also, the IID contributions of each individ-
ual can be perturbed by multiplying by a standard normal variate that is independent
among individuals, and is independent of all available data, leading to a resampling
procedure for more general inference on the three hazard processes. This can be used,
for example, for confidence band estimation for baseline hazard rates at any speci-
fied covariate history Z. These developments are described in considerable detail in
Spiekerman and Lin (1998) and Lin et al. (2000), with extensions to include dual
outcome hazard rates in Prentice and Zhao (2019).

4.6.5 Simulation evaluation of marginal hazard rate estimators

In this section we consider some moderate sample size properties of the semipara-
metric (Cox) model estimation of single and dual outcome hazard rates procedures
described in Subsections 4.6.2–4.6.4. To do so, absolutely continuous failure times,
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given a fixed covariate vector z = (z1,z2, . . .), were generated under a Clayton–Oakes
survivor function model

F(t1, t2;z) = {F0(t1,0)−θ exp{z(β10−γ)}+F0(0, t2)−θ exp{z(β01−γ)}−1}−ezγ/θ

(4.20)

for θ ≥ 0, where F0 denotes the survivor function at z = 0. The resulting failure time
variates have Cox model marginal hazard rates Λ10(dt1,0;z) = Λ10(dt1,0)ezβ10 and
Λ01(0,dt2;z) = Λ01(0,dt2)ezβ01 and corresponding local cross ratios

Λ11(dt1,dt2;z)/{Λ10(dt1, t2;z)Λ01(t1,dt2;z)}= 1+θe−zγ

that do not depend on (t1, t2).
The rather special case where β10 = β01 = γ is of interest in that the induced dual

outcome hazard rates are then

Λ11(dt1,dt2;z) = Λ11(dt1,dt2)ezγ(ezγ +θ)/(1+θ), (4.21)

which is also of Cox model form with dual outcome hazard ratio ezγ(ezγ +θ)/(1+θ)
that is also independent of (t1, t2). Hence for a binary covariate z the dual outcome
hazard rate function conforms to (4.10) with hazard ratio eβ11 = eγ(eγ +θ)/(1+θ)
under this model.

Data for various parameter values (β ,θ) and various sample sizes n were gener-
ated under this special case of (4.20), with unit exponential marginal survivor func-
tions at z= 0, with exponentially distributed censoring variates that were independent
of each other and of the failure time variates, at each value of a binary variate z, that
took values 0 and 1 with probability 0.5. Censoring was introduced by specifying
exponential censoring distributions with rate parameters equal to 5 for each of C1
and C2, or no censoring.

Table 4.1 shows simulation summary statistics for (β̂10, β̂01, β̂11) at (θ ,γ) values
of (2,0) and (2, log2) and sample sizes of n = 500 or 1000 with substantial cen-
soring or n = 250 with no censoring. These simulations provide little evidence of
bias in regression parameter estimates even though there are only about 27 expected
double failures at (θ ,γ) = (2,0) with censoring at n = 500. Table 4.1 also provides
regression simulation summary statistics for the sample mean of standard deviation
estimates derived from the sandwich variance estimator (4.19), along with corre-
sponding asymptotic 95% confidence coverage rates from the same simulations. The
average of standard deviation estimates based on (4.19) was close to corresponding
sample standard deviation estimates, and asymptotic 95% confidence integrals had
close to nominal coverage rates under these sampling configurations.

Table 4.2 shows corresponding summary statistics for survivor function estima-
tors F̂ and for the average cross ratio and concordance estimators Ĉ and T̂ at selected
percentiles of the marginal distributions for T1 and T2 at (θ ,γ) = (2, log2), at both
z = 0 and z = 1. The survivor function estimates do not show evidence of bias, as
was also the case at smaller sample sizes (e.g., = 250) with substantial censoring, at
either z-value. Average cross ratio estimates tend to be somewhat upward biased, and
average concordance estimates somewhat downward biased under the configuration



HAZARD RATE REGRESSION 87

Ta
bl

e
4.

1
Si

m
ul

at
io

n
su

m
m

ar
y

st
at

is
tic

s
fo

r
m

ar
gi

na
ls

in
gl

e
ou

tc
om

e
ha

za
rd

ra
tio

pa
ra

m
et

er
s

β
10

an
d

β
01

an
d

fo
r

du
al

ou
tc

om
e

ha
za

rd
ra

tio
pa

ra
m

et
er

β
11

,
an

d
fo

r
re

la
te

d
es

tim
at

or
s

fr
om

sa
nd

w
ic

h-
fo

rm
va

ri
an

ce
es

tim
at

or
s,

un
de

r
th

e
C

la
yt

on
–O

ak
es

m
od

el
(4

.2
0)

w
ith

β
10

=
β

01
=

γ
an

d
a

bi
na

ry
co

va
ri

at
e

z.
Th

is
m

od
el

im
pl

ie
s

m
ar

gi
na

l
ha

za
rd

ra
tio

(f
or

z
=

1
ve

rs
us

z
=

0)
of

eγ
fo

r
bo

th
T 1

an
d

T 2
,a

nd
do

ub
le

fa
ilu

re
ha

za
rd

ra
tio

of
eγ
(e

γ
+

θ
)/
(1

+
θ
).

(θ
=

2,
γ
=

0)
Sa

m
pl

e
si

ze
(n

)
50

0
10

00
25

0
T 1

an
d

T 2
fa

ili
ng

%
16

.7
16

.7
10

0
D

ou
bl

e
fa

ilu
re

%
5.

3
5.

3
10

0

Tr
ue

Sa
m

pl
ea

M
ea

n
Sa

m
pl

eb

SD
Sa

nd
.b

SD
95

%
C

Ib

C
ov

.
Sa

m
pl

e
M

ea
n

Sa
m

pl
e

SD
Sa

nd
.

SD
95

%
C

I
C

ov
.

Sa
m

pl
e

M
ea

na
Sa

m
pl

e
SD

Sa
nd

.
SD

95
%

C
I

C
ov

.
β

10
0

0.
00

6
0.

22
7

0.
22

2
0.

95
1

−
0.

00
2

0.
16

0
0.

15
6

0.
94

7
0.

00
0

0.
12

6
0.

12
7

0.
95

0
β

01
0

−
0.

00
8

0.
22

4
0.

22
1

0.
95

2
0.

00
0

0.
15

7
0.

15
6

0.
94

8
0.

00
0

0.
12

8
0.

12
7

0.
94

6
β

11
0

−
0.

00
7

0.
44

0
0.

42
0

0.
94

9
−

0.
00

4
0.

29
3

0.
28

9
0.

95
7

−
0.

00
2

0.
16

9
0.

16
7

0.
94

7

(θ
=

2,
γ
=

lo
g

2)
Sa

m
pl

e
si

ze
(n

)
50

0
10

00
25

0
T 1

an
d

T 2
fa

ili
ng

%
22

.6
22

.6
10

0
D

ou
bl

e
fa

ilu
re

%
8.

2
8.

2
10

0
β

10
0.

69
3

0.
70

5
0.

20
3

0.
19

8
0.

94
1

0.
69

5
0.

14
5

0.
13

9
0.

94
0

0.
69

8
0.

13
5

0.
13

4
0.

94
7

β
01

0.
69

3
0.

69
7

0.
19

9
0.

19
7

0.
95

5
0.

69
3

0.
13

9
0.

13
9

0.
95

1
0.

69
8

0.
13

5
0.

13
3

0.
94

5
β

11
0.

98
1

1.
00

4
0.

38
1

0.
36

4
0.

95
1

0.
97

6
0.

25
9

0.
25

9
0.

95
1

0.
98

9
0.

19
2

0.
18

6
0.

94
5

a B
as

ed
on

10
00

si
m

ul
at

io
ns

at
ea

ch
sa

m
pl

in
g

co
nfi

gu
ra

tio
n.

b
A

bb
re

vi
at

io
ns

:S
am

pl
e

SD
is

sa
m

pl
e

st
an

da
rd

de
vi

at
io

n
of

th
e

re
gr

es
si

on
pa

ra
m

et
er

es
tim

at
es

;S
an

d.
SD

is
th

e
co

rr
es

po
nd

in
g

av
er

ag
e

of
st

an
da

rd
de

vi
at

io
n

es
tim

at
es

de
riv

ed
fr

om
th

e
sa

nd
w

ic
h

fo
rm

es
tim

at
io

n
of

va
ri

an
ce

fo
rβ̂

,a
nd

95
%

C
IC

ov
.i

s
th

e
fr

ac
tio

n
of

si
m

ul
at

ed
sa

m
pl

es
fr

om
w

hi
ch

th
e

ap
pr

ox
im

at
e

95
%

co
nfi

de
nc

e
in

te
rv

al
,

fo
rm

ed
fr

om
β̂

an
d

its
sa

nd
w

ic
h-

fo
rm

va
ri

an
ce

es
tim

at
or

,i
nc

lu
de

s
th

e
tr

ue
β

.



88 BIVARIATE FAILURE TIME REGRESSION

Ta
bl

e
4.

2
Si

m
ul

at
io

n
su

m
m

ar
y

st
at

is
tic

s
fo

r
su

rv
iv

or
fu

nc
tio

n
(F̂

),
cr

os
s

ra
tio

(Ĉ
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with no censoring. These biases disappear as the sample size at any particular config-
uration becomes large. They reflect somewhat asymmetric sampling distributions for
Ĉ and T̂ in samples of moderate numbers of dual failures, and biases may be able
to be reduced by simple transformation (e.g., apply asymptotic normal distributional
approximation to logĈ rather than to Ĉ). See Prentice and Zhao (2019) for closely
related simulations.

4.7 Breast Cancer Followed by Death in the WHI Low-Fat Diet Intervention
Trial

In §1.7.5 a brief description was given of the Women’s Health Initiative Dietary Mod-
ification randomized trial that contrasted a low-fat dietary pattern intervention (40%)
with a usual diet comparison group (60%) in respect to various clinical outcomes.
At the end of an 8.5-year average intervention period the Cox model hazard ratio
estimate and asymptotic 95% confidence interval were 0.92 (0.84,1.01) with logrank
significance level of p = 0.09, for the invasive breast cancer primary outcome, with
671 and 1093 breast cancer cases respectively in the intervention and comparison
groups (Prentice et al., 2006). Similarly, the estimated hazard ratio (95% CI) for total
mortality was 0.98 (0.91, 1.06) based on 989 and 1519 deaths in the respective ran-
domization groups. These analyses stratify baseline rates on age at randomization in
5-year categories and randomization status in the companion hormone therapy trials
(CEE active, CEE placebo, CEE + MPA active, CEE + MPA placebo, not random-
ized).

What can be said about the dual outcome of breast cancer and death? This out-
come occurs only when death (from any cause) follows breast cancer. Also the two
outcomes share the same follow-up time axis and have a potential censoring time
equal to time from a randomization to the earlier of the end date for the intervention
period (3/31/05) or for a small fraction of women, time to earlier loss to follow-up.
Additionally, follow-up for breast cancer is discontinued at the time of death, for
women who died without a breast cancer diagnosis. An independent censoring as-
sumption in this context requires that death ascertainment does not change following
a breast cancer diagnosis, a reasonable assumption here since all death ascertain-
ment procedures, including matching to the U.S. National Death Index, continued
for participating women throughout and beyond the intervention period.

The special structure of this composite outcome implies that dual outcomes occur
along this single time axis (follow-up time from randomization) and occur at death
following breast cancer, with censored times at the earlier of the cutoff time for data
analysis, loss to follow-up or death without breast cancer. In analyses that stratify
baseline rates for the dual outcome as for the single outcomes, the composite out-
come of incident breast cancer followed by death from any cause had an estimated
dual outcome hazard ratio (95% CI) of 0.64 (0.44, 0.93), with 40 and 94 women
experiencing the dual event in the intervention and comparison groups during the
intervention period. Hence, this composite outcome analysis provides stronger evi-
dence of intervention benefit (logrank p = 0.02) than was the case for either outcome
separately, in spite of a much smaller number of dual outcome events compared to ei-
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ther outcome separately. A corresponding analysis with outcome of death attributed
to breast cancer gave a similar hazard ratio estimate of 0.67, but with broader 95%
CI of (0.43, 1.06), and p = 0.08, since there were only 27 and 61 deaths attributed
to breast cancer in the respective randomization groups. These results are perhaps
not too surprising for an intervention that is hypothesized to reduce the risk of mul-
tiple important diseases, including breast cancer where any favorable influence may
be larger for more serious subtypes (e.g., estrogen receptor–positive, progesterone
receptor–negative tumors) or for which disease or associated treatments may affect
the risk of death beyond that attributed to breast cancer itself. See Chlebowski et
al. (2017) for a closely related analysis that regards breast cancer followed by death
from any cause as a “marked” point process, and for additional subgroup analyses,
and analyses over longer-term follow-up.

The dual outcome hazard ratios of the type just illustrated do not have any simple
connection to the corresponding single outcome hazard ratios. The interpretation of
dual outcome hazard ratio is essentially the same as that for the single outcome haz-
ard ratio. For example, in the present illustration the rate with which postmenopausal
US women develop breast cancer and die within an average 8.5 year follow-up pe-
riod is lower by an estimated factor of 1.00−0.64 = 36% in the dietary intervention
group versus the comparison group. Furthermore the magnitude of this dual out-
come hazard ratio can be examined in relation to the time from randomization to
breast cancer diagnosis and time from breast cancer diagnosis to death by defining
x(t1, t2)= {z,zt1,z(t2−t1)}where z denotes intervention (z= 1) or comparison group
(z = 0) randomization status in (4.10). The solution β̂11 = (0.184,0.008,−0.125)′ to
(4.13) has corresponding sandwich standard error estimates of (0.714,0.117,0.123)′.
A test of zero value for the two interaction coefficients, using the sandwich co-
variance estimator for β̂ has significance level p = 0.09, providing some modest
evidence of dual outcome hazard ratio variation over the study follow-up period.
If the zt1 interaction component is dropped leaving x(t1, t2) = {z,z(t2 − t1)}, one
obtains β̂11 = (0.226,−0.220) with corresponding standard deviation estimates of
(0.346,0.101), giving nominally significant (p = 0.03) evidence for a dual outcome
hazard ratio that decreases with increasing time from breast cancer diagnosis to
death. This is consistent with a recent trial report (Chlebowski et al., 2018) indicating
improved post-diagnosis survival in the intervention versus comparison group. Note
that these latter analyses condition on post-randomization information and therefore
do not constitute a comparison between randomized groups. In contrast the dual out-
come hazard ratio analyses described here do not involve such conditioning and en-
joy intention-to-treat status, suggesting a DO-ITT (dual outcome intention-to-treat)
acronym for this type of data analysis (with apologies to Nike!).

Similarly, with non-fatal outcomes one can, for example, define a hazard ratio
regression model as {zI(t1 < t2),zI(t1 ≥ t2)} to compare dual outcome hazard ratios
according to which outcome occurs first, potentially providing insight into interven-
tion mechanisms. This modeling special case will be illustrated in Chapter 6.
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4.8 Counting Process Intensity Modeling

In settings such as the WHI low-fat diet intervention trial just discussed, where T1
and T2 are on the same time axis and have a common censoring time C1 = C2 = C,
one can also consider regression analyses based on modeling the counting process
intensity. Specifically T1 and T2 can be considered as differing failure types, and
type-specific failure rate regression models can be specified. For example, one might
specify semiparametric models of the form

Λk(dt;Ht) = Yk(t)Λk(dt)exp{xk(t)βk} (4.22)

for a type k hazard rate, k = 1,2, at follow-up time t. Here, the conditioning event
Ht includes all failure, censoring and covariate information prior to time t, including
the failure counting process history. Hence the rate of failure of a particular type is
modeled conditional on the counting process prior to time t for the companion failure
type. As a result the modeled covariate xk(t)= {xk1,(t), . . . ,xkp(t)} needs to allow for
possible dependence on whether or not the companion failure type has occurred and,
also, on the timing of such occurrence. For example, in the above WHI breast cancer
illustration, the all-cause mortality rate needs to be modeled according to whether
or not the study participant has experienced an earlier breast cancer diagnosis dur-
ing trial follow-up. One could relax (4.22) to allow a separate baseline mortality rate
function Λ21(dt) or Λ22(dt) according to whether a breast cancer diagnosis had not
occurred, or had occurred, prior to time t, and the corresponding regression param-
eter can be relaxed to β21 or β22 accordingly. Estimators of model parameters in
(4.22), or in these generalizations, and associated distribution theory arise naturally
from the procedures summarized in §2.9, as will be elaborated in a more general con-
text in Chapter 7. Note, however, that the interpretation of hazard ratio parameters
in these models may be quite different from that for regression parameters in (4.8)–
(4.10), which model single and dual outcome hazard rates given preceding covariate
histories, but not counting process histories for the potentially correlated times. Re-
lated to this, inference on intensity model parameters, such as β22 in the approach
to all-cause mortality rates among women with a post-randomization breast cancer
diagnosis, may often be of medical or scientific interest, but may typically lack the
basis in randomization enjoyed by the single and dual outcome hazard ratio param-
eters in (4.8)–(4.10) in the low-fat diet trial. On the other hand, analyses based on
(4.8)–(4.10) may typically require a stronger independent censoring condition than
do those based on (4.22), since censoring rates in intensity process modeling can
depend on the prior counting process information in the intensity rate definition. For
example, in the breast cancer illustration, independent censoring using (4.8)–(4.10)
would require censoring processes for mortality to be unaltered when a woman ex-
periences a breast cancer diagnosis. As noted above, this is a plausible assumption in
view of outcome ascertainment procedures that include National Death Index match-
ing for all participating women throughout the study follow-up period.
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4.9 Marginal Hazard Rate Regression in Context

4.9.1 Likelihood maximization and empirical plug-in estimators

There are several points concerning the single and dual outcome hazard rate regres-
sion models of §4.6 that merit additional comment. These are essentially empirical
plug-in methods that extend the nonparametric estimators of §3.2 to include haz-
ard ratio regression components for both single and dual hazard rates. As such they
embrace models that may not be fully compatible with any probability model for
the overall data. This feature may make it difficult to construct suitable simulation
models to evaluate estimator performance. For example, we used the rather spe-
cialized model (4.20) with β10 = β01 = γ to study moderate sample properties of
single and dual hazard ratio parameter estimates. If β10 = β01 = γ is relaxed un-
der (4.20) one retains a constant hazard ratio for single outcome hazard rates but
the dual outcome hazard ratio then has a complex form. Simulations reported in
Prentice and Zhao (2019) show that survival probabilities given the binary covari-
ate, z, can be well estimated under this more relaxed model simply by defining
x(t1, t2) = {z,z log t1,z log t2}, or by other simple time-dependent modeling of the
dual outcome hazard ratio.

One might expect, from a theoretical perspective, a likelihood-based estimation
procedure would have advantages, including the possibility of semiparametric effi-
ciency, compared to the proposed empirical plug-in approach. However, a likelihood-
based approach for the type of data considered in this chapter may require complex
calculations, and optimality properties may be realized very slowly, as n→ ∞, as is
known to be the situation in the absence of regression variables for van der Laan’s
(1996) repaired maximum likelihood estimator of the bivariate survivor function.
This estimator may have nonparametric efficiency properties, but it does not appear
to materially improve upon the simple plug-in estimators discussed in Chapter 3.

A key feature of the single and dual outcome hazard ratio modeling approach is
the ease of calculation and interpretation of hazard ratio parameters. These methods
allow the user to extend the familiar hazard ratio interpretation from single outcomes
to combined single and dual outcomes. Misspecified models for one or more of these
hazard rate functions of course can lead to biases in corresponding regression param-
eter estimates, but doesn’t affect the asymptotic distribution for hazard rate parameter
estimates for the remaining hazard rate functions. As with univariate Cox model pa-
rameter estimates one can imagine applications that begin with simple proportional-
ity assumptions for dual as well as single outcome hazard ratios for simple summary
analyses, with product terms between measured covariates and the follow-up time
variables subsequently included for more refined hazard ratio analyses.

4.9.2 Independent censoring and death outcomes

Many applications of single and dual outcome hazard ratio methods will involve
outcome pairs on the same time axis on each study individual, as in §4.7. In such
contexts the single and dual hazard rates can be implicitly regarded as conditioning
on the continued survival of the individual at all follow-up times. T1 and T2 may then
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each represent time from a specified time origin to certain non-fatal outcomes. Inde-
pendent censoring for the dual outcome then requires the censoring rate at follow-up
time (t1, t2) given Z(t1, t2) for either outcome to be unaffected by the occurrence of
the companion outcome, and assumption that needs to be carefully considered in each
application setting, and relaxed as necessary. An impressive feature of the empirical
process developments and sandwich variance estimator sketched above, in that ad-
ditional aspects of the bivariate counting process can be added to the conditioning
event in hazard rate specification, as may be necessary for an independent censoring
assumption to be plausible, without invalidating the asymptotic distributional results.
Note, however, that the interpretation of hazard rate parameters will be affected by
such inclusion.

In addition to paired non-fatal outcomes, the dual outcome hazard rate estimation
procedure can be applied to a paired non-fatal outcome (T1) and an overall or cause-
specific death outcome (T2). By definition information for estimating T1 or (T1,T2)
hazard rates ceases to accumulate at the death of the individual, and dual outcome
hazard rate estimators only assign mass on or above the t1 = t2 diagonal. Independent
censoring in this context requires censoring rates for the death outcome, given Z, to
be unaffected by the occurrence of the non-fatal outcome.

The scenario of the preceding paragraph can be extended slightly by allowing T1
to include a fatal component that is also a T2 outcome, as was the situation in the
illustration of §4.7 since some breast cancers were only ascertained by death cer-
tificate, so that T1 = T2 for the dual outcome of breast cancer and death from any
cause for these outcomes. These data are most naturally thought of as incorporating
some measurement error in T1 ascertainment that prevented a more accurate dual out-
come, with T1 < T2, from being recorded. The practical implications of such a delay
in breast cancer diagnosis is likely to be small in this trial context, which included
its substantial efforts to ensure equal outcome ascertainment procedures in the two
randomization groups.

4.9.3 Marginal hazard rates for competing risk data

The bivariate failure time data considered in this chapter differs from classical com-
peting risk data comprised of univariate failure time data that is accompanied by a
failure type, with death accompanied by cause of death category as motivating exam-
ple. Competing risk failure time data can be considered as a “marked” point process
that admits the estimation of type-specific hazard rates, as in (2.12). Competing risk
data have sometimes been modeled using hypothetical latent failure times. For exam-
ple T1 may represent time to death attributed to cancer, while T2 is time to death from
all other causes. It has long been recognized (Tsiatis, 1975) that the joint distribution
of such hypothetical times is wholly unidentifiable from such data. In the terminol-
ogy of this chapter, there is no possibility of estimating either single or dual outcome
hazard rates for (T1,T2) from classical competing risk data, without making strong
additional assumptions on the latent failure time distribution. Any such assumption
is untestable with these data, so other sources of information are needed for justifi-
cation. For example, in some industrial application mechanistic considerations may
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be used to support an assumption of independence between T1 and T2 given covari-
ates, but such an assumption would usually be suspect for differing disease processes
acting on an individual, for example in a biomedical context.

In comparison the breast cancer incidence (T1) and all-cause mortality (T2) out-
comes considered in §4.7 represent genuinely bivariate outcomes, since trial partic-
ipants continued to be followed for death following a breast cancer diagnosis. The
(identifiable) single outcome hazard rates in this context implicitly condition on the
continued survival of the study participant, so that T1 is time from randomization to
breast cancer diagnosis, Λ̂10{t1,0;Z(t1,0)} is the estimated cumulative breast cancer
hazard at follow-up time t1, and F̂{t1,0;Z(t1,0)} is the estimated breast cancer–free
survival probability at time t1 for an individual having (fixed or external) covariate
history Z(t1,0). These estimators have ready and useful interpretation with this type
of data, as do marginal hazard estimators for T2 and (upper wedge) dual outcome
hazard estimators as illustrated in §4.7.

Data of the type just considered are sometimes referred to as semicompeting risk
data. There is a related literature on the estimation of the marginal distribution for a
hypothetical latent non-fatal outcome, say T̃1, that is regarded as being censored in
a dependent fashion by death (T2). In the application of §4.7 T̃1 would equal T1 for
individuals developing breast cancer, and would be the hypothesized time that breast
cancer would have occurred for individuals dying without breast cancer. Not surpris-
ingly, estimation proposals (e.g., Fine, Jiang, & Chappell, 2001; Barrett, Siannis, &
Farewell, 2011) need to contend with identifiability issues and require additional
untestable assumptions. These methods may have utility for the study of non-fatal
disease processes beyond observable data modeling, but they should be viewed as
fundamentally different from the methods of §4.6.

4.10 Summary

This chapter provides a brief discussion of likelihood-based copula and frailty ap-
proaches to the regression analysis of bivariate failure time data. These methods,
carefully applied, can undoubtedly yield valuable insights into regression effects
on the individual failure times given covariates, and on the nature of dependencies
among failure types. The methods based on marginal single and dual failure hazard
rates, recently proposed by the authors, substantially generalize the class of regres-
sion models, accommodate evolving covariates on the same or different follow-up
axes, and allow for direct insight into covariate effects on composite (double failure)
outcomes. These methods all focused on marginal hazard rate regression parameters,
and they can be expected to nicely complement longer-standing counting process
intensity estimation procedures that allow a focus on transitions between states and
mechanistic analyses through the study of rates and regression associations condi-
tional on the prior failure experience of the set of correlated outcomes.

In some applications one may wish to restrict baseline hazard rates, Λ10 and
Λ01 in (4.8) and (4.9) or Λ1 and Λ2 in (4.22) to be identical, and also restrict some
or all elements of corresponding regression parameters to be common. Estimation
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procedures that incorporate these features will be discussed in a more general context
in Chapter 6.

BIBLIOGRAPHIC NOTES

The coarsening at random assumption, which essentially requires censoring rates to
depend only on observed data, in relation to likelihood specification with complex
data has a substantial history (Heitjan & Rubin, 1991; Heitjan, 1994; Jacobsen & Kei-
ding, 1995) culminating in unified methods for censored longitudinal data (van der
Laan & Robins, 2003) and related targeted maximum likelihood approaches (e.g.,
van der Laan & Rose, 2011 ). Research to explore whether this impressive literature
can materially improve upon the plug-in empirical methods presented in Chapters 3
and 4 is highly recommended. The single and dual outcome hazard rate modeling of
§4.6 follows closely a recent paper (Prentice & Zhao, 2019), where additional detail
on distribution theory and additional simulation results can be found.

There is an extensive literature on copula models, and their use in bivariate fail-
ure time data analysis. A thorough inventory of copula models, and their respective
properties is given by Nelsen (2007). Also see Joe (1997) for a thorough discussion
of multivariate models and dependency measures, and Joe (2014) for a more re-
cent update on copula modeling. The Clayton–Oakes copula (Clayton, 1978; Oakes,
1982, 1986, 1989) has received quite a lot of use in statistical applications. Glidden
(2000) provides asymptotic theory for a two-stage approach to parameter estimation,
coming from a frailty model formulation with time-independent covariates. A more
general asymptotic theory with Cox model marginals does not seem to have been pre-
sented. Li, Prentice, and Lin (2008) provide a detailed development of asymptotic
theory for maximum likelihood estimation under the bivariate normal transforma-
tion model (4.6) without covariates, including a demonstration of semiparametric
efficiency. There is similarly an extensive literature on the use of frailty models
for bivariate failure time modeling. Books on this approach include Duchateau and
Janssen (2010) and Wienke (2011). Hougaard (2000) provides substantial coverage
of both the frailty and copula approaches, as more recently does (Aalen et al., 2010).
Frailty models with gamma mixing distributions figure prominently in this litera-
ture. Nielsen, Gill, Andersen, and Sørensen (1992) make this modeling assumption
and consider an expectation-maximization (EM) algorithm for the estimation of Cox
model marginal hazard rate parameters, in conjunction with likelihood profiling a
cross ratio that was independent of follow-up times or covariates. Andersen et al.
(1993, Chapter 9) provide a detailed account of partial likelihood estimation under
this model, including giving conditions for equality of partial marginal, and marginal
partial likelihoods. Nan et al. (2006) consider cross ratio models that are constant
within the elements of a rectangular grid, along with Cox model marginal hazard
rates, as do Bandeen-Roche and Ning (2008). See Bandeen-Roche and Liang (1996)
for an approach to building multivariate survival models that combine aspects of the
frailty and copula approaches in a recursive fashion. Hu, Nan, Lin, and Robins (2011)
developed a regression estimation procedures for Cox model marginal hazard rates,
while restricting the cross ratio to be a polynomial function of the two time compo-
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nents. They remark that their “pseudo-partial likelihood” procedure does not apply if
the cross ratio depends on covariates.

Lin (1994) considered Cox model marginal hazard rate parameter estimation un-
der a working independence model among two or more failure time variates, and
developed asymptotic theory using empirical process methods. This work is partic-
ularly relevant if there are marginal hazard rate parameters in common across the
failure time variates. See also Wei et al. (1989) and especially Spiekerman and Lin
(1998) for asymptotic distribution theory in a more general context that is elaborated
below (Chapter 6).

There is also a considerable literature on the use of estimating equations for bi-
variate failure time regression (e.g., Cai & Prentice, 1995, 1997). Prentice and Hsu
(1997) consider estimating equations for hazard ratio and time-independent cross
ratio regression estimation jointly. Gray and Li (2002) consider weighted logrank
tests within the context of marginal Cox models and clustered failure times, not-
ing that test efficiency may be able to be improved compared to tests based on the
marginal failure time data separately. Additional research to explore the use of dual
outcome hazard rate estimators (§4.6) to improve the efficiency of corresponding sin-
gle outcome hazard ratio estimates through the introduction of weights in estimating
equations for single outcome hazard ratio parameters, would be worthwhile.

EXERCISES AND COMPLEMENTS

Exercise 4.1

Derive the kth factor in (4.3) with external covariates for failure time variates that
are everywhere absolutely continuous. Repeat this derivation for failure time variates
that are everywhere discrete. Generalize to mixed continuous and discrete failure
time variates.

Exercise 4.2

Show that V1 and V2, as defined in §4.3 have unit exponential distributions for abso-
lutely continuous failure time variates T1 and T2.

Exercise 4.3

Show that the copula models (4.5) and (4.6) are “complete” in the sense that these
models approach the Fréchet lower bound as θ approaches its smallest possible
value, and approach the Fréchet upper bound as θ approaches its larges possible
value. Show that (4.6) is everywhere absolutely continuous away from its upper and
lower bounds, whereas (4.5) with θ ≥−0.5 is everywhere absolutely continuous, but
positive probability begins to amass along the lower boundary for θ <−0.5.
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Exercise 4.4

Show that the Clayton–Oakes copula model (4.5) generates a cross ratio model for
(T1,T2) given a fixed covariate z = z(0,0) that is independent of follow-up times for
T1 and T2. How would you propose that this cross ratio be modeled as a function of
z?

Exercise 4.5

Consider a fixed covariate process Z(t1, t2) = z and suppose that the cross ratio for
T1 and T2 given z(0,0) is a constant α(v1,v2)e

x(v1,v2)γ whenever (t1, t2) ∈ (u1,v1]×
(u2,v2] = Ω. Show that the survival probability in Ω is given by

F{t1, t2;Z}= {F(t1,u2)
−θ(z)+F(u1, t2)−θ(z)−F(u1,u2)

−θ(z)}−1/θ(z)∨0

where θ(z) = α(v1,v2)e
x(v1,v2)γ −1 (Nan et al., 2006).

Exercise 4.6

Derive (4.14)–(4.16) from (4.11)–(4.13) by first reexpressing (4.11)–(4.13) over the
follow-up period [0,τ1]× [0,τ2] in the form of (4.14)–(4.16) but with N1k,N2k, and
N1kN2k in place of M10k,M01k and M11k respectively. The show that the second com-
ponents of M10k,M01k and M11k have an integrated sum of zero over k = 1, . . . ,n.

Exercise 4.7

Consider the survivor function (4.20) with β10 = β01 = γ . Show that the double fail-
ure hazard function in (4.21) holds. Derive the form of the double failure hazard
function from (4.20) without this restriction. Could the hazard ratio in (4.10) approx-
imate this double failure hazard rate form through the inclusion of time-dependent
covariates, such as (z,z log t1,z log t2), in the double failure hazard model formulation
(Prentice & Zhao, 2019)?
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5.1 Introduction

The models and data analysis methods of Chapters 3 and 4 can be extended to three
or more failure time variates that are subject to independent right censoring. Specif-
ically, each of the Dabrowska, Prentice–Cai and Volterra nonparametric survivor
function estimators extend to a fixed, but arbitrary, number of failure time variates
on the same or different failure time axes. Semiparametric regression models for
single and double failure hazard rates can be extended to marginal single, double,
triple, . . . failure hazard rates, and suitable estimating equations can be written for
all regression parameters and for baseline hazard rates of dimension 1,2,3, . . .. The
ability to precisely estimate higher dimensional survivor functions, and higher di-
mensional marginal hazard ratio parameters, will depend directly on the size and
nature of the cohort data set. For example, even large epidemiologic cohorts will
typically have few participants that experience multiple rare clinical outcomes dur-
ing cohort follow-up, and most usable information on treatments or exposures in
relation to such outcomes will reside in the single, and possibly the double, failure
hazard rate processes. On the other hand, in a therapeutic setting, individual patients

99
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may be at high risk for experiencing each of a range of failure time events, of the
same or of different types, during cohort follow-up. The baseline rates for the multi-
ple events may all be different, or may be restricted to be common for events of the
same type. The notation for these developments is somewhat awkward. Hence to fix
ideas we will first consider trivariate failure time data, with the three failures being
of different types. These restrictions will be relaxed in Chapter 6. In §5.2 the discrete
special case of a three-dimensional version of the Dabrowska (1988) representation
is used to develop a nonparametric estimator of the trivariate survivor function, and
asymptotic distribution theory is sketched. Generalization of the Volterra estimator
to three dimensions is also described, with an outline of related asymptotic distribu-
tion theory, and simulation evaluations and comparisons are presented. The copula
approach to trivariate failure time regression is outlined in §5.3. A rather flexible
trivariate regression approach that involves the modeling and estimation of marginal
single, double and triple failure hazard rates is described in §5.4. A simulation eval-
uation of the methods of §5.4 is given in §5.5. Application to the Women’s Health
Initiative’s postmenopausal hormone therapy trials (see §1.7.3) is briefly considered
in §5.6. As mentioned above, the further generalizations of these methods to an ar-
bitrary number of failure time variates, which may be grouped into a smaller set of
failure types, will be described in some detail in Chapter 6.

5.2 Nonparametric Estimation of the Trivariate Survivor Function

5.2.1 Dabrowska-type estimator development

Consider an independent random sample S j` = Tj` ∧C j` and δ j` = I[S j` = Tj`], for
j = 1,2,3 and ` = 1, . . . ,n, on failure time variates (T1,T2,T3) subject to indepen-
dent right censoring by variates (C1,C2,C3). The nonparametric likelihood for the
survivor function F , where F(t1, t2, t3) = P(T1 > t1,T2 > t2,T3 > t3), under the con-
vention that failures precede censorings in the event of tied times, can be written

L =
n

∏
`=1

[
{−F(dS1`,dS2`,dS3`)}δ1`δ2`δ3`F(dS1`,dS2`,S3`)

δ1`δ2`(1−δ3`)

F(dS1`,S2`,dS3`)
δ1`(1−δ2`)δ3`F(S1`,dS2`,dS3`)

(1−δ1`)δ2`δ3`

{−F(dS1`,S2`,S3`)}δ1`(1−δ2`)(1−δ3`){−F(S1`,dS2`,S3`)}(1−δ1`)δ2`(1−δ3`)

{−F(S1`,S2`,dS3`)}(1−δ1`)(1−δ2`)δ3`F(S1`,S2`,S3`)}(1−δ1`)(1−δ2`)(1−δ3`)

]
.

Denote by t11, . . . , t1I the ordered uncensored T1 values in the sample, by
t21, . . . , t2J the ordered uncensored T2 values, and by t31, . . . , t3K the ordered uncen-
sored T3 values, and set t10 = t20 = t30 = 0. F is identifiable on the risk region
R = {(t1, t2, t3);X1` ≥ t1,X2` ≥ t2 and X3` ≥ t3 for some ` ∈ (1, . . . ,n)}. L can be
maximized by placing positive probability within the risk region only at failure time
grid points (t1i, t2 j, t3k) ∈ R, leading to a discrete survivor function estimator. The
discrete special of a Dabrowska-type trivariate survivor function representation can
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be written, again using product integrals, as

F(t1, t2, t3) =
t1

∏
0

F(s1,0,0)
F(s−1 ,0,0)

t2

∏
0

F(0,s2,0)
F(0,s−2 ,0)

t3

∏
0

F(0,0,s3)

F(0,0,s−3 )
t1

∏
0

t2

∏
0

F(s1,s2,0)F(s−1 ,s
−
2 ,0)

F(s1,s−2 ,0)F(s−1 ,s2,0)

t1

∏
0

t3

∏
0

F(s1,0,s3)F(s−1 ,0,s
−
2 )

F(s1,0,s−3 )F(s−1 ,0,s3)

t2

∏
0

t3

∏
0

F(0,s2,s3)F(0,s−2 ,s
−
3 )

F(0,s2,s−3 )F(0,s−2 ,s3)

t1

∏
0

t2

∏
0

t3

∏
0

F(s1,s2,s3)F(s1,s−2 ,s
−
3 )F(s−1 ,s2,s−3 )F(s−1 ,s

−
2 ,s3)

F(s1,s2,s−3 )F(s1,s−2 ,s3)F(s−1 ,s2,s3)F(s−1 ,s
−
2 ,s
−
3 )

. (5.1)

The validity of (5.1) follows from massive cancellations in conjunction with
F(0,0,0) = 1. This expression decomposes F(t1, t2, t3) into the product of its
marginal survival probabilities through the single product integrals, multiplied by
its pairwise dependency components through the double product integrals, mul-
tiplied by a trivariate dependency component through the triple product integral.
For example, the first of the three pairwise dependency components simplifies to
F(t1, t2,0)/{F(t1,0,0)F(0, t2,0)}, and characterizes marginal dependence between
T1 and T2. The triple product integral simplifies to

F(t1, t2, t3)
F(t1,0,0)F(0, t2,0)F(0,0, t3)[

F(t1, t2,0)
F(t1,0,0)F(0, t2,0)

F(t1,0, t3)
F(t1,0,0)F(0,0, t3)

F(0, t2, t3)
F(0, t2,0)F(0,0, t3)

]−1

,

and can be viewed as comparing F(t1, t2, t3) to the product of marginal survival prob-
abilities after allowing for corresponding marginal pairwise dependencies. Expres-
sion (5.1) breaks these marginal probabilities and pairwise and trivariate dependency
ratios into product integrals for ease of estimation. Specifically, each of the survival
probabilities on the right side of (5.1) can be replaced by this probability divided
by the same probability but with each s-value replaced by s− (each s− value is un-
changed). The resulting conditional probabilities are readily estimated empirically to
give a nonparametric trivariate survivor function estimator F̂ . This nonparametric es-
timator can be calculated in a recursive fashion by first calculating the KM marginal
survivor function estimators, then calculating the pairwise marginal survivor func-
tion estimators recursively using (3.9) for each pair of the three failure time variates,
then calculating F̂ away from its coordinate axes, at each uncensored failure time
grid point (t1i, t2 j, t3k) ∈ R using the recursive expression

F̂(t1i, t2 j, t3k) =
F̂(t1i, t2 j, t−3k)F̂(t1i, t−2 j, t3k)F̂(t−1i , t2 j, t3k)F̂(t−1i , t

−
2 j, t
−
3k)

F̂(t1i, t−2 j, t
−
3k)F̂(t−1i , t2 j, t−3k)F̂(t−1i , t

−
2 j, t3k)

×{
F̃(t1i, t2 j, t3k)F̃(t1i, t−2 j, t

−
3k)F̃(t−1i , t2 j, t−3k)F̃(t−1i , t

−
2 j, t3k)

F̃(t1i, t2 j, t−3k)F̃(t1i, t−2 j, t3k)F̃(t−1i , t2 j, t3k)

}
(5.2)



102 TRIVARIATE FAILURE TIME

where

F̃(u1,u2,u3) =
#{`;Si` > si if ui = si or Si` ≥ si if ui = s−i , each i = 1,2,3}

#{`;Si` ≥ si, each i = 1,2,3}

for ui = si or s−i for i = 1,2,3. The final factor in (5.2) is undefined if one or more of
the denominator F̃ terms takes value zero, as can occur on the boundary of the risk
region. The specification of F̂ can be completed by setting the final factor equal to
zero in these circumstances.

Empirical process methods can be used to show the Dabrowska-type estimator F̂
to be strongly consistent for F , to show n1/2(F̂−F) to converge in distribution to a
mean zero Gaussian process, and to show the applicability of bootstrap procedures
over a follow-up region [0,τ1]× [0,τ2]× [0,τ3] where P(S1 > τ1,S2 > τ2,S3 > τ3)>
0. For si ≥ 0, and i = 1,2,3 one can express the factors in (5.1) in terms of hazard
rates. For example, in an obvious hazard rate notation

F(s1,s−2 ,s
−
3 )/F(s−1 ,s

−
2 ,s
−
3 ) = 1−Λ100(ds1,s−2 ,s

−
3 ),

F(s1,s2,s−3 )/F(s−1 ,s
−
2 ,s
−
3 ) =

1−Λ100(ds1,s−2 ,s
−
3 )−Λ010(s−1 ,ds2,s−3 )+Λ110(ds1,ds2,s−3 ), and

F(s1,s2,s3)/F(s−1 ,s
−
2 ,s
−
3 ) = 1−Λ100(ds1,s−2 ,s

−
3 )−Λ010(s−1 ,ds2,s−3 )

−Λ001(s−1 ,s
−
2 ,ds3)+Λ110(ds1,ds2,s−3 )+Λ101(ds1,s−2 ,ds3)

+Λ011(s−1 ,ds2,ds3)−Λ111(ds1,ds2,ds3). (5.3)

Substituting these expressions, along with corresponding expressions interchang-
ing the roles of s1,s2 and s3, gives an expression for the discrete F(t1, t2, t3) as a func-
tion of single, double and triple failure hazard rates at si ≤ ti, i = 1,2,3. Also from
the triple product integral in (5.1) one sees that there will be no trivariate dependency
among the three failure time variates at (s1,s2,s3) if F(s1,s2,s3)/F(s−1 ,s

−
2 ,s
−
3 ) =

F(s1,s2,s−3 )F(s1,s−2 ,s3)F(s−1 ,s2,s3)/{F(s1,s−2 ,s
−
3 )F(s−1 ,s2,s−3 )F(s−1 ,s

−
2 ,s3)}. Set-

ting the left side of (5.3) equal to this quantity uniquely defines a triple failure hazard
rate

Λ
0
111(ds1,ds2,ds3) =1−Λ100(ds1,s−2 ,s

−
3 )−Λ010(s−1 ,ds2,s−3 )−Λ001(s−1 ,s

−
2 ,ds3)

+Λ110(ds1,ds2,s−3 )+Λ101(ds1,s−2 ,ds3)+Λ011(s−1 ds2,ds3)

−
F(s1,s2,s−3 )F(s1,s−2 ,s3)F(s−1 ,s2,s3)

F(s1,s−2 ,s
−
3 )F(s−1 ,s2,s−3 )F(s−1 ,s

−
2 ,s3)

(5.4)

for which the trivariate dependency factor in (5.1) takes value one at (s1,s2,s3). The
survival probability (5.1) can be re-expressed in terms of product integrals of stan-
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dardized form as

F(t1, t2, t3) =
t1

∏
0
{1−Λ100(ds1,0,0)}

t2

∏
0
{1−Λ010(0,ds2,0)}

t3

∏
0
{1−Λ001(0,0,ds3)}

t1

∏
0

t2

∏
0
{1+L110(ds1,ds2,0)}

t1

∏
0

t3

∏
0
{1+L101(ds1,0,ds3)}

t2

∏
0

t3

∏
0
{1+L011(0,ds2,ds3)}

t1

∏
0

t2

∏
0

t3

∏
0
{1−L111(ds1,ds2,ds3)} (5.5)

where, for example,

L110(ds1,ds2,s−3 ) =
Λ110(ds1,ds2,s−3 )−Λ100(ds1,s−2 ,s

−
3 )Λ010(s−1 ,ds2,s−3 )

{1−Λ100(∆s1,s−2 ,s
−
3 )}{1−Λ010(s−1 ,∆s2,s−3 )}

,

and where

L111(ds1,ds2,ds3) =

{Λ111(ds1,ds2,ds3)−Λ0
111(ds1,ds2,ds3)}

{1−Λ100(∆s1,s−2 ,s
−
3 )}{1−Λ010(s−1 ,∆s2,s−3 )}{1−Λ001(s−1 ,s

−
2 ,∆s3)}

× [{1+L110(∆s1,∆s2,s−3 )}{1+L101(∆s1,s−2 ,∆s3)}{1+L011(s−1 ,∆s2,∆s3)}]−1.
(5.6)

In fact, this decomposition of F in terms of single, double and triple failure hazard
rates applies also to absolutely continuous or mixed failure time variates and (5.5)
provides a representation for the trivariate survivor function. Now define counting
processes N100,N010,N001,N110,N101,N011, and N111, and “at-risk” process Y , for ex-
ample, by

N100(t1, t2, t3) = n−1#{`;S1` ≤ t1,S2` > t2,S3` > t3,δ1` = 1},
N110(t1, t2, t3) = n−1#{`;S1` ≤ t1,S2` ≤ t2,S3` > t3,δ1k = 1,δ2k = 1},
N111(t1, t2, t3) = n−1#{`;S1` ≤ t1,S2` ≤ t2,S3` ≤ t3,δ1` = 1,δ2` = 1,δ3` = 1} and

Y (t1, t2, t3) = n−1#{`;S1` ≥ t1,S2` ≥ t2,S3` ≥ t3}.

The Glivenko–Cantelli and Donsker theorems (see Appendix A) apply
to (N100,N010,N001,N110,N101,N011,N111,Y ) over [0,τ1]× [0,τ2]× [0,τ3] to show
these processes to be supremum norm consistent for, and weakly conver-
gent to their targets as n → ∞. The corresponding hazard process estimators
(Λ̂100, Λ̂010, Λ̂001, Λ̂110, Λ̂101, Λ̂011, Λ̂111) defined, for example, by

Λ̂100(t1, t2, t3) =
∫ t1

0
Y (s1, t2, t3)−1N100(ds1, t2, t3)

Λ̂110(t1, t2, t3) =
∫ t1

0

∫ t2

0
Y (s1,s2, t3)−1N110(ds1,ds2, t3), and

Λ̂111(t1, t2, t3) =
∫ t1

0

∫ t2

0

∫ t3

0
Y (s1,s2,s3)

−1N111(ds1,ds2,ds3),
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with the usual convention that 0/0 = 0, are then strongly consistent for, and weakly
convergent to, their single, double and triple hazard function targets as n→∞, based
on the continuity and (weakly continuous) compact differentiability of the hazard
process transformations. These properties also apply to the further transformed em-
pirical processes (Λ̂100, Λ̂010, Λ̂001, L̂110, L̂101, L̂011, L̂111), where each L process arises
by replacing hazard rates in (5.5) by corresponding empirical hazard rates, on the ba-
sis of the continuity and compact differentiability of the transformations to these L
processes. Finally, the continuity and compact differentiability of the product integral
transformations from (Λ̂100, Λ̂010, Λ̂001, L̂110, L̂101, L̂011, L̂111) to F̂ via (5.5) shows

sup
(t1,t2,t3)∈[0,τ1]×[0,τ2]×[0,τ3]

|F̂(t1, t2, t3)−F(t1, t2, t3)|
P→ 0

and shows n1/2(F̂−F) to converge in distribution to a mean zero Gaussian process
over [0,τ1]× [0,τ2]× [0,τ3]. The Donsker theorem and (weakly continuous) compact
differentiability of each of the sequence of transformations listed above also leads
to justification for bootstrap procedures as applied to F̂ , for example, for confidence
interval or confidence band estimation.

Note that (5.5) simplifies considerably for absolutely continuous (T1,T2,T3).
Specifically Λ0

111 is then given by

Λ
0
111(ds1,ds2,ds3) = Λ100(ds1,s−2 ,s

−
3 )Λ010(s−1 ,ds2,s−3 )Λ001(s−1 ,s

−
2 ,ds3)

+Ω110(ds1,ds2,s−3 )Λ001(s−1 ,s
−
2 ,ds3)

+Ω101(ds1,s−2 ,ds3)Λ010(s−1 ,ds2,s−3 )+Ω011(s−1 ,ds2,ds3)Λ100(ds1,s−2 ,s
−
3 )

where, for example, Ω110 simplifies to

Ω110(ds1,ds2,s−3 ) = Λ110(ds1,ds2,s−3 )−Λ100(ds1,s−2 ,s
−
3 )Λ010(s−1 ,ds2,s−3 ),

and each product integral in (5.5) can be written in exponential form giving expres-
sion (1.8).

5.2.2 Volterra estimator

The Prentice–Cai and Volterra plug-in estimators considered in Chapter 3 also can
be extended to define nonparametric estimators of the trivariate survivor function.
For the latter, one can write, for any t1 ≥ 0, t2 ≥ 0 and t3 ≥ 0,

F(t1, t2, t3) = Ψ(t1, t2, t3)−
∫ t1

0

∫ t2

0

∫ t3

0
F(s−1 ,s

−
2 ,s
−
3 )Λ111(ds1,ds2,ds3),

where

Ψ(t1, t2, t3) =1−F(t1,0,0)−F(0, t2,0)−F(0,0, t3)
+F(t1, t2,0)+F(t1,0, t3)+F(0, t2, t3),



TRIVARIATE SURVIVOR FUNCTION ESTIMATION 105

which is an inhomogeneous Volterra integral equation in F having a unique solution
in a Péano series form. This shows that F is uniquely specified by its lower dimen-
sional marginal survivor functions and the triple failure hazard rates away from the
coordinate planes. The continuity and compact differentiability of the Péano series
transformation, in conjunction with asymptotic properties for marginal and pairwise
marginal survivor function estimators can be used to show the Volterra-type estimator
F̂ arising from KM estimators, Volterra–type pairwise marginal survivor functions,
and empirical triple failure hazard rates to be strongly consistent for F , and to show
n1/2(F̂−F) to be weakly convergent to a mean zero Gaussian process, and to show
applicability of bootstrap procedures for variance estimation and other purposes.

The trivariate step function Volterra estimator F̂ at grid point (t1i, t2 j, t3k) can
be calculated recursively, after calculating marginal and pairwise marginal survivor
function estimators using

F̂(t1i, t2 j, t3k) =F̂(t1i, t2 j, t−3k)+ F̂(t1i, t−2 j, t3k)+ F̂(t−1i , t2 j, t3k)

− F̂(t1i, t−2 j, t
−
3k)− F̂(t−1i , t2 j, t−3k)− F̂(t−1i , t

−
2 j, t3k)

+ F̂(t−1i , t
−
2 j, t
−
3k){1− Λ̂111(∆t1i,∆t2 j,∆t3k)} (5.7)

where the empirical estimator Λ̂111 is given by

Λ̂111(∆t1i,∆t2 j,∆t3k) = d111
i jk /ri jk,

the ratio of the number of triple failures to the size of the risk set, for any
(t1i, t2 j, t3k) ∈ R.

5.2.3 Trivariate dependency assessment

In an analogous fashion to (3.7) for bivariate dependency assessment, one can
define a local trivariate dependency measure at (t1, t2, t3) by α111(t1, t2, t3) =
Λ111(dt1,dt2,dt3)/Λ0

111(dt1,dt2,dt3), which compares the trivariate hazard rate at
(t1, t2, t3) to that under no trivariate dependence, on a relative scale. An average
trivariate dependency ratio C111(τ1,τ2,τ3) over a region [0,τ1]× [0,τ2]× [0,τ3] where
(τ1,τ2,τ3) is in the support of the observed times (S1,S2,S3) can be defined by

C111(τ1,τ2,τ3)
−1=

∫ τ1
0
∫ τ2

0
∫ τ3

0 {Λ0
111(dt1,dt2,dt3)/Λ111(dt1,dt2,dt3)}F(dt1,dt2,dt3)∫ τ1

0
∫ τ2

0
∫ τ3

0 F(dt1,dt2,dt3)
.

This measure can be estimated nonparametrically by

Ĉ111(τ1,τ2,τ3) =
∫

τ1

0

∫
τ2

0

∫
τ3

0
F̂(t−1 , t−2 , t−3 )Λ̂111(∆t1,∆t2,∆t3)

/
∫

τ1

0

∫
τ2

0

∫
τ3

0
F̂(t−1 , t−2 , t−3 )Λ̂0

111(∆t1,∆t2,∆t3),

where Λ̂0
111 is obtained by everywhere inserting F̂ for F in (5.4), and where F̂ can be

any of the nonparametric survivor function estimators mentioned above.
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Note that Ĉ111 as a process over [0,τ1]× [0,τ2]× [0,τ3] inherits strong consis-
tency, weak convergences and bootstrap applicability properties as an estimator of
C111 from these same properties for F̂ .

5.2.4 Simulation evaluation and comparison

As with the bivariate survivor function estimators from (3.6) or (3.9), the trivariate
survivor function estimator arising from (5.2) or (5.7) can incorporate negative mass.
Nevertheless these estimators can be expected to have good moderate sample size
properties, and to be a suitable choice for many applications. To evaluate the mod-
erate sample size properties of F̂ from (5.2) and (5.7) failure times were generated
from the specialized survivor function model

F(t1, t2, t3) = {F(t1,0,0)−θ +F(0, t2,0)−θ +F(0,0, t3)−θ −2}−1/θ ∨0, (5.8)

which has bivariate and trivariate dependency controlled by the single parameter θ .
Straightforward calculations from (5.8) show, at any continuity point (s1,s2,s3), that

Λ110(ds1,ds2,s3) = (1+θ)Λ100(ds1,s2,s3)Λ010(s1,ds2,s3)

so that the cross ratio function for (T1,T2) at T3 = s3 equals (1+θ), independently
of (s1,s2,s3). The corresponding pairwise covariance rates are simply

Ω110(ds1,ds2,s3) = θΛ100(ds1,s2,s3)Λ010(s1,ds2,s3), (5.9)

with corresponding expressions for Ω101 and Ω001. One can also calculate

Λ111(ds1,ds2,ds3)= (1+θ)(1+2θ)Λ100(ds1,s2,s3)Λ010(s1,ds2,s3)Λ001(s1,s2,ds3)

from which the trivariate dependency function Ω111 (see §1.4) is given by

Ω111(ds1,ds2,ds3) = 2θ
2
Λ100(ds1,s2,s3)Λ010(s1,ds2,s3)Λ001(s1,s2,ds3). (5.10)

Failure times (t1, t2, t3) under (5.8) with θ ≥ −1/3 are everywhere absolutely
continuous and can be generated from independent uniform (0,1) variates (u1,u2,u3)
by probability integral transformations of the marginal density for T1, the conditional
density for T2 given T1 = t1, and the conditional density for T3 given (T1,T2)= (t1, t2).
Without loss of generality the marginal survivor functions can each be taken to be
unit exponential leading to

t1 =− logu1,

t2 = θ
−1 log{1−u−θ

1 (1−u−θ(1+θ)−1

2 )} if θ 6= 0 and t2 =− logu2 if θ = 0, and

t3 = θ
−1 log{1−u−θ

1 u−θ(1+θ)−1

2 (1−u−θ(1+2θ)−1

3 )} if θ 6=0 and t3=−logu3 if θ =0.

Failure times were generated for sample sizes of n = 30,60 and 120 at θ values
of 0 (independence), 2 (moderate positive dependence), and 5 (strong positive depen-
dence). Censoring times c1,c2 and c3 were generated from independent exponential
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distributions each with expectation of 0 · 5, so that there is a 2/3rds probability of
censoring for each observed si = ti∧ ci value, for i = 1,2,3.

Table 5.1 presents simulation summary statistics for the Dabrowska and Volterra
estimators at selected values of the marginal survival probabilities F(t1,0,0),
F(0, t2,0) and F(0,0, t3), at n = 60 and for θ = 0 and θ = 2. Note that the expected
number of triply uncensored failures in the sample is only 60(1/3)3 = 2 ·22 at θ = 0.
Nevertheless the nonparametric trivariate survivor function estimators both appear to
be fairly accurate under these simulation conditions.

Table 5.2 shows simulation summary statistics for these estimators at n = 180
with censoring times having independent unit exponential distributions each with
expectation 2.0, so that there is a 1/3rd probability of censoring for each observed si
value, i = 1,2,3 at θ = 2. Some overestimation of targeted dependency function val-
ues is evident under these sampling configurations. See Prentice and Zhao (2018) for
additional simulations for F̂ , Ĉ110 and Ĉ111 under a trivariate normal transformation
model. These simulations show similar estimation properties to those under (5.8).

Table 5.2 Simulation summary statistics∗ for the average pairwise marginal cross ratio es-
timator Ĉ110 and for the average trivariate dependency estimator Ĉ111 under the survivor
function (5.8) with θ = 2 and n = 180, with each failure time having a one-third probability
of censoring, using either the Dabrowska or Volterra nonparametric survivor function estima-
tors.

t1 t2 C110 Ĉ110 (SD)-Dabrowska Ĉ110 (SD)-Volterra
0.163 0.163 3 3.142 (1.366) 3.148 (1.398)
0.163 0.357 3 3.102 (1.121) 3.123 (1.230)
0.163 0.598 3 3.138 (1.308) 3.277 (1.435)
0.357 0.357 3 3.087 (0.917) 3.115 (1.068)
0.357 0.598 3 3.101 (0.946) 3.172 (1.302)
0.598 0.598 3 3.120 (0.910) 3.226 (1.448)

t1 t2 t3 C111 Ĉ111 (SD)-Dabrowska Ĉ111 (SD)-Volterra
0.163 0.163 0.163 2.143 2.341 (1.343) 2.334 (1.377)
0.163 0.163 0.357 2.143 2.276 (1.095) 2.286 (1.207)
0.163 0.163 0.598 2.143 2.351 (1.180) 2.446 (1.592)
0.163 0.357 0.357 2.143 2.291 (0.929) 2.306 (1.072)
0.163 0.357 0.598 2.143 2.338 (1.051) 2.671 (8.865)
0.163 0.598 0.598 2.143 2.397 (1.341) 2.525 (3.529)
0.357 0.357 0.357 2.143 2.280 (1.744) 2.278 (0.864)
0.357 0.357 0.598 2.143 2.338 (1.016) 2.353 (1.066)
0.357 0.598 0.598 2.143 2.373 (1.964) 2.393 (1.324)
0.598 0.598 0.598 2.143 2.510 (2.354) 2.470 (1.818)
∗Tabular entries are sample mean (sample standard deviation) based on all simula-
tions out of 1000 for which the point (t1, t2,0) for C110, or the point (t1, t2, t3) for
C111 is in the risk period for the data. Note that 0.163, 0.357 and 0.598 are the values
giving marginal survival probabilities of 0.85, 0.70 and 0.55 respectively, for each of
T1,T2 and T3.
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5.3 Trivariate Regression Analysis via Copulas

The copula approach of §4.3 extends readily to three failure time variates. Let
z(t1, t2, t3) = {z1(t1, t2, t3),z2(t1, t2, t3), . . .} denote covariate values at follow-up
times ti ≥ 0, i = 1,2,3 for failure time variates T1,T2,T3, and let Z(t1, t2, t3) =
{z(s1,s2,s3);s j = 0 if t j = 0 and s j < t j if t j > 0 for each j = 1,2,3} denote the
corresponding history prior to (t1, t2, t3) for covariates that are time-independent or
external to the failure time process. A copula approach proceeds by defining marginal
hazard rate models Λ100,Λ010 and Λ001, and standardized variates

V1 =
∫ T1

0
Λ100{dt1,0,0;Z(t1,0,0)},V2 =

∫ T2

0
Λ010{0,dt2,0;Z(0, t2,0)},

V3 =
∫ T3

0
Λ001{0,0,dt3;Z(0,0, t3)},

which are assumed to have a joint survivor function F0 given z = z(0,0,0),
that is specified up to a parameter vector θ . For example, one could specify a
trivariate Clayton–Oakes model (1.9) with parameter θ111(z), in conjunction with
bivariate Clayton–Oakes models with parameters θ110(z),θ101(z) and θ011(z) for
F0(t1, t2,0),F0(t1,0, t3) and F0(0, t2, t3) respectively. Alternatively one could consider
a trivariate standardized normal distributions with pairwise correlation parameters
θ110(z),θ101(z) and θ011(z) respectively for Φ−1(1− e−Vi), i = 1,2,3 for F0.

Application of a copula model to absolutely continuous censored failure time
regression data can proceed through maximization of the likelihood function for F
given Z; namely,

L =
n

∏
k=1

(
[−F{dS1k,dS2k,dS3k;Zk(S1k,S2k,S3k)}]δ1kδ2kδ3k

F{dS1k,dS2k,S3k;Zk(S1k,S2k,S3k)}δ1kδ2k(1−δ3k)

F{dS1k,S2k,dS3k;Zk(S1k,S2k,S3k)}δ1k(1−δ2k)δ3k

F{S1k,dS2k,dS3k;Zk(S1k,S2k,S3k)}(1−δ1k)δ2kδ3k

[−F{dS1k,S2k,S3k;Zk(S1k,S2k,S3k)}]δ1k(1−δ2k)(1−δ3k)

[−F{S1k,dS2k,S3k;Zk(S1k,S2k,S3k)}](1−δ1k)δ2k(1−δ3k)

[−F{S1k,S2k,dS3k;Zk(S1k,S2k,S3k)}](1−δ1k)(1−δ2k)δ3k

[F{S1k,S2k,S3k;Zk(S1k,S2k,S3k)}](1−δ1k)(1−δ2k)(1−δ3k)

)
. (5.11)

The elements of (5.11) are given, for example, by

F{t1, t2, t3;Z(t1, t2, t3)}= F0{v1,v2,v3;θ(z)}
F{dt1, t2, t3;Z(t1, t2, t3)}= F0{dv1,v2,v3;θ(z)}dt1/dv1,

F{dt1,dt2, t3;Z(t1, t2, t3)}= F0{dv1,dv2,v3;θ(z)}(dt1/dv1)(dt2/dv2), and
F{dt1,dt2,dt3;Z(t1, t2, t3)}= F0{dv1,dv2,dv3;θ(z)}(dt1/dv1)(dt2/dv2)(dt3/dv3),
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where

v1 =
∫ t1

0
Λ100{ds1;0,Z(s1,0,0)}, and dt1/dv1 = Λ100{dt1,0,0;Z(t1,0,0)}−1

along with corresponding expressions for v2,dt2/dv2,v3 and dt3/dv3.
As with copula models for bivariate failure time data (§4.3) the derivatives of

logL with respect to parameters in the marginal hazard rates may be sensitive to the
choice of copula function F0. In addition, with a parameter θ of low dimension a
particular copula model may embrace only a limited class of two- and three-variable
dependency models for the failure time variates. Also these dependencies can depend
on baseline covariate values z(0,0,0), but not on stochastic covariates that evolve
over the study follow-up period. Nevertheless, if carefully applied, the copula ap-
proach can be expected to provide useful inferences on marginal hazard rates and on
the dependency parameter θ . Furthermore, standard asymptotic likelihood procedure
can be applied if marginal hazard rates are specified parametrically. To avoid biases
in marginal hazard rate estimation on the basis of inappropriate modeling of bivari-
ate and trivariate dependencies one can combine estimating equations of the types
discussed in Chapter 2 for marginal hazard rates, with likelihood-based equations
as described above, at specified values for marginal hazard rate parameters, for θ .
This type of approach is described by Glidden (2000) under the specialized Clayton–
Oakes model where θ110(z) = θ101(z) = θ011(z) = θ111(z) = θ . This approach can
undoubtedly be generalized to the larger class of models (1.9), and may yield quite
useful inferences when (1.9) provides an adequate data description. Such generaliza-
tion, however, has yet to appear in the literature.

5.4 Regression on Marginal Single, Double and Triple Failure Hazard Rates

The semiparametric marginal single failure hazard rate and double failure hazard
rate regression methods of §4.6 can be extended to yield a flexible class of regression
models for the analysis of trivariate failure time data even if the regression variable
includes internal time-varying components. Consider Cox models for the marginal
single failure hazard functions Λ100,Λ010 and Λ001 given Z, so that

Λ100{dt1,0,0;Z(t1,0,0)}= Λ100(dt1,0,0)exp{x(t1,0,0)β100},
Λ010{0,dt2,0;Z(0, t2,0)}= Λ010(0,dt2,0)exp{x(0, t2,0)β010},
Λ001{0,0,dt3;Z(0,0, t3)}= Λ001(0,0,dt3)exp{x(0,0, t3)β001}. (5.12)

Analogous to (4.10) one can also specify multiplicative form regression models
for each of the marginal double failure hazard rates given Z, so that, in an obvious
notation,

Λ110{dt1,dt2,0;Z(t1, t2,0)}= Λ110(dt1,dt2,0)exp{x(t1, t2,0)β110},
Λ101{dt1,0,dt3;Z(t1,0, t3)}= Λ101(dt1,0,dt3)exp{x(t1,0, t3)β101},
Λ011{0,dt2,dt3;Z(0, t2, t3)}= Λ011(0,dt2,dt3)exp{x(0, t2, t3)β011}, (5.13)
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with unspecified “baseline” double failure hazard rates, and data-analyst-defined
fixed-length regression variables.

Similarly, one can specify a Cox-type model for the marginal triple failure hazard
rates away from the coordinate planes so that

Λ111{dt1,dt2,dt3;Z(t1, t2, t3)}= Λ111(dt1,dt2,dt3)exp{x(t1, t2, t3)β111} (5.14)

with fixed-length row regression variable x(t1, t2, t3) and corresponding column vec-
tor parameter β111.

The single failure hazard rate parameters can each be estimated as in Chapter
2 using only the marginal data for each of the three failure times. The double fail-
ure hazard rate parameters can be estimated as in Chapter 4 using only the marginal
bivariate data for each failure time pair. Similarly the triple failure hazard rate regres-
sion parameter can be estimated by β̂111 solving

I

∑
i=1

J

∑
j=1

K

∑
k=1

{
∑

`∈D(∆t1i,∆t2 j ,∆t3k)

x`(t1i, t2 j, t3k)−

d111
i jk

∑`∈R(t1i,t2 j ,t3k)
x`(t1i, t2 j, t3k)ex`(t1i,t2 j ,t3k)β111

∑`∈R(t1i,t2 j ,t3k)
ex`(t1i,t2 j ,t3k)β111

}
= 0, (5.15)

where D(∆t1i,∆t2 j,∆t3k) denotes the set of individuals experiencing a triple failure at
failure time grid point (t1i, t2 j, t3k) with d111

i jk = #D(∆t1i,∆t2 j,∆t3k) and R(t1i, t2 j, t3k)
is the set of individuals at risk for a triple failure at this grid point. The baseline
(cumulative) triple failure hazard rate function can be estimated by the step function
Λ̂111 where

Λ̂111(t1, t2, t3) = ∑
t1i≤t1

∑
t2 j≤t2

∑
t3k≤t3

d111
i jk

/
∑

`∈R(t1i,t2 j ,t3k)

ex`(t1i,t2 j ,t3k)β̂111

for all (t1, t2, t3) ∈ R.
Corresponding to the marginal single, double, and triple failure hazard rate pro-

cesses, one can define a process F given Z that, away from the coordinate planes,
uniquely solves the inhomogeneous Volterra integral equation

F{t1, t2, t3;Z(t1, t2, t3)}= Ψ{t1, t2, t3;Z(t1, t2, t3)}

−
∫ t1

0

∫ t2

0

∫ 3

0
F{s−1 ,s

−
2 ,s
−
3 ;Z(s1,s2,s3)}Λ111{ds1,ds2,ds3;Z(s1,s2,s3)},

at any covariate history Z with Ψ defined as in §5.2.2 at any specific Z. The process
will have a survivor function interpretation for covariates that are fixed or are external
to the failure time variates (T1,T2,T3).

At any covariate history Z one can calculate a semiparametric estimator F̂ given
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Z recursively, under (5.12)–(5.14), using

F̂{t1i, t2 j, t3k;Z(t1i, t2 j, t3k)}= F̂{t1i, t2 j, t−3k;Z(t1i, t2 j, t3k)}
+ F̂{t1i, t−2 j, t3k;Z(t1i, t2 j, t3k)}+ F̂{t−1i , t2 j, t3k;Z(t1i, t2 j, t3k)}

− F̂{t1i, t−2 j, t
−
3k;Z(t1i, t2 j, t3k)}− F̂{t−1i , t2 j, t−3k;Z(t1i, t2 j, t3k)}

− F̂{t−1i , t
−
2 j, t3k;Z(t1i, t2 j, t3k)}+ F̂{t−1i , t

−
2 j, t
−
3k;Z(t1i, t2 j, t3k)}

[1− Λ̂111{t1i, t2 j, t3k;Z(t1i, t2 j, t3k)}], (5.16)

where Λ̂111{t1i, t2 j, t3k;Z(t1i, t2 j, t3k)}= Λ̂111(t1i, t2 j, t3k)exp{x(t1i, t2 j, t3k)β̂111}.
To apply (5.16), one first estimates F̂ given Z along the three failure time axes,

then estimates F̂ given Z for each of the coordinate planes, then uses (5.16) to esti-
mate F̂ given Z away from the coordinate planes throughout the risk region of the
data.

After estimating F̂ given Z with fixed or external covariates, one can readily
calculate estimators of bivariate dependency or trivariate dependency given Z. For
example an average trivariate dependency function C111 given Z can be defined over
a region [0,τ1× [0,τ2]× [0,τ3], with (τ1,τ2,τ3) in the support of (S1,S2,S3), by

C111{τ1,τ2,τ3;Z(τ1,τ2,τ3)}=∫ τ1
0
∫ τ2

0
∫ τ3

0 F{t−1 , t−2 , t−3 ;Z(t1, t2, t3)}Λ111{dt1,dt2,dt3;Z(t1, t2, t3)}∫ τ1
0
∫ τ2

0
∫ τ3

0 F{t−1 , t−2 , t−3 ;Z(t1, t2, t3)}Λ0
111{dt1,dt2,dt3;Z(t1, t2, t3)}

(5.17)

where the “no trivariate dependency” hazard rate process Λ0
111 given Z is specified

recursively by

Λ
0
111{dt1,dt2,dt3;Z(t1, t2, t3)}= 1−Λ100{dt1, t−2 , t−3 ;Z(t1, t2, t3)}
−Λ010{t−1 ,dt2, t−3 ;Z(t1, t2, t3)}−Λ001{t−1 , t−2 ,dt3;Z(t1, t2, t3)}
+Λ110{dt1,dt2, t−3 ;Z(t1, t2, t3)}+Λ101{dt1, t−2 ,dt3;Z(t1, t2, t3)}
+Λ011{t−1 ,dt2,dt3;Z(t1, t2, t3)}

−
F{t1, t2, t−3 ;Z(t1, t2, t3)}F{t1, t−2 , t3;Z(t1, t2, t3)}F{t−1 , t2, t3;Z(t1, t2, t3)}

F{t1, t−2 , t−3 ;Z(t1, t2, t3)}F{t−1 , t2, t−3 ;Z(t1, t2, t3)}F{t−1 , t−2 , t3;Z(t1, t2, t3)}
.

(5.18)

Hence trivariate dependencies given Z over [0,τ1]× [0,τ2]× [0,τ3] for (τ1,τ2,τ3) in
the risk region of the data can be estimated semiparametrically by Ĉ111{τ1,τ2,τ3;
Z(τ1,τ2,τ3)} obtained by everywhere inserting F̂ for F in (5.17).

Asymptotic distribution theory for marginal single, double and triple failure haz-
ard rate parameter estimates under an independent and identically distributed as-
sumption for failure, censoring and covariate processes, and under (5.12)–(5.14), can
undoubtedly be obtained using empirical process methods, as is also the case for the
related estimators F̂ given Z and Ĉ111 given Z. These results will include the usual
strong consistency and asymptotic mean zero Gaussian weak convergence for all pa-
rameters, as well as a sandwich-type analytic variance estimator for the combined
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single, double and triple failure hazard ratio regression parameters. Proofs for some
of these results will be sketched in a more general context in Chapter 6.

Analogous to Chapter 4 the single, double and triple failure hazard rate models
(5.12)–(5.14) need not be mutually consistent in their regression dependencies. Bi-
ases in parameter estimates and in related survival process estimates may occur under
departures from the specified models, as usual in statistical estimation. However, any
such biases can be minimized by exercising the time-dependent covariate features,
and corresponding time-dependent baseline hazard rate stratification features, of the
hazard ratio regression models.

5.5 Simulation Evaluation of Hazard Ratio Estimators

The trivariate failure time model (5.8) was generalized to

F(t1, t2, t3;z) = {F0(t1,0,0)−θ +F0(0, t2,0)−θ +F0(0,0, t3)−θ −2}−ezγ/θ ∨0 (5.19)

to include a baseline regression variable z = z(0,0,0); where F0 denotes the trivariate
survivor function at z = 0. The marginal single failure hazard rates from (5.19) have
the form Λ100(dt1,0,0;z) = Λ100(dt1,0,0)ezγ ,Λ010(0,dt2,0;z) = Λ010(0,dt2,0)ezγ ,
and Λ001(0,0,dt3;z) = Λ001(0,0,dt3)ezγ . The marginal double failure hazard rates
have the form

Λ110(dt1,dt2,0;z) = Λ110(dt1,dt2,0)ezγ(ezγ +θ)/(1+θ),

Λ101(dt1,0,dt3;z) = Λ101(dt1,0,dt3)ezγ(ezγ +θ)/(1+θ), and
Λ011(0,dt2,dt3;z) = Λ011(0,dt2,dt3)ezγ(ezγ +θ)/(1+θ),

and the triple failure hazard rates have the form

Λ111(dt1,dt2,dt3;z) = Λ111(dt1,dt2,dt3)
ezγ(ezγ +θ)(ezγ +2θ)

(1+θ)(1+2θ)
.

For a one-dimensional binary covariate z these hazard rates conform to the mul-
tiplicative model forms of §5.4 with regression variables x(t1,0,0) = x(0, t2,0) =
x(0,0, t3) = x(t1, t2,0) = x(t1,0, t3) = x(0, t2, t3) = x(t1, t2, t3) = z and with regression
parameters β100 = β010 = β001 = γ , β110 = β101 = β011 = log{eγ(eγ + θ)/(1+ θ)}
and β111 = log[eγ(eγ + θ)(eγ + 2θ)/{(1 + θ)(1 + 2θ)}]. Failure times under this
model can be generated as in 5.2.4 at z = 0, as is also the case for failure times di-
vided by eγ at z = 1. Table 5.3 shows simulation summary statistics for estimation of
β111 with data generated under this model with z taking values 0 or 1 with probability
0.5 and with unit exponential marginal failure times at z = 0, at some choices for n,
θ and γ with censoring times independent exponential variates with expectation 2.0.
There is little evidence of bias in regression parameter estimates under these sam-
pling configurations and approximate 95% confidence intervals appear to be quite
accurate.
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5.6 Postmenopausal Hormone Therapy in Relation to CVD and Mortality

Consider again the Women’s Health Initiative postmenopausal hormone therapy ran-
domized trial described in §1.7.3. Early adverse effects were observed in the com-
bined estrogen plus progestin (CEE + MPA) trial for each of CHD, stroke and ve-
nous thromboembolism (VT), with similar but smaller hazard ratio elevations for
the estrogen-alone (CEE) trial. For CHD and VT the risk elevations were relatively
larger earlier compared to later post-randomization, while estimated hazard ratios for
stroke showed little time dependence and were of similar magnitude (about 1.4) for
both CEE and CEE + MPA.

There were too few women experiencing each of CHD, stroke and VT during trial
follow-up to support a triple failure hazard ratio comparison of active and placebo
groups during the intervention period in either trial. This was also the situation for
the marginal double failure hazard ratio analyses involving VT. For CHD and stroke
the numbers of double failures in the CEE trial were 14 in the active group compared
to 17 in the placebo group, giving a double failure hazard ratio estimate of 0.92 with
approximate 95% confidence interval of (0.44, 1.89). The corresponding numbers
were 15 and 5 in the CEE + MPA group with double failure hazard ratio estimate
of 2.87 and 95% confidence interval of (1.05, 7.89). Hence there is some indication
of elevated double failure risk with CEE + MPA, which is not at all suggested for
CEE. However, the numbers of double failures is quite small and a cautious interpre-
tation is needed. Related to this, special efforts would be needed to justify the use of
asymptotic approximations in this context, primarily because of the small numbers
of double failures. Marginal single outcome hazard ratio analyses for these and other
outcomes were shown in Figure 2.2.

There are, of course, many other outcomes of interest in these large clinical trials,
including the incidence of gallbladder disease, diabetes and hypertension, for which
there was evidence for departure from the null in marginal single outcome hazard
ratio analyses. We defer consideration of this larger set of outcomes to Chapter 6,
which focuses on hazard ratio regression methods for higher dimensional failure time
data.

BIBLIOGRAPHIC NOTES

There is only a limited literature on the modeling and analysis of trivariate failure
time data. The trivariate Dabrowska estimator discussed in §5.2 was considered re-
cently by the present authors (Prentice & Zhao, 2018). The trivariate copula model
(1.9) was introduced in Prentice (2016). The more specialized Clayton–Oakes cop-
ula model (5.8) has been considered by several authors. For example, Glidden (2000)
considers a model that extends (5.8) to an arbitrary number of failure times with
Cox model marginal hazard rates, and consider a two-stage model for estimation of
the dependence parameter θ . Glidden and Self (1999) and Pipper and Martinussen
(2003) consider this same model with joint estimation of marginal hazard rate and
cross ratio parameters. The regression analysis of trivariate failure time data via the
semiparametric models (5.12)–(5.14) was proposed recently by the present authors
(Prentice & Zhao, 2019).
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EXERCISES AND COMPLEMENTS

Exercise 5.1

Show that the right side of (5.1) reduces to F(t1, t2, t3), for any (t1, t2, t3) value with
discrete failure time variates (T1,T2,T3).

Exercise 5.2

Develop the recursive relationship (5.2) at a general uncensored failure time grid
point (t1i, t2 j, t3k) away from the coordinate planes (where one or more of t1i, t2 j, and
t3k take value zero).

Exercise 5.3

Develop the hazard rate–based expression (5.5) using (5.3). Provide an argument as
to why (5.5) holds even if the failure time variates may include both continuous and
discrete components.

Exercise 5.4

Show that (5.5) reduces to (1.8) for absolutely continuous failure times (T1,T2,T3).

Exercise 5.5

Using empirical process convergence results, particularly the Glivenko–Cantelli and
Donsker theorems, show the Volterra estimator F̂ described in §5.2.2 to converge
to a Gaussian process over a region [0,τ1]× [0,τ2]× [0,τ3] where P(S1 > τ1,S2 >
τ2,S3 > τ3)> 0 under IID conditions.

Exercise 5.6

Derive expressions (5.9) and (5.10) from (5.8). Show that failure times under (5.8),
for θ ≥ 1/3 can be generated from independent uniform (0,1) variables (u1,u2,u3)
via the transformation given in §5.2.4. Can you generalize this result to the genera-
tion of failure times (t1, . . . , tm) from independent uniform (0,1) variates (u1, . . . ,um)
under the model F(t1, . . . , tm) = {F(t1,0 . . . ,0)−θ + . . .+ F(0, . . . ,0, tm)−θ − (m−
1)}−1/θ ∨0 for an arbitrary number, m, of failure time variates?

Exercise 5.7

Discuss, based on the application in §5.6, whether or not the copula model (1.9), with
each marginal survival probability allowed to depend arbitrarily on randomization
assignment, would provide an adequate description of the Women’s Health Initiative
hormone therapy trial data. Does this copula model lead to convenient inferences
about hormone therapy effects on the composite outcome of CHD and stroke?
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Exercise 5.8

Consider a trivariate survivor function model

F(t1, t2, t3) ={F(t1, t2,0)−θ +F(t1,0, t3)−θ +F(0, t2, t3)−θ

−F(t1,0,0)−θ −F(0, t2,0)−θ −F(0,0, t3)−θ +1}−1/θ ∨0.

Using L’Hôpital’s rule show that F(t1, t2, t3) approaches

F(t1, t2,0)F(t1,0, t3)F(0, t2, t3)/{F(t1,0,0)F(0, t2,0)F(0,0, t3)}

as θ → 0, approaches the upper bound

F(t1, t2,0)∧F(t1,0, t3)∧F(0, t2, t3)

as θ → ∞, and approaches the lower bound

0∨{F(t1, t2,0)+F(t1,0, t3)+F(0, t2, t3)−F(t1,0,0)−F(0, t2,0)−F(0,0, t3)+1}

as θ →−1, and that all points (t1, t2, t3) away from this lower bound are continuity
points for (T1,T2,T3) for any θ ∈ [−1,∞) (Prentice, 2016).

Consider the special case where the three bivariate survivor functions adhere to
Clayton–Oakes models (1.7) with respective parameters θ12,θ13 and θ23. Show that
(5.8) is the much more restrictive model with θ12 = θ13 = θ23 = θ , and therefore
comment on the utility of (5.8) as a general model for trivariate failure time data.

Exercise 5.9

Consider a regression generalization of the above model to

F(t1, t2, t3;z) ={F(t1, t2,0;z)−θ +F(t1,0, t3;z)−θ |+F(0, t2, t3;z)−θ

−F(t1,0,0;z)−θ −F(0, t2,0;z)−θ −F(0,0, t3;z)−θ +1}−ezγ/θ ∨0.

Further consider Cox models

F(t1,0,0;z) =F0(t1,0,0)ezβ100
,F(0, t2,0;z) = F0(0, t2,0)ezβ010

,

and F(0,0, t3;z) = F0(0,0, t3)ezβ001

for marginal survivor functions, and Clayton–Oakes models

F(t1, t2,0;z) = {F(t1,0,0;z)−θ12 +F(0, t2,0;z)−θ12 −1}−ezβ110/θ12 ∨0,

F(t1,0, t3;z) = {F(t1,0,0;z)−θ13 +F(0,0, t3;z)−θ13 −1}−ezβ101/θ13 ∨0, and

F(0, t2, t3;z) = {F(0, t2,0;z)−θ23 +F(0,0, t3;z)−θ23 −1}−ezβ011/θ23 ∨0,

for pairwise survivor functions. Show for a binary covariate z that the single, dou-
ble and triple failure hazard rates conform to the multiplicative models (5.12)–(5.14)
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under this model. Can you develop an approach to generating failure times under
this model for F given z? In what ways might the data analysis methods of §5.4
add valuable flexibility to parametric or semiparametric data analysis methods under
this model? In what ways might the regression model of this exercise have compar-
ative advantages for summarizing data from, say, a genetic epidemiology study of
breast cancer that includes index cases (probands) as well as their female siblings
and daughters.
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6.1 Introduction

This chapter extends the regression methods of Chapters 4 and 5 in two important
respects: First, the number of possibly correlated failure time variates is extended to a
fixed, but arbitrary, number m. Secondly, the baseline rates in the multiplicative (Cox-
type) models are allowed to be shared by failure times of the same “type,” with failure
times uniquely classified into K ≤ m types. This latter feature allows “individuals”
to contribute multiple times to risk sets that arise in regression parameter estimation,
thereby leading also to a marginal modeling approach to recurrent event data that
will be elaborated in Chapter 7. The methods of this chapter provide a culmination
of the marginal modeling approach for correlated outcomes that is central to this
monograph. Regression methods for marginal single outcome hazard rates will be
presented in §6.3, while those for marginal single and dual outcome hazard rates will
be given in §6.5. As previously, the multivariate failure times may be on the same

119
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or different time axes, though failures of the same type will be required to be on
the same time axis. Before entertaining these regression methods, for completeness,
the nonparametric survivor function estimators of Chapters 3 and 5 will be extended
to an arbitrary number of failure time variates (§6.2). Also, the copula approach to
higher dimensional failure time data will be discussed (§6.4).

As mentioned above, in this chapter the survivor function and regression esti-
mation procedures of Chapters 3–5 will be generalized to an arbitrary number, m,
of failure time variates, denoted by T1, . . . ,Tm. Suppose that (T1, . . . ,Tm) is subject
to censoring by a variate (C1, . . . ,Cm), and let Z(t1, . . . , tm) = {z(s1, . . . ,sm);s j = 0 if
t j = 0 and s j < t j if t j > 0, for j = 1, . . . ,m} denote the history of a corresponding
covariate process, Z, up to (t1, . . . , tm). A marginal hazard process can be defined for
any subset of the m failure time variates given Z. For example, for (T1, . . . ,Tj), j≤m
one can define a marginal j-dimensional failure hazard rate process Λ1···10···0 by

Λ1···10···0{dt1,dt2, . . . ,dt j,0 · · ·0;Z(t1, . . . , t j,0 · · ·0)}=
pr{T1 ∈ [t1, t1+dt1), . . . ,Tj ∈ [t j, t j+dt j);T1 ≥ t1, . . . ,Tj ≥ t j,Z(t1, . . . , t j,0, . . . ,0)},

where the first j subscripts of Λ are 1 and the remainder 0.
A global independent censoring assumption given Z specifies that C1 ≥

t1, . . . ,C j ≥ t j can be added to the conditioning event without changing the value
of this hazard rate for all (t1, . . . , t j) and Z(t1, . . . , t j,0, . . . ,0), and similarly for haz-
ard rates for each of the 2m−1 non-empty subsets of (T1, . . . ,Tm). This independent
censoring assumption can be weakened to only single failure, or to only single and
double failure hazard rates if estimation is restricted to these marginal hazard rates.
Note that a different modeling approach may be needed if marginal hazard rates given
Z depend on the preceding values of the companion failure time variates. Counting
process intensity modeling may be useful in that context, but regression parameter
interpretation and assumptions differ substantially between these two modeling ap-
proaches, as will be elaborated in §6.6.

6.2 Nonparametric Estimation of the m-Dimensional Survivor Function

6.2.1 Dabrowska-type estimator development

Consider an arbitrary number of failure time variates (T1, . . . ,Tm) subject to indepen-
dent right censoring by variate (C1, . . . ,Cm) and suppose that statistically indepen-
dent and identically distributed replicates S j` = Tj` ∧C j` and δ j` = I[S j` = Tj`] for
j = 1, . . . ,m are obtained, for `= 1, . . . ,n.

The nonparametric likelihood function, L, for the joint survivor function F , where
F(t1, . . . tm) = P(T1 > t1, . . . ,Tm > tm) can be readily specified, and can be seen to be
maximized by placing probability within the risk region of the data only at grid points
formed by the uncensored observations for each of the m failure time variates. In fact
L is maximized by a discrete survivor function with “point mass” assignments within
R = {(t1, . . . , tm);S j` ≥ t j for each j = 1, . . . ,m, for some ` ∈ (1, . . . ,n)} only at these
grid points.

Building on Dabrowska (1988), Gill (1994) and Prentice and Zhao (2018), one
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can represent the discrete survivor function F by

F(t1, . . . , tm) =
m

∏
j=1

Q j(t1, . . . , tm), (6.1)

where Q1(t1, . . . , tm) is the product of the m single product integrals of the
form ∏

t1
0 F(s1,0, . . . ,0)/F(s−1 ,0, . . . ,0) for the marginal survival probabilities;

Q2(t1, . . . , tm) is the product of the (m
2) double product integrals of the form

t1

∏
0

t2

∏
0
[F(s1,s2,0, . . . ,0)F(s−1 ,s

−
2 ,0, . . . ,0)/{F(s1,s−2 ,0, . . . ,0)F(s−1 ,s2,0, . . . ,0)}]

for the marginal pairwise dependencies; and for j = 3, . . . ,m Q j(t1, . . . , tm) is the
product of the (m

j ) j-dimensional product integrals of the form

t1

∏
0

t2

∏
0
· · ·

t j

∏
0

A(s1, . . . ,s j,0, . . . ,0)
B(s1, . . . ,s j,0, . . . ,0)

, (6.2)

for marginal j-variate dependencies.
In (6.2) A(s1, . . . ,s j,0, . . . ,0) is composed of the product of the 2 j−1 factors

F(u1, . . . ,u j,0, . . . ,0) having u j = s−i for an even number of u j’s and the remaining
u j’s equal to si, for i = 1, . . . , j; and B(s1, . . . ,s j,0, . . . ,0) is the product of the com-
plementary 2 j−1 factors F(u1, . . . ,u j,0, . . . ,0) having an odd number of u j’s equal to
s−i and the remainder of the u j’s equal to si, for i = 1, . . . , j.

The decomposition (6.1) follows from massive cancellations, in conjunction with
F(0, . . . ,0) = 1. The jth factor Q j(t1, . . . , tm) characterizes the j-variate dependen-
cies among the m-variates for j = 2, . . . ,m. Because of the equal number of factors
in A(s1, . . . ,s j,0, . . . ,0) and B(s1, . . . ,s j,0, . . . ,0) one can divide each such factor by
F(s−1 , . . . ,s

−
j ,0, . . . ,0) without altering (6.2), giving an expression for F in terms of

conditional survival probabilities at each potential mass point for the discrete sur-
vivor function. The conditional survival probabilities at each uncensored failure time
grid point in the risk region for the data are readily estimated empirically via

F̃(u1, . . . ,u j,0, . . . ,0)

=
#{`;Si` > si if ui = si, or Si` ≥ si if ui = s−i , for all i = 1, . . . , j}

#{`;Si` ≥ si, all i = 1, . . . , j}
,

giving a nonparametric estimator F̂ of the m-dimensional survivor function.
This estimator can be calculated in a recursive fashion. Specifically, F̂ can be

calculated by first calculating the m marginal KM estimators, then recursively calcu-
lating the (m

2) pairwise marginal survival function estimators using (3.6), then recur-
sively calculating the (m

3) trivariate marginal survivor function estimators using (5.2),
continuing through the recursive calculation of the m marginal survivor function es-
timators of dimension m−1, and finally calculating F̂ away from its coordinate axes
where one or more arguments are equal to zero, recursively by equating the m-variate
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dependency factor at uncensored failure time grid point (t1, . . . , tm) to its correspond-
ing empirical estimator, giving

F̂(t1, . . . , tm) =
B̂(t1, . . . , tm)
Â (t1, . . . , tm)

Ã(t1, . . . , tm)
B̃(t1, . . . , tm)

, (6.3)

where B̂(t1, . . . , tm) is B(t1, . . . , tm) with all survival probability factors F(u1, . . . ,um)
replaced by F̂(u1, . . . ,um) from preceding calculations, where each ui equals ti or t−i .
Â (t1, . . . , tm) similarly replaces each F(u1, . . . ,um) in A(t1, . . . , tm) by F̂(u1, . . . ,um)
after dropping F(t1, . . . , tm) from this product; and Ã(t1, . . . , tm) and B̃(t1, . . . , tm)
equal A(t1, . . . , tm) and B(t1, . . . , tm) respectively with each survival probability re-
placed by its empirical conditional survival probability F̃ estimator, with F̂ defined
to take value zero at any grid point (only on the boundary of the risk region) where
B̃ = 0.

Using this recursive procedure it will be practical to calculate F̂ for fairly large
data sets, at least for a moderate number of failure time variates. Also note that from
the decomposition (6.1) one sees that a nonparametric estimator of F under the re-
striction of no dependencies of dimension higher than i among the m-variates is read-
ily obtained as ∏

i
j=1 Q̂ j(t1, . . . , tm), where Q̂ j(t1, . . . , tm) everywhere inserts survivor

function estimates F̂ for F for i≤m, which simply truncates the recursive procedure
described above following the ith step.

Asymptotic distributional results for this m-dimensional estimator follow from
empirical process theory with little change from §5.2.1, so only a brief account
will be given here: The discrete failure time representation (6.1)–(6.2), following
re-expression in terms of conditional survival probabilities, can be further expressed
in terms of single, double, . . . ,m variate hazard functions each of which has an empir-
ical estimator with asymptotic distribution determined by empirical process theory.
For example one can write

F(s1, . . . ,si,0, . . . ,0)
F(s−1 , . . . ,s

−
i 0, . . . ,0)

=

1−Λ10···0(ds1,s−2 , . . . ,s
−
i ,0, . . . ,0)−·· ·−Λ0···010···0(s−1 , . . . ,s

−
i−1,dsi,0, . . . ,0)

+Λ110···0(ds1,ds2,s−3 , . . . ,s
−
i ,0, . . . ,0)+ · · ·

+Λ0···0110...0(s−1 , . . . ,s
−
i−2,dsi−1,dsi,0, . . . ,0)

−Λ1110···0(ds1,ds2,ds3,s−4 , . . .s
−
i ,0, . . . ,0)−·· ·

−Λ0···01110···0(s−1 , . . . ,s
−
i−3,dsi−2,dsi−1,dsi,0, . . . ,0)

+ · · ·(−1)i
Λ1···10···0(ds1, . . . ,dsi,0, . . . ,0). (6.4)

Also (6.4) can be used to define a j-variate hazard rate function Λ0
1···10···0 such that,

given lower dimensional hazard rate functions,

Λ
0
1···10···0(s1 . . . ,s j,0, . . . ,0) = B(s1, . . . ,s j,0, . . . ,0)/

{A (s1, . . . ,s j,0, . . . ,0)F(s−1 , . . . ,s
−
j ,0, . . . ,0)}. (6.5)
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Note that there will be no j-variate dependency among (T1, . . . ,Tj) under the hazard
rate function Λ0

1···10···0. One can rewrite (6.2) in standard product integral format as

t1

∏
0
· · ·

t j

∏
0

[
1+{Λ1···10···0(ds1, . . . ,ds j,0, . . . ,0)−Λ

0
1···10···0(ds1, . . . ,ds j,0, . . . ,0)}

F(t−1 , . . . , t−j ,0 · · ·0)
A (t1, . . . , t j,0, . . . ,0)
B(t1, . . . , t j,0, . . . ,0)

]
. (6.6)

Similarly each of the conditional survival probabilities in (6.1) can be re-
expressed in terms of standard-form product integrals. In fact, after doing so, the
resulting hazard-based representation for F applies not only to discrete, but also to
absolutely continuous and mixed failure time variates.

One can define 2m − 1 single, double,· · · ,m-variate counting processes
(N10···0, . . . ,N0···01,N110···0, . . . ,N0···011,N1110···0, . . . ,N1···1) and at-risk process Y over
a region [0,τ1]× ·· · × [0,τm] where P(S1 > τ1, . . . ,Sm > τm) > 0. The strong con-
sistency, weak Gaussian convergence, and bootstrap applicability for these 2m pro-
cesses, based on the Glivenko–Cantelli and Donsker theorems, imply these same
properties for the 2m−1 single, double, . . . ,m-variate empirical hazard function pro-
cesses on the basis of the continuity and (weakly continuous) compact differentia-
bility of the hazard process transformations. These same properties also hold for the
further product integral transformations for the 2m−1 hazard processes to the 2m−1
estimated (conditional) probability factors on the right side of (6.1) on the basis of
the continuity and compact differentiability of factors of the form (6.6), and for F̂
itself, based on the continuity and compact differentiability of the transformation
(6.1). Hence one sees (informally) that

sup
[0,τ1]×···×[0,τm]

|F̂(t1, . . . , tm)−F(t1, . . . , tm)|
P→ 0,

n1/2(F̂−F) converges in distribution to a mean zero Gaussian process, and bootstrap
procedures apply to the nonparametric estimator F̂ over the region [0,τ1]× ·· · ×
[0,τm].

6.2.2 Volterra nonparametric survivor function estimator

The Volterra bivariate survivor function estimators described in Chapters 3 and 5 can
also be generalized to an arbitrary number of failure time variates. In particular, the
survivor function F is the unique solution to the inhomogeneous Volterra integral
equation

F(t1, . . . , tm) = ψ(t1, . . . , tm)+
∫ t1

0
· · ·
∫ tm

0
F(s−1 , . . .s

−
m)Λ11···1(ds1, . . . ,dsm), (6.7)
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where

ψ(t1, . . . , tm) =

F(t1, . . . , tm−1,0)+ · · ·+F(0, t2, . . . , tm)−F(t1, . . . , tm−2,0,0)−·· ·−F(0,0, t3, . . . , tm)

+F(t1, . . . , tm−3,0,0,0)+ · · ·+F(0,0,0, t4, . . . tm)−·· ·+(−1)m−2F(t1,0, . . . ,0)+

· · ·+(−1)m−2F(0, . . . ,0, tm)+(−1)m−1

is a function of marginal survivor probabilities of dimension less than m.
The Péano series solution to (6.7) can be written

F(t1, . . . , tm) =ψ(t1, . . . , tm)+
∞

∑
k=1

∫ ∫
· · ·
∫

0<s11<···<s1k=t1

· · ·
∫ ∫

· · ·
∫

0<sm1<···<smk=tm

ψ(s−11, . . . ,s
−
m1)

k

∏
`=1

Λ11···1(ds1`, . . . ,dsm`). (6.8)

The corresponding Volterra estimator, F̂ , is obtained by plugging empirical haz-
ard rate estimators into (6.8) and into each of its lower dimensional marginal survivor
functions. Empirical process theory, in conjunction with the continuity and weakly
continuous compact differentiability of each of the pertinent Péano series transfor-
mations are then the key elements needed to show F̂ to be strongly consistent and
asymptotically Gaussian with bootstrap applicability.

A simple recursive procedure can be used to calculate the step function F̂ at
uncensored failure grid points in the risk region of the data, starting with the KM
marginal estimators that arise from plugging Nelson–Aalen estimators into (6.8).
Specifically, following the calculation of lower dimensional marginals, the Volterra
estimator at an uncensored data grid point (t1, . . . , tm) away from the coordinate axes
is given by

F̂(t1, . . . , tm) =F̂(t1, . . . , tm−1, t−m )+ · · ·+ F̂(t−1 , t2, . . . , tm)

− F̂(t1, . . . , tm−2, t−m−1, t
−
m )−·· ·− F̂(t−1 , t−2 , t3, . . . tm)

+ F̂(t1, . . . , tm−3, t−m−2, t
−
m−1, t

−
m )+ · · ·+ F̂(t−1 , t−2 , t−3 , t4, . . . , tm)−·· ·

+(−1)m−2F̂(t1, t−2 , . . . , t−m )+ · · ·+(−1)m−2F̂(t−1 , . . . , t−m−1, tm)

+(−1)m−1F̂(t−1 , . . . , t−m ){1− Λ̂11···1(∆t1, . . . ,∆tm)}, (6.9)

where Λ̂11···1(∆t1, . . . ,∆tm) = #{`;S j` = t j,δ j` = 1, all j = 1, . . . ,m}/#{`;S j` ≥ t j, all
j = 1, . . . ,m}.

6.2.3 Multivariate dependency assessment

A local measure of i-variate dependency, for i = 2, . . . ,m can be defined for
(T1, . . . ,Ti) at (t1, . . . , ti) by

Λ1···10···0(dt1, . . .dti,0, . . . ,0)/Λ
0
1···10···0(dt1, . . . ,dti,0, . . . ,0)
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which compares the i-variate hazard rate to that under no i-variate dependency at
(t1, . . . , ti,0, . . . ,0) on a relative scale. A corresponding average i-variate dependency
ratio C(τ1, . . . ,τi,0, . . . ,0), for (τ1, . . . ,τi,0, . . . ,0) in the support of (S1,S2, . . . ,Sm)
can be defined by

C1···10···0(τ1, . . .τi,0, . . . ,0)−1 =∫
τ1

0
· · ·
∫

τi

0
{Λ0

1···10···0(dt1, . . . ,dti,0, . . . ,0)/

Λ1···10···0(dt1, . . . ,dti,0, . . . ,0)}F(dt1, . . .dti,0, . . . ,0)
/

∫
τ1

0
· · ·
∫

τi

0
F(dt1, . . . ,dti,0, . . . ,0).

This i-variate dependency ratio can be estimated nonparametrically by

Ĉ1···10···0(τ1, . . . ,τi,0, . . . ,0) =∫
τ1

0
· · ·
∫

τi

0
F̂(t−1 , . . . , t−i ,0, . . .0)Λ̂1···10···0(∆t1, . . . ,∆ti,0, . . .0)

/
∫

τ1

0
· · ·
∫

τi

0
F̂(t−1 , . . . , t−i ,0, . . . ,0)Λ̂0

1···10···0(∆t1, . . . ,∆ti,0, . . . ,0).

As a process Ĉ1···10···0 inherits strong consistency, weak Gaussian convergence, and
bootstrap applicability properties as an estimator of C1···10···0 from those for F̂ ; for
example, using the Dabrowska- or Volterra-nonparametric estimators.

More specifically, the bootstrap procedures alluded to above involve random sam-
pling from the data {(S jk,δ j`), j = 1, . . . ,n} with replacement until a new sample of
size n has been drawn. A joint survivor function estimator, say F̂∗, is then developed
using one of the estimation procedures described above. This process is repeated in-
dependently for a large number of replicates (e.g., 100 or more) giving a set of F̂∗
values that in large samples act like a random sample from the distribution of F̂ from
the original data, providing the basis for the estimation of confidence intervals or
bands for F̂ and for functions thereof such as Ĉ1···10···0, or for other purposes. Some
care may be needed in using bootstrap estimators of F̂ near the boundary of the risk
region of the data, since bootstrap samples may have a slightly reduced risk region
compared to the original data.

6.3 Regression Analysis on Marginal Single Failure Hazard Rates

Consider an independent and identically distributed sample {S ji = Tji ∧C ji δ ji =
I[Tji = C ji] for j = 1, . . . ,m;Zi(S1i, . . . ,Smi)}, for i = 1, . . . ,n with possible depen-
dencies among the m failure times (T1i, . . . ,Tmi) for each i, and with censoring vari-
ates (C1i, . . . ,Cmi) independent of (T1i, . . . ,Tmi), given a possibly evolving covariate
Z. One can consider any of the regression models of Chapter 2 for the marginal haz-
ard rates for each of the m failure time variates, conditional on pertinent covariate
histories. For example, one could specify a Cox model for the jth marginal single
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failure hazard rate by

Λ0···010···0{0, . . . ,0,dt j,0, . . .0;Z(0, . . . ,0, t j,0 · · ·0)}=
Λ0···010···0(0, . . . ,0,dt j,0, . . .0)exp{x(0, . . . ,0, t j,0, . . . ,0)β0···010···0} (6.10)

for each j = 1, . . . ,m. The regression parameters in these models, as well as the corre-
sponding baseline hazard functions can be readily estimated simply by restricting the
analysis to the censored failure times and marginal covariate histories for each Tj, for
j = 1, . . . ,m separately. To explore models, for example, that place restrictions (e.g.,
some common values) among the regression parameters in (6.10) requires somewhat
more complex analyses to accommodate dependencies among the m failure time vari-
ates. Procedures for doing so can be embedded in a class of models that also allows
baseline hazard models to be shared among certain of the correlated failure times.
Such models will be natural in some settings, for example in studies of failure time
among littermates in animal experiments, or studies including multiple generation
kindreds in genetic epidemiology.

In the terminology of Spiekerman and Lin (1998) suppose that the jth failure
time variable is assigned a unique “failure type” k = M( j), for each j = 1, . . . ,m with
failures of the same type on the same time axis. Suppose also that failure times of
the same type, k, have marginal single failure hazard rates modeled with a common
baseline hazard function Γk for each failure type k = 1, . . . ,K ≤m. Denote the regres-
sion vector formed from {t j;Z(0, . . . , t j,0, . . . ,0)} by xk(t j), so that Γk is the single
failure hazard rate for Tj given its corresponding covariate history at xk(t j)≡ 0.

With these specifications the Cox-type model marginal single failure hazard rate
models for each Tj given Z can be written

Λ0···010···0{0, . . . ,0,dt j,0, . . . ,0;Z(0, . . . ,0, t j,0, . . . ,0)}= Γk(dt j)exp{xk(t j)β},
(6.11)

with k = M( j) for each j = 1, . . . ,m. The fixed-length modeled regression vector
xk(t j) = {x1k(t j),x2k(t j), . . .} in (6.11) is defined to include the same elements for
each j such that M( j) = k. These models have been written with a single regres-
sion parameter β . Hazard ratio functions that, for example, have distinct regression
parameters for each k = 1, . . . ,K can be included in (6.11) by appropriate specifica-
tions of the modeled regression variable xk(t j). That is, xk(t j) can include interaction
terms that allow distinct parameter vectors for each k. The methods of Chapter 2 do
not immediately apply to the estimation of model parameters (β ,Γ1, . . . ,ΓK) because
of dependencies among the m failure time variates, given corresponding covariate
histories. However, useful and convenient estimation is possible using estimating
equations derived under (6.11).

It is convenient to express estimators for parameters in (6.11) using counting
process notation, as in §2.9. Consider β̂ that solves

n

∑
i=1

[
m

∑
j=1

K

∑
k=1

I{M( j) = k}
∫

τk

0
{xki(tk)−Ek(tk;β )}N ji(dtk)

]
= 0 (6.12)
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where

Yji(t) ={1 if t ≤ S ji;0 otherwise},
N ji(t) ={1 if t ≥ S ji,δ ji = 1;0 otherwise},
andτk =max

( j,i)
{S ji;M( j) = k}.

Also in (6.12)

Ek(tk;β ) =n−1
n

∑
`=1

m

∑
j=1

I{M( j) = k}Yj`(tk)xk`(tk)exk`(tk)β
/

[
n−1

n

∑
`=1

m

∑
j=1

I{M( j) = k}Yj`(tk)exk`(tk)β

]
. (6.13)

Simple conditioning arguments can be used to show the integrand in (6.12) to have
mean zero at any tk if the m failure time variates are of distinct types, but otherwise
“individuals” may contribute multiple times to the type k risk set at tk complicating
the distribution theory emanating from the centering variables in (6.12). However,
under IID sampling for failure, censoring and covariate processes, β̂ quite generally
still provides a consistent estimator of the true β value in (6.11), which will now be
denoted as β0.

To see this property, consider the centered counting processes L ji(·,β ) defined
by

L ji(t;β ) = N ji(t)−
∫ t

0

K

∑
k=1

I{M( j) = k}Yji(s)exki(s)β Γk(ds) (6.14)

for all i = 1, . . . ,n; j = 1, . . . ,m. Though typically not having the martingale prop-
erties enjoyed by the centered counting processes in §2.9, these are zero mean pro-
cesses under (6.11) at β = β0, and a simple exercise shows that (6.12) can be rewrit-
ten as

n

∑
i=1

[
m

∑
j=1

K

∑
k=1

I{M( j) = k}
∫

τk

0
{xki(tk)−Ek(tk;β )}L ji(dtk;β )

]
= 0. (6.15)

Under IID conditions the numerator and denominator of (6.13) each approach
their expectation almost surely as n→ ∞, and some careful analysis by Spiekerman
and Lin (1998) shows that this convergence is sufficiently rapid that Ek(tk;β ) in
(6.15) can be replaced by the ratio of these expectations, which we denote by
ek(tk;β ), without changing the asymptotic distribution of the left side of (6.15), un-
der quite general conditions. It then follows that n−1/2 times the left side of (6.12) at
β = β0 has the same asymptotic distribution as the IID summation

n−1/2
n

∑
i=1

[
m

∑
j=1

K

∑
k=1

I{M( j) = k}
∫

τk

0
{xki(tk)− ek(tk;β0)}L ji(dtk;β0)}

]
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which under the central limit theorem typically converges weakly, under (6.11) as
n→ ∞, to a mean zero Gaussian distribution with variance matrix

A(β0) = ε

{
m

∑
j=1

w j(β0)
⊗2

}
,

where ε denotes expectation and

w j(β0) =
K

∑
k=1

I{M( j) = k}
∫

τk

0
{xk(tk)− ek(tk;β0)}L j(dtk;β0).

For example, this asymptotic distribution obtains under IID conditions when region
of integration [0,τ1]× ·· · × [0,τK ] is restricted so that τk is in the support of the
type k follow-up times for each k = 1, . . . ,K, if the modeled covariates in (6.11)
have bounded total variation, if A(β0) is positive definite, and some additional mild
regularity conditions hold.

The consistency of β̂ as estimator of β under these conditions can be shown from
the fact that β̂ maximizes

`(β ) =
n

∑
i=1

[
m

∑
j=1

K

∑
k=1

I{M( j) = k}

∫
τk

0

{
xki(tk)β − log[

n

∑
`=1

m

∑
j=1

I{M( j) = k}Yj`(tk)exk`(tk)β ]

}
N j`(dtk)

]
,

which can be shown to be maximized at β0 with probability tending to one, using
arguments that are essentially the same as those used by Andersen and Gill (1982).

Not surprisingly the baseline hazard rates Γk,k = 1, . . . ,K can be conveniently
estimated by Γ̂k(·; β̂ ) where

Γ̂k(t;β ) =
∫ t

0

n

∑
i=1

m

∑
j=1

I{M( j) = k}N ji(ds)
/{ n

∑
`=1

m

∑
j=1

I{M( j) = k}Yj`(s)exk`(s)β

}
.

A Taylor series expansion of the left side of (6.12) about β = β0 can be used to
show n1/2(β̂ − β0) to converge to a mean zero Gaussian variate, under (6.11) and
the regularity conditions just mentioned, with variance matrix that is consistently
estimated by the sandwich form estimator

I(β̂ )−1Â(β̂ )I(β̂ )−1, (6.16)

where

Â(β̂ ) = n−1
n

∑
i=1

{
m

∑
j=1

ŵ ji(β̂ )

}⊗2

and ŵ ji(β̂ ) =
K

∑
k=1

I{M( j) = k}
∫

τk

0
{xki(tk)−Ek(tk; β̂ )}L̂ ji(tk; β̂ )
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with L̂ ji given by (6.14) with β̂ substituted for β and with Γ̂k(ds; β̂ ) substituted for
Γk(ds). Also in (6.16) I(β ) is the negative derivative of the left side of (6.12) with
respect to β ′ and can be written

I(β ) =n−1
n

∑
i=1

[ m

∑
j=1

K

∑
k=1

I{M( j) = k}

∫
τk

0

{ n

∑
`=1

m

∑
j=1

I{M( j) = k}Yj`(tk)xk`(tk)′xk`(tk)exk`(tk)β
/

[
n

∑
`=1

m

∑
j=1
{M( j) = k}Yj`(tk)exk`(tk)β ]−

( n

∑
`=1

m

∑
j=1
{M( j) = k}Yj`(tk)xk`(tk)exk`(tk)β

/
[

n

∑
`=1

m

∑
j=1
{M( j) = k}Yj`(tk)xk`(tk)exk`(tk)β ]

)⊗2}
N ji(dtk)

]
.

Spiekerman and Lin (1998) go on to show that n1/2(Γ̂k−Γk),k = 1, . . . ,K con-
verge jointly to a mean zero Gaussian field under the conditions already mentioned,
and they develop a perturbation resampling procedure for estimating confidence in-
tervals and confidence bands for the type-specific baseline hazard rates. These are
results of considerable generality and importance for inference on marginal single
failure hazard rates. As outlined above these results can be developed without rely-
ing on an independence working model, or any other working model, concerning the
joint distribution of (T1, . . . ,Tm) given Z.

It may be possible to improve on the efficiency of β estimation by introduc-
ing some form of weighting in (6.12) to take advantage of dependencies among
T1, . . . ,Tm given Z, though the impact is likely to be small unless the dependencies
are strong and censoring is light.

A copula modeling approach could augment the marginal single failure hazard
rate analyses of this section, to include parameters that reflect the nature of depen-
dencies among the failure times given Z, as will be discussed in §6.4. A more flexible
modeling approach that focuses on regression associations for both marginal single,
and marginal double, failure hazard rates using semiparametric Cox-type models for
each will be described in §6.5.

6.4 Regression on Marginal Hazard Rates and Dependencies

6.4.1 Likelihood specification

The likelihood function for failure distribution parameters with m-dimensional fail-
ure time regression data, under a global independent censoring assumption given Z,
which we now assume is composed of time-independent or external covariates only,
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has the rather complex form

L = (6.17)
n

∏
i=1

(
(−1)mF{dS1i, . . . ,dSm;Zi(S1k, . . . ,Smi)}δ1i···δmi

[(−1)m−1F{dS1i, . . . ,dSm−1,i,Smi;Zi(S1i, . . . ,Smi)}]δ1i···δm−1,i(1−δmi) . . .

[(−1)m−1F{S1i,dS2i, . . . ,dSmi;Zi(S1i, . . . ,Smi)}](1−δ1i)δ2i···δmi

[(−1)m−2F{dS1i, . . . ,dSm−1,i,Sm−1,i,Smi;Z(S1i, . . . ,Smi)}δ1i···δm−2,i(1−δm−1,i)(1−δmi)] . . .

[(−1)m−2F{S1i,S2i,dS3i, . . . ,dSmi;Z(S1i, . . . ,Smi)}(1−δ1i)(1−δ2i)δ3i···δmi ]

. . .

[(−1)F{dS1i,S2i, . . . ,Smi;Zi(S1i, . . . ,Smi)}δ1i(1−δ2i)···(1−δmi)] . . .

[(−1)F{S1i, . . . ,Sm−1,dSmi;Zi(S1i, . . . ,Smi)}(1−δ1i)···(1−δm−1,i)δmi ]

F{S1i, . . . ,Smi;Zi(S1i, . . .Smi)}(1−δ1i)···(1−δmi)

)
, (6.18)

involving derivatives of F with respect to each (non-empty) subset of its time argu-
ments. A copula approach can be considered for a specification of L.

6.4.2 Estimation using copula models

A copula approach to the regression analysis of the m-variate failure time data pro-
ceeds by defining standardized variates

V1 =
∫ T1

0
Λ10···0{dt1,0 . . . ,0;Z(t1,0, . . . ,0)}, . . . ,

Vm =
∫ Tm

0
Λ0···01{0, . . . ,0,dtm;Z(0, . . . ,0, tm)},

and assuming these variates to have a joint survivor function F0, with parame-
ter θ that can depend on baseline covariates z = z(0, . . . ,0). Suppose that each of
T1, . . . ,Tm is absolutely continuous marginally, given corresponding covariate histo-
ries, so that V1, . . . ,Vm have unit exponential marginal distributions. For example, an
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m-dimensional Clayton–Oakes model

F0(v1, . . . ,vm)

=

{
F0(v1, . . . ,vm−1,0)−θ +F0(v1, . . . ,vm−2,0,vm)

−θ + · · ·+F0(0,v2, . . . ,vm)
−θ

+(−1)F0(v1, . . . ,vm−2,0,0)−θ + · · ·+(−1)F0(0,0,v3, . . . ,vm)
−θ

+(−1)2F0(v1 . . . ,vm−3,0,0,0)−θ + · · ·+(−1)2F0(0,0,0,v4, . . . ,vm)
−θ

+ · · ·+
+(−1)m−2F0(v1,0, . . . ,0)−θ + · · ·+(−1)m−2F0(0, . . . ,0,vm)

−θ

+(−1)m−1
}−1/θ

∨0, (6.19)

specifies F0 in terms of lower dimensional survivor functions and a parameter
θ = θ(z) ∈ [−1,∞) that controls the m-variate dependency for (V1, . . . ,Vm). The
first m terms on the right side of (6.19) are the (m− 1) dimensional marginal sur-
vivor functions, the next m(m− 1)/2 terms are the (m− 2) dimensional marginal
survivor functions,· · · , until finally there are the 1-dimensional marginal survivor
functions and a constant term. Expression (6.19) approaches the upper bound of
F(v1, . . . ,vm−1,0)∧F(v1, . . . ,vm−2,0,vm)∧·· ·∧F(0,v2, . . . ,vm) as θ →∞, while the
lower bound is given by (6.19) evaluated at θ = −1. As θ → 0 (6.19) approaches
the product of all survival probabilities having a positive coefficient divided by the
product of all survival probabilities having a negative coefficient on the right side of
this expression. All points away from the lower boundary are continuity points for
(T1, . . . ,Tm).

To apply (6.19) one needs to further specify marginal survivor function models
for the survivor functions of dimension 2, . . . ,m− 1. For example Clayton–Oakes
models of the form (6.19) could be considered for each of these marginal survivor
functions, each with its own θ -parameter. Doing so would allow differential strengths
of dependency among each subset of the failure time variates, but would lead to rather
cumbersome likelihood-based estimation procedures.

There are some nice reproductive properties under a model of the form (6.19)
with the same θ value for all marginal survivor functions of dimension q or larger,
for 1≤ q < m. For example, if q = 2 (6.19) reduces to

F0(v1, . . . ,vm) = {F0(v1,v2,0, . . . ,0)−θ + · · ·+F0(0, . . . ,0,vm−1,vm)
−θ

− (m−2)F0(v1,0, . . . ,0)−θ −·· ·− (m−2)F0(0, . . . ,0,vm)
−θ

+(m−1)(m−2)/2}−1/θ ∨0. (6.20)

If one additionally assumes each pairwise marginal survivor function to be of
Clayton–Oakes model form with its own dependency parameter one obtains, at con-
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tinuity point (v1, . . . ,vm)

F0(v1, . . . ,vm) ={(ev1θ12 + ev2θ12 −1)θ/θ12 + · · ·

+(evm−1θm−1,m + evmθm−1,m −1)θ/θm−1,m

− (m−2)ev1θ −·· ·− (m−2)evmθ +(m−1)(m−2)/2}−1/θ ,
(6.21)

where 1+θi j = 1+θi j(z) is the pairwise marginal cross ratio between Vi and Vj for
any i < j. If one additionally lets θ → 0, so that there are no third- or higher-order
dependencies among the Vi’s, i = 1, . . . ,m, one obtains

F0(v1, . . . ,vm) =
m

∏
i=1

e(m−2)vi ∏
h< j

(evhθh j + ev jθh j −1)−1/θh j . (6.22)

Expression (6.22) provides a rather convenient copula model for likelihood-based
estimation of marginal hazard rate regression parameters, and pairwise cross ratio
parameters for the standardized variates (V1, . . . ,Vm), under a working model with no
trivariate or higher-order dependencies among the standardized variates.

Likelihood-based inference under a copula model such as (6.21) or (6.22) is
conceptually straightforward. For example, standard asymptotic likelihood formu-
lae will generally apply if a parametric form is assumed for each of the m base-
line hazard functions in Cox model marginal hazard rate specifications. In particular
one could model marginal hazard rates using (6.11) with parametric specifications of
Γ1, . . . ,ΓK , and with pairwise cross ratio parameters θh j restricted to θh j = ηgk where
g = M(h) is the failure type for Th and k = M( j) is the failure type for Tj, for each
h < j, with β , parameters in Γ1, . . . ,ΓK , and ηgk for l ≤ g≤ k ≤ K as parameters to
be estimated.

Typically such a model would be considered with Γ1, . . . ,ΓK as arbitrary baseline
hazard functions, rather than parametric functions. Corresponding estimation could
proceed by an extension of the work of Pipper and Martinussen (2003) to allow
pairwise cross ratios to differ among failure types. Though presumably having good
efficiency properties the consequent estimators of marginal hazard ratio parameters
could be biased because of departures from the fairly limited class of pairwise de-
pendencies allowed under (6.21) or (6.22). Hence one could instead use the marginal
hazard rate estimators of §6.3, in a two-stage estimation procedure with estimators of
cross ratio parameters that characterize pairwise dependencies in the second stage.
Such analyses can proceed using an extension of the work of Glidden (2000). In
spite of cross ratios that are independent of their respective time variates this form
of data analysis may be adequate for many multivariate failure time regression prob-
lems, and fleshing out the estimation procedure just alluded to in a rigorous fashion
would be useful. The emergent methodology could be well suited, for example, to
the analysis of family study cohort data in genetic epidemiology with estimators of
1+ηgk characterizing pairwise cross ratios between family members of type g and
k. Of course ηgk = 0 implies independence between type g and k failure times given
Z under this model, so that a convenient test for independence could be based on η̂gk
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and its corresponding estimated standard error. Estimators of these dependency pa-
rameters (given Z) could also be considered for the introduction of weights into the
estimating equations (6.12). See Spiekerman and Lin (1998) for distributional results
with weighted estimating equations for β .

6.5 Marginal Single and Double Failure Hazard Rate Modeling

Now consider Cox models (6.11) for marginal single failure hazard rates in conjunc-
tion with corresponding semiparametric models for marginal double failure hazard
rates for pairs of the m failure times T1, . . . ,Tm given Z. Related estimation may allow
additional information on covariate associations with failure rates to be extracted by
considering dual outcomes in addition to individual outcomes. This approach allows
a flexible modeling of time-varying covariates in relation to both single and dual
hazard failure rates, and with fixed or external covariates resulting estimators can be
used to develop estimators of other quantities of interest, such as pairwise average
cross ratios, and pairwise average concordance functions.

In addition to (6.11) for marginal single failure hazard rates, consider semipara-
metric multiplicative models for double failure hazard rates, for the (h, j) pair, ac-
cording to

Λ0···010···010···0{0, . . . ,0,dth,0, . . . ,0,dt j,0 · · ·0;Z(0, . . . ,0, th,0, . . . ,0, t j,0 · · ·0)}
= Γgk(dth,dt j)exp{xgk(th, t j)γ} (6.23)

for 1 ≤ h < j ≤ m, where g = M(h) and k = M( j) denote unique failure types for
Th and Tj respectively, and xgk(th, t j) is a fixed-length regression vector formed from
{th, t j,Z(0, . . . , th,0, . . . , t j,0 . . .0)} that can be defined, for example, to allow distinct
double failure hazard ratio parameters for each (g,k) pair, and γ is a double failure
hazard ratio parameter to be estimated.

Estimation of marginal single and double failure hazard rate parameters under
(6.11) and (6.23) can combine the estimating equation (6.12) for β with a corre-
sponding equation

n

∑
i=1

[ m

∑
h=1

m

∑
j=h+1

I{M(h) = g,M( j) = k}

∫
τg

0

∫
τk

0
{xgki(tg, tk)−Egk(tg, tk;γ)}Nhi(dtg)N ji(dtk) = 0 (6.24)

for γ . In this expression Egk(tg, t j;γ) is

n−1
n

∑
`=1

m

∑
h=1

m

∑
j=h+1

I{M(h) = g,M( j) = k}}Yh`(tg)Yj`(tk)xgk`(tg, tk)exgk`(tg,tk)γ (6.25)

divided by

n−1
n

∑
`=1

m

∑
h=1

m

∑
j=h+1

I{M(h) = g,M( j) = k}Yh`(tg)Yj`(tk)exgk`(tg,tk)γ . (6.26)
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One can define centered counting processes Lh ji(·, ·;γ) by

Lh ji(tg, tk;γ) = Nhi(tg)N ji(tk)−
∫ tg

0

∫ tk

0
Yhi(sg)Yji(sk)exgki(sg,sk)γ Γgk(dsg,dsk)

for all (h, j, i), which will be zero mean processes at γ = γ0, the “true” γ value, under
(6.23). One can rewrite (6.24) as

n

∑
i=1

[ m

∑
h=1

m

∑
j=h+1

I{M(h) = g,M( j) = k}

∫
τg

0

∫
τk

0
{xgki(tg, tk)−Egk(tg, tk;γ)}Lh ji(dtg,dtk;γ)

]
= 0. (6.27)

Under IID conditions (6.25) and (6.26), each approach their expectations almost
surely for any tg and tk in the support of the type g and type k follow-up times.
The arguments of Spiekerman and Lin (1998) generalize to allow Egk(tg, tk;γ) to be
everywhere replaced by the ratio egk(tg, tk;γ) of these expectations without changing
the asymptotic distribution of n−1/2 times the left side of (6.27), at γ0, under (6.23).

It follows under (6.11) and (6.23) that the left sides of (6.12) and (6.24), at β = β0
and γ = γ0 respectively, have asymptotic distribution equal to the sum of n mean zero
IID variates to which the central limit theorem applies. In fact the product of n−1/2

and the left sides of (6.12) and (6.24) converge jointly to a zero mean Gaussian
distribution with variance matrix

A(β0,γ0) = ε

(
∑

m
j=1 w j(β0)

∑
m
h=1 ∑

m
j=h+1 wh j(γ0)

)⊗2

,

where

wh j(γ0) =
K

∑
g=1

K

∑
k=g+1

I{M(h) = g,M( j) = k}

∫
τg

0

∫
τk

0
{xgk(tg, tk)− egk(tg, tk)}Lh j(dtg,dtk;γ0),

and ε again denotes expectation. The consistency of (β̂ , γ̂) solving (6.12) and (6.23)
for (β0,γ0) again follows from arguments of the type used by Andersen and Gill
(1982), and each baseline double failure hazard rate function Γgk is readily consis-
tency estimated by Γ̂gk(·, ·; γ̂) where

Γ̂gk(tg, tk;γ) =
∫ tg

0

∫ tk

0

n

∑
i=1

[
m

∑
h=1

m

∑
j=h+1

I{M(h) = g,M( j) = k}Nhi(dsg)N ji(dsk)

/
{

n

∑
`=1

m

∑
h=1

m

∑
j=h+1

I{M(h) = g,M( j) = k}Yh`(sg)Yj`(sk)exgk`(sg,sk)γ

}]
.

Taylor series expansions for the left sides of (6.12) and (6.23) about (β0,γ0) then
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lead to an asymptotic mean zero Gaussian distribution for n1/2
(

β̂0−β0
γ̂−γ0

)
with variance

matrix consistently estimated by(
Iβ (β̂ ) 0

0 Iγ(γ̂)

)−1

Â(β̂ , γ̂)
(

Iβ (β̂ ) 0
0 Iγ(γ̂)

)−1

, (6.28)

where

Â(β̂ , γ̂) = n−1
n

∑
i=1

(
∑

m
j=1 ŵ ji(β̂ )

∑
m
h=1 ∑

m
j=h+1 ŵh ji(γ̂)

)⊗2

where ŵ ji and ŵh ji substitute estimated values for marginal single and double fail-
ure hazard rate parameters in expressions for w ji and wh ji respectively. Also in
(6.28) Iβ and Iγ are the Hessian-type matrices that derive from differentiating the
negative of the left sides of (6.12) and (6.23) with respect to β ′ and γ ′ respec-
tively. The arguments of Spiekerman and Lin (1998) generalize to show a joint mean
zero asymptotic Gaussian distribution for [n1/2(β̂ −β0),n1/2{Γ̂k(·, β̂ )−Γk(·)},k =
1, . . . ,K,n1/2(γ̂− γ0) and n1/2{Γ̂gk(·, γ̂)−Γgk(·)},g < k] under (6.11) and (6.23). A
perturbation resampling procedure can be used for confidence interval/confidence
band calculation, for marginal single and double failure baseline hazard function es-
timation.

The asymptotic results just asserted arise under IID conditions along with condi-
tions of total variation boundedness of the modeled covariates in (6.23) and positive
definiteness of Iγ(γ0) in addition to conditions for marginal single failure hazard rate
parameters as mentioned in §6.3, and some additional mild regularity conditions.

An interesting aspect of the estimation procedure just outlined is the typical lack
of complete agreement between the single and double failure rate models (6.11) and
(6.23). The central limit theorem will apply simultaneously to the estimating equa-
tions (6.12) and (6.24) but, as usual, some asymptotic bias can be expected in the
estimation of single hazard rate parameters under departure from (6.11) and in dou-
bled hazard failure rate parameters under departure from (6.23). If these models have
been applied in a manner that provides a good fit to these respective hazard rates,
then (6.11) and (6.22) will hold simultaneously to a good approximation, and related
constructs such as bivariate survivor function estimators, and pairwise dependency
measures, assuming time-independent or external covariates only in Z, can also be
expected to be well estimated. An attractive feature of (6.11) and (6.23) is that their
semiparametric nature, in conjunction with time-varying hazard ratio options provide
the context for ensuring a simultaneous good fit of both (6.11) and (6.23) in any par-
ticular application context, as was illustrated with m = 2 in Chapter 4. Prentice and
Zhao (2019) provide further detail on the asymptotic developments just sketched, and
also provide simulations under a model having marginal single failure hazard rates
that adhere to (6.11) but with marginal double failure hazard that differs from (6.23).
Joint survivor function estimators were shown to have related bias much reduced by
exercising some simple time-dependent features in marginal hazard rate modeling.

The above presentation assumed that marginal double failure hazard rates (6.23)
are specified for each pair (h, j), with h < j, of the m failure time variates. A sim-
ple modification allows double failure hazard rate models to be specified only for
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selected composite pairwise outcomes of interest, thereby somewhat reducing mod-
eling assumptions, including that of independent censorship, to the set of modeled
marginal single and double failure hazard rate processes.

The efficiency of the marginal single failure hazard ratio parameter estimate β̂

may be able to be improved by including weights in (6.12) that reflect dependencies
among the m failure times given Z. The marginal double failure hazard rate parameter
estimates described in this section have potential to provide a source of information
for such weighting without introducing bias into β estimation. This possibility merits
further statistical development.

It is also conceptually direct to extend models (6.11) and (6.23) to include semi-
parametric models for higher-order marginal hazard rates, as was illustrated in Chap-
ter 5 for marginal single, double and triple failure hazard rates. This topic too merits
further development for use, for example, in therapeutic contexts where individual
patients may have a high rate of multiple health events of various types.

The applicability of an independent censoring assumption is an important consid-
eration when applying marginal hazard rate models to correlated failure time data.
Specifically if the censoring rates for the failure times under study depend on the
emerging counting process data for other failure time variates in a correlates set
(T1, . . . ,Tm), given Z, then an independent censoring assumption will typically be
inappropriate. Depending on the structure of the collective data, a counting process
intensity modeling approach may then provide a practical data analytic option.

6.6 Counting Process Intensity Modeling and Estimation

Expanding upon the discussion in §4.8 one can see that counting process intensity
modeling of the form (4.22) may be applicable for failure times T1, . . . ,Tm, assum-
ing that these failure times fall on the same time axis, along which covariates may
also evolve, in conjunction with a common censoring variate C1 = · · · = Cm = C.
The relationship of regression variates to the rates of various types of failure can
be conveniently estimated in such models using a simple extension of results sum-
marized in §2.9, as will be elaborated in Chapter 7. The interpretation of regression
parameters in such models is, however, conditional on the evolving counting process
data for the set of correlated failure times given covariates, and hence can be quite
different from the marginal methods described in this chapter. The intensity mod-
eling approach also does not allow the m failure times to have separate censoring
patterns, and generalizations to allow a more general censoring variate (C1, . . . ,Cm)
may require a complex missing data approach.

However, when conditions for the marginal modeling approaches of §6.3 and
§6.5 and counting process intensity modeling are both met the two methods can each
provide powerful insight into regression influences, and failure time dependencies,
and they should be regarded as both being useful and substantially complementary.
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6.7 Women’s Health Initiative Hormone Therapy Illustration

Consider again the WHI randomized controlled hormone therapy trials introduced in
§1.7.3. Univariate (marginal single outcome) analyses for multiple clinical outcomes
from both the estrogens alone (CEE) trial, and from the combined estrogens and
progestin (CEE + MPA) trial were considered in §2.8, over trial intervention periods
with median of 7.2 years in the CEE trial and 5.6 years in the CEE + MPA trial,
and over extended follow-up periods with a median of about 13 years. Dual outcome
hazard ratio analyses for certain cardiovascular diseases were also considered briefly
in §5.6.

Here we present dual outcome hazard ratio analyses for pairs of some broad non-
fatal disease categories, and for these non-fatal outcomes in conjunction with death
from any cause. These analyses are presented for methodologic illustration only, and
dual outcome analyses with more specific outcomes with substantive interpretation
will be presented elsewhere.

The non-fatal outcomes considered are all CVD (earliest cardiovascular disease
event), all Cancer (earliest invasive cancer, excluding non-melanoma skin cancer),
all Fracture (earliest fracture of any site), along with self-reported outcomes of dia-
betes, gallbladder disease and hypertension. Women who had experienced these later
outcomes prior to enrollment were excluded from corresponding the dual outcome
analyses.

Dual outcome hazard ratio estimates (eγ) and corresponding sandwich estimator–
based 95% CIs based on data through the hormone trial intervention phases are pre-
sented in Figure 6.1 for the CEE trial and in Figure 6.2 for the CEE + MPA trial. The
lower left of Figures 6.1 and 6.2 shows the number of participants experiencing the
dual outcome in the active and placebo groups, in addition to the intervention versus
placebo dual outcome hazard ratio estimate and 95% CI. These analyses arise from
application of (6.11) and (6.23) with baseline hazard rates stratified as baseline age
(10-year categories), prior outcome status (if appropriate), and randomization sta-
tus in the companion WHI dietary modification trial (intervention, comparison, not
randomized) described in §1.7.5. Follow-up times were from randomization to the
earliest of first relevant outcome, death, withdrawal from active follow-up or stop-
page of the trial intervention phase, whichever came first, for each outcome variable.

The upper right of Figures 6.1 and 6.2 shows the same dual outcome hazard ratio
information in the form of “platter plots.” This graphical technique, developed by
our colleague Aaron Aragaki, has intensity on the right side scale determined by the
significance level of a test of HR=1, and with areas within circles determined by the
absolute value of the logHR(γ) estimator and by the corresponding lower and upper
approximate 95% CI limits.

Figure 6.1 provides evidence for a reduction in the rate of the dual outcome of
cancer and fractures, as well as evidence for an increase in gallbladder disease with
hypertension or with total CVD, in the active CEE group during the trial interven-
tion period. Perhaps not surprisingly, since there was not a significant effect of CEE
on all-case mortality (Fig 2.2), none of the paired non-fatal outcome/total mortal-
ity outcomes showed evidence of intervention influence. Figure 6.2 does not show a
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Figure 6.1 Number of double failures (CEE-alone v placebo) and estimated dual outcome
hazard ratios (95%confidence interval) for non-overlapping non-fatal endpoints, self-reported
events, and deaths from all-causes that occurred in the WHI CEE-alone trial during the inter-
vention phase.
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significant reduction in the dual outcome of cancer and fracture with CEE + MPA,
but does provide evidence of a reduction in the risk of experiencing both cancer and
CVD during the intervention period, along with evidence for increased risk of gall-
bladder disease with hypertension or CVD, and increased risk of the dual outcome of
hypertension and CVD. Also, in spite of a lack of evidence for an influence of CEE
+ MPA on total mortality (Fig 2.2) there is an elevation in the risk of developing
hypertension and subsequently dying during the intervention period.

The dual outcome hazard ratios considered above can, for course, depend on
follow-up times (t1, t2) for the two outcomes in various ways. We relaxed the haz-
ard ratio models to allow separate values according to whether t1 < t2 or t1 ≥ t2 for
the paired non-fatal outcomes by setting x(t1, t2) = {zI(t1 < t2),zI(t1 ≥ t2)} with z,
a randomization indicator variable. It is natural to give priority to the dual outcomes
for which there was overall evidence of an intervention effect. With CEE one ob-
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Figure 6.2 Number of double failures (CEE + MPA v placebo) and estimated dual out-
come hazard ratios (95% confidence interval) for non-overlapping non-fatal endpoints, self-
reported events, and deaths from all-causes that occurred in the WHI CEE + MPA trial during
the intervention phase.
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tains HR(95% CI) of 0.71(0.39, 1.29) for the dual outcome of fracture followed by
cancer based on 18 and 26 dual outcomes in active and placebo groups, compared
to an HR(95% CI) of 0.51(0.31, 0.82) for the dual outcome cancer followed by frac-
ture based on 25 and 51 dual outcomes in the two randomization groups, with an
intervention p-value of 0.39 for comparing the two HRs. Similarly there was little
evidence of differential HRs according to which outcome occurred first for the dual
outcomes of gallbladder disease and hypertension (interaction p = 0.62) or the dual
outcomes of gallbladder disease and CVD (interaction p = 0.45). Similarly in the
CEE + MPA trial there was no evidence of dual outcome HR variation with the or-
dering of the two outcomes for cancer and CVD (interaction p = 0.41), gallbladder
disease and hypertension (interaction p = 0.53), gallbladder disease and CVD (in-
teraction p = 0.93), but the ordering may be relevant for the dual hypertension and
CVD outcome. Specifically the dual outcome HR(95% CI) for hypertension followed
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by CVD was 2.03 (1.35,3.05) versus 1.09 (0.79,1.52) for non-fatal CVD followed
by a hypertension diagnosis (interaction p = 0.02) providing possible mechanistic
insight into CEE + MPA influence on cardiovascular disease risk factors and events.
Analyses were also conducted that allowed the (upper wedge) dual outcome HRs
for paired non-fatal and total mortality outcomes to depend on time from random-
ization to non-fatal outcome, and time subsequent to non-fatal outcome by setting
x(t1, t2) = {z,zt1,z(t2− t1)}. For the nominally significant hypertension followed by
death outcome in the CEE + MPA trial a test for a value of (0,0) for the two inter-
action regression variable had a p-value of 0.50.

Of course there could be variations in dual outcome hazard ratios with its time
arguments even if the overall HR is not clearly different from unity. For example, here
there is nominally significant evidence of lower HR for the risk of diabetes followed
by fracture than for fracture followed by diabetes in both the CEE trial (interaction
p = 0.05) and CEE + MPA trial (interaction p = 0.09), providing potential insight
into biological pathways affected by these interventions.

6.8 More on Estimating Equations and Likelihood

This chapter continues our emphasis on hazard rates given covariates. With failure
time outcomes that may be correlated these methods can be viewed as aiming to ex-
tract information about treatments, exposures, or general covariate associations be-
yond that available from separate regression analysis for each failure time outcome.
We expect that most useful additional data will typically derive from the analysis of
pairwise failure time data. While multivariate response data more generally are often
modeled using marginal means and pairwise dependencies, often using generalized
estimating equations that avoid the need to specify a full data model, the fact that the
outcomes considered here are events supports an emphasis on marginal single out-
come as well as marginal dual outcome hazard rates, the latter augmenting relevant
regression association information, while additionally leading to semiparametric es-
timation of pairwise dependency with fixed or external covariates.

With a focus on single and dual outcome hazard rates one can impose an inde-
pendent censoring assumption that allows these hazard rates to be estimated using
available data. In comparison a coarsening at random assumption would presumably
entail the quite different requirement that censoring rates for a multivariate censor-
ing variate depend only on observable aspects of corresponding failure and covariate
data. This assumption evidently has implications for marginal hazard rates for di-
mensions higher than single and dual outcomes.

The estimating equation procedure described here for single and dual outcomes
under independent censoring are conceptually and computationally fairly simple. It
can be viewed as an advantage that modeled regression variables can be disassociated
for the single and dual outcomes for ease of calculation and interpretation, with mod-
eling inaccuracies for some such hazard rates having little influence on inferences for
the other modeled hazard rates. Corresponding disadvantages include the lack of a
likelihood framework for simulation evaluation of proposed estimation procedures if
the modeled single and dual hazard rates are not consistent with some overarching
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probability model, and lack of much study to date of the efficiency of the proposed
single and dual outcome hazard rate estimation procedures.

Experience with the methods of this chapter to explore how to best use marginal
double failure hazard rate analyses to augment findings from marginal single failure
(i.e., univariate) hazard rate analyses in this type of setting will be needed in up-
coming years. Note that use of the defined time-dependent covariate feature in (6.11)
and (6.23) in a randomized controlled setting of this type can be used to compare
marginal double failure HRs according to which of the two outcomes occurs first, and
for non-fatal outcomes followed by death, to examine double failure HRs in relation
to time from randomization to non-fatal outcome, and time from non-fatal outcome
to death, while retaining the intention-to-treat interpretation for HR estimates.

BIBLIOGRAPHIC NOTES

The Dabrowska generalization in §6.2 was alluded to in Dabrowska (1988) and Gill
(1994), and more explicitly by Prentice and Zhao (2018), where simulations were
presented and dependency estimators were considered. The representation leading
to the higher dimensional Volterra estimator was noted in Kalbfleisch and Prentice
(2002, Chapter 10).

Much of the material of §6.3–6.5 has recently been assembled to provide a mea-
sure of completeness to the marginal modeling approach emphasized in this mono-
graph. The m-dimensional Clayton–Oakes model (6.19) was presented in Prentice
(2016), where the reproductive property leading to (6.20) was given in a more general
form. The special case (6.21) is novel, and may provide a convenient framework for
estimation, for example in genetic epidemiology family study contexts. The methods
of §6.3 were given in a rigorous fashion in Spiekerman and Lin (1998), which build
upon earlier work by Wei et al. (1989), Lee, Wei, Amato, and Leurgans (1992) and
Lin (1994). The methods of §6.5 have only recently been proposed by the present au-
thors (Prentice & Zhao, 2019) where additional detail is provided on the asymptotic
distribution theory developments sketched in §6.3 and §6.5.

EXERCISES AND COMPLEMENTS

Exercise 6.1

For the special case m = 4, derive an explicit expression for the joint survivor func-
tion F , where F(t1, t2, t3, t4) = P(T1 > t1,T2 > t2,T3 > t3,T4 > t4) in terms of single,
double, triple and quadruple failure hazard rates using (6.6). Provide a justification
for this expression when the failure time variates may include continuous compo-
nents.

Exercise 6.2

Show that (6.15) follows from (6.12) thereby showing that the left side of (6.12) is in
the form of the sum of stochastic integrals with respect to zero mean processes under
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(6.11) at β = β0. Similarly show that (6.27) follows from (6.24) thereby showing
the left side of (6.24) to be the sum of stochastic integrals with respect to zero mean
processes under (6.23) at γ = γ0.

Exercise 6.3

Derive a general expression for F0 in (6.19) in terms of marginal survivor functions of
j or fewer of the failure time variates ( j = 1, . . . ,m) upon assuming that all marginal
survival probabilities among j+1, . . . ,m variates adhere to a Clayton–Oakes model
of the form (6.19) with the same θ value. Does (6.20) follow from your more general
result if j = 2?

Exercise 6.4

Develop a likelihood-based estimation procedure under Cox models for the standard-
ized variates V1, . . . ,Vm in §6.3 and the copula model (6.19) assuming the baseline
marginal hazard rates for each of T1, . . .Tm given Z are specified parametrically. Can
you extend this procedure to include unspecified baseline marginal hazard rates with
Breslow-type empirical estimators?

Exercise 6.5

Write expressions for estimators of average cross ratios, and average concor-
dance rates of the type shown in §4.6.3 for failure times Th and Tj given
{th, t j, ;Z(0, . . . , th,0, . . . ,0, t j,0, . . . ,0} under (6.11) and (6.23). Are assumptions
about marginal single and double failure hazard rates other than those for Th and
Tj needed for these estimators to have good behavior? What conditions on the bi-
variate survivor function for Th and Tj given their corresponding (fixed or external)
covariate histories may be needed for (6.11) and (6.23) to simultaneously hold?

Exercise 6.6

Consider the platter plots of Figures 6.1 and 6.2. Describe potential insights into
health risks and benefits that may be derived from these analyses, and from related
analyses using time-dependent hazard ratio features of (6.11) and (6.23), which may
not be apparent from marginal single failure analyses alone. Develop an estimation
procedure for comparing marginal double failure HRs between CEE and CEE +
MPA and discuss possible issues with the interpretation of this comparison.
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7.1 Introduction

We now provide additional attention to an important class of multivariate failure
time data analysis contexts where individual study subjects may continue follow-
up beyond a first failure to second and subsequent failures on the same time axis.
Moreover, such failures may be of the same or different types. The “point process”
of failure times for an individual may be right censored with censoring rates inde-
pendent of the individual’s preceding failure time history, or censoring rates may be
more complex. Furthermore, there could be multiple failure time axes for each study
subject, with the possibility of multiple failure times and multiple failure types, for
each. We will focus attention on settings in which there tends to be rather few fail-
ures per individual, with asymptotic distribution theory that applies as the number of
study subjects becomes large.

One can view the methods discussed in the chapter as primarily elucidating those
of preceding chapters. The extensions will involve the modeling and estimation of
various types of failure rates that differ in their extent of conditioning on the in-
dividual’s prior failure history. The counting process intensity modeling approach
described in Chapter 2 conditions at any follow-up time t on the individual’s entire
prior history of failures. As such intensity models can allow right censoring rates to

143
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depend in a complex fashion on this preceding history, provided failure rates at any
follow-up time are independent of prior censoring information for the study cohort
given the prior failure histories and the prior covariate histories. The interpretation
of the associated regression parameters may be complicated by the conditioning on
the individual’s prior failure time history. Marginal models for the successive failure
times on a study subject may often have a useful “population averaged” interpreta-
tion for associated regression parameters, but apply under a more restrictive set of
censoring requirements. Furthermore, there may be additional useful regression in-
formation from marginal hazard rate models for composite outcomes, where two or
more failure times on an individual are simultaneously considered. These latter anal-
yses may be of interest, for example, for the joint occurrence of recurrent events of
different types.

The presentation here mainly focuses on the estimation of regression associations
for relative failure rates. In many applications absolute failure rates, and such related
quantities as the mean number of failures in a specified follow-up period, may be of
central interest. Assumptions and estimation procedures for these parameters will be
described briefly in §7.6.

The intensity process and marginal hazard rate modeling approaches are both
quite powerful and useful for identifying and elucidating regression and failure rate
associations. Moreover these approaches can be regarded as largely complementary,
with marginal hazard rates providing insights into relationships between covariate
histories and failure rates in the overall study population, with counting process in-
tensity analyses valuable for elucidating pathways and mechanisms for regression
associations with failure rates, after accounting for the evolving prior failure time
experience for the individual study subject.

7.2 Intensity Process Modeling on a Single Failure Time Axis

7.2.1 Counting process intensity modeling and estimation

Consider a cohort of n study subjects, and now denote failure times relative to a
defined time origin (t = 0) for the ith individual by 0 < Ti1 < Ti2 < · · · . Suppose that
this “point process” of failures is subject to right censoring during cohort follow-up.
One can define a counting process Ni and an “at-risk” process Yi for the ith individual,
i = 1, . . . ,n such that Ni has right-continuous sample paths and Ni(∆t) ≥ 1 if one or
more failures is observed on the ith individual at time t and Ni(∆t) = 0 otherwise, and
Yi has left-continuous sample paths such that Yi(t) = 1 if the ith individual is under
active follow-up to observe failure occurrence at time t and Yi(t) = 0 otherwise.

The failure intensity process Λi for the ith individual is defined by

Λi(dt) = E{Ni(dt);Ht}

for t ≥ 0, where Ht is the collective counting, at risk, and covariate histories for the
cohort prior to time t. It is often assumed that the probability of two or more failures
in [t, t+dt] approaches zero as dt→ 0 but here we retain the possibility of tied failure
times on individual study subjects, as in §2.9. An independent censoring requirement
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implies that
Λi(dt) = Yi(t)Λ[dt;{N j(t−),Z j(t)}, j = 1, . . . ,n], (7.1)

for all (i, t), where Λ without a subscript denotes failure rate, and as usual Z j(t) de-
notes a covariate history for the jth study subject prior to time t. Note that (7.1) may
hold even if censoring rates depend on the prior counting process history for other
cohort members. Typically, it will be natural to make the slightly stronger modeling
assumption

Λi(dt) = Yi(t)Λ{dt;Ni(t−),Zi(t)}. (7.2)

all (i, t), in which case the failure intensity for subject i depends only on that indi-
vidual’s preceding counting and covariate histories. The further, more substantial,
modeling specification

Λi(dt) = Yi(t)Λ0(dt)exp{xi(t)β}, (7.3)

gives the intensity model (2.15) considered in §2.9, where asymptotic distribu-
tion theory appropriate to recurrent event data was sketched. In (7.3) xi(t) =
{xi1(t),xi2(t), . . .} is a fixed-length regression vector with corresponding (hazard ra-
tio) parameter β =(β1,β2, . . .)

′. The parametric hazard ratio factor, exp{xi(t)β} aims
to fully capture the ith subject’s failure rate dependence on that individual’s preced-
ing covariate history, as well as on the number and timing of the subject’s preceding
failures. To do so may pose a considerable modeling challenge. Furthermore, to apply
the partial likelihood estimators solving (2.16) and (2.19) for (β ,Λ0) the regression
model should include all aspects of the prior counting and covariate processes that
are needed to justify the model specifications (7.2) and (7.3).

If these modeling challenges have been met then the solutions (β̂ , Λ̂0) to (2.16)
and (2.19) provide a valuable approach to recurrent event regression data analysis.
The powerful martingale convergence results mentioned in Chapter 2 require only
modest regularity and stability conditions that ensure that data pertinent to each pa-
rameter accumulates in an orderly fashion as sample size becomes large, and to en-
sure that the influence of any specific individual’s data on the estimation becomes
trivial as n→ ∞. Note that the discrete form of the covariation process for the es-
timating function U(β , t) as given in §2.9, will be required for consistent variance
estimation if the intensity model incorporates tied failure times.

As noted in Andersen and Gill (1982) these estimation procedures extend readily
if the baseline failure rate Λ0 is allowed to differ arbitrarily among a finite number of
baseline strata. This is undoubtedly the case also if a finite number of time-dependent
strata s = s{t;N(t−),Z(t)} are defined, and the failure rate in (7.3) is modeled as

Λ{dt;N(t−),Z(t)}= Λ0s(dt)exp{x(t)β}, (7.4)

for s = 1,2, . . ., subject to the condition that a non-zero fraction of failures accrue to
each stratum at every t > 0 as n→∞. Note that the subscript i has been dropped from
(7.4) for notational convenience.

For example, if s = N(t−)+ 1, and x(t) doesn’t depend on N(t−), then in each
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stratum (7.4) has the form of a stratified inhomogeneous Poisson process that is mod-
ulated by covariates via the hazard ratio factor exp{x(t)β}. With this same stratifica-
tion one can alternatively consider a class of models

Λ{dt;N(t−),Z(t)}= Λ0s(t−TN(t−))exp{x(t)β}, (7.5)

which expresses the failure rate as an unspecified function of time since the individ-
ual’s most recent failure, with TN(t−) = 0 if N(t−) = 0. This model can be regarded
as a stratified semiparametric renewal model that is modulated by covariates through
its exponential factor.

Partial likelihood–based estimating procedures apply to data arising from (7.4)
quite generally, and under (7.5) also if the stratification is at least as fine as s =
N(t−)+1 so that individuals contribute at most once to the risk set at time t−TN(t−)
from the subject’s immediately preceding failure, in each stratum. The estimating
equations for (β ,Λ0) under (7.4) or (7.5) are then given by (2.16), augmented by a
summation over strata, and (2.19) for each stratum, with appropriate specifications of
failures and risk sets in each stratum. It follows that these models can be applied using
standard Cox model software simply by regarding each failure period for a study
subject as if it were a separate observation. The “at-risk” period for the ( j + 1)st
failure on individual i begins immediately following the jth failure (or zero) and
extends to the earlier of the jth failure or censoring under (7.4), while that under (7.5)
extends from zero to the earlier of the gap time to the j+1th failure or censoring. The
hazard ratio function in (7.4) or (7.5) can be allowed to depend on aspects of the prior
failure history beyond that used to define strata via s = N(t−)+1. For example, x(t)
may include a component equal to the length of time from the immediately preceding
failure in order to include a renewal component to (7.4), or may include a component
equal to the subject’s total follow-up duration in (7.5). As another example, x(t) in
(7.4) or (7.5) could include interactions of a basic model regression vector with N(t−)
to allow separate regression parameters for each value 0,1,2, . . . for N(t−).

7.2.2 Bladder tumor recurrence illustration

Table 1.2 in §1.7.4 lists some data from a Veterans Administration randomized trial
of thiotepa versus placebo for reducing bladder tumor recurrence risk. There were 38
patients assigned to thiotepa at 48 patients assigned to placebo, with a total 45 and
87 post-randomization recurrences respectively over a follow-up period that averaged
about 31 months. There was grouping of follow-up times into months, yielding some
tied recurrence times among patients, but ties were not so common as to have much
influence on the interpretation of regression parameter estimates. Following analyses
described in Kalbfleisch and Prentice (2002, pp. 291–299) we first note that an over-
simplified model (7.3) with a single stratum and with time-independent regression
vector comprised of a treatment indicator variable (x1), a variable (x2) equal to the
number of initial tumors (that were each removed at baseline), and a variable (x3)
equal to the size in centimeters of the patient’s largest baseline tumor. The partial
likelihood estimator solving (2.16) then gives β̂1 = −0.524 with estimated standard
error of 0.187, and a logrank significance level p = 0.005 for testing β1 = 0. The
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corresponding coefficient (estimated standard deviation) for the other two regres-
sion variables were 0.201(0.044) and −0.040(0.065). At face value these analyses
suggest a benefit for treatment with recurrence rate reduced by an estimated factor
exp(−0.524) = 0.59, with higher recurrence rates among patients having a larger
number of tumors at baseline.

This simple model (7.3) implicitly assumes that recurrence rates do not depend
on the patient’s post-randomization history of recurrence. Relaxing the regression
model to include time-dependent indicator variables for one, two, three, or four
or more, post-randomization recurrences gives a more flexible model. The partial
likelihood estimators (estimated standard error) of the treatment indicator is then
−0.301(0.195) with significance level of p = 0.12 for testing β1 = 0. The regres-
sion coefficient here estimates the log-hazard ratio for thiotepa use among patients
who have experienced the same number of post-randomization recurrences. The four
time-dependent regression variables each have strongly positive regression coeffi-
cients, and a partial likelihood ratio test that these coefficients are simultaneously
equal to zero has value 37.76, which is very extreme in relation to a χ2

4 distribu-
tion. Dropping these time-dependent indicator variables, while retaining the origi-
nal three regression variables in a model (7.4) that has time-dependent stratification
s = N(t−)+1 gives a more flexible modeling provision for the dependencies of the
recurrence rate on the number of prior post-randomization recurrences. This analysis
yields regression parameter estimates (estimated standard errors) of −0.324 (0.211),
0.118 (0.052),−0.007 (0.072) for the original three regression variables, giving only
modest evidence for treatment benefit (p = 0.12) during follow-up, after accounting
for the patient’s number of prior recurrences.

One can also use Cox models of the form (2.5) to examine how the (univari-
ate) censoring rates depend on the history of bladder tumor recurrences during trial
follow-up. A model with the same three regression variables as in the recurrence
analyses just described, along with a time-dependent indicator variable for whether
or not the patient experienced a recurrence in the preceding month shows lower cen-
soring rates among patients having a large number of pre-randomization tumors, as
well as higher censoring rates among patients having a recurrence during the im-
mediately preceding month during follow-up, the latter with coefficient (estimated
standard error) of 1.017 (0.375). This analysis suggests that a careful modeling of
the dependence of recurrence intensity ratio on post-randomization recurrence his-
tory may be necessary to justify an independent censoring assumption in this clinical
trial. See Kalbfleisch and Prentice (2002, pp. 291–299) for additional analyses of
these data, including examination of dependence of recurrence rate on gap time from
the patient’s most recent recurrence, and on an indicator for whether or not there was
a recurrence within the previous month. These analyses give an estimated treatment
hazard ratio of about 0.70 for treatment with significance level of p = 0.05 for test-
ing β1 = 0. Some application of accelerated failure time models of the form (2.20),
rather than Cox models, is also included in these further analyses. These intensity
rate analyses may be of interest to patients, for example to inform their recurrence
risk compared to other patients who are at the same length of time from randomiza-
tion with the same number of post-randomization recurrences, if assigned to thiotepa
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versus placebo. The dependent censorship mentioned above may be able to accom-
modated by the inclusion of inverse censoring probability weights in the estimating
functions for the recurrence ratio regression parameter, as will be elaborated in a
more general context in §8.2.

However, these analyses will not provide a summary assessment of the utility
of thiotepa for reducing recurrence risk in this patient population. Marginal hazard
rate estimation for recurrent events provide the potential for estimating a summary
treatment occurrence ratio that averages appropriately over the patient’s preceding
counting process history. These models will be discussed in §7.3.

7.2.3 Intensity modeling with multiple failure types

Suppose that failure time variates 0 < Ti1 < Ti2 < · · · are each accompanied by a
failure type variate, taking values in {1,2, . . . ,K} as in Chapter 6. Let mi(Ti j) denote
the failure type for Ti j, j = 1,2, . . . with all failures at a specific follow-up time t
for the ith individual required to be of the same type. One can define a failure type
process Mi having right-continuous sample paths for the ith subject so that

Mi(dt) =

{
k if Ni(dt)> 0 and mi(t) = k
0 otherwise

that equals the failure type of the most recent failure on this subject, or zero prior
to a first failure, jumping to the new failure type whenever a failure occurs for the
individual. The counting process intensity Λik for a type k failure at follow-up time t
is given by

Λik(dt) = E{Ni(dt) and Mi(dt) = k;Ht}
where Ht has been augmented to include counting, at-risk and covariate histories, as
well as failure type histories for the study cohort prior to time t. In this notation the
failure type process Mi(t) =

∫ t
0 Mi(ds) is a right-continuous step function that takes

value equal to the sum of failure types prior to time t, at any follow-up time t, for
the ith individual. Hence Mi(t) complements Ni(t) by providing the entire history of
failure types for failures at or before time t on the ith study subject. Assumptions like
(7.2) and (7.3) but with failure type histories included the conditioning event can be
entertained, along with Cox-type models (again dropping subscript i)

Λk{dt;N(t−),M(t−),Z(t)}= Γk(dt)exp{xk(t)β} (7.6)

for each (t,k), with Γk an unspecified failure rate for failure type k, and with re-
gression vector specifications that can, for example, allow a distinct hazard ratio
regression parameter for each k = 1, . . . ,K through the inclusion of interaction terms
with N(t−) in xk(t). The model (7.6) is formally the same as model (6.11), but the
conditioning event in (7.6) includes the number and timing of prior failures on the
study subject along with the failure type for each such failure, affecting the interpre-
tation of the regression parameter β . Nevertheless, with suitable regression modeling
{β ,Γ1,Γ2, . . .} can be estimated using partial likelihood and martingale procedures
as in §2.9.
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As in the preceding subsection the baseline rates in (7.6) can be further stratified,
with little complication for parameter estimation. For example one could stratify Γk
in (7.6) on the preceding number of type k failures for the individual along the lines
of (7.4), or with this same stratification could allow the time argument in Γk to be
time from the most recent type k failure, or time from the most recent failure of
any type for the study subject. Clearly there are a plethora of intensity models that
can be entertained, with stratified Poisson and stratified renewal processes that are
modulated by covariates, sometimes having particular appeal. Some care needs to
be taken in defining detailed stratification in such models for reliable corresponding
baseline hazard estimation. However for regression parameter estimation in large
cohorts where only a small fraction of study subjects experience failures of any of
the study types, one can expect to have little efficiency loss for β estimation, as a
result of baseline hazard rate stratification that is somewhat finer than necessary.

Intensity modeling approaches are not suited to censoring patterns that differ
among the failure times on an individual. For example, the first but not subsequent
outcomes were centrally adjudicated by expert committees for certain clinical out-
comes in the Women’s Health Initiative, for reasons of cost. Furthermore, different
types of outcomes, such as cancers, cardiovascular disease and diabetes had quite
different outcome ascertainment and adjudication processes that could lead to dif-
fering type-specific censoring. Along the same lines, the ascertainment of mortality
outcomes had National Death Index matching as a source of information, beyond that
arising from internal outcomes data collection efforts in this research program. Im-
portantly, the defining feature of intensity models for recurrent events is the inclusion
of all prior counting, “at-risk,” and covariate data in the conditioning event for the
hazard rate. In comparison, marginal hazard rate methods may allow estimation of
simpler regression associations with failure rates that pertain to the study population
as a whole, averaging over individual-level prior failure histories.

7.3 Marginal Failure Rate Estimation with Recurrent Events

In §6.3 methods for the estimation of regression associations based on marginal fail-
ure rate models were considered. The methods described there can be applied to
recurrent events of a single or multiple types on a single failure time axis, as well
as to recurrent events of one or more types on multiple unrelated failure time axes.
There are some necessary details for modeling recurrent event data in the notation of
§6.3: Since marginal single failure hazard rates (6.10) in this context do not condi-
tion, at follow-up time t, on the individual’s preceding failure time and failure type
histories one can analyze the recurrent event data separately for each of the K failure
types, using (6.11) with modeled covariate dependent only on the prior covariate his-
tory. Hence one can consider a specific failure type (k) and define Ti1 to be follow-up
time to first type k recurrence, Ti2 to be time to second type k recurrence,. . .. One can
allow Ti j to have multiplicity greater than one to accommodate tied recurrence times
of a specific type on individual i.

With these designations the methods of 6.3 apply to each failure type k= 1, . . . ,K,
and are readily extended to the failure types combined, while allowing failures of dif-
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ferent types to fall on unrelated time axes. Note that in spite of a common model for-
mat in (7.3) and (6.11), the associated regression parameters may have quite different
interpretations because of the different conditioning events; specifically the need to
model failure rate dependencies on the individual’s prior counting process history in
(7.3) but not (6.11). Because of this simplification in the marginal single failure haz-
ard rate modeling approach, there is a need for a sandwich-type variance estimator for
β̂ , rather than the second derivative–based estimator from the log-partial likelihood
that applies under well-specified intensity models (without tied failure times). Also
there are some related constraints on the censoring processes that can be allowed.

This estimation procedure, using (6.12), has been criticized in the recurrent event
context since a working independence model was used in estimating equation devel-
opment (e.g., Spiekerman & Lin, 1998). Such a working assumption is not a fit to
recurrent events on a study subject, since the time to the second event is necessarily
larger than the time to the first, the time to the third event is necessarily larger than the
time to the second, and so forth. However, this working model was used only as a tool
to develop the estimation equation (6.12) for β , and distribution theory for the solu-
tion β̂ to (6.12), and the related estimators Γ̂1, Γ̂2, . . . made no use of this assumption,
and is appropriate under the specified marginal single failure rate regression models.
Hence these estimators can be expected to behave well for the estimation of regres-
sion effects on marginal hazard rates, at least under the random censorship model
discussed in §6.1, and under the assumed model form for the marginal hazard rates.
This random censorship model allows censoring times to differ among the failure
times on an individual, allowing the issue mentioned above where there are differ-
ing censoring schemes for different failure types to be addressed, but does not allow
censoring times to depend on the individual’s preceding failure times during cohort
follow-up, given pertinent covariate histories. Hence these methods may not imme-
diately apply to the bladder tumor recurrences data discussed above, since censoring
rates for the point process of events for the ith patient showed some dependence, for
example on the length of time from the patient’s recent recurrence.

In that context one may need to include some aspect of the patient’s post-
randomization recurrence history in the conditioning event for the rate of the next
recurrence, complicating the parameter interpretation. The distribution theory devel-
oped in Lin et al. (2000) for recurrent events (of a single type) allows the flexibility
to include aspects of the previous counting process history, as necessary, to justify an
independent censoring assumption. An alternate approach could retain the marginal
hazard rate models while introducing inverse non-censoring probability weights into
each term of the summation (6.12). This later approach would retain the simple re-
gression association interpretation, though the intent-to-treat property of the test for
zero coefficient for the treatment indicator in the bladder tumor clinical trial would
be lost if the censoring rates differs by treatment group. Inverse censoring probability
weighted methods will be elaborated in Chapter 8.
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7.4 Single and Double Failure Rate Models for Recurrent Events

As described in §6.5 one may be able to extract additional useful regression informa-
tion from multivariate failure time outcome data by examining not just single failure
hazard rates, but also double failure hazard rates. The double failure hazard rate anal-
yses may be of interest here primarily for events of different types. A marginal dou-
ble failure hazard rate model (6.23) leads to (6.24) as estimating equation for double
failure hazard ratio parameters, which can be used in conjunction with estimating
equation (6.12) for single failure hazard ratio parameters, even though the regression
models for single and double failure hazard rates may not be fully compatible. The
joint asymptotic Gaussian distribution for these regression parameters will obtain re-
gardless of the nature of trivariate and higher-order hazard rate dependencies on their
pertinent regression histories, and either of the single or double failure regression pa-
rameters will be consistently estimated by the solutions to (6.12) or (6.24) under the
validity of the corresponding specific regression model and related independent cen-
soring. If single and double failure hazard rates have both been well modeled, then
quantities that combine the two, such as marginal bivariate survival probability esti-
mators, and their associated average cross ratio and average concordance measures
with fixed or external covariates, can also be expected to be well estimated.

7.5 WHI Dietary Modification Trial Illustration

In §4.7 an illustration was presented from the Women’s Health Initiative Dietary
Modification Trial (see §1.7). Nominally significant evidence of benefit of the low-
fat dietary pattern intervention emerged for the composite outcome of breast cancer
incidence followed by death from any cause. Corresponding marginal intention-to-
treat comparisons for breast cancer incidence and death from any cause, were also in
the favorable direction but neither was statistically significant.

This trial context was also the setting for a recent report on diabetes incidence
in relation to dietary intervention (Howard et al., 2018) . This report illustrates the
usefulness of marginal hazard rate regression analysis for a second event in a setting
with multiple types of “failure” events on a common failure time axis.

Although diabetes was not a designated outcome in the trial protocol, information
on the use of “pills for diabetes” or “insulin shots for diabetes” were collected twice
annually during the trial intervention period and beyond, through medical update
questionnaire. These self-reports were found to be in reasonably good agreement
with periodic medication inventories on study participants. A total of 45,579 women
were without prevalent diabetes at baseline.

Clinical practice dictates the use of diabetes pills as a first line treatment for di-
abetes, changing to insulin injections if the disease progresses. Cox-type regression
models were applied to these data, with baseline rates stratified on age at enrollment
and randomization status in the companion WHI hormone therapy trial. An anal-
ysis of time from randomization to initiation of diabetes pills (T1) gives a hazard
ratio estimate (95% confidence interval) for the low-fat dietary pattern intervention
of 0.95(0.88,1.02) over the 8.5 year average intervention period with p = 0.13. An
intensity process model, like (7.5), was applied to the post-diabetes pills follow-up
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to time-to-insulin injection (T2). This intensity was modeled to allow a distinct pa-
rameter for the intervention hazard ratio, and a baseline hazard rate that retained
the original stratification, but also stratified on time-from-randomization to first use
of oral diabetes agents (in quartiles). The intervention hazard ratio estimate (95%
CI) from this analysis was 0.82(0.64,1.04) with a significance level of 0.10, pro-
viding some modest evidence that the intervention slowed progression to the more
serious type of disease requiring insulin injections, after controlling for time from
randomization to the initiation of diabetes pills. A marginal hazard rate analysis of
the (T1,T2) data was also carried out with the same stratification as described above
for T1, and with distinct baseline rates and intervention group regression parameters
for the two failure time variates. The marginal hazard rate analysis for T1 is the same
as was described above, whereas the marginal hazard rate analysis for time from ran-
domization to diabetes requiring insulin injections (T2) gave intervention hazard ra-
tio estimate (95% CI) of 0.74(0.59,0.94) with intention-to-treat significance level of
0.01. A random censorship assumption, in fact with C1 ≡C2, is entirely appropriate
in this context. Note that one obtains considerably stronger evidence of intervention
benefit for time to diabetes requiring insulin than is the case from analysis of either
of its component parts, namely, time from randomization to diabetes pills and time
from diabetes pills to insulin injections. Moreover, this stronger result arises from
a comparison between randomized groups, whereas the time from pills to insulin
component of the intensity modeling contrasts groups that may differ in their dis-
tributions of time-to-diabetes pills, complicating the associated regression parameter
interpretation. The double failure hazard ratio for treatment in this context provides
potential for additional perspective beyond that for the two single failure hazard ra-
tio analyses. The estimated double failure hazard ratio (95% confidence interval) for
intervention versus comparison group here is nearly identical to that for T2.

Over a longer-term follow-up that included a substantial post-intervention pe-
riod, and a median total follow-up of 17.3 years, the T1 estimated hazard ratio (95%
CI) was 0.96 (0.91, 1.00) with significance level of p = 0.07, while that for T2 was
0.88 (0.78, 0.99) with p = 0.04. The plausibility of an intervention benefit was
enhanced in this study by (nominally) significant lower T2 marginal hazard ratios
among women with relatively large waist circumference and among women having
relatively high metabolic syndrome score at baseline and by favorable intervention
group changes over time in blood glucose levels in a 5.8% random subsample of the
cohort.

Individual study participants may alter their need for diabetes treatment multiple
times during trial follow-up. The methods of §7.5 provide the basis for additional
analyses utilizing a fuller data set that includes a variable number of diabetes treat-
ment epochs within the study follow-up period.

7.6 Absolute Failure Rates and Mean Models for Recurrent Events

Our presentation of marginal single failure hazard rate models (6.11) for recurrent
events has so far focused primarily on the estimation of hazard ratio parameters (β ).
The absolute rates Γk(dt)exp{xk(t)β} and cumulative rates

∫ t
0 Γk(ds)exp{xk(s)β}
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over specified follow-up periods (0, t] may also be of direct interest in applications.
Specifically, if the covariate Z is time-independent, or is time-varying but external
to the failure process, then

µk{t;Z(τ)}=
∫

τ

0
Γk(ds)exp{xk(s)β} (7.7)

is the mean number of type k events over [0,τ] for an individual with covariate his-
tory Z. In (7.7) τ may be the maximum follow-up time for the study, and it has
been assumed that failure rates at any time t are not dependent on covariate val-
ues {Z(s),s > t}. The estimated number of type k failures by time t, µ̂k{t,Z(t)} =∫ t

0 Γ̂k(ds)exp{xk(s)β̂}, in relation to study subject characteristics or exposures in-
cluded in Z is likely to be of additional interest in a range of settings, particularly if
the mean number of failures tends to be fairly large.

For example, in an automobile manufacturing context, failures may be defined
by warranty claims of various types, while z(0) includes details, such as calendar
date and place of manufacturing, and z(t), t > 0 includes details of the environment
in which the vehicle was placed in service. One could even imagine separate time
axes for duration of time since placed in service (t = 0), and distance driven since
placement in service, with double failure hazard rates of the same or of different
types modeling warranty claims in relation to composite outcomes on the two axes.

Lin et al. (2000) provide a rigorous justification of the estimation of marginal
failure rate functions, and for cumulative marginal rate functions like (7.7) that have
a mean number of failures interpretation with external covariates. The estimators, as
given in §6.3, had good practical performance in their simulation studies, along with
attractive interpretation. Lin and colleagues also extended the class of regression pa-
rameter estimating functions by including a non-negative, bounded weight function
Q(β̂ , t) that is monotone in t, and almost surely convergent to a fixed function q(t)
for t ∈ [0,τ] in the estimating function for β .

Cook and Lawless (2007, pp. 256–260) provide some interesting analyses of the
bladder tumor recurrence data using mean models while acknowledging the discrete
time aspect of the recurrence time data in Table 1.2. Their analyses indicate a lower
tumor recurrence rate in the thiotepa group compared to the placebo group, and a
higher tumor recurrence rate among patients having a larger number of tumors prior
to randomization, They also go on to describe (pp. 268–273) how inverse probabil-
ity weights in the recurrence rate estimating functions can be used to accommodate
censoring that may depend on the patient’s evolving history of recurrences.

7.7 Perspective on Regression Modeling via Intensities and Marginal Models

Marginal modeling and intensity process modeling provide a two-pronged approach
to the elucidation of failure rate and regression associations with recurrent event data.
Marginal models for single and double failure hazard rates can offer a rather direct
assessment of the relationship of treatments or exposures encoded in a covariate his-
tory to readily interpretable event rates. One can view these marginal failure rates at a
follow-up time t as averaging over the prior post-enrollment (t > 0) history of failure
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events for the study subject and, as such, they do not allow censoring rates to depend
on this prior history. Censoring rates can, however, differ among failure times for a
study subject, a feature of the marginal modeling approach that may be particularly
valuable if there are events of multiple types.

Intensity models, on the other hand, condition on the prior history of failure times
and types for the individual, as well as the prior covariate history, and hence corre-
sponding regression associations are to be thought of conditionally on such a com-
posite history. The estimation of overall regression associations may need to combine
in some fashion the intensity model associations with those for evolving regression
history associations with the prior failure time and type history. On the other hand,
if there is a single censoring process for all failure types considered, then intensity
model estimation as outlined above apply even if censoring rates at follow-up time t
depend on the individual’s preceding failure time and type history in a complex fash-
ion. Hence, considerable ingenuity on the part of the data analyst may be required
for reliable and interpretable regression estimation with recurrent event data having
complex outcome ascertainment and censoring schemes. The majority of applica-
tions, however, will likely benefit from the inclusion of analyses of marginal single
failure hazard rate models or related mean models, with recurrent event data.

BIBLIOGRAPHIC NOTES

There is a large literature on the modeling of recurrent event data. Cook and Lawless
(2007) provide an excellent account of the literature through 2007, with considerable
emphasis on both counting process intensity models and marginal recurrence rate
models. Their coverage includes detailed discussion of specialized intensity models
having certain forms of dependence of rates on preceding counting process history.
References to early literature on the modeling and estimation of single recurrent
event processes (single individuals in the present terminology), where considerably
stronger assumptions are typically needed, can also be found there.

Other volumes dealing with modeling and analysis of recurrent failure times
include Andersen et al. (1993), Kalbfleisch and Prentice (2002), Nelson (2003),
Hougaard (2000), and Aalen et al. (2010). Several of these books give extensive
information on the application of certain frailty models, and to certain types of mul-
tistage transition models. These latter models are discussed in considerable detail in
a recent book on multistate modeling by Cook and Lawless (2018).

The marginal modeling approach to recurrent failure time regression data has
been championed by L. J. Wei, D. Y. Lin, and colleagues over the past 15–20 years,
with Wei et al. (1989), Lin (1994), Lin, Sun, and Ying (1999), and especially Lin et al.
(2000) standing out as noteworthy contributions. Additional major contributions to
this modeling approach include Lawless and Nadeau (1995), Lawless, Nadeau, and
Cook (1997), and Pepe and Cai (1993). Our discussion of marginal double failure,
along with marginal single failure, hazard rate models in the recurrent event setting
is novel.
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EXERCISES AND COMPLEMENTS

Exercise 7.1

Suppose that recurrent events on a single failure time axis arise from a frailty-type
model model (§4.4) with counting process intensity, given a frailty variate W that has
a gamma distribution with mean one and variance σ2, that can be written

Λ{dt;Ht ,W}=WY (t)Λ0(dt)exp{x(t)β} (7.8)

with x(t) = x an indicator variable for a binary treatment variable. Derive an ex-
pression for the intensity process, given by E{N(dt);Ht} that is induced under cen-
sorship that is independent of the preceding counting process and W . Suppose that
an oversimplified intensity model Y (t)Λ0(dt)exp{x(t)β} is applied that fails to ac-
knowledge dependence of failure rates on the individual’s preceding counting pro-
cess history N(t−) induced from their shared frailty variable. What can be said about
estimators of β from the fitted model compared to the generating β values in (7.8)
when σ2 = 0 and where σ2 > 0. If this simplified model gives a consistent estima-
tor of β , what can be said about the corresponding partial likelihood–based variance
estimator and corresponding confidence interval coverage properties as the sample
size n→ ∞. See Lin et al. (2000) for simulations under this scenario that support
the consistency of the β -estimators that emerge, but also show a clear need for a
sandwich-type variance estimator to acknowledge the inadequacy of the simple in-
tensity model applied.

Exercise 7.2

Continuing with the above setting, suppose that the intensity model applied is relaxed
to Y (t)Λ0(dt)exp{x1(t)β1+x2(t)β2} where x1(t) is the treatment indicator as before
while x2(t) takes value one if there is a recent failure in the interval {0∨ (t− 1), t}
and value zero otherwise. Will this allowance for dependence of the failure rate on
the prior counting process history help in terms of properties of β̂ , as estimator of
β in (7.8)? See Lin et al. (2000) for simulations showing strong biases for β̂1 as
estimator of β when σ2 is large.

Exercise 7.3

Continuing with this same setting, show that the marginal hazard rate from (7.8) has
the Cox-model form

Λ̃0(t)exp{x(t)β},

for some baseline rate function Λ̃0 assuming that censoring doesn’t depend on the
value of the frailty variate W . Show that the marginal modeling approach discussed in
§7.3 will give a consistent estimator β̂ of β in (7.8) with n

1
2 (β̂−β ) having an asymp-

totic Gaussian distribution with sandwich-type variance estimator as n→ ∞? Sup-
pose, somehow, that the frailty variate values, W , in (7.8) came available. What can
you say about the efficiency of the regression parameter estimator from the marginal



156 RECURRENT EVENT DATA

hazard rate analysis, and its dependence on σ2, compared to an estimator based on
the intensity (7.8) with realized W values inserted?

Exercise 7.4

Consider the counting process intensity model (7.3) for recurrent events of a single
type. Generalize the mean parameter estimating equation development of §2.3 to this
setting to give the estimating equation (2.8) with variance estimator as given there.

Exercise 7.5

Continuing with the setting of Exercise 7.4 suppose that a model of the same form,
but with modeled regression variable excluding the individual’s preceding counting
process history obtains, and that censoring rates are independent of such counting
process history given Z. Is (2.8) an unbiased estimating equation for β? Are the con-
tributions to (2.8) at differing uncensored failure times uncorrelated? Are the contri-
butions to (2.8) from different study subjects asymptotically independent? Describe
in words why a sandwich variance formula, as elaborated in §6.3, is needed to esti-
mate the variance of β̂ solving (2.8) in these circumstances.

Exercise 7.6

Consider the bladder tumor recurrence data discussed in §7.2.2. Using counting pro-
cess intensity models (7.3) and/or marginal single failure hazard rate models of the
same form, for times to the first, second, third or fourth bladder tumor recurrence as
appropriate, provide a summary statement as to the value of thiotepa for reducing
tumor recurrence risk.
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8.1 Introduction

Previous chapters have emphasized regression methods for the analysis of multi-
variate failure time data, particularly marginal modeling methods that target single
and dual outcome hazard rates. These developments assumed that failure times arose
from the follow-up of a well-defined cohort of “individuals” who were representative
of a study population in terms of hazard rates including regression associations; that
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the elements of a multivariate failure time variate were subject only to right censor-
ship that is “independent” of failure times given the history of measured covariates,
which may be evolving over the cohort follow-up times; and that pertinent covariate
data are measured without error and are available at baseline and over each indi-
vidual’s follow-up periods. This chapter discusses methods that aim to relax these
assumptions in various ways, and to test the agreement between model assumptions
and available data.

The approaches to the extensions described here involve modeling marginal fail-
ure, censoring and covariate processes. Each section of the chapter involves new
methods that will benefit from further work to carefully develop asymptotic distribu-
tion theory, and to assess the adequacy of asymptotic approximations with samples
of moderate size.

The statistical literature on relaxing these assumptions is mostly restricted to uni-
variate failure times. Here we outline extensions of these methods for the estimation
of marginal single and double failure hazard rates. These extensions typically involve
the modeling of random processes beyond marginal single and double failure hazard
rates. Related asymptotic distribution theory can be expected to generalize from that
outlined in Chapter 6 in a fairly straightforward fashion if the failure, censoring and
covariate processes, along with other relevant data can be viewed as IID among the
study subjects. The presentation here will be brief and informal.

8.2 Dependent Censorship, Confounding and Mediation

8.2.1 Dependent censorship

Suppose, as in Chapter 6, that there are m failure time variates (T1, . . . ,Tm) subject
to right censoring by a variate (C1, . . . ,Cm) and an m-dimensional covariate Z, where
Z(t1, . . . , tm) = {z(s1, . . . ,sm);s j = 0 if t j = 0 and s j < t j if t j > 0, j = 1, . . . ,m}. In-
dependent censorship for estimating marginal single failure hazard rate regression
associations requires that lack of censoring in [0, t j) can be added to the conditioning
event given Z(0, . . . , t j,0, . . . ,0) without altering the marginal single failure hazard
rate for t j and for each j = 1, . . . ,m, for estimating of parameters in (6.11); and
lack of censoring in [0, th)× [0, t j) can be added to the conditioning event given
Z(0, . . . , th,0 . . . , t j,0 . . . ,0) without altering the marginal double failure hazard rates
(6.23) for any (th, t j) for each 1 ≤ h < j ≤ m. Depending on the reasons for, and
nature of, the censorship, one may be able to assert confidently in some settings that
these censoring conditions hold. In other settings the suitability of these assumptions
may be questionable.

To explore this topic further one can define marginal single and double censoring
hazard rates given Z that are analogous to (6.11) and (6.23) but for C j, j = 1, . . . ,m
and for (Ch,C j) for 1≤ h < j≤m, respectively. Under the independent censoring as-
sumption just mentioned for the Tj single failure hazard rates, the information Tj ≤ t j
can be added to the conditioning event without altering the marginal single censoring
hazard rates for all t j and j = 1, . . . ,m. Similarly the independent censoring assump-
tion for (Th,Tj) implies that Th ≥ th and Tj ≥ t j can be added to the conditioning
event without altering the marginal double censoring hazard rate for any (th, t j) and
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for all l ≤ h < j < m. As a partial check on needed independent censoring assump-
tions one can examine whether marginal single and double censoring hazard rates
depend on the histories of additional measured variables, given Z, perhaps using re-
gression models analogous to (6.11) and (6.23) for this purpose. Censoring hazard
rate dependence on the additional elements of these augmented covariate histories
indicate departure from independent censorship for failure hazard rates given Z. Of
course, this empirical approach can never by itself establish the appropriateness of
the independent censorship conditions in question since there may be yet further
unmeasured covariates that relate importantly to censoring rates given measured co-
variates. Rather, the appropriateness of independent censoring assumptions typically
needs to be argued from study design, and context-dependent sources of censoring,
considerations.

Suppose that one is interested in the dependence of marginal single and double
failure hazard rates on a covariate history, now denoted by Z1, but that it is necessary
to condition also on the history Z2 of other measured regression variables for an inde-
pendent censoring assumption to be plausible. There are then a couple of approaches
to estimating the regression associations of interest. First one can define marginal sin-
gle and double failure hazard rate models, given Z = (Z1,Z2), and apply the methods
of Chapter 6. Related analyses may be suitable for many applications, but the fact
that parameters for Z1 associations need to be interpreted jointly with association
parameters for the corresponding Z2 histories may complicate the inference and pre-
vent a parsimonious data summary, especially if there is a need to include interaction
times between Z1 and Z2 in failure rate models.

A second approach assumes regression models for marginal single and double
failure hazard rates given Z1 as in (6.11) and (6.23), and uses inverse non-censoring
probability weighting to adjust for censorship that would otherwise be dependent,
for parameter estimation.

More specifically, suppose that Z is composed of fixed or external covariates and
let Ω j{0, . . . ,dt j,0, . . . ,0;Z(0, . . . ,0, t j,0, . . . ,0)} denote the marginal single censor-
ing hazard rate for C j given Z, so that

Ω j{0, . . . ,0,dt j,0, . . . ,0;Z(0, . . . ,0, t j,0, . . . ,0)}
= P{C j ∈ [t j, t j +dt j);C j ≥ t j,Z(0, . . . ,0, t j,0, . . . ,0)} (8.1)

for all t j and for j = 1, . . . ,m with non-zero elements in these expressions in the jth
position only. As failure, censoring and covariate processes evolve, a study subject
will be at risk for censoring in its jth component at t j if censoring does not occur
earlier, an event having product integral probability

G j{t j;Z(0, . . . ,0, t j,0, . . . ,0)}

=
t j

∏
0
[1−Ω j{0, . . . ,0,ds j,0, . . . ,0;Z(0, . . . ,0,s j,0, . . . ,0)}]. (8.2)

Now under model (6.11) for marginal single failure hazard rates given Z1 consider
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the expectation of

[N j(ds j)−Yj(s j)
K

∑
k=1

I{M( j) = k}Γk(ds j)exp{x1k(s j)β}]

G−1
j {s j;Z(0, . . . ,0,s j,0, . . . ,0)}, (8.3)

where x1k is the modeled regression variable in (6.11), given Tj ≥ s j and Z1. Under an
independent censoring assumption given Z = (Z1,Z2) this expectation can be written
as

K

∑
k=1

I{M( j) = k}Γk{ds j;Z(0, . . . ,0,s j,0, . . . ,0)}

−
K

∑
k=1

I{M( j) = k}Γk(ds j)exp{x1k(s j)β},

where Γk{ds j;Z(0, . . . ,0,s j,0, . . . ,0)} denotes the marginal single failure hazard rate
for a type k failure given Z. Now a further expectation over Z(0, . . . ,0,s j,0, . . . ,0)
given Tj ≥ s j and Z1(0, . . . ,0,s j,0, . . . ,0) gives value zero for the expectation of (8.3)
given Tj ≥ s j and Z1(0, . . . ,0,s j,0, . . . ,0). Hence if marginal single censoring hazard
rates in (8.2) were known, one could construct zero mean processes L ji(·;β ,G j)
corresponding to Tj that take value at tk for individual i equal to

L ji(tk;β ,G j) =N ji(tk)−
K

∑
k=1

I{M( j) = k}∫ tk

0
Yji(sk)Γk(dsk)exp{x1ki(sk)β}G−1

ji {sk;Zi(0, . . . ,0,sk,0, . . . ,0)},

for each j = 1, . . . ,m and i = 1, . . . ,n. Analogous to (6.12) an estimating equation
for β could then be written as

n

∑
i=1

[
m

∑
j=1

K

∑
k=1

I{M( j) = k}
∫

τk

0
{x1ki(tk)−E1k(tk;β ,G j)}N ji(dtk)

]
= 0, (8.4)

where

E1k(tk;β ,G j) =[ n

∑
i=1

m

∑
j=1

I{M( j) = k}Yji(tk)x1ki(tk)ex1ki(tk)β G−1
ji {tk;Zi(0, . . . ,0, tk, . . . ,0)}

]/
[ n

∑
i=1

m

∑
j=1

I{M( j) = k}Yji(tk)ex1ki(tk)β G−1
ji {tk;Zi(0, . . . ,0, tk,0, . . . ,0)}

]
with non-zero argument for Zi only in the jth position.

A simple exercise shows that N ji(dtk) in (8.4) can be replaced by L ji(dtk;β ,G j),
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so that the left side of (8.4) would have the form of a stochastic integral of functions
of the data with respect to a zero mean process at the true β -value, to which asymp-
totic distribution theory analogous to that sketched in Chapter 6 would apply under
modest additional constraints on the G j processes to ensure that non-censoring prob-
abilities are strictly positive given Z, at least for some j having M( j) = k, for each
k = 1, . . . ,K, for any Z.

The unknown marginal single censoring hazard rates (8.1) and corresponding
weights G j in (8.2) can be estimated using the same type of models and methods as
for marginal single failure hazard rates in §6.3. Estimating equations for the marginal
single failure hazard ratio parameter, β , are now given by (8.4), with G replaced by
Ĝ, where Ĝ denotes the set of estimated inverse non-censoring probability weights
Ĝ j, j = 1, . . . ,m. Joint estimating functions for parameters in (8.1) for j = 1, . . . ,m
and for parameters in the marginal single failure hazard rate models

Λ0...010...0{0, . . . ,0,dt j,0, . . . ,0;Z1(0, . . . ,0, t j,0, . . . ,0)}= Γk(dt j)exp{x1k(t j)β},

with k = M( j) for each j = 1, . . . ,m are then readily specified, and asymptotic dis-
tribution theory for all model parameters can be developed under IID sampling con-
ditions, as a fairly straightforward generalization of the empirical process results
sketched in Chapter 6. Note that the marginal single censoring hazard rates (8.1) will
need to include regression variables from Z, beyond those from Z1, since indepen-
dent censorship given Z = (Z1,Z2) can be assumed, while independent censorship
given Z1 cannot.

The same data analytic options can be considered for the joint estimation of
parameters in marginal single failure hazard rate models of the form (6.11) and
marginal double failure hazard rates under models of the form (6.23) given Z1. If
censoring given the more extensive covariate process Z = (Z1,Z2) can be assumed
to be independent, but censoring given Z1 cannot, one can use the methods of Chap-
ter 6 to estimate parameters in regression models for marginal single and double
failure rates given Z, with associations between these failure hazard rates and Z1 in-
terpreted jointly with Z2. These analyses are straightforward conceptually and may
often adequately address data analytic questions of interest. Alternatively, with fixed
and external covariates, inverse non-censoring probability weighting can lead to es-
timation of marginal single and double failure hazard rates in relation to Z1 alone,
subject to the ability to adequately model and estimate marginal single and double
censoring hazard rates.

Briefly, for the latter approach, one can define marginal single censoring hazard
rates as in (8.1), and marginal double censoring hazard rates by

Ωh j{0, . . . ,0,dth,0, . . . ,0,dt j,0, . . . ,0;Z(0, . . . ,0, th,0, . . . ,0, t j,0, . . . ,0)}
= P{Ch ∈ [th, th +dth),C j ∈ [t j, t j +dt j);

Ch ≥ th,C j ≥ t j,Z(0, . . . , th,0, . . . , t j,0, . . . ,0)} (8.5)

for all (th, t j) and for all 1 ≤ h < j ≤ m with non-zero elements in the h
and j positions only. From these one can construct probabilities Gh j{th, t j;
Z(0, . . . , th,0, . . . , t j,0, . . . ,0)} for (Ch > th,C j > t j) given Z using the Péano series
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expression given in (4.2) for each (th, t j) and each 1 ≤ h < j ≤ m. If the marginal
single and double censoring hazard rates (8.1) and (8.5) were known, one could esti-
mate parameters in marginal single and double failure hazard rates using (8.4), which
involves only marginal single failure hazard rate parameters, and an analogous equa-
tion

n

∑
i=1

[ m

∑
j=1

m

∑
j=h+1

I{M(h) = g,M( j) = k}

∫
τg

0

∫
τk

0
{x1gki(tg, tk)−E1gk(tg, tk;γ,Gh j)}Nhi(dtg)N ji(dtk)

]
= 0 (8.6)

for γ estimation, where

E1gk(tg, tk;γ,Gh j) =

[ n

∑
i=1

m

∑
h=1

m

∑
j=h+1

I{M(h) = g,M( j) = k}Yhi(tg)

Yji(tk)x1gki(tg, tk)ex1gki(tg,tk)γ G−1
h j {tg, tk;Zi(0, . . . , tg,0, . . . tk,0, . . . ,0}

]/
[ n

∑
i=1

m

∑
h=1

m

∑
j=h+1

I{M(h) = g,M( j) = k}Yhi(tg)Yji(tk)ex1gki(tg,tk)γ

G−1
h j {tg, tk;Zi(0, . . . , tg,0, . . . , tk,0, . . . ,0}

]
.

One can define a centered double failure process Lh ji(·, ·;γ,Gh j) by

Lh ji(tg, tk;γ,Gh j)

= Nhi(tg)N ji(tk)−
∫ tg

0

∫ tk

0

K

∑
g=1

K

∑
k=g+1

I{M(h) = g,M( j) = k}Yhi(sg)Yji(sk)

Γgk(dsg,dsk)ex1gki(sg,sk)γ G−1
h ji{sg,sk;Zi(0, . . . ,sg,0, . . . ,sk,0, . . . ,0}

for all 1≤ h < j ≤ m.
A simple calculation shows that Nhi(dtg)N ji(dtk) in (8.6) can be replaced by

Lh ji(dtg,dtk;γ,Gh j) while preserving equality, so that the left side of (8.6) has a rep-
resentation as a stochastic integral of functions of the data with respect to a zero mean
stochastic process at the true γ-value, under a model of the form (6.23) for marginal
double failure hazard rates given Z1.

Estimating equations for marginal single and double failure hazard ratio parame-
ters given Z1 then arise by inserting Ĝ j for G j, for j = 1, . . . ,m in (8.4) and inserting
Ĝh j for 1 ≤ h < j ≤ m in (8.6), where Ĝ j and Ĝh j estimators derive from marginal
single and double censoring hazard rate models of the form (6.11) and (6.23) given
Z = (Z1,Z2). Empirical process methods can then be expected to show the weak
Gaussian convergence of single and double failure, and single and double censor-
ing, hazard ratio parameters under these model specifications, with a corresponding
consistent sandwich-form variance estimator for all hazard ratio parameters jointly.
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Such a variance estimator requires baseline hazard rate estimators for single and dou-
ble failure, and single and double censoring, hazard rates. These estimators have the
form of those given in §6.3 and §6.5 for marginal single and double censoring base-
line hazard rate functions given Z, as is also the case for marginal single and double
failure hazard rates given Z1 but with inverse censoring probability weights included.
Specifically one has

Γ̂k(tk;β , Ĝ) =
n

∑
i=1

m

∑
j=1

I{M( j) = k}
∫ tk

0

(
{N ji(ds)Ĝ−1

ji {sk;Z(0, . . . ,0,sk,0 . . . ,0)}
/

n

∑
`=1

m

∑
j=1

[I{M( j) = k}Yj`(sk)ex1k`(sk)β Ĝ−1
j` {sk;Z(0, . . . ,0,sk,0, . . .0)}]

)
(8.7)

for k = 1, . . . ,K, and by

Γ̂gk(tg, tk;γ, Ĝ) =
n

∑
i=1

m

∑
h=1

m

∑
j=h+1

I{M(h) = g,M( j) = k}
{∫ tg

0

∫ tk

0
[Nhi(dsg)N ji(dsk)

Ĝ−1
h ji{sg,sk;Z(0, . . . ,sg, . . . ,sk,0, . . . ,0)}]

/
( n

∑
`=1

m

∑
h=1

m

∑
j=h+1

[I{M(h) = g,M( j) = k}Yh`(dsg)Yj`(dsk)ex1gk`(sg ,sk)γ

Ĝ−1
h j`{sg,sk;Z(0, . . . ,sg, . . . ,sk,0, . . . ,0)}]

)}
(8.8)

for 1 ≤ g < k ≤ K, as estimators of single and double failure baseline hazard func-
tions given Z1. Weak Gaussian convergence results for all marginal single and double
failure and censoring hazard rates under the specified models can be expected to fol-
low under fairly straightforward generalizations of those sketched in Chapter 6, and
a perturbation-type resampling procedure can be expected to apply for inference on
constructs based on the entire set of marginal hazard rate estimators. These meth-
ods are of sufficient flexibility and importance that a careful account of asymptotic
distribution theory, and evaluation of sampling configurations under which asymp-
totic distributional approximations are satisfactory, would be a useful addition to cur-
rently available statistical literature. Also note that the consistency of the estimators
of β and γ is contingent on the assumed form for the marginal censoring rates given
Z = (Z1,Z2) and, of course, contingent on the assumption of independent censorship
for the failure hazard rates given Z.

Closely related concepts are useful for the analysis of recurrent event data if as-
pects of an individual’s preceding failure history need to be included in marginal
failure hazard rates for an independent censoring assumption to be justified. For ex-
ample, in the bladder tumor recurrence data discussed in Chapter 7 (see §1.7.4) an
independent censoring assumption for the marginal recurrence time hazard rate may
be appropriate if one conditions not only on modeled covariates, but also at follow-up
time t on whether or not a recurrence took place in the preceding month. A marginal
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single censoring hazard model of the form (6.11) could then be applied, with condi-
tioning on covariates Z1 included in the tumor recurrence rate model as well as an
indicator of whether or not a tumor recurrence took place in the preceding month.
Inverse probability weighting by an estimated non-censoring probability estimate, as
described above, can then lead to estimates of treatment effects on recurrence rates
having a valuable population averaged interpretation. Note that the probability that
the censoring time C = C1 = C2 = · · · exceeds follow-up time t given conditioning
variates is well-defined and readily estimated in this illustration, even though the
conditioning event has an internal component.

8.2.2 Confounding control and mediation analysis

Rather similar inverse probability weighting arguments can be considered in the area
of confounding control and mediation analysis with treatments or exposures that may
be time-dependent. These are often crucially important topics in the analysis of ob-
servational studies, and may be important also in randomized intervention trials if
there is a possibility of post-randomization confounding, or if there is a desire to elu-
cidate intention-to-treat analyses using post-randomization measurements. Inverse
probability weighting methods for such purposes were proposed many years ago by
Rosenbaum and Rubin (1983) under the terminology propensity scores, and have
been substantially further developed by Jamie Robins and colleagues (e.g., Robins et
al., 2000), among other investigators.

Consider the relationship between one or more failure time variates and a covari-
ate history Z1 that may be time-dependent. Suppose that this association is thought
to be confounded by other covariates having history Z2. One can apply the methods
of Chapter 6 to the joint covariate history Z = (Z1,Z2) to assess marginal single and
double failure hazard rates given Z. These flexible semiparametric models will often
provide a framework for careful control of confounding for parameters in marginal
failure hazard rates relative to these covariate histories. The interpretation of hazard
ratio regression parameters in these models, however, once again derives from joint
associations of failure rates with the composite history Z, rather than with Z1 alone,
though this will often not be a major limitation. A second important issue, however,
concerns the possibility that the additional covariate history Z2 may include time-
dependent variates that not only may influence future values of the exposures, Z1,
of primary interest and relate to the failure rates being estimated, but also may have
future values that are influenced by the Z1 history. These variables may encode major
pathways whereby the exposure Z1 influences the failure rates under study, resulting
in estimated associations with Z1 that may have been over-corrected through depri-
vation of contributions from these pathways. In fact, one may be able to evaluate
mediation by Z2 of the marginal failure hazard rate associations with Z1 by examin-
ing the extent to which hazard ratios as a function of Z1 move toward the null when
Z2 variates are included in the covariate history Z = (Z1,Z2).

With time-varying covariates that are carefully ascertained over a sustained
follow-up period, there is some potential to distinguish between confounding and
mediating variables by modeling covariate innovations and lag times in the hazard
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ratio regression factors in (6.11) and (6.23). This is essentially the approach taken
by Robins and colleagues under the terminology G-estimation (e.g., Robins, 1993).
Most of the related work is cast in the context of counterfactuals, which some in-
vestigators find useful for problem formulation, although there would appear to be
no necessity to do so. This influential body of work also goes under the rubric of
causal inference, but such terminology may seem inconsistent with the ubiquitous
assumption of no unmeasured confounders (beyond Z), given that the central issue
in arguing causality with observational data is the avoidance of confounding. There
is a branch of this work that derives estimation procedures that are robust to the in-
fluence of certain hypothetical unmeasured confounders that interact with measured
variables in a specific fashion on a certain measurement scale. While robustness is a
desirable property, these methods seem to result in considerable loss of estimation ef-
ficiency, and suffer conceptually from the need to make modeling assumptions about
variables that are not only unmeasured but whose very existence is hypothetical.

Inverse probability weighting provides an approach to estimating associations of
marginal single and double failure hazard rates with Z1, rather than jointly with
(Z1,Z2), by estimating the selection factors for Z1 given Z2 among cohort members
at risk at each follow-up time in the study cohort.

More specifically suppose, as in the preceding subsection, that a model of the
form (6.11) is assumed for the marginal single failure rate Z1, but that the asso-
ciation may be confounded by the concurrent covariate history Z2, which we as-
sume is composed of time-independent or external covariates. The cohort selec-
tion rates for the evolving history Z1 given corresponding Z2 as well as lack of
prior failure or censoring, allow the probability for Z1(0, . . . ,0, t j,0, . . . ,0) given
{Z2(0, . . . ,0, t j,0, . . . ,0),Tj ≥ t j,C j ≥ t j} to be expressed as a product integral

G j{t j;Z(0, . . . ,0, t j,0, . . . ,0)}

=
t j

∏
0

P{Z1(0, . . . ,0, t j +dt j,0, . . . ,0);Z(0, . . . ,0, t j,0, . . . ,0),Tj > t j,C j > t j}

(8.9)

for j = 1, . . . ,m. Expression (8.3) can be shown to have expectation zero with weights
(8.9), and (8.4) would provide a suitable estimating equation for the marginal single
failure hazard ratio parameter β if the weighting probabilities (8.9) were known. Sim-
ilarly (8.6) with corresponding weights could provide a suitable estimating equation
for γ , the hazard ratio parameter in a marginal double failure hazard rate model of
the form (6.23) given Z1. As in §8.2.1 one needs to insert consistent estimators for
Ĝ j for G j, for j = 1, . . . ,m in (8.4) and Ĝh j for Gh j for 1 ≤ h < j ≤ m in (8.6) to
complete the inverse probability weighted (IPW) estimation procedures for β and
γ . Depending on the context it may be challenging to specify appropriate models for
the covariate history probability elements in (8.9) and in its two-dimensional counter-
part. In fact, applications to date have largely been restricted to binary (or sometimes
polychotomous) exposures Z1 with logistic regression models typically specified for
these probability elements. With a binary time-dependent principal covariate of this
type, and potentially with more complex Z1 histories, one can use empirical process
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methods to estimate parameters β and γ in models of the form (6.11) and (6.23)
for marginal single and double failure hazard ratio parameters in relation to Z1. Of
course, the same issues of confounding control versus over-correction by mediators
of the relationship between Z1 and the failure rates under study arise with this IPW
approach, but these are now dealt with in the modeling of inverse probability weights,
rather than through the modeling of censoring hazard ratios in relation to (Z1,Z2) as
in §8.2.1.

8.3 Cohort Sampling and Missing Covariates

8.3.1 Introduction

Epidemiologic cohort studies typically include a set of covariates, say with his-
tory Z2, assessed at baseline and sometimes during cohort follow-up also, for all
study participants. Biospecimens, especially blood components, are also typically
collected and stored. Specific uses of cohort resources may require additional as-
sessments, especially laboratory analyses using stored biospecimens. Motivated by
study cost containment with limited loss of statistical estimating efficiency, these ad-
ditional assessments are usually restricted to measurements, with histories denoted
here by Z1, on only a subset of the study cohort. Sampling designs for selecting
individuals for the second phase of measurement go under the names of nested case–
control sampling (Thomas, 1977; Prentice & Breslow, 1978) and case–cohort sam-
pling (Prentice, 1986; Self & Prentice, 1988), and more recently two-phase design
(Breslow & Wellner, 2007), among others. There is a close connection between such
two-phase designs and stratified sampling designs in the survey sampling literature
(e.g., Lin, 2000).

Much of the extensive literature on two-phase sampling designs with a failure
time outcome considers a binary variate for whether or not an individual from the
study populations is selected for the second phase. Selection probabilities are spec-
ified by design, may depend on baseline covariates, and typically differ strongly for
individuals developing a failure time outcome of interest during cohort follow-up
(the cases) as compared to those who do not (the controls). Some nice hazard rate
estimation procedures have been developed, both for the Cox model and certain other
hazard rate regression models, under the assumption of IID data that includes fail-
ure, censoring and Z2 covariate data, along with second phase selection indicator
variables and Z1 histories for selected individuals (e.g., Breslow & Wellner, 2008;
Saegusa & Wellner, 2013).

8.3.2 Case-cohort and two-phase sampling

Now consider the same IID setup with generalizations to allow the second phase
selection rates to be time-dependent during cohort follow-up, and to include a mul-
tivariate failure time outcome. The marginal single and double failure hazard rate
models (6.11) and (6.23) can be entertained for failure hazard rates given Z =(Z1,Z2)
under these generalizations. Assuming independent right-censoring given Z, one can
use the notation of §8.2 to identify estimating equations of the form (8.4) and (8.6)
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for marginal single and double failure hazard ratio parameters, β and γ respectively,
but with x1ki replaced by xki, with summations from 1 to n replaced by summations
over individuals included in the second phase of sampling, and with G ji, j = 1, . . . ,m
and Gh ji,1 ≤ h < j ≤ m replaced by the selection probability πi for the ith study
subject, under the specified sampling design.

As noted above, available estimation procedures with two-phase sampling mostly
consider a univariate failure time outcome and specify a sampling procedure for se-
lecting individuals for Z1 ascertainment as a function of whether the outcome was
observed (the cases) or was censored (the controls) with selection probabilities de-
pendent also on baseline covariates (e.g., Saegusa & Wellner, 2013, Nan & Wellner,
2013).

It has been noted (Breslow, Hu, & Wellner, 2015), however, that the empirical
process methods used to develop distribution theory in these papers can likely be
extended to allow selection rates to depend also on external stochastic covariates in
Z2.

Now consider the multivariate failure time context of Chapter 6, with available
data {(S ji,δ ji), j = 1, . . . ,m;Z2(S1i, . . . ,Smi)} for i = 1, . . . ,n. Conceptually, the prob-
ability that the ith individual is selected for ascertainment of Z1(S1i, . . . ,Smi) can de-
pend on any aspect of the assembled data on the ith individual. Denote selection of
individual i by Ri = 1, with R1 = 0 otherwise, and by

πi = P[Ri = 1;{(S ji,δ ji), j = 1, . . . ,m;Z2(S1i, . . . ,Smi)}] (8.10)

the selection probability for the ith individual. For example, if there is special inter-
est in a particular failure type k, then one possible sampling procedure would select
all individuals having δ ji = 1 for one or more failure times for which M( j) = k,
and select other individuals having δ ji = 1 for one or more failure times for which
M( j) 6= k with some lesser probability. Furthermore individuals having δ ji = 0 for
all j = 1, . . . ,m (pure controls) could be selected with probabilities dependent on
Z2(S1i, . . . ,Smi) histories, and also possibly with greater probability if follow-up
times S ji are relatively large for outcomes having M( j) = k, in an attempt to con-
figure a substantial comparison group for each of the type k failures, over the study
follow-up period. It is clear that there are a wide variety of sampling designs that
could be entertained, with efficient designs strongly dependent on which hazard rate
parameters are of principal interest.

Under any such sampling procedure, and independent censorship given
Z = (Z1,Z2), it is natural to adapt (6.12) for the estimation of β to

n

∑
i=1

Ri

πi

[
m

∑
j=1

K

∑
k=1

I{M( j) = k}
∫

τk

0
{xki(tk)− Ẽk(tk;β )}N ji(dtk)

]
= 0, (8.11)

where
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Ẽk(tk;β ) =

[
n−1

n

∑
`=1

R`

π`

m

∑
j=1

I{M( j) = k}Yj`(tk)xk`(tk)exk`(tk)β

]/
[

n−1
n

∑
`=1

R`

π`
I{M( j) = k}Yj`(tk)exk`(tk)β

]
.

As in (8.10) the dependence of πi on {(S ji,δ ji), j = 1, . . . ,m;Z2(S1i, . . . ,Smi)} has
been suppressed. Note that N ji(dtk) in (8.11) can be replaced by L ji(dtk;β0) where
β0 is the “true” β -value in (6.11) and L ji(t;β0) is the zero mean process defined in
(6.14) at time t, while preserving equality at β = β0.

Similarly, under (6.23) one can adapt (6.24) for the estimation of γ to

n

∑
i=1

Ri

πi

[ m

∑
h=1

m

∑
j=h+1

I{M(h) = g,M( j) = k}

∫
τg

0

∫
τk

0
{xgki(tg, tk)− Ẽgk(tg, tk;γ)}Nhi(dtg)N ji(dtk)

]
= 0, (8.12)

where

Ẽgk(tg, tk;γ) =[
n−1

n

∑
`=1

R`

π`

m

∑
h=1

m

∑
j=h+1

I{M(h) = g,M( j) = k}Yh`(tg)Yj`(tk)xgk`(tg, tk)exgk`(tg,tk)γ

]/
[

n−1
n

∑
`=1

R`

π`

m

∑
h=1

m

∑
j=h+1

I{M(h) = g,M( j) = k}Yh`(tg)Yj`(tk)exgk`(tg,tk)γ

]
.

Under (6.23) Nhi(dtg)N ji(dtk) in (8.12) can be replaced by Lh ji(dtg,dt j;γ0) where
Lh ji(·, ·,γ0) is a mean zero process under (6.23) at the true γ0, without altering the
equality in (8.12).

Under IID conditions for {(N ji,Yji), j = 1, . . . ,m;Z2i(S1i, . . .Smi),Ri,
RiZ1i(S1m, . . . ,Si)} and under the condition that selection probabilities
π = π{(S j,δ j), j = 1, . . . ,m;Z2(S1, . . . ,Sm)} are bounded away from zero for
all data configurations, as well as the other regularity conditions mentioned in
Chapter 6, it seems very likely that the developments of Spiekerman and Lin (1998),
as streamlined in Lin et al. (2000), can be extended to show that Ẽk(tk;β0) in (8.11)
can be replaced by the ratio ẽk(tk;β0) of the expectations of its numerator and
denominator terms without altering the asymptotic distribution of the product of
n1/2 and left side of (8.11) under (6.11) with β = β0; and Ẽgk(tg, tk,γ0) in (8.12)
can be replaced by the ratio ẽ(tg, tk,γ0) of the expectations of its numerator and
denominator terms without altering the asymptotic distribution of the product of
n1/2 and the left side of (8.12) under (6.23) at the true γ = γ0. The central limit
theorem then applies to show the standardized estimating functions (8.11) and (8.12)
to converge to a zero mean Gaussian distribution at the true parameter values, with
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covariance matrix that is readily estimated empirically, leading to the development
of a zero-mean asymptotic normal distribution for {n1/2(β̂ − β0)

′,n1/2(γ̂ − γ0))
′}′

with corresponding sandwich form variance estimator as in Chapter 6. The sandwich
estimators would require estimators of baseline hazard rates in (6.11) and (6.23).
These can be written

Γ̃k(tk;β ) =
∫ tk

0

n

∑
i=1

Ri

πi
I{M( j) = k}N ji(dsk)

/{ n

∑
`=1

R`

π`
I{M( j) = k}Yj`(sk)exk`(sk,β )

}
,

and

Γ̃gk(tg, tk;γ) =
∫ tg

0

∫ tk

0

n

∑
i=1

Ri

πi

[ m

∑
h=1

m

∑
j=h+1

I{M(h) = g,M( j) = k}Nhi(dsg)N ji(dsk)

/
{

n

∑
`=1

R`

π`
I{M(h) = g,M( j) = k}Yh`(sg)Yj`(sk)exgk`(sg,sk)γ

}]
.

The procedures just sketched would allow hazard ratio estimation for a broad
class of univariate or multivariate sampling designs. However, a careful development
of asymptotic distribution theory is needed, especially concerning the application
of the central limit theorem to the estimating functions on the left sides of (8.11)
and (8.12). The related arguments may be complicated by the fact that the inverse
probability weights πi can depend on data for the ith individual over the entire follow-
up period, making application of the Donsker theorem a potentially delicate matter.
Additionally, the efficiency with which the hazard rate parameters in (6.11) and

(6.23) can be estimated can almost certainly be improved by replacing the theoretic
selection probabilities πi by corresponding estimated values that adapt to realized
selection indicator values. For example, Ri, i = 1, . . . ,n could be viewed as arising
from a logistic regression model using the data items in (8.10). One could carry out a
logistic regression analysis of Ri values under this selection model to yield estimated
selection probabilities π̂i, i = 1, . . . ,n. Substitutions of these into (8.11) and (8.12)
presumably does not alter the structure of the asymptotic theory developments, while
improving the efficiency of single and double failure hazard rate parameter estimates.

As noted above, there is a strong connection between the estimation of weights
and calibration procedures in survey sampling. See Lumley, Shaw, and Dai (2011)
for elaboration of this topic.

8.3.3 Nested case–control sampling

One of the earliest cohort sampling designs, so-called nested case–control sampling,
involves selecting a specified number of controls who were without prior failure or
censoring, at each uncensored failure time in a study cohort, for a univariate failure
time variable (Thomas, 1977; Prentice & Breslow, 1978). Hazard ratio parameter es-
timation under a simple Cox model (2.5) was based on a stratified version of (2.8)
with stratification on each case–control set, with controls selected with replacement
(see also §2.6). This design can lead to quite useful regression parameter estimates
because of the ability to select controls that share certain aspects of the prior covariate
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history with the case, yielding a close correspondence between cases and matched
controls on disease risk factors other than those included in the modeled regression
variable in (2.5) (Langholz & Thomas, 1990). Because control selection at a given
follow-up time depends on the prior failure and censoring experience of the entire
cohort, asymptotic distribution theory cannot be directly based on an IID assumption
for failure, censoring, covariate and selection processes, but asymptotic distribution

theory can be worked through with univariate failure time outcome using the fact
that each matched set behaves like a stratified independent random sample from the
cohort under (2.11) but with varying baseline hazard rate within strata (Goldstein
& Langholz, 1992; Borgan, Goldstein, & Langholz, 1995). This sampling procedure
could be extended to multivariate failure times on a single time axis by selecting spec-
ified numbers of individuals from univariate and bivariate risk sets at each single and
double failure time, or at random samples thereof. For example, in a genetic epidemi-
ology cohort meta-analysis, one could decide to only sample double failures for two
disease outcomes in an attempt to glean novel association information about single
nucleotide polymorphisms (SNPs) and the risk of a designated disease outcome pair.
A version of the estimating equation (6.24) could undoubtedly be developed for esti-
mating the double failure hazard ratio parameter γ in (6.23) in this scenario, though
this type of development has not appeared in the statistical literature. Analyses that
stratify on the matched case–control set can be expected to be inefficient if some co-
variate components are measured on the entire cohort, especially for coefficients of
modeled regression variables in (6.11) and (6.23) that are always available. Unlike
the two-phase designs discussed in §8.3.2 nested case–control designs rely on the un-
correlatedness of counting process increments, and martingale convergence results
over the study follow-up period, with failure, censoring and covariate histories that
accumulate over the (single) follow-up time axis. It may be possible to improve on
the efficiency of conventional analyses that stratify on matched case–control sets by
viewing the data as emerging over follow-up time with Z1 histories coming available
only at the time of case occurrence or control selection with selection probabili-
ties included as time-dependent inverse probability weights. The partial likelihood
filtration considered in Kalbfleisch and Prentice (2002, pp. 188–189) would then ap-
ply to univariate or multivariate intensity parameter estimation under an increasing
sigma-algebra of failure, censoring and covariate data on a single failure time axis.
The absence of a general martingale convergence theory with two or more failure
time axes would presumably preclude estimation of the types of marginal single and
double failure hazard rates emphasized in this book using these methods.

8.3.4 Missing covariate data methods

The same marginal single and double failure hazard rate estimation procedure, un-
der (6.11) and (6.23), can be considered if Z1 histories are missing by happenstance,
rather than by sampling design. Doing so would require a missing-at-random condi-
tion whereby missingness hazard rates can depend on failure and corresponding Z2
histories, but not the potentially missing Z1 histories. There is a substantial statistical
literature on Cox model estimation with univariate failure times and missing covari-
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ate data. This literature includes estimating equations for hazard ratio parameters of
the form (8.4), but with an additional term added to the estimating function that de-
rives from the conditional expectation of a similar estimating function contribution
over the missing data, for each cohort member. The inclusion of this “augmentation
term” tends to improve moderate sample efficiencies in simulation studies and, even
though typically not affecting asymptotic efficiency under the assumed missingness
model, also yields some valuable robustness properties in that hazard ratio parame-
ter estimates generally remain consistent if either the missingness model is correctly
specified, or the distribution of missing covariates given the observed data is correctly
specified (e.g., Robins, Rotnitzky, & Zhao, 1994). Corresponding methodology de-
velopments for the simultaneous estimation of marginal single and double failure
hazard ratio parameters would appear to be straightforward, but would be worth
documenting in the statistical literature. Another popular estimation procedure for
missing data, namely, multiple imputation (e.g., Little and Rubin, 2002) requires a
full likelihood specification for parameters of interest, and hence would typically
not be applicable under (6.11) and (6.23) without further constraints to ensure that
those models are mutually consistent, and further assumptions to specify the joint
distribution of the m-dimensional failure time variate given Z.

8.4 Mismeasured Covariate Data

8.4.1 Background

There is also a substantial statistical literature on the effects of measurement error in
modeled covariates on regression parameter estimation, with univariate failure time
data. With multivariate failure time data, one can continue the notation of the previ-
ous section, and suppose that covariate history Z2 is well measured, while covariate
history Z1 is not completely missing but for some individuals may be measured with
error yielding a mismeasured history Z∗1 rather than Z1. For estimating regression
parameters in (6.11) and (6.23) in the presence of such measurement error one can
distinguish situations where the accurate Z1 history can be ascertained for a random
subset of the study population giving rise to a so-called “validation subsample” in the
study cohort, from the perhaps more common circumstance where Z1 cannot be as-
certained for any individual, but (error-prone) covariate assessments Z∗1 are available
for all cohort members. In this latter situation additional error-prone assessments are
needed, at least for a subset of the cohort, and stronger modeling assumptions are
needed, to estimate failure hazard rate parameters.

8.4.2 Hazard rate estimation with a validation subsample

First suppose that a validation sample is available for a random subset of the study
cohort. A non-differential measurement error assumption (e.g., Carroll et al., 2006)
relative to the Z1 histories in (6.11) and (6.23) requires marginal single and double
failure hazard rates given (Z1,Z∗1 ,Z2) to be independent of Z∗1 . That is, the error-prone
measurements Z∗1 are assumed to be uninformative about the hazard rates of interest,
given the accurate Z-values. This assumption will often be reasonable in prospective
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cohort applications, but may need to be carefully considered if covariate histories
Z∗1 are obtained retrospectively from an assembled cohort having known failure and
censoring histories.

Under this non-differential measurement assumption the marginal single and
double failure hazard rates induced from (6.11) and (6.23), for individuals having
Z∗1 , but not Z1 available can be written as

Λ0···010···0{0, . . . ,0,dt j,0, . . . ,0;Z∗(0, . . . ,0, t j,0, . . .)}

= Γk(dt j)E {exk(t j)β ;Tj ≥ t j;Z∗(0, . . . ,0, t j,0, . . . ,0)} (8.13)

for all t j and j = 1, . . . ,m, and

Λ0···010···10···0{0, . . . ,0,dth,0, . . . ,0,dt j,0, . . . ,0;Z∗(0, . . . ,0, th,0, . . . ,0, t j,0, . . .0)}

= Γgk(dth,dt j)E {exgk(tg,tk)γ ;Th ≥ th,Tj ≥ t j,Z∗(0, . . . ,0, th,0, . . . ,0, t j,0, . . . ,0)}
(8.14)

for all (th, t j) and 1≤ h < j ≤ m. In these expressions E denotes expectation and Z∗

denotes (Z∗1 ,Z2). If the expectations in (8.13) and (8.14) were known functions of
the hazard ratio parameters β and γ , one could apply estimating equations (6.12) and
(6.24) for the estimation of β and γ with regression variables xki everywhere replaced
by their error-prone estimates x∗ki and with induced hazard ratios given Z∗ in place
of exki(tk)β in (6.12), and similarly with xgki everywhere replaced by their error-prone
estimates x∗gki and with induced hazard ratios given Z in place of exgki(tg,tk)γ in (6.24),
for individuals having Z∗1 , but not Z1 available.

In real applications, however, the induced hazard ratio functions in (8.13) and
(8.14) will need to be estimated prior to applying the modified versions of (6.12) and
(6.24) just described. With a validation sample of adequate size this may be able to
be done with adequate precision with few additional assumptions. For example, if Z2
histories can be modeled in (6.11) and (6.23) using indicator variables for a moderate
number of possibly time-dependent categories, one may be able to estimate induced
hazard ratios nonparametrically by simple empirical estimators in each category. For
more general dependencies of hazard ratios on Z2 one can consider kernel-type esti-
mation of the distribution of modeled x∗ variables given Z2. These approaches require
estimating functions for parameters, beyond β and γ , appearing in the induced haz-
ard ratio functions in (8.13) and (8.14), and related asymptotic distribution theory
will include variance estimators for parameters in (6.11) and (6.23) that reflect un-
certainty in estimates of such additional induced hazard ratio parameters in addition
to uncertainties in estimates of parameters in (6.11) and (6.23) that derive from the
usual counting, censoring and underlying covariate histories.

8.4.3 Hazard rate estimation without a validation subsample

It frequently happens that it is not practical, or perhaps not even conceptually possi-
ble, to obtain accurate Z1 histories for any study subject. For example, Z1 may entail
dietary intake histories, or physical activity histories, over a substantial part of the
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human lifespan for study in relation to the risk of a chronic disease outcome. Fur-
thermore, even if the exposure period for covariates of this type is defined to be short
in relation to the human lifespan (e.g., average dietary intake over the past year) it
may not be possible to accurately measure Z1 without altering the very exposures
of interest. For example, a person asked to keep a seven-day food record may well
consume differently on the days in question compared to the diet that would other-
wise have been consumed. In these circumstances one might have available only the
error-prone histories Z∗1 , but not Z1 histories, for the cohort as a whole. Additional
data on cohort members, or a random subset thereof, are then needed to be in a posi-
tion to estimate the induced hazard ratios (8.13) and (8.14), and additional modeling
assumptions are needed concerning the error component of Z∗1 values.

A complication in considering parameters in (8.13) and (8.14) arises from a
dependence of the induced hazard ratios on the baseline hazard rate functions in
(6.11) and (6.23). This complication may not be a major limitation with nonpara-
metric induced hazard ratio estimation in the presence of a validation sample, but
is potentially more problematic when only error-prone estimates of Z1 are avail-
able in the cohort. An approximate, but important, exception occurs if covariates
are time-independent, so that Z(0, . . . , t j,0 . . .0) = z(0, . . . ,0) for j = 1, . . .m and
Z(0, . . . , th,0, . . . ,0, t j,0, . . . ,0) = z(0, . . . ,0) for all 1 ≤ h < j ≤ m, and follow-up
periods are short, so that univariate and bivariate survival probabilities are close
to one over the designated follow-up period for all failure times and pairs of fail-
ure times, and any baseline covariates z(0, . . . ,0). Under these conditions the in-
duced marginal single and double failure hazard ratios in (8.13) and (8.14) are
approximately E {exk(t j)β ;Z∗(0, . . . ,0)} and E {exgk(tg,tk)γ ;Z∗(0, . . . ,0)} respectively.
Any time-dependence for the modeled covariates in these expressions involve in-
teraction (product) terms between baseline covariates defined using z(0 . . .0) and
the time arguments in these hazard rates. Additional assumptions need to be made
on the measurement error linking modeled covariate values to corresponding error-
prone values. Perhaps the simplest of these supposes that xk(tk) = x∗k(tk)+ek(tk), and
xgk(tg, tk) = x∗gk(tg, tk)+ egk(tg, t j), where ek(tk) and egk(tg, tk) are mean zero Gaus-
sian variates that are independent of corresponding z(0, . . . ,0) values. Under these
so-called Berkson models the induced marginal single and double failure hazard
functions have the same form, with the same regression parameters as in the orig-
inal hazard rate models (6.11) and (6.23), but with baseline hazard rates altered by
the measurement error in Z∗1 . While regression parameter estimating equations are
then given by (6.12) and (6.24) with x∗k(tk) in place of xk(tk) in (6.12), and x∗gk(tg, tk)
in place of xgk(tg, tk) in (6.24), variance estimators for these hazard ratio parame-
ter estimates need to reflect the Berkson error component, and will typically require
some form of resampling, such as the perturbation resampling approach mentioned
in Chapter 6.

The development so far has not addressed how one might obtain assessments Z∗1
that lead to modeled covariates having the desired Berkson error. In many settings it
would alternatively be natural to assume a classical measurement model under which
assessed covariates are equal their accurate targets, plus independent measurement
error. However, regression calibration can provide a method for delivering objective
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measures of modeled covariates having the desired Berkson error structure, at least
approximately.

Specifically, suppose that objective, but possibly noisy, assessments x̃k(tk) and
x̃gk(tg, tk) adhering to a classical measurement model, can be obtained for all (k, tk)
and for all (g,k; tg, tk) on a random subset, given Z2, of the study cohort. Linear re-
gression of x̃(tk) on x∗(tk) and of x̃gk(tg, th) on x∗gk(tg,, th) then leads to calibrated
assessments α̂k0 + x∗k(tk)α̂k1 for all cohort members, and calibrated assessments
α̂gk0 + x∗gk(tg, tk)α̂gk1 for all cohort members, where the coefficients are linear re-
gression parameter estimates. Even though these calibrated assessments cannot be
regarded as replacements that have been corrected for measurement error for the
underlying regression variables, they do plausibly have the Berkson error structure
under the previously mentioned normality and rare disease assumptions. Hence cali-
brated values can be inserted into (6.12) and (6.24) for estimation of hazard ratio pa-
rameters β and γ . The efficiency of these estimators will, of course, depend strongly
on the magnitude of the measurement error in the Z∗1 assessments relative to the vari-
ation in actual Z1 values in the study population. Also, it will be important that the
objective assessment be strong enough that induced hazard rates are independent of
x∗ values given x̃ and Z2 values.

Even with univariate failure times the methodology for assessing hazard rate de-
pendency on covariates that may be poorly measured remains an active research
area having important applications in public health and other settings. Some pro-
posed methods can avoid the approximations mentioned above for the calibration
approach under additional measurement error assumptions, such as classical mea-
surement models for x∗ values in conjunction with replicate x∗ measures having er-
rors that are independent of those for the x∗ values in the cohort as a whole, though
related nonparametric correction methods (e.g., Huang and Wang, 2006) may lose
considerable efficiency, compared to corresponding regression calibration estimates,
for hazard ratio parameter estimation (e.g., Shaw and Prentice, 2012).

8.4.4 Energy intake and physical activity in relation to chronic disease risk

As an illustration of the importance of covariate measurement error in hazard ra-
tio parameter estimation consider the association between total energy intake (i.e.,
total calories consumed) and total activity-related energy expenditure (AREE) in re-
lation to the risks of various chronic diseases in Women’s Health Initiative cohorts.
Nearly all epidemiology reports concerning these important exposures rely exclu-
sively on self-reported diet and activity. Energy intake, over a period of a few days or
a few months, may be assessed using food frequency questionnaires (FFQs) which
request information on frequency and amounts for a specific list of food items; food
records which ask the study participant to record all food and drink with correspond-
ing amounts over some number of days (e.g., 4 or 7 days); or dietary recalls which
ask respondents to recall all food and drink consumed over a preceding time period,
usually 24 hours. In spite of much effort to develop, refine and automate these as-
sessment approaches, over several decades, substantial related measurement issues
remain, including both random and systematic biases. Total energy intake is a rec-
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ognized weak point of these self-report dietary assessments. Fortunately there is an
accurate, objective assessment of total energy expenditure over a two-week period
using a doubly labeled water (DLW) procedure (Schoeller, 1999), which for weight-
stable persons also provides a reliable estimate of energy intake. The DLW procedure
was applied to 450 women drawn from the 93,676 postmenopausal women enrolled
in the WHI Observational Study, along with FFQ, and 4-day food records (4DFRs),
as well as three 24-hour dietary recalls (24HRs) collected over 2–3 months follow-
ing the two-week DLW period. A random 20% of the 450 women repeated the entire
protocol about 6 months later. Table 8.1 obtained from Prentice et al. (2011) shows
calibration equations from regression of log-transformed DLW total energy on corre-
sponding log-transformed self-reported energy and other factors. The percent of log-
DLW variation explained (R2) values shown are from regressions with only the single
corresponding regression variable, rescaled to add to the total regression R2. These
R2 values are divided by the sample correlation between paired log-DLW energy es-
timates using the 20% reliability sample, giving the adjusted R2 values shown under
the assumption that the measurement errors in the paired log-DLW assessments are
statistically independent. This assumption with replicate assessments separated by
about 6 months, suggests that calibrated intake estimates reflect actual average daily
intake over an approximate one-year period rather accurately with adjusted R2 values
of about 70%, even though the log-transformed self-report assessments do so very
poorly, with adjusted R2 values in the 4.8–13.3% range. These calibration equations
suggest strong systematic biases in each of the self-report assessments, especially in
relation to body mass index (BMI) with overweight and obese participants greatly
underestimating energy intake on self-report. Measures of physical activity were
included in the same 450 subcohort, with activity measured using questionnaires,
records or recalls (Neuhouser et al., 2013). The participating women also engaged in
an indirect calorimetry protocol to estimate resting energy expenditure, from which
an objective measure of AREE was obtained by subtracting resting energy expen-
diture from the DLW total energy expenditure assessment. Log-transformed AREE
was regressed on log-transformed self-reported AREE derived from a WHI leisure
activity questionnaire and other study subject variables to derive a calibration equa-
tion for log-AREE based on data from the same 450 women. The equations for log-
total energy and for log-AREE were used to generate calibrated estimates for the
two variables for women in the larger WHI Observational Study cohort. Cox models
(6.11) were applied to clinical outcome data collection on these cohorts from enroll-
ment in 1994–8 through September 30, 2010. The regression variable in the hazard
ratio factors in these models were comprised of log-calibrated (total) energy intake,
log-calibrated AREE, along with a set of potential confounding factors for each of
the diseases under study, in conjunction with detailed stratification of baseline haz-
ard rates. Table 8.2 from Zheng et al. (2014) shows hazard ratio (HR) results from
these analyses for 20% increments in total energy and in AREE, both using the self-
report data without objective measure calibration (uncalibrated) and with objective
measure calibration. For the latter, the approximate 95% CIs shown derive from a
sandwich-form estimator of the variance of β̂ that acknowledges the randomness in
the calibration equation coefficient estimates.
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Note the striking difference in estimated HRs without and with measurement
error correction in the two exposure variables. The diseases listed are among the
most common chronic diseases in the US. Without adjustment for measurement error
it would seem that neither energy intake or activity-related energy expenditure are
importantly related to the risk of these major diseases, whereas analyses on the right
of Table 8.2 with measurement error correction suggest that these exposures may
be among the most important drivers of chronic disease risk. For example, a 20%
reduction in energy intake in conjunction with a 20% increase in AREE is associated
with an approximate 5/6th reduction in diabetes risk in these analyses.

The calibrated HRs in Table 8.2 have one important caveat: The disease risk
models leading to those analyses did not include BMI. Excessive BMI arises from
energy imbalance, and BMI values are strongly correlated with the calibrated energy
and AREE values to the point that HR estimates become unstable when BMI is in-
cluded in the disease risk model. It seems likely that BMI and obesity are related
to the disease outcomes shown primarily because excess energy intake compared
to activity-related expenditure tends to track over the lifespan, leading to body fat
deposition and elevated BMI. As such, BMI could be an important mediator of the
energy intake and AREE associations shown on the right side of Table 8.2. On the
other hand, BMI could also have some confounding role as certain germline genetic
factors have been shown to be obesity risk factors. Sorting out these competing ex-
planations may be possible, with objective measures of these key exposures and of
body fat trajectories over the lifespan or a major component thereof, but data are cur-
rently not available in any epidemiologic cohort study that would lead to a definitive
interpretation of results in Table 8.2. One could postulate that resolving the impor-
tance of these and other diet and activity associations are among the most important
topics in public health at this time in history, given the world-wide obesity epidemic
in developed countries. Study designs and analytic procedures for such resolution
rely strongly on statistical input.

8.5 Joint Modeling of Longitudinal Covariates and Failure Rates

The previous section described some methods for extending the marginal single and
double hazard rate analyses in relation to a baseline covariate that may be subject to
measurement error. Now consider a stochastic covariate recorded over the follow-up
period for a study cohort. The recorded history for a stochastic covariate may in-
clude measurement error at any measurement time and, furthermore, the covariate
measurement times may be infrequent and variable among cohort members, even
though the underlying covariate process Z may be potentially available for measure-
ment at any time point (t1, . . . , tm) for an m-dimensional failure time process. Hence,
to extend the hazard rate estimation procedures of Chapter 6 to these data, we will
typically require a non-differential assumption for marginal single and double failure
hazard rates, so that (6.11) and (6.23) generalize to

Λ0···010···0{0, . . . ,0,dt j,0, . . . ,0;Z(0, . . . ,0, t j,0, . . . ,0),Z∗(0, . . . ,0, t j,0, . . . ,0)}
= Γk(dt j)exp{xk(t j)β} (8.15)
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and

Λ0···010···010···0{0, . . . ,0,dth,0, . . . ,0,dt j,0, . . . ,0;Z(0, . . . ,0, th,0, . . . ,0, t j,0, . . . ,0),
Z∗(0, . . . ,0, th,0, . . . ,0, t j,0, . . . ,0)}= Γgk(dth,dt j)exp{xgk(th, t j)γ} (8.16)

so that the measured covariate histories, Z∗, do not affect the hazard rate given the
“true” history, among individuals at risk for failure at specified univariate and bivari-
ate follow-up times. Z∗ in these expressions is an estimated covariate history over the
study follow-up period, which will typically involve some modeling of the covariate
processes.

The likelihood component for the evolving marginal failure, censoring and co-
variate histories for failure time Tj includes a product integral factor for each indi-
vidual given by

∏t1≥0P{Z∗(0, . . . ,0, t j +dt j,0, . . . ,0);Tj > t j,C j > t j;Z∗(0, . . . ,0, t j,0, . . . ,0)}.
(8.17)

For these probability elements to be recast in terms of the covariate history in
(6.11) one requires that the probability element in (8.17) be equal to

P{Z∗(0, . . . ,0, t j +dt j,0, . . . ,0);Tj > t j,C j > t j,Z(0, . . . ,0, t j,0, . . . ,0)} (8.18)

so that the estimated conditional covariate history at t j + dt j is representative of
that for persons at risk for failure beyond time t j who have underlying history
Z(0, . . . ,0, t j,0, . . . ,0). This would, for example, preclude study designs with more
frequent covariate sampling based on data other than that included in the evolving
history Z(0, . . . ,0, t j,0, . . . ,0). Also in (8.18) one would usually not want covariate
distribution models to depend on the lack of censoring condition C j > t j, so that it
will be natural to impose an assumption of no dependence of the probability element
in (8.18) on the condition C j > t j, given Tj > t j and Z(0, . . . ,0, t j,0, . . . ,0). Under
these conditions the marginal single failure hazard rate (8.12) can be written as

Γk(dtk)E {ex∗k(t j)β ;Tj > t j,Z(0, . . . ,0, t j,0, . . . ,0)} (8.19)

where x∗k(t j) is an estimate of xk(t j) from the estimated covariate history
Z∗(0, . . . ,0, t j,0, . . . ,0), and the expectation is over the distribution of x∗k(t j) given
Tj > t j and Z(0, . . . , t j,0, . . . ,0), for any t j and j ∈ {1, . . . ,m}.

There is a useful statistical literature on this type of “joint modeling” of uni-
variate failure and covariate processes, much of which is summarized in Tsiatis and
Davidian (2004). The literature mostly assumes some simple growth curves for the
modeled covariate in (6.11) with a small number of subject-specific parameters that
can be estimated from measured covariate histories Z∗(0, . . . ,0, ·,0, . . . ,0), often in
conjunction with joint normality assumptions for convenient calculation of the ex-
pectations in (8.19).

For marginal double failure hazard rate estimation under (6.23) one can simi-
larly consider the likelihood component for failure time pairs (Th,Tj) in conjunction
with related censoring and covariate processes. A non-differential assumption (8.13),
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and a somewhat stronger independence assumption between bivariate censoring and
failure processes will allow the induced (h, j) marginal double failure hazard from
(8.16) to be written as

Γgk(dth,dt j)E {ex∗gk(th,t j)γ ;Th > th,Tj > t j,Z(0, . . . ,0, th,0, . . . ,0, t j,0, . . . ,0)} (8.20)

where x∗gk(th, t j) is an estimate of xgk(th, t j) from the covariate history Z∗(0, . . . ,
th,0, . . . ,0, t j,0, . . . ,0), and the expectation is over the distribution of x∗gk(th, t j) given
Th > th,Tj > t j and Z(0, . . . ,0, th,0, . . . ,0, t j,0, . . . ,0), for all (th, t j) and all 1 ≤ h <
j ≤ m.

There are many possibilities for covariate history models that will lead to para-
metric specifications of the expectations in (8.19) and (8.20). If these models include
individual-specific parameters, it may be necessary to delay the start of the follow-
up period for cohort members to ensure that there are sufficient available covariate
history data for the individual that all such parameters are identifiable.

Under the conditions described above, and additional typically mild conditions
related to covariate history probability parameter estimation, it will be natural to con-
sider estimation of marginal single and double hazard rate estimation using (6.12)
and (6.24), but with exk`(tk)β and exgk`(tg,tk)γ everywhere replaced by estimates of the
expectations in (8.19) and (8.20), in conjunction with corresponding estimating equa-
tions for the additional parameters, beyond those in (6.11) and (6.23) in these expec-
tations.

Joint modeling of evolving failure and covariate processes is a large topic, with
some good efforts for univariate failure times already in the statistical literature. Fur-
ther development of these univariate methods, and extensions to multivariate failure
times along the lines described in this section, would be quite worthwhile.

8.6 Model Checking

Some readers may think we have been remiss in giving very little attention to the
important task of model checking until this late stage of our presentation. One rea-
son for this delay derives from our emphasis on semiparametric models, such as
(6.11) and (6.23), with their time-dependent covariate and time-dependent stratifica-
tion features. With this approach the failure time modeling assumption involves only
a parametric form for hazard ratios, and one that can be conveniently be relaxed as
necessary to achieve a good fit to available data. Specifically, a powerful approach
to checking modeling assumptions in (6.11) and (6.23) is to augment the modeled
regression variable by including additional components, such as interaction terms
with follow-up times or terms that allow greater variation in hazard ratio shapes
more generally, for key covariates. This regression model augmentation approach
typically contrasts the hypothesized model with local alternatives. With univariate
failure time data the same approach has been used to formulate more global tests in
simple situations by extending the modeled regression variable to include indicator
variables that allow the modeled hazard ratio to vary over a partition of the follow-
up time axis (e.g., Schoenfeld, 1982; Andersen, 1982). This approach could be used
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to allow the modeled hazard ratio to vary over a grid formed by pairwise follow-up
times for marginal double failure hazard rate model testing. Various types of residuals
have also been considered for use in failure time model building and checking with
univariate failure time data (e.g.,Barlow & Prentice, 1988, Therneau, Grambsch, &
Fleming, 1990), mostly based on martingale properties of the elements of estimating
function for failure intensity model parameters. Lin, Wei, and Ying (1993) propose
graphical procedures for checking Cox model assumptions for counting process in-
tensities based on cumulative sums of martingale-based residuals, with a resampling
procedure for formally testing for departure from model assumptions. Also see Lin
et al. (2000) for generalization of these methods to the recurrent event setting.

It is perhaps worth commenting that the regression parameter estimates described
in Chapter 6 may retain a useful interpretation even under oversimplified models for
hazard rates in (6.11) and (6.23). For example the intention-to-treat hormone ther-
apy hazard ratio estimates shown in Figure 2.2 provide useful summary measures
over trial intervention periods that averaged 5.6 years (CEE + MPA) or 7.2 years
(CEE Alone) even though there were rather striking hazard ratio variations over these
follow-up periods for some clinical outcomes. For example, with CEE + MPA the
coronary heart disease hazard ratio was about 2-fold elevated during the first year
from randomization, but subsequently dropped back close to unity, while breast can-
cer hazard ratios were evidently below one early in the post-randomization period,
possibly due to intervention-related increases in breast density and consequent de-
layed ability to diagnose malignant breast tumors, but increased rapidly thereafter.
As weighted estimators of average hazard ratios the standard Cox model estimates
may suffer from some dependence of the weighting across follow-up time on censor-
ing rates. When censoring rates are high, as in Figure 2.2, any censoring influence
is likely to be small. In lighter censoring situations it may be useful to construct
average hazard ratio estimators with weights that do not depend on censoring (e.g.,
Kalbfleisch & Prentice, 1981; Xu & O’Quigley, 2000).

8.7 Marked Point Processes and Multistate Models

Previous chapters allowed failures to be one of K different types, and allowed hazard
rate and counting process intensity models to include parameters that may differ
among failure types. For example, failures may be classified according to the affected
organ or body system, or infectious disease occurrences may be classified according
to the class of the infecting agent. As briefly discussed in §4.9.3 it frequently happens
that when a failure occurs additional detail on the state of the study subject will be
assessed. For example the state information may describe tumor histologic type and
various aspects of disease extent when a cancer is diagnosed, or may describe genetic
aspects of both the pathogen and the study participant when an infectious disease is
diagnosed. There may be much to be learned by studying hazard rates that are state-
specific, and by studying transition rates between states.

As mentioned in §2.4 and §4.9 classical competing risk data comprised of a pos-
sibly censored failure time on a single failure time axis along with covariates is often
most readily analyzed by regarding the failure information as a marked point process
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with mark equal to a classification of failures (e.g., cause of death) obtained when
failures occur. These data do not permit analyses of dependency among failures in
different states, given covariates, without making strong additional assumptions that
cannot be tested empirically.

Recently Cook and Lawless (2018) have provided an excellent account of much
more general multistate models for life history events on a single failure time axes.
Both counting process intensity models that consider state-specific event rates con-
ditional on the entire preceding failure, censoring and covariate histories, as well as
marginal or partly conditional models that condition on some or all of that preceding
history, are described and illustrated. The rather general results of Spiekerman and
Lin (1998) and Lin et al. (2000) described in Chapters 6 and 7 extend to the analysis
of parameters in Cox-type models for these partly conditional models assuming uni-
variate independent right censoring. The sandwich variance formula for regression
parameter estimates is able to capture the additional estimating function variance that
derives from dropping some of the information at follow-up time t that had been con-
ditioned on at earlier times, for a remarkably wide class of data types and models.
The associated estimation procedures are well suited to the study of failure processes
and disease mechanisms, and are largely complementary to the population-averaged
marginal associations emphasized in this monograph. Extensions of these univari-
ate methods to multistate models on multiple time axes are beyond the scope of this
book, but would merit further development.

8.8 Imprecisely Measured Failure Times

The methods described in this volume have mostly assumed that the failure times
under study have been measured precisely. Importantly, our inclusion of discrete
elements in the Cox models (2.5), (6.11) and (6.23), among other places, allows
accommodation of outcome imprecision that is small relative to the range of the
“underlying” failure times. In some applications, however, failure times may only
be observed to occur in time intervals that are not small relative to the range of the
underlying failure times, and “interval censoring” intervals may vary in complex
overlapping patterns among study individuals. From a likelihood perspective such
data will involve modeled probabilities that integrate underlying hazard rates over
the time period where a failure is known to occur. Related likelihood-based estima-
tion can be pushed through (e.g., Huang & Wellner, 1997), but tends to be quite
difficult computationally with semiparametric models. The special case where one
determines only whether a failure time exceeds or is equal or less than a specified
value, termed current status data, also arises with some frequency in applications, for
example in serial sacrifice animal experiments involving the occurrence of tumors
that are clinically unobservable, and involves the same type of complex calculations
with semiparametric models. Zeng, Mao, and Lin (2016) substantially address the
challenging computational aspects of maximum likelihood estimation with interval
censoring, for a rather broad class of linear transformation models that includes the
univariate Cox model, and impressively demonstrate semiparametric efficiency for
the resulting estimators while allowing external time-dependent covariates. These
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results have recently been extended to multivariate failure time data (Zeng, Gao, &
Lin, 2017) using a full-likelihood frailty modeling approach.

BIBLIOGRAPHIC NOTES

Some key references have been listed in each section of this chapter. A few more ref-
erences, to enhance historical perspectives and recent contributions, are given here.

The idea of inverse probability weighting to address censoring that would other-
wise be dependent is due to Robins and Rotnitzky (1992) and Rotnitzky and Robins
(1995). See also Datta and Satten (2002), Ghosh and Lin (2003), and Hernán and
Robins (2015). Inverse probability weighting for confounding via propensity scores
(Rosenbaum & Rubin, 1983) and marginal structural models (Robins et al., 2000)
were discussed in Robins and Rotnitzky (1992) and Robins (1993). See also van der
Laan and Robins (2003) for a technical and rigorous account of these developments.

Nested case–control sampling designs with failure time data were introduced by
Thomas (1977) and Prentice and Breslow (1978) , with related asymptotic theory by
Goldstein and Langholz (1992) and in a more general form by Borgan et al. (1995).
Related work includes Oakes (1981) , Breslow, Lubin, Marek, and Langholz (1983),
Kalbfleisch and Lawless (1988), Robins, Prentice, and Blevins (1989) and Samuelsen
(1997) among many other contributions.

Case–cohort designs with failure time data were introduced by Prentice (1986),
with distribution theory in Self and Prentice (1988). Langholz and Thomas (1990)
and Wacholder (1991) discuss aspects of the choice of cohort sampling procedures.
Chen and Little (1999) consider inverse sampling probability weighted estimators for
improvement in hazard ratio parameter estimation under case–cohort sampling. See
also Nan (2004) and Scheike and Martinussen (2004) for additional aspects of esti-
mation efficiency under case–cohort sampling. Efficiency considerations, with some
covariates available in all cohort members, led to the two-phase sampling design
approaches emphasized here, starting with Breslow and Cain (1988), with more re-
cent contributions by Breslow and Wellner (2007, 2008) and by Saegusa and Wellner
(2013).

In addition to Robins et al. (1994), Wang and Chen (2001) and Qi, Wang, and
Prentice (2005) provide contributions on the use of inverse probability weighting to
adjust for missing covariate data with univariate failure time data. See also Zhou
and Pepe (1995), Chen and Little (1999), Lawless, Kalbfleisch, and Wild (1999),
Rotnitzky (2009) and Lumley et al. (2011).

For additional recent measurement error–related contributions involving
biomarkers in the nutritional epidemiology context, see Freedman et al. (2014, 2015),
Lampe et al. (2017), Mahabir et al. (2018) and Prentice (2018). Also Yi (2018) gives
a current and comprehensive account of measurement error and misclassification
methods for various types of response data, including univariate failure time and re-
current event data.

Other contributions to procedures for checking Cox model assumptions, beyond
those cited in §8.6 include Wei (1984), Lagakos and Schoenfeld (1984), Lin and Wei
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(1991) and McKeague and Utikal (1991), the last of which addresses goodness-of-fit
of additive hazards as well as proportional hazards models.

For joint longitudinal data and univariate failure time modeling contributions
beyond those summarized in Tsiatis and Davidian (2004), see Chi and Ibrahim
(2006), Elashoff, Li, and Li (2008), Proust-Lima, Joly, Dartigues, and Jacqmin-
Gadda (2009), Hatfield, Boye, and Carlin (2011), Rizopoulos and Ghosh (2011) and
Luo (2014). See Fu and Gilbert (2017) for a contribution that combines joint model-
ing of longitudinal and survival data with two-phase sampling.

For references on multistate modeling, see Andersen et al. (1993), Kalbfleisch
and Prentice (2002), Aalen et al. (2010), in addition to the comprehensive recent book
by Cook and Lawless (2018). Also see Zeng et al. (2016) and Zeng et al. (2017) for a
recent summary of the literature on univariate and multivariate hazard rate estimation
with interval-censored failure times.

EXERCISES AND COMPLEMENTS

Exercise 8.1

Provide a detailed development to show that the expectation of (8.3) is zero under
modeling assumptions. Does one require G j{s j;Z(0, . . . ,0,s j,0, . . . ,0)} > 0 for this
to be true? Show that (8.3) also has expectation zero under the covariate selection
weights (8.9).

Exercise 8.2

Show that N ji(dtk) in (8.4) can be replaced by Li j(dtk;β ,G j), and that
N ji(dtg)N ji(dtk) in (8.6) can be replaced by L jki(dtg,dtk;γ,Gh j), while preserving
equality to zero.

Exercise 8.3

Write out an expression for a likelihood factor Gh j analogous to (8.9) for the pairwise
Z1 history corresponding to Th and Tj given Z(0, . . . ,0, th,0, . . . ,0, t j,0, . . . ,0), Th >
th,Tj > t j,Ch > th and C j > t j. Describe how G j, j = 1, . . . ,m in (8.9) and Gh j,1 ≤
h < j ≤ m could be modeled and estimated for specific classes of covariate histories
Z1.

Exercise 8.4

Consider a multivariate version of case–cohort sampling that selects all individuals
experiencing one or more of m failure times during cohort follow-up, along with
a simple random sample of all other cohort members. Develop weighted estimating
equations of the form (8.11) and (8.12) for the estimation of marginal single and dou-
ble failure hazard rate parameters under models (6.11) and (6.23), but with estimated
selection weights included. Sketch the development of asymptotic distribution theory
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for all model parameters. In the special case of a univariate failure time, describe how
the marginal single failure hazard rate parameter estimate (β ) may improve on the
estimator originally proposed for regression parameter estimation under case–cohort
sampling (Prentice, 1986; Self & Prentice, 1988) . Generalize the marginal single
and double failure hazard ratio parameter estimating equations to allow the sampling
probability for non-cases to depend on a baseline covariate z(0, . . . ,0).

Exercise 8.5

Describe the design of an epidemiologic cohort study that may be needed to provide
insight into the reliability of the hazard ratio estimates shown in Table 8.2. Given
the substantial measurement issues that are thought to attend nutrition and activity
epidemiology, can you outline a research agenda that could qualitatively strengthen
research results in these important public health areas?

Exercise 8.6

Consider bivariate failure time regression data as in (4.8)–(4.10). Suppose that T1
and/or T2 is subject to interval censoring, so that one only knows whether Tji ≤ a ji,
a ji < Tji ≤ b ji or b ji < Tji for specified values a ji an b ji, for i = 1, . . . ,n and j = 1,2.
Can you construct an estimating equation for (β10,β01,β11)? Does the presence of
stochastic time-variates complicate such construction? See Zeng et al. (2017) for
related work in the context of linear transformation models.
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Glossary of Notation

T > 0 denotes a failure time random variable.

(T1, . . . ,Tm), with each Tj > 0, denotes an m-dimensional (m≥ 1) failure time variate.

C ≥ 0 denotes a censoring variate.

(C1, . . . ,Cm) denotes an m-dimensional (m≥ 1) censoring variate.

S = T ∧C = min(T,C) and δ = I[S = T ] denote observed follow-up time, and non-
censoring indicator variable, respectively.

I[A] is an indicator variable that takes value 1 if A is true, and 0 otherwise.

(S1, . . . ,Sm) and (δ1, . . . ,δm) denote m-dimensional (m ≥ 1) follow-up times and
non-censoring indicator variables.

z = (z1, . . . ,zq) denotes a q-dimensional covariate at time t = 0.

z(t) = {z1(t), . . . ,zq(t)} denotes a q-dimensional covariate at follow-up time t.

Z(t) = {z if t = 0;z(s), all s < t if t > 0} denotes covariate history prior to time t.

z(t1, t2) = {z1(t1, t2),z2(t1, t2), . . .} denotes a covariate at follow-up time (t1, t2) for a
bivariate failure time variate (T1,T2).

Z(t1, t2) = {z(s1,s2);s1 = t1 if t1 = 0,s1 < t1 if t1 > 0, and s2 = t2 if t2 = 0, s2 < t2 if
t2 > 0} denotes bivariate covariate history prior to (t1, t2).

z(t1, . . . , tm) denotes an m-dimensional covariate (m≥ 1) at follow-up time (t1, . . . , tm)
for an m-dimensional failure time variate (T1, . . . ,Tm).

Z(t1, . . . , tm) = {z(s1, . . . ,sm);s j = 0 if t j = 0, s j < t j if t j > 0, j = 1, . . . ,m} denotes
an m-dimensional covariate history prior to (t1, . . . , tm).

P denotes probability.

F denotes survivor function for failure time variate T , so that F(t1, . . . , tm) = P(T1 >
t1, . . . ,Tm > tm).
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F denotes distribution function for failure time variates, so that F(t1, . . . , tm) =
P(T1 ≤ t1, . . . ,Tm ≤ tm).

Λ denotes the (cumulative) hazard function (or process) for T .

Λ(dt) denotes the hazard rate at T = t, for continuous discrete or mixed failure time
variate T , so that Λ(t) =

∫ t
0 Λ(ds).

Λ11···1(t1, . . . , tm) denotes the (cumulative) hazard function (process) for (T1, . . . ,Tm)
at (t1, . . . , tm) for m≥ 1.

Λ10···0(dt1,0, . . . ,0) denotes the marginal T1 hazard rate at (t1,0, . . . ,0).

Λ110···0(dt1,dt2,0, . . . ,0) denotes the marginal (T1,T2) hazard rate at (t1, t2,0, . . . ,0).

Λ10···0(dt1, t2, . . . , tm) denotes the T1 hazard rate at (t1, . . . , tm).

Λ110···0(dt1,dt2, t3, . . . , tm) denotes the (T1,T2) hazard rate at (t1, . . . , tm).

Λ11···1(dt1, . . . ,dtm) denotes the (T1, . . . ,Tm) hazard rate at (t1, . . . , tm), so that
Λ11···1(t1, . . . , tm) =

∫ t1
0 · · ·

∫ tm
0 Λ1···1(ds1, . . . ,dsm).

b

∏
a

denotes product integral over (a,b].

b1

∏
a1

· · ·
bm

∏
am

denotes m-dimensional (m ≥ 1) product integral over (a1,b1]× ·· · ×

(am,bm].

Ni(t) denotes the observed number of failures in [0, t] for individual i.

Yi(t) =

{
1 if Si = Ti∧Ci ≥ t
0 otherwise

is the “at-risk” indicator at time t for individual i.

{N1i(t1), . . . ,Nmi(tm)} denotes the number of Tj failures in [0, t j] on individual i, for
each j = 1, . . . ,m.

{Y1i(t1), . . . ,Ymi(tm)} denotes the “at-risk” indicators at time (t1, . . . , tm) for individual
i.

n denotes number of individuals (sample size).

R = {i;Yji(t j) = 1, for each j = 1, . . . ,m for some i ∈ (1, . . . ,n)} denotes the risk set
at (t1, . . . , tm) for m≥ 1.
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L ji denotes a zero-mean process (under model assumptions) for the jth failure time
( j = 1, . . . ,m) on the ith individual (i = 1, . . . ,n).

IID denotes independent and identically distributed (random variables).

A prime (′) denotes vector transpose.

Λ{dt;Z(t)} denotes hazard rate at time t given preceding covariate history Z(t).

Λ{dt;Z(t)}= Λ(dt)exp{x(t)β} denotes a Cox model for hazard rate given Z at T =
t, where Λ(dt) is a “baseline” unspecified hazard rate at value zero for modeled
covariate p-vector x(t) = {x1(t), . . . ,xp(t)} and β = (β1, . . . ,βp)

′ is a corresponding
hazard ratio parameter to be estimated.

Λ10···0{dt1,0, . . . ,0;Z(t1,0, . . . ,0)} = Λ10···0(dt1,0, . . . ,0)exp{x(t1,0, . . . ,0)β10···0}
denotes a Cox model for the marginal T1 hazard rate at (t1,0, . . . ,0) with baseline
marginal T1 hazard rate Λ10···0(dt1,0, . . . ,0), modeled covariate x(t1,0, . . . ,0) at
(t1,0), and marginal single failure hazard ratio parameter β10···0.

Λ110···0{dt1,dt2,0, . . . ,0;Z(t1, t2,0, . . . ,0)} = Λ110···0(dt1,dt2,0, . . . ,0)exp{x(t1, t2,0,
. . . ,0)β110···0} denotes a Cox model for the marginal (T1,T2) hazard rate at
(t1, t2,0, . . . ,0) with baseline marginal (T1,T2) hazard rate Λ110···0(dt1,dt2,0, . . . ,0),
modeled covariate x(t1, t2,0, . . . ,0) at (t1, t2,0, . . . ,0), and marginal failure hazard ra-
tio parameter β110···0.

M( j) denotes a unique failure type for failure time variate Tj, j = 1, . . . ,m.

Γk denotes baseline hazard function for a failure time variate Tj having k = M( j).

Γgk denotes baseline hazard function for failure time variates (Th,Tj) having g =
M(h) and k = M( j).

If a = (a1,a2, . . .)
′ then a⊗2 = aa′.
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Appendix A: Technical Materials

A.1 Product Integrals and Stieltjes Integration

The estimation procedures emphasized in this monograph entail discrete estimators
of hazard rates, even when the underlying failure time variates are absolutely contin-
uous. For example, in Chapter 1 the (cumulative) hazard function Λ for a univariate
failure time variate T , defined by Λ(t) =

∫ t
0 Λ(ds), where Λ(ds) is the hazard rate

at follow-up time s, can be estimated by the corresponding ‘empirical’ hazard func-
tion Λ̂, where Λ̂(t) =

∫ t
0 Λ̂(ds) and Λ̂(ds) is the ratio of the number of failures in

the study sample at T = s to the number of individuals without failure or censoring
prior to time s. Here Λ̂(t) is a Stieltjes integral. The Riemann–Stieltjes integral of a
real-valued function f with respect to a real-valued function g over an interval [a,b]
is defined as the limit of

m−1

∑
j=0

f (c j){g(t j+1)−g(t j)} (A.1)

over partitions a = t0 < t1 < · · · < tm = b, and c j ∈ [t j, t j+1], as the mesh of the
partition approaches zero. The Riemann–Stieltjes integral exists if f is continuous
and g is of bounded variation (i.e., can be written as the difference between two
monotone functions). The two Riemann–Stieltjes integrals shown in the integration-
by-parts formula∫ b

a
f (t)g(dt) = f (b)g(b)− f (a)g(a)−

∫ b

a
g(t) f (dt)

either exist, or not, simultaneously.

A slightly more general Stieltjes integral is defined in measure theoretic terms with
f and g measures acting on Borel sets on the real line. Specifically, if f is Borel
measurable and bounded and g is of bounded variation and right continuous on (a,b],
or (importantly, for our setting) if f is non-negative and g is monotone and right
continuous then (A.1) exists and is referred to as a Lebesgue–Stieltjes integral.

The product integral of a real-valued measure g on Borel subsets of [a,b]⊂ [0,∞] can
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be defined by the Riemann–Stieltjes–type limit of

m−1

∏
j=0

[1+{g(t j+1)−g(t j)}], (A.2)

again over partitions a = t0 < t,< · · · , tm = b as the mesh of the partition approaches
zero. This product integral, denoted

b

∏
a
{1+g(dt)}

provides a 1-1 connection between additive interval functions (A.1) and multiplica-
tive interval functions (A.2) on [0,∞). Gill and Johansen (1990) provide an excellent
account of product integration with applications to failure time data.

They provide the definition (A.2) for matrix-valued measures g and show the product
integral

h(t) =
t

∏
0
{1+g(ds)}

to have two equivalent definitions over a follow-up region [0,∞]. Specifically, h sat-
isfies the Volterra integral equation

h(t) = 1+
∫ t

0
h(s−)g(ds) (A.3)

for all t ∈ [0,∞) or h is the Péano series solution to (A.3) given by

h(t) = 1+
∞

∑
m=1

∫
0<t1<···<tm=t

g(dt1) · · ·g(dtm) (A.4)

where (A.3) and (A.4) are integrals of Lebesgue–Stieltjes type. Importantly in the
context of this book, the definitions (A.3) and (A.4) can be extended to failure time
variates of dimension greater than one.

The (Riemann–)Stieltjes integral of a real-valued bivariate function f with respect to
a real-valued bivariate function g over a rectangle (a1,b1]× (a2,b2] is defined as the
limit of

m−1

∑
j=0

f (c1 j ,c2 j){g(t1, j+1, t2, j+1)−g(t1, j+1, t2 j)−g(t1 j, t2, j+1)+g(t1 j, t2 j)}

over partitions a1 = t10 < t11 < · · ·< t1m = b1 and a2 = t20 < t21 < · · ·< t2m = b2 as
the mesh of the partition approaches zero, where (ci j,c2 j)ε[t1 j, t1, j+1]× [t2 j, t2, j+1].
This integral

∫ b1
a1

∫ b2
a2

f (t1, t2)g(dt1,dt2) will exist when f is continuous and g is of
bounded variation. Once again a slight generalization is possible in measure theoretic
terms with functions acting on Borel sets (rectangles) on [0,∞)× [0,∞).



GENERALIZED ESTIMATING EQUATIONS FOR MEAN PARAMETERS 193

The survival probability function F for bivariate failure times (T1,T2) can be ex-
pressed as the unique solution to the Volterra integral equation

F(t1, t2) = ψ(t1, t2)+
∫ t1

0

∫ t2

0
F(s−1 ,s

−
2 )Λ11(ds1,ds2),

where Λ11 is the double failure hazard function, and Ψ(t1, t2) =F(t1,0)+F(0, t2)−1
is determined by the lower-dimensional (i.e., marginal) hazard functions. The Péano
series solution to this Volterra equation is given in (3.5).

Similarly, the joint survivor function F for k failure time variates (T1, · · · ,Tk)
uniquely solves an inhomogeneous Volterra integral equation that expresses
F(t1, · · · , tk) as function of marginal survivor functions of dimension less than k,
along with (plus or minus) the Stieltjes integral∫ t1

0
· · ·
∫ tk

0
F(s−1 , · · · ,s

−
k )Λ11···1(ds1, · · · ,dsk),

which again leads to a unique expression for F in terms of its k-variate hazard rate
and marginal hazard rates of dimension less than k as is shown in (6.8).

A major value of these expressions is that one can substitute empirical estimates of
marginal hazard rates of dimension 1, · · · ,k to obtain estimators of F̂ . The continuity,
and (weakly continuous) compact differentiability of the related sequence of Péano
series transformations for marginal survivor functions of each dimension, ensure that
F̂ inherits such statistical properties as (supremum norm) strong consistency, weak
Gaussian convergence and bootstrap applicability from those for corresponding em-
pirical marginal hazard rate estimators. These properties for the bivariate Péano se-
ries transformation from (Ψ,Λ11) to F were established in Gill et al. (1995).

A.2 Generalized Estimating Equations for Mean Parameters

Consider a q-vector response variable Wk = (Wk1, . . . ,Wkq) for each of k = 1, . . . ,n
members of a study cohort. Suppose that Wk has a mean µk = (µk1, . . . ,µkq) that
depends on a p-dimensional parameter θ = (θ1, . . . ,θP), and a variance matrix Vk
that may also depend on θ as well as other parameters. A generalized estimating
equation for θ can be written

n

∑
k=1

D′kV
−1
k (Wk−µk) = 0 (A.5)

where Dk is the matrix of partial derivatives of µk with respect to θ ′. Under inde-
pendent and identically distributed sampling, and additional mild conditions (Liang
& Zeger, 1986) the asymptotic distribution of n1/2(θ̂ − θ), where θ̂ solves (A.5),
converges to a mean zero normal variate with variance consistently estimated by the
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“sandwich” expression

n

(
n

∑
k=1

D̂′kV̂
−1
k D̂k

)−1 n

∑
k=1

D̂′kV̂
−1
k (Wk− µ̂k)Wk− µ̂k)

′V̂−1
k D̂k

(
n

∑
k=1

D̂′kV̂
−1
k D̂k

)−1

(A.6)
where ˆ denotes evaluation at θ̂ and at a consistent estimator for additional param-
eters in Vk,k = 1, . . . ,n. Moreover, this asymptotic distribution obtains even under
‘working’ models for the Vk that may be misspecified, though such misspecification
may reduce the efficiency of θ̂ as estimator of θ . Note that (A.6) will converge (as
n→ ∞) to the same value as the model-based variance estimator(

n

∑
k=1

D̂′kV̂
−1
k D̂k

)−1

(A.7)

if the variance matrices Vk,k = 1, . . . ,n are correctly specified.

A.3 Some Basic Empirical Process Results

Consider a real-valued variate X , and suppose that an independent and identically
distributed (IID) sample of X values is available. The strong law-of-large numbers
shows that the sample mean n−1

∑
n
1 Xi converges almost surely (that is except possi-

bly on a set having probability zero) to the mean µ of the distribution of X (assum-
ing such to exist) as n→ ∞. The central limit theorem shows n−1/2

∑
n
i=1(Xi− µ) to

converge in distribution to a mean zero Gaussian (i.e., normal) distribution under a
Lindeberg condition that requires the influence of any specific observation to become
negligible as n→ ∞.

Corresponding strong law-of-large numbers and central limit theorem results are
available for the empirical estimator of the distribution function F of X , given by
F(x) = pr(X ≤ x). Specifically, the empirical estimator F̂ of F is given by

F̂(x) = n−1
n

∑
i=1

I(Xi ≤ x).

The Glivenko–Cantelli (GC) theorem shows that F̂(x) converges almost surely to
F(x) for any real x, while the Donkster theorem shows that Ĥ = n1/2(F̂ −F) con-
verges in distribution to a mean zero Gaussian process having covariance function
given by

cor{Ĥ(u), Ĥ(v)}= F(u)∧F(v)−F(u)F(v),

a so-called Brownian bridge, as n→ ∞.

Both of these results extend to a real-valued multivariate random variable
X = (X1, . . . ,Xp), with its empirical distribution function estimator F̂ given by
F̂(x1, . . . ,xp) = n−1

∑
n
i=1 I(X1i ≤ x1, . . . ,Xpi ≤ xp).
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Important for present purposes, these methods extend further to a real-valued (pos-
sibly vector-valued) stochastic process X = {X(t), tε[0,τ]} defined over a follow-up
period [0,τ]. The GC theorem extends to show that n−1

∑
n
i=1 Xi(t) converges almost

surely to its mean, µ(t), uniformly in tε[0,τ]. The Donkster theorem implies the
convergence in distribution of n1/2{F̂(·, t1)−F(·, t1), . . . , F̂(·, tq)−F(·, tq)}, where
F(x, t) = pr{X(t) ≤ x)} and F̂(x, t) is its empirical estimator for any t jε[0,τ] for
j = i, . . .q , while a ‘tightness’ condition is needed to show applicability of a func-
tional central limit theorem, whereby [n1/2{F̂(·, t)−F(·, t)}; tε[0,τ]] converges to a
zero mean Gaussian process, with covariation process determined by the Brownian
bridge covariances given above (Pollard, 1990, p. 53).

These stochastic process convergence results carry over to yield corresponding
‘strong consistency’ and ‘weak Gaussian convergence’ results for other processes
defined at time t by stochastic integrals∫ t

0
Ĝ(·,s)Ĥ(·,ds)

with Ĥ(·,s) = n−1/2{F̂(·,s)− F(·,s)} and with the Ĝ stochastic process having
bounded total variation (i.e., expressible as the difference between monotone func-
tions).

For some purposes, such as developing asymptotic distributions for the regression
parameter estimates in (6.11) and (6.23), it is useful to replace weak convergence
by almost sure convergence. The strong embedding theorem (Shorack & Wellner,
1986, pp. 47–48) allows this to be done in a new probability space. After further
developments in the new probability space, one can return to the original space with
pertinent weak convergence results replacing almost sure convergence results.

Transformations of empirical processes inherit strong consistency properties from
the empirical process if the transformations satisfy a weak continuity condition,
and inherit the weak Gaussian convergence property if the transformations satisfy
a weakly continuous compact (Hadamard) differentiability property. This compact
differentiability property also leads to an analytic expression for the covariation pro-
cess of the transformed process and is a key aspect of establishing bootstrap applica-
bility. See Gill et al. (1995) for definitions and for application to bivariate survivor
function estimators considered in Chapter 3. The analytic covariation expression for
the transformed process may be too complex to be useful, and bootstrap or other re-
sampling procedures are then typically applied for confidence interval or confidence
band calculation for the transformed process.

A conditional multiplier central limit theorem (van der Vaart & Wellner, 1996, p.
182) provides a useful resampling procedure for inference on complex processes,
such as baseline type-specific marginal single and double failure hazard rates in
Chapter 6. This result justifies a perturbation approach whereby estimating functions
that are expressible as sums over IID variates are multiplied by a standard normal
variate, independently for i= 1, . . . ,n, with parameter estimates calculated for a large
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number of perturbations for distribution approximations. These approximations de-
rive from asymptotic mean zero Gaussian properties for the estimating functions,
conditional on all observed data.

See Shorack and Wellner (1986); Pollard (1990); van der Vaart and Wellner (1996)
for much more rigorous and detailed accounts of these and other empirical process
results.



Appendix B: Software and Data

B.1 Software for Multivariate Failure Time Analysis

Univariate failure time data analysis procedures are implemented in several major
statistical software packages. These include Kaplan–Meier estimators, as well as
parametric and semiparametric regression methods. Many of these packages care-
fully handle stratification, time-varying covariates and tied data.

In contrast, software packages for multivariate failure time analysis are somewhat
limited. Some widely used software packages for single failure time data analysis in-
clude extensions to allow either marginal Cox models, or models for recurrent events.
But since these packages were not originally designed for multivariate failure times,
users have to manipulate their data sets to resemble univariate failure times before
using such software. Programs for other methods mentioned in this book are de-
scribed below. The ability to handle stratification, time-varying covariates and tied
data varies among these packages. There does not seem to be software for non-
parametric estimation of multivariate survivor functions. To help fill these gaps, in
companion with this book, we provide a R package MHazard, which focuses on the
modeling of marginal single and multivariate failure hazards, as discussed in Chap-
ter 4, providing a fairly comprehensive approach to bivariate failure time analysis. It
also includes several nonparametric estimators for multivariate survivor function. It
allows Cox model stratification, time-varying covariates, and tied failure times.

Here, a brief account of existing software packages in SAS, STATA and R is pro-
vided. The details of these packages are not described, but rather a brief summary of
features is given to help readers decide which tools to use for their application.

SAS

[SAS institute Inc; www.sas.com]

The SAS phreg package is widely used to analyze failure time data. It also incorpo-
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rates several regression approaches for multivariate failure time analysis, by arrang-
ing the data set in specific forms so that the data resemble univariate failure time
data.

The marginal Cox models as in Wei et al. (1989) for multivariate failure time can be
implemented by creating one observation for each event type, using the event type
indicator as a stratification variable and including an interaction between covariates
and the event indicator. For clustered data, a marginal Cox model can also be fitted
as in Lee et al. (1992) with a variable indicating the cluster. For recurrent events, the
intensity and rate/mean models for recurrent events as in Andersen and Gill (1982),
Pepe and Cai (1993), Lawless and Nadeau (1995) and Lin et al. (2000) can be im-
plemented by forming separate observations for individuals experience between each
two adjacent event times. To use the stratified models for total time and gap time as in
Prentice, Williams, and Peterson (1981), one needs to create a count variable of the
prior events in addition to forming the observations for the intensity and rate/mean
models. Robust variance can be requested to account for the correlation between
events.

In general, the phreg package allows stratification and provides several options to
handle tied data. It allows users to specify time-varying covariates through some
simple programming.

Details and examples can be found at support.sas.com/en/documentation.html.

STATA

[StataCorp LLC; www.stata.com]

STATA provides nonparametric, parametric and semiparametric estimates for uni-
variate failure time data analysis, through functions such as sts and stcox. Similar to
SAS, the stcox function can handle some regression methods for multivariate failure
time analysis by arranging the data set to resemble univariate data.

For example, the marginal Cox model for clustered data as in Lee et al. (1992) can be
implemented by creating one observation for each event, with an additional variable
indicating the cluster. For multiple events on the same individual, multiple observa-
tions should also be generated to fit the marginal Cox model as in Wei et al. (1989),
with additional subject and event type indicators. With recurrent events, the methods
in Andersen and Gill (1982) and Prentice et al. (1981) can be implemented by gener-
ating separate observations for each event time interval, and appropriately assigning
the order of events. The stcox function allows stratification and tied data, and han-
dles time-varying covariates either through partitioning the data set or through the
tvc option.

http://www.stata.com
http://www.support.sas.com
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Details and examples can be found in stata.com/support/faqs/statistics/multiple-
failure-time-data.

R

[R Core Team (2013). R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria; www.R-project.org.]

The R package survival contains functions for nonparametric, semiparametric and
parametric estimates for univariate failure time data. Although not mentioned specif-
ically in the package manual, it is apparent that the marginal Cox model approach
and the recurrent event approaches can be handled by the coxph function by ap-
propriately forming the data set, as discussed in SAS and STATA. This function
allows stratification, tied data, and time-varying covariates to be handled through
partitioning individuals experience or by programming external functions to up-
date the covariates over time. Details of this package can be found in cran.r-
project.org/web/packages/survival/survival.pdf.

The R timereg package contains a function two.stage, which fits a bivariate Clayton-
Oakes model with a two-stage estimation procedure as in Glidden (2000), assuming
the cross ratio parameter does not depend on covariates. Details can be found in
cran.r-project.org/web/packages/timereg/timereg.pdf.

The R MHazard package is a toolbox for both nonparametric and semiparametric
methods for multivariate failure time data analysis. It provides nonparametric bi-
variate Dabrowska, Prentice–Cai and Volterra estimators, and higher dimensional
Dabrowska and Volterra estimators, as well as calculating corresponding dependency
measures. It also fits semiparametric regression models for the marginal single and
double failure hazard rates with bivariate failure times, allowing baseline stratifica-
tion and tied data. Furthermore it allows users to include an interaction between the
fixed covariates and a function of time. Customized versions of code are available
for some specific forms of time-varying covariates and time-dependent strata. The
package also allows one to fit marginal models with more than two failure times,
with marginal single, double and triple failure hazard rates. Variances are computed
in a sandwich form to account for the correlation between failure time variates.

B.2 Data Access

Most of the illustrations in this monograph use data from the Women’s Health Ini-
tiative. The WHI is a massive research program among 161,808 postmenopausal
women in the United States, aged 50–79 at enrollment. Launched in 1993 it includes

http://www.R-project.org
http://www.cran.r-project.org
http://www.cran.r-project.org
http://www.cran.r-project.org
http://www.stata.com
http://www.stata.com
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68,132 woman in a multifaceted clinical trial of four disease prevention interven-
tions, and a companion prospective cohort study among 93,676 women. Over the
ensuing 25 years a substantial database and specimen repository has been devel-
oped, including participant follow-up for a wide array of clinical and intermediate
outcomes. These resources have been used by the broader research community for
a wide variety of scientific purposes, leading to over 1400 articles and nearly 300
separately funded ancillary studies.

WHI data can be accessed for scientific purposes either in a collaborative mode,
working through the WHI Publication Committee and/or Ancillary Study Commit-
tee, or through the National Heart, Lung and Blood Institute’s BioLINCC Resource.
To exercise the former route, go to the WHI website (whi.org) where further descrip-
tion of the data and specimen resource is given, and where instructions are provided
for manuscript proposals and for ancillary study proposals. For the latter route, go to
the NHLBI Data Repository (BioLINCC) website (nihcollaboratory.org) for instruc-
tions on how to request specific data for scientific use under the auspices of your own
Institutional Review Board.

Some small data sets shown in the book narrative in Table 1.1, Table 1.2 and Table
3.4 have been appended to the R MHazard package for user convenience.

http://www.whi.org
http://www.nihcollaboratory.org
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Péano series, 193, see Volterra inte-
gral equation

Paired data, see Applications, Aus-
tralian twin study

Paired hazard rates, see Double fail-
ure hazard rates

Pairwise dependency estimation, 62,
67, 101, 135, 140

Partial likelihood, xi, 28–30, 32, 48,
95, 145–148, 150, 155, 170

Point process, 90, 93, 143, 144, 150,
181–182

Post-randomization confounding, see
Confounding

Potential outcome/latent failure time,
93–94

Predictable, 41
Product integral, 2–3, 6, 22, 45, 51,

53, 56, 69, 101–102, 104,
121, 123, 159, 165, 179,
191–193

Product limit estimator, see Kaplan–
Meier estimator

Propensity score, 164, 183
Proportional hazards model, see Cox

models

Random effects, see Frailty models
Randomized trials, see Clinical trials
Rank test, see Logrank test
Rebolledo’s theorem, 42, 50
Recurrent event data, xii, 12–20, 119,

143–154, 163, 181, 183
example, see Applications, blad-

der tumor recurrence study
Regression models, xi, 4, 7, 44, 73,

74, 78–80, 82, 91, 92, 94,
99, 110, 113, 125, 150, 151,
159, 161, 165, 166, 199

Relative risk models, see Cox models
Residuals, see Model checking
Riemann–Stieltjes integral, 191–192



224 Subject Index

Sampling, 49, 58, 62, 66, 86–89, 108,
113, 114, 125, 127, 179,
183

cohort, 33–35, 166–170, 184–
185

Semiparametric models, see Regres-
sion models

Simulation of failure time data, 85–
86, 106–108

Software, 44, 197–200
Stieltjes integration, 2, 3, 5, 191–193
Stratification, 32, 34, 36, 38, 48, 77,

81, 113, 146, 147, 149, 152,
169, 175, 180, 197–199

Study population, 1–2, 4, 25, 28, 31,
72, 144, 149, 157, 166, 171,
174

Survivor function estimation, 25,
see Kaplan–Meier estima-
tor; Bivariate survivor func-
tion estimation; Multivari-
ate survivor function esti-
mation

Thiotepa, 17–18, 146–148, 153, 156
Tied failure times, 31, 46, 144, 145,

150, 197
Time-dependent covariates, see Co-

variates, time dependent
Time-dependent strata, 145, 199
Transplant, see Applications, aplastic

anemia trial
Two-phase study design, 166–167,

170, 183, 184

Unobservable, xiv, 182

Validation study, 171–174
Veterans Administration Cooperative

Urological Group, 17
Volterra integral equation, 5, 54, 57,

68, 74, 105, 111, 193

Weighted estimating equations, 133,
184

Wilcoxon test, 33

Women’s Health Initiative, xiv–xv,
149, 174, 176, 178, 199–
200

dietary modification trial, 19–20,
89–90, 151–152

hormone therapy trials, 15–17,
23–24, 36–39, 100, 115–
116, 137–140

nutrition and physical activity
studies, 174–177


	Cover������������
	Half Title�����������������
	Title Page�����������������
	Copyright Page���������������������
	Dedication�����������������
	Table of Contents������������������������
	Preface��������������
	1: Introduction and Characterization of Multivariate Failure Time Distributions��������������������������������������������������������������������������������������
	1.1 Failure Time Data and Distributions����������������������������������������������
	1.2 Bivariate Failure Time Data and Distributions��������������������������������������������������������
	1.3 Bivariate Failure Time Regression Modeling�����������������������������������������������������
	1.4 Higher Dimensional Failure Time Data and Distributions�����������������������������������������������������������������
	1.5 Multivariate Response Data: Modeling and Analysis������������������������������������������������������������
	1.6 Recurrent Event Characterization and Modeling��������������������������������������������������������
	1.7 Some Application Settings������������������������������������
	1.7.1 Aplastic anemia clinical trial�������������������������������������������
	1.7.2 Australian twin data���������������������������������
	1.7.3 Women’s Health Initiative hormone therapy trial������������������������������������������������������������
	1.7.4 Bladder tumor recurrence data������������������������������������������
	1.7.5 Women’s Health Initiative dietary modification trial�����������������������������������������������������������������


	2: Univariate Failure Time Data Analysis Methods�������������������������������������������������������
	2.1 Overview�������������������
	2.2 Nonparametric Survivor Function Estimation�����������������������������������������������������
	2.3 Hazard Ratio Regression Estimation Using the Cox Model�����������������������������������������������������������������
	2.4 Cox Model Properties and Generalizations���������������������������������������������������
	2.5 Censored Data Rank Tests�����������������������������������
	2.6 Cohort Sampling and Dependent Censoring��������������������������������������������������
	2.7 Aplastic Anemia Clinical Trial Application�����������������������������������������������������
	2.8 WHI Postmenopausal Hormone Therapy Application���������������������������������������������������������
	2.9 Asymptotic Distribution Theory�����������������������������������������
	2.10 Additional Univariate Failure Time Models and Methods�����������������������������������������������������������������
	2.11 A Cox-Logistic Model for Continuous, Discrete or Mixed Failure Time Data������������������������������������������������������������������������������������

	3: Nonparametric Estimation of the Bivariate Survivor Function���������������������������������������������������������������������
	3.1 Introduction�����������������������
	3.2 Plug-In Nonparametric Estimators of F������������������������������������������������
	3.2.1 The Volterra estimator�����������������������������������
	3.2.2 The Dabrowska and Prentice–Cai estimators������������������������������������������������������
	3.2.3 Simulation evaluation����������������������������������
	3.2.4 Asymptotic distributional results����������������������������������������������

	3.3 Maximum Likelihood and Estimating Equation Approaches����������������������������������������������������������������
	3.4 Nonparametric Assessment of Dependency�������������������������������������������������
	3.4.1 Cross ratio and concordance function estimators������������������������������������������������������������
	3.4.2 Australian twin study illustration�����������������������������������������������
	3.4.3 Simulation evaluation����������������������������������

	3.5 Additional Estimators and Estimation Perspectives������������������������������������������������������������
	3.5.1 Additional bivariate survivor function estimators��������������������������������������������������������������
	3.5.2 Estimation perspectives������������������������������������


	4: Regression Analysis of Bivariate Failure Time Data������������������������������������������������������������
	4.1 Introduction�����������������������
	4.2 Independent Censoring and Likelihood-Based Inference���������������������������������������������������������������
	4.3 Copula Models and Estimation Methods�����������������������������������������������
	4.3.1 Formulation������������������������
	4.3.2 Likelihood-based estimation����������������������������������������
	4.3.3 Unbiased estimating equations������������������������������������������

	4.4 Frailty Models and Estimation Methods������������������������������������������������
	4.5 Australian Twin Study Illustration���������������������������������������������
	4.6 Regression on Single and Dual Outcome Hazard Rates�������������������������������������������������������������
	4.6.1 Semiparametric regression model possibilities����������������������������������������������������������
	4.6.2 Cox models for marginal single and dual outcome hazard rates�������������������������������������������������������������������������
	4.6.3 Dependency measures given covariates�������������������������������������������������
	4.6.4 Asymptotic distribution theory�������������������������������������������
	4.6.5 Simulation evaluation of marginal hazard rate estimators���������������������������������������������������������������������

	4.7 Breast Cancer Followed by Death in the WHI Low-Fat Diet Intervention Trial�������������������������������������������������������������������������������������
	4.8 Counting Process Intensity Modeling����������������������������������������������
	4.9 Marginal Hazard Rate Regression in Context�����������������������������������������������������
	4.9.1 Likelihood maximization and empirical plug-in estimators���������������������������������������������������������������������
	4.9.2 Independent censoring and death outcomes�����������������������������������������������������
	4.9.3 Marginal hazard rates for competing risk data����������������������������������������������������������

	4.10 Summary�������������������

	5: Trivariate Failure Time Data Modeling and Analysis������������������������������������������������������������
	5.1 Introduction�����������������������
	5.2 Nonparametric Estimation of the Trivariate Survivor Function�����������������������������������������������������������������������
	5.2.1 Dabrowska-type estimator development�������������������������������������������������
	5.2.2 Volterra estimator�������������������������������
	5.2.3 Trivariate dependency assessment���������������������������������������������
	5.2.4 Simulation evaluation and comparison�������������������������������������������������

	5.3 Trivariate Regression Analysis via Copulas�����������������������������������������������������
	5.4 Regression on Marginal Single, Double and Triple Failure Hazard Rates��������������������������������������������������������������������������������
	5.5 Simulation Evaluation of Hazard Ratio Estimators�����������������������������������������������������������
	5.6 Postmenopausal Hormone Therapy in Relation to CVD and Mortality��������������������������������������������������������������������������

	6: Higher Dimensional Failure Time Data Modeling and Estimation����������������������������������������������������������������������
	6.1 Introduction�����������������������
	6.2 Nonparametric Estimation of the m-Dimensional Survivor Function��������������������������������������������������������������������������
	6.2.1 Dabrowska-type estimator development�������������������������������������������������
	6.2.2 Volterra nonparametric survivor function estimator���������������������������������������������������������������
	6.2.3 Multivariate dependency assessment�����������������������������������������������

	6.3 Regression Analysis on Marginal Single Failure Hazard Rates����������������������������������������������������������������������
	6.4 Regression on Marginal Hazard Rates and Dependencies���������������������������������������������������������������
	6.4.1 Likelihood specification�������������������������������������
	6.4.2 Estimation using copula models�������������������������������������������

	6.5 Marginal Single and Double Failure Hazard Rate Modeling������������������������������������������������������������������
	6.6 Counting Process Intensity Modeling and Estimation�������������������������������������������������������������
	6.7 Women’s Health Initiative Hormone Therapy Illustration�����������������������������������������������������������������
	6.8 More on Estimating Equations and Likelihood������������������������������������������������������

	7: Recurrent Event Data Analysis Methods�����������������������������������������������
	7.1 Introduction�����������������������
	7.2 Intensity Process Modeling on a Single Failure Time Axis�������������������������������������������������������������������
	7.2.1 Counting process intensity modeling and estimation���������������������������������������������������������������
	7.2.2 Bladder tumor recurrence illustration��������������������������������������������������
	7.2.3 Intensity modeling with multiple failure types�����������������������������������������������������������

	7.3 Marginal Failure Rate Estimation with Recurrent Events�����������������������������������������������������������������
	7.4 Single and Double Failure Rate Models for Recurrent Events���������������������������������������������������������������������
	7.5 WHI Dietary Modification Trial Illustration������������������������������������������������������
	7.6 Absolute Failure Rates and Mean Models for Recurrent Events����������������������������������������������������������������������
	7.7 Perspective on Regression Modeling via Intensities and Marginal Models���������������������������������������������������������������������������������

	8: Additional Important Multivariate Failure Time Topics���������������������������������������������������������������
	8.1 Introduction�����������������������
	8.2 Dependent Censorship, Confounding and Mediation����������������������������������������������������������
	8.2.1 Dependent censorship���������������������������������
	8.2.2 Confounding control and mediation analysis�������������������������������������������������������

	8.3 Cohort Sampling and Missing Covariates�������������������������������������������������
	8.3.1 Introduction�������������������������
	8.3.2 Case-cohort and two-phase sampling�����������������������������������������������
	8.3.3 Nested case–control sampling�����������������������������������������
	8.3.4 Missing covariate data methods�������������������������������������������

	8.4 Mismeasured Covariate Data�������������������������������������
	8.4.1 Background�����������������������
	8.4.2 Hazard rate estimation with a validation subsample���������������������������������������������������������������
	8.4.3 Hazard rate estimation without a validation subsample������������������������������������������������������������������
	8.4.4 Energy intake and physical activity in relation to chronic disease risk������������������������������������������������������������������������������������

	8.5 Joint Modeling of Longitudinal Covariates and Failure Rates����������������������������������������������������������������������
	8.6 Model Checking�������������������������
	8.7 Marked Point Processes and Multistate Models�������������������������������������������������������
	8.8 Imprecisely Measured Failure Times���������������������������������������������

	Glossary of Notation���������������������������
	Appendix A: Technical Materials��������������������������������������
	A.1 Product Integrals and Stieltjes Integration������������������������������������������������������
	A.2 Generalized Estimating Equations for Mean Parameters���������������������������������������������������������������
	A.3 Some Basic Empirical Process Results�����������������������������������������������

	Appendix B: Software and Data������������������������������������
	B.1 Software for Multivariate Failure Time Analysis����������������������������������������������������������
	B.2 Data Access����������������������

	Bibliography�������������������
	Author Index�������������������
	Subject Index��������������������



