
M A N N I N G

David Nicolette
FOREWORD BY George Dinwiddie

Software Development Metrics
Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

Software Development Metrics
DAVID NICOLETTE

M A N N I N G
SHELTER ISLAND
Licensed to Mark Watson <nordickan@gmail.com>

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2015 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Cynthia Kane
20 Baldwin Road Technical development editor: Mark Elston
PO Box 761 Copyeditor: Tiffany Taylor
Shelter Island, NY 11964 Proofreader: Barbara Mirecki
 Typesetter: Dottie Marsico

Cover designer: Marija Tudor

ISBN 9781617291357
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 20 19 18 17 16 15
Licensed to Mark Watson <nordickan@gmail.com>

www.manning.com

 To Lourdes and Alejandro

 It took several years to prepare this small book, and there were
many occasions when I was strongly tempted to abandon the project.
My wife Lourdes and my son Alejandro were consistently supportive.

The fact this book was completed is due largely to their
loving and steadfast encouragement.
Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

contents
foreword xi
preface xiii
acknowledgments xvi
about this book xvii

1 Making metrics useful 1
1.1 Measurements and metrics 2

What makes a metric “pragmatic”? 3 ■ Forward-facing and
backward-facing metrics 4

1.2 Factors affecting the choice of metrics 5
Process model 5 ■ Delivery mode 7

1.3 How the metrics are presented 7
1.4 Name of the metric 7
1.5 Summary 8

2 Metrics for steering 9
2.1 Metric: Percentage of scope complete 11

When to use percentage of scope complete 12 ■ A traditional
project 12 ■ An adaptive project 15 ■ How to use percentage of
scope complete 17 ■ Anti-patterns 20
vii

Licensed to Mark Watson <nordickan@gmail.com>

CONTENTSviii
2.2 Metric: Earned value 21
When to use earned value 21 ■ A traditional project 21
Anti-pattern: the novice team 24

2.3 Metric: Budget burn 24
When to use budget burn 24 ■ A traditional project 25
An adaptive project using beyond budgeting 26 ■ Anti-pattern:
agile blindness 30

2.4 Metric: Buffer burn rate 30
When to use buffer burn rate 31 ■ How to use buffer burn rate 31

2.5 Metric: Running tested features 32
When to use running tested features 32 ■ An adaptive
project 33 ■ Anti-pattern: the easy rider 34

2.6 Metric: Earned business value 34
When to use earned business value 35 ■ An adaptive
project 35 ■ Anti-patterns 38

2.7 Metric: Velocity 39
When to use velocity 39 ■ An adaptive project 40
Anti-patterns 42

2.8 Metric: Cycle time 47
When to use cycle time 47 ■ An adaptive project with consistently
sized work items 47 ■ An adaptive project with variable-sized work
items 49 ■ A traditional project with phase gates 50

2.9 Metric: Burn chart 52
When to use burn charts 53 ■ How to use burn charts 53
Anti-patterns 55

2.10 Metric: Throughput 56
When to use throughput 56 ■ A mixed-model project 57

2.11 Metric: Cumulative flow 59
When to use cumulative flow 59 ■ A traditional project 60

2.12 Not advised 62
Earned schedule 62 ■ Takt time 63

2.13 Summary 63

3 Metrics for improvement 65
3.1 Process-agnostic metrics 65
3.2 Technical metrics 66
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTS ix
3.3 Human metrics 66
3.4 General anti-patterns 66

Treating humans as resources 66 ■ Measuring practices
instead of results 67

3.5 Metric: Velocity 68
When to use velocity 68 ■ An adaptive project 69
Anti-patterns 70

3.6 Metric: Cycle time 71
When to use cycle time 71 ■ Tracking improvement in
predictability 72 ■ Tracking improvement in flow 73
Tracking responsiveness to special-cause variation 74

3.7 Metric: Burn chart 75
When to use burn charts 76 ■ Adaptive development project
using a time-boxed iterative process model 76

3.8 Metric: Cumulative flow 78
When to use a cumulative flow diagram 79 ■ An adaptive
project 79

3.9 Metric: Process cycle efficiency 82
When to use process cycle efficiency 83 ■ Non-value-add
time in queues 84 ■ Non-value-add time in active states 85
What is normal PCE? 86 ■ Moving the needle 86

3.10 Metric: Version control history 88
When to use version control history 88

3.11 Metric: Static code-analysis metrics 89
When to use static code-analysis metrics 89

3.12 Metric: Niko Niko calendar 92
When to use the Niko Niko calendar 92 ■ Examples 92
Happy Camper 94 ■ Omega Wolf 94 ■ Zombie Team 95

3.13 Metric: Emotional seismogram 96
When to use the emotional seismogram 96 ■ Examples 97

3.14 Metric: Happiness index 97
When to use the happiness index 98 ■ Mechanics 98

3.15 Metric: Balls in bowls 102
When to use the balls-in-bowls metric 102 ■ Mechanics 102

3.16 Metric: Health and happiness 102
When to use the health-and-happiness metric 103
Mechanics 103
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTSx
3.17 Metric: Personality type profiles 105
When to use personality profiles 106 ■ Anti-patterns 106

3.18 Summary 107

4 Putting the metrics to work 108
4.1 Pattern 1: Periodic refactoring iterations 109
4.2 Pattern 2: Velocity looks good, but little is delivered 113
4.3 Pattern 3: Linear workflow packaged in time-boxed

iterations 121
4.4 Pattern 4: Erratic velocity but stable delivery 124
4.5 Summary 129

5 Planning predictability 130
5.1 Predictability and stakeholder satisfaction 131

Planning and traditional methods 131 ■ Planning and
adaptive methods 132

5.2 Measuring predictability 132
Estimation 132 ■ Forecasting 134 ■ Predictability of
traditional plans 135 ■ Predictability of adaptive plans 136

5.3 Predictability in unpredictable workflows 143
5.4 Effects of high variation in work item sizes 144

Deployable units of work 144 ■ Trackable units of work 145
Demonstrating the value of consistently sized work items 145

5.5 Effects of high work-in-process levels 147
Work in process, cycle time, process cycle efficiency, and
throughput 147 ■ Work in process and defect density 152

5.6 Summary 154

6 Reporting outward and upward 155
6.1 Reporting hours 156

An example 157 ■ Aggregate numbers are approximate 158

6.2 Reporting useless but mandated metrics 158
Categories of problematic metrics 159 ■ Recognizing what’s really
happening 160 ■ Beware of motivational side effects of
metrics 161 ■ Understanding what the numbers mean 162

6.3 Summary 163

index 165
Licensed to Mark Watson <nordickan@gmail.com>

foreword
Years back, I noticed that Dave Nicolette’s blog had the same subtitle as mine, “Effec-
tive Software Development.” This contrasted subtly with what seemed to be the domi-
nant interest at the time, efficient software development. I quickly found out that even
when our opinions differed, our goals and values tended to be in close alignment, and
the conversations were always enlightening.

 I’ve worked with a number of organizations, large and small, in a decade of being
an independent software development consultant. This work has given me opportu-
nity to observe these organizations in action. The ones that are most stuck are the
ones that focus on efficiency.

 Efficiency tends to squeeze the slack out and discourages taking time to wonder
and explore. This single-mindedness eliminates the opportunity to learn. Learning is
reduced to optimizing measures within the local neighborhood of the status quo,
often to the detriment of valuable things less easily measured. Companies set up sys-
tems to gather this data efficiently, sometimes at the expense of veracity. If the metrics
mania takes hold, they may have programmers take time from programming to collect
more data, blindly sacrificing efficiency in real work on the altar of efficiency in mea-
suring the work.

 I’ve seen other companies initiate a metrics program because … well, because it’s
the thing to do. It will improve their process, or enable them to manage scientifically,
or attain some other vague goal. They generally try to measure as much as is conve-
nient to capture. They often start with every metric that their toolset makes available,
but they don’t have a clear idea of what to do with the numbers they collect. In fact,
I’ve seen cases where nobody ever looked at the numbers. They just found collecting
numbers reassuring, like a child playing with a teddy bear.
xi

Licensed to Mark Watson <nordickan@gmail.com>

FOREWORDxii
 As they mature just a little, organizational metrics programs start to develop goals
for their measurements. I’ve seen obsession with efficiency accompanied with using
metrics to ensure they are maximizing the productivity indicators that they can easily
measure. I’ve seen people collect measures to confirm what they already believe. I’ve
seen them overlook data that might invalidate beliefs or assumptions. I’ve seen them
ignore data they have, because it’s not in a form that’s convenient to quantify. I’ve
seen them use metrics to set targets for managers and workers, falling victim to Good-
hart’s Law—a metric used as a target ceases to function as a measurement.

 There are so many ways that we can use metrics to lead ourselves astray. It’s easy
to depend on them to make our decisions for us, rather than use them to illuminate
reality so we can make better decisions. The common problems with metrics pro-
grams make it tempting to do away with them.

 Unfortunately, we can fool ourselves just as easily with anecdotes. Measuring things
can be a great way to double-check our beliefs. Measurements can also uncover phe-
nomena that we hadn’t otherwise noticed.

 So I had great interest when Dave told me he was working on a book about metrics.
I knew it wouldn’t be a run-of-the-mill, shortsighted book. And, indeed, it is not. Dave
describes here how to use metrics to do our bidding, rather than to be our masters.

 This is an opinionated book. Dave does not catalog all of the metrics he knows. He
dwells on the ones he finds effective. With each of these, he not only tells us when it’s
appropriate and how to use it well, but cautions us about how it can lead us astray if we
use it clumsily. In addition, he cautions against a couple metrics that are not helpful
for steering software development projects.

 In this book, Dave concentrates on two goals of using metrics: steering a software
development project to success, and improving the process of software development.
He provides practical advice on how to meet these goals, advice grounded in years of
experience. There are examples of using multiple metrics to derive insights into the
development process, to stabilize the predictability of planning, and to report
upwards in the management chain. This book will be a helpful guide to most project
managers and team leads, and a real boon to those making a transition from a tradi-
tional serial development model to an agile one.

GEORGE DINWIDDIE

SOFTWARE DEVELOPMENT CONSULTANT AND COACH

Licensed to Mark Watson <nordickan@gmail.com>

preface
Every published software development process includes recommended metrics to use
with that process. So why would anyone bother to write a book like this one? Is there
any use for this book?

 Well, have you ever discovered a software-delivery issue very late in the game, when
it was too late to deal with the issue effectively? Have you ever believed you were tracking
the right information to stay ahead of delivery issues, but surprises still came up? You’re
not alone. From the earliest days of digital computers to the present day, people have
been looking for reliable ways to detect potential delivery issues early enough to act on
them. People still have difficulty understanding what to measure and what to do with
the numbers they collect.

 In my consulting work, at conferences and user group meetings, in online discus-
sions, and in reading published material on the subject of software metrics, I often
encounter people who are frustrated with the challenges of measuring software
development and delivery work. They measure more and more things and generate
more and more charts and graphs, and yet surprises still occur. Over the past 10 years
or so, I’ve noticed a common denominator in these cases: people aren’t measuring
what is really happening in their organizations; they’re measuring what they think is
happening, or what they believe should be happening based on the labels and buzz-
words people use to describe their process.

 During my experiences in helping teams and organizations improve their software-
delivery performance, it has become clear to me that most people have no idea what
to measure. They try to use the metrics that are recommended for the published pro-
cesses they’ve adopted, and they find that those metrics don’t help them steer the
xiii

Licensed to Mark Watson <nordickan@gmail.com>

PREFACExiv
work or quantify process improvements. Teams are repeatedly blindsided by unex-
pected delivery risks late in the delivery cycle. Their metrics fail to provide early
warning of delivery risks.

 When I began to give talks at conferences and user-group meetings on the subject
of software development metrics, I was surprised to find standing-room-only crowds
who were loathe to leave the room at the end of the time slot. Presentations and
demonstrations of software development metrics repeatedly drew audiences like that.
There seemed to be a general lack of understanding of what to measure, how to mea-
sure it, and what to do with the results. I began to collect information about metrics
that I had used effectively with software development teams, and metrics that col-
leagues in the field had used.

 A common problem I encounter in the field is that people aren’t sure how to
determine which metrics will be helpful in their context. Not every metric applies
to every software delivery process. Based on observation and experience, I came up
with a simple model that identifies key characteristics of different software delivery
processes, regardless of the buzzwords people use to describe their process or the pub-
lished framework people believe they are following. Based on that model, people can
identify the metrics that may help them and the metrics that probably won’t help
them.

 There were, and still are, many references about metrics that approach the topic
from a theoretical or statistical perspective. Although these are interesting and possi-
bly useful on an academic level, people involved with software delivery generally find
them hard to apply to everyday work. It occurred to me that it might be useful to com-
pile some of the practical information about metrics in a central place and to organize
the information around common real-world situations.

 I was familiar with Manning as a technical publisher, and I had found practical
value in several of the company’s books, so I thought it might be a practical-minded
publisher for information about software metrics. I discussed the idea of the book
with folks at Manning, and they were interested in pursuing it. The project took much
longer than I expected, but at long last here is the result. The goal was to prepare a
sort of “survival guide” for people close to the work who need to detect potential
delivery risks early in the delivery process, or who want to quantify the effects of their
process-improvement efforts.

 Toward that end, this book presents a compilation of practical metrics to help steer
software development work, to track delivery performance, and to monitor the effects
of process improvement efforts. It isn’t based on abstract theory, statistical methods,
or earlier literature about software metrics. It focuses on ground-level work and
doesn’t deal with enterprise-level measurement.

 The book also presents a number of anti-patterns, or common mis-applications of
metrics. All too often, when we measure the “wrong” things, we create unintended
incentives for people to behave in counterproductive ways. It’s useful to be aware of
the potential behavioral effects of metrics.
Licensed to Mark Watson <nordickan@gmail.com>

PREFACE xv
 There’s another use for metrics, besides tracking progress toward a goal. We’re
often interested in improvement: changes in organizational structure, role defini-
tions, arrangement of team workspaces, process, methods, collaboration, technical
practices, tools, collocation versus remote work, or something else. Many people
change things without measuring the impact of the changes. Others measure the rate
of adoption of new practices, but not the impact of the new practices on results. Some
metrics can help us understand whether the changes we try are actually improving our
delivery effectiveness, the quality of our software, or the quality of our working lives.

 My hope is that this book presents this information in a way that you will find easy
to put to use in your own development processes.
Licensed to Mark Watson <nordickan@gmail.com>

acknowledgments
This book summarizes lessons learned in the field. It’s hard to say where each lesson
came from; I haven’t been keeping track of that over the years. In some cases, I hap-
pen to know who created (or first published) a given metric. Those individuals are
named in the text. Some are professional colleagues who do the same sort of work as I
do; others were client personnel who came up with practical metrics in their own con-
text. If I tried to recall all the names, I would surely forget a few and they might be
offended. So it’s better not to name names. In most cases, I don’t know who created
the metrics or exactly where I learned them.

 It’s easier to acknowledge those who directly encouraged me to complete the book.
First on that list is my wife Lourdes, who encouraged me to keep at it nearly every day
for the past few years. Some of my friends and colleagues were aware that I was working
on the book, and they also nagged me on a fairly regular basis to complete it.

 I must say that Manning had a great deal to do with the fact this book ever saw the
light of day. The folks there talked me out of abandoning the project on more than
one occasion. I burned through two of their editors before finding one who could get
the work out of me: Cynthia Kane. Special thanks to her and everyone else on the
Manning team who worked with me during the writing and publication process.
Thank you also to George Dinwiddie for contributing the foreword to my book.

 Finally, thanks to the many MEAP (Manning Early Access Program) readers who
posted comments and corrections in the book’s forum, and to the following reviewers
who provided invaluable feedback on the manuscript during its development: Andrew
Gibson, Ajay George, Avijit Das, Christopher Davis, Efran Cobisi, Frances Buontempo,
Furkan Kamaci, Gary Pollice, Gavin Baumanis, John Booth, Marcin Kawalerowicz,
Michael Benner, Philippe Charrière, Ricardo da Paz, and Shaun Lippy.
xvi

Licensed to Mark Watson <nordickan@gmail.com>

about this book
Metrics are a necessary evil. Measurement is easily the least interesting aspect of soft-
ware development, and yet without it we have little chance of delivering anything use-
ful. But nearly everyone I meet in the software field is at a loss to know what to
measure or how to use the measurements. The standard metrics we all learn in school
often fail to help us in the real world. Whenever I give a talk about metrics, the room
is filled beyond capacity and people stay beyond the allotted time. I’m always sur-
prised, because this isn’t an inherently interesting subject. People need practical met-
rics that are a fit for their situations. I can’t claim this book will be a fun read, but I do
think it fills a gap that sorely needs to be filled.

 This book approaches the topic differently than others. It’s neither an academic
study of metrics nor a survey of existing literature nor a sales pitch for metrics
intended to accompany a published software-delivery framework. Rather, it’s process-
agnostic and offers advice to help you recognize how the work flows in your organiza-
tion, regardless of labels and buzzwords, so you can choose or create metrics that can
help you steer development work toward a goal or quantify the effects of improve-
ment efforts. The book doesn’t ask you to change your organization; it’s meant to
help you survive in the organization as it currently exists. It doesn’t suggest what you
should measure, but rather what you can measure in light of present organizational
realities.

Roadmap
Chapter 1 reviews a few fundamentals about measurement and metrics and intro-
duces a practical model for understanding how work flows in an organization. This
xvii

Licensed to Mark Watson <nordickan@gmail.com>

ABOUT THIS BOOKxviii
model can then be the basis for selecting metrics appropriate to your situation.
There’s a brief description of the two purposes of metrics—to steer work in progress
and to guide improvement efforts—and the three functions of metrics—informa-
tional, diagnostic, and motivational—and a review of some basic concepts like leading
and trailing indicators. Then a few concepts are introduced that may be less familiar,
such as the notion of forward-facing and backward-facing metrics, and the idea of
pragmatic measurement.

 The chapter covers the differences between traditional and adaptive development,
which needs clarification because many people conflate these concepts with specific
process frameworks or methodologies. I also describe four reference models for
software-delivery processes. By correlating your reality with these reference models,
you can select appropriate metrics for your context. Finally, the differences between
running discrete projects and doing continuous delivery are described. This factor
also has an influence on your choice of metrics.

 Chapter 2 describes metrics that are useful for steering work in progress. They’re
presented in no particular order, except that metrics relevant to traditional develop-
ment are presented first, and metrics relevant to adaptive development appear later.
The order of presentation implies nothing about which approach you “should” use.
They’re loosely grouped that way so you won’t have to go on a scavenger hunt to find
the metrics that apply to the way in which software is delivered in your organization.

 In chapter 2, I use a template at the beginning of each section to help you recog-
nize whether that particular metric is of interest to you. That way, you can skip the sec-
tions that aren’t relevant in your context without wasting a lot of time reading. The
template contains the following:

 Question(s) answered—What questions can this metric help you answer?
 Description—A brief description of the metric.
 Value—What kinds of value can you obtain from using the metric?
 Dependencies—Traditional versus adaptive approach, process model, and delivery

mode for which the metric is meaningful.
 Success factors—Any special considerations that must be met for the metric to

serve its purpose properly.

For most metrics, chapter 2 describes common abuses, or anti-patterns. The anti-
patterns can give you a sense of how the misapplication of a metric can lead to nega-
tive outcomes. This may help you use the metrics appropriately. I’m not aware of any
other published material about metrics that even acknowledges misapplication is pos-
sible, let alone describes how it can happen. I suspect this is because most books about
metrics are trying to sell you the metrics the author happens to like or those that are
supposed to be used with the process framework the book proposes you use. This
book is only meant to help you select and apply metrics that fit your context. I
explicitly avoid recommending any process framework or methodology. I do have
opinions about that, but that isn’t the purpose of this book.
Licensed to Mark Watson <nordickan@gmail.com>

ABOUT THIS BOOK xix
 Chapter 3 is about metrics that can be useful in guiding and quantifying process-
improvement efforts. This can be a bit more complicated than tracking progress
toward a delivery goal. To achieve improvement, you must change your development
practices and delivery methods. You need to be aware of process dependencies that
can break metrics when you change your process. The chapter also explains how some
metrics can be used to track progress and to quantify improvement, and how to use
them for each purpose. In addition, two categories of metrics apply to measuring
improvement but have no role in tracking delivery. Technical metrics help you under-
stand the quality of your code base. Human metrics help you understand how team
members feel about their work; it turns out this is important for effective delivery.

 Chapter 4 assembles some of the building blocks presented in chapters 2 and 3 to
show how multiple metrics of different types can shed more light on a situation than
any single metric alone. It would be impractical to include every conceivable combina-
tion of metrics that you might apply. I’ve tried to make the chapter useful by focusing
on patterns that I’ve seen many times in industry. These may be of direct use to you
because they’re so common. I hope they also provide examples you can use to com-
bine other metrics in practical ways.

 Chapter 5 focuses on a single aspect of managing software-development work: pre-
dictable short-term planning. Metrics play a large role in planning. Stakeholders
appreciate predictability more than they appreciate speed of delivery. They will accept
reduced scope more readily than they will accept repeated disappointment. Many, if
not most, people involved in software development have a great deal of difficulty with
predictability. Many teams resort to guesswork; gut-feel predictions; bottom-up, time-
based estimation; coerced “commitments”; or just plain hope to determine how much
work they can deliver in the next stage of delivery. None of those methods is effective.
This chapter describes various ways to achieve predictable short-term planning based
on measurement and discusses pitfalls of doing it wrong.

 Chapter 6 deals with your interaction with the organization beyond your own team
or teams. What do senior management and business stakeholders need to know, and
what do they not need to know? How can you provide the information they require
with a minimum of effort on your part and without disrupting your teams’ ability to
stay focused on the technical work? Some organizations define standard metrics they
require from all projects. Some of those metrics may be completely meaningless. If I
assume you aren’t in a position to change those standards, you can at least recognize
which metrics are worthy of your time and which aren’t.

Downloadable spreadsheet
A spreadsheet accompanies this book and is available for download from the pub-
lisher's website at www.manning.com/software-development-metrics. The spreadsheet
contains the base data and formulae for most of the metrics described in the book.
Licensed to Mark Watson <nordickan@gmail.com>

www.manning.com/software-development-metrics

ABOUT THIS BOOKxx
Who should read this book?
This book is meant for people who are on the front lines of software delivery and who
want to be prepared to answer questions about progress and/or about improvements
in delivery effectiveness. Job titles vary, and there’s no single title that unambiguously
identifies a person who might benefit from the book. In a traditional environment,
the title Project Manager or Line Manager often describes a person in this position;
but sometimes these titles denote higher positions (that is, disconnected from the
day-to-day work). In organizations that use a more contemporary approach to soft-
ware delivery, titles like Team Lead, Project Lead, Technical Lead, Scrum Master, Iter-
ation Manager, Delivery Manager, and Delivery Lead may be used. In organizations
that apply the concept of self-organizing teams, there may be no specific job title with
responsibility for tracking progress, and it’s a shared responsibility or a rotating
responsibility of team members.

 Whatever their titles, the book is for people who have direct responsibility for
delivery for one or more teams and who are in direct touch with the day-to-day work.
It offers help in using metrics to answer questions like, “Are we delivering what stake-
holders need?” “Are we going to run out of money?” “Are we going to run out of
time?” “How much of the planned scope can we deliver by date X?” and “Has our
latest process change resulted in improved delivery performance?”

 It may be easier to describe people who aren’t the target audience. The book isn’t
aimed at mid-level or upper-level IT managers or business stakeholders of the IT
department. It doesn’t deal with program-level or enterprise-level measurement and
tracking.

Author Online
The purchase of Software Development Metrics includes free access to a private web
forum run by Manning Publications, where you can make comments about the book,
ask technical questions, and receive help from the author and from other users. To
access the forum and subscribe to it, point your web browser to www.manning.com/
software-development-metrics. This page provides information on how to get on the
forum once you are registered, what kind of help is available, and the rules of conduct
on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It isn’t a commitment to any specific amount of participation on the part of the
author, whose contribution to the forum remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s web site as long as the book is in print.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.manning.com/software-development-metrics
http://www.manning.com/software-development-metrics

ABOUT THIS BOOK xxi
About the author
Dave Nicolette has worked in the software development field since 1977. He has under-
taken many roles associated with software development and delivery, and has used
most of the well-known processes and methodologies, from traditional SDLC to con-
temporary lightweight methods. Since 1984, Dave has worked mainly as a contractor or
consultant. As a result, he has experienced a wide variety of software-development envi-
ronments, methods, and tools. This experience gives him practical, ground-level
insights into the conditions that enable a given measurement to provide useful
information.

About the cover illustration
The figure on the cover of Software Development Metrics is captioned “Man from the
Island of Mljet, Croatia.” The illustration is taken from a reproduction of an album of
traditional Croatian costumes from the mid-nineteenth century by Nikola Arsenovic,
published by the Ethnographic Museum in Split, Croatia, in 2003. The illustrations
were obtained from a helpful librarian at the museum, which is situated in the Roman
core of the medieval center of the town: the ruins of Emperor Diocletian’s retirement
palace from around AD 304. The book includes finely colored illustrations of figures
from different regions of Croatia, accompanied by descriptions of the costumes and
of everyday life.

 Mljet is the most southerly and easterly in a string of islands in the Adriatic Sea that
belong to Croatia. The island is sparsely populated and large swaths of it are covered by
forests that are part of a national park. The figure on the cover is dressed in the every-
day costume typical for this region—dark blue wool pants, a black vest over a white
linen shirt, and a large black hat that completes the outfit. He is smoking a pipe and
holding a long-handled axe used for cutting brush and firewood.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by
region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants
of different continents, let alone of different hamlets or towns separated by only a few
miles. Perhaps we have traded cultural diversity for a more varied personal life—cer-
tainly for a more varied and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with
book covers based on the rich diversity of regional life of two centuries ago, brought
back to life by illustrations from old books and collections like this one.
Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

Making metrics useful
This book is designed for a person at the bottom of the management hierarchy in a
software development organization. A person in such a position usually has direct
responsibility for delivery as well as management duties at the team level. In a tradi-
tional organization, this role is usually called Project Manager. In contemporary
organizations, people with similar responsibilities may have a title like Team Lead,
Development Lead, Delivery Lead, Scrum Master, or Iteration Manager. In a peer-
based, self-organizing team, these responsibilities may be shared across all team
members.

 The purpose of the book is to provide practical guidance to people who need to
steer work in progress and who want to measure the effectiveness of process-
improvement efforts. It offers a way to do so that doesn’t depend on popular buzz-
words and doesn’t require the work to be done in any particular way. It suggests

This chapter covers
 The difference between measurements and metrics

 What we mean by pragmatic metrics

 Trailing and leading indicators

 The purpose and functions of metrics

 Factors to consider when choosing metrics
1

Licensed to Mark Watson <nordickan@gmail.com>

2 CHAPTER 1 Making metrics useful
what can be measured based on organizational realities, and not necessarily what
should be measured in an ideal world.

 Anything you do in the course of your work ought to have a clear purpose. Other-
wise, you’re just performing random activities in order to stay busy. Metrics for soft-
ware development have a couple of purposes. First, you can use them to judge how
well you’re tracking toward the goals of a project. Second, you can use metrics to help
you understand whether you’re improving your delivery performance.

 With that in mind, metrics can help with the following:

 Steering work in progress
 Guiding process improvements

Software development and delivery is usually carried out either as a discrete project
that has a beginning and an end, or as an ongoing activity for evolutionary develop-
ment or production support. In either case, there are expectations about how the
work will progress. You need to know, as early as possible, when actual performance is
diverging from expected performance so that you can take appropriate corrective
action. I think of this action as steering the work: directing the work toward a goal.

 It has become the norm for software professionals to assess their own practices and
methods almost continuously, and to try to improve the way they do their work. Met-
rics can be useful to help you understand when a change leads to improvement and
when it doesn’t. Metrics can also help you make a case to change formal methods
based on quantitative results from using a proposed new approach.

 This chapter sets the stage for our examination of metrics for software develop-
ment. To choose metrics appropriate to your work context, you need to know what
decisions you’re trying to support through metrics. You also need to understand how
each metric is affected by a few key factors, such as whether you’re taking a traditional
or adaptive approach to development, what sort of process model you’re using, and
whether you’re running discrete projects or carrying out continuous development
and support.

1.1 Measurements and metrics
A measurement is a quantitative observation of one of the following:

 Something relevant to the decisions you have to make
 Information you have to report regarding the progress of development
 The effects of process improvements

A metric is a recurring measurement that has informational, diagnostic, motivational,
or predictive power of some kind. It helps you understand whether you’re at risk of
missing expected results, or whether changes in process or practices are resulting in
improved performance.
Licensed to Mark Watson <nordickan@gmail.com>

3Measurements and metrics
1.1.1 What makes a metric “pragmatic”?

Sometimes, managers get a bit carried away with metrics. They track all the metrics
they can think of, or all the metrics their favorite project-management tool happens to
support. They may or may not be able to tell you just why they’re tracking any given
metric. That sort of thing isn’t practical; it’s busywork. It’s better to be pragmatic
about measurement—that is, to have a clear purpose in mind for each metric you use.

 There is effort and cost involved in collecting data and tracking metrics. To justify
this cost, any metrics you use must have a practical purpose. A metric is pragmatic if it
provides information that helps a stakeholder make a decision.

 People usually think of the customer of a software product as the primary or only
stakeholder of the software development project. For the purposes of this book, you
are the main stakeholder, because you’re the party with primary responsibility for
tracking progress. Your management, other departments in your company, and mem-
bers of the development team are also stakeholders.

 Ideally, any metrics you track will help at least one of these stakeholders make deci-
sions of one kind or another. Customers may make decisions about scope and sched-
ule depending on how the work is progressing. Management may make decisions
about portfolio management and budget allocations. Team members may make deci-
sions about how to improve their delivery effectiveness. You may make decisions about
how to steer work in progress.

 All too often, project managers track metrics just because they can, or just
because “it’s always been done that way.” I’ve seen managers get carried away with
graphics or query options offered by their project-management software. I’ve seen
others track metrics that don’t apply to the work they’re managing, because they used
the same metrics on previous projects where those metrics did apply. And I’ve seen
managers use metrics that formally belong to the methodology they think they’re
using, when in fact the work isn’t done according to that methodology. I want to
encourage you to consider the practical purpose of any metrics you choose to use,
and to avoid creating extra work for yourself by collecting data that won’t or can’t be
used to support decisions.

TRAILING AND LEADING INDICATORS

We’re interested in measuring things that have already happened as well as predicting
things that are likely to happen in the future. Measurements of things that have
already happened can often help us predict how things are likely to progress going
forward.

 Any metric that provides information about things that have already happened is
considered a trailing indicator or lagging indicator. Any metric that helps us predict how
things will happen in the future is considered a leading indicator. A leading indicator
often comprises a series of trailing indicators along with a calculated trend that sug-
gests how things are likely to play out, provided circumstances remain stable.
Licensed to Mark Watson <nordickan@gmail.com>

4 CHAPTER 1 Making metrics useful
FUNCTIONS OF METRICS

Metrics have three functions, or effects:

 Informational
 Diagnostic
 Motivational

When a metric provides plain information, it serves an informational function. When
a metric calls attention to a problem, it serves a diagnostic function. When a metric
influences people’s behavior, it serves a motivational function. Metrics may perform in
more than one of these ways at the same time and can have effects that you didn’t
intend or plan—especially motivational effects.

1.1.2 Forward-facing and backward-facing metrics

There are a couple of different general approaches to software development and
delivery. The traditional approach involves a thorough analysis of stakeholder needs, a
comprehensive solution design, a careful assessment of risks, and a fixed budget allo-
cation in advance. The adaptive approach involves defining a vision for the desired
future state, performing sufficient analysis to get started, and exploring the solution
space in collaboration with stakeholders through incremental delivery and frequent
feedback.

 Many metrics boil down to a comparison between expected and actual perfor-
mance. With the traditional approach, the definition of expectations is in the compre-
hensive project plan that’s created before development begins. As development
progresses, the definition of success (the project plan) lies in the past. Even when a
plan is re-baselined, the new plan lies in the past, from the perspective of the develop-
ment team. I think of metrics that support traditional development as backward-facing
metrics, because you have to face the past in order to see your target (see figure 1.1).

Direction of progress

Manager GoalBasis of
measurement

Approved
plan

Direction of measurement

Line of sight

Traditional approach:
The approved plan is the definition of success.

When reality differs, reality must be made
to conform with the plan.

Figure 1.1 Traditional development: you must face the past to see your target.
Licensed to Mark Watson <nordickan@gmail.com>

5Factors affecting the choice of metrics
With the adaptive approach, the definition of expectations is the point-in-time under-
standing of the future-state vision as of today. This understanding evolves day by day as
development progresses. I think of metrics that support adaptive development as for-
ward-facing metrics, because you have to face the future in order to see your target (see
figure 1.2).

 For the purpose of choosing meaningful metrics, the key distinction is the way the
triple constraint or iron triangle of scope, schedule, and budget is managed. With the
traditional approach, the scope, schedule, and budget are all fully defined in
advance. Metrics are used to track the development team’s performance compared
with the plan.

 With the adaptive approach, one or two of these factors are left flexible on pur-
pose. Metrics are used to assess whether the scope, schedule, or budget has to be
adjusted to keep the work on track toward the future-state vision. Some metrics are
meaningful only with one approach or the other.

1.2 Factors affecting the choice of metrics
In addition to the general approach—traditional or adaptive development—you also
have to consider the process model and delivery mode you’re using to develop and deliver
the solution.

1.2.1 Process model

The sort of development process you’re using will influence your choice of metrics.
Some metrics depend on the work being done in a certain way. A common problem is
that people believe they’re using a given process, when in fact they’re working accord-
ing to a conflicting set of assumptions. If you apply metrics that depend on the pro-
cess being done correctly, you won’t obtain information that can help you steer the

Direction of progress

Manager GoalBasis of
measurement

Evolving
plan

Original
plan

Direction of measurement

Line of sight

Adaptive approach:
Success means meeting customer needs as of the date of
delivery. The evolving plan is used for navigation. When

reality differs from expectations, you adapt the plan.

Figure 1.2 Adaptive development: you must face the future to see your target.
Licensed to Mark Watson <nordickan@gmail.com>

6 CHAPTER 1 Making metrics useful
work or measure the results of process-improvement efforts. You have to measure
what’s really happening, regardless of the buzzwords people use to label it.

 Countless published and home-grown processes are in use to build and deliver
software. In my experience, they all boil down to just four basic reference models:

 Linear—Based on the assumption that software development must proceed in
order through a distinct series of steps. The steps include activities such as busi-
ness analysis, requirements specification, solution design, coding, testing,
deployment, and support. The linear process model is sometimes called a water-
fall process, because work can’t flow backward any more than water can flow
uphill.

 Iterative—Based on the assumption that a single pass through the requirements
is unlikely to result in a good solution. With an iterative process, the require-
ments are revisited time and again, and the solution is built up through a series
of iterations. This may involve progressive refinement of the solution, gradual
addition of specific features, or a combination.

 Time-boxed—The same as the iterative model, with the addition of two defining
characteristics: (1) each iteration is the same length, and (2) a potentially ship-
pable increment (or vertical slice) of the solution is delivered by the end of each
time-boxed iteration.

 Continuous flow—Based on the assumption that the most effective way to keep
work moving forward is to focus on maintaining a continuous flow, usually by
controlling the level of work in process (WIP) and using techniques adapted
from the Lean school of thought.

All real-world processes are based primarily on one of these four reference models
and include elements from one or more of the remaining three. You can usually use
metrics that apply to the reference model that is closest to the actual process you’re
using. As this is written, the iterative model is the most widely used and has the largest
range of variations in practice.

 If your organization is typical, then a couple of things are probably true:

 More than one process model is in use.
 Each process model in your organization is a hybrid model.

Software organizations of any appreciable size almost always apply different processes
to different types of work, depending on the nature of the work. For example, you
might use a linear process for highly predictable, routine projects; an iterative or
time-boxed process for work that has to do with creating or maintaining competitive
advantage; and a continuous-flow process for production support and infrastructure
support.

 In addition, only a vanishingly small number of organizations use any given pro-
cess exactly as it’s defined in books. Processes are almost always customized to the
needs of the particular organization. Sometimes the modifications are well-reasoned
Licensed to Mark Watson <nordickan@gmail.com>

7Name of the metric
adjustments that take into account the local realities of the organization. Other times
they’re the result of misunderstanding how a process is meant to work, particularly
when it’s a relatively new process that’s just becoming popular.

 This book takes no sides on those issues. As a practical matter, the important thing
for you is to be able to recognize how your work really flows and which metrics might
help you steer.

1.2.2 Delivery mode

Software is built, delivered, and supported in one of two ways: as discrete projects or as
ongoing development and support. A project has a start date and an end date.
Between those dates, a team strives to achieve one or more goals—delivering a set of
application features or standing up an IT asset. Some organizations form a new team
for each project, whereas others assign projects to stable teams. Projects are often
treated as capital investments and budgeted accordingly.

 In an ongoing development and support mode, application or infrastructure fea-
tures are delivered incrementally on an ongoing basis. Applications or technical assets
are usually supported by the same team that enhances them. Ongoing work is often
treated as an operating expense and budgeted accordingly.

 In a corporate IT department, production support and operations are usually man-
aged as ongoing support, whereas application development and new infrastructure
features are usually managed as discrete projects. But ongoing delivery is also feasible
for application development. Many internet-based email services, online catalog sales
systems, social media sites, and other types of applications are developed and sup-
ported in an ongoing mode that has no planned ending date, sometimes called con-
tinuous beta. Some companies are finding this mode works well for all kinds of IT work
and are moving away from discrete projects altogether.

 Some metrics are sensitive to this factor and are meaningful with only one of these
two options. The largest challenge when choosing metrics for steering work is the case
when the same team has ongoing support responsibilities combined with project
work—not unusual for infrastructure teams.

1.3 How the metrics are presented
Chapters 2 and 3 deal with individual metrics in isolation. We’ll cover the purpose,
mechanics, enabling factors, and common anti-patterns (inappropriate uses) of each
metric. This is the format I’ll use to describe each metric:

Name of the metric
Question(s) answered
 What does this metric tell us? It tells us this and that.

Description
 A brief description of the metric Value
 The value we can obtain by using the metric
Licensed to Mark Watson <nordickan@gmail.com>

8 CHAPTER 1 Making metrics useful
Dependencies
 Approach: traditional or adaptive
 Process model: linear, iterative, time-boxed, continuous flow, or any
 Delivery mode: discrete project or continuous development

Success factors
 Special considerations above and beyond the basic dependencies

1.4 Summary
In this chapter, you learned the following:

 A measurement is a point-in-time observation of a single data point, whereas a
metric comprises recurring measurements organized in a way that’s designed to
provide information useful for making decisions about your work.

 You use metrics for two purposes: to help steer work in progress and to help
monitor the effectiveness of process-improvement efforts.

 Metrics have three functions or effects: informational, diagnostic, and motiva-
tional. Any metric can perform more than one of these functions simultane-
ously. Metrics often have a motivational effect even when you don’t intend it.

 Your choice of metrics depends on three general factors: the approach (tradi-
tional or adaptive), the process model (linear, iterative, time-boxed, or continuous
flow), and the delivery mode (discrete project or continuous evolution/support).

 The definition of success in traditional software development is to conform
closely to a project plan developed in the past, sticking to the originally defined
scope, schedule, and budget. Because the target lies in the past, to track pro-
gress you must use backward-facing metrics.

 The definition of success in adaptive software development is to deliver the
business value that stakeholders require at the time they need it, at the appro-
priate level of quality, and at the right price point. Because the target lies in the
future, to track progress you must use forward-facing metrics.
Licensed to Mark Watson <nordickan@gmail.com>

Metrics for steering
In this chapter, I’ll describe the purpose and mechanics of a number of metrics
that are useful for helping you steer your work. I’ll explain what sorts of questions
each metric answers, as well as the implications of development approach, process
model, and delivery mode on the meaning and usefulness of the metric. Finally, I’ll
mention a few abuses, or anti-patterns, that often occur when people misapply the
metric.

 This chapter is longer than the rest, because there is a good deal of material to
cover on the subject of metrics for steering. The chapter is designed to guide you to
metrics that may be helpful in your context. It isn’t meant to be read straight
through, like a novel.

 First, assess your situation in light of the three factors introduced previously:

 Development approach
– Traditional
– Adaptive

This chapter covers
 The purpose and mechanics of several metrics

 Dependencies of each metric

 Common anti-patterns or inappropriate uses metrics
9

Licensed to Mark Watson <nordickan@gmail.com>

10 CHAPTER 2 Metrics for steering
 Process model
– Linear
– Iterative
– Time-boxed
– Continuous flow

 Delivery mode
– Discrete projects
– Ongoing or continuous

Then decide which metrics are worthy of your attention by scanning the “Dependen-
cies” in the summary that introduces each section of the chapter. Read about the met-
rics that align with the characteristics of your work flow, and skip the others. Table 2.1
provides an overview of how the metrics align with the three key characteristics of
work flow. It may help you identify which sections of the chapter you want to read.

Table 2.1 Metrics cross-reference

Metric Approach Process model Delivery mode

Percentage of scope complete Traditional

 Adaptive
(with fixed scope)

 Linear

 Iterative

 Time-boxed

 Continuous flow

 Project

Earned value Traditional Linear

 Iterative

 Time-boxed

 Continuous flow

 Project

Budget burn Traditional

 Adaptive

 Linear

 Iterative

 Time-boxed

 Continuous flow

 Project

Buffer burn rate Traditional

 Adaptive

 Linear

 Iterative

 Time-boxed

 Continuous flow

 Project

Running tested features Adaptive Iterative

 Time-boxed

 Continuous flow

 Project

Earned business value Adaptive Iterative

 Time-boxed

 Continuous flow

 Project
Licensed to Mark Watson <nordickan@gmail.com>

11Metric: Percentage of scope complete
2.1 Metric: Percentage of scope complete
Question(s) answered
 Are we on track to complete the planned scope on schedule?
 Description
 The amount of planned work that has been completed as of the reporting date
 Value
 Early warning of potential delivery risk

Dependencies
 Approach: traditional, adaptive (with fixed scope)
 Process model: any
 Delivery mode: discrete project

Success factors
 The initial definition of 100% of scope is firm and complete.
 The budget and/or schedule may be flexible.

Velocity Traditional

 Adaptive

 Time-boxed Project

Cycle time Traditional

 Adaptive

 Linear

 Iterative

 Time-boxed

 Continuous flow

 Project

 Ongoing

Burn chart Traditional

 Adaptive

 Linear

 Iterative

 Time-boxed

 Continuous flow

 Project

Throughput Traditional

 Adaptive

 Linear

 Iterative

 Time-boxed

 Continuous flow

 Project

 Ongoing

Cumulative flow Traditional

 Adaptive

 Linear

 Iterative

 Time-boxed

 Continuous flow

 Project

 Ongoing

Earned schedule (Not advised)

Takt time (Not advised)

Table 2.1 Metrics cross-reference (continued)

Metric Approach Process model Delivery mode
Licensed to Mark Watson <nordickan@gmail.com>

12 CHAPTER 2 Metrics for steering
2.1.1 When to use percentage of scope complete

When scope is fixed in advance, you can use percentage of scope complete to date to
gauge performance to plan. Regardless of whether you’re using a traditional or an
adaptive approach, and regardless of what sort of process model you’re using, as long
as you’re working to deliver a predefined scope, it’s sensible to track how much of that
scope you have delivered as of a given date. This gives you an early warning of possible
delivery risk.

 Traditional methods usually call for delivery of the complete product at the end of
a release or at the end of the entire project. Work packages in plan often don’t repre-
sent complete, usable subsets of functionality. Instead, the plan defines requirements
artifacts, design artifacts, test artifacts, documentation artifacts, code artifacts, and
other elements as separate work packages. When using a linear process model (some-
times called a waterfall approach), you can track the completion of interim artifacts
even though no software features are usable until the end of the project. Early warn-
ing of delivery risk is important in these cases because when a delay occurs in any
phase of development, there’s a domino effect through subsequent phases. Typically,
such delays are absorbed in the latter phases, such as the Testing phase, which leads to
the introduction of defects in production and/or unpleasant surprises in getting the
product into customers’ hands.

 Even when scope is fixed in advance, it’s possible to use adaptive development
methods to deliver production-ready subsets of the solution incrementally throughout
the project. In these cases, you can measure the percentage of scope complete to date
by tracking the delivery of production-ready subsets of functionality. Although agile
methods were developed to support adaptive development, many organizations use
those methods as a way to slice the planned work in fixed-scope, fixed-schedule devel-
opment projects. Canonical agile metrics assume you’re doing adaptive development.
If you’re using such methods in a mechanical way to support traditional development
(fixed-scope, fixed-schedule), then tracking percentage of scope complete to date
may provide more useful information than tracking velocity or other agile metrics.
This is a common situation, and it’s an example of measuring what’s really happening
regardless of the buzzwords with which the process is labeled.

2.1.2 A traditional project

The goal of this measurement is to provide an early warning when the project is trend-
ing away from expectations. By detecting this variance early, you give yourself time to
do something about it.

 Let’s say you’re managing an initiative to deliver a software solution using tradi-
tional methods. You have a work breakdown structure (WBS) and a conventional pro-
ject schedule that shows milestones through the canonical systems development life
cycle (SDLC) delivery stages, such as analysis, requirements specification, architecture,
design, coding, testing, acceptance, deployment, documentation, and user training.
Licensed to Mark Watson <nordickan@gmail.com>

13Metric: Percentage of scope complete
 The typical way to depict the trend in delivery performance is to show a line for
expected performance and a line for actual performance. When the expected and
actual lines don’t diverge more than the tolerance defined for your project, the work
is on track. By extending a linear trend line from the actual line, you can see whether
the work is trending off plan. If the gap between expected and actual performance is
growing, then you know you need to take appropriate action to bring the project back
on track, and/or you need to make adjustments to the plan.

 Suppose your project has a total of 800 work packages in the WBS, and according
to plan your team should have completed 500 of them, or 62.5%, by August 31. The
team has actually completed 400 work items, or 50% of the planned scope. You can
show percentage of scope complete to date, as illustrated in figure 2.1. If you prefer to repre-
sent progress in terms of counts rather than percentages, you can show the same
information as illustrated in figure 2.2.

Figure 2.1 Percentage of work packages complete to date

Figure 2.2 Number of work packages complete to date
Licensed to Mark Watson <nordickan@gmail.com>

14 CHAPTER 2 Metrics for steering
If you prefer to show progress in terms of estimated hours, you can plot the percent-
age of estimated hours complete to date in the same way. Let’s say your plan calls for
the team to have completed 2,250 estimated hours out of a total of 4,000 estimated
hours as of May 7, or 56.25% of estimated hours. The team has completed 1,960 esti-
mated hours, or 49%. The chart looks like figure 2.3.

 When you show the number of estimated hours completed compared with expec-
tations, rather than the percentage, the chart looks like figure 2.4.

Figure 2.3 Percentage of estimated hours complete to date

Figure 2.4 Number of estimated hours complete to date

Estimated or actual hours?
When using hours to compare actual performance with expected performance, be
sure to use the estimated hours of completed tasks rather than the actual hours, so
the units of measure for expected and actual performance are the same. Actual hours
will vary from estimates, so the observed actual hours of completed tasks aren’t
directly comparable to the estimated hours of planned tasks.
Licensed to Mark Watson <nordickan@gmail.com>

15Metric: Percentage of scope complete
When actual performance differs from planned performance, you need to take
appropriate action to steer the work. Depending on circumstances, appropriate
actions may include the following:

 Change the composition of the team.
 Provide more resources to the team.
 Ask the team to work overtime on a temporary basis.
 Re-baseline the plan by changing the scope, schedule, or budget.
 Modify the plan to take reality into account.
 Cancel the project, because late delivery would reduce the anticipated return to

such an extent that the project is no longer worthwhile.
 Something else.

2.1.3 An adaptive project

The goal of adaptive development is similar to the goal of traditional development
(assuming scope is fixed), except that you carry out planning and tracking on a per-
release basis using a rolling wave or multi-horizon planning approach. With adaptive
methods, you deliver small subsets of the solution incrementally.

 Adaptive development is usually supported by so-called lightweight management
methods. These methods don’t call for a comprehensive WBS, but instead use a list of
features called a product backlog, a master story list, a work queue, or a similar name. The
units of work are called backlog items or user stories instead of work packages. The differ-
ent terms come from various branded process frameworks and methodologies and
don’t have significantly different meanings (for the narrow purpose of this book).

 Assume that your team plans its work by sizing planned work items relative to each
other in terms of story points. Let’s say the team was expected to complete 70% of the
planned story points by August 31, and they actually completed 50%. Showing prog-
ress as a percentage of plan, the chart looks like figure 2.5.

You might use the observed actual hours to support different metrics, namely cycle
time and process cycle efficiency (described later). You might also use actual hours
to help predict labor costs, if you’re paying for labor on an hourly basis. If the goal is
to track performance to plan, you’ll want to use the estimates for completed tasks
rather than the actuals.

For purposes of steering work, it isn’t useful to compare actual hours to estimated
hours. You might do so as a way to see how accurate the estimates tend to be. This
can help with process improvement, but it doesn’t help with steering.
Licensed to Mark Watson <nordickan@gmail.com>

16 CHAPTER 2 Metrics for steering
You can also show progress by comparing the total number of planned story points
with the number of story points delivered. Let’s say you have 1,600 story points in
plan, with the expectation that the team will deliver 600 story points by May 1. The
team delivers 500 story points as of May 1. The chart looks like figure 2.6.

 The metric answers the same question for adaptive projects as it does for tradi-
tional ones, within the scope of a single release. When actual performance varies sig-
nificantly from expected performance, you need to take corrective action to steer the
work. With adaptive methods, the first choice of action is usually to adjust the plan to
account for reality. But traditional corrective actions may also be appropriate, depend-
ing on circumstances and business goals.

Figure 2.5 Percentage of story points complete to date

Figure 2.6 Number of story points complete to date
Licensed to Mark Watson <nordickan@gmail.com>

17Metric: Percentage of scope complete

2.1.4 How to use percentage of scope complete

I’ve introduced percentage of scope complete to date by example, in the context of a couple
of sample projects. You’ve probably gotten the gist of it, but let’s cover it in a more
general way just in case there are details the examples didn’t make clear.

 For this metric to be meaningful, a couple of key dependencies must be true. When
you want to express progress in terms of a percentage toward done, the meaning of
100% done has to be absolutely clear and firm. There are two implications for tracking
software development work. First, 100% of scope must be clearly defined at the outset.
Second, you must use the discrete project delivery mode, because the continuous-
support delivery mode has no end by definition.

TRADITIONAL APPROACH

With the traditional approach to software development, each new software release is
delivered as a discrete project, and 100% of scope, schedule, and budget are defined
at the outset of the project. Therefore, the percentage of scope complete to date is
always meaningful for traditional software development.

 The basic planning artifact for traditional development is the work breakdown struc-
ture (WBS). A WBS defines deliverables and work packages that must be completed to pro-
duce those deliverables. Each work package is estimated in terms of work hours.

 The definition of 100% of scope is the sum of the estimated hours for all the work
packages in the WBS. The percentage of scope complete to date is the sum of the esti-
mated hours (not the actual hours) for all work packages that have been completed.

 Any single observation of this measurement is a trailing indicator of delivery perfor-
mance. To build a leading indicator to forecast future delivery performance, you plot an
ideal line based on the WBS and an actual line based on the estimated hours of all
completed tasks. This is illustrated in the previous examples as well as in the spread-
sheet that accompanies the book. When the lines diverge, you’re trending off plan.

 This is a backward-facing metric, because the definition of success is based on your
understanding of scope at a point in time in the past—the time the WBS was elabo-
rated. Success means sticking to the original plan or the latest re-baselined plan.

Fixed scope required
Bear in mind that this example assumes scope is fixed at the outset, and you’re using
adaptive methods to manage flexibility in schedule and/or budget. With the adaptive
approach to software development, one or two of scope, schedule, and budget are
fixed at the outset for business reasons, and the remaining one or two are flexible.
(If people tell you all three are flexible at the same time, it suggests they don’t under-
stand the business drivers of the initiative.)

You can’t track percentage of scope complete to date unless the definition of com-
plete is stable. So, you can use this metric with adaptive initiatives only when scope
is fixed. When scope is flexible, this metric doesn’t apply.
Licensed to Mark Watson <nordickan@gmail.com>

18 CHAPTER 2 Metrics for steering

What’s a story point?
Throughout the book, I’ve been tossing buzzwords around as if everyone ought to
know what they mean. That’s because the book is only about metrics and isn’t meant
to explain every aspect of every software development methodology. I expect you to
pick and choose the metrics that are relevant in your own context, based on the three
factors of development approach, process model, and delivery mode. But the term
story points seems to cause a fair amount of confusion, so let’s discuss it briefly.

When contemporary lightweight development methods were first being elaborated,
one of the historical problems people wanted to address was the unreliability of task-
level, time-based, subjective estimation as a planning tool. One alternative to this
sort of estimation is called relative sizing. It means development teams make a quick
judgment of the size of each work item relative to other work items in the team’s work
flow. That’s the key aspect of points: the size of a work item is relative to other work
items, not to any specific number of hours or days.

Teams judge the size of each work item in plan without spending much time on analy-
sis or discussion; it’s a quick, gut-feel estimate. Teams usually come up with roughly
similar estimated sizes, unless team members have radically different understand-
ings about what a work item means. In that case, the sizing exercise leads to useful
clarifying discussions. The exact numbers that come from the exercise aren’t terribly
important.

Size doesn’t sound very precise, and it sounds less so when it isn’t based on much
analysis, and still less so when a point has no direct connection with time. So, how
do teams arrive at sizes? They consider the anticipated level of effort for completing
the task. Level of effort, in turn, may be a function of complexity, tediousness, famil-
iarity, access to external resources, and any other relevant factors. You’re then
expected to observe the average length of time the team takes to complete stories
of any given relative size. Based on those empirical observations, you can forecast
the team’s near-term future performance without making guesses about how long
each work item will take.

But why are the points called story points rather than something else, like effort
points or coffee points? The historical reason is that the notion of story points came
about as part of the definition of user stories, a way of describing software function-
ality to be built. In methodologies that call for user stories, the relative size of the
stories is expressed in terms of story points. Today, the same general approach is
used with any methodology, and people often speak of the relative sizes of work
items in terms of points that have no particular unit of measure.

Sometimes the points are correlated with time formulaically; for instance, 1 point
might equate to 4 hours. This wasn’t the original intent of story points, but many
teams use them that way because it’s proven difficult to break the habit of guessing
at task completion times in terms of hours. When people first hear about story points,
the only way they can relate to the concept is by correlating the points with time.
Licensed to Mark Watson <nordickan@gmail.com>

19Metric: Percentage of scope complete
ADAPTIVE APPROACH

With the adaptive approach, one or two of scope, schedule, and budget are flexible by
design. There may be hard limits that can’t be exceeded without negating the return
on investment, but the initial definitions aren’t considered to be set in stone. Percent-
age of scope complete to date is meaningful for adaptive development only when the
scope is fixed at the outset and when the work is carried out as a discrete project.

 The basic planning artifact for adaptive development is a high-level list of business
capabilities that has been partially decomposed into software features and, possibly,
architectural setup tasks. Depending on the process framework in use, this may be
called a product backlog, a work queue, a master story list, or a similar name. To keep
things simple, I’ll use the term product backlog (probably the most widely used term as
this is written).

 Only enough up-front analysis and design is carried out to identify major risks and
to set a general direction for development. The items listed in the product backlog
are far less detailed than those in a traditional WBS. Therefore, the estimates have a
higher degree of uncertainty. This is normal for adaptive development, because the
intent is to discover and evolve the details as you progress.

 With the adaptive approach, features may be estimated in terms of time, or sized
relative to one another using a point system, with no reference to time. In some orga-
nizations, people relate the points to time formulaically; for instance, they might say
that it takes two days to deliver 10 points. This isn’t the proper way to use relative
sizing, but you may have to deal with it in your organization. If this is the situation in
your case, then use the estimated time (and not the points) to track percentage of
scope complete. It’s in effect a traditional project posing as an adaptive one, so you
want to use measures that correspond with the way the work is really being done.

 The definition of 100% of scope is the sum of all the high-level estimates (usually in
days, because you’re working with high-level feature descriptions) or sizes (in points)
for features initially planned in the solution. The percentage of scope complete to
date is determined by summing the estimates (not the actuals) for all backlog items
that have been completed.

 Any single observation of this measurement is a trailing indicator of delivery perfor-
mance. To build a leading indicator to forecast future delivery performance, you plot an
ideal line based on the product backlog and an actual line based on the estimates or

In your organization, people may or may not use the term story points. If they do, then
they may or may not use story points in the way they’re meant to be used. This makes
no difference for measurement. Your task is to recognize how the work flows in your
organization and to measure what is actually happening, regardless of the way people
label things.
Licensed to Mark Watson <nordickan@gmail.com>

20 CHAPTER 2 Metrics for steering
points of all completed backlog items. This is illustrated in the previous examples as
well as in the spreadsheet that accompanies the book. When the lines diverge, you’re
trending off plan.

 This is a backward-facing metric, because the definition of success is based on your
understanding of scope at a point in time in the past—the time the product backlog
was elaborated. Success means delivering the fixed scope that was initially defined.

2.1.5 Anti-patterns

Any metric can be misused. Here are some common misapplications of percentage of
scope complete, also known as anti-patterns.

THE EASY RIDER

Managers or teams cherry-pick the easy bits of traditional methods and the easy bits of
adaptive methods in a misguided attempt to avoid the more challenging aspects of
software delivery. They have neither a reliable definition of 100% of scope nor any
robust mechanisms to adapt schedule and budget to manage variable scope. The typi-
cal pattern is that stakeholders assume the initial statement of scope represents a
hard-and-firm commitment on the part of the delivery organization, although it’s only
a high-level summary of desired features. The outcome is both predictable and avoid-
able—cost and schedule overruns—and yet the pattern is repeated frequently. Some-
one, somewhere, is doing it right now. They won’t see the anvil that is plummeting
toward them until it’s too late to take corrective action.

IT’S ONLY A REWRITE

When the purpose of the initiative is to replace an existing solution with a new one
that has the same features but is based on a newer set of technologies, planners
assume there’s no need to investigate the functional requirements for the replace-
ment solution. After all, “everyone” already knows what the old system does. There’s
no need to write any of it down. All the delivery team has to do is implement the cur-
rent feature set with the new technologies. How hard could that be? To save costs, you
can staff the project with temporary contract programmers who have never seen the
old system. While you’re at it, you can throw in a few new features, too. You just have
to expect significant cost and schedule overruns.

THE NOVICE TEAM

When managers or teams first begin to apply adaptive development methods, they
sometimes assume traditional practices such as in-depth requirements analysis or up-
front design are obsolete and unnecessary regardless of context. When the context of
the adaptive initiative is that scope is fixed, you need a comprehensive definition of
the work items that must be completed. It isn’t meaningful to track percentage com-
plete when the definition of 100% is variable.

Licensed to Mark Watson <nordickan@gmail.com>

21Metric: Earned value
2.2 Metric: Earned value
Question(s) answered
 Are we on track to complete the planned scope on schedule and within the allocated

budget?

Description
 The amount of budgeted cost that has been used up as of the reporting date
 Value
 Early warning of potential cost and/or schedule variance

Dependencies
 Approach: traditional
 Process model: any
 Delivery mode: discrete project

Success factors
 The initial definition of 100% of scope, schedule, and budget are firm and complete.

2.2.1 When to use earned value

Earned value (EV) has been around a long time. It’s well documented and widely
used. Many managers believe it’s the best or only way to track progress. Yet EV
depends on having the full scope defined in advance, the delivery schedule fixed in
advance, and the full budget allocation defined in advance. When one or more of
these factors is variable, the input values for EV formulas change throughout the pro-
ject, causing the results to be useless for their intended purpose. For that reason, EV
shouldn’t be used with adaptive development.

 EV is commonly used in very large-scale programs that involve other activities
besides software development and that may involve hundreds or even thousands of
subcontractors, each working on a small piece of the puzzle. Under those circum-
stances, software development teams don’t have direct access to customers. They work
to a set of specifications for their piece of the work only. Possibly the only way they can
get a sense of the “value” of their work is to consider the budgeted cost of each work
package in plan, and treat that cost as a value.

 That said, it’s possible to use a subset of EV formulas and to simplify those formulas
to whatever extent makes sense in context. The EV literature doesn’t require the high-
est degree of formality for every project. EV can be tailored to circumstances. I’ve
heard percentage of scope complete to date described as a very basic version of EV.
But EV can’t be tailored to handle adaptive development, because it assumes the full
scope, schedule, and budget are set in advance and the budgeted cost of each work
package is known at the outset.

2.2.2 A traditional project

Let’s say you’re managing a traditional software development project and you want to
know how well the work is proceeding as compared with the project plan. You begin
work with scope fully defined, including a work breakdown structure (WBS) that
includes estimated hours and budgeted cost per work item.
Licensed to Mark Watson <nordickan@gmail.com>

22 CHAPTER 2 Metrics for steering

Typically, the cost of a work package is
based on the hourly labor rates for the types
of work involved in completing the work
package multiplied by the estimated num-
ber of hours to complete the work package.

 For example, assume that one of the
work packages (let’s call it Calculate Sales
Tax) involves an estimated 4 hours of analy-
sis, 10 hours of programming, and 4 hours
of testing. Furthermore, assume that in
your company the average fully burdened
hourly rate for a business analyst is $50, for
a programmer it’s $75, and for a tester it’s $60. The budgeted cost for the work pack-
age is shown in figure 2.7.

 To use EV effectively, you need to know the budgeted cost of every work package in
scope before beginning development. This gives you the basis for projecting future
budget performance and schedule performance so you can get an early warning
about any potential delivery risks.

 EV uses a few data points and a handful of simple equations to calculate cost vari-
ance (CV) and schedule variance (SV) as of a given reporting date. Here are the basic
terms and equations:

 Planned value (PV), also known as budgeted cost of work scheduled (BCWS), is deter-
mined by multiplying the estimated hours by the hourly labor rate(s) for the
work in scope, as shown in figure 2.7. You do the same for all the work packages
in the WBS to arrive at the overall PV for the project.

 Earned value (EV), also known as budgeted cost of work performed (BCWP), is deter-
mined by multiplying the percentage of work complete to date by the total pro-
ject budget.

 Actual cost (AC), also known as actual cost of work performed (ACWP), is the
observed actual spend as of the reporting date.

What’s a work package?
With this sort of planning, the work items in plan are usually called work packages or
deliverables. In your organization, people may use terms like these, or they may label
the work items using a more contemporary term like user story or minimum market-
able feature. Because the work is done using traditional methods, the more popular
contemporary terminology doesn’t change anything substantively. This is one reason
you must pay more attention to the way work is actually done than to the way things
are labeled.

Figure 2.7 Budgeted cost of a work package
Licensed to Mark Watson <nordickan@gmail.com>

23Metric: Earned value
Using EV as the base, you can calculate the CV and SV as of the reporting date to get
an idea of whether the project is likely to come in on schedule and budget. The calcu-
lations are as follows:

 CV = EV – AC

 SV = EV – PV

For example, assume that your project is planned for 10 months with a budget
of $1,000,000. You’re partway through the project, and the numbers are as shown in
figure 2.8.

For a visual representation of the status, it’s useful to show AC, PV, and EV, as in
figure 2.9. The gap between EV and AC shows the CV, and the gap between EV and PV
shows the SV. The unit of measure is currency, because the calculations are based on
the project budget.

Figure 2.8 Raw data for EV

Figure 2.9 EV chart
Licensed to Mark Watson <nordickan@gmail.com>

24 CHAPTER 2 Metrics for steering
2.2.3 Anti-pattern: the novice team

People slip into anti-patterns when they misunderstand the dependencies for using
EV or when they assume traditional measurements will work properly with adaptive
methods.

 EV works well when you want to track project performance against a comprehen-
sive plan. Like any comparison of current progress against a 100% standard, EV works
when the definition of 100% remains stable. When you begin development with a firm
definition of 100% of scope and budget and a hard-and-fast delivery date, you can use
EV to track performance to plan.

 This implies big design up front (BDUF), a firm completion date, and a complete
budget allocation at the outset of the project. With adaptive methods, scope may be
loosely defined, the schedule may be flexible, and an incremental funding model may
be used.

 The most common anti-pattern for using EV occurs in organizations (or with pro-
ject managers) that are new to adaptive methods. The error is to apply traditional
measurements such as EV in the context of adaptive development. With adaptive
methods, you begin development without a comprehensive definition of all three of
scope, schedule, and budget. The basis of EV is to compare expected performance to
date against actual performance to date. Because scope, schedule, and/or budget are
subject to frequent change during an adaptive development project, there is no stable
definition of 100% for any of these elements. Lacking a stable definition of 100%, it
isn’t meaningful to express the current status as percentage complete to date.

2.3 Metric: Budget burn
Question(s) answered
 Do we have enough money to complete the planned work on schedule?

Description
 Predicted budget performance based on actual spending to date
 Value
 Warning of potential cost overrun

Dependencies
 Approach: any
 Process model: any
 Delivery mode: discrete project

Success factors
 The total budget for the project or for a distinct phase or release is allocated in advance—

that is, any sort of funding model other than a recurring expense budget.

2.3.1 When to use budget burn

Once resources have been obtained and teams are organized, the cost of software
development work is usually a fixed, recurring cost. Unless you have no financial con-
cerns at all, it’s useful to track the rate at which you’re using up the funds for the
work. This is true whether you have a fixed budget allocation or you’re using some
Licensed to Mark Watson <nordickan@gmail.com>

25Metric: Budget burn
form of incremental funding. With traditional methods, you can get an early warning
that you’ll run out of funds before the schedule has run its course. With adaptive
methods, you can see whether there will be sufficient funding to meet development
goals based on teams’ forecast delivery performance. With incremental funding,
tracking the rate at which funds are used helps inform business decisions about
whether to continue development, shift gears, or cancel the work before too much
money has been invested. Whatever the model, money is money and time is time.

2.3.2 A traditional project

Assume you’re responsible for a traditional software development project in which
scope, schedule, and budget are all fixed in advance. One of the key questions you
must be able to answer at all times during the project is, “Will we run out of money
before we run out of time?” A simple way to answer this question is to compare the
planned outlay with the actual outlay to date.

 Suppose you’re partway into the project, and your numbers look like those shown
in figure 2.10. You can see from the numbers that you’ve spent more than you
expected as of November 1, 2020. A visual comparison of actual versus expected
spend makes it clear whether you’re likely to run out of money by the end of the pro-
ject. Figure 2.11 provides a line chart showing monetary amounts.

Figure 2.10 Raw data for
the budget burn metric

Figure 2.11 Budget burn
projection showing amounts
Licensed to Mark Watson <nordickan@gmail.com>

26 CHAPTER 2 Metrics for steering
The gap between the expected spend and the linear trend line from actual spend
shows the likely budget variance as of the planned end date of the project. The same
information can be shown using percentages, as you can see in figure 2.12.

2.3.3 An adaptive project using beyond budgeting

Funding of adaptive projects can take different forms. Many projects are started with a
fixed budget allocation even if they use adaptive methods during execution. Others
are funded on an as-needed basis with a cap or not-to-exceed (NTE) limit on total
costs. Some use set-based concurrent engineering (SBCE) to explore alternative solu-
tions up to a point, after which funding is funneled into the selected solution. Some
run a proof-of-concept phase initially and decide whether and how to proceed with
the full solution based on the results of the proof of concept. Some take a lean startup
approach to product development, vetting proposed application features by placing a
rudimentary implementation into the hands of a select group of real customers to
obtain their feedback and adjusting plans accordingly. Some use the beyond budgeting
approach across the portfolio, revisiting risks and business priorities on a periodic
basis and adjusting the course and funding of all in-flight initiatives accordingly. In
any case, tracking the budget burn is always helpful in steering a project.

 When funds are allocated more than once in the course of a project, you want to
track the budget burn for each period of time in which funds are provided. Let’s say
you’re managing a project in a company that uses beyond budgeting. On a quarterly
basis, senior management revisits their assumptions, priorities, risks, and return on
investment calculations. They assess competitor actions, customer feedback, operat-
ing costs, market trends, regulatory changes, technological advances, currency fluctu-
ations, and other factors. Your project, along with every other project in the portfolio,
may be canceled, increased or reduced in scope, raised or lowered in priority, or redi-
rected toward a different goal. You receive funding for three months at a time. For
each three-month period, you want to track the budget burn to be sure you can com-
plete the work planned for the quarter.

 The numbers shown in figure 2.13 tell you that you’ll run out of funds before the
end of the first quarter unless something changes. Given the assumptions underlying
this example, you can probably request additional funding to see you through the

Figure 2.12 Budget burn
projection showing percentages
Licensed to Mark Watson <nordickan@gmail.com>

27Metric: Budget burn
quarter. Remember that the company uses beyond budgeting, which means there are
funds available that can be shifted around as priorities and realities change. All the
money isn’t locked down in up-front budget allocations. In addition, the company
isn’t encumbered with tedious and politically risky change procedures. Besides that,
your project has a relatively high priority in the portfolio for this quarter, so it will
receive preferential treatment compared with most other in-flight initiatives. By using
this metric to get an early warning about a potential cost overrun, you can make
appropriate adjustments while it’s still cost-effective to do so.

 You can chart this based on actual amounts or percentages, as shown in figures 2.14
and 2.15. Whether you examine the spreadsheet, the chart showing amounts, or the
chart showing percentages, the numbers tell you that you’ll spend more than expected
by the end of the quarter unless something changes. In this case, the variance is nega-
tive (insufficient funds are allocated). Positive variance is also possible. Let’s proceed
to the second quarter to see how that would look.

 Assume that senior management has made some adjustments to the strategy for
the second quarter. A competitor has introduced an attractive option to customers,
and you want to match it quickly to avoid losing market share. In addition, the govern-
ment in one of the countries where you operate has changed regulatory rules that
affect your business, and you must make software changes to support the new rules.
These initiatives take precedence over your project, which now has a lower priority
than before. Your team is reduced in size from 20 people to 12 to support the two
high-priority initiatives. Accordingly, your funding for the second quarter will be

Figure 2.13 Budget data for the
first quarter

Figure 2.14 Budget burn by amounts for the first quarter
Licensed to Mark Watson <nordickan@gmail.com>

28 CHAPTER 2 Metrics for steering
$400,000 instead of $600,000. Of course, the scope you’re expected to deliver is
smaller, as well.

 In the second quarter, you find you’re able to complete your work faster than
expected. Midway through the quarter, your budget burn numbers tell you you’re per-
forming better than expected, as shown in figure 2.16.

The improved performance may be due to various factors. Perhaps the reduced scope
of work proved to be simpler than the original scope. Perhaps the smaller team is
spending proportionally less time achieving clear communication among themselves
than the larger team could achieve. Perhaps the team implemented process improve-
ments that streamlined the work flow. Whatever the reasons, you’re likely to complete
your work for the second quarter with money left over. This information enables plan-
ners to make decisions that enhance the organization’s overall performance, possibly
by shifting some of the unneeded funds to one of the high-priority initiatives.

Figure 2.15 Budget burn by percentages for the first quarter

Figure 2.16 Budget data for
the second quarter

Figure 2.17 Budget burn by
amounts for the second quarter
Licensed to Mark Watson <nordickan@gmail.com>

29Metric: Budget burn
As before, you can chart the budget burn using actual amounts or percentages, as
shown in figures 2.17 and 2.18. This time, the budget variance is positive. You can see
this because the actual spend is trending below the expected spend.

Now, let’s say your project is once again a priority for the company in the third quar-
ter. You have $720,000 and the original team of 20 at your disposal to complete the
work. Midway through the quarter, your spend looks like that shown in figure 2.19.

The numbers indicate that you’re likely to need a little more money than anticipated,
but the variance is smaller than in the first quarter. Based on this, it might be prema-
ture to shift funding from lower-priority initiatives into your project, but the spend will
be something to pay attention to over the next two or three weeks. That’s the sort of
business decision you can make to steer the project based on this metric.

 As always, you can chart this data using the actual amounts or percentages, as
shown in figures 2.20 and 2.21.

Figure 2.18 Budget burn by
percentages for the second quarter

Figure 2.19 Budget data for the
third quarter

Figure 2.20 Budget burn by
amounts for the third quarter
Licensed to Mark Watson <nordickan@gmail.com>

30 CHAPTER 2 Metrics for steering

2.3.4 Anti-pattern: agile blindness

Fiduciary management is a fundamental part of managing any initiative, but in the
past decade or so, teams have often neglected to track their budget burn when they
use “lightweight” management methods.

 The popular agile approach to software development has proven to be very useful
when time to market is a key business driver or when there’s high uncertainty about
the final shape of the solution necessary to support a business vision. The most widely
used methods associated with this approach are silent on the subject of fiduciary man-
agement. They focus instead on how to keep the work flowing smoothly and how to
achieve flexibility in the face of changing needs. Although these are important aspects
of agile development, you still have to keep in mind other necessary functions of pro-
ject management.

 Sometimes managers and teams forget to apply what they already know about
managing projects when they first apply agile methods. In their enthusiasm to “be
agile,” they lose track of where the money’s going. They can be blindsided by unex-
pected cost overruns that cripple their projects.

2.4 Metric: Buffer burn rate
Question(s) answered
 Will we exceed our planning buffer before we run out of time?

Description
 Monitor the burn rate of the planning buffer.
 Look for trends that indicate emerging delivery risks.

Value
 Early warning of potential delivery risks
 Dependencies
 Approach: any
 Process model: any
 Delivery mode: discrete project

Success factors
 No special success factors

Figure 2.21 Budget burn by
percentages for the third quarter
Licensed to Mark Watson <nordickan@gmail.com>

31Metric: Buffer burn rate
2.4.1 When to use buffer burn rate

It’s a common practice to define a planning buffer when planning a project. But
regardless of how carefully you analyze and plan, there are always unknowns to be dis-
covered along the way. One way of coping with this reality is to leave some room in the
plan for delay, experimentation, and expanded scope.

 For traditional projects, the conventional rule of thumb is to plan a 35% buffer in
the schedule. Depending on context, it may be feasible to define a smaller buffer than
that. For instance, if an organization typically carries out many projects of a similar
nature in a familiar environment, then there may be fewer unknown issues. Another
factor is estimation confidence. People who have significant experience in a particular
domain may be highly confident about their estimates and feel they don’t need a large
planning buffer. I’ve seen planning buffers as small as 5% and as large as 50% for tra-
ditional software development projects.

 For adaptive projects, development begins on the basis of a high-level vision for
the future state. There isn’t a comprehensive project plan with all the details spelled
out. Yet in nearly every case, there is an upper bound on the schedule and a practical
limit on spending for the project (usually called not to exceed [NTE]). To get a realistic
sense of the timeline, the conventional rule of thumb is to plan a 100% buffer for
adaptive projects. That is, if the entire future state vision is implemented, it’s likely to
amount to about double the amount of work that you can identify at the start of the
project. As with traditional projects, the variation differs by context.

2.4.2 How to use buffer burn rate

The first step is to define the planning buffer for the project. If the buffer is exceeded,
it means the project has overrun its budget or timeline. You’ve seen that you can
anticipate budget and schedule overruns by monitoring the difference between
planned performance and forecast actual performance, using percentage of scope
complete to date or a burn chart based on observed velocity (described later in this
chapter). An alternative is to monitor the consumption of the planning buffer. The
typical way to chart this is with a fever chart, as in figure 2.22.

Figure 2.22 Buffer burn
rate fever chart
Licensed to Mark Watson <nordickan@gmail.com>

32 CHAPTER 2 Metrics for steering
A fever chart tracks a variable to show when its value goes outside of defined bounda-
ries. It depicts three regions, usually called Green, Yellow, and Red. If the variable
remains in the Green zone, there’s no problem. If it goes into the Yellow zone, you
need to pay attention and deal with any emerging delivery risks. If the variable goes
into the Red zone, the project is in trouble.

 To set up a fever chart, define the upper bound of the Green zone as the base pro-
ject plan with no buffer. Define the lower bound of the Red zone as the project buffer.
The Yellow zone gives you a safety margin between performance to plan and high
delivery risk; define its bounds at some reasonable level below the project buffer.

 The purpose of a fever chart is to trigger action when a variable takes on a value
outside of normal bounds. The variable in this case is planning buffer consumption. If
your buffer is 50%, then you’ll want to set the Yellow zone at a point below 50% that
gives you an opportunity to take corrective action before the project gets into trouble.
It could be, say, 20% or 25%.

2.5 Metric: Running tested features
Question(s) answered
 How many of the planned features of the solution are in a production-ready state?
 Are we creating regressions (breaking previously working code) as we deploy new features?
 Are we likely to complete sufficient functionality on schedule to provide enough business

value to justify continuing the project?
 How much time will we need to complete a given set of features for the new solution?

Description
 A simple count of the software features that have been or could be deployed to production.

It’s a forward-facing metric.

Value
 Provides a mechanism to track progress toward the project goal when there’s no firm

definition of 100% of scope

Dependencies
 Approach: adaptive
 Process model: iterative, time-boxed, or continuous flow
 Delivery mode: discrete project

Success factors
 Throughout development, the team delivers subsets of the solution incrementally to a target

environment where the features are exercised regularly using automated tests.
 The team uses automated test cases at multiple levels of abstraction to ensure that the

features complete to date are functioning properly and that updates to the code base
haven’t broken previously working features.

2.5.1 When to use running tested features

Running tested features (RTF) is meaningful whenever you’re delivering production-
ready increments of the solution throughout the development effort. Incremental
delivery is the norm with adaptive development. When agile methods are used to sup-
port a traditional development project, features may be delivered incrementally as
well. In either of these cases, RTF can be used to show progress toward delivery goals.
Licensed to Mark Watson <nordickan@gmail.com>

33Metric: Running tested features
2.5.2 An adaptive project

Let’s say you’re responsible for an adaptive software development project. At the start,
the general business vision is clear, but the details of the solution are uncertain. Using
the adaptive approach, your team will explore the solution space in collaboration with
key stakeholders until they have delivered sufficient business value to declare victory
and move on to another project.

 This sort of project doesn’t have a firm definition of 100% of scope or any detailed
analysis and design of solution components as of the start of development. For those
reasons, you can’t use backward-facing metrics that compare actual performance with
a plan created in the past. Instead, you need forward-facing metrics that provide
empirical information about delivery performance so that you can predict potential
delivery risks and plan the ongoing work.

 RTF is a simple count of the number of software features currently deployed to a
test environment with all automated test cases passing. RTF is useful in this case
because it doesn’t depend on a stable definition of 100% of scope. Let’s say your pro-
ject has been in progress for several months, and the RTF chart looks like the one
shown in figure 2.23.

 RTF serves an informational function as both a trailing indicator and a leading
indicator. If the project began on 12/1/2019, you can see that the team first delivered
a usable software feature in about a month’s time. Looking across the first 8 months of
development, the team sustained an average rate of delivery of about 1.75 features per

Figure 2.23 Running tested features
Licensed to Mark Watson <nordickan@gmail.com>

34 CHAPTER 2 Metrics for steering
month. This provides a forward indicator that helps you understand how many
months the team will need to complete X number of features, or how many features
the team can deliver in X number of months. These numbers are approximate but
reality-based, and therefore useful for planning.

 The chart also shows points in the development process when the team encoun-
tered problems. This chart shows just one such event, around early May 2020. RTF
serves a diagnostic function by highlighting times when the team breaks previously
working code.

2.5.3 Anti-pattern: the easy rider

RTF is very sensitive to two key factors:

 Features must be delivered incrementally throughout development, not deliv-
ered in “big bang” fashion at the end of each release.

 The software must be exercised by automated test cases on a regular basis (at
least daily).

You have seen the easy rider anti-pattern once before in this chapter. It occurs when
teams try to combine the easy bits of traditional and adaptive methods while avoiding
the hard bits. With respect to RTF, the easy rider anti-pattern can occur when a team
isn’t disciplined about two of the hard parts of adaptive methods just mentioned:
regularly delivering solution increments to a target environment, and/or regularly
exercising the code with automated and manual tests.

 A feature isn’t complete when the requirements have been specified. It’s still not
complete when the code has been written. The feature is complete only when the key
stakeholders have accepted it as complete. This is usually based on passing acceptance
tests, passing regression tests, satisfaction of nonfunctional requirements, and a suc-
cessful demonstration of the feature for the key stakeholders. Any shortcuts in these
areas render RTF meaningless.

2.6 Metric: Earned business value
Question(s) answered
 What proportion of the anticipated business value has been delivered to date?
 Have we achieved the goals of the project well enough to declare victory and move on?
 Is it worth the cost to continue developing the remaining features?
 Are we focusing on the highest-value features of the solution?

Description
 Tracks the relative amount of planned business value that has been delivered to date

Value
 Provides a mechanism to monitor business value delivery when there’s no comprehensive

up-front plan

Dependencies
 Approach: adaptive
 Process model: iterative, time-boxed, or continuous flow
 Delivery mode: discrete project
Licensed to Mark Watson <nordickan@gmail.com>

35Metric: Earned business value
Success factors
 Active involvement of key stakeholder(s) with continue/terminate decision-making authority
 The relative anticipated business value of each feature is assigned by key stakeholder(s)

when the feature is defined.

2.6.1 When to use earned business value

With the traditional approach, stakeholders have no option but to wait until the com-
plete solution has been delivered before they can see whether they really need all the
features that were specified in the original plan. Typically, stakeholders request every
feature they can think of at the outset, because they know there will be little opportu-
nity to make changes once the project’s budget and resources have been allocated.

 One of the advantages of adaptive development is that it allows stakeholders to
make the decision to end development early if they’ve received enough value to satisfy
their business needs, to free up funding and resources for other work. Adaptive devel-
opment accepts the reality that no one can accurately and fully envision every detail of
their future needs. What people can do is specify the business capabilities that the new
software must support. From that point forward, the details are subject to change.

 So, how can you measure the value that stakeholders have received to date
throughout the course of a software development initiative? A simple and practical
metric is earned business value (EBV), originally developed by Dan Rawsthorne, a
thought leader in the Agile community.

2.6.2 An adaptive project

Let’s say you’re responsible for delivery of a project to enable two business capabili-
ties. A set of software features has been identified that will support each capability. You
have a hard due date, and you need to manage the work in a way that assures the
maximum feasible business value is delivered by that date. An initial functional
decomposition of the capabilities and supporting feature sets looks like figure 2.24.

 In keeping with the general philosophy of adaptive development, you want to deliver
the highest-value functionality of the solution early. A basic functional decomposition
doesn’t show you which capabilities and features are more valuable than others.

 You can’t use the financial value of individual features, because there’s no practical
way to determine their value before they’ve been developed. The only way to know the
true value of a software feature is to offer it to the market and see what customers are
willing to pay for it. That information comes too late for you to use it to steer the
development work.

Capability I Capability II

Feature
Set A

Feature
Set B

Feature
Set C

Feature
Set D

Feature
Set E

Feature B1 Feature B2 Feature C1 Feature C2
Figure 2.24 Initial functional
decomposition
Licensed to Mark Watson <nordickan@gmail.com>

36 CHAPTER 2 Metrics for steering
You decide that EBV is the tool you’ll use to ensure that the team delivers the highest-
value features first and lower-value features as time permits. In collaboration with key
business stakeholders, you assign relative business-value points to each capability, fea-
ture set, and feature in the functional decomposition. You begin with a fixed number
of value points—in this case, 2,000—and allocate them across the planned features.
Let’s say you and your key stakeholders end up with the relative values shown in
figure 2.25.

 According to the key business stakeholders, Capability I accounts for 65% of the
total value of the project; they assign it 1,200 of the available 2,000 value points. All
the boxes under Capability I must add up to exactly 1,200 points. Feature Set B is
worth 900 of those 1,200 points. All the boxes under Feature Set B must add up to
exactly 900 points, and so on.

 Based on this, it’s clear that Capability I promises to deliver greater business value
than Capability II. You can also see that Feature Set B accounts for the lion’s share of
the business value of Capability I. Assuming it’s technically feasible, you can see that
the preferred order of delivery of the planned functionality is as follows:

1 Capability I, Feature Set B, Feature B1 (35% of the value of the project)
2 Capability II, Feature Set C, Feature C1 (15% of the value of the project)
3 Capability I, Feature Set A (15% of the value of the project)

Because you’re taking the adaptive approach, your understanding of the business
needs and your definition of the solution will evolve throughout the project. When
you add, change, and remove planned features from the project’s scope, you don’t
change the total number of relative business points in play. As the details of the solu-
tion evolve, the total number of business value points will always total 2,000.

 Going forward, you focus your efforts on Features B1 and C1. Elaborating these
features further, you identify epics and stories (smaller chunks of work) that are the
building blocks of the two highest-value features. The total number of points doesn’t
change; you must allocate fewer points to each box in the functional decomposition
as you add more detail (see figure 2.26).

1200 800

300 900

700 200

500

300 200

200 100

Capability I Capability II

Feature
Set A

Feature
Set B

Feature
Set C

Feature
Set D

Feature
Set E

Feature B1 Feature B2 Feature C1 Feature C2

Figure 2.25 Initial
functional decomposition
with value points
Licensed to Mark Watson <nordickan@gmail.com>

37Metric: Earned business value
You continue in the same vein as you evolve the solution. You add, remove, revalue,
and split stories as you proceed with development. After some time, you reach a stage
in development when the decomposition of the solution looks like figure 2.27.

 The grayed-out boxes represent completed work, and the X represents a story that
was dropped from scope. Notice that the overall value of the project is still 2,000
points, no matter how you shift the relative value points of the subordinate items.

1200

300 900

700 200

200100

50

400

200 350 200 50

250 50

800

100200500

300 200

Capability II

Feature
Set C

Feature
Set D

Feature
Set E

Feature C1 Feature C2

Epic C1.1 Story C1.2

Story C1.1.1 Story C1.1.2

Feature
Set A

Feature
Set B

Feature B1 Feature B2

Epic B1.1 Epic B1.2 Epic B1.3

Story B1.1.1 Story B1.1.2 Story B1.1.3

Capability I

Figure 2.26 Evolving functional decomposition

Feature
Set D

1,200

300 900

700

400 100 200

70 30

50 20

125 75

200

800

500 200 100

300 200

50250

Story B1.2.1
enhanced

Story B1.2.1
basic

Story B1.2.1 Story B1.2.2 Story B2.1 Story B2.2

Epic B1.2

Story B1.1.3
Story B1.1.3Story B1.1.3

Story B1.1.3
Story B1.1.3Story B1.3.3

Epic B1.1 Epic B1.3

Capability I

Feature
Set A

Feature
Set B

Feature B1 Feature B2

Story 2.1.2

Story B1.1.3
Story C1.1.2

Epic C1.1

Feature
Set E

Capability II

Story B1.1.3
Story C2.2

Feature C2Feature C1

Feature
Set C

Figure 2.27 Functional decomposition after further evolution
Licensed to Mark Watson <nordickan@gmail.com>

38 CHAPTER 2 Metrics for steering
How do you track this? Figure 2.28 shows a snippet of the spreadsheet that displays
progress on these stories. When this is charted, the line representing cumulative
business value delivered climbs as the team delivers the highest-value features; see
figure 2.29.

The example shows that the team delivered high-value features in January and then
lower-value features until February 19. Because they were tracking EBV, they were able
to correct their course and focus on higher-value features after that.

 When the team has delivered most of the high-value features, the line begins to
flatten. Key business stakeholders may decide to halt the project so that the team can
focus on another initiative that offers greater business value than the remaining fea-
tures of the current project.

2.6.3 Anti-patterns

Here are some common anti-patterns in the use of earned business value.

CONFLATING BUSINESS VALUE WITH LEVEL OF EFFORT

Some teams assume that the relative difficulty of building a software feature corre-
sponds with the relative business value of the feature. When the team has completed
50% of the work, they believe they have delivered 50% of the business value of the

Figure 2.28 Raw data for EBV

Figure 2.29 EBV chart
Licensed to Mark Watson <nordickan@gmail.com>

39Metric: Velocity
project. In fact, value delivered and quantity of software delivered are two completely
separate considerations that have to be tracked independently.

THE ABSENTEE DECISION-MAKER

One of the assumptions in adaptive development is that key stakeholders who have
decision-making authority are directly engaged with the development team through-
out the project. Unfortunately, this doesn’t always happen. Some teams attempt to
compensate by making their best guess about the relative business value of the fea-
tures in scope. This approach can result in the team delivering precisely the wrong
features early on and then running out of time. It’s better to dispense with tracking
business value and raise the absence of a decision-maker as a potential business risk.

2.7 Metric: Velocity
Question(s) answered
 What is the average delivery capacity of the team per unit of time?
 Is the team delivering at a steady rate?

Description
 Empirical measurement of the quantity of work the team delivers per unit of time, for

forward-facing steering

Value
 Provides a trailing indicator of variation in the team’s delivery performance
 Provides data points to create leading indicators to predict the length of time the team will

need to complete a given scope or the amount of scope the team can deliver in a given
length of time

Dependencies
 Approach: any
 Process model: time-boxed
 Delivery mode: discrete project

Success factors
 The team completes some number of production-ready units of work per time-boxed

iteration.
 The team sizes or estimates work items using a consistent scheme and scale throughout

the project. This need not be (and usually isn’t) comparable to the schemes and scales
used by other teams.

2.7.1 When to use velocity

Use velocity to track a team’s delivery capacity when using a time-boxed iterative pro-
cess to support incremental delivery. Velocity is practical for short-term planning
because it provides an empirical indicator of how much work a team can usually com-
plete in a single time-boxed iteration. A single observation of velocity is a trailing indi-
cator, and a series of observations can be used to populate a burn chart that provides a
leading indicator of a team’s likely delivery performance.

 Velocity is also useful for process improvement, because it exposes irregularities in
delivery performance. Once a team settles into its work flow, it should produce
approximately the same amount of work in each time-boxed iteration.
Licensed to Mark Watson <nordickan@gmail.com>

40 CHAPTER 2 Metrics for steering
 When a time-boxed iterative process model is applied correctly, the team produces
a production-ready solution increment in each iteration. This is one of the factors that
distinguishes the time-boxed iterative model from other iterative models. Many teams
attempt to use a time-boxed iterative process, but are unable to produce a production-
ready solution increment in each iteration for one reason or another. Be advised that
when this is the case, observations of velocity may not be meaningful.

2.7.2 An adaptive project

Assume you’re assigned to manage an adaptive development project using a time-
boxed iterative process. There’s no comprehensive WBS, so you don’t have a list of
every task that must be completed to deliver the project, and you don’t have time-
based estimates on which to base expectations of delivery performance. Yet you still
need to anticipate how much work the team will be able to complete in a given
amount of time or the approximate amount of time the team will need to deliver a
given amount of work. How can you do it?

 Velocity is a metric that provides a trailing indicator of a team’s demonstrated delivery
performance. It can support either forward-facing tracking for adaptive initiatives or
backward-facing tracking for traditional ones. Recent performance is a reasonably accu-
rate predictor of near-term future performance, so a series of velocity observations
can provide a leading indicator of a team’s likely future delivery performance.

 Velocity serves an informational function by showing a team’s actual delivery perfor-
mance. It serves a diagnostic function by highlighting irregular or erratic delivery per-
formance. It serves a motivational function by providing teams with empirical feedback
about their delivery performance.

 Rather than time-based estimates, velocity is based on relative sizing of work
items. That is, if the team feels that work item B is about twice as big as work item A,
they will assign work item B twice as many points as work item A. The relative points

Figure 2.30 Raw data for velocity
Licensed to Mark Watson <nordickan@gmail.com>

41Metric: Velocity
don’t correspond to absolute values for estimated hours, level of effort, or similar
units of measure; they have meaning only as a general indication of the relative size
of work items.

 A team’s performance in the most recent three or four iterations gives you a pretty
good idea of how they will perform in the next iteration. A trend line based on a plot
of observed velocity can tell you

 How much work a team is likely to deliver in a given amount of time
 How much time a team needs to deliver a given amount of work

You can use this information to develop a forward-facing metric known as a burn chart
to give you a leading indicator of how the work is likely to progress, assuming all vari-
ables remain unchanged. Burn charts are described later in this chapter, in
section 2.9. To develop the information for velocity and burn charts, you collect obser-
vations of a team’s delivery performance per iteration, as shown in figure 2.30. You
can chart the information to get a visual indication of whether it’s likely the team will
be able to deliver the planned scope in the planned time; see figure 2.31.

 Another useful way to chart the information is to show the expected completed
scope to date alongside the observed performance and trend line, rather than (or
along with) showing the total scope. This gives you the familiar jaws of death format for
the line chart, as shown in figure 2.32.

Figure 2.31 Velocity charted
against planned scope

Figure 2.32 Velocity charted
against expected performance
Licensed to Mark Watson <nordickan@gmail.com>

42 CHAPTER 2 Metrics for steering
2.7.3 Anti-patterns

Velocity can be a useful metric in appropriate situations. It can perform an informa-
tional function and a diagnostic function when a time-boxed process model is followed
properly. But velocity is easily abused. It’s especially sensitive to two key elements of
the time-boxed process model: maintaining a consistent iteration length, and deliver-
ing production-ready code in each iteration. In addition, velocity must be treated as
an empirical observation of actual performance, and not as an estimate or target.
Common errors in using velocity include the following:

 Setting targets for velocity
 Using velocity as a substitute for percentage complete
 Assuming that a team instantaneously achieves its normal velocity in the first

iteration
 Assuming that a team can deliberately change its velocity to correct their

schedule
 Using velocity to compare teams
 Using velocity for a mixed work flow

SETTING TARGETS FOR VELOCITY

Velocity is an empirical observation of a team’s actual delivery performance. It isn’t an esti-
mate. When managers attempt to drive their teams to higher levels of performance by
setting velocity targets, they risk causing an unintended motivational effect—teams will
game the numbers to ensure that they always (appear to) meet their targets. Once
that happens, velocity no longer performs the informational and diagnostic functions
that help you make good decisions about the project.

 I’ve seen many cases in which a manager attempted to coerce or trick a team into
increasing their velocity, only to have the team adjust the sizes of work items in order
to make their numbers while delivering the same amount of work as before. But I’ve
also seen a counterexample—a case when a team stretched their delivery capacity by
setting a velocity target. In that case, the manager met with the team to explain the
strategic importance of delivering certain features by a certain date. Then the man-
ager asked the team if they were willing to try to deliver at a rate that would meet that
goal. The team agreed and succeeded. There were specific success factors in that case,
and I don’t recommend trying to aim for a velocity target as a normal practice.

 That single positive example illustrates the importance of understanding—truly
understanding—the surrounding context when selecting and using metrics. There
are no hard-and-fast rules to follow mindlessly.

VELOCITY AS PERCENTAGE COMPLETE

With the adaptive approach, you don’t have a comprehensive, detailed definition of
100% of scope at the outset of a project. At any given time, you have an idea of the
total scope you think you’ll ultimately deliver, but this is a moving target. As your
understanding of the solution improves and as your design evolves, the total scope will
change often.
Licensed to Mark Watson <nordickan@gmail.com>

43Metric: Velocity
 Equating velocity with percentage complete often occurs when an adaptive project
is being tracked by a manager who has a traditional mindset about scope. The man-
ager assumes that the initial, high-level guess at the total scope is a hard-and-fast com-
mitment. The assumption reflects a poor understanding of adaptive software
development.

 Another frequent cause is that higher-level management or stakeholders in the
organization insist that project managers and team leads report progress in terms of
percentage complete, even when the adaptive approach is used. This usually happens
because people misunderstand the meaning and intent of velocity and assume that it’s
just a modern buzzword for a traditional concept. If you’re required to report pro-
gress in this way, then do so; just don’t assume that you can use the numbers to make
critical decisions about your work.

INSTANTANEOUS MAXIMUM VELOCITY

Teams tend to settle into a performance norm once the team members get used to
working together, learn about the business domain, and become comfortable with
the technologies they’re using to build the solution. This typically requires three or
four iterations. In the first few iterations, the team’s velocity will be lower than their
own norm.

 A common mistake on the part of project managers is to assume that a team
instantaneously and automatically operates at its normal velocity from the start of a
project. When the manager projects future performance on this basis, it’s almost cer-
tain that the trend line will make it appear as if the project will never be completed.
This leads to all sorts of uncomfortable conversations with senior management, stake-
holders, and customers, when in fact there is no problem.

 Figure 2.33 shows an ideal delivery projection based on the assumption that the
team will achieve its normal velocity of 30 story points per iteration immediately, from
the moment the project begins. This is hypothetical, of course. You can’t know what
the team’s normal velocity will be until you observe it; the number 30 is only for pur-
poses of illustration.

Figure 2.33 Velocity projection assuming instantaneous maximum velocity
Licensed to Mark Watson <nordickan@gmail.com>

44 CHAPTER 2 Metrics for steering
Unlike a machine, a team won’t operate at full speed from the instant you switch it on.
It takes time for a group of people to gel into a cohesive, well-functioning team. If
there’s even a single new team member on board, this will have a negative impact on
the team’s initial velocity. In my experience, the impact of a new team is about 20% of
that team’s normal velocity. The impact gradually declines as the team members work
out their internal pecking order and learn how to function together as a unit.

 It takes time for people to get used to an unfamiliar technology set. If the team is
working with different technologies than they did on their last project, or at least on a
fairly recent project, then there will be another 20% impact to their initial velocity,
give or take a bit. This, too, will decline gradually as the team becomes comfortable
with the new technology set.

 It also takes time for people to learn a new business domain. If the team is work-
ing in an unfamiliar domain, then there will be a further 20% impact to their initial
velocity.

 These 20% figures are rough-cut approximations based on experience with many
teams. They aren’t a result of any academic studies. The key is to use realistic adjust-
ment factors to account for team ramp-up issues in the first few iterations. You know
your own situation, and I don’t, so use adjustments that make sense in your context.
The point is this: don’t assume that teams will blast out of the starting gate at full
speed—not even the very best teams. They won’t.

 When you factor in project setup activities and account for the impact of new team
members, an unfamiliar business domain, and new technologies, you can adjust the
forward projection for the first few iterations and then settle into using the unad-
justed actual observations once the team has ramped up to its own norm. This yields a
far more realistic projection of likely future performance.

 In the following example, you adjust expectations to include two iterations’ worth
of setup activities plus a 20% initial impact to the team’s velocity for new team mem-
ber integration, another 20% for new technology impact, and another 20% for new
domain impact. Over the course of three iterations (3, 4, and 5), the team gradually
ramps up to its own norm, which you assume to be 30 story points per iteration, for
purposes of illustration. With these considerations, the projection as of iteration 2
indicates the team is on track to meet the delivery schedule. By iteration 9, the projec-
tion is confirmed using unadjusted observations of velocity, as shown in figure 2.34.

 You may observe that the adjusted delivery schedule is different from the original
one. The team is delivering substantially less scope in the course of 16 iterations. What
can you do to recover the lost time? The answer is, nothing, for two reasons.

 First, there’s no lost time. The original schedule was badly planned. The original
expectation was wrong because it was based on faulty assumptions about velocity. You
never had the time you think you lost. Therefore, you didn’t lose it.

 Second, once time is lost, it’s lost forever. What you’ve done, in keeping with the
principles of adaptive development, is adjust the plan to account for reality, rather
than try to force reality to comply with your original plan.
Licensed to Mark Watson <nordickan@gmail.com>

45Metric: Velocity
PROJECTED PERFORMANCE BASED ON WISHFUL THINKING

When the preconditions for using velocity are in place, the metric can be useful for
projecting a team’s likely future delivery performance. It’s good at telling you the
truth about whether you’ll deliver a certain scope by a given date. But it isn’t so good
at telling you lies so that you can feel better when your project is going off track.

 I’ve seen cases in which project managers are unable to wrap their heads around
the idea of adjusting the plan to account for reality. The only corrective action they
can imagine is to make the team get back on schedule. They sometimes come up with
a projection like the one shown in figure 2.35. They assert that at some point in the
future, for no reason they can explain, the actual trend line will suddenly self-correct
and join up with the ideal line.

 What I’ve found most surprising is the fact that many business stakeholders
and senior IT managers nod their heads gravely when a project manager presents a
projection like this, as if they believe what they’re looking at. Velocity is an empirical

Figure 2.34 Velocity projection, adjusting for team ramp-up factors

Figure 2.35 Velocity projection using magic pixie dust
Licensed to Mark Watson <nordickan@gmail.com>

46 CHAPTER 2 Metrics for steering
measure; it’s an observation of reality. There’s no mechanism by which a team can
abruptly quadruple its delivery capacity and then just as abruptly revert to normal. It’s
true that the trend line gives an early warning of potential delivery risk. It’s also true
that you ought to take action as early as possible to manage that risk. But this isn’t
effective action; it’s only wishful thinking.

USING VELOCITY TO COMPARE TEAMS

It’s often interesting to compare delivery teams to judge their relative effectiveness. To
do this, you need to find a unit of measure that has the same meaning for all the
teams. Relative points aren’t such a measure. Their meaning is limited to a single
team’s sense of the relative size of their own work items, in their own context. Team A
may have a velocity of 200 points per iteration, while Team B has a velocity of 25 points
per iteration, but this doesn’t imply that Team A is eight times as effective as Team B.
The two teams size their work items differently.

USING VELOCITY FOR MIXED WORK FLOWS

Many teams support a set of technical assets or a suite of business applications over the
long term using a continuous support delivery mode. The same team may also carry out
discrete projects to implement significant enhancements to the technical environment
or the applications they’re supporting.

 There are challenges in balancing these types of workloads. The discrete projects
are probably capitalized, whereas the ongoing support work is expensed. That in itself
creates an administrative burden for you. There’s also a logistical challenge in that
team members team can’t anticipate their availability for planned work because the
unplanned support work comes to them at a variable rate, and the time required to
complete these work items is unpredictable.

 In some organizations, teams in this situation are asked to use a time-boxed process
model because that model works well for application development teams in other
parts of the organization, and they’re asked to report velocity so that all teams in the
organization are using the same methods and tools. The problem is that the ongoing
support work doesn’t lend itself to a time-boxed process model. New work items arrive
at an unplanned and irregular rate, and they may be of highly variable scope. Velocity
can’t be a meaningful measurement in that context.

 You may have to report velocity and present your team to the outside world as
using a time-boxed iterative process model in order to comply with organizational
norms. Meanwhile, you must be able to answer questions about whether the work is
on track. You need to have accurate early warning about potential delivery risks, even
if that means tracking different metrics for your own purposes than the ones you
report outward.

 If your team has to handle both planned, project-style work and unplanned,
support-style work at the same time, you’ll find it easier to manage the work using a
continuous flow process model. To use an empirical approach to planning, track the
cycle time (described in the next section) of work items the same way, whether a given
work item comes from a planned project or from a production support ticket. Use the
Licensed to Mark Watson <nordickan@gmail.com>

47Metric: Cycle time
mean cycle time to project the team’s likely future delivery rate, in much the same way
you could use velocity if you were doing a straightforward development project with
no production support activities mixed in.

2.8 Metric: Cycle time
Question(s) answered
 What is the mean time needed to complete a single work item (possibly by category)?
 How consistent is the team’s delivery performance?
 Which work items might have common characteristics that lead to delivery problems?

Description
 Projection of the team’s likely future delivery performance based on empirical measurement

Value
 Provides a leading indicator of the team’s delivery performance:

– For backward-facing tracking of compliance with the plan (traditional
development)

– For forward-facing steering toward the project vision (adaptive development)
– For capacity planning in ongoing support situations

 Can provide early warning of potential delivery risks, for either traditional or adaptive
development

 Can help distinguish between common-cause variation and special-cause variation in task
completion times, for purposes of process improvement

Dependencies
 Approach: any
 Process model: any
 Delivery mode: any

Success factors
 Consistent definition of the start and end of each category of work item.

2.8.1 When to use cycle time

Cycle time is borrowed from Lean manufacturing and adapted to software development
and support work. In the context of software development, cycle time is the elapsed
time from the moment a work item is started until the work item is finished.

 Cycle time has the same meaning in traditional and adaptive initiatives, with any
process model, and with either the discrete-project or the continuous-support delivery
mode. The lack of any dependency on methods makes cycle time equally useful for
steering and for process improvement. That said, cycle time isn’t usually used in tradi-
tional initiatives because conventional backward-facing percentage-complete metrics
provide enough information to steer such initiatives, with less effort required to col-
lect the raw data.

2.8.2 An adaptive project with consistently sized work items

The simplest case for using cycle time is an adaptive development project in which the
team is skilled at decomposing the work into roughly same-size chunks. Each work
item represents a production-ready slice of functionality. Cycle time represents the
Licensed to Mark Watson <nordickan@gmail.com>

48 CHAPTER 2 Metrics for steering
elapsed time from the moment the team begins building a piece of functionality until
that piece is deemed ready for production.

 Let’s say you’re managing a mature, high-performing development team, and you
want to use cycle time for empirically based forward planning. Because all work items
are roughly the same size, you need consider only one category of work. Each work
item represents a complete set of functionality, so you need not consider different
cycle times for different phases or stages of work, such as analysis, coding, and testing.
For those reasons, this case is the simplest example.

 To collect the raw data, you note the start and end times of all work items. Over
time, you calculate the mean and standard deviation of the observations. You might
come up with a chart like that in figure 2.36.

 You can see the raw data for this chart in the accompanying spreadsheet. It’s tell-
ing you that the team has completed 25 work items so far, and the mean cycle time is
about 14.7 hours. For forward planning, you can assume that the team will take
approximately 14.7 hours to complete each upcoming work item.

 A couple of things are worth noting. First, there’s no reference to estimated task-
completion times. The numbers are empirical observations of actual performance.
This gives you a practical way to project future performance without having to con-
sider variables such as estimation optimism, perceived delivery pressure, desire to please, or
padding to allow for unknowns, which can affect estimates. Nor do you try to factor in
external dependencies, unplanned operational problems, or other issues that can
affect delivery times. You look at reality in the raw—if the team has taken an average
of 14.7 hours to complete tasks in the past, then they’re likely to take an average of
14.7 hours to complete tasks in the future, provided their working environment, orga-
nizational constraints, availability, and skills remain more or less the same.

 Second, you’re concerned with cycle times in the aggregate, and not with fine-
grained differences from one work item to the next. You don’t try to include outliers
in calculations for future planning.

Figure 2.36 Cycle time plot
Licensed to Mark Watson <nordickan@gmail.com>

49Metric: Cycle time
Cycle time is a measurement borrowed from the world of manufacturing. In contrast
with software development, manufacturing operations emphasize consistent produc-
tion of uniform widgets. A key concern is to minimize variation in the widgets pro-
duced. In software development work, each widget is a completely unique software
product. When you look at variation in software development, you’re concerned with
variation in cycle time, not variation in the widgets you produce.

 In general, variations in cycle time within one standard deviation of the mean are
due to common cause—that is, the variation occurs because of the way the organization
functions. Therefore, there’s no value in chasing down the reasons for each individual
variation. Variations beyond one standard deviation are usually due to special causes—
that is, each case is a one-off situation that is unlikely to be repeated. Although these
cases may be interesting for purposes of problem resolution, they don’t help you with
forward planning.

 Based on the chart, then, you can say that if the team has 100 work items remain-
ing in plan, and they take about 14.7 hours to complete a work item, then they will
need about 1,470 hours to complete the remaining work. The result is about as accu-
rate as you could obtain through careful estimation, and it requires far less effort.

2.8.3 An adaptive project with variable-sized work items

Now assume that you’re managing a project in which the work items are of variable
size. Broadly speaking, work items can be categorized as small, medium, or large. You
can track cycle time in each of those three categories.

 In figure 2.37, you see that the team has completed 12 work items deemed small.
They demonstrated a mean cycle time of 5.8 hours per work item, with a standard
deviation of 2.2 hours. For purposes of forward planning, you can assume that the
team will continue to take about 5.8 hours on average to complete small work items.

Figure 2.37 Cycle time plot: small work items
Licensed to Mark Watson <nordickan@gmail.com>

50 CHAPTER 2 Metrics for steering
Figure 2.38 shows the team’s performance in completing work items of medium size.
They completed 7 medium-sized work items in a mean time of 13.7 hours.

 Finally, figure 2.39 shows the chart for large work items. The team has completed 5
large work items with a mean cycle time of 25 hours.

Let’s say the project has 40 small, 12 medium, and 8 large work items remaining in
plan. You can plan that the team will need about (40 × 5.8) + (12 × 13.4) + (8 × 25)
hours, or 232 + 160.8 + 200 = 592.8 hours. You can round up to 600 to get an approxi-
mate value that doesn’t suggest false precision.

2.8.4 A traditional project with phase gates

Many traditional projects use a linear process model, sometimes called a waterfall
model, or they wrap the conventional sequential phases in an iterative or flow-based
process model. Teams deliver the complete solution all at once at the end of the

Figure 2.38 Cycle time plot: medium-sized work items

Figure 2.39 Cycle time plot: large work items
Licensed to Mark Watson <nordickan@gmail.com>

51Metric: Cycle time
project or the end of a release. They create all the requirements before writing any
code, they complete all the code before beginning testing in earnest, and they com-
plete all the testing before deploying any portion of the solution.

 You might assume that cycle time can’t be meaningful with this approach, because
the team doesn’t deliver any complete features until the end of the project, when it’s
too late to use metrics to steer the work. But you can use cycle time to measure the
mean delivery time of interim artifacts per phase. It’s an empirical measure that can
give you an early warning of schedule or budget variance.

 The fact that the work involved in preparing a requirements artifact is very differ-
ent from the work involved in coding a module or creating a test plan doesn’t invali-
date cycle time. The key is to compile cycle-time observations of similar tasks in the
same phase of development. Traditional projects usually take considerably more time
than adaptive ones, so there’s ample time in each phase for the cycle-time observa-
tions to provide useful information.

 Let’s say that the Requirements phase is underway, and analysts have produced
requirements artifacts for the first 10 features of the solution. Per the data in the
accompanying spreadsheet, you see that the analysts have taken a mean cycle time of
about 14 hours to produce a requirements artifact, with cycle times between about 8
and 20 hours within one standard deviation of the mean. The cycle time plot for the
Requirements phase looks like figure 2.40 (so far).

 In a traditional project, the Requirements phase is only a portion of the total lead
time for delivery of the solution. You might wonder about the value of predicting
requirements elaboration alone, separate from the other delivery phases. The value is
that you can get an early warning of potential schedule slippage or budget overruns
relatively early in the project. Empirical observations of demonstrated performance
provide a more accurate projection of future performance than a comparison of
actual and estimated times.

 You can use the same approach in each delivery phase. For example, figure 2.41
shows a plot of observed cycle times for the Coding phase. This tells you the team
takes about 10 hours to complete any given unit of coding, give or take about 4.8

Figure 2.40 Cycle time plot: Requirements phase
Licensed to Mark Watson <nordickan@gmail.com>

52 CHAPTER 2 Metrics for steering
hours. Their performance is unlikely to change as long as other factors remain stable,
such as team composition, available resources, and time stolen from the project by
other tactical issues (production support, and so on).

 Figure 2.42 shows a cycle time chart for the Testing phase. By this time, it’s pretty
late in the project schedule. Yet the Testing phase is often the time when issues that
had been hidden become visible. It may appear as if everything is proceeding accord-
ing to plan until you reach this phase; but now, everything that was swept under the
rug or deferred in earlier phases can no longer be ignored. If you have an empirical
measure you can use to predict schedule and budget performance in the Testing
phase, you can determine the impact of such late discoveries before it becomes too
late to take corrective action.

2.9 Metric: Burn chart
Question(s) answered
 Is the team likely to meet delivery targets?
 How much time will the team require to complete the planned scope?
 How much of the planned scope can the team complete by a given date?

Figure 2.41 Cycle time plot: Coding phase

Figure 2.42 Cycle time plot: Testing phase
Licensed to Mark Watson <nordickan@gmail.com>

53Metric: Burn chart
Description
 Projection of the team’s likely future delivery performance based on empirical measurement,

for forward-facing or backward-facing steering

Value
 Provides a leading indicator of the team’s delivery performance
 Can provide an early warning of potential delivery risks

Dependencies
 Approach: any
 Process model: any
 Delivery mode: discrete project

Success factors
 Consistent understanding of what constitutes a “work item” (by whatever name)
 Explicit, demonstrable, binary definition of what it means to declare a work item “complete”

2.9.1 When to use burn charts

Use a burn chart to develop a leading indicator of a team’s likely future delivery per-
formance based on empirical observations of their past performance. This is mean-
ingful when the team incrementally delivers production-ready subsets of the solution,
whether as part of a traditional or an adaptive development effort.

2.9.2 How to use burn charts

A burn chart shows the amount of work done (burn-up chart) or the amount of work
remaining to be done (burn-down chart). It consists of a series of observations of past
performance, an indication of planned scope, and a trend line that meets up with the
planned scope at some future point.

 For example, suppose the data in figure 2.43 represents observations of your
team’s performance to date, assuming a time-boxed iterative process model and rela-
tive sizing of work items in terms of points.

Figure 2.43 Raw data
for burn charts
Licensed to Mark Watson <nordickan@gmail.com>

54 CHAPTER 2 Metrics for steering
The points completed per iteration are the team’s velocity. Individual observations of
velocity are trailing indicators. To turn the observations into a leading indicator, you
can show them as a burn chart. A burn-up chart shows the planned scope at the time
and tracks the amount of work complete to date, as in figure 2.44.

 Based on the team’s actual performance to date, you can project their likely future
performance to get an idea of when their output will reach the level of planned scope.
When the planned scope changes, the scope line moves up or down accordingly.

 The same information can be represented as a burn-down chart. This format
deducts completed work from the planned scope until the work remaining reaches
zero. It’s the same information as in the burn-up chart, but upside-down. Many people
like to see the remaining work disappear. The same data represented in the burn-up
chart from figure 2.44 looks like figure 2.45 when formatted as a burn-down chart.

 The zero line represents the originally planned scope. As scope changes, the scope
and the target line move up or down accordingly. When the total planned scope
increases, the target line dips below zero to show how far the work has to burn down
in order to complete the objectives.

Figure 2.44
Burn-up chart

Figure 2.45 Burn-down chart
Licensed to Mark Watson <nordickan@gmail.com>

55Metric: Burn chart
2.9.3 Anti-patterns

Provided you base burn charts on valid data, such as estimated task hours, velocity
observations, or cycle-time observations, there isn’t much you can do to corrupt them.
The only problem is that people sometimes can’t decide between the burn-up and
burn-down forms.

MORE IS LESS

A burn chart shows exactly the same information, whether it’s presented in burn-up
or burn-down form. Some people like to see completed work climb toward the goal.
Others like to see the remaining work progressively vanish. Either way, it’s the same
information.

 The more-is-less anti-pattern occurs when you imagine that information will make
a greater impact if it’s presented in multiple forms. If you can show progress in terms
of work completed as well as in terms of work remaining, isn’t that twice as good as
showing either one alone? Actually, it isn’t. Showing the same information in two dif-
ferent forms on the same chart only serves to make the chart harder to understand.

 If you glance at either of the burn charts shown in the previous section, you imme-
diately perceive the progress that has been made to date and the implications for
future delivery performance. If you look at the chart in figure 2.46, you have to study
it a bit before you see what it’s illustrating, even though it shows exactly the same
information as the earlier burn-up and burn-down charts.

ARTS AND CRAFTS

The arts-and-crafts anti-pattern occurs when you become enamored of the graphical
capabilities of your project-tracking software. It’s possible to produce charts in multi-
ple forms, so why not create an eye-catching, colorful presentation that shows off the

Figure 2.46 A burn-up and burn-down chart
Licensed to Mark Watson <nordickan@gmail.com>

56 CHAPTER 2 Metrics for steering
software’s charting features? Figure 2.47 shows the same information as the other
charts you’ve seen, but in a colorful array of bar, line, and pie chart forms.

 Decision-makers need clear and concise information about progress. With this sort
of presentation, they must spend a certain amount of time deciphering the meaning
of the charts. Any one of these formats would do the job. The three together merely
reduce the signal-to-noise ratio of the chart.

2.10 Metric: Throughput
Question(s) answered
 How much software can the team or organization deliver in a given time?
 Does the team or organization deliver results at a consistent rate?

Description
 Empirical observation of the quantity of product delivered and available to customers per

unit of time (per month, quarter, release, and so on)

Value
 Projections based on historical observations of throughput provide an accurate forecast of

future delivery performance.
 If stakeholders understand the financial value of software features, they can use throughput

to forecast revenue.

Dependencies
 Approach: any
 Process model: any
 Delivery mode: any

Success factors
 A realistic and honest definition of “delivered.” Deployment to a staging or test environment

isn’t sufficient, because customers can’t access the product there.
 Consistent tracking of cycle time

2.10.1 When to use throughput

Throughput is a metric derived from Lean manufacturing. In the manufacturing con-
text, throughput is defined as the number of value units produced per unit of time. In
a for-profit corporation, a value unit is typically a unit of currency and represents
revenue from sales. In the context of customer support, it might refer to the number

Figure 2.47 A needlessly complicated burn chart
Licensed to Mark Watson <nordickan@gmail.com>

57Metric: Throughput
of customers assisted by the help desk each week. For other kinds of organizations,
throughput can refer to some other form of value. For example, a charitable organiza-
tion might track the number of meals served to homeless people per month; a govern-
ment agency might track the number of tax forms processed per day.

 In the context of software development, throughput refers to the number of work
items completed per unit of time. The meaning of work item depends on the method-
ology you’re using. It could be a work package, a user story, a minimum usable fea-
ture, or anything else that makes sense in context.

 Given a continuous flow process model, you might track the number of software
features delivered per month. With a time-boxed process model, throughput is the
number of work items completed per iteration. This is similar to velocity, although
velocity is usually based on relative sizing of work items, whereas throughput counts
whole work items only. With other process models, throughput can be measured for
different portions of the delivery stream, such as requirements specifications or test
plans. You can track the rate of production of any type of artifact that makes sense in
your situation.

2.10.2 A mixed-model project

Let’s say you’re managing a project to deliver a total of 36 work packages on a
12-month timeline. Assume that it’s a traditional project in that it has a fixed scope,
schedule, and budget, but your team is able to deliver increments of the solution to a
production-ready state on a regular basis. This represents a mixed model that com-
bines elements of traditional and adaptive methods and therefore doesn’t lend itself
easily to the metrics that are generally associated with any particular published meth-
odology. Throughput is a useful metric in this case because it has no dependencies on
approach, process model, or delivery mode.

 Given a 12-month timeline starting in January and a mandate to deliver 36 work
packages, your project plan generally looks like figure 2.48. To deliver 36 work pack-
ages in 12 months, the team needs to deliver 3 work packages per month on average.
In other words, the team’s throughput needs to be 3 work packages per month. If you
plot the ideal throughput against the observed throughput from January to Septem-
ber, as shown in figure 2.49, it’s clear that the team isn’t meeting the necessary level of
throughput.

Figure 2.48 Project plan
Licensed to Mark Watson <nordickan@gmail.com>

58 CHAPTER 2 Metrics for steering

The data through September shows that the team isn’t on track to meet this goal. You
want to see how long it will take the team to complete all 36 work packages, or alterna-
tively, how many work packages they can deliver by the end of the 12-month project
schedule. You can visualize this information by plotting the cumulative observed deliv-
ery to date against the ideal cumulative delivery through the planned timeline, as
shown in figure 2.50.

Assuming that this team will be maintained intact across multiple projects, you can
project their throughput for future projects with similar characteristics by tracking
their observed delivery performance. Figure 2.51 is a chart based on the same data as
the previous line charts.

 Just as you did with cycle time, you discount observations that lie more than one
standard deviation from the mean. You can see that the team generally delivers about
one feature every two months. Unless something changes, there’s no reason to expect
their future performance to be any different than this.

 You may have noticed something about this example that reminds you of an exam-
ple from the section about velocity: the team delivered nothing in the first two months

Figure 2.49 Ideal vs. observed throughput

Figure 2.50 Actual vs. ideal throughput
Licensed to Mark Watson <nordickan@gmail.com>

59Metric: Cumulative flow
of the project. The “ideal” throughput line assumed that they would deliver at a steady
rate of three work packages per month from the beginning of the project until the
end. This notion of “ideal” ignores the team’s natural ramp-up time. You shouldn’t
have expected the team to deliver three work packages in the first month. By doing so,
you set unrealistic expectations for your stakeholders.

2.11 Metric: Cumulative flow
Question(s) answered
 Where are the bottlenecks in the process?
 At what points do you have a buildup of work-in-process inventory (interim artifacts that

represent incomplete work)?
 How deep are the queues feeding into value-add steps?
 Where are the largest components of cycle time?
 At what points is the workload unbalanced?

Description
 Visual representation of all the work done and in process to date
 Value
 Exposes delivery issues and process-improvement opportunities at a glance
 Provides direction for root-cause analysis

Dependencies
 Approach: any
 Process model: any
 Delivery mode: any

Success factors
 Queues and value-add states are identified.
 Accurate tracking of cycle time per state
 Accurate tracking of queued times

2.11.1 When to use cumulative flow

In a multistep delivery process, cumulative flow tracks the amount of time work
remains in each step. In a rapid-delivery, collaborative process, there may be only

Figure 2.51 Using throughput to predict performance
Licensed to Mark Watson <nordickan@gmail.com>

60 CHAPTER 2 Metrics for steering
three states for a work item: ready, in progress, and done. Even so, cumulative flow
shows useful information for steering the work.

 Cumulative flow exposes a number of interesting pieces of information in a visual
way. These include overall throughput and throughput per step, overall cycle time
and cycle time per step, queue depth, lead time, and the location of bottlenecks in the
process.

2.11.2 A traditional project

Let’s assume that you’re tracking a traditional-style project that has the conventional
waterfall steps with hand-offs between them. Although cumulative flow isn’t limited to
this approach to software development, and the steps need not represent hand-offs but
rather stages in the evolution of features, the traditional model provides a simple exam-
ple to illustrate the metric. Your project has been underway for some time, and the work
has progressed through the various stages in the delivery process, as shown in figure 2.52.

Some people relate to the information in this form—as rows and columns of num-
bers. Most people, however, relate to a visualization of the information that allows
interesting aspects of the team’s progress to capture your attention. The previous data
can be visualized as shown in figure 2.53.

Figure 2.52 Raw data for cumulative flow

Figure 2.53 Cumulative flow diagram
Licensed to Mark Watson <nordickan@gmail.com>

61Metric: Cumulative flow
This is a cumulative flow diagram (CFD). If you aren’t accustomed to using CFDs, it
may look like a random mass of colored smears; but once you learn to read it, a CFD
speaks volumes about the status of a project.

 In this example, you can see the formal steps in the delivery process for the hypo-
thetical project: Requirements, Architecture and Design, Construction, Testing, and
Deployed. Your goal is to produce the finished product—that is, to get work into the
Deployed category. You want to avoid accumulating incomplete work—interim arti-
facts such as requirements specifications, untested code, and undeployed features.

 Each filled region in the CFD represents one of the steps in your process. Ideally,
work flows smoothly throughout the process, and the filled regions are about the same
thickness all the way across the diagram. That’s pretty rare in real life. More commonly,
each step in a process has a different capacity. Steps that have high capacity generate
interim artifacts more rapidly than other steps. Steps that have low capacity become
bottlenecks. The CFD makes this sort of thing apparent at a glance so that you can take
corrective action to keep the project on course.

 Let’s take another look at the CFD, in figure 2.54. It has some annotations to make
it a little clearer how the diagram exposes interesting information.

You can see that Architecture and Design is the bottleneck in the process: it grows
shorter while the step just ahead of it, Requirements, grows taller. You’re accumulat-
ing work-in-process (WIP) inventory in the form of requirements specifications that
may become stale before the team acts on them.

 The amount of WIP in each step of the process at any given point in time is shown
by the height of the filled regions. The average lead time per step is shown by the aver-
age width of each filled region as the work progresses. You can see the lead time for
the whole process or the lead time for any sequential series of steps at a glance.

 Eventually, you want to see Total Scope disappear and be entirely replaced by
Deployed. Anything short of a finished product that’s produced along the way repre-
sents incomplete, interim artifacts or inventory that provides no business value to
stakeholders.

Figure 2.54 Cumulative flow diagram: annotated
Licensed to Mark Watson <nordickan@gmail.com>

62 CHAPTER 2 Metrics for steering
2.12 Not advised
To be pragmatic about metrics, you want to measure everything necessary to provide
stakeholders with the information they need to make informed decisions to steer the
work and to guide process improvements. By the same token, you want to avoid going
overboard with metrics. This section mentions a few metrics that people sometimes
use to track software development and delivery, but that don’t help you understand
how well the work is flowing or how effective your processes are.

2.12.1 Earned schedule

Although earned value management (EVM) is used widely in large-scale programs and
provides value to planners and managers, it has a few issues that led to the creation of
another metric, earned schedule (ES). According to www.earnedschedule.com as of May
2015,

 EVM measures schedule performance not in units of time, but rather in cost, i.e.
dollars. After overcoming this mental obstacle, we later discover another quirk of
EVM: at the completion of a project which is behind schedule, Schedule Variance (SV)
is equal to zero, and the Schedule Performance Index (SPI) equals unity. We know the
project completed late, yet the indicator values say the project has … perfect schedule
performance!!

 The Wikipedia article on ES as of May 2015 makes the following observations:

Near the end of a project—when schedule performance is often a primary
concern—the usefulness of traditional schedule metrics is demonstrably
poor. In traditional EVM, a schedule variance (SV) of 0 or a schedule
performance index (SPI) of 1 indicates that a project is exactly on
schedule. However, when a project is completed, its SV is always 0 and SPI
is always 1, even if the project was delivered unacceptably late. Similarly, a
project can languish near completion (e.g. SPI = 0.95) and never be
flagged as outside acceptable numerical tolerance.

If this critique of EV strikes you as odd, it may be due to the assertion that you’re espe-
cially concerned with schedule performance near the end of a project. In reality, you
need to know about schedule risk as early as possible in the project. The examples
given in the ES literature indicate that managers discover schedule risk so late in the
project that there’s neither time nor money remaining to take corrective action.

 It seems to me that either percentage of scope complete or EV will serve, because it
will be obvious when the schedule is at risk while there’s still time to do something
about it. Once the project has ended, schedule risk is moot. Therefore, the fact that
EV results in SV of zero and SPI of 1.0 at the end of a “late” project isn’t a problem for
steering the project, because there’s no more steering to be done.

 Rather than providing examples of ES, I’ll suggest that this metric doesn’t qualify
as pragmatic for purposes of this book. If you’re required to report it, then you can
find descriptions of how to use it online or in other references. I don’t think you
should depend on ES to help you steer projects.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.earnedschedule.com

63Summary
2.12.2 Takt time

Takt time is a metric adapted from Lean manufacturing. It’s the rate at which widgets
come off an assembly line. The basic calculation is available minutes for production /
required units of production. Available minutes is the total amount of work time less
any interruptions. Required units represents leveled customer demand: the rate at
which customers purchase widgets.

 Takt time isn’t always used in Lean manufacturing. When it’s used, its purpose is to
match the rate of production with customer demand. This prevents finished-goods
inventory from accumulating.

 The theory of constraints indicates that in any multistep process, one of the steps
will have lower capacity than the rest. This is known as the constraint (or bottleneck).
The capacity of the constraint determines the capacity of the process as a whole.

 Provided that the capacity of the constraint is greater than leveled customer
demand (that is, greater than the required units of production), you can set the takt
time of a manufacturing operation to match the rate of production with demand.
When the capacity of the constraint is less than leveled demand, you can’t produce
widgets as rapidly as customers want to consume them. It’s an incentive to improve the
capacity of the constraint.

 Lean manufacturing offers a number of useful ideas that can be applied to soft-
ware development. You’ve already seen that you can adapt Lean metrics such as cycle
time, throughput, and process cycle efficiency, and Lean practices like limiting work
in process, to your work in software. Probably for that reason, some people have
looked for a way to use takt time in a software-development context.

 The problem is that although you can translate some concepts and measurements
from manufacturing to software development, the two activities have significant
differences. Takt time doesn’t survive the transition from manufacturing to software
development.

 A manufacturing process produces identical copies of the same product again and
again. A software-development process produces a single copy of each of many unique
products. It isn’t sensible to declare that each software product will come off the
“assembly line” at a steady rate. It’s a product-development process, not an assembly-
line process.

 Software-development organizations typically have a fixed release schedule, or
they release small changes continuously. In the former case, the takt time is the same
as the release schedule. In the latter case, the takt time is variable, because code is pro-
moted to production whenever a change is made.

2.13 Summary
In this chapter, you learned the basic mechanics and function of several metrics that
are useful for steering work in progress. More important, you learned how to corre-
late the characteristics of the work flow in an organization with metrics that can be
meaningful and useful in different circumstances.
Licensed to Mark Watson <nordickan@gmail.com>

64 CHAPTER 2 Metrics for steering
 You learned about metrics that apply to the traditional approach to software deliv-
ery, in which risks, requirements, and costs are analyzed in detail before development
begins. You also learned about metrics that apply to the adaptive approach to software
delivery, in which you steer toward a general vision for the future, applying lessons
learned along the way to adjust your plans and designs. In addition, you learned about
metrics that are sensitive to the process model in use, and how the misapplication of
these metrics can lead to meaningless numbers.

 The metrics in this chapter were considered in isolation. In subsequent chapters,
you’ll see how multiple metrics used in concert can provide useful information both
for steering and for process improvement.
Licensed to Mark Watson <nordickan@gmail.com>

Metrics for improvement
Several of the metrics we’ll cover in this chapter were described in chapter 2 in the
context of steering work in progress. In this chapter, we’re concerned with using
the same metrics to inform process-improvement efforts. You’re looking for differ-
ent information from the metrics, and you’ll take different actions in response to
the information than in chapter 2.

3.1 Process-agnostic metrics
Delivery-performance metrics that have no dependencies on software develop-
ment methods are useful for monitoring the effectiveness of process-improvement
efforts because they have the same meaning regardless of how the work is carried
out. On the other hand, metrics that depend on development approach, process
model, or delivery mode will break if you change any of those factors as part of

This chapter covers
 Using metrics to guide process improvement

 Metric dependencies on development, process,
and delivery

 Common anti-patterns or inappropriate uses of
metrics
65

Licensed to Mark Watson <nordickan@gmail.com>

66 CHAPTER 3 Metrics for improvement
your improvement program. This means metrics derived from the Lean school of
thought are equally useful for steering and for process improvement.

3.2 Technical metrics
In this chapter, I’ll introduce two additional categories of metrics that aren’t used to
steer work in progress: technical metrics and human metrics. These generally aren’t
useful for steering, but they can be very helpful with improving a team’s delivery per-
formance. They aren’t usually shared outside the team, because they’re subject to mis-
interpretation and abuse by senior management and business stakeholders.

 Technical metrics are usually extracted automatically from software build pro-
cesses. They include static code analysis, performance profiling, commit history, and
measurements of automated test coverage and test stability. They help teams under-
stand where technical debt may be accumulating, identify sections of code that need
attention to meet nonfunctional requirements, and uncover areas of the code base
that are lacking test coverage.

3.3 Human metrics
Human metrics measure the emotional state of team members and profiles of team
members’ personality types and cognitive styles. These factors have become signifi-
cantly more important as collaborative styles of work have gained popularity. The
quality of personal interactions can have a profound effect on delivery performance
as well as provide additional evidence of potential areas of improvement when com-
bined with trends in other metrics.

3.4 General anti-patterns
We’ll continue to consider anti-patterns associated with individual metrics. Two funda-
mental, overarching anti-patterns pertain to all measurements of performance
improvement efforts: treating humans as resources and measuring practices instead of
results. These are important because of the unintended motivational side effects they
can have. I want to call them out before delving into the individual metrics.

3.4.1 Treating humans as resources

This may be the mother of all management anti-patterns. Management science has
treated human beings as interchangeable machine parts at least since the time of
Frederick Taylor’s “scientific management” in the early twentieth century, and possi-
bly much longer than that. Even today, many managers loosely refer to workers as
“resources” without realizing the implications of the word.

 A resource is an asset whose performance can be calculated and predicted with a
high degree of accuracy and precision. For example, as I write this, I’m sitting in a
chair. Should the chair break, I can sit in another chair. The new chair will immedi-
ately function equally as well as the old one did before it broke. The chair requires no
training before it can carry out its function. It has no mood swings and never gets
tired, sick, or hungry. It doesn’t take vacations or need to pick up its ottoman from
Licensed to Mark Watson <nordickan@gmail.com>

67General anti-patterns
furniture daycare. The chair doesn’t worry about other chairs from the same furniture
factory that may be going through a rough patch. The new chair doesn’t have a differ-
ent personal style of chairness than the old chair. It doesn’t interact differently with
the other chairs in the room than the old chair did. It’s easy to calculate the number
of chairs necessary to seat 10, 100, or 1,000 people. The chair is a resource.

 When team members leave, you can replace them. But the replacements won’t
perform at 100% capacity instantaneously. They may have general qualifications simi-
lar to those of the former team members, but not identical experience. They will each
have a personal style of doing the job. They will get tired, hungry, and sick from time
to time. They will take vacations and need to pick up their children from daycare.
They will have hopes, fears, professional goals, mood swings, headaches, good days,
and bad days. They will worry about family members and friends who may be going
through a rough patch. They will have unique personality types and cognitive styles
and will create a new dynamic of personal interactions on the team. It isn’t straightfor-
ward to predict the impact on team performance when a team member is replaced. A
team member isn’t a resource. A team member is a human being.

 When you measure people and predict their performance as if they were
resources, it’s highly likely that you’ll miss important information and cause unin-
tended behavioral side effects.

3.4.2 Measuring practices instead of results

When you’re steering work in progress, it’s pretty obvious that you want to measure
outcomes rather than activity. To be able to answer questions about the status of the
work, you need to know the team’s general rate of delivery, the rate of financial burn,
and other objective information. Tracking activity, such as the number of hours each
team member spends in the office each week, doesn’t help you answer the hard ques-
tions about status.

 When you’re measuring the effectiveness of efforts to improve delivery perfor-
mance, you tend to try to measure activity rather than outcomes. It seems only natu-
ral, because you’re changing the way you work and you want to be sure team members
are doing things the “new” way and not falling back on habit.

 In reality, the simplest and most effective way to gauge the effect of new practices
on delivery performance is to measure delivery performance directly. The effects of
any new practices will be reflected in the outcomes the team achieves.

 As Eliyahu Goldratt said in The Haystack Syndrome, “Tell me how you measure me,
and I will tell you how I will behave” (North River Press, 1990). When you measure
team members’ use of specific practices, they will make sure the numbers can’t come
back to haunt them at performance reviews. Measuring the adoption of new practices
is almost certain to cause undesired behaviors while providing no useful information
about the effectiveness of the new practices. By measuring outcomes, you can see the
effects of any changes you have made in process or practices in a way that points no
finger of blame at anyone.
Licensed to Mark Watson <nordickan@gmail.com>

68 CHAPTER 3 Metrics for improvement
3.5 Metric: Velocity
Question(s) answered
 Is the team delivering production-ready solution increments in each time-boxed iteration?
 Is the team’s delivery rate consistent and predictable?

Description
 Quantity of work completed per time-boxed iteration
 Value
 Reducing variation in velocity improves planning predictability
 Ensuring that production-ready solution increments are delivered in each iteration

maximizes the business value delivered.

Dependencies
 Approach: any
 Process model: time-boxed
 Delivery mode: discrete project

Success factors
 Proper use of a time-boxed iterative process model, fixed-length iterations, production-ready

solution increments delivered in each iteration.

3.5.1 When to use velocity

Velocity is typically used as the basis to forecast a team’s likely delivery performance in
the near future based on empirical observation of their performance in the recent
past. It provides a predictable basis for short-term planning, because it’s based on
observations of the team’s actual performance rather than on estimates, promises, or
stretch goals.

 Velocity can be a useful measure when used appropriately, but it’s sensitive to a
number of factors. The team must use a consistent method of sizing or estimating
work items, such as story points or ideal hours; or they can count the number of com-
pleted work items. The team must use a time-boxed iterative process model in which
they deliver production-ready solution increments in each iteration. Given those pre-
requisites, you can count the number of points or hours of work the team completes
in each iteration to obtain the velocity for that iteration.

 For planning purposes, a series of three or more consecutive observations of veloc-
ity gives you a reasonably accurate idea of how much work the team is likely to deliver
in the next iteration, provided there are no radical changes in team composition or
resource availability. Because it’s based on empirical observation of reality, velocity
isn’t vulnerable to estimation error, external pressure to deliver an arbitrary scope,
optimism, or wishful thinking. A common practice is to use a rolling window of three
or four iterations’ worth of velocity observations as the basis to forecast delivery per-
formance in the next one or two iterations.

 As a trailing indicator, consistent velocity over time indicates the team is planning
and executing their work well. Extreme variations in velocity indicate possible
problems in delivery. As a leading indicator, a series of velocity observations supports
forecasting.
Licensed to Mark Watson <nordickan@gmail.com>

69Metric: Velocity
3.5.2 An adaptive project

Assume you’re measuring team performance on an adaptive software development
project using a time-boxed iterative process model. You and the team are interested in
improving delivery performance, and you plan to continue using a time-boxed pro-
cess model. (The latter point is important because velocity is dependent on the use of
a time-boxed iterative process model. If you were considering changing this, then
velocity would be a poor metric to monitor improvement.) You’re tracking the team’s
velocity, and you see a pattern like that shown in figure 3.1.

 Normally, a team will find its own normal velocity after three or four iterations of
working together on the same project. Consistent velocity enables you to predict the
team’s future performance with a reasonable degree of confidence. When velocity is
erratic, as in this example, it’s difficult to use empirical observations of the delivery
rate to predict future performance.

 One implication is that the team may have to resort to time-based estimation of
individual work items as the basis for short-term planning. This is less reliable than
projecting future performance based on empirical observations of past performance.
When short-term planning is unreliable, project stakeholders tend to lose confidence
in the team’s delivery commitments. There’s often a domino effect on delivery perfor-
mance, morale, quality, and trust.

 Apart from predictability, there are implications for the team’s general delivery
effectiveness, as well. An implication of erratic velocity is that the team is leaving fea-
tures unfinished in some or all iterations. According to the time-boxed iterative
model, the team is expected to deliver production-ready solution increments at a
fairly steady rate throughout the project, once they have settled into their normal
velocity. The team receives no credit for partially completed work items in the itera-
tion when work was started. Instead, they receive full credit in the iteration when the
work is completed.

 The pattern shown usually means the team is leaving some work items unfinished
in iterations 1, 3, and 5 and completing them in iterations 2, 4, and 6, along with new

Figure 3.1 Erratic velocity
Licensed to Mark Watson <nordickan@gmail.com>

70 CHAPTER 3 Metrics for improvement
work. Neither the low nor the high velocity observations provide a dependable read-
ing of the team’s true delivery capacity.

 In this case, velocity performs a diagnostic function. It highlights the fact that the
team isn’t delivering completed work items at a steady rate. Metrics can’t tell you the
exact reason for anomalies; they can only raise a flag. Potential causes of erratic veloc-
ity observations include the following:

 Work items are too large for the team to complete in the span of a single iteration.
The team may need to learn how to decompose work items more effectively.

 Work items have dependencies on each other such that when one item is
blocked, one or more additional items must be blocked as well. The team may
need to learn how to define work items so that they’re independent and can be
executed in any sequence.

 Organizational structure makes a collaborative working style difficult to sustain.
Typically this results from functional silos for development activities such as
software testing and deployment, which tend to force teams into a waterfall
sequence of hand-offs. The time-boxed iterative process model benefits from
stable, cross-functional teams whose organization enables direct and continu-
ous collaboration across roles. This makes it easier for teams to complete all the
various activities necessary to deliver production-ready solution increments
within the span of a single iteration.

 The team isn’t applying the time-boxed iterative model rigorously. They may be
allowing stakeholders to inject additional scope in the middle of the active iter-
ation. According to the model, new scope is to be planned and prioritized in
the product backlog (or equivalent artifact) and addressed in subsequent itera-
tions. With this model, the iterations are, in effect, batches of work.

It’s up to you to recognize erratic velocity as a signal of delivery problems and to per-
form appropriate root-cause analysis.

3.5.3 Anti-patterns

You’ve seen that velocity is susceptible to a variety of abuses when it’s used to steer work
in progress. It can also be abused when it’s used to support process improvement.

SETTING TARGETS FOR VELOCITY IMPROVEMENT

Velocity works best as an empirical observation of a team’s actual delivery perfor-
mance. Velocity can support planning only when the reported numbers represent
reality. Setting targets for velocity tends to drive undesired behaviors such as gaming
the task estimates or user-story sizing to avoid punishment for failing to achieve
management-dictated targets.

RELAXING THE DEFINITION OF “DONE”
It may be difficult to deliver truly complete, production-ready solution increments
due to various organizational constraints. There’s a temptation to make the velocity
Licensed to Mark Watson <nordickan@gmail.com>

71Metric: Cycle time
numbers appear more stable by softening the definition of production-ready so that it
aligns with the team’s current ability to complete work within the span of an iteration,
rather than using the erratic velocity observations as a driver of process improvement.
The point isn’t to make things look good by adjusting the numbers; the point is to use
real observations to identify opportunities for improvement.

COMPARING VELOCITY WHEN CHANGING THE PROCESS MODEL

Velocity is sensitive to the process model in use; it’s meaningful only with a time-boxed
iterative process. If your performance-improvement program includes a change from
a time-boxed model to some other model, velocity can’t provide a meaningful indica-
tion of whether the change has resulted in better or worse delivery performance.
When your improvement program includes changing the process model, consider
using process-agnostic metrics such as cycle time, throughput, and process-cycle effi-
ciency for both the before and after measurements.

3.6 Metric: Cycle time
Question(s) answered
 What is the range of common-cause variation in the mean time to complete work items?
 How frequent are special-cause variations in mean completion time?
 What effect have process improvement efforts had on cycle time?

Description
 Mean time to complete a work item
 Value
 Reducing variation in cycle time improves planning predictability.
 Reducing variation in cycle time improves flow, which improves throughput and reduces

waste.
 Reducing mean cycle time reduces time to market.
 Reducing mean cycle time increases throughput.
 Special-cause variation highlights opportunities for improvement in team practices.
 Common-cause variation highlights opportunities for systemic improvement.

Dependencies
 Approach: any
 Process model: any
 Delivery mode: any

Success factors
 Consistent definition of the start and end of each category of work item

In the last chapter, you saw how cycle time can be used to steer work in progress. You
can also use cycle time to identify opportunities for performance improvement and to
measure the effects of changes on delivery performance.

3.6.1 When to use cycle time

Use cycle time when you need to know the mean time it takes a team to complete a sin-
gle work item, and when you want to know how much variation exists between the com-
pletion times for small and large work items. For purposes of process improvement,
Licensed to Mark Watson <nordickan@gmail.com>

72 CHAPTER 3 Metrics for improvement
you’re interested in reducing the mean cycle time as well as reducing the range of vari-
ation in completion times between the smallest and largest work items.

3.6.2 Tracking improvement in predictability

Assume that you’re responsible for an adaptive software development project. The
team delivers a production-ready solution increment on a regular release cadence.
Stakeholders want to have a reasonable idea of how much work the team can com-
plete in any given release.

 You’re using observations of mean cycle time to inform short-term planning, but
the degree of variation in cycle time is large enough to have a negative impact on
planning predictability. The team decides to address root causes for cycle-time varia-
tion. As a baseline, they use a recent series of cycle-time observations, shown in
figure 3.2.

 Discounting outliers, you see that variation attributable to common cause (sys-
temic factors) ranges from 4.4 hours to 33.7 hours. Your planning is based on whole
work items, not on estimated hours or story-point sizing. When a task might take any-
thing from half a day to a week to complete, it’s difficult to assure stakeholders of any
particular delivery rate.

 Planning is accurate in that most tasks will be completed in a time that falls within
one standard deviation of the mean, but stakeholders would like it to be a bit more
precise as well. If the team can take actions that reduce the variability of cycle time, they
can provide better planning predictability.

 Metrics can indicate potential areas of improvement, but they can’t tell you the
root causes of problems or suggest solutions. The team begins to look for causes of the
variation in cycle time and makes changes in their work practices to try to reduce the
variation.

Figure 3.2 Baseline cycle-time observations
Licensed to Mark Watson <nordickan@gmail.com>

73Metric: Cycle time
Many factors may contribute to cycle-time variation, and an exhaustive treatment
of root-cause analysis is beyond the scope of this book. Some possibilities include the
following:

 Work items aren’t decomposed into similarly sized chunks.
 Work items tend to have non-obvious technical challenges that emerge only

after development begins.
 The team has dependencies on external groups for needed resources or assets,

such as test data, servers, or databases; and delays in obtaining these services are
unpredictable.

 The system under development must interact with external systems that are
unreliable or not always available.

Whatever the root causes in this case, let’s assume that the team takes actions
intended to reduce variability in cycle time. After a couple of release cycles, you see
the change in cycle-time observations shown in figure 3.3.

The team has succeeded in reducing the variation in cycle time, but the mean cycle
time has increased. That means the team has improved planning predictability but is
taking more time to deliver than before.

3.6.3 Tracking improvement in flow

Let’s say you and the team want to reduce mean cycle time so that you can complete
more work items in each release cadence. In other words, you want to increase
throughput, and to do that you intend to reduce cycle time. Assume that your starting
point is the cycle-time plot in figure 3.3.

 The team investigates possible root causes for long cycle times. The details are out
of scope for this book, but here are a few typical causes for reference:

Figure 3.3 Cycle-time observations after changes in process or methods
Licensed to Mark Watson <nordickan@gmail.com>

74 CHAPTER 3 Metrics for improvement
 The team takes on too many work items simultaneously (too much work in pro-
cess [WIP]).

 Handoffs of interim artifacts between functional specialists cause delays as
incomplete work waits for attention.

 Work items encounter blocks to wait for clarification of requirements or other
information or services needed to continue.

 The team doesn’t have adequate automation in place for testing, configuration,
or deployment.

 Team members are physically dispersed, and formal meetings must be con-
vened to carry out routine development activities such as requirements elabora-
tion, design brainstorming, code reviews, and agreeing on architectural
standards.

 Software engineering practices tend to create defects that must be discovered
and corrected after the fact.

 The team has a low bus number; that is, only one or two individuals possess criti-
cal knowledge or skills, and they’re a bottleneck in the process.

 Team members aren’t trusted to make decisions, and the designated decision-
makers are a bottleneck in the process.

Let’s say the team analyzes possible root causes for long cycle times and makes adjust-
ments in their process, collaboration, and technical practices. After a couple of
release cycles, you observe the changes in cycle time shown in figure 3.4.

In this example, the team succeeded in reducing mean cycle time from 24.1 to 16.8
hours, or from about three days to complete a typical work item to about two days.

3.6.4 Tracking responsiveness to special-cause variation

So far, we’ve ignored cycle times that vary from the mean by more than one standard
deviation. The reason is that they represent a different category of issues.

Figure 3.4 Mean cycle time reduced after changes in process or methods
Licensed to Mark Watson <nordickan@gmail.com>

75Metric: Burn chart
 We consider variation within one standard deviation of the mean to represent
common-cause variation—that is, variation that results from the interoperation of the
moving parts of the system (the organization). To change cycle-time variation in that
range, you have to change the way work is generally organized, planned, and executed.

 We consider variation beyond one standard deviation of the mean to represent
special-cause variation—that is, variation caused by one-off, unexpected events. To deal
with special-cause variation, you don’t fundamentally change your organization, pro-
cess, or technical practices. Instead, you take special action to respond to unusual
events. Such action may include expediting a work item, swarming it (having team
members temporarily stop other work and collaborate to complete the item), or tem-
porarily waiving WIP limits to help the item flow through the process. As the team
improves its flexibility to switch gears and deal with these issues, the improvement
shows up in the cycle-time chart as smaller special-cause variation (see figure 3.5).

3.7 Metric: Burn chart
Question(s) answered
 Is the team moving work items through the process smoothly?

Description
 Indicates whether the team is piling up incomplete work and then scrambling to complete it

at the end of a development cadence or iteration

Value
 Can help identify appropriate WIP limits to promote continuous flow

Dependencies
 Approach: any
 Process model: any
 Delivery mode: discrete project

Figure 3.5 Cycle-time changes after improving responsiveness to special-cause variation
Licensed to Mark Watson <nordickan@gmail.com>

76 CHAPTER 3 Metrics for improvement
Success factors
 Consistent understanding of what constitutes a work item (by whatever name)
 Explicit, demonstrable, binary definition of what it means to declare a work item complete

3.7.1 When to use burn charts

A burn chart shows the amount of work done (burn-up chart) or the amount of work
remaining to be done (burn-down chart). You’ve seen how this can be used to help
steer WIP toward a defined goal. A burn chart can also point to irregularities in flow.

 Use a burn chart to visualize how smoothly the team completes work. When the
team achieves continuous flow, the burn chart will rise toward the target (burn-up for-
mat) or descend toward zero (burn-down format) fairly smoothly, with few stalls or
bumps along the way. A burn chart reveals interference with continuous flow when
the line remains flat or erratically rises and falls.

3.7.2 Adaptive development project
using a time-boxed iterative process model

Assume that you’re monitoring delivery improvement efforts on an adaptive develop-
ment project. The team is using a time-boxed iterative process model with a two-week
iteration length. You and the team have noticed that many work items remain in flight
throughout most of each iteration. Toward the end of an iteration, the team is under
pressure to complete many outstanding work items.

 Let’s also assume that the methodology in use calls for user stories as the require-
ments artifacts. The user stories aren’t estimated in terms of time but are sized relative
to one another based on a unitless scheme such as story points, units, or T-shirt sizes.
We’ll use the term story points here.

 As you know, a burn-down chart and a burn-up chart show the same information.
There’s no need to show examples of both. We’ll use the burn-down format here.
A burn-down chart showing progress in a typical iteration for your team (let’s call it
iteration 9) looks like figure 3.6.

Figure 3.6 Iteration burn-down: baseline for improvement
Licensed to Mark Watson <nordickan@gmail.com>

77Metric: Burn chart
The recurring pattern is causing stress, software defects, and incomplete work items.
The stress leads to lower morale, lack of focus, and careless work; the defects create
failure demand for non-value-add work for correction; the incomplete work items
carry over into subsequent iterations, reducing the team’s delivery capacity by pushing
out planned work and by increasing the amount of context-switching overhead
between planned work and unplanned defect correction; and the apparent inability
of the team to deliver on a predictable schedule reduces stakeholder trust, which
leads to increased oversight and administrative overhead, in turn feeding the cycle of
slower delivery.

 As always, the metrics don’t tell you the root causes. Some possible causes of this
pattern include the following:

 User stories have dependencies on one another.
 User stories represent horizontal decomposition of technical tasks rather than

vertical slices of features.
 The team has too much WIP.
 Testing is deferred until late in the iteration.
 The team has a dependency on external resources to provide test data or test

environments and doesn’t control the availability of those resources.
 The team has a low bus number; one or two individuals are in demand to sup-

port specific aspects of many stories, creating a bottleneck.
 The team doesn’t recognize the value of continuous flow and regards the itera-

tion as a whole as a single batch of work. The attitude is that delivering every-
thing at once at the end of the iteration is just as good as delivering each user
story as soon as it’s complete.

Whatever the causes, assume that the team addresses some of the problems and shows
improvement in smoothing their work flow by iteration 12 (see figure 3.7).

Figure 3.7 Iteration burn-down after first round of improvement
Licensed to Mark Watson <nordickan@gmail.com>

78 CHAPTER 3 Metrics for improvement
The team continues to identify and address the root causes of erratic delivery within
each iteration. They improve their work flow still further by iteration 15, as shown in
figure 3.8.

 Notice that this example spans six iterations. If the team is running two-week itera-
tions, which is a typical iteration length for teams using this sort of process, that means
the improvements required 12 weeks to bear fruit. Even when people routinely and
mindfully improve their work throughout each day, you can’t expect dramatic
improvements to occur quickly.

3.8 Metric: Cumulative flow
Question(s) answered
 Where is the bottleneck (also known as the constraint, per Theory of Constraints) in the

process?
 Which segments of the process account for the greatest proportion of total lead time?
 Where does incomplete work pile up due to high WIP?
 Where is flow irregular due to low WIP?

Description
 Provides a visual indication of how smoothly the work flows through the process

Value
 Can point to segments of the process that are affected by resource availability
 Can indicate "bus number" problems where work waits for scarce skills
 Can help identify appropriate WIP limits to promote continuous flow

Dependencies
 Approach: any
 Process model: any
 Delivery mode: any

Success factors
 Consistent understanding of what constitutes a work item (by whatever name)
 Explicit, demonstrable, binary definition of what it means to declare a work item complete

Figure 3.8 Iteration burn-down after second round of improvement
Licensed to Mark Watson <nordickan@gmail.com>

79Metric: Cumulative flow
3.8.1 When to use a cumulative flow diagram

You’ve seen how a cumulative flow diagram (CFD) can help to steer work in progress.
A CFD is also useful for tracking the effects of process-improvement efforts.

 A CFD provides a visualization of several interesting factors at a glance. These
include throughput, lead time, cycle time, queue depth, and work remaining. When
one region of the CFD grows wider, it indicates a logjam or bottleneck in the process.

3.8.2 An adaptive project

Let’s assume that the team is interested in improving continuous flow. The starting
point is the situation shown by the CFD presented in chapter 2; see figure 3.9.

Here you assume that each work item progresses through a series of states on its jour-
ney from concept to cash. With some processes, the states correspond to discrete steps
in a linear model. In that case, the transitions between states could represent hand-
offs of interim artifacts between functional specialists. With other processes, the states
don’t suggest hand-offs or functional silos. Instead, they represent stages in the evolu-
tion of features as they’re realized in code. The CFD works equally well with either sort
of process by making visible certain key information about flow.

 Let’s assume that this project takes work items through the following states, via
whatever process model and working style the team may be using:

 Requirements
 Architecture / Design
 Construction
 Testing
 Deployed

Figure 3.10 shows the annotated version of the CFD from the chapter 2.

Figure 3.9 Cumulative flow diagram
Licensed to Mark Watson <nordickan@gmail.com>

80 CHAPTER 3 Metrics for improvement

The CFD is telling you that incomplete work is piling up just ahead of the Architecture
/ Design state. At a glance, you can see that Architecture / Design is the constraint
(Theory of Constraints term) or bottleneck (general term) in the process. Once you’ve
identified the constraint in a process, you can begin to improve flow by adjusting the
WIP limit on the state immediately ahead of the constraint.

 Are we getting ahead of ourselves? I’ve been saying all along that metrics can’t tell
you what the underlying problems are—they can only raise a flag to get your atten-
tion. Yet in this case, after glancing at a CFD for three seconds, we’ve concluded that
the team needs to adjust WIP limits.

 You can be confident that adjusting WIP limits is a good first step because you know
that the maximum throughput of any process is dictated by the capacity of its con-
straint. You haven’t identified the factors that cause Architecture / Design to be the
constraint in this case. You’re slowing the accumulation of incomplete work, or inven-
tory (a form of waste per the Lean school of thought)—in this case, in the form of old
requirements artifacts awaiting attention.

Figure 3.10 Cumulative
flow diagram, annotated

The five focusing steps
To be a bit more formal about it, you’re applying the process-improvement mecha-
nism defined by the Theory of Constraints (ToC). Like many process-improvement
frameworks, ToC defines a plan-do-check-act (PDCA) cycle. It’s called the five focus-
ing steps. The steps are as follows:

1 Identify the constraint.
2 Exploit the constraint.
3 Subordinate the process to the constraint.
4 Elevate the capacity of the constraint.
5 Repeat.

The idea is that any process comprising more than a single step has a constraint—
the step with the lowest capacity—and that you can maximize throughput by control-
ling where the constraint is located in the process and how its capacity is managed.
Licensed to Mark Watson <nordickan@gmail.com>

81Metric: Cumulative flow
Let’s say the team determines that the reason Architecture / Design is the constraint
is that only one team member is engaged in that activity, whereas two business analysts
are busy creating requirements artifacts for the architect to consume. Not only can
they produce interim artifacts faster than the architect can produce designs, but the
architect also has to change the existing design to accommodate new requirements.

 The team decides to take several actions to address the issue:

1 Limit the WIP in Requirements to match the capacity of the architect. This
means the business analysts are sometimes idle; in the larger scheme of things,
you don’t want them to produce requirements artifacts too early and overload
the architect, only to have the requirements change later. That would cause
rework, another form of waste per the Lean school of thought. On the bright
side, the analysts can now spend more time working with stakeholders to ensure
that the requirements are of high quality and more time working with testers to
ensure that test plans and test scripts are well aligned with requirements.

2 Exploit the constraint. Proactively remove any organizational barriers that
might slow down the architect. Do everything possible to keep the constraint
operating at its maximum capacity.

3 Elevate the constraint. Provide training and mentoring of other technical team
members so that they can begin to take on some of the Architecture / Design
work. If they need additional software tools or server resources to enable them
to work more effectively, provide those items. If they need to be relieved from
attending meetings that aren’t related to the project, substitute others in those
meetings.

4 Repeat—see where the constraint has moved.

As a result of the team’s improvement efforts, you see changes in the CFD, as shown in
figure 3.11.

The CFD helps you identify the constraint. That’s step 1. Next, you ensure that the
constrained step has all the resources and support necessary for it to function at its
maximum capacity. Any delay in the constraint is a delay in the end-to-end process.
Delays in other steps can be absorbed by managing queues between steps, but the
constraint sets the pace of the entire process. This is what is meant by exploiting the
constraint in step 2.

Step 3 is to prevent the other steps in the process from operating faster than the
constraint. To do so only creates WIP inventory, which is waste. This is what you’re
doing when you limit the WIP feeding into Architecture / Design by throttling Require-
ments. The CFD shows you where you need to do this in a visual way: the constraint
appears as a narrow band with a wide band just ahead of it.

For step 4—improving the capacity of the constraint—you have to perform root-cause
analysis and make changes in your process, resource allocation, personnel, and/or
technical practices. The CFD doesn’t automatically tell you what to do in those areas.
Licensed to Mark Watson <nordickan@gmail.com>

82 CHAPTER 3 Metrics for improvement

Over time, the impact of the team’s improvements becomes evident in the CFD. By
limiting WIP in the Requirements state, the team was able to use (or discard) the accu-
mulated inventory of requirements artifacts while enabling the business analysts to
spend more time collaborating with stakeholders. By increasing the capacity of the
Architecture / Design state, they moved the constraint elsewhere in the process. The
new constraint is showing up in Deployment. The widening band of Testing indicates
that tested code is piling up, ready to be deployed.

 This shows the team where to begin when they repeat the five focusing steps.
Deployable code that isn’t deployed represents unrealized business value. The team
can now focus on improving the deployment process, using CFD as a practical guide.

3.9 Metric: Process cycle efficiency
Question(s) answered
 Where is time being lost to non-value-add activity?

Description
 Shows the proportion of value-add time to total lead time

Value
 Highlights the time sinks in the process
 Can help identify appropriate WIP limits to promote continuous flow

Dependencies
 Approach: any
 Process model: any
 Delivery mode: any

Success factors
 Track value-add time and non-value-add time explicitly
 Pay attention to non-value-add time when work is in an active state, caused by waits and

context-switching overhead

Figure 3.11 Cumulative flow diagram after process changes
Licensed to Mark Watson <nordickan@gmail.com>

83Metric: Process cycle efficiency
3.9.1 When to use process cycle efficiency

Use process cycle efficiency (PCE) when you want to understand the proportion of
total lead time in which value is added to the product. The higher the PCE, the greater
the proportion of available time that’s being used in value-add activity.

 PCE is a powerful metric that can provide profound insight into how time is used
in a process. Despite its usefulness, PCE isn’t often tracked. This may be due to the dif-
ficulty of collecting the raw data.

 Consider the software development process outlined in figure 3.12. This assumes
the up-front work for determining the business capabilities to be realized, risk man-
agement, market research, funding, and other big-picture issues have been com-
pleted. You’re looking at the world from the perspective of a single software
development team. The team has received the list of software features they’re charged
with developing. Obviously, this is only one piece of the puzzle, but remember the
scope of this book is tracking progress and monitoring process improvement at the
team level, not the enterprise level. Bear in mind that many processes are possible,
and the steps shown in the example may not correspond with the steps in your real-
world process.

 This is a crude version of a value stream map (VSM). The tool comes from Lean
manufacturing, a domain where it’s used to understand how time is spent in a process.
The value stream is the series of steps from the beginning of a process until the final
product is delivered. The simplified version of the VSM as adapted to software devel-
opment work only shows queues or buffers, where work is waiting to be addressed, and
active states, where people are bringing work items closer to completion. The queues
are depicted as triangles with the point downward, and the active states are depicted
as rectangles.

Figure 3.12 Value stream map
Licensed to Mark Watson <nordickan@gmail.com>

84 CHAPTER 3 Metrics for improvement
As work progresses, it moves between queues and active states. When it’s in a queue,
the work is waiting for attention. By definition, no value is being added to a work item
that’s in a queue. All the time a work item spends in queues is non-value-add (NVA)
time. Any time spent actively working on an item is considered value-add (VA) time.
The metric process cycle efficiency (PCE) is the proportion of VA time to total lead time.

3.9.2 Non-value-add time in queues

It’s easy enough to count the NVA time of work items in queues. It’s the total time the
work items spend in the queue.

 For example, in the CFD example from chapter 2, a quantity of requirements arti-
facts were piling up ahead of the Architecture / Design state. All the time those
artifacts were waiting for attention was part of the total lead time to deliver the features
they described, and all that time was NVA time. The analysts may have felt as if they
were doing well to get ahead of the requirements elaboration work, but in reality they
were only creating unfinished goods inventory and reducing PCE.

 Let’s assume the VSM shown in figure 3.12 represents the work flow in your pro-
ject. You can start to collect raw data toward PCE by tracking the mean time a work item
spends in each queue and in each action state. Let’s plug some numbers into the VSM
to see how that might look (see figure 3.13).

 This gives you an average lead time per feature of 242.6 days, of which an item
spends an average of 47.6 days in an active state. If you assume all the time spent in an
active state is VA time, that gives you a PCE of about 20%. That means you’re adding
value to the product about 20% of the time that you’re working. When you consider
the various impacts on your time, such as meetings, supporting regulatory require-
ments, and unavoidable administrative tasks, that doesn’t seem so bad.

Figure 3.13 Value stream map with time data
Licensed to Mark Watson <nordickan@gmail.com>

85Metric: Process cycle efficiency
3.9.3 Non-value-add time in active states

Before you celebrate, however, you need to remember that you aren’t adding value to
work items every moment they’re designated in an active state. PCE starts to give you
useful information to support process-improvement efforts when you consider how
the time is spent when you believe an item is in progress.

 Let’s consider the activity labeled Write & Test Feature. According to your VSM,
this activity occurs once per feature in the course of an iteration, and it takes an aver-
age of four days. When you take a closer look at what happens when programmers are
writing code, you might see that they’re multitasking across multiple work items simul-
taneously. After all, an iteration isn’t 242.6 days long. It’s only 10 days long.

 Multitasking, or context switching, takes a toll on a person’s effectiveness. When per-
forming creatively intensive work such as writing software, a person enters a state col-
loquially known as the zone. (This is what psychologist Mihaly Czikszentmihalyi called
flow, although that’s a very different meaning than flow in Lean thinking.) While in the
zone (or in a state of flow), the programmer is effective at producing correct code
quickly. When the person switches contexts, they drop out of the zone. It takes 10–20
minutes to get back into the zone again.

 Context switching occurs for a variety of reasons. If someone approaches the pro-
grammer’s desk and asks a question, it breaks flow. If programmers are called into for-
mal meetings periodically throughout the day, it breaks flow. If programmers try to
juggle too many work items simultaneously, they can’t maintain flow for long. The end
result? Delay, defects, and rework.

 Let’s plug some numbers into the VSM to see how this might look (see figure 3.14).
When you take into account all the time lost during active states, when work items are
marked “in progress,” you can see the relative amount of time you’re adding value to
the product. This gives you a basis to look for ways to increase the proportion of VA
time to total lead time.

Figure 3.14 Value stream map with NVA time in active states
Licensed to Mark Watson <nordickan@gmail.com>

86 CHAPTER 3 Metrics for improvement
In this example, you see that it takes the team an average of 242.6 days to bring a fea-
ture from concept to production, and that you spend about 1.4% of that time directly
adding value to the feature you’re developing.

3.9.4 What is normal PCE?

The figure 1.4% might seem a bit low at first glance, if you haven’t calculated PCE
before. In my consulting work, I usually see PCE in the range of 1–2% in software
development organizations. It often comes as a shock to people. Many assume their
process is around 70–80% efficient.

 It turns out this is an unrealistic expectation. I’ve read that world-class manu-
facturing operations can achieve PCE of 25% or a bit more, whereas world-class prod-
uct-development processes top out at around 5%. This difference is due to the
inherent unpredictability of product-development work compared with manufactur-
ing operations.

 It might not sound like much, but improving PCE from 1.5% to 3% can have a pro-
found and visible effect on delivery. It isn’t as difficult to achieve as you may expect,
because it often involves discontinuing or minimizing NVA activities rather than learn-
ing wholly new ways to perform VA activities.

3.9.5 Moving the needle

Your PCE may suggest to you that root-cause analysis is in order and that you might
consider changes to improve performance. PCE doesn’t directly tell you what to
change. Although this book isn’t about root-cause analysis, I will suggest a few typical
issues that lead to low PCE in many software development organizations:

 A focus on resource utilization instead of throughput. This mentality causes people to
feel as if something is wrong when they aren’t busy. They try to stay busy no mat-
ter what. Consider the case when you have several work items on your plate.
Item 1 is of high priority to the business, and the rest are of relatively lower pri-
ority. You work on Item 1 until you hit a block, and you send a request for infor-
mation to someone in the organization who can help you. Meanwhile, to stay
productive, you start working on Item 2. You receive the answer you need to
resume Item 1, but now you’re busy with Item 2 and it isn’t convenient to stop
cold. You continue with Item 2 until you hit a block. Just then, a colleague asks
for your help with an unrelated issue. You help them and then finally return to
Item 1. You’ve succeeded in maximizing your own utilization, but you’ve
reduced throughput by robbing time from Item 1. It would have been better for
the organization had you been available to resume Item 1 the moment you
received the answer to your question, because Item 1 had a higher priority than
anything else on your to-do list. You’re more effective by being available for
high-priority work than by being arbitrarily busy with low-priority work.

 Juggling too many tasks at once. In Lean terms, this is called high WIP. High WIP
causes context-switching overhead, which reduces effectiveness. There’s an
Licensed to Mark Watson <nordickan@gmail.com>

87Metric: Process cycle efficiency
assumption in some organizations that the best way to complete many work
items is to start them all at once. Some managers like this because it appears as
if all the work items are in progress—the project-management tool shows them
in an active state. In reality, you can finish a long list of tasks in less time by tack-
ling them one or two at a time than you can by starting them all and then trying
to context-switch between them.

 Too much up-front analysis and design. With traditional methods of software devel-
opment, the assumption was that you had to work out all the details of solution
design before beginning the programming work. What we’ve learned over the
years is that requirements go stale as stakeholders and teams learn more and
more about the evolving solution in the course of a project. The stale require-
ments have to be revisited and modified and in some cases discarded. All the
work that went into them initially turns out to be wasted effort. The huge pile of
stale requirements shows up in the PCE calculation as unfinished work waiting
in a queue.

 A rigid series of hand-offs between functional specialists. This sort of work flow causes
unfinished inventory to accumulate between active states, waiting for the appro-
priate functional specialist to become available to pick it up.

 Buffer-management problems. In a continuous-flow process, the queues or buffers
are designed to keep the work flowing smoothly even when different steps in
the process are operating at different speeds. Because product-development
work is inherently unpredictable, there will be times when programming moves
faster than requirements elaboration, or when testing moves faster than pro-
gramming, and so forth. When a downstream step is moving faster than the step
that feeds it, you need some work in the buffer for the downstream step to pick
up so the process doesn’t grind to a halt. On the other hand, when there’s too
much work in a buffer, it starts to go stale. Finding the right queue depth is part
of managing a continuous-flow process.

Use with caution
PCE can provide powerful insight into the amount of lead time that goes to waste.
Most people in the IT field are unaccustomed to thinking about time this way, and
they accept a lot of process waste as normal and even inevitable. It’s useful to show
the real numbers from time to time, if only to maintain awareness of the importance
of throughput versus utilization.

But the difficulty of collecting accurate raw data for PCE makes it impractical for reg-
ular use. Although some electronic tools can sum the time in queues separately from
the time in active states, no tools exist that can distinguish between VA and NVA time
within an active state. That’s where you can find surprising and assumption-busting
information for process improvement.
Licensed to Mark Watson <nordickan@gmail.com>

88 CHAPTER 3 Metrics for improvement
3.10 Metric: Version control history
Question(s) answered
 Which files are modified most frequently?
 Which files have been checked out to make corrections or fixes on a recurring basis?

Description
 The history of commits made to the version control system
 Value
 Points to areas of the code base that are frequently changed
 Helps you identify where to focus your efforts to achieve the highest payback

Dependencies
 Approach: any
 Process model: any
 Delivery mode: any

Success factors
 A version control system is in use.
 Team members are diligent about providing comments when they commit changes.

3.10.1 When to use version control history

Use version control history to see which source code files and configuration files are
most frequently checked out and modified. This points the team to the files that are
most worthy of their attention for refactoring to reduce technical debt. Files that
rarely change may not be worth the effort.

 Version control history falls into the category of technical metrics. Version control
systems retain a historical record of all the checkouts and commits that have occurred.
In most cases, the Pareto Principle or 80/20 rule applies to code units—most of the
changes to an existing code base occur in a subset of modules.

 It takes little effort to collect the data. Version control systems will output the com-
mit history on request. If you sort the list in descending order by frequency, you’ll see
the modules that tend to receive the most changes. By correlating that list with static

(continued)
I use PCE to obtain supporting data when I have other reasons to believe there are
issues caused by people’s assumptions about utilization and throughput, and in par-
ticular about the advisability of high WIP levels. To collect the raw data, I ask individ-
ual team members to make note of each instance when they switch contexts. This is
burdensome and easy to forget, so I want people to go to the extra trouble only tem-
porarily and only to meet a specific improvement need.

You can get a coarse-grained sense of the proportion of NVA time to lead time by
tracking cycle time and paying attention to spans of time when work items are in NVA
states. PCE can expose a deeper layer of truth about wasted time, but only at the
cost of manual data collection.
Licensed to Mark Watson <nordickan@gmail.com>

89Metric: Static code-analysis metrics
code-analysis metrics (described shortly), you can identify the modules that may bene-
fit the most from refactoring.

 You can examine the commit comments from the version control system, as well.
Look for indications of which commits pertained to bug fixes and which to feature
enhancements.

 If many bug fixes appear to touch the same modules, those modules may benefit
from a closer examination. You may discover that one or more modules are badly
designed or messy, and it’s difficult for the team to modify them without creating
regressions.

 You may also be able to match frequently committed modules with categories of
bugs. This may lead you to discover that certain concerns or aspects (logging, security,
exception handling, and so on) of the product aren’t well designed or well factored.
This can lead the team to an architectural refactoring exercise.

 If one or a few modules seem to be involved in nearly all feature enhancements, it
may or may not be a red flag. There is a code smell known as god class that afflicts many
object-oriented code bases. A god class knows too much and must be involved in too
many different things to satisfy general object-oriented design principles.

 A module that isn’t frequently checked out and modified may not be worth investi-
gating even if static code-analysis metrics point to structural problems in the code.
The adage “If it ain’t broke, don’t fix it” applies.

3.11 Metric: Static code-analysis metrics
Question(s) answered
 Does the code have structural problems?

Description
 Software build systems usually include features to analyze the source code statically

(without executing the code) to look for well-known structural problems.

Value
 Helps you focus technical debt reduction efforts in areas that are likely to yield payback

Dependencies
 Approach: any
 Process model: any
 Delivery mode: any

Success factors
 Static code-analysis features are installed and enabled in the automated build for the

project.

3.11.1 When to use static code-analysis metrics

Certain kinds of issues with source code can be detected by analyzing the source code
without compiling or executing the application. Static code-analysis tools perform this
sort of analysis. You can use static code analysis to identify the source code files that have
the most serious structural problems. This helps the team understand which files are
worthy of their attention for refactoring to reduce technical debt. Static code-analysis
Licensed to Mark Watson <nordickan@gmail.com>

90 CHAPTER 3 Metrics for improvement
metrics are often used in conjunction with version-control history to zero in on the files
that are the most valuable targets for a refactoring effort.

 Static code-analysis metrics are technical metrics. It’s possible to detect problems
or potential problems in software by analyzing the source code alone, without build-
ing the product or running tests against it. A wide range of algorithms have been
developed to do this, and an exhaustive review of them is beyond the scope of this
book. You should know that the development tools your team is using can probably
provide a wealth of information about the quality of the code automatically. Based on
that feedback, the team can take action to improve code quality.

 The reason to care about code quality is that complicated and messy code is hard
to modify safely. This makes every feature enhancement take more time and cost
more money than necessary. The accumulation of technical problems over time is
called technical debt or design debt, and it’s a leading cause of slowdowns in development
and of premature death of production systems.

 Static code-analysis tools generally focus on seven key areas, sometimes known as
the seven axes of code quality or the seven deadly sins of programmers:

 Complexity—Static code-analysis tools look for a couple of types of complexity.
The first is cyclomatic complexity, which checks the depth of nested conditional
statements in code. A high value for cyclomatic complexity may mean that the
code is difficult to understand and, therefore, difficult to modify safely.
In some cases, it may only mean the section of code in question is inherently
complicated.

The second type of complexity is known as response for class (RFC), and it
mainly applies to object-oriented programming languages. The algorithm is
based on counting the total number of method calls and the number of unique
method calls in a class.

Excessive complexity of either type can make the code hard to understand as
well as time-consuming and risky to change.

 Duplication—Sometimes there are snippets of identical code in multiple places
in the code base. There can also be less-obvious forms of duplication, such as
functions or methods that perform almost the same processing and that differ
only in superficial ways, or utilities in different third-party packages that per-
form the same functions, or classes in different packages that have similar or
overlapping responsibilities.

 Test coverage—Unit tests are the most fine-grained set of automated tests applied
to a code base. They’re usually written in the same programming language as
the production code and stored in the same project as the production code in
the version-control system. For those reasons, static code-analysis tools can eas-
ily check code coverage at the unit level. The appropriate coverage depends on
the level of validation built into the programming language itself and the
amount of code that can be generated automatically by development tools. One
Licensed to Mark Watson <nordickan@gmail.com>

91Metric: Static code-analysis metrics
hundred percent test coverage isn’t usually necessary or desirable, but in gen-
eral higher coverage is better than lower coverage.

 Coding standards—A code base that generally follows the same conventions for
names and structure will tend to be less error-prone and easier to maintain than
a code base that exhibits a hodgepodge of different conventions and styles.
Code-analysis tools can be configured to block a commit when the code to be
checked in doesn’t follow a set of defined standards. Alternatively, tools can be
configured to notify you when code violates standards without preventing the
build from proceeding.

 Comments—Code that includes excessive source comments can be confusing to
follow, both because of the general clutter created by the comments and
because comments tend to quickly get out of sync with the code they describe.
On the other hand, there are occasions when explanatory comments help peo-
ple understand the intent of the code or warn about potential side effects when
the code is modified. Static code-analysis tools can apply heuristics to warn you
when it seems as if there are too many or too few comments in the source code.
Source lines that are commented out and left in place are also questionable.

 Potential bugs—Some static code-analysis tools look for structural patterns in the
code that can lead to predictable problems with respect to maintainability, secu-
rity, testability, efficiency, reliability, portability, and similar factors. These can
provide useful early warnings of potential problems.

 Architectural issues—Structural patterns in the code can point to architectural
issues. In large, complicated applications that comprise multiple separately
deployable components, circular or cyclic dependencies between components
can lead to serious problems in building and deploying the application. This
means a module in component A has a dependency on a module in component
B, and a different module in component B has a dependency on some other
module in component A. A programmer working on a small subset of the code
base may well overlook this sort of problem, and static code-analysis tools can
bring it to your attention.

Some tools can validate the structure of the code base against a set of archi-
tectural constraints the team defines. This can guard against inappropriate
access across different architectural tiers or layers in the application.

Dependencies between application components and third-party libraries,
and between one application component and another, can be detected and
reported by static code-analysis tools. This information can help teams identify
potential opportunities for improvement of code quality as well as exposure to
reported bugs in libraries.

A general guideline for good software design is to strive for high cohesion and
loose coupling. The two generally vary inversely with respect to one another. Cohe-
sion is a property of code whereby things that have to change together are kept
together in the source. Coupling refers to the degree to which different modules
Licensed to Mark Watson <nordickan@gmail.com>

92 CHAPTER 3 Metrics for improvement
depend on each other, or must know about each other. The rule of thumb
about high cohesion and low coupling applies to any source code and isn’t spe-
cific to any programming paradigm. Static code-analysis tools can look for struc-
tural patterns that suggest high coupling.

3.12 Metric: Niko Niko calendar
Question(s) answered
 How does the team’s emotional state change over time?

Description
 Based on a simple check-in once per day by each team member, the calendar tracks mood

using just three states: positive, neutral, and negative. There’s no in-depth psychological
analysis.

Value
 Raises a warning about possible systemic issues that are affecting team morale
 Can sometimes provide earlier warning of delivery issues than process-oriented or technical

metrics, because low morale usually leads to other problems

Dependencies
 Approach: any
 Process model: any
 Delivery mode: any

Success factors
 The team must voluntarily agree to participate in providing the data.

3.12.1 When to use the Niko Niko calendar

Use a Niko Niko calendar (http://www.nikoniko.co/) when you want to get a general
sense of the team’s morale, especially when you want to see how their morale changes
over time. When team members always report that they feel positive, it may indicate
managerial or political drivers causing them to believe they must pretend to be happy
or satisfied all the time. When they always report that they feel negative, it may indi-
cate factors in the work environment that are causing frustration, such as insufficient
technical resources, excessive overtime requirements, or difficulties coordinating
work with other teams. When team members always report feeling neutral, it may indi-
cate the team is disengaged, perhaps due to monotony or boredom or perhaps
because they’re burned out from past frustration. When the calendar reflects a nor-
mal flow of common emotional states, it doesn’t indicate any problems with morale.

3.12.2 Examples

Figure 3.15 shows one of the early examples of a Niko Niko calendar that appeared
online several years ago. The title reads “August’s Niko-Niko Calendar,” and the photo
shows the latter part of the month. Days of the month are listed across, and team
members are listed down (their names have been covered).

 Each day at the same time, each team member places a smiley face next to their
name. Exactly three kinds of smileys are used: a blue one denotes a negative state of
Licensed to Mark Watson <nordickan@gmail.com>

http://www.nikoniko.co/

93Metric: Niko Niko calendar
mind, red denotes neutral, and yellow denotes positive. Team members give no expla-
nation for the smileys they choose, and there’s no questioning. (The numbers below
the smileys are unrelated.)

 The example indicates team members usually feel neutral about their work, some-
times they’re positive about it, and occasionally they’re negative about it. The Niko
Niko calendar provides insight into the team’s morale without being intrusive.

 In Western countries, people have taken the liberty of changing the color-coding
scheme to one that aligns with Western conventions. They use green for positive, yel-
low for neutral, and red for negative, as in the example in figure 3.16, from Germany
(thanks to Berndt Schiffer).

The color scheme isn’t important. The key points are as follows:

 There are exactly three states.
 There’s no attempt to depict any sort of precision about exactly how positive or

negative a person feels.
 There’s no connection with any real or perceived causes for feeling any particu-

lar way.
 There’s no discussion or interrogation of team members regarding their

choices.

Figure 3.15 Niko Niko calendar

Figure 3.16 Niko Niko calendar
from Germany
Licensed to Mark Watson <nordickan@gmail.com>

94 CHAPTER 3 Metrics for improvement
You’re interested in seeing patterns and trends in the team’s mood over time, not in
investigating specific cases.

 The Niko Niko calendar provides interesting information when used in conjunc-
tion with other metrics. You can get a good sense of where to begin your root-cause
analysis when you see overlapping patterns across process metrics, technical metrics,
and human metrics. We’ll explore some of these patterns in chapter 4. For now, here
are some patterns to look for in the Niko Niko calendar alone.

3.12.3 Happy Camper

Let’s say you’re using the Niko Niko calendar with your team, and you see a pattern
like that shown in figure 3.17. Most team members are in a neutral mood most days
and are sometimes positive or negative. But look at Simon. He seems to be happy all
the time. Does this seem reasonable? Simon is on your team, so you know him better
than I. But when I see a pattern like this, it makes me wonder what’s going on.

Does Simon fear reprisals if he publicly indicates he’s less than ecstatic about the pro-
ject? If so, there could be a problem with management communication to the team. Is
he genuinely a happy person who tends to look on the bright side of things? If so,
then there’s no problem. Is he gaming the system in such a way that he off-loads his
tasks to others and plays with new programming languages on company time? If so,
it’s a different problem. In any case, continuous positivity is so unusual in the work-
place that it raises questions.

3.12.4 Omega Wolf

What if you see a pattern like that shown in figure 3.18? This is the opposite of the
Happy Camper pattern. In this case, Kim is perpetually negative. It seems to make no
difference what’s going on with the project or how her teammates feel. I call this the
Omega Wolf pattern.

 Every wolf pack has the same social structure. There are four roles: Alpha (the
leader of the pack), Beta (the likely successor to the Alpha), Subordinate (a standard
pack member), and Omega. The Omega bears the brunt of the others’ aggression
and frustration and functions as a kind of emotional relief valve and social glue for the
pack. Humans usually perceive this role as the lowest-ranking member of the pack,

Figure 3.17 Niko Niko
Happy Camper pattern
Licensed to Mark Watson <nordickan@gmail.com>

95Metric: Niko Niko calendar
although that interpretation may amount to anthropomorphizing. Something in the
nature of wolf life seems to require an Omega role in every pack.

 In human organizations, social or political forces may be at play that create the
need for a kind of Omega role. Traditional management science would hold that the
negative person is the cause of the team’s problems and would respond by firing that
person. It’s more likely that no one would have any positive days if not for the Omega
team member. People generally don’t want to be negative all the time; Kim is almost
certainly providing a relief valve for the team’s frustrations. Things would be worse
without her.

 Contemporary understanding holds that systemic factors constrain people’s behav-
ior, and when this behavioral pattern emerges, it signals some sort of organizational
dysfunction. Firing the individual would only result in another team member assum-
ing the Omega role, because organizational dynamics are creating the need for that
role.

 The only way to fix the problem is to identify and address the underlying organiza-
tional issues. In your position, you care about this because the team can’t perform at
its full capacity as long as the dysfunction continues to drive negative thinking.

3.12.5 Zombie Team

Assume that your team exhibits the pattern shown in figure 3.19. Here you see that
every team member feels neutral about being at work every day. No matter how the
project is going, no matter what holidays are coming up, no matter what good news or
bad news they receive, they never feel either positive or negative. I call this the Zombie
Team pattern. It means the team is disengaged.

Figure 3.18 Niko Niko
Omega Wolf pattern

Figure 3.19 Niko Niko
Zombie Team pattern
Licensed to Mark Watson <nordickan@gmail.com>

96 CHAPTER 3 Metrics for improvement
There may be different causes for teams to slip into this frame of mind. If external
management or stakeholders are micromanaging the team’s work and dictating tech-
nical implementation decisions, then team members will disengage and cede owner-
ship of the solution to the manger or stakeholder who wants to control details.

 Another cause of zombie teams is the overzealous team coach. Hired by manage-
ment from outside the organization to help improve the development and delivery
process and/or technical practices, the coach wants to implement a predefined pro-
cess or methodology, or wants the team to adopt specific technical practices. Often
with the best intentions, this sort of coach takes ownership of the team’s work prac-
tices, and the team members disengage.

 Strangely enough, too much success can lead to zombie teams, as well. There are
ongoing movements in the software industry to institute one or another process
model or set of technical practices. The emphasis is on helping new teams get started
with the new process and practices. Once a team has gotten started, there’s relatively
little support to help them sustain interest, enthusiasm, and discipline with the new
practices. Teams can fall into a rut, repeating the new practices they have learned but
losing the spark that got them started in the first place.

3.13 Metric: Emotional seismogram
Question(s) answered
 How did team members feel about how things were going in the course of the last iteration?

Description
 A technique used in heartbeat retrospectives to get a sense of the emotional shape of the

iteration that just passed

Value
 Can help highlight issues that lead to emotional ups and downs of the team

Dependencies
 Approach: any
 Process model: any
 Delivery mode: any

Success factors
 Best when the team practices heartbeat retrospectives

3.13.1 When to use the emotional seismogram

This is an alternative to the Niko Niko calendar as a way to gauge the emotional state
of team members. There are two ways to use it. First, you can ask team members to
mark a point each day that represents how they feel about the work as of that
moment. Second, you can wait until the heartbeat retrospective and ask team mem-
bers to recall how they felt on each day of the iteration just completed. Either way,
during the retrospective, the pattern provides inspiration for a team discussion of
opportunities for improvement.
Licensed to Mark Watson <nordickan@gmail.com>

97Metric: Happiness index
3.13.2 Examples

Figure 3.20 shows an example from the Munich-based DMC Group, from one of their
retrospectives. The sticky notes across the bottom of the board contain ideas for dis-
cussion during the retrospective. The chart across the top is the emotional seismo-
gram: it represents each team member’s recollection of how he or she felt on each day
of the iteration.

When you can’t use a Niko Niko calendar, an emotional seismogram can provide an
alternative means of getting at team members’ emotional state. It’s weaker than the
Niko Niko calendar in that it relies on people’s memories of how they felt, rather than
taking a real-time snapshot of people’s feelings each day.

 In my experience, people’s memories of how they felt earlier in the iteration are
strongly conditioned by the outcome of the iteration. In addition, an emotional seis-
mogram is used during retrospectives as one mechanism among several to ferret out
specific opportunities for improvement. In contrast, a Niko Niko calendar collects raw
data that reveals trends over time. For these reasons, I suggest using a Niko Niko cal-
endar whenever your team is willing to agree to it, and resorting to alternatives only
when necessary.

3.14 Metric: Happiness index
Question(s) answered
 How do team members feel about working here?

Description
 A rough indication of team morale based on team members’ subjective rating of their own

feelings about the work environment

Value
 Can detect the emotional impact of organizational problems before the root causes make

themselves evident
 Can detect a trend of falling morale in time to prevent team collapse

Figure 3.20 Emotional
seismogram
Licensed to Mark Watson <nordickan@gmail.com>

98 CHAPTER 3 Metrics for improvement
Dependencies
 Approach: any
 Process model: any
 Delivery mode: any

Success factors
 Best when used in an organizational culture that ensures safety when staff members

express less-than-positive feelings about the workplace
 When used in an unsafe organizational culture, inputs to the happiness index should be

anonymous.

3.14.1 When to use the happiness index

Use the happiness index when you want to get a sense of how team morale is evolving
over time.

3.14.2 Mechanics

Ask team members to rate their own level of happiness. You can do this on a one-off
basis when you want to take a reading of the team’s emotional state, or you can make
it a regular practice. In the latter case, take readings at a consistent interval: once a
day, once a week, once per iteration, and so on. Then you can chart the changes in
responses over time to see how the team is evolving or detect problems based on the
emotional impact of those problems.

 Here’s an example of how the happiness index can work. Let’s say you have a team
of eight people, the team is using a time-boxed iterative process model, and team
members have rated their happiness on a scale of 1 to 5 for several iterations (see
figure 3.21).

If you plot the individual responses, you get a fairly cluttered chart that gives you a
visual sense of how team members’ feelings changed over the course of these itera-
tions, as shown in figure 3.22. From this, you can tell that individual team members
feel very differently from one another about working here.

Figure 3.21 Happiness index data
Licensed to Mark Watson <nordickan@gmail.com>

99Metric: Happiness index

You can focus on one individual at a time if you want to see how their feelings are
changing. Let’s look at a few individual results. These examples are representative of
common patterns you’re likely to see when you use this metric. We’ll start with the
team member named Joseph (see figure 3.23).

Joseph’s feelings about work fluctuate around the midpoint of the scale. This is how
most people feel about working in a typical corporate IT environment. Some days are
better than others, but in general they feel more or less neutral about their work.
Some aficionados of contemporary lightweight methods might see this as a problem;
they tend to expect team members to remain highly engaged and excited at all times.
In reality, people can’t maintain a high level of emotional engagement without pause.
It’s exhausting!

 Now consider Stanley (figure 3.24). Stanley appears to have a love-hate relation-
ship with his work; he always scores his happiness at one extreme or the other. Is he
emotionally unstable? Probably not. When asked to respond on a scale, many people
tend to choose the minimum or maximum score. Chances are, his true feelings are
more or less the same as Joseph’s.

Figure 3.22 Happiness index: all the individual results

Figure 3.23
Happiness index: Joseph
Licensed to Mark Watson <nordickan@gmail.com>

100 CHAPTER 3 Metrics for improvement

Rhonda is a different story, as you can see in figure 3.25. You might want to have a pri-
vate chat with Rhonda. Clearly, something about the work environment isn’t meeting
her needs. Based on her pattern of responses, my first guess would be that she was
already having difficulties at work before she became part of this team. Joining the
team may have given her a temporary morale boost; initially she was willing to give it a
fair try, and she had a neutral attitude toward work. But the new team did not solve
her problems.

The situation is interesting because it may point to workplace issues that affect
Rhonda negatively, or it may indicate the Omega Wolf pattern you saw with the Niko
Niko calendar examples. The appropriate corrective action depends on the root
cause. As usual, the metric doesn’t tell you the root cause; it only raises a warning that
there may be a problem.

 Rajesh has quite a different pattern of responses, as shown in figure 3.26. Rajesh
never seems to feel particularly good or bad about work. He’s consistently neutral.
This pattern usually means one of two things: either he derives professional satisfac-
tion from activities other than his day job, or he prefers not to share his feelings and
provides neutral responses no matter how he feels.

Figure 3.24
Happiness index: Stanley

Figure 3.25
Happiness index: Rhonda
Licensed to Mark Watson <nordickan@gmail.com>

101Metric: Happiness index

Individual responses are often less useful than the team average. If a team member is
having problems, it’s usually evident without using a metric like the happiness index.
The team average may help identify patterns in the work flow or organizational con-
straints that drive down team morale. Let’s look at the pattern for this team, shown in
figure 3.27.

In this case, the team seems to be cruising along nicely most of the time. There’s a dip
in happiness in iteration 4. If you were to look at other metrics for the team, you
would probably find that the dip correlates with the team’s delivery performance in
iteration 4. People’s feelings about work often vary in direct proportion to their suc-
cess. This may be true in part because people naturally prefer to perform well and to
achieve their goals. In larger organizations particularly, it may be true in part because
people fear negative performance appraisals.

 In an organization of high trust, you’ll see teams recover quickly from emotional
dips like this. If the team doesn’t recover quickly, and morale remains low even after
the hiccup in performance is past, it may indicate that the organizational culture is
toxic.

Figure 3.26
Happiness index: Rajesh

Figure 3.27
Happiness index: team averages
Licensed to Mark Watson <nordickan@gmail.com>

102 CHAPTER 3 Metrics for improvement
3.15 Metric: Balls in bowls
Question(s) answered
 How do team members feel about working here?

Description
 Gives a rough indication of team morale based on team members’ subjective rating of their

own feelings about the work environment

Value
 Can provide a simple point-in-time reading of team morale

Dependencies
 Approach: any
 Process model: any
 Delivery mode: any

Success factors
 Best when used in an organizational culture that ensures safety when staff members

express less-than-positive feelings about the workplace
 Not advised when the organizational culture is unsafe, because anyone can see who places

red balls in the container

3.15.1 When to use the balls-in-bowls metric

Use the balls-in-bowls metric when you want a quick check of team morale at a point
in time.

3.15.2 Mechanics

This approach collects the same sort of information as a Niko Niko calendar or happi-
ness index, but with low setup effort. It’s a spot check; it isn’t meant to collect data
over time to develop trends.

 Provide the team with enough balls that each team member has one. Place two
bowls near the exit, and ask each team member to place their ball in one bowl or the
other, where one bowl is for good and one is for bad. Don’t offer any explanations.

 Any variation that amounts to a good or bad choice will work as well. For instance,
some teams use red and green cards or sticky notes. If no bowls are available, team
members can place their cards on a table.

3.16 Metric: Health and happiness
Question(s) answered
 How do team members feel about their delivery performance and job satisfaction?

Description
 Provides a point-in-time indication of team members’ subjective assessment of their own

delivery performance (health) and job satisfaction (happiness). A series of observations can
provide a trend in how the team feels about these factors over time. This metric was
developed by ScrumMaster Kevin Davis.

Value
 Can raise a warning when improved delivery performance is achieved at the cost of team

morale
Licensed to Mark Watson <nordickan@gmail.com>

103Metric: Health and happiness
 Can raise a warning when improved team morale doesn’t lead to improved delivery
performance

 Can indicate whether team members associate strong delivery performance with high job
satisfaction

 Can indicate that the team is settling into a comfort zone without improving or maintaining
delivery performance

Dependencies
 Approach: any
 Process model: any
 Delivery mode: any

Success factors
 In a safe organizational culture, team members can mark the chart openly, in full view of

teammates. This can lead to constructive discussion of opportunities for improvement.
 In an unsafe organizational culture, a facilitator can collect anonymous scores for health

and happiness and plot the points on the chart. This can lead to constructive team
discussions without pointing at any individuals.

3.16.1 When to use the health-and-happiness metric

Data collection for this metric is normally done as a recurring team activity. If the
team practices heartbeat retrospectives, include this as a brief activity in each retro-
spective. If the team doesn’t use this practice, then schedule a brief team meeting at
fixed intervals (say, every two weeks) for the activity.

3.16.2 Mechanics

The facilitator prepares a quadrant chart with two axes. The x-axis represents the
team’s happiness—that is, a subjective indication of how team members feel about
working with the team. The y-axis represents the team’s health—that is, team mem-
bers’ subjective sense of how effectively the team is delivering results. The basic chart
looks something like figure 3.28.

 Each team member places a mark on the chart that shows how they feel about the
team’s delivery performance and about their own work with the team as of that
moment. In an environment characterized by high trust and transparency, the team

Figure 3.28 Health-and-
happiness chart (empty)
Licensed to Mark Watson <nordickan@gmail.com>

104 CHAPTER 3 Metrics for improvement
can gather in front of the chart and place their marks openly. In an environment
where trust is an issue, the facilitator can solicit anonymous input from the team and
then place all the marks on the chart.

 Once all the marks have been placed on the chart, the team engages in an open-
ended discussion about the reasons people feel the way they do about the work. For
example, figure 3.29 shows a chart for the arbitrary date April 9, after a hypothetical
team has placed their marks.

At some point in the discussion, the team reaches a consensus about their collective
sense of team health and happiness and arrives at a single point (see figure 3.30). This
becomes a data point to be added to historical health and happiness indices to pro-
vide a sense of how the team’s morale is trending. In the shorter term, the discussion
by which the team reaches consensus often yields useful insights, uncovers hidden
problems, and improves team cohesion.

The facilitator (probably you, in view of the intended audience for this book) adds the
data point for April 9 to the historical data from previous sessions, as shown in figure
3.31. With repeated input, the accumulated information shows how the team’s subjective
assessment of delivery performance and happiness changes over time (see figure 3.32).

Figure 3.29 Health-and-
happiness chart: April 9 (raw)

Figure 3.30 Health-and-happiness
chart: April 9 (team average)
Licensed to Mark Watson <nordickan@gmail.com>

105Metric: Personality type profiles

3.17 Metric: Personality type profiles
Question(s) answered
 How can team members with different personality types or cognitive styles communicate

and collaborate effectively to achieve the common goals of the team?

Description
 Team members self-assess, or are assessed by an outside consultant, to determine their

personality types or cognitive styles as defined by a particular model. They then learn a few
practical ways they can communicate clearly and collaborate effectively with individuals who
have different, and possibly conflicting, personality types or cognitive styles.

Value
 Can help the team gel into a cohesive, functioning unit

Figure 3.31 Health-and-
happiness Chart (historical)

Figure 3.32 Health-and-
happiness chart (long-term)
Licensed to Mark Watson <nordickan@gmail.com>

106 CHAPTER 3 Metrics for improvement
Dependencies
 Approach: any
 Process model: any
 Delivery mode: any

Success factors
 Best in conjunction with collaborative working styles, such as cross-functional teams

working in the same team room

3.17.1 When to use personality profiles

Use personality profiles to help team members understand how to interact effectively
with one another. For any team to function well, and particularly when the team is
using a collaborative style of working, it’s helpful for the team members to understand
themselves and their teammates. This isn’t to say that everyone has to become close
friends or learn intimate secrets about one another; it only means you need to under-
stand your own tendencies, the tendencies of your teammates, and concrete actions
you can take to ensure that you’re able to collaborate effectively.

 Quite a few personality assessments are available. In the context of teamwork for
software development, you aren’t interested in a deep dive into everyone’s psychologi-
cal makeup; rather, you’re interested in identifying team members’ general tenden-
cies in personal interaction. Understanding traits like dominance versus
submissiveness, analytical thinking versus instinctive thinking, and so forth can help
people learn how to communicate and collaborate effectively on the job.

 General models designed for nonprofessional use are practical for this purpose.
Many companies use DiSC profiles, the Myers-Briggs Type Indicator (MBTI), or Per-
sonalysis. StrengthsFinder is another commercial assessment that can help team mem-
bers understand how to interact with one another effectively, although it isn’t a
personality profile as such. These products can be helpful, provided you remember
their limitations. None is scientifically rigorous, and none is used by healthcare pro-
fessionals in their work with patients.

 In-depth coverage of these models is out of scope of this book. I have no particular
recommendations in this area. The key point is that team members have some way of
understanding how they communicate and how their individual styles of communica-
tion are received by teammates who have different personality types.

 Friction between team members is often a cause of software delivery problems.
When people make assumptions about their own communication style and those of
their teammates, misunderstandings often lead to friction. By improving your under-
standing of yourself as well as your teammates, you can avoid misunderstandings.
That’s the reason I consider this a pragmatic metric to support improvement.

3.17.2 Anti-patterns

Understanding how different personality types interact can be helpful, but it can also
lead to certain undesirable behaviors.
Licensed to Mark Watson <nordickan@gmail.com>

107Summary
AN EXCUSE TO AVOID COLLABORATION

Be alert for team members who want to use the results of the personality assessment as
an excuse to avoid collaborating with others who have different profiles. Contempo-
rary software-development methods usually call for collaboration on a level that hasn’t
been the norm in IT work for most of the past several decades. It’s natural for people
to resist shifting from individual work to collaborative work. Expect to see this behav-
ior especially with respect to pair programming and cross-disciplinary collaboration
(for instance, business analysts and testers working directly together to create execut-
able test cases that express requirements).

 It’s true that some personality types naturally conflict. When this is the case, it
becomes your professional responsibility to learn how to collaborate effectively with
the other person. It isn’t an excuse to avoid collaboration.

EXPLOITATION

Many years ago, William Oncken came up with a time-management model he called
the Molecule of Management (http://www.onckencorp.com/molecule.htm.) The
basic idea is that no matter the size of your organization, you personally interact with
just four types of entities: your boss, your internal peers, your external peers, and your
subordinates. Each of these has a unique role with respect to you, and you need to
learn specific techniques to work effectively with each.

 Many people who received training in this model began to use their knowledge to
manipulate others in their organizations. I’ve seen people induce others to happily
perform nearly all their work. This wasn’t the intent of the model, but it’s often
employed in this way.

 Personality profiles like MBTI and DiSC can be abused in much the same way.
Clever team members may learn to manipulate others by pressing their buttons. This
is counterproductive to the team’s goals, because it tends to reduce the effective deliv-
ery capacity of the team as a whole.

3.18 Summary
This chapter introduced several metrics that can help monitor the effects of process-
improvement efforts. You learned that overgeneralized assumptions about how peo-
ple are motivated often cause improvement efforts to flounder and can cause mea-
surements of improvements to be inaccurate.

 You learned about anti-patterns that can occur when using metrics to assess the
effectiveness of improvement efforts. You also saw how certain metrics can be used
both for steering and for process improvement.

 The chapter also discussed the fact that technical and human metrics can be used
to help with process improvement. But they aren’t typically helpful with steering, and
they aren’t usually reported outside the team.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.onckencorp.com/molecule.htm

Putting the metrics to work
In this chapter, you’ll see how you can gain deeper insight into a situation by using
multiple metrics, and multiple types of metrics, in concert. Trends in any single
metric can highlight delivery issues, but can just as easily provide a false positive.
When you overlay trends in multiple metrics, false positives tend to become obvi-
ous, and you can catch problems early.

 So far, you’ve learned about the purpose, function, basic mechanics, and poten-
tial abuses of several metrics, and how your development approach, process model,
and delivery mode influence your choice of metrics. You’ve seen that a single point-
in-time observation offers little useful information and that you need to develop
observation trends over time.

 No single metric gives you all the information you need to keep your work on
track or to recognize areas of improvement. When you overlay trends in multiple
metrics, you can get a better sense of what’s happening. Even then, metrics won’t
directly tell you the root causes of a problem; they’ll only indicate when reality

This chapter covers
 Applying multiple metrics to expose potential

areas of improvement

 Using patterns and trends to point to delivery
problems
108

Licensed to Mark Watson <nordickan@gmail.com>

109Pattern 1: Periodic refactoring iterations
diverges from expectations or exceeds limits you’ve defined as “normal.” It’s still up to
you to discover root causes and determine appropriate actions. The more information
you have, the better your chances of success in doing so.

 Let’s consider a few examples. These are patterns I’ve seen in the field time and
again.

4.1 Pattern 1: Periodic refactoring iterations
In this case, a development team exhibits a recurring pattern of erratic delivery per-
formance. Let’s assume they’re using a time-boxed iterative process model in which
they deliver production-ready solution increments in each iteration. The pattern is
that they deliver well at first, but then gradually slow down until they must devote an
entire iteration to cleaning up the code. Then the pattern repeats.

 Let’s see how this pattern appears when you overlay trends in several metrics:

 Velocity—The quantity of production-ready software completed in each itera-
tion, expressed as story points

 Cyclomatic complexity—The number of linearly independent paths through the
source code

 Automated test coverage—How much of the code is exercised by automated test
cases

 Niko Niko calendar —The general mood of team members

Figure 4.1 shows how the pattern manifests in the four selected metrics. The figure
overlays the four metrics on a common timeline.

 Notice that the metrics shown in the figure represent different categories of mea-
surement. You’re looking at the team’s delivery performance through multiple differ-
ent lenses. This approach often enables a richer understanding of what’s happening
than can be achieved using any single metric or single type of metric.

 The team starts by delivering results at their normal level of performance. Gradu-
ally, the quality of the code deteriorates until it reaches a point that is unmanageable.
In order to continue development, the team must dedicate an iteration to cleaning up
the code. During that time, no progress is made in building the product. After the
code has been cleaned up, the pattern repeats. Unfortunately, the example isn’t
speculative—it represents an all-too-common pattern in industry.

 Usually, this pattern occurs when a team feels real or perceived pressure to deliver
as quickly as possible, and damn the consequences. They cut corners to try to work
faster. Instead, they slow themselves down. They pile if/else blocks on top of other
if/else blocks. They copy and paste snippets of code and leave remnants throughout
the code base. They skimp on automated test cases. These practices result in more
defects, which cause the team to spend proportionally more time identifying and fix-
ing bugs than on value-add development work. Lacking sufficient test coverage, the
defect-resolution activities take longer than they should.
Licensed to Mark Watson <nordickan@gmail.com>

110 CHAPTER 4 Putting the metrics to work
It’s unsurprising to see the correlations between velocity, cyclomatic complexity, and
automated test coverage. You would see predictable correlations with throughput,
cycle time, and process cycle efficiency (PCE) as well. Notice, however, the way the
Niko Niko calendar changes as the pattern repeats. After a while, the team becomes
disengaged; they become a zombie team. The stress and monotony of the periodic

Figure 4.1 Pattern 1: velocity, cyclomatic complexity, automated test coverage, and Niko Niko calendar
Licensed to Mark Watson <nordickan@gmail.com>

111Pattern 1: Periodic refactoring iterations
refactoring iterations, during which stakeholders are displeased at the lack of
progress, and the unrelenting pressure to work faster and faster with no opportunity
to address the root causes of the problem, eventually wear them down.

 The zombie-team problem often leads to further delivery issues. It’s likely that
turnover will increase and that the company will begin to earn a negative reputation
in the local labor market that makes it increasingly difficult to fill vacant positions.
This can lead to a downward spiral for the organization’s ability to deliver.

 When you overlay graphics of these metrics on a timeline, the result is a powerful
visual representation of the impact of policies that are inhibiting effective delivery of
valuable software. It’s a much more effective message than telling management and
stakeholders that the team feels pressure—they would say that pressure is a normal
part of the job. Metrics convey a message they can relate to on a gut level.

 The Niko Niko calendar may seem to be a soft metric, but in a situation like this it
can expose deeper problems than process metrics and technical metrics. Once the
team becomes disengaged, their disengagement becomes the primary cause of poor
delivery performance. Until that issue has been addressed, changes in process or in
technical practices will have little or no effect.

CORRECTIVE ACTION

This pattern usually occurs when a team feels pressure to deliver as rapidly as possible
(regardless of whether the pressure is real or perceived), and when they believe the
best way to deliver quickly is to cut corners with respect to technical practices. In gen-
eral, corrective action involves helping the team understand the business value of
delivering clean code in a predictable and sustainable way, and helping the team learn
(if necessary) and adopt generally accepted good software development practices. As
the team makes progress with these corrective actions, expect the metrics to start
shaping up, as shown in figure 4.2.

 The new pattern in velocity shows an initial reduction in delivery as the team starts
to make improvements in the code base. Velocity climbs until it reaches the team’s
norm, where it stabilizes.

 The corresponding pattern in cyclomatic complexity shows the number of offend-
ing methods starting high and gradually falling to a reasonable level as the team refac-
tors code to simplify complicated branch structures. As the team cleans up the code
base, they add automated tests. In the course of a few iterations, they bring the level of
test coverage up to an acceptable range.

 At the same time, the Niko Niko calendar exhibits a normal trend as the team
adopts new work practices. Initially, morale is low because the team is uncertain about
the new technical practices they’re adopting, and because they may be less than fully
confident in management’s claims that delivery pressure will be relaxed to enable bet-
ter technical practices. Once they begin to see the positive impact of the changes
they’re making, their morale improves to a normal pattern, shifting mostly between
positive and neutral.
Licensed to Mark Watson <nordickan@gmail.com>

112 CHAPTER 4 Putting the metrics to work
Figure 4.2 Metrics showing improvement in software quality
Licensed to Mark Watson <nordickan@gmail.com>

113Pattern 2: Velocity looks good, but little is delivered
4.2 Pattern 2: Velocity looks good, but little is delivered
Given a time-boxed iterative process model, velocity is meant to reflect the quantity of
production-ready software a team delivers in each iteration. In many organizations, it
can be challenging to deliver any production-ready software in a short time. Typical
inhibiting factors are discussed next.

ORGANIZATIONAL STRUCTURE

In a business-application software development and support organization, it’s gener-
ally a good idea to align people and resources with the flow of work necessary to
deliver results. In Lean thinking, the idea is expressed as aligning value-producing
activities with the value stream. Many corporate IT organizations define teams around
technical assets rather than along value streams. For instance, they may have a team
responsible for supporting IBM WebSphere AS, another responsible for supporting
Oracle RDBMS, another for supporting an enterprise service bus (ESB), another
responsible for configuring servers, and on and on. To complete any given develop-
ment project, several of these component teams must be engaged to perform small
amounts of work on behalf of the project team. This communication structure causes
delays in delivery.

GOVERNANCE PROCESSES

Business enterprises of any appreciable size try to carry out their work in a reliable
way. They have standards and guidelines to be followed in many areas of work, includ-
ing network security, user-interface branding, accessibility. In addition, many compa-
nies are subject to government regulations of one kind or another. Software delivery
processes often deal with these requirements at the end of the delivery chain by
including review and approval steps before any software is permitted into the produc-
tion environment. This approach makes it challenging to deliver software according
to the time-boxed iterative model. Most or all of these activities can be folded into the
delivery pipeline at earlier points in the process, allowing product to flow more
smoothly to production.

RESOURCE CONSTRAINTS

It sometimes seems as if large corporate IT departments are willing to spend copious
amounts of money on their production resources, but they’re reluctant to provide
adequate resources for development and (especially) testing. I’ve often seen teams
that are ready to move forward with the current iteration’s work but can’t get immedi-
ate access to a test environment, or must wait for another group to condition test data
(another indicator of organizational structure problems). To support incremental
delivery, development teams must have control of the resources they need to deliver
fully tested software in each iteration. This may include the ability to define and run
virtual machines, to stand up physical servers, to configure and launch mainframe sys-
tems such as CICS, and to create and load databases.
Licensed to Mark Watson <nordickan@gmail.com>

114 CHAPTER 4 Putting the metrics to work
MANUAL DELIVERY PIPELINE

Competitive pressure and the pace of change are steadily increasing, and time to mar-
ket has become one of the key business drivers for software delivery. Practices such as
A/B testing require the ability to deploy small changes in applications at any time, with-
out delay, in order to respond to customer demand. Yet many large IT organizations still
depend on manual methods for building, packaging, testing, deploying, and moni-
toring the software they develop. One cause of erratic delivery may be the delays cre-
ated by a reliance on manual methods to pull software through the delivery pipeline.

CHARACTERISTICS OF DEVELOPMENT TOOLS AND OTHER PRODUCTS IN THE ENVIRONMENT

Many large IT organizations have dependencies on third-party software packages for
mission-critical functions. To make a modification to an application, a team may have
to make configuration changes or custom modifications to more than one third-party
product, such as an extract, transform, load (ETL) package; a customer relationship
management (CRM) package; a business rules engine; an enterprise service bus (ESB);
and so forth. An issue already mentioned is that each of these packages may be sup-
ported by a separate team. In addition, some packages may have been designed in an
era when the largest IT cost was the computer hardware and when lead times of two
years or more were considered normal and acceptable. Those products are designed
to support multiple applications within a single container and to share precious hard-
ware resources efficiently. They’re designed to be the sole inhabitant of the universe
and not to function as one component of a larger system, having to play nicely with
other components. They aren’t designed to support frequent, numerous, rapid, small
changes by multiple teams at the same time. Their very architecture inhibits a team’s
ability to deliver incrementally.

PROCESS STRUCTURE

Even when a time-boxed iterative model is used, it’s common for the process followed
in each iteration to be linear. Some people refer to this as an iterative waterfall process.
When this is a cause of erratic delivery, it can be mitigated by limiting work in process
(WIP) and encouraging the team to complete one (or a few) work items at a time, col-
laborating across roles, rather than batching the work items and working through tra-
ditional development phases.

FUNCTIONAL SILOS

In the past 15 years or so, there’s been a move toward poly-skilled IT professionals.
Catch phrases like generalizing specialist and T-shaped people have made the rounds. For-
mal job descriptions have lagged behind this trend, and longstanding assumptions
about the need for functional specialization in IT have been slow to change. Cross-
functional development teams using a time-boxed iterative process model tend to
consist of specialists in various areas rather than poly-skilled individuals who can per-
form several kinds of tasks on behalf of the team. Demand for particular skills tends to
wax and wane over the course of a project. On a team of specialists, this causes some
individuals to be overloaded and others to be idle at any given time. You must
Licensed to Mark Watson <nordickan@gmail.com>

115Pattern 2: Velocity looks good, but little is delivered
consider the fact that people choose a specialization because it interests them, and
they want to spend most of their time in that area. Most IT professionals don’t want to
perform all kinds of different tasks on a routine basis. Even so, when demand for skills
shifts, it’s useful for team members to be able to pick up some of the work outside
their individual area of specialization from time to time.

PERFORMANCE APPRAISALS

I often visit organizations where management says all the right things about cross-
functional collaboration and a team-oriented approach to work, but the formal
performance-appraisal guidelines strongly emphasize individual accomplishment
over collaboration. Combined with a “stack ranking” approach to workforce manage-
ment, the individually focused appraisal guidelines cause people to protect themselves
at the expense of their colleagues. They may hide information that might make them
look bad. They may see a problem coming and say nothing to prevent it, so that they
can later fix the problem and emerge as a hero. They may remain silent when a col-
league makes a poor decision, because the result will benefit them in the rank-and-
yank scheme. You probably won’t see any glaring, dramatic examples of such behav-
ior; but the net effect of thousands of small events introduces friction in the delivery
pipeline that results in erratic team performance and delays in delivery, even when
individual contributors appear to be doing everything right.

SCARCE SPECIALISTS

Some of the activities involved in IT work genuinely require narrow-and-deep special-
ists. A generalist can’t do everything well. Usually, such individuals are both rare and
expensive, and organizations have only a few of them on staff. Their services are in
demand by many development teams simultaneously, and it isn’t practical to assign
one of them to each development team for the full duration of a project. The situa-
tion creates a queuing problem. There will be a delay each time a team requests ser-
vices from a rare specialist. You can’t eliminate this delay completely. By making the
issue visible, you may be able to find ways to manage the queuing problem more effi-
ciently and minimize the impact on delivery performance.

MEETINGS

Many companies begin life as startups, hoping for success. When success comes, it
often comes quickly. As the company increases sales, increases production, and grows
market share, things can be hectic. More and more people are affected by business
decisions, and they all need information. No one pauses to reason through problems
or determine how best to provide people with exactly the information they need at
exactly the time they need it. What usually happens is that meetings proliferate. Peo-
ple schedule meetings to discuss every decision, and they invite more and more
attendees. When technical personnel are involved in these meetings, it destroys their
productivity. Technical work requires long periods of focus. A single meeting sched-
uled midmorning and another mid-afternoon eliminate all opportunities for
extended focus for the entire day. People need to learn how to identify the meetings
Licensed to Mark Watson <nordickan@gmail.com>

116 CHAPTER 4 Putting the metrics to work
where their attendance is really necessary and to decline other meeting invitations. A
simple expedient is to block out periods on your calendar for uninterrupted work.

TIME MANAGEMENT

Above and beyond scheduled meetings, many technical team members have difficulty
managing their time. They tend to function on an interrupt-driven basis. They often
end up juggling many unfinished tasks as they try to address every fire and every new
request immediately. The idea of limiting WIP has already been mentioned; it applies
to this problem, as well. Teams get more done when they try to finish things one by
one than when they start everything at once and juggle many tasks. There are meth-
ods that can help you manage incoming work requests in a reasonable way; for exam-
ple, Kanban helps with this issue (see Kanban in Action by Marcus Hammarberg and
Joakim Sundén, Manning, 2014).

INDIVIDUAL AND TEAM TECHNICAL PRACTICES

Software development teams develop software. For that reason, people usually assume
that any delay in delivery must be due to poor software-development practices. They
try to address delivery delays by introducing new technical practices or by sending
team members to training classes. These remedies rarely have any measurable effect
on delivery effectiveness. The specific development practices a team employs usually
have less impact on delivery effectiveness than the previous issues. That said, technical
practices can have an effect. Teams that don’t use version control must pause from
time to time to re-create lost code or resolve conflicts in different copies of the code.
Teams that don’t practice continuous integration must pause to integrate components
manually. Teams that don’t use automated testing must pause to test the basic func-
tionality of their code manually. Teams that don’t drive code from executable exam-
ples must pause to investigate the causes of defects and repair the code. Teams that
don’t keep their code clean as they go along, using a technique known as incremental
refactoring, gradually accumulate design debt that makes the application increasingly
difficult to understand and to modify safely; it can even cause an application to
become unmaintainable long before its intended production lifetime. Because orga-
nizational impediments have such a powerful negative impact on delivery perfor-
mance, many professional developers are unaware that their technical practices could
be improved. Even if they could be doing substantially more and higher-quality work,
they’re able to produce results quickly enough for their organizations to consume the
changes, but this may only be because the organization isn’t particularly efficient.

GAMING VELOCITY

When teams fear negative consequences for failing to show steady velocity, they may
respond to these issues by softening the definition of velocity so they can avoid punish-
ment for failing to deliver something in every iteration. This can be problematic,
because you want metrics to make problems visible as a first step toward correcting
them. When metrics are used in a way that hides problems, you have no basis for
improvement.
Licensed to Mark Watson <nordickan@gmail.com>

117Pattern 2: Velocity looks good, but little is delivered

One of the ways teams game velocity is by manipulating their user-story sizing or esti-
mation. They adjust user-story sizes up or down as necessary to make it appear as if
they’re achieving high velocity. They assign story points to work other than user stories
so they can claim completion of work items more frequently than would be possible if
they waited for each user story to be fully and properly finished.

 Another way to game velocity is to organize planned work into items that aren’t
proper user stories. A user story represents a thin vertical slice of functionality that can
be tested and demonstrated, even if it amounts to less functionality than you would put
into production without other pieces in place. Teams often treat small tasks as if they
were user stories so they can assign points to the tasks. They decompose the work hori-
zontally, by architectural layer, rather than create vertical slices, and they claim points
for each separate portion of development—for instance, database changes, middle-
ware changes, and front-end changes. They divide user stories that have external
dependencies into multiple parts so they can claim each part as complete individually,
without losing credit for work while awaiting results from external groups. The focus is
on getting credit for story points, rather than on delivering working software that has
business value for stakeholders.

 Because the team is gaming velocity, the problem may not be apparent in a velocity
chart or burn chart alone. When you combine velocity observations with other met-
rics, you can expose this sort of issue. Let’s combine the following metrics:

 Velocity—The quantity of production-ready software completed in each itera-
tion, expressed as story points (in this case, incorrectly calculated)

 Running tested features (RTF)—The number of software features running in a
production or staging environment with all automated tests passing

 Earned business value (EBV)—The amount of relative business value delivered to
date

 Throughput—The number of features delivered to production per release

Consider the pattern in these four metrics shown in figure 4.3. It appears that velocity
is stable, which is what you want to see. But for some reason the team isn’t building up

Why would a team falsify their velocity?
If velocity is meant to help teams, then why would a team game the numbers? Most
often, the reason is that the organization expects teams to report their velocity to
management. Many managers don’t understand that velocity isn’t comparable
across teams, and they want to use it to rank teams and personnel.

Ideally, velocity is a metric useful to a single team and isn’t reported to anyone out-
side the team. It’s a tool to help a self-organizing team manage its own work flow. As
soon as you share velocity beyond the team, you risk creating fear within the team
that the numbers will be used against them at performance-appraisal time. That can
destroy the metric’s usefulness as an early warning of delivery problems. Other met-
rics are available that external stakeholders can use to gauge progress.
Licensed to Mark Watson <nordickan@gmail.com>

118 CHAPTER 4 Putting the metrics to work
more functionality in the automated test environment, as reflected by the trend in
RTF. If the team was delivering results steadily, then you would expect to see RTF climb
steadily.

Figure 4.3 Pattern 2: velocity, RTF, EBV, and throughput
Licensed to Mark Watson <nordickan@gmail.com>

119Pattern 2: Velocity looks good, but little is delivered
 EBV provides another indication that velocity isn’t showing true performance.
Teams ought to focus on delivering the highest-value features early and lower-value
features later. EBV normally forms an S-curve shape that mirrors this. Instead, here
you see occasional delivery of business value, with several intervening iterations when
no business value is produced.

 The erratic throughput indicates that the team isn’t delivering features as steadily
as their velocity chart suggests. The team is working steadily and putting in a lot of
time in development, and yet deploying relatively little functionality in each release.
In addition, throughput is erratic, which makes it difficult to have confidence in any
delivery plan.

 Due to the popularity of velocity, many teams depend on that single metric to
gauge progress. This example shows that when velocity is gamed, you may not see red
flags that point to potential improvements in delivery performance. By using addi-
tional measures in conjunction with velocity, you can expose problems that otherwise
may be hidden.

CORRECTIVE ACTION

Metrics don’t tell you exactly what to do to correct problems; they only raise a flag to
call your attention to situations where reality is diverging from expectations. The team
can create an opportunity to see delivery problems by tracking their true velocity
instead of playing games to make the velocity chart look normal. They can craft
proper user stories, even if the stories can’t be completed in the span of a single itera-
tion, as per the general definition of a time-boxed iterative process model. They can
size user stories according to their honest sense of relative size, rather than adjust
points to make the velocity chart look good. Then they can let the numbers fall where
they may so that delivery problems become visible. At that point, it becomes a root-
cause analysis.

 Let’s say the team in this example allows velocity to reflect reality, and they identify
specific changes they can make that will improve delivery performance. As the team
makes progress with corrective actions, the metrics start shaping up, as shown in fig-
ure 4.4.

 The immediate effect is that velocity drops dramatically. If velocity has been shared
outside the team, then stakeholders will be interested to know why this is happening.
Fortunately, it’s easy to explain. Stakeholders are unlikely to be happy just because the
velocity chart looked good; they have been the direct recipients of poor delivery. The
previous trend in velocity was false, and now you intend to address the root causes of
poor delivery performance. Stakeholders ought to take this as good news.

 Initially, there’s no improvement in the other metrics. At this early stage, there will
be a temptation to abandon the improvement initiative and return to the old practice
of gaming velocity. The other metrics haven’t changed because the team hasn’t done
anything to improve delivery performance. All they’ve done is make their true velocity
visible for the first time. If they want to see their velocity stabilize for the right reasons,
then they must find and address the root causes of poor delivery performance.
Licensed to Mark Watson <nordickan@gmail.com>

120 CHAPTER 4 Putting the metrics to work
Figure 4.4 Metrics showing improvement in delivery performance
Licensed to Mark Watson <nordickan@gmail.com>

121Pattern 3: Linear workflow packaged in time-boxed iterations
 This example shows how the metrics change once the team begins to address root
causes. The trend in velocity changes. It begins at the true level, which is much worse
than was reported previously, and climbs to reflect the team’s true norm once they
begin to make improvements. The team’s actual norm is lower than their previous
false reading, but this isn’t a bad thing because it represents true performance. Plan-
ning predictability will improve.

 Both RTF and EBV begin to show steady growth instead of remaining flat for several
iterations at a time. Toward the end of the sample period, EBV is showing the leftmost
end of an S-curve shape, which indicates delivery of business value as per expectations
for this sort of delivery process.

 The most positive indicator is that throughput has stabilized. The team has dem-
onstrated reliable delivery of three features per release for a span of three consecutive
releases. Predictability correlates positively with stakeholder satisfaction. This
improvement is likely to have a domino effect that the team will appreciate, leading to
increased trust on the part of stakeholders and, based on that trust, increased auton-
omy for the team.

4.3 Pattern 3: Linear workflow packaged in
time-boxed iterations
Basic iterative processes don’t require any particular work to be completed within the
span of a single iteration. Nor do they require each iteration to be the same length.
The process can be structured in any way that makes sense in the local context. The
process may be structured such that something usable is delivered in each iteration.
Alternatively, one iteration can be dedicated to gathering requirements, the next to
system design, the next two or three to building the code, the next to testing, and the
next to deployment.

 Time-boxed iterative processes like the ones that have gained popularity since the
early 2000s are a bit more rigorous. They call for production-ready solution incre-
ments to be delivered in each iteration, and for the iterations to be the same length.
Often, companies adopt a time-boxed iterative process model while retaining tradi-
tional assumptions about process structure. When they use a metric that depends on
the time-boxed iterative model, like velocity, they find that the metric doesn’t quite fit
their process.

 Consider the case when a linear process is chopped into iterations. There’s no
harm in using a basic iterative model this way, although there’s no benefit, either. But
when the organization believes it’s using a time-boxed process, this approach is point-
less, because there’s no way to deliver production-ready solution increments in each
iteration when following a linear development process.
Licensed to Mark Watson <nordickan@gmail.com>

122 CHAPTER 4 Putting the metrics to work

In the example, a linear process is divided into time-boxed iterations. The linear pro-
cess comprises a Requirements iteration, a Design iteration, three Code iterations, a
Test iteration, and a Harden & Deploy iteration. After three repetitions of those itera-
tions, software is released to production. Because velocity only counts for completed
work items, no story points are earned until a release occurs. If velocity is tracked cor-
rectly in this case, it should look something like figure 4.5.

 This is an obvious divergence from the time-boxed iterative process model, which
calls for the delivery of a production-ready solution increment in each iteration. You
may wonder why anyone would consider this sort of pattern acceptable. Human
nature leads us to accept the status quo as normal. We tend not to see whatever usually
happens as a problem. We sometimes assume that whatever usually happens is
inevitable. Teams that fall into that mindset can look at a velocity chart like the one in
figure 4.5 and see nothing wrong.

Why use time-boxed iterations with a linear process?
If there’s no benefit in using time-boxed iterations with a linear process, why do orga-
nizations do it? In the past 15 years, many organizations have adopted time-boxed
iterative processes for software delivery. Results have been mixed, for a variety of
reasons. The success stories are compelling, and organizations that wish to improve
software delivery performance are eager to try methods that seem promising. They
tend to get excited about the success stories while overlooking the lessons to be
learned from other attempts.

The typical anti-pattern is that organizations create the outward appearance of a time-
boxed iterative process without making the deeper changes necessary to realize
value from it. They establish collaborative team work spaces; decorate the walls with
tactile workflow-visualization tools, colorful posters, and upbeat slogans; divide the
calendar into ostensible iterations; dutifully perform the ceremonies called for by
their selected methodology; and adopt metrics that apply to time-boxed iterative pro-
cesses, of which velocity is the most popular and the most widely abused.

Meanwhile, the organization forms teams around technical assets instead of along
value streams; it retains job descriptions aligned with traditional functional silos; it
measures performance by focusing on utilization instead of throughput; it appraises
employee performance on an individual basis, in effect pitting team members against
one another; it assumes software can only be developed by following a predefined
series of steps in sequence; it invests heavily in up-front analysis and design to
define a fixed scope, schedule, and budget for each project; it neglects to adopt tech-
nical practices that enable incremental delivery; and it treats the entire improvement
initiative as strictly an IT matter, failing to engage business stakeholders. Then the
organization wonders why the expected benefits of time-boxed iterative development
don’t materialize.

"We tried that. It didn’t work."
Licensed to Mark Watson <nordickan@gmail.com>

123Pattern 3: Linear workflow packaged in time-boxed iterations
When people do see something wrong, their response isn’t necessarily to investigate
and correct the root causes. Often, teams deal with this pattern by softening the defi-
nition of a user story so that they can claim credit for completing each step in the lin-
ear process. They create requirements stories, design stories, test stories, and so forth.
Of course, none of these represents a vertical slice of functionality that can be tested
and demonstrated; the team hasn’t fixed the root cause of the problem. They’ve
merely made the problem harder to see. Figure 4.6 shows such a velocity chart.

Figure 4.5 Velocity chart for a linear process carried through a series of iterations

Figure 4.6 Velocity chart that treats each step in a linear process as a complete user story
Licensed to Mark Watson <nordickan@gmail.com>

124 CHAPTER 4 Putting the metrics to work
You can make the problem more visible by tracking cycle time and lead time in addi-
tion to velocity. There’s no need to chart the cycle time in this case, because it will be
equal to the time required to prepare a production-ready solution increment. In this
example, that means seven iterations. If you assume the iterations are two weeks long,
and you assume 40-hour weeks with no holidays or other variations, then the cycle
time for every user story is 560 hours. The team releases after every three sets of seven
iterations. Thus the lead time, also known as time-to-market or concept-to-cash time, is 42
weeks. When you add in holidays, sick days, interruptions such as production support
issues, the impact of employee turnover, and other real-world factors, it becomes clear
that this process can deliver a solution about once a year. That is a far cry from the
expectations management and stakeholders probably had when they decided to adopt
a time-boxed linear process.

 The apparently stable velocity may cause teams to feel complacent about delivery
performance. When you also consider cycle time and lead time, it becomes clear that
velocity isn’t telling you the whole story. By exposing these issues through appropriate
metrics, you can provide information to support recommendations for positive
change.

CORRECTIVE ACTION

This pattern may result from any number of different factors, and from the interac-
tion of multiple organizational forces and team practices. A detailed treatment of pos-
sible root causes is beyond the scope of this book. Metrics generally can’t tell us the
root cause of a problem. Indeed, metrics don’t even tell us whether a situation is a
problem at all. Metrics can raise a flag when something isn’t happening according to
expectations. The action we take, if any, depends on our context and goals.

4.4 Pattern 4: Erratic velocity but stable delivery
This pattern is the reverse of pattern 2. Rather than stable velocity combined with
poor delivery, you see erratic velocity combined with stable delivery. Let’s say velocity
and the release-level burn chart look like figure 4.7.

 The burn chart indicates the team is delivering software at a fairly steady rate. As is
often the case, this team has a target velocity (yes, that’s an error, but it’s a common
situation), and their actual performance is close to the ideal. It would be easy to
accept the status quo and keep moving, possibly with a slight schedule slippage toward
the end. Most organizations do just that, project after project.

 The failure to align with the ideal trend line is neither good nor bad; the ideal line
is useful only as a conversation starter with stakeholders. Velocity is a trailing indicator
only and an empirical measure only. It can never function as a target.

 People who are inexperienced with lightweight, adaptive methods may make the
wrong assumptions based on the release burn chart. It appears as if the team is per-
forming below expectations, if you take the ideal trend line to represent expected
delivery performance. You might assume that you need to hire or reassign people to
join the team, so that the team can keep up with the workload. This can be a dangerous
Licensed to Mark Watson <nordickan@gmail.com>

125Pattern 4: Erratic velocity but stable delivery
assumption for a couple of reasons. First, the ideal trend line is only a discussion point,
not an expectation based on any sort of analysis of the team’s delivery capacity. Second,
several other common issues are more likely to cause erratic velocity. It could be worse
to try to solve a problem you don’t have than to leave things as they are.

 The variation in velocity is a red flag. It suggests the team may be struggling on
some level. Anything might be happening at ground level. Is the team using technical
practices that cause technical debt to accumulate in the code base? Is the team over-
loaded with work? Is the team’s morale in decline? Are there external dependencies
that cause the team to put work items on hold while they wait for turnaround from
other teams or external suppliers? Each potential cause of erratic velocity calls for dif-
ferent corrective action. You need to find out exactly what’s happening before you can
decide on a course of action.

 Let’s take a closer look at how the work is flowing in each iteration. Figure 4.8
shows the daily iteration burn charts for the first four iterations.

 The closer view of the workflow shows that the team doesn’t complete many work
items until late in each iteration. At that point, they rush to complete as much of the

Figure 4.7 Velocity and release burn
Licensed to Mark Watson <nordickan@gmail.com>

126 CHAPTER 4 Putting the metrics to work
planned work as possible before the time box expires. The metrics have done their
job; you now have a starting point for root-cause analysis.

 A variety of causes can lead to this delivery pattern. Following are some examples.

Figure 4.8 Daily burndowns for iterations 1–4
Licensed to Mark Watson <nordickan@gmail.com>

127Pattern 4: Erratic velocity but stable delivery
ORGANIZATIONAL STRUCTURE

Teams may be organized around technical assets rather than aligned with value streams
or product lines. When this is the case, any single piece of work has to be touched by sev-
eral teams before it can be completed—a database team, an architecture team, a UX
team, a security team, a test-data provisioning team, and so on. Each work item comes
to a halt at every point in the development process when the team has an external
dependency. The root cause (organizational structure) may be outside the team’s
direct control, but they can use metrics to raise awareness of the problem with manage-
ment. In the meantime, the team can negotiate service-level agreements (SLAs) with
other teams on which they have dependencies, to help them plan their work in a pre-
dictable way.

FLOW MANAGEMENT

The team may be in the habit of starting every planned work item on the first day of
each iteration and then juggling many active tasks simultaneously. In Lean terms, the
work that’s been started but not yet finished is called work-in-process inventory. When
WIP is high, the rate of delivery slows because the team repeatedly experiences
context-switching events as they juggle many work items. For this reason, WIP inven-
tory is one of the basic forms of waste in Lean thinking. The team can manage WIP
without anyone else’s permission or assistance.

BATCH-ORIENTED THINKING

High WIP is sometimes a consequence of batch-oriented thinking. The basic time-
boxed iterative model calls for delivery of a planned set of user stories in each itera-
tion. It doesn’t explicitly call for continuous delivery throughout the iteration. Many
people tend to assume that this means delivering everything on the last day of the
iteration is fine. It’s useful to remember that time-boxed processes were designed as
an improvement over linear and basic iterative processes. Linear processes are no
longer the norm in software development organizations, and it’s appropriate for you
to look for improvements beyond the time-boxed model. Continuous delivery has
already become a competitive edge for software organizations, and it’s on its way
to becoming an expected baseline. Even without thinking ahead to a continuous-
delivery model, it’s clear that waiting until the end of the iteration to finish the work
has not enabled the team to meet delivery expectations, per the burn chart.

FUNCTIONAL SILOS

Many organizations form cross-functional teams when they first embrace lightweight
methods, but don’t change their assumption that software development has to be per-
formed by functional specialists. Often, the result is a series of hand-offs within each
time-boxed iteration. Functional specialists complete their part of the work and pass
an interim artifact (typically, documentation) to the next functional specialist in line.
The hockey-stick pattern can result when a business analyst performs analysis of all the
user stories in plan during the first couple of days of the iteration, then a programmer
writes the code, then a tester tests the code, and so forth. No user story can be deemed
Licensed to Mark Watson <nordickan@gmail.com>

128 CHAPTER 4 Putting the metrics to work
complete until the key stakeholder accepts delivery of functional, tested software. This
can only occur at the end of the iteration, because it takes several days for a work item
to pass through the entire series of hand-offs. The team can correct this problem by
changing the way functional specialists interact in the course of completing the work.
They can support their own efforts in this area by limiting WIP, as well. When team
members with different specialties collaborate directly on one or two items at a time,
the team as a whole can complete more work items in the course of an iteration.

TECHNICAL PRACTICES

The team may be able to adjust technical practices in ways that reduce the friction in
getting the work done. For example, requirements may be written in such a way that
programmers and testers must parse them and tease out the details. Typically, they
don’t understand the requirements in the same way that business analysts intended,
and a certain amount of delay and rework ensues.

 When requirements include specific, concrete, testable sample scenarios, then all
team members have a good chance of reaching a shared understanding. Similarly,
when programmers are working from testable examples, they can ensure that their
code causes all the sample scenarios to pass. With those practices in place, testers can
spend proportionally more time on value-add exploratory testing than on routine,
repetitive validation or checking.

 Simple things like using a common domain language throughout all project arti-
facts, following generally accepted software development principles, driving code
directly from automated test cases, and close collaboration within and between func-
tional specialties go a long way toward keeping the work flowing smoothly and avoid-
ing misunderstandings. This helps the team get all the way to done without
unpleasant surprises toward the end of the process.

 Programmers can help keep the code base clean as they make modifications, by
refactoring the code incrementally as they work rather than allowing design debt to
accumulate. This prevents the code from becoming unmanageable over time and
helps the team move work items through the delivery process smoothly.

HABITS

Through experience, we all adopt habits in carrying out our work. When you have a
habitual way of doing routine tasks, you don’t need to think consciously about every
detail. You can focus your conscious thinking on challenging problems and let the
routine tasks fall into place naturally. Sometimes, the habits you develop slow the
workflow. Because you don’t consciously analyze your habits, you may not notice when
this happens. Following are a couple of examples I notice frequently in my work with
software development teams.

 There’s a tendency for people to struggle through problems on their own for some
time before asking for help. It’s not unusual for a team member to spend several days
silently struggling with a problem. In most such cases, a second person could have
cleared the mental logjam in a matter of seconds, if only the first person had asked for
Licensed to Mark Watson <nordickan@gmail.com>

129Summary
help. Replacing the habit of silent suffering with the habit of routine collaboration
can have a significant positive effect on flow.

 There’s a tendency for people to assume they must get everything right on the first
try. They spend considerable time reading, analyzing, and pondering before they ever
dare lay hands on the keyboard. The truth is, you must get things right on the last try,
not the first. When it comes to tool configuration or software design issues, it’s almost
always faster to find a solution through experimentation than it is to study the prob-
lem abstractly to the point that you’ll solve it on the first attempt. Software isn’t physi-
cal, so it’s pretty cheap to throw it away and rewrite it in a different way.

4.5 Summary
In this chapter, you’ve seen how you can use metrics in combination to highlight
opportunities for process improvement. You can combine process-related metrics,
technical metrics, and human-factor metrics to obtain a clearer picture of the situa-
tion than you could hope to get by using a single metric in isolation.

 The focus of process improvement is on maximizing throughput and on keeping
the work flowing smoothly, without starts and stops or large variations in cycle time.
Anything that causes delay, rework, or excessive accumulation of WIP inventory will
reduce throughput and increase cycle time. You’ve also seen that irregular delivery,
too much time spent on defect resolution, and stakeholder dissatisfaction can cause
teams to disengage and stop caring about what they’re doing. That has a detrimental
effect on delivery performance and product quality.

 Metrics can’t tell you the exact root causes of delivery problems. Metrics can high-
light time sinks where teams aren’t adding customer-defined value to the product.
This lets you know where to focus your root-cause analysis efforts to be sure you’re
addressing the right areas of the process. By examining the effect of WIP limits on a
process, you’ve learned the good news that in most cases you can use a single lever to
improve delivery performance: limiting WIP.

 One final point about using metrics for process improvement as opposed to using
them to track progress: the metrics you use to track progress remain in place through-
out the project, whereas the metrics you use to inform process-improvement efforts
are temporary. Once a tactical improvement goal has been achieved, you stop tracking
the metrics you used to support that process improvement.
Licensed to Mark Watson <nordickan@gmail.com>

Planning predictability
In this chapter, you’ll see how metrics can support planning predictability. Predict-
able planning is critically important in software development and support regard-
less of the approach, process model, or delivery mode. When estimates and
forecasts are informed by empirical data, they provide a more reliable indication of
near-term future delivery performance than when they’re based on individuals’
subjective assessment.

 In the early days of lightweight processes, people sometimes referred to tradi-
tional methods as plan-based, as distinct from adaptive. I think this is a misnomer,
because all work is based on a plan, including adaptive development. The differ-
ences between traditional and adaptive methods have to do with when the plan-
ning is done and to what level of detail the plan must be elaborated before
development work can begin.

This chapter covers
 The importance of predictability for short-term

planning

 Using metrics to support predictable planning

 Common errors in the use of estimation for short-
term planning

 Effects of high WIP levels on planning predictability
130

Licensed to Mark Watson <nordickan@gmail.com>

131Predictability and stakeholder satisfaction
 For both approaches, it’s important that actual progress align with expectations
within some reasonable margin, a quality of planning known as predictability. When
planning is predictable, you can be reasonably confident that you won’t overshoot
your not-to-exceed spending limit or miss a business opportunity by delivering too
late. Lacking predictability, it becomes a matter of blind luck whether the outcome
results in any value to stakeholders. Metrics can help both traditional and adaptive
development approaches achieve greater predictability in planning.

5.1 Predictability and stakeholder satisfaction
One of the key benefits of tracking planning predictability is that it can enhance stake-
holder satisfaction. In many organizations, delivery teams overcommit in an attempt
to please stakeholders, and then they’re unable to deliver as much as they promised.
Stakeholders respond by demanding that the teams work faster. What they really want
is predictability. The stakeholders need to be able to count on receiving whatever the
teams claim they can deliver.

 When stakeholders know they can count on receiving more or less what they’re
told to expect, they feel confident in the delivery organization and offer greater trust
and autonomy to development teams. Whether delivery is faster isn’t as important,
provided expectations are set realistically. That confidence is usually repaid with
smoother delivery and higher quality, because the teams don’t need to use as much of
their time preparing status reports and explaining why they failed to meet their
commitments.

 I’m not aware of any formal academic studies that correlate planning predictability
with stakeholder satisfaction, but field experience suggests that they’re strongly corre-
lated. At several clients, I have tracked planning predictability and gauged stakeholder
satisfaction through surveys or simple requests for them to self-rate their level of satis-
faction on a 10-point scale. In all cases, stakeholder satisfaction was high when plan-
ning predictability was also high. When planning predictability was low, stakeholders
tended to feel stressed and to lack trust in the development organization. They often
responded by trying to control development directly. That generally leads to poorer
delivery performance, which leads to lower trust, and so on. High planning predict-
ability is to everyone’s benefit.

5.1.1 Planning and traditional methods

With traditional development methods, planning occurs in large chunks. The basic
approach entails a planning phase at the beginning of a project when risk-mitigation
strategies are spelled out, requirements are elaborated in detail, dependencies are
identified, work packages are defined, staffing levels are established, and fiduciary
management plans are laid out. This is followed by a proportionally longer period of
development during which teams execute the plan.

 Lessons are always learned along the way, and the simplest pattern of planning and
execution rarely plays out in reality. More often, the plan has to be adjusted or even
Licensed to Mark Watson <nordickan@gmail.com>

132 CHAPTER 5 Planning predictability
significantly changed or re-baselined. This often requires changes in funding. The
process to request additional funds may be cumbersome and time-consuming, and it
may involve uncomfortable conversations about the reasons the original budget
wasn’t sufficient. This is largely due to the fact that traditional methods generally
include long budget cycles and a big-budget-up-front approach to funding. Com-
pounding the challenges, there’s usually a belief that all design details, risks, and
dependencies can be identified in advance, and that when this isn’t the case it must be
due to human error during the planning phase. To adjust funding after the initial
budget has been allocated can require a major, top-down decision with significant
political implications.

5.1.2 Planning and adaptive methods

With adaptive development methods, planning occurs throughout the delivery pro-
cess. The general planning strategy is to identify risks early and otherwise defer deci-
sions until close to the time when they must be made. You save the details about a
feature until you’re getting close to the time when you’ll implement it. I’ve heard this
approach called rolling-wave planning, multiple planning horizons, or funnel planning.
There are probably many names for the same idea. One of the hallmarks of an adap-
tive approach is the use of an incremental funding model in which funds are kept liq-
uid as long as possible so that they can be shifted (within limits) without requiring
cumbersome procedures or the direct involvement of top management in every tacti-
cal decision.

 A critical success factor for this approach is that the numerous short-term plans are
reliable. Whether planning is based on forecasting, estimation, or something else, if
delivery performance is unpredictable, then the plans will be unreliable. Metrics can
help you understand whether actual delivery performance is reasonably consistent
with expected delivery performance.

5.2 Measuring predictability
When stakeholders feel confident that they will receive what they were promised, life
is better for everyone. Low predictability leads to stakeholder stress, stakeholder stress
leads to micromanagement, micromanagement causes teams to feel they aren’t being
treated as professionals, and that feeling leads to disengagement and careless work.
It’s a vicious circle.

 High predictability leads to trust; trust leads to autonomy for development teams,
and autonomy leads to team member engagement, focus, and commitment. Metrics
can help you understand how predictable your plans are and can point to potential
improvements in predictability.

5.2.1 Estimation

Estimation is a process by which you try to get a sense of what is likely to happen in the
future. You can use estimation to set expectations for delivery performance. When
Licensed to Mark Watson <nordickan@gmail.com>

133Measuring predictability
actual delivery performance is reasonably close to expectations, your plans are reli-
able. Otherwise, you can’t predict how the work is likely to proceed, and you increase
the risks of cost overruns and late delivery.

 This isn’t a book about estimation techniques, but it may be helpful to touch on a
few general points to show how metrics can help you improve planning predictability.
I’ll start with a statement that may be provocative: estimates are informed guesses.
People who make a living by using formal estimation methods don’t like it when I say
that, but when you’re thinking about events that haven’t yet occurred, an element of
guesswork is involved. The ability to make an informed guess is a skill that can take
years to master, and quite a few formal and informal methods have been devised to
help you do it. Professional estimators prefer the word know, as in, “We need to know
the cost up front.” Of course, you can’t know the future, in the plain sense of the Eng-
lish word. If you could, you wouldn’t need to work for a living—you could predict
which stocks to buy and where to live in order to avoid upcoming natural and man-
made disasters. It’s useful to keep in mind that your estimates are guesses, lest you for-
get that they’re only approximations and come to depend on them too heavily for
your own good. So, guess isn’t a bad word; it’s a healthy spoonful of sanity—a useful
reminder of your natural limitations.

 If estimates are informed guesses, then what, exactly, informs them? Generally, two
types of input: information about past events, and peoples’ subjective or gut-feel sense
of what can be done. Through a combination of well-known statistical analysis tech-
niques (amply described elsewhere) applied to historical data and an honest effort to
avoid cognitive biases with respect to your interpretation of the data, you can arrive at
reasonably good guesses about the future, provided you limit your predictions to a
well-defined domain and a limited time frame.

 Estimates that probe deeply into the future are valid at a high level of abstraction
only. Estimates that deal with the near-term future can be more detailed. For example,
you can’t be confident about which task in a work breakdown structure (WBS) will be
worked on on a given date two years from now, but you can be pretty confident about
which tasks will be worked on next week.

 One area of apparent confusion for IT practitioners is the fact that estimation is
performed at different levels of detail for different purposes and at different times
during a software development initiative. Debates among IT practitioners about esti-
mation techniques tend to mix all kinds of estimation together, as if they were all the
same. They aren’t. It’s perfectly okay to use different approaches to answer different
kinds of questions.

 The first critical decision to be made about a software development initiative is
whether to do it at all. The drivers are different by domain: for-profit businesses need
assurance that they will obtain a return on their investment; nonprofit organizations
want to focus their limited resources on projects that promise to benefit the people
they’re chartered to help; and governments may have public service, political, or mili-
tary objectives that supersede concerns about financial return. Estimates based on the
Licensed to Mark Watson <nordickan@gmail.com>

134 CHAPTER 5 Planning predictability
way similar projects played out in the past can be useful to support a go/no-go deci-
sion about a proposed new project.

 Once a development initiative is underway, the scope and nature of estimation
change. At that stage, you’re interested in steering the work toward a goal. For this
sort of estimation, you can depend more on forecasting based on empirical observa-
tion of delivery performance. In some cases, it’s feasible to dispense with estimation
altogether and complete the work items in plan one by one. The right conditions have
to be present to enable this approach; it’s generally appropriate for small-scale initia-
tives involving a single, autonomous development team.

 In all these cases, metrics can help you provide estimates that support planning
predictability. For the purpose of this book, we’re more interested in the latter case:
steering the work once development has started.

5.2.2 Forecasting

Forecasting is an approach to estimation in which you set the expectation for near-term
future performance by using recent past performance as a general indicator of how
things are likely to proceed. It’s an empirical (by observation) approach to estimation,
rather than an analytical approach based on statistical methods.

 When using a traditional approach, it’s useful to compare observations of delivery
of whatever artifacts are planned in each phase of development with the project plan.
You saw this sort of measurement in chapter 2, when you compared the percentage of
scope complete to date against the planned scope to date. Based on the observed rate
of delivery, you can forecast the likely rate of delivery of the remaining deliverables in
that phase. This can provide early warning of cost or schedule variance. I find cycle
time the most practical metric to use for this purpose.

 When using an adaptive approach with incremental delivery, you can forecast
either the amount of time a team will need to complete a given scope or the amount
of scope the team is likely to complete in a given time.

Pitfalls in estimation
I frequently observe four problems with the way people do estimation:

 Assuming that estimation means floating a guess as to how long it will take to
complete a given piece of work—Based on previous experience and quickly
reasoning through the steps they expect to follow in completing the task, peo-
ple toss out a number. This sort of gut-feel estimation may be necessary in
the early stages of the work, before you have any observations of actual deliv-
ery performance on which to base forecasts; but when people rely on this
method all the time, it can lead to a focus on improving the estimates rather
than on delivering value.

 Performing bottom-up estimation—People ask team members to estimate
fine-grained tasks, and then they sum the estimates to arrive at an estimate
for a whole release or even for the entire project. The natural estimation error
Licensed to Mark Watson <nordickan@gmail.com>

135Measuring predictability

5.2.3 Predictability of traditional plans

Because traditional methods involve working for an extended time from a compre-
hensive plan, it’s relatively easy to see whether the plan is predictable. You can use the
same metrics you use to track general progress. When progress trends away from the
plan, it indicates that the plan wasn’t predictable.

 Figure 5.1 repeats a figure from chapter 2 that shows the percentage of planned
work packages that have been delivered as of the reporting date. A certain amount of
variance may be expected, depending on the details of the project. When the variance
exceeds that margin, it indicates that the project won’t be completed as planned
unless you take corrective action.

 When this metric was introduced in chapter 2, the purpose was to track progress
toward project goals. Here, you’re using the same metric to gauge the predictability of
the project plan. When stakeholders see that the work is on track, they’ll feel confi-
dent in the team and allow them to work without interference. When stakeholders see
that the plan is at risk, they’ll tend to micromanage the work, which usually makes
things worse. It’s in everyone’s interest to monitor the predictability of the plan and
detect any problems as early as possible. In the best case, team members detect vari-
ance before stakeholders do and take corrective action on their own, to avoid the
downward spiral of micromanagement.

in each guess accumulates, rendering the final estimate all but meaningless.
A top-down estimate based on historical delivery performance in projects of
similar scope provides a better starting point.

 Trying to achieve planning predictability by comparing estimated completion
times with actual completion times—This approach tends to encourage gam-
ing the estimates to avoid punishment for incorrect guesses. Actual delivery
remains out of sync with expectations, and the root causes aren’t obvious
because the gamed estimates hide the truth about what’s happening.

 Using estimates made by people other than those who carry out the work—On
some teams, a person in a technical leadership role estimates the tasks for
the team. The individuals who will perform the work aren’t consulted. Differ-
ent individuals may require different amounts of time to complete similar
tasks, and every individual requires a different amount of time than the per-
son who made the estimates. Estimates arrived at in this manner are unlikely
to be meaningful.

When no empirical data is available on which to base forecasts, you may have to rely
on gut-feel guesses temporarily. You need to move away from guesswork and start
to use more robust estimation methods as soon as you have enough observations
to do so.
Licensed to Mark Watson <nordickan@gmail.com>

136 CHAPTER 5 Planning predictability
5.2.4 Predictability of adaptive plans

With adaptive development methods, planning occurs frequently throughout the
project. Stakeholders monitor the results obtained in the smallest planning time
frames to see how closely outcomes align with expectations. Depending on the pro-
cess model and methodology in use, the smallest planning time frame might be called
an iteration, a sprint, a cadence, or some other name, and it may represent a fixed or
variable time period ranging from about one week to about three months. It’s the
time period for which development teams make their final refinement of the work
queue or backlog prior to executing work items.

 There are two general approaches to tracking planning predictability with adap-
tive methods. First, you can compare the amount of work you expected to deliver with
the amount of work you actually delivered. Second, you can forecast short-term deliv-
ery performance based on empirical observation of recent past performance.

PERCENTAGE OF PLANNED WORK COMPLETED

Consider a team that uses a time-boxed iterative process model and measures delivery
performance using velocity. If the team plans to complete 20 story points of work in a
given iteration and actually delivers 18 story points of work, then they’ve delivered
90% of the planned work. If the organization regards, say, 15% variance to be normal,
then this team’s planning will be considered predictable.

 Software developers are well known as optimists. When asked to estimate how long
it will take them to complete a piece of work (or to size a user story in terms of points),
they tend to underestimate. From quite a few years of work as a software developer, my
observation is that there are a couple of reasons for this optimism. First, software devel-
opers tend to assume they won’t encounter any unexpected obstacles in completing
the work. They visualize the general path to success, and they feel ready to proceed.

Figure 5.1 Work packages complete to date compared to plan
Licensed to Mark Watson <nordickan@gmail.com>

137Measuring predictability
Second, software developers enjoy a challenge and usually want to push the edge of the
envelope in their own job performance.

 You want to take the tendency toward optimism into account for purposes of short-
term planning. If you know a development team consistently underestimates by a cer-
tain amount, then you can achieve predictable planning by adjusting your expecta-
tions accordingly. For example, consider a team that consistently predicts they will
deliver 28 story points of work per iteration and that historically has delivered around
20 points per iteration. When they predict delivery of 28 points, you plan on receiving
20 points, and you set stakeholder expectations accordingly.

 The metric is compelling because of its simplicity and because it feels comfortable
to people who are accustomed to comparing estimates with actuals. It’s widely used,
because it’s recommended by popular process frameworks that aim to extend agile
methods to enterprise scale.

 The chart in figure 5.2 shows a team’s planning predictability over several itera-
tions. On the surface this all seems reasonable enough, and I’ve seen it work as
intended in one case. Due to that single positive example, I can’t say categorically that
it’s always a bad idea. Let’s just say it’s usually a bad idea.

 The pitfall lies with unintended motivational effects. As with any measurement
that compares estimates with actuals, there’s a risk that people will game the numbers
to avoid negative performance appraisals. Furthermore, the basis of the calculation is
velocity, a measure that is itself subject to gaming. Given a work environment where
people feel it’s risky to expose delivery problems, this metric is unlikely to provide

Figure 5.2 Proportion of commitment achieved
Licensed to Mark Watson <nordickan@gmail.com>

138 CHAPTER 5 Planning predictability
accurate information about planning predictability. Organizations often adopt this
metric as part of a major restructuring and process change, which only exacerbates
fears of negative consequences on the part of technical staff.

 Another subtlety of human behavior comes into play whenever you express com-
parisons as percentages: people naturally want to see any percentage measurement
come out as 100%. They will tend to game the numbers to cause their predictions to
appear to be 100% correct. It isn’t because people wish to cheat, but rather because
they want positive things to be 100% positive.

 Normally, teams do one or both of two things: they game their story sizes so that
they’ll achieve the number of story points they wish to see, or they adjust their com-
mitments based on recent short-term variations in their performance. In this exam-
ple, in the wake of an unusually productive iteration 3, the team confidently assumed
they could continue the upward trend. When iteration 4 came in below expectations,
they adjusted their plans for iteration 5 downward. These were merely reactions to sin-
gle data points, not predictable planning.

 I generally recommend that teams use empirically based forecasting to ensure pre-
dictable planning, rather than track percentage of commitment achieved or rely on
subjective estimation. It’s possible you’ll be required to use a comparative metric in
your organization, so you need to understand how it works. Just be aware of the poten-
tial motivational effects, and be prepared to deal with them.

FORECASTING

Forecasting avoids the behavioral problems inherent in comparing estimates with
actuals. With forecasting, you don’t depend on estimates. You observe the team’s past
performance and extend it into the future. It makes no difference whether team
members are optimistic or fearful or hungry for a challenge or anything else. All that
matters is their actual delivery performance in the recent past.

 Success factors are as follows:

 Consider recent performance in the past three or four contiguous iterations.
Don’t go back too far into the past, because every team’s performance changes
over time.

 Limit future projections to the short term. The further into the future you look,
the less accurate your forecasts will be.

 Take into account temporary variations in the team’s delivery capacity, such as
planned company events, planned vacations, and so forth.

This approach is sometimes called yesterday’s weather. The idea is that today’s weather is
likely to be similar to yesterday’s weather.

 Forecasts can be based on any reliable, empirical measure of delivery perfor-
mance. In practice, this boils down to two metrics: velocity and cycle time. Velocity can
be used with a time-boxed iterative process. Cycle time can be used with any process.
Licensed to Mark Watson <nordickan@gmail.com>

139Measuring predictability
FORECASTING BASED ON VELOCITY

When a time-boxed iterative process model is used properly and velocity isn’t gamed,
velocity provides an empirical measure of the team’s delivery capacity. You can use
velocity from recent iterations to forecast the likely velocity in the next iteration or two.

 To understand how forecasting provides better predictability than comparing esti-
mates with actuals, let’s consider a team that’s using a time-boxed iterative process
model and needs to plan the approximate amount of work they will be able to deliver
in the upcoming iteration. In the spreadsheet accompanying the book, the data is
shown in the sheet named Velocity for Forecasting.

 In this scenario, the team plans their work for the next iteration by making a com-
mitment to deliver some amount of work. They’re keen to improve their perfor-
mance, so they set an optimistic target as inspiration. In addition, stakeholders are
interested in receiving as much software as possible in each iteration. Time after
time, the team plans to deliver more results than is realistic based on their perfor-
mance to date. Stakeholders continue to ask for more, because they want to make up
for lost time. The team agrees to deliver more, because they want to catch up. Yet
however earnestly the interested parties wish for more, the team can only deliver
what it can deliver.

 Figure 5.3 shows how the scenario might play out over the course of 12 iterations.
The team repeatedly commits to delivering 30 story points of work per iteration,
despite never having done so. They feel as if they’re close to the mark and that if they
just try a little harder next time, they’re sure to reach the goal. From the stakeholders’
perspective, the team doesn’t appear to be trying to do better—it only appears that

Figure 5.3 Planning based on stretch goals
Licensed to Mark Watson <nordickan@gmail.com>

140 CHAPTER 5 Planning predictability
they over-promise and under-deliver. The stakeholders increase delivery pressure on
the team in hopes they can speed up. The team assures the stakeholders that they can,
indeed, speed up. The stakeholders are dissatisfied.

 Notice that there’s a fairly high degree of subjectivity in these plans. When the
team experiences a better-than-average iteration, they take it as a sign that they’re on
the verge of a performance breakthrough, and they plan accordingly. When they
experience a below-average iteration, they assume it represents a downward change in
their delivery capacity, and they reduce their stretch goal accordingly. This sort of vac-
illation reduces planning predictability.

 In this example, the team’s short-term planning predictability is 68.8%. If you
assume the organization regards variance of 85% to be acceptable, then this team isn’t
performing at an acceptable level.

 Forecasting differs from this approach in that no one asks how much work the
team believes or wishes it can deliver. They look only at the team’s demonstrated deliv-
ery performance. Let’s examine the same 12 iterations by the same team and see how
their planning predictability would play out if they used yesterday’s weather to fore-
cast delivery performance; see figure 5.4.

 In this scenario, the team lets the chips fall where they may in the first couple of
iterations. They could have floated a guess as to how many story points they could
deliver; but ultimately it would make no difference, because beginning with iteration
4, they use a calculated value as their forecast. They use a sliding window of three
iterations to calculate their likely delivery performance in the next iteration.

 In the spreadsheet, you can see that this approach results in planning predictability
of 89.9%. This is within the organization’s acceptable variance, so the team is deemed
to be performing well. Yet the performance is exactly the same as in the previous exam-
ple. The only difference is in the expectations the team sets with stakeholders.

Figure 5.4 Planning using yesterday’s weather
Licensed to Mark Watson <nordickan@gmail.com>

141Measuring predictability
Forecasting based on empirical observation of the team’s performance sets more
realistic expectations than stretch goals or subjective estimation methods.

FORECASTING BASED ON CYCLE TIME

When I introduced cycle time in chapter 2, I mentioned that it’s useful for predictable
planning. It provides an empirical measure of a team’s delivery performance. Cycle
time (CT) is more flexible than velocity for this purpose, because it has no dependen-
cies on the process model or delivery mode used.

 Although CT doesn’t require a time-boxed iterative process model, it’s useful to
define a fixed time period for collecting observations. Continuous-flow process frame-
works typically recommend fixed-length cadences for development work and for
releases. When you know your mean CT per month or per week or per iteration, then
you can use it to forecast your likely delivery performance in the next month, week, or
iteration.

 For the purpose of predictability, the key factor you’re interested in is the variation
in CT within one standard deviation of the mean. You typically ignore outliers beyond
this range for the purpose of short-term planning. Variation within this range is con-
sidered common-cause variation—that is, variation due to the system in which the work
takes place. In a software development and delivery process, the system comprises
organizational structure, standard procedures, process steps, and so forth. As long as
these factors don’t change much, your team’s delivery performance will remain con-
sistent. Variation beyond one standard deviation of the mean is usually caused by one-
time issues; it’s called special-cause variation. You don’t want to include special-cause
variation in your forecast, because it’s unpredictable and unlikely to recur.

 Figure 5.5 shows a CT plot for a team that has significant variation in CT for
its tasks. Keep in mind the difference between accuracy and precision. Because CT is
empirical, it will be accurate. But it can only be as precise as the variation allows. With
high variation, you have accuracy but not precision. Your confidence in the forecast is
high within the 1 SD range. In this example, that’s between about 5.5 and 38.5 hours
per task—a pretty wide range. High variability correlates with low predictability. The
longer the cadence, the less precise the forecast will be. If you’re working on a one-
month development cadence, your planning predictability will be lower than with a
two-week cadence.

 To improve flow as well as predictability, the team can reexamine its work practices
and management can reexamine organizational structure and standard procedures.
Let’s say your organization takes some of those steps. Regarding organizational struc-
ture, perhaps you align some of the value-producing teams and assets more closely
with the value stream and adjust team composition to include all necessary skills,
reducing the number of dependencies on groups outside the team to get tasks done.
Regarding process, perhaps you fold some of the governance reviews into the develop-
ment process so that they no longer require a separate approval step. Regarding
development practices, perhaps you soften the boundaries between specialists on the
team and encourage greater collaboration, reducing the number of hand-offs and
Licensed to Mark Watson <nordickan@gmail.com>

142 CHAPTER 5 Planning predictability
back-flows, and you adopt technical practices that build in quality from the outset,
reducing back-flows for defect correction.

 These improvements could have an impact on CT and on planning predictability,
as shown in figure 5.6. Now mean CT is 16.6 hours, with common-cause variation of
about 13.1 hours. This represents a substantial improvement. You’ve shortened the
mean CT and reduced variation considerably. There’s still variation, and there always

Figure 5.5 Percentage of planned work completed. The mean CT is 22 hours, but high variability
means you have low confidence in a forecast based on mean CT. CT varies between 1 and 62 hours.
Within 1 SD, the range is between 5.6 and 38.5 hours. A forecast based on 22 hours will be accurate
within a range of about 32.8 hours. That’s highly accurate but not precise. The longer the cadence or
iteration length, the greater the effect of variation on planning predictability.

Figure 5.6 Percentage of planned work completed. The mean CT is 16.6 hours, and low
variability means you can have moderately high confidence in a forecast based on mean CT. CT
varies between 4 and 26 hours. Within 1 SD, the range is between 10.1 and 23.2 hours. A forecast
based on 16.6 hours will be precise within a range of about 13.1 hours.
Licensed to Mark Watson <nordickan@gmail.com>

143Predictability in unpredictable workflows
will be. Software development isn’t a repeatable, assembly-line process; it’s a creative
process, and variation is only to be expected. Even so, by reducing the variation,
you’ve improved planning predictability.

5.3 Predictability in unpredictable workflows
In the section on velocity in chapter 2, one of the anti-patterns pertains to teams that
have a mixed workflow consisting of some planned work and some unplanned work,
such as production support. This sort of mixed workflow is inherently less predictable
than workflows consisting purely of planned work or purely of ongoing support.
Tracking appropriate metrics can help you improve predictability in short-term plan-
ning for teams that have a mixed workflow.

 Teams that use a time-boxed iterative process model often deal with mixed work-
flows by setting aside a percentage of their available time to handle any unplanned
work that may come their way mid-iteration. The challenge is in deciding how much
time to set aside. If they guess too low, they’ll fail to complete their planned work. If
they guess too high, they’ll have idle time with no work ready to start. Fortunately, you
can track a couple of simple measurements to deal with this situation:

 Mean CT, tracked separately for planned and unplanned work
 The average number of unplanned work items that enter the team’s workflow

in the middle of an iteration (with a time-boxed iterative process) or develop-
ment cadence (with a continuous-flow process)

Once you have at least three iterations’ or cadences’ worth of observations, you can
forecast the approximate amount of time the team needs to set aside for unplanned
work in the near-term future. For example, consider the following data points:

 Mean CT for planned work items: 10 hours
 Mean CT for unplanned work items: 16 hours
 Average number of unplanned work items per iteration: 4
 Time available for value-add work based on team member availability:

24 hours × 6 team members = 144 hours

Given 4 unplanned work items on average, with completion time averaging 16 hours,
the team needs to set aside about 64 hours per iteration for unplanned work. That
leaves 144 – 64 = 80 hours available for planned work. With a mean CT of 10 hours for
planned work items, the team can take on about 8 items from the planned work
queue or product backlog per iteration.

 Because this forecast is based on empirical observation of actual performance in
the recent past, it will be more accurate regarding near-term future performance than
estimation or commitment-based plans. I suggest using a sliding window of three to
five iterations or cadences as the basis for forecasting.
Licensed to Mark Watson <nordickan@gmail.com>

144 CHAPTER 5 Planning predictability
 In addition to improving planning predictability, these metrics will provide infor-
mation to support process-improvement goals. If 80 productive hours per iteration
doesn’t align with organizational performance goals, then you know (and can demon-
strate to management) that changes are needed. You may feel as if the unplanned work
is interfering with your ability to support business objectives, but that may not be suffi-
cient to gain the support of management. Having real data to support your case gives
you a better chance of gaining support for an improvement initiative.

5.4 Effects of high variation in work item sizes
Software development teams package their planned work in units that have different
names and different scopes depending on the methods they use. A work item may be
called a requirement, a work package, a user story, a minimum marketable feature, a use case, or
something else.

 Each term has a specific definition according to one or another software develop-
ment methodology, but all the definitions have something in common: they represent
a chunk of software functionality that is usable by someone to achieve some goal. Any
of those work items, when completed, could potentially be sold to the public or
included in a production deployment of the application.

5.4.1 Deployable units of work

Let’s say you’re building a banking application to manage customer accounts. The
feature to transfer funds from one account to another isn’t usable by a customer if it
can remove the funds from account A but not put the funds into account B. The soft-
ware has to perform both of those operations in order to be useful. Similarly, a cus-
tomer can’t use an online store application that can collect selected items in a
shopping cart but can’t process the sale transaction. I doubt you would wish to use a
word processor that could display what you type but not save the document, or pilot a
spacecraft whose flight-control software could start the rocket motor but not stop it.
Those examples represent parts of software features, not complete features.

 It’s only natural, then, for people to define work items that correspond with useful
functionality. The kinds of work items defined in various software development meth-
odologies generally represent meaningful, useful features. A use case describes all the
interactions between an actor and a system that occur during some meaningful activity.
A user story describes an interaction between a user and a system that provides some
sort of value to the user. A minimum marketable feature includes enough functionality
that a customer would be willing to pay real money for it. A work package, designed for
traditional linear methods, includes enough valuable functionality to make it worth
the cost of pushing it through a lengthy process of review, testing, and governance.

Licensed to Mark Watson <nordickan@gmail.com>

145Effects of high variation in work item sizes
5.4.2 Trackable units of work

The challenge for predictable planning lies in the fact that these work items may vary
significantly in size (effort or time). In a banking system, it may be trivial to build code
to display a list of the customer’s active accounts, somewhat more complicated to com-
plete the funds-transfer feature, and even more complicated to build the code to deter-
mine the customer’s eligibility for special offers. The code to switch a rocket motor on
and off might be simple, whereas the code to keep the craft stable during reentry could
be extremely complicated. If you forecast performance based on the observed cycle
times for work items like those, you’ll have high variability and low predictability.

 The variation in sizes makes it difficult to achieve planning predictability. The solu-
tion is to distinguish between the work items you define for purposes of planning and
tracking, and the units of functionality you can deliver to production or to the market.
You can decompose large features into workable pieces that are all more or less the
same size in order to minimize CT variation and improve planning predictability. Those
workable, trackable pieces of work need not be individually deployable or marketable.

 The work items must have a clear definition of done, for purposes of measuring CT.
That may take whatever form makes sense in context: perhaps the software passes
automated tests, or passes a technical review, or can be demonstrated to key stakehold-
ers who accept it. Provided the work items are roughly the same size and there’s a
practical way to determine when they’re finished, you can use mean CT to achieve
accurate forecasting and predictable planning.

5.4.3 Demonstrating the value of consistently sized work items

When combined with other metrics, CT can provide strong hints about potential pro-
cess improvements. Let’s consider a team that’s using a time-boxed iterative process.
The team represents requirements as user stories and estimates the stories using rela-
tive sizing in terms of story points.

 It’s common for teams that work this way to have user stories that vary significantly
in relative size. It can be challenging to help team members understand the value of
learning to craft user stories that are roughly the same size. Teams tend to focus on
completing story points in order to receive credit toward velocity. They may not see
variation in user-story size as an important factor for effective delivery.

 By juxtaposing CT observations with estimated user-story sizes, you can show a cor-
relation between small, consistent story size and stable CTs. When such effects are
made visible, teams tend to work toward improving the numbers.

 You already know that high variability in CTs correlates with low planning predict-
ability. When you juxtapose trends in estimated user-story sizes with trends in CT, you
can see that there’s a direct correlation. Therefore, high variability in estimated story
sizes correlates with low planning predictability. In the example in figure 5.7, the team
delivers 20 stories totaling 300 story points. The stories are spread across several itera-
tions. At any given point in the delivery process, it’s hard for the team to predict how
many stories they’ll deliver in the next iteration.
Licensed to Mark Watson <nordickan@gmail.com>

146 CHAPTER 5 Planning predictability
When the team splits stories so they’re closer to the same size, CT variability is reduced
and planning predictability is improved (see figure 5.8). The team delivers about the
same number of story points, but the points are spread across 30 user stories instead
of 20, and the story sizes are more consistent. At any time, the team can predict the
number of user stories they’re likely to deliver in the next iteration.

 When you correlate CT with user-story sizes, you’re using metrics to support pro-
cess improvement rather than tracking delivery progress. Delivery performance will
improve as a result of adopting more effective practices.

 In the context of traditional methods, this means decomposing work packages
into similarly sized tasks and keeping the general size of these tasks fairly small. In the
context of adaptive methods, this means writing, splitting, and sizing user stories (or
similar artifacts by whatever name). The goal is to help the team learn to craft user

Figure 5.7 You can’t compare points with hours, but you can observe that trends
follow the same pattern: high variability in estimated story sizes correlates with
high variability in CTs and with low planning predictability.

Figure 5.8 By splitting stories to reduce the range of sizes, you reduce CT variability
and improve planning predictability.
Licensed to Mark Watson <nordickan@gmail.com>

147Effects of high work-in-process levels
stories that represent vertical slices of functionality and to minimize the range of
user-story sizes.

 These practices help teams deliver business value more smoothly and steadily. In
turn, smooth delivery improves planning predictability, which is correlated with stake-
holder satisfaction.

5.5 Effects of high work-in-process levels
It’s generally known that when you try to juggle too many tasks, it takes you longer to
complete them all than it would if you tackled one or two of them at a time. Yet many
software development teams try to work on many items concurrently. By juxtaposing
WIP levels with other metrics, you can help teams, management, and business stake-
holders understand the value of limiting WIP and focusing on getting a few things
done at a time.

5.5.1 Work in process, cycle time, process cycle efficiency,
and throughput

In some cases, business stakeholders or senior management have the misconception
that by starting many tasks, teams are making progress on all of them. Many technical
professionals make the same assumption. This misconception has been fed and nur-
tured for decades, thanks to a persistent focus in management training on maximiz-
ing resource utilization, as well as the fear on the part of technical personnel that
they’ll lose their jobs unless they appear to be busy at all times.

 All the work that’s been officially started but not yet finished is called work in process
(WIP). According to the Lean school of thought, WIP is a form of inventory, and inven-
tory is a form of waste. If you’re genuinely interested in maximizing the value you
deliver to stakeholders, then you need to find the level of WIP that yields the highest
throughput, given the details of your process.

 Before you can correct the problem, you have to teach others in the organization
that WIP is an issue in the first place. To do that, you need numbers. You can show the
effect of excessive WIP on delivery performance by correlating CT with WIP. Shorter
CT means higher throughput.

 Let’s consider a contrived example to illustrate the point. The following figures
depict a work queue containing five work items and show where time is spent as the
team completes the items. Real-world situations follow the same pattern on a larger
scale and with numerous distracting details, so I’m intentionally using a simplified
example to show the effect.

 In the first scenario (see figure 5.9), the team pulls all five items into the in progress
state at the same time. Let’s walk through this scenario and see what’s going on.

 At hour 0, the team begins a period of work. For a traditional project, this could
be a phase in a linear process model, such as requirements elaboration or code con-
struction. The work items in that case would consist of the tasks required to complete
specific artifacts, such as requirements specifications ready to be coded or units of
Licensed to Mark Watson <nordickan@gmail.com>

148 CHAPTER 5 Planning predictability
code ready to be tested. For an adaptive project, it could be the length of a time-
boxed iteration or a development cadence. The work items might represent vertical
slices of functionality to be finished to the point that they’re production ready. For a
hybrid process, the work items might represent chunks of work somewhere between a
task and a vertical slice of functionality. The general effects of high WIP are the same
in all cases; there’s no dependency on development approach, process model, or
delivery mode.

 In this scenario, the team pulls all the work scheduled for the new work period
into the in-progress status at the same time. The CT clock starts at hour 0 for all five
work items. But it isn’t possible to work on five things at the same time. Notwithstand-
ing the fact that all five items are officially in progress, only one at a time receives
direct attention at any given moment. (This is a bit of a simplification, because most
teams have enough resources to work on more than one item at a time. This fact
doesn’t invalidate the model.)

Figure 5.9 Effect of high WIP on CT: scenario 1
Licensed to Mark Watson <nordickan@gmail.com>

149Effects of high work-in-process levels
 The team works on item 1 until they reach an impasse. In the meantime, items 2,
3, 4, and 5 are in a wait state. They’re officially in progress, so they count as WIP.
They’re a contrasting shade in figure 5.9 to show that no value is being added to them
during the first four hours.

 The team’s immediate response to hitting a block on item 1 is to turn their atten-
tion to item 2. This is one of the insidious ways that high WIP contributes to long
CTs—because another work item is ready for action, the team makes no special effort
to resolve the blocker on item 1. People tend to focus on whatever demands their
attention. Therefore, the people who can help the team resolve the blocker tend to
wait until the team asks them to do something. Until then, they help others who do
ask them.

 The team repeats the same behavior when they hit blocks in hour 9 and hour 15.
Now they have four work items partially complete and nothing finished. The person
they need to help them get item 1 moving again was available as of hour 11, but the
team was busy doing something else in hour 11. They didn’t get back to item 1 until
hour 21.

 Once they did so, they finished item 1 in just three hours. But they also experienced
a context-switch event, which incurs a cost in time. Every time a person switches contexts,
it takes a few minutes for them to get back to the point where they left off when they set
the task aside. Different studies have found different costs for context switching, rang-
ing from about 10 minutes to about two hours per event. Context-switching overhead
associated with juggling many active tasks causes CTs to stretch out. For purposes of this
example, I’m assuming that each context-switch event costs 30 minutes.

 The team continues to work in the same manner until all five work items have
been completed. Total time: 52 hours. Here are the CT observations:

 Item 1: 23 hours
 Item 2: 26 hours
 Item 3: 33 hours
 Item 4: 49 hours
 Item 5: 52 hours
 Mean CT: 36.6 hours
 Process cycle efficiency (PCE): 28.2%
 Throughput, hours 0–20: 0 items
 Throughput, hours 21–40: 3 items

Let’s see what might be different if the team minimizes WIP, as illustrated in
figure 5.10. At the outset, the team pulls only one work item into in-progress status.
The CT clock starts for item 1. They work on this item until they hit a blocker. Because
the team is focusing on just one work item, they immediately try to remove the blocker.
In the hypothetical scenario, they’re unable to remove the blocker, and they need to
wait for someone to become available to help them with it. Having done what they can
for now on item 1, the team pulls item 2 into in-progress status, starting its CT clock.
Licensed to Mark Watson <nordickan@gmail.com>

150 CHAPTER 5 Planning predictability
Hour 9: The team hits a blocker on item 2. This time, because they’re intentionally
keeping WIP to a minimum, they turn their attention to removing the blockers on
items 1 and 2. They don’t start item 3, even though this means they appear to be idle.
They aren’t idle at all; they’re trying to get the first two work items moving again,
which is the most valuable thing they can do at this point.

Hour 11: The blocker on item 1 is removed, and the team completes that item.
Hour 13: The blocker on item 2 is removed, and the team completes that item.
Hour 15: The stakeholder for item 4 expresses concern about progress on his work,

just as occurred in the first scenario. This time, however, the team doesn’t drop what-
ever they’re doing to try and satisfy that stakeholder. Instead, they stick to their plan
and continue working on item 3. Doing so serves the interest of the stakeholder for
item 4, whether he understands that or not. This is clear when you note that in the
first scenario, item 4 was completed at hour 53, with a CT of 52 hours; in the second
scenario, it’s completed in hour 36, with a CT of 13 hours—significantly better deliv-
ery performance.

Figure 5.10 Effect of high WIP on CT: scenario 2
Licensed to Mark Watson <nordickan@gmail.com>

151Effects of high work-in-process levels
Hour 17: Item 2 is completed with a CT of 12 hours.
Hour 24: Item 3 is completed with a CT of 7 hours.
Hour 36: Item 4 is completed with a CT of 13 hours.

In the first scenario, item 5 was blocked at hour 42 for four hours. In the second sce-
nario, the same block occurs at the same point, but this time the team is focused on
getting item 5 done. They aren’t distracted by context switching to a different task,
and they’re able to resolve the blocker in half the time. On the whole, by eliminating
context-switch events and pushing a rapid solution to the blocker, the team saved six
hours on item 5.

 Here are the numbers for the second scenario:

 Item 1: 12.5 hours
 Item 2: 12 hours
 Item 3: 7 hours
 Item 4: 13 hours
 Item 5: 12 hours
 Mean CT: 11.3 hours
 PCE: 78.2%
 Throughput, hours 0–20: 2 items
 Throughput, hours 21–40: 2 items

 So, what do these numbers tell you?

 The team’s CT is consistent. Except for item 3, they completed any given work
item in about the same amount of time—roughly 12 hours. This wasn’t visible
in scenario 1, because by pulling all the work items into in-progress status at the
same time, the team was hiding information about what was really happening in
their process. They made their process opaque and therefore difficult to mea-
sure or improve.

 Throughput is more consistent in scenario 2 than in scenario 1. The effects of
high WIP in scenario 1 tended to pile up incomplete work, which was eventually
finished near the end of the delivery process. With scenario 2, you can see that
the team generally delivers about two work items every 20 hours. This supports
the goal of predictable planning.

 The fate of item 4 is informative. In scenario 1, item 4 hit a blocker at hour 38
and another at hour 46. In scenario 2, these organizational events had no effect
on item 4, because item 4 was completed at hour 36. This illustrates one of the
insidious effects of high WIP: the longer a work item remains in active status,
the greater the chance that an organizational issue will arise that blocks prog-
ress. The phrase organizational issue sounds pretty serious, but it needn’t be any-
thing more unusual than a person being busy with other work at the time when
your team needs their help. When you go ahead and get things finished, noth-
ing can block them.
Licensed to Mark Watson <nordickan@gmail.com>

152 CHAPTER 5 Planning predictability
 In scenario 1, the team lost considerable time to context-switching overhead
and to delayed resolution of blockers as a direct result of high WIP. Their PCE
was much higher in scenario 2; that is, the team spent proportionally more of
the available time doing value-add work and proportionally less time waiting.

5.5.2 Work in process and defect density

Defect density is usually shown as the number of reported software defects per 1,000
lines of source code (KLOC). When you think about software defects from a Lean
point of view, you realize that any effort expended to detect, track down, and fix
defects is waste, according to Lean’s definition; that is, it’s activity that doesn’t add
value to the product.

 You could argue that removing defects makes the product better and therefore
increases its value, but Lean thinking has a narrower definition of value than that. Cus-
tomers aren’t interested in paying for bug fixes; they’re only interested in paying for
properly working features. In that sense, defect correction doesn’t add any customer-
defined value to the product. As far as customers are concerned, the product should
have been correct the first time.

 Defects may be introduced in a software product for a variety of reasons. One of
the potential causes is that the team is juggling too many tasks simultaneously. People
can lose focus, overlook details, and neglect loose ends when they frequently context-
switch across multiple tasks. They introduce defects they wouldn’t have introduced,
had they been able to focus on one or two tasks at a time. Then, when they go back to
address the defects, the defect-correction activity becomes yet another task to be jug-
gled along with all the other things they’re working on. At the same time, more and
more changes have to be integrated into the code base, and each merge increases the
risk of introducing another defect. The problem snowballs.

When context switching is good
As a general rule, context switching causes delay and error because it breaks peo-
ple’s train of thought. But a general rule isn’t a universal truth. In knowledge work,
people sometimes reach a mental impasse. They can’t think of what to do next. They
can’t see the cause of a simple problem. As the expression goes, they can’t see the
forest for the trees.

When that happens, it’s often useful to take a break from the task at hand. You can
stand up and stretch, take a walk, talk about last night’s game—anything to clear
your mind. You might even set the task aside and work on a different task for a while.

The point of this section is not to suggest that you avoid context switching at all
costs. The point is to help you understand the impact of excessive context switching
on throughput and CT. When you make a trade-off, be aware of what you’re trading
for what. Trade a context switch for clarity of mind when you need it. Don’t trade high
WIP for high throughput.
Licensed to Mark Watson <nordickan@gmail.com>

153Effects of high work-in-process levels
 Thanks to the longstanding and widespread misconception that it’s more effective
to start many tasks than it is to concentrate on completing one task at a time, people
who have slipped into this pattern may not be able to see a way out. You can use met-
rics to help them see how high WIP tends to increase defect density. It’s easy to pull
WIP levels from a Kanban board, a task board, or any electronic project-management
tool. If you’re tracking defect density, or even just counting reported bugs, you can
correlate these two pieces of information. It will become obvious that they change in
direct proportion to one another.

 What accounts for this correlation? In my experience, it comes down to the cause-
and-effect pattern shown in figure 5.11’s diagram of effects.

 High WIP tends to have two immediate effects: increased context-switching over-
head and overutilization of team members. You’ve seen how high WIP leads to
increased context switching as people try to juggle many tasks simultaneously. You’ve
also seen that this results in longer CTs.

 High WIP also leads to overutilization, the enemy of throughput. With many tasks
in play, teams tend to spread team members across as many tasks as they can, hoping
to keep more of them in an active state and fewer of them in a waiting state at any
given time. It’s not uncommon for teams to have more than twice as many work items
in an in-progress state as they have team members. Everyone is juggling two or more
work items.

 This makes collaboration all but impossible. Individual team members work by
themselves and don’t enjoy the benefits of paired work or group work. They must
struggle alone through each problem that comes up; they lack a second pair of eyes
with which to see the forest for the trees. When another team member could help
resolve a problem, chances are that person is unavailable because they’re also juggling
multiple tasks. Without the opportunity for direct collaboration within and across
functional specialties, different kinds of interim artifacts have to be handed off
through formal process steps such as reviews and quality gates, and indirect communi-
cation media such as documents. All these factors add to CT as well as increasing the
probability of miscommunication, which often results in defects.

Figure 5.11 High WIP and defects
Licensed to Mark Watson <nordickan@gmail.com>

154 CHAPTER 5 Planning predictability
 Increased CTs tend to result in three undesirable behaviors: overtime, rushing, and
overutilization. When people begin to worry about meeting deadlines or delivery com-
mitments, there’s a tendency to work longer hours to try to make up for lost time. Peo-
ple may also cut corners and rush through tasks in an attempt to finish their work
faster. Programmers may decide to dispense with refactoring as they modify the code
base, resulting in technical debt that increases CT insidiously in the long term. Soft-
ware testers may skip test cases in an attempt to complete the testing work more
quickly. Analysts may gloss over details in an attempt to prepare requirements faster.

 These behaviors generally lead to more defects, creating a vicious circle, more
properly called a reinforcing loop. You can follow the arrows in figure 5.11 to locate the
reinforcing loops it depicts.

 Stress over deadlines often leads to a third undesirable behavior: overutilization.
You can see that this forms another reinforcing loop. Even if the team didn’t begin its
work with team members overutilized, the emotional response to deadline pressure
often causes teams to throw people at the problem. They may be tempted to set aside
robust collaboration practices such as pair programming in the belief that allocating
individuals to more tasks will speed things up. They may pull even more work items
into in-progress, hoping that by designating the work items as active, progress will
somehow be made on them. How many times have you heard managers ask, “How
many more people do you need to meet the deadline?” There may be cases when a
team doesn’t have enough people to handle its workload, but more often than not,
throwing people at the problem only makes matters worse.

 The root cause of most of this is high WIP, and the simplest remedy is to limit WIP.
All this may appear obvious to you. Unfortunately, it isn’t obvious to everyone. I’ve
found that by showing people the correlation between high WIP and defects, you can
open a dialogue with team members and project stakeholders to bring the workflow
under control and improve delivery performance.

5.6 Summary
In this chapter, you saw how metrics can help you improve the predictability of your
short-term planning. Predictable short-term planning helps keep work on track,
enhances stakeholder satisfaction, and builds trust in the organization. The proper
choice of metrics for estimation and forecasting improves planning predictability,
whereas poor choices reduce predictability. Common misconceptions about develop-
ment methods, work-item definitions, estimation techniques, and metrics can give you
false readings of progress and lead to unpredictable planning. High variability in
work-item size and high work-in-process levels can cause performance variance and
hide information about progress.
Licensed to Mark Watson <nordickan@gmail.com>

Reporting outward
and upward
At higher levels of management, people make different kinds of decisions than
would be made at the team level. They need to know what’s going on across an
entire program, an entire product suite, an entire value stream, or the entire enter-
prise. Whereas you make decisions about how to keep the work moving forward,
they make decisions about whether a project should be continued or canceled, and
whether a given initiative ought to be capitalized or expensed. Details about indi-
vidual work packages or user stories aren’t helpful for that kind of decision-making.
Those individuals need relevant, summarized information without any clutter.

 At the same time, software development teams must be able to focus on their
work without being distracted by administrative activities such as recording the

This chapter covers
 Protecting the team from administrative details

 Reporting hours for capitalized projects

 Reporting project status for traditional, adaptive,
and mixed projects

 Minimizing the effort of management reporting
155

Licensed to Mark Watson <nordickan@gmail.com>

156 CHAPTER 6 Reporting outward and upward
number of hours they worked or estimating the expected completion date for a given
software feature. Distractions like those interrupt flow, create delay, increase lead
times, raise costs, and cause stress.

 In this chapter, you’ll see how to provide measurements that are useful to upper
management without expending excessive effort in doing so. You’ll also explore some
of the issues that can arise when management expectations for upward reporting con-
flict with the metrics you’ve chosen to help you steer your work at the team level.
You’ll also see how you, as the person responsible for reporting metrics, can collect
the data you need without interfering with your teams’ day-to-day work.

 I suggest that one of your functions is to act as an insulating layer between your
teams and the organization. What does this mean? Others in the organization need to
collect information from teams. Yet every interruption and every administrative task
reduces the teams’ effectiveness. As a person responsible for tracking progress, you
can help teams maximize their effectiveness by handling administrative requirements
on their behalf.

6.1 Reporting hours
Few issues cause more grumbling on technical teams than the requirement that peo-
ple track the number of hours they spend working on each project. Contemporary
wisdom in software development is to dedicate each team to a single project at a time.
Even then, team members don’t enjoy taking time to track the hours they spend on
project work compared with the hours they spend on other tasks. In traditional orga-
nizations, teams may work on multiple projects concurrently, and in many organiza-
tions individuals may be allocated to multiple teams and multiple projects in a
complicated matrix structure. Tracking the hours spent on each project each day can
become a time-consuming activity whose value isn’t obvious to technical workers.

 Management needs to know where the time is spent for capitalized projects. Capi-
talization provides a tax benefit by allowing companies to spread the initial develop-
ment cost of a software solution over the anticipated production lifetime of the
solution. Management has to track costs closely. All the costs except labor are pretty
straightforward to track, because they’re mostly fixed costs. To get the labor cost, man-
agement depends on staff to report the hours they spend working on each capitalized
project.

 This is probably uninteresting to you, and it’s definitely uninteresting to your
teams, because your focus is execution, not funding. Knowing how each team mem-
ber spends each hour doesn’t help you execute the project. Spending time tracking
hours certainly doesn’t help team members complete any work. It isn’t a value-add
activity; it’s administrative overhead. Pursuant to your function as an insulating layer,
you need to provide this information to management without asking anything of your
team members.

 But if you don’t ask them, how will you know how team members spend their time?
The answer is clear, if you remember that you want to provide decision-makers with
Licensed to Mark Watson <nordickan@gmail.com>

157Reporting hours
information at the right level of detail. Management doesn’t need to know exactly how
Mary Smith spent every minute of every day. They need to know that Mary’s team
spent more or less the expected amount of time working on capitalized project A and
on capitalized project B.

6.1.1 An example

Let’s say that over the span of projects A and B, the team is expected to spend about
half their time working on each. Management needs to know whether that expecta-
tion was met. They don’t need to know that in week 1 the team split their time 70/30
between the two, and in week 2 they split their time 30/70. That level of detail doesn’t
help management make the decisions they’re responsible for making. They certainly
don’t need to know all the minor variations of each individual team member’s time;
they only need aggregate numbers.

 To report accurate information about hours at the right level of detail, you can
depend on some basic assumptions. First, you can assume that variations in time allo-
cation will wash out over the course of a project. Approximate data will be accurate
and useful to support management decision-making. Second, you can assume that
most individuals will work a standard week unless something unusual happens. You
needn’t ask people to report their hours in painstaking detail—you only need to know
about variances from the standard work week. Figure 6.1 shows an example of how
this can work.

 The spreadsheet tracks the total work hours put in by each of 10 team members on
a team that’s working on four projects. The team is allocated 40% to project A, 30% to
project B, 20% to project C, and 10% to project D. Most of the time, team members
work a 40-hour work week. You don’t need to ask them how many hours they work in a
normal week—it’s standard. When they’re on vacation, it’s on the team calendar, and
you don’t need to ask them. When they’re out of the office, they let you know by

Figure 6.1 Hours applied to capitalized projects
Licensed to Mark Watson <nordickan@gmail.com>

158 CHAPTER 6 Reporting outward and upward
phone or email, and you don’t need to ask them. You never need to interrupt their
focused work time to ask them to track their hours.

 What percentage of their time did each team member devote to projects A, B, C,
and D? It makes no difference. They’re professionals, and they will spend whatever
time is necessary to get their work done. For purposes of upward reporting, you can
assume that they spent approximately the correct amount of time on each project. All
you need is their total work hours, and you can calculate the percentages to report for
each project.

6.1.2 Aggregate numbers are approximate

You might worry that this approach will lead to inaccurate upward reporting of hours.
What if the team actually spent 90% of their time on project D, but you’re reporting
10%? That’s theoretically possible, but in the grand scheme of things, it isn’t signifi-
cant. In real life, technical professionals aren’t meticulous about recording their work
hours in exactly the right buckets. It isn’t the focus of their attention at work. It isn’t
what they were hired to do. They merely record hours in whichever buckets they’re
authorized to use, to satisfy the time-reporting system. In many cases, they’re only able
to enter the number of hours into each bucket that were preallocated to the projects;
they couldn’t report their true hours even if they wanted to. The approximate num-
bers you report are probably more accurate than the numbers the technical staff have
been recording until now.

 This is an example of how you can function as an insulating layer between teams
and the organization. You’re providing sufficiently accurate information to track labor
costs for capitalized projects, you’re providing it at the right level of detail to be useful
to decision-makers, and you’re doing it in a way that doesn’t degrade the teams’ deliv-
ery performance.

6.2 Reporting useless but mandated metrics
Preparing this short section has been a challenge, because it would be all too easy to
say the wrong thing. Management books typically don’t refer to metrics as “useless.”
Organizations don’t typically consider anything they mandate to be useless. No one
wants to be called out for requiring others to report useless numbers. No one wants to
waste time reporting useless information. And yet it happens.

 In addition to helping your team, you’re probably required to report certain met-
rics outward and upward in your organization. Sometimes the required metrics aren’t
useful for tracking progress or for supporting process improvement. I’m not talking
about metrics that the organization uses but that you don’t need at the team level;
those are useful, even if they aren’t of direct interest to you in a team-level role. I’m
talking about metrics that no one uses or could use. The numbers pile up on reports
and presentation slides, and then they’re set aside. Often, when you try to find out who
uses the metrics and for what purpose, no one can tell you. Perhaps the metrics served
a purpose at some time in the past. Things have changed, but the administrative
Licensed to Mark Watson <nordickan@gmail.com>

159Reporting useless but mandated metrics
requirement to report the metric remains in force. When this is the case, your perfor-
mance review depends on reporting the required metrics, but your actual performance
depends on measuring the things that matter and not wasting time on activities that
don’t add value.

 As a person at the ground level with direct responsibility for delivery, how can you
deal with the situation in a way that’s both pragmatic and ethical? Many people face
this question every day. Fortunately, there are tactical and strategic actions you can
take. At the tactical level, your goal is to insulate your teams from the damaging effects
of inappropriate measurement. At the strategic level, your goal is to help the organiza-
tion adopt more appropriate metrics.

6.2.1 Categories of problematic metrics

You need certain measurements to help your teams deliver and improve. Your organi-
zation needs certain measurements rolled up so that management can manage pro-
grams and the organization. But sometimes the organization also requires you to roll
up metrics that aren’t useful to anyone. How can you ensure that you’re using your
time wisely? Figure 6.2 shows one way of categorizing metrics that you report outward
and upward.

 Metrics that are useful to someone have to be reported. The question is how much
of your valuable time to dedicate to reporting them. Consider the lower-right quad-
rant in figure 6.2. This represents metrics that help you and your teams deliver. This is
where you need to spend most of the time that you devote to measurement. These are
the metrics you’ve chosen based on an analysis of the development approach, process
model, and delivery mode your teams are using. You’re using these metrics to steer
the work and to inform process-improvement efforts.

 Some of the metrics that are useful to you are also useful to others in the organiza-
tion. This is represented by the upper-right quadrant in the illustration. These are a
subset of the metrics you use at the team level; you don’t need to report everything you

Figure 6.2 Reporting metrics
outward and upward
Licensed to Mark Watson <nordickan@gmail.com>

160 CHAPTER 6 Reporting outward and upward
measure for the teams. By reporting these metrics, you’re making a positive contribu-
tion to the organization. But your primary focus is delivery. Therefore, you want to
look for ways to automate reporting. Many organizations implement project-tracking
tools that can roll up metrics automatically. Take full advantage of such tools so that
you can minimize the amount of time you spend reporting this information.

 The left side of figure 6.2 represents reporting requirements that aren’t of direct
value to your teams. The items in the upper-left quadrant are important to the organi-
zation, even if they don’t directly help teams deliver. Your tactical goal is to automate
the production of these numbers while insulating the teams from the administrative
burden of tracking the numbers. A strategic goal, should you choose to pursue it, is to
influence the decision-makers in the organization to change the measurements they’re
using. Techniques for organizational change are beyond the scope of this book.

 The lower-left quadrant represents metrics that help no one. Why would any orga-
nization require these? It happens when people adopt a new process or methodology
“by the book,” without thinking about which elements of the new process are a good
fit for the organization. These metrics can drive unintended behaviors. It’s important
that you insulate teams from dealing with this sort of reporting. At best, it will distract
them from their work; at worst, it will destroy their morale.

 Because the metrics in this quadrant are, by definition, not useful to anyone, it fol-
lows that the numbers can be neither right nor wrong. People report these numbers
only because they’re required to do so. The people who consume the numbers make
note of the fact that lower-level personnel have duly reported them, and then they file
the numbers away. They aren’t used. When you identify metrics like this, you can auto-
mate the generation of “standard” numbers for purposes of reporting. This can’t do
any harm, because the numbers aren’t meaningful and are never used to support busi-
ness decisions. They’re merely an administrative requirement.

 Why haven’t I listed the metrics in this dangerous category? Because different met-
rics are useful in different situations. A metric that’s helpful in one situation may be
useless in another. I can’t guess which metrics will fall into this category in your con-
text. It’s up to you to understand how the work flows in your organization and mea-
sure accordingly.

6.2.2 Recognizing what’s really happening

The title of this section has been the theme of the book all along, but it bears repeat-
ing. It’s common for organizations to officially adopt whatever metrics are defined for
the formal delivery process they’ve chosen. In most cases, people overlay a defined
process on the organization without giving much thought to adapting the process to
the organization or adapting the organization to the process. And yet most of these
defined processes assume that the organization will have the characteristics that
enable the process to function as intended. There’s a gap between theory and real-
ity—between intention and action.
Licensed to Mark Watson <nordickan@gmail.com>

161Reporting useless but mandated metrics
 As each metric is described in the book, there’s an indication of the conditions
under which the metric can be useful. This is based on three key aspects of delivery:

 Development approach—When scope, schedule, and budget are all fixed at the
outset, the approach is traditional. When one or two of those factors is flexible
by design, the approach is adaptive. Metrics that are appropriate for the
approach you’re using will be useful, and others won’t. This is true regardless of
which formal process is ostensibly in use.

 Process model—The process you’re using is almost certainly a hybrid. The good
news is that it probably resembles one of the four reference models (linear, iter-
ative, time-boxed, or continuous flow) more closely than the other three. Met-
rics that apply to the closest-matching process model will be useful, and others
won’t.

 Delivery mode—Some teams are executing on discrete projects that have a begin-
ning and an end; others are supporting a product or technical infrastructure on
an ongoing basis. Metrics that apply to the delivery mode that’s in use will be
useful, and others won’t.

Most formal processes assume a particular approach, process model, and delivery
mode. Many organizations assume that when they adopt a given process, the organiza-
tion automatically conforms with the expectations of that process. In those cases,
some of the metrics you’re required to report outward and upward may not be mean-
ingful, and they may even be counterproductive.

6.2.3 Beware of motivational side effects of metrics

In addition to the mechanical aspects of delivery, it’s also necessary to be aware of
unintended motivational effects of metrics. Let’s consider one metric in particular,
because it’s widely used with popular frameworks for scaling agile methods in large
organizations. When using a time-boxed process model, many organizations ask teams
to commit to a fixed scope of work in each iteration. This notion of commitment is
derived from an early version of Scrum, which has since been corrected. Scrum now
calls for teams to forecast near-term future delivery performance based on their own
velocity. Unfortunately, the word commit continues to be used, having been adopted in
other processes besides Scrum, and is included in popular agile scaling frameworks.

 The problematic metric is the percentage of the iteration commitment that the team actu-
ally delivers. Organizations that use this metric typically set a target for performance.
For example, teams might be expected to deliver 80% of the amount of work they
commit to deliver in each iteration. Proponents of the metric insist that it isn’t
intended as a target, but in real life team members perceive it to be a target they must
hit, or else.

 No doubt you can see the problems with this already. Velocity is a trailing indicator
intended to be used for empirical planning. The moment you set a target for it, you
Licensed to Mark Watson <nordickan@gmail.com>

162 CHAPTER 6 Reporting outward and upward
drive undesired behaviors. A more insidious problem is that team members will
assume that their individual performance reviews depend on hitting the target.

 Commitment is a serious matter, after all. We commit to our families, our commu-
nities, our professions, our countries. Commitment is life or death. Commitment is
what inspires us to make personal sacrifices for our children. Commitment is what
leads us to jump on a grenade to save our comrades. When required to commit, teams
will sacrifice evenings, weekends, holidays, vacations, family time, and health. At least,
they will do so for a while. Ultimately they will game the numbers, and the metric will
be useless for its intended purpose.

6.2.4 Understanding what the numbers mean

Let’s consider another example that’s a bit less damaging. Many organizations have
adopted an iterative or time-boxed process with the expectation that it will instantly
enable them to deliver faster. At the same time, they don’t change their expectations
with regard to planning, funding, and delivery. Most of these processes were designed
for adaptive development, although they can be applied to traditional development as
well. The problem is measuring something that isn’t happening—trying to track tradi-
tional development using metrics for adaptive development.

 The metrics defined for time-boxed processes are designed to be used with adap-
tive development. When a project is traditional (fixed scope, schedule, and budget),
then the metrics don’t mean what the literature says they should mean. That doesn’t
necessarily make them useless, but in your position you have to be aware of what infor-
mation is really tracked, or you may overlook indications of emerging delivery risks.

 Time-boxed processes can be used with traditional delivery as a way to break up
work into small chunks that are easy to plan, estimate, and track. In this case, veloc-
ity doesn’t reflect production-ready solution increments; it merely reflects com-
pleted work items, which may be interim artifacts such as unrealized requirements
specifications, unexecuted test plans, undeployed software components, or untested
code units.

 This isn’t necessarily damaging, provided you understand what the numbers mean.
You’ll probably use a burn chart to forecast delivery performance based on the
pseudo-velocity observations. In this context, the burn chart is showing percentage of
scope complete to date. As you know, both types of chart look like two lines: expected per-
formance versus actual performance to date, with a trend line showing forecast future
performance. So, you can label the chart Burn Chart and use it as a chart of percent-
age complete to date. In keeping with the traditional approach, you can use the chart
to try to bring the project back on plan, rather than using it to adjust scope or sched-
ule as you would do with adaptive development.
Licensed to Mark Watson <nordickan@gmail.com>

163Summary
6.3 Summary
To maximize their effectiveness, teams need to focus on value-add work. Part of your
function is to insulate them from the distractions of administrative activities while still
providing information that others in the organization need from your teams.

 It’s necessary to report hours worked per project for capitalized projects so the
organization can enjoy the tax benefits of amortizing the cost of new software solu-
tions. Part of your function is to provide this information without interfering with
your teams’ focus on delivery.

 Throughout the book, I’ve emphasized the importance of understanding how
work flows in your organization so that you can select appropriate metrics for steering
and process improvement. This chapter touched on the importance of not using met-
rics that don’t align with the approach, process model, and delivery mode in your orga-
nization. Doing so can cause undesired behavioral effects that can be both subtle and
damaging.
Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

index

Numerics

1,000 lines of code. See KLOC
80/20 rule 88

A

A/B testing 114
absentee decision-maker

anti-pattern 39
AC (actual cost) 22
accuracy vs. precision 141
active states 85–86
ACWP (actual cost of work

performed) 22
adaptive approach

budget burn metric 26–30
burn chart metric 76–78
cumulative flow metric

79–82
cycle time metric

with consistently sized
work items 47–49

with variable-sized work
items 49–50

defined 4, 161
earned business value

metric 35–38
mixing with traditional

approach 20, 34
percentage of scope com-

plete metric
example using 15–17
overview 19–20

predictability for
forecasting based on cycle

time 141–143

forecasting based on
velocity 139–141

overview 132, 136
percentage of planned

work completed
136–138

running tested features
metric 33–34

velocity metric 40–41,
69–70

agile blindness anti-pattern
30

anti-patterns
absentee decision-maker 39
agile blindness 30
arts and crafts 55–56
comparing velocity when

changing the
process model 71

defined 20
easy rider 20, 34
excuse to avoid

collaboration 107
exploitation 107
measuring practices instead

of results 67
misunderstanding business

value 38–39
more is less 55
novice teams 20, 24
relaxing definition of

"done" 70–71
replacement solutions 20
setting targets for velocity

improvement 70
treating humans as

resources 66–67

velocity metric
comparing teams using

velocity 46
instantaneous maximum

velocity 43–44
projected performance

based on wishful
thinking 45–46

setting targets for
velocity 42

using velocity for mixed
work flows 46–47

velocity as percentage
complete 42–43

arts and crafts anti-pattern
55–56

automated test coverage
metric 109

autonomy 132

B

backlog items 15
backward-facing metrics 4, 17,

20, 33, 40
balls in bowls metric 102
BCWP (budgeted cost of work

performed) 22
BCWS (budgeted cost of work

scheduled) 22
BDUF (big design up

front) 24
beyond budgeting

approach 26
blockers 150
bottlenecks 63, 80
bottom-up estimation 134
165

Licensed to Mark Watson <nordickan@gmail.com>

166 INDEX
budget
budget burn metric

adaptive approach usage
26–30

anti-patterns 30
overview 24
traditional approach

usage 25–26
when to use 24–25

in triple constraint 5
budgeted cost of work

performed. See BCWP
budgeted cost of work sched-

uled. See BCWS
buffer burn rate metric

overview 30
project implementation

31–32
when to use 31

burn chart metric
adaptive approach usage

76–78
anti-patterns 55–56
overview 52–53, 75–76
project implementation

53–54
when to use 53, 76, 162

business value
adaptive approach usage

35–38
anti-patterns 38–39
overview 34–35
when to use 35

C

cadences 141
CFDs (cumulative flow

diagrams) 61
See also cumulative flow metric

code smell 89
Coding phase 51
cohesion 91
collaboration

excuse to avoid anti-pattern
107

organization structure and 70
comments 91
common-cause variation 75,

141
complexity, code 90
concept-to-cash time 124
constraints 63, 80–81
context switching 85–86, 152

continuous beta 7
continuous flow model 6, 46,

57
continuous support delivery

mode 46
conventions, coding 91
cost variance. See CV
coupling 91
CRM (customer relationship

management) 114
cross-functional development

teams 114
cumulative flow diagrams.

See CFDs
cumulative flow metric

adaptive approach usage
79–82

overview 59, 78
traditional approach usage

60–61
when to use 59–60, 79

customer relationship manage-
ment. See CRM

CV (cost variance) 22
cycle time metric

adaptive approach usage
with consistently sized

work items 47–49
with variable-sized work

items 49–50
effects of WIP high levels on

147–152
forecasting based on 141–143
overview 47, 71
tracking improvement with

in flow 73–74
in predictability 72–73

tracking responsiveness to
special-cause
variation 74–75

traditional approach usage
50–52

when to use 47, 71–72
cyclomatic complexity 90, 109

D

decision-makers 39
defect density 152–154
deliverables 22
delivery metric

erratic velocity but stable
delivery pattern

batch-oriented thinking
127

flow management 127
functional silos 127–128
habits 128–129
organizational

structure 127
overview 124–126
technical practices 128

velocity good, but little deliv-
ered pattern

corrective action 119–121
development tools 114
functional silos 114–115
gaming velocity 116–119
governance processes 113
manual delivery pipeline

114
meetings 115–116
organizational structure

113
performance appraisals

115
process structure 114
resource constraints 113
scarce specialists 115
technical practices 116
time management 116

delivery mode 7, 161
deployable units of work 144
design debt 90
development approaches 161
diagnostic function 4
DiSC profiles 106–107
discrete projects 46
“done”, definition of 70–71

E

earned business value metric.
See EBV metric

earned schedule metric 62
earned value metric. See EV

metric
easy rider anti-pattern 20, 34
EBV (earned business value)

metric
adaptive approach usage

35–38
anti-patterns 38–39
gaming velocity 117
overview 34–35
when to use 35

emotional seismogram
example of 97
overview 96–97
when to use 96
Licensed to Mark Watson <nordickan@gmail.com>

167INDEX
empirical observations 42, 134
epics 36
ESB (enterprise service bus)

113–114
estimated hours 14
estimation 132–134
ETL (extract, transform, load)

114
EV (earned value) metric

anti-patterns 24
overview 21
traditional approach usage

21–23
when to use 21

exploitation anti-pattern 107
extract, transform, load.

See ETL

F

false positives 108
features

minimum marketable
features 22

running tested features metric
adaptive approach usage

33–34
anti-patterns 34
overview 32
when to use 32

fever charts 31
fixed scope 17
flow, improvement in 73–74
forecasting

for adaptive methods 138
based on cycle time 141–143
based on velocity 139–141
overview 134–135

forward-facing metrics 4–5, 33,
40

funnel planning 132

G

generalizing specialist 114
god classes 89

H

happiness index metric
overview 97–98
project implementation

98–101
when to use 98

Happy Camper pattern 94
health and happiness metric

overview 102–103
project implementation

103–105
when to use 103

high cohesion 91
hour reporting

approximations in 158
example of 157–158
overview 156–157

human metrics 66

I

incremental refactoring 116
informational function 4
instantaneous maximum

velocity 43–44
inventory, WIP as 147
iron triangle 5
iterative model 6, 136
iterative waterfall process 114

K

Kanban 116
KLOC (1,000 lines of code) 152

L

lagging indicators 3
lead time 124
leading indicators 3, 17, 19, 40
lean startup approach 26
lightweight management

method 15
linear model 6, 12, 121–124
loose coupling 91

M

management anti-pattern 66
Management Molecule 107
master story list 15, 19
MBTI (Myers-Briggs Type

Indicator) 106–107
measurements

defined 2–5
measuring practices instead

of results anti-pattern
67

metrics
backward-facing 4

defined 2–5
delivery mode and 7
estimation 132–134
false positives 108
forecasting 134–135
forward-facing 4–5
functions of 4
importance of 3
leading indicators 3
process model and 5–7
process-agnostic 65–66
root causes of problems and

72
trailing indicators 3
useless

motivational side effects of
metrics 161–162

overview 158–159
problematic metrics

159–160
selecting correct metrics

for process 160–161
understanding real mean-

ing of numbers 162
micromanagement 132
minimum marketable features

22, 144
morale 77, 93
more is less anti-pattern 55
motivational function 4
multiple metrics

erratic velocity but stable
delivery pattern

batch-oriented thinking
127

flow management 127
functional silos 127–128
habits 128–129
organizational structure

127
overview 124–126
technical practices 128

linear workflow packaged in
time-boxed iterations
pattern 121–124

periodic refactoring itera-
tions pattern

corrective action 111
overview 109–111

velocity good, but little deliv-
ered pattern

corrective action 119–121
development tools 114
functional silos 114–115
gaming velocity 116–119
Licensed to Mark Watson <nordickan@gmail.com>

168 INDEX
multiple metrics, velocity good,
but little delivered
pattern (continued)

governance processes 113
manual delivery pipeline

114
meetings 115–116
organizational structure

113
performance appraisals

115
process structure 114
resource constraints 113
scarce specialists 115
technical practices 116
time management 116

multiple planning horizons
132

multitasking 85–86
Myers-Briggs Type Indicator.

See MBTI

N

Niko Niko calendar
example of 92–94
Happy Camper pattern 94
Omega Wolf pattern 94–95
overview 92
in periodic refactoring itera-

tions pattern 109, 111
when to use 92
Zombie Team pattern 95–96

novice teams anti-pattern 20, 24
NTE (not-to-exceed) limit 26,

31
NVA (non-value-add) time

in active states 85–86
in queues 84

O

Omega Wolf pattern 94–95
ongoing development 7
organizational issues 151
overutilization 154

P

Pareto Principle 88
patterns

erratic velocity but stable
delivery pattern

batch-oriented
thinking 127

flow management 127
functional silos 127–128
habits 128–129
organizational structure

127
overview 124–126
technical practices 128

linear workflow packaged in
time-boxed iterations
pattern 121–124

periodic refactoring itera-
tions pattern

corrective action 111
overview 109–111

velocity good, but little deliv-
ered pattern

corrective action 119–121
development tools 114
functional silos 114–115
gaming velocity 116–119
governance processes 113
manual delivery pipeline

114
meetings 115–116
organizational structure

113
performance appraisals

115
process structure 114
resource constraints 113
scarce specialists 115
technical practices 116
time management 116

PCE (process cycle efficiency)
metric

causes of poor results 86–88
examples using 110, 149
NVA time

in active states 85–86
in queues 84

overview 82
typical ranges for 86
when to use 83–84

PDCA (plan-do-check-act)
cycle 80–81

percentage of scope complete
metric

adaptive approach usage
example 15–17
overview 19–20

anti-patterns 20
overview 11
traditional approach usage

example 12–15
overview 17–19

when to use 12

performance, basing on wishful
thinking 45–46

personality type profiles
anti-patterns 107
overview 105–106
when to use 106

plan-do-check-act cycle.
See PDCA cycle

planned value. See PV
planning buffer 31
pragmatic metrics 3
precision vs. accuracy 141
predictability

for adaptive methods
forecasting based on cycle

time 141–143
forecasting based on

velocity 139–141
overview 132, 136
percentage of planned

work completed
136–138

effects of high variation in
work item sizes

benefits of consistent
sizing 145–147

deployable units of work
144

overview 144–147
trackable units of work

145
effects of high WIP levels

defect density and WIP
152–154

effect on cycle time
147–152

measuring
estimation 132–134
forecasting 134–135
general discussion 132

stakeholder satisfaction and
131

tracking improvement in
72–73

for traditional methods 131–
132, 135

in unpredictable workflows
143–144

process cycle efficiency metric.
See PCE metric

process model 5–7, 161
product backlog 15, 19
production-ready 70
Project Manager role 1
PV (planned value) 22
Licensed to Mark Watson <nordickan@gmail.com>

169INDEX
Q

queues 84

R

refactoring
incremental 116
periodic refactoring itera-

tions pattern
corrective action 111
overview 109–111

reinforcing loop 154
relative sizing 18
reporting hours

approximations in 158
example of 157–158
overview 156–157

Requirements phase 51
resources 66
responsiveness, tracking 74–75
RFC (response for class) 90
rolling wave planning 132
RTF (running tested features)

metric
adaptive approach usage

33–34
anti-patterns 34
gaming velocity 117
overview 32
when to use 32

S

SBCE (set-based concurrent
engineering) 26

Schedule Performance Index.
See SPI

schedule variance. See SV
schedule, in triple constraint 5
scope

fixed 17
percentage of scope com-

plete metric
adaptive approach usage

15–17, 19–20
anti-patterns 20
overview 11
traditional approach

usage 12–15, 17–19
when to use 12

in triple constraint 5
SDLC (systems development

life cycle) 12

set-based concurrent engineer-
ing. See SBCE

seven axes of code quality
90–92

SLAs (service-level agreements)
127

special-cause variation 75, 141
SPI (Schedule Performance

Index) 62
sprints 136
stakeholders 35

pragmatic metrics and 3
predictability and 131

static code-analysis metrics
89–92

stories 36
story points 15, 18–19
Strengths Finder 106
stress 77
SV (schedule variance) 22, 62
swarming 75
systems development life cycle.

See SDLC

T

takt time metric 63
teams

comparing using velocity 46
focus for 155
initial velocity 44
low bus number 74
treating humans as resources

anti-pattern 66–67
technical debt 90
technical metrics 66
Testing phase 52
Theory of Constraints. See ToC
throughput metric

gaming velocity 117
issues with 86
overview 56
project implementation

57–59
when to use 56–57

time-boxed model 6, 39–40,
121–124, 162

time-to-market 124
ToC (Theory of

Constraints) 80–81
trackable units of work 145
traditional approach

budget burn metric 25–26
commitment 161

cumulative flow metric
60–61

cycle time metric 50–52
defined 4
earned value metric 21–23
mixing with adaptive

approach 20, 34
percentage of scope com-

plete metric
example using 12–15
overview 17–19

predictability for 131–132,
135

trailing indicators 3, 17, 19
treating humans as resources

anti-pattern 66–67
triple constraint 5, 17
trust 132
T-shaped people 114

U

use cases 144
useless metrics

motivational side effects of
metrics 161–162

overview 158–159
problematic metrics 159–160
selecting correct metrics for

process 160–161
understanding real meaning

of numbers 162
user stories 15, 18

defined 144
effects of high variation in

work item sizes
benefits of consistent

sizing 145–147
deployable units of work

144
overview 144–147
trackable units of

work 145

V

VA (value-add) time 84
value

earned business value metric
adaptive approach

usage 35–38
anti-patterns 38–39
overview 34–35
when to use 35
Licensed to Mark Watson <nordickan@gmail.com>

170 INDEX
value (continued)
earned value metric

anti-patterns 24
overview 21
traditional approach

usage 21–23
when to use 21

value stream map. See VSM
value units 56
value-add time. See VA time
variation in velocity 125
velocity metric

adaptive approach usage
40–41, 69–70

anti-patterns
comparing teams using

velocity 46
comparing velocity when

changing the process
model 71

instantaneous maximum
velocity 43–44

projected performance
based on wishful
thinking 45–46

relaxing definition of
"done" 70–71

setting targets for velocity
42, 70

using velocity for mixed
work flows 46–47

velocity as percentage
complete 42–43

erratic velocity but stable
delivery pattern

batch-oriented thinking
127

flow management 127
functional silos 127–128
habits 128–129
organizational structure

127
overview 124–126
technical practices 128

forecasting based on
139–141

overview 39, 68
in periodic refactoring itera-

tions pattern 109
variation in 125
velocity good, but little deliv-

ered pattern
corrective action 119–121
development tools 114
functional silos 114–115
gaming velocity 116–119
governance processes 113
manual delivery pipeline

114
meetings 115–116
organizational structure

113
performance appraisals

115
process structure 114
resource constraints 113
scarce specialists 115
technical practices 116
time management 116

when to use 39–40, 68
version control history metric

88–89
vertical slices 6
VSM (value stream map) 83

W

waterfall model 6, 12, 50
WBS (work breakdown

structure) 12, 17, 21,
133

WIP (work in process)
in CFDs 61
continuous flow and 6
effects of high levels of

defect density and
WIP 152–154

effect on cycle time
147–152

excesses of 74, 86
inventory of 127
mitigating erratic delivery

using 114
work breakdown structure.

See WBS
work in process. See WIP
work items 57
work packages 17, 22, 144
work queue 19

Y

yesterday's weather approach
138

Z

Zombie Team pattern 95–96,
111
Licensed to Mark Watson <nordickan@gmail.com>

RELATED MANNING TITLES
Kanban in Action
by Marcus Hammarberg and

Joakim Sundén

ISBN: 9781617291050
360 pages, $44.99
February 2014

The Mikado Method
by Ola Ellnestam and Daniel Brolund

ISBN: 9781617291210
240 pages, $44.99
February 2014

BDD in Action
Behavior-Driven Development for the whole
software lifecycle
by John Ferguson Smart

ISBN: 9781617291654
384 pages, $49.99
September 2014

Specification by Example
How Successful Teams Deliver the Right Software
by Gojko Adzic

ISBN: 9781617290084
296 pages, $49.99
June 2011
For ordering information go to www.manning.com

Licensed to Mark Watson <nordickan@gmail.com>

http://manning.com/hammarberg/
http://manning.com/ellnestam/
http://manning.com/smart/
http://manning.com/adzic/
http://manning.com/hammarberg/
http://manning.com/ellnestam/
http://manning.com/smart/
http://manning.com/adzic/

YOU MAY ALSO BE INTERESTED IN
Agile Metrics in Action
Measuring and enhancing the performance
of Agile teams
by Christopher W. H. Davis

ISBN: 9781617292484
325 pages, $44.99
June 2015

Groovy in Action, Second Edition
by Dierk König and Paul King

with Guillaume Laforge, Hamlet D’Arcy,
Cédric Champeau, Erik Pragt,
and Jon Skeet

ISBN: 9781935182443
912 pages, $59.99
June 2015

The Art of Unit Testing,
Second Edition
with examples in C#
by Roy Osherove

ISBN: 9781617290893
296 pages, $44.99
November 2013

Effective Unit Testing
A guide for Java developers
by Lasse Koskela

ISBN: 9781935182573
248 pages, $39.99
February 2013
For ordering information go to www.manning.com

Licensed to Mark Watson <nordickan@gmail.com>

http://manning.com/davis2/
http://manning.com/koskela2/
http://manning.com/koenig2/
http://manning.com/osherove2/
http://manning.com/osherove2/
http://manning.com/koskela2/
http://manning.com/koenig2/
http://manning.com/davis2/

David Nicolette

W
hen driving a car, you are less likely to speed, run out
of gas, or suffer engine failure because of the measure-
ments the car reports to you about its condition. De-

velopment teams, too, are less likely to fail if they are measur-
ing the parameters that matter to the success of their projects.
This book shows you how.

Software Development Metrics teaches you how to gather, ana-
lyze, and effectively use the metrics that defi ne your organiza-
tional structure, process models, and development methods.
The insights and examples in this book are based entirely on
fi eld experience. You’ll learn practical techniques like build-
ing tools to track key metrics and developing data-based early
warning systems. Along the way, you’ll learn which metrics
align with different development practices, including tradi-
tional and adaptive methods.

What’s Inside
● Identify the most valuable metrics for your team
 and process
● Differentiate “improvement” from “change”
● Learn to interpret and apply the data you gather
● Common pitfalls and anti-patterns

No formal experience with developing or applying metrics is
assumed.

Dave Nicolette is an organizational transformation consultant,
team coach, and trainer. Dave is active in the agile and lean
software communities.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/software-development-metrics

$47.99 / Can $55.99 [INCLUDING eBOOK]

Software Development Metrics

SOFTWARE ENGINEERING

M A N N I N G

“A real boon to those
making the transition from a
traditional serial development

model to an agile one.”—From the Foreword by
 George Dinwiddie

“Provides a solid foundation
for how to start measuring

 your development teams.”—Christopher W. H. Davis
Nike, Inc.

“Measurement is the key
to making and consistently
hitting scheduling targets.
This book will help you

confi dently build a
schedule that is accurate

 and defensible.”
—Shaun Lippy

Oracle Corporation

SEE INSERT

	contents
	foreword
	preface
	acknowledgments
	about this book
	Roadmap
	Downloadable spreadsheet
	Who should read this book?
	Author Online
	About the author
	About the cover illustration

	1 Making metrics useful
	1.1 Measurements and metrics
	1.1.1 What makes a metric “pragmatic”?
	1.1.2 Forward-facing and backward-facing metrics

	1.2 Factors affecting the choice of metrics
	1.2.1 Process model
	1.2.2 Delivery mode

	1.3 How the metrics are presented
	Name of the metric
	1.4 Summary

	2 Metrics for steering
	2.1 Metric: Percentage of scope complete
	2.1.1 When to use percentage of scope complete
	2.1.2 A traditional project
	2.1.3 An adaptive project
	2.1.4 How to use percentage of scope complete
	2.1.5 Anti-patterns

	2.2 Metric: Earned value
	2.2.1 When to use earned value
	2.2.2 A traditional project
	2.2.3 Anti-pattern: the novice team

	2.3 Metric: Budget burn
	2.3.1 When to use budget burn
	2.3.2 A traditional project
	2.3.3 An adaptive project using beyond budgeting
	2.3.4 Anti-pattern: agile blindness

	2.4 Metric: Buffer burn rate
	2.4.1 When to use buffer burn rate
	2.4.2 How to use buffer burn rate

	2.5 Metric: Running tested features
	2.5.1 When to use running tested features
	2.5.2 An adaptive project
	2.5.3 Anti-pattern: the easy rider

	2.6 Metric: Earned business value
	2.6.1 When to use earned business value
	2.6.2 An adaptive project
	2.6.3 Anti-patterns

	2.7 Metric: Velocity
	2.7.1 When to use velocity
	2.7.2 An adaptive project
	2.7.3 Anti-patterns

	2.8 Metric: Cycle time
	2.8.1 When to use cycle time
	2.8.2 An adaptive project with consistently sized work items
	2.8.3 An adaptive project with variable-sized work items
	2.8.4 A traditional project with phase gates

	2.9 Metric: Burn chart
	2.9.1 When to use burn charts
	2.9.2 How to use burn charts
	2.9.3 Anti-patterns

	2.10 Metric: Throughput
	2.10.1 When to use throughput
	2.10.2 A mixed-model project

	2.11 Metric: Cumulative flow
	2.11.1 When to use cumulative flow
	2.11.2 A traditional project

	2.12 Not advised
	2.12.1 Earned schedule
	2.12.2 Takt time

	2.13 Summary

	3 Metrics for improvement
	3.1 Process-agnostic metrics
	3.2 Technical metrics
	3.3 Human metrics
	3.4 General anti-patterns
	3.4.1 Treating humans as resources
	3.4.2 Measuring practices instead of results

	3.5 Metric: Velocity
	3.5.1 When to use velocity
	3.5.2 An adaptive project
	3.5.3 Anti-patterns

	3.6 Metric: Cycle time
	3.6.1 When to use cycle time
	3.6.2 Tracking improvement in predictability
	3.6.3 Tracking improvement in flow
	3.6.4 Tracking responsiveness to special-cause variation

	3.7 Metric: Burn chart
	3.7.1 When to use burn charts
	3.7.2 Adaptive development project using a time-boxed iterative process model

	3.8 Metric: Cumulative flow
	3.8.1 When to use a cumulative flow diagram
	3.8.2 An adaptive project

	3.9 Metric: Process cycle efficiency
	3.9.1 When to use process cycle efficiency
	3.9.2 Non-value-add time in queues
	3.9.3 Non-value-add time in active states
	3.9.4 What is normal PCE?
	3.9.5 Moving the needle

	3.10 Metric: Version control history
	3.10.1 When to use version control history

	3.11 Metric: Static code-analysis metrics
	3.11.1 When to use static code-analysis metrics

	3.12 Metric: Niko Niko calendar
	3.12.1 When to use the Niko Niko calendar
	3.12.2 Examples
	3.12.3 Happy Camper
	3.12.4 Omega Wolf
	3.12.5 Zombie Team

	3.13 Metric: Emotional seismogram
	3.13.1 When to use the emotional seismogram
	3.13.2 Examples

	3.14 Metric: Happiness index
	3.14.1 When to use the happiness index
	3.14.2 Mechanics

	3.15 Metric: Balls in bowls
	3.15.1 When to use the balls-in-bowls metric
	3.15.2 Mechanics

	3.16 Metric: Health and happiness
	3.16.1 When to use the health-and-happiness metric
	3.16.2 Mechanics

	3.17 Metric: Personality type profiles
	3.17.1 When to use personality profiles
	3.17.2 Anti-patterns

	3.18 Summary

	4 Putting the metrics to work
	4.1 Pattern 1: Periodic refactoring iterations
	4.2 Pattern 2: Velocity looks good, but little is delivered
	4.3 Pattern 3: Linear workflow packaged in time-boxed iterations
	4.4 Pattern 4: Erratic velocity but stable delivery
	4.5 Summary

	5 Planning predictability
	5.1 Predictability and stakeholder satisfaction
	5.1.1 Planning and traditional methods
	5.1.2 Planning and adaptive methods

	5.2 Measuring predictability
	5.2.1 Estimation
	5.2.2 Forecasting
	5.2.3 Predictability of traditional plans
	5.2.4 Predictability of adaptive plans

	5.3 Predictability in unpredictable workflows
	5.4 Effects of high variation in work item sizes
	5.4.1 Deployable units of work
	5.4.2 Trackable units of work
	5.4.3 Demonstrating the value of consistently sized work items

	5.5 Effects of high work-in-process levels
	5.5.1 Work in process, cycle time, process cycle efficiency, and throughput
	5.5.2 Work in process and defect density

	5.6 Summary

	6 Reporting outward and upward
	6.1 Reporting hours
	6.1.1 An example
	6.1.2 Aggregate numbers are approximate

	6.2 Reporting useless but mandated metrics
	6.2.1 Categories of problematic metrics
	6.2.2 Recognizing what’s really happening
	6.2.3 Beware of motivational side effects of metrics
	6.2.4 Understanding what the numbers mean

	6.3 Summary
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

	index

