

KC Martin

The Agile Software Tester

Revision 7
June 2021

Copyright © KC Martin (2014-2021)

The right of KC Martin to be identified as the author of this work has been
asserted by him in accordance with section 77 and 78 of the Copyright,
Designs and Patents Act 1988.
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior
permission of the publishers.
Any person who commits any unauthorized act in relation to this publication
may be liable to criminal prosecution and civil claims for damages.

Table of Contents
Preface

About the Author
Introduction

Foundations of Testing
The Testers Mindset

Types of Testing
Black Box Testing
White Box Testing

Static Testing
Serverless Testing
The Path to Agile

The Agile Process Framework
The five agile meetings
The Agile QA Tester

The Agile Organisation
Moving to agile and what to avoid

User Stories
Gherkin and Cucumber

Burndown Charts
Test Driven Vs Behaviour Driven
Automated Testing with Selenium

Selenium and ASP.Net
The first Selenium test

The Selenium Command Set
A Complete C# Example

A Complete Ruby Example
A Complete Java Example

Automated API testing in C#
Load testing with Jmeter
API testing with Postman

Structured Query Language
Stored Procedures

Continuous Integration and Deployment
CI/CD with Azure

Conclusion
Agile Myths

Glossary
Further Reading

Useful download URL’s

Preface
In the world today many forward-thinking, fast-moving organisations have
adopted the agile software development framework fully with a carefully
planned strategy and 100% company commitment. This leap of faith now
means they are hopefully reaping the benefits gained from this strategy,
however, there are still plenty of software companies out there who have, for
one reason or another, not engaged in the framework. These companies still
ignore the agile framework methodology or they have simply placed a task
board in the centre of the office and stated ‘there, now we are agile’.

While it is true that the agile methodology is not for everyone and not every
software development project is suited to the framework it is, however, the
way forward for the majority of companies who are involved in modern
software development.

As agile has grown in popularity and usage over the decades the amount of
literature about the subject has also grown tremendously. Sadly, however,
most of the books currently available on the market focus on the project
management or the code development areas of the software development life
cycle, there is still very little for the aspiring agile software quality assurance
(QA) tester to read. In the agile world. Testing and the software QA are just
as important as any other function or person and that is why I have written
this book. Hopefully experienced and new QA’s alike will find some useful
pointers within these humble pages which will help them enhance their career
and enjoyment of testing software.

Test professionals involvement in agile projects remains challenging because
of the very different nature of the agile methodology compared to older
methodologies such as waterfall and the V Modal. This is also not helped by
a level of misunderstanding about the true nature of agile that persists in
many companies and deep-rooted prejudices aimed at QA’s by a very small
percentage of programmers and project managers (they are nothing more
than failed programmers being a common misconception).

Although many test professionals are succeeding in agile projects, many
others continue to struggle to succeed and achieve their true potential that
their skills and dedication deserve. QA’s who have spent many years testing

outside of agile can also often struggle to make the jump across from the
waterfall methodology. However with quality training, good management
and self-belief this jump can be completed, this is where this book comes in.
This is edition five of The Agile Tester, in this edition I have updated most
chapters and corrected some typing mistakes which you the readers have
kindly made me aware of. If you find anymore in this version please let me
know.

So do you want to be an agile quality assurance software tester?
Have you got what it takes?
Time to find out, read on and see.
Enjoy.

What you will need for this book
Chrome web browsers
Chrome Driver
Visual Studio Community Edition and/or Ruby Mine
A basic understanding of software testing

Who this book is for?
This book is for existing software QA’s who wish to extend their skillset into
the world of agile and automated software testing. The book is also for
anyone who is considering entering this exciting, rewarding and challenging
line of work.

Reader feedback
Feedback from my growing collection of readers is always welcome. Please
let me know what you think about this book—what you liked or may have
disliked. Constructive reader feedback is important for me to develop this
publication further so that you do get the most out of it. To send me general
feedback, simply send an e-mail to feedback@Kevsbox.com, and mention
the book title inside the subject of your message.

mailto:feedback@Kevsbox.com

Errata
Although I have taken every care to ensure the accuracy of the content,
mistakes do happen; I am after all only human. If you find a mistake in this
publication—for example, a mistake in the text or the code—I would be
grateful if you would report this to me. By doing so, you can save many other
readers from frustration and help me improve subsequent versions of this
book. If you find any errata, please report them by sending an e-mail to
feedback@Kevsbox.com and include the details of the errata. Once your
errata are verified, your submission will be accepted and the errata will be
uploaded to our website (www.kevsbox.com), or added to any list of existing
errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all
media. At kevsbox.com we take the protection of our copyright and licenses
very seriously. If you come across any illegal copies of my works, in any
form, on the Internet, please provide me with the location address or website
name immediately so that I can pursue a remedy.

Please contact us at copyright@Kevsbox.com with a link to the suspected
pirated material. I appreciate your help in protecting my work, and my ability
to bring you valuable content.

Questions
You can contact me at questions@Kevsbox.com if you are having a problem
with any aspect of the book, and I will do our best to address it.

mailto:feedback@Kevsbox.com
mailto:copyright@Kevsbox.com
mailto:questions@Kevsbox.com

About the Author

KC Martin is a professionally qualified Software Developer and Software
QA with over twenty nine years’ experience of agile, selenium, scrum,
software testing, CI & CD, software design, support and installation. During
his career in Information Technology, he has developed, maintained and
tested applications using COBOL, C, C++, Visual Basic, C# and Java.

Kevin graduated from The University of Portsmouth in September 2009 with
Master of Science in Software Engineering with Merit. More recently he has
passed the Professional Scrum Master 1 examination and in October 2013 he
also sat and passed the ISTQB Advanced Test Manager examination while in
April 2014 he sat and passed the ISTQB Certified Agile Tester examinations.

Kevin started as a software programmer and has since moved into Quality
Assurance and Software Testing. He has experienced the software
development cycle from all angles and has used that experience to create this
book which he hopes will help both new and experienced software QA’s
equally. Kevin’s other interests also include running, keeping fit, rock music,
sailing and cooking.

Introduction
Software development has changed dramatically over the past sixty or so
years. In the early days of software development system memory was at a
premium, coding was achieved in machine code and most programs were
small and simple when compared to their modern counterparts. As a result,
testing was considered a minor task for lesser mortals and a hindrance by
most programmers.

Gradually as software development tools evolved, we entered the era of the
DOS programmer. These programmers used development tools such as C,
Ada and Pascal to write their beloved programs. They still considered testing
a hindrance and an insult to their skills. Therefore, they tried to avoid it at any
cost. It was, of course, a job for lesser mortals. Most software companies
spent as little investment as possible on testing and most bugs tended to be
reported by end-users as systems crashed and burned around the globe.

With the advent of Windows, a new level of complexity and confusion was
added to the software mix. Suddenly not only did software development
companies have to worry about their bugs but there were also the added
concerns of just how stable the Windows operating systems was their clients
were now using.

Windows and other GUI’s have evolved tremendously over the past two
decades, some versions have been much better than others, a prime example
of a quickly dropped but never to be forgotten version will always be the
infamous Windows ME. All these concerns have awoken most software
houses to the real importance of high quality, technically adept, well-paid
software testers (also known as QA’s).

You see competent, well trained software QA’s will also have a basic
understanding of at least one programming language. They will also be
confident with Structured Query Language (SQL) and the basics of computer
architecture. They will be very methodical in their approach to work and the
need for patience, concentration and tolerance is also very high. Let's face it,
today good, high-quality, skilled programmers are everywhere, however,
good talented software QA’s are still relatively few and far between.

So important is software testing today that I will even go as far as to say that
talented software QA’s are a much more valuable asset than talented software
developers. When I first made this statement, a few programmers refused to
talk to me for a long time, some still do not.

Over the past twenty-five years, there has been a slow but sure change in
software development strategies as users have come to accept web-based
applications and now regard them as a normal part of their computing
experience. No matter if it is leisure-based software such as Facebook or
business related most modern applications are now either web based or have
a web alternative to their more traditional windows-based versions.

The richness and complexity of web software are also increasing, however,
the more complex a program is the more likely it has bugs somewhere in the
tangle of code and the more important the testing role becomes. Some
software developers get past the testing question by keeping their
applications in a permanent Beta mode. This passes the testing mantle on to
the actual end-user who, it would seem, is happy to test the product as they
use it, usually because the software is very cheap or free.

For serious, business applications this is certainly not a viable option.
Applications that offer business-related solutions such as job management
and online ordering also need to offer a high level of reliability and integrity

to maintain customer support and confidence and avoid litigation when the
system falls apart at the seams. This is where the software QA bravely steps
in and saves the day. Today customers quite correctly expect more for their
money and are more likely to demand compensation when things go wrong.
Therefore, software houses now need to be more aware of the testing role.

As I have already said today the world is awash with good software
programmers. Let’s face it dear readers they are everywhere. Simply look
under any mouse mat and a dozen highly skilled programmers will appear
demanding extra strong coffee and a connection to World of Warcraft. The
same cannot yet be said for good software QA’s, not yet that is.

A programmer’s aim in life is to construct what they will always consider
being a flawless work of art. To them, their code is a perfect masterpiece and
the best code to be found anywhere on the planet, and why not, that is where
their skills are. Meanwhile, a QA will do his or her best to detect and
highlight any errors in the code and the logical way it works, and why not, it
is after all that they are paid to do. Despite what some people think good
QA’s do not do this to simply annoy and anger the programmers. Rather it is
a serious attempt to capture as many bugs as possible before the product falls
into the hands of the poor unsuspecting customer.

Therefore, the QA role is as important as any other member of the
development team. So, let us look at the foundations of software testing and
get an idea of where it all started back in the early days of software
development.

Foundations of Testing
Today software is everywhere and in everything. It is now an integral part of
human life. Software control’s many aspects of day-to-day life from Traffic
lights to the humble washing machine and down to the little smartwatch
strapped to your wrist. No matter who you are or what you do and where you
are today you will never be far from the humble little microchip. Like it or
not they do control modern life and they control us.

All these systems must be conceived, designed, coded and (hopefully) tested
to a very high standard; that is after all the software lifecycle in its most basic
form. The software is designed and coded by human beings who will by their
very nature make mistakes and get things wrong, no one is perfect, not even
programmers (however only say that in front of them if you are feeling very
brave or they are asleep).

Over the years there have been some very spectacular software failures, some
of which you may have heard of already, others may be new to you. On the
following pages are just a few classic well-known examples of what an
extremely long and tragic list is now.

The Ashley Madison Hack (2015) - Ashley Madison, the

online dating site, which helped married people cheat on their partners, was

hacked. Much to the delight of some people and horror of some others, the

hackers published the real names, email addresses and personal details of the

dating site’s users. The cost of this action was 2 lives, countless marriages, a

£400 million class action suit, various extortion attempts, the company’s

reputation and the loss of their CEO.

Royal Bank of Scotland (2009) - The Royal Bank of Scotland

experienced a fault on cyber-Monday that left its account holders unable to

withdraw cash or make payments. In a public statement, the CEO of RBS

admitted that the fault was unacceptable and that it was caused by the failure

of RBS to invest in IT for decades. The problem left many Christmas

shoppers unable to buy or pay for their purchases, which further hurt online

retailers. As a result, all RBS customers were unable to access their money

for a day.

The Toyota Recall (2009) - There have been three separate

recalls by Toyota since 2009, and amazingly all the recalls have been related

to the same thing, that is the accelerator sticking. First, in August 2009 a

Lexus ES350 suddenly accelerated out of control at speeds estimated to

exceed 100 mph. One of the passengers called 911 before they crashed and

reported that the car had "no brakes." Sadly, all four passengers were killed

when the car crashed. Next, in November 2009, Toyota dealers were

instructed to remove and shorten the gas pedals and update the onboard

computers with a new program that would override the electronic gas pedal

when the brake pedal was pressed. Eventually, Toyota ended up recalling

more than 9 million cars worldwide in 2010, but it wasn't because of a

mechanical issue. The cars all suffered from a software bug that caused a lag

in the anti-lock brake system. Overall these recalls, legal costs and other

consequences are thought to have cost Toyota over $3 billion, a very costly

bug indeed.

Ariane 5 Flight 501 (1996) – In 1996 Europe’s newest unmanned

satellite-launching rocket, the Ariane 5, reused previously working software

from its predecessor, the Ariane 4 rocket. Unfortunately, the Ariane 5’s

faster; more powerful engines exploited a bug that was not realised or

detected in previous models. The rocket took exception to this oversight and

self-destructed 36.7 seconds into the maiden launch.

Mariner 1 (1962) - On July 22, 1962, the first spacecraft of NASA's

Mariner program blasted off on a mission to fly by Venus. Initially, all

looked good as the spacecraft happily headed towards outer space, but after a

few minutes, the spaceship began to yaw off course. The guidance system

failed to correct the trajectory, and guidance commands failed to correct it

manually. As the rocket veered off toward the busy North Atlantic shipping

lanes, the range safety officer did the only thing he could do, destroy the

spacecraft. Eventually, the cause was nailed down to a mis-transcription of a

single punctuation mark by an engineer.

The Mars Climate Orbiter Crash (1998) – This crash was

eventually root caused back to a sub-contractor who had designed the

navigation system on the orbiter using imperial units of measurement instead

of the metric system that was specified by NASA. As a result, the spacecraft

attempted to stabilise its orbit too low within the Martian atmosphere and

subsequently crashed into the ground.

Soviet Gas Pipeline Explosion (1982) - When the CIA

(allegedly) discovered that the Soviet Union was (allegedly) trying to steal

sensitive U.S. technology for its operation of their trans-Siberian pipeline,

CIA operatives (allegedly) introduced a bug into the Canadian-built system

that would pass Soviet inspection but ultimately fail when in operation. This

caused the largest man-made non-nuclear explosion in the planet's history.

The Plague in World of Warcraft (2005) - The hugely

successful World of Warcraft (WoW), an online computer game created by

Blizzard Entertainment, suffered an embarrassing glitch following an update

to their game on September 13, 2005 – causing mass (fictional) death.

Following an update to the game content, a new enemy character, Hakkar,

was introduced. This character could inflict a disease called Corrupted Blood

upon the playing characters that would drain their health over a period. This

disease could be passed from player to player, just as in the real world, and

had the potential to kill any character contracting it. This effect was meant to

be strictly localised to the area of the game that Hakkar inhabited.

However, one thing was overlooked: players were able to teleport to other
areas of the game while still infected and pass the disease onto others – which
is exactly what happened. I cannot find any figures on the body count, but
entire cities within the game world were no-go areas, with dead player’s

corpses littering the streets. Fortunately, player death is not permanent in
WoW and the event was soon over when the administrators of the game reset
the servers and applied further software updates. Particularly interesting is the
way players reactions in the game could closely reflect their reactions to a
similar real-life incident. While the deaths in the World of Warcraft were
fictional this has not always been the case as the next example will show.

Therac-25 (1985-1987) - The Therac-25 was a machine for

administering radiation therapy, generally for treating cancer patients. It had

two modes of operation. The first consisted of an electron beam targeted

directly at the patient in small doses for a short amount of time. The second

aimed the electron beam at high energy levels at a metal ‘target’ first, which

would essentially convert the beam into X-rays that were then passed into the

patient.

In previous models of the Therac machine, for this second mode of operation,
there were physical fail-safes to ensure that this target was in place as,
without it, extremely high energy beams could be mistakenly fired directly
into the patient. In the new model, these physical fail-safes were replaced by
software ones.
Unfortunately, there was a bug in the software: an ‘arithmetic overflow’
sometimes occurred during automatic safety checks. This means that the
system was using a number inside its internal calculations that were too big
for it to handle. If at this precise moment, the operator was configuring the
machine, the safety checks would fail, and the metal target would not be
moved into place. The result was that beams 100 times higher than the
intended dose would be fired into a patient, giving them radiation poisoning.
This happened on 6 known occasions, causing the later death of 4 unfortunate
patients.

Knight Capital Group's trading violations (2012) - In
August 2012 Knight Capital Group Inc., which is one of America’s largest

trading firms, mistakenly sent out more than four million stock orders in less

than one hour. These orders should have been spread out over days—and

reversing the trades cost almost half a billion dollars. Knight Capital would

have been sent into bankruptcy had it not been for a group of investors that

saved the day and came up with $400 million. The problem was that when a

code change was released it was not deployed to all the servers, one server

was missed, and this caused the server to use old code to create millions of

orders. As a result of this error, the firm's shares lost 75% in just two days

after the faulty software flooded the market with unintended trades, sending

dozens of stocks into spasms. The software bug caused over $440 million in

losses, which is almost four times what the company had made in 2011.

The Cold War Missile Crisis (September 26, 1983) -
Stanislav Petrov was the duty officer of a secret bunker near Moscow

responsible for monitoring the Soviet early warning satellite system. Just

after midnight, they received an alert that the US had launched five

Minuteman intercontinental ballistic missiles. As part of the mutually assured

destruction doctrine that came into prevalence during the Cold War, the

response to an attack by one power would be a revenge attack by the other.

This meant that if the attack was genuine, they needed to respond quickly.
However, it seemed strange that the US would attack with just a handful of
warheads: although they would cause massive damage and loss of life, it
would not be even nearly enough to wipe out the Soviet opposition. Also, the
radar stations on the ground were not picking up any contacts, although these
couldn’t detect beyond the horizon because of the curvature of Earth, which
could have explained the delay.
Another consideration was the early warning system itself, which was known
to have flaws and had been rushed into service in the first place. Petrov
weighed all these factors and decided to rule the alert as a false alarm.

Although Petrov did not have his finger on the nuke button as such, had he
passed on a recommendation to his superiors that they take the attack as real,
it could have led to all-out nuclear war. Whether based on experience,
intuition, or just luck, Petrov’s decision was the right one.
It was later determined that the early detection software had picked up the
sun’s reflection from the top of clouds and misinterpreted it as missile
launches.

Famous Encryption Bugs
To fix a warning issued by Valgrind, a developer of Debian patched up
OpenSSL and, in the process, broke the random number generator. This patch
was uploaded in September 2006 and made its way into the official release.
Somehow it was not reported until April 2008. Every key generated with the
broken version is compromised (you see the "random" numbers were made
easily predictable), as is all data encrypted with it. This threatened many
applications that rely on encryption such as S/MIME, Tor, SSL or TLS
protected connections and SSH.
Heartbleed, an OpenSSL vulnerability was introduced in 2012 and eventually
disclosed in April 2014, removed confidentiality from affected services,
causing among other things the shutdown of the Canada Revenue Agency's
public access to the online filing portion of its website following the theft of
social insurance numbers.
The Apple Computer "goto fail" bug was simply a duplicated line of code
which caused a public key certificate check to pass a test incorrectly.

So, while most software bugs are annoying and short-lived others can have
very large and serious repercussions on human life. Not only have software
bugs caused death and severe injury in the most extreme cases they have also
allowed security breaches to bank systems and government systems. No one
knows how much money has been stolen by exploiting these glitches, but the
total probably runs into trillions.

Therefore, software testing is very important; in fact, it is very, very
important. As a result, good, motivated and highly trained software QA’s are
also a very important part of the software development team. In many

software developments companies, the QA used to be someone from the
administration or the post room who was not very busy that week, thankfully
most of the software companies who used this strategy have either gone out
of business or have changed their methods. In these more advanced and
enlightened times, QA’s are usually held in more esteem.

So, what is a bug? It is a defect, a flaw in code, software or documentation
that can cause the said artefact to fail to perform its required function. When
executed such a defect could cause the software to fail with unexpected and
potentially dangerous results. Also, of course, these defects can nearly always
be traced back to human error.

This could be an error in design or code or testing or even in hardware
specification, for example, if the server does not have enough resources to
handle the work put through it then it was underspecified, a human error. No
matter what the root cause was and what type of human error caused it the
outcome will always be called computer error by the press and the company
who released the software.

So, what is the role of testing in software development, maintenance and
operations? The role of the QA is to improve the quality of the software
under test by finding defects and logic issues that can then be corrected.
These corrections are then tested to confirm the risk of operational problems
has been reduced and the quality of the software has therefore increased. The
location and correction of bugs will increase confidence in the software and
helps the software company meet contractual, legal requirements and any
industry-specific standards.

Testing is part of quality assurance; it can help measure the quality of the
software and determine if it is fit for purpose. Metrics are available for
reporting if all bugs are recorded by their type, severity and priority. These
metrics can help identify useful trends and highlight any potential weak
points within the team. The life cycle of each bug is also captured from
creation through to resolution, this builds confidence in the process and
lessons learnt can help improve the quality of the processes used in design,
development and testing.

The quality of testing is also important, a common mistake is to assume that

if no bugs are found then no bugs exist within the software under test. It is
also very possible that the bugs exist, and they have simply not been found
yet because the scope of testing is too narrow and not all available logic paths
have been checked.

One thing is certain, though; if you do not find them during testing the end-
users or customers will find them when they are using the system on live data
and the implications can be very serious indeed. Therefore, experienced and
competent QA’s are a vital part of the team.

They know what questions to ask, where to look, what boundaries to probe
and how to test. Because of their knowledge, they are also able to teach the
less experienced and new QA’s and they should always be present at
important development meetings. Development meetings are a vital part of
the development lifecycle. All interested parties should be present including
the complete development team, which includes all the QA’s.

An important topic during these meetings is how much testing is required to
mark the product as done, fit for purpose and safe. There is no simple answer
to this question, but a vital consideration is what risks are involved. As
already seen some systems have risks involving human life, others have
financial and security risks, others have much lower risks, however, a risk is
a risk and they should always be considered.
So, how much testing should be considered enough?

It depends on the risks that have been identified for the system
This includes technical and business risks

Human and other animal health risks

Financial risks

Customer confidence risks.

It also depends on project constraints
Time

Budget

Manpower

Therefore, testing is necessary because the software under development is
likely to have defects during the early stages of the development cycle.
Testing the software not only helps locate these bugs but it also helps build a
good level of confidence in the reliability of the system. Reducing the
number of bugs also reduces the risk and helps to avoid the development
company from facing litigation, monetary loss and ultimately going out of
business.

However, resources are always finite, and time is always at a premium,
therefore risk must always be identified and prioritised as early as possible.
The only way to do this is through teamwork, regular meetings and feedback
from all parties including the stakeholders. These meetings are discussed in
more detail later in the book. This enables the team to determine what to test
first what to test most how thoroughly to test each item i.e. where to place
emphasis and what not to test (this time).

Eight important principles of software testing to be
considered

Software testing will show the presence of defects.

Exhaustive testing is impossible, there is not enough time left in the universe.

Testing reduces the probability of undiscovered defects remaining in the software but
finding no defects is not proof of overall correctness.

Testing everything (all combinations of inputs and preconditions and all logic paths) is
simply not feasible. Instead, risk analysis and priorities should be used to focus testing
efforts in specific areas,

To find defects early, testing activities should be started as early as possible in the
software or system development life cycle and should be focused on defined
objectives.

If the same tests are repeated, they will no longer find any new defects. To overcome
this, the existing test cases will need to be reviewed and revised, to exercise various
parts of the software.

Testing effort should be focused proportionally to the expected and later observed

defect density of modules. Finding and fixing defects does not help if the system built
is unusable and does not fulfil the user’s needs and expectations.

Testing is done in different contexts. For example, safety-critical software is tested
differently from an e-commerce site and a medical system will be tested differently to
the latest game release. A good understanding of the system under test is vital.

The most visible part of testing is the actual test execution. This is what most
people will associate with testing. But to be truly effective and efficient, test
plans should also include time to be spent on planning the tests, designing the
test cases to be used, preparing the system for the test execution and finally
evaluating the results. Therefore, for each development life cycle, a full test
plan is required. A test plan is a guide to how the test strategy and project test
plan apply to the software under test. It is important to document any
exceptions to the test strategy, e.g. only one test case design technique needed
for this functional area because it is less critical than the overall project. Both
dynamic testing and static testing can be used as a means of achieving similar
objectives and will provide information that can be used to improve both the
system being tested and the development and testing processes, the actual
methods available will be discussed further on in this book.

An important consideration of testing is that different viewpoints of testing
will take different objectives into account. By example, in development
testing (e.g., component, integration and system testing) the main objective
may be to cause as many failures as possible so that defects in the software
code are identified and can be fixed before the final release.

By contrast in user acceptance testing (UAT), the main objective may be to
confirm that the system works as expected, has a good, well designed user
interface and will allow interested parties to gain confidence that the system
has met all the requirements and is in a state of done. In some cases, the main
objective of testing may be to assess the quality of the software (with no
intention of fixing defects), to give information to stakeholders of the risk of
releasing the system at a given time.

Maintenance testing often includes testing that is designed to ensure no new
defects have been introduced during the latest development cycle, merging of
changes and bug fixes. During operational testing, the main objective may be
to assess system characteristics such as reliability or availability.

The test team also needs to be aware that debugging and testing are different
entities. Dynamic testing can show failures that are caused by defects if
implemented correctly.

In contrast debugging is the development activity that a programmer will
employ to locate, analyse and remove the cause of the failure. Subsequent re-
testing by a QA ensures that the fix does indeed resolve the failure. The
responsibility for these activities is usually QA’s test and programmer’s
debug. You should always remember that both are developers in the agile
world.

Test control is the ongoing activity of comparing actual real time progress
against the original test plan and reporting the status, including deviations
from the plan at regular meetings. Test control involves taking actions
necessary to meet the targets and objectives of the project. To control testing,
the testing activities should be monitored and discussed throughout the
project. Test planning considers feedback from monitoring and control
activities.

At the end of every cycle or sprint test closure activities should be employed
to collect data from the completed test activities to consolidate experience,
facts, mistakes and numbers. Test closure activities occur at project
milestones such as when a software system is released, a test project is
completed (or cancelled), a milestone has been achieved, or a maintenance
release has been completed or in the agile world at the end of every sprint.
Typical closure activities include the following tasks:

Checking which planned deliverables has been completed and
delivered.

Closing incident reports or raising change records for any that
remain open.

Documenting the acceptance of the system.

Finalising and archiving test software, the test environment and
the test infrastructure for reuse in later sprints.

Analysing lessons learned to determine changes needed for

future releases and projects.

Using the information gathered to improve test maturity of the
team.

So that is a brief introduction to the foundations of software testing. You are
still here and still reading so hopefully I have not frightened you off yet. The
question is, though, are you good enough to become a talented, high quality
assurance software QA? Do you still think this is the correct career path for
you? Hopefully, the next chapter will answer these questions and more for
you, please read on and enjoy as we investigate the QA’s mindset.

The Testers Mindset
Most people can test software at a very basic level. After all, anyone should
be able to click buttons, look at web pages, input text, check spelling and
press [Save]. However, being able to test software proficiently over many
years at an expert level requires a very special type of mind-set. Let’s be
honest here not everyone has this ability, and there is no shame in this, not
everyone can race cars, run a marathon or fly an aeroplane either. A software
QA does and must have a very different mindset to that of a software
programmer and while both do not always mix well their interaction and
cooperation within a development team is crucial in the agile world. Some
programmers can test their own code and indeed all programmers should test
at a unit level before sending updates out into the test cycle. However,
separation of this responsibility to a professional, well trained QA is typically
done to help focus effort and provide additional benefits, such as an
independent perspective by trained and professional testing resources.
Independent testing can and should be carried out at every level of testing.

A certain degree of independence (also known as avoiding the author bias or
programmer arrogance) often makes the QA more effective at finding defects
and failures in candidate release code. Independence is not, however, a
replacement for familiarity and the best QA’s are often those who are familiar
with the product under test rather than QA’s who have simply been
contracted in for a single project.

Several levels of independence can be defined as shown here from low to
high:

Tests designed by the programmers who wrote the actual
software under test (low level of independence).

Tests designed by other programmers within the same
programming team.

Tests designed by a person(s) from a different organisational
group (e.g., the test team) or test specialists.

Tests designed by a person(s) from a different organisation

contracted in just to test the product.

Let’s face It folks, testing can sometimes be a tedious and repetitive
undertaking and not everyone can handle this task for a very long period of
time. So when you see a quality assurance QA banging their head on their
desk or throwing darts at photographs of the programmers it may well be
time to move them elsewhere within your organisation. A good QA will be
methodical in their approach and will have good written and verbal
communication skills. To them, each day is a fresh, interesting new
challenge. They will have a lot of patience and should be able to maintain a
high level of concentration throughout the day. Also, when writing up their
conclusions of a recent test they need to be able to explain their findings in a
complete, literate but sensitive manner while providing adequate evidence to
support these conclusions. Any hint of trying to indicate a programmer has
done a poor job should always be avoided even if it is true.

Such negative and disparaging comments only lead to divisions within a
company and these are ultimately destructive. Also making a programmer
feel as though you enjoy finding fault with their work is a fast way of
isolating the programming and testing teams.

If the worst does happen and such divisions do become established, they can
be impossible or at the least difficult to remove until certain people are
removed from the firing line or company structure itself.

Most programmers are a highly skilled but sometimes temperamental group
of people, many of whom consider themselves the intellectual tip of the
company iceberg that they work for and as such an untouchable elite that
should not be disrespected or upset in any way. However, the world is
changing and as I have already stated the world is awash with highly skilled
and talented programmers.

The rise of the software QA is now unstoppable and their importance within
the software development world is now indisputable. So how do you
incorporate these two groups of very different and potentially at war teams
with one software development company?

Probably the best solution is to reinforce the team ethos and drive home the
fact that everyone is working on the same end game. Software development

is a team game. The development team is made up of programmers, quality
assurance testers (QA’s), product owners and stakeholders. QA’s are as
important as any other member of the team but not more important than
anyone else. Agile is a great tool for bringing these ideas forward and that is
why this book was written.

Regular meetings are an important part of building the team spirit it is also
essential to ensure a well-designed, well programmed and well tested
software package. Stakeholder involvement is also essential at every stage of
the development cycle and I have always involved the end-user throughout
the complete life cycle. Thankfully, the agile model enforces this idea home
fully. It is important to remember that people and projects are usually driven
by known objectives and deliverables. People tend to align their plans with
the objectives set by management and other stakeholders, for example, to find
defects or to confirm that software meets its objectives. Therefore, it is
important to clearly state the objectives of testing at an early stage.

Identifying failures during testing may be and often is perceived as criticism
against the product and against the programmer who wrote it. As a result,
testing is often seen as a destructive activity in some eyes, even though it is
very constructive in the management of product risks. Looking for failures in
a system requires curiosity, professional pessimism, a critical eye, attention to
detail, effective communication with development peers, and experience on
which to base error guessing. These are a very special set of skills that make
experienced software QA’s a very valuable commodity.

As I have already indicated if errors, defects or failures are communicated
constructively, bad feelings between the QA’s and the analysts, designers and
programmers can be avoided. This applies to defects found during reviews as
well as in testing. The hardest group to keep happy in these circumstances is
the programmers as previously mentioned they tend to be a very sensitive and
temperamental breed.

The QA’s and test leader will need very good interpersonal skills to
communicate information about defects, progress and risks in a constructive
and non-destructive way. For the programmer of the software, useful
information can help them improve their skills. Defects found and fixed
during testing will save time and money later and reduce risks.

Unfortunately, communication problems can occur, particularly if QA’s are
seen only as harbingers of doom and unwanted news about defects. However,
there are several ways to improve communication and relationships between
QA’s and others:

Collaborate: Start with team collaboration rather than battles –
remind everyone in the team that the common goal is better
quality software systems and that they are all of identical
importance to the team.

Communication: Communicate findings on the product in a
neutral, fact-focused way without criticising the programmer(s)
who created it, for example, write objective and factual incident
reports and review findings.

Understanding: Try to understand how the other person feels and
why they react as they do. Get to know the people on your team.

Confirmation: Confirm that the other person has understood
what you have said and vice versa.

So that’s what it takes to be a good QA.
So, do you still think you can be a QA?
If yes then well good for you, you may well have a long, fulfilling future in
the world of software development. Now let’s look at the common types of
testing next.

Types of Testing
So, before we move on to the world of agile software development and agile
software testing let us discuss the major types of testing currently in use
today. This is not a complete, exhaustive list and I am sure some of you will
all know of a few other types and want to say 'what about ...' but please
remember this book has already been written and published. Also, I cannot
hear you but please feel free to email any suggestions for the next edition.
However, most of the common styles are here, you will not use all of them,
but you will come across most during your careers in IT.

These days software QA’s should have a good array of testing methods and
tools at their disposal. These can be generally classified within the Dynamic
and Static areas. Static testing is based on the methods used for Code
Reviews, Walkthroughs and Inspections. Dynamic testing methods involve a
developer or QA using the computer program or parts of it. Types can also be
split between Black Box and White Box as detailed below.

Black box testing

Black box testing is a method of software testing where the QA team are not
required to know or understand the code and internal structure of the software
that is currently under test. For example, in a black box test on software
design, the QA only knows the required inputs and what the expected
outcomes should be and not how the program code arrives at those outputs.
The QA team will never examine the actual programming code and they do
not need any further in-depth knowledge of the program other than its
specifications.
The advantages of this type of testing include:

The test is unbiased because the designer and the QA are
independent of each other.
The QA does not need knowledge of any specific programming
languages.
The test is done from the point of view of the user, not the
designer.
Test cases can be designed as soon as the specifications are
complete.

Discussed next are the most common types of Black Box Testing.

Acceptance testing (also known as User Acceptance

Testing - UAT) is a formal type of software testing that is performed by the

end-user when the features have been delivered by developers, it is usually

the last formal test level in a release cycle. This type of testing aims to

evaluate the system’s compliance with the business requirements and access

whether it is acceptable for delivery. Finding defects is not the focus of

acceptance testing. In some organisations, this is also known as Beta Testing.

Acceptance tests are normally documented at the beginning of the sprint (in

agile) and are a means for business QA and developers to work towards a

common understanding and shared business domain knowledge.

Acceptance testing may occur at various times in the

lifecycle, for example:

A COTS (Commercial off the shelf) software product
may be acceptance tested when it is installed or
integrated.

Acceptance testing of the usability of a component
may be done during component testing.

Acceptance testing of a new functional enhancement
may come before system testing.

Accessibility Testing is designed to ensure the contents of

the website can be easily accessed by disabled people. Accessibility testing is

very similar to usability testing, in that it is about making sure that the

website or application under test is easy for its intended audience to use. That

audience includes users who access the service via a range of assistive

technologies like:

screen readers
voice recognition software
trackball devices

It’s important to consider a range of disabilities when you are testing any
website or application service, including those with:

cognitive and learning disabilities, e.g. dyslexia or attention
deficit disorders
visual impairments, e.g. total and partial blindness, colour
blindness, poor vision
auditory disabilities, which can also affect language
motor skills impairments, e.g. those affected by arthritis, strokes,
RSI

Ad-hoc testing, this form of software testing is usually very

informal and unstructured and can be performed by any stakeholder without

any reference to any test case or test design documents. The person

performing Ad-hoc testing should, however, have a good understanding of

the domain and workflows of the application to find defects and attempt to

break the software. As a result, Ad-hoc testing is intended to find defects that

were not found by existing test cases.

All Pairs Testing is also known as Pairwise testing. This is a

black box testing approach that can be done by software QA’s, developers,

business analysts or any other interested stakeholder. It is a combinatorial

testing method that, for each pair of input parameters to a system (typically, a

software algorithm), tests all possible discrete combinations of those

parameters. By the careful selection of test vectors, this can be done much

faster than an exhaustive search of all combinations of all parameters, by

"parallelising" the tests of parameter pairs.

Automated testing is a testing approach that makes use of

testing tools and/or programming to run the test cases using software or

custom-developed test utilities. Most of the automated tools provided capture

and playback facility, however, some tools require writing extensive scripting

or programming to automate test cases. One of the best tools currently

available is Selenium which can be configured to work with Java and dotNet.

Selenium is a fascinating and very useful tool that will be discussed later in

this book.

Boundary Value Testing (BVT) is a testing technique

that is based on the proven concept that “error aggregates at boundaries”. In

this testing technique, testing is done extensively to check for defects at

known boundary conditions. A classic example of this is if a field accepts

values from 1 to 99 then testing is done for values 0, 1, 2, 98, 99 and 100

because these are the boundaries. In this example 1, 2, 98, 99 are valid while

0 and 100 would be invalid. Tests can be designed to cover both valid and

invalid boundary values. When designing test cases, a test for each boundary

value is chosen.

https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Test_vector
https://en.wikipedia.org/wiki/Software_testing#Input_combinations_and_preconditions

Boundary value analysis can be applied at all test levels. A good feature of
this test is that it is relatively easy to apply, and its defect-finding capability is
high. Detailed specifications help determine the interesting boundaries.

Bottom-up Integration testing is an integration testing

approach where the testing cycle will start with smaller pieces or subsystems

of the whole software and gradually build its way up until testing is covering

the entire software system. The purpose of integration testing is to verify

functional, performance, and reliability requirements placed on major design

items. These units are exercised through their interfaces using black-box

testing, success and error cases being simulated via appropriate parameter

and data inputs. Simulated usage of shared data areas and inter-process

communication is tested, and individual subsystems are exercised through

their input interface. Test cases are constructed to test whether all the

components within assemblages interact correctly, for example across

procedure calls or process activations, and this is done after testing individual

modules, i.e. unit testing. The overall idea is a building block approach, in

which verified assemblages are added to a verified base which is then used to

support the integration testing of further assemblages.

Browser compatibility Testing is one of the subtypes

of testing of compatibility testing performed by the test team. Browser

compatibility testing is performed for web applications with a combination of

different browsers and operating systems. This is also referred to as User

Experience Testing and is designed to ensure the following.

Users have the same visual experience irrespective of the
browsers through which they view the web application.
In terms of functionality, the application must behave and
respond the same way across different browsers and different
operating systems.

Decision Table Testing methods are a very effective way

to capture system requirements that contain logical conditions (e.g., True or

False), and to document internal system design. They can also be used to

record complex business rules that a system has to implement. When creating

decision tables, the specification is analysed, and conditions and actions that

the system must meet are identified. The input conditions and actions are

most often stated in such a way that they must be true or false. The decision

table contains the triggering conditions, often combinations of true and false

for all input conditions, and the resulting actions for each combination of

conditions. Each column of the table corresponds to a business rule that

defines a unique combination of conditions and which result in the execution

of the actions associated with that rule. The coverage standard commonly

used in decision table testing is to have at least one test per column in the

table, which typically involves covering all combinations of triggering

conditions.

Equivalence Partitioning is also known as Equivalence

Class Partitioning. This is an extremely specialised software testing technique

and not a complete type of testing by itself. Equivalence partitioning

technique is used in black box testing types. Equivalence partitioning

classifies test data into Equivalence classes as positive Equivalence classes

and negative Equivalence classes, such classification ensures both positive

and negative conditions are tested. Partitions can also be identified for

outputs, internal values, time-related values (e.g., before or after an event)

and for interface parameters (e.g., integrated components being tested during

integration testing). Tests can be designed to cover all valid and invalid

partitions. Equivalence partitioning is applicable at all levels of testing.

Equivalence partitioning can also be used to achieve input and output

coverage goals. It can be applied to the human input, input via interfaces to a

system, or interface parameters in integration testing.

Exploratory Testing is an informal type of testing which

is conducted by QA’s to learn and understand the software while at the same

time looking for errors or any application behaviour that seems non-obvious

or incorrect. Exploratory testing is usually done by QA’s, but it can also be

done by other stakeholders. Team members such as business analysts,

developers, end-users etc can also undertake this task. Anyone who is

interested in learning the functions of the software and at the same time

looking for errors or behaviour that seems non-obvious is a potential QA for

this method.

Functional testing will nearly always be required during a

software test phase. There are essentially two types of functional testing;

these are Full program testing and Change testing (see Regression Testing).

Functional tests are based on the functions and features (described in
documents or understood by the QA’s) within the system and their
interoperability with specific systems and may be performed at all test levels
(e.g., tests for components may be based on a component specification).

Full program testing is most commonly used when a module is being tested
before its first release into production. The test document created will be a
complete step by step test of the module. Every process should be carefully
tested, and the results analysed and fully documented.

When testing a web based application all functional testing should be carried
out in all the most common browsers, such as Firefox, Chrome, Safari and
Microsoft Edge. The browsers and versions used should also be documented
in the test document. This will ensure that anyone reading the document in
the future will be fully aware of which browsers and versions were used
during the test. The QA should fully detail the functional test by outlining
each process with as much detail as is required to confirm the thoroughness
of the testing. Screenshots should also be included. These can provide a very
informative graphic view which backs up the textual description of the test.
The order in which the test is completed is not important if every aspect is
covered.

Fuzz Testing or fuzzing is a software testing technique that

involves testing with unexpected or random inputs. The software is

monitored for failures or error messages that are presented due to the input

errors.

Integration Testing (See also System Integration

Testing) is also known as [SIT] in short, this is one of the more important

types of software testing. Once the individual units or components have been

unit tested by developers and confirmed as working then the testing team will

run tests that will test the connectivity among these units/component or

multiple units/components. There are different approaches to Integration

testing as shown below:

Big Bang Integration testing is one of the integration testing
approaches, in Big Bang integration testing all or all most all the
modules are developed and then coupled together.
Incremental Integration Testing is a bottom-up approach for
continuous testing of an application as new functionality is
added; Application functionality and modules should be
independent enough to test separately. This type of testing is
done by programmers and/or by QA’s.
Component integration testing tests the interactions between
software components and is done after component testing
System integration testing tests the interactions between
different systems or between hardware and software and may be
done after system testing.

An important consideration here is that the greater the scope of integration,
the more difficult it becomes to isolate defects to a specific component or
system, which may lead to increased risk and additional time for
troubleshooting.
Systematic integration strategies may be based on the system architecture
(such as top-down and bottom-up), functional tasks, transaction processing
sequences, or some other aspect of the system or components. To facilitate
fault isolation and detect the defects early, integration should ideally be
incremental rather than “big bang”. Testing of specific non-functional
characteristics (e.g., overall performance) may be included in integration
testing as well as functional testing.
At each stage of the integration testing phase, QA’s will concentrate fully on
the integration itself. For example, if the team are integrating module X with
module Y then they will be interested in testing the communications between
the two modules, not the functionality of the individual module as that was

done during component testing. Both functional and structural approaches
may be used.

To help test efficiently the QA’s would ideally understand the architecture of
the design and they should be allowed to influence the integration planning.
If integration tests are planned before components or systems are built, those
components can be built in the order required for most efficient testing.

Logical Access Testing is required when testing web-

based applications and in these circumstances, logical access is a vitally

important part of the test regime. Testing should be broken into two distinct

sections; the first section is Zero Access.

Zero access is the operation of testing that a URL can only be reached after a
user has successfully logged into the application using a valid User ID and a
valid password, otherwise, they should be returned to the login page or a pre-
defined warning page. An effective method for preparing for this test is to
record all URL’s that the QA encounters during the Functional test stage. It is
vital that every possible URL is gathered during the functional test and then
tested during this stage and this method helps reduce the number of missed
URL’s.

The method most often used is to log out of the application and then to paste
each URL into the address bar and check the response. Your desired response
will probably be for the user to be sent to a log in screen or a pre-defined
error page. What you do not want is for the user to be allowed system access
after they have logged out of the system.

The second section of logical access testing is Profile Access. This section is
more complex than Zero Access and requires more thought while testing. In
this section, you can assume the user has logged incorrectly and you should
use the same URL’s noted in functional testing as you used in the Zero
Access section, however, this time do not paste them into the address box but
navigate to them. In this section the questions to be answered are:

Does the system allow the user access to a module that their profile
states they should have access to? This should be tested by logging
into the system and navigating to the required module or section.

Next, this test should be undertaken on a user profile that does not
have access to the module. The test should be undertaken in the same
manner as 1 and both tests with results should be fully documented
in the test document.

How far you take profile testing will, of course, depend on the complexity of
your system. If multiple modules are dependant on profile access, then each
module will need testing. If different users have different access rights to
certain actions such as create records, deleting records and running reports
then these will all have to be tested. Also, if user profile additionally defines a
user’s geographical access then this must also be tested, as demonstrated
next.

Profile testing access for a Country/Region. Take for example the URL
below.
http://www.yourapplication.com/customeraccounts/welcome.do?country=de

This address is a customer accounts module on a test server and the Country
is Germany (de). Testing should be undertaken on this address with user
profiles that allow and do not allow access to the given Country. To confirm
this procedure another Country should also be tested in the same way and all
the results should be fully documented in the test document.

These steps are very important. They endorse to the project leader and the
customer that profile access is secure at a Module and a Geographical level.
This type of testing is ideally suited to automation and we will discuss this
later in the Selenium section.

Locale Testing Another important type of test for web-based

applications is locale testing. This is another type of test that is becoming

more common as web-based applications grow in number and the potential

user base becomes global. Locale testing will check the quality of your

applications localisation for a target culture/locale. While it is impossible to

test every potential global locale, you should certainly test a good sample to

confirm the process appears to be reliable.

Maintenance Testing (See also regression testing) after

the initial deployment, a good software system is often in service for years or

even decades. During this time the system, its configuration data, or its

environment are often corrected, changed or extended. The careful planning

of releases in advance is crucial for successful maintenance testing. A

distinction must be made between planned releases and bug fixes.

Maintenance testing (retesting) is done on an existing live working system

and is triggered by modifications, migration, or retirement of the software or

system.

Modifications include planned enhancement changes (e.g., release-based),
corrective and emergency changes, and changes of environment, such as
planned operating system, web browser or database upgrades, planned
upgrade of linked Commercial-Off-The-Shelf software, or patches to correct
newly exposed or discovered vulnerabilities of the operating system or web
browsers.

Maintenance testing for migration (e.g., from one platform to another or from
one server to another) should include operational tests of the new
environment as well as of the changed software. Migration testing is also
needed when data from another application will be migrated to the system
being maintained.

In addition to testing what has been changed, maintenance testing includes
regression testing to parts of the system that have not been changed. The
scope of maintenance testing is related to the identified risk of the change, the

size of the existing system affected and to the size of the change.

Depending on the changes to be implemented, maintenance testing may be
done at any or all test levels and for any or all test types.

Determining how the existing system may be affected by changes is called
impact analysis and is used to help decide how much regression testing to do.
This is a critical exercise that should always be undertaken. The impact
analysis may be used to determine the regression test suite.

Negative Testing is a type of software testing which calls

out the “attitude to break”; these are functional and non-functional tests that

are designed to break the software by entering incorrect data like incorrect

date, time or string or attempt to upload a binary file when a text file is

supposed to be uploaded. Another method is to enter huge text strings for

input fields etc. The core difference between positive testing and negative

testing is that throwing an exception is not an unexpected event in the latter.

When you perform negative testing, exceptions are expected – they indicate

that the application handles improper user behaviour correctly. It is generally

considered a good practice to combine both the positive and the negative

testing approaches

Non-Functional testing refers to aspects of the software

that may not be related to a specific function or user action, such as usability

or performance. Non-functional testing tends to answer such questions as

‘how well does the system perform when I save a new record?’

Non-functional testing can include (but is not limited to): Usability,

Robustness, Compatibility, Performance, Load, Stress, Endurance, Stability,
Accessibility, Extensibility, Scalability, functionality and Portability. It is the
testing of 'how well' the system works under normal usage.

Non-functional testing aims to verify that the software functions correctly
even if the input is invalid or unexpected. The software should handle such
issues in a controlled manner and respond with meaningful error messages.
The program should not crash. Non-functional testing is also concerned with
how well the software works when under load. Does the screen hang for a
long while when connecting to a database? Are there delays when switching
screens? Such tests are also known as Stress Testing and Load Testing.
Whatever the title is, if the software slows down under load then this affects
users working speed and they will soon become unhappy with the product.
Companies will also be concerned that productivity will be compromised,
and they may well eventually reject the package as not fit for purpose.

Non-functional testing and functional testing are usually completed at the
same time. Some development teams will document them separately while
others will merge both types into the same part of the document. Neither
method is wrong if the testing is complete and correctly recorded.

Penetration Testing is a type of security testing. This is

also known as PenTest in its shortened name. Penetration testing is

undertaken to test how secure software and its environments (Hardware,

Operating system and network) really are when subject to attack by an

external or internal intruder. The intruder can be a human/hacker or a

malicious program. Pentest uses methods to forcibly intrude (by brute force

attack) or by using a weakness (vulnerability) to gain access to a piece of

software or its data or hardware with the intent to expose ways to steal,

manipulate or corrupt the data, software files or configuration. Penetration

Testing is a way of ethical hacking, an experienced Penetration tester will use

the same methods and tools that a hacker would use but a Penetration tester

intends to identify vulnerability and get them fixed before a real hacker or

malicious program exploits it.

Regression Testing (See also maintenance testing) is any

type of software testing that seeks to uncover new errors, or regressions, in

existing functionality after changes have been made to the software, such as

functional enhancements, bug fixes or configuration changes. This is

sometimes confused with maintenance testing and you may wonder how they

differ? In regression testing you retest the test case; therefore, you could

consider regression testing to be a subset of maintenance testing/retesting.

However, in the real world, this is mostly a semantics issue. More commonly

different teams will use "maintenance testing " and "regression testing"

interchangeably.

Changes made to existing software packages is a common way of introducing
software bugs. These bugs will quite often appear in areas of the program that
have not been altered by recent changes but often due to shared classes, once
stable sections of code are suddenly unstable. Therefore, regression testing
should always be performed alongside Confirmation Testing. This form of
testing can be tedious if a QA is expected to complete this function after
every upgrade. It is, however, essential if the software is to be released stably.

Regression testing intends to assure that a change, such as a bug fix, did not
introduce new bugs and that the base functionality of the application has not
been broken. This form of testing is not required if the module under test is a
new application that has not been previously released, however, existing
modules will need regression testing.

The most common method of regression testing is re-running previously run
tests. The QA should locate the most recent complete test document for the

module as well as the last three change test documents (less if only one or
two previous documents exist). This is one reason why every test should be
recorded and stored in a secure location.

Regression testing involves retesting the unchanged parts of the module and
to achieve this goal the QA should step carefully through the previous test
documents checking that the results are still the same. The steps need to be
carefully mirrored and should be completed in Internet Explorer (IE), Firefox
and other popular browsers. Which browsers were used should also be
documented?

Any crashes, unexpected results or strange responses should be reported to
the programmer via your company’s usual bug reporting facility, my personal
preference is Bugzilla, but this is simply one of many options. When a fix is
released for a reported bug in regression testing a new full regression test
should then be started to ensure that the new fix has not introduced yet more
new errors. This process should continue until a complete successful
regression test is recorded.

Risk based testing is a type of software testing and a

different approach to testing developing software. In Risk based testing the

requirements and functionality of the software to be tested are prioritised as

Critical, High, Medium and low. In this approach, all critical and high

priority tests are tested first and then this is followed by the medium tests.

The low risk functionality is then tested at the end. However, these may not

be tested at all if there is no further time available for testing.

Sanity Testing is a type of testing that is carried out mostly

by QA's and in some projects by developers as well. Sanity testing is a quick

evaluation of the software, environment, network, external systems are up &

running, software environment is stable enough to proceed with extensive

regression testing. Sanity tests are narrow and most of the time sanity tests

are not documented however they do help to avoid wasting time and cost that

is incurred in testing if the build has failed.

Smoke testing is a type of testing that is carried out by

software QA’s to check if the new build provided by the development team is

stable enough i.e., major functionality is working as expected to carry out

further or detailed testing. Smoke testing is intended to find “showstopper”

defects that can prevent QA’s from testing the application in detail. Smoke

testing carried out for a build is also known as ‘build verification test’. This

type of testing is very similar to Sanity Testing.

Soak Testing is a special type of performance testing, where

the software under test is subjected to load over a significant duration of time,

soak testing may go on for a few days or even for a few weeks. Soak testing

is a type of testing that is conducted to find errors that result in degeneration

of software performance with continued usage. Soak testing is extensively

done for electronic devices, which are expected to run continuously for days

or months or years without restarting or rebooting. With growing web

applications soak testing has gained significant importance as web

application availability is critical for gaining and then sustaining customer

confidence which will help ensure the success of the business in question.

System Integration Testing (See also Integration

Testing) is also known as “SIT” and is a type of testing conducted by

software testing teams. As the name suggests, the main focus of System

integration testing is to test for errors related to integration among different

applications, services, third-party vendor applications etc. As part of SIT,

end-to-end scenarios are tested that would require software to interact (send

or receive data) with other upstream or downstream applications, services,

third-party application calls etc.

System Testing is a test exercise that is concerned with the

behaviour of the complete and whole system or product under development.

The testing scope shall be clearly addressed and defined in the Master and/or

Level Test Plan for that test level. In system testing, the test environment

should correspond as closely as possible to the final target or production

environment platform to minimise the risk of environment-specific failures

not being found in the testing phase.

System testing can include tests based on risks and/or on requirements
specifications, business processes, user stories and other high-level text
descriptions or models of system behaviour, interactions with the operating
system, and system resources.
System testing is comprehensive and should investigate functional and non-
functional requirements of the system, and data quality characteristics. The
QA’s will also need to deal with incomplete or undocumented requirements
as they find them. System testing of functional requirements starts by using
the most appropriate specification-based (black-box) techniques for the
aspect of the system to be tested. Structure-based techniques (white-box) can

then be used to assess the thoroughness of the testing with respect to a
structural element, such as menu structure or web page navigation.

Volume testing is a non-functional type of testing carried out

by performance engineering teams. Volume testing is one of the types of

performance testing. Volume testing is carried out to find the response of the

software with different sizes of the data being received or to be processed by

the software. E.g. If you were to be testing Microsoft Word, volume testing

would be to see if Microsoft Word can open, save and work on files of

different sizes (10 to 100 MB).

Vulnerability Testing involves identifying and exposing

the software, hardware or network vulnerabilities that can be exploited by

hackers and other malicious programs such as viruses or worms.

Vulnerability Testing is a key test for software security and availability. With

a huge increase in the number of hackers and malicious programs worldwide,

Vulnerability Testing is now critical to the success of a Business. This test is

often used in conjunction with Penetration testing.

White Box Testing
White box testing can also be known as clear box testing, transparent box
testing and glass box testing. White box testing is a software testing
approach, which intends to test software with knowledge of the internal code
and intended working of the software.
Typically, the white box testing approach is used in Unit testing which is
usually performed by software developers. White box testing intends to
execute code and test statements, branches, path, decisions and data flow
within the program being tested. White box testing and Black box testing
complement each other as each of the testing approaches has the potential to
uncover a specific category of errors. Common types of white box testing are
discussed next.

API Testing is a type of testing that is like unit testing. Each of

the Software APIs is tested as per the API specification. API testing is mostly

done by the test team unless APIs to be tested is very complex and needs

extensive coding. API testing requires understanding both the API

functionality and possessing good coding skills.

So, you may ask, what is an API? Well API is short for application
programming interface, which is a bit of a mouthful so let us stick with API.
So, an API is a set of programming instructions and defined standards for
accessing a Web-based software application orb a Web tool. Typically, a
software company will release its API to the public so that software
developers can design new products that are powered by or make use of its
service.
A very good example of this is when Amazon.com released its API so that
Web site developers could more easily access Amazon's product information
databases. Using the Amazon API, a third-party Web site can easily post
direct links to Amazon products with updated prices and specific options
such as "buy now".

Branch Testing is a white box testing method for designing
test cases to test code for every branching condition. The branch testing
method is typically applied to a unit testing phase.

Component Testing is a type of software test that is

performed by developers. Component testing is carried out after completing

unit testing. Component testing involves testing a group of units as code

together as a whole rather than testing individual functions, methods.

Condition Coverage Testing is a testing technique

used during unit testing, where a developer tests for all the condition

statements like if, if-else, case etc, in the code being unit tested.

Decision Coverage Testing is a testing technique that is

used in Unit testing. The objective of decision coverage testing is to expertise

and validate each decision made in the code e.g. if, if-else, case statements.

The decision testing technique derives test cases to execute specific decision

outcomes. Branches originate from decision points in the code and show the

transfer of control to different locations in the code. Decision testing is a form

of control flow testing as it follows a specific flow of control through the

decision points. Decision coverage is stronger than statement coverage; 100%

decision coverage guarantees 100% statement coverage, but not vice versa.

Structural Testing is the testing of the structure of the

system or component. In structural testing, the QA’s are required to know the

internal implementations of the code. Here the QA’s require knowledge of

how the software is implemented, how it works. During structural testing, the

tester is concentrating on how the software does it. For example, a structural

technique wants to know how loops in the software are working. Different

test cases may be derived to exercise the loop once, twice, and many times.

This may be done regardless of the functionality of the software.

Structural testing can be used at all levels of testing. Programmers use

structural testing in component testing and component integration testing,
especially where there is good tool support for code coverage. Structural
testing is also used in system and acceptance testing, but the structures are
different. For example, the coverage of menu options or major business
transactions could be the structural element in the system or acceptance
testing.

 Unit testing (also known as component testing) is a type of

white box testing that is performed by software developers whenever they

update their code. Using white box testing techniques, testers (usually the

developers creating the code implementation) verify that the code does what

it is intended to do at a very low structural level. Unit testing usually involves

developing stubs and drivers. Unit tests are often ideal candidates for

automation. Automated tests can run as Unit regression tests on new builds or

new versions of the software.

There are many useful unit testing frameworks like Junit, Nunit etc, available
that can make unit testing more effective. When available, the tester will
examine the low-level design of the code; otherwise, the tester will examine
the structure of the code by looking at the code itself. Unit testing is generally
done within a class or a component. Programmers will nearly always press
the correct buttons when testing and they always test the sequence in the
correct order. Rarely do they carry out destructive testing or integration
testing. Unfortunately, it is difficult for a tester to carry out unit testing unless
they are proficient in programming and have access to the developer’s code,
currently, this is rare.

Component testing may include testing of functionality and specific non-
functional characteristics, such as resource-behaviour (e.g., searching for
memory leaks) or robustness testing, as well as structural testing (e.g.,
decision coverage). Test cases should be derived from work products such as
a specification of the component, the software design or the data model.

One possible approach to component testing is to prepare and automate test
cases before the actual coding process. This is called a test-first approach or
test-driven development (TDD, See Chapter 14). This approach is highly
iterative and is based on cycles of developing test cases, before building and
integrating small pieces of code, and executing the component tests
correcting any issues and iterating until they pass.

This may seem a strange way of doing things at first, but with practice it’s
much more efficient than writing a bucket load of code, running it, and going
back later to figure out everywhere it’s broken (a process that is known as
debugging). This process puts the programmer in a testing mindset while
writing code, which leads to higher-quality code which in turn makes life
easier for the tester.

Static Testing

This is a form of testing that is commonly used in reviews and walkthroughs
which are employed to evaluate the correctness of the deliverable. Unlike
dynamic testing, which requires the execution of software; static testing
techniques rely on the manual examination (reviews) and automated analysis
(static analysis) of the code or other project documentation without the
execution of the code. The code is reviewed for syntax, commenting, naming
convention, the size of the functions and methods etc. Static testing usually
has checklists against which deliverables are evaluated.

Manual reviews are a good way of testing software work products (including
code) and can be performed well ahead of dynamic test execution. Defects
that are detected during reviews early in the life cycle (e.g., defects found in
requirements) are often much cheaper to remove than those detected by
running tests on the executing code.

In most cases, a review could be done entirely as a manual activity, but there
is also tool support available if required or desired. The main manual activity
is to examine a work product and make constructive comments about it. Any
type of software work product can be reviewed, including requirements
specifications, design specifications, raw code, test plans, test specifications,
test cases, test scripts, user guides or web pages.

The benefits of reviews include early (and cheaper) defect detection and
correction, improved development productivity improvement, reduced
development timescales, reduced testing cost and time, fewer defects in code
under test and improved communication between all affected parties.
Reviews can also find critical omissions in requirements which are less likely
to be found in dynamic testing.

All reviews, static analysis and dynamic testing should have the same
objective, which is to find defects. These methods are complementary, and
the different techniques can find different types of defects effectively and
efficiently. In comparison to dynamic testing, static techniques find the
causes of failures and defects rather than the actual failures themselves.

The style of the different types of reviews varies from informal, characterised
by no written instructions for reviewers, to systematic, characterised by team
participation, documented results of the review, and fully documented
procedures for conducting the review. The formality of a review process is
related to factors such as the maturity of the development process, customer
requirements, any legal or regulatory requirements or the need for an audit
trail.

A single software product may be the subject of more than one review during
its life cycle. If more than one type of review is used, the order may vary. For
example, an informal review may be carried out before a technical review, or
inspection may be carried out on a requirements specification before a
walkthrough with stakeholders. The main characteristics, options and
purposes of common review types are:
Informal Review

No formal process used.
These could take the form of pair programming or a technical
lead reviewing designs and code.
The results may (or may not) be documented.
These can vary in usefulness depending on the reviewers.
Main purpose: an inexpensive way to get some benefit.

Walkthrough

The meeting is always led by the author.
These may take the form of scenarios, dry runs and peer group
participation.
They are open-ended sessions.
They can include an optional scribe (but this should not be the
author).

They may vary in practice from quite informal to very formal.
Main purposes: learning, gaining understanding, finding defects.

Technical Review

A formally documented, defined defect detection process that
includes peers and technical experts with optional management
participation.
These may also be performed as a peer review without
management participation.
Ideally, the review will be led by a trained moderator (who
should not be the author).
There should be pre-meeting preparation by reviewers.
There is scope for optional use of checklists.
These will lead to the preparation of a review report which
includes the list of findings, the verdict whether the software
product meets its requirements and, where appropriate,
recommendations related to findings.
They may vary in practice from quite informal to very formal.
Main purposes: discussing, making decisions, evaluating
alternatives, finding defects, solving technical problems and
checking conformance to specifications, plans, regulations, and
standards.

Inspection

These are led by a trained moderator (should not be the author).
They are usually conducted as a peer examination.
They must have defined roles.
They will usually include metrics gathering.
This is a formal process that is based on rules and checklists.
There will be specified entry and exit criteria for acceptance of
the software product.
They should always include pre-meeting preparation.
In the end, there should be an inspection report including a list
of findings.

Main purpose: finding defects.

Remember that the objective of the static analysis is to find defects in
software source code and software models. Static analysis of the code is
performed without executing the software being examined by the tool. Also,
static analysis can locate defects that are hard to find while dynamically
testing the compiled software. As with reviews, static analysis finds defects
rather than failures. Static analysis tools analyse program code (e.g., control
flow and data flow), as well as the generated output such as HTML and
XML.

Static analysis tools are typically used by programmers before and during
component and integration testing. They are also used when committing code
to configuration management tools and by designers during software
modelling. Static analysis tools may produce many warning messages, which
need to be very well-managed to allow the most effective use of the tool.

Serverless Testing

So, what is Serverless?
This is a very good question and there are many different definitions around.
This, however, is mine, Serverless computing is a method of providing
backend services on an as-used basis, which means you only pay for actual
usage and the general idea is your organisation will save costs. A Serverless
provider will allow users to write and deploy code without the hassle of
worrying about the underlying infrastructure. This means an organisation that
gets backend services from a Serverless vendor is charged based on their
computation usage and do not have to reserve and pay for a fixed amount of
bandwidth or number of servers, as the service is auto-scaling. You should,
however, note that although called Serverless, physical servers are still used
but developers do not need to be aware of them, what they are or where they
are.

In the dark, early days of the web, anyone who wanted to build a web
application had to own the physical hardware required to run a server, which
is a cumbersome, time consuming and expensive undertaking.

Then came the cloud, where fixed numbers of servers or amounts of server
space could be rented remotely on a monthly or annual basis. Developers and
organisations who rent these fixed units of server space generally over-
purchase to ensure that a spike in traffic or activity wouldn’t exceed their
monthly limits and break their applications. This means that much of the
server space that was purchased was often not used and went to waste. Now
in these enlightened times, cloud vendors have introduced auto-scaling
models to address the issue. While a step forward the service is still not
perfect for even with auto-scaling an unwanted spike in activity, such as a
DDoS Attack, could end up being very expensive.

Serverless computing allows developers to purchase backend services on a
flexible ‘pay-as-you-go’ basis, meaning that developers and organisations
only must pay for the services they use. You could liken this to switching
from a mobile phone plan with a monthly fixed limit, to one that only charges

for each byte of data that gets used. Overall you should save money.

Something to remember is that the term ‘Serverless’ is somewhat misleading
in real life. There are still servers providing these backend services, but all
the server space and infrastructure concerns are handled by the vendor.
Serverless means that the developers can do their work without having to
worry about servers at all. It does, however, offer new challenges to the QA
team.

How to test Serverless applications
Testing Stages
Unit Tests
As completed by the programmers while designing the code. Unit tests tend
to be short and closer to the code. Unit tests should cover every non-trivial
path (happy path and edge cases). These tend to be the cheapest type of tests.

Integration Tests
Integration tests are those that primarily de-risk connections between various
components, normally something you build and something that someone else
has built, they also fill in the gaps created by what unit tests cannot cover. For
example, a test that checks if my code saves things correctly to an S3 file
system would be an integration test.
The primary characteristic of identifying an integration test is the type of risk
it covers, and this category does not imply anything about the area of
coverage. They can be automated against a single unit of code, around
several components, through a subsystem or even around the entire system.
These tests are managed by the QA team.
In case your expectations of the response format are incorrect, or if there’s a
bug in your DynamoDB query expression, integration testing will help you
solve all these issues. While performing integration testing, you’ll invoke the
function locally by passing in a stubbed event as well as context objects. In
case the function needs to integrate with the external services, then the
function itself should be set to talk to the “real thing.”

Acceptance Testing
All the tests mentioned above can help you identify potential problems in

your code. Is there anything else that might happen? Well, of course, there is.
Your functions might not have right IAM permissions set up or even it’s not
allowed to communicate with DynamoDB table. Are you having troubles
with function’s timeout setting being set too short? Even if not enough
memory was allocated, that’s also another issue for you to resolve.

As a professional QA engineer, you should take into consideration that there
are a lot of opportunities that could lead to misconfiguration. You need to try
out your functions after their deployment, so you’ll be sure if everything
works perfectly and as expected end-to-end. In case you’re using API
Gateway and Lambda, make an HTTP request against the deployed API and
be sure to validate against the responses so you’ll accomplish an end-to-end
test. That is the way you will be able to find permissions and other
configuration errors that will almost certainly be missed by unit and
integration tests.

GUI Tests
If a UI client is using your Serverless application directly or not, you should
make sure if the changes are compatible with the client. You’re able to run
automated visual tests as well as automated tests against different devices and
platforms that use services like AWS Device Farm. Also, these tests can be
done manually by a Q&A team, or even automated tests via Selenium-like
frameworks. These tests are managed by the QA team.

Automated Testing
See Acceptance and GUI Tests.
There are new challenges with Serverless testing such as database connection
failures, service restarts and other elements that cannot be emulated due to
the fact there is no direct access to the AWS managed service. These will
need to be handled as encountered and your automation suite should be
adapted as required.

The Path to Agile

In the beginning, the universe was created, and if you are a fan of the late,
great Douglas Adams you will know this has made a lot of people very angry
and was widely regarded as a bad move. Many years later software
development was created (some people also regarded this as a bad move) and
as already discussed in the early day's very little high value testing was
undertaken.

If you are an experienced, intelligent and sensible person you will know that
software development is hard to do well. The question is why? Professionals
in the software development business tend to be very clever, bright and
hardworking people. As a rule, they do not plan to deliver software that is
over budget, past its deadline, incomplete or littered with defects. Despite this
these issues still, arise time after time. Computers are complex, so are
networks. Many things can go wrong, software issues in web browsers and
operating systems can also affect the stability of your code. Users can get it
wrong and hit the wrong combination of keys on the keyboard. These are all
risks that need consideration.

Agile was designed as an attempt to make the software development process
better, faster and more effective. Since its initial conception, the methodology
has steadily grown in popularity, usage and success. Before talking about
agile let us first consider the older, traditional software methods of Waterfall
and V-Model. Both methodologies were based on the following assumptions

1. The customer knew exactly what they wanted and could
articulate upfront what it is they wanted in such a way that
everyone involved could clearly understand the requirements.

2. The project would have a set of well defined, clear and

unambiguous requirements which had been discussed,
considered and agreed by all concerned.

3. Everything that would be needed for the new system was known
and available upfront.

4. Once the system was defined it was a set of static requirements
and nothing would ever change.

5. Requirements were clearly and professionally detailed upfront.
The system was then designed, coded and tested in a logical
order. Such well-defined systems were always completed on
time and with no major defects.

6. And of course,......

The Waterfall, in theory, was a good methodology and in a perfect world, it
would have solved all software development issues. However, as we know
the world is not perfect, humanity has made sure of that.

The Waterfall in theory

The waterfall is a truer picture of how many large-scale projects have fallen
behind their release schedules. The waterfall is still a great methodology for
small projects (and in many cases is still the best option) however with large
projects its limitations are soon noticed. As a result of slipping time deadlines
either testing is usually sacrificed, or parts of the application are held back for
future releases.

The Waterfall in reality

To help rectify this issue the V-Model was created. In this model testing
activities were aligned with the different levels of documentation produced.
The model included feedback loops so that improvements could be made
before the application was released. So, let us now look at this model.

The V-Model

Although many variants of the V-model exist today, a common type of V-
model uses four test levels. These are:

Component (unit) testing
Integration testing
Systems testing
Acceptance testing

In the real world, a V-model project may have more, fewer or different levels
of development and testing. This will depend on the project complexity and
the software product. For example, there may be component integration
testing after component testing, and system integration testing after system
testing. While this was an improvement over the waterfall method it was still
very restrictive in many areas and did not easily allow change or adaption.
This opened the door for a new method and the ideas that became Agile

began to form.

In the early days, these Iterative incremental development models slowly
began to gain popularity as their worth in large complex projects began to be
realised. Iterative-incremental development is the process of establishing
requirements, designing, building and testing a system in a series of short
development cycles (sprints).
Examples are:

Agile development models.
Prototyping,
Rapid Application Development (RAD)
Rational Unified Process (RUP)

A system that is produced using these models may be tested at several test
levels as part of every single iteration. An increment added to others
developed previously, forms a growing partial system, which should also be
tested. Regression testing is increasingly important on all iterations after the
first one. Verification and validation can be carried out on each increment.

In the 1990s, these lightweight approaches gained popularity in a concerted
effort to come up with an effective alternative to Waterfall. RAD, or Rapid
Application Development, relied on building prototypes to allow
requirements to emerge and elicit frequent feedback.

Despite the improved methods RAD still managed to get a bad name;
however, this was down to bad planning and implementation on some major,
high profile projects rather than the agile framework itself. For this reason,
the term RAD has now been buried and replaced with Agile to allow these
early mistakes to be forgotten in the dark and dusty depths of time.

The Scrum and XP (Extreme Programming) methodologies began to take
root, both placing a heavy focus on short iterations to allow frequent delivery
of software. In general, to serve the actual business needs and improve
software project success rates. The early origins of agile go back before the
software was used however the ideals of agile are easily transferable to most
industries.

A brief history in the time of the agile framework

1948: The Toyota Way is conceived by Taiichi Ohno, Shigeo Shingo and Eji
Toyoda.

1990: Rapid Application Development (RAD) is documented by James
Martin.

1995: Ken Schwaber and Jeff Sutherland present a paper on Scrum at the
OOPSLA (Object-Oriented Programming Systems, Languages and
Applications conference).

1999: Kent Beck publishes Extreme Programming (XP) Explained, a very
good book that everyone should read.

2001: The Agile Manifesto is created, read on for more information.

February of 2001 is now a pivotal date in the history of agile. On this date, a
group of highly ambitious and talented developers who shared a joint interest
in advancing lightweight development methodologies got together to discuss
their views and try to forge some common ground.

From this get together the concept of agile was born. The developers who
created agile all understood the importance of creating a software
development model in which each iteration in the development cycle would
learn from the previous iteration. The result was a methodology that was
more flexible, efficient, and team-oriented than any of the previous models.

No matter what agile methods you use they all adhere to 12 core principles
for guidance. It is the adherence to the guidance provided by the manifesto
and principles is what makes a software development team agile, not a
specific process, tool or label.

So, what is Agile and what are its foundations?

Agile is not a development tool, rather it is a collection of
evolving delivery and management frameworks for dynamic and
innovative delivery environments, such as software
development.

Individually and collectively the frameworks are focused on
ensuring that the highest priority is to satisfy the customer(s)
through the early and continuous delivery of a valuable product,
listening to the customer and by adapting to changing
requirements.

The Manifesto for Agile Software Development

The 12 principles behind the Agile Manifesto

So, is the company you work for agile? Come on now, be honest and true.
The answer is probably not. While it may be true that you have a task board
standing tall and proud in the middle of the main meeting room and some of
the teams undertake daily stand-ups which may, or may not relate to work,
this does not mean your company is truly agile. The agile methodology is a
framework that your organisation will either adopt fully and does not simply
cherry-pick the parts they like or the parts that seem easy to implement or a

good idea at the time. That approach does not make you agile, it is like going
out on a Friday night and drinking ten pints of lager or two bottles of wine
before eating a fat-laden kebab or burger on the way home and saying you
are healthy because you also drank a diet coke at the same time. For agile to
work fully for your company you must adopt it fully.

So, think about the question again, is your company agile? Now answer
honestly before reading further.

The Agile Process Framework
Agile versus traditional waterfall

Agile Software Delivery

The level of risk associated with software development is increasing as the
level of complexity in software and associated hardware also increases. As
the level of risk increases so does the chance of failure and litigation if things
go drastically wrong. To summarise this

• The ever-increasing complexity of systems being built or modified.

• The need to integrate new systems and technologies with legacy
systems.

• Reduced timescales for delivery resulting in a reduction of testing.

• Internet-based solutions now must cater to a global market.

These pressures have given rise to the need to streamline the delivery cycle to
provide greater flexibility and the ability to embrace change. These methods
are now collectively called Agile Methods. The level of agile usage has
increased greatly over the past decade. This is driven primarily by:

• The desire for faster (and therefore cheaper) time to market.

• A view that traditional methods are too process heavy, expensive and
wasteful.

• The need to respond better to business and market change.

• Improved quality and usability.

• The realisation that new information and changing news during a
development life cycle must be easily integrated.

Agile processes always value communication over documentation but at no
point does any agile method say ‘No Documentation’ this is a myth that some
companies use as a barrier to agile. This no documentation idea was a myth
brought about by poor understanding of agile by those who did not want to
change.

To put it correctly the concept of just enough documentation is the correct
agile way. Exactly how much documentation is required will vary from
project to project and affected by these requirements and others:

• Knowledge of implied requirements

• Audit Requirements

• Product Lifetime

• The fluctuation of team members

• Regulatory requirements

In other words, just enough valid documentation at just the right time for just
the right audience will provide the correct information for the correct people.

Spotting when too little documentation is being produced is a critical
exercise, below are some pointers that will help achieve this goal.

• Too many defects and bugs are being returned as not fixed or not
fully fixed.

• At the review meeting completed products are not getting accepted as
done by the product owner.

• Requirements are being misunderstood or missed completely.

• Too much time is spent gathering information at the beginning of
each individual sprint.

• In long term projects, it is becoming harder and harder to understand
the status quo of the system due to a lack of product documentation.

If one or more of these issues are identified, then an urgent review of the
documentation process should be undertaken. When the documentation level
has been optimised then the efficiency of the entire team will be improved.
This opens the door to the world of being able to continuously deliver
working software while allowing for and supporting changing requirements.

A reminder of the Agile Manifesto

Also, a reminder of the 12 Principles of Agile Software
Development

So now you are getting into this agile development world let us look at some
of the key principles:

Iterative: Agile software processes correctly acknowledge that we often get
things wrong before we get them right. Therefore, agile processes focus on
short cycles (usually 1-month sprints). Within each cycle, a certain set of
activities is agreed and completed (if all goes well). These cycles will be
started and completed in a matter of weeks. However, a single cycle (also
called iteration) will probably not be enough to get the more complex
element’s 100% correct. Therefore, the short cycle is repeated many times to
refine the deliverables and they are considered done, complete and fit for

purpose.

Incremental: An agile process does not try to build the entire system at once
(that would be the good old waterfall method). Instead, it partitions the
nontrivial system into increments which may be developed in parallel, at
different times, and different rates. The programmers will then unit test each
increment independently. When an increment is completed and tested, it is
integrated into the system for further testing.

Collaborative: One cool feature of agile processes is that they help foster
communication among team members. This communication is a vital part of
any software development project. When a project is developed in pieces,
understanding how the pieces fit together is vital to creating the finished
product. However, there is more to integration than simple communication.
Quickly integrating a large project while increments are being developed in
parallel requires collaboration, teamwork and a good general understanding
of the product under development and the desired end goal.

Adaptive: During any monthly iteration, new risks may be exposed which
require some activities that were not planned previously. The agile process
adapts the process to attack these new-found risks. If the goal cannot be
achieved using the activities planned during the iteration, new activities can
be added to allow the goal to be reached. Similarly, activities may be
discarded if the risks turn out to be ungrounded.

So that is the key principles of agile but now what about the agile team at the
centre of all this agile development, just who are these players? First, to help
understand how the agile team works best let us first look at a Traditional
Organisational Structure as shown below.

In this type of organisation, everyone is separate. Typically, the
Businesspeople (project managers etc will reside on the top floor when they
talk to the customers via email and telephone with frequent meetings at

expensive restaurants and tapas bars.)

The testers will be in the middle ground where they do other administration
duties when not on a testing task. Finally, the programmers will be down in
the basement writing highly complex code.

On a business level, there is little cross-team communication and usually, the
development teams are given very little knowledge of future release plans,
testers even less so. So now let us look at a modern agile Structure.

Here we see a more team-orientated structure. Such teams (cells) may change
from project to project but while a team exists, they work together and
communicate within the cell. All members of the team are present at regular
development meetings and the daily scrums help improve the team group
knowledge and help gel the cell into one tight cohesive unit. On the next page
is an image that shows how the scrum team fits into the bigger picture. This
also shows how and when the scrum master is involved.

So now let’s have a look at these individual people and groups.

The Stakeholder(s)

A stakeholder is an organisation who will be financially impacted by the
outcome of the solution and is clearly much more than just a standard end-
user. A stakeholder may be one of the following:

A direct or indirect user of the system.
A manager of a group of users.
A senior manager or company director.
Developer(s) who are working on other systems that integrate or
interact with the one under development.
Operations or IT staff member.
The owner who funds the project.
Auditor.
Your program/portfolio manager.

The Product Owner

The product owner is the one team member who speaks on behalf of the
customer. This person represents the needs and desires of the stakeholder
community to the agile delivery team; as a result, they should be considered
an important part of the team and a vital gateway. He or she is accountable
for ensuring that the development team delivers the required value to the
business. The Product Owner is also responsible for maximising the value of
the product and the work of the Development Team

The Product Owner writes (or has the team write) customer-centric items
(also known as user stories). They clarify any details regarding the solution
and are also responsible for maintaining a prioritised list of work items that
the team will implement to deliver the solution. They will then rank and
prioritise them, and then add them to the product backlog; this task is the sole
responsibility of the product owner. While the product owner may not be able
to answer all questions, it is their responsibility to track down the answer
promptly so the team can stay focused on its current tasks. Each agile team,
or sub-team in the case of larger projects organised into a team of teams, has
a single product owner.

The Product Owner is always just one person, they are never a committee.
The Product Owner may represent the desires of a committee in the Product

Backlog, but those wanting to change a Product Backlog item’s priority must
address the Product Owner directly.

Therefore, every scrum team should have only one Product Owner and this
role should never be combined with that of the Scrum Master. In an
enterprise environment, though, the Product Owner is often combined with
the role of Project Manager as they have the best visibility regarding the
scope of work (products).

Additionally, the product owner owns the following roles:

Communicates the project status and represents the work of the
agile team to key stakeholders
Develops strategy and direction for the project and sets long-
and short-term goals
Understands and conveys the customers’ and other business
stakeholders’ needs to the development team
Gathers prioritises and manages product requirements
Directs the product’s budget and profitability
Chooses the release date for completed functionality
Answers questions and makes decisions with the development
team
Accepts or rejects completed work during the sprint
Presents the team’s accomplishments at the end of each sprint

The Scrum Master

The daily scrum is overseen by a scrum master, although they do not have to
attend each meeting in person. They are responsible for ensuring Scrum is
fully understood and enacted daily. Scrum Masters do this by ensuring that
the Scrum Team adheres to Scrum theory, practices, and rules.
The scrum master is also accountable for removing impediments to the ability
of the team to deliver the product goals and deliverables. The scrum master
is not a traditional team leader or project manager but acts as a buffer
between the team and any distracting influences.
During the daily scrum, the scrum master ensures that the Scrum process is
used as intended, for example, a short, daily meeting held every day. He or
She is the enforcer of the rules of Scrum, often chairs key meetings, and
challenges the team to improve. The role has also been referred to as a
servant-leader to reinforce these dual perspectives.
Servant leadership is both a leadership philosophy and set of leadership practices. Traditional
leadership generally involves the accumulation and exercise of power by one at the “top of the
pyramid.” By comparison, the servant-leader shares power and will put the needs of others first and

helps people develop and perform as highly as possible.

The Development Team

The Development Team is responsible for delivering potentially shippable
increments of the product (working software) at the end of each Sprint. A
development team is typically made up of 3–9 individuals with cross-
functional skills who do the actual development work. These skills include
the following

Analyse the needs
Designing the system
Developing Code
Testing Code (QA)
Create/Update the documentation

No matter what your job title or your role within the team you are as
important as the other members. The role of each team member focuses on
producing the actual solution for stakeholders. Team members perform
testing, analysis, architecture, design, programming, planning, estimation,
and many more activities as appropriate throughout the project.

The optimal Development Team size is always small enough to remain
nimble and large enough to complete significant work within a Sprint. A
team that is fewer than three Development Team members will suffer from
decreased interaction and smaller productivity gains. Smaller Development
Teams may also encounter skill constraints during any given Sprint, causing
the Development Team to be unable to deliver a potentially releasable
Increment. At the other end of the scale requiring more than nine members
requires too much coordination. Large Development Teams generate too
much complexity for an empirical process to manage. The Product Owner

and Scrum Master roles are not included in this count unless they are also
executing the work of the Sprint Backlog.

It is unlikely that every team member has every single skill (at least not yet),
but they have a subset of them, and good team members will strive to gain
more skills over time. Team members should identify, estimate, sign-up for,
and perform tasks and track their completion status.

Within the scrum environment, the development team is a self-organising
entity even though there may be some level of interface with project
management offices. Mature teams are built on trust and respect for each
other’s key skills and knowledge. New teams will need to go through a
forming to performing cycle as shown below.

Forming:

A high degree of guidance is required from management
Individual roles are still unclear
Processes usually not well established

Storming:

Beginning to understand how team decisions will be made
The team purpose is clear, but relationships are still forming

Norming

Relationships are now well understood within the team
Commitment to team goals now realised
The team start to optimise team processes

Performing

The team is now committed to performing well
The team can now focus on being strategic
The team runs well as a cell

When a team reaches level four (performing) they should be able to deliver
high-quality increments regularly. The velocity of the team will also improve
as they grow to understand each other’s strengths and weaknesses. So, with
the team in place it is time to go agile, I hope you are now feeling excited and
eager to move forward.

For an agile team to strive onwards and start delivering deliverables that can
be considered done and fit for purpose they need to work within the agile
requirements specification, next we will consider some of the key points of
this.

Active stakeholder participation: Stakeholders should be
available to provide key information promptly. They should also
be able to make important decisions when required and be very
actively involved in the development process using inclusive
tools and techniques.

Prioritised requirements: Agile teams implement requirements
in priority order, as defined by their stakeholders, to provide the
greatest return on investment possible. These priorities are
agreed and ordered at the beginning of each sprint.

Requirements envisioning: At the beginning of each agile
project the team will need to invest some time to identify the
complete scope of the project and to create the initial prioritised
list of requirements. This effort should take a from a few days

and up to two weeks, assuming you can overcome the logistical
challenges associated with getting the right people involved.

Test-driven development: The basis of this is to write a single
test, either at the requirements or design level. Then write just
enough code to fulfil that test. TDD is a JIT approach to detailed
requirements specification and a confirmatory approach to
testing (see Chapter 14).

Daily Scrum: In the daily scrum the team members will each
answer three questions, these are: What I did yesterday; what I
plan to do today; what impediments are stopping me from
completing these tasks. The scrum takes place every morning at
the same time and at the same place. The job of the scrum
master is to manage the scrum and deal with any impediments.

XP and Requirements: The XP approach is to capture
requirements through User Stories. This has become a very
common method in Agile and has proven a very popular and
effective method.

The focus of XP is customer satisfaction. XP teams achieve high customer
satisfaction by developing features when the customer needs them. New
requests are part of the development team’s daily routine, and the team must
deal with requests whenever they become known. The team automatically
organises itself around any problem that arises and solves it as efficiently as
possible.

XP is based on a set of 29 well designed and intuitive rules, these are detailed
as follows

Planning
User stories are written.
Release planning creates the release schedule.
Release often Make frequent small releases.
The project is divided into iterations.
Iteration planning will start each iteration.

Managing

Optimise last Give the team a dedicated open
workspace.
Always work at a sustainable pace.
A stand-up meeting starts each day.
Project Velocity is measured.
Move people around.
Fix XP when it breaks.

Designing
Simplicity.
Choose a system metaphor.
Use CRC cards for design sessions.
Create spike solutions to reduce risk.
No functionality is added early.
Refactor whenever and wherever possible.

Coding
The customer is always available.
Code must be written to agreed standards.
Test-Driven Development always designs the unit
test first.
All production code is pair programmed.
Only one pair integrates code at a time.
Continuous integration.
Set up a dedicated integration computer.
Use collective ownership.

Testing
All code must have unit tests.
All code must pass all unit tests before they can be
released.
When a bug is found tests are created.
Acceptance tests are run often, and the score is
published.

So those are the rules of XP, now let us discuss some of the major key
features in more detail.

Pair programming

This is sometimes referred to as Peer programming. All code to be sent into
production is created by two programmers working together at a single
computer terminal. Pair programming has been shown to increase software
quality without impacting time to deliver. At first, it may appear counter-
intuitive, but 2 programmers working at a single computer will add as much
functionality as two working separately except that it will usually be much
higher in quality as each member of the team strive to outdo the other with
well-designed and clever code. With this increased quality comes big savings
later in the project as fewer bugs will require fixing.

One important consideration that management will need to consider is that
pair programming is a social skill that for some programmers will take the
time to learn. However, you are striving for a cooperative way to work that
includes give and take from both partners regardless of experience, age and
company status. Therefore, programmers will learn to cooperate if they are to
fit into modern agile teams.

This is one area of agile that is most likely to experience resistance from
programmers. So, of them will take on the methodology happily, others will
kick up a fuss over the idea and a few may even leave rather than adjust.
These are issues to be considered when planning a move to agile and
whatever is decided during the planning phase should remain policy no
matter what resistance is raised.

No functionality is added early
Keep the system uncluttered with extra stuff that you guess will be used later.
History has demonstrated that only 10% of unrequested extra functionality
that has been added will ever get used, so in effect, programmers are wasting
90% of their time by putting it in there at the early stages.

Not only is this a waste of time for the programmer it also increased the
testing workload and increases risk. We are all tempted to add functionality
and show how clever we are now rather than later because we see exactly
how to add it or because we believe it would make the system so much better.
It seems like it would be faster to add it now.

When a bug is found
When a bug is found tests should always be created to guard against it

coming back. Also, a bug that is discovered in production always requires an
acceptance test be written to guard against it. As a result, all bugs should be
recorded even if the programmer insists it is not necessary.

Move people around
Move people around to avoid serious knowledge loss and coding bottlenecks.
If only one person on your team can work in each area and that person leaves
or just has too much to do you will find your project's progress reduced to a
crawl. This also stops little gangs forming who will work together and against
anyone they collectively do not like or the feel to be less worthy.

Integrate often
Developers should be integrating and committing code into the code
repository every few hours, whenever possible. In any case, they should
never hold onto changes for more than a day on their local computer.
Continuous integration often avoids diverging or fragmented development
efforts caused where developers are not communicating with each other about
what can be re-used, or what could be shared. Everyone needs to work with
the latest version. Changes should not be made to obsolete code causing
integration headaches. This also applies to QA’s who are working on
automation tasks, their code should also be merged into the shared repository
as often as possible.

Collective Ownership
Collective Ownership encourages everyone to contribute new ideas to all
segments of the project. Any developer can change any line of code to add
functionality, fix bugs, improve designs or refactor. No one person becomes
a bottleneck for changes. This is hard to understand at first. It's almost
inconceivable that an entire team can be responsible for the system's design.
Not having a single chief architect that keeps some visionary flame alive
seems like it couldn't possibly work.

User Stories
These are lightweight, very brief descriptions that are written by the
user/stakeholder. They should say what they want the system to do. A user
story could be ‘Create an Add customer page’. A user story briefly explains:

• the person using the service (actor)
• what the user needs the service for (narrative)
• why the user needs it (goal)

User Stories are discussed further later in the book

So those are the major key features of XP. Another interesting agile tool that
can be used by itself or alongside other agile methods such as XP is Kanban.
Kanban comes from the Japanese terms Kan (visual) and Ban (board) and is
quite simply that, in other words, a visual board or taskboard. It is a system to
control the logistical chain from a production point of view and is an
inventory control system. Kanban was developed by Taiichi Ohno, an
industrial engineer at Toyota, as a system to improve and maintain a high
level of production. Today it is a very popular tool for use in software
development.

The Kanban Method is used by organisations to manage the creation of
products with an emphasis on continual delivery while not overburdening the
development team. Like Scrum, Kanban is a process designed to help teams
work together more effectively.

The Kanban method is rooted in four basic principles:

Start with what you do now:
The Kanban method does not prescribe a specific set of rules or process
steps. The Kanban method starts with the roles and processes you have and
stimulates continuous, incremental and evolutionary changes to your system.

Agree to pursue incremental, evolutionary change:
The company (or team) should agree totally and completely that continuous,
incremental and evolutionary change is the way to make system
improvements and make them stick.

Sweeping changes may seem more effective within an organisation but also
have a higher failure rate due to resistance and fear in people within the
organisation. The Kanban method encourages continuous small incremental
and evolutionary changes to your current system which people tend to be
more comfortable with.

Respect the current process, roles, responsibilities and titles:
It is likely that the organisation currently has some elements that work

acceptably and are worth preserving. Change for change's sake is not always
the best way forward. By agreeing to respect current roles, responsibilities
and job titles you can eliminate some of the initial change fears.

Leadership at all levels:
Acts of leadership at all levels in the organisation from individual
contributors to senior management should be encouraged. Meetings are an
important part of agile software development. Meetings keep everyone
involved in the development lifecycle updated, informed and in contact with
progress. Regular meetings also help identify forthcoming problems and
roadblocks at an early stage. Next, we will discuss the five types of agile
meetings.

The five agile Meetings
1: The Release Planning Meeting

A vital and important part of agile is regular meetings. There are five
meetings of importance with agile, so let us now discuss the first of these.

This is the release planning meeting. This meeting takes place at the start of
every release cycle. The purpose of the release planning meeting is also to get
an idea of what stories the team will try to finish by the release end date.

The product owner will select the stories in a logical order of importance.
There may be dependencies which will affect this order as well but in
general, the highest priority will be started first.

It is also important that the team understands the possibility that not all the
stories will get completed by the release end date. One of the basic premises
of agile is to deliver working software, so it is important to have the highest-
value stories completed first (barring dependencies) so that the software you
do deliver meets the customer’s needs. The final acceptance criteria should be
agreed at this meeting and the result of this meeting is the product backlog.

The product backlog is a dynamic list of stories. These stories may be edited,
deleted or added at any time during the release cycle. As previously
discussed, the list is prioritised and items with the highest priority should
always be completed first. The backlog is progressively refined, adjusted and

improved during the life cycle.

When the product owner sets the scope of the next iteration, he or she needs
to know that the scope is the right size for the team, in other words, there
isn’t too much work to get done in the iteration. Like any other developers,
agile team members estimate their own work. Unlike other developers, agile
team members usually estimate in points. Points represent a size-based,
complexity-based approach to estimation. Points are assigned in whole
numbers (1, 2, 3, 4 and so on with no fractions or decimals). A common
method of sizing is to use the Fibonacci number system (1, 2, 3, 5, 8, 13 etc).
These numbers represent relative sizes and complexity of work items. Small
and simple tasks are one-point tasks, slightly larger/more complex tasks are
two-point tasks, and so on with 10 usually being the highest in a decimal
ranking system and a higher number for the Fibonacci system.

Points can be thought of as shirt sizes. There can are small, medium, large,
extra-large, and potentially other sizes (extra small, extra extra-large and
these days even xxxx large). These sizes are relative to the team using them;
no formal regulation dictates how the much larger medium is compared to
small.

Planning Poker

As you refine your requirements, you will also need to refine your estimates
also. Planning Poker is a technique to determine user story size and build
consensus with the development team members. Planning poker is a very
popular and straightforward approach to estimating story size.

To play planning poker you need a deck of cards with point values on them.
There are plenty of poker tools and mobile apps that are free to use, or you
can do it yourself with index cards. The numbers on the cards are usually
from the Fibonacci sequence.

Only the development team plays estimation poker. The team leader and
product owner do not get a deck and do not provide estimates. However, the
team leader can act as a facilitator and the product owner usually reads the
user stories as well as providing detailed information on the stories.

In practice, one team’s three-point size estimate for a work item may
correlate to another team’s two-point estimate for an identical work item.
Teams need only agree on what size and complexity correspond to what point
count and remain internally consistent in their use. These points are used to
help estimate the team’s velocity or work output.

2: The Iteration/Sprint Meeting

The next meeting is the iteration/sprint planning meeting. In Scrum, every
iteration or sprint (typically 2-4 weeks) begins with the sprint planning
meeting. At this meeting, the Product Owner and the development team will
negotiate which stories the team will tackle during the current sprint.

These meetings are typically time-boxed to eight hours, this helps to focus
the group and ensure no time is wasted on idle chatter such as the weekend’s
football results or what car each team member would like to purchase.

The final choice of what stories are to be included will always rest with the
Product Owner. Typically, they will select those with the highest business
value, however, the team has the power to push back and voice concerns
about impediments and dependencies.

When the story list is decided and agreed this becomes the required work for
the current sprint. Team members choose what they will each do. Nothing is
assigned or pushed onto anyone. The result of this meeting is the sprint
backlog.

So, as you can see the sprint backlog is a negotiated set of items/stories from
the product backlog that a team commits to code and test during the timebox
of the current sprint. Items in the sprint backlog are broken into detailed tasks
for the team members to complete. The team works collaboratively to

complete the items in the sprint backlog, meeting each day (during a daily
scrum) to share struggles and progress and update the sprint backlog and burn
down chart accordingly.

A sprint will typically last for 4 weeks, this can vary slightly but 4 weeks is
by far the most common time frame. This is also known as time-boxed
development. In time-boxed development, the end calendar date for the
Sprint is determined at the outset. The Sprint is then complete once that day
is met and all work that’s going to be launched needs to be done.

This work will have passed through QA and testing and is deemed and ready
for launch. Time-boxing the Sprint requires a much sharper focus on
prioritising work since you can’t push the end date if work isn’t done.

Features that aren’t complete can get pushed to the next Sprint. However
other constraints or concerns may result in them being placed back in the
backlog. This forces decision-making much earlier on what will and what
won’t make it into the Sprint. Hard decisions on prioritising work should be
done right at the outset. Decisions on what features get pushed to the next
Sprint must happen very early, this helps ensure that no testing cannot be
completed before the end of the Sprint.

3: The Daily Scrum Meeting
(Daily Stand-up)

The heart of the Scrum process is the daily stand-up meeting, also known as
the daily Scrum. No other meeting captures Scrum’s emphasis on
communication and transparency quite like the stand-up. This meeting helps
ensure that the entire development team is always on the same page within
the current sprint. Every day, the scrum team will gather together, usually in a
team room or private office to report on the progress made since the last
meeting, goals for the next one, and any impediments blocking their path.
These reports are often phrased as responses to the following three questions:

• What have I done since the last Scrum meeting (yesterday)?
• What will I do before the next Scrum meeting (tomorrow)?
• What prevents me from performing my work as efficiently as

possible (impediments)?

All development team members must participate in the entire daily scrum
meeting and they must be prepared to help each other. The meeting is just 15
minutes (never any longer), so everybody must participate and pay attention

in what tasks are done and what needs to be developed and make suggestions
on other member’s items when needed.

It is the scrum master's job to deal with any reported impediments and to
ensure the scrum meeting happens, runs correctly and is concluded within the
agreed time frame. This is the meeting that those team members who are not
fully committed to agile will struggle hardest with. They will consider these
fifteen minutes every morning a total waste of their time even though they
would probably spend that same time slot talking about other non-work-
related items around the water or vending machine. Such people will be easy
to spot; they are the ones sitting quietly with folded arms and a bored look on
their face. They will say very little and will probably need prompting to
divulge their three answers.

This behaviour needs to be tackled early. At first friendly conversations to try
and find out why they are resisting the change and finally as a last resort
moving the non-committed to either another department or another company.
This may sound a little harsh however you should remember that there is
always no I in TEAM.

I have always found that it is best to do the daily scrum meeting in front of
Kanban or the Sprint Backlog. By using this method, the team can see clearly
what the remaining items are to be developed, and the team members can
discuss the chosen items to be developed on that day to achieve the maximum
speed configuration to achieve the sprint goal.

It is also good practice to ask individually each development team member
about the feeling concerning achieving the sprint goal. If the majority
answers consider difficult to achieve the goal, the team must find, in group,
different ways to change this scenario. Also, you should focus solely on the
daily scrum meeting; you will not have time for extra subjects besides the
sprint backlog.

4: The Iteration (Sprint) Review

In Scrum, when the sprint ends, it’s time for the team to present its work to
the product owner for acceptance. This is known as the sprint review
meeting. At this time, the product owner will go through the previously
agreed sprint backlog and they will ask the team to present its work. The
product owner checks the work against the acceptance criteria to determine if
the work has been completed satisfactorily or not. Even if only 1% of a story
remains to be completed by a team, the product owner must reject the story as
unfinished, incomplete work carries unacceptable risks and should never be
passed as done. Teams commonly discover that a story’s final touches often
excise the most effort and time, so awarding partial credit for an incomplete
story can contribute to a slanted velocity. A sprint review is a time-boxed
event of 4 hours for a monthly sprint, however, if the sprint was shorter than
the review can also be shorter.

Preparation for the sprint review meeting should not take more than a few
minutes. Even though the sprint review might sound formal, the essence of
showcasing in agile is informality. The meeting needs to be prepared and
organised, but that doesn’t require a lot of flashy presentation material.
Instead, the sprint review focuses on demonstrating what the development
team has achieved and what is considered done.

As a result, you should gather sprint review feedback informally. The product
owner or team leader can simply take notes on behalf of the development

team, as team members often are engaged in the actual presentation and
resulting conversation. New user stories may also come out of the sprint
review. These new user stories can be new features altogether or alterations
to the existing code.

5: The Sprint Retrospective Review

When the sprint review meeting has been concluded the scrum master and the
development team get together for a sprint retrospective review. This is a
team led meeting however they can invite the product owner and other
stakeholders if they feel their input will be valuable. This is a time-boxed
event lasting 3 hours.

During this meeting the team will consider three important issues, these are:

What went well?
What did not go well?
What improvements could be made for the next sprint?

Because the product owner does not sit in on these meetings this is a good
opportunity for the team members to talk frankly about the sprint’s successes
and failures. This is an important meeting for the team because they have an
opportunity to focus on its overall performance and they can identify
potential strategies to improve its processes. What should be avoided always
is these meetings being reduced to a blame and shame argument about who
broke what and who did not do what adequately. If the meeting is poorly
managed and some of the team have large ego’s this can easily happen, it is
at these points that the scrum master must be at their strongest. The scrum

master can observe common impediments that impact the team and how they
work together. From this, the scrum master can work out plans to resolve
these impediments.

During every sprint the team needs current progress information; one of the
most popular methods of keeping the team updated is the use of task boards.
As previously mentioned, one of the popular styles is Kanban and most agile
teams will deploy a task board in some form. Task boards are a good guide to
progress for all the team members and stakeholders. These are very easy to
understand visual representation of the current sprint state.

So, the overall goal of the iteration retrospective is to continuously improve
your processes. Improving and customising processes according to the needs
of each individual team increases team morale, improves efficiency, and
increases velocity and work output.

We have already discussed task boards but to reiterate these are usually
situated in a central location that is easily observed by most of the team that
is based in the office. However electronic versions are becoming increasingly
popular because they allow team members to access the data anywhere on the
planet, this could be remote offices or even home workers. This is
particularly useful in an organisation which has a global presence and team
members can be on different continents. One example is available in Team
Foundation Server which we will cover later in the book.

Another important tool for the agile team is the iteration burndown chart.
This is a graphical representation of work left against remaining time within
the current sprint. This is useful for predicting when all the work will be done
and is also a good method for detecting potential deadline problems. Below is
a typical example of a burndown chart.

These tools can help measure the team’s performance which should improve
over time as the team becomes more experienced and as they learn to work
together as one efficient unit. This is known as team velocity.

The main idea behind velocity is to help agile teams estimate just how much
work they can complete in each time period based on how quickly similar
work was completed in previous sprints.

The following terminology is used in velocity tracking. To calculate velocity,
a team-first must determine how many units of work each task is worth (10,
20 etc) and the length of each interval. During development, the team will
keep track of all completed tasks and at the end of the interval count the
number of units of work completed during the interval.

The team then writes down the calculated velocity in a chart or on a graph
(paper or electronic). The first week will always provide little value but is
essential to provide a basis for comparison and a datum. Each week after that,
the velocity tracking will provide better information as the team provides
more accurate estimates and becomes more used to the methodology.

The unit of work can either be a real unit such as hours or days or an abstract
unit like story points or ideal days. Each task in the software development
process should then be valued in terms of the chosen unit. By contrast, the
interval is the duration of each iteration in the software development process
for which the velocity is measured. The length of an interval is determined by

the team. Most often, the interval is a week, but it could also be as long as a
month.

So that is the agile team, the methods they use and the tools they employ to
get the job done. So, you are still here, this means that either you still want to
be an Agile Quality Assurance Tester and/or you are finding this book a good
read. Whatever the reason let us move forward to the next chapter, the Agile
QA Tester.

The Agile QA Tester
So, you are still here, are you? Does that mean you still want to be an Agile
QA Tester? If yes then good for you, so let us now look at what it takes to be
a good agile tester. In previous chapters I have hinted at what makes a good
tester, virtues such as patience, good people skills and a good eye for detail
are essential. Other important considerations are a basic understanding of
SQL (structured query language) and basic knowledge of Java or C# will also
help. You will know when you have become a competent tester when you
can indulge in what is known as experience-based testing.

So, what is experience-based testing?

Experience-based testing is where tests are derived from the tester’s (you or
your team) skill’s and intuition as well as their experience with previously
tested similar applications and technologies. When this style of testing is used
to augment systematic techniques, these techniques can be useful in
identifying special tests not easily captured by formal techniques, especially
when applied to more formal approaches. However, this technique may yield
widely varying degrees of effectiveness, this will depend on the QA’s
experience and capability. Essentially the more experienced and better trained
the tester is the more valid this type of testing will become.

A commonly used experience-based technique is error guessing. In general,
QA’s anticipate defects based on their previous experience and knowledge of
the programmer's style of coding. A well-structured approach to the error
guessing technique is to enumerate a list of possible defects and to design a
set of tests that attack these defects head on. This systematic approach is
called fault attack. These defect and failure lists can be built based on
experience, available defect and failure data, and from common knowledge
about why software fails. Another technique used by experienced QA’s is
called exploratory testing.

This type of testing is concurrent test design, test execution, test logging and
learning, based on an agreed test charter containing test objectives, and
carried out within sprints. This is an approach that is most useful where there
are few or inadequate specifications and severe time pressure or to augment
or complement other, more formal testing. It can serve as a check on the test

process, to help ensure that the most serious defects are located and logged.

So, moving on, what is agile testing anyway? First, let’s remind us what the
Agile Manifesto is.
Individuals and interactions over processes and tools
Working software over documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

So, using the values from the Manifesto to guide the team, we strive to
deliver small chunks of business value in extremely short release cycles (as
already stated, usually 4 weeks). It is important to understand that a tester on
an agile project will work differently than one working on a traditional
project.

The QA’s need to understand the values and principles that underpin agile
projects, and how QA’s are an integral part of a whole-team approach
together with developers and business representatives. As you have already
seen the members in an agile project communicate with each other early and
frequently, which helps with removing defects early and developing a quality
product.

The whole team is responsible for quality as a group in agile projects,
remember there is no I in the word team, no one is alone in agile. The essence
of the whole-team approach lays in the QA’s, programmers and the business
representatives working together in every step of the development process.

QA’s will need to work closely with both programmers and business
representatives to ensure that the desired quality levels are achieved.

This includes supporting and collaborating with business representatives to
help them create suitable acceptance tests, working with developers to agree
on the testing strategy, and deciding on test automation approaches. QA’s can
thus transfer and extend testing knowledge to other team members and
influence the development of the product.

Everyone on an agile team is a tester at some level. Anyone should be able to
pick up testing tasks. If that’s true, then what is special about a dedicated
agile QA? If I define myself as a QA on an agile team, what does that mean?
Do agile QA’s need different skill sets than testers on traditional teams? What

guides them in their daily activities? Read on to find out these answers.

You should define an agile QA this way: they are a professional tester who
embraces change, collaborates well with both technical and businesspeople,
and understands the concept of using tests to document requirements and
drive development. As already mentioned, agile QA’s tend to have good
technical skills, know how to collaborate with others to automate tests, and
they should also be experienced exploratory QA’s. They’re willing to learn
what customers do so that they can better understand the customers’ software
requirements.

Who’s an agile QA? They are a team member who drives agile testing. There
are many agile QA’s who started in some other specialisation. A developer
can become test-infected and branches out beyond unit testing. An
exploratory tester, accustomed to working in an agile manner, is attracted to
the idea of an agile team. Finally, professionals in other roles, such as
business or functional analysts, might share the same traits and do much of
the same work.

Successful projects are a result of a good team that can thrive and produce
good quality work. The characteristics that make someone successful as a
tester on an agile team are probably the same characteristics that make a
highly valued tester on any team.

A good, experienced agile QA doesn’t see themselves as a quality police
officer, protecting their customers from inadequate, badly written code. They
should be ready to gather and share information, to work with the customer
or product owner to help them express their requirements adequately so that
they can get the features they need, and to provide feedback on project
progress to everyone.

Poor specifications are very often a major reason for project failure.
Specification problems can result from the customer’s lack of insight into
their true needs, the absence of a global vision for the system, redundant or
contradictory features, and other forms of miscommunication. In agile
development, user stories are written to capture requirements from the
perspectives of developers, QA’s and business representatives. In sequential
development, this shared vision of a feature is accomplished through formal

reviews after requirements are written. In agile development, this shared
vision is accomplished through frequent informal reviews while the
requirements are being written.

The user stories must address both functional and non-functional
characteristics. Each story includes acceptance criteria for these
characteristics. These criteria should be defined in collaboration between
business representatives, developers, and QA’s. They provide developers and
QA’s with an extended vision of the feature that business representatives will
validate. An Agile team considers a task finished when a set of acceptance
criteria have been satisfied.

This is one of the valuable roles of the agile tester; typically, they will
improve the user story by identifying missing details or non-functional
requirements. An agile QA can contribute by asking business representatives
open-ended questions about the user story, proposing ways to test the user
story and confirming the acceptance criteria. Different agile teams vary in
terms of how they document user stories. Regardless of the approach taken to
document user stories, the finished documentation should be concise, relevant
and necessary. Also, you the QA should be taking an active role in their
creation.

QA’s should also always play an important role in the sprint retrospectives.
Agile QA’s are part of the team and can bring their unique perspective to the
table. Testing occurs in each sprint and vitally contributes to success. All
team members, QA’s and non-testers, can and should provide input on both
testing and non-testing activities. After all, that is the agile way.

Another feature of the agile way is continuous integration. Delivery of each
product increment requires working, reliable, and integrated software at the
end of every sprint. Continuous integration can address this challenge by
merging all changes made to the software and integrating all changed
components to a central repository regularly, at least once a day.

In the agile world configuration management, compilation, software build,
deployment, and testing are wrapped into a single, automated, repeatable
process. As a result, since programmers integrate their work constantly, build
constantly and test constantly, then any defects in the code are detected much

more quickly.

The good news for agile QA’s is that continuous integration allows them to
run automated tests regularly, in some cases as part of the continuous
integration process itself and send quick feedback to the team on the quality
of the code. These test results are visible to all team members, especially
when automated reports are integrated into the process. Automated regression
testing can also be continuous throughout the iteration.

Good, automated regression tests cover as much functionality as possible,
including user stories delivered in the previous iterations, they can never
cover everything though and manual testing will always be required at some
level.

Good coverage of the automated regression tests helps support building (and
testing) large, complex, integrated systems. When much of the regression
testing is automated, the agile QA’s are freed to concentrate their manual
testing on new features, implemented changes, and confirmation testing of
defect fixes.

In addition to automated tests, organisations that use continuous integration
typically use associated build tools to implement continuous quality control.
In addition to running unit and integration tests, such tools can also run
additional static and dynamic tests, measure and profile performance, extract
and format documentation from the source code, and facilitate manual quality
assurance processes. This continuous application of quality control aims to
improve the quality of the product as well as reduce the time taken to deliver
it by replacing the traditional practice of applying quality control after
completing all development.

Therefore, continuous integration can provide the following benefits to the
development team:

Allows earlier detection and easier root cause analysis of
integration problems and conflicting changes.
Gives the development team regular feedback on whether the
code is working, or not.
Allows the version of the software being tested to stay within
one day of the version being developed.

Reduces regression risk associated with developer code
refactoring due to rapid re-testing of the codebase after each
small set of changes.
Provides confidence that each day’s development work is based
on a solid foundation.
Makes progress toward the completion of the product increment
visible, encouraging developers and QA’s.
Eliminates the schedule risks associated with big-bang
integration.
Provides constant availability of executable software throughout
the sprint for testing, demonstration, or education purposes.
Reduces repetitive manual testing activities.
Provides quick feedback on decisions made to improve quality
and tests.

Another important element of agile is planning. For Agile lifecycles, two
kinds of planning occur, release planning and iteration planning.

Release planning looks ahead to the release of a product, often a few months
ahead of the start of a project. Release planning defines and re-defines the
product backlog and may involve refining larger user stories into a collection
of smaller stories.

Release planning provides the basis for the agile test approach and agile test
plan spanning all the planned iterations. In release planning, business
representatives establish and prioritise the user stories for the overall release,
in collaboration with the team. Based on these user stories, project and
quality risks are identified and high-level effort estimation is performed.

Agile QA’s should always be involved in release planning and especially add
value to the following activities:

• Defining testable user stories, including acceptance criteria
• Participating in project and quality risk analyses
• Estimating testing effort associated with the user stories
• Defining the necessary test levels
• Planning the testing for the release

When release planning is complete then the iteration planning for the first
iteration begins. Iteration planning looks ahead to the end of a single iteration
only and is concerned with the iteration backlog.

In iteration planning, the team selects user stories from the prioritised release
backlog. They then elaborate the user stories, performs a risk analysis for the
user stories and estimates the work needed for each user story. If a user story
is found to be too vague and any attempts to clarify it have failed, the team
can refuse to accept it and use the next user story based on priority.

The business representatives must answer the team’s questions about each
story so the team can understand what they should implement and how to test
each story. The number of stories selected is based on established team
velocity and the estimated size of the selected user stories. After the contents
of the iteration are finalised, the user stories are broken into tasks, which will
be carried out by the appropriate team members.

Agile QA’s should always be involved in iteration planning and especially
add value to the following activities:
• Participating in the detailed risk analysis of user stories
• Determining the testability of the user stories
• Creating acceptance tests for the user stories
• Breaking down user stories into tasks (particularly testing tasks)
• Estimating testing effort for all testing tasks
• Identifying functional and non-functional aspects of the system to be
tested
• Supporting and participating in test automation at multiple levels of
testing

Release plans will often change as the project proceeds, including changes to
individual user stories in the product backlog. These changes may be
triggered by internal or external factors. Internal factors include delivery
capabilities, velocity, and technical issues. External factors include the
discovery of new markets and opportunities, new competitors, or business
threats that may change release objectives and/or target dates. In addition,
iteration plans may change during iteration. For example, a user story that
was considered relatively simple during estimation might prove far more
complex and time-consuming than originally expected.

These changes can be very challenging for QA’s. Agile QA’s must always
understand the big picture of the release for test planning purposes, and they
must have an adequate test basis and test knowledge in each iteration for test
development purposes. The required information must always be available to
the tester early, and yet change must always be embraced according to agile
principles. This dilemma requires careful decisions about test strategies and
test documentation which are constantly being reviewed.

Release and iteration planning should address test planning as well as the
planning for development activities and the agile tester should always ensure
the point of view is heard. Test-related issues to address include:

• The scope of testing to be done and the extent of testing for those areas
in scope, the test goals, and the reasons for these decisions.

• The team members who will carry out the test activities.
• The test environment and test data required for correct testing, when

they are needed, and whether any additions or changes to the test
environment and/or data will occur before or during the project.

• The timing, sequencing, dependencies, and prerequisites for the
functional and non-functional test activities.

• The project and quality risks to be addressed.

One of the main differences between traditional lifecycles and agile lifecycles
is the idea of very short iterations (2-4 weeks typically). Each of these
iterations should result in working software that delivers features of added
value to business stakeholders.

At the very beginning of the project, there is a release planning meeting. This
will be followed by a sequence of sprints (iterations). At the beginning of
each sprint, there is an iteration planning meeting. Once the sprint scope is
established and agreed, the selected user stories are developed, integrated
with the system, and then tested. These sprints are highly dynamic, with
development, integration, and testing activities taking place through each
sprint, and with considerable parallelism and overlap. In agile the testing
activities occur throughout the iteration, not as a final activity.

Within the agile team, the QA’s, programmers and business stakeholders all
have an important role in software testing, as with traditional lifecycles.

Programmers should always perform unit tests as they develop features from
the user stories. QA’s then test those features as they become available.
Business stakeholders also test the stories during implementation. Business
stakeholders might use written test cases, but they also might simply
experiment with and use the feature to provide fast feedback to the
development team.

In some of the agile practices (e.g., Extreme Programming), team pairing is
used. Pairing can involve QA’s working together in twos to test features.
Pairing can also involve a tester working collaboratively with a programmer
(yes this has been known to happen without one trying to kill the other) to
develop and test a feature. Pairing can be difficult when the test team is
distributed across different geographical areas, but well-planned processes
and tools can help enable distributed pairing on a global basis.

Agile teams should always strive to progress forward by having working
software at the end of every iteration. To determine when the team will have
done, working software they need to monitor the progress of all work items
in the iteration and release. QA’s in agile teams will need to utilise various
methods to record test progress and status. These include test automation
results, the recording of progress of running test tasks and stories on the task
board, and Burndown charts showing the team’s overall progress. These can
then be communicated to the rest of the team using media such as online wiki
dashboards and board emails, as well as verbally during stand-up meetings.

Agile teams can also use tools that automatically generate status reports
based on completed test results and task progress.

These, in turn, can update information dashboards and emails. This is a very
important method of communication because it also gathers valuable metrics
from the testing process, which can be used in process future improvement.
User Stories and Burndown charts are discussed in the next chapters.

The Agile Organisation
What approach is best for you

So what parts of agile does your company use (if any). Are these the best
options for your company? Is the approach incomplete? Can other options
offer a better solution for your company? Let's have a look at what is on
offer….

Scrum

At this moment in time scrum is the most popular approach to agile software
development in general use. In the scrum ethos, any adjustments to the
current project are based on experience and not on theory. Because Scrum is
currently the most popular agile approach it is the one I will discuss in most
dept, also it is the approach I currently favour.

The scrum methodology offers four deliverables, these are:

Product backlog: This is the full list of requirements that define
the whole product.
Sprint backlog: This is the list of requirements and associated
tasks in a given sprint (remember scrum calls iterations sprints).
Burndown charts: These are the visual representations of the
progress within a sprint and within the project as a whole.
Shippable functionality: The final usable product that meets the
customer’s business goals and is considered done.

The five main practices that are key to Scrum are covered elsewhere in this
book. However, as a refresher, they are:
Sprint Planning – 8 hours for monthly sprint

Daily scrum – 15 minutes
Sprint Review – 4 hours for monthly sprint
Sprint Retrospective– 3 hours for monthly sprint

The Definition of Scrum
Scrum is a process framework within which teams and organisations can
address difficult and complex adaptive problems, while productively and
creatively delivering products that are of the highest possible value.
Scrum is:

Lightweight
Simple to understand
Difficult to master

So, scrum has been around since the early 1990s. It is not a process or a
technique for building products. Indeed, it is a framework within which your
company can employ various processes and techniques. Scrum makes clear
the relative efficacy of your product management and development practices
so that you can improve.

The Scrum Theory
Scrum is founded on empirical process control theory, otherwise known as
empiricism. Empiricism asserts that knowledge comes from experience and
making decisions based on what is known. Scrum employs an iterative,
incremental approach to optimise predictability and control risk. Three pillars
uphold every implementation of empirical process control: transparency,
inspection, and adaptation. So, let’s have a closer look at these three pillars.

Transparency
Significant aspects of the process must always be visible to those responsible
for the outcome. Therefore, transparency requires those aspects to be defined
by a common standard, so all observers share a common understanding of
what is being seen.

Inspection

Scrum users should frequently inspect Scrum artefacts and the progress
toward a Sprint Goal to detect undesirable variances. These inspections
should not be so frequent however that inspection gets in the way of the
work. The inspections are most beneficial when diligently performed by
skilled inspectors at the point of work.

Adaptation
If the person doing the inspection determines that one or more aspects of a
process deviate outside acceptable limits and that the resulting product will
be unacceptable, the process or the material being processed must be altered
and adjusted. An adjustment should be made as soon as is possible to
minimise further deviation.
Scrum prescribes four formal events for inspection and adaptation; these have
already been mentioned but as a reminder they are:

Sprint Planning
Daily Scrum
Sprint Review
Sprint Retrospective

XP: Where the customer is put first

XP or Extreme Programming is another popular approach to software
development. The main focus of XP is complete customer satisfaction, in XP
the customers needs always come first. XP teams achieve high customer
satisfaction by developing required features when the customer needs them.

New requests are part of the development team’s normal daily routine, and
the team must deal with requests whenever they pop up. The team organises
itself around any problem that arises and solves it as efficiently as they
possibly can. The main XP practices are else in this book.

Lean Programming: Producing JIT

Lean is not as popular as Scrum or XP and has not been discussed so far in
this book. It is, however, a valid and productive framework for agile that
should always be considered when a company is contemplating a move to
agile. Lean has its origins in manufacturing. Way back in the depths of time,
well okay the 1940s in Japan, a small little company called Toyota wanted to
produce cars for the Japanese market but couldn’t afford the massive
investment that tooling up for mass production requires. Therefore they
studied the way supermarkets worked, noting how consumers only buy what
they need, secure with the understanding there will always be a supply of the
goods they purchase. They also noted and how the stores restock shelves only
as they empty. From this observation, Toyota created a JIT (just in time)
process that it could translate to the factory floor.

The result was a significant reduction in the inventory of parts and finished
goods and a lower investment in the machines, people, and space required.
The JIT process gives workers the ability to make decisions about what is
most important to do next.

The workers take responsibility for the results. Toyota’s success with JIT
processes has helped change mass manufacturing approaches globally and as

a result, they are now one of the largest car producers in the world.

The seven tried and tested principles of lean manufacturing can be applied to
software development. These can be used to optimise the whole IT value
stream. Lean software development principles are as follows. Eliminate
waste, build in quality, create knowledge, defer commitment, deliver quickly,
respect people, and optimise the whole.

KanBan

The Kanban method is a lean methodology that we have discussed elsewhere
in this book. However, as a refresher the two Kanban principles critical to
success are:
1. Visualising the workflow: Teams use a Kanban board (whiteboard,
corkboard or electronic board) that displays kanbans (indications of where in
the process a piece of work or task currently is). The board is organised into
columns, each one representing a stage in the process, a work buffer, or
queue; and optional rows, indicating the allocation of capacity to classes of
service. The board is updated by team members as work proceeds, and
blocking issues are identified during daily meetings.

2. Limit work in progress (WIP): Limiting WIP reduces average lead time,
improving the quality of the work produced and increasing the overall
productivity of your team. Reducing lead time also increases your ability to
deliver frequent functionality, which helps build trust with your stakeholders.
To limit WIP, understand where your blocking issues are, address them
quickly, and reduce queue and buffer sizes wherever you can.

Agile Modelling

Agile Modelling (AM) is a collection of practices, principles and values that
are used for modelling software that can be applied to a software
development project in a lightweight and effective manner. AM was
purposely designed to be a source of strategies that can be tailored to other
base processes. With an Agile Model Driven Development (AMDD)
approach, you typically do just enough high-level modelling at the beginning
of a new project to understand the potential architecture and scope of the
system under design. During construction iterations, you do modelling as part
of your iteration planning activities and then take a JIT model storming
approach where you model for several minutes as a precursor to several hours
of coding. AMDD recommends that teams take a test-driven approach to
development although doesn’t insist on it.

Agile Modelling practices include the following:

Active stakeholder participation: Stakeholders provide
information, make decisions, and are actively involved in the
development process.

Architecture envisioning: This practice involves high-level
architectural modelling to identify a viable technical strategy for
your solution.
Document continuously: Write documentation for your
deliverables throughout the life cycle in parallel to the creation
of the rest of the solution. Some teams choose to write the
documentation one iteration behind to focus on capturing stable
information.
Document late: Write deliverable documentation as late as
possible to avoid speculative ideas likely to change in favour of
stable information.
Executable specifications: Specify detailed requirements in the
form of executable customer tests and your detailed design as
executable developer tests.
Iteration modelling: Iteration modelling helps identify what
needs to be built and how.
Just barely good enough artefacts: A model needs to be enough
for the situation at hand and no more.
Look-ahead modelling: Invest time modelling requirements you
intend to implement in upcoming iterations. Requirements near
the top of your work item list are complex so explore them
before they’re popped off the top to reduce overall project risk.
Model storming: Do JIT modelling to explore the in-depth
requirements that sit behind a requirement or to think through a
design issue.
Multiple models: An effective developer has a range of models
in his toolkit, enabling him to apply the right model for the
situation at hand.
Prioritised requirements: Implement requirements in priority
order, as defined by your stakeholders.
Requirements envisioning: Invest your time at the start of an
agile project to identify the scope of the project and create the
initially prioritised stack of requirements.
Single-source information: Capture info in one place only.
TDD: Quickly code a new test and update your functional code
to make it pass the new test.

Unified Process (UP)

The Unified Process (UP) is probably the least used methodology at this
moment in time. However, it is a valid framework that can provide a valuable
solution should it suit your company needs. UP uses an iterative and
incremental approach within a set life cycle and focuses on the collaborative
nature of software development. It can be extended to address a broad variety
of project types, including OpenUP, Agile Unified Process (AUP), and
Rational Unified Process (RUP).

UP divides the project into iterations focused on delivering incremental value
to stakeholders in a predictable manner. The iteration plan defines what
should be delivered within the iteration, and the result is ready for iteration
review or shipping. UP teams like to self-organise around how to accomplish
iteration objectives and commit to delivering the results. They do that by
defining and “pulling” fine-grained tasks from a work items list. UP applies
an iteration lifecycle that structures how micro-increments are applied to
deliver stable, cohesive builds of the system that incrementally progress
toward the iteration objectives.

UP structures the project life cycle into four phases, these are

Inception
Elaboration
Construction
Transition

The project life cycle provides stakeholders and team members with visibility
and decision points throughout the project. This enables effective oversight

and allows you to make “go or no-go” decisions at appropriate times. A
project plan defines the life cycle, and the result is a released application.

Moving to agile and
what to avoid

Not everything in agile is easy and straightforward. There are dangers
involved with adopting agile blindly and pitfalls that need to be avoided at all
costs. Below is a selection of the most common pitfalls that you and your
organisation should be aware of, this is of course not a complete list and any
move to agile should be carefully planned, discussed and time-framed.
Nothing should be committed to until everyone within your organisation is on
board and understands what is involved (At least everyone who matters in the
agile process, you can probably exclude the cleaning staff).

Do not become agile zombies. Companies can easily fall into the trap that if
they attend an agile workshop and mandate to a certain easy to understand
and out-of-the-box (OOTB) process, that they are now an ultra-efficient,
modern agile organisation, this is far from true agile. These companies train
their teams to blindly follow and enforce the anointed process while not
considering which practices may need to change to meet their organisation’s
unique needs and requirements. Remember agile isn’t a prescribed process or
set of practices. It is a philosophy and framework that can be supported by
adaption and a willingness to learn and no two agile approaches are the same.
One single OOTB methodology that fulfils all needs doesn’t exist.

For any organisation, an effective and workable agile adoption requires
complete executive sponsorship and full support at the highest level. This
involvement means more than simply showing up with a big smile at the
kick-off meeting to say a few key words of encouragement and then
disappearing back to the top floor and the golf course.

Without the executive’s continued and proactive support of the overall
initiative, the agile adoption is often doomed because agile initiatives require
an upfront investment of resources and funding and continued backing during
the initial stages. These are areas that executives typically control and if they
are not fully behind the change or they do not completely understand what is
required then the required funding is likely to fall short of what is essential.

Different agile companies find that they can fulfil the true spirit of the Agile

Manifesto through different approaches. Ironically, most of these approaches
focus on one phase or discipline within the delivery lifecycle, oddly enough
this goes against the underlying spirit that is lean, which has always advised
us to consider the whole. You will find that most approaches focus on the
construction phase.

Construction is typically a straightforward area to focus on when your
company is taking on its agile transformation, but if companies only change
the way they construct software, they should not be calling themselves agile,
because they are not. The development teams could be evolving nicely along
the agile path, happily delivering new working software every two or four
weeks, but if the processes in other areas of the company only allow for
deployment every four months or customer stakeholders aren’t prepared to
meet regularly, then the company is not realizing all the benefits agile can
provide and as a result is not agile.

That well known but often ignored adage, “If you fail to plan, plan to fail,” is
true in the agile world. Therefore, the early forms of agile, typically RAD,
had started to get a bad name.

Corners were often cut, and the agile principles were not always fully
adopted, as a result, some early agile projects failed just as badly as earlier
projects using methodologies such as waterfall. However, for some
companies, the lesson was quickly learned, RAD became Agile and a reboot
of the framework started.

Good planning is core to the success of any agile adoption no matter how
large or small the company is. Companies should always answer these
important questions and understand the answers:

Why do we want to be agile, and what benefits will agile
provide?
How will we achieve and measure agility?
What cultural, technological or governance barriers exist, and
how do we overcome them?

Without a plan that clearly shapes the agile initiative and includes addressing
and resolving any known constraints to moving to agile, it is more difficult to

control the initiative, staff it, fund it, manage blockers and maintain vital
continued executive sponsorship.

You can quickly short-circuit a planned agile adoption by focusing solely on
a single software or system delivery team. While a single team can gain some
benefit from agile, this will be limited. To be a truly successful agile
company you need to look at the whole company adopting the agile
processes. Agile should always be a change in culture for the entire
organisation. A good method to help this is to find champions in Operations,
lines of business, product management, Marketing, and other functional areas
to increase your success chances.

Moving to agile is very exciting and some people within your teams will
want to rush in and start before all the planning and preparation is complete.
This temptation is understandable but dangerous. If a proper roadmap for
training, processes and tooling isn’t outlined early in the adoption your
company can soon run into issues that will affect confidence in the agile
process.

Because an agile adoption isn’t just a matter of a new delivery process but is
also a major cultural shift, good training for the whole team is imperative and
the process will fail without it. Programmers don’t like change and many
people like working in their little comfort world. As a result, the concept of
not only changing the way they develop but adding the concept that now they
must work closely with five, six, or ten other people all the time can be very
frightening. An agile coach can work with these team members and help
them through the initial phases of agile adoption.

Unfortunately, some companies often see agile practice training, like
coaching, as an area where they can save money, sending only a few key
managers to learn the new process in hope that they will then train the rest of
the teams while trying to implement the new approach.

How many times have you seen managers book themselves onto courses
which involve four nights in a plush hotel? The course itself will always be
better suited to the actual QA’s, programmers or project leaders but the
managers often see it as a jolly or very nice few days out of the office and a
bar bill their company will pay for.

They will intend to return with new skills that they will then pass down but,
time pressures and lack of interest with the result in very little being fed back
to the teams apart from jovial stories about what happened when they were
all drunk.

If challenged by the lack of feedback by higher management then the
response is often ‘The course was a load of rubbish and no one else should be
sent to it’. This is an age-old problem that still exists to this day.

Therefore, always remember agile involves a change in behaviour and
process. It is critical to send all team members to the appropriate training and
provide them with ongoing training to reinforce agile values and update team
members on processes that may have changed. If the right people are sent on
the right courses the valuable skills will be picked up and this will increase
the overall skill set of the company.

Many classic mistakes can take an agile project off the rails. Below is just a
small sample of what can go wrong.

All you need is scrum
(Scrum is all you need)

Some companies believe it is possible to adopt agile without technical
practices at all. Hopefully, by now, you will have realised this is not the case.
However, starting with scrum is never a bad idea. If you apply Scrum
correctly and get everyone behind it, you will inevitably decide to try some
technical practices at a retrospective meeting.

What you should never do though is rely on Scrum solely as a process that
will solve all the problems you encounter. It can do that, but only if you are
open-minded and willing to try other various features such as pair
programming.

The Scrum Master knows everything

The Scrum Master is not an all-knowing, all-seeing deity. While it is true,
they have some basic knowledge of Scrum and some agile practices, but in
many cases, that’s just it. They may have no hands-on experience with
software development, project management or testing. As a result, the scrum

master should not act as a project manager and prescribe what to do and what
not to do. These decisions should be made at a team level. The only real
things the scrum master should care about are the teams’ impediments and
meta-process. The meta-process is the set of rules and procedures that allow
the team to reflect and improve their existing development process.

We Can Live Without Customer Feedback

One of the strengths of agile is regular feedback. Feedback from the actual
customer is the most important. If your team build something that is incorrect
or does not fit the customer need then you need to know this sooner rather
than later. Regular feedback from the customer helps keep the project on
course and keeps you off the rocks. With feedback, you can regularly correct
the direction should it be required. Remember the customer is a valuable
team member and should always be treated accordingly.

Extreme programming recommends having the customer’s spokesperson on-
site. While this is a great idea, it is rarely practical. However, you can have
the customer available remotely all the time to answer questions and
communicate about a project. If you can’t have feedback in a reasonable
amount of time, agile methods simply will not work. You may build a
technically perfect product but yield zero customers’ satisfaction in the end.

Self-organisation is Easy

Scrum heavily advertises self-organisation. Complexity theory has something
to say about it as well. Self-organisation is based on a set of simple rules,
non-linearity and interactions between agents (in the case of a scrum between
people). You will never see self-organisation working with just a set of rules.
Self-organisation in a software development team needs more, it needs
leadership and cooperation.

Pure self-organisation assumes that a leader will emerge. That does not
happen frequently and in many cases, the team will stagnate and fluctuate
around mediocrity without a real leader. The leader sets a vision, motivates
and pushes the team in the right direction. The leader empowers confidence,
passion and self-reflection. This leads to true self-organisation eventually.

False Goal
(E.g. The customer asked us to be agile)

If you have a customer who insists you use the agile process for their project
you should smile and be happy with this gift. Use this chance as a turning
point for agile adoption and a valid reason for moving forward.

Unfortunately, many companies still just try to “emulate” agile adoption with
a desire to get this contract. They will reluctantly send some people to cheap
agile courses. They will also purchase an agile project management tool and
apply Scrum superficially.
They do all that without deep goals and culture change within the company.
As a result, there will be no real passion or desire to change fully. They do all
that with a false goal, money. Almost inevitably there will be the following
symptoms:

The sprints will fail.
No commitment will mean poor code.
The scrum master will be ineffective and unmotivated.
There will be little or no testing in each sprint resulting in bug-
ridden code.

The result of “false goal” agile adoption is always a failure and a long-term
disappointment with agile software development.

User Stories

When stakeholders realise the need for a new software system, feature
set, or application, the agile process will begin with the appointed
product owner defining what the new or updated software will do and
what services it will provide to the end-users. Instead of following the
more traditional process of product managers and business analysts
writing lengthy requirements or specifications, agile takes a more
efficient lightweight approach of writing down brief descriptions of the
pieces and parts that are needed. These become work items and are
captured in the form of user stories. A user story is a simple description
of a product requirement in terms of what that requirement must
accomplish for whom.

Therefore, user stories are the a gile form of requirements
specifications and should explain how the system should behave
with respect to a single, coherent feature or function. User stories
are a short, simple description of a feature told from the perspective of
the person who desires the new capability, usually a user or customer
of the system. Each story should be small enough to be completed in a
single sprint. Larger collections of related features, or a collection of
sub-features that make up a single complex feature, may be referred to
as "epics".
User stories are often written on index cards or sticky notes. These will
then be arranged on boards, walls or tables to help facilitate the initial
planning and discussion.
As a result, they strongly shift the focus from writing about features to
discussing them. The following discussions are more important than
whatever text is written.
Epics may include user stories for different development teams.
These collections may be developed over a series of sprints. Each
epic and its user stories should have associated acceptance criteria.
The typical format for a User Story is thus:

The story should also include at least one validation step, these are
steps to take to know that the working requirement for the user story is
correct. That step is usually worded as follows:

When I <take this action>, this happens <description of
action>

Some typical examples are shown below.

Searching for customers
As a user, I want to search for my customers by their
status, first and last names so I can see who is still
active.

Modify my diary
As a user, I want to modify my diary but not the
dairy of other users.

User Stories are a central part of many agile development
methodologies, such as in the XP's planning game. User stories define
what must be built in the software project development lifecycle. User
stories can be written by any member of the team, but they are always
prioritised by the product owner to indicate which have the most value
for the system. They will then be broken down into tasks and estimated
by the developers.
When user stories are about to be implemented in a pending sprint the
developers should have the option to talk to the product owner about it.
The short stories may be difficult to interpret, may require some
background knowledge or the requirements may have changed since
the story was written. Clarity is very important in agile and
communication is the key tool.
Every user story must at some point have one or more acceptance tests

attached, allowing the developer to test when the user story is done and
allowing the customer to validate it. Without a precise formulation of
the requirements, prolonged destructive and costly arguments may arise
when the product is to be delivered.
User stories are a great benefit to the agile team because they offer a
quick way of handling the product owner requirements without having
to create large, cumbersome formalised requirement documents and
without performing administrative tasks related to maintaining them.
A good agile project will quickly gather user stories to respond faster
and with less overhead to rapidly changing real-world requirements.
XP and other agile methodologies have always favoured face-to-face
communication over comprehensive documentation and quick
adaptation to change instead of fixation on the problem. User stories
can achieve this by:

They allow the breaking of projects into small increments.
Being small and simple they need very little maintenance.
They make it easier to estimate the development effort.
They help maintain close customer contact.
They are suitable for projects which have badly written or
poorly understood requirements. Iterations of discovery
soon drive the refinement process and improve
understanding.

Gherkin and Cucumber
Gherkin uses a set of special keywords to give structure and meaning to
executable specifications. Most lines in a Gherkin document start with one of
the keywords. Comments are only permitted at the start of a new line,
anywhere in the feature file. They begin with zero or more spaces, followed
by a hash sign (#) and some text. Also, spaces or tabs may be used for
indentation.
The recommended indentation level is two spaces. Here is an example:
Feature: Test for the existence of Google
This example will try and load Google
Scenario: Try to load google

Given the web browser has successfully loaded
When I type google into the address bar
Then the google search page will load after I press enter

Each of the Given, When, Then steps are matched to a code block which is
called a step definition, this we will cover late in this book.
The purpose of the Feature keyword is to provide a high-level description of
a test feature file, and to group related scenarios. The first primary keyword
in a Gherkin document must always be Feature, followed by a : and a short
text that describes the feature. You can add free-form text
underneath Feature to add more description and improve readability. For
example:
Feature: Guess the word

The word guess game is a turn-based game for two players.
The Maker makes a word for the Breaker to guess. The game
is over when the Breaker guesses the Maker's word.

Below is a list of keywords available.

Feature

Rule

Steps

Given

When

Then

And, But, *

Background

Scenario outline

Data tables

The (optional) Rule keyword has been part of Gherkin since v6. The purpose
of the Rule keyword is to represent one business rule that should be
implemented. It provides additional information for a feature. A Rule is used
to group together several scenarios that belong to this business rule. A Rule
should contain one or more scenarios that illustrate the particular rule.
Feature: Highlander

Rule: There can be only One

Example: Only One -- More than one alive

Given there are 3 ninjas
And there are more than one ninja alive
When 2 ninjas meet, they will fight
Then one ninja dies (but not me)
And there is one ninja less alive

Each step starts with Given, When, Then, And or But. Cucumber will always execute each step in a
scenario one at a time, in the sequence you’ve written them in. When Cucumber tries to execute a step,
it looks for a matching step definition to execute. As previously shown the step definition will then try
to execute code in one of the projects class files.
Keywords are not considered when looking for a step definition. This means you cannot have a Given,
When, Then, And or But step with the same text as another step.
Cucumber considers the following steps duplicates:

Given there is loads of money in my account
Then there is loads of money in my account

At first this might seem like a limitation, but it forces you to come up with a
less ambiguous, clearer domain language, for example:
Given my account has a nice balance of £900,000
Then my account should have a healthy balance of £900,000

These examples are less ambiguous and easier to understand.

Given steps are used to describe the initial context of the system under test -
the scene of the scenario. It is typically something that happened in the past.
When Cucumber executes a Given step, it will configure the system to be in a
well-defined state, such as creating and configuring objects or adding data to
a test database.
The purpose of Given steps is to put the system in a known state before the
user (or external system) starts interacting with the system (in the When

steps). Avoid talking about user interaction in Given’s.
It’s okay to have several Given steps (use And or But for number 2 and
upwards to make it more readable). However try to avoid more than 3 Given
steps.
Examples:
Given we are taken to the Feedback home page
Given we set the destination to the homepage
When steps are used to describe an event, or an action. This can be a person
interacting with the system, or it can be an event triggered by another system.
It’s strongly recommended you only have a single When step per Scenario. If
you feel compelled to add more, it’s usually a sign that then scenario is too
complex and you should split the scenario down into multiple scenarios.
Examples:
When we search for "Plumber" in area "PO1 5QY"
When we select "SpiceTheWorld" and go to "SpiceTheWorld"
Then steps are used to describe an expected outcome, or result. The step
definition of a Then step will usually use an assertion to compare the actual
outcome (what the system actually does) to the expected outcome (what the
step says the system is supposed to do).
An outcome should be on an observable output. That is, something that
comes out of the system (report, user interface, message), and not a behaviour
deeply buried inside the system (like a record in a database) although the
result can be compared to a database query to confirm the actual result
matches the expected result.
Examples:
Then we are taken to the "Spice Advice Centre" blog page
Then "Spice" should "be" visible
Then "SpiceTheWorld HQ" should "not be" visible

If you have successive Given’s, When’s, or Then’s, you could write:
Example: Multiple Givens

Given one thing
Given another thing
Given yet another thing
When I open my eyes
Then I should see something
Then I shouldn't see something else

Or you could make the example more fluidly structured by replacing the
successive Given’s, When’s, or Then’s with And’s and But’s:
Example: Multiple Givens

Given one thing

And another thing
And yet another thing
When I open my eyes
Then I should see something
But I shouldn't see something else

Gherkin also supports using an asterisk (*) in place of any of the normal step
keywords. This can be helpful when you have some steps that are effectively
a list of things, so you can express it more like bullet points where otherwise
the natural language of And etc might not read so elegantly.
For example:
Scenario: All done

Given I am out shopping
And I have eggs
And I have milk
And I have butter
When I check my list
Then I don't need anything

Could be expressed as:
Scenario: All done

Given I am out shopping
* I have eggs
* I have milk
* I have butter
When I check my list
Then I don't need anything

Occasionally you’ll find yourself repeating the same Given steps in all of the
scenarios in a Feature. Since it is repeated in every scenario, this is an
indication that those steps are not essential to describe the scenarios; they are
incidental details. You can literally move such Given steps to the
background, by grouping them under a Background section. A Background is
placed before the first Scenario/Example, at the same level of indentation.

For example:

Background:
Given we are taken to the Feedback home page

Scenario: Providing positive feedback
When I provide positive feedback
Then that member is listed as expected

Scenario: Providing negative feedback
When I provide negative feedback
Then that member is listed as expected

Scenario: Providing average feedback
When I provide average feedback

Then that member is listed as expected

The Scenario Outline keyword can be used to run the same Scenario multiple
times, with different combinations of values. Also, the keyword Scenario
Template is a synonym of the keyword Scenario Outline. Copying and
pasting scenarios to use different values quickly becomes tedious and
repetitive, however Scenario outlines allow us to express these scenarios
more concisely through the use of a template with < >-delimited parameters.

Example:
Scenario Template: Test footer options – Trades

Given we set the destination to the homepage
When we select footer option "<footer>"
Then we should see the url "<url>"

Examples:
footer	url
1	MembershipOverview
2	members.preview
3	blog/trade

A Scenario Outline must contain an Examples (or Scenarios) section. Its
steps are interpreted as a template which is never directly run. Instead, the
Scenario Outline is run once for each row in the Examples section beneath it
(not counting the first header row). The steps can use <> delimited
parameters that reference headers in the examples table. Cucumber will
replace these parameters with values from the table before it tries to match
the step against a step definition.

Data Tables are handy for passing a list of values to a step definition:

Scenario: find a phone number from a collection

Given I have a phone book:
name	phone
Cheezy	525-5309
Sneezy	123-4567
Wheezy	908-9999
Sleazy	666-6666
Freezy	333-3333
When I look up the phone number for "Sneezy"
Then I should see the phone number "123-4567"

Given /^I have a phone book:$/ do |table|

table.hashes.each do |row|
contact.name row['name’]
contact.phone row['phone’]

end
end

It should be realised that regardless of the directory structure employed,
Cucumber effectively flattens the features directory tree when running tests.
This means that anything ending in .rb inside the directory in which
Cucumber is run is treated as a potential step definition source and therefore
all step definitions will be visible to the process.

Technically it doesn’t matter how you name your step definition files, or
which step definitions you put in a file. You could have one giant file
containing all your step definitions. However, as the project grows, the file
can become messy and hard to maintain. Instead, we recommend creating a
separate *_steps.rb file for each domain concept.

Examples:

In later chapters you will have the opportunity to put this knowledge to
practical test.

Burndown Charts

Burndown charts are graphical artefacts that provide very useful
information for the scrum team. There are two types of Burndown charts.
The most commonly used type is the Iteration or sprint chart. There is also
another type known as the Release Chart which is not as common.

These charts are a graphical representation of the work left to do versus the
time remaining. The outstanding work (also known as the backlog) is
usually on the vertical axis while the time along on the horizontal. The
iteration Burndown chart is often used in agile as a metric for measuring
progress over time and as a result, they are a good tool for working out
team velocity.

The main concept behind team velocity is to help agile teams estimate
how much work they can reasonably complete within a given period.
The Burndown charts help achieve this by giving a benchmark of how
quickly similar work was previously completed. The following
terminology is commonly used in velocity tracking.

Unit of work: The unit is chosen by the team to measure
velocity. This can either be a real unit like hours or days or
an abstract unit like story points or ideal days, the choice
will vary from team to team. Each task in the software
development process should then be valued in terms of the

chosen unit.

Interval: The interval is the duration of each individual
iteration in the software development process for which the
velocity is measured. The length of an interval is
determined by the team. Most often, the interval is a week,
but it could also be as long as one month, although no
longer.

Below is a breakdown of the elements of a Burndown chart

To calculate the team velocity, the team first must determine how many

units of work each task is worth and the length of each individual
iteration. During development, the team will then keep track of all
completed tasks and, at the end of the interval, count the number of units
of work completed during the interval. The team then writes down the
calculated velocity in a chart or on a graph which is then made available
to all interested parties.

It is normal for the first few weeks to provide little data of value but is
essential to provide a basis for comparison. Each week after that, the
velocity tracking will provide better information as the team provides
better estimates and becomes more used to the methodology. Also,
velocity should also improve as the team becomes more experienced and
more confident in their abilities to achieve within agile.

Test Driven Vs Behaviour Driven
Test-Driven Development (TDD)

When I first encountered TDD, the idea appeared to be simple, however, it
soon became obvious this was no one-trick pony. TDD is a very widespread
software development technique that involves writing automated test cases
before writing the actual functional code. This technique is now popular in
agile methodologies as it helps drive development towards delivering a
complete, shippable artefact at the end of a sprint. The process itself can be
divided into the following steps:

1. First, a programmer, with the assistance of requirement
documents, will write a new automated test case(s) for the ticket.
2. The development team will then execute these automated test
scripts against the currently developed software. These tests should
fail at this point because the new functionality and features are
implemented.
3. If the tests pass then they are incorrect, and they will need re-
engineering.
4. The programmers will then write the actual code to produce a
tested deliverable at the end of the sprint which will pass the tests.
5. If the programmer has written the code well then, the next test
run will see that their tests pass.
6. The developer can then refactor their code with comments,
enhancements as they wish because if the tests fail again, they will
know it is them that has broken it.

Behaviour Driven Development (BDD)

BDD is a software development technique that defines the user behaviour
before writing test automation scripts or the functional pieces of code. Used
in an agile sprint, this method ensures that a shippable product is generated at
the end of a sprint. At its core, BDD expands on TDD by narrowing the
notion of behaviour. BDD states that tests should be defined in terms of the
behaviour of a unit. The basic outline is shown below.

The behaviour of the user is defined by a product owner/business
analyst/QA in simple English as a User Story, for example.

As a [role].
I want [feature].
So that [benefit].
Acceptance Criteria: Goes here

These are then converted to automated scripts to run against functional
code, for example.

Given [context]
And [more context]
When [event]
Then [outcome]
And [more outcomes]

The programmer then starts writing the functional code.
And the QA writes the test script which is then executed against the
new code.

BDD is easy to read and the behaviour is defined in English. This gives a
common ground for all stakeholders involved in the project. As a result, the
requirements are understood by all and this reduces the risk of developing
code that wouldn’t stand up to the accepted behaviour of the user.

TDD vs. BDD
So, let us summarise the advantages of BDD over TDD.

BDD is in a more readable format by every stakeholder since it is
in plain English, unlike TDD test cases written in programming
languages such as C# and Java.

BDD explains the behaviour of an application for the end-user
while TDD focuses on how functionality is implemented. Changes
on functionality can be accommodated with less impact in BDD as
opposed to TDD.

BDD enables all the stakeholders to all be on the same page with
requirements which makes acceptance criteria easier to write and
easier to agree on.

Despite this, the choice between TDD and BDD can still be a complicated
one. The choice can depend on if there is an appropriate testing framework
for your given target language. Also, there is a need to consider the current
skill set of the entire team. One advantage with BDD is that Behaviour-
specific tests can be executed when a project first starts, while a product is
still in development and when a product is completed. At a minimum, BDD
requires that the behavioural tests are created before development starts, this
will help ensure the team fully understands the acceptance criteria. Before
development begins, all the behavioural tests should fail, but as the
development of the product progresses, the tests will begin to pass as the new
functionality appears. Once all the behavioural tests are considered passing,
the product can be considered a deliverable artefact.

Automated Testing with Selenium

Test automation at all levels of testing occurs in many a gile teams,
and this can mean that QA’s spend time creating, executing,
monitoring and maintaining automated test cases and the end results.
Because of the heavy use of test automation, a higher percentage of
manual testing on agile projects tends to be done using experience-based
and defect-based techniques such as software attacks, exploratory testing
and error guessing.

While programmers s h o u l d focus on creating unit tests, QA’s
should focus on creating automated integration, system and system
integration tests which can be reused with little or no modification in a
later development cycle. This leads to a tendency for agile teams to
favour QA’s with a strong technical and test automation background.

Such highly skilled QA’s are in great demand and can expect better
employment terms than lesser-skilled, manual testers.

One goal of the automated tests is to confirm that the build is
i n d e e d functioning r e l i a b l y and i s installable. Should any of
the automated test scripts fail then the agile team will investigate why. If
the reason is that logic has changed then the script will be updated. If,
however, the failure has exposed some form of bug then the team should
attempt to fix the underlying defect in time for the next code check-in.
This should be undertaken whenever and as often as is possible.
W h i l e this requires an investment in real-time cost your team should
have a viable test reporting s y s t e m w h i c h to provide good
visibility into test results. The payback in results makes this effort very
worthwhile. T h i s approach helps reduce expensive and inefficient
cycles of " build-install-fail-rebuild-reinstall" that can occur in many
traditional projects since changes that break the build or cause the
software to fail to install are detected quickly.
One of the more popular automation tools on the market today is
Selenium. You may well have heard of selenium and possibly even used
it. If not, then you are probably thinking; what on earth is this Selenium
thing?
Well, selenium is a portable software testing framework for web
applications. Selenium also provides a test domain-specific language
called Selenese to write tests in several popular programming languages.
These languages include C#, Java, Perl, PHP, Python and Ruby. These
tests can then be modified, saved and run against most modern web
browsers. Another advantage of selenium is that it is cross platform and
it will deploy on the Windows, Linux, and Macintosh platforms. It is
open-source software, released under the Apache 2.0 license, and can be
downloaded and used without charge, another good bonus.
I currently work with Selenium and C# and this is by far my preferred
combination therefore the examples and information to follow is based
around that flavour. So, read on you intrepid QA’s.

Selenium and ASP.Net
Selenium can be integrated into Visual Studio just as easily as it can be used
with other programming languages such as Eclipse. As I previously
mentioned, Visual Studio is the author's preferred tool for writing automated
tests. If you do not already have it, then at the time of publication there is a
free version of Visual Studio available. This is called Visual Studio
Community 2019 (VSC2019) and it is available at this URL:
https://visualstudio.microsoft.com/downloads/

This is a fully functional version of Visual Studio so if you have not yet
installed VSC2019 then get your copy now. The initial download is quite
fast, but the actual install can take a while, however, it only must be done
once.

Once VCS2019 has been installed the next step is to create a new project and
then download and add the plug-in.

So, first Launch Visual Studio and navigate to File > New > Project.

https://visualstudio.microsoft.com/downloads/

Then Select Visual C# > Test > Your project name > Click the OK button.

After a few moments the UnitTest1.cs file will be created. This you can
rename as you feel appropriate.

Next right-click on the Project file in the Solution Explorer Window and
Select Manage Nuget Packages.

Now conduct a search using Online and the search term Selenium the options
for both the Selenium WebDriver and Selenium WebDriver Support Classes
should appear. Ensure you install both packages to your project, they are
essential.

Install is a simple one-button click for each package. The result will be like
below.

You can also achieve the same result with the Package Manager Console.
Now using this method simply type in the following two commands.

Install-Package Selenium.WebDriver
Install-Package Selenium.Support

Press return after each command and allow the update to complete before
moving to the next option.

You should then repeat this process and download the NUnit package by
Charlie Poole

While both the Internet Explorer and Firefox drivers are included in the
Selenium package, you will need to download an additional web driver for
Chrome should you wish to test with that web browser as well? At the time of
writing the author is currently testing with Chrome and this moment in time it
is his preferred browser.

At the time of publication, the download URL was:
https://sites.google.com/a/chromium.org/chromedriver/downloads

Once again please be aware this may change over time and a search may be
required.

When and if you download this driver, you need to copy it to your project,
one option is as per the example below, where the driver is copied to a folder
called chrome. You could also copy it to the project root folder if preferred.

https://sites.google.com/a/chromium.org/chromedriver/downloads

Now right click on the chromedriver.exe and select Properties. Ensure the
Build Action is set to the value of [Content]. Also, check that Copy to Output
Directory is set to the [Copy Always] value. This will ensure that
chromedriver.exe is always in the folder of the running assembly so it can be
used.

So that is it. You now have an empty test class which is configured for basic
Selenium testing. Next, we will start to look at some of the more important
Selenium commands and see how they can help you create reliable, reusable
automated test cases.

The first Selenium test
To get this section going let us start with a very simple example which will
do one thing, which is ‘load a web page in maximised mode’. That is all it
will do but it is a good example of how simple things can be.

So, open the class file UnitTest1.cs (or whatever you may have renamed it as)
and type in the code below

using Microsoft.VisualStudio.TestTools.UnitTesting;
using OpenQA.Selenium;
using OpenQA.Selenium.Chrome;

namespace selenium
{

[TestClass]
public class Class1

{
private IWebDriver driver;

[TestMethod]
public void TheTest()

{
IWebDriver _driver = new ChromeDriver();

_driver.Manage().Window.Maximize();
_driver.Navigate().GoToUrl("https://www.kevsbox.com");

_driver.Quit();
}

}
}

Now run the code and you will see https://www.kevsbox.com appear and
then close and the program terminates.

https://www.kevsbox.com

So, there you have it, your first automated tests have been successfully run.
Next, we will look at some of the more complex commands available for
your test cases.

The Selenium Command Set
Finding elements

No matter if you are using Java, Ruby or C#, one of the critical requirements
of automated testing will always be the ability to identify and locate elements
from the web page under test and then being able to perform tests on these
elements that will confirm the data returned is both valid and correct. This
means that the test tool in use must be able to recognise the web elements
quickly, correctly and effectively.

Selenium WebDriver (Watir for Ruby) is a tool that provides one of the most
advanced techniques for locating elements on web pages in various popular
web browsers. Selenium's very feature-rich API provides reliable multiple
locator strategies such as ID, Name, CSS selectors, XPath etc. With
Selenium, you are also able to implement custom locator strategies for
locating elements. Essentially these locators are the mainstay of your tests.
Using the right locator for the situation ensures the tests are faster, more
reliable and have a lower maintenance overhead in future releases. In any
web development project regardless of what development language is being
used, it is always good practice to assign meaningful attributes such as Name,
IDs or Class to all the elements that exist on the web page. This makes the
application more readable, testable and conforms to existing accessibility
standards. There are rare occasions, however, when following these practices
is simply not possible. For such scenarios, you will have to use advanced
locator strategies such as CSS selector and the XPath function.

While both CSS selector and XPath are popular among most Selenium users,
the CSS selector option is always recommended over XPath due to its
simplicity, speed, and performance advantages.

Locating elements in Selenium WebDriver is done by using the
findElement() and findElements() methods provided by WebDriver and
WebElement class.

The findElement() method returns a WebElement object based on a specified
search criterion or throws up an exception if it does not find any element

matching the search criteria.

The findElements() method returns a list of WebElements matching the
search criteria. If no elements are found, it returns an empty list.

Find methods take a locator or query object as an instance of By class as an
argument. Selenium WebDriver provides By class to support various locator
strategies.

The following table lists various locator strategies currently supported by the
Selenium WebDriver:

Strategy Syntax
By ID C#: driver.FindElement(By.Id(<elementID>))

Java: driver.findElement(By.id(<element ID>))
Ruby: browser.div(id: "header")

By name C#: driver.FindElement(By.Name(<element name>))
Java: driver.findElement(By.name(<element name>))

Ruby: browser.text_field(name: ‘header_name’)
By class name C#: driver.FindElement(By.ClassName(<element
class>))

Java: driver.findElement(By.className(<element class>))
Ruby: browser.text_field(class: ‘header_name’)

By tag name C#: driver.FindElement(By.TagName(<htmltagname>))
Java: driver.findElement(By.tagName(<htmltagname>))

Ruby: browser.element (tag_name: ‘div’)
By link text C#: driver.FindElement(By.LinkText(<linktext >))

Java: driver.findElement(By.linkText(<linktext>))
Ruby: browser.button(text: "Button 2"

By partial linkC#: driver.FindElement(By.PartialLinkText(<linktext >))
Java: driver.findElement(By.partialLinkText(<linktext>))
Ruby: browser.button(text: /.*Button*./

By CSS C#: driver.FindElement(By.CssSelector(<css selector
>))

Java: driver.findElement(By.cssSelector(<css selector>))
By XPath C#: driver.FindElement(By. XPath(<xpath query
expression>))

Java: driver.findElement(By.xpath (<xpath query
expression>))

Ruby: browser.element (xpath: ‘//h1[@id='header']’)
How to do it...
Locating elements using id, name, or class attributes are the preferred way to
find elements in Selenium. So, let's try using these methods to locate
elements as described in the following sections, please note all the following
examples are C# followed by Java. Ruby examples will be shown in the full
example later in the book.

Locate by ID

By far Ids is the preferred method to locate elements on a web page. This is
because The W3C standard recommends that developers provide an id
attribute for elements that are unique to each element. Having a unique id
attribute provides a very explicit and reliable way to locate elements on the
page. If for any reason the Ids are not unique, or they are auto-generated this
method should not be used.
With this method, the first element with the id attribute value matching the
location will be returned. If no element has a matching id attribute,
a NoSuchElementException will be raised.
Below is an example of how to use this method
<form name="userId">Login
User ID: <input id="userid" type="text" name="login" />
Password: <input id="password" type="password" name="password" />
<input type="submit" name="signin" value="SignIn" />
</form>

As you can see both input boxes have a unique id value, these can be used to
locate the element. The example code for this is shown below.
C#
driver.FindElement(By.Id("id")).Click();
Java
driver.findElement (By.id ("userid"));

Locate by Name

The name attribute is another fast way to locate an element. However, you
must also be aware that the name may not be unique. With this method the
first matching element will be returned, if no element has a matching name
attribute, a NoSuchElementException will be raised.
Below is an example of how to use this method
<form name="userId">Login
User ID: <input id="userid" type="text" name="login" />
Password: <input id="password" type="password" name="password" />
<input type="submit" name="signin" value="SignIn" />
</form>

As you can see both input boxes have a name value, these can be used to
locate the element. The example code for this is shown below.
C#
driver.FindElement(By.Name("name")).Click();
Java
driver.findElement (By.name ("login"));

Locate by XPath
XPath is the language used for locating nodes in XML documents. As HTML
can also be an implementation of XML (XHTML), you lucky Selenium users
can utilise this powerful language to locate elements in the web applications
under test. XPath extends way beyond the simpler methods of locating by id
and name attributes, it opens new possibilities such as locating the fifth
checkbox on the web page under test.

One of the main reasons for using XPath is when you don’t have a suitable id
or name attribute for the element you wish to locate (for example they are not
unique). You can use the XPath feature to either locate the element in
absolute terms or relative to an element that does have an id or name
attribute. This is not as preferred as ID or Name and can make your test cases
less robust but there are times when no other option is available.
Below is an example of how to use this method
<html>
<html> <body>

<form id="loginForm">
<input name="userid" type="text" />
<input name="password" type="password" />
<input name="cButton" type="submit" value="Login" />
<input name="cButton" type="button" value="Clear" />

</form>
</body><html>

In this example the form elements can be located like this:
C#

login_form =
driver.FindElement(By.XPath("/html/body/form[1]")
login_form = driver.FindElement(By.XPath("//form[1]")
login_form =
driver.FindElement(By.XPath("//form[@id='loginForm']")

Java

login_form =
driver.find_element_by_xpath("/html/body/form[1]")
login_form = driver.find_element_by_xpath("//form[1]")

login_form =
driver.find_element_by_xpath("//form[@id='loginForm']")

The username element can be located like this:
C#

username =
driver.FindElement(By.Xpath("//form[input/@name= userid]")
username =
driver.FindElement(By.Xpath("//form[@id='loginForm']/input[1]")
username = driver.FindElement(By.Xpath ("//input[@name=
userid]")

Java

username =
driver.find_element_by_xpath("//form[input/@name= userid]")
username =
driver.find_element_by_xpath("//form[@id='loginForm']/input[1]")
username = driver.find_element_by_xpath("//input[@name=
userid]")

Locate by LinkText and PartialLinkText
This is a very useful method to use when you know what the link text will be
within an anchor tag. With this method, the first element with the link text
value matching the location will be returned. If no element has a matching
link text attribute, a NoSuchElementException will be raised instead.
Below is an example of how to use this method
<html> <body>

<p>Are you sure you want to delete this record?</p>
Confirm
Cancel

</body><html>

The find by link command will be
C#

continue_link = driver.FindElement(By.LinkText (“Confirm”)

Java
continue_link = driver.find_element_by_link_text('Confirm')

Also, the find by partial link will be
C#

confirm_link = driver.FindElement(By.PartialLinkText ('Confi')
Java

confirm_link =
driver.find_element_by_partial_link_text('Confi')

Locate by Tag Name

Use this when you want to locate an element by tag name. This is a limited
method which is used less frequently than the methods already discussed.
With this method, the first element with the given tag name will be returned.
If no element has a matching tag name, a NoSuchElementException will be
raised instead.
Below is an example of how to use this method
<html> <body>

<h1>Welcome to Kevsbox.com</h1>
<p>This is one cool site dude</p>

</body><html>

The find by link command will be
C#

headingLink = driver.FindElement(By.TagName('h1')

Java
headingLink = driver.find_element_by_tag_name('h1')

Locate by CSS
(Cascading Style Sheets)

Use this method when you want to locate an element by CSS selector syntax.
With this method, the first element with the matching CSS selector will be
returned. If no element has a matching CSS selector then as per usual a
NoSuchElementException will be raised.
Below is an example of how to use this method
<html> <body>

<p class="content">This is kevsbox.com</p>
</body><html>

In this example the “p” element can be located like this:
C#
content = driver.FindElement(By.CssSelector ('p. Content')
Java
content = driver.find_element_by_css_selector('p. Content')

Browser Commands
In this section, we will discuss some of the browser commands which are
available to you for use in your automated scripts. This is by no means a
complete list, but I am sure you will find these commands very useful in the
future. Please note that all these examples are in C#

Navigate to a Web Page
The Navigate command is used to load a new web page in the current
browser window, below is an example of how this works.

driver.Navigate().GoToUrl("https://www.kevsbox.com");

Get the title of the page
The Title method fetches the Title of the current page. This method accepts
nothing as a parameter and returns a String value, for example.

string Title = driver.Title;

Get the current URL
The URL method returns a string representing the Current URL which is
opened in the browser, for example.

string CurUrl = driver.Url;

Get the current page HTML source
The PageSource method returns the Source Code of the page, for example.

string pSource = driver.PageSource;

Close
This method closes only the current window the WebDriver is currently
controlling, for example.

driver.Close();

Quit

This method closes all windows opened by the WebDriver, for example.
driver.Quit();

Navigation History
driver.Navigate().Back();
driver.Navigate().Refresh();
driver.Navigate().Forward();

Maximise the browser window
driver.Manage().Window.Maximize();

Cookies
Add a new cookie

Cookie cookie = newOpenQA.Selenium.Cookie("key", "value");
driver.Manage().Cookies.AddCookie(cookie);

Return all cookies
var cookies = driver.Manage().Cookies.AllCookies;

Delete a cookie by name
driver.Manage().Cookies.DeleteCookieNamed("CookieName");

Delete all cookies
driver.Manage().Cookies.DeleteAllCookies();

Other cool commands

Switching Windows or Tabs

ReadOnlyCollection<string> windowHandles =
driver.WindowHandles;
stringfirstTab = windowHandles.First();
stringlastTab = windowHandles.Last();
driver.SwitchTo().Window(lastTab);

Example
public void SwitchToWindow(Expression<Func<IWebDriver, bool>> predicateExp,
IWebDriver driver)

{
var predicate = predicateExp.Compile();
foreach (var handle in driver.WindowHandles)

{
driver.SwitchTo().Window(handle);

if (predicate(driver))
{

return;
}

}
throw new ArgumentException(string.Format("Unable to find window with condition:

'{0}'", predicateExp.Body));
}

Switch to frames

_driver.SwitchTo().Frame(1);
_driver.SwitchTo().Frame("frameName");
IWebElementelement = _driver.FindElement(By.Id("id"));
_driver.SwitchTo().Frame(element);

Switch to the default document
driver.SwitchTo().DefaultContent();

Taking a full-screen screenshot

Screenshotscreenshot =
((ITakesScreenshot)driver).GetScreenshot();
screenshot.SaveAsFile(@"pathToImage", ImageFormat.Png);

Wait until a page is fully loaded via JavaScript

WebDriverWaitwait = newWebDriverWait(_driver,
TimeSpan.FromSeconds(30));
wait.Until((x) =>

{
return((IJavaScriptExecutor)_driver).ExecuteScript(
"return document.readyState").Equals("complete");

});

A complete C# Example
So, let us now look at a complete worked example using Visual Studio, C#,
Selenium, NUnit, SpecFlow and MsBuild. The image on the following page
shows the installed packages.
For this example, I will assume you have already installed Visual Studio and
Selenium. The other packages can be installed if required using NuGet. For
example, to install MySql using this command –
Install-Package MySql.Data -Version 6.9.9
Visual Studio will then install the package.
You should also note that these version numbers will change over time and
by the time you get to read this book they will almost certainly be different.

Okay, so when you're ready to continue you will notice that below is the code
for this example.

First, we have the project layout. So, the first thing you may notice here is the
SpiceTest.feature file, so let us have a look at a sample of the contents of this
file.
@SpiceRegression
Feature: SpiceFeature

Scenario Outline: Navigate to the search option and click the Search button
Given we set the destination to homepage
When we search with "<Search>"
Then we validate the destination includes "<Destination>"

Examples:
Search	Destination
shark	Home/Recipe/89
kevin	Home/Search

Scenario Outline: Navigate Recipes using the site menu system

Given we set the destination to homepage
When we select this menu option "<toplevel>" and "<sublevel>"
Then we validate the destination includes "<URL>"

Examples:
toplevel	sublevel	URL
1	1	Home/Selection/CH
1	2	Home/Selection/IN
1	3	Home/Selection/CK
1	4	Home/Selection/CA
1	5	Home/Selection/TH
1	6	Home/Selection/TR

Scenario Outline: Navigate Information using the site menu system
Given we set the destination to homepage
When we select this info menu option "<toplevel>" and "<sublevel>"
Then we validate the destination includes "<URL>"

Examples:
toplevel	sublevel	URL
2	1	Info/List/CH
2	2	Info/List/SP
2	3	Info/List/CT
2	4	Info/List/GL
2	5	Info/History/CU
2	6	Info/History/CT
2	7	Info/Scoville
2	8	Info/History/GR

Scenario: View a vegan recipe
Given we set the destination to homepage
When we select this menu option "1" and "6"
And we then select a vegan recipe
Then the vegan symbol is displayed

Scenario: Print the selected recipe
Given we set the destination to homepage
When we select this menu option "1" and "5"
And we then select a thai meat recipe
Then the recipe can be printed

Scenario: Register a new account
Given we set the destination to login page
When we create a new account
Then the logged in message is visible

And I can then logout

Scenario: Login and add a recipe to your folder

Given we login as the test user
When we add a recipe to folder
Then the recipe is visible in the folder page

Scenario: Login and add and remove recipe to your folder
Given we login as the test user
When we add a recipe to folder
Then the recipe is visible in the folder page
And then empty the folder

Scenario: Login and add a recipe to your menu
Given we login as the test user
When we add a recipe to menu
Then the recipe is visible in the menu page

Scenario: Login and add and remove recipe to your menu
Given we login as the test user
When we add a recipe to menu
Then the recipe is visible in the menu page
And then empty the folder

So, what you see here in the feature file and this functionality is introduced by the SpecFlow package.
This enables the User Stories to be converted into Gherkin syntax test scenarios.
A feature file may contain multiple scenarios used to describe the feature's acceptance tests. Scenarios
have a name and can consist of multiple scenario steps. Currently, three types of steps define either the
preconditions, actions or verification steps that make up the acceptance test (these three types are often
referred to as arrange, act and assert).
The different types of steps always begin with either the Given, When or Then keywords respectively
(in English feature files). Also, any subsequent steps of the same type can be linked using the [And]
and [But] keywords. As you will see the Gherkin language fits in very well with the Agile frameworks
and this is a useful tool for translating User stories into easy to read and easy to understand acceptant
tests.
You will also notice the Scenario Outline syntax; this is an extremely useful feature which cuts down
on code duplication and allows similar tests to share function by having variables passed to each loop
as detailed in the Examples list.

Let us now look at the Hooks class file. This is called when a new test run is
invoked.
using OpenQA.Selenium.Chrome;
using System;
using AventStack.ExtentReports;
using TechTalk.SpecFlow;
using OpenQA.Selenium;

namespace SpiceTheTest
{

[Binding]
public sealed class Hooks : SharedClass

{

private readonly ScenarioContext _scenarioContext;
private static IJavaScriptExecutor _javascriptExecutor;

public Hooks(ScenarioContext scenarioContext)
{

_scenarioContext = scenarioContext;
}

[BeforeScenario]
public void BeforeScenario()

{
Test = Extent.CreateTest(_scenarioContext.ScenarioInfo.Title.ToString());

}

[AfterScenario]
public void AfterScenario()

{
var status = _scenarioContext.ScenarioExecutionStatus.ToString();
if (status != "OK")

WriteToReport(_scenarioContext.TestError.StackTrace, Status.Fail);

Driver.Manage().Cookies.DeleteAllCookies();
}

[BeforeFeature]
[Scope(Tag = "SpiceRegression")]
public static void BeforeFeature(FeatureContext featureContext)

{
ResetReportVariables(featureContext.FeatureInfo.Title);

var options = new ChromeOptions();
options.AddArguments("disable-browser-side-navigation");
options.AddArguments("disable-infobars");
options.AddArgument("ignore-certificate-errors");
options.AddArgument("ignore-ssl-errors");
options.AddArgument("disable-popup-blocking");
options.AddArguments("start-maximized");
options.AddArguments("no-sandbox");
Driver = new ChromeDriver(options);

Driver.Manage().Timeouts().ImplicitWait = TimeSpan.FromSeconds(30);
Driver.Manage().Timeouts().AsynchronousJavaScript = TimeSpan.FromSeconds(30);
Driver.Manage().Timeouts().PageLoad = TimeSpan.FromSeconds(30);
Driver.Manage().Cookies.DeleteAllCookies();

}

[AfterFeature]
public static void AfterFeature(FeatureContext featureContext)

{
try

{
Driver.Manage().Cookies.DeleteAllCookies();

}
catch (Exception ex)

{
Console.WriteLine("Already logged out - ignore : {0}", ex);

}
CloseUpReport(featureContext.FeatureInfo.Title);
Extent.Flush();

try
{

Driver.Close();
Driver.Quit();

}
catch (Exception ex)

{
Console.WriteLine("Error: " + ex);

}
}

}
}

As you can see there are Before and After feature calls and Before and After
Scenario calls. So, these functions are good for initialising and setting up
before each Feature and each Scenario as required. You may also notice that

Tags can be assigned so it is possible to have different calls depending on
what Tag is being used.
There are also After calls available which are particularly useful for after test
operations such as removing test data, report creation and whatever else you
require.
The next files to look at are the step definition files. These link the scenarios
within the Feature file to actual code that will control the tests. There are 4
files in total and each one relates to a page class.
File 1 – LoginSteps.cs
using TechTalk.SpecFlow;

namespace SpiceTheTest.Steps
{

[Binding]
public sealed class LoginSteps : Pages.LoginPage

{
[Given(@"we set the destination to login page")]
public void GivenWeSetTheDestinationToLoginPage()

{
Visit();

}

[When(@"we create a new account")]
public void WhenWeCreateANewAccount()

{
CreateAndLogin();

}

[Given(@"we login as the test user")]
public void GivenWeLoginAsTheTestUser()

{
LoginTestUser();

}

[Then(@"the logged in message is visible")]
public void ThenTheLoggedInMessageIsVisible()

{
AssertIsTrue(IsElementVisible(LoggedIn));

}

[Then(@"I can then logout")]
public void ThenICanThenLogout()

{
UserLogout();

}
}

}

File 2 – MainSteps.cs

using TechTalk.SpecFlow;

namespace SpiceTheTest
{

[Binding]
public sealed class MainSteps : MainPage

{

[Given(@"we set the destination to homepage")]
public void GivenWeSetTheDestinationToHomepage()

{
Visit();

}

[When(@"we search with ""(.*)""")]
public void WhenWeSearchWith(string searchString)

{
DoASearch(searchString);

}

[Then(@"we validate the destination includes ""(.*)""")]
public void ThenWeValidateTheDestinationIncludes(string url)

{
AssertIsTrue(Driver.Url.Contains(url));

}

[When(@"we select this menu option ""(.*)"" and ""(.*)""")]
public void WhenWeSelectThisMenuOptionAnd(int menu1, int menu2)

{
SelectMenuItem(menu1, menu2);

}

[When(@"we select this info menu option ""(.*)"" and ""(.*)""")]
public void WhenWeSelectThisInfoMenuOptionAnd(int menu1, int menu2)

{
SelectMenuItem(menu1, menu2);

}
}

}

File 3 – RecipeSteps.cs
using TechTalk.SpecFlow;

namespace SpiceTheTest
{

[Binding]
public sealed class RecipeSteps : RecipePage

{
[Then(@"the vegan symbol is displayed")]
public void ThenTheVeganSymbolIsDisplayed()

{
CheckVeganSymbol();

}

[Then(@"the recipe can be printed")]
public void ThenTheRecipeCanBePrinted()

{
PrintRecipe();

}

[When(@"we add a recipe to folder")]
public void WhenWeAddARecipeToFolder()

{
SelectARecipe();
AddToFolder();

}

[When(@"we add a recipe to menu")]
public void WhenWeAddARecipeToMenu()

{
SelectARecipe();
AddToMenu();

}
}

}

File 4 – SelectionSteps.cs
using TechTalk.SpecFlow;

namespace SpiceTheTest
{

[Binding]
public sealed class SelectionSteps : SelectionPage

{
[When(@"we then select a vegan recipe")]
public void WhenWeThenSelectAVeganRecipe()

{
SelectVegan();

}

[When(@"we then select a thai meat recipe")]
public void WhenWeThenSelectAThaiMeatRecipe()

{
SelectThaiMeat();

}

[Then(@"the recipe is visible in the folder page")]

public void ThenTheRecipeIsVisibleInTheFolderPage()
{

AssertIsTrue(FolderContainsRecipe(0));
}

[Then(@"the recipe is visible in the menu page")]
public void ThenTheRecipeIsVisibleInTheMenuPage()

{
AssertIsTrue(FolderContainsRecipe(1));

}

[Then(@"then empty the folder")]
public void ThenThenEmptyTheFolder()

{
AssertIsTrue(FolderCountIsZero()==0);

}
}

}

So here you can see where the scenarios in the Feature files are linked to
actual functions in the pages through the definition files.
For example, in the Feature File we have [Given we set the destination to homepage]
This is linked to the following code in MainSteps.cs which inherits class
MainPage
[Given(@"we set the destination to homepage")]
public void GivenWeSetTheDestinationToHomepage()
{

Visit();
}

From here the function Visit is executed. The function is found in the
inherited class file [MainPage] which was defined here
public sealed class MainSteps : MainPage

The actual function is listed below
protected static string PageUrl = “https://www.spicetheworld.com/”;

protected void Visit()
{

Driver.Navigate().GoToUrl(PageUrl);
}

This function will attempt to load a URL which is defined in PageUrl. In this
instance PageUrl is always http://www.spicetheworld.com/ and URL will
be the page to be displayed at this location.

Many functions will test to see if a condition is true or equal to an expected
result. This is how a test is defined. If the expected result has been attained

https://www.spicetheworld.com/
http://www.spicetheworld.com/

then the test can be termed a pass, if not then it is a failure. For example:
protected void CheckSearchResult(string retPath)

{
try

{
Assert.AreEqual(_driver.Url.ToString(), BaseUrl + retPath);

TakeScreenshot(_driver);
}

catch (Exception ex)
{

Console.WriteLine("Error: {0}", ex);
Assert.Fail("Error: {0}", ex);

}
}

In this example, the actual URL of the browser is tested to see it matches the
URL in the variables BaseUrl and retPath. If there is a match then the test
will pass, if there is not then the test will fail.
So many functions will test for a condition. In every example, if the test runs
correctly a true value will be returned hence the Assert.IsTrue. Any variation
of this is caught in the catch and the error is logged in the output report.
Assert.AreEqual is only one possible option here, there are many others and
below is just a small selection.

Assert.IsFalse
Assert.IsNull
Assert.Equals

Each of the Step Definition files listed above inherits a page class. As
expected there are also 4 of those, so let is now look at these files.
File 1 – LoginPage.cs

public class LoginPage : SpiceClass
{

protected static string PageUrl = "https://spicetheworld.com/login.aspx";

protected By UserString = By.Name("UserString");
protected By PassString = By.Name("PassString");
protected By Login = By.CssSelector("[value = 'Login']");
protected By LoggedIn = By.Name("LoggedIn");
protected By Resources = By.Id("resources");
protected By Logout = By.Id("logout");

protected void Visit()
{

WriteToReport("Load page " + PageUrl);
Driver.Navigate().GoToUrl(PageUrl);

}

protected void LoginTestUser()
{

Visit();
WriteToReport(GetTheCurrentMethod());

FillTextBox(UserString, "xxxxxx@kevsbox.com");
FillTextBox(PassString, "xxxxxxxxxx");

ClickElement(Login);
}

protected void CreateAndLogin()
{

WriteToReport(GetTheCurrentMethod());
var newUser = DateTime.Now.ToString("ddMMyyyyhhmmss");
FillTextBox(UserString, newUser + "@kevsbox.com");

FillTextBox(PassString, newUser);
ClickElement(Login);

}

protected void UserLogout()
{

WriteToReport(GetTheCurrentMethod());
GetMenuHover(Resources);

if(IsElementVisible(Logout))
ClickElement(Logout);

AssertIsTrue(IsElementVisible(Login));

} }

File 2 – MainPage.cs

public class MainPage : SpiceClass
{

protected static string PageUrl = "https://www.spicetheworld.com/";

protected By SearchString = By.Name("SearchString");
protected By SearchBtn = By.CssSelector("[value='Search']");
protected By SelectIt = By.Name("selectit");
protected By Recipes = By.Id("recipes");
protected By Information = By.Id("information");
protected By Resources = By.Id("resources");
protected By Scoville = By.Id("scoville");
protected By Grow = By.Id("grow");
protected By HistoryChilli = By.Id("historychilli");
protected By HistoryCurry = By.Id("historycurry");
protected By Glossary = By.Id("glossary");
protected By CurryTypes = By.Id("currytypes");

protected By Spice = By.Id("spice");
protected By Chilli = By.Id("chilli");
protected By Chillirec = By.Id("chillirec");
protected By Curryrec = By.Id("curryrec");
protected By Chinrec = By.Id("chinrec");
protected By Caribrec = By.Id("caribrec");
protected By Thairec = By.Id("thairec");
protected By Ttherrec = By.Id("otherrec");

protected void Visit()
{

WriteToReport("Load page " + PageUrl);
Driver.Navigate().GoToUrl(PageUrl);

}

protected void DoASearch(string searchString)
{

WriteToReport(GetTheCurrentMethod());
FillTextBox(SearchString, searchString);
ClickElement(SearchBtn);

if (IsElementVisible(SelectIt, 10))
ClickElement(SelectIt);

}

protected void SelectMenuItem(int menu1, int menu2)
{

WriteToReport(GetTheCurrentMethod());
SelectMenu1(menu1);

if (menu1==1)
SelectMenu2(menu2);

if (menu1==2)
SelectInfoMenu(menu2);

}

private void SelectMenu1(int menu)
{

WriteToReport(GetTheCurrentMethod());
if (menu == 1) GetMenuHover(Recipes);
else if (menu == 2) GetMenuHover(Information);
else GetMenuHover(Resources);

}

private void SelectMenu2(int menu)
{

WriteToReport(GetTheCurrentMethod());
if (menu == 1) ClickElement(Chillirec);
else if (menu == 2) ClickElement(Curryrec);
else if (menu == 3) ClickElement(Chinrec);
else if (menu == 4) ClickElement(Caribrec);
else if (menu == 5) ClickElement(Thairec);
else if (menu == 6) ClickElement(Ttherrec);

}

private void SelectInfoMenu(int menu)
{

WriteToReport(GetTheCurrentMethod());

if (menu == 1) ClickElement(Chilli);
else if (menu == 2) ClickElement(Spice);
else if (menu == 3) ClickElement(CurryTypes);
else if (menu == 4) ClickElement(Glossary);
else if (menu == 5) ClickElement(HistoryCurry);
else if (menu == 6) ClickElement(HistoryChilli);
else if (menu == 7) ClickElement(Scoville);
else if (menu == 8) ClickElement(Grow);

}
}

File 3 – RecipePage.cs
public class RecipePage : SpiceClass

{
protected static string PageUrl = "https://www.spicetheworld.com/Home/Recipe/";

protected By VeganSafe = By.CssSelector("[title='Vegan safe']");
protected By PrintLink = By.Id("printLink");
protected By BodyPop = By.Id("bodyPop");
protected By Name = By.Id("name");
protected By WalletLink = By.Id("walletLink");
protected By MenuLink = By.Id("menuLink");

protected void SelectARecipe()
{

WriteToReport(GetTheCurrentMethod());
Random rnd = new Random();

Driver.Navigate().GoToUrl(PageUrl + rnd.Next(1, 100));
RecipeName = Driver.FindElement(Name).Text;

}

protected void AddToMenu()
{

WriteToReport(GetTheCurrentMethod());
if (IsElementVisible(MenuLink))

ClickElement(MenuLink);
}

protected void AddToFolder()
{

WriteToReport(GetTheCurrentMethod());
if (IsElementVisible(WalletLink))

ClickElement(WalletLink);
}

protected void CheckVeganSymbol()
{

WriteToReport(GetTheCurrentMethod());
AssertIsTrue(IsElementVisible(VeganSafe));

}

protected void PrintRecipe()
{

WriteToReport(GetTheCurrentMethod());
if (IsElementVisible(PrintLink))

ClickElement(PrintLink);
IList<string> tabs = new List<string>(Driver.WindowHandles);

Driver.SwitchTo().Window(tabs[tabs.Count-1]);
AssertIsTrue(IsElementVisible(BodyPop));

}
}

File 4 – SelectionPage.cs

public class SelectionPage : SpiceClass
{

protected static string PageUrl = "https://www.spicetheworld.com/Home/Selection";

protected By SelectIt = By.Name("selectit");
protected By Deleteit = By.Name("deleteit");

protected void Visit()
{

WriteToReport("Load page " + PageUrl);
Driver.Navigate().GoToUrl(PageUrl);

}

protected int FolderCountIsZero()
{

WriteToReport(GetTheCurrentMethod());
try

{
IList<IWebElement> recipeLinks = Driver.FindElements(Deleteit);

do
{

foreach (var recipeLink in recipeLinks)
{

recipeLink.Click();
break;

}
if (recipeLinks.Count != 1)

recipeLinks = Driver.FindElements(Deleteit);
else

break;
}

while (recipeLinks.Count != 0);

return 0;
}

catch
{

return -1;
}

}

protected bool FolderContainsRecipe(int dest)
{

WriteToReport(GetTheCurrentMethod());
if (dest==0)

Driver.Navigate().GoToUrl(PageUrl + "/WL");
else

Driver.Navigate().GoToUrl(PageUrl + "/RP");
IList<IWebElement> recipeLinks = Driver.FindElements(SelectIt);

foreach (var recipeLink in recipeLinks)
{

if (recipeLink.Text.ToLower().Equals(RecipeName.ToLower()))
{

return true;
}

}
return false;

}

protected void SelectVegan()
{

WriteToReport(GetTheCurrentMethod());
IList<IWebElement> recipeLinks = Driver.FindElements(SelectIt);

foreach (var recipeLink in recipeLinks)
{

if(recipeLink.Text.ToLower().Contains("vegan"))
{

recipeLink.Click();
break;

}
}

//now select the first recipe
recipeLinks = Driver.FindElements(SelectIt);

foreach (var recipeLink in recipeLinks)
{

recipeLink.Click();
break;

}
}

protected void SelectThaiMeat()
{

WriteToReport(GetTheCurrentMethod());
IList<IWebElement> recipeLinks = Driver.FindElements(SelectIt);

foreach (var recipeLink in recipeLinks)

{
if (recipeLink.Text.ToLower().Contains("meats"))

{
recipeLink.Click();

break;
}

}
//grab first recipe

recipeLinks = Driver.FindElements(SelectIt);
recipeLinks[0].Click();

}
}

You probably noticed that the page classes inherit the shared class
SharedClass so for your reference the full SpiceClass.cs is shown
below.

public class SpiceClass
{

public static string RecipeName = "";

protected void FillTextBox(By by, string theText)
{

try
{

Driver.FindElement(by).Clear();
Driver.FindElement(by).SendKeys(theText);

}
catch (Exception err)

{
WriteToReport("Error: " + err.Message);

}
}

/*
* locates the element by with the webdriver driver
* scrolls to the element
* then clicks the element
* if this method does not work then use FireEvent
* */

protected void ClickElement(By by)
{

try
{

var link = Driver.FindElement(by);
var js = $"window.scroll(0, {link.Location.Y});";

((IJavaScriptExecutor)Driver).ExecuteScript(js);
Driver.FindElement(by).Click();

}
catch (Exception err)

{

WriteToReport("Error: " + err.Message);
}

}

protected void GetMenuHover(By hoverLink)
{

WriteToReport(GetTheCurrentMethod() + " " + hoverLink);
try

{
IList<IWebElement> menuLinks = Driver.FindElements(hoverLink);

foreach (var result in menuLinks)
{

var action = new Actions(Driver);
action.MoveToElement(result).Perform();

break;
}

}
catch (Exception err)

{
WriteToReport("Error: " + err.Message);

}
}

protected bool IsElementVisible(By by, int span = 0)
{

bool isFound;
try

{
Driver.Manage().Timeouts().ImplicitWait = TimeSpan.FromSeconds(span);
isFound = IsThisElementVisible(Driver.FindElement(by));
Driver.Manage().Timeouts().ImplicitWait = TimeSpan.FromSeconds(60);

}
#pragma warning disable

catch (Exception ex)
#pragma warning restore

{
isFound = false;

}
return isFound;

}

protected bool IsThisElementVisible(IWebElement element)
{

return element.Displayed && element.Enabled;
}

/**
* This method will return the current working method
* that is being called by selenium
* */

[MethodImpl(MethodImplOptions.NoInlining)]

public string GetTheCurrentMethod()
{

try
{

var st = new StackTrace();
var gf = st.GetFrame(1);
return "In procedure " + gf.GetMethod().Name;

}
catch (Exception ex)

{
Console.WriteLine("Error: {0}", ex);
return ex.Message;

}
}

}

So the SharedClass inherits from the assertFunctions class so here that is also.

public class AssertFunctions : Reporting
{

/// <summary>
/// Return true if passed value is not 0
/// Will accept any numeric type
/// </summary>
/// <typeparam name="T"></typeparam>
/// <param name="by"></param>
/// <param name="legend"></param>
public void AssertIsZero<T>(T by, string legend, bool IsZero)

{
try

{
WriteToReport(Status.Pass, "Pass: condition is true for " + legend);
if (IsZero) Assert.That(by.Equals(0));
else Assert.That(!by.Equals(0));

}
catch (Exception ex)

{
TakeScreenshot();

WriteToReport(Status.Fail, "Fail error: " + ex + " for " + legend);
Assert.That(false);

}
}

/// <summary>
/// AssertTrue
/// Assert is as value of result
/// </summary>
/// <param name="result"></param>
public void AssertTrue(bool result, string TheMessage)

{

WriteToReport(result ? Status.Pass : Status.Fail,
result ? "Pass: Assert is true" : "Fail: Assert is false " + TheMessage);

Assert.That(result);
}

/// <summary>
/// AssertUrlContains
/// checks that the URL contains the compare text
/// true if found
/// false if not
/// </summary>
/// <param name="comparing"></param>
/// <param name="driver"></param>
public void AssertUrlContains(string comparing, IWebDriver driver)

{
var currentUrl = driver.Url;
try

{
WriteToReport(Status.Pass, "Pass: URL is correct");

Assert.That(currentUrl.ToLower().Contains(comparing.ToLower()));
}

catch (Exception ex)
{

TakeScreenshot();
WriteToReport(Status.Fail, "Fail error: " + ex);
Assert.That(false);

}
}

/// <summary>
/// AssertTitleContains
/// checks that the Title contains the compare text
/// true if found
/// false if not
/// </summary>
/// <param name="comparing"></param>
/// <param name="driver"></param>
public void AssertTitleContains(string comparing, IWebDriver driver)

{
var currentTitle = driver.Title;
try

{
WriteToReport(Status.Pass, "Pass: Title is correct");

Assert.That(currentTitle.ToLower().Contains(comparing.ToLower()));
}

catch (Exception ex)
{

TakeScreenshot();
WriteToReport(Status.Fail, "Fail error: " + ex);
Assert.That(false);

}
}

/// <summary>
/// AssertContains
/// checks that the Container string contains the Matcher string
/// true if found
/// false if not
/// </summary>
/// <param name="container"></param>
/// <param name="matcher"></param>
public void AssertContains(string container, string matcher)

{
WriteToReport("Assert " + container + " contains " + matcher);
try

{
WriteToReport(Status.Pass, "Pass: Element is correct " + container + " - " +

matcher);
Assert.That(container.Contains(matcher));

}
catch (Exception ex)

{
TakeScreenshot();

WriteToReport(Status.Fail, "Fail error: " + ex);
Assert.That(false);

}
}

/// <summary>
///Assert true if string does not contain value in matcher

///
/// </summary>
/// <param name="container"></param>
/// <param name="matcher"></param>
public void AssertNotContains(string container, string matcher)

{
try

{
WriteToReport(Status.Pass, "Pass: Element is correct");

Assert.That(!container.Contains(matcher));
}

catch (Exception ex)
{

TakeScreenshot();
WriteToReport(Status.Fail, "Fail error: " + ex);
Assert.That(false);

}
}

/// <summary>

/// AssertIsTrue
///
/// </summary>
/// <param name="by"></param>
public void AssertIsTrue(bool by)

{
try

{
WriteToReport(Status.Pass, "Pass: condition is true");

Assert.That(by);
}

catch (Exception ex)
{

TakeScreenshot();
WriteToReport(Status.Fail, "Fail error: " + ex);
Assert.That(false);

}
}

/// <summary>
/// AssertEquals
/// checks that the Container string equals the Matcher string
/// true if found
/// false if not
/// Template function so can accept string, int or bool
/// </summary>
/// <typeparam name="T"></typeparam>
/// <param name="container"></param>
/// <param name="matcher"></param>

public void AssertEquals<T>(T container, T matcher)
{

try
{

Assert.That(container.Equals(matcher));
WriteToReport(Status.Pass, "Pass: " + container + " does match " + matcher);

}
catch (Exception ex)

{
TakeScreenshot();

WriteToReport(Status.Fail, "Fail error: " + ex);
Assert.That(false);

}
}

/// <summary>
/// AssertIsTrue
///
/// </summary>

/// <param name="by"></param>
public void AssertIsFalse(bool by)

{
try

{
Assert.That(!by);

WriteToReport(Status.Pass, "Pass: condition is true");
}

catch (Exception ex)
{

TakeScreenshot();
WriteToReport(Status.Fail, "Fail error: " + ex);
Assert.That(false);

}
}

}

Finally the AssertFunctions class inherits from Reporting so lets us also see
that

public class Reporting
{

protected static ExtentReports Extent;
protected static ExtentTest Test;
protected static IWebDriver Driver = null;

/// <summary>
/// CloseUpReport
/// Close the report and rename it
/// </summary>
protected static void CloseUpReport(string featureName)

{
Extent.Flush();

//wait for flush to complete
var sw = new Stopwatch();

sw.Start();
while (sw.Elapsed < TimeSpan.FromSeconds(3))

{
//sleep

}
//rename report file from index.html to a unique name
var newFileName = featureName.Trim() +

DateTime.Now.ToString("ddMMyyyyHHmmss") + ".html";
newFileName = newFileName.Replace(" ", string.Empty);
const string oldFileName = "index.html";
var pathName =

Path.Combine(Path.GetDirectoryName(Assembly.GetExecutingAssembly().Location) +
"\\TestResults\\");

File.Move(pathName + oldFileName, pathName + newFileName);
}

protected static void ResetReportVariables(string featureName)
{

var fileName = featureName.Trim() + DateTime.Now.ToString("ddMMyyyyHHmmss")
+ ".html";

fileName = fileName.Replace(" ", string.Empty);
var PathName =

Path.Combine(Path.GetDirectoryName(Assembly.GetExecutingAssembly().Location) +
"\\TestResults\\");

var htmlReporter = new ExtentHtmlReporter(PathName + fileName);
htmlReporter.Config.DocumentTitle = "Automation testing report for feature " +

featureName;
htmlReporter.Config.ReportName = fileName;
htmlReporter.Config.Theme =

AventStack.ExtentReports.Reporter.Configuration.Theme.Dark;

Extent = new ExtentReports();
Extent.AttachReporter(htmlReporter);

Extent.AddSystemInfo("Host Name", Environment.MachineName);
Extent.AddSystemInfo("Environment", "Spicetheworld.com");
Extent.AddSystemInfo("User Name",

System.Security.Principal.WindowsIdentity.GetCurrent().Name);

}

/*
* Sends theMessage to the report page
* */

public static void WriteToReport(string theMessage, Status status = Status.Info)
{

try
{

Test.Log(status, theMessage);
}

catch (Exception ex)
{

Test.Log(status, theMessage + "Error: " + ex.Message);
}

}

public void WriteToReport(Status status, string theMessage)
{

try
{

Test.Log(status, theMessage);
}

catch (Exception ex)
{

Test.Log(status, theMessage + "Error: " + ex.Message);
}

}

protected void TakeScreenshot()
{

try
{

Screenshot ss = ((ITakesScreenshot)Driver).GetScreenshot();
Test.AddScreenCaptureFromBase64String(ss.ToString(), "Screenshot");

}
catch

{
}

}
}

Also, for completeness here is the hook file, this is called SpiceHook.cs

public sealed class SpiceHook: SpiceClass
{

[BeforeFeature(Order = 1)]
[Scope(Tag = "SpiceRegression")]
public static void BeforeFeature()

{
BeforeTheFeature();

}

[BeforeScenario]
public void BeforeScenario()

{
//TODO: implement logic that has to run before executing each scenario

}

[AfterScenario]
public void AfterScenario()

{
//TODO: implement logic that has to run after executing each scenario

}

[AfterFeature]
public static void AfterFeature()

{
AfterTheFeature();

}
}

One thing I have not included much of in this example is comments.
Comments are extremely important and extremely useful. Good comments
will make your code easy to understand and easy to maintain. They are not
only helpful to you, but also other current and future members of your QA
team will also find them useful. Comments are a good guide to help explain
what you were thinking when you wrote the test code, this is invaluable when

you re-visit the same code a few years later and then you think to yourself
what is that supposed to do? In the same way, programmers should always
comment on their code, so should QA’s. Never let anyone say that comments
are not required in testing code or that the code should explain itself. Such
people are either too lazy to write comments or too stupid to understand their
value.
So that is it a partial working example of a C#/Selenium test suite that I have
used on www.spicetheworld.com. The complete suite also handles backend
maintenance, so I was unable to share this with you but hopefully what has
been shown is helpful. Now let us look at the same project in Ruby.

A complete Ruby example
So, let us now look at a complete worked example using Ruby and Watir.
The image on the following page shows the installed gems in the RubyMine
application. Like Visual Studio, RubyMine is a dedicated Ruby and Rails
development environment with a good user base and support. The IDE
provides a wide range of essential tools for Ruby developers, tightly
integrated to create a convenient, stable environment for productive Ruby
development and stable automated test suites.
For this example, I will assume you have already installed RubyMine, Ruby
and Watir. So, here are the contents of the gem file.

Okay, so when you're ready to continue you will notice that on the following
page is the code for this example.

So hopefully you will see that the structure is fairly similar to the C# project,
this is intentional as I have tried to maintain the page object aspect to both
projects. Now let us start looking at the files within the project and as with
the previous chapter, we will start with the feature file which is called
SpiceTheWorld.feature

@SpiceRegression
Feature: SpiceFeature

Full automated testing of SpiceTheWorld.com public pages

Scenario Outline: Navigate to the search option and click the Search button
 Given we set the destination to homepage
 When we search with "<Search>"
 Then we validate the destination includes "<Destination>"

Examples:
 | Search | Destination |
 | shark | selection.aspx?ndx=SRCHshark |
 | kevin | Default.aspx |

Scenario Outline: Navigate using the site menu system
 Given we set the destination to homepage
 When we select this menu option "<toplevel>" and "<sublevel>"
 Then we validate the destination includes "<URL>"

Examples:
 | toplevel | sublevel | URL |
 | recipes | curry | selection.aspx?ndx=IN |
 | recipes | thai | selection.aspx?ndx=TH |
 | information | spices | list.aspx?ndx=SP |
 | information | gloss | list.aspx?ndx=GL |
 | information | grow | History.aspx?ndx=GR |
 | resources | contact | contact.aspx |

Scenario Outline: Data entry test
 Given we set the destination to homepage
 And we decide to submit a recipe
 When the data is submitted "<name>","<descr>","<serves>","<uname>","<email>","<ingred>","
<method>"
 Then the expected result is "<result>"

Examples:
 | name | descr | serves | uname | email | ingred | method | result |
 | inpTest1 | | | | | | | 5 |
 | inpTest2 | description | | | | | | 5 |
 | inpTest3 | description | 4-6 | | | | | 4 |
 | inpTest4 | description | 4-6 | Kev | | | | 3 |

 | inpTest5 | description | 4-6 | Kev | | ingred | | 2 |
 | inpTest6 | description | 4-6 | Kev | | ingred | method | 1 |
 | inpTest7 | description | 4-6 | Kev | fred | ingred | method | 0 |
 | inpTest8 | description | 4-6 | Kev | kev@kevsbox.com | ingred | method
| 0 |

Scenario: Register a new account
 Given we set the destination to login page
 When we create a new account
 Then the logout button is now visible

Scenario: Login and add a recipe to your folder
 Given we login as the test user
 When we add a recipe to folder
 Then the recipe is visible in the folder page

Scenario: Login and empty your folder
 Given we login as the test user
 When we add a recipe to folder
 Then we can remove all recipes from the folder

Scenario: Login and add a recipe to your menu
 Given we login as the test user
 When we add a recipe to menu
 Then the recipe is visible on the menu page

Scenario: Print the selected recipe
 Given we set the destination to homepage
 When we view a random recipe
 Then the recipe can be printed

Let us now look at the hooks.rb file. As before this is called when a new test
run is invoked.
require 'watir'

Before do |scenario|
 options = Selenium::WebDriver::Chrome::Options.new(args: ['disable-infobars', 'ignore-
certificate-errors'])
 options.add_preference(:credentials_enable_service, false)
 options.add_preference(:password_manager_enabled, false)
 driver = Selenium::WebDriver.for :chrome, options: options
 accept_next_alert = true
 Watir.default_timeout = 60
 driver.manage.timeouts.script_timeout = 60
 driver.manage.timeouts.page_load = 60
 driver.manage.timeouts.implicit_wait = 30

 driver.manage.timeouts.script_timeout = 30
 verification_errors = []
 begin
 driver.manage.window.maximize
 rescue StandardError => e
 puts "Driver failed when trying to maximise the window: #{e}"
 end
 @browser = Watir::Browser.new driver
end

After do
 @browser.close
end

Within a rubymine project you will also have a file called env.rb
require 'rspec'
require 'page-object'
require 'data_magic'
require 'faker'

World(PageObject::PageFactory)

Also, we have a shared class which is where I store logic that would
otherwise be duplicated, in this example it is a very small file and is called
shared.rb
class Shared
 $recipe_name = ''
end

As you can see there are Before and After feature calls and Before and After
Scenario calls. So, these functions are good for initialising and setting up
before each Feature and each Scenario as required. You may also notice that
Tags can be assigned so it is possible to have different calls depending on
what Tag is being used.
There are also After calls available which are very useful for after test
operations such as removing test data, report creation and whatever else you
require.
The next files to look at are the step definition files. These link the scenarios
within the Feature file to actual code that will control the tests. Once again
there are 7 files in total and each one relates to a page class.
loginsteps.rb
Given(/^we set the destination to login page$/) do
 visit(LoginPage)

end

When(/^we create a new account$/) do
 on(LoginPage).create_user
end

Then(/^the logout button is now visible$/) do
 expect(on(LoginPage).test_logout).to be true
end

Given(/^we login as the test user$/) do
 visit(LoginPage)
 on(LoginPage).user_login()
end

mainsteps.rb
Given(/^we set the destination to homepage$/) do
 visit(MainPage)
end

When(/^we navigate to the destination "([^"]*)"$/) do |url|
 on(MainPage).load_destination(url)
end

Then(/^we validate the destination includes "([^"]*)"$/) do |url|
 expect(@browser.url.downcase).to include(url.downcase)
end

Then(/^we search with "([^"]*)"$/) do |dest|
 on(MainPage).start_search(dest)
end

When(/^we select this menu option "([^"]*)" and "([^"]*)"$/) do |top, sub|
 on(MainPage).use_menu(top, sub)
end

Given(/^we decide to submit a recipe$/) do
 on(MainPage).use_menu("resources", "submit")
end

menuselectionsteps.rb
Then(/^the recipe is visible on the menu page$/) do
 on(MenuSelectionPage).goto_menu_page
 expect(@browser.text.include?($recipe_name)).to be true
end

printrecipesteps.rb
Then(/^the recipe can be printed$/) do
 on(PrintRecipePage).print_recipe
 expect(@browser.url.downcase).to include('printrecipe.aspx')
end

recipesteps.rb
When(/^we add a recipe to folder$/) do
 on(RecipePage).select_random_recipe(1)
end

When(/^we add a recipe to menu$/) do
 on(RecipePage).select_random_recipe(2)
end

When(/^we view a random recipe$/) do
 on(RecipePage).select_random_recipe(3)
end

selectionsteps.rb
Then(/^the recipe is visible in the folder page$/) do
 on(SelectionPage).goto_folder_page
 expect(@browser.text.include?($recipe_name)).to be true
end

Then(/^we can remove all recipes from the folder$/) do
 on(SelectionPage).empty_my_folder
end

submitsteps.rb
When(/^the data is submitted "([^"]*)","([^"]*)","([^"]*)","([^"]*)","([^"]*)","([^"]*)","([^"]*)"$/) do
|recipe_name, description, serves, your_name, email, ingredients, method|
 on(SubmitPage).submit_recipe(recipe_name, description, serves, your_name, email, ingredients,
method)
end

Then(/^the expected result is "([^"]*)"$/) do |result|
 expect(on(SubmitPage).return_error_count).to eql(result.to_i)
end

Each of the Step Definition files list above link to a page class, a good
example of this being [on(SelectionPage).empty_my_folder]. As expected, there are
also 7 of those, so let is now look at these files.

loginpage.rb

class LoginPage
 include PageObject

page_url "https://spicetheworld.com/login.aspx"

a(:submit, id: 'submit')
 text_field(:txt_login, id: 'TxtLogin')
 text_field(:txt_pass, id: 'TxtPass')
 text_field(:txt_email, id: 'TxtEmail')
 text_field(:txt_names, id: 'TxtNames')
 text_field(:txt_pass1, id: 'TxtPass1')
 text_field(:txt_pass2, id: 'TxtPass2')
 button(:register, id: 'BtnRegister')
 button(:login, id: 'BtnLogin')
 link(:logout, text: 'Logout')

def create_user
 self.txt_email = randon_string(8) + "@" + randon_string(5) + ".com"
 self.txt_names = "Test User"
 self.txt_pass1 = "xyzABC123"
 self.txt_pass2 = "xyzABC123"
 register
 end

def user_login
 self.txt_login = "testuser@kevsbox.com"
 self.txt_pass = "xyzABC123"
 login
 end

def test_logout
 logout_element.visible?
 end

private
 def randon_string(len)
 rand(36**len).to_s(36)
 end
end

mainpage.rb

class MainPage
 include PageObject

page_url "https://spicetheworld.com"

text_field(:search, id: 'Menu1_searchTxt')
 a(:recipes, id: 'recipes')
 a(:information, id: 'information')
 a(:resources, id: 'resources')
 a(:curryrec, id: 'curryrec')
 a(:thairec, id: 'thairec')
 a(:spices, id: 'spices')
 a(:glossary, id: 'glossary')
 a(:grow, id: 'grow')
 a(:contact, id: 'contact')
 a(:submit, id: 'submit')

def use_menu(toplevel, sublevel)
 hover_toplevel(toplevel)
 select_sublevel(sublevel)
 end

def load_destination(url)
 @browser.goto(EnvConfig['url'] + url)
 end

def start_search(dest)
 #input the search text followed by Enter key
 self.search = dest
 @browser.text_field(:id => "Menu1_searchTxt").send_keys :enter
 end

private
 #private def's only visible with mainpage
 def hover_toplevel(toplevel)
 if (toplevel=="recipes")
 @browser.element(id: "recipes").hover
 elsif (toplevel=="information")
 @browser.element(id: "information").hover
 else
 @browser.element(id: "resources").hover
 end
 end

def select_sublevel(sublevel)
 if(sublevel=="curry")
 curryrec
 elsif (sublevel=="thai")
 thairec
 elsif (sublevel=="spices")
 spices

 elsif (sublevel=="gloss")
 glossary
 elsif(sublevel=="grow")
 grow
 elsif (sublevel=="contact")
 contact
 elsif (sublevel=="submit")
 submit
 end
 end
end

menuselectionpage.rb

class MenuSelectionPage < Shared
 include PageObject

page_url "https://spicetheworld.com/menuselection.aspx"

def goto_menu_page
 @browser.goto("https://spicetheworld.com/menuselection.aspx?ndx=YM")
 end

end

printrecipepage.rb

class PrintRecipePage < Shared
 include PageObject

page_url "https://spicetheworld.com/printRecipe.aspx"

a(:printnow, class: 'print')

def print_recipe
 @browser.windows()[1].use()
 end

end

recipepage.rb

class RecipePage < Shared
 include PageObject

page_url "https://spicetheworld.com/recipe.aspx"

link(:folderbutton, id: "FolderButton")
 link(:menubutton, id: "MenuButton")
 link(:printlink, id: "printLink")
 p(:recipe_name, id: 'name')

def select_random_recipe(dest)
 @browser.goto("https://spicetheworld.com/recipe.aspx?ndx=" + rand(140).to_s)
 $recipe_name = recipe_name_element.text
 if (dest == 1)
 add_to_folder
 elsif (dest == 2)
 add_to_menu
 else
 select_print
 end
 end

private
 def add_to_folder
 if folderbutton_element.exists?
 folderbutton
 end
 end

def add_to_menu
 if menubutton_element.exists?
 menubutton
 end
 end

def select_print
 if printlink_element.exists?
 printlink
 end
 end

end

selectionpage.rb

class SelectionPage < Shared
 include PageObject

page_url "https://spicetheworld.com/selection.aspx"

link(:delete_it, name: "deleteit")

def goto_folder_page
 @browser.goto("https://spicetheworld.com/selection.aspx?ndx=WL")
 end

def empty_my_folder
 @browser.goto("https://spicetheworld.com/selection.aspx?ndx=WL")
 if delete_it_element.present?
 delete_it
 end
 end

end

submitpage.rb

class SubmitPage
 include PageObject

page_url "https://spicetheworld.com/submit.aspx"

text_field(:name, id: 'name')
 text_field(:description, id: 'description')

 text_field(:serves, id: 'serves')
 text_field(:strength, id: 'strength')
 text_field(:prep, id: 'prep')
 text_field(:cook, id: 'cook')
 text_field(:yname, id: 'yname')
 text_field(:ymail, id: 'ymail')
 checkbox(:veganChk, id: 'veganChk')
 checkbox(:veggyChk, id: 'veggyChk')
 text_area(:ingreds, id: 'ingreds')
 text_area(:method, id: 'method')
 button(:submit_button, id: 'submitButton')

def return_error_count
 #return the number if li elements that currently exist with the
 #div element ValidationSummary1
 counter = @browser.div(:id => "ValidationSummary1").ul.lis.length
 counter
 end

def submit_recipe(recipe_name, description, serves, your_name, email, ingredients, method)
 self.name = recipe_name
 self.description = description
 self.serves = serves
 self.strength = 3
 self.prep = 20
 self.cook = 30
 self.yname = your_name
 self.ymail = email
 self.ingreds = ingredients
 self.method = method
 veganChk_element.check
 veggyChk_element.check
 submit_button
 end

end

So, there you go, that is the class files. Now let us look at some of the logic in
here. A test field is defined as this -
[text_field(:strength, id: 'strength')]
You will have noticed data can be entered thus –
self.strength = 3
It is as simple as that, also to click a button that has been defined thus –
button(:submit_button, id: 'submitButton')
The command submit_button will do the job.

Another cool feature to note is inheritance, this line –
class SelectionPage < Shared
Means that SelectionPage class inherits Shared class and can use everything
within the class.

One other nice feature is the private keyword
private
def randon_string(len)
 rand(36**len).to_s(36)
end
Any definitions listed below this keyword are private and only visible to the
class they belong in.

So that is it a partial working example of a Ruby/Watir test suite that I have
used on www.spicetheworld.com. The complete suite also handles backend
maintenance, so I was unable to share this with you but hopefully what has
been shown is helpful. Now let us look at another important skill for any
agile QA, structured Query Language.

A Complete Java Example
So, let us now look at a complete working example using Java and IntelliJ.
Like Visual Studio and RubyMine, IntelliJ is a dedicated Java development
environment with an extremely good user base and support. The IDE is very
intuitive and responsive while providing a wide range of essential tools for
Java developers with which to create high quality applications as well as very
stable test projects.
For this example, we will assume you have already installed IntelliJ and all
required dependencies, this is beyond the scope of this book. So, here is the
layout of the project.

Also here is how the files interact with each other.

Now just like our previous examples we will start with the feature file, in this
case the Spice.feature file.
@SpiceRegression
Feature: SpiceFeature
 Scenario: 01 Start the test run
 Given we set the destination to homepage
 When we search with "shark" for "45"
 Then we validate the destination includes "Home/Recipe/89"

Scenario: 02 Navigate to the search option and click the Search button
 Given we set the destination to homepage
 When we search with "kevin" for "10"
 Then we validate the destination includes "Home/Search"

Scenario Outline: 03 Navigate Recipes using the site menu system
 Given we set the destination to homepage
 When we select this menu option "<toplevel>" and "<sublevel>"
 Then we validate the destination includes "<URL>"

Examples:
 | toplevel | sublevel | URL |
 | 1 | 1 | Home/Selection/CH |
 | 1 | 2 | Home/Selection/IN |
 | 1 | 3 | Home/Selection/CK |
 | 1 | 4 | Home/Selection/CA |
 | 1 | 5 | Home/Selection/TH |
 | 1 | 6 | Home/Selection/TR |

Scenario Outline: 09 Navigate Informaton using the site menu system
 Given we set the destination to homepage
 When we select this info menu option "<toplevel>" and "<sublevel>"
 Then we validate the destination includes "<URL>"

Examples:
 | toplevel | sublevel | URL |
 | 2 | 1 | Info/List/CH |
 | 2 | 2 | Info/List/SP |
 | 2 | 3 | Info/List/CT |
 | 2 | 4 | Info/List/GL |
 | 2 | 5 | Info/History/CU |
 | 2 | 6 | Info/History/CT |
 | 2 | 7 | Info/Scoville |
 | 2 | 8 | Info/History/GR |

Scenario: 17 View a vegan recipe
 Given we set the destination to homepage
 When we select this menu option "1" and "6"
 And we then select a vegan recipe
 Then the vegan symbol is displayed

Scenario: 18 Print the selected recipe
 Given we set the destination to homepage
 When we select this menu option "1" and "5"
 And we then select a thai meat recipe
 Then the recipe can be printed

Scenario: 19 Register a new account
 Given we set the destination to login page
 When we create a new account
 Then the logged in message is visible
 And I can then logout

Scenario: 20 Login and add a recipe to your folder
 Given we login as the test user
 When we add a recipe to folder
 Then the recipe is visible in the folder page

Scenario: 21 Login and add and remove recipe to your folder
 Given we login as the test user
 When we add a recipe to folder
 Then the recipe is visible in the folder page
 And then empty the folder

Scenario: 22 Login and add a recipe to your menu
 Given we login as the test user
 When we add a recipe to menu

 Then the recipe is visible in the menu page

Scenario: 23 Login and add and remove recipe to your menu
 Given we login as the test user
 When we add a recipe to menu
 Then the recipe is visible in the menu page
 And then empty the folder

As with the previous C# and Ruby examples the feature file links to the Steps
classes and we also have the special hooks class so let us look at them next
beginning with hooks.
Hooks
package org.spicethetest.steps;
import cucumber.api.Scenario;
import cucumber.api.java.After;
import cucumber.api.java.Before;
import org.openqa.selenium.WebDriver;
import org.spicethetest.base.BaseDriver;
import org.spicethetest.base.BaseStep;
import java.util.ArrayList;

public class Hooks extends BaseStep
{

@Before
 public static void BeforeFeature(Scenario scenario)
 {
 System.out.println("Before scenario " + scenario);
 }

@After
 public static void AfterFeature(Scenario scenario)
 {
 System.out.println("After scenario " + scenario);
 WebDriver driver = BaseDriver.getDriver();
 try {
 if(null != driver)
 driver.quit();
 }catch(Exception e) {
 e.printStackTrace();
 }
 BaseDriver.resetDriver();
 winHandleList = new ArrayList<>();
 }
}
Then we have out standard steps classes.
MainSteps

package org.spicethetest.steps;
import cucumber.api.java.en.Given;
import cucumber.api.java.en.Then;
import cucumber.api.java.en.When;
import org.spicethetest.pages.MainPage;

import static org.junit.Assert.assertTrue;

public class MainSteps extends MainPage
{
 @Given("^we set the destination to homepage$")
 public void we_set_the_destination_to_homepage() throws Throwable {
 visit();
 }

@When("^we search with \"([^\"]*)\" for \"([^\"]*)\"$")
 public void we_search_with(String searchStr, int span) throws Throwable {
 doASearch(searchStr, span);
 }

@Then("^we validate the destination includes \"([^\"]*)\"$")
 public void we_validate_the_destination_includes(String url) throws Throwable {
 assertTrue(_driver.getCurrentUrl().toString().contains(url));

}

@When("^we select this menu option \"([^\"]*)\" and \"([^\"]*)\"$")
 public void we_select_this_menu_option_and(int menu1, int menu2) throws Throwable {
 selectMenuItem(menu1, menu2);
 }

@When("^we select this info menu option \"([^\"]*)\" and \"([^\"]*)\"$")
 public void we_select_this_info_menu_option_and(int menu1, int menu2) throws Throwable {
 selectMenuItem(menu1, menu2);
 }
}

LoginSteps

package org.spicethetest.steps;
import cucumber.api.java.en.Given;
import cucumber.api.java.en.Then;
import cucumber.api.java.en.When;
import org.spicethetest.pages.LoginPage;
import static org.spicethetest.handlers.AssertHandler.assertElementPresent;

public class LoginSteps extends LoginPage

{
 @Given("^we set the destination to login page$")
 public void we_set_the_destination_to_login_page() throws Throwable {
 visit();
 }

@When("^we create a new account$")
 public void we_create_a_new_account() throws Throwable {
 createAndLogin();
 }

@Then("^the logged in message is visible$")
 public void the_logged_in_message_is_visible() throws Throwable {
 assertElementPresent(loggedIn);
 }

@Then("^I can then logout$")
 public void i_can_then_logout() throws Throwable {
 userLogout();
 }

@Given("^we login as the test user$")
 public void we_login_as_the_test_user() throws Throwable {
 loginTestUser();
 }
}

RecipeSteps

package org.spicethetest.steps;
import cucumber.api.java.en.Then;
import cucumber.api.java.en.When;
import org.spicethetest.pages.RecipePage;

public class RecipeSteps extends RecipePage
{
 @Then("^the vegan symbol is displayed$")
 public void the_vegan_symbol_is_displayed() throws Throwable {
 checkVeganSymbol();
 }
 @Then("^the recipe can be printed$")
 public void the_recipe_can_be_printed() throws Throwable {
 printRecipe();
 }

@When("^we add a recipe to folder$")
 public void we_add_a_recipe_to_folder() throws Throwable {
 selectARecipe();

 addToFolder();
 }

@When("^we add a recipe to menu$")
 public void we_add_a_recipe_to_menu() throws Throwable {
 selectARecipe();
 addToMenu();
 }

}

Selection Steps

package org.spicethetest.steps;
import cucumber.api.java.en.Then;
import cucumber.api.java.en.When;
import org.spicethetest.pages.SelectionPage;
import static org.junit.Assert.assertTrue;

public class SelectionSteps extends SelectionPage
{

@When("^we then select a vegan recipe$")
 public void we_then_select_a_vegan_recipe() throws Throwable {
 selectVegan();
 }

@When("^we then select a thai meat recipe$")
 public void we_then_select_a_thai_meat_recipe() throws Throwable {
 selectThaiMeat();
 }

@Then("^the recipe is visible in the folder page$")
 public void the_recipe_is_visible_in_the_folder_page() throws Throwable {
 assertTrue(folderContainsRecipe(0));
 }

@Then("^the recipe is visible in the menu page$")
 public void the_recipe_is_visible_in_the_menu_page() throws Throwable {
 assertTrue(folderContainsRecipe(1));
 }

@Then("^then empty the folder$")
 public void then_empty_the_folder() throws Throwable {
 assertTrue(folderCountIsZero()==0);
 }
}

So as you are all now probably aware the Steps classes link to Page classes just like they do in the C#
and Ruby examples, so they are shown next.

MainPage

package org.spicethetest.pages;

import org.openqa.selenium.WebElement;
import org.openqa.selenium.support.FindBy;
import org.spicethetest.base.BasePage;
import org.spicethetest.handlers.ActionHandler;
import static org.spicethetest.handlers.ActionHandler.*;

public class MainPage extends BasePage
{
 protected static String PageUrl = "https://spicetheworld.com/";

@FindBy(name = "SearchString") public static WebElement searchString;
 @FindBy(css = "[value='Search']") public static WebElement searchBtn;
 @FindBy(id = "recipes") public static WebElement recipes;
 @FindBy(id = "information") public static WebElement information;
 @FindBy(id = "resources") public static WebElement resources;
 @FindBy(id = "scoville") public static WebElement scoville;
 @FindBy(id = "grow") public static WebElement grow;
 @FindBy(id = "historycurry") public static WebElement historycurry;
 @FindBy(id = "historychilli") public static WebElement historychilli;
 @FindBy(id = "glossary") public static WebElement glossary;
 @FindBy(id = "currytypes") public static WebElement currytypes;
 @FindBy(name = "selectit") public static WebElement selectit;
 @FindBy(id = "spice") public static WebElement spice;
 @FindBy(id = "chilli") public static WebElement chilli;
 @FindBy(id = "chillirec") public static WebElement chillirec;
 @FindBy(id = "curryrec") public static WebElement curryrec;
 @FindBy(id = "chinrec") public static WebElement chinrec;
 @FindBy(id = "caribrec") public static WebElement caribrec;
 @FindBy(id = "thairec") public static WebElement thairec;
 @FindBy(id = "otherrec") public static WebElement otherrec;

protected void visit()
 {
 System.out.println("Load page " + PageUrl);
 navigateTo(PageUrl);
 ActionHandler.waitForPageLoad();
 }

protected void doASearch(String searchStr, int span)
 {
 System.out.println("DoASearch");

 ActionHandler.setText(searchString, searchStr);
 ActionHandler.click(searchBtn);
 if (isElementPresent(selectit))
 ActionHandler.click(selectit);
 }

protected void selectMenuItem(int menu1, int menu2) {
 System.out.println("SelectMenuItem");
 selectMenu1(menu1);
 if (menu1 == 1)
 selectMenu2(menu2);
 if (menu1 == 2)
 selectInfoMenu(menu2);
 }

protected void selectMenu1(int menu) {
 System.out.println("SelectMenu1");
 if (menu == 1) moveToElement(recipes);
 else if (menu == 2) moveToElement(information);
 else moveToElement(resources);
 }

protected void selectMenu2(int menu) {
 System.out.println("SelectMenu2");
 if (menu == 1) click(chillirec);
 else if (menu == 2) click(curryrec);
 else if (menu == 3) click(chinrec);
 else if (menu == 4) click(caribrec);
 else if (menu == 5) click(thairec);
 else if (menu == 6) click(otherrec);
 }

protected void selectInfoMenu(int menu) {
 System.out.println("SelectInfoMenu");
 if (menu == 1) click(chilli);
 else if (menu == 2) click(spice);
 else if (menu == 3) click(currytypes);
 else if (menu == 4) click(glossary);
 else if (menu == 5) click(historycurry);
 else if (menu == 6) click(historychilli);
 else if (menu == 7) click(scoville);
 else if (menu == 8) click(grow);
 }
}

LoginPage

package org.spicethetest.pages;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.support.FindBy;
import org.spicethetest.base.BasePage;
import org.spicethetest.handlers.ActionHandler;
import java.text.SimpleDateFormat;
import java.util.Date;
import static org.spicethetest.handlers.ActionHandler.*;
import static org.spicethetest.handlers.AssertHandler.assertElementPresent;

public class LoginPage extends BasePage
{

protected static String PageUrl = "https://spicetheworld.com/User/Login";

@FindBy(id = "resources") public static WebElement resources;
 @FindBy(id = "logout") public static WebElement logout;
 @FindBy(name = "UserString") public static WebElement userString;
 @FindBy(name = "PassString") public static WebElement passString;
 @FindBy(name = "LoggedIn") public static WebElement loggedIn;
 @FindBy(css = "[value = 'Login']") public static WebElement login;

protected void visit()
 {
 System.out.println("Load page " + PageUrl);
 navigateTo(PageUrl);
 ActionHandler.waitForPageLoad();
 }

protected void createAndLogin()
 {
 System.out.println("CreateAndLogin");
 Date date = new Date(System.currentTimeMillis());
 SimpleDateFormat formatter = new SimpleDateFormat("ddMMyyyyHHmmss");
 String newUser = formatter.format(date);
 setText(userString, newUser + "@kevsbox.com");
 setText(passString, newUser);
 click(login);
 }

protected void loginTestUser()
 {
 visit();
 System.out.println("LoginTestUser");
 setText(userString, "tester@kevsbox.com");
 setText(passString, "Pr1vatePW");
 click(login);
 }

protected void userLogout()
 {
 System.out.println("UserLogout");
 moveToElement(resources);
 waitUntilElementVisible(logout);
 click(logout);
 moveToElement(resources);
 assertElementPresent(login);
 }

}

RecipePage

package org.spicethetest.pages;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.support.FindBy;
import org.spicethetest.base.BaseDriver;
import org.spicethetest.base.BasePage;
import java.util.Random;
import static org.junit.Assert.assertTrue;
import static org.spicethetest.handlers.ActionHandler.*;
import static org.spicethetest.handlers.AssertHandler.assertElementPresent;

public class RecipePage extends BasePage
{
 protected static String PageUrl = "https://spicetheworld.com/Home/Recipe/";

@FindBy(id = "printLink") public static WebElement printLink;
 @FindBy(id = "bodyPop") public static WebElement bodyPop;
 @FindBy(id = "name") public static WebElement name;
 @FindBy(id = "walletLink") public static WebElement walletLink;
 @FindBy(id = "menuLink") public static WebElement menuLink;
 @FindBy(css = "[title='Vegan safe']") public static WebElement veganSafe;

protected void visit()
 {
 System.out.println("Load page " + PageUrl);
 navigateTo(PageUrl);
 waitForPageLoad();
 }

protected void checkVeganSymbol()
 {
 System.out.println("CheckVeganSymbol");
 assertElementPresent(veganSafe);
 }

protected void selectARecipe()
 {
 System.out.println("CheckVeganSymbol");
 Random rnd = new Random();
 navigateTo(PageUrl + rnd.nextInt((100-1)+1));
 BaseDriver.recipeName = getElementText(name);
 }

protected void addToMenu()
 {
 System.out.println("CheckVeganSymbol");
 if (isElementPresent(menuLink))
 click(menuLink);
 }

protected void addToFolder()
 {
 System.out.println("CheckVeganSymbol");
 if (isElementPresent(walletLink))
 click(walletLink);
 }

protected void printRecipe()
 {
 System.out.println("CheckVeganSymbol");
 if (isElementPresent(printLink))
 click(printLink);
 for (String windowHandle : _driver.getWindowHandles())
 {
 _driver.switchTo().window(windowHandle);
 }
 assertTrue(isElementPresent(bodyPop));
 }
}

SelectionPage

package org.spicethetest.pages;
import org.openqa.selenium.By;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.support.FindBy;
import org.spicethetest.base.BaseDriver;
import org.spicethetest.base.BasePage;
import org.spicethetest.handlers.ActionHandler;
import java.util.List;

public class SelectionPage extends BasePage
{

 protected static String PageUrl = "https://spicetheworld.com/Home/Selection";
 @FindBy(name = "selectit") public static WebElement selectit;
 @FindBy(name = "deleteit") public static WebElement deleteit;

protected void visit()
 {
 System.out.println("Load page " + PageUrl);
 navigateTo(PageUrl);
 ActionHandler.waitForPageLoad();
 }

protected void selectVegan()
 {
 System.out.println("SelectVegan");
 for (WebElement recipeLink : _driver.findElements(By.name("selectit")))
 {
 if(recipeLink.getText().toLowerCase().contains("vegan"))
 {
 recipeLink.click();
 break;
 }

}
 for (WebElement recipeLink : _driver.findElements(By.name("selectit")))
 {
 recipeLink.click();
 break;
 }
 }

protected void selectThaiMeat()
 {
 System.out.println("SelectThaiMeat");
 for (WebElement recipeLink : _driver.findElements(By.name("selectit")))
 {
 if(recipeLink.getText().toLowerCase().contains("meats"))
 {
 recipeLink.click();
 break;
 }

}
 for (WebElement recipeLink : _driver.findElements(By.name("selectit")))
 {
 recipeLink.click();
 break;
 }
 }

protected Boolean folderContainsRecipe(int dest)
 {
 System.out.println("FolderContainsRecipe");
 if (dest==0)
 navigateTo(PageUrl + "/WL");
 else
 navigateTo(PageUrl + "/RP");

for (WebElement recipeLink : _driver.findElements(By.name("selectit")))
 {
 if (recipeLink.getText().toLowerCase().equals(BaseDriver.recipeName.toLowerCase()))
 {
 return true;
 }
 }
 return false;
 }

protected int folderCountIsZero()
 {
 System.out.println("FolderCountIsZero");
 try
 {
 List<WebElement> recipeLinks = _driver.findElements(By.name("deleteit"));
 do
 {
 for (WebElement recipeLink : recipeLinks)
 {
 recipeLink.click();
 break;
 }
 if (recipeLinks.size() != 1)
 recipeLinks = _driver.findElements(By.name("deleteit"));
 else
 break;
 }
 while (recipeLinks.size() != 0);
 return 0;
 }
 catch (Exception ex)
 {
 System.console().writer().println("Error: " + ex);
 return -1;
 }
 }
}

Now let’s as look at the handlers which are called by some of the
Page classes.

AssertHandler

package org.spicethetest.handlers;
import org.openqa.selenium.WebElement;
import static org.junit.Assert.assertTrue;

public class AssertHandler extends BaseHandler{
 public static void assertElementPresent(WebElement element)
 {
 assertTrue("Element " + element + "is not present", isElementPresent(element));
 }
}

ActionHandler

package org.spicethetest.handlers;
import org.junit.Assert;
import org.openqa.selenium.*;
import org.openqa.selenium.interactions.Actions;
import org.openqa.selenium.support.ui.ExpectedConditions;
import org.openqa.selenium.support.ui.FluentWait;
import org.openqa.selenium.support.ui.Wait;
import org.spicethetest.base.BaseDriver;
import java.util.NoSuchElementException;
import java.util.concurrent.TimeUnit;

public class ActionHandler extends BaseHandler{
 public static JavascriptExecutor js;

public static JavascriptExecutor setJavaScriptExecutor()
 {
 js = ((JavascriptExecutor) BaseDriver.getDriver());
 return js;
 }

public static void click(WebElement element)
 {
 click(element,BaseDriver.WAIT_IN_SEC);
 }

public static void click(WebElement element, int waitTimeInSeconds)
 {

 boolean elementFound = isElementPresent(element);
 if (elementFound)
 {
 BaseDriver.setWait(waitTimeInSeconds);
 BaseDriver.getWait().until(ExpectedConditions.elementToBeClickable(element));
 try{
 element.click();
 }
 catch (WebDriverException e){
 scrollElementIntoView(element);
 element.click();
 }
 }
 else{
 Assert.fail("Unable to locate the weblement: " + element);
 }
 }

public static void scrollElementIntoView(WebElement element)
 {
 setJavaScriptExecutor();
 try{
 js.executeScript("arguments[0].scrollIntoView();", element);
 js.executeScript("window.scrollBy(0,-200);", element);
 }
 catch (Exception e){
 //System.out.println("Error while scrolling JS");
 }
 }

public static void setText(WebElement element, String text)
 {
 setText(element, text, false);
 }

public static void setText(WebElement element, String text, Boolean giveFocus)
 {
 setText(element, text, BaseDriver.WAIT_IN_SEC, giveFocus, true);
 }

public static void setText(WebElement element, String text, int waitTimeInSeconds,
 Boolean giveFocus, Boolean waitForJs)
 {
 BaseDriver.setWait(waitTimeInSeconds);
 if (isElementPresent(element, waitTimeInSeconds))
 {
 BaseDriver.getWait().until(ExpectedConditions.visibilityOf(element));

 if (giveFocus){
 click(element);
 BaseDriver.getWait()
 .until(ExpectedConditions.not(ExpectedConditions.attributeToBe(element, "readonly",
"readonly")));
 }
 try{
BaseDriver.getWait().until(ExpectedConditions.not(ExpectedConditions.attributeToBe(element,
"readonly", "readonly")));
 element.clear();
 }
 catch (InvalidElementStateException ee){
 BaseDriver.getWait()
 .until(ExpectedConditions.not(ExpectedConditions.attributeToBe(element, "readonly",
"readonly")));
 element.clear();
 }
 element.sendKeys(text);
 }
 else{
 Assert.fail("Cannot find element:" + element);
 }

}

/**
 * Move mouse to cursor to Webelement
 * @param element
 */
 public static void moveToElement(WebElement element)
 {
 Actions actions = new Actions(BaseDriver.getDriver());
 actions.moveToElement(element).click().perform();;
 }

private static Wait<WebDriver> fluentWait()
 {
 return new FluentWait<>(BaseDriver.getDriver())
 .withTimeout(120, TimeUnit.SECONDS)
 .pollingEvery(10, TimeUnit.SECONDS)
 .ignoring(NoSuchElementException.class)
 .ignoring(StaleElementReferenceException.class);
 }

public static WebElement waitUntilElementEnabled(final WebElement element)
 {
 return fluentWait().until(ExpectedConditions.elementToBeClickable(element));

 }

public static WebElement waitUntilElementVisible(final WebElement element)
 {
 return fluentWait().until(ExpectedConditions.visibilityOf(element));
 }

/**
 * Use this method when click() is working
 * @param webel
 */
 public static void sendKeys_ENTER(WebElement webel) {
 if (webel.isEnabled()) {
 webel.sendKeys(Keys.ENTER);
 } else {
 Assert.fail("Enter key cannot be sent:");
 }
 }

public static String getElementText(WebElement element)
 {
 String text = element.getText();
 if (text.equalsIgnoreCase(""))
 {
 text = element.getAttribute("value");
 }
 return text;
 }

public static void keyPress_TAB(WebElement webelement) {
 webelement.sendKeys(Keys.TAB);
 }

public static void waitForPageLoad() {
 //Awaitility.await().until(ActionHandler::isloadComplete);
 boolean loaded = false;
 while(!loaded) {
 loaded = isloadComplete();
 }
 }

public static boolean isloadComplete()
 {
 try {
 return ((JavascriptExecutor) BaseDriver.getDriver()).executeScript("return
document.readyState").equals("loaded")
 || ((JavascriptExecutor) BaseDriver.getDriver()).executeScript("return
document.readyState").equals("complete");
 }
 catch(Exception e){
 System.out.println("\n.... JAVA SCRIPT ERROR :\n");
 //e.printStackTrace();
 return false;
 }
 }

 public static String getAttributeValue(WebElement element, String atribute)
 {
 String text = element.getAttribute(atribute);
 return text;
 }
}

Base Handler

package org.spicethetest.handlers;
import org.openqa.selenium.JavascriptExecutor;
import org.openqa.selenium.WebElement;
import org.spicethetest.base.BaseDriver;

public class BaseHandler {
 public static JavascriptExecutor js;
 public static final int numberOfTries = 3;

public static boolean isElementPresent(WebElement element)
 {
 return isElementPresent(element, numberOfTries);
 }

public static boolean isElementPresent(WebElement element, int customNumberOfTries) {
 boolean elementFound = false;
 while (customNumberOfTries > 0 && !elementFound) {

 try {
 BaseDriver.waitForElement(element);
 elementFound = element.isDisplayed();
 break;
 } catch (Exception e) {
 customNumberOfTries--;
 ActionHandler.scrollElementIntoView(element);
 }
 }
 return elementFound;
 }
}

Finally we have some base classes which are inherited by other
classes.

BasePage

package org.spicethetest.base;
public class BasePage extends BaseDriver
{
 //public WebDriver _driver;
 public BasePage()
 {
 _driver = BaseDriver.getDriver();
 }

public void navigateTo(String url)
 {
 BaseDriver.getDriver().get(url);
 }
}

BaseStep

package org.spicethetest.base;

import org.openqa.selenium.support.PageFactory;
import org.spicethetest.pages.LoginPage;
import org.spicethetest.pages.MainPage;
import org.spicethetest.pages.RecipePage;
import org.spicethetest.pages.SelectionPage;

import java.util.ArrayList;
import java.util.List;

public class BaseStep extends BaseDriver
{
 public static List<String> winHandleList = new ArrayList<String>();
 //public WebDriver _driver;
 public static MainPage mainpage = new MainPage();
 public static LoginPage loginpage = new LoginPage();
 public static RecipePage recipepage = new RecipePage();
 public static SelectionPage selectionpage = new SelectionPage();

public BaseStep()
 {
 _driver = BaseDriver.getDriver();
 mainpage = PageFactory.initElements(_driver, MainPage.class);
 loginpage = PageFactory.initElements(_driver, LoginPage.class);
 recipepage = PageFactory.initElements(_driver, RecipePage.class);
 selectionpage = PageFactory.initElements(_driver, SelectionPage.class);
 }
}

BaseDriver
package org.spicethetest.base;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.chrome.ChromeDriver;
import org.openqa.selenium.chrome.ChromeOptions;
import org.openqa.selenium.edge.EdgeDriver;
import org.openqa.selenium.edge.EdgeOptions;
import org.openqa.selenium.ie.InternetExplorerDriver;
import org.openqa.selenium.ie.InternetExplorerOptions;
import org.openqa.selenium.remote.CapabilityType;
import org.openqa.selenium.remote.DesiredCapabilities;
import org.openqa.selenium.remote.RemoteWebDriver;
import org.openqa.selenium.support.ui.ExpectedConditions;
import org.openqa.selenium.support.ui.WebDriverWait;
import java.net.MalformedURLException;
import java.net.URL;
import java.util.concurrent.TimeUnit;

public class BaseDriver {

static BaseUtility util = new BaseUtility();
 public static int WAIT_IN_SEC=10;
 public static WebDriver _driver = null;
 private static String localBrowser;

 private static WebDriverWait wait =null;
 public static String recipeName;

public static void resetDriver()
 {
 _driver = null;
 }

public static WebDriver getDriver()
 {
 if(_driver != null){
 return _driver;
 }

if(System.getProperty("remote") == null &&
!"true".equals(util.getPropertyObject().getProperty("remote")))
 {
 localBrowser = util.getPropertyObject().getProperty("browser");
 switch (localBrowser) {
 case "ie":
 _driver = createIEDriver();
 break;
 case "edge":
 _driver = createEdgeDriver();
 break;
 case "chrome":
 _driver = createChromeDriver();
 break;
 }
 }
 else {
 System.out.println("\n...... Running on Remote Browser......");
 _driver = createRemoteWebDriver(util.getPropertyObject().getProperty("remotebrowser"));
 }

_driver.manage().timeouts().implicitlyWait(10, TimeUnit.SECONDS);
 _driver.manage().timeouts().pageLoadTimeout(10, TimeUnit.SECONDS);
 _driver.manage().window().maximize();

return _driver;
 }

private static WebDriver createIEDriver()
 {
 String driverpath =
System.getProperty("user.dir")+"_drivers\\win32_3.6\\IEDriverServer.exe";
 System.setProperty("webdriver.ie.driver",driverpath);
 InternetExplorerOptions options = new InternetExplorerOptions();
 options.setCapability("ignoreZoomSetting", true);
 options.setCapability("nativeEvents",false);
 options.setCapability("unexpectedAlertBehaviour", "accept");
 options.setCapability("ignoreProtectedModeSettings", true);
 options.setCapability("disable-popup-blocking", true);
 options.setCapability("enablePersistentHover", true);
 options.setCapability("requireWindowFocus", true);
 options.setCapability(InternetExplorerDriver.INTRODUCE_FLAKINESS_BY_IGNORING_SECURITY_DOMAINS
false);
 options.setCapability(CapabilityType.PAGE_LOAD_STRATEGY, "normal");
 return new InternetExplorerDriver(options);
 }

private static WebDriver createEdgeDriver() {
 String driverpath = System.getProperty("user.dir")+"_drivers\\EdgeDriverServer.exe";
 System.setProperty("webdriver.edge.driver",driverpath);
 EdgeOptions options = new EdgeOptions();
 return new EdgeDriver();
 }

private static WebDriver createChromeDriver() {
 String driverpath = System.getProperty("user.dir")+"_drivers\\chromedriver.exe";
 System.setProperty("webdriver.chrome.driver",driverpath);

ChromeOptions chromeOptions = new ChromeOptions();
 chromeOptions.addArguments("ignore-certificate-errors");
 chromeOptions.addArguments("disable-infobars");
 return new ChromeDriver(chromeOptions);
 }

private static WebDriver createRemoteWebDriver(String browser) {

WebDriver driver = null;
 String urlString = "";
 URL serverUrl = null;
 DesiredCapabilities caps = new DesiredCapabilities();

switch(browser) {

 case "ie":
 caps.setCapability("os", "Windows");
 caps.setCapability("os_version", "XP");
 caps.setCapability("browser", "IE");
 caps.setCapability("browser_version", "6.0");
 caps.setCapability("browserstack.local", "false");
 caps.setCapability("browserstack.selenium_version", "3.5.2");
 break;
 case "chrome":

caps.setCapability("browser", "chrome");
 caps.setCapability("browser_version", "73");
 caps.setCapability("os", "Windows");
 caps.setCapability("os_version", "10");
 break;
 }

caps.setCapability("browserstack.local", "true");
 String username = "ittesters2";
 String accessKey = "uyzJ5DoHDNQe8pfwzcqQ";
 String URLStr = "https://" + username + ":" + accessKey +
"@hub.browserstack.com/wd/hub";

try {
 serverUrl = new URL(URLStr);
 }catch(MalformedURLException mue) {mue.printStackTrace();}
 driver = new RemoteWebDriver(serverUrl, caps);
 return driver;

}

public static void setWait(int waitTimeInSec){
 wait = new WebDriverWait(getDriver(), waitTimeInSec);
 }

public static WebDriverWait getWait(){
 if(wait==null){
 wait = new WebDriverWait(getDriver(), WAIT_IN_SEC);
 }
 return wait;
 }

public static WebElement waitForElement(WebElement elementToWaitFor) {
 return waitForElementToBeVisible(elementToWaitFor, WAIT_IN_SEC);
 }

public static WebElement waitForElementToBeVisible(WebElement elementToWaitFor, Integer
waitTimeInSeconds)
 {
 if(waitTimeInSeconds!=null) {
 setWait(waitTimeInSeconds);
 }
 return getWait().until(ExpectedConditions.visibilityOf(elementToWaitFor));
 }
}

BaseUtility

package org.spicethetest.base;
import java.io.IOException;
import java.io.InputStream;
import java.util.Properties;

public class BaseUtility {
 private Properties propObj;

public Properties getPropertyObject()
 {
 if(propObj != null){
 return propObj;
 }

try {
 propObj = new Properties();
 InputStream input =
getClass().getClassLoader().getResourceAsStream("appconfig.properties");
 propObj.load(input);
 }catch(IOException io) {
 io.printStackTrace();
 }
 return propObj;
 }
}

So that is the complete project, time to run and see what we get.

Providing there are no errors the test run will begin.

When complete we will be presented with the results.

So that is it a partial working example of my Java test suite that I have used
on www.spicetheworld.com. Just like the C# and Ruby versions the complete
suite also handles backend maintenance, so I was unable to share this with
you but hopefully what has been shown is helpful.

Automated API testing with C#
Not only are you able to test API functionality in Postman and Jmeter but you
can also test them within C# and Java. In C# this can be achieved with the
client library known as RestSharp and that is what we will look at next.
For those that do not know RestSharp is an easy to use, comprehensive, open-
source HTTP client library that works with DotNet/C#. It can be used to
build robust applications by making it easy to interface with public APIs and
quickly access data without the complexity of dealing with raw HTTP
requests.
So let us see in action. To do this you need to create a new Nunit Test Project

in Visual Studio.
What you name this project is up to you.

When created you can happily delete this file, it is not required.

Now add these packages if they are not installed. The actual version may be

different when you do this, if so go for the latest.

Next create these folders.

In the Features folder create your feature file.

Now add this code below.
@TestApi
Feature: ApiRestSharp

Sample restsharp runs

Scenario: Create Trello Board
Given we create a trello board
Then the board will exist

Scenario: Create Trello Todo list
Given we create a trello board
When we then create the todo list
Then the list will exist

Scenario: Delete all Trello boards
Given we have a list of trello boards
When we have an array of board ids
Then we can delete the boards

Now switch to the Steps folder and insert a steps class.

Replace the code within the APISteps file with this code.

using APITestProject.Helpers;
using TechTalk.SpecFlow;

namespace APITestProject.Steps
{

[Binding]
public sealed class APISteps

{
private readonly RestSharpHelper rSharp = new RestSharpHelper();
private readonly AssertFunctions assertFunctions = new AssertFunctions();
private readonly ScenarioContext _scenarioContext;

public APISteps(ScenarioContext scenarioContext)
{

_scenarioContext = scenarioContext;
}

#region Given
[Given(@"we have a list of trello boards")]
public void GivenWeHaveAListOfTrelloBoards()

{
rSharp.CreateTrelloBoardList();

}

[Given(@"we create a trello board")]
public void GivenWeCreateATrelloBoard()

{
rSharp.CreateTrello();
rSharp.SaveId();

}
#endregion

#region when
[When(@"we have an array of board ids")]
public void WhenWeHaveAnArrayOfBoardIds()

{
rSharp.BuildIdArray();

}

[When(@"we then create the todo list")]
public void WhenWeThenCreateTheTodoList()

{
rSharp.CreateTodo();

}
#endregion

#region Then
[Then(@"we will get back a valid list")]
[Then(@"the board will exist")]
public void ThenTheBoardWillExist()

{
assertFunctions.AssertIsTrue(rSharp.restResponse.IsSuccessful);

assertFunctions.AssertIsTrue(rSharp.restResponse.StatusCode.ToString().Equals("OK"));
assertFunctions.AssertIsTrue(rSharp.restResponse.Content.ToString().Contains("\"closed\":false"

}

[Then(@"the list will exist")]
public void ThenTheListWillExist()

{
assertFunctions.AssertIsTrue(rSharp.restResponse.IsSuccessful);

assertFunctions.AssertIsTrue(rSharp.restResponse.StatusCode.ToString().Equals("OK"));
assertFunctions.AssertIsTrue(rSharp.restResponse.Content.ToString().Contains("\"closed\":false"

}

[Then(@"we can delete the boards")]
public void ThenWeCanDeleteTheBoards()

{
assertFunctions.AssertIsTrue(rSharp.DeleteTrelloBoards());

}
#endregion

}}

Now move to the Helpers folder, in this location we need 2 classes as below.

First we have the AssertFunctions class

using System;
using NUnit.Framework;

namespace APITestProject.Helpers
{

class AssertFunctions
{

/// <summary>
/// AssertIsTrue
///
/// </summary>
/// <param name="by"></param>
public void AssertIsTrue(bool by)

{
try

{
Assert.That(by);

Console.WriteLine("Pass: condition is true");
}

catch (Exception ex)
{

// TakeScreenshot();
Console.WriteLine("Fail error: " + ex);
Assert.That(false);

}
}

}
}

Then we have the RestSharpHelper class

using System.Collections.Generic;
using Newtonsoft.Json;
using RestSharp;

namespace APITestProject.Helpers
{

class RestSharpHelper
{

public IRestResponse restResponse = null;
public static string boardId = "";
public List<string> boardIds = new List<string>();

public void SaveId()
{

dynamic newBoard = JsonConvert.DeserializeObject(restResponse.Content);
foreach (var board in newBoard)

{
if (board.Name == "id")

{
boardId = board.First;

break;
}

}
}

public bool DeleteTrelloBoards()
{

bool IsSuccessful = true;
foreach (string id in boardIds)

{
IsSuccessful = DeleteTheTrelloBoard(id);

}
return IsSuccessful;

}

private bool DeleteTheTrelloBoard(string id)
{

RestClient restClient = new RestClient("https://api.trello.com/1/boards/" + id);
RestRequest restRequest = new RestRequest(Method.DELETE);
restRequest.AddParameter("token", "ServerTokenSecretServerToken");
restRequest.AddParameter("key", "ServerKeySecretServerKey");

restResponse = restClient.Execute(restRequest);
return restResponse.IsSuccessful;

}

public void BuildIdArray()
{

dynamic boardArray = JsonConvert.DeserializeObject(restResponse.Content);
foreach (var board in boardArray)

{
string boardId = board.id.ToString();
boardId = boardId.Replace("{", "").Replace("}", "");

boardIds.Add(boardId);
}

}

public void CreateTrelloBoardList()
{

RestClient restClient = new RestClient("https://api.trello.com/1/organizations/");
RestRequest restRequest = new RestRequest("/kevsbox/boards", Method.GET);
restRequest.AddParameter("token", "ServerTokenSecretServerToken");
restRequest.AddParameter("key", "ServerKeySecretServerKey");

restResponse = restClient.Execute(restRequest);
}

public void CreateTodo()
{

RestClient restClient = new RestClient("https://api.trello.com/1/lists");
RestRequest restRequest = new RestRequest("/", Method.POST);
restRequest.AddParameter("name", "Todo List");
restRequest.AddParameter("key", "ServerKeySecretServerKey");
restRequest.AddParameter("token", "ServerTokenSecretServerToken");
restRequest.AddParameter("idBoard", boardId);

restResponse = restClient.Execute(restRequest);
}

public void CreateTrello()
{

RestClient restClient = new RestClient("https://api.trello.com/1/boards");
RestRequest restRequest = new RestRequest("/", Method.POST);
restRequest.AddParameter("defaultLists", "false");
restRequest.AddParameter("key", "ServerKeySecretServerKey");
restRequest.AddParameter("token", "ServerTokenSecretServerToken");
restRequest.AddParameter("name", "Boardname");

restResponse = restClient.Execute(restRequest);

}
}

}

So now you should have a project layout like this.

If you build the project you will see this in you test explorer.

Now let us look at each of these tests in turn.

CreateTrelloBoard

To run the Trello tests you will need an account at https://trello.com. Once
created you will be able to generate your own Server Token.

https://trello.com

Full details on creating Tokens and keys can be found here:
https://developer.atlassian.com/cloud/trello/guides/rest-api/api-introduction/

Once setup the token and key can be used within this API test to create a new
Trello board on your account. The assert functions will then confirm the
request was good (or not).

CreateTrelloTodoList is similar to the first test expect that this one will create
a board and then a todo list which is attached to the board. The assert
functions will then confirm the request was good (or not).

DeleteAllTrelloBoards will do just that, all boards on your account will be
removed so ensure you are pointing at a test account before running this
example. As before the assert functions will then confirm the request was
good (or not).

So there you go C#/RestSharp or Java/RestAssured both offer powerful tools
for API testing which can be further enhanced with reporting and database
features to validate the API has created the correct data. Try these samples
out if you wish but remember you will need a Trello account. Next we will
look at load and stress testing with Jmeter.

https://developer.atlassian.com/cloud/trello/guides/rest-api/api-introduction/

Load Testing with Jmeter
So, what is JMeter you may ask? This is a good question, let me explain a
little. JMeter, also known by some as Apache JMeter is a free, open source
java-based application with a well-designed and helpful graphical user
interface. It is designed to analyse and measure the performance and load
functional behaviour of web applications of all sizes and variety of other
services.
JMeter is mainly used for testing Web applications and FTP applications.
However, it is also applicable in functional testing, database connections,
web services to name but a few. Users can perform various testing activities
such as stress, performance, load, functional and regression testing.
So why is load and stress testing so important you may think? Code often
runs well under light loads in the development environment but can break
under heavy production load. Therefore stress and load testing can:

Expose threading bugs
Verify code meets performance criteria
Expose possible application bottlenecks
Help capacity planning and future dev plans

There are several stages of load testing.
First, verify the application server environment and check that
there are no errors in the application.
Make sure that enough machine resources are allocated for
testing and that the configuration settings are correct.
Warm up the system and application server since “cold”
machines might perform poorly because data is not in memory
or cache, data structures might need to be created, and so forth.
When you run the test load, collect as much performance data as
possible.
Finally, verify that the results of the load testing are reliable and
repeatable.

Now let’s get going with JMeter. If you have not yet installed JMeter then at
the time of writing it can be download from here -
https://jmeter.apache.org/download_jmeter.cgi.

https://jmeter.apache.org/download_jmeter.cgi

Once installed fire up JMeter and we can get started. Below is a nice, shiny,
fresh project, all I have done so far is rename the test plan. The test plan is
your JMeter script, it will determine the flow of the load test.

Next, we require a Thread Group. Thread groups determine the user flow and
simulate how users behave on the app. Each thread represents a user.

Now you will need to configure the Thread Group by setting the following:
Name: Provide a custom name or, if you prefer, simply leave it
named the default “Thread Group”. In this example I am using
“Kevsbox Thread Group”.
Number of Threads: Each thread will execute the test plan in its
entirety and completely independently of other test threads.
Multiple threads are used to simulate concurrent connections to

your server application. For this example, 5.
Set the ramp-up period - The ramp-up period tells JMeter how
long to take to "ramp-up" to the full number of threads chosen. If
10 threads are used, and the ramp-up period is 100 seconds, then
JMeter will take 100 seconds to get all 10 threads up and
running. Each thread will start 10 (100/10) seconds after the
previous thread was begun. If there are 30 threads and a ramp-up
period of 120 seconds, then each successive thread will be
delayed by 4 seconds. For this example, we will use 10.
Loop Count: How many times the test should repeat. Let’s say 1
time (no repeat, just run once).

So now we should see something like this.

JMeter has two types of Controllers: Samplers and Logical Controllers. These
drive the processing of a test. Samplers tell JMeter to send requests to a
server. For example, add an HTTP Request Sampler if you want JMeter to
send an HTTP request.
You can also customize a request by adding one or more Configuration
Elements to a Sampler. Logical Controllers let you customize the logic that
JMeter uses to decide when to send requests. For example, you can add an
Interleave Logic Controller to alternate between two HTTP Request
Samplers.
Samplers tell JMeter to send requests to a server and wait for a response.
They are processed in the order they appear in the tree. Controllers can be
used to modify the number of repetitions of a sampler.

JMeter samplers include:
FTP Request
HTTP Request

JDBC Request
Java object request
LDAP Request
SOAP/XML-RPC Request
Webservice (SOAP) Request

So next we need to add some HTTP request samplers, we do after all, need to
load some web pages. Under the Thread Group add a HTTP Request.

When added complete the request to look something like this

Now repeat this process as below

Now we will add a timer to help with the tests. When users click on your
website or app, they naturally have pauses and delays. These need to be
considered. Constant timers are the most used in JMeter. They simply
determine how many milliseconds to wait between requests.

Then set it to wait for 200 milliseconds.

Finally, we need a way of viewing the results after running the test. This is
achieved through listeners, a recording mechanism that shows results,
including logging and debugging information.
The View Results Tree is the most common Listener and we will use that one

in this example.

Another option is to add a summary report.

This is a typical output for a summary report

Label: In the label section you will be able to see all the recorded http
request, during test run or after test run.
Samples: Samples denote to the number of http request ran for given thread,
or the average time taken to receive the web pages.
For Example we have one http request and we run it with 5 users, than the
number of samples will be 5x1=5. So if the sample ran two times for the
single user, than the number of samples for 5 users will be 5x2=10.

Average: Average is the average response time for that particular http
request. This response time is in millisecond. This an Arithmetic mean for all
responses (sum of all times / count)
Min: Min denotes to the minimum response time taken by the http request.
Max: Max denotes to the maximum response time taken by the http request.
Std. Deviation: This shows how many exceptional cases were found which
were deviating from the average value of the receiving time. The lesser this
value more consistent the time pattern is assumed.
Error %: This denotes the error percentage in samples during run. This error
can be of 404(file not found) or may be exception or any kind of error during
test run will be shown in Error %. In the above image the error % is zero,
because all the requests ran successfully.
Throughput: The throughput is the number of requests per unit of time
(seconds, minutes, hours) that are sent to your server during the test. Larger is
better.
KB/Sec: The throughput measured in Kilobytes per second
Avg. Bytes: Average response size of the sample response in bytes.
And there is also the Response Time Graph

So if you add all of these you will have a project like this

So now we are ready to run this test. So click Save and your test will be
saved as a .jmx file.

Now it is time to run the tests, click on View Results Tree.

Now start the test run and watch the results appear

When complete the Results Tree will look something like this.

The View Results in Table

So that is a simple run but there is a lot more that you can do with JMeter and
while this book is not an advanced training solution for this topic we will

delve a little further into this interesting area of testing.
The next test suite offers some more interest scenarios. First we have the
Thread Group

Here we have a 10 second ramp-up and 10 users who will loop 10 times also,
so 100 executions at this point.
Next we have a HTTP Request Defaults element, this is where the base URL
is held

Next we have a loop controller which is set to loop 3 times. So now we have
100 at 3 loops so 300 executions at this point.

The next elements must go below the loop controller as child elements.

These are all HTP requests, add 3 as shown here, you will notice the protocol
and Server Name/IP are blank, this are taken from the HTTP Request
Defaults Element, all that is required is the Path.

So now we have 3 HTTP requests for each of the 300 current requests giving
a total request count of 900 test requests. Now add your reports so you have a
layout like this.

Save and run as before.
All done, good let us now look at the results.

Number of samples should be 900, and it is
No errors and all loops are complete

The Graph has data

Table output is all green

And the tree output is also good

Okay so now we are getting the hang of this let us look a bit further.
Next we will add a Debug Sampler.

Click here to remove all previous reporting data and save your
project. Next re-run the project and wait for the completion. Now look down
the results in the View Results Tree, so should see some Debugger outputs.

So now click on one of these and look at the output where you will see the
JMeter variables.

Now let’s look at the System properties.

Make these changes, Save, Reset and Re-run.

This time you will see the system properties. Now if we go the the Test Plan
and add 2 variables thus.

Make these changes, Save, Reset and Re-run.

You will now also see the two variables that you have created.
Let us now take this a step further, here we have a CSV file called urls.csv
and as you can see it has 2 lines of data.

So let’s now add a CSV Data Set Config element to the project.

Now we need to add the Filename and assign the 2 lines to variables test1 and
test2

Once again make these changes, Save, Reset and Re-run. This time you will
see the values from the CSV have been added and assigned to the 2 variables.

This is how you add external data to a JMeter project. You may now be
thinking what is the point? Well the reason is we can use this data as part of
the test run. In this example we read in 2 URL’s the first of which is the base
URL we are testing against, so let us make use of it now. So go back to the
HTTP Request Defaults panel.

Reset the server name to use variable Test1.

Once again make these changes, Save, Reset and Re-run. This time the tests
will run exactly the same as previous runs. However if there was a problem
during a test run you can now view any or all of these sets and inspect the
values which may well help you determine why the tests failed.

The next cool feature of JMeter we are going to investigate is the ability to
test API function calls. For the purposes of the demonstration will we be
using a local instance of JIRA.
JIRA is a well-known and popular bug tracking and test management
offering. JIRA is a completely REST API based tool and there is an API URI
for each published functionality.
First, unless you have previously done so, you will need to download JIRA.
At the time of writing the download URL was -
https://www.atlassian.com/software/jira/download.
Select the version for your computer and download.

https://www.atlassian.com/software/jira/download

When download is complete you can then install the application.

Note that the http port is 8080.

When complete the JIRA service will start.

Also you can launch the application in your web browser at
http://localhost:8080/ . Now the actual setting up of JIRA is beyond the
scope of this discussion but once JIRA is up and running you should setup a
task management project and you should create a user, then you will be ready

http://localhost:8080/

to continue.

Also the full list of JIRA API’s available can be seen here:
https://docs.atlassian.com/software/jira/docs/api/REST/6.1.7/
Okay let us try a GET call on the local JIRA service. You will need a ticket in
your test project, I have an example in my project as shown below.

I can use a GET call on this ticket in JMeter and retrieve the data, so start a
new project in JMeter then create the Thread Group.

https://docs.atlassian.com/software/jira/docs/api/REST/6.1.7/

Inside the Thread Group add a HTTP request sampler.

Note: The Server Name is localhost, you want to talk to the local JIRA
service. The port must be 8080. Also this is a Get request. Finally the Path is
the API we are calling with the name of the ticket added, in this case:
/rest/api/2/issue/SPICEWORLD-1
Now switch to the advanced tab

Implementation must be Java.
Now add a Results Tree Listener

Finally we will need to supply the username and password of the user that
you created and added to the project. So now add a HTTP Authorization
Manager element.

Use the Add button to enter the user details

Now save and run in the usual fashion, if all goes well you will see
something like this.

As you can see with this output the response times are all displayed as is the
error count, header size and response code.

If that all worked then great, let’s move on now and try a test using the POST
method. As you probably know GET actions return existing data if a match is
found while POST methods are designed to create new records, JIRA has
API functions to accomplish this so let us try one of them out.
First we insert new a new HTTP header manager element in our JMeter
project.

This is required so that we can ensure the posted data is in json format.

Now set up the HTTP request similar as below.

In the body data section add the task data, this will vary depending on your
JIRA account. The key you would have created while creating your JIRA
project.

If you are not sure on the key then go to JIRA and start the process of
creating a new ticket, you will then see the key.

So now your project looks a little like this.

Note that the Authorization Manager settings are the same as for the previous
GET example. So now save, clear and run in the usual manner and check the
results, hopefully it will be like this.

Now to confirm, go back to JIRA and check the ticket now exists.

So there you have it, a JMeter POST test which returns success and the
response times. So next we will look at PUT. This action will attempt to
amend an existing record which has previously been created by a PUSH.
What we will do here is amend the record created by our last POST call, then
the priority was set to Medium, now I want to change this up to High.

First the HTTP request is changed to type PUT and the ticket ID becomes
part of the Path setting.

The body data needs a couple of changes also

Everything else can remain the same as the previous POST action. Priority is
now High and summary also has the word updated insert. So now save, clear
and run.

Everything looks good in JMeter, but what about JIRA?

Success, the ticket in JIRA has also been updated. The final API call we will
look at here is the DELETE method. This we will use to delete the ticket we
have just created and amended.
To Delete this JIRA record we need to make 2 small changes to our last
project.

1. Change the request
to type DELETE.

2. Remove the body
data, it is no longer required.

Now save, clear and run etc.

Then look for the ticket in Jira, it should be gone.

In my example it has been removed as expected. So there you go JMeter
using API calls to updated JIRA and recording the results and response times,
pretty cool eh?
Now let’s look at one final thing. Let us say we want to test the response
times of a website when under load. We also want to test different pages
within the website and these URL’s are stored in a file.

We want 25 users to hit all 15 URL’s 10 times. Let us put together a project
to accomplish this task and produce some nice reports after the run is
complete.

First we add a CSV Data Set Config to our project as below.

Link this to your external CSV file and declare 1 variable, I have called It url.

Now in your HTTP Request element set the path to link to the variable url
like this ${url}.

This will ensure the paths list in the CSV are read in and set to the path value.
Below is the contents of the CSV file (spicedata.csv).

Next we want a couple of assertions to test on each iteration. First let us add a
response assertion.

In this example if the response code is 200 we have a pass, anything else will
be a fail.

Assert 2 will be a duration test.

In this case if the response is slower than 2 seconds then we have a fail,
otherwise we have a pass.

So our final project will be something like this.

So for one more time Save, Clean and Run. Hopefully, your results will be
like mine on the following page.

This also.

Let’s also have a look at the Summary Report

So, what have we got here?
Label: In the label section you will be able to see all the recorded http
request, during test run or after test run.
Samples: Samples denote to the number of http request ran for given thread,
or the average time taken to receive the web pages. For Example we have one
http request and we run it with 5 users, than the number of samples will be
5x1=5. Same if the sample ran two times for the single user, than the number
of samples for 5 users will be 5x2=10.
Average: Average is the average response time for that particular http
request. This response time is in millisecond. This an Arithmetic mean for all
responses (sum of all times / count)
Min: Min denotes to the minimum response time taken by the http request.
Max: Max denotes to the maximum response time taken by the http request.
Std.Deviation: This shows how many exceptional cases were found which
were deviating from the average value of the receiving time. The lesser this
value more consistent the time pattern is assumed.
Error %: This denotes the error percentage in samples during run. This error
can be of 404(file not found) or may be exception or any kind of error during
test run will be shown in Error %. In the above image the error % is zero,
because all the requests ran successfully.
Throughput: The throughput is the number of requests per unit of time
(seconds, minutes, hours) that are sent to your server during the test. Larger is
better.
KB/Sec: The throughput measured in Kilobytes per second

Looking good so far but one final step, let us now run this project via the
command line and create a html report. My command line is below, yours
may differ slightly depending on your folder setup. I executed this command
line from my c:\jmeter folder. Also note this command could just as easily be

placed in a batch file.
jmeter -n -t examples\spicetheloop.jmx -l c:\jmeter\bin\html\log.jtl -e -o
c:\jmeter\bin\html

So you may be wondering what the options mean, well a full list can be see
here:
https://jmeter.apache.org/usermanual/get-started.html

These are the options I used.
-n This specifies JMeter is to run in cli mode
-t [name of JMX file that contains the Test Plan]
-l [name of JTL file to log sample results to]
-e generate report dashboard after load test
-o output folder where to generate the report dashboard after load test. Folder
must not exist or be empty

Now run the command line and wait for the completion.

Check the html folder, hopefully the report will exist.

Open the report and enjoy the results.

https://jmeter.apache.org/usermanual/get-started.html

So there you have a good introduction to the power of JMeter. This chapter is
by no means a complete, advanced guide, more of a taster if you like. If you
want to go deeper into this fascinating and interesting area of testing then you
will find plenty of online courses and books to help you become an expert.

API Testing with Postman
A particularly important skill for any agile tester is the ability to test API’s.
Now I am sure most of you know what I mean by API but for those who do
not here is a brief explanation.

API stands for Application Programming Interface. At some point or
another, most large companies have built APIs for their customers, or for
internal use. A good example is eBay, they have an entire range of API’s
which allow registered developers to create applications which can list
products, retrieve sales and much more.

So a typical API could be considered an interface between you (the client)
and a service. You will ask the service for some information by sending it
then required parameters. Supplying the parameters are valid then the request
information is returned to you (if it exists).

The essence of an API is that they make it possible for any two separate
applications to transfer and share data between them. A good example is a
front-end system asking for and receiving information from a back-end
database system. They also make it easier for an application's users to execute
actions without having to use the application’s GUI. From the developers'
view it is an effortless way to execute certain functionalities of their app and
rigorously test them it as well.

However, Using APIs daily can become cumbersome and time consuming, as
you may well have dozens or even hundreds of APIs that require testing. That
can make it difficult to keep up with their exact request’s address(es),
header(s), authorization credential(s) etc., and by that make it harder to test
the API for functionality, security, and exception handling. So, to help with
these functions' tools have been created to make life a lot easier, one of the
more popular of these tools is known as Postman.

Postman is a powerful tool used to test web services and APIs. It allows you
to create a request with the required HTTP method and parameters, send the
request, and inspect the results. It provides a sleek user interface with which
to make HTML requests, without the need of writing a bunch of code just to
test an API's functionality. There are also some genuinely nice, advanced

options which we will explore as we move through this chapter.
So first you need to install Postman (providing you have not already done
so). At the time of publication, the download URL was
https://www.postman.com/downloads/. The good news is that it is free so get
yourself ready and let us start to learn Postman.

First load up Postman, you will see a screen like the one shown on the
following page.

So let us start with a simple GET request, type in
https://api.github.com/users/1 in the input box show below then click the
Send button.

You will then see a similar response to this one in what is called the JSON
format.

So what did we do here? Well we sent a message to the GitHub API that we
wanted to GET information about user 1. In response GitHub returned the
requested information about user 1. This is an API in its simplest form and
things we become more interesting as we move forward.

But first what is JSON, well JSON stands for JavaScript Object Notation and
it is a lightweight format for storing and transporting data. Each data object
has a name (for example “url”) and a value (example
“https://www.kevsbooks.com”) and each data object is separated by commas.
For more information on JSON please check the links in the appendix

Now getting back to API’s. The first step when trying to understand how a
set of APIs function is to read the supplied documentation.

Unfortunately, API documentation can be poor or limited so when working
on a new projected always ask for a complete documentation. This should be
in the form of an API agreement which will inform you what an API does.
An API contract is a shared understanding of what the capabilities of the
interface are, allowing for applications to be programmed on top of and tested
in Postman. The information supplied should include a description of each
API, the endpoint URL, a full list of the parameters you can pass, what
parameters you should expect in return and what (if any) authorisation
information you will need to supply.

In the APIs for testing are inhouse and are being or have been developed by
your companies own developers then these people can also be a reliable
source of information on how you can test the API. Also being able to access
the actual code is another way of understanding how to test them.

Now let us look at authentication. Some APIs are public and the allow
anyone to interact with it. Others will require authentication authorisation so
to interact with these you will need to authenticate yourself in some way.
How this works will vary from one API to another and therefore it is
important to read the API documentation in advance.

With public APIs a common way of gaining access is through a personal
token. There can be generated within the APIs website and they allow you
access to their public APIs. Let us see a real example of this, if you have a
GitHub account then sign in and go here https://github.com/settings/profile

https://github.com/settings/profile

Then go to Develop settings

Then select Personal access tokens

Now create a new token

This will generate the new token and one of the permissions granted is that of
removing repos. The token will now appear in your tokens list and you can

copy it here –

Now return to postman and create a DELETE call like below then click send,
note will have to supply your own repo.

The returned message is as expected in this case.

So let us handle this by adding our token, in Authorization select Bearer
Token

Then add in the token you just created.

Now try again and this time you should see no error. You should however see
a 204 No Content message, this confirms the repo was removed and no
longer exists.

Another method of authentication will be the use of a username and
password. If an API needs this method, then simply follow these steps. Set
authorisation type to Basic Auth and then input the valid username and
password combination.

When testing API’s there are some risks to be considered which will need to
become part of your test strategy. The first risk is if tests start to fail should
an API change. Hopefully, you will be informed of any changes to in-house
API’s and therefore you will be able to update your tests accordingly. The
problems can arise with third party API’s and should your tests begin to fail
then this is the first place to look. Check the online documentation for the
API, is there a new release?

The next risk is availability. If the API you are testing against is a test version
of the APIs and there may be times the Test API is not available, this will
need to be factored into any testing you have planned. You will also need to
ensure that access to the internet is always available when testing.

Other considerations, especially with test systems, is performance and
timeouts. These are factors that need to be considered when testing APIs.

So now let us look further a GET requests, these are the most common type
of API tests you will see. You might think that these a remarkably simple,
you send a request to a server, and you get a response, that it all done. Not
quite, there is more to it than that. The first question is how do you know that
what has been returned is correct?

Well the first thing to check is does the returned data match what should have
been returned according to the API documentation. Is there returned data in
the correct format? Are all expected fields returned with data? Next repeat the

call with slightly different parameters, does the returned information appear
in a consistent format with the earlier call.

To check this out let us do a get call on this endpoint -
https://api.spacexdata.com/v3/launches and confirm that what is returned is
in fact all SpaceX launches, if correct thousands of lines of data will be
returned with below an exceedingly small example.
{

"flight_number": 1,
"mission_name": "FalconSat",
"mission_id": [],
"upcoming": false,
"launch_year": "2006",
"launch_date_unix": 1143239400,
"launch_date_utc": "2006-03-24T22:30:00.000Z",
"launch_date_local": "2006-03-25T10:30:00+12:00",
"is_tentative": false,
"tentative_max_precision": "hour",
"tbd": false,
"launch_window": 0,
"rocket": {

"rocket_id": "falcon1",
"rocket_name": "Falcon 1",
"rocket_type": "Merlin A",
"first_stage": {

"cores": [

So let’s now reduce the data returned by adding some parameters. If you look
at the returned JSON data we have a name of “rocket_name” so let us, try a
search for all launches of the Falcon 1 rocket.

https://api.spacexdata.com/v3/launches

Now if you look through the returned records we have just over 700 lines and
all rockets were Falcon 1. So next lets add a date range

This time we get back 2 records. Some APIs will also allow you to sort the
data on specific fields and some will also allow you to limit the number of
records returned. This is not true of all APIs so it is important to read the
documentation fully.

So far we have look at GET’s. These are static calls that pull back existing
data. Now we will look at POST calls which are designed to create new
records.

In this example we are going to add a new Board to my Trello account, the
first thing you will notice that instead of GET we use POST. The next thing
you will notice is that some of the parameter data is stored in variables. You
could just as easily replace this will typed data. We will talk about variables a
little later.

Now if we send this request then hopefully we will get a success (200)
message.

So there you go the new record was created and if you repeat this on your
own Trello account you will find the new board exists on your own account.

There you have a simple example of a POST request. Now let us look at a
PUT request.

POST and PUT are similar and often use the same authentication methods
but where they differ is that POST creates a record while PUT will try to
change and existing record. So look back at the Trello board we just created
and now let us send a PUT command which will rename it.

If you look back at the last post you will see the newly created board was
given an id

This now becomes part of the url for the PUT, therefore we now have
https://api.trello.com/1/boards/607b412566bbb86d0b2262fa
We still need the name, key, and token parameters. The key and token
parameters stay the same, but the name value will be what we want to rename
to board to, therefore we now have.

The result is once again a 200

So that now gives as a good working example of a PUT. Next, we will
remove this board with a DELETE call.

If you look at the example, call below you will notice it is all but the same as
the earlier PUT command apart from the fact it is now a DELETE call. The id
is still part of the url and the parameters are also the same. So try and send

https://api.trello.com/1/boards/607b412566bbb86d0b2262fa

this request.

Again, we get a 200 success and we returned data is null, this is correct, the
record was removed and therefore all that could be returned was null. You
should always be incredibly careful with the DELETE command, once a
record is removed it cannot be recovered, when it is gone it is really gone.

So that is the four most common types of calls. We have looked at GT,
POST, PUT and DELETE. Now it is time to look at some more advanced
features of Postman. One feature about Postman is that it can be used to
automate testing and a key feature of automation in Postman is collections, so
let us look at this feature next.

Collections are a fantastic way of organising your tests, especially as the
number of saved tests begins to grow. Below is a list of stored collections in
my Postman

Now if I expand the Trello collection you will then see the tests I have stored

within

To create a new collection I can either use this option

Or when I save a new test I can choose to save it to an existing collection or
create a new one at that time.

So collections are a simple but effective way to store and sort your Postman
tests. Collections also have some immensely powerful options which you can
take advantage of, now let us look at each of these.

First we have Authorization. At a collection level any test can inherit
anything stored here including bearer tokens. Therefore, you do not need to
add these at a test level if they are the same for each test in the collection, this
is quite common when testing a particular API.

To enable this feature simply add the token to the Collection and in each test
set Authorization to inherit.

Now let us chat about Pre-request scripts. These will execute before any test
in your collection, a good example being the need to generate a random name
before each test. We investigate this further a little further on in this chapter.
Next we have Tests, these are scripts which will run after each of your
requests, for example this one below will pass on success and fail otherwise.

This test will be executed after every request in your collection. Finally, we
have variables. Once again these are available at the collection level so the
variable shown below would be available to every request within the selected
collection.

Adding a new request to a collection is extremely easy also. Select the
required collection and press the right mouse button. Select ‘Add Request’
and create as normal. When you save the request it will be added to your
collection.

Now if we create a new variable to our collection like so –

Then we create a new request within the collection which will use this
variable

Then we will see in this example the response has returned an address in
Canada which matches the CA value

Using variable is really that simple. Also, you can change the value anytime
it is needed, for example lets us change to Germany.

Then return the request and check the result

Now let us look at Tests within a request. When you click on the tests tab you
will see something like this on the next page.

You will also notice a list of predefined snippets on the right

Scroll down the list until you see as select this snippet.
You first test is then added with no coding by your good self.

Postman uses the Chai assertion library, for more information on this library

please refer to https://www.chaijs.com/api/bdd/

Next add this snippet to the tests and adjust to
this

pm.test("Check for email", function () {
 var jsonData = pm.response.json();
 pm.expect(jsonData.results[0].email).to.include('@');
});

Now this test will expect the returning body to have a key called email and as
with any email address the data should include the @ symbol. Now run the
request and both tests will be executed after the run and both will hopefully
pass.

In this case they indeed did pass. So now you can run tests against your
Postman requests let us now look at sharing data between requests. To
achieve this we can use Environments.

https://www.chaijs.com/api/bdd/

This is my prodEnv Environment

And below is a list of all my Environment in Postman

You can then select an existing Environment from this pulldown list

Then view the contents by clicking here , and of course all
variables within the select Environment are available in your requests as are
those in the Global section.

Another part of automation within Postman is the use of Pre-request scripts
so let us look at one of my saved collections and edit the Pre-request section.

Now what we want to do here is run a check to ensure the environment is
available before trying any requests. So let us now add this code -

pm.sendRequest("https://api.spacexdata.com", function(err, response){
if(response.status == 'OK'){

pm.environment.set("Item", 'true')
}else{

pm.environment.set("Item", 'false')
}

})

This will test that the URL is available. If it is then the variable Item will be
true otherwise it will be false. This variable can then be used with the
collection requests to figure out if they should be run or not.

The next part of Postman we need to look at is Mocking. To create a mock,
you simply click the New button and then select Mock Server.

Next choose ‘Select an existing collection’ and finally we create the Mock
server. When created you will see the Mock server URL and you can copy
this into a new request, however if you try and run this as-is you will get an
error message. So, what we do now is create an example. Go back to your

original request and re-run. After the request has run select Examples and
save this result as an example.

This example has the URL -
https://api.spacexdata.com/v3/launches?launch_year=2009&limit=2

Your Mock has the URL -
https://87bfb5b3-a025-4f77-9700-a174c0fee335.mock.pstmn.io/

This needs to change to
https://87bfb5b3-a025-4f77-9700-a174c0fee335.mock.pstmn.io/v3/launches?
launch_year=2009&limit=2

Make this change and re-run the Mock and this time you should get a success
200 message and the expected body data.

By adding a mock server to your collection and adding examples to your
requests, you can then simulate the behaviour of a real-world API on your
own machine. When you send a request to a mock server, Postman will
match the request configuration to the examples you have saved for the
request and respond with the data you added to the example.

So, mocking means you are creating a fake version of an external or internal
service that can stand in for the real one, helping your tests run more quickly
and more reliably. When your implementation interacts with an object's
properties, rather than its function or behaviour, a mock can be used.

There will be times when the API under test does not work as expected, so let
us look at a simple example and see how we can figure out what is going
wrong. In this example I use the endpoint
http://worldtimeapi.org/api/timezones/Europe/London

This example has failed before Europe/London was undefined, also if you
look at the response Body you will see a lot of responses that are not Europe.

https://api.spacexdata.com/v3/launches?launch_year=2009&limit=2
https://87bfb5b3-a025-4f77-9700-a174c0fee335.mock.pstmn.io/v3/launches?launch_year=2009&limit=2
https://87bfb5b3-a025-4f77-9700-a174c0fee335.mock.pstmn.io/v3/launches?launch_year=2009&limit=2
http://worldtimeapi.org/api/timezones/Europe/London

So, what has gone wrong here? The first place you can check if the Console.

Open the console and run the request again, the check for any error messages.

In this instance there is nothing obvious in the console so probably the next
place to check will be the API documentation, and in this case the issue was
discovered. Initially I have typed in -
http://worldtimeapi.org/api/timezones/Europe/London

However, the documentation indicates that this should be -
http://worldtimeapi.org/api/timezone/Europe/London

Can you see the difference? One little typo. So now we update the GET URL
and try again.

Now we get the expected response, and the test has passed. Happy days
indeed. So, when things do not go as expected. Explore and debug, the
problem is often a very simple one.

Another useful tool is the Monitor feature, this allows you to schedule runs.

Here you can either select to monitor an existing collection or create a new
one.

Then you can set the monitor up to run daily, hourly etc. There are other
options you can also explore. These include emailing the results and selecting
a region.

When you have created the monitor you will see something like this below.

You can also go to the web dashboard where you can manually start a run,
view results and even edit the monitor settings.

After a few runs the history graph will begin to make sense and will become
a useful tool for reporting you test results.

Another cool feature of Postman is the ability to use data from a CSV file.
Next we have a nice, simple example of this feature.

So we have this file and the contents are -
person
kevsbox
tester
fred

The first row is the column name and the next three rows are treated as data.

So back in Postman we can adapt an existing request thus –
https://api.github.com/users/kevsbox

To –
https://api.github.com/users/{{person}}

Now make sure the value inside {{}} matches the column name, also make
sure you save the request before trying to run it.
Next we go to.

Select the required collection and make sure your update request is the only
one ticked.

Now select the data file

https://api.github.com/users/kevsbox
https://api.github.com/users/%7b%7bperson%7d%7d

You can preview this file if you wish.

Now click the Run button
If all goes well you will see a collection of passes like those shown on the
following page.

Another great feature of Postman is the ability to import API definitions via
Swagger/Open API. These files are often created by the API provider, and
they will include all the endpoints currently available along with information
on how to execute them. Below is a sample from one such yaml file.
swagger: "2.0"
info:

version: 1.0.0

title: Swagger Petstore
license:

name: MIT
host: petstore.swagger.io
basePath: /v1
schemes:

- http
consumes:

- application/json
produces:

- application/json
paths:

/pets:
get:

summary: List all pets
operationId: listPets
tags:

- pets
parameters:

- name: limit
in: query
description: How many items to return at one time (max 100)
required: false
type: integer
format: int32

responses:
"200":

description: A paged array of pets
headers:

x-next:
type: string
description: A link to the next page of responses

schema:
$ref: '#/definitions/Pets'

default:
description: unexpected error
schema:

$ref: '#/definitions/Error'
post:

As you can see there are definitions for both GET and POST. So to make use
of these files you first need to download them and then import it into
Postman.

After clicking Import locate the yaml file and click Import

You will then be asked to confirm the import.

Then if all has gone well you will see the message below.

Then in the left hand column you will see the new requests in the own
collection

And these can all be executed as required.

The final feature to consider here is how to validate the API schema contract
using tv4. Most API suppliers will provider schema information on their API,
this is a good example -

When called this will return details of properties within the API calls, this
will include field types and if they are optional etc.

So, to validate the API copy the returned body into the Tests box and add this
line before so you have something like this -

Now scroll to the very bottom of the tests box and add this.
Now change the GET request to read –
https://swapi.dev/api/people/1/ and click Send.

In this example we get a pass. The request looked at all the fields in the
response and confirm that all required fields were there, and all data types
were also correct. This is a powerful way to validate the schema contract.

https://swapi.dev/api/people/1/

Structured Query Language
Structured Query Language (from now on referred to as SQL) is the standard
language for relational database management systems. SQL statements are
used to perform tasks such as add or update data on a database or retrieve
data from a database. Some common relational database management
systems that use SQL are Oracle, MySQL, Microsoft SQL Server, Access
and PostGre SQL. Although most database systems use SQL, most of them
also have their own additional proprietary extensions that are usually only
valid on their system. However, the standard SQL commands such as Insert,
Select, Update, Delete, Create and Drop can be used on all these systems. A
competent Agile QA should have basic knowledge of SQL to perform their
daily testing tasks. This will enable you to add and alter test data, refresh
databases and understand the end results of tests that manipulate such data.
This chapter will provide you with an introduction to the basics of each of
these commands as well as allow you to put them to practice using the SQL
Interpreter.
For these examples, I will be using a MSSQL database however the
commands will work on any of the other systems with little or no alteration.
First, we need to create a new Database. This is achieved by the “CREATE
DATABASE” command. For these examples we will assume you have
Microsoft SQL Management Studio or something similar installed and you
have access to a MSSQL server. So, to create the database follow these steps
with Management Studio:
Connect to your database and open a New Query

Run this command - CREATE DATABASE spicetheworld;
This will create an empty database called spicetheworld. You can of course

use a different name if desired.
Next, you will need to create some tables within this new database. So, let us
first start with a table to hold records on motorbikes. So now execute this
command
CREATE TABLE MotorBikes (

Id int NOT NULL IDENTITY(1,1),
Reg NVARCHAR(20) NOT NULL ,
Vin NVARCHAR(40) NOT NULL ,
MainColour NVARCHAR(45) NULL ,
EngineCC NVARCHAR(10) NULL ,
PRIMARY KEY (Id)

);

This will create a new table which is ready for data. The ‘Id’ field is the main
index field and is automatically populated with a unique number every time a
new record is created. Indexes are an especially important element of tables,
especially if you are dealing with thousands or millions of records. They
should be used for columns which are unique elements, used to link tables or
used commonly for searching. However not every column should be indexed,
there is a drawback, the more indexes the larger the database and eventually,
the speed gained by using indexes will be lost. If you view the design of this
new table, you will observe something like this.

Whenever possible use columns on the type [Int] for indexes and try to avoid
using Nvarchar. Indexing by text will generate large and slow indexes. Note
the ‘spicetheworld’ entry, this is the name of the Schema I am using for these
examples, yours will be different.

You should also note that it is possible to create 1 table from all or part of an
existing table, for example:

CREATE TABLE TestTable AS SELECT customername, contactname FROM customers;

Right now, let us put some data into this table, little can be done with empty
tables after all. So, let us execute these commands next.
INSERT INTO spicetheworld.motorbikes (Reg, Vin, MainColour, EngineCC) VALUES
('X111WWW', '123456', 'Black', '500');
INSERT INTO spicetheworld.motorbikes (Reg, Vin, MainColour, EngineCC) VALUES ('RE15EWE',
'78901', 'Rust', '750');
INSERT INTO spicetheworld.motorbikes (Reg,Vin,MainColour,EngineCC) VALUES ('KEV41P',
'23454', 'Blue', '1000');

INSERT INTO spicetheworld.motorbikes (Reg,Vin,MainColour,EngineCC) VALUES ('KEU1N',
'323564', 'Black', '250');
INSERT INTO spicetheworld.motorbikes (Reg,Vin,MainColour,EngineCC) VALUES ('ER08WER',
'245232', 'BR Green', '400');
INSERT INTO spicetheworld.motorbikes (Reg,Vin,MainColour,EngineCC) VALUES ('Z100TYH',
‘5345354’,'Black', '50');

This will create 6 records, feel free to add any additional records if you wish,
you will note we did not add any data for the Id column, remember this is an
auto-increment column as shown here.

Now we can do little with one table so now create these tables and insert the
test data as well
CREATE TABLE spicetheworld.customers (

Id INT NOT NULL IDENTITY(1,1),
Fullname NVARCHAR(45) NULL ,

Address1 NVARCHAR(45) NULL ,
Address2 nVARCHAR(45) NULL ,
Town NVARCHAR(45) NULL ,
County NVARCHAR(45) NULL ,
Postcode NVARCHAR(15) NULL ,
Email NVARCHAR(75) NULL ,
Mobile NVARCHAR(45) NULL ,
PRIMARY KEY (Id));

INSERT INTO spicetheworld.customers (Fullname, Address1, Address2, Town, County, Postcode,
 Email, Mobile) VALUES (‘Fred Blogs’, ‘123 This Road’, ‘Hampstead’, ‘London’, ‘Middx’, ‘NW3
2DD’, ‘fred@bloggs.com’, ‘1212213123’);

INSERT INTO spicetheworld.customers (Fullname, Address1, Address2, Town, County, Postcode,
 Email, Mobile)VALUES (‘Kev Martin’, ‘44 Queens Road’, ‘Copnor’, ‘Portsmouth’, ‘Hants’, ‘PO1
4RT’, ‘kev@kevin.com’, ‘2323123121’);

INSERT INTO spicetheworld.customers (Fullname, Address1, Address2, Town, County, Postcode,
 Email, Mobile)VALUES (‘Mick Jagger’, ‘123 Angie Street’, ‘ ‘, ‘New York‘, ‘New York’, ‘NY’,
‘mick@stones.com’, ‘4234231211’);

So now we have a table of motorbikes and a table of customers. Please
remember this is only demonstration data, in a real system there would be a
lot more fields and (hopefully) a lot more records. Now let us create one
more table, this is a table that will link customers to motorbikes they have
purchased, and this will include the date of sale and how much they paid.
This is the table.
CREATE TABLE spicetheworld.BikeSales (

Id INT NOT NULL IDENTITY(1,1),
SaleDate DATE NOT NULL ,
SaleValue FLOAT NOT NULL ,
BikeId INT NT NULL ,
CustomerId INT NOT NULL ,
PRIMARY KEY (Id)

);

Create the table and then add this sales data.
INSERT INTO spicetheworld.bikeSales (saleDate,saleValue,bikeId,customerId) VALUES (‘2017-01-
01’, 500, 1, 1);

INSERT INTO spicetheworld.bikeSales (saleDate,saleValue,bikeId,customerId) VALUES (‘2017-02-
02’, 700, 2, 2);

INSERT INTO spicetheworld.bikeSales (saleDate,saleValue,bikeId,customerId) VALUES (‘2017-03-
03’, 1200, 3, 3);

INSERT INTO spicetheworld.bikeSales (saleDate,saleValue,bikeId,customerId) VALUES (‘2017-04-
04’, 600, 4, 1);

INSERT INTO spicetheworld.bikeSales (saleDate,saleValue,bikeId,customerId) VALUES (‘2017-05-
05’, 600, 5, 2);

INSERT INTO spicetheworld.bikeSales (saleDate,saleValue,bikeId,customerId) VALUES (‘2017-06-
06’, 999, 6, 3);

INSERT INTO spicetheworld.bikeSales (saleDate,saleValue,bikeId,customerId) VALUES (‘2017-
0808’, 650, 5, 1);

Once executed you will find a new table with the following data

Now at first glance, this data appears difficult to understand. While you have
a Sale Date and a Sale Value there is no data relating to the Customer or the
Motorbike. This is of course by design. By creating this table we have
reduced data duplication to a minimum because the required data is already
stored in other tables, to view the motorbike and customer details you simply
need to link the tables together using SQL like this.
SELECT bs.SaleDate, bs.SaleValue, mb.Reg, cs.Fullname, cs.Email, cs.Mobile
FROM spicetheworld.BikeSales bs
INNER JOIN spicetheworld.Motorbikes mb ON mb.Id = bs.BikeId
INNER JOIN spicetheworld.Customers cs ON cs.Id = bs.CustomerId;

This will return more useful data, thus.

So, by joining together three tables, we are now able to see who purchased
what bike, how much they paid and the date of the sale. All of this has been
achieved with no data duplication at all.
There is an easier way of returning such data if it is required regularly. Rather

than type in the SQL every time (and this is a remarkably simple example)
you can store it as a read-only view and simply execute that.
To create a view that will replicate the above SQL type this script in and
execute.
CREATE VIEW vBikeSales AS
SELECT bs.SaleDate, bs.SaleValue, mb.Reg, cs.Fullname, cs.Email, cs.Mobile
FROM spicetheworld.BikeSales bs
INNER JOIN spicetheworld.Motorbikes mb ON mb.Id = bs.BikeId
INNER JOIN spicetheworld.Customers cs ON cs.Id = bs.CustomerId;

You should now see a new View called vbikeSales like below.

Now every time you want to view the data in this format all that is required is
you execute the view with this command SELECT * FROM spicetheworld.vBikeSales;

So that is it, this was a quite easy introduction to the bases of SQL for anyone
who has no or little experience with the language. As I have already stated
every agile QA should have at least a basic knowledge of this area, however
hopefully you will take this further and continue to study this interesting
subject area. To help you get start here follows some more examples of SQL
(Structured Query Language).
First some more of the most common SQL commands

SELECT - extracts data from a database
UPDATE - updates data in a database
DELETE - deletes data from a database

First we have the Select command, you have already seen this in action
above and in its most simple form we have
Select * from table_name;

This will select all rows and all columns from the selected table in the order
they were stored.
You can also just select a subset of the columns
Select name, email from table_name;

Next we have Select Distinct, this command will only return distinct values,
for example if you table has 3 Fred Bloggs then the command below will
only return 1 record.

Select Distinct fullName from Customers;

However this will return a count for each distinct name
Select Count(*) As DistinctCustomers From (Select Distinct fullName from Customers);

The next SQL clause is the Where clause, this is used to extraxt records that
match a specified condition. This example will only return records which
match the vehicle reg.
SELECT * FROM spicetheworld.vBikeSales WHERE Reg = 'KEV41P'

This is a numeric clause match and the result will be the same
SELECT * FROM spicetheworld.vBikeSales WHERE SaleValue= 1200

Now let us look at the And, Or and Not operators
SELECT * FROM spicetheworld.vBikeSales WHERE Reg = 'KEV41P' AND SalesValue=1200

Here only records that fully match the Reg and SalesValue will be returned
SELECT * FROM spicetheworld.vBikeSales WHERE Reg = 'KEV41P' OR SalesValue=1200

Here records that fully match the Reg or SalesValue will be returned
SELECT * FROM spicetheworld.vBikeSales WHERE NOT Reg = 'KEV41P'

Here records were the reg does not match ‘KEV41P’ will be returned
These operators can also be combined thus

SELECT * FROM spicetheworld.vBikeSales WHERE Reg = 'KEV41P' AND (SaleValue=1200 or
SaleValue=10)

SELECT * FROM spicetheworld.vBikeSales WHERE NOT SaleValue=500 AND NOT Reg =
'KEU1N'

Another useful command is ORDER BY, with this you can specify exactly in
what order the records will be returned, so here are a few examples. ASC
means soft ascending while DESC means descending.

SELECT * FROM spicetheworld.vBikeSales ORDER BY SaleDate ASC

SELECT * FROM spicetheworld.vBikeSales ORDER BY FullName, Reg ASC

SELECT * FROM spicetheworld.vBikeSales ORDER BY FullName DESC, Reg ASC

Now let us look at the UPDATE command. This command is used to modify
existing records in a table, for example.

UPDATE spicetheworld SET name=fred, email=fred@bloggs.com WHERE id=3

If a record in table spicetheworld with an id of 3 exists then the name and
email fields for said record will be updated.

Next we have the DELETE command, this does exactly what it says on the
time, so for example

DELETE FROM spicetheworld WHERE id=3

Finally in this section lets have a look at the JOIN command. This command
is used to combine rows from two or more tables based on a related column
between them. We have already used them in previous examples but let us
look at the most common different types of joins available.

 (INNER) JOIN: This mothed will return records that have
matching values in both of the related tables.

 LEFT (OUTER) JOIN: This method returns all records from the
left table, and only the matched records from the right table.

 RIGHT (OUTER) JOIN: Returns all records from the right table,
and only the matched records from the left table.

 FULL (OUTER) JOIN: Returns all records when there is a match
in either the left or right table.
So that is your introduction to SQL, this now takes us very neatly into our
next subject, Stored Procedures.

Stored Procedures
Stored Procedures enables the placing of database-intensive operations into
stored procedures. This is a powerful tool which lets you define an API for
your database application. You can then reuse this API across multiple
applications and multiple programming languages whenever it is required.
This ability also avoids duplicating database code and using SQL within your
code thus saving time and effort when you make updates due to future
schema changes.
Now let us look at one of our SQL statements from the previous chapter and
then create a Stored Procedure for it.
SELECT bs.saleDate, bs.saleValue, mb.reg, cs.fullname, cs.email, cs.mobile
FROM spicetheworld.bikeSales bs
INNER JOIN spicetheworld.motorbikes mb ON mb.id = bs.bikeId
INNER JOIN spicetheworld.customers cs ON cs.id = bs.customerId

Remember it, good. Now let us create a stored procedure for this SQL

DELIMITER //
CREATE PROCEDURE SelectAllBikeSales
BEGIN

SELECT bs.saleDate, bs.saleValue, mb.reg, cs.fullname, cs.email, cs.mobile
FROM spicetheworld.bikeSales bs
INNER JOIN spicetheworld.motorbikes mb ON mb.id = bs.bikeId
INNER JOIN spicetheworld.customers cs ON cs.id = bs.customerId

END //
DELIMITER ;

When this SQL is executed then the stored procedure will be created. So, to
run the new procedure simply call it thus:
CALL SelectAllBikeSales;
A nice and easy example, so what about if we just want to return bike sales
history of one customer, again easy to do with a stored procedure.
DELIMITER //
CREATE PROCEDURE SelectAllBikeSalesForCustomer
(IN email CHAR(75))
BEGIN

SELECT bs.saleDate, bs.saleValue, mb.reg, cs.fullname, cs.email, cs.mobile
FROM spicetheworld.bikeSales bs
INNER JOIN spicetheworld.motorbikes mb ON mb.id = bs.bikeId
INNER JOIN spicetheworld.customers cs ON cs.id = bs.customerId
WHERE cs.email = email

END //
DELIMITER ;

When this SQL is executed then the stored procedure will be created. So, to
run the new procedure simply call it thus:
CALL SelectAllBikeSalesForCustomer(‘kev@kevsbox.com’);
Once again, a nice easy example. Let us do one more, in this example, we
want all sales for the given vehicle registration.

DELIMITER //
CREATE PROCEDURE SelectAllBikeSalesForReg
(IN reg CHAR(20))
BEGIN

SELECT bs.saleDate, bs.saleValue, mb.reg, cs.fullname, cs.email, cs.mobile
FROM spicetheworld.bikeSales bs
INNER JOIN spicetheworld.motorbikes mb ON mb.id = bs.bikeId
INNER JOIN spicetheworld.customers cs ON cs.id = bs.customerId
WHERE mb.reg = reg

END //
DELIMITER ;

So, there you go, a nice easy introduction into stored procedures. These are
very simple examples and this powerful tool can be used to create some very
complex procedures but that is beyond the scope of this book but there are
plenty of very good publications for MySql and Microsoft SQL out there for
further reading.

Continuous Integration and
Deployment

Automation is a good aid when trying to achieve Continuous Integration and
Deployment and as part of the overall scheme, this practice can vastly
improve the quality of code and the speed of development. Continuous
integration (CI) is the practice of regularly integrating and testing your
solution to incorporate changes made to its definition. These changes can
include updating the source code, changing database schema or simply
updating a text based configuration file.

For the best results when one or more changes are checked into your
configuration management system, the solution should then be rebuilt and
recompiled, retested and finally any code or schema analysis performed on it.
If it is impractical to do this every time a change is saved you should strive to
do so at least once if not several times a day, that is the essence of continuous
integration.

Moving this process one step forward continuous deployment (CD) enhances
CI by automatically deploying successful builds. For example, when the
build is successful on a programmer’s workstation, then the team may
automatically deploy their changes to the project integration environment,
which would invoke the CI system there. A successful integration in that
environment could trigger an automatic deployment into another environment
and so on.

On a developer’s workstation, the integration job could run by example at
specific times, perhaps once an hour, or better every time that they check in
something that is part of the build. The whole process of continuously
integrating a developer’s code with the rest of a team’s code and then running
automated test regressions in an integration environment is the essence if CI.
Continuous Integration

This is a critical part of agile to ensure integration is done right. CI always

ensures high-quality working software, and CD ensures that the software is
running in the right place. When used with Selenium or another good
automation tool good testing results can also soon be achieved.
Continuous Deployment

The longer a branch of code remains checked out on a programmer’s
computer, the greater the risk of multiple integration conflicts and failures
when the branch is finally reintegrated into the main trunk. When
programmers submit code to the repository, they should first update their
code to reflect the changes in the repository since they took their local copy.
The more changes the repository contains, the more work programmers must
do before submitting their changes.

There is a risk that eventually the repository may become so different from
the programmer’s local copy that the team can enter what is sometimes
referred to as "merge hell", or "integration hell". This is where the time it
takes to integrate exceeds the time it took to make their original changes and
conflicts are everywhere. This is where continuous integration becomes a
critical practice. It involves integrating early and often, to avoid the pitfalls of
"integration hell".

Regular integration requires a reliable repository where the main trunk of
code and any development branches are stored. Offsite backups of this code
are also essential, should the unthinkable ever happen and the source server
should go down or go missing at least code would still exist and a few hours
work may be lost rather than a few years.

There are many options for repository management on the market today. I
prefer the built-in repository options that are available on Team Foundation
Server. This multi functioned and well-designed application allows for safe
storage of both Visual Studio Code and Eclipse Code. Shown below is the
repository for an Android application which is designed in Eclipse and all
changes are stored within Team Foundation Server. Below is an example
screenshot of this package. This example shows the source code structure for

an android application written in Eclipse.

*
By contrast, the next screenshot is from the same Team Foundation Server
but this time it is a visual studio ASPX/C# application.

In the next chapter, we will look further at CI/CD with a real project which
uses the power of Azure and how this can help the agile tester in their quest
to become an expert QA Tester.

CI/CD with Azure
Before we get going to may already know about Azure, of not here is a brief
introduction. Microsoft Azure, commonly referred to as Azure, is a cloud
computing service created by Microsoft for building, testing, deploying, and
managing applications and services through Microsoft-managed data centres.
The service provides software as a service (SaaS), platform as a service
(PaaS) and infrastructure as a service (IaaS) and supports many
different programming languages, tools, and frameworks, including both
Microsoft-specific and third-party software and systems.

To sign-up or sign-in to Azure simply go to this URL and get yourself sorted.
https://portal.azure.com/.
For general information about the services try this URL
https://azure.microsoft.com/en-gb/.

For the purpose of this demonstration I will be linking with my stored code at
Azure DevOps (dev.azure.com/myAccount/), you may also have such an
account if not then why not sign up for one, it is free.

Here I will walk through the steps that will show you the true power of the
dark side, sorry I mean Azure DevOps. If the then feel the desire to learn this
further there are plenty of books and websites that can offer a lot of good,
helpful information on this subject.

So once you are all setup and ready to go follow my steps here or simply just
read through.

Step 1 – Create Storage Accounts. In your azure portal select this link.

Now either select from the list or type in storage in the search box.

Then select storage account->Create.

Next click the Create new link

And type in a label of your choice. Then complete the page something like
mine below.

Keep all other options as per default and step through to create, when
complete you will see a message like this on the following page.

If you then go to resource you will see this page.

The resource will also appear on your dashboard.

Step 2. Create the container registry
Once again go to Create a resource. This time locate Container registry.

Select create and step through the process. Resource group should be the one
you created in Step 1. Then complete the remaining options.

Step through the remaining pages with default options and create.

Go to the resource to confirm.

Finally check the dashboard.

Step 3. In this step we need to enable Admin user in the Container registry
and create a Username with a password. So first select your Container
registry from your dashboard.

Then select Access Keys.

You will now need to enable Admin user

When enabled a Username and 2 passwords will be created, make a note of
these before proceeding. Mine of course are hidden.

Step 4: Service Connections. For this step we now switch to the
dev.azure.com account. Below is the portal page for my setup.

From here I select “spicetheworld” and then project settings.

Followed by Service connections.

First we need a new Service Connection

On the next page you will probably be prompted to login to your Microsoft
account, this is standard procedure and nothing to worry about. Once logged
in you will be linked to you Azure account subscription. You will also be
able to selected the Resource group you created earlier.
Finally you will need to provide a Service connection name, the description is
optional.

Then click save, after a couple of moments your Service connection will be
created. Now add a second Service connection, this time select type Docker
registry.

Choose type Azure Container Registry, the rest is the same as before.

Step 5: In this step we now create the pipeline.

Select Use the classic editor

Next select your project, repository and branch.

Next you will select your template, this will be decided by the project type, in
my example it is ASP.Net Core because this matches my project.

To create click Save & queue->Save and Run. At this point you will have a
basic pipeline but now we need to enhance the functionality.

So now edit pipeline and add Docker build and Push. To do this click on the

+ link shown below.

Then select Docker, you may have to search for this option.

Select the Container registry and add the Container repository name.

The Docker file you select from the project repository.
To complete Select Save & queue->Save and run. When the run is complete
return to your portal and azure.com. From your dashboard select your
container registry.

For your information below is the contents of the Docker file.
FROM mcr.microsoft.com/dotnet/aspnet:3.1 AS base
WORKDIR /app
EXPOSE 80
EXPOSE 443

FROM mcr.microsoft.com/dotnet/sdk:3.1 AS build
WORKDIR /src
COPY ["spicetheworld.csproj", "./"]
RUN dotnet restore "spicetheworld.csproj"
COPY . .
WORKDIR "/src/."
RUN dotnet build "spicetheworld.csproj" -c Release -o /app/build

FROM build AS publish
RUN dotnet publish "spicetheworld.csproj" -c Release -o /app/publish

FROM base AS final
WORKDIR /app
COPY --from=publish /app/publish .
ENTRYPOINT ["dotnet", "spicetheworld.dll"]

Next you need to select Repositories

Now you will see your repository.

Step 6: Now locate All Services->App Service for hosting.

And select Create app service. Complete like below and be sure to select the
Free Sku offering.

Continue to the Docker tab and also complete as below.

Everything else can stay as default so complete and save.
When complete save and wait for this message.

When deployed you will see an option to go to resource, select this and you
should see the service is running.

You will also notice a URL on the page, this is where your application will
reside should the deployment pass. In this case my test URL is
https://spicetheworlddev.azurewebsites.net/. This test site is not always up
but if you try it you may well see a page like that below, this was deployed
by DevOps.

Finally we need to enable continuous integration. This is done in 2 places.
First you need to return to your dev.azure.com account at locate your

pipeline.

Now click on the pipeline and then select Edit. Go to the Triggers tab and
enable continuous integration.

Then Save & Queue etc.

Next you return to portal.azure.com and locate your App Service.

Click on the App Service and select.

On this page you simply need to turn this option on.

From this point on every time you update your source code and submit the
changes the Continuous Deployment will kick in, the code will be built, unit
tests (if you have created them) will be run and if all goes well the updated
application will be deployed to your test server. Now that is cool.

So what you need to remember here is that now all of the services and
pipelines have been created your CI/CD DevOps should kick in every time
you commit code to your repository on the branch that you have setup during
this process. There is a lot more to DevOps than this but I hope this small
walk-through will give you a taste for what is possible.

Conclusion
So here we are then, over two hundred pages into this nice little book, and
you are still here, so hopefully, you have enjoyed this publication and found
the contents interesting, useful and valid to your needs.

If you become a full-time agile tester in the future or you already there, then I
hope you will enjoy your career. Testing can at times become very
monotonous and as deadlines loom it can also become very stressful. As I
have already pointed out not everyone is suited for software testing. Others
can do it but only for a short time. People with the right mindset and
temperament for software testing as a career are a scarce but valuable
commodity. If you are one of these people then good for you, grow your
skills and enhance your career, you will always be in demand.

Being a software tester in an agile team can be a more rewarding experience
than working in a traditional organisational setup. Being part of a closely-knit
team who are together in regular meetings helps build knowledge and
confidence in the product. This, in turn, helps make the testing process a
more rewarding and less stressful experience. As your knowledge and skillset
grow so will your confidence in becoming a more pro-active team member.
This may well annoy some old school programmers who may still think you
should be seen and not heard but this is, to put it bluntly, their problem.

So, if you stay in software testing for a long period of time or you eventually
move on to other things such as project management, I hope you enjoy the
agile experience and I hope you have enjoyed reading this book. So, to
conclude in the next chapter we will look at some of the more common agile
myths.

The Agile Myths
Agile has been around for a few years now and is now considered a tried,
trusted and established development approach. However, for companies that
have not yet adopted agile it still represents a new way of life and as a result
of the way agile works can still cause unrest among those who have never
used it. The prospect of working in iterations instead of with a linear
approach can be unsettling to managers and programmers who are deciding
whether to make the leap to agile. They fear that focused efforts will be
compromised and that control over projects and development teams will be
sacrificed. In reality, of course, nothing is further from the truth, so let’s get
rid of some of the myths that surround agile.

Agile Is a Fad
No, agile is not a new fad. The Agile Manifesto was published in 2001; the
Scrum Pattern language was presented in 1995 during the Object Oriented
Programming, Systems, and Languages (OOPSLA) conference and there are
some who trace agile’s roots back further still.

So, the agile approach to project management is far from a fad. Agile has
been in use for many decades even though it was only recently formalised
with the Agile Manifesto and its associated principles.
Agile exists because it works. Compared with traditional project management
approaches, agile is better at producing successful projects.

Agile Means No Documentation
While some people believe that being agile means one doesn’t need any
documentation, that’s hardly the truth; you can have as much documentation
as you like in agile. Documentation is just another deliverable; if it brings
you value then schedule it and produce it like anything else. Agile teams keep
documentation as lightweight as possible, but they do document their
solutions as they go. They follow strategies, such as documenting
continuously and writing executable specifications.

Agile Is a Silver Bullet
Proponents of Agile will sometimes claim that moving to Agile will "fix all
your problems." That isn't the case. Agile isn’t needed for every team in
every situation. It isn’t a cure-all. Agile is a superb solution for projects that
are in development or undergoing radical changes.

It's important to stress that the Agile Manifesto is a set of values and
principles that define a core aptitude for software development.

These values point to collaboration, rapid feedback loops and quality. If your
project has a stable customer base and isn’t undergoing a lot of change in the
code, you may not need to use agile for that project. But for projects that are
creating a new product or major updates then agile is the best way to go.

It’s enough for our Development Team to Be Agile
This is so far from the truth that travelling to Pluto would be closer. For agile
to work properly within your company, all the teams must buy in fully. So, if
your development team is agile, but your testing team is still a group of
admin staff pulled in when needed, you will not get your best results, in fact,
things could get worse. Your agile delivery process is only going to be as
effective as your slowest group. To make agile succeed at its greatest
potential, make each piece of the chain as efficient as possible.

Agile Won’t Work at My Company
When I hear this statement I always think why? What is your problem? I
never think why the company cannot adopt agile I always think why this
person says it will not work.

For many companies, the biggest challenge they face when considering
changing to agile is the cultural change involved when implementing the
changes. For some people, this is a major challenge and they would rather it
did not happen. Agile has explicit methods of frequent feedback and loops,
which means that programmers, QA’s and managers may feel more exposed
to scrutiny. But that doesn’t mean that agile won’t work at your company, it
may mean some people should no longer be working at your company
though. So, remember folks, agile is a team approach. Roles are cross-
functional and shared. Programmers become testers and more frequent
delivery creates more exposure and personal accountability.

There's Only One Way to Do Agile
This is so very wrong. The Agile Manifesto consists of four values and 12
principles; it doesn't document implementation details. There are many
interpretations of Agile, including Scrum, XP, Kanban and Feature-Driven
Development, to name a few. Each style has benefits, as well as weaknesses,
and you must evaluate your own specific situation to determine which
interpretation is the best match. If you're adhering to the Agile Manifesto's
values and principles, you should be considered Agile.

Agile Isn’t Disciplined
Sometimes agile can seem chaotic because it’s a very collaborative process.
Agile is a departure from the rigid assembly-line process. The iterative
approach requires rapid response times and flexibility from the team. Agile
demands greater discipline than what’s typical of traditional teams. Agile
requires teams to reduce the feedback cycle on many activities, incrementally
deliver a consumable solution, work closely with stakeholders throughout the
life cycle, and adopt individual practices which require discipline.

Agile Is Only Effective for Collocated Teams
In an ideal world, the whole team would be located within proximity of one
another. However, currently, most development teams are distributed around
the globe. While this can be a challenge with the right tools and planning it
can still work. Just remember, to succeed, you need to adopt practices and
tooling that build team cohesion. Careful planning is the key here.

Agile Means “We Don’t Plan”
With agile’s reliance on collaboration instead of big documents, it may well
seem like no real planning occurs. But the planning is incremental, well
understood and evolutionary.

Agile Is Unsuitable for Regulated Environments
Regulated environments are those that are subject to some regulatory
mandates, such as defence organisations, medical suppliers, financial
companies and government departments to name but a few. These
organisations are audited from time to time for compliance with regulations.
With agile, these organisations can feel confident when they endure these
audits. They benefit from faster delivery of data and higher quality of their
output.

Glossary
A
Acceptance Test
Acceptance tests are tests that define the business value each story must
deliver. They may verify functional requirements or non-functional
requirements such as performance or reliability. Although they are used to
help guide development, it is at a higher level than the unit-level tests used
for code design in test-driven development. An acceptance test is a broad
term that may include both business-facing and technology-facing tests.

Agile Operating Model
The holistic and simple definition of what an organisation, program, project
or team mean when they use the term “Agile”. This could range from a single
agile framework or an integrated implementation of many frameworks, the
latter being much more likely. Agile operating models align with the “Agile
Manifesto”.

Agile Persona
Someone (this could be a single person or a group) who will interact with the
system being built, also known as a “user”.

Agile Project Management
The style of project management used to support agile software development.
Scrum is the most widely used agile project management practice. XP
practices also include practices that support agile project management.

Application Programming Interface (API)
APIs enable other software to invoke some piece of functionality. The API
may consist of functions, procedures, or classes that support requests made
by other programs.

Azure
Azure is a cloud computing service created by Microsoft for building, testing,
deploying, and managing applications and services through Microsoft-
managed data centres. It provides software as a service (SaaS), platform as a
service (PaaS) and infrastructure as a service (IaaS) and supports many

different programming languages, tools, and frameworks.

B
Backlog
An ordered list of requirements/stories that the customer wants.

Baseline Plan
The plan that defines the start point from which an evolving product starts,
normally high level.

Behaviour Driven Development (BDD)
Behaviour-driven development (or BDD) is an agile software development
technique that encourages collaboration between developers, QA and non-
technical or business participants in a software project. BDD focuses on
obtaining a clear understanding of desired software behaviour through
discussion with stakeholders.

Best Practice
The learned best approach for something at a point in time, best practice
evolves over time.

Bugs
A software bug is a problem causing a program to crash or produce invalid
output. It is caused by insufficient or erroneous logic and can be an error,
mistake, defect or fault.

Build
A build is a process of converting source code into a deployable artefact that
can be installed to run the application. The term “build” also refers to the
deployable artefact.

Burn-down Chart
A chart showing the evolution of remaining effort against time. Burn-down
charts are an optional implementation within Scrum to make progress
transparent.

Burn-up Chart
A chart showing the evolution of an increase in a measure against time. Burn-
up charts are an optional implementation within Scrum to make progress

transparent.

Business
The customers, stakeholders and users involved with the product.

C
C#
C# is a programming language developed and launched by Microsoft in
2001. C# is a simple, modern, and object-oriented language that provides
modern day developers flexibility and features to build software that will not
only work today but will be applicable for the long term plans of any
organisation.

Chai insertion library

Chai is a BDD/TDD assertion library for node and the browser that can be
easily paired with any JavaScript testing framework.

ChromeDriver

WebDriver is an open-source development tool for automated testing of
webapps across most popular browsers. It provides capabilities for navigating
to web pages, user input, JavaScript execution, and much more.
ChromeDriver is a standalone server that implements the W3C WebDriver
standard.

Command and Control
This is a style of management where the manager commands the team to do
something and then controls them to do it. This style of management is the
opposite of Agile self-organising teams and is counter to everything agile.

Commitment Plan
Typically, a detailed forecast for a short period of time they are also known
as iteration/ sprint (or time-box) plans.

Component
A component is a larger part of the overall system that may be separately
deployable. For example, on the Windows platform, dynamic linked libraries
(DLLs) are used as components, Java Archives (JAR files) are components
on the Java platform, and a service-oriented architecture (SOA) uses Web
Services as components.

Component Test

A component test verifies a component’s behaviour. Component tests help
with the component design by testing interactions between objects.

Conditions of satisfaction
Conditions of satisfaction also called satisfaction conditions or conditions of
business satisfaction, are key assumptions and decisions made by the
customer team to define the desired behaviour of the code delivered for a
given story. Conditions of satisfaction are criteria by which the outcome of a
story can be measured. They evolve during conversations with the customer
about high-level acceptance criteria for each story. Discussing conditions of
satisfaction helps identify risky assumptions and increases the team’s
confidence in writing and correctly estimating all the tasks to complete the
story.

Context-driven testing
Context-driven testing follows seven principles, the first being that the value
of any practise depends on its context. Every new project and every new
application may require different ways of approaching a project.

Continuous Deployment
Continuous Deployment (CD) is the process that takes fully validated
Features in a staging environment and deploys them into the production
environment, where they are readied for a final release.

Continuous Integration
Continuous Integration is the software development practice where members
of a development team integrate their work frequently, usually at least daily.
Each integration is verified by an automated build (including unit tests) to
detect integration errors as quickly as possible.

Cost of Delay
The cost of delaying an investment decision, tend to grow over time.

Cucumber
Cucumber is a software tool that supports behaviour-driven development
(BDD). It runs automated acceptance tests written in a behaviour-driven
development (BDD) style.

Customer
The person/people who own the product (e.g. usually known as a ‘Product
Owners’ or ‘Business Ambassadors’ in certain frameworks).

Customer Team
The customer team identifies and prioritises the features needed for the
business. In Scrum, these features become epics or themes, which are further
broken into stories and comprise the product backlog. Customer teams
include all stakeholders outside of the development team, such as business
experts, subject-matter experts, and end-users. QA’s and developers work
closely with the customer team to specify examples of the desired behaviour
for each story and turn those examples into tests to guide development.

Customer Test
A customer test verifies the behaviour of a slice or piece of functionality that
is visible to the customer and related directly back to a story or feature. The
terms “business-facing test” and “customer-facing test” refer to the same type
of test as a customer test.

D
Daily Scrum/Stand-up
The daily time-boxed event of a maximum of 15 minutes sometimes less. The
scrum is for the Development Team to re-plan the next day of development
work during a Sprint. Updates are reflected in the Sprint Backlog.

Decomposition
The process of breaking user stories down into a) smaller, more executable
user stories or b) tasks. Likewise, epics may be decomposed into user stories,
and tasks may be decomposed into more fine-grained tasks. Decomposition is
usually performed during backlog grooming and iteration planning and is an
important precursor to story sizing (estimation). Decomposition may also
occur throughout the development process. In the typical product backlog,
user stories will become finer-grained as they near implementation and are
larger and less detailed the further down the queue they reside.

Definition of Done
Normally a list of working features that define the complete product that must
be delivered; must be standard across the team.

Definition of Ready
Normally a list that defines when artefacts within the delivery process are
ready (e.g. story ready to go into iteration/ sprint). This can vary from
organisation to organisation.

Development Team
Develop and test the product. The team is self-organised: There is no team
leader, so the team makes the decisions. The team is also cross-functional.

DevOps
Viewing the development and operation of a software system as one
continuous delivery value process.

E
Emergence
The process of the coming into existence or prominence of new facts or new
knowledge of a fact, or knowledge of a fact becoming visible unexpectedly.

Empiricism
Process control type in which only the past is accepted as certain and in
which decisions are based on observation, experience and experimentation.
Empiricism has three pillars: transparency, inspection and adaptation.

Environment
This is the combination of all factors within an organisation, project, team
etc. that drives suitability of a delivery or governance framework. In a
dynamic environment, where things change all the time, an agile framework
would be suitable.

Epic
An epic is a piece of functionality, or feature, described by the customer and
is an item on the product backlog. An epic is broken up into related stories
that are then sized and estimated. Some teams use the term “theme” instead
of epic.

Estimation
The process of agreeing on a size measurement for the stories, as well as the
tasks required to implement those stories, in a product backlog.

Exploratory testing
Exploratory testing is an interactive testing method that combines test design
with test execution and focuses on learning about the application.

Extreme Programming (XP)
An Agile software development methodology that emphasises customer
involvement, transparency, testing and frequent delivery of working software.
The Extreme Programming cannon includes a Customer Bill of Rights and a
Developer Bill of Rights and lists its core values as communication,
simplicity, feedback, courage and respect. XP is a developer-centric
methodology, and unlike Scrum, it prescribes specific coding practices like

Pair Programming, in which two developers work side by side on a single
machine, automated unit testing, and frequent integration. Another key
practice in XP is refactoring or the continual improvement of design over
many iterations.

F
Facilitated Workshops
Where groups of people come together in a forum to achieve a stated
objective, the achievement of which is facilitated by a workshop facilitator.
Many activities (such as planning) within Agile are delivered within
facilitated workshops.

Feature
A feature of the system that the customer wants. These are normally
described as a story and ordered within a backlog.

Feature creep
Feature creep occurs when software becomes complicated and difficult to use
as a result of too many features.

Functional tests
Functional tests verify the system's expected behaviour given a set of inputs
and/or actions.

Forecast
The selection of items from the Product Backlog that a Development Team
considers feasible for implementation in a Sprint.

G
Gherkin
Gherkin uses a set of special keywords to give structure and meaning to
executable specifications. Common examples being Give, When, Then.
GitHub

GitHub is a code hosting platform for version control and collaboration. It
lets you and others work together on projects from anywhere on the planet
(one day even further).

I
Impediment
In Scrum, any obstacle preventing a developer or team from completing
work. One of the three focusing questions each member of a Scrum team
answers during the daily Stand-Up Meeting is: What impediments stand in
your way?

Increment
A piece of working software that adds to previously created increments,
where the sum of all the Increments will form a complete product.

IntelliJ
IntelliJ IDEA is an advanced, integrated development environment written in
Java for developing computer software and automated test software. It is
developed by JetBrains and is available as an Apache 2 Licensed community
edition, and in a proprietary commercial edition. Both can be used for
commercial development.

Iteration/ Sprint
An iteration is a short development cycle, generally from one to four weeks,
at the end of which production-ready code can potentially be delivered.
Several iterations, each one the same length, may be needed to deliver an
entire theme or epic. Some teams release the code to production each
iteration, but even if the code isn’t released, it is ready for release.

Iteration/ Sprint Goal
The goal that the entire team commit to in relation to an iteration/ sprint plan.

Iteration/ Sprint Plan
The forecast of what will be delivered within a short focused ‘sprint’ by the
team.

J
Java
Java is a mature, class-based, object-oriented programming language that is
designed to have as few implementation dependencies as possible.
Java applications are typically compiled to bytecode that can run on
any Java virtual machine (JVM) regardless of the underlying computer
architecture.

Jmeter
JMeter is a software offering that can perform load test, performance-oriented
business (functional) test, regression test, etc., on different various protocols
or technologies. Stefano Mazzocchi of the Apache Software Foundation was
the original developer of JMeter.

K
Kanban
Kanban is a management approach that is sometimes used in agile projects.
The general objective is to visualise and optimise the flow of work within a
value-added chain.

Knowledge-Based Work
Work where the main capital is knowledge, such as doctors, engineers and
information technology workers.

L
Lean
Lean software development is a translation of Lean manufacturing and Lean
IT principles and practices to the software development domain. Adapted
from the Toyota Production System and is a set of techniques and principles
for delivering more values with the same or fewer resources by eliminating
waste across organisations and business processes.

M
MS-DOS
MS-DOS, in full Microsoft Disk Operating System, the dominant operating
system for the personal computer (PC) throughout the 1980s. The acquisition
and marketing of MS-DOS were pivotal in the Microsoft Corporation's
transition to software industry giant.

MySQL
MySQL is an open-source relational database management system
(RDBMS). Its name is a combination of "My", the name of co-founder
Michael Widenius's daughter, and "SQL", the abbreviation for Structured
Query Language.

N
Noise
Anything that interrupts the team within an iteration/ sprint, noise causes a
significant disturbance within a team and causes a lack of focus on delivery.

NUnit
NUnit is a unit testing framework for performing unit testing based on the
.NET platform. It is a widely used tool for unit and automated regression
testing and is preferred by many developers/testers today.

P
Pair Programming
Pair programming is an agile software development technique in which two
programmers work together at one workstation. One team member will type
in the code while the other reviews each line of code as it is typed in. The
person typing is called the driver. The person reviewing the code is called the
observer (or navigator). The two programmers switch roles frequently.

Planning Poker
Also called Scrum poker, is a consensus-based technique for estimating,
mostly used to estimate effort or relative size of tasks in software
development.

Postman
Postman is a software tool for testing RESTful APIs made by other
developers or even test ones you have made yourself. It offers a user interface
with which to make HTML requests, without the hassle of writing a bunch of
code just to test an API's functionality.

Product Backlog
The product owner manages a prioritised list of planned product items (called
the product backlog). The product backlog evolves from sprint to sprint
(called backlog refinement).

Product Backlog Refinement
This is the activity within a Sprint through which the Product Owner and the
Development Team add granularity to the Product Backlog.

Product Increment
Each sprint results in a potentially releasable/shippable product (called an
increment).

Product Owner
Represents the customer, and generates, maintains, and prioritises the product
backlog. This person is not the team lead.

R
Ready
A shared understanding between the Product Owner and the Development
Team regarding the preferred level of description of Product Backlog items
introduced at Sprint Planning.

Requirements
These are more correctly described as ‘stories’ within most Agile
frameworks.

Retrospective
This is a team meeting that should happen at the end of every complete
development iteration. The purpose of this meeting is to review lessons
learned and to discuss how the team can be more efficient in the future. It is
based on the principles of applying the learning from the previous sprint to
the upcoming sprint.

RestSharp
RestSharp is a comprehensive, open-source HTTP client library that works
with all kinds of DotNet technologies. It can be used to build robust
applications by making it easy to interface with public APIs

Ruby
Ruby is an interpreted, high-level, general-purpose programming language. It
was designed and developed in the mid-1990’s by Yukihiro Matsumoto in
Japan

RubyMine
Rubymine is an integrated development environment (IDE) for Ruby and
Rails.

S
Selenium
Selenium is a powerful, free (open-source) automated testing framework
used to validate web applications across different browsers and platforms.

Scrum
The framework to support teams in complex product development. Scrum
consists of Scrum Teams and their associated roles, events, artefacts, and
rules, as defined in the Scrum Guide.

Scrum Board
A physical board to visualise information for and by the Scrum Team; often
used to manage Sprint Backlog. Scrum boards are an optional
implementation of Scrum to make information visible.

Scrum Guide
The definition of Scrum, written and provided by Ken Schwaber and Jeff
Sutherland, the co-creators of Scrum. This definition consists of Scrum’s
roles, events, artefacts, and the rules that bind them together.

Scrum Master
Ensures that Scrum practices and rules are implemented and followed, and
resolves any violations, resource issues, or other impediments that could
prevent the team from following the practices and rules. This person is not
the team leader, but a coach.

Scrum Team
A self-organising team consisting of a Product Owner, Development Team
and Scrum Master.

Scrum Values
A set of fundamental values and qualities underpinning the Scrum
framework; commitment, focus, openness, respect and courage.

Self-organisation
The management principle that teams autonomously organise their work.
Self-organisation happens within boundaries and against given goals. Teams
choose how best to accomplish their work, rather than being directed by

others outside the team.

Serverless Computing
Serverless computing is a software design pattern where applications
are hosted by a third-party service. This eliminates the need for server
software and hardware management by the developer. Another reason this
pattern is growing in popularity is the customer only consumes what they
require when they require it, and this reduces costs.

Sprint
Scrum divides a project into iterations (called sprints) of fixed length (usually
two to four weeks).

Sprint Backlog
At the start of each sprint, the Scrum team selects a set of highest priority
items (called the sprint backlog) from the product backlog. Since the Scrum
team, not the product owner, selects the items to be realised within the sprint,
the selection is referred to as being on the pull principle rather than the push
principle.

Sprint Goal
A short expression of the purpose of a Sprint, often a business problem that is
addressed. Functionality might be adjusted during the Sprint in order to
achieve the Sprint Goal.

Sprint Planning
Time-boxed event of 1 day, or less, to start a Sprint. It serves as an important
meeting for the Scrum Team to inspect the work from the Product Backlog
that’s most valuable to be done next and design that work into Sprint
backlog.

Sprint Retrospective
Time-boxed event of 3 hours, or less, to end a Sprint. It serves as a valuable
meeting the Scrum Team to inspect the past Sprint and plan for
improvements to be enacted during the next Sprint.

Sprint Review
A time-boxed event of 4 hours for a monthly sprint, less if the sprint was
shorter. The review is designed to conclude the development work of a

Sprint. This meeting the Scrum Team and the stakeholders to inspect the
Increment of the product resulting from the Sprint and assess the impact of
the work performed on overall progress and update the Product Backlog to
maximise the value of the next period.

SQL
SQL stands for Structured Query Language, SQL lets you access and
manipulate databases of any size or complexity. SQL became a standard of
the American National Standards Institute (ANSI) in 1986, and of the
International Organization for Standardization (ISO) in 1987.

Stakeholder
Any person or group who can help or hinder the team. They are external to
the Scrum Team and they have a specific interest in and knowledge of a
product that is required for incremental discovery. The Stakeholder(s) are
represented by the Product Owner and they should actively engage with the
Scrum Team at Sprint Review.
Stored Procedures
A stored procedure is a prepared SQL code segment that you can save so the
code can be reused over and over again. You can also pass parameters to a
stored procedure, so that the stored procedure can act based on the parameter
value’s that is passed.

Story
A requirement or feature that may be delivered at some point; a story is a
token to remind everyone that something may need to be delivered. Stories
reside on the backlog.

T
TDD
Test Driven Development (TDD) is software development approach in which
test cases are developed to specify and validate what the code will do.

Time-box
A fixed period within which delivery is made and stories are prioritised
within a time-box. With Agile projects, releases and iterations/ sprints are all
time-boxes.

Transparency
The development team reports and updates sprint status daily at a meeting
called the daily scrum. This makes the content and progress of the current
sprint, including test results, visible to the team, management, and all
interested parties. For example, the development team can show sprint status
on a whiteboard.

U
Unit Tests
A unit test is a way of testing a unit - the smallest piece of code that can be
logically isolated in a system.

User
People who will use the product, known as ‘Agile personas’ within Agile.

User Stories
A user story is an informal, general explanation of a software feature written
from the perspective of the end user or customer.

V
Velocity
An optional, but often used, indication of the average amount of Product
Backlog turned into an Increment of the product during a Sprint by a Scrum
Team, tracked by the Development Team for use within the Scrum Team.

Visual Studio
Microsoft Visual Studio is an integrated development environment (IDE)
from Microsoft.

W
Watir
Watir stands for Web Application Testing in Ruby. It facilitates the writing of
automated tests by mimicking the behaviour of a user interacting with a
website.

Working Software
Software that works, it has all the elements associated with the ‘Definition of
Done’ and is ready to deploy into an environment which should be the live
production environment.

Appendix 1
Further Reading

Further Reading
Eclipse

Eclipse: A Java Developer's Guide Paperback by Steve Holzner
Eclipse IDE: Eclipse IDE based on Eclipse 4.2 and 4.3

Jmeter

https://jmeter.apache.org/usermanual/get-started.html
https://www.amazon.co.uk/s?k=jmeter

Jira

https://docs.atlassian.com/software/jira/docs/api/REST/6.1.7/

Selenium

Selenium Testing Tools Cookbook by Unmesh Gundecha
Mastering Selenium WebDriver by Mark Collin
Selenium 2 Testing Tools: Beginners Guide by David Burns

Team Foundation Server

Professional Team Foundation Server 2013 by Steven St. Jean
and Damian Brady
Microsoft Team Foundation Server 2015 Cookbook by Tarun
Arora

Testing

Foundations of Software Testing ISTQB Certification by
Dorothy Graham and Erik Van Veenendaal

Testing in Scrum: A Guide for Software Quality Assurance in
the Agile World by Tilo Linz

Trello

https://developer.atlassian.com/cloud/trello/guides/rest-api/api-
introduction/

Watir

Cucumber and Cheese by Jeff Morgan

Appendix 2
Download URL’s

Download URL’s

Chai
https://www.chaijs.com/api/bdd/

Eclipse
http://www.eclipse.org/downloads/

Java JDK -
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-
2133151.html

JMeter
https://jmeter.apache.org/

JIRA Download
https://www.atlassian.com/software/jira/download

Junit
http://junit.org/

Postman
https://www.postman.com/downloads/

IntelliJ IDEA
https://www.jetbrains.com/idea/download

Nunit
https://nunit.org/

RubyMine
https://www.jetbrains.com/ruby/

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://junit.org/

Selenium Chrome Driver
https://sites.google.com/a/chromium.org/chromedriver/downloads

Selenium
http://www.seleniumhq.org/download/

SpecFlow
http://specflow.org/

Visual Studio Community Edition
https://www.visualstudio.com/en-us/products/visual-studio-community-
vs.aspx

Watir
http://watir.com/

https://sites.google.com/a/chromium.org/chromedriver/downloads
http://www.seleniumhq.org/download/
https://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx

	Beginning

