

The Complete Software Tester

Concepts, Skills, and Strategies for High-Quality Testing

Kristin Jackvony

Copyright © 2021 Kristin Jackvony

All rights reserved

No part of this book may be reproduced, or stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, or otherwise, without express written

permission of the publisher.

Cover design by: Vanessa Mendozzi

Contents

Title Page
Copyright
Introduction
Note
Part I: Why Do We Test?
Chapter 1: Why We Test
Chapter 2: Think Like a Tester
Chapter 3: Why We’ll Always Need Software Testers
Part II: Manual Testing
Chapter 4: Testing a Text Field
Chapter 5: Break Your App with This One Weird Trick
Chapter 6: CRUD Testing
Chapter 7: Testing Postal Codes
Chapter 8: Testing Date Fields
Chapter 9: Testing Phone Number Fields
Chapter 10: Testing Buttons
Chapter 11: Testing Forms
Chapter 12: Four Reasons You Should Test Input Validation (Even

Though It’s Boring)
Chapter 13: Three Ways to Test Output Validation
Chapter 14: Testing Back Buttons
Chapter 15: Six Tips for File Upload Testing
Chapter 16: Testing the Login Screen
Chapter 17: Cross-Browser Testing
Chapter 18: Before You Log That Bug…
Chapter 19: How to Reproduce a Bug
Chapter 20: How to Log a Bug
Part III: How Applications Work
Chapter 21: How HTTP Requests Work
Chapter 22: Internet Routing

Chapter 23: Encoding and Encryption
Chapter 24: HTTPS, Tokens, and Cookies
Chapter 25: The Joy of JWTs
Chapter 26: Database Testing
Chapter 27: Testing with Relational Databases
Chapter 28: SQL Query Secrets
Chapter 29: Testing with Nonrelational Databases
Chapter 30: Serverless Architecture
Part IV: API Testing
Chapter 31: Introduction to REST Requests
Chapter 32: Getting Set Up for API Testing
Chapter 33: Testing GET Requests
Chapter 34: Testing POST Requests
Chapter 35: Testing PUT Requests
Chapter 36: Testing PATCH Requests
Chapter 37: Testing DELETE Requests
Chapter 38: Response Codes
Chapter 39: Postman Assertions
Chapter 40: Using Variables in Postman
Chapter 41: Organizing Your API Tests
Chapter 42: Understanding JSON Data
Chapter 43: API Contract Testing Made Easy
Part V: Mobile Testing
Chapter 44: The 12 Challenges of Mobile Testing
Chapter 45: Manual Mobile Testing
Chapter 46: Seven Tips for Mobile Automated Testing
Part VI: Security Testing
Chapter 47: Introduction to Security Testing
Chapter 48: Using Dev Tools to Find Security Flaws
Chapter 49: Testing for IDOR Vulnerabilities
Chapter 50: Introduction to Cross-Site Scripting
Chapter 51: Three Ways to Test for Cross-Site Scripting
Chapter 52: Introduction to SQL Injection
Chapter 53: Introduction to Session Hijacking
Chapter 54: An Introduction to Mobile Security Testing
Part VII: Performance Testing
Chapter 55: Introduction to Performance Testing

Chapter 56: How to Design a Load Test
Part VIII: Usability and Accessibility Testing
Chapter 57: Localization and Internationalization Testing
Chapter 58: User Experience Testing
Chapter 59: Accessibility Testing
Part IX: Software Development Basics
Chapter 60: Code Like a Developer
Chapter 61: Command-Line Basics
Chapter 62: Coding Definitions
Chapter 63: Object-Oriented Programming
Chapter 64: Passing Parameters
Chapter 65: Setting Up Node
Chapter 66: Arrow Functions
Chapter 67: Promises
Chapter 68: Async/Await
Chapter 69: Debugging for Testers
Chapter 70: Seven Steps to Solve Any Coding Problem
Chapter 71: Introduction to Git
Chapter 72: Six Tips for Git Success
Chapter 73: Merge Conflict Resolution
Chapter 74: A Gentle Introduction to Regex
Chapter 75: Logging, Monitoring, and Alerting
Part X: Automated Testing
Chapter 76: Why Automate?
Chapter 77: When to Automate
Chapter 78: Rethinking the Pyramid: The Automation Test Wheel
Chapter 79: The Automation Test Wheel in Practice
Chapter 80: Unit Tests
Chapter 81: Component Tests
Chapter 82: Services Tests
Chapter 83: What API Tests to Run and When to Run Them
Chapter 84: Setting Up UI Tests
Chapter 85: Understanding the DOM
Chapter 86: Locating Web Elements
Chapter 87: Automating UI CRUD Testing
Chapter 88: Automated Form Testing
Chapter 89: Automated Visual Testing

Chapter 90: Automated Security Testing
Chapter 91: Automating Load Tests
Chapter 92: Automated Accessibility Tests
Chapter 93: Automation Wheel Strategy: Moving from What to How to

When to Where
Chapter 94: How Flaky Tests Destroy Trust
Part XI: Testing Strategy
Chapter 95: The Power of Not Knowing
Chapter 96: The Power of Pretesting
Chapter 97: Your Future Self Will Thank You
Chapter 98: How to Design a Test Plan
Chapter 99: Organizing a Test Plan
Chapter 100: The Positive Outcomes of Negative Testing
Chapter 101: What to Put in a Smoke Test
Chapter 102: What to Test When There’s Not Enough Time to Test
Chapter 103: How to Keep Your Test Cases From Slowing You Down
Chapter 104: Confused? Simplify!
Chapter 105: Six Steps to Writing an Effective Bug Report
Chapter 106: Should You Hunt for That Bug?
Chapter 107: Why You Should Be Testing in Production
Chapter 108: What to Do When There’s a Bug in Production
Chapter 109: Fix All the Things
Chapter 110: The Hierarchy of Quality
Chapter 111: Measuring Quality
Chapter 112: Managing Test Data
Chapter 113: A Question of Time
Chapter 114: Why the Manual Versus Automation Debate Is Wrong
Chapter 115: Tear Down Your Automation Silos
Chapter 116: Stop Writing So Many UI Tests
Chapter 117: Five Reasons You’re Not Ready for Continuous

Deployment
Part XII: Soft Skills for Testers
Chapter 118: Ask Your Way to Success
Chapter 119: Seven Excuses Software Testers Need to Stop Making
Chapter 120: Six Testing Personas to Avoid
Chapter 121: How to Train Your Dev
Chapter 122: Get Organized for Testing Success

Chapter 123: Time Management for Testers
Chapter 124: How to Be Seen
Acknowledgements
About The Author

Introduction
Why I Wrote This Book

I discovered my love for software testing in 2009 when, after being laid
off from my job as a support person for a small tech start-up, I took a job as a
quality assurance intern at another company. On my first day there, I realized
that software testing was something I wanted to do for the rest of my life.

I wanted to learn everything I could about software testing, but I found
very few books that could teach me. I wound up learning through trial and
error, reading blog posts, and talking with my co-workers.

Today there are some excellent books about specific areas of software
testing, such as exploratory testing, Agile testing, and test automation, but
I’m not aware of any book that aims to be a complete reference on testing. I
started blogging about testing in 2012, and my occasional posts turned into
weekly posts in 2017. It occurred to me that these posts could serve as the
foundation for a comprehensive book on testing, and The Complete Software
Tester was born.

Who This Book Is For

This book is for anyone who cares about the quality of software. I wrote it
with new software testers in mind; this is the book I wish I could have read
when I was first starting out. You’ll learn what to think about when manually
testing an application, how web applications work, and how to create a test
plan.

Veteran testers will also find helpful information in this book. Manual
testers who want to start writing test automation will learn good coding
practices and automation basics. Experienced testers will be able to fill gaps
in their skill sets by learning about performance testing, security testing,
mobile testing, and accessibility testing.

Finally, software developers who want to learn more about the practice of

testing can read about techniques that will help them think like a tester.
Testing and development are two very different skills, and developers who
take the time to learn what to test will discover that they are now writing
better code.

What’s in This Book

This book is divided into 12 parts. Part I serves as an introduction to the
importance of software testing and software testers. Part II discusses manual
testing and all the potential bugs you can find through manually exploring an
application.

Part III looks at how web applications work, from authentication to
server-client interactions to HTML and CSS, because understanding the
structure of an application can help you create better test scenarios. Part IV is
devoted to API testing and includes step-by-step instructions for manual API
testing with Postman.

In Part V we look at the special testing requirements for mobile
applications. Parts VI, VII, and VIII focus respectively on security testing,
performance testing, and accessibility testing, which are helpful skills for any
tester who wants to completely test their application and differentiate
themselves from other testers.

In Part IX we look at software development basics. Many testers come to
the software testing field without a solid background in coding principles or
knowledge of how to use tools like the command line or version control
software. This section aims to fill in the knowledge gaps for those testers.
Part X surveys many types of test automation and is filled with examples to
demonstrate how they work.

Part XI is devoted to testing strategy. The most important quality of any
tester is the ability to think of all the ways an application can possibly go
wrong. Other important skills are the ability to prioritize testing needs and the
ability to make good choices about the right testing methods to use. In this
part of the book, you’ll learn to organize your test plans, reproduce tricky
bugs, and manage your test data.

Finally, Part XII covers the soft skills that all good testers need. Here
you’ll discover how to work effectively with software developers, get
organized, manage your time, and be your own champion in your testing
career.

It’s my hope that you will find this book to be a helpful resource
throughout your career, and that you’ll refer to it again and again whenever
you have a testing problem or want to improve your testing skills. Happy
testing!

Note
Occasionally in this book I refer to the Contact List app. This is a test

application that I wrote specifically for use with this book. You can find it at
https://thinking-tester-contact-list.herokuapp.com.
The API documentation for the app can be found at
https://documenter.getpostman.com/view/4012288/TzK2bEa8.

https://thinking-tester-contact-list.herokuapp.com
https://documenter.getpostman.com/view/4012288/TzK2bEa8

Part I: Why Do We Test?

Chapter 1: Why We Test
Most software testers, when asked why they enjoy testing, will say things

similar to the following:

● I like to think about all the ways I can test new features.
● It’s fun to come up with ways to break the software.
● I like the challenge of learning how all the parts of an application

work together.

I certainly agree with all of those statements! Testing software is creative,
fun, and challenging.

But this is not why we are testing. We test to learn things about an
application to ensure that our end users have a good experience with it.
Software is built to be used for something; if it doesn’t work well or
correctly, it is not accomplishing its purpose.

For example:

● If a mobile app won’t load quickly, users will stop using it or will
delete the app from their phone.

● If a financial app suffers a security breach, the company that
developed the app will lose customers and may even be sued for
damages.

● If an online store has a bug that keeps shoppers from completing
their purchases, the company will incur significant losses in sales.

There are even documented cases of people losing their lives because of
problems with software. In the 1980’s, three patients died when the Therac-
25 medical accelerator mistakenly delivered lethal radiation doses due to a
race condition in the software.

So, while it’s fun to find bugs, it’s also extremely important to find them.
And it’s even more important to remember that the true test of software is
how it behaves in production with real users. Often, testers keep their focus

on their test environment because that’s where they have the most control
over the software under test.

But I have seen situations in which testers did this and then were
surprised when users reported that the feature didn’t work in production! This
happened because they had hard-coded their environment variables to match
the test environment, and they didn’t bother to test the feature once it was
released to production.

Having features that work correctly in production is only one aspect of
quality. We also need to make sure pages load within a reasonable amount of
time, data is saved correctly, and the system behaves well under times of high
use.

Here are some questions to ask about any application you are testing:

● Is it usable?
● Is it reliable?
● Is your data secure?
● Do the pages load quickly?
● Are API response times fast?
● Do you monitor production use, and are you alerted automatically if

there’s a problem?
● Can you search your application’s logs for errors?

It’s fun to test and find bugs. It’s fun to check items off in test plans. It’s
fun to see test automation run and pass. But none of that matters if your end
user has a poor experience with your application. That is why we test.

Chapter 2: Think Like a Tester
In 2017, I attended a large international computing conference where not

a single workshop or presentation was focused on software testing. At this
conference, I met computer science students who didn’t even know software
testing was a career!

Many large software companies no longer employ software testers,
feeling sure that software developers are all they need to validate the quality
of their software. And many developers focus solely on test automation,
working from acceptance criteria in development stories and looking at the
code rather than manually interacting with the software. How is that trend
working out for end users?

Just last year, I experienced the following three bugs in three weeks:

● I received a (legitimate) email informing me that I had some money
to accept from an online payment service. The email included an
Accept the Money button to click. When I clicked it, I got this
message: “The previous page is sending you to an invalid URL.”

● When I was using a mobile app, a screen that I needed never loaded,
staying permanently blank.

● While I was writing a blog post, my blog hosting service
experienced a page load error when I tried to add an image.

Three weeks, three major companies, three bugs. This is what comes
from not employing people who think and act like testers.

It’s true that the whole software development team owns quality and that
quality is everyone’s responsibility. There are many people on a software
development team who care deeply about certain areas of an application:

● Developers write unit and integration tests to check the quality of
their code.

● Product owners care whether the feature does what it’s supposed to
do.

● UX designers care whether the user journey is intuitive.
● Security testers check the software for vulnerabilities.
● Performance engineers care about the application’s response time.

But only true software testers care so much about the quality of the
application that they’ll do things like the following:

● Type ~!@#$%^&*()-=_+{}|[]:”;'<>?,./ into every text field to test for
invalid character handling

● Try to purchase -1, 99999999999, 1.3415, and foo of something
● Enter a birth year of 3019 to see what happens
● Click every button twice to check for multiple submissions
● Click the forward and back buttons on every page of a website
● Test 48 different permutations of feature sets to be as thorough as

possible
● Create dozens of test users with myriad security settings to have a

variety of scenarios ready for testing at a moment’s notice
● Become experts on a particular feature and provide documentation

and assistance to other testers
● Test the same feature in the QA, staging, and production

environments to be absolutely sure it is working everywhere
● Test every feature on every supported browser and every supported

mobile device

This is why we need software testers who test. We need people who will
continually ask themselves: “How can we break this?” “What haven’t we
tested yet?” and “What features will be used with this?” We need software
testers who don’t rush into writing automation without first interacting with a
feature. We need software testers who remember that the goal of all their
efforts is to give the user a positive, bug-free experience.

Chapter 3: Why We’ll Always Need
Software Testers

A current positive trend in the software industry is to have the whole team
own quality. This means software developers think about quality in their
code, test their own code, and develop and contribute to test automation
frameworks. Some companies have taken this trend to mean dedicated testers
are no longer needed. But this is not the case! Following are three reasons we
will always need software testers.

Reason #1: Teams Change

Life brings about changes, and even a perfect team doesn’t last forever. A
team member could retire, take another job, or move to another team. New
members could join the team. I’ve heard that every time a team changes by
even one person, it becomes a brand-new team. This means there will be new
opportunities to coach the team to build in quality.

Even if the team members don’t change, other changes can occur that can
challenge a team, such as a new technical problem to solve, a big push
toward a deadline, or a sudden increase in the number of end users. All of
these changes might result in new testing strategies, which means the team
will need a software tester’s expertise.

Reason #2: Times Change

When I started my first software testing job I had never heard of the Agile
model of software development. But soon it became common knowledge,
and now practically no one is using the old Waterfall model. Similarly, there
was a time when I didn’t know what CI/CD (Continuous
Integration/Continuous Deployment) was, and now it’s a goal for most teams.
There are pushes to shift testing to the left (unit and integration tests running
against a development build), and to shift testing to the right (testing in
production).

Some of these practices may prove to be long-lasting and some will be
replaced by new ideas. Whenever a new idea emerges, new ways of thinking
and behaving are necessary. Software testing experts will be needed to
determine the best ways to adapt to these new strategies.

Reason #3: Technology Changes

The tools and languages that are in use today won’t be in use forever.
Someone will come along and create a newer, more efficient tool or language
that will replace the previous one. For example, Cypress recently emerged as
an alternative to Selenium WebDriver, which has been the automated
browser testing tool of choice for years. And many companies are moving
toward cloud providers such as Amazon Web Services or Azure Web
Services to reduce the processing load on their servers.

When a team adopts a new technology there will always be some
uncertainty. As a feature is developed, changes may be made to the
configuration or coding strategy, so it may be unclear at first how to design
test automation. It can take a team a while to adapt and learn what’s best. A
testing expert will be very valuable in helping to make these decisions.

Change happens, and teams must adapt to change; therefore, it is helpful
to have a team member who understands the best way to write a test plan,
conduct exploratory testing, or evaluate risk. Don’t go looking for a job as a
software developer! Your testing expertise is still needed.

Part II: Manual Testing

Chapter 4: Testing a Text Field
The most basic field in a web application is the text field. It seems so

ordinary, and yet it is one of the most important things we can test because
text fields provide an entryway into an application and its underlying
database. Validation on a text field is what keeps bad data from getting into
the database. Bad data can cause all sorts of problems for end users and
engineers. Validation can also prevent cross-site scripting (XSS) attacks and
SQL injection attacks.

There are myriad ways to test a text field. First, let’s imagine we are
testing a text field with absolutely no information about what it does:

● Click Submit without filling in the text field.
● Press the space bar several times in the text field and then click

Submit.
● See how many characters you can fit in the text field and then click

Submit.

● Fill the field with as many numbers as you can and then click Submit.
● Add a negative sign, fill the field with as many numbers as you can,

and then click Submit.
● Enter every nonalphanumeric field on the keyboard and click Submit.

If you get an error, see whether you can narrow down which key (or
keys) is causing the error.

● Enter non-ASCII characters and emojis and click Submit. If you get
an error, see whether you can narrow down which symbol (or
symbols) is causing the error.

● Try cross-site scripting by entering this script: <script>alert("I hacked
this!”)</script> Click Submit. If you receive a pop-up message, you
know the field is vulnerable to cross-site scripting.

● Try a SQL injection attack, such as: FOO'); DROP TABLE USERS;
— Click Submit. See whether the database table was deleted. Do not
try this on your production database!

Next, let’s assume you have some knowledge about what is supposed to
be entered into this text field and what the boundaries are on the data:

● Try entering a value that is a different data type from what is
expected; for example, if this text field is expecting a value of
currency, try entering a string or a date.

● If the field is expecting a string, try entering a string with one less
character than expected, one more character than expected, the lower
limit of characters expected, the upper limit of characters expected,
and twice the maximum number of characters expected.

● If the field is expecting a numeric value, try entering the maximum
value, the minimum value, a value above the maximum, a value
below the minimum, and a value twice the maximum value.

● If the field is expecting an integer, try submitting a value with a
decimal point.

● If the field is expecting a float, try submitting a value with two
decimal points.

● If the field is expecting a value of currency, try submitting a value
with more than two digits after the decimal point.

● If the field is expecting a date, try entering the maximum date, the
minimum date, one day over the maximum date, one day before the

minimum date, and a date 100 years above or below the limit.
● For date fields, try entering a date that doesn’t make sense, such as

6/31/17 or 13/13/17.
● If the field is expecting a time, try entering a time that doesn’t make

sense, such as 25:15.
● If the field is expecting a phone number, try entering a number that

doesn’t conform to the expected format.

For all the preceding tests, find out what sort of error message you are
supposed to be receiving, and verify that you are getting the correct message.

Finally, let’s think about automation. Assuming you have thoroughly
tested your text field manually, it’s probably not necessary to automate every
single one of your tests. Moreover, most forms have more than one text field,
and having many tests for each individual field could result in many time-
consuming tests. Nonetheless, there are some tests that you might want to
automate. Here are a few suggestions:

● Submitting a null value
● Submitting an empty string
● Submitting a value that meets the testing criteria (the happy path)
● Submitting the maximum number of characters or maximum value
● Submitting the minimum number of characters or minimum value
● Submitting just above the maximum number of characters or

maximum value
● Submitting just below the minimum number of characters or

minimum value

This list of tests is not meant to be exhaustive; it’s just a way to get you to
start thinking about the vast number of tests you can run on a single field.
Never assume the developer who coded the field has put in the appropriate
validation; check it for yourself! I once tested a date field that had a limit put
on the year that could be entered: it couldn’t be before 1900 or after the
present year. While I did receive the appropriate message when I entered a
value of 1880, I discovered I could enter a date from the year 1300!

Chapter 5: Break Your App with This One
Weird Trick

Sometimes the same bug can pop up in more than one place, and we can
miss it every time. This happened to me once while I was testing file uploads
and downloads. When the developers on my team initially coded the upload
functionality, I dutifully tested all kinds of filenames: long names, short
names, names without extensions, names with capital letters, and so on.
Everything looked great, but I had missed one important test: names with
spaces. I had tested only one-word filenames, like sunrise.jpg. I had forgotten
to test names like Grand Canyon.jpg, and as it turned out, uploads with
spaces in them weren’t working correctly.

Spaces are easy to forget to test because they are invisible! That’s why
it’s important to test with spaces in all text fields, not just filename fields. For
example, when you are testing a first name field, make sure you test it with a
first name that consists of two words, such as Mary Jo.

It’s also important to remember to test with leading and trailing spaces for
cases in which users mistakenly hit the space bar when entering text.
Although your developer should be trimming this whitespace when
processing input, if they forget to do this, it can cause trouble. For example,
you may wind up in a situation where you want to sort a list of names
alphabetically by last name, but the name Smith appears at the top of the list
because someone entered “ Smith”, with a leading space.

Similarly, your users might have problems logging in to your application
even though they are using the right username. This could occur because
when they set their username they accidentally put a space at the end of the
name and the space was not trimmed by the developer. As a result, they are
trying to log in with “catLover” when they should be logging in with
“catLover ”.

Back to my story: after the bug with file uploads was discovered and
fixed, I carefully tested uploads again, this time being sure to include

filenames with spaces in the beginning, middle, and end of the name.

Our next development task involved the ability to resize a file upon
request. When this functionality was ready I started running all kinds of tests:
resizing by height only, by width only, and by height and width; resizing
various file types; and so on. While I was testing, the developer who worked
on the feature mentioned he had just discovered a bug: the files wouldn’t
resize if they had spaces in their names, because the spaces weren’t being
encoded properly. I’d like to think I would have discovered this eventually,
but who knows? I was more focused on the new functionality than I was on
regression testing.

The bug was fixed, and I carefully retested the resizing functionality. I
added spaces in the beginning, middle, and end of the filenames and I used
every kind of special character on my keyboard. Surely, I thought, this must
be the end of this bug.

Our next development task concerned checking the size and type of files
being uploaded. We didn’t want to be able to upload a file if it was larger
than the application was told to expect, or if it was the wrong file type. I
tested with all kinds of file sizes and types and all kinds of mismatches. With
each mismatch, I verified that the file was checked and rejected. I did a great
deal of regression testing as well. It occurred to me to test this functionality
using different filenames, but since I had already verified that filenames of all
kinds were working with the resizing capability, doing it here seemed like
overkill, so I chose not to do it.

I was wrong! As it turned out, the system that was handling file type
checking was different from the system that was handling file resizing, and
once again, spaces in filenames weren’t being encoded properly. A developer
noticed the system was not checking files that had spaces in their names. I
was bitten by the filename space bug once again.

It’s amazing how many things one simple space can break! When you are
testing anything that can accept text, from a simple form field to a file upload,
be sure to remember those invisible spaces.

Chapter 6: CRUD Testing
In spite of its unappealing name, CRUD testing is extremely important!

CRUD stands for Create, Read, Update, and Delete. Much of software testing
involves these operations.

Let’s take a look at how CRUD works. Imagine you have a simple form
that is designed to add a user to the system:

● When you add a new user to the system, that is a Create operation.
● When you retrieve the user’s information, that is a Read operation.
● When you edit the user’s information, that is an Update operation.
● When you delete the user from the system, that is a Delete operation.

The most important thing to know about CRUD testing is that it’s not
enough to rely only on what you see in your UI (user interface, or what you
see on the computer screen) to confirm that a field’s value has been created or

changed. This is because the UI will sometimes cache a value for more
efficient loading in the browser. To be absolutely sure the value has changed
you must check the database where your value is stored. So when you do
CRUD testing, you should be confirming that your value is set in two places:
the UI and the database.

How to Test a Create Operation

For the simple form in the preceding illustration, we’ll enter the user’s
first name into the text field and click Submit. Then we’ll look at the Users
page of our imaginary application and verify that the new user is present:

And there it is! Finally, we need to query our database to make sure the
value was saved correctly there. In our imaginary database, we can do this by
running:

SELECT * from Users

This will give us a result that should include a record with an id of 1 and a
firstName of Fred.

To thoroughly test the Create function, we’ll need to test with both valid
and invalid input. Let’s imagine our first name field has the following rules:

● It is a required field.
● It must have at least two characters.
● It must have 40 or fewer characters.
● It should only have alphanumeric characters or hyphens and

apostrophes; no other symbols are allowed.

To test these validation rules, we can first submit valid entries of all kinds
and verify that they have been saved to the database. Then we can try
submitting invalid entries that break one or more of the aforementioned rules
and verify that we get an appropriate error message and that the value is not
saved to the database.

How to Test a Read Operation

We actually started testing the Read operation when we checked the
Users page to verify that our new user was added. But there is something else
that is important to test: we need to find out what happens when bad data is in
the database and we are trying to view it in the UI.

Here’s what bad data might look like in the database:

As we discussed earlier, the first name field has some conditions: it is a
required field, it must have at least two characters, it must have 40 or fewer
characters, and it should only have alphanumeric characters or hyphens and
apostrophes. As we can see in our table, we’ve got lots of bad data:

● User 2 has no data in the first name field.
● User 3 has an empty string for a first name.
● User 4 is violating the rule that the name must have 40 or fewer

characters.
● User 5 is violating the rule that only hyphens and apostrophes are

allowed for symbols.

What should happen when we view the Users list in our application? That
will depend on what the product designers decide. They may choose to
display bad data as long as it is not a security risk like the first name for user
5, which is actually a stored XSS attack. Whatever the rules are for display,
it’s important to test that those rules are respected.

You may be saying to yourself (or a developer may be saying to you),
“Displaying bad data won’t be an issue, because we are putting good
validation in place to make sure bad data won’t get in the database to begin
with.” While this is absolutely standard practice today, there will always be
cases where bad data will slip in. I once tested a PATCH operation that
allowed phone numbers to be inserted into a record. Although validation was
taking place when the PATCH body was formed correctly, I discovered an
edge case in which the data was accepted without validation if the PATCH
body was formed incorrectly. This bug was allowing bad phone numbers into
the database.

How to Test an Update Operation

In our discussion of the Read operation, I mentioned how important it is
to test scenarios in which the data in the database is invalid. This is also true
for Update operations. Just because a text field is supposed to be required and
to have a certain number of characters doesn’t mean that’s how it is currently
represented in the database!

Following is a matrix of testing scenarios for editing the text field. As
with the Create operation, we need to be sure to test that the newly edited
field is correct in the UI and in the database after the update:

Be sure to vary the bad values you are testing with so that you are
covering a number of different validation scenarios. For the good values you
are testing with, make sure you test hyphens and apostrophes, numbers and
letters, and the upper and lower limits of the character count.

I once encountered a situation in which I was testing a person’s contact
information. There were a number of incorrectly formatted phone numbers in
the database. When I tried to update any of the person’s contact information,
I received a message stating that the record couldn’t be updated because
invalid data was present. This occurred even when I was trying to update the
invalid phone number in question!

How to Test a Delete Operation

The main thing to test with a Delete operation is that the value has been
deleted from both the UI and the database. But just as with Read and Update,
you’ll want to make sure you can delete bad values. For example, if your first
name field has 41 characters in it (violating the rule that no more than 40
characters should be added), you’ll want to make sure you can delete it in the
UI.

You may be wondering how to find all these invalid values for testing.
While it is possible to find them by searching through the existing records,
the easiest way to test them is to put them in yourself. This is why it’s
important to be familiar with the query language for the database your
application is using. We’ll discuss databases in Part III.

Chapter 7: Testing Postal Codes
A text field with a postal code looks so simple, and yet it can be one of

the most complex things to test on a form. There are two important questions
to ask before you start testing postal codes:

● What countries does the application support?
● What formats will the application accept for postal codes?

In the United States there are two formats for ZIP codes: the traditional
five-digit format, as in 10012, and the ZIP+4 format, as in 10012-1234. The
latter format is where the second question comes into play. Will the
application be accepting ZIP+4 codes? Will it require the hyphen between the
first five digits and the next four digits, or will it accept a space as well?
What about just nine straight digits, with no hyphen or space in between? If
nine straight digits will be accepted, it’s important to also verify that six,
seven, and eight digits will not be accepted.

There is another very important thing to test with U.S. ZIP codes: the
leading zero. Often, applications will strip leading zeros off a number upon
submission. If your application uses U.S. ZIP codes, it’s important to test that
ZIP codes submitted with a leading zero are saved correctly to the database.

In Canada, postal codes are six characters long and follow this pattern of
letters and numbers: A1A 1A1. It’s important to clarify with the developer
whether the space between the two groups of three characters will be
expected or whether you can submit the code with no space. The validation
should expect the correct letter–number pattern and should reject postal codes
that begin with a number instead of a letter.

Many countries have five-digit codes, and some, such as Russia and
India, have six-digit codes; both are easy to validate. But consider Great
Britain, whose postal codes consist of two sections: the first section can have
between two and four characters and the second section always has three
characters. There is a space between the two sections, and the postal code

always starts with a letter, not a number. When testing these postal codes, be
sure to try several different, valid codes from various places in Great Britain,
with two, three, and four characters in the first section. You can also test with
codes that have the right number of characters but have the space in the
wrong place, or with codes that have a number as the first character.

If your application expects postal codes from more than one country,
there is a third question to ask:

● Is there a separate validation pattern for each type of postal code?

If the answer is yes, the script may first look to see what country the
address contains and then use the appropriate validation. In this case, it’s a
good idea to test that you can’t choose United States for your country and
then add A1A 1A1 as the postal code. Alternatively, the validation pattern
may be chosen based on the number of characters submitted. If six or seven
characters (including the space) are submitted, a Canadian validation pattern
could be used. If five, nine, or 10 characters (including the hyphen) are
submitted, a U.S. validation pattern could be used. Understanding what
validations the developer is using will allow you to craft appropriate test
cases. For example, in a scenario where only U.S. and Canadian postal codes
are used, eight characters should never be accepted.

It’s also possible that your developer has used a universal postal code
validation pattern. In the Contact List app I wrote for use with this book, I
used the npm validator package. I set the validator to check for a valid postal
code without knowing what country has been chosen. The validator checks
the postal code against formats from all over the world.

Remember to verify that the valid postal codes you have submitted have
been saved correctly to the database, that invalid postal codes return an
appropriate error and are not saved to the database, and that retrieved postal
codes are displaying correctly. If there are already invalid postal codes in the
database due to poor validation practices in the past, be sure to verify that it’s
possible to edit both invalid and valid postal codes.

Asking the questions listed in this chapter can help you and your
developer recognize potential issues with postal code validation before

testing has begun.

Chapter 8: Testing Date Fields
Date fields are another data type that seems simple to test. After all, dates

are standard throughout the world: there’s a month, a day, and a year. But as
you will learn in this chapter, there are many factors to consider and many
scenarios to test.

There are three main areas to think about when testing a date field:

● What format will be accepted?
● How will the date be stored in the database?
● How will the saved date be displayed?

There are many ways to format a date when entering it into a form. One
very important factor to consider is whether the system is expecting the
format used in the United States—month, day, year—or the format that is
more common in other parts of the world—day, month, year. For example, if
I try to enter 12/13/2017, it won’t be accepted if the form was expecting a
day-month-year format, since there is no 13th month. Likewise, if I enter July
4, 2018, as 7/4/18, it may be saved to the database as April 7.

Beyond day-month versus month-day formatting, there are still myriad
ways to format dates. For example, will all four digits of the year be
expected, or is it possible to enter just the last two digits? Will single-digit
months and days be allowed, or is it necessary to precede those digits with
zeros, as in 07/04/2018? What about spelling out the month, as in December
13, 2017? The developer should have a clear idea of what format or formats
will be allowed and should clearly communicate it to the user. For example, a
tooltip such as “mm/dd/yyyy” can be used inside the field to help the user
know what format to use. In the Contact List app, I am expecting the date
field to be in yyyy-MM-dd format, and I’ve included a tooltip that shows this.

Regardless of whether a tooltip is in place, it is important to test with a
number of different date formats to ensure that an appropriate error message
is displayed when the expected format is not followed. It is also important

that the date itself is checked to be sure it is a valid date; for example,
2/30/2016 should never be allowed, nor should 18/18/18.

Now let’s consider whether the date will be stored in the database as a
datetime field or as a string. Storing the date as a string can be problematic,
for a few reasons. If the accepted format changes over time or if good
validation was not in place in the past, the database could contain dates saved
in two different formats: for example, 7/4/2017 and December 13, 2017. This
will make it difficult to display the data in a consistent style. In addition,
dates stored as strings are difficult to sort correctly by ascending or
descending date. For instance, 2017-12-13 might be displayed before
3/7/2017 in an ascending sort. It is therefore best to store dates as datetime
fields whenever possible, and testers should check for this.

The way dates are displayed is important as well. When a user calls up
saved information, they should be able to read the dates easily; 2017-12-
13T00:00:00 might be how a date is saved in the database, but a user won’t
be able to quickly interpret this date. The developer or designer should decide
what date format would be best for display purposes and use it consistently
throughout the application. Similarly, they should consider what should
happen in the case of bad data. What if a date is saved in the database as
simply December 13? Should it be displayed as 12/13/0000? Should it not be
displayed at all? These are important scenarios to consider and test.

There is one final point to consider when testing date fields, and that is
the upper and lower limits of the date. For example, are dates in the future
ever allowed? What about dates from 100 years ago? Remember that the
future and the past change every day! Let’s say our application doesn’t allow
dates in the future. This means that as I’m writing this, 12/13/2025 is not an
allowed date in our application. But in a few years, 12/13/2025 will be
allowed. And of course, you may be reading this book years in the future, at
which time 12/13/2025 will be a thing of the past!

Chapter 9: Testing Phone Number Fields
Phone number fields are, without a doubt, the most time-consuming fields

I have ever tested. Why do they cause so many headaches? Because, as we
saw with postal codes, there are so many ways to get them wrong.

Let’s take a look at some phone number patterns from around the world:

● In Mexico, phone numbers are 10 digits, plus an area code of either
two or three digits. So the local number will be either 12 or 13 digits.

● In Italy, landline numbers are generally nine to 11 digits, but some
can be as short as six. Mobile numbers are usually 10 digits, but
there are also some nine-digit numbers.

● In Japan, phone numbers have an area code, an exchange number,
and a subscriber number. Area codes can have from two to five
digits. Generally, the entire number is limited to nine digits, so if the
area code is longer, the exchange and subscriber numbers will be
shorter.

International calling codes differ as well, ranging from one digit (such as
+1 for the United States) to three digits (such as +351 for Portugal). So,
between the international calling code and the phone number itself, the
number of digits that might be expected for a phone number can vary widely.

Finally, let’s think about number separation. While U.S. numbers are
always separated in a 3-3-4 pattern, in other countries the numbers can be
grouped in various ways. For instance, here are just some of the ways that
phone numbers are grouped in England:

● (xxx) xxxx xxxx
● (xxxx) xxx xxxx
● (xxxxx) xxxxxx
● (xxxx xx) xxxxx

With all of this variation to consider, how on earth can we validate
international phone numbers?

Fortunately, developers don’t have to try to come up with a validation
regex on their own; that would make them (and you) go crazy! Rather, an
international phone number formatting standard called E.164 has been
developed, and many companies, including Microsoft and Google, have
come up with regex patterns that can be used for E.164 validation. For
testing, there are free websites that will let you know whether an international
phone number is valid. You can create a list of international numbers to test,
verify with the website that they are valid, and then try them in your
application. For negative testing, simply use a sampling of invalid numbers
and verify that you get an appropriate error message.

If you are fortunate enough to be testing a new application with no
existing data, you can fend off most phone number headaches by clearly
establishing validation rules for phone number fields. The easiest type of
validation is one that accepts digits and no other characters. The developer
can rely on UI formatting to put the number in an easily readable format,
rather than allowing the user to do it themselves. This is the best course of
action for U.S. phone numbers because it avoids ambiguity and ensures
consistency. Otherwise, some users might enter numbers using only dashes,
as in 800-867-5309, while others enter numbers using parentheses and a dash,
as in (800) 867-5309. For international phone numbers, it may be difficult for
the developer to determine what format to use. In this case, allowing the user
to choose their formatting might be the best thing to do. In the Contact List
app, I am using the npm validator package to validate that the phone number
is valid, but I am also allowing the user to determine what formatting is best
for display.

Many developers try to accommodate all styles by creating their own
validation regex, but this makes things much more complicated. If the
developer doesn’t develop a good regex, a user could type in something like
((800)–867 5309 and the number will be accepted. When you are testing the
phone number field, try entering values like 800–867–5309, 800(867)5309,
and 8-0-0-867-5309. After you have demonstrated that it’s possible to enter a
badly formatted phone number, the developer’s strategy may change!

As I mentioned earlier when discussing dates, it’s very helpful to have
hints in the UI so that the user knows what format to use. Providing a tooltip
or an example number in the phone number field is a great way to
communicate to users what they should be adding: for instance, “Include
your country code at the beginning of the number” or “8005551234”.

Now it’s time to think about how bad phone numbers will be displayed to
the user. If a number has been saved with formatting, will it be displayed
with that formatting? Will some attempt be made to strip the formatting? Will
it be displayed at all? I have seen all kinds of bad numbers in databases. One
of my favorites was “dad’s office number”. No one can format that! A good
strategy for formatting a number is to strip out all the non-number characters
and then add whatever format is desired for display. For example, if the
phone number is 11 digits and starts with a 1, the leading 1 could be stripped
off and then the number could be formatted for display. With any other
values, the “number” could be displayed as is, or it could not be displayed at
all. Whatever is decided, it’s important to test with any bad numbers that are
currently in the database.

Another wrinkle not often considered is phone extensions. Many offices
still use extensions to direct a call to a specific person. Sometimes phone
fields allow extensions as part of the number, but this is a bad idea. How
might the user indicate that an extension is part of the number? Will they
enter 800-867-5309 ext. 1234? Or, perhaps, 800-867-5309×1234? Allowing
these types of variations will mean allowing letters and other characters,
which will make the phone number more difficult to validate. A far better
solution is to include a separate database field for an extension. If your
developer expresses interest in including the extension as part of the phone
field, some testing with entries like 8008675309extextext…1234 should
dissuade them.

Finally, remember to test the ability to edit phone numbers, especially
numbers that are in an incorrect format. What will happen when the user
enters an invalid phone number and tries to edit another field on the form?
Will they be notified upon saving that the number is incorrect and needs to be
fixed? This can be a good way to involve users in cleaning their own data.
What should happen when the user tries to fix an invalid number? Ideally,

they should be able to save the value with a new, valid number.

Chapter 10: Testing Buttons
Just like spaces, buttons tend to be easy to forget about. The Save button

is so ubiquitous that it seems like it would just automatically work. But
overlooking the testing of buttons on a page can also mean overlooking bugs.
Once, a tester told me about new functionality she was testing on an existing
web page. The new feature worked great, but her team had forgotten to test
the Delete button. It turned out that the developers had neglected to account
for the delete action in their new feature, and now Delete did nothing!

Here are a few things to do when testing buttons:

● Test the happy path of the button. Usually, buttons have some sort
of message on them that tells you what they are supposed to do. So
try it out and make sure the button delivers on its promise. Did the
Save button really save your data? Did the Delete button delete it?
Did the Clear button clear it? Did the Search button execute a
search? (A back button is also common, but back buttons are tricky
enough that I am saving them for Chapter 14.)

● Misuse the button. For example, quickly click the Save button twice
when adding data. Were two records saved instead of one? Does the
program get confused when you click a button twice? What about
when you quickly click one button and then another? One of the
most amusing bugs I found in my career was a Refresh button that
redrew the screen, making the button larger every time I clicked it.

● Make sure the button is there when it’s supposed to be. When we
spend a lot of time testing an application, it’s easy to get used to the
page and not notice when things are missing. Think about your user
stories when looking at the page. What would your user need when
doing certain activities on that page? Follow the path the user would
take and check for the buttons as you go.

● Think about when the button is enabled and when it is disabled.

Does it make sense? For example, is the Save button only enabled
when all the required fields on your form have been filled out? Is the
Clear button only enabled when a field has been dirtied? How do
you know the button is enabled? Can you tell by looking at it? Does
the button look enabled when it isn’t? Does the button look disabled
when it’s really active? What happens when you click the button and
it’s not enabled? Do the enabled and disabled rules for the button
make sense?

● See whether you can hack your buttons. For example, if you have
a Save button that is disabled on your form because some of the
required fields are missing, can you edit the HTML on the page so
that it is enabled, and can you then use the button? If you view the
HTML and you see there is a hidden button on the page, can you
make it visible and active? At best, a bug like that is an annoyance
that will allow inaccurate data into the database. At worst, the bug
represents a way that a hacker can infiltrate your system. Imagine
you have a button that should only be visible and enabled if the user
is an administrator. If a malicious user can make the button appear
on the screen and be active, they will have access to pages or
features that only an admin should have. Your developer should
include checks whenever a button is clicked to make sure the user
has the rights to do what the button does.

If you have never edited the HTML on a web page while testing, here are
a few simple instructions for the Chrome browser:

1. Click on the three-button menu at the upper-right of your screen
and choose More Tools, then Developer Tools. A new panel will
appear on the bottom or right side of your screen.

2. Right-click on the button you want to test, and click Inspect. In the
Developer Tools panel, the HTML for that button will now be
highlighted.

3. Right-click on that highlighted text and choose Edit as HTML. An
editable text window will open.

4. If you see text such as “'disabled'=disabled” delete the text. Click
away from the editable field and see whether your button is now
enabled. If it is, click on it and see what happens!

5. To find hidden buttons, look at the HTML in the Developer Tools
and use the search bar to search for “button”.

6. If you find a button with the markup “hide”, try changing it to
“show”. See whether you can get the button to appear on the page.

Buttons are one of the most important things to test. Just imagine a user’s
frustration if the button they are trying to use is disabled or doesn’t do what
they expect it to. By being diligent in our testing, we can ensure that our users
will want to continue using our application.

Chapter 11: Testing Forms
In the past few chapters, we looked at different types of text fields and

buttons; now we’ll discuss testing a form as a whole.

There are as many different ways to test forms as there are text field
types! And unfortunately, testing forms is not particularly exciting. Because
of this, it’s helpful to have a systematic way to test forms that will get you
through it quickly, while making sure you’re testing all the critical
functionality.

Let’s take a look at a systematic approach to testing a form.

Step 1: Required Fields

The first thing I do when I test a form is note which fields are required.
Forms often denote required fields with an asterisk. Let's imagine in this
scenario that the first name and last name are required. I want to verify that
the form cannot be submitted when a required field is missing and that I’m
notified of which field is missing when I attempt to submit the form.

1. I click the Save button when no fields have been filled out, and I
make sure all the required fields have error messages.

2. I fill out some nonrequired fields, click the Save button, and verify
that all the required fields have error messages.

3. I fill out the first name field, click the Save button, and verify that
the last name field has an error message. Then I fill out just the last
name field, click the Save button, and verify that the first name
field has an error message.

4. I fill out all the fields—required and nonrequired—except for one
required field, and verify that I still receive an error.

5. I fill out all the required fields, click the Save button, and verify
that no error messages appear and that the entered fields have been
saved correctly to the Contact List.

6. Finally, I fill out all the fields—required and nonrequired—and I
verify that no error messages appear and that the entered fields
have been saved correctly to the Contact List.

Step 2: Field Validation

The next thing I do is verify that each individual text box has appropriate
validation on it. First I discover what the upper and lower character limits are
for each text field. I enter data for all the required fields except for the one
text box I am testing. In that text box I do the following:

1. I try entering just one character.

2. I try entering the lower limit of characters, minus one character.

3. I try entering the upper limit of characters, plus one character.

4. I try entering a number of characters far beyond the upper limit.

In all of these instances, the form should not save and I should receive an

appropriate error message. Next:

1. I enter the lower limit of characters and verify that the form is
saved correctly.

2. I enter the upper limit of characters and verify that the form is
saved correctly.

Now that I have confirmed that the limits on characters are respected, it’s
time to try various letters, numbers, and symbols. For each text field, I find
out what kinds of letters, numbers, and symbols are allowed. For example,
the first name and last name fields should allow apostrophes (e.g., O’Connor)
and hyphens (e.g., Smith-Clark), but should probably not allow numbers or
other symbols. For each text field:

1. I try entering all the allowed letters, numbers, and symbols.

2. I try entering the letters, numbers, and symbols that are not
allowed, one at a time, until I have verified that they are all not
allowed.

For fields that have very specific accepted formats, I test those formats.
For instance, in the postal code field, I should be able to enter 03773-2817
but not 03773-28.

Even though I’ve already tested all the forbidden numbers and symbols, I
try a few cross-site scripting and SQL injection examples to make sure no
malicious code gets through. (Cross-site scripting and SQL injection will be
discussed further in Part VI.)

Step 3: Buttons

I have already used the Save button dozens of times at this point, but

there are still a few things left to test here. Also, I have not yet tested the
Cancel button. So:

1. I click the Save button several times in quick succession and verify
that only one instance of the data is saved.

2. I click the Save button and then the Cancel button in quick
succession and verify that the data is saved and there are no errors.

3. I click the Cancel button when no data has been entered and verify
that there are no errors.

4. I click the Cancel button when data has been entered and verify that
the data is cleared. I’ll try this several times, with various
combinations of required and nonrequired fields.

5. I click the Cancel button several times in quick succession and
verify that there are no errors.

Once I’ve gone through a form in this systematic way, I’ve almost
certainly found a few bugs to keep the developers busy. It’s tedious, yes, but
once the bugs have been fixed, I can move on to automation testing with
confidence, knowing that I have thoroughly tested the form.

Chapter 12: Four Reasons You Should Test
Input Validation (Even Though It’s Boring)

When I first started testing software, I found it fun to test text fields. It
was entertaining to discover what would happen when I put too many
characters in a field. But as I began my fourth testing job and discovered that
once again I had a contact form to test, my interest started to wane. It’s not all
that interesting to input the maximum number of characters, the minimum
number of characters, one too many characters, one too few characters, and
so on, for every text field in an application!

However, it was around this time when I realized that input validation is
extremely important. Whenever a user has the opportunity to add data in an
application, there is the potential for malicious misuse or unexpected
consequences. Testing input validation is a critical activity for the following
four reasons.

Security

Malicious users can exploit text fields to get information they shouldn’t
have. They can do this in three ways:

● Cross-site scripting: An attacker enters a script into a text field. If
the text field does not have proper validation that strips out scripting
characters, the value will be saved and the script will execute
automatically when an unsuspecting user navigates to the page. The
executed script can return information about the user’s session ID, or
even pop up a form and prompt the user to enter their password,
which then gets written to a location the attacker has access to.

● SQL injection: If a text field allows certain characters such as
semicolons, it’s possible that an attacker can enter values into the
field which will fool the database into executing a SQL command
and return information such as the usernames and passwords of all
the users on the site. It’s even possible for an attacker to erase a data

table through SQL injection.

● Buffer overflow attack: If a variable is configured to have enough
memory for a certain number of characters, but it’s possible to enter
a much larger number of characters into the associated text field, the
memory can overflow into other locations. An attacker can then
exploit this to gain access to sensitive information or even
manipulate the program.

Stability

When a user is able to input data that the application is not equipped to
handle, the application can react in unexpected ways, such as crashing or
refusing to save. Here are a couple of examples:

● My ZIP code begins with a 0. I have encountered forms where I can’t
save my address because the application strips the leading 0 off the
ZIP code and then tells me my ZIP code has only four digits.

● I have a co-worker who has both a hyphen and an apostrophe in his
last name. He told me that entering his name frequently breaks the
forms he is filling out.

Visual Consistency

A field with too many characters in it can affect the way a page is
displayed. This can be easily seen when looking at any test environment. For
example, if a list of first names and last names is displayed on a page of
contacts, you will often see that some astute tester has entered
“Reallyreallyreallyreallyreallylongfirstname
Reallyreallyreallyreallyreallylonglastname” as one of the contacts. If a name
like this causes the contact page to become excessively wide and require a
horizontal scroll bar, a real user who has a long name could potentially cause
the page to render poorly.

Health of the Database

When fields are not validated correctly, all kinds of erroneous data can be

saved to the database. This can affect both how the application runs and how
it behaves.

The phone number field is an excellent example of how unhealthy data
can affect an application. I worked for a company where phone numbers were
not validated properly for years. When we were updating the application, we
wanted to automatically format phone numbers so that they would display
attractively in this format: (800) 555-1000. But because phone numbers had
not been validated properly, people had been allowed to enter into the
database values such as “dad’s office number”. There was no way to
automatically format such values, and this caused an error on the page.

Painstakingly validating input fields can be very tedious, but these
examples demonstrate why it is so important. The good news is that there are
ways to alleviate the boredom. Automating validation checks can keep us
from having to manually run the same tests repeatedly. Monkey-testing tools
can help flush out bugs. And adding a sense of whimsy to testing can help
keep things interesting. I have all the lyrics to “Frosty the Snowman” saved
in a text file. Whenever I need to test the allowed length of a text field, I paste
all or some of the lyrics into the field. When a developer sees database entries
with “Frosty the Snowman was a j”, they know I have been there!

Chapter 13: Three Ways to Test Output
Validation

Output validation means checking that an application is returning the
correct data and displaying it correctly. There are three main things to think
about when testing outputs.

How Is the Output Displayed?

An example of an output that you would want to check for appearance is
a phone number. When a user adds a phone number to your application’s data
store it may be saved without any parentheses, periods, or dashes. But when
you display that number to the user, you probably won’t want to display it
this way, because it will be hard to read. You’ll want the number to be
formatted in a way that the user would expect: for example, something like
(800) 867-5309 for a number in the United States and 20 7373 8299 for a
number in Great Britain.

Another example is a currency value. If financial calculations are made
and the result is displayed to the user, you wouldn’t want the result displayed
as $45.655, because no one makes payments in half-pennies. The calculation
should be rounded or truncated so that there are only two digits after the
decimal.

Will the Result of a Calculation Be Saved Correctly in the Database?

Imagine you have an application that takes a value for x and a value for y
from the user, adds them together, and stores them as z. The data type for x, y,
and z is set to tinyint in the database. If you’re doing a calculation with small
numbers, such as when x is 10 and y is 20, this won’t be a problem. But what
happens if x is 255—the upper limit of tinyint—and y is 1? Now your
calculated value for z is 256, which is more than can be stored in the tinyint
field, and you will get a server error.

Similarly, you’ll want to make sure your calculation results don’t go

below zero in certain situations, such as with an e-commerce app. If your user
has merchandise totaling $20 and a discount coupon for $25, you don’t want
to have your calculations show that you owe them $5!

Are the Values Being Calculated Correctly?

This is especially important for complicated financial applications. Let’s
imagine we are testing a tax application for the Republic of Jackvonia. The
Jackvonia tax brackets are simple:

There is only one type of tax deduction in Jackvonia, and that is the
dependents deduction:

The online tax calculator for Jackvonia residents has an income field,
which can contain any dollar amount from $0 to $1million, and a dependents
field, which can contain any whole number of dependents from 0 to 10. The
user enters those values and clicks the Calculate button, and then the amount
of taxes owed appears.

If you were charged with testing the tax calculator, how would you test
it? Here’s what I would do:

1. First I would verify that a person with $0 income and 0 dependents
would owe $0 in taxes.

2. Next I would verify that it was not possible to owe a negative
amount of taxes; if, for example, a person made $25,000 and had
three dependents, they should owe $0 in taxes, not −$50.

3. Then I would verify that the tax rate was being applied correctly at

the boundaries of each tax bracket. So a person who made $1 and
had 0 dependents should owe $.01, and a person who made
$25,000 and had 0 dependents should owe $250. Similarly, a
person who made $25,001 and had 0 dependents should owe
$750.03 in taxes. I would continue that pattern through the other
tax brackets, and I would include a test with $1 million, which is
the upper limit of the income field.

4. Finally, I would test the dependents calculation. I would test with
one, two, and three dependents in each tax bracket and verify that
the $100, $200, or $300 tax deduction was being applied correctly.
I would also do a test with four, five, and 10 dependents to make
sure the deduction was $300 in each case.

This is a lot of repetitive testing, so it would be a good idea to automate
it. Most automation frameworks allow a test to process a grid or table of data,
so you could easily test all of the preceding scenarios, and even add more
scenarios for more thorough testing.

Output validation is so important because if your users can’t trust your
calculations, they won’t use your application! Start by testing common
scenarios and then design tests that verify the correct functionality, even in
boundary cases.

Chapter 14: Testing Back Buttons
The back button is so ubiquitous that it is easily overlooked in web and

application testing. There are many different types of back buttons. The two
major types are those that come natively with the browser or operating
system and those that are added to the application by the developer.

Native buttons can be embedded in the browser, embedded in a mobile
application, or included in the hardware of a mobile device. In the Chrome
browser, for example, there is a back button in the toolbar in the upper-left of
the screen. Android devices generally have a back button at the bottom of the
screen that can be used with any application. And most iPhone apps have a
back button built in at the top of every page.

Developers add back buttons when they want to have more control over
the user’s navigation. For example, a developer might include breadcrumbs,
which display where the user has been in the workflow of an application. The
user can click on a previous link to go back to the page they were on before.

When you are testing websites and applications, it’s important to test the
behavior of all of your back buttons, even those your team didn’t add. The
first thing to do is to think about exactly where you would like those buttons
to direct the user. This seems obvious, but sometimes you do not want your
application to go back to the previous page. For example, when a user has
finished making an online purchase, they shouldn’t be able to use the back
button to return to the purchase page, because the transaction is already
finished.

Another thing to consider is how you would like back buttons to behave
when the user has logged out of the application. In this case, you don’t want
to be able to backtrack into the application and log the user in again, because
this would cause a security concern: if the user was on a public computer, the
next user would be able to access the previous user’s account.

For back buttons on mobile devices, think about what behavior you

would like the button to have when you are in your application. A user will
be frustrated if they are expecting the back button to take them elsewhere in
your app, but instead it takes them out of the app entirely.

If your application has a number of added back buttons, be sure to follow
them all in the largest chain you can create. Look for errors in logic where the
application takes you to someplace you weren’t expecting or for memory
errors caused by saving too many pages in the application’s path.

You can also check whether the back button is enabled and disabled at
appropriate times. You don’t want your user trying to click on an enabled
back button that doesn’t go anywhere!

In summary, whenever you are testing a web page or an application, be
sure to note all the back buttons that are available and all the behaviors those
buttons should have. Then test those behaviors to make sure your users will
have a positive and helpful experience.

Chapter 15: Six Tips for File Upload Testing
Testing file uploads is important because uploading a malicious file is one

of the ways a bad actor can exploit your application, either by taking it down
or by extracting sensitive data from it. In this chapter, I offer six tips to help
you be successful with testing file uploads.

Tip #1: Upload Files with Allowed and Forbidden Extensions

The first step in testing file uploads is to find out what kinds of files can
be uploaded. These file types should be compiled into an allowlist, which
would specify the extensions that are allowed. They should not be compiled
into a denylist, which would specify the extensions that are not allowed. As
you can imagine, when a denylist is used, dozens and dozens of file types
will be allowed, some of which you will not want in your application!
Therefore, it’s important to use an allowlist instead, which will be limited to
the very few file types that you want interacting with your application. If
your developers are not using an allowlist, please share this information with
them.

Once you know what the allowlisted file types are, try uploading each
type. Then try uploading a wide variety of files that are not allowlisted. Each
of those files should be rejected with an appropriate error message for the
user.

Tip #2: Upload Files with Inaccurate Extensions

One of the tricks malicious users employ to upload forbidden files is to
rename a malicious file with an allowed extension. For example, a bad actor
could take a .js file and rename it as a .jpg file. If .jpg files are allowed in
your application, the file might be uploaded and then executed when it’s
opened by an unsuspecting user. So it’s important for your application to
have checks in place that not only verify the extension, but also scan the file
to verify its type.

It’s easy to test this. Simply rename a forbidden file with an allowed

extension and try to upload the file. The file should be rejected with an
appropriate error message. The attempt should also be logged by the
application so that if there is ever an upload attempt of this kind in
production, your security team can be alerted.

Tip #3: Test for Maximum File Size

Your application should specify a maximum file size. Files that are too
big can cause damage to your application, either by slowing it down or by
causing it to crash. They can even cause data to be accidentally exposed, such
as in a buffer overflow exploit.

Find out what your application’s maximum file size is, and verify that
files equal to and smaller than that size are uploaded appropriately. Then
verify that files over that maximum size are rejected with an appropriate error
message. Be sure to test with files just over the maximum size as well as with
files well over the maximum size.

Tip #4: Test with Animated GIFs

Often, when image uploads are allowed in an application, the .gif
extension is one of the allowed types. GIFs can sometimes contain animation.
Verify with your team whether your application will allow animated GIFs,
and if not, verify what should happen if a user uploads one. Will the file
display as a static image, or will the file be rejected? Make sure that
uploading an animated GIF does not result in a broken image on the page. If
animated GIFs are accepted, verify that they load and display the animations
properly.

Tip #5: Verify That the File Was Uploaded Correctly

It’s not enough to verify that you don’t get an error message when you
upload an allowlisted file. You also need to verify that the file was saved to
the database correctly. The easiest way to do this is to download the file and
make sure it looks the same way it did when you uploaded it. If your file
should be displayed in the UI, you should make sure the file looks correct in
a browser and on a mobile device. If an image that you uploaded should be
resized on the page, make sure it has resized correctly. You don’t want to

have other data obscured because someone uploaded an image that’s too
large! If you are expecting a video or audio file to play, make sure it’s
playable.

Tip #6: Have a Folder with File Examples for Testing

This is my favorite tip. I have a folder containing dozens of files with
different extensions and sizes. Whenever I need to test file uploads, I’m ready
to go with test files and I don’t have to waste time combing the internet for
good examples to use.

Chapter 16: Testing the Login Screen
The login screen is the first line of defense between your application and

a malicious unauthorized user. But it’s so easy to forget about testing the
login screen! This is because as a tester, you are in the application every
single day. Getting past the login screen is a step you take dozens of times a
day to get to whatever feature you are currently testing.

Let’s take some time to look at the various ways we should be testing
login screens.

First, make sure the password field masks text while you’re typing in it.
Also ensure that both the username and password fields are expecting case-
sensitive text. In other words, if your username is “FOO” and your password
is “bar”, you should not be able to log in with “Foo” and “Bar”. If the
username is an email address, however, it usually does not expect case-
sensitive text.

Next, find out what the validation requirements are for the username and
password fields. How short can the values be? How long can they be? What
characters will be accepted? Verify that the length requirements are respected
in both fields, then test with every nonaccepted character that you can think
of. Be sure to test with non-UTF-8 characters and emojis as well. Several
years ago there was a story circulating the internet about a bank customer
who broke the application by setting her password to have an emoji in it!

Also be sure to test for SQL injection. For example, if you enter 1 or 1 =
1 into the password field, you may be telling the database to return “true” and
allow the login because, of course, 1 always equals 1.

Now let’s test with every possible combination of username and
password state. Each field can be either empty, incorrect, correct but with the
wrong case, or correct. This generates 16 possible combinations:

It may seem like overkill to test all these combinations, but I have tested
applications where I could log in with an empty username and password and
with an incorrect username and password!

Another helpful thing to test is putting an empty character or two at the
beginning or end of the fields. When the user submits their login request,
empty characters should be stripped from these values. If this does not
happen, the user may wind up in a situation where they have typed their
correct password, “bar ”, but the password is not accepted because of the
space at the end. This is very frustrating for an end user who doesn’t know
the empty character is there.

Next, let’s think about the kind of error message you are getting when
you try to log in with invalid credentials. You don’t want to give a malicious
user any hints about whether they have guessed a username or password
correctly. If the malicious user types in “FOO” for the username and
“password” for the password, you don’t want to return a message that says
“Invalid password”, because this will let the malicious user know the
username is correct! Now all they have to do is keep the username the same
and start guessing at the password. It is much better to return a message like
“Invalid credentials”.

Now let’s take a look at what is passed into the server when you are
making a login request. Open the developer tools for the browser you are

using and watch the request that goes through. Do you see the username or
the password in clear text anywhere? If you do, this should be fixed!
Usernames and passwords should be encrypted in the request. You can also
check the request by using an interception tool like Fiddler or Burp Suite.
(More on intercepting requests in Part VI.)

Once you have logged in with the correct credentials, take a look at the
cookie or session ID that has been set for your user. Do you see the username
and password anywhere? All cookies, web tokens, and session IDs should not
include the user credentials, even if they are encrypted. (More on cookies and
session IDs in Part III.)

Finally, be sure to test the procedure for logging out. When you log out,
the username and password fields on the login screen should be cleared
unless there is a feature to remember the credentials. If there is such a feature,
the password should be masked and should not indicate how many characters
are in it. Upon logging out, any session IDs or web tokens should be deleted.
If there is no feature to remember credentials, the cookie should be deleted as
well. There should be nothing that you can grab and use, from developer
tools or interception tools, to pretend that you are logged in.

This is a lot to test; fortunately, we can take advantage of automation for
regression testing once we have done an initial test pass. Here are a few ideas
for what to automate (more on test automation in Part X):

● API login calls using all the combinations of username and password
listed in this chapter (more on APIs in Part IV)

● UI logins with too many characters and invalid characters in the
username and password fields; verify that the correct error message
is returned

● Visual testing of the login screen to verify that the password is not
displayed in clear text

Security is such an important part of every application. By running
through all of these login scenarios, you can help bring peace of mind to your
product team and to your end users.

Chapter 17: Cross-Browser Testing
Browser parity is much better today than it was just a few years ago, but

every now and then you will still encounter differences in how your
application performs in different browsers. Here are just a few examples of
discrepancies I’ve encountered over the years:

● A page that scrolls just fine in one browser doesn’t scroll at all in
another, or the scrolling component doesn’t appear.

● A button that works correctly in one browser doesn’t work in another.
● An image that displays in one browser doesn’t display in another.
● A page that automatically refreshes in one browser doesn’t do so in

another, leaving the user feeling as though their data hasn’t been
updated.

Following are some helpful hints to make sure your application is tested
in multiple browsers.

Know Which Browser Is the Most Popular with Your Users

Several years ago I was testing a business-to-business CRM-style
application. Our team’s developers tended to use Chrome for checking their
work, and because of this I primarily tested in Chrome as well. Then I found
out that more than 90% of our end users were using our application in
Internet Explorer 9. This definitely changed the focus of my testing! From
then on, I made sure every new feature was tested in IE 9 and that a full
regression pass was run in IE 9 whenever we had a release.

Find out which browsers are the most popular with your users and be sure
to test every feature with them. This doesn’t mean you have to do the bulk of
your testing there; but with every new feature and every new release you
should validate all the UI components in the most popular browsers.

Resize Your Browsers

Sometimes a browser issue isn’t readily apparent, because it only appears

when the browser is using a smaller window. As professional testers, we are
often fortunate to be issued large monitors on which to test. This is great
because it allows us to have multiple windows open and view one whole web
page at a time, but it often means we miss bugs that end users will see.

End users are likely not using a big monitor when they are using our
software. Issues can crop up, such as a vertical or horizontal scroll bar not
appearing or not functioning properly; text not resizing, so it ends up going
off the page and is no longer visible; or images not appearing or taking too
much space on the page.

Be sure to build page resizing into every test plan for every new feature,
and build it into a regression suite as well. Find out what the minimum
supported window size should be and test all the way down to that level, with
variations in both horizontal and vertical sizes.

Assign Each Browser to a Different Tester

When doing manual regression testing, an easy way to make sure all
browsers you want to test are covered is to assign each tester a different
browser. For example, if you have two other testers on your team, you could
run your regression suite in Chrome and Safari, another tester could run the
suite in Firefox, and the third tester could run the suite in Edge. The next time
the suite is run, you can swap browsers so that each browser will have a fresh
set of eyes on it.

Watch for Changes After Browser Updates

It’s possible for something that worked great in a browser to suddenly
stop working correctly when a new version of the browser is released. It’s
also possible that a feature that looks great in the latest version of the browser
doesn’t work in an older version. Many browsers, including Chrome and
Firefox, are set to automatically update themselves with every release, but
some end users may have turned this feature off, so you can’t assume that
everyone is using the latest version. It’s often helpful if you have a spare
testing machine to keep browsers installed with the next-to-last release. This
way, you can identify any discrepancies that may appear between the old and
new browser versions.

Browser differences can greatly impact the user experience. If you build
in manual and automated systems to check for discrepancies, you can easily
ensure a better user experience with minimal extra work.

Chapter 18: Before You Log That Bug…
In “The Boy Who Cried Wolf,” one of Aesop’s Fables, a shepherd boy

repeatedly tricks the people in his village by crying out that a wolf is about to
eat his sheep. The villagers run to his aid, only to discover that he is playing a
prank. One day, the boy really does see a wolf. He cries for help, but none of
the villagers come, because they are convinced he is playing another trick.

We do not want to be “The Testers Who Cried Bug.” If we repeatedly
report bugs that are actually caused by user error, our developers won’t
believe us when we really find a bug. To keep this from happening, let’s take
a look at the things we should check before we report a bug. These tasks fall
into two categories: checking for user error and gathering information for
developers.

Check for User Error

Has the code you are testing been deployed to your test environment?
When I was a new tester, I constantly made the mistake of testing before I
determined that the deployment had completed successfully. It’s such a waste
of time to keep investigating an issue with code when the problem is actually
that the code isn’t there!

Are you testing in the right environment? When you have multiple
environments to test in and they all look similar, it’s easy to think you are
testing in one environment when you are actually in another. Take a quick
peek at your URL if you are testing a web app, or at your build number if you
are testing a mobile app.

Do you understand the feature? In a perfect world, we would all have
great documentation and well-written acceptance criteria. In the real world,
this often isn’t the case. Check with your developer and product owner to
make sure you understand exactly how the feature is supposed to behave.
Maybe you misunderstood something when you started to test.

Have you configured the test correctly? Maybe the feature only works

when certain settings are enabled. Think about what those settings are and go
back and check them.

Are you testing with the right user? Maybe this feature is only available
to admin users or paid users. Verify the criteria of the feature and check your
user.

Does the backend data support the test? Let’s say you are testing that a
customer’s information is displayed. You expect to see the customer’s email
address on the page, but the email is not there. Maybe the problem is actually
that the email address is null, and that is why it is not displaying.

If you have checked all of these things and you still see an issue, it’s time
to think about reporting the bug. But before you do, consider the questions
the developer might ask you when they begin to investigate the issue. It will
save time for both of you if you have all of these questions answered ahead of
time.

Gather Information for the Developer

Are you able to reproduce the issue? You should be able to reproduce it at
least once before logging the bug. This doesn’t mean you shouldn’t log
intermittent issues, as they are important as well; it means you should have as
much information as possible about when the issue does and doesn’t occur.

Do you have clear, reproducible steps to demonstrate the issue? It is
incredibly frustrating to a developer to hear that something is wrong with
their software and to receive only vague instructions to use for investigation.
For best results, give the developer a specific user, login credentials, and
clear steps they can use to reproduce the problem.

Is this issue happening in production? Maybe this isn’t a new bug; maybe
the issue was happening already. This is especially possible when you are
testing old code that no one has looked at or used in a while.

Does the issue happen on every browser? This information can be very
helpful in narrowing down the possible cause of an issue.

Does the issue happen with more than one user? It’s possible that the user
you are testing with has some kind of weird edge case in their configuration
or their data. This doesn’t mean the issue you are seeing isn’t a bug; if you
can show there are some users for whom the issue is not happening, it will
help narrow the scope of the problem.

Does the issue happen if the data is different? Try varying the data and
see whether the issue goes away. Maybe the problem is caused by a data
point that is larger than what the UI is expecting or by a field that is missing a
value. The more narrowly you can pinpoint the problem, the faster the
developer can fix it.

The ideal relationship between a tester and a developer is one of mutual
trust. If you make sure to investigate each issue carefully before reporting it,
and if you are able to report issues with lots of helpful details, your developer
will trust that when you cry “Bug,” it’s something worth investigating!

Chapter 19: How to Reproduce a Bug
Often in software testing we’ll encounter a bug that we see only once or

intermittently, and we can’t figure out how to reproduce it. In this chapter I
provide some helpful hints for reproducing bugs and getting to the root cause
of issues.

Gather Information

The first thing to do when you have a bug to reproduce is to gather as
much information as you can about the circumstances of the issue. If it’s a
bug that you just noticed, think about the steps you took before the bug
appeared. If it’s a bug that someone else has reported, find out what they
remember about the steps they took, and ask for details such as their
operating system, browser type, and browser version.

One Step at a Time

Next, see whether you can follow the steps that were taken by you or the
person who reported the bug. If you can reproduce the bug right away, you’re
in luck! If not, try changing your steps one at a time and see whether the bug
appears. Vary things like the text you entered into the field or the button you
clicked to submit a form. Don’t just thrash around trying to reproduce the
issue quickly; if you’re making lots of disorganized changes, you might
reproduce the bug and not know how you did it. Keep track of the changes
you made so that you know what you’ve tried and what you haven’t tried yet.

Logs and Developer Tools

Application logs and browser developer tools can provide helpful clues
about what is going on behind the scenes in an application. A browser’s
developer tools can generally be accessed in the menu found in the upper-
right corner of the browser; in Chrome, for example, you would click on the
three-dot menu, then choose More Tools, then Developer Tools. This will
open a window at the bottom or side of the page where you can find
information such as errors logged in the console or what network requests

were made.

Factors to Consider When Trying to Reproduce a Bug

When you’re trying to reproduce a bug, it can be helpful to consider the
following factors:

User: What user was utilized when the bug was seen? Did the user have a
specific permission level? You may be dealing with a bug that is only seen by
administrators or by a certain type of customer.

Authentication: Was the user logged in? The bug may appear only when
the user is not authenticated or only when the user is authenticated.

State of the data: What kind of data does the user have? Can you try
reproducing the bug with exactly the same data? The bug might only appear
when a user has a very long last name or a particular type of image file.

Configuration issues: Something in the application may be set up
incorrectly. For example, a user who isn’t getting an email notification might
not be getting it because email functionality is turned off for their account.
Check all the configurable settings in the application and try to reproduce the
issue with exactly the same configuration.

Actions taken before the issue occurred: Sometimes bugs are caused
not by the current state where they are seen, but by some event that happened
before the current state. For example, if a user started an action that used a lot
of memory, such as downloading a very large file, and then continued on to
other activities while the file was downloading, an error caused by running
out of memory might affect their current activity.

Back button: The back button can be the culprit in all kinds of
mysterious bugs. If a user navigates to a page through the back button, the
state of the data on the page might be different from what it would be through
standard forward navigation.

Caching: Caching can result in unexpected behavior as well. For
example, it might appear as though data is unchanged when in fact it has been

changed. If a cache never expires or takes too long to expire, the state of the
data can be very different from what is displayed.

Race conditions: These issues are very difficult to pin down. Stepping
through the code probably won’t help, because when the program is run one
step at a time the problem doesn’t occur. The best way to determine whether
there is a race condition is to run your tests several times and document the
inconsistent behavior. You can also try clicking on buttons or links before a
page has loaded to speed up input, or throttling your internet connection to
slow down input.

Browser/browser version: Browsers are definitely more consistent in
their behavior than they used to be, and most browsers are now updated to the
latest version automatically, but it’s still possible to find bugs that only
appear in certain browsers or versions. If your end user is using IE 8 on an
old Windows desktop, for example, it’s highly likely that your application
will behave differently for them.

Browser size: If a customer is saying they don’t see a Save button or a
scroll bar in their browser window, ask them to run a browser size tool in
another tab on their browser. Set your browser to be the same size as theirs
and see whether you now have the same problem.

Machine or device: Mobile devices are highly variable, so it’s possible
that a user is seeing an issue on an Android device that you are not seeing on
an iOS device, or that a user is seeing a problem on a Motorola device that
you are not seeing on a Samsung device. Laptops and desktop computers are
less variable, but it is still possible that a Mac owner is experiencing an issue
that you don’t see in Windows. Mobile testing sites that allow you to test on
their library of devices can be helpful for diagnosing an issue on a machine or
device that you don’t own.

Once You’ve Reproduced the Bug

Once you’ve finally reproduced a tricky bug, you might want to just show
it to your developer and be done with it. But your work is not done! To make
sure the bug is fixed correctly, you’ll want to narrow down the steps to
reproduce it as much as you can so that you can be as precise as possible. The

more precise you are, the easier it will be for the developer to locate the true
cause in the code and fix it.

For example, if you were able to reproduce a bug by using an admin user
who navigated to the page with the back button on a Firefox browser, are you
sure you need all three of those conditions to see the bug? Do you see the bug
when you use an admin user and the back button in Chrome? If you do, you
can eliminate the browser from your bug report. Similarly, if you see the bug
when you are using a non-admin user, you can take that out of the bug report
as well. Now you have narrowed down the issue to just the back button,
giving the developer a clear indication of where to start with a fix.

As a software tester, I am often annoyed by bugs and poor user
experiences I encounter in my daily life. I frequently ask myself: “Who is
testing this website? What were they thinking? Does this company even have
testers?” We are the last line of defense to keep our customers from being
frustrated, which is why it is important to chase down those elusive bugs.

Chapter 20: How to Log a Bug
In the previous two chapters, we looked at how to make sure a bug is

really a bug and the strategies to employ to reproduce it. Once you are sure
you have a bug and you know how to reproduce it, it’s time to log it. But just
throwing a few sentences in your team’s bug-tracking system is not a good
idea! The way you log a bug and the details you include can determine
whether the bug will be prioritized or left on the backlog, and whether a
developer is able to find the problem or closes the bug out with a “cannot
reproduce” message.

Let’s imagine we have an application called the Super Ball Sorter that
sorts out Super Balls among four children according to a series of color and
size rules set up for each child. When you test the feature, you discover that if
three of the children have a rule stating they accept only large balls of some
color, the small purple ball is never sorted, even though the fourth child
without a rule should accept the ball. We’ll use this example bug to show
what to do and what not to do when logging a bug.

Here are the components of a well-logged bug:

Title: The title of the bug should begin with the area of the application it
is referring to. For example, if a bug was found in the Contacts section of
your application, you could begin the title with “Contacts”. In this case, the
area of the application is the Super Ball Sorter. After the application area, you
should continue the title with a concise statement of the problem.

● RIGHT—Super Ball Sorter: Small purple ball is not sorted when
three children have large-ball rules

● WRONG—Small purple ball not sorted

While the wrong example gives at least a clue as to what the bug is about,
it will be hard to find among dozens of other bugs later, when you might try
to search using the term “Super Ball”. Moreover, it doesn’t state what the
conditions are when the ball is not sorted, so if another bug is found later in

which this same ball isn’t sorted, there could be confusion as to which bug is
which.

Description: The first sentence of the bug should describe the issue. This
sentence can provide a bit more detail than the title. I often start this sentence
with “When”, as in “When I am testing x, y happens.”

● RIGHT—When three children have sorting rules involving large
balls, the small purple ball is not sorted.

● WRONG—Doug doesn’t get the small purple ball.

A number of things are wrong with the second example sentence. First,
the issue happens regardless of which of the three children has a rule stating
they get only large balls, so referring to Doug here could be misleading.
Second, the statement doesn’t describe what rules have been set up. A
developer could read this sentence and assume the small purple ball is never
sorted, regardless of what rules are set up.

Environment and browser details: These can be optional if it’s
assumed that the issue was found in the QA environment and occurs on all
browsers. But if there’s any chance that the developer won’t know what
environment you are referring to, be sure to include it. And if the issue is
found on one browser but not others, be sure to mention that detail.

● RIGHT—This is happening in the staging environment, on the Edge
browser only.

Steps to reproduce: The steps should include any configuration and
login information, and clearly defined procedures to display the problem.

● RIGHT:

1. Log in with the following user:
2. username: foobar
3. password: mebs47
4. Assign Amy a rule where she only gets large red balls. Assign Bob

a rule where he only gets large orange balls. Assign Carol a rule

where she only gets large yellow balls.
5. Create a set of Super Balls to be sorted, and ensure that there is at

least one small purple ball.
6. Run the Super Ball Sorter.
7. Check each child’s collection for the small purple ball or balls.

● WRONG:

Everyone has a rule except Doug, and no one is getting the small
purple ball.

The preceding example doesn’t provide nearly enough information. The
developer won’t know the user’s login credentials or what the three rules
should be for large balls.

● ALSO WRONG:

1. Open the application.
2. Type “foobar” in the username field.
3. Type “mebs47” in the password field.
4. Click the login button.
5. Go to the Super Ball Sorter rules page.
6. Click on Amy’s name.
7. Click on the large ball button.
8. Click on the red ball button.
9. Click the Save button.
10. Click on Bob’s name.
etc. etc. etc.

These steps provide way too much information. It’s safe to assume the
developer knows how to log in; simply providing the credentials should be
enough. It’s also safe to assume the developer knows how to set a rule in the
Super Ball Sorter, since they wrote the code.

Expected and actual result: State what behavior you were expecting and
what behavior you got instead. This can help prevent misunderstandings, and
it’s also helpful when a bug has been sitting on the backlog for months and
you’ve forgotten how the feature is supposed to work.

● RIGHT
Expected result: Doug gets the small purple ball because he is the

only child configured to accept it.
Actual result: Doug does not get the small purple ball, and the ball

remains unsorted.

Screenshot or stack trace: Include this information only if it will be
helpful.

● RIGHT
Exception: Ball was not recognized
Caused by: Ball.sort(Ball.java:11)

● WRONG
Exception: An unknown error occurred

● ALSO WRONG:

The exception “An unknown error occurred” doesn’t tell the developer
anything, so there’s no reason to include the message. And the screenshot is
not particularly helpful. While it shows that Doug doesn’t have a small purple
ball, this is easily conveyed by the Actual Result that was already described;
no picture is needed.

A clearly written bug is helpful to everyone: the product owner, who
prioritizes bug fixes; the developer, who has to figure out what’s wrong and
fix it; and the tester, who will need to retest the issue once it’s fixed. When
you take care to log bugs well, it prevents frustration and saves everyone
time.

Part III: How Applications Work

Chapter 21: How HTTP Requests Work
Recently I read a great post about the importance of having technical

skills as a software tester. The author makes an excellent analogy: a software
tester who doesn’t understand technical concepts is like a surgeon who
doesn’t understand anatomy. If we are going to test our applications
thoroughly, we should understand the underlying systems that make them
work. We’ll begin by learning about HTTP requests.

When you type a website’s address into a web browser, you are typing a
URL. URL (uniform resource locator) is simply a fancy name for a web
address. The URL contains a domain name. The domain name identifies a
specific grouping of servers on the internet; examples of domain names are
google.com and amazon.com.

Once the browser has the domain name, it uses it to look up the
associated IP address in the DNS (Domain Name System), which is a
database that contains all the mappings of domain names and IP addresses.
An IP address (Internet Protocol address) is a unique series of numbers that is
assigned to every device connected to the internet.

Once the IP address is known, a connection is opened to that address
using HTTP. HTTP (HyperText Transfer Protocol) is an application protocol
that allows information to be transmitted electronically.

When the connection is opened to the server at the IP address, a request
can be made to get information from that server. Information sent over the
internet is called a message. The request uses TCP (Transmission Control
Protocol), which is a system of delivering messages over the internet.

TCP divides a message into a series of packets, which are fragments of
between 1,000 and 3,000 characters. Each packet has a series of headers that
include the address of the packet’s destination, information about the
ordering of the packets, and other important information.

If, for any reason, a packet doesn’t make it to its destination, the client

https://mrslavchev.com/2014/08/11/qashido-the-path-of-the-tester-virtue-1-technical-skills/

(the address making the request) can request that the packet be re-sent. Once
all the packets have arrived, the client reassembles them according to the
instructions in the header.

How does data know how to get from one IP address to another? I’ll
address this in the next chapter.

Chapter 22: Internet Routing
Nearly every home has an internet connection, but very few people know

how the router that allows the connection works. Every device that can be
connected to the internet has a network interface card (NIC), which is a piece
of hardware installed on the device that allows it to make a network
connection. Each NIC has a media access control (MAC) address that is
specific to only that device.

A modem is a device that connects to the internet. Other devices can
connect to the modem to receive internet transmissions. A wireless router is
capable of receiving Wi-Fi transmissions. The router connects to the modem,
and other devices connect wirelessly to the router to receive data from the
internet. Many internet service providers (ISPs) provide customers with a
combination modem/router, which connects to the internet and sends and
receives wireless signals.

In the preceding chapter, you learned that every device connected to the
internet has an IP address. An IP address is different from a MAC address in
that a MAC address is assigned by the manufacturer of the device and an IP
address is assigned by the network. An IP address has two sections, called the
subnet and the host. The subnet refers to one subsection of the entire internet.
The host is the unique identifier for the device on the network. The IP address
combines these two numeric values using bitwise operations. You can’t look
at an IP address and say that the numbers on the left make up the subnet and
the numbers on the right make up the host; the IP address is more like a sum
of two long numbers.

When a packet of data is sent from a server to a client, it is sent with the
destination’s IP address. To get to that destination, the packet will hop from
one network to another. The routing protocol of the internet is called Border
Gateway Protocol (BGP). This is a system that helps determine a route which
will traverse the smallest number of networks to reach the destination. Every
router in a network has a series of routing tables, which are sets of directions
for how to get from one network to another.

When a packet of information is first sent to the network’s router, it looks
at the destination’s IP address and determines whether the directions to the
destination are available in the routing tables. If they are not, BGP is used to
determine the next logical network where the packet should be sent. A
gateway is an entrance to a network, and a default gateway is the address the
request is sent to if there’s no knowledge of a specific address in that
network. When a packet arrives at the new gateway, BGP calculates the next
appropriate destination.

After traversing through networks in this way, eventually the packet
arrives at the router for the network that contains the destination’s IP address.
The router determines the destination’s MAC address and sends the packet to
that address.

One more important feature of networking is the use of a proxy server,
which is a server that is positioned between the client and destination servers.
It is configured so that any requests your client makes will go through it
before the requests reach their destination. There are many uses for a proxy
server; the main use is to keep the actual address of a site or router private.
Proxy servers can also be used by hackers to intercept requests, especially on
a public network.

Using proxy servers is a great way to do security testing! With a tool like
Fiddler or Burp Suite, you can intercept the requests you make to your
application and the responses you get in return. You’ll learn more about
security testing in Part VI.

Chapter 23: Encoding and Encryption
Encoding and encryption are two very different methods. As a software

tester, it’s important to understand how each method works.

Encoding simply means transforming data into a form that’s easier to
transfer. URL encoding is a simple type of encoding. For example, in URLs
the spaces are encoded using %20. Other symbols, such as !, are replaced in
URL encoding as well. If you’d like to learn more about URL encoding, you
can play around with an encoding/decoding tool on the Web.

Another common type of encoding is Base64 encoding. Base64 encoding
is often used to send data; the encoding keeps the bytes from getting
corrupted. This type of encoding is also used in Basic authentication. You
may have seen a username and password encoded in this way when you
logged in to a website. It’s important to know that Basic authentication is not
secure! Let’s say a malicious actor has intercepted my login with Basic auth,
and they’ve grabbed the authentication string:
a2phY2t2b255OnBhc3N3b3JkMTIz. That looks pretty secure, right? Nope!
All the hacker needs to do is go to a website that decodes Base64 encoding
and decode my username and password. Try it for yourself!

Encryption transforms data to keep it secret. A common method of
password encryption is hashing, which is a mathematical way of encrypting
that is impossible to decrypt. This seems puzzling: if a string is impossible to
decrypt, how will an application ever know that a user’s password is correct?
What happens is that the hashed password is saved in the application’s
authentication database. When a user logs in, their submitted password is
encrypted with the same hashing algorithm that was used to store the
password. If the hashed passwords match, the password is correct.

What if two users have the same password? If a user somehow was able
to access the authentication database to view the hashed passwords and saw
that another user had the same hashed password as they did, that user would
now know someone else’s password. We solve this problem through salting.

A salt is a short string that is added to the end of a user’s password before it
is encrypted. Each password has a different salt added to it, and that salt is
saved in the database along with the hashed password. This way, if a hacker
gets the list of stored passwords, they won’t be able to find any two that are
the same.

A common hashing algorithm is SHA256. SHA stands for Secure Hash
Algorithm. The 256 value refers to the number of bits used in the encoding.

Other types of encryption can be decoded as well. Two examples are AES
encryption and RSA encryption. AES stands for Advanced Encryption
Standard. This type of encryption is called symmetric key encryption. In
symmetric key encryption, the data is encoded with a key, and the receiver of
the data needs to have the same key to decrypt the data. AES encryption is
commonly used to transfer data over a VPN.

RSA stands for Rivest-Shamir-Adleman, who are the three inventors of
this encryption method. RSA uses asymmetric encryption, also called public
key encryption, in which a public key is used to encode the data and a private
key is used to decode it. This can work in a couple of ways. If the sender of
the message knows the receiver’s public key, they can encrypt the message
and send it; then the receiver can decrypt the message with the private key.
Or the sender of the message can sign the message with their private key, and
then the receiver of the message can decode it with the sender’s public key.

In the second example, the private key is used to show that the message is
authentic. How does the receiver know the message is authentic if they don’t
know what the private key is? They know because if the private key is
tampered with, it will be flagged to show that it has been manipulated. A very
common use of RSA encryption is TLS, which is what is used to send data to
and from websites.

Encryption involves very complicated mathematical algorithms.
Fortunately, we don’t have to learn them to understand how encryption
works!

Chapter 24: HTTPS, Tokens, and Cookies
When information is passed back and forth between systems, we need to

make sure it can’t be intercepted by others for whom it was not intended.
That’s why HTTPS was created. In this chapter, we’ll talk about how
encryption is used in HTTPS, the difference between cookies and tokens, the
different types of cookies, and how cookies can be protected.

How HTTPS Works

When two systems communicate with each other, we refer to them as the
client and the server. The client is the system making the request, such as a
browser, an application, or a mobile device, and the server is the system that
supplies the information, such as a datastore. HTTPS is a method of securely
transmitting information between the client and the server. HTTPS uses SSL
(Secure Sockets Layer) and TLS (Transport Layer Security) to encrypt the
data being transmitted and decrypt it only when it arrives at its destination.

TLS is a newer version of SSL. Here’s how it works. Before any data is
transmitted, the client and server perform a handshake. The handshake begins
with the client contacting the server with a suggested encryption method and
the server responding that it agrees to use that encryption method. It then
continues with the client and the server swapping certificates. A certificate is
like an ID card; it verifies the identity of the client or server. The certificates
are checked against the CA (Certificate Authority), which is a third-party
entity that creates certificates specifically for the purpose of HTTPS
communication.

Once the certificates are swapped and verified, the client and the server
swap decryption keys and the handshake is completed. Now the data is
encrypted, transmitted from the server to the client, and decrypted once it
arrives at the client safely.

Session Cookies and Tokens

Another important way data is secured is through the use of session

cookies and tokens. Session cookies and tokens are strings that are passed in
with a client’s request to verify that the person making the request has the
right to see the data requested. The main difference between session cookies
and tokens is that a session cookie is stored on the client and the server, and a
token is only stored on the client.

In systems that use tokens, the token is created when a user logs in. The
token is made up of encrypted information that identifies the user. It is stored
in local storage in the client’s browser and is sent with every HTTPS request
to the server. When the server receives the token, it decrypts it, validates the
user’s information, and then returns the response.

The most popular system of tokens in use today is JWT (JSON Web
Token). You’ll learn more about JWTs in the next chapter.

A session cookie is a unique string that the server creates when the user
logs in. It is saved in the server’s datastore as a session ID. The server returns
the cookie to the client, and the client saves it in the browser while the
session is active. Whenever the client makes a request to the server, it sends
the cookie with the request. The server then compares the cookie with the one
it has saved to make sure they match before returning the response.

Tokens and session cookies are usually set to expire after a period of time
or after an event. For example, an issued token might be good for one hour.
Just before the hour is up, a request can be made for a new token (called a
refresh token) to keep the user signed in. Session cookies usually expire when
the user logs out or when the browser is closed.

Persistent Cookies

Another type of cookie used is the persistent cookie, which is a bit of data
saved on the server about the user’s preferences. For example, if a user goes
to a website and chooses German as the language they would like on the site,
a persistent cookie will remember that information. The next time the user
goes to the site, the cookie will be examined and the site will load in German.

Securing Cookies

Because they are stored on the server, cookies are more vulnerable than
tokens to being intercepted and used by someone other than the user. To help
protect cookies, the following flags (attributes) can be added to them at the
time of creation:

● Secure flag: Ensures that the cookie can only be transmitted over
HTTPS requests and not over HTTP requests

● HttpOnly flag: Keeps a cookie from being accessed via JavaScript,
which helps protect it from cross-site scripting (XSS) attacks.

● SameSite flag: Ensures that the cookie can only be sent from the
original client that requested the cookie, which helps protect it from
Cross-Site Request Forgery (CSRF) attacks.

Chapter 25: The Joy of JWTs
If you have ever tested anything with authentication or authorization,

chances are you used a JWT. The term “JWT” is pronounced “jot” and it
stands for JSON Web Token. JWTs are created by a company called Auth0,
and their purpose is to provide a method for an application to determine
whether a user has the credentials necessary to request an asset.

JWTs are useful because they allow an application to check for
authorization without passing in a username and password or a cookie.
Requests of all kinds can be intercepted by a malicious user, but a JWT
contains nonsensitive data and is encrypted, so intercepting it doesn’t provide
much useful information.

A JWT has three sections, which are made up of a series of letters and
numbers and are separated by periods. One of the best ways to learn about
JWTs is to practice using the official JWT Debugger, so go to https://jwt.io
and scroll down until you see the Debugger section.

Section One: The Header

The header lists the algorithm that is used for encrypting the JWT, and
also lists the token type (which is JWT, of course):

{
"alg": "HS256",
"typ": "JWT"
}

Section Two: The Payload

The payload lists the claims that the user has. There are three types of
claims:

● Registered claims: These are standard claims that are predefined by
the JWT code. They include the following:

https://jwt.io

iss (issuer): Who is issuing the claim
iat (issued at): What time, in Epoch time, the claim was issued
exp (expiration time): What time, in Epoch time, the claim will

expire
aud (audience): The recipient of the token
sub (subject): What kinds of things the recipient can ask for

● Public claims: These are other frequently used claims, and they are
added to the JWT registry. Some examples are name, email, and
timezone.

● Private claims: These are claims that are defined by the creators of
an application, and they are specific to that company. For example, a
company might assign a specific user ID to each of its users, and that
could be included as a claim.

Here’s an example of claims used in the JWT Debugger:

{
"sub": "1234567890",
"name": "John Doe",
"iat": 1516239022

}

Here the subject is 1234567890, the name of the user who has access
to the subject is John Doe, and the token was issued at 1516239022
Epoch time.

Section Three: The Signature

The signature takes the first two sections and encodes them in Base64.
Then it takes those encoded sections and adds a secret key, which is a long
string of letters and numbers. Finally, it encrypts the entire thing with the
HMAC SHA256 algorithm.

Putting It All Together

The JWT is made up of the encoded header, then a period, the encoded
payload, then another period, and finally the encrypted signature. The JWT

Debugger helpfully color-codes these three sections so that you can
distinguish them.

If you use JWTs regularly in the software you test, try taking one and
putting it in the JWT Debugger. The decoded payload will give you insight
into how your application works.

If you don’t have a JWT to decode, try making your own! You can paste
values like this into the Payload section of the Debugger and see how the
encrypted JWT changes:

{
"sub": "userData",
"userName": "kjackvony",
"iss": 1516239022,
"exp": 1586606340
}

When you decode a real JWT, the signature doesn’t decrypt. That’s
because the secret used is a secret! But because the first and second sections
of the JWT are encoded rather than encrypted, they can be decoded.

Using JWTs

How JWTs are used will vary, but a common usage is to pass them with
an API request using a Bearer token. In Postman, it will look something like
this:

Testing JWTs

Now that you know how JWTs work, you can test them in the following

ways:

● Try whatever request you are making without a JWT, to validate that
data is not returned.

● Change or remove one letter in the JWT and make sure that data is
not returned when the JWT is used in a request.

● Decode a valid JWT in the Debugger, change it to have different
values, and then see whether the edited JWT will work in your
request.

● Use a JWT without a valid signature and make sure you don’t get
data in the response.

● Note when the JWT expires, and try a request after it expires to make
sure you don’t get data back.

● Create a JWT that has an issue time somewhere in the future and
make sure you don’t get data back when you use it in your request.

● Decode a JWT and make sure there is no sensitive information, such
as a bank account number, in the payload.

Chapter 26: Database Testing
As software testers, we often take for granted the fact that our application

has a database behind it. When we are testing, we tend to focus on the visible,
such as the user interface, or on the application logic of the API. But it’s
important to test the database as well. Following are six ways to test your
application’s database.

Verify That the Data Fields Are the Correct Type

Each data field in the database will be a specific type, such as int, float,
string, or datetime. Verify that each field’s data type is appropriate. For
example, a date field in the application should be saved as a datetime type
rather than as a string. This might not seem like a big deal, but if sorting
functionality is added to the application, you’ll find that April 10 is sorted
before January 11 because the dates are being sorted alphabetically.

Verify That the Fields That Are Required in the Database Are Also
Required in the API and the UI

Generally, each record in a database will have some fields that are
required. If a field is required in the database, it should also be required in the
API and the UI. If the UI doesn’t set the last name field as required but the
database has set it as required, a user could submit a new record without a
last name and the database will return an error.

Verify That the Parameters Set on the Fields in the Database Match
the Parameters in the API and the UI

Data fields in a database will have specific limits set, such as a character
limit for a string or a maximum value for an int. The fields in the API and the
UI should have the same limits. If the limits do not match, confusion can
ensue. Let’s say, for example, that your application has a field for a street
address. In the UI the developer has set the character limit to 50 characters,
but in the database the limit is set to 40. If a user types in a street address with
45 characters, the UI will accept that value but the database will not. This will

result in the record not being saved, and the problem won’t be obvious to the
user.

Verify That Sensitive Data, Such as User Passwords, Are Encrypted
in the Database

I once worked for a company that did not encrypt their user passwords. I
had access to the production database, which meant I could see the username
and password for every single one of the company’s customers. It should be
pretty obvious that this was a huge security risk! Passwords should always be
encrypted in the database so that there is no way for anyone but the user to
know what their password is.

Verify That Your Database Supports All of Your API’s Operations

Just because your POST request returns a 200 message doesn’t mean the
data was saved to the database correctly. When you make an API request,
make sure the database saves every field correctly. (You’ll learn about API
testing in Part IV.) I have seen situations in which a PUT request did not
result in every new value being saved to the database. I’ve also seen a
situation in which a PATCH request updated the correct fields but set every
other field to null!

Be sure to test every available CRUD operation and check every field for
accuracy. Also make sure you change field values from null to an entry and
from an entry to null. If a field you are testing is a string, determine with your
team whether empty strings will be allowed, and test going from null to an
empty string, from an empty string to a value, from a value to an empty
string, and so on.

In addition, if your API is going to support the DELETE operation, find
out from your team whether those deletes will be hard-deletes, meaning the
record will be completely removed from the database, or soft-deletes,
meaning the record will stay in the database but move to another table or stay
in the existing table with a “deleted” flag set. Then test the DELETE
operation to verify that it is behaving as expected.

Verify That Leading and Trailing Spaces Are Removed When Saving

to the Database

Have you ever had trouble logging in to an application but were sure you
had the right username? The problem could have been that when the
username was originally created, a trailing space was accidentally added and
it was saved to the database with the extra space. When you tried to log in as
“doglvr49”, the system was expecting “doglvr49 ”. Similarly, if you entered a
contact’s last name as “ Jones” instead of “Jones” and the leading space
wasn’t trimmed, and then you tried to sort the contacts alphabetically, you’d
find “ Jones” listed before “Allan”. When you are testing text fields in your
application, try testing them with leading and trailing whitespaces, and then
verify in the database that those spaces have been trimmed.

A mismatch between character limits in the database and the UI, having a
string instead of an int, or having trailing spaces in a record can seem like a
small issue, but it can result in a big problem. By following these tactics in
database testing, you will help ensure that your end users will have a good
experience entering and retrieving data.

Chapter 27: Testing with Relational
Databases

In the preceding chapter, I discussed various ways to test your
application’s database. To verify that your data has been saved correctly,
you’ll need to query the database, and the way to do that will depend on what
type of database you have. In the past most databases were relational, but in
recent years there has been a trend toward using nonrelational databases. In
this chapter and the next I’ll address relational databases, and in Chapter 29
I’ll talk about nonrelational databases.

Relational databases, such as MySQL and Microsoft SQL Server, are
based on tables. Each table relies on a schema, which defines what columns
will be in the table, what data types they will have, and which columns will
accept null values. Here’s an example of a typical SQL table:

Contacts:

Note that there are seven different columns in the table. The first column,
contactId, is the primary key for the table. This will be a unique value; there
will never be two contactIds with the same value.

With a relational database, the schema remains unchangeable, so when
Joe Schmoe is added to the database without a phone or city, those places in
the table need to be filled with NULL.

Tables in a relational database can connect to one another. Here is a table
in the same database that shows the contacts’ favorite foods:

Foods:

In this table, the primary key is foodId. But notice that the contactId is
present in this table, and the values are the same as those in the first table. So
we can see in this table that Prunella has two different favorite foods, pizza
and ice cream, and Joe’s favorite food is sushi.

When testing a relational database, you can use SQL query language to
verify that the values you are looking for are present in the database. For
example, if you had just added a new contact with the name of Amy Smith to
the Contacts table, you could query the database to see whether it had been
added, like this:

select * from Contacts where lastName = 'Smith' and firstName = 'Amy'

and the query would return a table row in response:

In the preceding query, the asterisk, *, tells SQL that we want all the
columns for the record returned.

Because this is a relational database, you could also do a query with a
join. A SQL join combines the data from two tables, joining on a column that
they have in common.

In the preceding examples, both tables have a contactId column. Let’s say
you have given your new contact, Amy, a favorite food (chocolate), and you
want to verify that it has been saved to the database correctly but you don’t
know what Amy’s contactId is. You can’t just query the Food table for “Amy
Smith”, because her first and last names aren’t in there. And you can’t query
the Contacts table for the food, because it’s not in that table. But you could
query the Contacts table with that information, get the contactId from that,
and then use the contactId to query the Food table for the favorite food,
creating a join.

This is what such a query would look like:

select food from Foods
inner join on Contacts
where Foods.contactId = Contacts.contactId
and Contacts.firstName = 'Amy'
and Contacts.lastName = 'Smith'

The query will return this response:

Let’s walk through what happens in the query:

● select food from Foods: This tells SQL to return just the food column
from the Foods table.

● inner join on Contacts: This tells SQL that the query will be joining
information from the Foods table with information from the Contacts
table.

● where Foods.contactId = Contacts.contactId: This is instructing SQL
to find the contactIds in the Foods table and match them up with the
contactIds from the Contacts table.

● and Contacts.firstName = 'Amy' and Contacts.lastName = 'Smith':
These last two lines are telling SQL that we are only interested in the
record with the first name Amy and the last name Smith.

There are many more complicated ways to query a relational database,
but with these two query types you will be able to do most of your data
validation.

Chapter 28: SQL Query Secrets
Have you ever been querying a SQL table and one of your queries seems

to take forever, but then the next query you run takes milliseconds? This
would frequently happen to me, and I thought it meant the server that hosted
the database was unreliable in some way. But it turns out that the way we
structure our queries has a huge impact on how long they will take to execute.
In this chapter, I describe what indexes are and talk about the ways we can
use them to optimize our queries.

What Is an Index?

An index is a database structure that is designed to speed up queries in a
table. An easy way to understand this is to think about the index at the back
of a book. Let’s say you have a book on car repair and you want to find
information about your car’s brakes. You could look up “brakes” in the
index, or you could search through every single page of the book for the word
“brakes”. It’s pretty obvious which would take less time!

Unlike books, databases can have more than one index. There are two
different kinds of indexes: clustered and unclustered. A clustered index is
used to store a table in sorted order. There can only be one clustered index
because the table is stored in only one order. Unclustered indexes are stored
in the original table order, but they save the location of certain fields in the
table.

Let’s take a look at an example. If we had a table like this, called the
Users table:

and we had a clustered index defined to have UserId as the key, a search
on UserId would be very fast, and the data returned would be in order by
UserId.

The table could also use unclustered indexes, such as the following:

● State: The records in the table are indexed by state.

● LastNameFirstName: The records in the table are indexed by
LastName and FirstName.

When you query a database, the query will first look to see whether an
index can be used to speed up the search. For example, if I made this request:

select LastName, FirstName from Users where UserId = 5

the query would use the UserId index and the LastNameFirstName index
to find the record.

Similarly, if I made this request:

select LastName, FirstName from Users where State = 'MA'

the query would use the LastNameFirstName index and the State index to
find the record.

Of course, with a table of only five records, optimizing in this way won’t
make much of a difference. But imagine that this table had 5 million records
and you can see how using an index would be very helpful.

Querying a table on a nonindexed field is called a table scan. The query
needs to search through the entire table for the values, just as a person who
wasn’t using a book index would have to search through every single page of
the book for a term they were looking for.

How can you know what indexes a table has? You can find out with one
simple query:

EXEC sp_helpindex "Users"

where you would replace "Users" with the name of the table. This will
return a result of all the clustered and unclustered indexes applied to the table,
and the result will include the name of the index, a description of the index,
and all the keys used in the index.

If you want to optimize your SQL queries, only ask for the data you really
need, rather than asking for select *. Because not every field in the table is
indexed, looking for every field will take longer.

Let’s say you want to query the Users table to find the email addresses of
all the users who live in Massachusetts (MA). But you also would like to
have some more information about those users. You could ask for this:

select FirstName, LastName, Email from Users where State = 'MA'

To find the records, the query will use the FirstNameLastName index and
the State index. Only the Email will be a nonindexed field.

But if you asked for this:

select * from Users where State = 'MA'

now the query needs to look for two different nonindexed fields: Email
and Mobile Phone.

Another helpful tip is to specify all the keys in an index when you want to
use that index to make a query. For example, if you wanted to find the Email
for Prunella Prunewhip, you should ask for this:

select Email from Users where LastName = 'Prunewhip' and FirstName =
'Prunella'

rather than this:

select Email from Users where LastName = 'Prunewhip'

In the second example, the LastNameFirstName index won’t be used.

When you want to use an index, the query will run faster if you specify
the keys in the order they appear, so it’s better to say

where LastName = 'Prunewhip' and FirstName = 'Prunella'
than it is to say
where FirstName = 'Prunella' and LastName = 'Prunewhip'.

Here’s one more tip: when you want to use an index, be sure not to
manipulate one of the index keys in your query, because this will mean the
index won’t be used. For example, if you had a table like this, called Grades:

and you had an unclustered index called LastNameGrade, and you

executed the following query:

select LastName from Grades where (Grade + 100) = 178

the LastNameGrade index wouldn’t be used, because the Grade value was
being manipulated. It’s necessary for the query to go through the entire table
and add 100 to each Grade field to search for the correct value.

Armed with this knowledge, you should be able to create queries that will
run as fast as possible, getting you the data you need.

Chapter 29: Testing with Nonrelational
Databases

In the preceding two chapters, I discussed ways to query relational
databases for testing. In this chapter I will explain nonrelational databases,
describe how they are different from relational databases, and discuss how to
query them in your testing. Nonrelational databases, such as MongoDB and
DynamoDB, are sometimes called NoSQL databases and are becoming
increasingly popular in software applications.

The main difference between relational and nonrelational databases is that
relational databases use tables to store their data, whereas nonrelational tables
use documents. The documents are often in JSON format (more on JSON
format in Chapter 42). Let’s take a look at what the records in the Contacts
table from Chapter 27 would look like if they were in a nonrelational
database:

{
contactId: "10000",
firstName: "Prunella",
lastName: "Prunewhip",
email: "pprunewhip@fake.com",
phone: "8005551000",
city: "Phoenix",
state: "AZ"
}
{

contactId: "10001",
firstName: "Joe",
lastName: "Schmoe",
email: "jschmoe@alsofake.com",

state: "RI",
}

Note that Joe does not have a value for phone or city entered, so they are
not included in his document. This is different from relational databases,
which are required to include a value for every field. Instead of having a
NULL value for phone and city as Joe’s record did in the SQL table, those
fields are simply not listed.

Another key difference between relational and nonrelational databases is
that it’s possible to add a new field to a table without adding it in for every
document. Let’s imagine we are adding a new record to the table and we
want that record to include a spouse’s name. When that record is added it will
look like this:

{
contactId: "10002",
firstName: "Amy",
lastName: "Smith",
email: "amysmith@faketoo.com",
phone: "8885551001",
city: "Boise",
state: "ID",
spouse: "John"
}

The original documents, 10000 and 10001, don’t need to have this spouse
value. In a relational database, if a new field is added the entire schema of the
table needs to be altered, and Prunella and Joe will need to either have spouse
values or NULL entered in those fields.

With a nonrelational database, it’s not possible to do joins on table data,
as you saw in Chapter 27. Each record should be treated as its own separate
document, and you can do queries to retrieve the documents you want. What
that query language looks like depends on the type of database used. The
following examples use MongoDB’s query language, which is JavaScript
based, and query on the documents listed earlier:

● db.contacts.find(): This will return all the contacts in the table.
● db.contacts.find({ contactId: "10001" }): This will return the

document for Joe Schmoe.

To make the responses easier to read, you can append the command
.pretty(), which will organize the data returned in JSON format rather than a
single line of values.

You can also run a query to return a single field for each document:

● db.contacts.find({}, {firstName:1, _id:0}): This will return just the
first name for each contact. The _id:0 setting is asking the query not
to return IDs for the records, which a query does by default.

Because the documents in a nonrelational database have a JSON-like
structure, it’s possible to have documents with arrays. For example, our
Contacts table could have a document that lists a contact’s favorite foods:

{
contactId: "10000",
firstName: "Prunella",
lastName: "Prunewhip",
email: "pprunewhip@fake.com",
phone: "8005551000",
city: "Phoenix",
state: "AZ",
foods: ["pizza", "ice cream"]
}

It’s even possible to have objects within arrays, as follows:

{
contactId: "10001",
firstName: "Joe",
lastName: "Schmoe",
email: "jschmoe@alsofake.com",
state: "RI",
pets: [{ type: "dog", name: "fido" }, { type: "cat", name: "fluffy" }]

}

You can see how this type of data storage might be advantageous for your
application’s data. Nesting data in this fashion makes it easier to read at a
glance than it would be in a relational database, where the pets might be in
their own separate table.

To run a query that will return all the contacts that have cats, you would
simply request:

db.contacts.find({"pets.type":"cat"})

To run a query that will return all the contacts that have cats named
Fluffy, you would request:

db.contacts.find({$and: [{"pets.type":"cat"},{"pets.name":"fluffy"}]})

These are just a few simple examples of how to query data with a
nonrelational database, and they should be enough to get you started in your
testing. To learn more, be sure to read the documentation for the type of
database you are using. As nonrelational databases become increasingly
popular, this knowledge will be extremely useful.

Chapter 30: Serverless Architecture
Have you heard of serverless architecture and wondered what it could

possibly be? How could an application be deployed without a server? Here’s
the secret: it can’t.

Remember a few years ago when cloud computing first came to the
public, and it was common to say, “There is no cloud, it’s someone else’s
computer”? Now we can say, “There is no serverless architecture; you’re just
using someone else’s server.”

Serverless architecture means using a cloud provider for the server. Often
the same cloud provider will also supply the database, an authentication
service, and an API gateway. Examples of serverless architecture providers
include AWS (Amazon Web Services), Microsoft Azure, Google Cloud, and
IBM Cloud Functions.

Why would a software team want to use serverless architecture? Here are
several reasons:

● You don’t have to reinvent the wheel. When you sign up to use
serverless architecture you get many features, such as an
authentication service, a backend database, and monitoring and
logging, directly in the service.

● You don’t have to purchase and maintain your own equipment.
When your company owns its own servers, it’s responsible for
making sure they are safely installed in a cool place. The IT team
needs to make sure all the servers are running efficiently and that
they’re not running out of disk space. But when you are using a
cloud provider’s servers, that responsibility falls to the provider.
There’s less initial expense for you to get started, and less for you to
worry about.

● The application can scale up and down as needed. Most serverless
providers automatically scale the number of servers your app is

running on depending on how much demand there is for your app at
that moment. So if you have an e-commerce app and you are having
a big sale, the provider will add more servers to your application for
as long as they’re needed, then scale back down when the demand
wanes.

● With many serverless providers, you only pay for what you use. So if
you are a startup and have only a few users, you’ll only be paying
pennies per month.

● Applications are really easy to deploy with serverless providers.
They take care of most of the work for you. And because the
companies that are offering cloud services are competing with one
another, it’s in their best interest to make their development and
deployment processes as simple as possible. So, deployments will
certainly get even easier in the future.

● Monitoring is usually provided automatically. It’s easy to take a look
at the calls to the application and gather data about its performance,
and it’s easy to set up alarms that will notify you when something’s
wrong.

Of course, nothing in life is perfect, and serverless architecture is no
exception. Here are some drawbacks to using a serverless provider:

● There may be some things you want to do with your application that
your provider won’t let you do. If you set up everything in-house,
you’ll have more freedom.

● If your cloud provider goes down, taking your app with it, you are
completely helpless to fix it. Recently AWS was the victim of a
DDoS attack. In an effort to fight off the attack, AWS blocked traffic
from many IP addresses. Unfortunately, some of those addresses
belonged to legitimate customers, so the IP blocking rendered its
applications unusable.

● Your application might be affected by other customers. For example,
a company that encodes video files for streaming received a massive
upload of videos from one new customer. It swamped the encoding

company, which meant that other customers had to wait hours for
their videos to be processed.

How do you test serverless architecture? The simplest answer is that you
can test it the same way you would test an in-house application. You’ll be
able to access your web app through your URL in the usual way. If your
application has an API, you can make calls to the API using Postman, curl, or
your favorite API testing tool.

If you are given login access to the serverless provider, you can also do
things like query the datastore, see how the API gateway is set up, and look at
the logs. You’ll probably have more insight into how your application works
than you will with a traditionally hosted application.

The best way to learn how serverless architecture works is to play around
with it yourself. You can sign up for a free AWS account and follow along
with a tutorial. After you get some experience with serverless architecture,
you will have no trouble figuring out all kinds of great ways to test it.

Part IV: API Testing

Chapter 31: Introduction to REST Requests
More and more companies are moving toward a microservices model for

their applications. This means different sections of their application can have
a separate datastore and separate commands for interacting with that
datastore. The advantage to this is that it’s easier to deploy changes to a small
component of the application rather than the entire application; it also means
that if one microservice goes down, the rest of the application can continue to
function.

For example, let’s imagine you have a website for a bike rental service.
The site has one microservice for the reservation system and a second
microservice for the inventory. If the microservice for the inventory goes
down, users will still be able to make reservations for bike rentals using
cached data from the inventory microservice.

Most microservices are using APIs, or application programming
interfaces, which are a set of commands for how a service can be used. And
most APIs are using REST requests, or Representational State Transfers,
through HTTP to request and send data.

Yet, despite the common usage of REST APIs in today’s applications,
many testers do not know just how easy it is to test them. Why would you
want to test REST requests rather than just test through the UI? Here are a
few good reasons:

● Testing REST requests means you can find bugs earlier in the
development process, sometimes even before the UI has been
created!

● Malicious users know how to make REST requests and can use them
to exploit security flaws in your application by making requests the
UI doesn’t allow; you’ll want to find and fix these flaws before they
are exploited.

● It’s easy to automate REST requests, and they run much faster than
UI automation.

To get started with REST testing, first think about what you see in a URL
when you navigate to a website. For example, you might see
https://www.foobank.com/customers/login. It’s easy to see how this URL is
defining what page you are navigating to:

● “https” specifies that this is a secure request.
● “www.foobank.com” is the domain, which says you want to go to the

Foobank website.
● “customers” is the first part of the path, which says you are a

customer and therefore want to go to the Customers section of the
website.

● “login” is the last part of the path, which says you want to go to the
login screen.

One thing that’s not seen in the URL is the type of REST request being
made. This is known as an HTTP verb, and they are easy to understand:

● A POST request adds a new record to the database.
● A GET request retrieves a record from the database.
● A PUT request takes a record from the database and replaces it with a

new record.
● A PATCH request modifies an existing record in the database.
● A DELETE request removes a record from the database.

In this case, a record can be any section of data that is grouped together.
For example, it could be a mailing address for a customer, all the contact
information for that customer, or every single datapoint associated with that
customer. It’s up to the API’s creators to decide what should make up the
record.

In the next several chapters, I’ll discuss each HTTP verb in detail and
describe how to test them. I am sure you will be excited to discover just how
much you can test without navigating to your application’s web pages!

Chapter 32: Getting Set Up for API Testing
We’ll be using the Contact List API to learn about REST requests. Since

the Contact List API requires authentication, you will need to have an
authentication token to make all your requests. And to have an authentication
token, you’ll need a username and password. To create these, simply go to
https://thinking-tester-contact-list.herokuapp.com, click on the “Sign up”
button, fill out the fields on the Add User page, and click Submit. You can
use any email address for your account; it does not have to be real, though it
does have to be in the usual “abc@def.com” format. Make a note of what
email and password you chose because you will need them to generate an
authentication token.

Next, you will need to use an API testing application to create and send
REST requests. My favorite testing application is Postman, which is available
for free at https://www.postman.com/downloads. You’ll need to create a
username and password to log in to Postman. Once you are logged in, it’s
time to create your first request!

Note that Postman periodically changes their user interface and the
screens that are displayed when you first create an account. Once you’ve
moved through the initial screens, make sure that you’ve selected the
“Collections” tab on the left of the screen.

Click on the plus (+) button on the upper-left of the screen to create a new
request:

https://thinking-tester-contact-list.herokuapp.com
https://www.postman.com/downloads

You will see that the HTTP verb dropdown is currently set to GET. Click
this dropdown and select POST instead:

In the section that says “Enter request URL”, type the following:
https://thinking-tester-contact-list.herokuapp.com/users/login

Click on the Body tab underneath the URL:

Click on the “raw” button:

https://thinking-tester-contact-list.herokuapp.com/users/login

Click on the Text dropdown, and select JSON instead:

JSON stands for JavaScript Object Notation. I’ll talk more about JSON in
Chapter 42.

Add this JSON text in the text field…

...but replace “your email here” with the email you set for your user
account and “your password here” with the password you set for your user
account. Both the email and the password should be in quotation marks so
that they appear blue.

Click the blue Send button:

If everything is set up correctly, you should see text in the Response
window:

Your response will, of course, look different because your user is
different.

You have now been assigned an authentication token! Copy the token,
which is everything between the blue quotation marks after “token”. In the
preceding example, the token would be:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJfaWQiOiI2MGFhY2YwMmVjNGIzYTAwMTUxNTVhMGEiLCJpYXQiOjE2MjE4MDY4NzV9.lqMjwy0yAVRaOIiBqpaix1FsSId5EkZt8FU3SmhvYbU

Save this token somewhere, such as in a text file, because we’ll be using
it in future Postman requests. This token has a very long life, but it will
expire eventually. If that happens, all you need to do is create a new token by
doing another login POST request. Let’s save the POST request so that you
won’t have to re-create it later.

Click the Save button in the upper-right of the screen:

A pop-up will appear:

Change the “Request name” to something that’s easy to read and makes
sense, such as “Login”. Then click the “Create a collection” button. The
collection section will open:

Give your collection a memorable name, such as “Contact List API”.
Then click Create. Finally, click the Save button.

You should see in the left panel of the Postman window that your

collection and your request have been saved:

Now that we have an authentication token to use and a request saved that
will help generate it, we can start learning more about the different types of
REST requests.

Chapter 33: Testing GET Requests
We will begin our discussion of REST request types with the GET

request. This is usually the easiest request to test because all we are doing is
retrieving data from the database. We don’t need to worry about whether we
are manipulating data correctly; we just need to retrieve it and check that we
get a correct response.

To get set up for testing GET requests in our API, let’s add some contacts
to the Contact List app. Navigate to https://thinking-tester-contact-
list.herokuapp.com in your web browser and log in with the email and
password you used in Chapter 32.

Click Add a New Contact, enter some contact information, and click
Submit. You should see that your new contact has been added to the Contact
List page. Repeat this process two more times so that you have three contacts
in your contact list.

Now that you have some contacts to work with, let’s return to Postman
and set up a GET request.

Click on the plus (+) button at the top of the screen to create a new
request:

Notice that the request verb is already set to GET, so we don’t need to
make any change there. Next, enter the request URL:

https://thinking-tester-contact-list.herokuapp.com/contacts

https://thinking-tester-contact-list.herokuapp.com

This request will go to the server and ask for the list of all the contacts
you created. But there’s one more thing we need to do to run this request, and
that is to add our Authorization token. Click on the Authorization tab:

From the Type dropdown, select Bearer Token:

In the text field next to Token, paste in the authentication token you
created in the previous chapter:

Now you are ready to send the request. Click the Send button, and you
should see the three contacts you created in the body of the response. The
code will look something like this:

(partial screenshot)

You should see three complete records in your response body; you may
need to scroll down to see them all.

Let’s save this request. Click on the Save button, give the request a good
name, like “Get Contact List”, choose your Contact List API collection if it is
not already selected, and click Save. You should see that your request is
saved to your collection on the left side of the screen:

Get Contact List is a very simple request asking for a complete list of all
the contacts associated with your account. But we can also use a GET request
to ask for one particular contact.

To do this, look in the response section of your Get Contact List request
and choose an ID to copy:

Your ID will, of course, be different. Copy this ID and paste it into a text

file for now.

Let’s create a new request. Click on the plus (+) button, and in the URL,
type https://thinking-tester-contact-list.herokuapp.com/contacts/<your
contact’s id>, replacing <your contact’s id> with the contact ID you pasted
into your text file:

We’ll need to add our authentication token again, so click on the
Authorization tab, choose Bearer Token, and paste your token into the token
text field.

Now click Send to run the request. You should see just one contact
returned in the response body, and it should be the contact that has the ID you
included in the request URL:

Save this request by clicking the Save button, giving the request a name
like “Get Contact”, and saving it to your Contact List API collection.

Now that you understand how GET requests work, let’s think about how
to test them. What happens if we put a contact ID in the URL that doesn’t
exist? What happens if we use a contact ID that exists but doesn’t belong to
our user account? What happens if we pass in “0” or “foo” for the contact
ID?

The status codes you get after you make a REST request tell you a bit

about the behavior of your application. We’ll discuss status codes further in
Chapter 38, but for now, note that a status code of 200 is good and a status
code that begins with 4 generally indicates that something has gone wrong.
You may get a 404 status when you search for a contact ID that doesn’t exist.
This means the record was not found:

If we don’t put a contact ID in the URL, it will match the first GET
request we created—the Get Contact List request—which will return all the
contacts that belong to your user account.

We can test other things with this endpoint, such as its security. For
instance, what happens if you don’t put in the authentication token? What
happens if you put in a bad token? You can do these security tests with the
Get Contact List request as well. Generally speaking, making a request with a
missing or invalid token will return a 401 status code:

You now understand the basics of GET requests and how to test them. In
the next chapter we’ll move on to POST requests.

Chapter 34: Testing POST Requests
POST requests are perhaps the most important of the REST requests

because they add new records to your application’s database. It’s very
important to test your POST requests well because they will have a direct
impact on the quality of data in your database.

You learned to do a POST request in Chapter 32; you created a POST
request to log in with your user account. In this chapter, you’ll learn how to
do a POST request to create a new contact.

Let’s take a look at the documentation for the Contact List API to see
what a POST request will look like. Navigate to
https://documenter.getpostman.com/view/4012288/TzK2bEa8 in your web
browser. The documentation shows what all the endpoints in the Contact List
API are like: what the URL should be, what should be passed in the body of
the request, and what the response should be.

The first endpoint in the documentation is the Add Contact POST request,
which is exactly what we are looking for:

https://documenter.getpostman.com/view/4012288/TzK2bEa8

Let’s set up a request like this in Postman. Click on the plus (+) button to
create a new request; then click on the HTTP verb dropdown and choose
POST. Next, add this URL: https://thinking-tester-contact-
list.herokuapp.com/contacts. You may have noticed that this is the same URL
we used for our Get Contact List request. The only difference is the HTTP
verb: that request used GET, and now we are using POST.

Now we’ll add the body of the request. Click on the Body tab and then
click the “raw” button. Change the “text” dropdown to read “JSON”. Your
request should look like this:

Go to the body of the request in the documentation, copy the text in the
body, and paste it into the body section of your Postman request:

Finally, add the authorization. Click on the Authorization tab and choose
Bearer Token from the Type dropdown. Then paste in your token from
Chapter 32.

Now you are ready to run the request. Click the Send button, and you
should get a 201 response code with the contact that was added in the body of
the response.

Next, save the request: click the Save button, name the request “Add
Contact”, and save it to your Contact List API collection.

Let’s check to see whether the contact was really added to the database by
doing a GET request to get the contact. Copy the ID from the response you
just got, return to your Get Contact request, and replace the ID in the URL
with your new contact ID. Click Send and you should see your contact
returned in the response:

In Chapter 11 you learned that there are many different ways to test
forms. This is true when testing POST requests as well. First, you can test for
required fields. In the Contact List app, only the first and last names are
required. So you can try to send a request with just those two fields, and
verify that you get a successful response. That request would look like this:

Then you can try sending a request with the first name missing and verify
that you get an error message. You could try sending a request with the last
name missing and verify that you get an error message. You could also try
sending an empty request, with just the curly brackets, { }, and verify that
you get an appropriate error message.

It’s also a good idea to do some additional happy path testing where you
are sending in various combinations of the required fields with some of the
nonrequired fields. After adding each contact, you can do a GET request to
make sure it has been added correctly.

Now it’s time to test the limits of every field. We want to make sure the
field limits of the API match the field limits of the UI. The first name field,
for example, has a limit of 20 characters. So you’ll want to test with just one
character, with 19 characters, with 20 characters, and with 21 characters.
When you send in a first name with 21 characters, you should get an error in
response. For fields like the birth date, the email address, the phone number,
and the postal code, you’ll want to check that only valid entries are accepted
and that invalid entries return an appropriate error.

Finally, you’ll want to test the security of the request. You shouldn’t be
able to add a contact when you are missing the bearer token, or when the
token is invalid.

Chapter 35: Testing PUT Requests
A PUT request is very similar to a POST request. The major difference is

that POST requests are intended to create a new record, while PUT requests
are intended to replace an existing record.

Let’s create a PUT request using a contact you have already created,
either through the UI or through the API. Run your Get Contact List request
to see your list of existing contacts and choose one of the IDs to use.

Now click the plus (+) button to create a new request. Change the HTTP
verb in the dropdown to PUT. In the URL, add https://thinking-tester-contact-
list.herokuapp.com/contacts/<your contact id>,

replacing <your contact id> with the contact ID you want to use:

Next, let’s add in the authorization. Click on the Authorization tab and
choose Bearer Token from the Type dropdown. Then paste in your token
from Chapter 32.

When you are creating the body of the request, it’s important to
remember that a PUT request will replace every single value of your existing
contact with whatever you put in the body of the request. Imagine for a
moment that you had each contact written on a note card instead of in a
database. When you do a PUT request, it’s like taking that note card and
replacing it with a brand-new note card.

So, if you have a contact with information like this:

{
"firstName": “John",
"lastName": “Doe",
"birthdate": "1974-07-04"

}

and you do a PUT request for that contact, like this:

{
"firstName": “Jon",
"lastName": "Doe"
}

you will have a contact with a first name and a last name but no birth
date.

Now that you understand this, let’s add in the body of the request. Begin
by clicking on the Body tab; then choose the “raw” button and then JSON
from the Type dropdown.

For our first request, let’s create a body that has a value for every field.
Add this to the request body:

{
"firstName": "Amy",
"lastName": "Miller",
"birthdate": "1992-02-02",
"email": "amiller@fake.com",
"phone": "8005554242",
"street1": "13 School St.",
"street2": "Apt. 5",
"city": "Washington",
"stateProvince": "QC",
"postalCode": "A1A1A1",
"country": "Canada"
}

We are replacing every existing value of the contact with a completely
new value. Click the Send button and you should see that the contact has all
the new values you just added.

Save the request by clicking the Save button, giving the request a name

such as “Update Contact”, and saving it to your Contact List API collection.

You can verify that the new values were saved to the database by running
the Get Contact request with the same contact ID you used for the PUT
request.

Now that you have your PUT request working, it’s time to test it. All the
tests we did in the POST request will apply to the PUT request, but in this
case we are replacing the record rather than creating it. First, you could do
some tests where you have a record with all the fields and you do a PUT
where you are only passing in the required fields. You should get a record
with just the first name and last name as the response.

Next you could try doing a PUT with no first name or last name, but with
other nonrequired fields, and verify that you get the appropriate error
message. Similarly, you could make a request that has some fields but is
missing the first name, or has some fields but is missing the last name, and
you should get the appropriate error message.

Just as with a POST request, you should check to make sure all the field
validation rules are working. So you should test with values that are longer
than the allowed number of characters, and with invalid birth date, email,
phone number, and postal code values.

There are three different types of value changes you can have with a field:

● A null value can be replaced with a value.
● One value can be replaced with another value.
● A value can be replaced with a null value.

You’ll want to test this out with every field in the Contact record. For
example, if you were testing the birth date field, you could do the following:

1. Create a record that doesn’t have a birth date. Just leave that value
out when doing your POST request. Make a note of the new contact
ID you have created.

2. Do a PUT request that includes a value for the birth date. Make
sure you are updating the right record by using the contact ID from
Step 1.

3. Do a GET request to validate that the record has been updated with
the birth date.

4. Do another PUT request that does not include a value for the birth
date.

5. Do a GET request to validate that the birth date is now null.

As with the GET and POST requests, you can test that you get a 401
response when you try to run the PUT request without a valid token. You can
also try passing in a PUT request with a contact ID that doesn’t exist; you
should get a 404 response.

Chapter 36: Testing PATCH Requests
Like PUT requests, PATCH requests modify an existing record. But

rather than replacing the entire record, a PATCH request simply alters the
fields that are passed into the request. PATCH requests are less common than
PUT requests. In the Contact List app, I have included a PATCH request in
the API, but the UI does not have any functionality that uses it. In the UI,
when we modify a record it calls the PUT request.

Let’s set up a PATCH request. Use the plus (+) button to create a new
request, and change the HTTP verb to PATCH. Add this URL to the request:

https://thinking-tester-contact-list.herokuapp.com/contacts/<your contact
id>, once again replacing <your contact id> with the contact ID you want to
update.

Add the authorization by clicking on the Authorization tab, choosing
Bearer Token from the dropdown, and adding the token you created in
Chapter 32.

Add the body of the request by clicking the Body tab, selecting “raw”,
and choosing JSON from the Type dropdown. In the body of the request,
simply add:

{
"firstName": "Anna"
}

Save the request to your collection as “Partial Update Contact”. Then
send the request. When your contact is returned in the response, you’ll see
that it has all the same field values it had before, except that the first name is
now Anna. You can try a GET request on this contact to make sure the
contact has been saved correctly to the database.

You’ll want to test doing a PATCH with every type of contact field. You
can try patching every field by itself and patching several fields at once. You
should also test scenarios in which one of the contact fields is null and you

are updating it to have a value.

Just as you did with the POST and PUT requests, you’ll want to test that
validation works on all the different fields, making sure the string limits are
respected and the birth date, email, phone, and postal code values are
validated. Try doing a PATCH request with a contact ID that doesn’t exist to
make sure you get a 404 response. Finally, you’ll want to make sure you
can’t do a PATCH request without a valid token.

Chapter 37: Testing DELETE Requests
A DELETE request removes an entire record from a database table. To

set up a DELETE request in your collection, click on the plus (+) button to
add a new request, change the HTTP verb to DELETE, and add this URL:
https://thinking-tester-contact-list.herokuapp.com/contacts/<your contact id>,
replacing <your contact id> with the contact ID you want to delete.

As always, add the Authorization for your request. The request doesn’t
have a body, so simply save it to your collection as “Delete Contact”, and
your request will be ready to run.

Run the request by clicking the Send button. You should see “Contact
Deleted” in the response. You can verify that the contact was deleted by
running the Get Contact List request again and validating that a contact with
that ID isn’t in the list anymore. You can also try running the Get Contact
request with that ID and you should receive a 404 Not Found response:

Testing a DELETE request is fairly straightforward. Since the only
information you are passing into the request is the ID of the record you want
to delete, there’s not much room for variation. You can test what happens
when you enter an ID for a record that doesn’t exist (you should get a 404
response) and what happens when you enter an invalid ID such as “FOO”.
And as with the other requests in the Contact List API, you can try sending a
request with a missing or invalid token and verify that you get a 401
response.

Chapter 38: Response Codes
In the past several chapters, we looked at how to test different types of

REST requests. Each time we made a request, we received a three-digit
response code. In this chapter we’ll look at many different types of response
codes and what they mean.

Every REST request gets a three-digit code in its response. The code
conveys information about the response; for example, whether the response
was successful or unsuccessful, or whether another event is taking place. The
response codes are grouped into levels to keep things organized. Following
are some of the most common responses and what they mean.

100-Level Responses

A 100-level response indicates that the request should continue. The most
common 100-level response type is 100 Continue. This can be used with
large requests; it gives the server the opportunity to stop a large request
before too much data is transmitted. You probably won’t see this in your API
testing, because the server response will continue and complete behind the
scenes, and will then return a 200-level response.

200-Level Responses

A 200-level response indicates that the request was successful. The most
common response is 200 OK. This simply means everything went as
expected. Here are some other common 200-level responses:

● 201 Created: This indicates that a new resource has been created as
the result of the request. POST requests often return a 201 response
because they often create a new record in a database.

● 202 Accepted: This indicates that the request was accepted but is not
complete yet. You could use this response for a pending change that
needs additional approval before being added to the database.

● 204 No Content: This means the request was processed successfully
and no data was returned. This might be used with a PUT request,
where the content is changed but the developer sees no need to
return the data with the response. A 200 OK response can return no
data if the developer chooses, but a 204 response should never return
any data.

300-Level Responses

A 300-level response indicates that a resource has been moved. The most
common of the 300-level responses is 301 Moved Permanently. This
response should include the new URI in the header so that the client will
know where to point the request next time.

400-Level Responses

A 400-level response indicates that there was something wrong with the
client’s request. The most common of these is 400 Bad Request, which is
usually used when the request is malformed or inaccurate in some way.
Examples of this would be a request where there is required data that is not
present, or data that has some sort of validation error. Other common 400-
level responses include the following:

● 401 Unauthorized: This is usually returned when the client does not
have the appropriate authentication to make the request, such as a
JWT or a cookie.

● 403 Forbidden: This is returned when the client has the appropriate
authentication to make the request but does not have the permission
to view the resource. For example, a user might be logged in to the
system and be able to request their own data but should not be able
to request another user’s data.

● 404 Not Found: This is returned when the client is making a request
for a specific resource and the server cannot find it. An example of
this is requesting data for a customer with an ID of 100, and there is
no customer with an ID of 100 in the database. 404 is also
sometimes used when the user making the request doesn’t have

permission to view the resource. This is for extra security: a 403 lets
the user know the resource exists and they don’t have permission to
view it; a 404 keeps the existence of the resource a secret.

● 409 Conflict: This is returned when the request puts data resources
in conflict with one another. One example of this is a client
attempting a POST request to create a resource with an ID that is
already being used.

500-Level Responses

A 500-level response means something has gone wrong on the server side
of the request. The most common is the 500 Internal Server Error response,
which can be used for a variety of problems. An example of this is a request
that is attempting to add a record to a database whose database table is not
equipped to handle it, because it has too many characters or is the wrong
type. Other common 500-level responses include the following:

● 502 Bad Gateway: This can happen when the responding server
needs to make a request from another server and the other server is
returning an invalid response.

● 503 Service Unavailable: This is returned when the responding
server is temporarily down for some reason. This response can be
more helpful than the generic 500 response because it indicates that
the problem is with server availability rather than with the database.

Chapter 39: Postman Assertions
One of the great benefits of using Postman for API testing is that it allows

you to create assertions on the response you receive from your requests. This
enables you to create API tests which you can run manually or through
automation.

In this chapter we’ll look at five different types of assertions to use in API
testing and create some examples of each. If you followed the steps listed in
Chapters 32 through 37, you should have a collection with each type of
REST request:

We’ll use this collection to create some assertions and turn our Postman
requests into Postman tests.

Status Code Assertions

A status code assertion validates that the response you received from a
request is the response you were expecting.

Let’s create a status code assertion on our Get Contact List request. Click
on the name of the request to select it. Then click on the Tests tab:

When you click on the Tests tab, a special section called SNIPPETS
opens on the right side of the Postman window:

The SNIPPETS section contains snippets of code that can be used to
quickly create assertions. When you click on a snippet, code will be added to

the Tests window. Scroll down in the SNIPPETS section until you see
“Status code: Code is 200” and click on it. It will add this code:

This is JavaScript, and here’s a breakdown of what it means:

● pm refers to “Postman” and indicates that this is a Postman
command.

● "Status code is 200" is the name of the test.
● pm.response.to.have.status(200) is the test itself; it is an assertion

that the response status came back as 200.

Since we are expecting that our Get Contact List request will return a 200
response code, our test is ready to run! Save the request and then click the
Send button. In the response window, you should see a Test Results tab with
a (1/1) next to it in green:

This indicates that 1 of 1 tests passed. If you click on the Test Results tab,
you will see the name of the test you created with the word “PASS” beside it:

Let’s see what it looks like when a test fails. Go to the Authorization tab
and remove your Bearer token. Then click Send to run the test again. In the
Test Results tab, you’ll see the following:

In addition to indicating that the test failed, it also shows what the
expected and actual results were.

Response Body Assertions

Response body assertions validate that a certain word or phrase was
included in the body of the response. You can assert that the entire body of
the response is correct, or you can assert that the response body contains a
specific string.

Let’s create an assertion that will check for a specific string. So far our
collection only has happy path tests saved. Let’s create a request that will
result in a 400 response. Hover over the Add Contact request and click on the
three-dot menu that appears:

From that menu, choose Duplicate. This will create a copy of your
existing request. Click on the Add Contact Copy request, choose the three-dot
menu again, and choose Rename. Rename the request “Add Contact Missing
First Name”.

Select the Add Contact Missing First Name test in the center pane of the
Postman window, click the Body tab, and make a change to the body tab so
that the firstName entry is no longer there:

Save the request and run it. You’ll see that you are now getting a response
message that says the first name field is required:

To create an assertion for this negative test, we’ll want to make sure the
response includes the statement that the first name is required. Click on the
Tests tab, and then click on the “Response body: Contains string” snippet.
The snippet will add code to the Tests window:

Let’s give our test a name that makes sense. Change "Body matches
string" to "Missing first name error is returned". Then change the
"string_you_want_to_search" field to "Path `firstName` is required.”:

Save your request and then run it. You should see in the Test Results tab
that the test has run and passed:

JSON Data Assertions

JSON data assertions are really powerful because they let you assert that
a specific value for a specific field has been saved to the database as you
expected.

To create a JSON data assertion, we’ll use the Get Contact request.
Imagine that we’ve just created a new contact with the last name “Doe”, and
we want to assert that when we request the new contact, we get a contact with
the correct last name.

Click on the Get Contact request, then click on the Tests tab. Next, click
on the “Response body: JSON value check” snippet. You should see the
snippet added to the Tests window:

To do a JSON value check, the response needs to be parsed as JSON.
That’s what this line of code does: var jsonData = pm.response.json(). It’s
taking the Postman response, converting it to JSON, and then saving the
converted response as a variable called jsonData.

Change the test name to "Correct last name is returned". Then change
value to lastName because this is the field we are checking. Finally, change
100 to the last name of your contact that you are testing with. Put the last
name in quote marks. Your test should now look like this:

Save the request and click Send. You should see your test has run and
passed.

Header Assertions

Header assertions are less common than Status Code, Response Body,
and JSON Data assertions, but they can be helpful when doing security
testing. For example, you might want to assert that the response you are
getting from a request is JSON, and not some other response type which
might indicate that the request has been tampered with. We’ll add this
assertion to our Partial Update Contact. Click on that request and then on the
Tests tab. Then click on the “Response headers: Content-Type header check”
snippet. The snippet is currently checking that a Content-Type header is
present:

Let’s change the assertion so that it’s actually checking for a specific
content type. First, change the test name from "Content-Type is present" to
"Content-Type is application/json". Next we’ll change the assertion value.
Put a comma after "Content-Type" and add "application/json; charset=utf-8"
because this is actually what’s getting returned in the Content-Type header:

Note that the first part of the assertion names the type of header we are
expecting (Content-Type), and the second part names the value of Content-
Type we are expecting (application/json; charset-utf-8).

Save and send the request, and you should see it pass. In the future, if the
request ever returns something other than application/json, you’ll see the test
fail and you’ll be alerted to a potential problem.

Response Time Assertions

This last assertion type validates that a request doesn’t take too long. This
is a helpful test to run to make sure your API is performing well.

Let’s add a response time assertion to our Get Contact List request. We
already have one assertion on this request, but we can add a second assertion
as well. Click on the Get Contact List request, then click on the Tests tab.
Make sure your cursor is below your first test in the Tests window. Next,
click on the “Response time is less than 200ms” snippet. The response time
assertion will be added to the existing test:

Save and run the test. Assuming your request comes back in less than 200
milliseconds, you should see that your two tests passed. You can also adjust
the test to be 500 milliseconds or anything else that seems more appropriate.
Remember to change both the name of the test and the expected value:

With these five assertion types, you can create a wide variety of tests to
run against an API.

Chapter 40: Using Variables in Postman
Using variables in Postman is a really helpful way to make your

collections more efficient and reliable. To learn more about variables, we’ll
continue using the Contact List API collection we created in previous
chapters.

The first thing to understand about variables in Postman is that they are
organized into environments. A Postman environment is simply a collection
of variables that can be used to run against a Postman collection.

Creating an environment is easy. Click on the Environments tab in the left
margin of the Postman window:

Click the Create Environment button:

Give your environment a name, such as “Contact List- PROD”:

Add the variable “contactId” to the environment file:

Click the Save button. We could populate the value of contactId by typing
the value directly into the environment, but it’s more powerful to set the
variable programmatically. Return to your collection by clicking on the
Collections tab in the left side of the window:

Now we’ll need to set our environment to the one we just created. Click
the No Environment dropdown in the upper-right of the window:

Select your new environment from the dropdown:

Now we’ll add a code snippet to the Add Contact request which will
extract and save the contactId whenever we add a new contact. Click on the
Add Contact request and then on the Tests tab. (Note that extracting a
variable is not actually a test; there are other scripts we can run on the Tests
tab besides assertions.)

Click on the snippet called “Set an environment variable” to add it to the
Tests window:

"variable_key" refers to the name of our variable. Since we want to set

contactId as a variable, we’ll replace "variable_key" with "contactId".

Next, we need to set the variable value. We will be extracting a JSON
value from the response, so we actually need to add another command above
the existing one:

var jsonData = pm.response.json()
In the preceding chapter, we discussed how this command takes the

request response, parses it as JSON, and then saves it to a variable called
jsonData, enabling us to use jsonData to find the value we need.

Here, we will replace "variable_value" with jsonData._id (note that it has
no quotation marks around it because it’s a variable, not a string). _id is the
name of the contact ID that is returned when we add a new contact. So your
script should now look like this:

Save and run your request. Now click on the eye icon in the upper-right
of the window:

A window will open and you’ll see that your contact ID has been saved to
the contactId variable:

Now that we have our variable saved, let’s use it in a couple of different
ways. First, we’ll use it in the URL of a request. Click on the Get Contact

request and replace the last part of the URL with “{{contactId}}”:

Save and run the request. You’ll see that the contact that is returned is the
one you just added.

You can also use a variable in a test. Let’s add a test to Get Contact that
verifies the contactId to confirm that the correct contact has been returned.
We already have a test in place that is testing that the last name is returned.
Let’s copy that existing test and paste it below the original:

Change the name of the test in line 6 to be "Correct contact is returned".
Then change jsonData.lastName in line 8 to jsonData._id. Finally, change
"Doe" to environment.contactId:

When you run this test, it compares the _id value that was passed back in
the body of the response to the value you have set for contactId in the
environment. Save your test and make sure it runs and passes.

You can use variables in your Postman requests in two additional ways.
One way is to pass them in with Authorization headers or other headers.
Here’s an example of how you can pass in a saved authorization token:

You can also use variables in the body of a request. Here’s an example of
how you can pass in a lastName variable in the body of your Add Contact
request:

Of course, for both of these examples, you’d need to first create the
environment variable in your environment file.

Variables make it easy to pass values without having to copy and paste
them again and again. And if you need to make a change to a variable, you
can make the change in the environment file and know that it will be changed
throughout your collection.

Chapter 41: Organizing Your API Tests
One of the things I love about API testing is how easy it is to organize

tests and environment variables. I love having test suites ready at a moment’s
notice to run at the click of a button when regression testing is needed, or to
run automatically as part of continuous integration.

This chapter covers some organizational patterns you can use for your
API tests. I discuss them in the context of Postman, but the concepts are
similar no matter what API testing platform you are using.

Let’s begin with environments. As you’ll recall from the preceding
chapter, an environment is a collection of variables in Postman. There are two
different ways I like to set up my Postman environments. To explain them,
I’ll use two scenarios. For both scenarios, let’s assume I have an application
that begins its deployment life cycle in development, then moves to QA, then
staging, and then production.

In my first scenario, I have a Users API that gets and updates information
about all the users on my website. In each product environment
(development, QA, staging, and production), the test users will be different.
They’ll have different IDs and different first and last names. The URLs for
the product environments will each be different as well. However, my tests
will be exactly the same; in each product environment, I’ll want to GET a
user and PUT a user update.

So I will create four different Postman environments:

In each of my four environments, I’ll have these variables:

● environmentURL
● userId
● firstName
● lastName

Then my test collection will reference those variables. For example, I
could have a test request that looks like this:

GET https://{{environmentURL}}/users/{{userId}}

Which environmentURL is called and which userId is used will depend
on which Postman environment I am using. With this strategy, it’s easy for
me to switch from the Dev environment to the QA environment, or to any
other environment. All I have to do is change the Postman environment
setting and run the same test again.

I use the second scenario when I have a function that delivers an email,
and the function uses the same URL regardless of the product environment. I
like to pass in a timestamp variable which will show the current time and will

stay the same regardless of what environment I am using. But I like to change
the content of the email depending on what product environment I am in. In
this case, I am creating only one Postman environment: “Email Test”.

My Postman test has only one variable: timestamp.

My test collection, however, has one test for each product environment.
Here are my tests:

Each request includes the timestamp variable, but what is sent in the body
of the email varies. For the Dev environment I use a request that contains
“Dev” in the message body, for the QA environment I use a request that
contains “QA” in the message body, and so on.

When deciding which of these two environment strategies to use,
consider the following:

● What stays the same from one product environment to another?
● What changes from one product environment to another?

If many variables change, you may want to consider setting up multiple
Postman environments, as in my first scenario.

If only one or two things change from one environment to the next, and if

the URL doesn’t change, you may want to use my second scenario, which has
just one Postman environment but different requests for each product
environment.

Now let’s talk about ways to organize our tests. First, let’s think about
test collections. The most obvious way to organize collections is by API. If
you have more than one API in your application, you can create one
collection for each API. You can also create collections based on test
function. For example, if I have a Users API and I want to run a full
regression suite, a nightly automated test, and a deployment smoke test, I
could create three collections, like this:

Finally, let’s think about test folders. Postman is so flexible in this area;
you can use any number of folders in a collection, and you can also use
subfolders.

Here are some suggestions for how you can organize your tests into
folders:

● By type of request: All your POST requests go in one folder, all
your GET requests go in another folder.

● By endpoint: GET myapp/users requests go in one folder, GET
myapp/users/userId requests go in another folder.

● By result expected: GET myapp/users happy path requests go in one
folder, GET myapp/users negative requests go in another folder.

● By feature: GET myapp/users requests with a sort function go in one
folder, GET myapp/users requests with a filter function go in

another.

As with all organizing efforts, the purpose of organizing your tests and
environments is to ensure that they can be used as efficiently as possible. By
looking at the types of tests you will be running and the variations in the
environments where you will be running them, you can organize your
Postman environments, collections, and folders so that you have all the tests
you need at your fingertips.

Chapter 42: Understanding JSON Data
New API testers are often mystified by the assortment of curly braces,

colons, and commas they see in the body of the response to their GET
requests. Trying to create a valid JSON body for a POST request is even
more puzzling. This chapter covers how JSON data is formed and offers
some resources that will make working with JSON easier.

JSON stands for JavaScript Object Notation. It’s simply a way to
organize data so that it can easily be parsed by the code. The fundamental
building block in JSON is the name-value pair. Here are some examples of
name-value pairs:

"Name": "Dino"
"Color": "Purple"

Multiple name-value pairs are separated by commas, like this:

"FirstName": "Fred",
"LastName": "Flintstone",
"City": "Bedrock"

Note that the final name-value pair does not have a comma. This is
because it’s at the end of the group.

An object is simply a grouping of one or more name-value pairs. The
object is represented with curly braces surrounding the name-value pairs. For
example, we might represent a pet object like this:

{
"Name": "Dino",
"Type": "Dinosaur",
"Age": "5",
"Color": "Purple"
}

An array is a group of objects. The array is represented with square
braces, and the objects inside the array have curly braces. For example:

"residents": [
{

"FirstName": "Fred",
"LastName": "Flintstone"

},
{

"FirstName": "Barney",
"LastName": "Rubble"

},
{

"FirstName": "Wilma",
"LastName": "Flintstone"

}
]

Fred Flintstone’s last name does not have a comma after it. This is
because LastName is the last name-value pair in the object. But the object
that contains Fred Flintstone does have a comma after it because there are
more objects in the array. And the object that contains Wilma Flintstone does
not have a comma after it, because it is the last object in the array.

Not only can an array contain objects, but an object can contain an array.
When you are sending JSON in the body of an API request, it will always be
in the form of an object, which means it will always begin and end with a
curly brace. Also, name-value pairs, objects, and arrays can be very deeply
nested. It would not be unusual to see something like this contained in a
POST for city data:

{
"residents": [

{
"firstName": "Fred",
"lastName": "Flintstone",
"contactInfo": {

"phoneNumber": "555-867-5309",

"email": "fflintstone@slaterock.com"
}

},
{

"firstName": "Wilma",
"lastName": "Flintstone",
"contactInfo": {

"phoneNumber": "555-423-4545",
"email": "wflinstone@dailygranite.com"

}
}

],
"pets": [

{
"name": "Dino",
"type": "dinosaur",
"color": "purple"

},
{

"name": "Hoppy",
"type": "hopparoo",
"color": "green"

}
]
}

Notice that contactInfo is deeply nested in the city object. If we were
testing this API and we wanted to assert that Fred Flintstone’s phone number
was correct, we would access it like this:

residents[0].contactInfo.phoneNumber

The first array in the city object is the residents array, and Fred is the first
resident in the array, so we access him with residents[0]. Next, we move to
contactInfo, and since contactInfo is an object rather than an array, we don’t
need to specify a number in braces. Finally, we specify phoneNumber as the
name-value pair within the contactInfo object we are looking for.

Even with the preceding explanations, you may find working with JSON
objects frustrating. There are two JSON-related tools that can help you when
working with JSON:

● JSON validator: When you paste your JSON into this tool, it will
tell you whether or not it is valid JSON. A good validator will tell
you exactly where your syntax is incorrect.

● JSON pretty-printer: If you come across JSON that is returned in a
response and it is not using line breaks and indentations, you can
paste it into this tool and it will insert those breaks and indentations
for you, making it easier to read.

Chapter 43: API Contract Testing Made
Easy

As software becomes increasingly complex, more and more companies
are turning to APIs as a way to organize and manage their application’s
functionality. Instead of being one monolithic application in which all
changes are released at once, software can now consist of multiple APIs that
are dependent upon one another but can be released separately at any time.
Because of this, it’s possible to have a scenario in which one API releases
new functionality which breaks a second API’s functionality, because the
second API was relying on the first and now something has changed.

You can prevent this from happening by using API contract tests. These
can seem confusing: which API sets up the tests and which API runs them?
In this chapter I’ll use a simple example to show you how contract testing
works.

Let’s imagine we have an online store that sells Super Balls. The store
sells Super Balls of different colors and sizes, and it uses three different APIs
to accomplish its sales tasks:

Inventory API: This API keeps track of the Super Ball inventory to make
sure orders can be fulfilled. It has the following endpoints:

● /checkInventory, which passes in a color and size and verifies that
the ball is available

● /remove, which passes in a color and size and removes that ball from
the inventory

● /add, which passes in a color and size and adds that ball to the
inventory

Orders API: This API is responsible for taking and processing orders
from customers. It has the following endpoints:

● /addToCart, which puts a ball in the customer’s shopping cart

● /placeOrder, which completes the sale

Returns API: This API is responsible for processing customer returns. It
has the following endpoint:

● /processReturn, which confirms the customer’s return and starts the
refund process

Both the Orders API and the Returns API are dependent on the Inventory
API in the following ways:

● When the Orders API processes the /addToCart command, it calls the
/checkInventory endpoint to verify that the type of ball that’s been
added to the cart is available.

● When the Orders API processes the /placeOrder command, it calls
the /remove command to remove that ball from the inventory so that
it can’t be ordered by someone else.

● When the Returns API runs the /processReturn command, it calls the
/add command to return that ball to the inventory.

In this example, the Inventory API is the producer and the Orders API
and Returns API are the consumers.

It is the consumer’s responsibility to provide the producer with some
contract tests to run whenever the producer makes a code change to its API.
So in our example, the team that works on the Orders API would provide
contract tests like the following to the team that works on the Inventory API:

● /checkInventory, where the body contains { "color": "purple", "size":
"small" }

● /remove, where the body contains { "color": "red", "size": "large" }

The team that works on the Returns API would provide an example like
this to the team that works on the Inventory API:

● /add, where the body contains { "color": "yellow", "size": "small" }

Now the team that works on the Inventory API can add those examples to

its suite of tests.

Let’s imagine the Super Ball store just had an update to its inventory.
There are now two different kinds of bounce levels for the balls: medium and
high. So the Inventory API team needs to make some changes to its API to
reflect this. Now a ball can have three properties: color, size, and bounce.

The Inventory API team modifies its /checkInventory, /add, and /remove
commands to accept the new bounce property. But the developer accidentally
makes “bounce” a required field for the /checkInventory endpoint.

After the changes are made, the contract tests are run. The
/checkInventory test contributed by the Orders API team fails with a 400
error because there’s no value for “bounce”. When the developer sees this,
she finds her error and makes the bounce property optional. Now the
/checkInventory call will pass.

Without these contract tests in place, the team working on the Inventory
API might not have noticed that the change was going to break the Orders
API. If the change went to production, no customer would be able to add a
ball to their cart!

You should now understand through this simple example the importance
of contract testing and the responsibilities of each API team when setting up
contracts.

Part V: Mobile Testing

Chapter 44: The 12 Challenges of Mobile
Testing

The first iPhone was released in 2007. Today smartphones are ubiquitous.
Our smartphones are like our Swiss Army knives: they are our maps, our
address books, our calendars, our cameras, our music players, and of course,
our communication devices. Testing software would not be complete without
testing on mobile.

Following are 12 reasons why testing on mobile is difficult. I thought it
would be fun to illustrate what can go wrong with mobile software by
describing a bug I’ve found in each area. I found some of these bugs in the
course of my testing career and some on my personal device as an end user.

Challenge #1: Carriers

Mobile application performance can vary depending on what carrier the
device is using. In the United States, the two major carriers are Verizon and
AT&T, and we also have smaller carriers like T-Mobile. Some of the major
carriers in Europe are Orange, Vodafone, and SFR, and in Asia they include
China Mobile, NTT, and China Telecom. When testing software on mobile,
it’s important to consider what carriers your end users will be using and to
test with those carriers.

Example bug: I once tested a mapping function within an application and
discovered that while the map would update based on my location when I
was using one carrier, it would not update when I was using a different
carrier. This was due to how the location was cached after a cell tower ping.

Challenge #2: Network or Wi-Fi

Device users have the choice of using their applications while connected
to the carrier’s network or while on Wi-Fi. They can even change how they
are connecting in the middle of using the application, or their connection can
be cut if they go out of network range. It’s important to test an application

when connected to a network and when connected to Wi-Fi, and to see what
happens when the connection changes or is lost.

Example bug: I have a Wi-Fi extender in my house. I have seen a
recurring bug with my music player: when I switch my phone’s Wi-Fi
connection to use the extender’s IP, the player thinks I am offline. I then have
to force-close the app and reopen it for the player to recognize that I am
online.

Challenge #3: Application Type

Mobile applications can be web based, native, or a hybrid of the two
(developed like a web app but installed like a native app). Some of your end
users will choose not to use a native or hybrid app and will prefer to interact
with your application in their phone’s browser. A variety of mobile browsers
could also be used, such as Safari, Chrome, or Opera. So it’s important to
make sure your web application works well on a variety of mobile browsers.

Example bug: Many times I’ve gone to a “mobile-optimized” site that
doesn’t have the functionality I need. I’ve had to choose to go to the full site,
where all the text is tiny and navigation is difficult.

Challenge #4: Operating System

Mobile applications will function differently depending on the operating
system. The two major operating systems are iOS and Android. It’s important
to test on whatever operating systems your end users will be using, to make
sure all the features in the application are supported in all systems.

Example: This is not a bug, but a key difference between Android and
iOS. Android devices have a back button and iOS devices do not.
Applications written for iOS need to have a back button included on each
page so that users will have the option to move back to the preceding page.

Challenge #5: Version

Every OS is updated periodically, with new features designed to entice
users to upgrade. But not every user will upgrade their phone to the latest

version. It’s important to use analytics to determine which versions your
users are most likely to have, and make sure you are testing on those
versions. Also, every version update has the potential to create bugs in your
application that weren’t there before.

Example bug: Often when the version was updated on my phone, I could
no longer use the speaker function when making phone calls. I could hear the
voice on the other end, but the caller couldn’t hear me.

Challenge #6: Manufacturer

While all iOS devices are manufactured by Apple, Android devices are
not so simple. Samsung is one of the major Android device manufacturers,
but there are many others, including Huawei, Motorola, Asus, and LG. It’s
important to note that not every Android user will be using a Samsung
device, and therefore to test on other Android devices as well.

Example bug: I once tested a tablet application whose keyboard function
worked fine on some makes but not others. The keyboard simply wouldn’t
pop up on those devices, so I wasn’t able to type in any form fields.

Challenge #7: Model

Similar to versioning, new models of devices are introduced annually.
While some users will upgrade every year or two to the latest device, others
will not. Moreover, some devices will not be able to upgrade to the latest
version of the OS, so they will be out of date in two ways. Again, it’s
important to find out what models your end users are using so that you can
decide which models to test on and support.

Example: This is not a bug, but it was an important consideration. When
Apple released a new model of the iPad that would allow a signature control
for users to sign their name in a form, the software I was testing included this
feature. But older versions of the iPad weren’t able to support this, so the
application needed to account for this and not ask users on older versions to
sign a document.

Challenge #8: Tablet or Smartphone

Many of your end users will be interacting with your application on a
tablet rather than a smartphone. Native applications will often have different
app versions depending on whether they are designed for a tablet or a phone.
An application designed for a smartphone can often be downloaded to a
tablet, but an application designed for a tablet cannot be installed on a
smartphone. If a web app is being used, it’s important to remember that
tablets and smartphones sometimes have different features. Test your
application on both tablets and phones.

Example bug: I have tested applications that worked fine on a smartphone
and simply gave me a blank screen when I tried to test them on a tablet.

Challenge #9: Screen Size

Mobile devices come in many different sizes. While iOS devices fit into a
few sizing standards, Android devices have dozens of sizes. Although it’s
impossible to test every screen size, it’s important to test small, medium,
large, and extra-large sizes to make sure your application draws correctly in
every resolution.

Example bug: I have tested applications on small phones whose page
elements were overlapping each other, making it difficult to see text fields or
click on buttons.

Challenge #10: Portrait or Landscape

When testing on smartphones, it’s easy to forget to test in landscape mode
because we often hold our phones in a portrait position. But sometimes
smartphone users will want to view an application in landscape mode, and
this is even more true for tablet users. It’s important to not only test your
application in portrait and landscape modes, but also to switch back and forth
between modes while using the application.

Example bug: I tested an application once that looked great on a tablet
when it was in portrait mode, but all the fields disappeared when I moved to
landscape mode.

Challenge #11: In-App Integration

One of the great things about mobile applications is that they can
integrate with other features of the device, such as the microphone and
camera. They can also link to other applications, such as Facebook and
Twitter. Whatever integrations the application supports, be sure to test them
thoroughly.

Example bug: I tested an application that allowed users to take a picture
of an appliance in their home and add it to their home’s inventory. When I
chose to take a picture, I was taken to the camera app correctly and was able
to take the picture, but after I took the picture I wasn’t returned to the
application.

Challenge #12: Integration with Other Apps

Even if your application isn’t designed to work with any other apps or
features, it’s still possible there are bugs in this area. What happens if the user
gets a phone call, a text, or a low-battery warning while they are using your
app? It’s important to find out.

Example bug: For a while, if the device timer on my phone went off
while I was on a call, as soon as I got off the phone the timer would sound
and wouldn’t stop.

These descriptions and examples should show just how difficult it is to
test mobile applications. In the next chapter, we’ll take a look at writing
mobile test plans and assembling a portfolio of physical devices on which to
test them.

Chapter 45: Manual Mobile Testing
I firmly believe that no matter how great virtual devices and automated

tests are, you should always do some mobile testing with a physical device in
your hand. But none of us has the resources to acquire every possible mobile
device with every possible carrier! So this chapter discusses how to assemble
a mobile device portfolio that meets your minimum testing criteria and how
to get your mobile testing done on other physical devices. It also covers the
manual tests that should be part of every mobile test plan.

Every company is different and will have a different budget available for
acquiring mobile devices. Here is an example of how I would decide which
phones to buy if I were allowed to purchase no more than 8. I would want to
make sure I had at least one of the top three carriers for my service area
(United States) in my portfolio. I would also want to have a Wi-Fi–only
device, and I would want to have at least one iOS device and at least one
Android device. For OS versions, I’d want to have both the latest OS version
and the next-to-latest OS version for each operating system. For Android
devices, I’d want to have the three most popular manufacturers for my
service area. Finally, I would want to make sure I had at least one tablet for
each operating system.

With those stipulations in mind, I would create a list of devices similar to
this:

This portfolio includes three iOS devices and five Android devices. All
three carriers I wanted are represented, as well as one Wi-Fi–only device. The
portfolio also includes three tablets and five smartphones; the latest and next-

to-latest iOS and Android versions; and a variety of screen sizes.

The benefit of having a physical device portfolio is that you can add to it
every year as your budget allows. Each year you can purchase a new set of
devices with the latest OS version, and you can keep your old devices on the
older OS versions, thus expanding the range of OS versions you can test with.

Once you have a device portfolio, you’ll need to make sure you are
building good mobile tests into your test plans. In addition to the general
application functionality, you should add the following tests:

● Test the application in the mobile browser, in addition to testing the
native app.

● Test in portrait and landscape modes, switching back and forth
between the two.

● Change from using the network, to using Wi-Fi, to using no service,
and back again.

● Test any in-app links and social media features.
● Set the phone or device timer to go off during your testing.
● Set text messages to arrive and low-battery warnings to activate

during your testing.

What about testing on the hundreds of devices that you don’t have? This
is where device farms come into play. A device farm consists of many
physical devices housed in one location which you can access through the
Web. From your computer, you can access device controls such as the home
and back buttons, swipe left and right on the screen, and click on the controls
in your application. You may even be able to do things like rotate the device
and receive a phone call.

With a device farm, you can expand the range of devices on which you
are testing. Good ideas for expanding your test plan would be adding devices
with older OS versions and adding devices from manufacturers you don’t
have in your portfolio.

What if your mobile application is designed for people to use all over the
world? You probably won’t be able to get devices or carrier plans from other
countries. How can you make sure users everywhere are having a good

experience with your app? You can use crowdsourced testing!

Crowdsourced testing companies specialize in using testers from many
countries who are using devices with their local carriers. They can test your
application in their own time zone with a local carrier and a local device.

With a mobile device portfolio, a mobile test plan, a device farm, and a
crowdsourced testing service in place, you will be able to execute a
comprehensive suite of tests on your application and ensure a great user
experience worldwide.

Chapter 46: Seven Tips for Mobile
Automated Testing

Walk into any mobile carrier store and you will see a wide range of
mobile devices for sale. Of course you want to make sure your application
works well on all of those devices, in addition to the older devices that some
users have. But running even the simplest of manual tests on a phone or tablet
takes time. Multiply that time by the number of devices you want to support
and you’ve got a huge testing burden!

This is where automated mobile testing comes in. Here are seven tips to
help you be successful with mobile automated testing.

Tip #1: Don’t Test Things on Mobile That Could Be More Easily
Tested Elsewhere

Mobile automation is not the place to test your backend services. It’s also
not the place to test the application’s general logic, unless your application is
mobile only. Mobile testing should be used for verifying that elements appear
correctly on the device and function correctly when used.

For example, let’s say you have a sign-up form in your application. In
your mobile testing, you’ll want to make sure the form renders correctly, all
fields can be filled in, error messages display appropriately, and the Save
button submits the form when the user clicks it. But you don’t want to test
that the error message has the correct text or that the fields have all been
saved correctly. You can save those tests for standard web browser or API
automation.

Tip #2: Decide Whether You Want to Run Your Tests on Real
Devices or Emulators

The advantage of running your tests on real devices is that the devices
will behave like the devices your users own, with the possibility of having a
low battery, connectivity issues, or other applications running. But because of

this, it’s possible that your tests will fail because a phone in the device farm
froze or was being used by another tester. Annoyances like these can be
avoided by using emulators, but emulators can’t completely mimic the real
user experience. It’s up to you to decide which option is more appropriate for
your application. You can also use both!

Tip #3: Test Only One Thing at a Time

Mobile tests can be flaky due to the issues we just discussed as well as
other issues such as the variations found in different phones and tablets. You
may find yourself spending a fair amount of time diagnosing your failed tests.
Therefore, it’s a good strategy to keep your tests small. For example, if you
were testing a login screen, you could have one test for a successful login and
a second test for an unsuccessful login, instead of putting both scenarios into
the same test.

Tip #4: Be Prepared to Rerun Tests

As mentioned in tip #3, you will probably encounter some flakiness in
your mobile tests. A test can fail simply because the service hosting the
emulator loses connectivity for a moment. So you may want to set up a
system in which your tests run once and then rerun the failed tests
automatically. You can then set up an alert that will notify you only if a test
has failed twice.

Tip #5: Don’t Feel Like You Have to Test Every Device in Existence

As testers, we love to be thorough. We love to come up with every
possible permutation in testing and run through them all. But in the mobile
space, this can quickly drive you crazy! The more devices on which you are
running your automated tests, the more failures you will have. The more
failures you have, the more time you will have to spend diagnosing those
issues. This is time taken away from new-feature testing or exploratory
testing. Research which devices your users own and create a list of devices to
test with that covers most of those devices.

Tip #6: Take Screenshots

Nothing is more frustrating than seeing that a test failed and not being
able to figure out why. Screenshots can help you determine whether you were
on the correct screen during a test step and whether all the elements are
visible. Some mobile testing companies take a screenshot of every test step as
the test progresses. Others automatically take a screenshot of the last state of
the application when the test fails. You can also code your test to take
screenshots of specific test steps.

Tip #7: Use Visual Validation

Visual validation is essential in mobile testing. Many of the bugs you will
encounter will concern elements not rendering correctly on the screen. You
can test for the presence of an element, but unless you have a way to compare
a screenshot with one you have on file, you won’t really be verifying that
your elements are visible to the user. Many tools are available that build
visual verification right into your tests and save a collection of screenshots
from every device you test with to use for image comparison.

By heeding these tips, you will ensure that you are comprehensively
testing your application on mobile without spending a lot of time debugging.

Part VI: Security Testing

Chapter 47: Introduction to Security Testing
Until a few years ago, security testing was thought of as something

separate from traditional software testing; something an Application Security
team would take care of. But massive data breaches have demonstrated that
security is everyone’s responsibility: from CEOs to product owners, DBAs,
developers, and yes, software testers. Testers already verify that software is
working as it should so that users will have a good user experience; it is also
crucial for testers to verify that software is secure so that users' data will be
protected.

The great news is that much of what you already do as a software tester
helps with security testing. This chapter covers how testers can use the skills
they already have to start testing with security in mind, as well as the new
skills testers can learn to help secure their applications.

Things you are probably already testing:

● Field validation: You likely are already ensuring that fields only
accept the data types they are expecting and that the number and
type of characters are enforced. This helps ensure that SQL injection
and cross-site scripting can’t be entered through a data field.

● Authentication: Everyone knows it’s important to test an
application’s login page. You are probably already testing to make
sure that when a login fails the UI doesn’t provide any hints as to
whether the username or password failed; and to make sure the
password isn’t saved after logout or displayed in clear text. This
helps make it more difficult for a malicious user to figure out how to
log in to someone else’s account.

● Authorization: You likely are paying attention to which user roles
have access to which pages. By verifying that only authorized users
can view specific pages, you are helping to ensure that data does not
fall into the wrong hands.

Things you can learn for more comprehensive security testing:

● Intercepting and manipulating requests: It is easy to intercept web
requests with free tools that are available to everyone online. Since
attackers do this regularly, you must ensure that they can’t get access
to information they shouldn’t have.

● Cross-site scripting (XSS): This involves entering scripted code that
will be executed when someone navigates to a page or retrieves data.
Any text field or URL represents a potential attack point for a
malicious user to insert a script.

● SQL injection: This is exploiting potential security holes in
communication with the database to retrieve more information than
the application intended. As with cross-site scripting, any text field
or URL can potentially be used to extract data.

● Session hijacking: It’s important to learn whether usernames,
passwords, tokens, or other sensitive information is displayed in
clear text or poorly encrypted. Malicious users can use this
information to log in as someone else.

Security testing involves a shift in mindset from traditional testing. When
we test software, we are usually thinking like an end user. For security
testing, we need to think like a malicious user. End users take the happy path
because they are using the software for its intended purpose, whereas hackers
are trying to find possible security holes and exploit them.

Chapter 48: Using Dev Tools to Find
Security Flaws

A common misconception is that all security testing is complicated.
While some testing certainly requires learning new skills and understanding
things like networks, IP addresses, and domain names, other testing is
extremely simple. In this chapter, you’ll learn about three security flaws you
can find in an application by simply using your browser’s developer tools.
These flaws could be exploited by an average user of your application, not
just a well-trained malicious hacker.

To access the developer tools in Chrome, simply click on the three-dot
menu in the upper-right corner of the browser and choose More Tools, then
Developer Tools. The tools will open on the right side or the bottom of the
screen.

To access the developer tools in Firefox, click on the three-line menu in
the upper-right corner of the browser and choose Web Developer, then Web
Developer Tools.

Flaw #1: Editing Disabled Buttons

When you are on a web page that has a disabled button which is only
enabled when certain criteria are met, such as filling out all the fields in a
form, it may be possible to enable it without meeting the criteria. I included
instructions on how to do this in Chapter 10.

Users of your application might use this flaw to avoid submitting a form
that includes required fields they don’t want to fill in. Or they might enable
an Edit button and submit edits to data they shouldn’t be able to edit.

Flaw #2: Viewing Hidden Data

I was once shown a security flaw in an application that was listing contact
details for various members of the site. Depending on the user’s access rules,

there were certain fields for the members, such as their personal address, that
were not displayed on the page. But when the developer tools were opened,
all the hidden field values were displayed in the Elements section! Any user
of this application could open the developer tools and search through them to
find personal data for any of the site’s members.

Flaw #3: Finding Hidden Pages

It’s possible to find links that are not displayed on a web page by looking
in the Elements section of the developer tools. If you right-click on an
element in a web page and choose Inspect, you’ll be taken to the HTML for
the page. See whether you can find an element that is marked “ng-hide” or
“hidden”:

If you append the href value to the URL you are on, you may be able to
get to a page that is supposed to be hidden from you.

This is why it is important to do authorization checks when a user
navigates to a page. It’s not enough to simply hide a link, because it’s so easy
to find hidden links by looking in the developer tools. Any user could find
hidden links in your application and navigate to them, which could give them
access to an admin page or a page with other users’ data.

As you can see, testing for these types of security flaws is quick and easy.
I recommend checking for these three flaws whenever you test a web page.

Chapter 49: Testing for IDOR
Vulnerabilities

IDOR stands for Insecure Direct Object Reference, and it refers to a
situation in which a user can successfully request access to a web page, data
object, or file they should not have access to. In this chapter, I’ll describe four
ways this vulnerability might appear. Then we’ll exploit this vulnerability in
a test application using Chrome’s DevTools and Postman.

One easy way to look for IDOR is in a URL parameter. Let’s say you are
an online banking customer of a really insecure bank. When you go to your
account page, you log in and are taken to this URL:
http://mybank/customer/27. Looking at this URL, you can tell that you are
customer #27. What would happen if you changed the URL to
http://mybank/customer/28? If you are able to see customer #28’s data, you
have definitely found an instance of IDOR!

Another easy place to look is in a query parameter. Imagine that your
name is John Smith and you work for a company that conducts annual
employee reviews. You can access your review by going to
http://mycompany/reviews?employee=jsmith. You are very curious about
whether your co-worker, Amy Jones, received a better review than you did.
You change the URL to http://mycompany/reviews?employee=ajones, and
voilà! You now have access to Amy’s review.

A third way to look for IDOR is by trying to get to a page that your user
should not have access to. If your website has an admin page with a URL of
http://mywebsite/admin, which is normally accessed by a menu item that is
only visible when the user has admin privileges, see what happens if you log
in as a non-admin user and then manually change the URL to point to the
admin page. If you can get to the admin page, you have found another
instance of IDOR.

Finally, it’s also possible to exploit an IDOR vulnerability to access files
that a user shouldn’t have access to. Let’s say your site has a file called

userlist.txt with the names and addresses of all your users. If you can log in as
a non-admin user and navigate to http://mywebsite/files?file=userlist.txt by
typing it into the URL field, your files are not secure.

Let’s take a look at IDOR in action using Postman, Chrome DevTools,
and an awesome website called the OWASP Juice Shop. The OWASP Juice
Shop is an application created by Björn Kimminich to demonstrate the most
prevalent security vulnerabilities. You can find it at http://juice-
shop.herokuapp.com.

Once you have navigated to the site on Chrome, create a login for
yourself. You can use any email address and password to register (don’t use
any real ones!). Log in as your new user, and click on any of the juices on the
Search page to add it to your shopping basket.

Before you take a look at your basket, open DevTools by clicking on the
three dots in the upper-right corner of the browser, selecting More Tools, and
then Developer Tools. A new window will open on either the right or the
bottom of your browser. In the tools’ navigation bar, you should see a
Network option; click on it. This network tool will display all the network
requests you are making in your browser.

Click on the Shopping Cart icon. You will be taken to your shopping cart
and you should see the juice that you added to the basket. Take a look in the
Network section of DevTools. The request you are looking for is one that is
named simply with a number, such as “6” or “7”. That number represents
your account ID. Click on this request and you should see that the request
URL is http://juice-
shop.herokuapp.com/rest/basket/<whateverYourAccountIdIs> and the
request type is a GET. (If you don't see this URL, make sure that you have
clicked on the "Headers" tab.) Scrolling down a bit, you’ll see that in the
Request Headers, the Authorization is set to Bearer. Then you’ll see a long
string of letters and numbers. This is the auth token. Copy everything in the
token, including the word “Bearer”.

Next, we’ll re-create the request in Postman. Click on the plus (+) tab to
create a new request. The request should already be set to GET by default.
Enter https://juice-shop.herokuapp.com/rest/basket/<yourAccountId> into the

http://juice-shop.herokuapp.com

URL, making sure to replace <yourAccountId> with your actual ID. Now go
to the Headers section; underneath the Key section type “Authorization”, and
underneath the Value section paste the string you copied. Click to Send the
request, and if things are set up correctly, you will be able to see the contents
of your shopping basket in the response.

Now for the fun part! Change the account ID in the URL to a different
number, such as something between 1 and 5, and click Send. You will see the
contents of someone else’s basket. Congratulations! You just exploited an
IDOR vulnerability!

Chapter 50: Introduction to Cross-Site
Scripting

Cross-site scripting (XSS) is an attack in which a malicious user finds a
way to execute a script on an unsuspecting user’s website. In this chapter
you’ll learn about two types of XSS attacks, walk through a hands-on demo
of each, and learn why they are harmful to the end user.

Reflected XSS

Reflected XSS is an attack that is executed through the web server but is
not stored in the code or the database. Because the attack is not stored, the
site owner may have no idea the attack is happening.

To demonstrate this attack, we’ll go to a great training site from Google
called the XSS Game: https://xss-game.appspot.com. This site has a series of
challenges in which you try to execute XSS attacks. The challenges become
increasingly difficult as they progress. Let’s try the first challenge.

On this page, you’ll see a simple search field and Search button. To
execute the attack, all you need to do is type <script>alert("XSS here!")

https://xss-game.appspot.com

</script> into the text field and click Search. You will see your message,
“XSS here!” pop up in a new window.

You just sent a script to execute a pop-up alert to the server. The client-
side code does not have appropriate safeguards in place to prevent a script
from executing, so the site executed the script.

You might be thinking: “This is a fun trick, but how could a malicious
user use this to hack me? I’m typing into my own search window.” One way
this is used is through a phishing link. Let’s say you are the owner of a
website. A malicious user could create a link that goes to your site but
appends a script to the end of the URL, such as

?query=%3Cscript%3Ealert%28%22XSS%22%29%3C%2Fscript%3E.
(This is simply the attack we used earlier, with HTML encoding.) The
malicious user could send this link in an email to an unsuspecting visitor to
your site, making the email look like it came from you. When the person
clicks on the link, the script will navigate to your site and then execute the
pop-up script. The malicious user will craft the script so that instead of
containing the message “XSS here!”, it contains a script that encourages the
visitor to interact with it to obtain the user’s account number or other
sensitive information.

Stored XSS

Stored XSS is an attack in which the malicious script is stored in the
database or code of a website, so it executes whenever a user navigates to the
page or link. This could happen if the site’s creator did not put adequate input
sanitization in the backend database.

We’ll look at how to craft this attack by working through the second
challenge in the XSS Game. (To see this challenge, you’ll need to have
solved the first challenge, so follow the instructions I provided earlier.)

In the second challenge, you are presented with a chat app. To solve the
challenge, you need to add some text to the application that will execute a
script. You can do this by typing .

As soon as you submit this entry, you should see a pop-up window with
the “XSS alert!” message. Furthermore, if you navigate away from this page
and return to it, you should see the pop-up window again. The attack has
been stored in your comment on the chat page, where it will cause a pop-up
for any users who navigate to it.

Let’s parse through the script we entered to see what it’s doing:

●
The items in red indicate that we are passing in an image element.

●
The section in blue is telling the server what the source of the image

should be. And here’s the trick: there is no URL of 'foobar', so the image
cannot load.
●

The section in green is telling the server that if there is an error, a
pop-up window should be generated with the “xss” text. Because we
have set things up so that there will always be an error, this pop-up will
always execute.

One way that stored XSS might be used is to spoof a login window.
When a user navigates to a hacked site, they will be presented with a login
window that has been crafted to look authentic. When they enter their login
credentials, their credentials will be sent to the malicious user, who can now
use them to log in to the site, impersonating the victim.

Chapter 51: Three Ways to Test for Cross-
Site Scripting

In the preceding chapter, I explained what cross-site scripting is and
demonstrated a couple of examples. But knowing what it is isn’t enough: we
need to be able to verify that our application is not vulnerable to XSS attacks.
In this chapter you’ll learn three different strategies to test for XSS.

Strategy #1: Manual Opaque Testing

This is the strategy to use when you don’t have access to an application’s
code and when you want to manually try XSS. To implement this strategy,
you’ll need to think about the places where you could inject a script into an
application:

● An input field
● A URL
● The body of an HTTP request
● A file upload area

You’ll also need to think about what attacks you will try. You may want
to use an existing list, such as this one:
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet.

This cheat sheet includes lots of different ways to get scripts past any
validation filters, including:

● On error and on mouseover alerts
● URL encoding
● Using upper- and lowercase letters (to evade a filter that’s just

looking for “javascript” in lowercase letters)
● Putting a tab or space into a script so that it won’t be detected
● Using a character to end an existing script and then appending your

own

If you are testing manually, a systematic approach is best. Locate all the

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

places where you could inject a script, choose a list of attacks you’d like to
try, and try each attack in each place. While you are testing, you may also
gain some insight on how you could change the attack by what kind of
response you get from the attack. For example, if your script tag is stripped
out by validation, you could try to encode it.

Strategy #2: Look at the Code

This is the strategy to use if you want to test manually and you have
access to your application’s code. By looking at the code, you can determine
the best way to craft an attack script. This also works well for testing file
uploads; for example, if your application’s code lists file types that are not
allowed, you may find some types that have not explicitly been disallowed
and you can try uploading a script using one of those types.

Let’s take a look at how you can use an application’s code to craft an
attack. We’ll use the third challenge in the XSS Game; to access it you need
to have solved the first and second challenges, so follow the directions in the
preceding chapter to see how to do that.

As you look at the website in the third challenge, you can see that there
are three different tabs, each of which displays a different image when
clicked. Take a look at what happens in the URL each time you click on one

of the tabs. When you click on the Image 2 tab, “#2” is appended to the URL.
When you click on the Image 3 tab, “#3” is appended to the URL.

What happens when instead of clicking on a tab, you type “#2” into the
URL? Unsurprisingly, you are taken to the Image 2 tab. What happens when
you type “#5” into the URL? There is no Image 5 tab, but you can see that
the page displays the words “Image 5”. What happens when you type
“#FOO”? The page displays “Image NaN” (short for “Not a Number”). You
have probably figured out by now that the end of the URL is the place you
are going to inject your malicious script.

Now let’s take a look at the code: click on the “toggle” link next to the
words Target Code. This will display the code used for the web page. Look at
line 17; it shows how the URL for the image tag is created:

"";

The num part of this image tag is a variable. The value of the variable is
taken from what we are sending in the URL. If you send in a URL with “#3”,
the image tag will be cloud3.jpg. If you send in a URL with “#FOO”, the
image tag will be cloudFOO.jpg.

Our task now is to see how we can inject a script using this num variable.
Recall that in the preceding chapter we did some cross-site scripting that
made it look like we were uploading an image, and we included an alert that
would display when there was an error uploading the image. And we also set
things up so that there would always be an error, because we weren’t really
uploading an image at all. We are going to do the same thing here.

Let’s craft our URL. We will begin with https://xss-
game.appspot.com/level3/frame because this is how the URL always starts.

Next, we’ll add https://xss-game.appspot.com/level3/frame#3 because we
want to make it look like we are following the pattern of choosing an image
number.

Now we’ll add https://xss-game.appspot.com/level3/frame#3 ' because we
want to trick the code into thinking the image URL is complete. This means
the code will try to load an image called “cloud3” instead of “cloud3.jpg,”

which will generate an error.

Now we can add our on-error script:

https://xss-game.appspot.com/level3/frame#3' onerror='alert("Hacked!")'

When the alert is triggered, a pop-up window will appear with the
“Hacked!” message.

Let’s try it! Paste the entire URL, https://xss-
game.appspot.com/level3/frame#3 ' onerror='alert("Hacked!")' into the URL
window and click the Go button.

You should see the pop-up window appear, and you have solved the
challenge!

Strategy #3: Use a Security Testing Tool

As you can see from the preceding example, crafting an XSS attack takes
a little time. You may have many places in your application that you need to
test for XSS, and not much time to test them. This is where automated tools
come in. With an automated tool such as Burp Suite, you can send hundreds
of XSS attacks in less than a minute.

Chapter 52: Introduction to SQL Injection
SQL injection is another type of security attack that can do serious

damage to your application. It’s important to find SQL injection
vulnerabilities before a malicious user does.

In SQL injection, a malicious user sends a SQL query through a form
field which interacts with the database in an unexpected way. Here are four
things a malicious user might do with SQL injection:

● Drop a table
● Change another user’s records
● Return records the user shouldn’t have access to
● Log in without appropriate credentials

To understand how a SQL injection attack is crafted, let’s look at an
example. Say our application has a form with a username field. When the
username field is populated with a name such as “testerguy” and is submitted
to the server, the following SQL query is run:

SELECT * from users where username = 'testerguy'

If this username exists in the database, results for the users table are
returned to the application.

A malicious user will try to trick the database by doing the following:

● Making it think the entry has terminated, by passing in testerguy'
● Adding an additional clause, such as OR 1=1
● Adding a terminating statement such as ; to make sure no other SQL

statement will be run

In the preceding example, the user would add the following to the
username field:

testerguy' OR 1=1;

The database would then execute the following:

SELECT * from users where username = 'testerguy' OR 1=1;'

Take a moment to think about the 1=1 clause. 1=1 is always true, so the
database interprets this as selecting everything in the table! Therefore, this
select statement is asking for all the values for all the users in the table.

Let’s see some SQL injection in action, using the OWASP Juice Shop at
http://juice-shop.herokuapp.com. We are going to use SQL injection to log in
without valid credentials. Make sure you have logged out from your previous
session, and then click the Login button.

We’ll assume that when the login request happens, a request like this goes
to the database:

SELECT * from users where username = 'testerguy' AND password =
'mysecretpass'

If the request returns results, it’s assumed that the user is valid, and the
user is logged in.

What we want to do is try to terminate the statement so that all usernames
will be returned and the password isn’t viewed at all.

So we will send in the following:

1. Any username at all, such as “foo”

2. A single quote mark, ', to make it look like our entry has terminated
3. The clause OR 1=1 to make the database return every username in

the table
4. A terminating string of — (two dashes) to make the database ignore

everything after our request

Taken together, the string we will add to the username field is:

foo' OR 1=1–

http://juice-shop.herokuapp.com

You may notice that the Submit button is not enabled yet. This is because
we haven’t added a password. The UI expects both a username and a
password in order to submit the login. You can add any text you want into the
password field because we are ensuring that it will be ignored. Let’s add
“bar”.

Now when you submit the login request, this is what will be executed on
the database:

SELECT * from users where username = 'foo' OR 1=1–' AND password
= 'bar'

The first part of the request is returning all users because 1=1 is always
true. And the second part of the request, indicated here in gray, will be
ignored because in SQL everything after the dashes is commented out. So
when the code sees that all users have been returned, it logs us in!

If you click on the person icon at the upper-right of the screen, you will
see that you have actually been logged in as the admin! The admin’s email
address was the first address in the database, so this is the credential that was
used. Because you are logged in as the admin, you now have elevated
privileges on the website that you would not have as a regular user.

Obviously, you would want to avoid this sort of scenario in your
application! So it’s a good idea to try SQL injection on your application’s test
database to make sure queries are being properly sanitized.

Chapter 53: Introduction to Session
Hijacking

We all know that session hijacking is bad and that we should protect
ourselves and our applications against it. But it’s difficult to get easy-to-
understand information about what it is and how to test for it. This chapter
covers the different types of session hijacking and then walks you through the
steps to test for it using the OWASP Juice Shop and Burp Suite.

Session hijacking refers to when a malicious user gets access to
authentication information and uses it to impersonate another user or gain
access to information they should not have. There are several types of session
hijacking:

● Predictable session token: This happens when the access tokens an
application is generating follow some kind of pattern. For example,
if the log-in token granted for one user was “APP123” and the login
token granted for a second user was “APP124”, a malicious user
could assume the next token granted would be “APP125”. This is a
pretty obvious vulnerability, and there are many tools in use today
that create nonsequential tokens, so it’s not a very common attack.

● Session sniffing: This takes place when a malicious user finds a way
to examine the web traffic that is being sent between a user and a
web server, and copies the token for their own use. This is classified
as a passive attack because the malicious user is not interfering with
the operation of the application or with the request.

● Client-side attack: In this scenario, the malicious user is using XSS
to cause an application to display a user’s token. Then they copy the
token and use it.

● Man-in-the-middle attack: This attack is similar to session sniffing
in that the malicious user gains access to web traffic. But this is an
active attack because the malicious user uses a tool such as Burp

Suite or Fiddler to intercept the request and then manipulate it for
their purposes.

● Man-in-the-browser attack: This takes place when a malicious user
has managed to get code into another user’s computer. The
implanted code will then send all request information to the
malicious user.

Now we’ll discuss how to test for session hijacking by using a man-in-
the-middle attack. But first, it’s important to note that we will be intercepting
requests by using the same computer we are using to make the requests. In a
real man-in-the-middle attack, the malicious user would be using some sort
of packet-sniffing tool to gain access to requests that someone was making on
a different computer.

First, we’ll need to download Burp Suite. The link to install the free
Community edition is available at
https://portswigger.net/burp/communitydownload. Don’t open Burp Suite
yet; we’ll do that after we’ve done some work in the Juice Shop.

Navigate to the Juice Shop at http://juice-shop.herokuapp.com, and create
an account. After you’ve created the account, you’ll be prompted to log in,
but don’t log in just yet.

Now open Burp Suite. Click Next, and then Start Burp. Click on the
Proxy tab and then click “Open browser”. A Chromium browser window will
open. Enter http://juice-shop.herokuapp.com into the URL field. The page
will start trying to load, but it won’t load, because Burp Suite is intercepting
the request. Click the Forward button in Burp Suite until the page is
completely loaded.

In the Juice Shop’s Chromium window, click the Account button and
then the Login button. Enter your login credentials and click “Log in”. Go to
Burp Suite and click the Forward button. Notice that your credentials are
displayed in plain text in the intercept window! This is one example of how
the Juice Shop is vulnerable. Keep clicking the Forward button until the login
has completed.

https://portswigger.net/burp/communitydownload
http://juice-shop.herokuapp.com

Next, return to the Juice Shop and click on the cart symbol for the first
juice listed to add it to your shopping cart. Return to Burp Suite and click the
Forward button to forward the request. Continue to click the Forward button
until no more requests are intercepted.

Go to the HTTP History tab in Burp Suite, and scroll down through the
list of requests until you see a POST request with the api/BasketItems
endpoint. Right-click on this request and choose Send to Repeater. This will
send the request to the Repeater module where we can manipulate the request
and send it again. Return to the Intercept tab and turn the Intercept off by
clicking on the “Intercept is on” button.

Click on the Repeater tab, which is in the top row of tabs. The request we
intercepted when we added a juice to the shopping cart is there. Let’s try
sending the request again, by clicking on the Send button. In the right panel
of the page, we get a validation error, with the message that the Basket Id and
Product Id must be unique. So, let’s return to the request in the left panel. We
can see that the body of the request is {"ProductId":1,"BasketId":"<whatever
your basket id is" ,"quantity":1}. Let’s change ProductId from 1 to 2, and
send the request again by clicking the Send button. We can see in the
response section that the request was successful.

Let’s return to the Juice Shop and see whether we were really able to add
an item to the cart by sending the request in Burp Suite. Click on the Your
Basket link. You should see two juices in your cart! This means that if
someone were to intercept your request to add an item to your cart, they
could manipulate the request and use it to add any other item they wanted to
your cart.

When you set up Burp Suite to intercept requests in your own application,
you will be able to test for session hijacking vulnerabilities like this one.

Chapter 54: An Introduction to Mobile
Security Testing

Mobile security testing can be problematic for a software tester because it
combines the challenges of mobile with the challenges of security testing.
Here are some of the difficulties:

● Mobile devices are designed to be more secure than traditional web
applications because they are personal to the user. Therefore, it’s
harder to look “under the hood” to see how an application works.

● Mobile security testing often requires tools that the average tester
might not have handy, such as Xcode Tools or Android Studio.

● Security testing on a physical device usually means using a rooted or
jailbroken phone. (A rooted or jailbroken phone is one that is altered
to have admin access or user restrictions removed. An Android
phone can be rooted; an iPhone can be jailbroken. You will not want
to do this with your personal device.)

It’s difficult to find instructions for mobile security testing when you are
a beginner; most documentation assumes that you are already comfortable
with advanced security testing concepts or with developing mobile
applications.

This chapter is intended to serve as a gentle introduction for testers who
are not already security testing experts or mobile app developers. Let’s first
take a look at the differences between web application security testing and
mobile app security testing:

● Native apps are usually built with the mobile OS’s development kit,
which has built-in features for things like input validation so that
SQL injection and cross-site scripting vulnerabilities are less likely.

● Native apps often make use of the data storage capabilities on the

device, whereas web applications will store everything on the
application’s server.

● Native apps will be more likely than web applications to use
biometric data, such as a fingerprint, for authentication.

However, there are still a number of vulnerabilities that you can look for
in a mobile app which are similar to the types of security tests you would run
on a web application. Here are some examples:

● For apps that require a username and password to log in, you can
check to make sure a login failure doesn’t give away information.
For example, you don’t want your app to return the message “invalid
password”, because that lets an intruder know they have a correct
username.

● You can use a tool such as Postman to test the API calls the mobile
app will be using and verify that your request headers are expected
to use “https” rather than “http”.

● You can test for validation errors. For example, if a text field in the
UI accepts a string that is longer than what the database will accept,
this could be exploited by a malicious user for a buffer overflow
attack.

If you are ready for a bigger testing challenge, here are a couple of mobile
security testing activities you can try:

● You can access your app’s local data storage and verify that it is
encrypted. On an Android device, you can do this with a rooted
phone or an Android emulator and the Android ADB (Android
Debug Bridge) command-line tool. On an iPhone, you can do this
with Xcode Tools and a jailbroken phone or an iPhone simulator.

● You can use a security testing tool such as Burp Suite to intercept
and examine requests made by the mobile app. On an Android
phone, you’ll need to do this with an emulator. On an iPhone, you
can do this with a physical device or a simulator. In both instances,

you’ll need to install a CA certificate on the device that allows
requests to be intercepted. This CA certificate can be generated from
Burp Suite itself.

These two testing tasks can prepare you to be a mobile security testing
champion! If you are ready to learn even more, I recommend that you check
out the online book “A Guide to the OWASP Mobile Security Project”
(https://info.nowsecure.com/Managers-Guide-OWASP-Mobile-Security-
Project.html). This is the definitive reference guide to making sure your
application is free of common security vulnerabilities. Happy hacking!

https://info.nowsecure.com/Managers-Guide-OWASP-Mobile-Security-Project.html

Part VII: Performance Testing

Chapter 55: Introduction to Performance
Testing

Performance testing measures how an application behaves when it is
used.

This includes reliability:

● Does the page load when a user navigates to it?
● Does the user get a response when they make a request?

And speed:

● How fast does the page load?
● How fast does the user get a response to their request?

Depending on the size of the company you work for, you may have
performance engineers or DevOps professionals who are already monitoring
metrics like these. But if you work for a small company or you simply like to
be thorough in your testing, it’s worth learning how to capture some of this
data to find out how well your application is behaving in the real world. I
have stopped using an application simply because the response time was too
slow. You don’t want your end users to do that with your application!

Here are several ways that you can monitor the health of your application.

Latency

This is the time it takes for a request to reach a server and return a
response. The simplest way to test this is with a ping test. You can run a ping
test from the command line on your computer by simply entering the word
“ping” (minus the quote marks) followed by a website’s URL or an IP
address. For example, you could run this command:

ping www.google.com

And you’d get a response like this:

To stop the ping test, simply press CTRL+C.

Let’s take a look at the response times. Each ping result shows how long
it took in milliseconds to reach that server and return a response. At the
bottom of the test results, we can see the minimum response time, average
response time, maximum response time, and standard deviation in response
time. In this particular example, the slowest response time was 23.557
milliseconds.

API Response Time

This is a really helpful measurement because so many web and mobile
applications are using APIs to request and post data. Postman has response
time measurements built into the application. When you run a request, you
will see a Time entry next to the Status of the response:

In this example, the request took 130 milliseconds to return a response.

You can include an assertion in your Postman tests which will verify that
your response was returned in less than a selected time, such as 200
milliseconds. The assertion would look like this:

pm.test("Response time is less than 200ms", function () {
pm.expect(pm.response.responseTime).to.be.below(200);
});

Web Response Time

Even if your API is responding beautifully, you’ll also want to make sure
your web page is loading well. Nothing is more frustrating to a user than
sitting around waiting for a page to load! There are a number of free tools
that you can use to measure how long it takes your application’s pages to
render. With these tools you can enter your website’s URL and the tool will
crawl through your application, measuring load times. Here are the results I
got with Pingdom when I used my website’s URL and requested that it be
tested from Melbourne, Australia:

Pingdom also provided suggestions for improving my site’s performance,
such as adding browser caching and minimizing redirects. Paid customers of
applications like Pingdom can set up monitoring and alerting so that you can
be notified if your page loading times slow down.

Mobile Application Monitoring

If you have a native mobile application, you’ll want to make sure it’s

responding correctly and quickly. Tools like Firebase Crashlytics can be
added to your app to provide statistics about why your app crashed. Other
tools like New Relic offer paid mobile monitoring for your app, allowing you
to see data about which mobile devices are working well with your app and
which might be having problems.

Application Performance Monitoring (APM) Tools

For more advanced monitoring of your application, you can use an APM
tool such as Elasticsearch or Datadog. These tools track every transaction
your application processes and can provide insights on CPU usage, server
response times, and request errors.

Whether you work for a big company with a web application that has
millions of users or a small startup with one little mobile app, performance
testing is important. It may mean the difference between happy customers
who keep using your application and disappointed users who uninstall it.

Chapter 56: How to Design a Load Test
Load testing is simply measuring how your application will perform

during times of high demand. This could mean testing during normal loads,
or it could mean testing during high loads to find the limits of the application.

It’s easy to find a load testing tool, create a few tests, and run them with a
few hundred users to create metrics. But this isn’t particularly useful if you
don’t know why you are testing or how your results will help you.

So, before you begin a load test, it’s important to ask the following
questions:

● What kinds of scenarios are you testing for?
● What is the expected behavior in those scenarios?

Let’s imagine that you have a new website that sells boxes of chocolates.
You have noticed that your site is most active on Saturday mornings. Also,
Valentine’s Day is coming, and you anticipate that you will have many more
orders in the week leading up to that day. In March, your company will be
reviewed by a popular cable TV show, and you are hopeful this will lead to
thousands of visits to your site.

With this in mind, you come up with the following expected behaviors:

● You would like your web pages to load in less than two seconds
under a typical Saturday morning load.

● You would like your site to be able to process 500 orders per hour,
which will get you through the busy Valentine’s Day season.

● You would like your site to be able to handle 10,000 visitors per
hour, which is how many people you expect will visit right after the
TV show airs.

The next step is to figure out what test environment you will use. Testing
in your production environment would provide the most realistic results, but
it would be a bad idea if the tests caused your site to crash! A better option is

a test environment that accurately mimics your production environment in
terms of the number of servers used and the size of the backend database.
Ideally, this test environment would only be used for your load testing, but
this is not always an option; you may need to share this environment with
other testers, in which case you’ll need to be aware of what kinds of tests
they are running and how they will impact you. You’ll also want to let other
testers know when you are conducting your load tests so that they won’t be
surprised if response times increase.

Once your test environment is ready, you can conduct some simple
baseline tests. You can use some of the strategies mentioned in Chapter 55 to
find out how long it takes for your web pages to load and what the typical
response times are for your API endpoints. Knowing these values will help
you gauge how large an impact a load scenario will have on your application.

Now it’s time to design your tests. There are a couple of different
strategies to use in this process:

● You can test individual components, such as loading a web page or
making a single request to an API.

● You can test entire user journeys: browsing, adding an item to a cart,
and making a purchase.

You’ll probably want to use both of these strategies, but not at the same
time. For instance, you could measure how long it takes to load your
website’s home page when you have 10,000 requests for the page in one
hour. In a separate test, you could create a scenario in which hundreds of
users are browsing, adding items to their cart, and making a purchase, and
you could monitor the results for any errors.

For each test you design, you’ll want to determine the following:

● How many users will be interacting with the application at one time?
● Will the users be added all at once, or every few seconds?
● Will the users execute just one action and then stop, or will they

execute the action continuously for the duration of the test?
● How long will the test last?

Let’s design a test for the Valentine’s Day scenario I mentioned earlier.
We’ll assume you have created test steps that will load the web page, browse
through three product pages, add one product to the cart, and make a
purchase. We already mentioned that you’ll want to be able to handle 500
orders per hour, so we’ll set up the test to do just that. It’s unlikely that in a
real-world scenario all 500 users would start the ordering process at the same
time, so we’ll set the test to add a new user every five seconds. Each user will
run through their scenario once and then stop. The test will run for one hour,
or until all 500 users have completed the scenario.

Before you run your test, be sure that your test steps will return errors if
they don’t result in the expected response. When I first got started with load
testing, I ran several tests with hundreds of requests before I discovered that
all my requests were returning an empty set. Because the requests were
returning a 200 response, I didn’t notice that there was anything wrong!
Make sure your steps have assertions that will validate that your application
is really behaving as you expect it to.

Once you have the test steps in place, you’ve made sure the steps have
good assertions, and you have your test parameters set up with the number of
users, the ramp-up time (how frequently a new user will be added to the test),
and the test duration, it’s time to run the test. While the test is running, watch
your application’s response times and CPU usage. If you start seeing errors or
high CPU spikes, you can stop the test and note how high the load was when
the spikes occurred.

Regardless of whether you need to stop the test early or whether the test
completed successfully, you’ll want to run a few test passes to make sure
your data is fairly consistent. At the end of your testing, you’ll be able to
answer the question: can my website handle 500 orders in one hour? If all the
purchases were completed with no errors and all the response times were
reasonable, then the answer is yes. If you started seeing errors or if the
response times increased to several seconds, then the answer is no. If the
answer is no, you can take the data you collected and share it with your
developers, showing them exactly how many users it took to slow down the
system.

Load testing is an important step in the performance testing process. To

ensure that load testing is a productive and informative activity, take the time
to consider what behaviors you want to measure, how you want your
application to behave, what scenarios you can run to test those behaviors, and
how you can analyze your results.

Part VIII: Usability and Accessibility
Testing

Chapter 57: Localization and
Internationalization Testing

Internationalization means designing your application so that it can be
used in different countries. Localization means adapting software for use in a
specific location.

If your app is used anywhere outside your country of origin, chances are
it uses some kind of localization strategy. Many people assume that
localization simply means translating the text to another language, but this is
not the case. Here are some examples of localization that your application
might use:

● Language: Different countries speak different languages, but
different regions can speak different languages as well. Canada is an
example of this: in the province of Quebec the primary language
spoken is French, and in the other provinces the primary language
spoken is English.

● Spelling: Even when two areas speak the same language the spelling
of words can be different; for example, it’s “color” in the US, as
opposed to “colour” in Canada and the UK.

● Words and idioms: Words can vary, even in a language common to
multiple countries. In the UK, a truck is a lorry and a car’s trunk is a
boot. In the US, to “table” a topic means to stop talking about it until
a later meeting. But in the UK and Canada, to “table” a topic means
to start talking about it in the current meeting—the opposite of what
it means in the US!

● Currency: Different countries use different currencies. But this
doesn’t just mean using a different symbol in front of the currency,
like $ or £; the currencies can also be formatted differently. In the
US, fractions of a dollar are separated with a dot and amounts over
1,000 are separated with a comma, while in Spain, it’s the opposite.

So what would be written as 1,000.00 in the US would be written as
1.000,00 in Spain.

● Date and time formats: In the US, dates are written as
month/day/year, but in many other countries dates are written as
day/month/year. The US generally writes times using AM and PM,
but many other countries use 24-hour time, so what would be 1:00
PM in the US would be 13:00 elsewhere.

● Units of measure: The US usually uses US customary units; for
example, pounds for weight, and feet and inches for height. Most
other countries use the metric system for these measurements. Most
countries measure air temperature in Celsius, while the US uses
Fahrenheit.

● Postal codes and phone numbers: These vary widely from country
to country. See the chapters on international phone numbers and
postal codes for some examples.

● Images: Pictures in an application might need to be varied from
country to country. For example, if your application was to be used
internationally, you might not want to include a picture of a building
with an American flag on the front. Or if your app were to be used in
religiously conservative countries, you might not want a picture of a
person in a sleeveless shirt.

The first step in localization testing is to determine exactly what will be
localized. Your company may decide to localize for date and time, postal
codes, and phone numbers, but not for language. Or a mobile app may choose
to only use other languages that are built into the device so that the app’s text
would be in one language but its buttons would be in the user’s language.

If your app will be using other languages, gather all the texts you will
need to be checking. For example, if your app has menu items such as Home,
Search, Your Account, and About Us and your app will be localized for US
English, French, and Spanish, find out what those menu items should be in all
three languages. It should go without saying that whoever has done the
translations should have consulted with a native speaker or a translation

service to make sure the translations are correct.

Next, create a test plan. The simplest way to do this is to create a
spreadsheet in which the leftmost column lists the different localization types
you need to test and the top row lists the different countries. Here is a very
basic example:

Once your matrix is created, it should be very simple to run through your
tests. If you are testing on mobile, make sure that when you switch your
mobile device to a different language you know exactly how to switch it back
if you don’t recognize the words in the language you are switching to. When
I was testing localization for Mandarin this was especially important; since I
didn’t know any of the characters, I had no idea what any of the menu items
said. I memorized the order of the menu items so that I knew which items I
needed to click on to get back to English.

Another important thing to watch for as you are testing is that translated
items fit well in the app. For example, your Save button might look perfectly
fine in English, but in German it could look like this:

Once you have completed your localization testing, you’ll want to
automate it. Using UI automation tools, you can create a separate test suite
for each language in which the setup step would be to set the desired country
on the browser or device and each test would validate one aspect of
localization, such as that button texts are in the correct language or that you
can enter a postal code in that country’s format. It would be very helpful to
use a visual validation tool to validate that buttons are displaying correctly or
that the correct flag icon is displaying for the location.

Localization is a tricky subject, and just like software, it’s hard to make it
perfect. But if you and your development team clarify exactly what you want
to localize and you are methodical in your testing, you’ll ensure that a
majority of your users will be satisfied with your application.

Chapter 58: User Experience Testing
User experience (UX) testing refers to whether the app is intuitive and

easy to use. Some larger companies have dedicated UX designers on staff
whose goal is to make their company’s application pleasing to customers.
Even if you have UX designers at your company, it’s still a good idea to test
your application with the user experience in mind.

Here are some ways you can do that.

Learn What the Expected User Journeys Are

Usually when we are testing an application we use it in ways that users
won’t, focusing on one feature or page at a time. A good strategy is to find
out how real users will be using the application and run through those
scenarios. For example, if you had an application that allowed users to order
tickets for a movie theater, a user journey might be to log in, browse through
the movies, select a movie, look at the showtimes for the movie, select a
showtime, click a button to place the order, add credit card information, and
complete the sale. By running through scenarios like this, you’ll discover
which areas might not be offering the best user experience.

Look for Tasks in the User Journey That Require Many Clicks or
Steps

Could those tasks be completed with fewer clicks? My husband was once
searching online for a new car. He went to a website for a car manufacturer
and was browsing through the different models. Every time he changed to a
new page, he was prompted to enter his zip code again. That’s not a great
user experience!

Test a New Feature Before You Know What It’s Supposed to Do

This is a strategy that doesn’t get used much anymore, since these days
testers are included in feature planning meetings (as they should be). But I
have found that it is sometimes helpful to look at a feature while knowing

very little about it. That is what your customers will be doing, so anything
you find frustrating or complicated will probably also be frustrating or
complicated for your customers. An alternative to testing without knowing
anything about the feature is to get someone who has never used the
application to try it out. Spouses, roommates, friends, and people from
nontechnical teams in your company are good candidates for these tests. By
watching them navigate through your site, you will find the tasks that might
not be intuitive.

Test Using Only the Keyboard

People who use applications extensively want to be able to use them as
quickly as possible. A good example of this is a customer service
representative who has to fill out a form for every person who calls them. If
they are typing into each field and they have to keep moving their hand over
to the mouse to click the Submit button, this is a waste of their time. If they
can instead submit the form with the Enter key, their hands don’t need to
leave the keyboard.

There are many applications out there, and your application may have
dozens of competitors. By ensuring that your app is easy and intuitive, you
will make it more likely that customers will choose to use your app over
others.

Chapter 59: Accessibility Testing
Accessibility testing refers to how easy it is for users with limited ability

to use the application. This kind of testing is important because 15% of the
population has some kind of disability, and we want our applications to be as
inclusive as possible. The three main types of accessibility testing you will
want to conduct are visual, dexterity, and auditory. Here are some strategies
for each.

Visual Testing

● Is the text large enough for most users? Can users zoom in and
enlarge the text if needed?

● Do the images have text descriptions so that visually impaired users
who use text-to-speech features will know what the image is?

● Are the colors in the application distinctive enough that colorblind
users won’t be confused by them? There are helpful websites that
allow you to load a screenshot of your application and see what it
will look like to a colorblind person.

Dexterity Testing

● Does your app require any complicated click-and-drag or highlight-
and-click scenarios? Imagine how difficult these would be to a
person who has limited use of their hands. Can you change the app
so that these tasks can be accomplished in a simpler way?

● Are your buttons and links easy to click on? If the buttons are too
small, it may be difficult for someone with limited dexterity to click
in the correct place.

Auditory Testing

● Does your application include videos? If so, do the videos have

captions so that those who are deaf or hard of hearing will know
what is being said?

● Do parts of your application rely solely on sound effects to tell the
user what is happening? Try running the application with the sound
turned off. Do you miss any information while you are running
through your test scenarios?

A really easy way to check your software for accessibility compliance is
to use the WAVE plug-in for Chrome and Firefox: https://wave.webaim.org.
Simply install the plug-in, navigate to the page you want to test, and turn on
the plug-in. You’ll get a pop-up window that shows all the accessibility
errors, and those errors will be displayed on the page as well. Click on any
error to learn more about the accessibility standard.

As software testers, we want our users to have as pleasant an experience
as possible. Accessibility testing will help us ensure that our users will be
able to accomplish what they want with our apps efficiently and easily.

https://wave.webaim.org

Part IX: Software Development Basics

Chapter 60: Code Like a Developer
I’ll be honest: I don’t love coding.

Don’t get me wrong. I love the feeling of solving a technical challenge
and coming up with a great way to automatically assert that software is doing
what it’s supposed to be doing. I love maintaining and updating my
automated test suites. But actually writing code is not my favorite thing to do.
Whenever I find myself having to write another nested “for” loop, I sigh
inwardly.

However, with all the coding I’ve done over the years, I’ve come to really
appreciate the work that software developers do! Software is complex stuff,
and developers have come up with great ways to set standards, share
repositories, and review one another’s work.

The test automation code we write is just as important as the code
software developers write. Therefore, we should write our code with the same
standards the developers use. Here are a few suggestions for coding practices
you should adopt.

Your Code Should Live in the Same Repository as the Developers'
Code

This is for a few reasons. First, the developers' unit tests reside with the
code, so it makes sense to have your integration and UI tests in the same
place. Second, it’s easier to maintain one repository than it is to maintain two.
And finally, having your code in the same place serves to remind the whole
team that test automation is everyone’s responsibility.

Write Clean Code

When I first got started with test automation, I had absolutely no idea
what I was doing. All I had was my manual testing experience and a couple
of courses in Java and C++. I did a lot of googling and a lot of guessing as I
put together my first Selenium tests. After much work, they ran and (mostly)

passed, but boy, were they lousy! I didn’t know anything about how to write
clean code. Fortunately, I had great developers around to teach me how to
make my code better.

Here are some of the principles of writing clean code:

● Keep it simple. Always review your code and ask yourself whether
there’s a simpler way to do what you are trying to do. Sometimes the
obvious solution to a testing problem becomes clear only after you
have solved it in a complicated way; now it’s time to go back and
solve it more elegantly.

● Don’t repeat yourself. If there’s something you’re doing in more
than one test—for example, logging in to the application—write a
method that you can call instead of putting those steps into every
test. Similarly, create a file where you save all your variables and
element locators, and have all your tests refer to that file. This way,
if a variable or a locator changes, you can make the change in one
place rather than several.

● Be consistent. Consistent code is easier to read. For example, if you
use “firstName” as a variable for the user’s first name, don’t use
“LastName” as the variable for the user’s last name. Also, follow the
conventions your developers are using. If they indent with two
spaces, you should too. If they put their opening curly braces on a
separate line, you should too.

Solicit Feedback

Like me, you may not have had a thorough grounding in good coding
principles. Some of the best software testers I’ve had the pleasure of working
with did not major in software engineering in college. If you did not go
through rigorous training in software development, it’s important to get
feedback from the developers you work with. On my team, the software
testers often review and approve one another’s code, but I also like to have
my code checked by developers to make sure I’m not doing anything unusual
or creating steps that could possibly result in a race condition.

Test automation helps the whole team by speeding up the feedback
process and freeing testers to do more exploratory testing. We owe it to our
entire team to write quality code that is readable, runs quickly and
consistently, and provides valuable feedback.

Chapter 61: Command-Line Basics
The command line is hugely helpful when you want to navigate through

your system’s folder structure, create new folders or files, or execute
runnable files. In this chapter, I’ll walk you through some simple commands
that can help you get started using the command line like a pro. Most of the
commands I’ll share will work in both Mac and Windows environments;
when there are differences between the two, I’ll point them out.

First, let’s look at some useful keys.

The Up Arrow

The up arrow copies whatever command you just ran, and if you click on
the up arrow more than once, you can cycle back through all the commands
you have run so far.

For example, if you ran these three commands:

ls
cd Documents
cd ..

and then you clicked the up arrow, you’d see cd .. . If you clicked the up
arrow again, you’d see cd Documents, and if you were to click it a third time,
you’d see ls.

The up arrow is really helpful when you need to run a complicated
command more than once but you don’t feel like retyping it. Simply click the
up arrow until you’ve returned to the command you want, and then click
Return to run the command again.

The Tab Key

The tab key has auto-complete functionality. To see how this works, let’s
imagine you have a folder called MyFolder that contains three subfolders:

LettersToDad
LettersToMom
graduationPics

If you wanted to navigate from MyFolder to graduationPics using the cd
command (more on this later), you could simply type:

cd grad

and then press the tab key. The folder name will auto-complete to
graduationPics.

This command is helpful when you don’t feel like typing out an entire
folder name. Typing just the first few letters of the folder and hitting tab, then
Return, is a really fast way to navigate.

For the auto-complete to work, you need to type enough letters that
there’s only one possible option left when you hit the tab key. For example,
when you type

cd LettersTo and then hit the tab key, the command line doesn’t know
whether you mean LettersToDad or LettersToMom. The Windows command
line will cycle through the possible options as you repeatedly hit the tab key.
In macOS, if you hit the tab key a second time, it will return your possible
options.

Next, let’s learn some navigation skills.

The Command Prompt

The command prompt is a symbol indicating that the command line is
ready to receive commands. On a Mac, the command prompt looks like this:
$. In Windows, the command prompt looks like this: >. The command
prompt is preceded by the working directory.

The Working Directory

The term “working directory” refers to whatever directory (folder) you
are in when you are using the command line. When you first open the

command-line window, you’ll be in your home directory. This is your own
personal directory. For example, on my Windows machine, my working
directory is C:/users/kjackvony. On my Mac, my working directory is
/Users/K.Jackvony, but the directory location displays only as ~, which is a
symbol that means the home directory.

The ls /dir Command

This command—ls (the first letter is a lowercase L) in Mac and dir in
Windows—will list all the files and folders in your working directory.

cd <folder name>:

This command will change your working directory to the folder you
specify. For example, if you entered cd Documents, your working directory
would change to the Documents folder.

cd ..:

This command moves you up one level in the directory. Let’s look at an
example. I am using my Mac, so I’ll use ls rather than dir.

1. I begin in my home directory:

~$

2. I type ls to see what’s in my home directory and I get this response:

Desktop
Documents
Pictures
Projects

3. I type cd Documents, and my working directory is now the Documents
folder:

Documents$

4. I type ls to see what’s in my Documents folder and I get this response:

Blog Post Notes
Images for Testing
ProfilePhoto.jpg

5. I type cd "Blog Post Notes" (I’m using quote marks because the
directory name has spaces in it), and my working directory is now the Blog
Post Notes folder:

Blog Post Notes$

6. I type cd .. and I’m taken back to the Documents folder:

Documents$

7. I type cd .. again and I’m taken back to my home folder:

~$

Now let’s try an exercise to practice everything you’ve learned.

Let’s start by creating a new folder. Open the command window and
enter mkdir MyNewFolder. You won’t get any kind of response, just a new
command prompt. But if you type ls (on Mac) or dir (on Windows), you’ll
now see MyNewFolder listed in the contents of your home directory.

To navigate to your new directory, type cd MyNewFolder. Your
command prompt will now look like MyNewFolder$ on a Mac and
MyNewFolder> on Windows. If you type ls or dir now, you’ll get no files in
response because your folder is empty.

Let’s put something in that new folder. If you are using a Mac, type nano
MyNewFile. A text editor will open in the command window. If you are
using Windows, type notepad MyNewFile.txt. Notepad will open in a
separate window.

Type This is my new file in the text editor (Mac) or in Notepad
(Windows). If you are using Windows, just save and close the Notepad file.
If you are on a Mac, click Control+X, type Y when asked whether you want
to save the file, then press the Return key to save the file.

If you are on a Windows machine, return to the command line; Mac users
should already be there and the text editor should have closed. Your working
directory should still be MyNewFolder. Now when you type ls (Mac) or dir
(Windows), you should get this response: MyNewFile (Mac) or
MyNewFile.txt (Windows). You have successfully created a new file from
the command line.

We can now read the contents of this file from the command line. If you
are on a Mac, type cat MyNewFile. If you are on Windows, type
MyNewFile.txt. Your new file should open.

Now let’s learn how to delete a file. Simply type rm MyNewFile if you
are on a Mac or del MyNewFile.txt if you are on Windows. If you’ve deleted
correctly, an ls or dir command will now give you an empty result.

Finally, let’s delete the folder we created. You can’t have the folder you
want to delete as your working directory, so we need to move one level up by
typing cd .. . Now you should be in your home directory. If you are on a Mac,
type rm -r MyNewFolder. If you are on Windows, type rmdir MyNewFolder.
You won’t get any response from the command line, but if you enter ls or dir,
you’ll see that the folder has been deleted.

Now you know how to create and delete files and folders from the
command line. I’ll close by adding two bonus commands: one for Mac and
one for Windows.

For Mac users: sudo (which stands for superuser do) allows you to run a
command as an administrator. At times, you may need to do an installation or
edit that requires administrator access. By putting sudo before the command,
you can run the command as the system admin. For example, if you typed
sudo rm -r MyNewFolder, you’d be removing the folder as the system admin.
Think carefully before you use this command, and make sure you know what
you are doing. There are many commands that require a superuser to execute
them because they are dangerous. You don’t want to delete your entire
filesystem, for example!

For Windows users: A handy command is explorer. Typing this in your

command window will bring up the File Explorer. This is useful when you
want to switch from navigating the folder structure in the command line to
navigating in the Explorer window. For example, if you knew there was a
folder called MyPictures with images in it, you might want to open the
Explorer window to take a look at the thumbnails of those images.

Have fun using your newly learned command-line skills!

Chapter 62: Coding Definitions
One of the things I struggled with when learning to code was knowing the

difference between a class, an object, and a method. Through personal
experience and web searches, I have come up with the following explanation.

A class is the basic building block of software. It consists of variables and
methods.

Here’s an example of a class:

class Cat { //this is the class

//these are the variables in the Cat class
var name;
var age;
var weight;
var color;

//these are the methods in the Cat class
eat() {
}
sleep() {
}
meow() {
}

} //this marks the end of the Cat class

A variable is a little bit of memory that stores a value to be used in a
program. A string is a bit of text, like “Hello!” or “rainbow”. In the Cat class,
the string variables we have are name (the name of the cat) and color (the
color of the cat). An int is an integer, like 7 or 13. In the Cat class, the int
variables we have are age (the age of the cat) and weight (the weight of the
cat).

An object is an instance of a class. If we want our program to create and
use a cat instance, we need to create a Cat object:

//this is where we create the new Cat object
var Fluffy = new Cat() //Fluffy is the variable name given to the Cat

object
}

A method is a task or group of tasks. If you are familiar with
mathematical functions, you might want to think of a method as a function. In
the Cat class, the methods are eat(), sleep(), and meow(). The parentheses
after the method name indicate what kind of parameter will be passed to the
method. In this case, eat(), sleep(), and meow() do not require a parameter, so
the parentheses are empty.

Chapter 63: Object-Oriented Programming
Much test automation is written in an object-oriented programming

(OOP) language such as Java, JavaScript, or C#. Having grown up before
OOP, I had a particularly tough time learning it. I hope the following
explanation will make things easier for you!

Think about the tasks you perform when you get ready in the morning.
You might exercise, shower, and get dressed. If you were writing a program,
or class, to tell a robot to do these things, you would probably write a little
subroutine, or method, for each task. For example:

class getReady { //this is the class
exercise(); //this calls the exercise method
shower();
getDressed();

exercise() { //this is the exercise method
Pushups;
Situps;
Squats;

}
shower() { //this is the shower method

get in shower;
Lather;
Rinse;
Repeat;

}
getDressed() { //this is the get dressed method

put on shirt;
put on pants;
put on shoes;

}
}

Now consider your friend, who exercises and showers at night instead of
in the morning. His nighttime routine is exercise, shower, put on pajamas. If
you were programming a robot to do your friend’s nighttime activities, your
code might look like this:

class getReadyForBed { //this is the class
exercise();
shower();
putOnPajamas(); //this calls the put on pajamas method

exercise() {
Pushups;
Situps;
Squats;

}
shower() {

get in shower;
Lather;
Rinse;
Repeat;

}

putOnPajamas() { //this is the put on pajamas method
put on pajama top;
put on pajama bottoms;

}
}

Notice that the two classes have two methods that are exactly the same.
Why not share the code instead of copying and pasting it into each class?
This way, if you ever need to make a change to your exercise method, you
will only have to change it once.

Let’s make a base class that contains all the methods we might need:

class Ready { //this is our base class
exercise() {

Pushups;

Situps;
Squats;

}

shower() {
get in shower;
Lather;
Rinse;
Repeat;

}

getDressed() {
put on shirt;
put on pants;
put on shoes;

}

putOnPajamas() {
put on pajama top;
put on pajama bottoms;

}
}

Now we can change our two programs to call the existing methods
instead of copying and pasting them:

class getReady extends Ready { //this is your routine
exercise();
shower();
getDressed();
}

class getReadyForBed extends Ready { //this is your friend’s routine
exercise();
shower();
putOnPajamas();
}

See how much space this saves? Object-oriented programming makes
code much more reusable and maintainable.

Chapter 64: Passing Parameters
When I first started learning object-oriented programming, I was fairly

perplexed by the parentheses found after every method. Sometimes they were
empty and sometimes they had values in them, and I didn’t understand why.
I’ve found it’s easiest to think about parameters and methods in terms of
input and output. Here’s an example:

Square (input) {
}

Square is the name of the method. The word input is what I’m calling the
variable that I’m going to pass into the method. This method is going to take
a number, square it, and return the result of the squaring.

Now let’s add the steps for the method:

Square (input) {
var output = input * input;
return output;
}

This function takes the variable called input, squares it, sets it to equal a
variable called output, and then returns the output.

It’s also possible to have more than one input parameter:

Square (input, name) {
var output = input * input;
var result = "Hi " + name + "! Your result is " + output;
return result;
}

This is a little more confusing, so I will explain it in more detail. The first
line of the method is taking the input variable, squaring it, and setting it to a
variable called output, just as it did before. But in the second line, we’re

creating a string. The characters in between the quote marks are entered into
the string. These are concatenated (added) with our int output and the string
name that we entered in the parameters, using plus signs to add the
characters:

"Hi " + name + "! Your result is " + output

So if I called the function like this:

Square(2, Kristin)

the result string would be set to:

Hi Kristin! Your result is 4

If my program wanted to output the result, I would add the instruction:

console.log(result)

And my result would be printed to the console.

Is it possible to have a method that doesn’t pass in any parameters, but
still returns something? Sure!

MyParameterlessMethod () {
var result = 4;
return result;
}

This method assigns the number 4 to the variable called result, and then
returns the result.

Chapter 65: Setting Up Node
The hands-on activities found in Part IX and Part X all require Node.js.

I’m a big fan of Node because JavaScript, which Node is based on, is such a
versatile language, and because Node provides an easy way to install
modules that can be used in a Node program.

You can check whether you have Node installed by opening a command
window and typing node --version. If you get a version number as a response,
you already have Node installed.

If you don’t have Node installed, you can go to
https://nodejs.org/en/download and download the appropriate version for
your operating system. Or if you have a Mac, you can install Node with this
command: brew install node.

Once you have Node installed, you should make sure it can be found on
your PATH. The PATH is a set of directories that show your computer’s
command line how to locate programs you have installed. If you are using a
Mac, type sudo nano /etc/paths and make sure /usr/local/bin is listed in the
file. If it isn’t, you can add it to the file, then save and exit. If you are using
Windows, go to Advanced System Settings, click Environment Variables…,
select the Path variable in the System Variables, click Edit, and add the path
to Node. The path may be C:\Program Files\nodejs, but this might vary, so
check to see whether that is where Node is installed.

Next, reboot your computer to make sure your path settings have taken
effect, then confirm that you have Node installed by typing node --version.
You should now see the version number for Node in the response. You can
also check to make sure npm (the Node Package Manager) has been installed
by typing npm --version.

You are now ready to start using Node!

https://nodejs.org/en/download/

Chapter 66: Arrow Functions
Arrow functions have been around for a few years now, but I’ve always

been confused by them because they weren’t around when I was first learning
to write code. You may have seen these functions, which use the symbol =>.
They seem so mysterious, but they are actually quite straightforward! Arrow
functions are simply a way to notate a function to save space and make code
easier to read. I’ll walk you through an example. We’ll start with a simple
traditional function:

const double = function(x) {
return x + x
}

double is the name of the function. When x is passed into the function, x
+ x is returned. So, if I called the double function with the number 3, I’d get 6
in response.

Now we’re going to replace the function with an arrow:

const double = (x) => {
return x + x
}

Note that the arrow comes after the (x) rather than before it. Even though
the order is different, function(x) and (x) => mean the same thing.

Now we’re going to replace the body of the function { return x + x } with
something simpler:

const double = (x) => x + x

When arrow functions are used, it’s assumed that what comes after the
arrow is what will be returned. So, in this case, x + x means the same thing as
{ return x + x }.

You can try running these three functions for yourself if you have Node
installed. Using a code editor, simply create a file called app.js with the first
version of the function:

const double = function(x) {
return x + x
}

and in the next line, add a logging command:

console.log(double(3))

Navigate in the command line to the file’s location, run the file from the
command line with node app.js, and the number 6 will be returned in the
console.

Then replace version 1 of the function with version 2:

const double = (x) => {
return x + x
}

Run the file, and you should get a 6 again. Finally, replace version 2 with
version 3:

const double = (x) => x + x

and run the file; you should get a 6 once again.

It’s even possible to nest arrow functions! Here’s an example:

const doublePlusTen = (x) => {
const double = (x) => x + x
return double(x) + 10
}

The const double = (x) => x + x is our original function. It’s nested inside
a doublePlusTen function. The doublePlusTen is using curly braces and a
return command because there’s more than one line inside the function

(including the double function). If we were going to translate this nested
function into plain English, it would look something like this:

“We have a function called doublePlusTen. When we pass a number into
that function, first we pass it into a nested function called double, which takes
the number and doubles it. Then we take the result of that function, add 10 to
it, and return that number.”

You can try out this function by calling adding the line
console.log(doublePlusTen(3)) and running the app again, and you should get
16 as the response.

Hopefully this information will help you understand what an arrow
function is doing the next time you encounter it in code.

Chapter 67: Promises
Have you ever written an automated UI test that uses JavaScript, and

when you went to assert on a response, you got Promise {pending} instead
of what you were expecting? This really frustrated me when I first
encountered it! A developer I was working with explained that this is because
JavaScript processes commands asynchronously through the use of promises.
I sort of understood what he meant, so I tried to work with it as best I could,
but I didn’t really get it. Since then, I’ve gotten a better grasp on the concept.
In this chapter, I’ll explain why JavaScript needs promises and show an
example of how they work.

JavaScript needs promises because it is a single-threaded language,
meaning it can only do one thing at a time. For example, if we wanted a
program to do three things, such as make an HTTP request, alphabetize a list,
and update a record in a database, we wouldn’t want to have to wait around
for each of those tasks to finish before we went on to the next one, because
our program would be very slow! So JavaScript is designed to be
asynchronous—it can start a task, and then while it’s waiting for that task to
complete, it can start the next task.

Our example program from the preceding paragraph might actually run
like this:

● Start the HTTP request.
● Start alphabetizing the list.
● Start updating the record in the database.
● Finish alphabetizing the list.
● Finish updating the record in the database.
● Finish the HTTP request.

JavaScript would manage this through the use of promises. Let’s take a
look at a promise:

const sumChecker = new Promise((resolve, reject) => {

if (a+b==c) {
resolve('You are correct!')

}
else {

reject('Sorry, your math is wrong.')
}
})

The function called sumChecker is a promise. It’s going to have two
possible results: resolve and reject. If the sum is correct it resolves the
promise, and if it’s incorrect it rejects it. All promises behave in this way;
there will be an option to resolve the promise and an option to reject the
promise.

When the promise is called, either resolve or reject will be returned; you
can never return both. Let’s look at an example of calling the promise:

sumChecker.then((result) => {
console.log('Success!', result)
}).catch((error) => {

console.log('Error!', error)
})

The result that is returned will be either resolve or reject. If the result is
resolve, then the program knows to continue and will return the resolve
message. If the result is reject, then the program knows to throw an error and
will return the reject message.

You can try this for yourself if you have Node installed! Simply copy the
promise and the call and paste them into your favorite code editor. Then, at
the beginning of the file, add these lines:

var a = 1
var b = 2
var c = 3

Your complete program should look like this:

var a = 1
var b = 2
var c = 3

const sumChecker = new Promise((resolve, reject) => {
if (a+b==c) {

resolve('You are correct!')
}
else {

reject('Sorry, your math is wrong.')
}
})

sumChecker.then((result) => {
console.log('Success!', result)
}).catch((error) => {

console.log('Error!', error)
})

Save the file with the name myfile.js, navigate in the command line to the
file’s location, and run the file with the command node myfile.js. You should
see this response:

Success! You are correct!

If you make a change to the c variable and set it to 4, and then you save
and run the command again, you’ll see this response:

Error! Sorry, your math is wrong.

Let’s put a log statement in between the promise and the call to the
promise that looks like this, console.log(sumChecker), so that we can see the
state of sumChecker before we call it. Your program should now look like
this:

var a = 1
var b = 2
var c = 3

const sumChecker = new Promise((resolve, reject) => {
if (a+b==c) {

resolve('You are correct!')
}
else {

reject('Sorry, your math is wrong.')
}
})

console.log(sumChecker)

sumChecker.then((result) => {
console.log('Success!', result)
}).catch((error) => {

console.log('Error!', error)
})

If we change the value of c back to 3 so that we’ll get a positive result,
save the file, and run the program with node myfile.js now, we’ll get the
result Promise {'You are correct!'} in addition to the response we got earlier.
That seems easy! But the reason why we get the promise resolved so quickly
is because the sumChecker promise executes quickly. Let’s see what happens
if we make the sumChecker work more slowly, like a real promise would.

Update the sumChecker promise to look like this:

const sumChecker = new Promise((resolve, reject) => {
if (a+b==c) {

setTimeout(() => {
resolve('You are correct!')

}, 2000)
}
else {

reject('Sorry, your math is wrong.')
}
})

All we’re doing here is adding a two-second timeout to the resolved

promise. Save the file, and run the program again with node myfile.js. This
time you’ll first get the result Promise { <pending> }, and after two seconds
you’ll get the result Success! You are correct!

Now it should be clear why you get Promise { <pending> } when you are
making JavaScript or Node calls. It’s because the promise hasn’t been
completed yet. This is why we use the .then() command. We wait for the
response to the call to come back, and then we do something with the
response. If we’re writing a test, at that point we can assert on our result.

I hope you’ll take the time to try running this file with Node because
there’s nothing quite like doing hands-on work to generate understanding.
You can try changing the variables or any of the response messages to get a
feel for how it’s working. Here’s the final version of the file if you’d like to
copy and paste it:

var a = 1
var b = 2
var c = 3

const sumChecker = new Promise((resolve, reject) => {
if (a+b==c) {

setTimeout(() => {
resolve('You are correct!')

}, 2000)
}
else {

reject('Sorry, your math is wrong.')
}
})

console.log(sumChecker)

sumChecker.then((result) => {
console.log('Success!', result)
}).catch((error) => {

console.log('Error!', error)
})

Chapter 68: Async/Await
In the preceding chapter, I explained promises. The basic idea of

promises is that JavaScript functions happen asynchronously, so promises are
like place savers that wait for either a resolve or reject response.

Here’s an example of a function with a promise:

const add = (a, b) => {
return new Promise((resolve, reject) => {

setTimeout(() => {
resolve(a+b)

}, 2000)
})
}

In this function, we’re simply adding two numbers. A setTimeout for two
seconds is added to make the function take a little longer, as a real function
would.

Here’s what calling the function might look like:

add(1, 2).then((sum) => {
console.log(sum)
})

The add function is called, and then we use the then() command to log the
result. Using then() means we’re waiting for the promise to be resolved
before we go on.

But what if we needed to call the function a second time? Let’s say we
wanted to add two numbers, then we wanted to take that sum and add a third
number to it. For this, we’d need to do promise chaining.

Here’s an example of promise chaining:

add(1, 2).then((sum) => {

add(sum, 3).then((sum2) => {
console.log(sum2)

})
})

The add function is called, and we use the then() command with the sum
that is returned. Then we call the function again, and use the then() command
once again with the new sum that is returned. Finally, we log the new sum.

This works just fine, but imagine if we had to chain a number of function
calls together. It would start to get pretty tricky with all the then()s, curly
braces, and indenting. This is why async/await was invented!

With async/await, you don’t have to chain promises together. You create
a new async function call, and then you use the await command when you are
calling a function with a promise.

Here’s what the chained promise call would look like if we used
async/await instead:

const getSum = async () => {
const sum = await add(1, 2)
const sum2 = await add(sum, 3)
console.log(sum2)
}
getSum()

We’re creating a new async function called getSum, by using the
command

const getSum = async () =>. In that function, we’re first calling the add
function with an await, and we’re setting the result of that call to the variable
called sum. Then we’re calling the add function again with an await, and
we’re setting the result of that call to the variable called sum2. Finally, we’re
logging the value of sum2. Now that the async function has been created,
we’re calling it with the getSum() command.

It’s pretty clear that this code is easier to read with async/await! Keep in
mind that promises are still being used here; the add() function still returns a

promise. But async/await provides a way to call a promise function without
having to add in a then() statement.

Chapter 69: Debugging for Testers
Wikipedia defines debugging as “the process of finding and resolving

defects or problems within a computer program that prevent correct operation
of computer software or a system.” Often we think of debugging as
something that only developers need to do, but this isn’t the case. Here are
two reasons why: first, investigating the cause of a bug when we find it can
help the developer fix it faster; and second, since we write automation code
ourselves and we want to write code that is of high quality just like
developers do, we ought to know how to debug our code.

Let’s take a look at three different strategies we can employ when
debugging code.

Strategy #1: Console Output

Code that is executed in a browser or on a device generally outputs some
information to the console. You can easily see this by opening DevTools in
Chrome or the Web Console in Firefox. When something goes wrong in your
application, you can look for error messages in the console. Helpful error
messages like “The file ‘address.js’ was not found” can tell you exactly
what’s going wrong.

Often an error in an application will produce a stack trace. A stack trace is
simply a series of error statements that go in order from the most recent file
that was called all the way back to the first file that was called. Here’s a very
simple example: let’s say you have a Node application that displays cat
photos. Your main app.js page calls a function called getCats which will load
the user’s cat photos. But something goes wrong with getCats, and the
application crashes. Your stack trace might look something like this:

Error: cannot find photos
at getCats.js 10:57
at app.js 15:16
at internal/main/run_main_module.js:17:47

The first line of the stack trace is the error: the main cause of what went
wrong.

The next line shows the last thing that happened before the app crashed:
the code was executing in getCats.js, and when it got to line 10, column 57, it
couldn’t find the photos.

The third line shows which file called getCats.js: it was app.js, and it
called getCats at line 15, column 16.
The final line shows what file was called to run app.js in the first place: an
internal Node file that called app.js at line 17, column 47.

Stack traces are often longer, harder to read, and more complicated than
this example, but the more you practice looking at them, the better you will
get at finding the most important information.

Strategy #2: Logging

Much of what you see in the console output can be called logging, but
there are often specific log entries set up in an application’s code which
record everything that happens in the application. I’m fortunate to work with
great developers who are adept at creating clear log statements that make it
easy to figure out what happened when things went wrong.

Log statements often come with different levels of importance, such as
Error, Warning, Info, and Debug. An application can sometimes be set to
only log certain levels of statements. For example, a production version of an
application might be set to only log Errors and Warnings. When you’re
investigating a bug, it may be possible to increase the verbosity of the logs so
that you can see the Info and Debug statements as well.

You can also make your own log statements, simply by writing code that
will output information to the console. I do this when I’m checking to make
sure my automation code is working like I’m expecting it to. For example, if
I had a do-while statement like this:

do {
counter++
}

while (counter < 10)

I might add a logging statement that tells me the value of counter as my
program progresses:

do {
console.log ("The value of counter right now is: " + counter)
counter++
}
while (counter < 10)

The great thing about creating your own log statements is that you can set
them up in a way that makes the most sense to you.

Strategy #3: Breakpoints

A breakpoint is a place you set in the code that will cause the program to
pause. Software often executes very quickly, and it can be hard to figure out
what’s happening as you’re flying through the lines of code. When you set a
breakpoint, you can take a look at what all your variable values are at that
point in the program. You can also step through the code slowly to see what
happens at each line.

Debuggers are generally available in every language in which you can
write code. Here are some examples:

● Python uses the pdb library
● JavaScript uses the debugger statement
● Powershell uses breakpoints
● C# has debugging tools in Visual Studio
● Java has debugging tools in Eclipse and IntelliJ

By using the console output, logging statements, and breakpoints, you
will get all kinds of information that will help you debug code.

Chapter 70: Seven Steps to Solve Any
Coding Problem

I am not the world’s greatest coder, although I am getting better every
year. One thing I’m really improving on is my ability to solve coding
problems. I’m not talking about the coding challenges you’d get online or in
a job interview; I’m talking about real-world problems, like “How are we
going to create an automated test for this?” Here are the seven steps I use to
solve any coding problem.

Step #1: Remember What Problem You Are Trying to Solve

When you’re trying to figure out how to do something, it can be easy to
forget what your original intent was. For example, let’s say you are trying to
access a specific element on a web page, and you’re having a really tough
time doing so; perhaps the element is in a pop-up that you can’t reach or it’s
blocked by another element. It’s easy to get so bogged down in trying to
solve this problem that you forget your original intent: to add a new user to
the system. When you remember this, you realize you could have added a
new user to the system by calling the database directly, avoiding the issue
you were stuck on!

Step #2: Set Small Steps

I often have what I want to do in my code figured out long before I know
how I’m going to do it. And I used to just write a whole bunch of code even
if I wasn’t sure it was going to work correctly. Then when I tried to run the
code, it didn’t work; but I wrote so much code that I didn’t know whether I
had one problem or many. This is why I now set small steps when I code. For
example, when trying to write an email test, I will first set for myself the goal
of just reaching the Gmail API. I won’t care what kind of token I use or what
information I get back; I just want a response. Once I solve that, I will work
on trying to get the specific response that I want. This strategy also keeps me
from getting frustrated or overwhelmed.

Step #3: Change One Thing at a Time

This step is similar to Step #2, but it’s good for times when your code
isn’t working. It’s very tempting to thrash around and try a number of
different solutions, sometimes all at once, but that’s not very helpful. Even if
you get your code to work by following this method, you won’t know which
change caused the code to work; therefore, you won’t know which changes
were superfluous. It’s much better to make one small change, see whether it
works, remove that change and try a different change, and so on. Not only
will you solve your problem faster this way, but you’ll be learning as you go,
and what you learn will be very valuable for the next time you have a
problem.

Step #4: Save All Your Work

I learned this one the hard way when I was first writing UI automation. I
had absolutely no idea what I was doing, and sometimes I’d try something
that didn’t completely work and then delete it and try something else. Then
I’d realize I needed some of the lines of code from the first thing I tried, but I
had deleted them, so I had to start from scratch to find them again. Now when
I’m solving a new coding challenge I create a document that I call my scratch
pad, and when I remove anything from my code I copy it and paste it in the
scratch pad, just in case I’ll need it again. This has helped me solve
challenges much more efficiently.

Step #5: See What Others Have Done

People who are good at solving coding problems are usually also masters
of Google Fu: the art of knowing the right web search to use to get them the
answers they need. When I first started writing test automation, I was not
very good at Google Fu, because I often wasn’t sure what to call the thing I
wanted to do. As I’ve grown in experience, I’ve become better at knowing
the terminology of whatever language I’m using, so if I’ve forgotten
something like whether I should be using a static method, I can structure my
search so that I can quickly find the right answer. The answers you find on
the internet are not always the right ones, and sometimes they aren’t even
good ones, but they often provide clues that can help you solve your problem.

Step #6: Level Up Your Skills

In 2020 I took an online course on NodeJS, and it helped me gain a deep
understanding of how JavaScript works. Now that I understand more, writing
code is so much easier. Rather than just copying and pasting examples from
someone on Stack Overflow, I can make good decisions about how to set
things up; and when I understand what’s going on, I can write code so much
faster. Take some time to really learn a coding language; it’s an investment
that will be worth it!

Step #7: Ask for Help

If you’ve finished all the other steps and still haven’t solved your
problem, it’s time to ask for help. This should definitely not be Step #1 in
your process. Running for help every time something gets hard will not make
you a better coder. Instead, imagine there’s no one who can help you and see
how far you can get on your own. See what kinds of lessons you can learn
from the process. Then, if you do need to ask for help, you’ll be able to
accurately describe the problem in such a way that your helper will probably
be able to give you some answers very quickly. You’ll save them time, which
they will appreciate.

Coding is not magic: while there are all sorts of complex and weird things
out there in the world of software, an answer exists for every question. By
using these seven steps, you’ll take some of the mystery out of coding and
become a better thinker in the process!

Chapter 71: Introduction to Git
For a software tester who has just started writing test automation, using

version control software such as Git can seem daunting and confusing. But
being able to pull down the latest code, update it, and submit a pull request is
very important for any team project! In this chapter, I’ll provide a gentle
introduction to the basics of Git.

What Is Git?

Git is a version control system, which is a system that allows a group of
people to collaborate on code without accidentally overwriting one another’s
work. It also allows the group to keep track of who changed the code and
when it was changed so that it’s easy to trace back to the source of a problem.

Why Is Git Needed?

Consider what file editing is like when you don’t use a version control
system. Let’s say you have a recipe for brownies. You send the recipe to your
friend, and she decides to change the amount of cocoa in the recipe. When
she makes that change, it is only in her version of the file, not yours. Your
files are now different. If you make a change to add more vanilla to the
recipe, now your versions have diverged even further.

You can see how this would be unacceptable for software code! In a
version control system, there is one “main version” which is the accepted
version of the code. This main version lives in GitHub (or another version
control hosting service) and can be “pulled down” by any user. When
someone wants to make a change to the code, they pull down the main
version of the code, create a “branch” that is a copy of the main version,
make their changes to the branch, push the branch up to GitHub, and then do
a “pull request,” which is asking for someone to review their code and merge
it into the main branch.

Confused? Don’t worry, this will look much simpler with an example.
Let’s imagine we have a source code repository called “The Thinking Tester

Guestbook”. We’ll take a look at what would happen if Prunella Prunewhip
wanted to add her name to the guestbook. (These instructions assume that
Prunella has already installed Git on her computer and has already created a
GitHub account.)

Step #1: Prunella Clones the Source Code Repository

This is often called “cloning the repo” or “pulling down the repo.”
Prunella does this by going to the URL in GitHub that has the source code,
and clicking the green Code button. A pop-up window appears with the URL
she will need to clone the source code. She clicks the little clipboard button to
the right of the URL to copy the URL text.

Prunella opens a command window and navigates to the folder where she
would like to put the source code. Once she’s there, she types git clone,
pastes the URL text next to those words, and hits Return. The repository is
copied from GitHub into a new folder.

Now that the repository is in a folder on her computer, she can open the
folder in her file browser and take a look at what’s in there. She sees that
there is one text file, called guestBook.txt. The text file reads:

Kristin Jackvony was here on May 11, 2021

Step #2: Prunella Makes a New Branch and Adds Her Changes to
That Branch

Before Prunella makes any changes to guestBook.txt, she should create a
new branch and switch to it. So, in the command line, she navigates to the
new folder that was cloned earlier by typing cd ThinkingTesterGuestBook.
She can verify that she’s in the main branch by typing git status, and she will
get a response like this: On branch main.

Now she can create a new branch and switch to it by typing git checkout -
b NewEntry. The command -b tells Git to create a new branch. NewEntry is
what Prunella has chosen to name her branch. And the command checkout is
what causes Git to switch to the new branch.

https://git-scm.com
https://github.com/join?source=header-home

If Prunella types git status at this point, she will get On branch NewEntry
as a response.

Now that Prunella is in the correct branch, she’s going to make a change
to the guestBook.txt file by adding one line so that the file now reads:

Kristin Jackvony was here on May 11, 2021
Prunella Prunewhip was here on June 13, 2021

Step #3: Prunella Commits Her Changes and Pushes Them to
GitHub

Now that Prunella has made the change she wanted, she needs to commit
and push her change. First, she can run git status and she’ll get this response:

On branch NewEntry
modified: guestBook.txt

This shows that the guestBook.txt file has been modified. Next, Prunella
needs to add the file to the commit by typing git add guestBook.txt. Now if
she types git status, she’ll see this response:

On branch NewEntry
Changes to be committed:

modified: guestBook.txt

Next, Prunella commits her change by typing git commit -m "Adding a
new entry". The -m in this command stands for “message”. The "Adding a
new entry" text is the message she is adding to explain what she is
committing. The command line will respond with how many files and lines
were changed.

Once the change has been committed, Prunella can push the change up to
the GitHub repository by typing git push origin NewEntry. The NewEntry
value explains that the code should go up to the NewEntry branch, which
doesn’t exist yet in the GitHub repository but will be created with this
command. Origin refers to the GitHub repository (this is also referred to as
“remote”). The command line will respond with several lines, the final of

which will be * [new branch] NewEntry -> NewEntry, which shows that a
new branch called NewEntry has been created in the origin and that it was
copied from the local branch Prunella created, which was also called
NewEntry.

Step #4: Prunella Creates a Pull Request in GitHub

Now that her new branch has been pushed up to GitHub, Prunella can
submit a pull request to ask that her changes be merged with the main branch.
She does this by going to the GitHub repository and choosing the Pull
Requests tab, then clicking the New Pull Request button. This takes her to the
Compare page. She makes sure the left side of the comparison is the main
branch, and then chooses the NewEntry branch from the branch dropdown.
She can see how the guestBook.txt file has changed; the new line she added is
highlighted in green, illustrating the difference between the two files. (If she
had deleted a line, the line she removed would be highlighted in red.) Finally,
she clicks the Create Pull Request button.

Step #5: Prunella’s Pull Request Is Approved and Merged

The final step in the file change process is that the owner of the repository
(or any teammates who have approval permissions) will review the change,
approve it, and merge it. Now if Prunella changes directories to the main
branch by doing git checkout main, pulls down the changes by doing git pull
origin main, and takes a look at the guestBook.txt file, she will see that her
entry has been added:

Kristin Jackvony was here on May 11, 2021
Prunella Prunewhip was here on June 13, 2021

And that’s all there is to it! In the next two chapters you'll learn some
more Git tips and tricks.

Chapter 72: Six Tips for Git Success
Even when you understand how Git works, it can still be a bit mysterious

because there is so much happening that you don’t see. The command line
does not offer a visual interface to show you what branch you are on or when
you last pulled from the main branch. So, in this chapter I’ll provide six tips
that make using Git easier.

Tip #1: Run git status Frequently

A common mistake that Git users make is to do a bunch of work and
commit while on the wrong branch. Because I am not a Git expert and I’m
never sure how to recover from this mistake, I run git status frequently. I
always run it as soon as I’ve opened the command line and navigated to my
repository so that I won’t be surprised by what branch I’m on.

Running git status is also a good way to find out what files have been
changed in your branch. Sometimes we make a change to a file for debugging
purposes and we forget to change it back. If you run git status, it will alert
you that a file you didn’t want to change has been altered.

Tip #2: Pull from the Main Branch Before You Do Anything

Before you start changing code in your branch, you’ll want to make sure
your branch has the very latest code in it. Otherwise, you may be updating
code that doesn’t exist anymore, or you may be duplicating work. By making
sure you have the latest code, you will also avoid creating a merge conflict, a
situation in which your branch and the main branch have differences that the
version control system doesn’t know how to handle.

Once you have pulled from the main branch, remember to switch to your
own branch! If you are running git status frequently, you’ll notice whether or
not you’ve forgotten to make the switch.

Tip #3: Add All Your Changed Files at the Same Time

If you have changed a number of files, you’ll find it tedious to type
git add <insert long filename here> over and over again. A quick way to

add all your changed files at the same time is to use git add -A. Just be sure
when using this that you really want to add all your files.

Tip #4: Give Your Commits a Useful Name

When you commit your files, adding a commit message is optional, but
most companies expect their employees to do it. Make it easier on yourself
and everyone else by naming your commits something that will make sense
later. “One-line code change” is not a very helpful commit message. “Adding
test for new contact info endpoint” provides much more detail.

Tip #5: View Your Git Logs in a Single Line

It can be hard to remember what you’ve done in Git because there’s no
UI to show you. This is where git log is helpful. The log in its full version
will show you the last several commits made, who made them, and the date
and time they were made. I find it’s easier to read the logs when they are
condensed to a single line; to do this, type git log –pretty=oneline. To exit the
log, type q.

Tip #6: View the “Diff” of Your Files Before You Do a Pull Request

If you are running git status frequently, you probably won’t commit and
push any files that you didn’t mean to push. But it’s still possible to
accidentally commit code you didn’t mean to commit in a file that has the
changes you want. So, before you do a pull request and ask someone to
review your code, view the “diff” of your files, which simply means looking
in GitHub and comparing the files in your branch with the files in the master
branch to see which lines were changed. Make sure there are no code changes
in the file that you didn’t want to commit, such as commented-out code or
debugging statements.

If you find that you’ve accidentally pushed something you didn’t mean to
push, simply change the file to what you want it to be and add, commit, and
push it again.

Chapter 73: Merge Conflict Resolution
Anyone working with version control software such as Git will eventually

come across a merge conflict. If you are new to working with Git, here is a
simple example.

The main branch contains a file with this text:

Kristin Jackvony was here on May 22, 2021

Prunella and Joe each check out a version of this main branch. Prunella
makes a branch called “Prunella” and Joe makes a branch called “Joe”.

Joe updates the file in his branch to read:

Kristin Jackvony was here on May 22, 2021
Joe Schmoe was here on May 23, 2021

Joe does a pull request for his file changes, and they are approved and
merged into the main branch.

Shortly thereafter, Prunella updates the file in her branch to read:

Kristin Jackvony was here on May 22, 2021
Prunella Prunewhip was here on May 23, 2021

She also does a pull request for her file changes, but because she no
longer has the latest version of the main branch, there is a merge conflict. Git
sees that she wants to add her name to the second line of the file, but her
version of the main branch doesn’t have anything on the second line, whereas
the latest version of the main branch has Joe’s name on it. Prunella will need
to resolve the conflict before her changes can be merged.

By using the tips in the preceding chapter, especially tips #1, #2, and #6,
you can avoid creating a merge conflict. It’s always a good idea to do a pull
from main before you do anything code related.

However, if you do create a merge conflict, here are six tactics to keep in
mind.

Tactic #1: Don’t Panic

When you have a merge conflict, it’s important not to thrash around
trying “git this” and “git that”. You might make things worse this way. A
merge conflict will eventually be resolved, even if you have to resort to
asking for help (see tactic #6). And you can’t possibly have done anything
irreversible; that’s the beauty of version control!

Tactic #2: Resolve the Conflict from Within GitHub

GitHub has an easy interface that allows you to resolve merge conflicts.
Simply click the Resolve Conflicts button to see the conflict. Our example
conflict would look something like this:

>>>>>HEAD
Joe Schmoe was here on May 23, 2021
=====
Prunella Prunewhip was here on May 23, 2021
<<<<< Prunella

In our example, all we need to do is decide which entry we want on line 2
and which entry we want on line 3 and make those edits, deleting the
extraneous symbols and branch names along the way. When we are done, our
file will look like this:

Kristin Jackvony was here on May 22, 2021
Joe Schmoe was here on May 23, 2021
Prunella Prunewhip was here on May 23, 2021

Now we just click the Mark as Resolved button and the pull request
should be ready for merging.

Tactic #3: Resolve the Conflict from the Command Line

If you are using Git as a version control system but you are not using

GitHub to host your repositories, you may not have a nice UI to work with in
order to resolve your conflict. In this case, you may need to use the command
line.

What I do in this scenario is open the file with the merge conflict in a text
editor such as TextEdit or Notepad++, remove all the extraneous symbols and
branch names, and then do a git add with the filename, and then a git commit.

Tactic #4: Forget About Your Existing Branch and Make a New One

In this scenario, I copy the text of the entire file, including all my
changes, and paste it somewhere outside the code. Then I go to the master
branch and do a git pull origin main. Now I should have all the latest
changes. Next, I create a brand-new branch, switch to that branch, and paste
in all my file changes. Then I do a new pull request, which won’t have the
merge conflict.

Tactic #5: The Nuclear Option

If tactic #4 fails to work, I exercise the nuclear option, which is to delete
the entire repository from my machine. Before I do this, however, I make a
copy of my file with all my changes and paste it somewhere outside the code,
as I did in tactic #4. Then I delete the entire repository and clone it again. At
that point, I create a new branch, switch to it, make my changes, and do a
brand-new pull request.

Tactic #6: Ask for Help

If all else fails, ask someone for help. There’s no shame in asking for help
with a particularly thorny merge conflict! If you followed tactic #1 and didn’t
panic, your helper will be able to see exactly what you’ve done so far and can
help you arrive at a solution.

Git purists may argue that merge conflicts should be resolved the right
way (using tactic #2 or #3), and they are probably right. But using tactic #4 or
#5 can keep you from wasting time trying to resolve the conflict, and these
tactics will also keep you from wanting to throw your laptop out the window!

Chapter 74: A Gentle Introduction to Regex
In my experience, working with regex makes everyone’s head hurt. No

one wants to have to look at ^(19|20)\d\d[- /.](0[1-9]|1[012])[- /.](0[1-9]|[12]
[0-9]|3[01])$ and figure out what it means!

However, regex is a very powerful tool and it’s good to know how to use
it, even if (like most people) you’re not an expert. This chapter serves as a
gentle introduction to regex so that when you encounter it in your testing
you’ll feel more comfortable with it.

The first thing you should know about regex is that it stands for “regular
expression,” which is simply a sequence of characters that define a search
pattern. Regexes are very useful for doing things like editing a string or
checking to see whether a phone number, date, or postal code fits the
accepted pattern.

The second thing you should know about regex is that it’s a lot easier to
use when you have a regex tester available! Many free regex testers are
available on the Web.

Regex varies slightly depending on what language you are using, but the
basic building blocks are the same in each variation. Here are 10 regex
symbols that will help you get started:

● ^ : This indicates that you want to match the beginning of a word.
For example, if you were using a pattern that started with ^ball, you
could match the word ball or the word balloon, but you could not
match the word football, because it doesn’t begin with ball.

● $: This indicates that you want to match the end of a word. So, if you
were using a pattern that ended with ball$, you could now match the
word football, but you couldn’t match the word balloon, because it
doesn’t end with ball.

● . : This matches any character. You can use this when one of the

characters in a string is going to vary. So, if you had the pattern
foo.ball, you could match football or foosball.

● *: This indicates that the character should be matched one or more
times. In the pattern fo*tball, the letter o can be matched one or more
times. So with this pattern, you could match fotball, or football, or
even foooooooootball.

● \d: This matches any numeric digit. The pattern football\d will match
football1, football2, football3, and so on, but not football or
football!.

● \w: This matches any character from the basic Latin alphabet. So, if
you were looking for a pattern of 12345\w, this symbol would match
12345a, 12345b, 12345z, and so on, but not 123456 or 12345!.

● \s: This matches a space. If you had a pattern of foot\sball, it would
match foot ball but not football.

● []: These indicate a character set. So, if you wanted to match any
number from 1 to 5, you could use [12345]. A pattern of
football[12345] would match football1 but not football6.

● |: This is an either/or pattern. A regex pattern of cat|dog will match
cat, and will also match dog.

● (): These group pattern items together, the same way they do in
mathematical expressions. Let’s say you were trying to find a match
for November or December but not for September. You couldn’t just
use a regex pattern of ember, because that would match all three
months. But you could use (Nov|Dec)ember; using the parentheses
combined with the pipe character shows that the month could either
have Nov or Dec, and then should continue with ember.

I kept these examples very simple because there is so much to regex that
you could spend months learning it, and it is very easy to get confused! But
these commonly used symbols should be enough to get you feeling a bit more
comfortable with it. Take some time to play around with a regex tester to

practice what you’ve learned, and if you’d like to learn more, try an
interactive tutorial on the Web.

Chapter 75: Logging, Monitoring, and
Alerting

A bug-free application doesn’t mean a thing if your users can’t get to it
because the server crashed! For this reason, it’s important to understand
logging, monitoring, and alerting so that you can participate in ensuring the
health of your applications.

Logging

Logging is simply recording information about what happens in an
application. The information is written to either a file or a database. Often,
developers will include logging statements in their code to help them
determine what’s going on with the application behind the UI. This is
especially helpful in applications that make calls to a number of servers or
databases.

Recently I tested a notification system that passed a message from a
function to a number of different channels. The logging statements were so
helpful in this case because they enabled me to follow the message through
the channels. Without them, I wouldn’t have been able to figure out where
the bug was when I didn’t get the message I was expecting.

Good log messages should be easy to access and search. You shouldn’t
have to log on to some obscure remote desktop and sift through tens of
thousands of entries with no line breaks. There are many helpful logging
applications that let you search and sort through logs in an easy-to-read
format.

Good log messages should also be easy to understand, and provide
helpful information. It’s so frustrating when a log message about an error
reads “An unknown error occurred” or “Error TSGB-45667”. Ask your
developer to provide log messages that clearly state what went wrong and
where it happened in the code.

Another helpful tactic for logging is to give each event a specific GUID
as an identifier. The GUID will stay associated with everything that happens
with the event so that you can follow it as it moves from one area of an
application to another.

Monitoring

Monitoring means setting up automatic processes to watch the health of
your application and the servers that run it. Good monitoring ensures that any
potential problems can be discovered and dealt with before they reach the end
user. For example, if it becomes clear that a server’s disk space is reaching
maximum capacity, additional servers can be added to handle the load.

Things to monitor include:

● Server response times
● Load on the server
● Server errors, such as 500-level response errors
● CPU usage
● Memory usage
● Disk space

One way to monitor application health is with a periodic health check or a
ping. In this case, a job is set up to make a request to the server every few
minutes and record whether the response was positive or negative.
Monitoring can also happen through a tool that watches the number of
requests made to the server and records whether those requests were
successful. Data points such as response times and CPU usage can also be
recorded and examined to see whether there are any trends that might indicate
the application is unhealthy.

Alerting

All the logging and monitoring in the world won’t be helpful if no one
pays attention to the logs and monitors! This is where alerting comes in.
Alerts can be set to notify the appropriate people so that immediate action can
be taken when there is a problem.

Following are some situations that might call for an alert:

● CPU or memory usage goes above a certain threshold.
● Disk space goes below a certain threshold.
● The number of 500 errors goes above a certain level.
● A health check fails twice in a row.
● Response times are slower than expected.
● Load is higher than normal.

There are a number of ways to alert people of problems. For example,
you can set up alerts that will send emails, text messages, or phone calls.
Note that you should only set off-hours alerts for serious cases in which users
might be affected. No one wants to be awakened in the middle of the night by
an alert that says the QA servers are down! However, a problem in the QA
environment could indicate an issue that might be seen in the production
environment in the future. So a less invasive alert, such as a message to a
team chat room, could be set up for this situation.

You may be saying to yourself at this point: “But I’m a software tester!
It’s not my job to set up logging, monitoring, and alerting for the company.”
The health of your application is the responsibility of everyone who works on
it, including you! While you might not have the clout to purchase server
monitoring software, you still have the power to ask questions of your team,
such as:

● How can we troubleshoot user issues?
● How do we know we have enough servers to handle our application’s

load?
● How do we know our API is responding correctly?
● How will we know whether a DDoS attack is being attempted on our

application?
● How will we know whether our end users are experiencing long wait

times?
● How will we know whether we are running out of disk space?

Hopefully these questions will motivate you and your team to set up
logging, monitoring, and alerting that will ensure the health and reliability of
your application.

Part X: Automated Testing

Chapter 76: Why Automate?
For some of you, your initial answer to the question “Why automate?”

may be “Because my manager wants me to.” This is, of course, a valid
reason. But after you have a few automated tests written, you will discover
other, more important reasons.

It Saves You Time

At first it will seem as though automation is a huge time-suck because it
will take several weeks to get your automation system up and running. But
once it’s in place, it will save you valuable testing time. Even without looking
at your application, you will know whether something went wrong with the
latest build.

It Frees You from Some Repetitive Tasks

A feature I once tested had a search form with four editable fields: Last
Name, Company, Email, and Phone Number. To test this feature well, I
would need to test with every possible permutation: just one field at a time,
two fields at a time, three fields at a time, and four fields at a time. This adds
up to 15 searches. It was rather tedious to do it every time I tested the search
function. But my automated test was happy to run through these 15 searches
as many times as I told it to.

It Helps You Think More Critically About Your Testing

When I’m manually testing I tend to follow a written plan, and add a few
exploratory tests as well. But when I’m writing an automated test I need to
think about why I’m running the test. The test engine will not be exploring,
so I’m going to need to tell it to do something very specific. I ask myself:
What are the minimum steps required to ensure that the feature works? Will I
need to vary those steps for broader coverage, and what is the most efficient
way to do that?

It Helps You Understand Your Development Team

Before I started writing automated tests, I knew a bit about coding from
my college courses but I’d never had hands-on experience. Writing usable
code helped me have more sympathy for what developers go through in order
to create software; it also taught me how programs are structured and how the
build process works. This has helped me become a better tester.

The path to learning automation won’t be easy, but it will teach you
important skills, streamline your testing process, help you understand the
development lifecycle, and improve your thinking about your tests.

Chapter 77: When to Automate
The first step in automation success is knowing when to automate and

when not to. Here are some guidelines.

DO Automate Repetitive Tasks

I once needed to add over 600 records to an application in order to fully
test a feature. Rather than add just a few records to partially test it, I created a
simple script that would add as many records as I specified. Another great
thing to automate is a feature with a number of different permutations.

DO Automate Basic Smoke-Level Tests

I like to think of smoke-level tests as tests of features whose failure in the
field would really embarrass us. One company I worked for had a search
feature broken for weeks, and no one noticed because we hadn’t run a test on
it. Unfortunately, the bug was pushed out to production and seen by
customers. Automating these tests and running them at every build or early in
the morning can help catch major problems quickly.

DON’T Automate Fragile Features or Features Going Through
Churn

There may be a feature of your company’s software that seems to break
every time someone looks at it in a funny way. Automating tests of this
feature practically guarantees that the tests will fail daily. Similarly, a feature
that is going through a lot of revisions (perhaps because the team is not yet
sure what the customer wants) will have many changes that will cause you to
make frequent code changes in your tests. It’s better to keep testing the
feature manually and reporting bugs on it until it becomes more stable.

DO Automate Things Users Will Do Every Day

What is the primary function of your software? What is the typical path
that a user will take when using your software? These are the kinds of things

that should be automated. Rather than running through this manual path
every day at 9 AM, you can set your automated test to do it at 8 AM and
you’ll know right away if there is a problem.

DON’T Automate Weird Edge Cases

There will always be bugs in software, but some will more likely be seen
by users than others. You may be fascinated by the bug that is caused by
going to a specific sequence of pages, entering non-UTF-8 characters, and
then clicking the back button three times in a row, but since it’s very unlikely
that an end user will do this, it’s not worth your time to design an automated
test for it.

Knowing when to automate will ensure that you are spending time
writing tests that will save you time rather than writing tests that will need
constant attention.

Chapter 78: Rethinking the Pyramid: The
Automation Test Wheel

Anyone who has spent time working on test automation has likely heard
of the test automation pyramid. The pyramid typically comprises three
horizontal sections: UI Tests, API Tests, and Unit Tests.

The bottom section is the widest and is for the unit tests. There should be
more unit tests than API or UI tests because unit tests run very quickly and
are extremely reliable since they don’t rely on any data store. The middle
section is for the API tests. There should be fewer API tests than unit tests
because API tests are slower to run and rely on integration to a data store or

other resource. The top section is for the UI tests. The fewest number of tests
run should be UI tests because they take the most time and are the most
fragile.

While the pyramid is very helpful for teaching teams that they should test
as close to the code as possible, it doesn’t include many types of automated
tests and it assumes that the number of tests is the best indicator of
appropriate test coverage. I propose a new way of thinking about automated
testing: the automation test wheel.

Each test type in the automation test wheel can be thought of as a spoke
in a wheel; all are necessary and equally important. The size of each section
of the wheel does not indicate the number of the tests to be automated; each
test type should have the number of tests required to verify quality in that
area. Let’s take a look at each test type.

Unit tests: A unit test is the smallest automated test possible. It tests the
behavior of just one function or method. For example, if I had a method that
tested whether a number was 0, I could write these unit tests:

● A test that passes a 0 to the method and validates that it is identified
as a 0

● A test that passes a 1 to the method and validates that it is identified
as nonzero

● A test that passes a string to the method and validates that the
appropriate exception is thrown

Because unit tests are independent of all other services and run so
quickly, they are a very effective way of testing code. They are often written
by the developer who wrote the method or function, but they can also be
written by others. Each method or function should have at least one unit test
associated with it.

Component tests: These tests check the various services the code
depends on. For example, if we had code that called the GitHub API, we
could write a component test that would make a call to the API and verify
that we got a response. Other examples of component tests include pinging a
server or making a call to a database and verifying that a response was
received. There should be at least one component test for each service the
code relies on.

Services tests: These tests check the web services that are used in the
code. In today’s applications, web services often use API requests, so these
are usually API tests. For example, if we have an API that accepts POST,
GET, PUT, and DELETE requests, we will want to have automated tests that
check each request type. We will want to have both happy path tests that
check that a valid request returns an appropriate response, and negative tests
that verify that an invalid request returns an appropriate error code.

User interface (UI) tests: UI tests verify that end-user activities work
correctly. These are the tests that will fill out text fields and click on buttons.
As a general rule, anything that can be tested with a unit, component, or
service test should be tested by those methods instead. UI tests should focus
solely on the user interface.

Visual tests: Visual tests verify that elements are actually appearing on
the screen. This is slightly different from UI tests, because the UI tests are
focusing on the functionality of the user interface rather than the appearance.
Examples of visual tests include verifying that a button’s label is rendered
correctly and verifying that the correct product image is appearing on the
screen.

Security tests: These tests verify that security rules are being respected.
Security tests can overlap with services tests, but they should still be
considered separately. For example, a security test could check to make sure
an authorization token cannot be generated with an invalid username and
password combination. Another security test could make a GET request with
an authorization token for a user who should not have access to that resource,
and verify that a 403 response is returned.

Performance tests: Automated performance tests can verify that
response times for a request happen within an appropriate period. For
example, if your company has decided that GET requests should never take
longer than two seconds, tests can be created to return a failure state if the
request takes longer than that amount of time. Web page load times can also
be measured with performance tests.

Accessibility tests: Automated accessibility tests can check a variety of
things. When combined with UI tests, they can verify that images have text
descriptions for those with low vision. Visual tests can also be used to verify
that the text on the screen is the correct size.

You may have noticed that the preceding descriptions often overlap. For
example, security tests might be run through API testing and visual tests
might be run through UI testing. What is important here is that each area is
tested thoroughly, efficiently, and accurately. If a spoke is missing from the
wheel, you will never be comfortable relying on your automation when you
are doing continuous deployment.

In the next chapter, I’ll discuss how we can fit these tests into a real-
world application testing scenario.

Chapter 79: The Automation Test Wheel in
Practice

Using the Contact List app as an example, here’s how I would create tests
for every section of the automation test wheel.

Unit tests: I will make sure every function of my code has at least two
unit tests. Remember that unit tests don’t connect to any dependency, such as
a server, so I’ll run these tests using mock responses. For each function in my
app, I will create a positive and negative mock response. Then I’ll make both
a valid call to the function and an invalid call, and I’ll verify that I get the
appropriate mock response.

Component tests: My application is very simple and relies on just one
database. The database is used for authentication and for retrieving the
contact data. I will include one test for each function; I’ll send an
authentication request for a valid user and verify that the user is
authenticated, and I’ll make one request to the database to retrieve a known
contact and verify that the contact is retrieved.

Services tests: My application has an API that allows me to do CRUD
(Create, Read, Update, Delete) operations on my contacts. I have two GET
endpoints: one allows me to retrieve the list of contacts and the other allows
me to retrieve one specific contact. I also have a POST endpoint that allows
me to add a contact to the contact list; PUT and PATCH endpoints that allow
me to update the data for an existing contact; and a DELETE endpoint that
allows me to delete an existing contact.

My API also has endpoints that allow me to create a user with a POST,
GET a user, update a user with a PATCH, DELETE a user, and do a POST to
log in and log out as the user.

For each of these endpoints, I will have a series of tests. The tests will
include both happy paths and error paths. I’ll verify that for each request the
response code and the response body are correct. For example, with the GET

endpoint where I retrieve one contact, I’ll verify that a GET on an existing
contact returns a 200 response and the correct data for the contact. I’ll also
verify that a GET on a contact that doesn’t exist returns a 404 Not Found
response.

User interface (UI) tests: This is where I will be testing in the browser,
validating that all the buttons and fields work as they are supposed to. I will
also be validating that error messages appear on the page appropriately. For
example, on the Add Contact page, I’ll validate that I can add text to all the
form fields and click on the Submit button. I’ll also validate that the Cancel
button works correctly, and that when I have a field that fails validation rules,
an error message is returned on the page.

Visual tests: This is where I will verify that elements are actually
appearing on the page the way I want them to. I will navigate to the list page
and verify that all the columns are appearing on the page. I will navigate to
the Add Contact page and verify that all the form fields and their labels are
appearing appropriately on the page. I will trigger all possible error messages
(such as the one I would receive if I entered an invalid phone number) and
verify that the error appears correctly on the screen. And I will verify that all
the buttons needed to use the application are rendering correctly.

Security tests: I will run security tests at both the Services layer and the
UI layer. I will test the API operations relating to authenticating a user,
verifying that only a user with the correct credentials will be authenticated. I
will test every request endpoint to make sure only those requests with a valid
token are executing; requests without a valid token should return a 401. I’ll
also use API tests to verify that one user cannot view another user’s contacts.
For the UI layer, I will conduct a series of login tests that validate that only a
user with correct credentials is logged in.

Performance tests: I will set benchmarks for both the server response
time and the web page load time. To measure the server response time, I will
add assertions to my existing services tests that will verify that the response
was returned within that benchmark. To measure the web page load time, I
will run a UI test that will load each page and assert that the page was loaded
within the benchmark time.

Accessibility tests: I want to make sure my application can be used by
those with low vision. So I will run a set of UI and visual tests on each page
where I validate that I can increase the text size and that scroll bars appear
and disappear depending on whether they are needed. For example, if I zoom
in on the contact list I will now need a vertical scroll bar, because some of the
contacts will now be off the page.

With this series of automated tests, I will feel confident that I’ll be able to
deploy changes to my application and discover any problems quickly.

Chapter 80: Unit Tests
Unit tests are usually written by developers, but it’s a good idea for all

software testers to understand what they are and how they work. Unit tests
test just one method or function, and they aim to exercise as many paths of
that method or function as possible.

The major benefit of unit tests is that they provide extremely fast,
accurate feedback.

In this chapter I’ll use Node.js and Jest to demonstrate how unit tests
work. You can find this code at my GitHub repository:
https://github.com/kristinjackvony/unitTestExample.

The function I am testing is called isDozen, and you can find it in the
dozen.js file. Given a number, the function first checks to see whether it is 12.
If it is, it returns a “Yup, it’s a dozen!” message. If it is not 12, it checks to
see whether it is more or less than 12, and returns appropriate messages for
those cases. Then it checks to see whether the number is 0 or negative, and
returns an appropriate message if it is. Finally, if the number doesn’t meet
any of these criteria, it returns a “This is not a number” message.

If I were testing this function manually, assuming it had a UI interface,
I’d check to make sure it recognized 12 as one dozen and that it recognized
when a number was more than or less than one dozen. I’d also try some of the
usual testing tricks, like passing in a negative number or “FOO”.

This is exactly what we’ll do with our unit tests! I am using Jest for my
unit testing, and you can find the code in my dozen.test.js file. I have five test
cases here, aptly named as follows:

● Recognizes one dozen
● Recognizes more than one dozen
● Recognizes less than one dozen
● Recognizes a negative number
● Recognizes a non-number

https://github.com/kristinjackvony/unitTestExample

In each test, I call the isDozen function with the number I want to test
with. Then I assert that the result I got matches the result I was expecting.

If you’d like to run these tests yourself, make sure you have Node.js
installed, navigate to the location of the unitTestExample folder, run npm
install to install Jest, and then run the tests with the npm run test command.

Once you have the tests running, try making the first test fail by changing
the assertion statement to this: expect(isDozen(12)).toBe("This is not the real
response"). Run the tests again and watch the assertion fail.

Then try changing a test so that you are passing in a different value. For
example, you could pass the number 15 into the “Recognizes more than a
dozen” test instead of 13.

Once you are familiar with how these unit tests work, try taking another
simple code example and writing unit tests for it. Remember that unit tests do
not call a data store; they are only testing the function itself.

Chapter 81: Component Tests
A component test is a test for a service that an application is dependent

on. For example, an application might need to make calls to a database, so a
component test would make a simple call to that database and verify that it
received data in response. Another example of a component is an API that the
application doesn’t own. In this scenario, a component test would make a
simple call to the API and verify that it got a 200-level response.

Let’s imagine I have a simple app that is dependent on two things: a
Mongo database that has a list of users, and the PokéAPI, which is an API
that catalogs information about every type of Pokémon character. For my
component tests, I want to test those two dependencies: that I can make a
request to the database and get a positive response, and that I can make a call
to the API and get a positive response.

To test the dependencies, I’ve decided to use Jest and Supertest. Supertest
is a library that extends Jest testing by making it easier to call APIs.

Here is what my tests will look like:

const request = require('supertest');

describe('Database Connection Test', () => {
it('Returns a 200 with a call to the DB', async () => {

const res = await request('http://localhost:3000')
.get('/userlist')
.expect(200)

});
});

describe('PokeAPI Connection Test', () => {
it('Returns a 201 with a health check', async () => {

const res = await request('https://pokeapi.co/api/v2')
.get('/')
.expect(200)

})
})

The first line of my file is invoking Supertest, so I will be able to do
HTTP requests. Let’s take a look at each part of the second test so that we
can see what it’s doing.

The “describe” section comprises the entire test:

describe('PokeAPI Connection Test', () => {
it('Returns a 200 with a call to the API', async () => {

const res = await request('https://pokeapi.co/api/v2')
.get('/')
.expect(200)

})
})

‘PokeAPI Connection Test’ is the title of the test:

describe('PokeAPI Connection Test', () => {
it('Returns a 200 with a call to the API', async () => {

const res = await request('https://pokeapi.co/api/v2')
.get('/')
.expect(200)

})
})

The “it” section is where the assertion is called:

describe('PokeAPI Connection Test', () => {
it('Returns a 200 with a call to the AP', async () => {

const res = await request('https://pokeapi.co/api/v2')
.get('/')
.expect(200)
})
})

‘Returns a 200 with a call to the API’ is the title of the assertion:

describe('PokeAPI Connection Test', () => {
it('Returns a 200 with a call to the API', async () => {

const res = await request('https://pokeapi.co/api/v2')
.get('/')
.expect(200)

})
})

Here is where we are making the call to the API:

describe('PokeAPI Connection Test', () => {
it('Returns a 200 with a call to the API', async () => {

const res = await request('https://pokeapi.co/api/v2')
.get('/')
.expect(200)

})
})

And here is where we are expecting that we will get a 200 response:

describe('PokeAPI Connection Test', () => {
it('Returns a 200 with a call to the API', async () => {

const res = await request('https://pokeapi.co/api/v2')
.get('/')
.expect(200)

})
})

How many tests you have in this area will depend on how many external
systems your application is dependent on. It may be a good idea to create a
“health check” that will run your component tests whenever your code is
deployed. This way, you will be alerted if there is an error when calling your
external systems.

Chapter 82: Services Tests
There are many types of services, but the most widely used service is the

REST API. And my favorite way to test a REST API is with Postman.

To demonstrate automating services tests, I’ve created a collection of
Postman tests that you can download from GitHub here:
https://github.com/kristinjackvony/apiTestsExample

Once you have downloaded the file from GitHub, you can upload it in
Postman to see what it does. To upload the collection, click on the Import
button on the upper-left of the Postman window:

When the Import window pops up, drag the downloaded file into the
window and it will be uploaded to Postman. When you choose the
Collections tab on the left you should see a list of your collections, and
Contact List API Smoke Tests should be one of the collections.

Next, create an environment called “Contact List API Environment”. If
you don’t remember how to create an environment, see the instructions in
Chapter 40. You may need to create one empty variable in order to save the
environment. Once your environment is created, make sure you have selected
the environment in the upper-right corner:

https://github.com/kristinjackvony/apiTestsExample

You don’t have to put any other variables in this environment; scripts
within the collection will be adding variables for you.

You are now ready to run the requests from within Postman. Keep in
mind that the tests are not idempotent: some of the requests depend on
previous requests for setting variables and creating users and contacts, so you
should run the requests in order.

To run all the tests in the collection, choose the Collections tab, click on
the Contact List API Smoke Tests collection, and click on the three-dot menu
to the right of the collection name. From the dropdown that appears, choose
“Run collection”:

A new Runner tab will appear in the main window. Click on the Run
Contact List API Smoke Tests button:

When you click the button, you should see all the requests run and all the
assertions pass:

Take a moment to explore the different requests and assertions in the
collection. Some of the requests have a “pre-request script,” which creates
some variables and sets them to random Postman-generated values. When
you look at the Contact List API Environment that you created, you will see
that the created variables have been added to the environment.

Now that you understand how the tests and assertions work, let’s run
them from the command line! To do this you will need to have Node.js
installed. Installing node will also install npm, which is the Node Package
Manager. Then you can use npm to install Newman, the package that is used
to run Postman tests. To install Newman, simply open your command-line
window and type:

npm install -g newman

Once Newman is installed, locate the place where you downloaded the
ContactListAPISmokeTests.postman_collection.json file. You will want to
download your environment file to this same location. To do this, go to

Postman, click on the Environments tab in the left nav menu, click on
Contact List API Environment, and in the upper-right corner, click on the
three-dot menu and choose Export:

When the Export window opens, choose the location where your
collection is currently saved, and save your environment as:

ContactListAPIEnvironment.postman_environment.json

From your command-line window, navigate to the folder where you
saved your collection and environment. Now you can run your collection
with this command:

newman run APISmokeTests.postman_collection.json -e
ContactListAPIEnvironment.postman_environment.json

(This command should be in a line with no returns; it’s OK if it wraps
around to a second line.) The -e in this command stands for “environment”.

If all goes well, you should get a result that looks like this:

You can also run your tests from other file locations. To do this, simply
specify the path to your files in your command. For example, if my files were
in a folder called NightlyTests which was in my Documents folder, and if I
were using a Windows computer, I would use this command:

newman run
C:/users/kjackvony/Documents/NightlyTests/APISmokeTests.postman_collection.json
-e
C:/users/kjackvony/Documents/NightlyTests/ContactListAPIEnvironment.postman_environment.json

Now that you know how to run your tests from the command line, you
can set up your tests to run automatically with a cron job or in a CI/CD
platform such as Jenkins. Just be aware that the machine you run your tests
on will need to have Newman installed.

You can also have your test results write to a file with the -r command.
For example, you can have your results written in JUnit with this command:

newman run ContactListAPISmokeTests.postman_collection.json -e
ContactListAPIEnvironment.postman_environment.json -r junit

When the tests have finished running, a Newman folder will be created
with your test results inside.

Chapter 83: What API Tests to Run and
When to Run Them

Knowing how to automate API tests isn’t that helpful unless you make
good choices about what tests to run and when to run them. Let’s first think
about what to automate.

Let’s imagine that we have an API with these requests:

POST user
GET user/{userId}
PUT user/{userId}
DELETE user/{userId}

The first category of tests we will want to have are the simple happy path
requests. For example:

● POST a new user and verify that we get a 200 response.
● GET the user and verify that we get a 200 response and that the

correct user is returned.
● PUT an update to the user and verify that we get a 200 response.
● DELETE the user and verify that we get a 200 response.

The next category of tests we want to have are some simple negative
requests. For example:

● POST a new user with a missing required field and verify that we get
a 400 response.

● GET a user with an ID that doesn’t exist and verify that we get a 404
response.

● PUT an update to the user with an invalid field and verify that we get
a 400 response.

● DELETE a user with an ID that doesn’t exist and verify that we get a
404 response.

You’ll want to test 400 and 404 responses on every request that has them.

The third category of tests we want to have are more happy path requests,
but with variations. For example:

● POST a new user with only the required fields rather than all fields
and verify that we get a 200 response.

● GET a user with query parameters, such as user/{userId}?
fields=firstName,lastName, and verify that we get a 200 response
and the appropriate values in the response.

● PUT a user where one nonrequired field is replaced with null and one
field that is currently null is replaced with a value and verify that we
get a 200 response.

It’s worth noting that we might not want to test every possible
combination in this category. For example, if our GET request allows us to
filter by five different values— firstName, lastName, username, email, and
city—there are dozens of possibilities of what we could filter on. We don’t
want to automate every single combination; just enough to show that each
filter is working correctly, and that some combinations are working as well.

Finally, we have the category of security tests. For example, if each
request needs an authorization token to run, we can test the following:

● POST a new user without an authorization token and verify that we
get a 401 response.

● GET a user with an invalid token and verify that we get a 403
response.

● PUT an update to the user with an invalid token and verify that we
get a 403 response.

● DELETE a user without an authorization token and verify that we get
a 401 response.

For each request, you’ll want to test for both a 401 response (an
unauthenticated user’s request) and a 403 response (an unauthorized user’s
request).

Several additional tests may be appropriate for an API you are testing.

But these examples should get you thinking about the four different types of
tests.

Now let’s take a look at how we might use these four types in
automation! First, we want to have some smoke tests that will run very
quickly when code is deployed from one environment to another, up the
chain to the production environment. We want these tests to simply verify
that our endpoints can be reached. So all we need to do is run the first
category of tests: the simple happy path requests. In our example API, we
have four request types, so we need to run four tests. This will only take a
matter of seconds.

We’d also like to have some tests that run whenever new code is checked
in. We want to make sure the new code doesn’t break any existing
functionality. For this scenario, I recommend doing the first two categories of
tests: the simple happy path requests and the simple negative requests. We
could have one positive and one or two negative tests for each request, and
this will probably be enough to provide accurate feedback to developers
when they are checking in their code. In our example API, this amounts to no
more than 12 tests, so our developers will be able to get feedback in about
one minute.

Finally, it’s also great to have a full regression suite that runs nightly.
This suite can take a little longer because no one is waiting for it to run. I like
to include tests of all four types in the suite, or sometimes I create two nightly
regression suites: one that has the first three types of tests and one that has
just the security tests. Even if you have 100 tests, you can probably run your
full regression suite in just a few minutes because API tests run so quickly.

Once you have your smoke, build, and regression tests created and set to
run automatically, you can relax in the knowledge that if something goes
wrong with your API, you’ll know it. This will free you up to do more
exploratory testing!

Chapter 84: Setting Up UI Tests
There are dozens of different ways to run automated UI tests, but this can

make things more confusing because it’s hard for someone new to
automation to figure out what to do. And once you’ve chosen what UI testing
tool to use, it can still be so frustrating to get your first end-to-end test to
work.

That’s why I’m so excited about Cypress! Cypress takes the most difficult
part of UI testing—browser compatibility—and makes it easy. With
Selenium Webdriver tests, you need to download a browser driver for the
browser you’ll be testing with, and you need to make sure the test knows how
to find the driver. But with Cypress, the tests run directly in the browser, so
there’s no need to download a browser driver.

In this chapter, I’ll walk you through getting started with Cypress for your
UI automation project. I’ll assume you already have Node.js installed; if you
don’t, install it and make sure Node has been added to your system path.

Step #1: Create a Project

Open your command window, navigate to where you’d like to start your
project, and type mkdir MyFirstCypressProject. This will create a new folder
for the project. Navigate to that folder by typing cd MyFirstCypressProject,
and then type npm init --y. This will initialize the project as a Node.js project.

Step #2: Install Cypress

While still in the MyFirstCypressProject directory, type npm i cypress --
save-dev. This will install Cypress in your project as a development
dependency.

Step #3: Open Cypress

While still in the MyFirstCypressProject directory, type npx cypress
open. This will start Cypress, and you’ll see a couple of things happen:

● Cypress will recognize that you are using it for the first time and will
install some sample tests.

● Cypress will open the Cypress Test Runner.

Step #4: Run the Sample Tests

To see how fast and versatile Cypress is, try running the sample tests.
Open MyFirstCypressProject in your favorite code editor. I recommend
Visual Studio Code. It is available for both Windows and Mac and works
with a number of different languages, including Node.

In the code editor, open the cypress folder, then the integration folder,
then the 1-getting-started folder. You should see a file called todo.spec.js
with some simple test examples. You can also look in the 2-advanced-
examples folder, which has many more example tests.

Go back to the Cypress Test Runner and click on the “Run 20 integration
specs” link. You’ll see a new test window open, with a browser on the right
and the test specs on the left, and you’ll see all the example tests fly by. You
are now ready to begin writing your own tests.

The most important thing to remember about automated UI testing is that
it should be done sparingly! Whatever you can test with unit and services
tests should be tested that way instead. UI testing is best for validating that
elements are on a web page and for running through simple user workflows.

Chapter 85: Understanding the DOM
To find and use web elements by CSS selector or XPath for UI

automation, it is very helpful to understand the DOM. The DOM (Document
Object Model) is simply the interface that is used to interact with HTML and
XML documents. When a JavaScript program manipulates elements on a
page, it finds them through the DOM.

If you already understand HTML, it will be very easy to understand how
the DOM is organized. The DOM is what is created when the HTML code
has been parsed by the browser.

If you have little knowledge of HTML, here’s an example of how web
elements are organized on a page:

<html>
<head>

<title>My Web Page</title>
</head>
<h1>My Web Page</h1>
<p>This is a paragraph</p>
<table border=“2">

<tr>
<td>Row 1, Column 1</td>
<td>Row 1, Column 2</td>

</tr>
<tr>

<td>Row 2, Column 1</td>
<td>Row 2, Column 2</td>

</tr>
</table>
</html>

If you’d like to see what this web page would look like, you can simply
copy and paste this HTML code into a Notepad file and save it with the .html

extension. Then find the file in the folder where you saved it and double-click
on it. It should open as a web page.

Now let’s take a look at the various elements on the page. Note that each
element has a beginning and ending tag. For example, the line that says “This
is a paragraph” has a <p> tag to indicate the beginning of the paragraph and a
</p> tag to indicate the end of the paragraph. Similarly, the title of the page
has a beginning tag, <title>, and an ending tag, </title>.

Notice that elements can be nested within each other. Look at the <table>
tag, and then find the </table> tag several lines below it. In between the tags,
you will see row tags (<tr>) and table data tags (<td>). Everything in between
the <table> and </table> tags is part of the table.

Now look at the first <tr> tag and the first </tr> tag. Notice that there are
two pairs of <td></td> tags in between. Everything between the first <tr> tag
and the first </tr> tag is a row of the table. The <td></td> pairs in the row are
elements of data in the row.

Now imagine that this data is organized into tree form:

If you were going to traverse the DOM to get at the data in Row 1,
Column 1, you’d start by finding the <table> element, then the first <row>
element, and then the first <data> element. In the next chapter, this is how we
will use CSS selectors to find elements.

Chapter 86: Locating Web Elements
When writing automated UI tests, you’ll need to be able to locate

elements. In Cypress, you can find an element by ID, text, class, name, data-
cy, or CSS selector.

To decide which locator strategy to use, you’ll need to know how to
inspect an element. We’ll go through examples of some of these locators, but
before we do, let’s create a new test file.

In the integration folder of your Cypress project that you created in
Chapter 84, create a new folder called contact-list-app. Inside that folder,
create a file called contactList.spec.js. Add the following code to that file:

describe('Element Locator Tests', () => {
it('Can locate an element by id', () => {

cy.visit('https://thinking-tester-contact-list.herokuapp.com')
})
})

Now we’re ready to practice locating items.

Find by ID

Go to the Contact List app in a web browser, right-click in the Email field
on the Login screen, and choose Inspect. You’ll see the Developer Tools
open, and the HTML code for the element will be highlighted: <input
id="email" placeholder="Email">. In our test file, we’ll locate the element
using the id and add some text to the element so that we are sure we have
located it correctly.

Add this line of code just under the cy.visit line:

cy.get('#email').type('I located the element!')

Save your code, and go to the Cypress test window. If the window isn’t

open, navigate to your project in the command line and type npx cypress
open.

You should see in the left section of the window that there is now a
contact-list-app folder with your contactList.spec.js file in it. Click on that
file to run that one test. You should see the browser test window open and
your test should run. If you located the element correctly, you should see “I
located the element!” in the email field:

Find by Text

In the Contact List app in your browser, right-click on the Submit button
to inspect the element. You will see this element highlighted: <button

id="submit">Submit</button>. The button element has Submit for its text.
We’ll use this text to interact with the element.

Add a new test to your test file, just below the previous test:

it('Can locate an element by text', () => {
cy.visit('https://thinking-tester-contact-list.herokuapp.com')
cy.contains('Submit').click()
})

When you save your new test, the test runner will automatically kick off
the tests in the contactList.spec.js file. You should see both of your tests run
and pass. Note that you’ll see an error message in the browser for your
second test. This is because you clicked the Submit button without adding an
email or password. We’ll log in as part of our next test.

Find by Class

Add a new test to your spec file that begins by logging in to the
application:

it('Can locate an element by class', () => {
cy.visit('https://thinking-tester-contact-list.herokuapp.com')
cy.get('#email').type('testuser@fake.com')
cy.get('#password').type('mysecurepassword')
cy.contains('Submit').click()
})

Log in to the browser with the credentials in the preceding code, or with
your own credentials; then right-click on the Logout button and choose
Inspect. You should see this element highlighted in DevTools:

Button id="logout" class="logout"
onclick="location.href='logout'">Logout</button>

We’ll use the class this time to access the element. Add this line of code
just below the step where you clicked on the Submit button:

cy.get('.logout').click()

Save your test, and watch it run and pass in the test runner.

Find by CSS Selector

Add another new test to your spec file that begins by logging in to the
application:

it('Can locate an element by css', () => {
cy.visit('https://thinking-tester-contact-list.herokuapp.com')
cy.get('#email').type('testuser@fake.com')
cy.get('#password').type('mysecurepassword')
cy.contains('Submit').click()
})

Save and run this test, and then take a look at the test runner window.
We’re going to use the Cypress Selector Playground to get the CSS for the
first name in the contact list.

Click on the selector icon in the browser window:

This will open the selector playground. Now click on the element you
want to select. In this case, we want to click on the Test Contact name. You’ll
see a CSS selector appear in the window:

Click on the copy icon to copy the entire cy.get command:

Now paste what you copied into your new test, just under the step where
you click the Submit button. Then append .click() onto the end of that
command so that your test looks like this:

it('Can locate an element by css', () => {
cy.visit('https://thinking-tester-contact-list.herokuapp.com')
cy.get('#email').type('testuser@fake.com')
cy.get('#password').type('mysecurepassword')
cy.contains('Submit').click()
cy.get(‘.contactTableBodyRow > :nth-child(2)’).click()
})

Save the test, and you should see it run and click through to the Contact
Details for that contact.

You now have four tests using four different types of locators! We didn’t
add tests for name and data-cy selectors, simply because there aren’t any
selectors of those types in the Contact List app. But in case you encounter
them in other applications, here is the syntax to use to select them:

● Name: cy.get('[name=submission]')
● data-cy: This is a special selector that you or your developer can add

to an element to make it really easy to locate. It would look like this
in your HTML: data-cy="submit", where "submit" is replaced by
whatever ID you’d like to give the element. To access it you would
use cy.get('[data-cy=submit]'.

Chapter 87: Automating UI CRUD Testing
There are a number of different patterns we can use to automate CRUD

testing. At a minimum, we want to test one operation of each: Create, Read,
Update, and Delete. For the purposes of this discussion, let’s use the simple
form mentioned in Chapter 6:

This is the pattern I like to use when testing CRUD:

Scenario: Adding a user
Given I am adding a new user
When I add a first name and save
Then I navigate to the Users page
And I verify that the first and last names are present

Scenario: Updating a user
Given I am updating a user
When I change the first name of the user and save

Then I navigate to the Users page
And I verify that the first name has been updated

Scenario: Deleting a user
Given I am deleting a user
When I delete the user and save
Then I navigate to the Users page
And I verify that the name is not present

These three tests have tested Create, Update, and Delete. The first two
tests are also testing Read because we are retrieving the user for our
assertions. Therefore, with these three tests I’m testing the basic functionality
of CRUD.

It would also be a good idea to test some negative scenarios with our
CRUD testing, such as creating a user with an invalid first name and updating
a user with an invalid first name. These tests could look like this:

Scenario: Creating a user with an invalid first name
Given I am adding a new user
When I enter an invalid first name and save
Then I verify that I receive the appropriate error message on the page
And I navigate to the Users page
And I verify that the user has not been added

Scenario: Updating a user with an invalid first name
Given I am updating an existing user
When I update the first name with an invalid value and save
Then I verify that I receive the appropriate error message on the page
And I navigate to the Users page
And I verify that the existing first name has not been updated

These five scenarios—the three to test the happy path and the two
negative tests—would be a great regression suite for our form. This is a very
simple form, with just one field, which is not exactly a real-world scenario.
But it is a good way to start thinking about automated UI test patterns.

Chapter 88: Automated Form Testing
Now that we have looked at how we can automate CRUD testing, let’s

take a look at how we would do UI automation on a form.

We would want to ensure the following when we set up a regression test:

● Every field can be populated with data and saved.
● All the required fields are still required and we get an appropriate

error message when we leave a required field blank.
● Validation rules are respected in each field and we get an appropriate

error message when a value has failed validation.
● Both the Submit and Cancel buttons work correctly.

Since we know that automated UI tests can be slow and flaky, we’ll want
to limit the number of times we start up a browser for testing. But we’d also
like our tests to only assert on one thing at a time. Here are my suggestions
for a suite of tests that could be run on this form.

Scenario: Happy path
Given I am adding a new user
When I fill out all the fields and click the Save button
And I navigate to the Contacts page
Then I verify that all the fields are displayed on the page

Scenario: Required fields
Given I am adding a new user
When I leave all fields empty
And I click the Save button
Then I verify that an error message is present for each required field

Scenario: Validation rules
Given I am adding a new user
When I give each field an invalid value
And I click the Save button
Then I verify that an error message is present for each invalid field

Scenario: Cancel button
Given I am adding a new user
When I give each field a value
And I click the Cancel button
Then I verify that all fields are now empty

We can cover a lot of territory with just four automated tests! Our happy
path scenario tests that values in all the fields will save correctly, and it also
tests the Save button. If one of the values does not save, we will know we
have an error. If all the values do not save, we will know there is a problem
either with the Save button or with the underlying data store.

Our required fields test checks to make sure every field that is required
displays an appropriate error message if it is not filled out. If even one
required field does not display the message, we will know there is a problem.

Our validation rules test violates one rule for each text field. It would be a
good idea to mix and match the different types of rule violations. For
example:

● First Name: Send a value with numbers and nonletter characters, such
as $23.00.

● Last Name: Send a value with too many characters.
● Date of Birth: Send a value that is missing a year, such as 12-13.
● Email: Send a value that is not a valid email address, such as

foo@bar.
● Phone: Send an invalid phone number, such as 1234.
● Street Address 1, Street Address 2, City, State or Province, Postal

Code, Country: Send a value with too many characters.

While this does not test every single way in which the rules could be
violated in every text field, it covers a wide variety of possibilities and
verifies that for each error, you receive an appropriate error message. You
could always add more tests here if you felt that more coverage was needed.

Finally, we verify that the Cancel button works correctly.

With just these four automated tests, we’re able to make sure no
functionality is broken. Running these regression tests will free you up to do
more exploratory testing in your application, and test new and more
interesting features.

Chapter 89: Automated Visual Testing
Visual tests are more than just UI tests; they verify that what you are

expecting to see in a browser window is actually rendered correctly.
Traditional UI tests might verify that a page element exists or that it can be
clicked on, but they don’t validate what the element looks like. For example,
without visual testing, you might have a button with text that spills over the
edge, and your UI tests won’t ever alert you. Fortunately, there are a variety
of ways to do visual validation. My favorite way is through Applitools, which
has a limited free version.

I’ve created an example project that will run some visual tests on the
Contact List app using Cypress and Applitools. You can download or clone
the project here: https://github.com/kristinjackvony/visualTestExample.

To run the tests, you’ll need to sign up for a free Applitools account. This
is easy to do, but you will need to use a work email to sign up since
Applitools won’t accept personal accounts such as Gmail accounts. Once you
have signed up and logged in, you’ll need to find your API key. You can do
this by clicking on the user icon in the upper-right of the screen and choosing
My API Key.

Next, go to the command line and navigate to the visualTestExample
folder. Run npm i to install the modules you’ll need to run the tests. Now
type

APPLITOOLS_API_KEY="<your api key>" npx cypress run, replacing
<your api key> with your personal API key.

You should see two tests run and pass in the command line. If you want
to watch them run in the browser, you can replace “run” with “open” in the
preceding command.

Open the project in your favorite code editor and take a look at the
visualTests.spec file. You’ll see there are two tests: one that validates that the
Login page renders correctly and one that checks that an error message

https://github.com/kristinjackvony/visualTestExample

appears correctly. Applitools Eyes uses these commands to run visual checks:

● cy.eyesOpen() tells Eyes to begin running.
● cy.eyesCheckWindow() takes a screenshot of the current window

and compares it to a saved screenshot.
● cy.eyesClose() tells Eyes to stop running.

Go to the Applitools page and you should see your test results:

You should see that the two tests ran twice: once on Firefox and once on
Chrome. I configured these browsers in the applitools.config.js file of my
project. If you click through to one of the tests, you can see the screenshot
that was taken.

Your tests will appear as Unresolved or Failed the first time you run
them. This is because Applitools doesn't have any saved images on file.
 Once you have saved the images by clicking on the thumbs-up icon, and
clicked the save icon in the upper right of the screen, you should be able to
run the tests and see them pass.

Visual testing is a great way to validate that elements appear correctly on
a page. Because the visual tests slow your test automation down a bit, you’ll
want to use the tests sparingly, only validating the most important screens.

Chapter 90: Automated Security Testing
Often when people think of security testing, they think of complicated

software scans, request intercepts, and IP address spoofing. But some of the
most crucial application security testing can be done simply through API
requests. In this chapter, we’ll take a look at examples of authentication
testing and authorization testing.

I created a suite of Postman tests to show examples of security testing,
which you can download here:
https://github.com/kristinjackvony/securityTestExample. You can import the
JSON file into Postman using Postman’s Import button. To run the tests, use
the Environment file you created in Chapter 82.

Authentication Testing

The first kind of security test to run is a simple login test. You’ll want to
make sure no one can log in with incorrect credentials or with an empty
username or password field. You’ll also want to check that the password
respects casing; if a valid password is “Foobarfoo”, the API should not accept
“foobarfoo” or “fooBarfoo”.

The login tests in my Postman collection begin by creating a user, then
logging out as that user (because the user creation call automatically logs the
user in). Then I go through a series of bad logins and verify that I get a 401
response rather than a 200 response. This indicates that I haven’t been able to
log in. Finally, I clean up the test suite by deleting the user account. I test all
the possible combinations of having an empty username, an incorrect
username, and a correct username with an empty password, an incorrect
password, a password with the wrong casing, and a correct password.

The next way I test authentication is by making sure a user can’t make an
API request without a valid token. For simplicity, I’m going to focus on the
contact operations in my Postman suite, but be aware that it’s possible to
create tests like these for the user operations as well.

https://github.com/kristinjackvony/securityTestExample

For my token tests, I begin by creating a user and one contact for use in
the tests. Then for each type of request—Add Contact, Get Contact List, Get
Contact, Update Contact, Partial Update Contact, and Delete Contact—I have
three tests: I try the request with no token, with an invalid token (“FOO”),
and with a token that’s not found in the system. With each test I validate that
I get a 401 response. Finally, I clean up my data by deleting the contact and
the user I created in the setup.

Authorization Testing

The final type of test I do makes sure a user can’t do something they are
unauthorized to do. In the case of the Contact List app, this means one user
should not be able to view, change, or delete another user’s contacts.

In my Authorization Tests folder, I create two users and add one contact
to each user. I do a GET Contact List request and make sure only User 1’s
contact is in User 1’s list and only User 2’s contact is in User 2’s list. Then I
make sure User 1 can’t make any requests for User 2’s contact and User 2
can’t make any requests for User 1’s contact. With all of these requests, I’m
expecting a 404 in response. A 403 would also be an appropriate response
code, but I’m using a 404 so as not to give a malicious user any information
about the fact that the contact exists. Finally, I clean up by deleting both
contacts and both users.

These simple security tests are not particularly glamorous and will never
make headlines. But it’s tests like these that can catch a security problem long
before it becomes an issue. Once, I was alerted that some tests I had set up to
run nightly in a QA environment were failing. Upon investigation, I
discovered that my test user was now able to access information belonging to
another user. If I hadn’t had authorization tests in place, that security hole
might have been missed and might have made it to production.

Chapter 91: Automating Load Tests
Load testing is a key part of checking the health of your application. Just

because you get a timely response when you make an HTTP request in your
test environment doesn’t mean the application will respond appropriately
when 100,000 users are making the same request in your production
environment.

With load testing, you can simulate different scenarios as you make
HTTP calls to determine how your application will behave under real-world
conditions.

A wide variety of load testing tools are available, but many of them
require a subscription. Both paid and free tools can be confusing to use or
difficult to set up. For load testing that is free, easy to install, and fairly easy
to set up, K6 is a good option.

To help demonstrate how K6 works, I created an automation script that
you can download here: https://github.com/kristinjackvony/loadTestExample.
This script is a simple load test for the Contact List app. To run the load test
script, you’ll need to install K6, which is easy to do with the instructions
found here: https://k6.io/docs/getting-started/installation.

Once you have installed K6 and downloaded the test script, open a
command window and navigate to the location where you downloaded the
script. Then type k6 run loadTestScript.js. The test should run and display a
number of metrics as the result.

Let’s take a look at what this script is doing.

import http from "k6/http";
import { check } from k6";

In the first two lines of the script, I’m importing the modules needed for
the script: the http module that allows me to make HTTP requests, and the
check module that allows me to do assertions.

https://github.com/kristinjackvony/loadTestExample
https://k6.io/docs/getting-started/installation

export let options = {
vus: 1,
duration: "5s"
};

In this section, I’m setting the options for running my load tests. The
word “vus” stands for “virtual users,” and “duration” describes how long in
seconds the test should run.

export function setup() {
var url = "https://thinking-tester-contact-list.herokuapp.com/users/login"
var payload = JSON.stringify({ "email": "test@fake.com", "password":

"foobarfoo" })
var params = { headers: { "Content-Type": "application/json" } }
let response = http.post(url, payload, params);
let JSONResponse = JSON.parse(response.body)
let token = JSONResponse.token
return token
}

In this section, I’m setting up the tests by doing a login request and saving
the authentication token, which I’ll then be able to use in all my other
requests. The return token command is how I pass the variable from the setup
function to the default function.

export default function(data) {
var token = data
var url = "https://thinking-tester-contact-list.herokuapp.com/contacts"
var bearer = "Bearer " + token
var params = { headers: { "Authorization": bearer, "Content-Type":

"application/json"} }

In these lines, I’m calling the default function, which is where the tests
are run. I’m passing in a data variable. This data variable is actually the token
that I returned from the previous function. Then I’m assigning the data
variable as “token” because that will be easier to remember when I’m
creating my requests. Next, I’m creating the url variable, the bearer variable
for authentication, then the params (parameters) that will need to be passed in

with my requests. Now I’m ready to start making my requests.

let getResponse = http.get(url, params)
check(getResponse, {

"get contact list response status is 200": (r) => r.status == 200,
"response transaction time is OK": (r) => r.timings.duration < 1000
});

This is the request to get the contact list. I do the get request and pass in
the url and the params. Then I check to see that I got a 200 response and that
the response transaction time was less than one second.

I’ll leave it up to the reader to look at and interpret the remaining five
requests. Now let’s take a look at the load test output:

✓ get contact list response status is 200
✓ response transaction time is OK
✓ add contact response status is 201
✓ get contact response status is 200
✓ update contact response status is 200
✓ partial update contact response status is 200
✓ delete contact response status is 200

You can see that all the requests were successful and that the response
transaction time was OK for each transaction.

http_req_duration..............: avg=161.96ms min=83.91ms med=162.98ms
max=448.21ms

This section shows metrics about the duration of each request. The
average request duration was 161.96 milliseconds, the minimum request time
was 83.91 milliseconds, the median request time was 162.98 milliseconds,
and the maximum request time was 448.21 milliseconds.

iterations…………….. : 6 0.948523/s
vus…………………… : 1 min=1 max=1
vus_max…………….. : 1 min=1 max=1

This section shows how many complete iterations were run during the test
and what the frequency was; how many virtual users there were; and the
maximum number of virtual users.

Obviously, this wasn’t much of a load test, because we only used one user
and it only ran for five seconds! Let’s make a change to the script and see
how our results change.

First we’ll leave the number of virtual users at 1, but we’ll set the test to
run for a full minute. Change line 6 of the script to duration: "1m", and run
the test again with the k6 run loadTestScript.js command.

http_req_duration..............: avg=181.14ms min=71.1ms med=156.71ms
max=748.72ms

The results look very similar to our first test, which isn’t surprising, since
we are still using just one virtual user.

Let’s add some more virtual users now. Change line 5 of the script to vus:
10 and run the script again.

http_req_duration..............: avg=983.7ms min=134.94ms med=981.45ms
max=2.28s

Now we can see that the response times have slowed a bit, which makes
sense since we are now under more load. Also, since we were validating that
response times took less than one second, we can see that about half of our
transaction time tests failed:

✓ get contact list response status is 200
✗ response transaction time is OK
↳ 51% — ✓ 321 / ✗ 303
✓ add contact response status is 201
✓ get contact response status is 200
✓ update contact response status is 200
✓ partial update contact response status is 200
✓ delete contact response status is 200

This is by no means a complete load test; it’s just an introduction to what
can be done with the K6 tool. It’s possible to set up the test to have realistic
ramp-up and ramp-down times, where there’s less load at the beginning and
end of the test and more load in the middle. You can also create your own
custom metrics to make it easier to analyze the results of each request type.
And you can integrate your K6 tests with your continuous integration tool so
that every time there’s a change to your product’s code, the K6 tests will run
and let you know whether your response times have slowed.

Chapter 92: Automated Accessibility Tests
Accessibility in the context of a software application means that as many

people as possible can use the application easily. When making an
application accessible, we should consider users with limited vision and/or
hearing, limited cognitive ability, and limited dexterity. Fortunately, there are
a wide variety of products that can help us automate accessibility testing by
checking an application according to accepted accessibility standards such as
the Web Content Accessibility Guidelines (WCAG). I created a couple of
example tests that use cypress-axe, an npm package that runs axe
(https://www.deque.com/axe) accessibility testing in Cypress. You can find
my tests here: https://github.com/kristinjackvony/accessibilityTestExample.

Once you have downloaded the example folder, you can cd to the folder
in the command line and run npm i to install all the packages you’ll need to
run the tests. To open Cypress, run npx cypress open. Then click the “Run 2
integration specs” link in the Cypress window to run the tests.

You’ll see the tests run and have test failures. The descriptions of the
failures in the Cypress Test Runner are not particularly helpful, but they can
be a jumping-off point for further investigation. For example, if you hover
over the “image-alt on 1 Node” error, you’ll see the Thinking Tester logo
highlighted. This is because I haven’t put in an alt text for the logo. The
“color-contrast on 3 Nodes” error is telling us that the light-blue text I’ve
used on the screen is too light to provide a contrast with the white
background.

Let’s take a quick look at how to set up the cypress-axe tests. They
require two npm packages: axe-core and cypress-axe. In the
support/commands/index.js file, I’ve imported cypress-axe with the import
'cypress-axe' command.

In the beforeEach section of each test file, I’ve navigated to the page I
want to test and then used the cy.injectAxe() command. This loads axe-core
into the page under test. Then, in the test itself, I used the cy.checkA11y()

https://www.deque.com/axe
https://github.com/kristinjackvony/accessibilityTestExample

command. This runs the accessibility checks on the page under test.

Once you have located all the accessibility errors on the page and fixed
them so that your test is passing, you can integrate your cypress-axe tests into
your build system. This way, if any new accessibility issues are introduced,
you’ll be notified of them immediately by the failing test.

Chapter 93: Automation Wheel Strategy:
Moving from What to How to When to Where

In Chapter 79, I wrote about how I would decide what to test in a simple
application in terms of testing every segment of the automation test wheel. I
find it’s very helpful to answer the question “What do I want to test?” before
I think about how I’m going to test it.

In this chapter, we’ll look at how to take the “what” of automated testing
and continue on with how I want to test, when I want to test it, and where
(what environment) I’m going to test.

How I’m Going to Test

I’m going to run my unit and component tests directly in the code. Unit
tests are designed to specifically run in the code because they test only the
code and not any external interactions. My component tests are very simple
—just one call to the database and one call for authentication—so I will run
those directly from my code as well.

For my services tests, I’m going to use Postman. I’ll run the Postman tests
using Newman. I’ll also include some security tests in Postman, validating
that any requests without appropriate authentication return an appropriate
error, and I will also do some performance checks here, verifying that the
response times to my API requests are within acceptable levels.

For my UI tests, I’m going to use Cypress. I’ll be adding a few security
tests here, making sure pages do not load when the user doesn’t have access
to them. I’ll also be integrating my visual tests into my Cypress tests using
Applitools, and I’ll be using both Cypress and Applitools to run my
accessibility tests.

Finally, I will set up a performance testing tool such as Pingdom that will
regularly monitor my page load times and alert me when load times have
slowed, as well as include some assertions in my Postman tests that will let

me know when API response times are slower than expected.

When I’m Going to Test

Now that I’ve figured out how I’m going to test, it’s time to think about
when I’m going to run my tests. I’m going to organize my tests into four
events:

● With every build: Every time new code is pushed, I’m going to run
my unit tests, component tests, and API tests. These tests will give
me feedback very quickly. I’m not going to run any UI tests at this
time, because I don’t want to slow down my feedback time.

● With every deploy: Every time code is deployed to an environment,
I’m going to run all my API tests and a small subset of my UI tests.
My UI tests will include at least one visual check and one security
check. This will ensure that the API is running exactly as it should
and that there are no glaring errors in the UI.

● Daily: I’ll want to run all my API tests and all my UI tests early in
the morning, before I start my workday. When I begin my workday
I’ll have a clear indication of the health of my application.

● Ongoing: I’ll have Pingdom monitoring my page load times
throughout the day to alert me of any performance problems. I’ll also
set up a job to run a small set of API tests periodically throughout
the day to alert me of any slow API responses.

Where I’m Going to Test

Now that I’ve decided how and when to test, I need to think about where
to test. Let’s imagine my application has four different environments: Dev,
QA, Stage, and Production. My Dev environment is solely for developers.
My QA environment is where code will be deployed for manual and
exploratory testing. My Stage environment is where a release candidate will
be prepared for Production. Let’s look at what I will test in each environment.

Dev: My unit and component tests will run here whenever a build is run,

and my Postman and Cypress tests will run here whenever a deploy is run.

QA: I’ll run my full daily Postman and Cypress suites here, and I’ll run
my full Postman suite and a smaller Cypress suite with each deploy.

Stage: I’ll run the full sets of Postman and Cypress tests when I deploy.
This is because the Stage environment is the last stop before Production, and
I’ll want to make sure we haven’t missed any bugs. I’ll also run my Pingdom
monitoring here, to catch any possible performance issues before we go to
Production.

Production: I’ll run a small set of daily Postman and Cypress tests here.
I’ll also point my Pingdom tests to this environment, and I’ll have those tests
and a set of Postman tests running periodically throughout the day.

Putting It All Together

When viewed in prose form, this all looks very complicated. But we have
actually managed to simplify things down to four major test modalities tested
at four different times. Are we covering all the areas of the automation test
wheel? Let’s take a look:

We are covering each area with one or more testing modalities. Now let’s
visualize our complete test plan:

Viewed in a grid like this, our plan looks quite simple! By considering
each question in turn:

● What do we want to test?
● How are we going to test it?
● When will we run our tests?
● Where will we run them?

we’ve been able to come up with a comprehensive plan that covers all
areas of the testing wheel and tests our application thoroughly and efficiently.

Chapter 94: How Flaky Tests Destroy Trust
Anyone who has ever written an automated test has experienced test

flakiness. There are many reasons for flaky tests, including:

● Environmental issues, such as the application being unavailable
● Test data issues, in which an expected value has been changed
● UI issues, such as a pop-up window taking too long to appear

All of these reasons are valid explanations for flaky tests. However, they
are not excuses! It should be your mission to have all your automated tests
pass every single day, except, of course, when an actual bug is present.

This is important, not just because you want your tests to be reliable, but
because when you have flaky tests, trust in you and in your team is eroded.
Here’s why.

Flaky Tests Send a Message That You Don’t Care

Let’s say you are the sole automation engineer on a team and you have a
bunch of flaky tests. It’s your job to write test automation that actually checks
that your product is running correctly, and because your tests are flaky, your
automation doesn’t do that. Your team may assume this is because you don’t
care whether your job is done properly.

Flaky Tests Make Your Team Question Your Competence

An even worse situation than the preceding example is one in which your
team simply assumes you haven’t fixed the flaky tests because you don’t
know how. This further erodes their trust in you, which may spill over into
other testing. If you find a bug when you are doing exploratory testing, your
colleagues might not believe you have a bug, because they think you are
technically incompetent.

Flaky Tests Waste Everyone’s Time

If you are part of a large company where each team contributes one part
of an application, other teams will rely on your automation to determine
whether the code they committed works with your team’s code. If your tests
are failing for no reason, people on other teams will need to stop what they
are doing and troubleshoot your tests. They won’t be pleased if they discover
there’s nothing wrong with the app and your tests are just being flaky.

Flaky Tests Breed Distrust Among Teams

If your team has a bunch of flaky tests that fail for no good reason, and
you aren’t actively taking steps to fix them, other teams will ignore your tests
and may also doubt whether your team can be relied upon. In a situation like
this, if Team B commits code and sees that Team A has failing tests, Team B
may do nothing about it, and may not even ask Team A about the failures. If
there are tests that fail because there are real issues, your teams might not
discover them until days later.

Flaky Tests Send a Bad Message to Your Company’s Leadership

There’s nothing worse for a test team than to have some automation tests
fail on a daily basis. This sends a message to management that either test
automation is unreliable or you are unreliable!

So, what can we do about flaky tests? I recommend the following:

● Set up retries for your UI automated tests: UI tests are, without a
doubt, the flakiest of tests. Tools like Cypress allow you to set a
number of retries for each test; this way, if something unexpected
happens, like an element taking much longer than usual to load, the
test will retry. This one step alone can make your test runs more
likely to pass.

● Make a commitment to having 100% of your tests pass every day:
The only time a test should fail is if a legitimate bug is present. Some
might argue that this is an impossible dream, but it is one to strive
for. There is no such thing as perfect software, or perfect tests, but
we can work as hard as we can to get as close as we can to that
perfection.

● Set up alerts that notify you of test failures: Having tests that
detect problems in your software doesn’t help if no one is alerted
when test failures happen. Set up an alert system that will notify you
via email or chat when a test is failing. Also, make sure you test your
alert. Don’t assume that because the alert is in place it is
automatically working. Make a change that will cause a test to fail,
and check to see whether you got the notification.

● Investigate every test failure and find out why the test failed: If
the failure wasn’t due to a legitimate bug, what caused it? Will the
test pass if you run it again, or does it fail every time? Will the test
pass if you run it manually? Is your test data correct? Are there
problems with the test environment?

● Remove the flaky tests: Some might argue that this is a bad idea
because you are losing test coverage and the test passes sometimes.
But this doesn’t matter, because when people see that the test is
flaky, they won’t trust the passing test anyway. It’s better to remove
the flaky tests altogether so that you demonstrate that you have a
100% passing rate, and then others will begin to trust your tests. An
alternative would be to set the flaky tests to be skipped, but this
might also erode trust. People might see all the skipped tests and
think they are a sign that you don’t write good test automation.
Furthermore, you might forget to fix the skipped tests.

● Fix all the flaky tests you can: How you fix the flaky tests will
depend on why they are flaky. If you have tests that are flaky
because someone keeps changing your test data, change your tests so
that the test data is set up in the test itself. If you have tests that are
flaky because sometimes your test assets aren’t deleted at the end of
the test, do a data cleanup both before and after the test.

● Ask for help: If your tests are flaky because the environment where
they are running is unreliable, talk to the team that’s responsible for
maintaining the environment. See whether there’s something they
can do to solve the problem. If they are unresponsive, find out
whether other teams are experiencing the issue, and lobby together to
make a change.

● Test your functionality in a different way: If your flaky test is
failing because some element on the page isn’t loading on time,
don’t try to solve the issue by making your “wait” commands longer.
Try to come up with a different way to test the feature. For example,
you might be able to switch a UI test to an API test. Or you might be
able to verify that a record was added in the database instead of
going through the UI. Or you might be able to verify the data on a
different page, instead of the one with the slow element. Some might
say that not testing the UI on that problematic page is dangerous. But
having a flaky test on this page is even more dangerous because
people will just ignore the test. It would be better to stick with an
automated test that works and do an occasional manual test of that
page.

Quality Automation Is Our Responsibility

We’ve all been in situations where we have been dismissed as irrelevant
or incompetent because of the reputation of a few bad testers. Let’s create a
culture of excellence for testers everywhere by making sure every test we run
is reliable and provides value!

Part XI: Testing Strategy

Chapter 95: The Power of Not Knowing
There is a concept called “intentional ignorance” in which a tester

intentionally doesn’t read some of the documentation or code for a new
feature. This can prevent the tester from having biases when doing
exploratory testing.

In healthy Agile software teams, the testers are invited to the feature
grooming sessions, acceptance criteria are written for each story, and the
developers do a feature handoff with the testers when each story is ready for
testing. In these situations, there’s not much chance that a tester will be
ignorant about a feature.

But when I worked on teams that were less healthy, I was often given a
story to test with no feature handoff and no acceptance criteria. Sometimes
the story wouldn’t even have a description, and would have a cryptic title like
“Endpoint for search.” Before asking for clarification on what was expected
in the story, I would use the opportunity to do some exploratory testing while
I had no preconceived notions of what the feature could or couldn’t do. And
while testing in this fashion, I would often find a bug and show it to the
developer, and they would say, “Oh, it never even occurred to me to test the
feature in that way.”

Of course, I don’t want to go back to the days of cryptic story titles and
no descriptions! But testing without knowing what the feature does can have
some benefits:

● You approach the application the same way a user would. When your
users see your new feature for the first time, they don’t have the
benefit of instructions. By trying out the feature without knowing
how it works, you could discover that an action button is hard to find
or that it’s difficult to know what to do first on a multipart form.

● You might enter data that no one was expecting. For example, a form
field could require that dates be entered with the month and day

only, but you enter the month, day, and year, which breaks the form.

● Without any instructions from the developer, you might think of
other features to test the new feature with, in addition to the
combinations the developer thought of. Those feature combinations
might yield new bugs.

So, how can we add these advantages back into our testing and still read
the acceptance criteria and have feature handoffs? Here are a few ways:

● Pair-test with someone on another team. At my company we have
many teams, and each team often has little idea what the other teams
are building. We will frequently pair two testers, each from a
different team, and they swap applications and start testing. This is a
great way to find bugs and user experience issues!

● When you start testing, spend some time just playing around with the
new feature before writing a test plan. By exploring in this way, you
might come up with some unusual testing ideas.

● After you’ve tested the acceptance criteria, take some time to think
about what features might be used with the new feature. What
happens when you test them together? For example, if you were
testing a new page of data, you could test it with the global sort
feature that already exists in your application.

● Before you finish your testing, ask yourself, “What else could I test?”

Sometimes not knowing all the details about a feature is detrimental.
Often in my testing career, I have tested a feature and missed something that
the feature could do because no one told me about it. That’s why I’m glad my
company has acceptance criteria and conducts feature handoffs. Still, not
knowing the details can reveal interesting bugs.

Chapter 96: The Power of Pretesting
Having been in the software testing business for a few years now, I’ve

become accustomed to various types of testing: acceptance testing, regression
testing, exploratory testing, and smoke testing, among others. But recently I
was introduced to a type of testing I hadn’t thought of before: pretesting.

I was on a team that was working to switch some automatically delivered
emails from an old system to a new system. When we first started testing, we
were mainly focused on whether the emails in the new system were being
delivered. It didn’t occur to us to look at the email content until later, at
which point we realized we had never really looked at the old emails.
Moreover, because the emails contained a lot of detail, we found that we kept
missing things: some extra text here, a missing date there. We discovered that
the best way to prevent these mistakes was to start testing before the new
feature was delivered, and thus, pretesting was born.

Once we adopted the pretesting process, whenever an email was about to
be converted to the new system we first tested it in the old system. We took
screenshots, and we documented any needed configuration or unusual
behavior. Then when the email was ready for the new system, it was easy to
go back and compare it with what we had before. This was a valuable tool in
our testing arsenal, and we used it in a number of other areas of our
application.

When Should You Use Pretesting?

It’s helpful to pretest in the following situations:

● When you are testing a feature you have never tested before
● When no one in your company seems to know how a feature works
● When you suspect that a feature is currently buggy
● When you are revamping an existing feature
● When you are testing a feature that has a lot of detail

Why Should You Pretest?

Pretesting will save you the headache of trying to remember how
something “used to work” or “used to look.” If customers will notice the
change you are about to make, it’s good to note how extensive the change
will be. If there are bugs in the existing feature, it would be helpful to know
this before the development work starts, because the developer could make
those bug fixes while in the code. Pretesting is also helpful for documenting
how the feature works so that you can share those details with others who
might be working on or testing the feature.

How to Pretest

When conducting a pretest, make sure you do the following:

1. Conduct exploratory testing on the old feature. Figure out what the
happy path is.

2. Document how the happy path works and include any necessary
configuration steps.

3. Continue to test, exploring the feature’s boundaries and edge cases.
4. Document any “gotchas” you may find. These are not bugs, but

rather, areas of the feature that might not work as someone would
expect.

5. Log any bugs you find and discuss them with your team to
determine whether they should be fixed with the new feature or left
as is.

6. Take screenshots of any complicated screens, such as emails,
messages, or screens with a lot of text, images, or buttons. Save
these screenshots in an easily accessible place, such as a wiki page
or shared folder.

Then, when the new feature is ready:

1. Run through the same happy path scenario with the new feature and
verify that it behaves the same way as the old feature.

2. Test the feature’s boundaries and edge cases and verify that they
behave the same way as the old feature.

3. Verify that any bugs the team has decided to fix have actually been
fixed.

4. Compare the screenshots of the old feature with the screenshots of
the new feature and verify that they are the same (with the
exceptions of anything the team agreed to change).

5. Do any additional necessary testing, such as testing new
functionality that the old feature didn’t have or verifying that the
new feature integrates with other parts of the application.

The power of pretesting is that it helps you notice details you might
otherwise miss in a new feature and, as a bonus, find existing bugs in the old
feature. Moreover, testing the new feature will be easy because you will have
already created a test plan. Your work will help the developer do a better job,
and your end users will appreciate it!

Chapter 97: Your Future Self Will Thank
You

A couple of years ago I learned a lesson about the importance of keeping
good records. I’ve always kept records of what tests I ran and whether they
passed, but I have learned that there’s something else I should be recording:
how a feature used to behave.

I was testing a file API that allowed users to upload and download files.
The metadata used to access the files was stored in a nonrelational database.
As discussed in Chapter 29, nonrelational databases store their data in
document form rather than in the table form found in SQL databases.

My team had made a change to the metadata for our files. After deploying
the change, we discovered that older files could not be downloaded. It turned
out that the change to the metadata had resulted in older files not being
recognized, because their metadata was different. The bug was fixed, so now
the change was backward compatible with the older files.

I added a new test to our smoke test suite that would request a file with
the old metadata. Now, I thought, if a change was ever made that would
affect that area, the test would fail and the problem would be detected.

Then my team made another change to the metadata. The code was
deployed to the test environment, and shortly afterward, someone discovered
that some files could no longer be downloaded.

I was perplexed! Didn’t we already have a test for this? When I met with
the developer who investigated the bug, I found out there was an even older
version of the metadata that we hadn’t accounted for.

Talking this over with the developers on my team, I learned that a big
difference between SQL databases and nonrelational databases is that when a
schema change is made to a relational database, it goes through and updates
all the records. For example, if you had a table with first names and last

names, and someone wanted to update the table to now contain middle
names, every existing record would be modified to have a null value for the
middle name:

With nonrelational databases, this is different. Because each entry is its
own document and there are no nulls, it’s possible to create situations in
which a name-value pair simply doesn’t exist. To use the preceding example,
in a nonrelational database Prunella wouldn’t have a “MiddleName” name-
value pair:

{
"FirstName":"Prunella",
"LastName":"Prunewhip"
},
{

"FirstName":"Joe",
"MiddleName":"Bob",
"LastName":"Schmoe"
}

If the code relies on retrieving the value for MiddleName, that code
would return an exception because there’s nothing to retrieve.

The lesson I learned from this situation is that when we are using
nonrelational databases, it’s important to keep a record of what data
structures are used over time. This way, whenever a change is made we can
test with data that uses any old structures as well as the new structure.

And this lesson is applicable to situations other than nonrelational

databases! There may be other times when an expected result changes after
the application changes.

Here are some examples:

● A customer listing for an e-commerce site used to display phone
numbers; now it’s been decided that phone numbers won’t be
displayed on the page.

● A patient portal for a doctor’s office used to display Social Security
numbers in plain text; now the digits are masked.

● A job application workflow used to take the applicant to a pop-up
window to add a cover letter; now the cover letter is added directly
on the page and the pop-up window has been eliminated.

In all these situations, it may be useful to remember how the application
used to behave in case you have users who are using an old version, there’s
an unknown dependency on the old behavior that now results in a bug, or a
new product owner asks why a feature is behaving in the new way. When
something like this happens, your future self will be grateful that you took the
time to document how the feature used to behave!

Chapter 98: How to Design a Test Plan
Being a software tester means much more than just running through

acceptance criteria on a story. We need to think critically about every new
feature and come up with as many ways as we can to test it. When many
permutations are possible in a feature, we need to be thorough with testing
but do so in a reasonable amount of time. Automation can help us test many
permutations quickly, but too many people jump to automation without really
thinking about what should be tested.

For example, say I needed to design a test plan for the Super Ball Sorter
feature that we first discussed in Chapter 20. Here is how the feature works.

Super Balls can be sorted among four children—Amy, Bob, Carol, and
Doug:

● The balls come in two sizes: large and small.

● The balls come in six colors: red, orange, yellow, green, blue, and
purple.

● The children can be assigned one or more rules for sorting: for
example, Amy could have a rule that says she only accepts large
balls, or Bob could have a rule that says he only accepts red or
orange balls.

● Distribution of the balls begins with Amy and proceeds through the
other children in alphabetical order, continuing in the same manner
as though one were dealing a deck of cards.

● Each time a new ball is sorted, distribution continues with the next
child in the list.

● The rules used must result in all the balls being sortable; if they do
not, an error will be returned.

● Your friendly developer has created a ball distribution engine that
will create balls of various sizes and colors for you to use in testing.

Here’s a quick example: say Carol has a rule that she only accepts small
balls.

The first ball presented for sorting is a large red ball. Amy is first in the
list, and she doesn’t have any rules, so the large red ball will go to her.

The next ball presented is a small blue ball. Bob is second on the list, and
he doesn’t have any rules, so the small blue ball will go to him.

The third ball is a large purple ball. Carol is next on the list, but she has a
rule that says she only accepts small balls, so the ball will not go to her.
Instead, the ball is presented to Doug, who doesn’t have any rules, so the
large purple ball will go to him.

Here’s what we have after the first pass:

● Amy: large red ball
● Bob: small blue ball
● Carol: no ball
● Doug: large purple ball

Since Doug had the most recent turn, we’d continue the sorting by
offering a ball to Amy.

How should we test this? Before I share my plan, you may want to take a
moment and see what sort of test plan you would design. Then you can
compare your plan with mine.

My test plan design philosophy always begins with testing the simplest
possible option, and then gradually adding more complex scenarios. So, my
test plan would begin as follows.

Part 1: No Children Have Any Rules

If no children have any rules, we should see that the balls are always
evenly distributed among Amy, Bob, Carol, and Doug, in that order. If we

send in 20 balls, for example, we should see that each child winds up with
five.

Next, I would test just one type of rule. There are only two parameters for
the size rule but six parameters for the color rule, so I would start with the
size rule.

Part 2: Size Rules Only

We could have anywhere from one child to four children with a rule.
We’ll start with one child and work up to four children. Also, one child could
have two rules, although that would be a bit silly, since the two size rules
would be accepting large balls only and accepting small balls only, which
would be exactly the same as having no rules. So let’s write up some test
cases:

1. One child has a rule:

● Amy has a rule that she only accepts large balls. At the end of the test
pass, she should only have large balls.

● Bob has a rule that he only accepts small balls. At the end of the test
pass, he should only have small balls.

B. Two children have rules:

● Amy and Bob both have rules that they only accept large balls. At the
end of the test pass, they should only have large balls.

● Carol has a rule that she only accepts large balls, and Doug has a rule
that he only accepts small balls. At the end of the test pass, Carol
should have only large balls, and Doug should have only small balls.

C. Three children have rules:

● Amy, Bob, and Carol have rules that they only accept small balls. At
the end of the test pass, they should only have small balls.

● Amy and Bob have rules that they only accept small balls, and Carol
has a rule that she only accepts large balls. At the end of the test

pass, Amy and Bob should have only small balls, and Carol should
have only large balls.

● Amy has a rule that she accepts both large balls and small balls, and
Bob and Carol have rules that they only accept large balls. At the
end of the test pass, Amy should have both large and small balls, and
Bob and Carol should have only large balls.

D. Four children have rules:

● Amy and Bob have rules that they only accept large balls, and Carol
and Doug have rules that they only accept small balls. At the end of
the test pass, Amy and Bob should have only large balls, and Carol
and Doug should have only small balls.

● All four children have a rule that they only accept large balls. This
rule should return an error.

Now that we have extensively tested the size rule, it’s time to test the
color rule in isolation.

Part 3: Color Rules Only

As with the size rule, anywhere from one to four children could have a
color rule. But this rule type is a bit more complex because each child could
have from one to six color rules. Let’s start simple with one child and one
rule:

1. One child has one rule:

● Bob accepts only red balls.
● Bob accepts only orange balls.
● Bob accepts only yellow balls.
● Bob accepts only green balls.
● Bob accepts only blue balls.
● Bob accepts only purple balls.

This tests that each color rule will work correctly on its own.

B. One child has more than one rule:

● Carol accepts only red and orange balls.
● Carol accepts only red, orange, and yellow balls.
● Carol accepts only red, orange, yellow, and green balls.
● Carol accepts only red, orange, yellow, green, and blue balls.
● Carol accepts only red, orange, yellow, green, blue, and purple balls

(which, again, is sort of silly because it’s like having no rule at all).

C. Two children have color rules:

● Amy and Bob both accept only red balls.
● Amy accepts only red balls and Bob accepts only blue balls.
● Amy accepts only red and green balls and Bob accepts only blue and

yellow balls.
● Carol accepts only red, orange, and yellow balls and Doug accepts

only green balls.

Note that there are many more possibilities here than what we are actually
testing. We are merely trying out a few different scenarios, such as one child
has three rules and one child has one rule.

D. Three children have color rules:

● Amy, Bob, and Carol accept only red balls.
● Amy accepts only red balls, Bob accepts only orange balls, and Carol

accepts only yellow balls.
● Amy accepts only red balls, Bob accepts only red and orange balls,

and Carol accepts only red, orange, and yellow balls.

The preceding scenario exercises a path in which the children share one
rule but not other rules.

E. Four children have color rules:

● Amy, Bob, Carol, and Doug only accept purple balls. This should
return an error.

● Amy only accepts red and yellow balls, Bob only accepts orange

balls, Carol only accepts yellow and blue balls, and Doug only
accepts green balls. This should also return an error because no one
is accepting purple balls.

● Amy only accepts red balls, Bob only accepts red and orange balls,
Carol only accepts yellow balls, and Doug only accepts yellow,
green, blue, and purple balls.

Now that we’ve exercised both rule types separately, it’s time to try
testing them together! Here’s where things get really complicated. Let’s start
with simple scenarios in which each child has either a color rule or a size
rule, but not both, and move on to more complex scenarios from there:

Part 4: Size and Color Rules

1. Children have one size rule or one color rule:

● Doug only accepts large balls, and Bob only accepts red balls.
● Doug only accepts large balls, Bob only accepts red balls, and Carol

only accepts small balls.
● Doug only accepts large balls, Bob only accepts red balls, Carol only

accepts small balls, and Amy only accepts yellow balls.
● Amy and Doug only accept large balls, Bob only accepts small balls,

and Carol only accepts purple balls.
● Amy and Doug only accept large balls, and Bob and Carol only

accept purple balls. This should return an error because there’s no
one to accept any of the small balls except for the purple ones.

B. Children have both a size and a color rule:

● Amy only accepts large red balls.
● Amy only accepts large red balls, and Bob only accepts small blue

balls.
● Amy only accepts large red balls, Bob only accepts small blue balls,

and Carol only accepts large green balls.
● Amy only accepts large red balls, Bob only accepts small blue balls,

Carol only accepts large green balls, and Doug only accepts small
yellow balls. This should return an error because there are many

balls that cannot be accepted by anyone.

C. Children have a size rule and more than one color rule:

● Amy only accepts large red, orange, and yellow balls; Bob only
accepts small red, orange, and yellow balls; Carol only accepts large
green, blue, and purple balls; and Doug only accepts small green,
blue, and purple balls.

● Try the preceding scenario, but remove the large yellow ball from
Amy’s list. This should return an error because there’s no one to
accept the large yellow balls.

D. Children have more than one size rule and more than one color rule:

● Amy only accepts large red balls, large blue balls, and small yellow
balls; Bob only accepts large orange balls, large purple balls, and
small green balls; Carol only accepts large yellow balls, small red
balls, and small blue balls; and Doug only accepts large green balls,
small orange balls, and small purple balls.

● Try the preceding scenario, but add a small purple ball to Amy’s
rules.

● Try the first scenario, but change Doug’s small purple rule to a large
purple rule. This should return an error because now there’s no one
to accept the small purple balls.

And there you have it! Forty-five tests that exercise a great many of the
options and permutations that the Super Ball Sorter offers. If you have read
this far, you must enjoy testing as much as I do!

How did my test plan compare to yours? Did you think of things I didn’t?

You may have noticed that while this test plan is complete, it’s not that
easy to read and it doesn’t provide any way to keep track of test results. In the
next chapter I’ll talk about how to organize the test plan so that you can run it
quickly and record results easily.

Chapter 99: Organizing a Test Plan
In the preceding chapter we looked at a hypothetical software feature that

sorts Super Balls among four children according to a set of rules. I came up
with 45 different test cases, from simple to complicated, that would test
various combinations of the rules.

But reading a chapter is not a very easy way to execute on a test plan! So
in this chapter,I’ll explain how I organize a test plan.

First, though, I’d like to tell you what I find to be less effective.

What I Don’t Do

I don’t write step-by-step instructions, such as:

1. Navigate to the login page.
2. Enter the username into the username field.
3. etc. etc.

Unless you are writing a test plan for someone you have never met,
whom you will never talk to, and who has never seen the application, this is
unnecessary. While some level of instruction is important when your test plan
is meant for other people, it’s safe to assume you can provide some
documentation about the feature elsewhere.

I don’t add screenshots to the instructions.

While having screenshots in documentation is helpful, when they are in a
test plan it just makes the plan larger and harder to read.

I don’t use a complicated test tracking system.

In my experience, test tracking systems require more time to maintain
than the time needed to actually run the tests. If there are regression tests that

need to be run periodically, they should be automated. Anything that can’t be
automated can be put in a one-page test plan for anyone to use when the need
arises.

What I Do

I use a spreadsheet to organize my tests.

Spreadsheets are so wonderful because the table cells are already built in.
They are easy to use, edit, and share. For test plans I will be running myself, I
use an Excel spreadsheet. For plans I will be sharing with a team, I use a
table in a Confluence page which we can all edit. You can see the test
spreadsheet I created for our hypothetical Super Ball sorter here; I include
some screenshots from the spreadsheet throughout this chapter.

I keep the instructions simple.

This screenshot shows the first two sections of my test:

In the second test case, I called the test “Amy- Large balls only”. This is
enough for me to know that I’m setting a rule for Amy that she should accept
large balls only. I don’t need to write “Create a rule for Amy that says she
should accept large balls only, and then run the ball distribution to pass out
the balls.” All of that is assumed from the feature description.

Similarly, I created a grouping of four columns called “State at End of

https://docs.google.com/spreadsheets/d/e/2PACX-1vRMMzhfS9bcCtCPbC-Lj7Oa9r7swxItZdmAqvrWAmuNevJHfnSL8HeP9bTRj9Y8V5OCoNLx0OeRo8mI/pubhtml

Test Pass”. There is a column for each child, and in each cell I included what
the expected result should be for that particular test case. For example, in the
third test case, I set Amy, Carol, and Doug to “any balls” and Bob to “Small
balls only”. This means Amy, Carol, and Doug can have any kind of ball at
all at the end of the test pass, and Bob should have only small balls. I don’t
need to write “Verify that all of Bob’s Super Balls are small.” “Small balls
only” is enough to convey this.

I use headers to make the test readable.

Because this test plan has 45 test cases, I need to scroll through it to see
all the tests. Therefore, I make sure every section has good headers so that I
don’t have to remember what the header values are at the top of the page.

In the preceding figure, you can see the end of one test section and the
beginning of the final test section, “Size and Color Rules”. I put in the
headers for Amy, Bob, Carol, and Doug so that I don’t have to scroll back up
to the top to see which column is which.

I keep the chart cells small to keep the test readable.

As you can see in the following figure, as the test cases become more
complex, I added abbreviations so that they don’t take up too much space:

After running several tests, it’s pretty easy to remember that “A” equals
“Amy” and “LR” equals “Large Red”.

I use colors to indicate a passing or failing test.

The great thing about a simple test plan is that it’s easy to use it as a
report for others. A completed test plan like this will be easy for anyone to
read. Here’s an example of what the first section of the test might look like
when it’s completed, if all the tests pass:

If a test fails, it’s marked in red. If there are any extra details that need to
be added, I don’t put them in the cell, making the chart hard to read; instead, I
add notes on the side that others can read if they want more detail.

I use tabs for different environments or scenarios.

The great thing about spreadsheets is that they offer the use of tabs. If you
are testing a feature in your QA, staging, and production environments, you
can have a tab for each environment and copy and paste the test plan into
each one. Or you can use the tabs for different scenarios. In the case of our
Super Ball Sorter test plan, we might want to have a tab for testing with a test
run of 20 Super Balls, one for 100 Super Balls, and one for 500 Super Balls.

Test plans should be easy to read, follow, and use when documenting
results. You don’t need fancy test tools to create them; all you need are a
simple spreadsheet, an organized mindset, and an ability to simplify
instructions.

Chapter 100: The Positive Outcomes of
Negative Testing

As software testers and automation engineers, we often think about the
happy path: the path the user will most likely take when they are using our
application. When we write our automated UI tests we want to make sure we
are automating those happy paths, and when we write API automation we
want to verify that every endpoint returns a “200 OK” or similar successful
response.

But it’s important to think about negative testing in both our manual and
automated tests. Here are a few reasons why.

Our Automated Tests Might Be Passing for the Wrong Reasons

When I first started writing automated UI tests in JavaScript, I didn’t
understand the concept of the promise. I just assumed that when I made a
request to locate an element, it wouldn’t return that element until it was
actually located. I was so excited when my tests started coming back with the
green “Passed” result, until a co-worker suggested I try to make the test fail
by asserting on a different value. It passed again, because it was actually
validating against the promise that existed, which was always returning
“True”. That taught me a valuable lesson: never assume that your automated
tests are working correctly just because they are passing. Be sure to run some
scenarios where your tests should fail, and make sure they do so. This way,
you can be sure you are really testing what you think you are testing.

Negative Testing Can Expose Improperly Handled Errors That
Could Impact a User

In API testing, any client-related error should result in a 400-level
response rather than a 500-level server error. If you are doing negative testing
and you discover that a 403 response is now coming back as a 500, this could
mean the code is no longer handling that use case properly. A 500 response
from the server could keep the user from getting the appropriate information

they need for fixing their error, or worse, it could crash the application.

Negative Testing Can Find Security Holes

Just as important as making sure a user can log in to an application is
making sure a user can’t log in to an application when they aren’t supposed
to. If you only run a login test with a valid username and password, you are
missing this crucial area! I have seen a situation where a user could log in
with anything as the password, a situation where a user could log in with a
blank password, and a situation where a user could log in with an incorrect
username and password.

It’s also crucial to verify that certain users don’t have access to parts of an
application. Having a carefully tested and functional Admin page won’t mean
much if it turns out that any random user can get to it.

Negative Testing Keeps Your Database Clean

As I mentioned in Chapter 12, having good, valid data in your database
will help keep your application healthy. Data that doesn’t conform to
expectations can cause web pages to crash or fail to load, or cause
information to be displayed incorrectly. The more negative testing you can do
on your inputs, the more you can ensure that you will only have good data.

For every input field I am responsible for testing, I like to know exactly
which characters are allowed. Then I can run a whole host of negative tests to
make sure entries with the forbidden characters are refused.

Sometimes Users Take the Negative Path

It is so easy, especially with a new feature that is being rushed to meet a
deadline, to forget to test the user paths where they will click the Cancel or
Delete button. But users do this all the time; just think about times when you
have thought about making an online purchase and then changed your mind
and removed an item from your cart. Imagine your frustration if you weren’t
able to remove something from your cart, or if a Cancel button didn’t clear a
form to allow you to start again. User experience in this area is just as crucial
as the happy path.

Software testing is about looking for unexpected behaviors so that we
find them before a user does. When negative testing is combined with happy
path testing, we can ensure that our users will have no unpleasant surprises.

Chapter 101: What to Put in a Smoke Test
The term “smoke test” is usually used to describe a suite of basic tests

that verify that all the major features of an application are working. Some use
the smoke test to determine whether a build is stable and ready for further
testing. I usually use a smoke test as the final check in a deployment to
production. In this chapter, I’ll share a cautionary tale about what can happen
if you don’t have a smoke test. Then I’ll continue that tale and talk about how
smoke tests can go wrong.

Early in my testing career, I worked for a company that had a large suite
of manual regression tests, but no smoke test. Each software release was
difficult because it was impossible to run all the regression tests in a timely
fashion. With each release, we picked which tests we thought would be most
relevant to the software changes and executed those tests.

One day, in between releases, we heard that there had been a customer
complaint that our Global Search feature wasn’t working. We investigated
and found that the customer was correct. We investigated further and
discovered that the feature hadn’t worked in weeks, and none of us had
noticed. This was quite embarrassing for our testing team!

To make sure this kind of embarrassment never happened again, one of
our senior test engineers created a smoke test to run whenever there was a
release to production. It included all the major features and could be run
fairly quickly. We felt a lot better about our releases after that.

However, the tester who created the test kept adding test steps to the
smoke test. Every time a new feature was created, a step was added to the
test. If we found a new bug in a feature, even if it was a small one, a step
checking for the bug was added to the test. As the months went by, the smoke
test took longer and longer to execute and became increasingly complicated.
Eventually the smoke test itself took so much time that we didn’t have time
to run our other regression tests.

Clearly there needs to be a happy medium between having no smoke test
at all and having one that takes so long to run that it’s no longer a smoke test.
To decide what goes into a smoke test, I suggest asking these three questions.

Question #1: What would absolutely embarrass us if it were broken
in this application?

Let’s use an example of an e-commerce website to consider this question.
For this type of website, it would be embarrassing or even catastrophic if a
customer couldn’t:

● Log in to their account
● Search for an item they were looking for
● Add an item to their cart
● Edit their contact information
● Purchase the item in their cart

So, at the very least, a smoke test for this site should include a test for
each of these features.

Question #2. Is this a main feature of the application?

Examples of features in an e-commerce website that would be main
features, but less crucial ones, might be:

● Wish list functionality
● Product reviews
● Recommendations for the user

If these features were broken, it wouldn’t be catastrophic, but they are
features that customers expect. So a test for each one should be added.

Question #3. If there were a bug here, would it stop the application
from functioning?

No one wants to have bugs in their application! But some bugs are more
important than others. If the e-commerce website had an issue where the Add
to Cart button was off-center, it might look funny but it wouldn’t stop

customers from shopping.

However, a bug that wouldn’t allow a customer to remove an item from
their cart might keep them from purchasing the items they do want, which
would affect sales. So a test to check that items can be removed from a cart
would be important in a smoke test.

With these questions in mind, here is an example of a smoke test that
could be created for an e-commerce site:

1. Log in.

2. Verify that product recommendations are present.
3. Do a search for a product.
4. Read a review of a product.
5. Add an item to the cart.
6. Add a second item to the cart and then delete it.
7. Edit customer information.
8. Make a purchase.
9. Write a review.

A smoke test like this wouldn’t take very long to execute manually, and it
would be easy to automate.

Whenever new features are added to the application, you should ask
yourself Questions #1 and #2 to determine whether a test for the feature
should be added to the smoke test. And whenever a bug is found in the
product, you should ask yourself Question #3 to determine whether a test for
that issue should be added to the smoke test.

Because we want our applications to be of high quality, it’s easy to fall
into the trap of wanting to test everything all the time. But this can create a
test burden that keeps us so busy that we don’t have time for anything else.
Creating a simple, reliable smoke test can free us up for other activities, such
as doing exploratory testing on new features or creating nightly automated
tests.

Chapter 102: What to Test When There’s
Not Enough Time to Test

In today’s Agile world, we often don’t have as much time as we feel we
need to fully test our software’s features. Gone are the days when testers had
weeks or months to test an upcoming release. Because software projects
usually take longer than estimated, we may be asked to test things at the last
minute, just a day or two before the release. In this chapter I’ll discuss what
to test when there’s not enough time to test, and I’ll suggest some tips to
avoid this problem in the first place.

The Bare Minimum: What to Test When There’s Almost No Time

Let’s use our hypothetical Super Ball Sorter as an example. As you recall
from Chapter 97, the feature takes a number of Super Balls and sorts them
among four children using a set of defined rules. What would I do if I were
asked to test this feature for the first time and it was due to be released
tomorrow?

Step #1: Test the most basic case.

The first thing I would do is test the most basic use case of the feature. In
this case, it would be running the Super Ball Sorter with no rules at all. I
would test this first because it would give me a very clear indication whether
the feature was working at all. If it wasn’t, I could raise the alarm right away,
giving the developer more time to fix it.

Step #2. Test the most typical customer scenario.

In the case of the Super Ball Sorter, let’s say the product owner has told
us that in the most typical scenario, two of the children will be assigned a
rule, and the rule will be by size rather than color. So the next test I would
run would be to assign one child a rule that they only accept large balls, and
assign another child a rule that they only accept small balls. I would run the
sorter with these rules and make sure the rules were respected.

Step #3. Run a basic negative test.

We all know how frustrating it can be to make a mistake when we try to
do an activity online, such as filling out a form, and we have an error on the
page but we haven’t been given any clear message about what it is. So the
next thing I would test would be to make a common mistake that a user
would make and ensure that I got an appropriate error message. For the Super
Ball Sorter, I would set four rules that resulted in some balls not being able to
be sorted, and I would verify that I got an error message that told me this was
the case.

Step #4. Test with different users or accounts.

Just because something is working correctly for one user or account
doesn’t mean it’s going to work correctly for everyone! Developers
sometimes check their work with only one test user if they are in a big hurry
to deliver their feature. So I would make sure to run the Super Ball Sorter
with at least two users, and I would make sure those users were different
from the one the developer used.

After running these four tests, I would be able to say with some certainty
that:

● The feature works at its most basic level.
● A typical customer scenario will work correctly.
● The customer will be notified if there is an error.

Remember That It Will Never Be Perfect, and Things Will Never Be
Completely Done

When software is released monthly, weekly, or even daily, there’s no way
to test everything you want to test. Even if you could get to everything, there
will always be some sneaky bug that slips through. This is just a fact of life in
software development. The good news is that because software is released so
frequently, a bug fix can be released very shortly after the bug is found. So
relax, and don’t expect things to be perfect.

Speak Up—in Person and in Writing—If Disaster Is About to Strike

Early in my testing career, I was on a team that was asked to test a large
number of new features for a release in a short amount of time. When we
were asked whether we felt confident in the new release, every one of us said
no. We each delineated the things we hadn’t been able to test yet and why we
were concerned about the risks in those areas. Unfortunately, management
went ahead and released the software anyway because a key customer was
waiting for one of the features. As a result, the release was a failure and had
to be recalled after many customer complaints.

If you believe that your upcoming software release is a huge mistake,
speak up! Outline the things you haven’t tested and some of the worst-case
scenarios you can envision. Document what wasn’t tested so that the key
decision makers in your company can see where the risks are. If something
goes wrong after the release, your documentation can serve as evidence that
you had concerns.

Enlist the Help of Developers and Others in Your Testing

While testers possess a valuable set of skills that help them find bugs
quickly, remember that all kinds of other people can run through simple test
scenarios. If everyone on your team understands that you have not been given
ample time in which to test, they will be happy to help you out. If I were
asking my teammates to test the Super Ball Sorter, I might ask one person to
test scenarios with just one rule, one person to test scenarios with three rules,
and one person to test scenarios with four rules, while I continued to test
scenarios with two rules. In this way, we could test four times as many
scenarios as I could test by myself.

Talk with Your Team to Find Out How You Can Start Testing
Earlier

To prevent last-minute testing, try to get involved with feature
development sooner in the process. Attend meetings about how the feature
will work, and ask questions about integration with other features and
possible feature limitations. Start putting together a test plan before the
feature is ready. Work with your developer to write some automated tests that
they can use while in development. Ask your developer to commit and push
some of their code so that you can test basic scenarios, with the

understanding that the feature isn’t completely done. In the case of the Super
Ball Sorter, I could ask the developer to push some code once the sorter was
capable of sorting without any rules, just to verify that the balls were being
passed to each child evenly.

Automate as Much as Possible

In sprint-based development, there’s often a lull for testers at the
beginning of a sprint while the developers are still working on their assigned
features. This is the perfect time to automate features that you have already
tested. When release day looms, much or all of your regression testing can
run automatically, freeing you up to do more exploratory testing on the new
features.

As testers, we want our users to have a completely bug-free experience.
Because of that, we always want more time for testing than we are given.
With the aforementioned strategies, we can ensure that the most important
things are tested and that with each sprint we are automating more tests,
freeing up our valuable time.

Chapter 103: How to Keep Your Test Cases
From Slowing You Down

One of the first testing jobs I had was at a company that made software
which could be used to create mobile applications. It was a very complex
application and had so many features that it was often hard to keep track of
them all. Shortly before I started working there, the company adopted a test
tracking system to keep track of all the possible manual tests the team might
want to run. This amounted to thousands of test cases.

Many of the test cases weren’t written well, leaving those of us who were
new to the team confused about how to execute them. The solution to this
problem was to assign everyone the task of revising the tests as they were
run. This helped a bit, but it slowed us down tremendously. Adding to the
slowdown was the fact that every time we had a software release, our
manager had to comb through all the tests and decide which ones should be
run. Then there was the added confusion of deciding which mobile devices
should be used for each test.

We were trying to transition to an Agile development style, but the
number of test cases and the amount of overhead needed to select, run, and
update the tests meant that we just couldn’t adapt to the pace of Agile testing.

You might be thinking at this point, “Why didn’t they automate their
testing?” Keep in mind that this was back when mobile test automation was
in its infancy. One member of our team had developed a prototype for an
automated test framework, but we didn’t have the resources to implement it,
because we were so busy trying to keep up with our gigantic manual test case
library.

Even when you have a robust set of automated tests in place, you’ll still
want to do some manual testing. Having a pair of eyes and hands on an
application is a great way to discover odd behavior that you’ll want to
investigate further. But trying to maintain a vast library of manual tests is so
time consuming that you may find you don’t have time to do anything else!

In my opinion, the easiest and most efficient way to keep a record of what
manual tests should be executed is through the use of simple spreadsheets. If
I were to go back in time to that mobile app company, I would toss out the
test case management system and set up some spreadsheets. I would have one
smoke test spreadsheet, and one regression test spreadsheet for each major
feature of the application. Each time a new feature was added, I’d create a
test plan on a spreadsheet, and once the feature was released, I’d either add a
few test cases to a regression test spreadsheet (if the feature was minor), or
adapt my test plan into a new regression test spreadsheet for that feature.

This is probably a bit hard to imagine, so I’ll illustrate it with an example.
Let’s say we have a mobile application called OrganizeIt! Its major features
are a To-Do List and a Calendar. Currently the smoke test for the app looks
like this:

We also have a regression test for the major features: Login, Calendar,
and To-Do List. Here’s an example of what the regression test for the To-Do
List might look like:

This test would also be run on a variety of devices, but I’ve left that off
the chart to make it more readable on the page.

Now let’s imagine that our developers have created a new feature for the
To-Do List, which is that items on the list can now be marked as Important,
and Important items will move to the top of the list. In the interest of
simplicity, let’s not worry about the order of the items other than the fact that
the Important items will be on the top of the list. We’ll want to create a test
plan for that feature, and it might look like this:

We would again test this on a variety of devices, but I’ve left that off the
chart to save space.

Once the feature is released, we won’t need to test it as extensively,
unless there’s a change to the feature. So we can add a few test cases to our
To-Do List regression test, like this:

The new test cases are marked in blue, but they wouldn’t be blue in the
actual test plan.

Finally, we’d want to add one test to the smoke test to check for this new
functionality:

With spreadsheets like these, you can see how it is easy to keep track of a
huge number of tests in a small amount of space. Adding or removing tests is
also easy because it’s just a matter of adding or removing a line in the table.

Spreadsheets like these can be shared among a team. Each time a smoke
or regression test needs to be run, the test can be copied and named with a
new date or release number (e.g., “1.5 Release” or “September 2023”), and
the individual tests can be divided among the test team. For example, each
team member could do a complete test pass with a different mobile device.
Passing tests can be marked with a check mark or filled in green, and failing
tests can be marked with an X or filled in red.

And there you have it! An easy-to-read, easy-to-maintain manual test case
management system. Instead of taking hours of time maintaining test cases,
you can use your time to automate most of your tests, freeing up even more
time for manual exploratory testing.

Chapter 104: Confused? Simplify!
As testers, we are often asked to test complex systems. Gone are the days

when testers were simply asked to fill out form fields and click the Submit
button; now we are testing data stores, cloud servers, messaging services, and
much more. When so many building blocks are used in our software, it can
become easy to get overwhelmed and confused. When this happens, it’s best
to simplify what we are testing until our situation becomes clear.

Here’s an example that happened at my company. We were testing that
push notifications of a specific type were working on an iPhone. One of my
teammates was triggering a push notification, but it wasn’t appearing on the
phone. What could be wrong? Maybe notifications were completely broken.
Maybe they were broken on the iPhone. Maybe only this specific notification
was broken. Maybe only notifications of this type were broken. We had a lot
of notifications to test and we were working on a deadline, but we had to
figure out why this particular notification wasn't working.

So we simplified the process by asking a series of questions and running a
test for each one.

We started with:
Is this push notification working on an Android phone?

We triggered the same notification to go to an Android phone, and the
push was delivered. So we ruled out that the notification itself was broken.

Next, we asked:
Is this push notification working on any other iPhone?

We triggered the same notification to go to a different iPhone, and the
push was delivered. So we ruled out that the notification was broken on iOS
devices.

Then we asked:
Is any notification working on this specific iPhone?

We triggered some different notifications to go to the iPhone, and no
pushes were delivered. So we concluded that the problem was not with the
notification or the push service; the problem was with the phone. In taking a
step back and asking three simple questions, we were able to quickly
diagnose the problem.

Let’s take a look at another example, using the Super Ball Sorter. In this
testing scenario, we are sorting the balls by both size and color. We have the
children set up with the following rules:

● Amy gets only large balls.
● Bob gets only small purple balls and large red balls.
● Carol gets only small balls.
● Doug gets only green balls.

When we run the sorter, a small purple ball is next in the sorting process,
and it’s Bob’s turn to get a ball. We are expecting that Bob is going to get the
small purple ball because his sorting rules allow it, but he doesn’t get the ball.
It goes to Carol instead.

What could be wrong here? Maybe Bob isn’t getting any balls. Maybe the
purple ball isn’t being sorted at all. Maybe only the small balls aren’t being
sorted.

To figure out what is going on, we ask the following questions:

1. Can Bob get any sorted balls?

We set up the sorter so that Amy, Carol, and Doug only get large
balls and Bob only gets small balls. We run the sorter and Bob gets all
the small balls. So we know Bob can get balls.

2. Can anyone get the small purple ball?

We set up the sorter so that Amy only gets small purple balls, and
Bob, Carol, and Doug get any ball at all. We set up our list of balls so
that the small purple ball is first on the list. When we start our sorting
process with Amy, she gets the small purple ball. So now we know the

small purple ball isn’t the problem.

3. Can Bob get the small purple ball in some other scenario?

We saw in our initial test that Bob wasn’t getting the small purple
ball, but can he ever get that ball? We set up our rules so that Amy only
gets large balls and Bob only gets small purple balls. We don’t give
Carol and Doug any rules. Then we set up our list of balls so that the
small purple ball is first on the list. Amy doesn’t get the small purple
ball, because she only gets large balls, so the small purple ball is offered
to Bob. He gets the ball, so now we know Bob can get the small purple
ball in some scenarios.

At this point, we know the problem is not with the small purple ball.
What is different between the original scenario and the one we just ran?

One difference is that in the original scenario, all four children had a
rule. So we ask this question:

4. Can Bob get the small purple ball when it’s his only rule, and the other
children all have rules?

We set up the rules like this:

● Amy gets only large balls.
● Bob gets only small purple balls.
● Carol gets only small balls.
● Doug gets only green balls.

We again set up our list of balls so that the small purple ball is first
on the list. The ball skips Amy because it doesn’t meet her rule, and Bob
gets the ball. So now we know the problem is not that all the children
have rules.

The next logical question is:

5. What happens when Bob has two rules?

We set up the rules like this:

● Amy gets only large balls.
● Bob gets only small purple balls and small yellow balls.
● Carol gets only small balls.
● Doug gets only green balls.

Our list of balls is the same, in that the small purple ball is first. This
time, the ball skips Amy and Bob, and Carol gets the small purple ball.

Aha! Now we have a good working theory: when Bob has two rules, the
sorting is not working correctly. We can test out this theory by giving another
child two rules, while giving everyone else one rule. Are the balls sorted
correctly? What about when a child has two rules that specify color only and
not size? Will the two rules work then? By continuing to ask questions, we
can pinpoint precisely what the bug is.

By making your tests as simple as possible and proceeding with your tests
in a methodical and logical manner, you can find bugs as quickly as possible,
even in a very complex system.

Chapter 105: Six Steps to Writing an
Effective Bug Report

As testers, we know how important it is to test our software thoroughly
and document our findings meticulously. But all of our talent will be useless
if we can’t effectively communicate our test results to others! If your test
results are written in a giant, poorly organized spreadsheet with tiny text and
lots of unnecessary details, even the most dedicated test manager will find
their eyes glazing over with boredom when they look at it. In this chapter, I’ll
describe six steps to take to ensure that you can communicate your findings
to others efficiently and effectively.

Step #1: Determine What Goal You Are Trying to Accomplish with
Your Report

Why are you creating your report? What do you want people to
understand when they read it? You might be creating a report to demonstrate
that you have tested all the acceptance criteria in the user story. You could be
showing your manager exactly which areas of the application are not
functioning properly. You could be demonstrating that after a recent code
change, several bugs were fixed.

There are all kinds of reasons to create a report, but if you don’t stop and
think about why you are creating it, it’s probably not going to be very clear to
your readers. Simply sending over your test notes is not enough to
communicate effectively.

Step #2: Focus on the Reader’s Needs

Who will be reading your report? Will it be a developer, your test
manager, your product owner, your team lead, or the CTO of your company?
You will want to tailor your test report for your audience. The CTO is
probably very busy and will not care how many permutations of your form
data you ran or how you developed the permutations. They will want to see
that you ran 100 tests and that 99 passed. Your product owner will want to
see that you have tested the user stories and that the outcomes were as

expected. Your test manager might be interested in how many different
permutations of the test you ran, and what logic you used to create them.
Your developer might want to know what test data you used and what your
server response times were.

You can see how the interests of your reader will vary quite a bit
depending on their role, so think about how you can best present the
information that they want.

For Steps 3 through 6, we’ll once again use the example of the Super Ball
Sorter.

Step #3: Avoid Extraneous Information

Make sure your report contains only the information your reader needs.
Extraneous information means a reader has to sift through your report to find
the important results. Consider this report, which shows the results of two
tests in which two children have a sorting rule:

Did the tests pass? How long did it take for you to determine that by
looking at the test report? There is a lot of information here that is
unnecessary. It doesn’t matter that Bob got the large red ball first and the
small orange ball second. What matters is that Amy only got small blue balls
and Doug only got large green balls. Contrast that test report with this one:

Here you can very quickly see what rules were set and whether those rules
were respected. If a reader of your report needs to know what balls Bob got,
they can ask you for those details and you can look them up in your notes.

Step #4: Make the Report Visually Immediate

We are all busy people; developing and testing software is fast paced and
time consuming! Your manager or CTO probably gets dozens of reports and
emails a day, so make your report so easy to read that just a glance at it will
give them the information they need. Take a look at this test report:

How many seconds does it take you to see that a test failed? A reader
needs to read the entire report to see that the fourth test failed.

Compare that with this test report, which shows the same tests and the
same results:

This report is pretty immediate! It’s also really easy to see how many
rules were used when the test failed.

Step #5: Make the Report Easy to Read

In addition to being visually immediate, the report needs to be easy to
read. Take a look at this example, in which two tests are run and three
children are given rules:

This report shows very quickly that one of the tests failed, but in order to
see why the test failed, it’s necessary to read the whole description to see that
Carol’s rule was not respected.

This report conveys exactly the same information:

With this report, it is easy to see that Carol’s rule was not respected and,
by simply looking in the leftmost column, to see what that rule was.

Step #6: Make the Report Readable Without Any Additional
Explanation

How long does it take for you to figure out what this report means?

It’s fine to use all sorts of abbreviations when you are testing and taking
notes for yourself, but your reader shouldn’t need a key to interpret it. Who
but the most interested testers are going to take the time to see where the bug
is here?

This report conveys exactly the same information:

It’s easy to see exactly what rules each child was given for each test.
Through the use of color, the report demonstrates very clearly where the bug
is: whenever a child is given a rule that they should get only small balls, that
rule is not respected.

In today’s fast-paced world, we all have vast amounts of information
coming to us every day. If we are going to make a difference with our testing
and influence decision-making where we work, we need to be able to convey
our test results in ways that clearly show what is going on with our software
and what should be done to improve it.

Chapter 106: Should You Hunt for That
Bug?

Anyone who has ever done laundry has likely discovered while folding
their clothes that they are missing a sock. Sometimes the sock is missing
because it never made it into the laundry basket. Sometimes the sock was left
in the washing machine. There are even jokes about how the clothes dryer
sends socks into another dimension!

What’s interesting is the reaction that people have to the missing sock.
Some people shrug their shoulders and figure that the sock will turn up
eventually. Others will spend most of their day looking for the sock: they’ll
search through the laundry room, all of the undone laundry, their closet,
under the bed, and so on.

This is a great metaphor for what testers do when they encounter a
strange and hard-to-reproduce bug! Some testers decide that since the bug is
hard to reproduce, they should move on and test something else. Other testers
decide to devote every moment to finding the cause of the odd behavior, to
the exclusion of all other testing. Which is the correct approach? It depends.
In this chapter, I’ll list three reasons why you might want to hunt for the
elusive bug and three reasons why you might want to put off the hunt for
later.

Reasons to Hunt for the Bug

● When the bug happens, it’s a big deal. You might be testing a
system in which everything works just fine most of the time. But
when the bug occurs the system crashes, or data is lost, or a customer
can’t submit an order. This is a serious problem. Even if the bug
happens just 1% of the time, it’s important to figure out what’s going
on because you will lose users as a result of this issue.

● The problem is intermittent, but it happens frequently. I was once
plagued by a bug in some software I was using. When I was logged

in to the software, about 50% of the time the application would
forget who I was. This was really annoying. If someone were to ask
me about this software, do you think I would have recommended it?
You don’t want your users to give you poor reviews or stop using
your application!

● The problem hints at an important performance issue. Perhaps
your software works just great when you test it with one or two users
in your test environment, but you’re seeing strange behavior in your
production environment. Don’t just shrug this off with a “Works for
me” statement! This bug could indicate that there is a problem with
your application when it’s under load. Perhaps there’s a memory
leak that gets worse the longer the application is used. Or maybe the
calls to the server are taking too long, and the problem is
compounded as more and more calls are made, locking the database.
Whatever the reason, it’s important to find out the root cause of the
problem and fix it before your customers see it.

Reasons to Save the Hunt for Later

● You’ve been testing for weeks and you only saw the problem
once. We all know that software and hardware aren’t perfect.
Strange glitches can happen, including service interruptions in
hosting environments, power surges on equipment, and the loss of
electricity or internet connections. The bug you saw just once could
have been caused by any one of these things. This is the kind of bug
to watch for, but not to chase after. If it happens again, then you can
start looking into it.

● You’re pretty sure you know the cause already. If you think you
saw a bug because a team member forgot to deploy one part of the
application, someone forgot to turn on a toggle, or your test user was
deleted, and the bug went away as soon as the problem was fixed,
then there’s probably no reason to hunt any further.

● You are in a time-sensitive situation and you think the issue
doesn’t pose a risk. It’s very aggravating to have a giant bug show
up in production and then hear from a tester, “Oh, I saw that bug, but

we were in a hurry and didn’t have time to investigate.” That said, if
the bug is something obscure that you think a user will never do and
you need to meet an important deadline, it might be OK to wait until
after the release to dig in further.

Here’s an example. A team is trying to release some new search
functionality to their application. The team has been testing for weeks
and it appears that things are working well. The day of the release, a
tester discovers that if she enters a search term with 1,000 characters,
there is an intermittent bug. Rather than calling off the release and
spending hours looking for the bug, the team should probably go
forward with the release and investigate later, because it’s very unlikely
that end users will be doing searches on 1,000-character terms.

Do You Have a “Missing Sock”?

The next time you encounter a strange bug, ask yourself: is this
something that should be investigated now, or can it wait until later? The size
of the bug, the frequency of the bug, and the likelihood that it will be seen by
users can help you decide how to proceed.

Chapter 107: Why You Should Be Testing
in Production

This is a true story; I’m keeping the details vague to protect those
involved.

Once there was a software team that was implementing new functionality.
They tested the new functionality in their QA environment and it worked just
fine. So they scheduled a deployment: first to the staging environment, then
to production. They didn’t have any automated tests for the new feature,
because it was tricky to automate. And they didn’t bother to do any manual
tests in staging or production, reasoning that if it worked in the QA
environment, it must work everywhere.

You can probably guess what happened next: they started getting calls
from customers that the new feature didn’t work. They investigated and
found that this was true. Then they tried the feature in the staging
environment and found that it didn’t work there either. As it turned out, the
team had used hard-coded configuration strings that were only valid in the
QA environment. If they had simply done one test in the staging or
production environment, they would have noticed that something was wrong.
Instead, it was left to the customers to notice the problem.

There are two main reasons why things that work in a test environment
don’t work in a production environment.

Configuration Problems

This is what happened with the team I just described. Software is
complicated, and there are often multiple servers and databases that need to
talk to one another for the software to work properly. Keeping software
secure means each part of the application must be protected through the use
of passwords or other configuration strings. If any one of these strings is
incorrect, the software won’t work completely.

Deployment Problems

In this age of microservices, deploying software usually means deploying
several different APIs. In a large organization, different teams may be
responsible for different APIs. Let’s say that Team A is responsible for API
A and Team B is responsible for API B. When a new feature in API A needs
the new code in API B to work properly, API B will need to be deployed
first. It’s possible that Team B will forget to deploy API B or not even realize
that it needs to be deployed. In cases like this, Team A might assume that
API B had been deployed, and they will go ahead and deploy API A. Without
testing, Team A will have no way of knowing that the new feature isn’t
working.

By running tests in every environment, you can quickly discover whether
you have configuration or deployment problems. It’s often not necessary to
go through extensive testing of a new feature in production if you’ve already
tested it in QA, but it is vital that you do at least some testing to verify that
it’s working! You never want to have your customers find problems before
you do.

Chapter 108: What to Do When There’s a
Bug in Production

A software tester can find it bone-chilling to realize a bug has been found
in production! In this chapter, I’ll walk you through a series of steps testers
can take to handle production bugs and prevent them in the future.

Step #1: Remain Calm

Because we are the ones who are testing the product and signing off on
the release, it’s easy to panic when a bug is found in production. We ask
ourselves, “How did this happen?” and we can be tempted to thrash around
looking for answers. But this is not productive. Our top priority should be to
make sure the bug is fixed, and if we don’t stay calm, we may not investigate
the issue properly or test the fix properly.

Step #2: Reproduce the Issue

If the issue came from a customer or from another person in your
company, the first thing to do is to see whether you can reproduce it. It’s
possible that the issue is simply user error or a configuration problem. But
don’t jump to these conclusions too quickly! Make sure to follow any steps
described by the user as carefully as you can, and wherever possible, make
sure you are using the same software and hardware as the user: for example,
use the same type of mobile device and the same build; or the same type of
operating system and the same browser. If you are unable to reproduce the
issue, ask the user for more information; then keep trying until you can
reproduce it.

Step #3: Gather More Information

Now that you have reproduced the issue, gather more information about
it. Is the issue happening in your test environment as well? Is it present in the
previous build, and if so, can you find a build where the issue is not present?
Does it only happen with one specific operating system or browser? Do

certain configuration settings need to be in place to see the issue? The more
information you can gather, the faster your developer will be able to fix the
problem.

Step #4: Understand the Root Cause

At this point, your developer will be working to figure out what is
causing the bug. When they figure it out, make sure they tell you what the
problem was and that you understand it. This will help you figure out how to
test the fix and determine what regression tests should be done.

Step #5: Decide When to Fix the Issue

When there’s a bug in production, you will want to fix it immediately, but
that is not always the best course of action. I’m sure you’ve encountered
situations in which fixing one bug created new bugs. You will want to take
some time to test any areas that might have been impacted by the fix.

When trying to decide when to fix a bug, think about these two things:

● How many users are affected by the issue?
● How severe is the issue?

You may have an issue that affects less than 1% of your users. But if the
bug is so severe that these users can’t use the application, you may want to
fix it right away.

Alternatively, you may have an issue that affects all of your users, but it
is so minor that their experience won’t be impacted. For example, a
misaligned button might not look nice, but it’s not stopping your users from
using the application. In this case, you might want to wait until your next
scheduled release to fix the issue.

Step #6: Test the Fix

When you test the bug fix, don’t check it just once. Be sure to check the
fix on all supported browsers and devices. Then run regression tests in any
areas affected by the code change. If you followed Step #4, you’ll know

which areas to test. Finally, do a quick smoke test to make sure no important
functionality is broken.

Step #7: Analyze What Went Wrong

It’s tempting to breathe a big sigh of relief and move on to other things
when a production bug is fixed. But it’s very important to take the time to
figure out exactly how the bug got into production in the first place. This is
not about finger-pointing and blame; everybody makes mistakes, whether
they are developers, testers, product owners, managers, or release engineers.
This is about finding out what happened so that you can make changes to
avoid the problem in the future.

Perhaps your developers made a code change and forgot to tell you about
it, so it wasn’t tested. Perhaps you tested a feature but forgot to test it in all
browsers, and one browser had an issue. Maybe your product owner forgot to
tell you about an important use case, so you left it out of your test plan.

Whatever the issue, be sure to communicate it clearly to your team. Don’t
be afraid to take responsibility for your role in causing the issue.

Step #8: Brainstorm Ways to Prevent Similar Issues in the Future

Now that you know what went wrong, how can you prevent it from
happening again? Discuss the issue with your team and see whether you can
come up with some strategies.

You may need to change a process: for example, having your product
owner sign off on any new features to make sure nothing is missing. Or you
could make sure your developers let you know about any code refactoring so
that you can run a regression test, even if they are sure they haven’t changed
anything.

You may need to change your strategy: you could have two testers on
your team look at each feature so that it’s less likely that something will be
overlooked. Or you could create test plans which automatically include a step
to test in every browser.

You may need to change both your process and your strategy! Whatever
the situation, you can now view the bug that was found in production as a
blessing, because it has resulted in you being a wiser tester and your team
being stronger.

Chapter 109: Fix All the Things
It’s very tempting when you are rushing to complete features to let some

bugs slide. This chapter will explain why, in most cases, it’s better to fix all
the bugs as soon as they are found rather than later. The following scenario is
hypothetical, but it is based on my experience as a tester.

NewTech Inc. is very excited about its new email editor, which will
enable customers to compose emails to their clients and schedule when they
should be sent. NewTech’s service reps will also be able to add or change
their customers’ company logos on the emails.

Because they are on a tight deadline, the developers are rushing to
complete the work. The tester finds an issue with the logo-changing feature:
the logo doesn’t change unless the user logs out and back in again. The team
discuss the issue and decide that because it’s a feature that only NewTech
employees can use, it’s safe to put it on the backlog to be fixed at another
time.

The app is released and customers begin using it. All of the customers
would like to add their company logos to their emails, so they begin calling
the NewTech service reps and asking for this service. The service reps add
and save the logos, but they don’t see the logos appear on the email config
page. The dev team forgot to let them know about the bug, and the
workaround of logging out and back in again.

Let’s assume that each time a service rep encounters the issue and emails
someone on the dev team about it, five minutes are wasted. If there are 10
service reps on the team, that’s 50 wasted minutes.

Total time wasted to date: 50 minutes

But now everyone knows about the issue, so it won’t be a problem
anymore, right? Wrong! NewTech has hired two new testers, and neither one
knows about the issue. They encounter it in their testing, and ask the original
tester about it. “Oh, that’s a known issue,” he replies. “It’s on the backlog.”

Time wasted: 10 minutes for each new tester to investigate the problem, and
10 minutes for each new engineer to ask the first engineer about it.

Total time wasted to date: One hour and 10 minutes

Next, a couple of new service reps are hired. At some point, they each get
a request from a company to change the company’s logo. When they go to
make the change, the logo doesn’t update. They don’t know what’s going on,
so they ask their fellow service reps. “Oh yeah, that’s a bug,” say the senior
service reps. “You just need to log out and back in again.” Time wasted: 10
minutes for each new service rep to wonder what’s going on, and 10 more
minutes in conversation with the senior service reps.

Total time wasted to date: One hour and 30 minutes

It’s time to add new features to the application. NewTech decides to give
its customers the option of adding a profile picture to their account. A new
dev is tasked with adding this functionality. He sees that there’s an existing
method to add an image to the application, so he chooses to call that method
to add the profile picture. He doesn’t know about the logo bug. When one of
the testers tests the new feature, she finds that profile picture images don’t
refresh unless she logs out and back in again. So she logs a new bug for the
issue. Investigating the problem and reporting it takes 20 minutes.

Total time wasted to date: One hour and 50 minutes

The dev team meets and decides that since customers will see the issue,
it’s worth fixing. The dev who is assigned to fix the issue is a different
developer from the one who wrote the image-adding method (who has since
moved on to another company), so it takes her a while to become familiar
with the code. Time spent fixing the issue: two hours.

Total time wasted to date: Three hours and 50 minutes

The dev who fixed the issue didn’t realize the bug existed for the
company logo as well, so she didn’t mention it to the tester assigned to test
her bug fix. The tester tests the bug fix and finds that it works correctly, so
she closes the issue. Time spent testing the fix: 30 minutes.

Total time wasted to date: Four hours and 20 minutes

When it’s time for the new feature to be released, the testing team does
regression testing. They discover there is now a new issue on the email page:
because of the fix for the profile images, now the email page refreshes when
customers make edits, and the company logo disappears from the page. One
of the testers logs a separate bug for this issue. Time spent investigating the
problem and logging the issue: 30 minutes.

Total time wasted to date: Four hours and 50 minutes

The dev team realizes this issue will have a significant impact on
customers, so the developer quickly starts working on a fix. Now she realizes
the code she is working on affects both the profile page and the email page,
so she spends time checking her fix on both pages. She advises the testing
team to be sure to test both pages as well. Time spent fixing the problem: one
hour. Time spent testing the fixes: one hour.

Total time wasted to date: Six hours and 50 minutes

How much time would it have taken for the original developer to fix the
original issue? Let’s say 30 minutes, because he was already working with
the code.

How much time would it have taken to test the fix? Probably 30 minutes,
because the tester was already testing that page and the code was not yet used
elsewhere.

So, by fixing the original issue when it was found, NewTech would have
saved nearly six hours in work that could have been spent on other things.
This doesn’t seem like a lot, but when considering the number of features in
an application, it really adds up.

And this scenario doesn’t account for lost productivity from interruptions.
If a developer is fielding questions from the service reps all day about known
issues that weren’t fixed because they weren’t customer-facing bugs, it’s hard
for her to stay focused on the coding she’s doing.

The moral of the story is that unless you think that no user, internal or
external, will ever encounter the issue, fix things when you find them!

Chapter 110: The Hierarchy of Quality
When thinking about the different facets of software quality, I found

myself wondering what I would do if I were brought on to a project that had
never had any testing and I needed to start from scratch. Where would I begin
my testing? I thought about what the most important needs are for quality,
and I was reminded of Maslow’s Hierarchy of Needs.

For those who are unfamiliar with this concept, this is a theory in
psychology that all human beings must have certain basic needs met before
they can grow as people. The needs are as follows:

1. Physiological: food, water, shelter

2. Safety: security, property, employment
3. Love and belonging: friendship, family
4. Esteem: respect, self-esteem
5. Self-actualization: becoming the best person one can be

Looking at this list, it’s clear that physiological needs are the most
important. After all, it doesn’t matter whether you have high self-esteem if
you have no water to drink. Each successive need builds on the more
important one before it.

With this in mind, I realized there is a Hierarchy of Quality: certain
conditions of quality that must be met before a team can move on to the next
area of quality. The various facets of quality I mention here and in the next
chapter were inspired by this blog post by Federico Toledo:
https://abstracta.us/blog/software-testing/software-testing-wheel

Here is my perception of where the different areas of quality fall in the
hierarchy, starting with the most important.

1. Functionality and Reliability

https://abstracta.us/blog/software-testing/software-testing-wheel/

These two areas share the most important spot. Functionality means the
software does what it’s supposed to do. This is critical, because without this,
the application might as well not exist. Imagine a clock app that didn’t tell
time or a calculator that didn’t add numbers.

Reliability means the software is available when it’s needed. It doesn’t
really matter whether the app works if a user can’t get to it when they need it.

Once these quality needs have been met, we can move on to the next
level.

2. Security and Performance

Security is important because users need to feel that their data is being
protected. Even applications that don’t have login information or don’t save
sensitive data still need to be protected from things like cross-site scripting,
which might allow a malicious user to gain control of someone else’s device.

Performance is also important, because no one wants to wait 60 seconds
for a web page to load. If an application isn’t responsive enough, users will
go elsewhere.

Now that the application is secure and performant, we can go to the third
level.

3. Usability

This is the level where we make sure that as many users as possible have
a good experience with the application. Usability means an application’s
workflows are intuitive so that users don’t get confused. It also means the
application is internationalized so that users around the world can use it, and
accessible so that users with visual, auditory, or physical differences can use
it as well.

Now that we’ve made our application accessible to as many users as
possible, it’s time to go on to the next level.

4. Maintainability

This is a level of quality that benefits the software team. Maintainability
refers to how easily an application can be updated. Is it possible to add new
APIs or update existing ones? How easy is it to test the system? Is it easy to
deploy new code? Is it easy for other teams to use the code? Is the code clear
and easy to understand?

When software is accessible and easy to use for all end users, and is easy
to work with and maintain for the development team, truly high quality has
been achieved.

Chapter 111: Measuring Quality
The concept of measuring quality can be a hot-button topic for many

software testers. This is because metrics can be used poorly; we’ve all heard
stories about testers who were evaluated based on how many bugs they found
or how many automated tests they wrote. These measures have absolutely no
bearing on software quality. A person who finds a bug in three different
browsers can either write up the bug once or write up a bug for each browser;
having three JIRA tickets instead of one makes no difference in terms of what
the bug is! Similarly, writing 100 automated tests when only 30 are needed
for adequate test coverage doesn’t ensure quality and may actually slow
down development time.

But measuring quality is important, and here’s why: software testers are
to software what the immune system is to the human body. When a person’s
immune system is working well, they don’t think about it at all. They get
exposed to all kinds of viruses and bacteria on a daily basis, and their
immune system quietly neutralizes the threats. It’s only when a threat gets
past the immune system that a person’s health breaks down, and then they
pay attention to the system. Software testers have the same problem: when
they are doing their job really well, there is no visible impact in the software.
Key decision makers in the company may see the software and praise the
developers who created it without thinking about all the testing that helped
ensure that the software was of high quality.

Measuring quality is a key way that we can demonstrate the value of our
contributions. But it’s important to measure well; a metric such as “There
were 100 customer support calls this month” means nothing because we don’t
have a baseline to compare it to. If the number of customer support calls went
from 300 in the first month to 200 in the second month to 100 in the third
month, and daily usage statistics stayed the same, then it’s logical to conclude
that customers are having fewer problems with the software.

Let’s take a look at some ways we can measure various facets of quality.

Functionality

How many bugs are found in production by customers?
A declining number could indicate that bugs are being caught by testers

before going to production.

How many daily active users do we have?
A rising number probably indicates that customers are happy with the

software, and that new customers have joined the ranks of users.

Reliability

What is our percentage of uptime?
A rising number could show that the application has become more stable.

How many errors do we see in our logs?
A declining number might show that the software operations are

generally completing successfully.

Security

How many issues were found by penetration tests and security scans?
A declining number could show that the application is becoming more

secure.

Performance

What is our average response time?
A stable or declining number will show that the application is operating

within accepted parameters.

Usability

What are our customers saying about our product?
Metrics like survey responses or app store ratings can indicate how happy

customers are with an application.

How many customer support calls are we getting?
A rising number of support calls from customers could indicate that it’s

unclear how to operate the software.

Maintainability

How long does it take to deploy our software to production?
If it is taking longer to deploy software than it did during the last few

releases, then the process needs to be evaluated.

How frequently can we deploy?
If it is possible to deploy more frequently than was possible six months

ago, then the process is becoming more streamlined.

There’s no one way to measure quality, and not every facet of quality can
be measured with a metric. But it’s important for software testers to be able
to use metrics to demonstrate how their work contributes to the health of their
company’s software, and the preceding examples are some ways to get
started. Just remember to think critically about what you are measuring, and
establish good baselines before drawing any conclusions.

Chapter 112: Managing Test Data
It’s never fun to start your workday and discover that some or all of your

nightly automated tests failed. It’s especially frustrating when you discover
that the reason why your tests failed was because someone changed your test
data.

Test data issues are a very common source of aggravation for software
testers. Whether you are testing manually or running automation, if you think
your data is set the way you want it and it has been changed, you will waste
time trying to figure out why your test results aren’t right.

Here are some of the common problems with test data:

● Users overwrite one another’s data: I was on a team that had an
API I’ll call API 1. I wrote several automated tests for this API using
a test user. One of the tests in API 1 set the user’s email address. API
1 was moved to another team, and my team started working on API
2. I wrote several automated tests for API 2 as well. Unfortunately, I
inadvertently used the same test user for API 2, and this test user
needed to have a different email address for API 2 than it did for API
1. This meant that whenever automated tests were run on API 1, they
changed the email address of the test user, and then my API 2 tests
would fail.

● The configuration is changed by another team: When teams need
to share a test environment, changes to the environment
configuration made by one team can impact another team. This is
especially common when using feature toggles. One team might
have test automation set up with the assumption that a feature toggle
will be on, but another team might have automation set up with the
expectation that the feature toggle is off.

● Data is deleted or changed by a database refresh: Companies that
use sensitive data often need to periodically scramble or overwrite

that data to make sure no one is testing with real customer
information. When this happens, test users that have been set up for
automation or manual testing can be renamed, changed, or deleted,
causing tests to fail.

● Data becomes stale: Sometimes data that is valid at one point in
time becomes invalid as time passes. A great example of this is a
calendar date. If an automated test needs a date in the future, the test
writer might choose a date a year or two from now. Unfortunately, in
a year or two, that future date will become a past date, and then the
test will fail.

What can we do about these problems? Here are some suggestions:

● Use containers: Using containers like those created with Docker
means you have complete control over your test environment,
including your application configuration and your database. To run
your tests, you spin up a container, run the tests, and destroy the
container when the tests have completed.

● Create a fresh database for testing: It’s possible to create a brand-
new database solely to run your test automation. You can set your
database schema, add only the data you need for testing, create the
database, point your tests to that database, and destroy the database
when you are finished.

● Give each team their own test space: Even if teams have to share
the same test environment, they might be able to divide their testing
by account. For example, if your application has several test
companies, each team can get a different test company to use for
testing. This is especially helpful when dealing with toggles; one
team’s test company can have a feature toggled on while another
team’s test company has that feature toggled off.

● Give each team their own users: If you have a situation where all
teams have to use the same test environment and the same test
account, you can still assign each team a different set of test users.
This way, teams won’t accidentally overwrite one another’s data.

You can give your users names specific to your team, such as “Sue
GreenTeamUser.”

● Create new data each time you test: One easy way to manage test
data is to create the data you need at the beginning of the test. For
example, if you need a customer for your test, you create the new
customer at the beginning of your test suite, use that customer for
your tests, and then delete the customer at the end of your tests. This
ensures that your test data is always exactly the way you want it, and
it doesn’t add bloat to the existing database.

● Use “today+1” for dates in the future: Rather than choosing an
arbitrary date in the future, which will eventually become a date in
the past, you can use an add date operation to add some interval,
such as a day, month, or year, to today’s date. This way, your test
date will always be in the future.

Working with test data can be very frustrating. But with some planning
and strategizing, you can ensure that your data will be correct whenever you
run a test.

Chapter 113: A Question of Time
Time is the one thing of which everyone gets the same amount. Whether

we are the CEO of a company or we are an intern, we all have 1,440 minutes
in a day. I’ve often heard testers talk about how they don’t have enough time
to test, and this can certainly happen when deadlines are imposed without
input from everyone on the team. In this chapter, I tackle the question:

Is it worth my time to automate this task?

Sometimes we are tempted to create a little tool for everything, just
because we can. I usually see this happen with developers more than testers,
but I do see it with some testers who love to code. However, writing code
does not always save us time. When considering whether to do a task
manually or to write automation for it, ask yourself the following four
questions.

Question #1: Will I need to do this task again?

I was once on a team that was migrating files from one system to another
system. I ran the migration tool manually and manually checked that the files
had migrated properly. I didn’t write any automation for this, because I knew
I was never going to need to test it again.

Contrast this with a tester from another team who was continually asked
to check the UI on a page when his team makes updates. He got really tired
of doing this again and again, so he created a script that will take screenshots
and compare the old and new versions of the page. Now he can run the check
with the push of a button.

Question #2: How much time does this task take me, and how much
time will it take me to write the code?

Sometimes test data gets refreshed, which means the information we have
for our test users gets changed. Whenever this happened to me, it would take
about eight hours to manually update all my users. It took me a few hours to

create a SQL script that would update the users automatically, but it was
totally worth my time, because after that, I saved eight hours of work
whenever the data was refreshed.

But there have been other times when I’ve needed to set up some data for
testing and a developer has offered to write a little script to do it for me.
Since I can usually set up the data faster than they can create the script, I
decline the offer.

Question #3: How much time will it take to maintain the automation
I’m writing?

Once, I was testing email delivery and I wanted to write an automated test
that would show that the email had actually arrived in the email test account.
The trouble was that there could be up to a 10-minute delay for the email to
appear. I spent a lot of time adjusting the automated test to wait longer, to
have retries, and so on, until finally I realized it was just faster for me to take
that assertion out of the test and manually check the email account from time
to time.

However, the automated API smoke tests I wrote took very little time to
maintain because the API endpoints changed so infrequently that the tests
rarely needed to change. The first API smoke test I set up took a few days;
but once we had a working model, it became very easy to set up tests for the
other APIs.

Question #4: Does the tool I’m creating already exist?

At one company where I worked, the web team was porting over many
customers’ websites from one provider to another. I was asked to create a
tool that would crawl through the sites and locate all the pages, and then
crawl through the migrated site to make sure all the pages had been ported
over. I created the tool, and shortly thereafter I discovered that web-crawling
software already exists!

Nonetheless, I didn’t feel like I’d wasted my time creating the tool. I had
the time to do it, it was really fun to do it, and I learned a lot about coding
that helped me with my other test automation. So, sometimes it may be worth

“reinventing the wheel” if it will help you or your team.

The Bottom Line: Are You Saving or Wasting Time?

All of these questions boil down to one major consideration: whether
your task is saving or wasting time. If you enjoy coding, you may be tempted
to write a fun new script for every task you need to do; but this might not
always save you time. Similarly, if you don’t enjoy coding, you might insist
on doing repetitive tasks manually; but using a simple tool could save you a
ton of time. Always consider the time-saving result of your activities!

Chapter 114: Why the Manual Versus
Automation Debate Is Wrong

I’m tired of the whole “manual versus automated testing” discussion.
Some people describe automated testing as the cure for bad code everywhere
and they pity the poor manual tester who has no technical skills. Meanwhile,
there are advocates who say that automation is merely a panacea and that
automation code should be used only for simple tools that will aid the manual
tester, who is the one who really knows the product.

In my opinion, this debate is unnecessary for two reasons:

1. “Manual” and “automated” are arbitrary designations that don’t
really mean anything. If I write a Python script that will generate
some test data for me, am I now an automation engineer? If I log in
to an application and click around for a while before I write an
automated test, am I now a manual tester?

2. The whole point of software testing, to put it bluntly, is to do as
much as we can to ensure that our software doesn’t suck. We often
have limited time in which to do this. So we should use whatever
strategies we have available to test as thoroughly as we can, as
quickly as possible.

Let’s take a look at three software testers: Marcia, Cindy, and Jan. Each
of them is asked to test the Super Ball Sorter.

Marcia is very proud of her role as a “software developer in test.” When
she’s asked to test the Super Ball Sorter, she thinks it would be really great to
create a tool that will randomly generate sorting rules for each child. She
spends a couple of days working on this, and writes an automated test that
will set those generated rules, run the sorter, and verify that the balls were

sorted as expected. Then she sets her test to run nightly and with every build.

Unfortunately, Marcia didn’t take much time to read the acceptance
criteria, and she didn’t do any exploratory testing. She completely missed the
fact that it’s possible to have an invalid set of rules, so sometimes her
randomly generated rules are invalid. When this happens, the sorter returns
an error, and because she didn’t account for this, her automated test fails.
Moreover, it takes a long time for the test to run because the rules need to be
set with each test and she needs to build in many explicit waits for the
browser to respond to her requests.

Cindy is often referred to as a “manual tester.”. She doesn’t have any
interest in learning to code, but she’s careful to read the acceptance criteria
for the Super Ball Sorter feature and she asks good questions of the
developers. She creates a huge test plan that accounts for many different
variations of the sorting rules and she comes up with a number of edge cases
to test. As a result, she finds a couple of bugs, which the developers then fix.

After she does her initial testing, she creates a regression test plan, which
she faithfully executes at every software release. Unfortunately, the test plan
takes an hour to run, and combined with the other features that she is
manually testing, it now takes her three hours to run a full regression suite.
When the team releases software, they are often held up by the time it takes
for her to run these tests. Moreover, there’s not enough time for her to run
these tests whenever the developers do a build, so they are often introducing
bugs that don’t get caught until a few days later.

Jan is a software tester who doesn’t concern herself with what label she
has been given. She pays attention during feature meetings to understand how
the Super Ball Sorter will work long before it’s ready for testing. Like Cindy,
she creates a huge test plan with lots of permutations of sorting rules. But she
also familiarizes herself with the API call that’s used to set the sorting rules,
and she starts setting up a collection of requests that will allow her to create
rules quickly. With this collection, she’s able to run through all her manual
test cases in record time, and she finds a couple of bugs along the way.

She also learns about the API call that triggers the sorting process and the
call that returns data about what balls each child has after sorting. With these

three API calls and the use of environment variables, she’s able to set up a
collection of requests that set the rules, trigger the sorting, and verify that the
children receive the correct balls.

She now combines features from her two collections to create test suites
for build testing, nightly regression testing, and deployment testing. She sets
up scripts that will trigger the tests through her company’s CI tool. Finally,
she writes a couple of automated UI tests that will verify that the sorter’s
page elements appear in the browser correctly, and she sets them to run
nightly and with every deployment.

With Jan’s work, the developers are able to quickly discover whether
they’ve made any changes in logic that cause the Super Ball Sorter to behave
differently. With each deployment, Jan can rest assured that the feature is
working correctly as long as her API and UI tests are passing. This frees her
to do exploratory testing on the next feature.

Which of these testers came up with a process that more efficiently tested
the quality of the software? Which one is more likely to catch any bugs that
come up in the future? I am fairly certain it will be Jan! Jan isn’t simply a
“manual tester,” but she isn’t a “software developer in test” either. Jan spends
time learning about the features her team is writing and the best tools for
testing them. She doesn’t code for coding’s sake, but she doesn’t shy away
from code either. The tools and skills she utilizes are a means to ensure the
highest-quality product for her team.

Chapter 115: Tear Down Your Automation
Silos

On many software teams, developers are responsible for writing unit and
component tests and software testers are responsible for writing API and UI
tests. It’s great that teams have so much test coverage, but problems can arise
when test automation is siloed in this way. For one thing, developers and
software testers often don’t know how one another’s tests work, which means
if a developer makes a change that breaks a test, they don’t know how to fix
it. And if only one person on the team knows how the deployment smoke
tests work, then that person will need to be on call for every single
deployment.

I recommend that every developer and software tester on the team knows
how to write and maintain every type of test automation for their product.
Here are three good reasons to break down automation silos:

● No more test overlap: If automated tests are siloed between
developers and testers, it’s possible that work may be duplicated.
Why have several UI tests that exercise business logic when there
are already integration tests that do this?

● No more bottlenecks: Testers are often required to create and
maintain all the UI automation while they’re doing all the testing. If
a developer pushes a change that breaks a UI test, it’s often up to the
tester to figure out what’s wrong. If developers know how the UI
automation works, they can fix any tests they break, and even add
new tests when needed, allowing testers to finish testing new
features.

● Knowledge sharing: Software testers have a very special skill set—
they can look at application features and think of ways to test the
limits of those features. By learning from testers, developers will
become better at testing their own code.

Developers have a very special skill set as well: they are very
familiar with good coding patterns. Many software testers came to their
vocation from diverse backgrounds and don’t always have formal
training in coding. They can benefit from learning clean coding skills
from developers.

By breaking down automation silos and taking responsibility for test
automation together, software developers and software testers can benefit
from and help one another, speeding up development and improving the
quality of the application.

Chapter 116: Stop Writing So Many UI
Tests

If you were to guess the importance of various types of automated tests
by looking at the number of tutorials and articles about them on the Web,
you’d think that UI tests were the most important. But this is not the case. So
much of an application can be tested through other means, especially API
tests. API tests are faster and much less flaky than UI tests, and they’re easier
to write as well! Following are four types of tests that are better suited for
API testing.

Login Tests

It’s easy to cycle through all kinds of username and password
combinations with API tests. The response time from a POST to a login
endpoint is lightning fast, as opposed to a UI test which has to wait for the
username and password fields to be populated and wait for the login response
to reach the browser. To prove this, I created a Postman collection that had
16 login tests with various username and password combinations. The 16
tests ran in less than three seconds! Imagine how long the equivalent UI tests
would take.

That said, you should have two automated UI tests for login: one that
validates that the login page looks correct and the user is able to log in, and
one that validates that an appropriate error message is displayed when the
user attempts to log in with bad credentials.

CRUD Tests

When you’re testing CRUD functionality, you’re testing how your
application interacts with the underlying data store. This is best done at the
API level. It’s easy to create GET, POST, PUT, and DELETE tests using a
tool like Postman. You can assert on both the response codes and the body of
the response (if any), and you can also do GETs to assert that your POSTs,
PUTs, and DELETEs have been saved correctly to the database.

The only UI tests you need in this area are one that demonstrates that
form fields can be filled out and submitted, and one that shows that data is
displayed correctly on the page.

Negative Tests

API testing is great for negative tests because not only can you run
through all kinds of negative scenarios very quickly, you also can run tests
that aren’t possible in the UI. For example, let’s say your form has a required
field. In the UI, you can’t test whether you can submit a new record without
that required field, because the UI simply won’t let you. But in the API, you
can do a POST without the required field and verify that you are getting a
400-level response. API testing is also great for checking application security
because malicious users are likely to try to attack the application at this level.

Here is just a sampling of the types of negative tests you can run with API
testing:

● Sending in an inaccurate URL
● Trying a request without appropriate authentication
● Testing for IDOR (Insecure Direct Object Reference)
● Sending in incorrect headers
● Sending in a request without a required field
● Trying a request with a field value that violates type or length

constraints
● Verifying that the correct 400-level error is displayed when a request

is invalid

For UI negative testing, you’ll simply want to verify that appropriate
errors are displayed on the page when you leave a required field blank or
violate a field constraint. Everything else can be covered by API tests.

Tests of Complicated Business Logic

If an area of your application requires extensive data setup and
complicated business logic, it’s much easier to test with an API than with the
UI. Let’s examine this with the Super Ball Sorter. Setting up the rules
through the UI in an automated test would be tedious; assuming each child

had a dropdown picker for size and color, you’d need to do a lot of element
selection. But if the Super Ball Sorter had an API that could set all the rules
for the children in a single POST, it would take milliseconds to prepare the
test.

Similarly, after the sorting has been run, a UI test would need to grab all
the responses on the page to validate that the balls have been sorted correctly;
instead, an API could do a GET request for each child and validate that the
appropriate balls are returned. Four GET requests will most likely be returned
and validated before a UI test could validate a single child’s values.

Now that you have seen the many ways that API tests can be used, I hope
you will take the time to look at your current UI test suite to see which tests
could be shifted to API testing. Your automation suite will be faster, more
reliable, and easier to maintain as a result!

Chapter 117: Five Reasons You’re Not
Ready for Continuous Deployment

Continuous deployment (CD) is often seen as the holy grail of software
development. A developer checks in code, and it is miraculously deployed
and tested in the QA, staging, and production environments, without needing
any human intervention at all. This sounds great—and it is, but only if you
are ready for it! Here are five reasons your team might not be ready for
continuous deployment.

Reason #1: You Don’t Have Enough Test Coverage

Sometimes teams can be so excited to set up continuous deployment that
they don’t pay attention to what they are testing. It’s great to have tests pass
and deployments automatically go all the way to production, but if you are
missing tests for important functionality, you’re going to need to remember
to do manual testing with every deployment. Otherwise, something could
break and the automated tests won’t pick up on the problem.

The remedy: make sure you have all the tests you need before you set up
CD.

Reason #2: Your Tests Are Flaky

If your tests aren’t reliable, you are going to get all sorts of false failures.
With CD set up, this means deployments will fail. If your developers are
trying to deploy to the QA environment but they can’t get their code there
because of your flaky tests, they will be annoyed. And no one wants to have
to stop what they are doing to investigate why your automation failed in
production.

The remedy: make sure your tests are reliable. If there are flaky tests, pull
them out of the test suite until you can fix them, and make sure you are
manually testing anything that’s no longer covered by automation.

Reason #3: Your Tests Take Too Long

UI tests can take a very long time. If you really want to set up CD, you’ll
have to consider how much time the tests are taking. If Developer A checks
in code that kicks off the tests and then has to wait an hour to find out
whether the tests passed, and meanwhile Developer B checks in code that
now has to wait until the first deployment has completed, soon you will have
a mess on your hands.

The remedy: make sure your tests are fast. See which tests you can
shorten through strategies such as switching to API tests for testing backend
logic, setting up your test data ahead of time, using API and other services
calls to set up conditions for tests, running tests in parallel, and eliminating
redundant tests.

Reason #4: You Don’t Understand the Deploy Process

Having CD set up won’t be helpful at all if you and your team don’t
understand how it works. When things go wrong with a critical deployment,
you don’t want to have to find someone in DevOps to help you diagnose the
issue. That will waste the DevOps engineeer’s time and cause stress for
everyone on the team.

The remedy: make sure everyone on the team understands the
deployment process. Learn how to configure the deployments, what common
errors mean, how to fix a hung deploy, and so on. Take turns monitoring the
deployments and solving problems so that you aren’t dependent on one team
member who can then never take a vacation.

Reason #5: You Don’t Have Alerting Set Up

Just because your deployments are now automatic doesn’t mean you can
sit back, relax, and never think of them again! Sometimes your tests will fail,
sometimes your connections to dependencies won’t get configured properly,
and sometimes an unusual situation will happen that will fail the deployment.
You don’t want to find this out from your CEO, or someone in DevOps, or
your customers!

The remedy: make sure you have alerting and paging set up when
deployments fail. You could have the person who made the code change get
paged when there’s a failure, or you could have everyone on the team take
turns being the one on duty for that week. Make sure everyone takes their
paging seriously; if they’re on call for a week where they’re going to be on
vacation, they should find someone to substitute for them.

Continuous deployment, when done correctly, is a valuable tool that
makes it easier for teams to quickly produce quality software. But be sure
you are completely ready for this step by taking an honest, objective look at
these five reasons with your team.

Part XII: Soft Skills for Testers

Chapter 118: Ask Your Way to Success
Twelve years ago I didn’t know how to use a Windows computer. I didn’t

know how the filesystem worked. I didn’t know what right-clicking on a
mouse did. Today I am a principal engineer, managing the quality efforts of
the company I work for. How did I get here from there?

I asked a lot of stupid questions.

Most people are reluctant to ask questions because they are afraid to look
ignorant. But I maintain that the best way to learn anything quickly is to ask
questions when you don’t understand what’s going on.

Here are six ways that asking questions improves your knowledge and the
health of your company:

1. Questions give others an opportunity to help you, which helps them
get to know you better and establishes rapport.

At my first official testing job, I was working with hotshot
developers, all of whom were at least a decade and a half younger than I
was. It was embarrassing having to admit that I didn’t know how to reset
a frozen iPhone or find the shared drive in File Explorer, but I asked
those questions anyway, I remembered the answers, and I showed my
co-workers that I was a fast learner.

2. Questions help developers discover things they may have missed.

On countless occasions when a developer has been demonstrating a
feature to me, I’ll ask a question like “But what if there are no records
for that user?” or “What if GPS isn’t on?” and they will suddenly realize
there is a use case they haven’t handled.

3. Questions keep everyone honest.

I have worked with test engineers who toss around terms and phrases

like “backend call” and “a different code path” without actually knowing
what they are talking about. Asking an engineer to clarify what they
mean ensures that they do the work to find the answer. And when they
get their answer, I get my answer as well.

4. Questions give you an opportunity to clear things up in your head.

You may have heard the expression “rubber duck debugging,” which
occurs when a developer is advised to explain their coding problem to
an inanimate object, and in the process of explaining they come up with
their answer. I think this method works well when you’re asking
questions. I have found that sometimes just formulating the question out
loud while I’m asking it clears things up for me.

5. Questions clarify expectations.

Sometimes I have felt silly asking things like “You want me to test
this on the latest build, right?” But every now and then I discover that
there’s been a miscommunication, and I’d much rather find out about it
before I start testing than after I’ve been testing the wrong thing for an
hour.

6. Questions clarify priorities.

Many times I’ve asked, “Why are we adding this feature?” There is
almost always a good reason, but the discussion helps the team
understand what the business use case is, which helps the developers
decide how to design their solution.

While it’s good to ask questions, don’t ask questions that you can find the
answers to by using a search engine (e.g., “How do I find the UDID of a
device using iTunes?”) or by going back and reading your email (e.g., “What
day did we decide on for the code freeze?”). Asking these types of questions
results in wasted time for everyone!

In summary, asking might make you feel silly in the short run, but it will
make you and your team much smarter in the long run. And hopefully it will
create an atmosphere in which others feel comfortable asking questions as

well, improving teamwork for everyone!

Chapter 119: Seven Excuses Software
Testers Need to Stop Making

Recently I read an interesting book titled Extreme Ownership. Written by
two Navy SEAL officers, it describes the concept of taking responsibility for
every facet of your job, even the things you feel you have no control over. If
one of their soldiers made a mistake, the officers would take responsibility
because they could have trained the soldier better. If their commander made a
poor decision, the officers would take responsibility for that as well because
they could have “managed up” and provided information that would have led
to a better decision. When everyone exercises extreme ownership, a culture
of excellence and achievement is the result.

Extreme ownership can be applied to any career, including software
testing! Yet I often hear software testers give a number of excuses for not
applying this concept to their work. Excuses keep us from taking full
ownership of our work and from being taken seriously. Following are seven
excuses that software testers need to stop making.

Excuse #1: I don’t know how the feature works.

All too often, testers simply follow the meager directions left for them by
the developer in the software story, without having any idea what they are
doing. For example: “Run this SQL query and verify the result is 1.” Why?
What information is this query obtaining? How do you know this answer is
the right one? If it turns out there is a bug related to this feature, how can you
possibly say you’ve tested it?

When you are presented with a story to test that you don’t understand,
start asking questions. If the developer can’t explain the feature to you, find
someone who can. Restate the information you are given to make absolutely
sure you understand it correctly. Ask for the information to be presented in a
way that makes sense to you.

Many times I have uncovered bugs in a feature before I started testing,

simply by asking questions about how the feature works!

Excuse #2: There’s no way to test the feature.

Really? There’s no way to test the feature? Then how does the developer
know the feature is working? Are they just sending it to you and hoping for
the best? There must be some way for your developer to know their code is
working. What is that way? Can they show it to you?

Sometimes I am unable to test some features myself because I don’t have
access to the backend system that is being used in the feature. When this is
the case, I make sure to work with the developer and have them show me that
the feature is working. Then I can ask them to try various test cases while I
watch so that we are pair-testing the feature. In this way, we can uncover any
bugs that may exist.

Excuse #3: The developer coded it incorrectly.

At times I have seen instances when a developer misunderstood the
requirements of the feature to be built and created it incorrectly. This is why
it’s important for everyone on the team to understand the requirements and
ensure that acceptance criteria are included in the story. If you test the story
based solely on what the developer tells you and don’t verify exactly what
was supposed to be built, then the fault lies with you. You are the tester—
usually the last line of defense before the product goes to the customer. Make
sure the customer is getting the right thing!

Excuse #4: The other tester on my team missed the bug.

Even the best software testers miss a bug now and then. That’s why it’s
important to have at least two sets of eyes on every feature. I once set a
policy on my team that when one tester was finished testing a feature, a
different tester would be asked to test the feature in the next environment.
The week after I instituted this policy, one of my co-workers found two bugs
that I missed!

If you are the only tester in your company, set up a “bug hunt” where
everyone in the company looks for bugs. Don’t be embarrassed if someone

finds something you missed; when we test the same thing over and over
again, we can sometimes develop inattentional blindness.

Excuse #5: There wasn’t enough time to test.

Let’s face it: there will never be enough time to test everything you want
to test. Software developers have time constraints too; they would probably
really like to refactor their code a few more times before they hand it over to
you, but they are working with a deadline just as you are. So, instead of
making excuses, test the most important things and manage your time wisely.

Excuse #6: If I log the bug I found in production, I’ll be asked why I
didn’t find it sooner.

Some managers blame testers for finding bugs in production, but these
managers are misguided. It’s up to us to educate our team about what testers
do. We simply can’t find every bug; there are too many ways that software
can go wrong. What we can do is report what we find as soon as we find it,
and keep an eye out for similar bugs next time. If you don’t report that bug in
production, it will go unfixed, and the next person to find it will be a
customer or the CEO of your company!

Excuse #7: I don’t know how to code.

Software development has changed significantly over the past two
decades. Companies used to release software every six months, so testers had
tons of time to do regression testing. Now software is released every week or
two. It’s simply not possible to manually test an entire application during that
time frame. This is why automation is necessary, and why you need to learn
how to automate!

You don’t have to take a college course in Java to learn how to code
(although that is a fine idea if you have the time). All coding languages run
on some very simple logical principles that are easy to understand. The only
tricky thing is the syntax of whatever language is being used, and the more
you expose yourself to the code, the more you will understand.

If there’s no test automation at your company, see whether you can get

one of your developers to write some tests. If you have software testers who
are already writing automation at your company, ask them to walk you
through their tests. Learn how to make a simple change to an automated test,
such as changing an assertion that says “true” to one that says “false”. Copy a
test that verifies the value of a text field, and see whether you can change it
so that it verifies the value of a different text field. Learn how your
company’s version control system works, and see whether you can submit a
code change for your team’s approval.

Take small steps! You don’t have to learn it all at once. Think of learning
code as learning a new language. When you learn a new language, no one
expects you to be fluent right away. You learn a few phrases and keep using
them, and you gradually add more.

Software testing is such a valuable profession, but too often companies
take testers for granted. By applying the principles of extreme ownership and
eliminating excuses from your vocabulary, you will come to be seen as an
indispensable asset to your company.

Chapter 120: Six Testing Personas to Avoid
If you are working for a company that makes software for end users, you

have probably heard of user personas. A user persona is a representation of
one segment of your application’s end users. For example, if you worked for
a company that made a website for home improvement supplies, one of your
user personas might be New Homeowner Nick, who has just purchased his
first home and might not have much experience fixing small things in his
house. Another persona might be Do-It-Yourself Dora, who has lots of
experience fixing everything in her home herself.

It occurred to me recently that there are also testing personas. But unlike
our user personas, these personas are ones we want to avoid! Read on to see
whether one of these personas applies to you.

Persona #1: Test Script Ted

Ted loves running manual test scripts and checking them off when they’re
completed. It gives him a feeling of satisfaction to see tests pass. He doesn’t
particularly care whether he doesn’t understand how his application works;
he’s just satisfied to do what he’s told. But because he doesn’t understand
how the application works, he sometimes misses important bugs. If he sees
something strange but it’s not addressed in the test plan, he just lets it slide.
His job is to test, not figure things out!

Persona #2: Automation Annie

Annie considers herself an automation engineer. She thinks manual
testing is a colossal waste of her time. She’d rather get into the hard stuff:
creating and maintaining automated tests! When a new feature is created, she
doesn’t bother to do any exploratory testing; she’ll just start coding, and she
figures her great automation will uncover any issues.

What Ted and Annie have in common:

Ted and Annie are making the same mistake for different reasons; they

are not taking the time to really learn how their application works. They’re
both missing bugs because of a lack of understanding; Ted doesn’t
understand the code that makes the features work and Annie doesn’t
understand the application’s use cases.

How not to be Ted or Annie:

To be a thorough tester, it’s important to take the time to understand how
your features work. Try them out manually; explore their limits. Look at the
code to see whether there are other ways you might test the features. Ask
questions when you see things that don’t make sense.

Persona #3: Process Patty

Patty is passionate about quality. She likes things to work correctly. But
she likes having processes and standards even more! She’s got test plans and
matrices she’s expecting her team to follow precisely. Regression testing
must be completed before any exploratory testing is done, and there are
hundreds of regression tests to be run. The trouble is, with releases happening
every two weeks there’s no time to do any exploratory testing. There’s no
time to stop and think about new ways to test the product, or what might be
missing. The team needs to get all those regression tests completed!

Persona #4: Rabbit Hole Ray

Ray is passionate about quality too; he doesn’t want any bug to go
unnoticed. So when he sees something strange in the application when it runs
on IE10, he’s determined to find out what’s wrong! He will take days to
investigate, looking at logs and trying different configuration scenarios to
reproduce it. He doesn’t want to be bothered with the standard regression
tests that he’s leaving undone as the feature is being released. And he doesn’t
care that only .05% of their customers are using IE10. He’s going to solve the
mystery!

What Patty and Ray have in common:

Patty and Ray are both wasting time. They are focused on something
other than the primary objective: releasing good software on time with a

minimum of defects. Patty is so caught up in the process that she doesn’t see
the importance of exploratory testing, which could find new bugs. And Ray is
so obsessed with that elusive bug he’s exploring that he’s ignoring important
testing that would impact many more users.

How not to be Patty or Ray:

When testing a new feature or regression testing existing ones, it’s
important to think about which tests will have the biggest impact and plan
your testing accordingly. Be careful not to get too caught up in processes, and
if that elusive bug you’re searching for won’t be that impactful to end users,
let it go.

Persona #5: Job Security Jim

Jim’s been working at his current position for years. He knows the
application like the back of his hand. He’s the go-to guy for all those
questions about how the most ancient features behave. He knows there’s no
way the company will let him go; that would mean they’d lose all his
knowledge! So he doesn’t feel like there’s any reason to learn new skills.
What he knows has served him just fine so far. Who needs to waste time after
work learning the latest programming language or the newest testing tool?

Persona #6: Conference Connie

Connie is so excited about tech! She loves to hear about the latest testing
techniques and development trends. She signs up for webinars, goes to
conferences, reads blog posts, and takes courses online. She knows a little
about almost everything! But she has never actually implemented any of the
new things she learns. She’s so busy going to conferences and webinars that
she barely has time to do her regular testing tasks. And besides, trying things
out is a lot of work. It’s easier to just see how other people have done it.

What Jim and Connie have in common:

Jim and Connie seem like total opposites at first: Jim doesn’t want to
learn anything new and Connie wants to learn everything new. But they
actually have the same problem: they are not growing as testers. Jim is

content to do everything he has already learned and doesn’t see any reason to
learn anything more. But he could be in for a shock one day if his company
decides to rewrite the software and he suddenly needs a new skill. And
Connie has lots of great ideas, but great ideas don’t mean anything unless you
actually try them out. Her company isn’t benefiting from her knowledge,
because she’s not putting it to use.

How not to be Jim or Connie:

It’s important to keep your testing skills fresh by learning new languages,
tools, and techniques. You don’t have to learn everything under the sun; just
pick the things that you think would be most beneficial to your current
company, learn them, and then try to implement them in one or two areas.
Your teammates will be thankful for the new solutions you introduce, and
you’ll be developing marketable skills for your next position.

Be a Great Tester, Not a Persona!

We all become some of these personas now and then. But if we can be
aware of them, we can catch ourselves if we start to slip into Automation
Annie or Rabbit Hole Ray, or any of the others. Great testers learn their
application better than anyone else, they make good choices about what to
test and when, and they keep their skills updated so that their testing keeps
improving.

Chapter 121: How to Train Your Dev
Training your dev is really about training yourself. A more accurate (but

much less catchy) title for this chapter would be “How to Work and
Communicate Effectively in Order to Facilitate a Productive Relationship
with Developers.”

There are two steps to having a good working relationship with your
developer: 1) developing good work habits, and 2) communicating clearly.
We’ll take a look at these two steps in detail.

Good Work Habits

● Make sure you have completely read a feature’s acceptance criteria
and all available notes and documents. This can help prevent
unnecessary and time-consuming misunderstandings.

● Ask questions if there is anything in the feature that you don’t
understand. Don’t make potentially incorrect assumptions.

● Document your work. This is especially helpful when you have
found an issue and the developer needs to know what browser you
were using or what server you are pointing to.

● Check twice to make sure you really have a bug. Perhaps what you
are seeing is a configuration problem, a connection problem, or
simply user error.

Clear Communication

● Learn your dev’s preferred communication style and use it. For
example, some developers like to hear about issues immediately, and
testing and bug fixing become a collaboration. Other developers
prefer to hear right away only if the issues are big ones, and would
rather have you document the smaller issues for a later conversation.

● Ask your dev to walk you through any confusing features. They will
be happy to explain things to you because they know that any
information they give you at the outset of testing will save
misunderstandings later.

● Be kind when reporting issues. Your dev has worked hard on the
feature they delivered, and we all know it’s no fun to have our work
criticized.

● Give feedback in the form of a question. This can soften the blow of
finding a bug. For example: “I noticed that when I clicked the Save
button, I wasn’t taken to the next page. Is this as designed?”

● Let your dev know what they can do to help you do your job more
efficiently. A good example of this is asking them not to assign an
issue to you until it is actually in the test environment so that you
won’t inadvertently start testing it before the code is there.

A good working relationship with your dev is all about trust! You trust
that your dev has completed the work they’ve assigned to you, they’ve done
some of their own testing before the handoff, the work is in the test
environment and ready for testing, and they’ve let you know about any
potential areas of regression to test.

In turn, your developer trusts that you have tested everything in the
acceptance criteria, you’ve done regression testing, you’ve tested with
various security levels and on various browsers, the issues you’ve found are
legitimate, and you will clearly communicate what you tested and what issues
you found.

Train yourself to work effectively and communicate clearly, and you will
create this level of trust in your relationship with all the developers you work
with!

Chapter 122: Get Organized for Testing
Success

Before I discovered the joy of software testing, I had a brief career as a
professional organizer. I organized homes, small businesses, and nonprofit
organizations. I’ve always loved getting organized because it helped me
accomplish my goals more quickly. The same is true with software testing!
Being organized as a tester means you have easy access to your tools, test
plans, and resources, which frees you up to do more creative thinking and
exploratory testing. In this chapter, I’ll outline four of my strategies for
organizing.

Strategy #1: Avoid Reinventing the Wheel

At various times in my testing career, I’ve needed to test a file upload
feature. I made sure to test with different file types: PDF, JPEG, PNG, and so
on. Sometimes it was hard to find the file type I was looking for; for instance,
it took me a long time to locate a TIFF file.

After I had tested file uploading a couple of times, I realized it would be a
good idea to save all the files I’d found in a folder called File Types for
Testing. This way, the next time I needed to test file uploads I would have all
my files ready to go.

Recently I expanded my File Types for Testing folder to include some
very large files. Now when I need to test file size limits I don’t have to waste
a second looking for files to use.

Similarly, I have a folder of bookmarked web pages which contains all
the tools I use regularly, such as a character count tool and a GUID generator.
This way, I don’t need to spend valuable time conducting a search for the tool
or asking a co-worker to remind me where the tool is.

Strategy #2: Be Consistent with Naming and Filing

Every now and then someone will ask me how I tested a feature, or I’ll
ask myself the question because I need to do some regression testing. If I
don’t remember what I named my test plan when I saved it or what folder I
saved it to, I’ll waste a lot of time looking for it. For this reason, I name all
my test plans consistently: the name begins with the JIRA ticket number, and
then I include a brief description of the feature—for example, “W-246- File
resizing”.

When I first started consistently naming my test plans, I just named them
with the description, but that made them difficult to find because I could
never remember what verbiage I used: was it “Resizing files” or “File
resizing”? Then I named them with just the JIRA ticket number, but locating
them required two steps: first I needed to remember the ticket number by
searching through JIRA, and then I needed to look up the test plan. Naming
the test plan with both the number and the description gives me two ways to
find the plan, which speeds up the process.

I also organize my test plans by feature. For example, all my test plans
associated with messaging go in a Messaging folder. And all my test plans
associated with file uploads go in a File Upload folder.

Strategy #3: Have a Place for Shared Tests

As much as I love not reinventing the wheel myself, I also enjoy helping
others avoid doing so. When I was a tester on a development team, I created a
shared workspace where I put all our saved collections. The collections were
organized by API, so they were easy to find. Really long collections were
organized in subfolders by endpoint or by topic. This was helpful, not just for
the other testers on my team, but also for the developers; they mentioned to
me that it was much faster for them to reproduce and fix an issue when they
could use our saved requests, instead of setting up their own.

On that same team, we saved all our regression test plans in Confluence.
They were organized by version number for major releases, and by API and
date for smaller releases. We used Confluence because it was easy to
collaborate on a test plan; we added our name to the tests we ran so that we
could see who was working on each section and which tests had been
completed. Saving the test plans this way made it easy to go back and see

what we tested, as well as easy to duplicate and edit a plan for the next
release.

Strategy #4: Leave Yourself Notes

Whenever I get a new piece of information, such as a test user’s
credentials or a URL for a test environment, I say to myself, “Am I likely to
need this information again?” If so, I make sure I add it to my notes. I used to
use a notebook for notes like this, but now I use Notepad++. Keeping this
information in saved files makes it easier to locate, instead of searching back
through pages of a notebook. I keep all my Notepad++ files in the same
folder, and I give them recognizable names, such as “Test Users” or “Email
Addresses for Testing”.

As in any company with more than one employee, we share files, and
sometimes other people don’t file things in the places where I would expect
them. After getting really frustrated trying to find the same information over
and over again, I created a spreadsheet for myself called “File Locations”.
This spreadsheet has a column for what I would have named the file, and then
a column with a link to get to the file. This has saved me valuable time
searching for files, and freed me from frustration.

When I have a piece of information that I need to save, but I know I will
only need it temporarily, I save it in a Notepad++ file called “Random
Notes”. I periodically delete information that is no longer needed to keep the
file from getting too long and hard to read.

Organizing files, test plans, and information takes a little bit of time at
first, but with practice it becomes second nature. And it saves you the time
and frustration of constantly searching for the information you need. With the
time you save, you can do more exploratory testing, which will help find new
bugs; and you can write more test automation, which will free you up to do
even more exploratory testing!

Chapter 123: Time Management for Testers
It’s a perennial problem: there’s so much testing to be done and not

enough time in which to do it. I already wrote about this in Chapter 102,
which talks about how to prioritize your testing and how to work with your
team to avoid getting into situations where there’s not enough testing time.
But in this chapter I’m taking a more general view of time management: how
can we structure our days so that we don’t feel continually stressed by the
many projects we work on? Here are eight time management strategies that
work for me.

Strategy #1: Know Your Priorities

I had a biweekly one-on-one meeting with a previous manager, and in
each meeting he asked me, “What’s the most important priority for you right
now?” I love this question because it helps me focus on what’s most
important. You may have 10 different things on your to-do list, but if you
don’t decide which things are the most important, you will always feel like
you should be working on something else, which keeps you from focusing on
the task at hand. I like to think about my first, second, and third priorities
when I am planning what to work on next.

How do you decide what’s most important? One good way is to think
about impacts and deadlines. If there is a release to production that is going
out tonight and it requires some manual testing, preparing for that release is
going to be your top priority because customers will be impacted by the
quality of the release. If you are presenting a workshop to other testers in
your company and that presentation is tomorrow, you’re going to want to
make that preparation a priority. If you evaluate each task in terms of its
impact and due date, it will become clearer how your priorities should be
ordered.

Strategy #2: Keep a To-Do List

Keeping a to-do list means you won’t forget about any of your tasks. It

does not mean that all your tasks will get done. When I finally realized that
my to-do list would never be completed, I was able to stop worrying about
how many items were on it. I have found that the less I worry about how
many things are on my to-do list, the more items I can cross off from it.

Strategy #3: Use Quiet Times for Your Deepest Work

One of the best things about working for a remote-friendly company is
that our employees are spread over four time zones. Since I am in Eastern
Standard Time, our daily meetings don’t start until late morning in my time
zone. This means the first couple of hours of my workday are free of
interruptions. So I use those hours to work on projects that require
concentration and focus. My teammates on the West Coast do the opposite,
using the end of their workday for their deepest work because the rest of us
have already stopped for the day.

Even if you are in the same time zone as your co-workers, you can still
carve out some quiet time to get your most challenging work done. Maybe
your co-workers take a long lunch while you choose to eat at your desk. Or
maybe you are a morning person and get into the office before they do. Take
advantage of those quiet times.

Strategy #4: Minimize Interruptions

It should come as no surprise to anyone that we are interrupted with
notifications on our phones and laptops several times every hour. Every time
one of those notifications comes through, your concentration is broken as you
take the time to look at the notification to see whether it’s important. But how
many of those notifications do you really need? I’ve turned off all
notifications except text messages and work-related messages on my phone.
Any other notifications, such as Linked In, Facebook, and email, are not
important enough to cause me to break my concentration.

On my laptop, I’ve silenced all my notification sounds except one: the
notification that I’m about to have a meeting. That way, I have fewer sounds
disrupting my concentration.

Another helpful hint is to train your team to send you an entire message

all at once, instead of sending messages like this:

9:30 Fred: Hi
9:31 Fred: Good morning
9:31 Fred: I have a quick question
9:33 Fred: Do you know what day our new feature is going to

production?

If you were to receive the messages in the preceding example, your work
would be interrupted four times in just four minutes. Instead, ask your co-
workers to do this:

9:33 Fred: Good morning! I have a quick question for you: do you know
what day our new feature is going to production?

In this way, you are only interrupted once. You can answer the question
quickly and then get back to work.

Strategy #5: Set Aside Time for the Big Things

Sometimes projects are so big that they feel daunting. You may have
wanted to learn a new test automation platform for a long time, but you never
seem to find the time to work on it. While you know that learning the new
platform will save you and your colleagues time in the long run, it’s not
urgent, and the course you’d like to take will take you 10 hours to complete.

Rather than trying to find a day or two to take the course, why not set
aside a small amount of time every day to work on it? When I have a course
to take, I usually set aside 15 or 20 minutes at the beginning of my workday
to work on it. Each day I chip away at the coursework to be done, and if I
keep at it consistently, I can finish a 10-hour course in six to eight weeks.
That may seem like a long time, but it’s much better than never starting the
course at all!

Strategy #6: Ask for Help

We testers have a sense of personal pride when it comes to the projects
we work on. We want to make sure we are seen as technologically savvy and

not as “just a tester.” We take pride in the automation we write. But the fact is
that developers usually have more experience working with code than we do,
and they might have ideas for better or more efficient ways of doing things.

Recently, I was preparing an example project in C# to teach some new
employees how to write unit tests. It was just a simple app that compared
integers. I knew exactly how to write the logic, but when I went to compile
my program, I ran into a “cannot instantiate class” error. I knew the cause of
the error was probably something tiny, but since I don’t often write apps on
my own, I couldn’t remember what the issue was. I had a choice to make at
this point: I could save my pride and spend the next two hours figuring out
the problem by myself, or I could ask one of my developers to look at it and
have him tell me what the problem was in less than 10 seconds. The choice
was obvious: I asked my developer, and he instantly solved the problem.

However, there is one caveat to this strategy: sometimes we can get into
the habit of asking for information that we could easily find ourselves. Before
you interrupt a co-worker and ask them for information, ask yourself whether
you could find it through a simple browser search or by looking through your
company’s wiki. If you can find it yourself faster than it would take to ask
your co-worker and wait for their response, you’ve just saved yourself and
your co-worker some time!

Strategy #7: Take Advantage of Your Energy Levels

I am a morning person; I am the most energetic at the start of my
workday. As the day moves along, my energy level drops. By the end of the
workday, it’s hard for me to focus on difficult tasks. Because of this, I
organize my work so that I do my more difficult tasks in the morning, and
save the afternoon for more repetitive tasks.

Your energy level might be different; if you think about what times of the
day you do your best and worst work, you will be able to figure out when you
have the most energy. Plan your most challenging and creative work for those
times.

Strategy #8: Adjust Your Environment

I am very fortunate that I am able to work remotely. This means I have
complete control over the cleanliness, temperature, and sound in my office.
You may not be so lucky, but you can still find ways to adjust your
environment so that you work more efficiently. If your office is so warm that
you find yourself falling asleep at your desk, you can bring in a small fan to
cool the air around you. If you are distracted by back and shoulder pain that
comes from slumping in your chair, you can install a standing desk and stand
for part of your workday. If your co-workers are distracting you with their
constant chitchat, you can buy a pair of noise-canceling headphones.

Experiment with what works best for you. What works for some people
might not be right for you. You might work most efficiently with total
silence, white noise, ambient music, classical music, or heavy metal playing
in your ears. You might find that placing your desk so that you can look out
the window helps you relax your mind and solve problems, or you might find
it so distracting that you are better off facing empty, white walls. Whatever
your formula, once you’ve found it, make it work for you!

The eight strategies I listed here can make it easier for testers to manage
their time and work more efficiently. You may find that these strategies help
in other areas of your life as well: paying bills and doing housework, home
improvement projects, and so on. If these tips work for you, consider passing
them on to others in your life to help them work more efficiently too!

Chapter 124: How to Be Seen
One of the difficulties of being a software tester is that when you’re doing

your job really well, it’s unnoticeable! Unlike software developers, who are
creating a product that will then be seen by management, software testers
create tests that will help validate that the product is working correctly. When
we do a great job, it’s not clear what the difference is between the product
that would have gone out to production if we hadn’t found all the bugs, and
the product that actually did go out to production.

The problem with not being seen by management is that it becomes
difficult to advance in one’s career. Fortunately there are ways that we can
make sure our managers and others see the impact we are making.

Tell Them

Make sure you are letting your manager know all the ways you are
helping to make a great product. For example, in your daily stand-up
meeting, you could say, “I found an important bug yesterday in the chat
feature that would have kept users from accessing their chat window if it
went to production.”

Also be sure to mention whenever your test automation catches a bug:
“Our automated regression suite caught a critical bug on the User Info page
shortly after the change was deployed to the test environment.”

Show Them

Managers love dashboards and metrics. Remember that managers often
have their own managers to whom they need to report. If you can make your
manager’s job easier by providing them clear data about the quality of your
application, they will be very grateful.

For example, you could create a dashboard that shows the pass/fail rates
of your nightly regression tests. This dashboard could show the different
environments you are testing in, and ideally it should show that the passing

rates in your production environment are close to 100% because the
automation found the bugs well before the new code made it to production.

Or you could start keeping metrics of escaped defects: these are bugs that
made it to production without being noticed. Ideally the number of escaped
defects will be zero, but even if it isn’t, your metrics for each release can
demonstrate that your team is getting better at releasing bug-free code.

Teach Them

Having lots of great software testing skills is awesome, but even more
awesome is teaching those skills to others in your company so that they will
be as effective as you are.

Your company probably has a number of different ways that you can
teach others testing-related skills. For example:

● Talking about an automated test framework you are using in a
departmental meeting

● Leading a workshop for other testers on security or performance
testing

● Mentoring a new or struggling tester

Lead Them

Your manager can’t see you as a leader if you don’t speak up! One great
way to lead is to suggest process improvements for your team during your
sprint retrospective meetings. When your team adopts those ideas and sees
the quality of your product improve as a result, you’ll be viewed as a positive
change agent.

Setting up a Community of Practice (CoP) meeting is also a great way to
stand out as a leader. In this meeting, all the testers at your company can
gather together and share ideas and solve problems. If your company already
has a CoP meeting, volunteer to lead a discussion or talk about an innovation
that your team recently adopted.

Common Objections to Being Seen

Software testers are often introverts. Many of them enjoy working
quietly, testing features and writing automation without much interruption
from others. Some prefer not to be the center of attention. It’s OK to feel this
way, but it will not get you promoted!

If you are shy or fear public speaking, start out by making small
improvements. You could begin by writing a blog post or creating a test
dashboard. Then you could try adding one comment in each sprint retro
meeting. Next, you could volunteer to demo a new feature at a meeting. You
can continue to add small steps in this way until you feel comfortable enough
to run a workshop.

Final Thoughts

Software development processes have come a long way in the past two
decades; very few managers today don’t understand the importance of
software testing. But they may not notice your contributions to your product
unless you make sure to be seen. I hope these suggestions will help you show
your manager what a great asset you are to your team.

Acknowledgements

This book would not have been possible without the help of many
individuals:

Thanks to my editor, Audrey Doyle, who rewrote my awkward sentences and
made them professional.

Thanks to my cover designer, Vanessa Mendozzi, for designing a cover
that fit my personality perfectly.

For help with the translations in Chapter 57, thanks to Damien Gonot, Lisi
Hocke, and Homero Barbosa.

Thank you to my loyal blog readers Alena Dubeshko, Srinivas Kadiyala, and
Sunny Sachdeva for reading through early chapters of this book and
providing feedback.

A big thank you to my husband, Kevin Jackvony, for putting up with hours of
neglect while I worked on the book and the app that accompanies it, and for
testing out the instructions in Chapters 32 through 34.

Finally, thank you to all of the developers and testers I've worked with over
the last twelve years who took the time to explain software concepts to me.
 You have helped shape me into the tester I am today.

About The Author

Kristin Jackvony

Kristin Jackvony discovered her love of software testing after a career in
music education. She has been a QA Engineer, QA Lead, QA Manager, and
SDET, and is currently the Principal Engineer for Quality at Paylocity. She
writes regularly in her blog, "Think Like a Tester", which can be found at
https://thinkingtester.com.

	Title Page
	Copyright
	Introduction
	Note
	Part I: Why Do We Test?
	Chapter 1: Why We Test
	Chapter 2: Think Like a Tester
	Chapter 3: Why We’ll Always Need Software Testers
	Part II: Manual Testing
	Chapter 4: Testing a Text Field
	Chapter 5: Break Your App with This One Weird Trick
	Chapter 6: CRUD Testing
	Chapter 7: Testing Postal Codes
	Chapter 8: Testing Date Fields
	Chapter 9: Testing Phone Number Fields
	Chapter 10: Testing Buttons
	Chapter 11: Testing Forms
	Chapter 12: Four Reasons You Should Test Input Validation (Even Though It’s Boring)
	Chapter 13: Three Ways to Test Output Validation
	Chapter 14: Testing Back Buttons
	Chapter 15: Six Tips for File Upload Testing
	Chapter 16: Testing the Login Screen
	Chapter 17: Cross-Browser Testing
	Chapter 18: Before You Log That Bug…
	Chapter 19: How to Reproduce a Bug
	Chapter 20: How to Log a Bug
	Part III: How Applications Work
	Chapter 21: How HTTP Requests Work
	Chapter 22: Internet Routing
	Chapter 23: Encoding and Encryption
	Chapter 24: HTTPS, Tokens, and Cookies
	Chapter 25: The Joy of JWTs
	Chapter 26: Database Testing
	Chapter 27: Testing with Relational Databases
	Chapter 28: SQL Query Secrets
	Chapter 29: Testing with Nonrelational Databases
	Chapter 30: Serverless Architecture
	Part IV: API Testing
	Chapter 31: Introduction to REST Requests
	Chapter 32: Getting Set Up for API Testing
	Chapter 33: Testing GET Requests
	Chapter 34: Testing POST Requests
	Chapter 35: Testing PUT Requests
	Chapter 36: Testing PATCH Requests
	Chapter 37: Testing DELETE Requests
	Chapter 38: Response Codes
	Chapter 39: Postman Assertions
	Chapter 40: Using Variables in Postman
	Chapter 41: Organizing Your API Tests
	Chapter 42: Understanding JSON Data
	Chapter 43: API Contract Testing Made Easy
	Part V: Mobile Testing
	Chapter 44: The 12 Challenges of Mobile Testing
	Chapter 45: Manual Mobile Testing
	Chapter 46: Seven Tips for Mobile Automated Testing
	Part VI: Security Testing
	Chapter 47: Introduction to Security Testing
	Chapter 48: Using Dev Tools to Find Security Flaws
	Chapter 49: Testing for IDOR Vulnerabilities
	Chapter 50: Introduction to Cross-Site Scripting
	Chapter 51: Three Ways to Test for Cross-Site Scripting
	Chapter 52: Introduction to SQL Injection
	Chapter 53: Introduction to Session Hijacking
	Chapter 54: An Introduction to Mobile Security Testing
	Part VII: Performance Testing
	Chapter 55: Introduction to Performance Testing
	Chapter 56: How to Design a Load Test
	Part VIII: Usability and Accessibility Testing
	Chapter 57: Localization and Internationalization Testing
	Chapter 58: User Experience Testing
	Chapter 59: Accessibility Testing
	Part IX: Software Development Basics
	Chapter 60: Code Like a Developer
	Chapter 61: Command-Line Basics
	Chapter 62: Coding Definitions
	Chapter 63: Object-Oriented Programming
	Chapter 64: Passing Parameters
	Chapter 65: Setting Up Node
	Chapter 66: Arrow Functions
	Chapter 67: Promises
	Chapter 68: Async/Await
	Chapter 69: Debugging for Testers
	Chapter 70: Seven Steps to Solve Any Coding Problem
	Chapter 71: Introduction to Git
	Chapter 72: Six Tips for Git Success
	Chapter 73: Merge Conflict Resolution
	Chapter 74: A Gentle Introduction to Regex
	Chapter 75: Logging, Monitoring, and Alerting
	Part X: Automated Testing
	Chapter 76: Why Automate?
	Chapter 77: When to Automate
	Chapter 78: Rethinking the Pyramid: The Automation Test Wheel
	Chapter 79: The Automation Test Wheel in Practice
	Chapter 80: Unit Tests
	Chapter 81: Component Tests
	Chapter 82: Services Tests
	Chapter 83: What API Tests to Run and When to Run Them
	Chapter 84: Setting Up UI Tests
	Chapter 85: Understanding the DOM
	Chapter 86: Locating Web Elements
	Chapter 87: Automating UI CRUD Testing
	Chapter 88: Automated Form Testing
	Chapter 89: Automated Visual Testing
	Chapter 90: Automated Security Testing
	Chapter 91: Automating Load Tests
	Chapter 92: Automated Accessibility Tests
	Chapter 93: Automation Wheel Strategy: Moving from What to How to When to Where
	Chapter 94: How Flaky Tests Destroy Trust
	Part XI: Testing Strategy
	Chapter 95: The Power of Not Knowing
	Chapter 96: The Power of Pretesting
	Chapter 97: Your Future Self Will Thank You
	Chapter 98: How to Design a Test Plan
	Chapter 99: Organizing a Test Plan
	Chapter 100: The Positive Outcomes of Negative Testing
	Chapter 101: What to Put in a Smoke Test
	Chapter 102: What to Test When There’s Not Enough Time to Test
	Chapter 103: How to Keep Your Test Cases From Slowing You Down
	Chapter 104: Confused? Simplify!
	Chapter 105: Six Steps to Writing an Effective Bug Report
	Chapter 106: Should You Hunt for That Bug?
	Chapter 107: Why You Should Be Testing in Production
	Chapter 108: What to Do When There’s a Bug in Production
	Chapter 109: Fix All the Things
	Chapter 110: The Hierarchy of Quality
	Chapter 111: Measuring Quality
	Chapter 112: Managing Test Data
	Chapter 113: A Question of Time
	Chapter 114: Why the Manual Versus Automation Debate Is Wrong
	Chapter 115: Tear Down Your Automation Silos
	Chapter 116: Stop Writing So Many UI Tests
	Chapter 117: Five Reasons You’re Not Ready for Continuous Deployment
	Part XII: Soft Skills for Testers
	Chapter 118: Ask Your Way to Success
	Chapter 119: Seven Excuses Software Testers Need to Stop Making
	Chapter 120: Six Testing Personas to Avoid
	Chapter 121: How to Train Your Dev
	Chapter 122: Get Organized for Testing Success
	Chapter 123: Time Management for Testers
	Chapter 124: How to Be Seen
	Acknowledgements
	About The Author

