

BCS,	THE	CHARTERED	INSTITUTE	FOR	IT

BCS,	The	Chartered	Institute	for	IT,	is	committed	to	making	IT	good	for	society.
We	use	the	power	of	our	network	to	bring	about	positive,	tangible	change.	We
champion	the	global	IT	profession	and	the	interests	of	individuals,	engaged	in
that	profession,	for	the	benefit	of	all.

Exchanging	IT	expertise	and	knowledge

The	Institute	fosters	links	between	experts	from	industry,	academia	and	business
to	promote	new	thinking,	education	and	knowledge	sharing.

Supporting	practitioners

Through	continuing	professional	development	and	a	series	of	respected	IT
qualifications,	the	Institute	seeks	to	promote	professional	practice	tuned	to	the
demands	of	business.	It	provides	practical	support	and	information	services	to	its
members	and	volunteer	communities	around	the	world.

Setting	standards	and	frameworks

The	Institute	collaborates	with	government,	industry	and	relevant	bodies	to
establish	good	working	practices,	codes	of	conduct,	skills	frameworks	and
common	standards.	It	also	offers	a	range	of	consultancy	services	to	employers	to
help	them	adopt	best	practice.

Become	a	member

Over	70,000	people	including	students,	teachers,	professionals	and	practitioners
enjoy	the	benefits	of	BCS	membership.	These	include	access	to	an	international

community,	invitations	to	a	roster	of	local	and	national	events,	career
development	tools	and	a	quarterly	thought-leadership	magazine.	Visit
www.bcs.org/membership	to	find	out	more.

Further	Information

BCS,	The	Chartered	Institute	for	IT,

First	Floor,	Block	D,

North	Star	House,	North	Star	Avenue,

Swindon,	SN2	1FA,	United	Kingdom.

T	+44	(0)	1793	417	424

F	+44	(0)	1793	417	444

(Monday	to	Friday,	09:00	to	17:00	UK	time)

www.bcs.org/contact

http://shop.bcs.org/

http://www.bcs.org/contact
http://shop.bcs.org/

©	BCS	Learning	&	Development	Ltd	2019

The	right	of	Brian	Hambling,	Peter	Morgan,	Angelina	Samaroo,	Geoff
Thompson	and	Peter	Williams	to	be	identified	as	authors	of	this	work	has	been
asserted	by	them	in	accordance	with	sections	77	and	78	of	the	Copyright,
Designs	and	Patents	Act	1988.

All	rights	reserved.	Apart	from	any	fair	dealing	for	the	purposes	of	research	or
private	study,	or	criticism	or	review,	as	permitted	by	the	Copyright	Designs	and
Patents	Act	1988,	no	part	of	this	publication	may	be	reproduced,	stored	or
transmitted	in	any	form	or	by	any	means,	except	with	the	prior	permission	in
writing	of	the	publisher,	or	in	the	case	of	reprographic	reproduction,	in
accordance	with	the	terms	of	the	licences	issued	by	the	Copyright	Licensing
Agency.	Enquiries	for	permission	to	reproduce	material	outside	those	terms
should	be	directed	to	the	publisher.

All	trade	marks,	registered	names	etc.	acknowledged	in	this	publication	are	the
property	of	their	respective	owners.	BCS	and	the	BCS	logo	are	the	registered
trade	marks	of	the	British	Computer	Society	charity	number	292786	(BCS).

Published	by	BCS	Learning	and	Development	Ltd,	a	wholly	owned	subsidiary	of
BCS,	The	Chartered	Institute	for	IT,	First	Floor,	Block	D,	North	Star	House,
North	Star	Avenue,	Swindon,	SN2	1FA,	UK.

www.bcs.org

Paperback	ISBN:	978-1-78017-492-1

PDF	ISBN:	978-1-78017-493-8

http://www.bcs.org

ePUB	ISBN:	978-1-78017-494-5

Kindle	ISBN:	978-1-78017-495-2

British	Cataloguing	in	Publication	Data.

A	CIP	catalogue	record	for	this	book	is	available	at	the	British	Library.

Disclaimer:

The	views	expressed	in	this	book	are	of	the	authors	and	do	not	necessarily	reflect
the	views	of	the	Institute	or	BCS	Learning	and	Development	Ltd	except	where
explicitly	stated	as	such.	Although	every	care	has	been	taken	by	the	authors	and
BCS	Learning	and	Development	Ltd	in	the	preparation	of	the	publication,	no
warranty	is	given	by	the	authors	or	BCS	Learning	and	Development	Ltd	as
publisher	as	to	the	accuracy	or	completeness	of	the	information	contained	within
it	and	neither	the	authors	nor	BCS	Learning	and	Development	Ltd	shall	be
responsible	or	liable	for	any	loss	or	damage	whatsoever	arising	by	virtue	of	such
information	or	any	instructions	or	advice	contained	within	this	publication	or	by
any	of	the	aforementioned.

Publisher’s	acknowledgements

Publisher:	Ian	Borthwick

Commissioning	editor:	Rebecca	Youé

Production	manager:	Florence	Leroy

Project	manager:	Sunrise	Setting	Ltd

Copy-editor:	Denise	Bannerman

Proofreader:	Barbara	Eastman

Indexer:	Matthew	Gale

Cover	design:	Alex	Wright

Picture	Credits:	mevans

Typeset	by	Lapiz	Digital	Services,	Chennai,	India.

CONTENTS

Figures	and	tables

Authors

Abbreviations

Preface

INTRODUCTION

Purpose	of	Foundation

The	Certified	Tester	Foundation	Level	syllabus

Relationship	of	the	book	to	the	syllabus

How	to	get	the	best	out	of	this	book

1.	THE	FUNDAMENTALS	OF	TESTING

Introduction

Why	software	fails

Keeping	software	under	control

What	testing	is	and	what	testing	does

General	testing	principles

Test	process

The	psychology	of	testing

Code	of	ethics

Summary

2.	LIFE	CYCLES

Introduction

Software	development	models

Test	levels

Test	types

Maintenance	testing

Summary

3.	STATIC	TESTING

Introduction

Background	to	static	testing

Work	products	that	can	be	examined	by	static	testing

Benefits	of	static	testing

Differences	between	static	and	dynamic	testing

Review	process

Work	product	review	process

Roles	and	responsibilities

Types	of	review

Applying	review	techniques

Summary

4.	TEST	TECHNIQUES

Introduction

The	test	development	process

The	idea	of	test	coverage

Categories	of	test	case	design	techniques

Choosing	test	techniques

Black-box	test	techniques

White-box	test	techniques

White-box	testing	in	detail

Experience-based	techniques

Summary

5.	TEST	MANAGEMENT

Introduction

Risk	and	testing

Test	organisation

Test	strategy	and	test	approaches

Test	planning	and	estimation

Entry	criteria	and	exit	criteria	(definition	of	‘ready’	or	definition	of	‘done’)

Test	execution	schedule

Factors	influencing	the	test	effort

Test	monitoring	and	control

Defect	management

Configuration	management

Summary

6.	TOOL	SUPPORT	FOR	TESTING

Introduction

What	is	a	test	tool?

Test	tools

Introducing	a	tool	into	an	organisation

Summary

7.	THE	EXAMINATION

The	examination

Revision	techniques

Review

APPENDICES

A1	Mock	CTFL	examination

A2	Mock	CTFL	examination	answers

A3	Mock	CTFL	examination	commentary

Index

LIST	OF	FIGURES	AND	TABLES

Figure	1.1	Effect	of	an	error

Figure	1.2	Resources	triangle

Figure	1.3	Effect	of	identification	time	on	cost	of	errors

Figure	1.4	A	generalised	test	process

Figure	1.5	Iteration	of	activities

Figure	2.1	Waterfall	model

Figure	2.2	V	model	for	software	development

Figure	2.3	Iterative	development

Figure	2.4	Top-down	control	structure

Figure	2.5	Bottom-up	integration

Figure	3.1	Stages	of	a	formal	review

Figure	3.2	Formality	of	reviews

Figure	4.1	State	transition	diagram	of	the	hill-walker’s	watch

Figure	4.2	State	transition	diagram

Figure	4.3	Use	case	example

Figure	4.4	Flow	chart	for	a	sequential	program

Figure	4.5	Flow	chart	for	a	selection	(decision)	structure

Figure	4.6	Flow	chart	for	an	iteration	(loop)	structure

Figure	4.7	Flow	chart	representation	for	Example	4.5

Figure	4.8	Control	flow	graph	showing	subgraphs	as	nodes

Figure	4.9	Control	flow	graph	with	subgraphs	expanded

Figure	4.10	Flow	chart	for	Coverage	example

Figure	4.11	The	hybrid	flow	graph

Figure	4.12	Paths	through	the	hybrid	flow	graph	example

Figure	4.13	Paths	through	the	hybrid	flow	graph	–	Example	4.6

Figure	4.14	Paths	through	the	hybrid	flow	graph	–	Example	4.7

Figure	4.15	Simplified	control	flow	graph:	a	decision

Figure	4.16	Simplified	control	flow	graph:	location	of	a	decision	in	a	loop

Figure	4.17	Example	of	how	simplified	control	flow	graphs	are	read	and
interpreted

Figure	4.18	Control	flow	graph	for	Exercise	4.11

Figure	4.19	Test	case	for	Exercise	4.13

Figure	4.20	Test	case	for	Exercise	4.14

Figure	4.21	Flow	chart	for	Exercise	4.6

Figure	4.22	Control	flow	graph	for	Exercise	4.6

Figure	5.1	Levels	of	independent	testing

Figure	5.2	Test	plans	in	the	V	model

Figure	5.3	A	high-level	test	execution	schedule

Figure	5.4	iTesting	executive	dashboard

Figure	5.5	Incidents	planned/raised

Figure	6.1	Test	tool	payback	model

Figure	6.2	Hotel	system	architecture

Figure	6.3	An	integrated	set	of	tools

Figure	6.4	Testing	of	daily	builds	using	a	set	of	test	tools

Figure	6.5	Test	execution	tools	payback	model

Figure	6.6	Test	harness	for	middleware

Figure	6.7	Test	tool	implementation	process

Table	1.1	Comparative	cost	to	correct	errors

Table	4.1	ST	for	the	hill-walker’s	watch

Table	5.1	Features	of	independent	testing

Table	5.2	Test	plan	sections

Table	5.3a	Test	progress	report	outline

Table	5.3b	Test	summary	report	outline

Table	6.1	Configuration	traceability

Table	6.2	Hotel	system	extract	(20/10/2018)

Table	6.3	Hotel	system	extract	(5/11/2018)

Table	6.4	Exit	criteria

Table	6.5	Types	of	test	tool

AUTHORS

Brian	Hambling	has	experienced	software	development	from	a	developer’s,
project	manager’s	and	quality	manager’s	perspective	in	a	career	spanning
over	35	years.	He	has	worked	in	areas	as	diverse	as	real-time	avionics,
legacy	systems	maintenance	and	ebusiness	strategies.	He	contributed	to	the
development	of	software	quality	standards	while	at	the	Ministry	of	Defence
and	later	became	the	head	of	systems	and	software	engineering	at	The
University	of	Greenwich.	He	was	technical	director	of	ImagoQA	and
general	manager	of	Microgen	IQA,	a	specialist	company	providing
consultancy	in	software	testing	and	quality	assurance	primarily	to	the
financial	services	sector.	He	is	now	concentrating	on	writing.

Peter	Morgan	was	a	freelance	testing	practitioner,	now	mainly	retired.	He
worked	as	a	hands-on	tester	for	a	number	of	years,	often	on	large	projects.
He	has	worked	in	many	business	sectors	in	the	UK	and	has	been	involved
with	the	examination	side	of	testing	since	taking	the	Foundation	Certificate
in	2001.	Peter	still	writes	exam	questions	and	regularly	reviews	course
submissions	of	testing	courses	on	behalf	of	the	UKTB,	looking	for	syllabus
compliance	and	to	see	that	potential	students	are	well	prepared	for	their
own	exams.

Angelina	Samaroo	has	a	degree	in	Aeronautical	Engineering	from	Queen
Mary	University	of	London.	She	is	a	Chartered	Engineer	and	Fellow	of	the
Institution	of	Engineering	and	Technology	(IET).	She	spent	10	years
working	on	the	mission	software	for	the	Tornado	ADV	fighter	jet.	During
this	time,	she	took	an	interest	in	the	career	development	of	new	engineers
and	led	the	company	graduate	development	scheme.	She	then	joined	a	small
consultancy	in	software	testing,	specialising	in	providing	training	to	test
professionals	worldwide.	She	now	works	for	Pinta	Education	Limited	and
provides	training	in	software	testing,	business	analysis	and	programming.

Geoff	Thompson	is	the	UK	Director	of	Testing	Services	for	Planit	Testing,
part	of	the	global	Planit	Testing	group.	In	this	role	he	is	able	to	champion
his	passion	for	software	testing,	test	management	and	process	improvement.
He	is	a	founder	member	of	the	International	Software	Testing	Qualification
Board	(ISTQB),	the	TMMi	Foundation,	and	the	UK	Testing	Board	and	is
currently	the	Vice	President	of	the	ISTQB	and	Chairman	of	the	UK	Testing
Board.	He	co-authored	the	BCS	book	Software	Testing	-	An	ISEB/ISTQB
foundation	and	is	a	recognized	international	speaker,	keynoting	in	many
conferences,	and	was	the	chair	of	EuroSTAR	2011.	He	is	a	founding
member	and	chairman	of	the	TMMi	Foundation	(see
www.tmmifoundation.org.uk)	In	2008	Geoff	was	awarded	the	European
Testing	Excellence	Award,	and	in	2015	he	was	awarded	the	Software	Testing
European	Lifetime	Achievement	award.

Peter	Williams	previously	worked	in	methods	and	systems	improvement
before	moving	into	systems	development	and	subsequently	software	testing.
He	has	been	a	self-employed	contract	test	manager	or	consultant	in	both
financial	services	and	the	public	sector.	He	has	evaluated	test	processes	and
subsequently	implemented	improvements,	at	various	organisations,
including	test	management	and	execution	tools	as	appropriate.	He	has	an
MSc	in	computing	from	the	Open	University	and	was	chairman	of	the
Examinations	Panel	for	the	ISEB	Foundation	Certificate	in	Software
Testing.

ABBREVIATIONS

ALM	Application	Life	Cycle	Management

API	Application	Program	Interface

ATDD	Acceptance	Test	Driven	Development

AUT	Application	Under	Test

BACS	Bankers	Automated	Clearing	Services

BDD	Behaviour	Driven	Development

CFG	Control	Flow	Graph

COTS	Commercial	Off-the-Shelf

CTFL	Certified	Tester	Foundation	Level

DOS	Denial	of	Service

DSL	Domain-Specific	Language

GUI	Graphical	User	Interface

ISEB	Information	Systems	Examination	Board

ISTQB	International	Software	Testing	Qualifications	Board

MISRA	Motor	Industry	Software	Reliability	Association

RUP	Rational	Unified	Process

SDLC	Software	Development	Life	Cycle

SIGiST	Specialist	Interest	Group	in	Software	Testing

SQL	Structured	Query	Language

ST	State	Table

SUT	System	Under	Test

TDD	Test	Driven	Development

UML	Unified	Modeling	Language

XML	Extensible	Markup	Language

PREFACE

When	I	started	work	on	the	first	edition	of	this	book	in	2006,	I	little	thought	that
I	would	be	drafting	a	preface	to	a	third	edition	in	2015.	My	fellow	authors	and	I
have	been	amazed	at	the	continuing	success	of	this	simple	guide	to
understanding	the	ISTQB	Foundation	Certificate	in	Software	Testing	and
passing	the	exam,	yet	feedback	from	readers	who	have	passed	the	exam	by	using
this	book	as	their	sole	preparation	has	been	steadily	amassing.

In	this	fourth	edition,	we	have	tried	to	provide	some	new	material	and	even
better	exam	preparation	resources.	Many	of	the	exercises,	examples	and	sample
questions	have	been	updated	to	reflect	the	way	the	exam	has	evolved	over	the
years,	and	for	this	edition	we	have	put	together	a	complete	mock	examination.
This	gives	commentary	to	explain	the	correct	answer	and	why	each	of	the
distracters	is	incorrect.	Moreover,	as	a	mock	exam,	the	candidates	can	time
themselves	to	check	they	are	prepared	for	the	real	thing.	We	think	that	this	is	a
major	improvement	on	previous	editions,	and	we	hope	you	will	find	it	really
useful.

INTRODUCTION

The	Foundation	Certificate	in	Software	Testing	was	introduced	as	part	of	the
BCS	Professional	Certification	portfolio	(formerly	ISEB)	in	1998;	since	then,
over	550,000	Foundation	Certificates	have	been	awarded.	An	Intermediate	Level
Certificate	was	introduced	in	2007	as	a	step	towards	the	more	advanced
Practitioner	Certificates.	(Visit	www.bcs.org/certifications	for	more	information.)

The	International	Software	Testing	Qualifications	Board	(ISTQB)
(www.istqb.org)	was	set	up	in	2001	to	offer	a	similar	certification	scheme	to	as
many	countries	as	wished	to	join	this	international	testing	community.	The	UK
was	a	founding	member	of	ISTQB	and,	in	2005,	adopted	the	ISTQB	Foundation
Certificate	syllabus	as	the	basis	of	examinations	for	the	Foundation	Certificate	in
the	UK.	The	Foundation	Certificate	is	now	an	entry	qualification	for	the	ISTQB
Advanced	Certificate.	The	Certified	Tester	Foundation	Level	(CTFL)	syllabus
has	been	updated	and	released	in	a	2018	version,	and	this	book	relates	to	the
2018	version	of	the	syllabus.

This	book	has	been	written	specifically	to	help	potential	candidates	for	the
ISTQB–BCS	CTFL	examination.	The	book	is	therefore	structured	to	support
learning	of	the	key	ideas	in	the	syllabus	quickly	and	efficiently	for	those	who	do
not	plan	to	attend	a	course,	and	to	support	structured	revision	for	anyone
preparing	for	the	exam.

In	this	introductory	chapter,	we	will	explain	the	nature	and	purpose	of	the
Foundation	Level	and	provide	an	insight	into	the	way	the	syllabus	is	structured
and	the	way	the	book	is	structured	to	support	learning	in	the	various	syllabus
areas.	Finally,	we	offer	guidance	on	the	best	way	to	use	this	book,	either	as	a
learning	resource	or	as	a	revision	resource.

PURPOSE	OF	FOUNDATION

The	CTFL	Certificate	is	the	first	level	of	a	hierarchy	of	ISTQB–BCS	certificates
in	software	testing,	and	leads	naturally	into	the	next	level,	known	as	the	BCS
Intermediate	Certificate	in	Software	Testing,	which	in	turn	leads	on	to	the
ISTQB	Advanced	Level,	followed	by	the	various	ISTQB	Expert	Level
examinations.

The	Foundation	Level	provides	a	very	broad	introduction	to	the	whole	discipline
of	software	testing.	As	a	result,	coverage	of	topics	is	variable,	with	some	only
briefly	mentioned	and	others	studied	in	some	detail.	The	arrangement	of	the
syllabus	and	the	required	levels	of	understanding	are	explained	in	the	next
section.

The	authors	of	the	syllabus	have	aimed	it	at	people	with	various	levels	of
experience	in	testing,	including	those	with	no	experience	at	all.	This	makes	the
certificate	accessible	to	those	who	are	or	who	aim	to	be	specialist	testers,	but
also	to	those	who	require	a	more	general	understanding	of	testing,	such	as
project	managers	and	software	development	managers.	One	specific	aim	of	this
qualification	is	to	prepare	certificate	holders	for	the	next	level	of	certification,
but	the	Foundation	Level	has	sufficient	breadth	and	depth	of	coverage	to	stand
alone.

THE	CERTIFIED	TESTER	FOUNDATION	LEVEL	SYLLABUS

Syllabus	content	and	structure

The	syllabus	is	broken	down	into	six	main	sections,	each	of	which	has	associated
with	it	a	minimum	contact	time	that	must	be	included	within	any	accredited
training	course:

1.	Fundamentals	of	testing	(175	minutes).

2.	Testing	throughout	the	Software	Development	Life	Cycle	(100	minutes).

3.	Static	testing	(135	minutes).

4.	Test	techniques	(330	minutes).

5.	Test	management	(225	minutes).

6.	Tool	support	for	testing	(40	minutes).

The	relative	timings	are	a	reliable	guide	to	the	amount	of	time	that	should	be

spent	studying	each	section	of	the	syllabus.

Each	section	of	the	syllabus	also	includes	a	list	of	learning	objectives	that
provides	candidates	with	a	guide	to	what	they	should	know	when	they	have
completed	their	study	of	a	section	and	a	guide	to	what	can	be	expected	to	be
asked	in	an	examination.	The	learning	objectives	can	be	used	to	check	that
learning	or	revision	is	adequate	for	each	topic.	In	the	book,	which	is	structured
around	the	syllabus	sections,	we	have	presented	the	learning	objectives	for	each
section	at	the	beginning	of	the	relevant	chapter,	and	the	summary	at	the	end	of
each	chapter	confirms	how	those	learning	objectives	have	been	addressed.

Finally,	each	topic	in	the	syllabus	has	associated	with	it	a	level	of	understanding,
represented	by	the	legend	K1,	K2	or	K3:

•Level	of	understanding	K1	is	associated	with	recall,	so	that	a	topic	labelled	K1
contains	information	that	a	candidate	should	be	able	to	remember	but	not
necessarily	use	or	explain.

•Level	of	understanding	K2	is	associated	with	the	ability	to	explain	a	topic	or	to
classify	information	or	make	comparisons.

•Level	of	understanding	K3	is	associated	with	the	ability	to	apply	a	topic	in	a
practical	setting.

The	level	of	understanding	influences	the	level	and	type	of	questions	that	can	be
expected	to	be	asked	about	that	topic	in	the	examination.	More	detail	about	the
question	style	and	about	the	examination	is	given	in	Chapter	7.	Example
questions,	written	to	the	level	and	in	the	formats	used	in	the	examination,	are

included	within	each	chapter	to	provide	generous	examination	practice,	and
there	is	a	complete	practice	examination	paper	in	Appendix	A,	with	answers	and
an	explanation	of	the	correct	response	to	each	question.

Syllabus	updates	and	changes

The	syllabus	was	last	updated	in	2018	and	the	book	is	in	line	with	the	changes
and	additions	introduced	in	that	version	of	the	syllabus.	An	extension	to	the
Foundation	syllabus	has	also	been	introduced	to	cover	a	significant	aspect	of
software	testing	that	has	grown	in	prominence	in	recent	years.	The	Foundation
Level	Extension	–	Agile	Tester	is	a	complete	new	syllabus	with	its	own	separate
examination	and	that	syllabus	is	not	addressed	in	this	book.

Throughout	this	book	you	will	find	references	to	different	testing	standards	that
form	reference	points	for	parts	of	the	ISTQB	Software	Testing	Foundation
syllabus.

In	the	2018	syllabus	and	in	this	book:

•ISO/IEC/IEEE	29119	replaces	IEEE	Standard	829.

•ISO/IEC	25010	replaces	ISO	9126.

•ISO/IEC	20246	replaces	IEEE	1028.

ISO/IEC/IEEE	29119	Software	testing	is	an	internationally	agreed	set	of
standards	for	software	testing	that	can	be	used	within	any	Software	Development
Life	Cycle	or	organisation.	There	are	currently	five	standards	within
ISO/IEC/IEEE	29119:

•ISO/IEC	29119-1:	Concepts	&	definitions	(published	September	2013)
facilitates	understanding	and	use	of	all	other	standards	and	the	vocabulary	used
within	the	29119	series.

•ISO/IEC	29119-2:	Test	processes	(published	September	2013)	defines	a	generic
process	model	for	software	testing	that	can	be	used	within	any	Software
Development	Life	Cycle.

•ISO/IEC	29119-3:	Test	documentation	(published	September	2013)	defines
templates	for	test	documentation	that	cover	the	entire	software	testing	life	cycle.

•ISO/IEC	29119-4:	Test	techniques	(published	December	2015)	defines	software
test	design	techniques	(also	known	as	test	case	design	techniques	or	test
methods).

•ISO/IEC	29119-5:	Keyword-driven	testing	(published	November	2016)	defines
an	international	standard	for	supporting	keyword-driven	testing.

RELATIONSHIP	OF	THE	BOOK	TO	THE	SYLLABUS

The	book	is	structured	into	chapters	that	mirror	the	sections	of	the	syllabus	so
that	you	can	work	your	way	through	the	whole	syllabus	or	select	topics	that	are
of	particular	interest	or	concern.	The	structure	enables	you	to	go	straight	to	the
place	you	need,	with	confidence	either	that	what	you	need	to	know	will	be
covered	there	and	nowhere	else,	or	that	relevant	cross	references	will	be
provided.

Each	chapter	of	the	book	incorporates	the	learning	objectives	from	the	syllabus
and	identifies	the	required	level	of	understanding	for	each	topic.	Each	chapter
also	includes	examples	of	typical	examination	questions	to	enable	you	to	assess
your	current	knowledge	of	a	topic	before	you	read	the	chapter,	and	further
questions	at	the	end	of	each	chapter	to	provide	practice	in	answering	typical
examination	questions.	Topics	requiring	a	K3	level	of	understanding	are
presented	with	worked	examples	as	a	model	for	the	level	of	application	expected
from	real	examination	questions.	Answers	are	provided	for	all	questions,	and	the
rationale	for	the	correct	answer	is	discussed	for	all	practice	questions.

A	final	chapter	explains	the	Foundation	Level	examination	strategy	and	provides
guidance	on	how	to	prepare	for	the	examination	and	how	to	manage	the
examination	experience	to	maximise	your	own	performance.

HOW	TO	GET	THE	BEST	OUT	OF	THIS	BOOK

This	book	is	designed	for	use	by	different	groups	of	people.	If	you	are	using	the
book	as	an	alternative	to	attending	an	accredited	course,	you	will	probably	find
the	first	method	of	using	the	book	described	below	to	be	of	greatest	value.	If	you
are	using	the	book	as	a	revision	aid,	you	may	find	the	second	approach	more
appropriate.	In	either	case,	you	would	be	well	advised	to	acquire	a	copy	of	the
syllabus	and	a	copy	of	the	sample	examination	paper	(both	available	free	from
www.istqb.org)	as	reference	documents,	though	neither	is	essential	and	the	book
stands	alone	as	a	learning	and	revision	aid.

Using	the	book	as	a	learning	aid

For	those	of	you	using	the	book	as	an	alternative	to	attending	an	accredited
course	the	first	step	is	to	familiarise	yourself	with	the	syllabus	structure	and
content	by	skim	reading	the	opening	sections	of	each	chapter,	where	the	learning
objectives	are	identified	for	each	topic.	You	may	then	find	it	helpful	to	turn	to
Chapter	7	and	become	familiar	with	the	structure	of	the	examination	and	the
types	and	levels	of	questions	that	you	can	expect	in	the	examination.	From	here
you	can	then	work	through	each	of	the	six	main	chapters	in	any	sequence	before
returning	to	Chapter	7	to	remind	yourself	of	the	main	elements	of	the
examination.

For	each	chapter	begin	by	attempting	the	self-assessment	questions	at	the
beginning	to	get	initial	confirmation	of	your	level	of	confidence	in	the	topics
covered	by	that	chapter.	This	may	help	you	to	prioritise	how	you	spend	your
time.	Work	first	through	the	chapters	where	your	knowledge	is	weakest,
attempting	all	the	exercises	and	following	through	all	the	worked	examples.
Read	carefully	through	the	chapters	where	your	knowledge	is	less	weak,	but	still
not	good	enough	to	pass	the	exam.	You	can	be	more	selective	with	exercises	and

examples	here,	but	make	sure	you	attempt	the	practice	questions	at	the	ends	of
the	chapters.	For	the	areas	where	you	feel	strong	you	can	use	the	chapter	for
revision	but	remember	to	attempt	the	practice	questions	to	confirm	positively
your	initial	assessment	of	your	level	of	knowledge.	Each	chapter	contains
‘checks	of	understanding’	between	sections	so	that	you	can	determine	whether
you	have	picked	up	the	key	points	from	that	section.	These	are	important;	if	you
find	you	cannot	answer	them,	you	would	be	wise	to	go	back	over	the	material	to
revise	anything	that	you	did	not	really	absorb	at	the	first	read.	There	is	also	a
summary	section	at	the	end	of	each	chapter	that	reiterates	the	learning
objectives,	so	reading	the	first	and	last	sections	of	a	chapter	will	help	you	to
understand	how	your	current	level	of	knowledge	relates	to	the	level	required	to
pass	the	examination.	The	best	confirmation	of	this	is	to	attempt	questions	at	the
appropriate	K	level	for	each	topic;	these	are	provided	throughout	the	book	and
there	is	a	complete	mock	examination	at	the	end	so	that	you	can	really	test
whether	you	are	ready	for	the	exam.

Using	the	book	as	a	revision	aid

If	you	are	using	this	book	for	final	revision,	perhaps	after	completing	an
accredited	course,	you	might	like	to	begin	by	using	a	selection	of	the	example
questions	at	the	end	of	each	chapter	as	a	‘revision	mock	examination’.	Appendix
A1	contains	a	complete	mock	exam,	with	all	the	answers	in	Appendix	A2,	which
will	provide	some	experience	of	answering	typical	questions	under	the	same
time	pressures	that	you	will	experience	in	the	real	examination,	and	this	will
provide	you	with	a	fairly	reliable	guide	to	your	current	state	of	readiness	to	take
the	real	examination.	You	can	also	discover	which	areas	most	need	revision	from
your	performance	in	the	mock	exam,	and	this	will	guide	you	as	you	plan	your
revision.	There	is	a	complete	question-by-question	commentary	on	the	mock
exam	in	Appendix	A3	so	that	you	can	identify	why	you	got	any	questions
wrong.

Revise	first	where	you	feel	weakest.	You	can	use	the	opening	sections	of	each
chapter,	containing	the	learning	objectives	and	the	self-assessment	questions,

together	with	the	‘Check	of	understanding’	provided	at	the	end	of	each	section,
and	the	chapter	summary	at	the	end	of	each	chapter,	to	refine	further	your
awareness	of	your	own	weaknesses.	From	here	you	can	target	your	studies	very
accurately.	Remember	that	every	K3	topic	will	have	at	least	one	worked	example
and	some	exercises	to	help	you	build	your	confidence	before	tackling	questions
at	the	level	set	in	the	real	examination.

You	can	get	final	confirmation	of	your	readiness	to	sit	the	real	examination	by
taking	the	sample	examination	paper	available	from	BCS.

1THE	FUNDAMENTALS	OF	TESTING

Peter	Morgan

If	you	were	buying	a	new	car,	you	would	not	expect	to	take	delivery	from	the
showroom	with	a	scratch	down	the	side	of	the	vehicle.	The	car	should	have	the
right	number	of	wheels	(including	a	‘spare’	for	emergencies),	a	steering	wheel,
an	engine	and	all	the	other	essential	components,	and	it	should	come	with
appropriate	documentation,	with	all	pre-sales	checks	completed	and	passed
satisfactorily.	The	car	you	receive	should	be	the	car	described	in	the	sales
literature;	it	should	have	the	correct	engine	size,	the	correct	colour	scheme	and
whatever	extras	you	have	ordered,	and	performance	in	areas	such	as	fuel
consumption	and	maximum	speed	should	match	published	figures.	In	short,	a
level	of	expectation	is	set	by	brochures,	by	your	experience	of	sitting	in	the
driving	seat	and	probably	by	a	test	drive.	If	your	expectations	are	not	met,	you
will	feel	justifiably	aggrieved.

This	kind	of	expectation	seems	not	to	apply	to	new	software	installations;
examples	of	software	being	delivered	not	working	as	expected,	or	not	working	at
all,	are	common.	Why	is	this?	There	is	no	single	cause	that	can	be	rectified	to
solve	the	problem,	but	one	important	contributing	factor	is	the	inadequacy	of	the
testing	to	which	software	applications	are	exposed.

Software	testing	is	neither	complex	nor	difficult	to	implement,	yet	it	is	a
discipline	that	is	seldom	applied	with	anything	approaching	the	necessary	rigour
to	provide	confidence	in	delivered	software.	Software	testing	is	costly	in	human
effort	or	in	the	technology	that	can	multiply	the	effect	of	human	effort,	yet	it	is
seldom	implemented	at	a	level	that	will	provide	any	assurance	that	software	will
operate	effectively,	efficiently	or	even	correctly.

This	book	explores	the	fundamentals	of	this	important	but	neglected	discipline	to
provide	a	basis	on	which	a	practical	and	cost-effective	software	testing	regime
can	be	constructed.

INTRODUCTION

In	this	opening	chapter	we	have	three	very	important	objectives	to	achieve.	First,
we	will	introduce	you	to	the	fundamental	ideas	that	underpin	the	discipline	of
software	testing,	and	this	will	involve	the	use	and	explanation	of	some	new
terminology.	Second,	we	will	establish	the	structure	that	we	have	used
throughout	the	book	to	help	you	to	use	the	book	as	a	learning	and	revision	aid.
Third,	we	will	use	this	chapter	to	point	forward	to	the	content	of	later	chapters.

The	key	ideas	of	software	testing	are	applicable	irrespective	of	the	software
involved	and	any	particular	development	methodology	(waterfall,	Agile	etc.).
Software	development	methodologies	are	discussed	in	detail	in	Chapter	2.

We	begin	by	defining	what	we	expect	you	to	get	from	reading	this	chapter.	The
learning	objectives	below	are	based	on	those	defined	in	the	Software	Foundation
Certificate	syllabus,	so	you	need	to	ensure	that	you	have	achieved	all	of	these
objectives	before	attempting	the	examination.

Learning	objectives

The	learning	objectives	for	this	chapter	are	listed	below.	You	can	confirm	that
you	have	achieved	these	by	using	the	self-assessment	questions	immediately
after	the	learning	objectives	listed	below,	the	‘Check	of	understanding’	boxes
distributed	throughout	the	text	and	the	example	examination	questions	provided
at	the	end	of	the	chapter.	The	chapter	summary	will	remind	you	of	the	key	ideas.

The	sections	are	allocated	a	K	number	to	represent	the	level	of	understanding
required	for	that	section;	where	an	individual	topic	has	a	lower	K	number	than
the	section	as	a	whole,	this	is	indicated	for	that	topic;	for	an	explanation	of	the	K
numbers,	see	the	Introduction.

What	is	testing?	(K2)

•FL-1.1.1	Identify	typical	objectives	of	testing.	(K1)

•FL-1.1.2	Differentiate	testing	from	debugging.

Why	is	testing	necessary?	(K2)

•FL-1.2.1	Give	examples	of	why	testing	is	necessary.

•FL-1.2.2	Describe	the	relationship	between	testing	and	quality	assurance	and
give	examples	of	how	testing	contributes	to	higher	quality.

•FL-1.2.3	Distinguish	between	error,	defect,	and	failure.

•FL-1.2.4	Distinguish	between	the	root	cause	of	a	defect	and	its	effects.

Seven	testing	principles	(K2)

•FL-1.3.1	Explain	the	seven	testing	principles.

Test	process	(K2)

•FL-1.4.1	Explain	the	impact	of	context	on	the	test	process.

•FL-1.4.2	Describe	the	test	activities	and	respective	tasks	within	the	test	process.

•FL-1.4.3	Differentiate	the	work	products	that	support	the	test	process.

•FL-1.4.4	Explain	the	value	of	maintaining	traceability	between	the	test	basis
and	test	work	products.

The	psychology	of	testing	(K2)

•FL-1.5.1	Identify	the	psychological	factors	that	influence	the	success	of	testing.
(K1)

•FL-1.5.2	Explain	the	difference	between	the	mindset	required	for	test	activities
and	the	mindset	required	for	development	activities.

Self-assessment	questions

The	following	questions	have	been	designed	to	enable	you	to	check	your	current
level	of	understanding	for	the	topics	in	this	chapter.	The	answers	are	at	the	end
of	the	chapter.

Question	SA1	(K2)

Which	of	the	following	correctly	describes	the	interdependence	between	an
error,	a	defect	and	a	failure?

a.	An	error	causes	a	failure	that	can	lead	to	a	defect.

b.	A	defect	causes	a	failure	that	can	lead	to	an	error.

c.	An	error	causes	a	defect	that	can	lead	to	a	failure.

d.	A	failure	causes	an	error	that	can	lead	to	a	defect.

Question	SA2	(K2)

An	online	site	where	goods	can	be	bought	and	sold	has	been	implemented.
Which	one	of	the	following	could	be	the	root	cause	of	a	defect?

a.	Customers	complain	that	the	time	taken	to	move	to	the	‘payments’	screen	is
too	long.

b.	The	lead	business	analyst	was	not	familiar	with	all	possible	permutations	of
customer	actions.

c.	Multiple	customers	can	buy	the	one	item	that	is	for	sale.

d.	There	is	no	project-wide	defect	tracking	system	in	use.

Question	SA3	(K2)

Which	of	the	following	illustrates	the	principle	of	defect	clustering?

a.	Testing	everything	in	most	cases	is	not	possible

b.	Even	if	no	defects	are	found,	testing	cannot	show	correctness.

c.	It	is	incorrect	to	assume	that	finding	and	fixing	a	large	number	of	defects	will
ensure	the	success	of	a	system.

d.	A	small	subset	of	the	code	will	usually	contain	most	of	the	defects	discovered
during	the	testing	phases.

WHY	SOFTWARE	FAILS

Examples	of	software	failure	are	depressingly	common.	Here	are	some	you	may
recognise:

•After	successful	test	flights	and	air	worthiness	accreditation,	problems	arose	in
the	manufacture	of	the	Airbus	A380	aircraft.	Assembly	of	the	large	subparts	into
the	completed	aircraft	revealed	enormous	cabling	and	wiring	problems.	The
wiring	of	large	subparts	could	not	be	joined	together.	It	has	been	estimated	that
the	direct	or	indirect	costs	of	rectification	were	$6.1	billion.	(Note:	this	problem
was	quickly	fixed	and	the	aircraft	entered	into	service	within	18	months	of	the
cabling	difficulties	being	identified.)

•When	the	UK	Government	introduced	online	filing	of	tax	returns,	a	user	could
sometimes	see	the	amount	that	a	previous	user	earned.	This	was	regardless	of	the
physical	location	of	the	two	applicants.

•In	November	2005,	information	on	the	UK’s	top	10	wanted	criminals	was
displayed	on	a	website.	The	publication	of	this	information	was	described	in
newspapers	and	on	morning	radio	and	television	and,	as	a	result,	many	people
attempted	to	access	the	site.	The	performance	of	the	website	proved	inadequate
under	this	load	and	it	had	to	be	taken	offline.	The	publicity	created	performance
peaks	beyond	the	capacity	of	the	website.

•A	new	smartphone	mapping	application	(app)	was	introduced	in	September
2012.	Among	many	other	problems,	a	museum	was	incorrectly	located	in	the
middle	of	a	river,	and	Sweden’s	second	city,	Gothenburg,	seemed	to	have
disappeared	from	at	least	one	map.

•Security	breaches	at	the	US	military	resulted	in	the	payment	details	of	many
personnel	(perhaps	even	‘all’)	being	compromised,	including	names,	addresses,
email	addresses	and	bank	details.

Perhaps	these	examples	are	not	the	same	as	the	notorious	final	payment	demands
for	‘zero	pounds	and	zero	pence’	of	some	utilities	customers	in	the	1970s.
However,	what	is	it	that	still	makes	them	so	startling?	Is	it	a	sense	that	something
fairly	obvious	was	missed?	Is	it	the	feeling	that,	expensive	and	important	as	they
were,	the	systems	were	allowed	to	enter	service	before	they	were	ready?	Do	you
think	these	systems	were	adequately	tested?	Obviously,	they	were	not	but	in	this
book	we	want	to	explore	why	this	was	the	case	and	why	these	kinds	of	failure
continue	to	plague	us.

To	understand	what	is	going	on	we	need	to	start	at	the	beginning,	with	the	people
who	design	systems.	Do	they	make	mistakes?	Of	course	they	do.	People	make
mistakes	because	they	are	fallible,	but	there	are	also	many	pressures	that	make
mistakes	more	likely.	Pressures	such	as	deadlines,	complexity	of	systems	and
organisations,	and	changing	technology	all	bear	down	on	designers	of	systems
and	increase	the	likelihood	of	defects	in	specifications,	in	designs	and	in
software	code.	Errors	are	where	major	system	failures	usually	begin.	An	error	is
best	thought	of	as	‘invisible’,	or	better	perhaps	as	intangible	–	you	cannot	touch
it.	It	is	an	incorrect	thought,	a	wrong	assumption,	or	a	thing	that	is	forgotten,	or
not	considered.	Only	when	something	is	written	down	can	it	become	‘a	fault’	or
a	defect.	So,	an	incorrect	choice	can	lead	to	a	document	with	a	defect	in	it,
which,	if	it	is	used	to	specify	a	component,	can	result	in	the	component	being
faulty	and	this	may	exhibit	incorrect	behaviour.	If	this	faulty	component	is	built
into	a	system,	the	system	may	fail.	While	failure	is	not	always	guaranteed,	it	is
likely	that	errors	in	the	thought	processes	as	specifications	are	produced	will	lead
to	faulty	components	and	faulty	components	will	cause	system	failure.

An	error	(or	mistake)	leads	to	a	defect	(or	fault),	which	can	cause	an	observed
failure	(Figure	1.1).

Figure	1.1	Effect	of	an	error

There	are	other	reasons	why	systems	fail.	Environmental	conditions	such	as	the
presence	of	radiation,	magnetism,	electronic	fields	or	pollution	can	affect	the
operation	of	hardware	and	firmware	and	lead	to	system	failure.

It	is	worth	pointing	out	at	this	stage	that	not	every	apparent	failure	is	a	real
failure	–	something	appears	to	be	a	failure	in	the	software,	but	the	observed
behaviour	is	correct.	Perhaps	the	tester	that	created	the	test	misunderstood	what
should	happen	in	the	precise	circumstances.	When	an	apparent	failure	in	test	is
actually	the	application	or	system	performing	correctly,	this	is	termed	a	false
positive.	Conversely,	a	false	negative	is	where	there	is	a	real	failure,	but	this	is
not	identified	as	such	and	the	test	is	seen	as	correct.

If	we	want	to	avoid	failure,	we	must	either	avoid	errors	and	faults	or	find	them
and	rectify	them.	Testing	can	contribute	to	both	avoidance	and	rectification,	as
we	will	see	when	we	have	looked	at	the	testing	process	in	a	little	more	detail.
One	thing	is	clear:	if	we	wish	to	identify	errors	through	testing	we	need	to	begin
testing	as	soon	as	we	begin	making	errors	–	right	at	the	beginning	of	the
development	process	–	and	we	need	to	continue	testing	until	we	are	confident
that	there	will	be	no	serious	system	failures	–	right	at	the	end	of	the	development
process.

Before	we	move	on,	let	us	just	remind	ourselves	of	the	importance	of	what	we
are	considering.	Incorrect	software	can	harm:

•people	(e.g.	by	causing	an	aircraft	crash	in	which	people	die,	or	by	causing	a
hospital	life	support	system	to	fail);

•companies	(e.g.	by	causing	incorrect	billing,	which	results	in	the	company

losing	money);

•the	environment	(e.g.	by	releasing	chemicals	or	radiation	into	the	atmosphere).

Software	failures	can	sometimes	cause	all	three	of	these	at	once.	The	scenario	of
a	train	carrying	nuclear	waste	being	involved	in	a	crash	has	been	explored	to
help	build	public	confidence	in	the	safety	of	transporting	nuclear	waste	by	train.
A	failure	of	the	train’s	on-board	systems,	or	of	the	signalling	system	that	controls
the	train’s	movements,	could	lead	to	catastrophic	results.	This	may	not	be	likely
(we	hope	it	is	not)	but	it	is	a	possibility	that	could	be	linked	with	software
failure.	Software	failures,	then,	can	lead	to:

•loss	of	money;

•loss	of	time;

•loss	of	business	reputation;

•injury;

•death.

KEEPING	SOFTWARE	UNDER	CONTROL

With	all	of	the	examples	we	have	seen	so	far,	what	common	themes	can	we
identify?	There	may	be	several	themes	that	we	could	draw	out	of	the	examples,
but	one	theme	is	clear:	either	insufficient	testing	or	the	wrong	type	of	testing	was
done.	More	and	better	software	testing	seems	a	reasonable	aim,	but	that	aim	is
not	quite	as	simple	to	achieve	as	we	might	expect.

Exhaustive	testing	of	complex	systems	is	not	possible

The	launch	of	the	smartphone	app	occurred	at	the	same	time	as	a	new	phone
hardware	platform	–	the	new	app	was	only	available	on	the	new	hardware	for
what	many	would	recognise	as	the	market	leader	at	that	time.	The	product
launch	received	extensive	worldwide	coverage,	with	the	mapping	app	given	a
prominent	place	in	launch	publicity.	In	a	matter	of	hours	there	were	tens	of
thousands	of	users,	and	numbers	quickly	escalated,	with	many	people	wanting	to
see	their	location	in	the	new	app	and	see	how	this	compared	with	(for	example)
Google	Maps.	Each	phone	user	was	an	expert	in	his/her	location	–	after	all	they
lived	there,	and	‘test	cases’	were	generated	showing	that	problems	existed.

If	every	possible	test	had	been	run,	problems	would	have	been	detected	and
rectified	prior	to	the	product	launch.	However,	if	every	test	had	been	run,	the
testing	would	still	be	running	now,	and	the	product	launch	would	never	have
taken	place;	this	illustrates	one	of	the	general	principles	of	software	testing,
which	are	explained	below.	With	large	and	complex	systems,	it	will	never	be
possible	to	test	everything	exhaustively;	in	fact,	it	is	impossible	to	test	even
moderately	complex	systems	exhaustively.

For	the	mapping	app,	it	would	be	unhelpful	to	say	that	not	enough	testing	was
done;	for	this	particular	project,	and	for	many	others	of	similar	complexity,	that
would	certainly	always	be	the	case.	Here	the	problem	was	that	the	right	sort	of
testing	was	not	done	because	the	problems	had	not	been	detected.

Testing	and	risk

Risk	is	inherent	in	all	software	development.	The	system	may	not	work	or	the
project	to	build	it	may	not	be	completed	on	time,	for	example.	These
uncertainties	become	more	significant	as	the	system	complexity	and	the
implications	of	failure	increase.	Intuitively,	we	would	expect	to	test	an	automatic
flight	control	system	more	than	we	would	test	a	video	game	system.	Why?
Because	the	risk	is	greater.	There	is	a	greater	probability	of	failure	in	the	more
complex	system	and	the	impact	of	failure	is	also	greater.	What	we	test,	and	how
much	we	test	it,	must	be	related	in	some	way	to	the	risk.	Greater	risk	implies
more	and	better	testing.

There	is	much	more	on	risk	and	risk	management	in	Chapter	5.

Testing	and	quality

Quality	is	notoriously	hard	to	define.	If	a	system	meets	its	users’	requirements,
that	constitutes	a	good	starting	point.	In	the	examples	we	looked	at	earlier,	the
online	tax	returns	system	had	an	obvious	functional	weakness	in	allowing	one
user	to	view	another	user’s	details.	While	the	user	community	for	such	a	system
is	potentially	large	and	disparate,	it	is	hard	to	imagine	any	user	that	would	find
that	situation	anything	other	than	unacceptable.	In	the	top	10	criminals	example,
the	problem	was	slightly	different.	There	was	no	failure	of	functionality	in	this
case;	the	system	was	simply	swamped	by	requests	for	access.	This	is	an	example

of	a	non-functional	failure,	in	that	the	system	was	not	able	to	deliver	its	services
to	its	users	because	it	was	not	designed	to	handle	the	peak	load	that	materialised
after	radio	and	TV	coverage.

The	problems	with	the	Airbus	A380	aircraft	is	an	interesting	story,	because
although	completed	subparts	could	not	be	brought	together	to	build	an	entire
aircraft,	each	of	the	subparts	was	‘correctly	manufactured’.	Aircraft	are
increasingly	sophisticated,	and	the	A380	aircraft	has	approximately	530	km	of
cables,	100,000	wires	and	40,300	connectors.	Software	is	used	both	to	design	the
aircraft	and	in	the	manufacture.	However,	the	large	subparts	were	made	in	two
different	counties,	with	different	versions	of	the	software	in	each	manufacturing
base.	So,	when	Airbus	was	bringing	together	two	halves	of	the	aircraft,	the
different	software	meant	that	the	wiring	on	one	did	not	match	the	wiring	on	the
other.	The	cables	could	not	meet	up	without	being	changed.	Testing	may	have
taken	place,	but	it	did	not	test	something	as	straightforward	as	the	versions	of	the
design	software	and	whether	they	were	compatible	(which	in	this	case	they	were
plainly	not).	Each	large	subpart	was	built	according	to	its	own	version	of	the
CATIA	(Computer	Aided	Three-Dimensional	Interactive	Application)	software.
The	result	did	not	give	an	aircraft	that	could	fly.

Of	course,	the	software	development	process,	like	any	other,	must	balance
competing	demands	for	resources.	If	we	need	to	deliver	a	system	faster	(i.e.	in
less	time),	for	example,	it	will	usually	cost	more.	The	items	at	the	corners	(or
vertices)	of	the	triangle	of	resources	in	Figure	1.2	are	time,	money	and	quality.
These	three	items	affect	one	another,	and	also	influence	the	features	that	are	or
are	not	included	in	the	delivered	software.

Figure	1.2	Resources	triangle

One	role	for	testing	is	to	ensure	that	key	functional	and	non-functional
requirements	are	examined	before	the	system	enters	service	and	any	defects	are
reported	to	the	development	team	for	rectification.	Testing	cannot	directly
remove	defects,	nor	can	it	directly	enhance	quality.	By	reporting	defects,	it
makes	their	removal	possible	and	so	contributes	to	the	enhanced	quality	of	the
system.	In	addition,	the	systematic	coverage	of	a	software	product	in	testing
allows	at	least	some	aspects	of	the	quality	of	the	software	to	be	measured.
Testing	is	one	component	in	the	overall	quality	assurance	activity	that	seeks	to
ensure	that	systems	enter	service	without	defects	that	can	lead	to	serious	failures.

Deciding	when	‘enough	is	enough’

How	much	testing	is	enough,	and	how	do	we	decide	when	to	stop	testing?

We	have	so	far	decided	that	we	cannot	test	everything,	even	if	we	would	wish	to.
We	also	know	that	every	system	is	subject	to	risk	of	one	kind	or	another	and	that
there	is	a	level	of	quality	that	is	acceptable	for	a	given	system.	These	are	the
factors	we	will	use	to	decide	how	much	testing	to	do.

The	most	important	aspect	of	achieving	an	acceptable	result	from	a	finite	and
limited	amount	of	testing	is	prioritisation.	Do	the	most	important	tests	first	so
that	at	any	time	you	can	be	certain	that	the	tests	that	have	been	done	are	more
important	than	the	ones	still	to	be	done.	Even	if	the	testing	activity	is	cut	in	half,
it	will	still	be	true	that	the	most	important	testing	has	been	done.	The	most
important	tests	will	be	those	that	test	the	most	important	aspects	of	the	system:
they	will	test	the	most	important	functions	as	defined	by	the	users	or	sponsors	of
the	system,	and	the	most	important	non-functional	behaviour,	and	they	will
address	the	most	significant	risks.

The	next	most	important	aspect	is	setting	criteria	that	will	give	you	an	objective
test	of	whether	it	is	safe	to	stop	testing,	so	that	time	and	all	the	other	pressures	do
not	confuse	the	outcome.	These	criteria,	usually	known	as	completion	criteria,
set	the	standards	for	the	testing	activity	by	defining	areas	such	as	how	much	of
the	software	is	to	be	tested	(this	is	covered	in	more	detail	in	Chapter	4)	and	what
levels	of	defects	can	be	tolerated	in	a	delivered	product	(which	is	covered	in
more	detail	in	Chapter	5).

Priorities	and	completion	criteria	provide	a	basis	for	planning	(which	will	be
covered	in	Chapter	2	and	Chapter	5)	but	the	triangle	of	resources	in	Figure	1.2
still	applies.	In	the	end,	the	desired	level	of	quality	and	risk	may	have	to	be
compromised,	but	our	approach	ensures	that	we	can	still	determine	how	much
testing	is	required	to	achieve	the	agreed	levels	and	we	can	still	be	certain	that
any	reduction	in	the	time	or	effort	available	for	testing	will	not	affect	the	balance
–	the	most	important	tests	will	still	be	those	that	have	already	been	done
whenever	we	stop.

CHECK	OF	UNDERSTANDING

1.	Describe	the	interaction	between	errors,	defects	and	failures.

2.	Software	failures	can	cause	losses.	Give	three	consequences	of	software
failures.

3.	What	are	the	vertices	of	the	‘triangle	of	resources’?

WHAT	TESTING	IS	AND	WHAT	TESTING	DOES

So	far,	we	have	worked	with	an	intuitive	idea	of	what	testing	is.	We	have
recognised	that	it	is	an	activity	used	to	reduce	risk	and	improve	quality	by
finding	defects,	which	is	all	true.	There	are	indeed	many	different	definitions	of
‘testing’	when	applied	to	software.	Here	is	one	that	we	have	found	useful	–	but
don’t	worry:	you	are	not	expected	to	remember	it!

Testing	is	the	systematic	and	methodical	examination	of	a	work	product	using	a
variety	of	techniques,	with	the	express	intention	of	attempting	to	show	that	it
does	not	fulfil	its	desired	or	intended	purpose.	This	is	undertaken	in	an
environment	that	represents	most	nearly	that	which	will	be	used	in	live
operation.

Like	other	definitions	of	testing,	it	is	not	perfect.	But	it	does	point	the	way	to
material	that	will	be	covered	in	later	chapters	of	this	book,	including:

•systematic	–	it	has	to	be	planned	(Chapter	5);

•methodical	–	it	is	a	process	(throughout,	but	initially	later	in	this	chapter);

•work	product	–	it	is	not	just	code	that	is	examined	(Chapter	3);

•variety	of	techniques	(Chapter	4).

Any	definition	of	testing	has	limitations!	The	definition	depends	upon	the
aim(s)	or	goals	of	that	testing,	or	indeed	the	testing	of	that	application.	For
not	all	testing	has	the	same	aim,	and	the	aim	of	testing	can	vary	through	the
Software	Development	Life	Cycle.

So,	what	does	testing	aim	to	do?	Here	are	some	of	the	principle	reasons:

•to	examine	work	products	(note	it	is	‘work	product’;	as	well	as	code,	this	can
include	requirements,	user	stories	and	the	overall	design,	amongst	other	items);

•to	check	if	all	the	requirements	have	been	satisfied;

•to	see	whether	the	item	under	test	is	complete,	and	works	as	the	users	and	other
stakeholders	expect;

•to	instil	confidence	in	the	quality	of	the	item	under	test;

•to	prevent	defects	–	testing	can	not	only	‘catch’	defects,	but	sometimes	stop
them	happening	in	the	first	place;

•to	find	failures	and	defects	and	prevent	these	reaching	the	production	version	of
the	software.	Often	this	is	the	first	item	that	people	will	list;

•to	give	sufficient	information	to	enable	decision	makers	to	make	decisions,
perhaps	about	whether	the	software	product	is	suitable	for	release;

•to	reduce	the	level	of	risk	of	inadequate	software	quality	(e.g.	previously
undetected	failures	occurring	in	operation);

•to	comply	with	contractual,	legal	or	regulatory	requirements	or	standards.	Some
standards	require,	for	example,	80	per	cent	decision	coverage	to	be	shown	by
testing.

Testing	can	therefore	be	a	multifaceted	activity.	However,	we	need	to	understand
a	little	more	about	how	software	testing	works	in	practice	before	we	can	think
about	how	to	implement	effective	testing.

Before	that	though,	we	will	sum	up	what	testing	is,	by	looking	at	a	few	of	the
key	terms	or	definitions	that	are	relevant	to	this	opening	chapter.	Remember,	the
keywords	that	are	given	in	the	syllabus	for	this	section	of	material	can	be	used	in
examination	questions,	where	a	clear	understanding	of	the	meaning	of	the	terms
is	required.	Testing	relies	upon	an	understanding	of	what	the	system,	application
or	utility	is	meant	to	achieve.	This	is	usually,	but	not	always,	written	down,
perhaps	in	a	requirements	document,	in	a	description	of	the	house	style	of	web
applications	in	the	company,	or	in	the	interface	definitions	that	are	required	for
external	systems.	This	body	of	knowledge	is	termed	the	test	basis;	testing	has	the
test	basis	as	a	key	starting	point	for	what	to	test	and	how	to	test.	Within	the	test
basis,	there	are	descriptions	of	what	should	happen	under	certain	circumstances
–	‘if	the	user-name	and	password	combination	is	incorrect,	display	an	error
message,	and	request	that	the	operator	tries	again,	and	if	the	details	are	incorrect
on	the	third	attempt,	lock	the	user	account’.	Such	descriptions	are	called	test
conditions	–	what	will	happen	as	a	consequence	of	previous	choices	or	actions.
Test	conditions	give	the	circumstances,	but	not	usually	the	values	required	to	run
a	test.	The	user-name	or	password	may	indeed	be	incorrect,	but	the	specific
values	to	be	used	are	given	in	a	test	case.	A	test	case	is	derived	from	one	or	more

test	conditions	and	describes	in	some	detail	what	is	required	to	enter	into	the
application	or	system,	and	most	importantly,	what	the	expected	outcome	is,	so
that	we	know	whether	the	test	is	successful	or	not	(has	‘passed’	or	‘failed’).	In
many	instances,	there	are	preconditions	that	must	be	in	place	before	one	or	more
particular	test	cases	can	be	run	and	actions	that	are	to	be	done	when	the	test	case
or	cases	have	been	run.	This	is	called	a	test	procedure.	Here	are	the	definitions	of
these	four	terms,	taken	from	the	ISTQB	glossary

Test	basis: The	body	of	knowledge	used	as	the	basis	for	test	analysis	and	design.

Test	condition: An	aspect	of	the	test	basis	that	is	relevant	in	order	to	achieve	specific	test	objectives.

Test	case: A	set	of	preconditions,	inputs,	actions	(where	applicable),	expected	results	and	postconditions,	developed	based	on	test	conditions.

Test	procedure:A	sequence	of	test	cases	in	execution	order,	and	any	associated	actions	that	may	be	required	to	set	up	the	initial	pre-conditions	and	any	wrap	up	activities	post	execution.

Testing	and	debugging

Testing	and	debugging	are	different	kinds	of	activity,	both	of	which	are	very
important.	Debugging	is	the	process	that	developers	go	through	to	identify	the
cause	of	bugs,	or	defects	in	code,	and	undertake	corrections.	Ideally,	some	check
of	the	correction	is	made,	but	this	may	not	extend	to	checking	that	other	areas	of
the	system	have	not	been	inadvertently	affected	by	the	correction.	Testing,	on	the
other	hand,	is	a	systematic	exploration	of	a	component	or	system	with	the	main
aim	of	finding	and	reporting	defects.	Testing	does	not	include	correction	of
defects	–	these	are	passed	on	to	the	developer	to	correct.	Testing	does,	however,
ensure	that	changes	and	corrections	are	checked	for	their	effect	on	other	parts	of
the	component	or	system.

Usually,	developers	will	have	undertaken	some	initial	testing	(and	taken
appropriate	corrective	action	as	necessary	–	debugging)	to	raise	the	level	of
quality	of	the	component	or	system	to	a	level	that	is	worth	testing;	that	is,	a	level
that	is	sufficiently	robust	to	enable	rigorous	testing	to	be	performed.	Debugging
does	not	give	confidence	that	the	component	or	system	meets	its	requirements
completely.	Testing	makes	a	rigorous	examination	of	the	behaviour	of	a
component	or	system	and	reports	all	defects	found	for	the	development	team	to
correct.	Testing	then	repeats	enough	tests	to	ensure	that	defect	corrections	have
been	effective.	So,	both	are	needed	to	achieve	a	quality	result.

While	it	is	generally	true	that	testers	test,	and	developers	undertake	debugging
action,	this	is	not	always	so	clear-cut.	In	some	software	development
methodologies	(typically	Agile	development,	but	not	restricted	to	this),	testers
are	routinely	involved	in	both	component	testing	and	debugging	activities.

Defects,	effects	and	root	causes

We	talked	earlier	about	the	differences	and	interconnections	between	an	error,	a
defect	and	a	failure.	There	is	a	similar	relationship	between	the	root	cause	of	a
defect,	a	description	of	the	defect	and	the	effect	(or	manifestation)	of	the	defect.
Indeed,	some	organisations	routinely	undertake	root	cause	analysis	of	defects,
with	the	aim	of	preventing	similar	problems	happening	in	the	future.	It	is
important	to	realise	that	similar	or	even	identical	defects	can	have	completely
different	root	causes.

The	defect	is	what	is	wrong	(an	incorrect	calculation	of	interest	rates),	the	effect
is	how	this	appears	(an	angry	customer	who	is	charged	too	much),	and	the	root
cause	is	why	the	defect	came	about	(an	incorrect	understanding	by	the	business
lead	of	how	long-term	interest	rates	are	to	be	calculated).	So,	in	considering
defects	it	is	important	to	distinguish	between	the	root	cause	(the	‘why’)	and	the
effects	(the	‘what	happened’)	of	a	defect.

Testing	and	quality	assurance

Testing	is	part	of	Quality	Control,	which	itself	is	part	of	Quality	Management.
However,	as	we	shall	see,	Quality	Control	encompasses	MORE	than	testing.
Quality	Management	comprises	both	Quality	Control	and	Quality	Assurance.
Quality	Assurance	is	about	making	sure	that	processes	are	undertaken	correctly.
If	processes	are	carried	out	correctly,	there	is	a	greater	likelihood	that	the	end
product	will	be	better.	Quality	Control	is	about	seeing	whether	the	desired	level
of	quality	is	being	achieved	(and	if	not,	doing	something	about	it).	So	testing	is
part	of	Quality	Control	(checking	the	quality	of	something	–	in	this	case,	the
software	under	test),	but	it	does	not	necessarily	have	a	part	to	play	in	courses	of
action	if	the	quality	does	not	match	the	desired	level.	And	of	course,	checking
quality	can	be	undertaken	in	ways	other	than	testing	(e.g.	questionnaires	can	be
used).

Static	testing	and	dynamic	testing

Static	testing	is	the	term	used	for	testing	when	the	code	is	not	exercised.	This
may	sound	strange	but	remember	that	failures	often	begin	with	a	human	error,
namely	a	wrong	way	of	thinking	or	an	incorrect	assumption	(an	error)	when
producing	a	document	such	as	a	specification	(which	will	then	have	a	defect	in
it).	We	need	to	test	as	early	as	possible	because	errors	are	much	cheaper	to	fix
than	defects	or	failures	(as	you	will	see).	We	discussed	earlier	that	errors	are
intangible,	but	the	earlier	we	find	something	that	is	incorrect,	the	easier	(and
cheaper)	it	is	to	fix.	That	is	why	testing	should	start	as	early	as	possible	(another
basic	principle	explained	in	more	detail	later	in	this	chapter).	Static	testing
involves	techniques	such	as	reviews,	which	can	be	effective	in	preventing
defects	in	the	resulting	software;	for	example,	by	removing	ambiguities,
omissions	and	faults	from	specification	documents.	This	a	topic	in	its	own	right
and	is	covered	in	detail	in	Chapter	3.	Dynamic	testing	is	the	kind	that	exercises
the	program	under	test	with	some	test	data,	so	we	speak	of	test	execution	in	this
context.	The	discipline	of	software	testing	encompasses	both	static	and	dynamic
testing.

Testing	as	a	process

We	have	already	seen	that	there	is	much	more	to	testing	than	test	execution.
Before	test	execution,	there	is	some	preparatory	work	to	do	to	design	the	tests
and	set	them	up;	after	test	execution,	there	is	some	work	needed	to	record	the
results	and	check	whether	the	tests	are	complete.	Even	more	important	than	this
is	deciding	what	we	are	trying	to	achieve	with	the	testing	and	setting	clear
objectives	for	each	test.	A	test	designed	to	give	confidence	that	a	program
functions	according	to	its	specification,	for	example,	will	be	quite	different	from
one	designed	to	find	as	many	defects	as	possible.	We	define	a	test	process	to
ensure	that	we	do	not	miss	critical	steps	and	that	we	do	things	in	the	right	order.
We	will	return	to	this	important	topic	later,	when	we	explain	a	generalised	test
process	in	detail.

Testing	as	a	set	of	techniques

The	final	challenge	is	to	ensure	that	the	testing	we	do	is	effective	testing.	It
might	seem	paradoxical,	but	a	good	test	is	one	that	finds	a	defect	if	there	is	one
present.	A	test	that	finds	no	defect	has	consumed	resources	but	added	no	value;	a
test	that	finds	a	defect	has	created	an	opportunity	to	improve	the	quality	of	the
product.	How	do	we	design	tests	that	find	defects?	We	actually	do	two	things	to
maximise	the	effectiveness	of	the	tests.	First,	we	use	well-proven	test	design
techniques,	and	a	selection	of	the	most	important	of	these	is	explained	in	detail
in	Chapter	4.	The	techniques	are	all	based	on	certain	testing	principles	that	have
been	discovered	and	documented	over	the	years,	and	these	principles	are	the
second	mechanism	we	use	to	ensure	that	tests	are	effective.	Even	when	we
cannot	apply	rigorous	test	design	for	some	reason	(such	as	time	pressures),	we
can	still	apply	the	general	principles	to	guide	our	testing.	We	turn	to	these	next.

CHECK	OF	UNDERSTANDING

1.	Describe	static	testing	and	dynamic	testing.

2.	What	is	debugging?

3.	What	other	elements	apart	from	‘test	execution’	are	included	in	‘testing’?

GENERAL	TESTING	PRINCIPLES

Testing	is	a	very	complex	activity,	and	the	software	problems	described	earlier
highlight	that	it	can	be	difficult	to	do	well.	We	now	describe	some	general
testing	principles	that	help	testers,	principles	that	have	been	developed	over	the
years	from	a	variety	of	sources.	These	are	not	all	obvious,	but	their	purpose	is	to
guide	testers	and	prevent	the	types	of	problems	described	previously.	Testers	use
these	principles	with	the	test	techniques	described	in	Chapter	4.

Testing	shows	the	presence,	not	absence,	of	defects

Running	a	test	through	a	software	system	can	only	show	that	one	or	more	defects
exist.	Testing	cannot	show	that	the	software	is	error	free.	Consider	whether	the
top	10	wanted	criminals	website	was	error	free.	There	were	no	functional
defects,	yet	the	website	failed.	In	this	case	the	problem	was	non-functional	and
the	absence	of	defects	was	not	adequate	as	a	criterion	for	release	of	the	website
into	operation.

In	Chapter	2	we	will	discuss	retesting,	when	a	previously	failed	test	is	rerun	to
show	that	under	the	same	conditions,	the	reported	problem	no	longer	exists.	In
this	type	of	situation,	testing	can	show	that	one	particular	problem	no	longer
exists.

Although	there	may	be	other	objectives,	usually	the	main	purpose	of	testing	is	to
find	defects.	Therefore,	tests	should	be	designed	to	find	as	many	defects	as
possible.

Exhaustive	testing	is	impossible

If	testing	finds	problems,	then	surely	you	would	expect	more	testing	to	find
additional	problems,	until	eventually	we	would	have	found	them	all.	We
discussed	exhaustive	testing	earlier	when	looking	at	the	smartphone	mapping
app	and	concluded	that	for	large	complex	systems,	exhaustive	testing	is	not
possible.	However,	could	it	be	possible	to	test	small	pieces	of	software
exhaustively	and	only	incorporate	exhaustively	tested	code	into	large	systems?

Exhaustive	testing	–	a	test	approach	in	which	all	possible	data	combinations	are
used.	This	includes	implicit	data	combinations	present	in	the	state	of	the
software/data	at	the	start	of	testing.

Consider	a	small	piece	of	software	where	one	can	enter	a	password,	specified	to
contain	up	to	three	characters,	with	no	consecutive	repeating	entries.	Using	only
Western	alphabetic	capital	letters	and	completing	all	three	characters,	there	are
26	×	26	×	26	input	permutations	(not	all	of	which	will	be	valid).	However,	with	a
standard	keyboard	there	are	not	26	×	26	×	26	permutations,	but	a	much	higher
number:	256	×	256	×	256,	or	2²⁴.	Even	then,	the	number	of	possibilities	is	higher.
What	happens	if	three	characters	are	entered,	and	the	‘delete	last	character’	right
arrow	key	removes	the	last	two?	Are	special	key	combinations	accepted,	or	do
they	cause	system	actions	(Ctrl	+	P,	for	example)?	What	about	entering	a
character,	and	waiting	20	minutes	before	entering	the	other	two	characters?	It
may	be	the	same	combination	of	keystrokes,	but	the	circumstances	are	different.
We	can	also	include	the	situation	where	the	20-minute	break	occurs	over	the
change-of-day	interval.	It	is	not	possible	to	say	whether	there	are	any	defects
until	all	possible	input	combinations	have	been	tried.

Even	in	this	small	example,	there	are	many,	many	possible	data	combinations	to

attempt.	The	number	of	possible	combinations	using	a	smartphone	might	be
significantly	less,	but	it	is	still	large	enough	to	be	impractical	to	use	all	of	them.

Unless	the	application	under	test	(AUT)	has	an	extremely	simple	logical
structure	and	limited	input,	it	is	not	possible	to	test	all	possible	combinations	of
data	input	and	circumstances.	For	this	reason,	risk	and	priorities	are	used	to
concentrate	on	the	most	important	aspects	to	test.	Both	‘risk’	and	‘priorities’	are
covered	later	in	more	detail.	Their	use	is	important	to	ensure	that	the	most
important	parts	are	tested.

Early	testing	saves	time	and	money

When	discussing	why	software	fails,	we	briefly	mentioned	the	idea	of	early
testing.	This	principle	is	important	because,	as	a	proposed	deployment	date
approaches,	time	pressure	can	increase	dramatically.	There	is	a	real	danger	that
testing	will	be	squeezed,	and	this	is	bad	news	if	the	only	testing	we	are	doing	is
after	all	the	development	has	been	completed.	The	earlier	the	testing	activity	is
started,	the	longer	the	elapsed	time	available.	Testers	do	not	have	to	wait	until
software	is	available	to	test.

Work	products	are	created	throughout	the	Software	Development	Life	Cycle
(SDLC),	and	we	talk	about	these	different	work	products	later	in	this	chapter.	As
soon	as	these	are	ready,	we	can	test	them.	In	Chapter	2,	we	will	see	that
requirement	documents	are	the	basis	for	acceptance	testing,	so	the	creation	of
acceptance	tests	can	begin	as	soon	as	requirement	documents	are	available.	As
we	create	these	tests,	they	will	highlight	the	contents	of	the	requirements.	Are
individual	requirements	testable?	Can	we	find	ambiguous	or	missing
requirements?

Many	problems	in	software	systems	can	be	traced	back	to	missing	or	incorrect
requirements.	We	will	look	at	this	in	more	detail	when	we	discuss	reviews	in
Chapter	3.	The	use	of	reviews	can	break	the	‘error–defect–failure’	cycle.	In	early
testing,	we	are	trying	to	find	errors	and	defects	before	they	are	passed	to	the	next
stage	of	the	development	process.	Early	testing	techniques	are	attempting	to
show	that	what	is	produced	as	a	system	specification,	for	example,	accurately
reflects	that	which	is	in	the	requirement	documents.	Ed	Kit	discusses	identifying
and	eliminating	defects	at	the	part	of	the	SDLC	in	which	they	are	introduced.¹	If
an	error/defect	is	introduced	in	the	coding	activity,	it	is	preferable	to	detect	and
correct	it	at	this	stage.	If	a	problem	is	not	corrected	at	the	stage	in	which	it	is
introduced,	this	leads	to	what	Kit	calls	‘errors	of	migration’.	The	result	is
rework.	We	need	to	rework	not	just	the	part	where	the	mistake	was	made,	but
each	subsequent	part	where	the	error	has	been	replicated.	A	defect	found	at
acceptance	testing	where	the	original	mistake	was	in	the	requirements	will
require	several	work	products	to	be	reworked,	and	subsequently	to	be	retested.

Studies	have	been	done	on	the	cost	impacts	of	errors	at	the	different
development	stages.	While	it	is	difficult	to	put	figures	on	the	relative	costs	of
finding	defects	at	different	levels	in	the	SDLC,	Table	1.1	does	concentrate	the
mind!

Table	1.1	Comparative	cost	to	correct	errors

Stage	error	is	found Comparative	cost

Requirements $1

Coding $10

Program	testing $100

System	testing $1,000

User	acceptance	testing $10,000

Live	running $100,000

This	is	known	as	the	cost	escalation	model.

What	is	undoubtedly	true	is	that	the	graph	of	the	relative	cost	of	early	and	late
identification/correction	of	defects	rises	very	steeply	(Figure	1.3).

Figure	1.3	Effect	of	identification	time	on	cost	of	errors

The	earlier	a	problem	(defect)	is	found,	the	less	it	costs	to	fix.

The	objectives	of	various	stages	of	testing	can	be	different.	For	example,	in	the
review	processes,	we	may	focus	on	whether	the	documents	are	consistent	and	no
defects	have	been	introduced	when	the	documents	were	produced.	Other	stages
of	testing	can	have	other	objectives.	The	important	point	is	that	testing	has
defined	objectives.

One	of	the	drivers	behind	the	push	to	Agile	development	methodologies	is	to
enable	testing	to	be	incorporated	throughout	the	software	build	process.	This	is
nothing	more	than	the	‘early	testing’	principle.

Defects	cluster	together

Problems	do	occur	in	software.	It	is	a	fact.	Once	testing	has	identified	(most	of)
the	defects	in	a	particular	application,	it	is	at	first	surprising	that	the	spread	of
defects	is	not	uniform.	In	a	large	application,	it	is	often	a	small	number	of
modules	that	exhibit	the	majority	of	the	problems.	This	can	be	for	a	variety	of
reasons,	some	of	which	are:

•system	complexity;

•volatile	code;

•the	effects	of	change	on	change;

•development	staff	experience;

•development	staff	inexperience.

This	is	the	application	of	the	Pareto	principle	to	software	testing:	approximately
80	per	cent	of	the	problems	are	found	in	about	20	per	cent	of	the	modules.	It	is
useful	if	testing	activity	reflects	this	spread	of	defects,	and	targets	areas	of	the
application	under	test	where	a	high	proportion	of	defects	can	be	found.	However,
it	must	be	remembered	that	testing	should	not	concentrate	exclusively	on	these
parts.	There	may	be	fewer	defects	in	the	remaining	code,	but	testers	still	need	to
search	diligently	for	them.

Be	aware	of	the	pesticide	paradox

Running	the	same	set	of	tests	continually	will	not	continue	to	find	new	defects.
Developers	will	soon	know	that	the	test	team	always	tests	the	boundaries	of
conditions,	for	example,	so	they	will	learn	to	test	these	conditions	themselves
before	the	software	is	delivered.	This	does	not	make	defects	elsewhere	in	the
code	less	likely,	so	continuing	to	use	the	same	test	set	will	result	in	decreasing
the	effectiveness	of	the	tests.	Using	other	techniques	will	find	different	defects.

For	example,	a	small	change	to	software	could	be	specifically	tested	and	an
additional	set	of	tests	performed,	aimed	at	showing	that	no	additional	problems
have	been	introduced	(this	is	known	as	regression	testing).	However,	the
software	may	fail	in	production	because	the	regression	tests	are	no	longer
relevant	to	the	requirements	of	the	system	or	the	test	objectives.	Any	regression

test	set	needs	to	change	to	reflect	business	needs,	and	what	are	now	seen	as	the
most	important	risks.	Regression	testing	will	be	covered	in	more	detail	in
Chapter	2.

Testing	is	context	dependent

Different	testing	is	necessary	in	different	circumstances.	A	website	where
information	can	merely	be	viewed	will	be	tested	in	a	different	way	to	an
ecommerce	site,	where	goods	can	be	bought	using	credit/debit	cards.	We	need	to
test	an	air	traffic	control	system	with	more	rigour	than	an	application	for
calculating	the	length	of	a	mortgage.

Risk	can	be	a	large	factor	in	determining	the	type	of	testing	that	is	needed.	The
higher	the	possibility	of	losses,	the	more	we	need	to	invest	in	testing	the
software	before	it	is	implemented.	A	fuller	discussion	of	risk	is	given	in	Chapter
5.

For	an	ecommerce	site,	we	should	concentrate	on	security	aspects.	Is	it	possible
to	bypass	the	use	of	passwords?	Can	‘payment’	be	made	with	an	invalid	credit
card,	by	entering	excessive	data	into	the	card	number	field?	Security	testing	is	an
example	of	a	specialist	area,	not	appropriate	for	all	applications.	Such	types	of
testing	may	require	specialist	staff	and	software	tools.	Test	tools	are	covered	in
more	detail	in	Chapter	6.

Absence-of-errors	is	a	fallacy

Software	with	no	known	errors	is	not	necessarily	ready	to	be	shipped.	Does	the

application	under	test	match	up	to	the	users’	expectations	of	it?	The	fact	that	no
defects	are	outstanding	is	not	a	good	reason	to	ship	the	software.

Before	dynamic	testing	has	begun,	there	are	no	defects	reported	against	the	code
delivered.	Does	this	mean	that	software	that	has	not	been	tested	(but	has	no
outstanding	defects	against	it)	can	be	shipped?	We	think	not.

CHECK	OF	UNDERSTANDING

1.	Why	is	‘zero	defects’	an	insufficient	guide	to	software	quality?

2.	Give	three	reasons	why	defect	clustering	may	exist.

3.	Briefly	justify	the	idea	of	early	testing.

TEST	PROCESS

We	previously	determined	that	testing	is	a	process,	discussed	above.	It	would	be
easy	to	think	that	testing	is	thus	always	the	same.	However,	this	is	not	true.

Test	process	in	context

Variations	between	organisations,	and	indeed	projects	within	the	same
organisation,	can	have	an	influence	on	how	testing	is	carried	out,	and	on	the
specific	test	process	that	is	used.	Specific	matters,	or	contextual	factors,	that	will
affect	the	test	process	can	be	many	and	varied,	so	please	do	not	assume	that	the
factors	listed	in	the	syllabus	are	the	only	factors.	Many	of	these	are	covered	in
more	detail	in	later	chapters	of	this	book.	We	give	those	in	the	syllabus	here,	and
remember,	you	could	be	examined	on	these:

•the	Software	Development	Life	Cycle	and	project	methodologies	that	are	in
use;

•test	levels	and	test	types	being	considered;

•product	and	project	risks	(if	there	is	potential	loss	of	life,	you	will	generally
‘test	more’);

•the	business	domain	(online	games	are	possibly	tested	in	different	ways	to	a
billing	system	in	a	utility	company);

•operational	constraints,	which	could	include	the	following,	but	also	other
matters:

budgets	and	other	resources	(including	staffing	levels);

timescale,	and	whether	there	are	time-to-market	constraints;

complexity	(however	this	is	measured);

any	contractual	or	regulation	requirements;	for	example	both	motor
manufacturing	and	the	pharmaceutical	industries	have	special	industry-wide
regulations.

•any	policies	and	practices	that	are	specific	to	the	organisation;

•required	standards,	both	internal	and	external.

Test	activities	and	tasks

The	most	visible	part	of	testing	is	running	one	or	more	tests:	test	execution.	We
also	have	to	prepare	for	running	tests,	analyse	the	tests	that	have	been	run	and
see	whether	testing	is	complete.	Both	planning	and	analysing	are	very	necessary

activities	that	enhance	and	amplify	the	benefits	of	the	test	execution	itself.	It	is
no	good	testing	without	deciding	how,	when	and	what	to	test.	Planning	is	also
required	for	the	less	formal	test	approaches	such	as	exploratory	testing,	covered
in	more	detail	in	Chapter	4.	We	are	describing	a	generalised	test	process	–	as	was
said	earlier,	this	will	not	be	the	same	on	every	project	within	an	organisation,	nor
between	different	organisations.	Not	all	of	the	activity	groups	that	are	described
will	be	recognised	as	separate	entities	in	some	projects,	or	within	certain
organisations.

So,	there	are	the	following	activity	groups	in	the	test	process	that	we	will
describe	in	more	detail	(Figure	1.4):

1.	test	planning;

2.	test	monitoring	and	control;

3.	test	analysis;

4.	test	design;

5.	test	implementation;

6.	test	execution;

7.	test	completion.

Figure	1.4	A	generalised	test	process

Although	the	main	activity	groups	are	in	a	broad	sequence,	they	are	not
undertaken	in	a	rigid	way.	The	first	two	groups	are	overarching,	and	the	other
groups	are	both	planned	and	monitored,	and	what	has	been	undertaken	may	have
a	bearing	upon	other	actions,	some	of	which	have	been	completed.	An	earlier
activity	group	may	need	to	be	revisited.	A	defect	found	in	test	execution	can
sometimes	be	resolved	by	adding	functionality	that	was	originally	not	present
(either	missing,	or	the	new	functionality	is	needed	to	make	the	other	part
correct).	The	new	features	themselves	have	to	be	tested,	so	even	though
implementation	and	execution	are	in	progress,	the	‘earlier’	activity	groups	of	test
analysis	and	test	design	have	to	be	performed	for	the	new	features	(Figure	1.5).
The	activity	groups	may	overlap	or	be	performed	concurrently.	It	could	be	that
test	design	is	being	undertaken	for	one	test	level	at	the	same	time	as	test
execution	is	underway	for	another	test	level	on	the	same	project	(test	execution
for	system	testing	and	test	design	for	acceptance	testing,	for	example).	Please
note,	not	all	possible	interactions	between	later	and	earlier	groups	have	been
included,	and	all	of	the	latter	five	stages	have	interaction	between	both	test
planning	and	test	monitoring	and	control

Figure	1.5	Iteration	of	activities

We	sometimes	need	to	do	two	or	more	of	the	main	activities	in	parallel.	Time
pressure	can	mean	that	we	begin	test	execution	before	all	tests	have	been
designed.

Test	planning

Planning	is	determining	what	is	going	to	be	tested,	and	how	this	will	be
achieved.	It	is	where	we	draw	a	map;	how	activities	will	be	done;	and	who	will
do	them.	Test	planning	is	also	where	we	define	the	test	completion	criteria.
Completion	criteria	are	how	we	know	when	testing	is	finished.	It	is	where	the
objectives	of	testing	are	set,	and	where	the	approach	for	meeting	test	objectives
(within	any	context-based	limitations)	are	set.	A	test	plan	is	created	and
schedules	are	drawn	up	to	enable	any	internal	or	external	deadlines	to	be	met.
Plans	and	schedules	may	be	amended,	depending	upon	how	other	activities	are
progressing	–	amendments	take	place	as	a	result	of	monitoring	and	control
activities.	Planning	is	described	in	more	detail	in	Chapter	5.

Test	monitoring	and	control

Test	monitoring	and	control	go	together.	Monitoring	is	concerned	with	seeing	if
what	has	been	achieved	is	what	was	expected	to	be	done	at	this	point	in	time,
whereas	control	is	taking	any	necessary	action	to	meet	the	original	or	revised
objectives	as	given	in	the	test	plan.	Monitoring	and	control	are	supported	by
referring	to	the	exit	criteria	or	completion	criteria	for	different	stages	of	testing	–
this	is	sometimes	referred	to	as	the	definition	of	‘done’	in	some	project	life
cycles.	Looking	at	exit	criteria	for	test	execution	for	a	stage	of	testing	may
include:

•checking	test	results	to	see	if	the	required	test	coverage	has	been	achieved;

•determining	the	component	or	system	quality,	by	looking	at	both	test	results	and
test	logs;

•seeing	if	more	tests	are	required	(for	example,	if	there	are	not	enough	tests	to
reach	the	level	of	risk	coverage	that	is	required).

Progress	against	the	(original	or	revised)	test	plan	is	communicated	to	the
necessary	people	(project	sponsor,	user	stakeholders,	the	development	team)	in
test	progress	reports.	These	will	usually	detail	any	actions	being	put	in	place	to
enable	some	milestones	to	be	met	earlier	than	would	otherwise	be	the	case	or
help	to	inform	any	decisions	that	stakeholders	need	to	make.	Test	monitoring	and
control	are	covered	more	fully	in	Chapter	5.

Test	analysis

Test	analysis	examines	the	test	basis	(which	is	usually	written	but	not	always
confined	to	a	single	document),	to	identify	what	to	test.	Testable	parts	are
identified,	and	test	conditions	drawn	up.	Major	activities	in	the	test	analysis
activity	group	are	as	follows

•examining	the	test	basis	relevant	for	the	testing	to	be	carried	out	at	this	time:

requirements	documents,	functional	requirements,	business	requirements,	system
requirements	or	other	items	(use	cases,	user	stories)	that	detail	both	functional

and	non-functional	component	or	system	behaviour;

design	or	implementation	detail	(system	or	software	architecture,	entity-
relationship	diagrams,	interface	specifications)	that	define	the	component	or
system	structure;

implementation	information	for	the	component	or	system,	including	code,
database	metadata	and	queries;

risk	analysis	reports,	which	may	consider	both	functional	and	non-functional
aspects,	and	the	structure	of	the	software	to	be	tested.

•looking	at	the	test	basis	looking	for	defects	of	various	types:

ambiguities;

things	that	have	been	missed	out;

inconsistencies;

inaccuracies;

contradictions;

unnecessary	or	superfluous	statements.

•identifying	features	and	feature	sets	to	be	tested;

•identifying	and	prioritising	test	conditions	for	each	feature	or	set	of	features
(based	on	the	test	basis).	Prioritisation	is	based	on	functional,	non-functional	and
structural	factors,	other	matters	(both	business	and	technical)	and	the	levels	of
risk;

•capturing	traceability	in	both	directions	(‘bi-directional	traceability’)	between
the	test	basis	and	test	conditions.

It	can	be	both	appropriate	and	very	helpful	to	use	some	of	the	test	techniques
that	are	detailed	in	Chapter	4	in	the	test	analysis	activity.	Test	techniques	(black
box,	white	box	and	experience-based	techniques)	can	assist	to	define	more
precise	and	accurate	test	conditions	and	include	important	but	less	obvious	test
conditions.

Sometimes,	test	conditions	produced	as	part	of	test	analysis	are	used	as	test
objectives	in	test	charters.	Test	charters	can	be	important	in	exploratory	testing,
discussed	as	part	of	experience-based	test	techniques	in	Chapter	4.

The	test	analysis	activity	can	identify	defects	in	the	test	basis.	This	can	be
especially	important	when	there	is	no	additional	review	process	in	place,	or
where	the	test	process	is	closely	aligned	to	the	review	process.	Test	design
activity	by	its	very	nature	looks	at	the	test	basis	(including	requirements),	so	it	is

appropriate	to	see	whether	requirements	are	consistent,	clearly	expressed	and	not
missing	anything.	The	work	of	test	analysis	can	also	rightly	ask	whether	formal
requirements	documents	have	included	customer,	user	and	other	stakeholder
needs.	Some	development	methodologies	involve	creating	test	conditions	and
test	cases	prior	to	any	coding	taking	place.	Examples	of	such	methodologies
include	behaviour	driven	development	(BDD)	and	acceptance	test	driven
development	(ATDD).

Test	design

Test	analysis	answers	the	question	‘What	to	test?’,	while	test	design	answers	the
question	‘How	to	test?’	It	is	during	the	test	design	activity	that	test	conditions	are
used	to	create	test	cases.	This	may	also	use	test	techniques,	and	the	very	process
of	creating	test	cases	can	identify	defects.	As	we	discussed	earlier,	a	test	case	not
only	describes	what	to	do	to	see	if	the	test	condition	is	correct	but	also	what	the
expected	result	should	be.	Creating	two	or	more	test	cases	for	a	test	condition
can	identify	actions	where	the	expected	result	is	not	clear	–	in	the	example	we
used	earlier,	are	there	different	error	messages	if	the	user	name	is	incorrect	and
the	password	is	incorrect?	If	the	requirements,	specification	or	other	documents
are	not	clear,	there	is	potential	for	misunderstandings!

Activities	in	the	test	design	activity	group	can	be	summarised	as	follows:

•using	test	conditions	to	create	test	cases,	and	prioritising	both	test	cases	and	sets
of	test	cases;

•identifying	any	test	data	to	be	used	with	the	test	cases;

•designing	the	test	environment	if	necessary,	and	identifying	any	other	items	that
are	needed	for	testing	to	take	place	(infrastructure	and	any	tools	required);

•detailing	bi-directional	traceability	between	test	basis,	test	conditions,	test	cases
and	test	procedures	–	building	upon	the	traceability	that	was	detailed	above
under	test	analysis.

Test	implementation

We	saw	that	test	design	asks	‘How	to	test?’	Test	implementation	asks	‘Do	we
have	everything	in	place	to	run	the	tests?’	It	is	the	link	between	test	design	and
running	the	test,	or	test	execution.	We	have	the	tests	ready;	how	can	we	run
them?	Test	implementation	is	not	always	a	separate	activity;	it	can	be	combined
with	test	design,	or,	in	exploratory	testing	and	some	other	kinds	of	experienced-
based	testing,	test	design	and	test	implementation	may	take	place	and	be
documented	as	part	of	the	running	of	tests.	In	exploratory	testing,	tests	are
designed,	implemented	and	executed	simultaneously.

As	we	get	ready	for	test	execution,	the	test	implementation	main	activities	are	as
follows:

•creating	and	prioritising	test	procedures	and	possibly	creating	automated	test
scripts;

•creating	test	suites	from	the	test	procedures	and	from	automated	test	scripts	if
there	are	any;

•ordering	test	suites	in	a	test	execution	schedule,	so	that	it	makes	efficient	use	of
resources	(it	is	often	the	case	that	a	test	execution	schedule	will	create	an	order,
amend	the	order	and	then	delete	it	–	all	done	to	run	efficiently);

•building	the	test	environment	with	anything	extra	in	place	(test	harnesses,
simulators,	dummy	third-party	interfaces,	service	virtualisation	and	any	other
infrastructure	items).	The	test	environment	has	then	to	be	checked,	to	ensure	that
all	is	ready	to	start	testing;

•preparing	test	data	and	checking	that	it	has	been	loaded	into	the	test
environment;

•checking	and	updating	the	bi-directional	traceability	between	the	test	basis,	test
conditions,	test	cases,	test	procedures	and	now	to	include	test	suites.

Test	execution

Test	execution	involves	running	tests,	and	is	where	(what	are	often	seen	as)	the
most	visible	test	activities	are	undertaken.	Test	suites	are	run	as	detailed	in	the
test	execution	schedule	(both	of	which	were	created	as	part	of	test
implementation).	Execution	includes	the	following	activities:

•Recording	the	identification	and	version	of	what	is	being	tested:	test	items	or
test	object,	test	tool(s)	and	any	testware	that	are	in	use.	This	information	is
important	if	any	defects	are	to	be	raised.

•Running	tests,	either	manually	or	using	test	execution	tools.

•Comparing	actual	and	expected	results	(this	may	be	done	by	any	test	execution
tool(s)	being	used).

•Looking	at	instances	where	the	actual	result	and	the	expected	result	differ	to
determine	the	possible	cause.	This	may	be	a	defect	in	the	software	under	test,	but
could	also	be	that	the	expected	results	were	incorrect,	or	the	test	data	was	not
quite	correct.

•Reporting	defects	based	on	the	failures	that	were	found	in	the	testing.

•Recording	the	result	of	each	test	(pass,	fail,	blocked).

•Repeating	tests	where	the	software	has	been	corrected,	the	test	data	has	been
changed	or	as	part	of	regression	testing).

•Confirming	or	amending	the	bi-directional	traceability	between	the	test	basis,
the	test	conditions,	test	cases,	test	procedures	and	expected	results.

Test	completion

Testing	at	this	stage	has	finished,	and	test	completion	activities	collect	data	so
that	lessons	can	be	learned,	testware	reused	in	future	projects	and	so	on.	These

activities	may	occur	at	the	time	that	the	software	system	is	released,	but	could
also	be	at	other	significant	project	milestones	–	the	project	is	completed	(or	even
cancelled),	a	test	level	is	completed	or	an	Agile	project	iteration	is	finished
(where	test	completion	activities	may	be	part	of	the	iteration	retrospective
meeting).	The	key	here	is	to	make	sure	that	information	is	not	lost	(including	the
experiences	of	those	involved).	Activities	in	the	test	completion	group	are
summarised	below:

•Checking	that	defect	reports	are	all	closed	as	necessary.	This	may	result	in	the
raising	of	change	requests	or	creating	product	backlog	items	for	any	that	remain
unresolved	when	test	execution	activities	have	ended.

•Creating	a	test	summary	report,	to	communicate	the	results	of	the	testing
activities.	This	is	usually	for	the	benefit	of	the	project	stakeholders.

•Closing	down	and	saving	(‘archiving’)	the	test	environment,	any	test	data,	the
test	infrastructure	and	other	testware.	These	may	need	to	be	reused	at	a	later
date.

•Handing	over	the	testware	to	those	who	will	maintain	the	software	in	the	future
or	any	other	projects	or	other	stakeholders	to	whom	it	could	be	beneficial.

•Analysing	lessons	learned	from	testing	activities	that	have	been	completed,
which	will	hopefully	drive	changes	in	future	iterations,	releases	and	projects.

•Using	the	information	that	has	been	gathered	to	make	the	testing	process	better
–	to	improve	test	process	maturity.

Agile	methodologies	and	a	generalised	test	process

Thus	far	we	have	concentrated	on	‘traditional’	methodologies	when	discussing
the	test	process.	We	now	want	to	focus	on	Agile	methodologies.

The	use	of	Agile	methodologies	and	the	relationship	with	a	test	process	is	not	a
syllabus	topic	for	the	Foundation	Certificate,	but	in	the	following	discussion	our
understanding	of	both	a	generalised	test	process	and	Agile	methodologies	will
grow.

We	use	the	term	‘Agile	methodologies’	because	there	is	not	a	single	variant	or
‘flavour’	of	Agile.	Any	distinctions	between	these	are	unimportant	here,	but	the
principles	are	important.	Agile	Software	Development	Life	Cycles	aim	to	have
frequent	deliveries	of	software,	where	each	iteration	or	sprint	will	build	on	any
previously	made	available.	The	aim	is	to	have	software	that	could	be
implemented	into	the	production	environment	at	the	end	of	each	sprint	–
although	a	delivery	into	production	might	not	happen	as	frequently	as	this.

From	this	brief	introduction	to	Agile,	it	follows	that	an	Agile	project	has	a
beginning	and	an	end,	but	the	processes	that	go	between	these	stages	can	be
repeated	many	times.	Agile	projects	can	be	successfully	progressing	over	the
course	of	many	months,	or	even	years,	with	a	continuous	stream	of	(same
length)	iterations	producing	production-quality	software,	typically	every	two,
three	or	four	weeks.	In	terms	of	the	test	process,	there	is	a	part	of	the	test
planning	stage	that	takes	place	at	the	start	of	the	project,	and	the	test	completion
activities	take	place	at	the	end	of	the	project.	However,	some	test	planning,	and
all	of	the	middle	five	stages	of	the	test	process	we	have	described	above	are
present	in	each	and	every	sprint.

Some	test	planning	activities	take	place	at	the	beginning	of	the	project.	This
typically	includes	resourcing	activities,	some	outline	planning	on	the	length	of
the	project,	and	an	initial	attempt	at	ordering	the	features	to	be	implemented
(although	this	could	change	significantly	as	the	project	progresses,	sprint	by
sprint).	Infrastructure	planning,	together	with	the	identification	and	provision	of
any	specific	testing	tools	is	usually	undertaken	at	this	stage,	together	with	a	clear
understanding	within	the	whole	team	of	what	is	‘done’	(i.e.	a	definition	of
‘done’).

At	the	start	of	each	sprint,	planning	activity	takes	place,	to	determine	items	to
include	in	the	sprint.	This	is	a	whole-team	activity	based	on	reaching	a
consensus	of	how	long	each	potential	deliverable	will	take.	As	sprint	follows
sprint,	so	the	accuracy	of	estimation	increases.	The	sprint	is	a	fixed	length,	so
throughout	the	duration	of	the	development	items	could	be	added	or	removed	to
ensure	that,	at	the	conclusion,	there	is	tested	code	‘on	the	shelf’	and	available	for
implementation	as	required.

Other	activities	of	the	generalised	test	process	we	described	are	undertaken	in
each	sprint.	A	daily	stand-up	meeting	should	result	in	a	short	feedback	loop,	to
enable	any	adjustments	to	take	place	and	items	that	prevent	progress	to	be
resolved.	The	whole	time	for	development	and	testing	is	limited,	so	the
preparation	for	testing	and	the	testing	itself	have	to	be	undertaken	in	parallel.
Towards	the	end	of	the	sprint,	it	is	possible	that	most	or	all	of	the	team	are
involved	in	testing,	with	a	focus	of	delivering	all	that	was	agreed	at	the	time	of
the	sprint	planning	meeting.

Automated	testing	tools	are	frequently	used	in	Agile	projects.	Tests	can	be	very
low	level,	and	a	tester	on	such	a	project	can	provide	very	useful	input	to
developers	in	defining	tests	to	be	used	to	identify	specific	conditions.	The	earlier
in	a	sprint	that	this	is	done,	the	more	advantages	can	be	gained	within	that	sprint.

The	proposed	deliverables	are	sometimes	used	in	conjunction	with	the	definition
of	‘done’	to	enable	a	burn-down	chart	to	be	drawn	up.	This	enables	a	track	to	be
kept	of	progress	for	all	to	see	–	in	itself	usually	a	motivating	factor.	As	sprint
follows	sprint,	the	subject	of	regression	testing	previously	delivered,	working
software	becomes	more	important.	Part	of	the	test	analysis	and	test	design	will
involve	selecting	regression	tests	that	are	appropriate	for	the	current	sprint.	Tests
that	previously	worked	might	now	(correctly)	not	pass	because	the	new	sprint
has	changed	the	intention	of	previously	delivered	software.	The	conclusion	of
the	sprint	is	often	a	sprint	review	meeting,	which	can	include	a	demonstration	to
user	representatives	and/or	the	project	sponsor.

For	development	using	Agile	methodologies,	the	final	stage	of	our	test	process	–
‘test	completion	activities’	–	is	scheduled	after	the	end	of	the	last	sprint.	This
should	not	be	done	before,	because	testing	collateral	that	was	used	in	the	last-
but-three	sprint	might	no	longer	be	appropriate	at	the	conclusion	of	the	final
sprint.	As	we	discussed	earlier,	even	the	regression	tests	might	have	changed,	or
a	more	suitable	set	of	regression	tests	identified.

Further	information	about	Agile	methodologies	is	given	in	Chapter	2.

Test	work	products

Each	of	the	activity	groups	we	have	discussed	has	one	or	more	work	products
that	are	typically	produced	as	part	of	that	set	of	activities.	However,	just	as	there
are	major	variations	in	the	way	particular	organisations	implement	the	test
process,	so	there	can	be	variations	in	both	the	work	products	that	are	produced,
and	in	some	cases	even	the	names	of	those	work	products.	This	section	follows
the	test	process	that	we	have	outlined	above,	and	work	products	are	given	for
each	of	the	seven	activity	groups	that	we	described	in	a	generalised	test	process.

Many	of	the	work	products	that	are	described	here	can	be	captured	and	managed
using	test	management	and	defect	management	tools	(these	two	tool	types	are
both	described	in	more	detail	in	Chapter	6).	Work	products	used	in	test	process
activity	groups	can	often	be	easily	attributed	to	the	appropriate	activity	group	or
when	considering	the	preceding	or	following	activity	group,	so	even	though
‘Test	work	products’	can	be	a	topic	in	the	examination,	this	does	not	mean	that
you	have	to	learn	the	lists	that	are	given!	An	example	of	an	examination-type
question	relating	to	this	area	of	study	is	given	at	the	end	of	this	chapter.

There	are	some	work	products	that	are	typically	created	in	two	or	more	test
process	activity	groups.	Examples	of	this	are	defect	reports	(most	usually	in	test
analysis,	test	design,	test	implementation	and	test	execution)	and	test	reports
(test	progress	reports	and	test	summary	reports	in	test	monitoring	and	control,
test	completion	reports	in	both	test	monitoring	and	control,	and	test	completion).

Test	planning	work	products

Test	planning	activities	usually	produce	plans	and	schedules.	There	can	be
several	test	plans	for	a	project:	component	testing	test	plan,	integration	testing
test	plan	and	so	on.	Test	plans	contain	information	about	the	test	basis	and	the
exit	criteria	(or	definition	of	‘done’),	so	that	we	know	in	advance	when	we	can
say	that	testing	is	complete.	Other	work	products	will	be	related	to	the	test	basis
by	traceability	information.

Test	monitoring	and	control	work	products

Work	products	produced	from	the	test	monitoring	and	control	activities	include
various	types	of	test	reports.	Some	of	these	are	periodic	(a	test	progress	report
every	three	weeks,	perhaps),	while	others	are	at	specific	completed	milestones

for	the	project	(test	summary	reports).	Not	all	reports	are	for	the	same	target
audience,	so	any	reports	need	to	be	audience	specific	in	the	level	of	detail.
Reports	for	senior	stakeholders	may	just	give	the	number	of	tests	that	have
passed,	have	failed	and	cannot	yet	be	run,	for	example,	whereas	reports	for	the
wider	development	team	may	include	sub-system-specific	information	about	the
tests	that	have	passed	and	failed.

Test	monitoring	and	control	work	products	also	need	to	highlight	project
management	concerns	including	task	completion,	the	use	of	resources	and	the
amount	of	effort	that	has	been	expended.	Where	necessary,	there	may	be	choices
highlighted	with	possible	actions	that	can	be	taken	to	still	achieve	the	original
timescales,	even	though	at	the	present	time	we	are	behind	schedule.

Test	analysis	work	products

The	following	are	work	products	that	the	test	analysis	group	of	activities	is
expected	to	produce:

•Defined	and	prioritised	test	conditions	(ideally	each	with	bi-directional
traceability	to	the	specific	part(s)	of	the	test	basis	that	is	covered).

•For	exploratory	testing,	test	charters	may	be	created.

•Test	analysis	may	result	in	the	discovery	and	reporting	of	defects	in	the	test
basis.

Test	design	work	products

The	key	work	products	that	come	from	test	design	activities	are	test	cases	and
groups	of	test	cases	that	relate	to	the	test	conditions	created	by	test	analysis.	It	is
extremely	useful	if	these	are	bi-directionally	traceable	to	the	test	conditions	they
relate	to.	Test	cases	can	be	high-level	test	cases	(without	specific	values,	or
concrete	values	to	be	used	for	input	values)	or	low-level	test	cases	(with	detailed
input	values,	and	specific	expected	results).	High-level	test	cases	can	be	reused
in	different	test	cycles,	although	they	are	not	as	easy	to	use	by	individuals	who
are	not	familiar	with	the	software	being	tested.

Other	work	products	that	are	produced	or	amended	as	part	of	test	design	include
amendments	to	the	test	conditions	created	in	test	analysis,	the	design	and/or
identification	of	any	test	data	that	is	needed,	the	definition	and	design	of	the	test
environment,	and	the	identification	of	any	infrastructure	or	tools	that	may	be
required.	However,	although	these	last	mentioned	are	done,	the	amount	that	is
documented	can	vary.

Test	implementation	work	products

Test	implementation	activities	have	some	work	products	that	are	more	easily
identifiable	than	others.	The	first	three	below	are	very	recognisable,	but	the
others	can	be	also	created	at	this	stage:

•Test	procedures,	and	the	sequencing	of	these.

•Test	suites,	being	comprised	of	two	or	more	test	procedures.

•A	test	execution	schedule.

•In	some	cases,	test	implementation	activities	create	work	products	using	or	used
by	tools:

service	virtualisation;

automated	test	scripts.

•The	creation	and	verification	of	test	data.

•Creation	and	verification	of	the	test	environment.

•Further	refinement	of	the	test	conditions	that	were	produced	as	part	of	test
analysis.

When	we	have	specific	test	data,	this	can	be	used	to	turn	high-level	test	cases
into	low-level	test	cases,	and	to	these	are	added	expected	results.	In	some
instances,	expected	results	can	be	derived	from	the	test	data	using	a	test	oracle	–
you	feed	the	data	in	and	get	the	expected	results	as	the	answer.

Once	test	implementation	is	complete,	it	can	be	possible	to	see	the	level	of
coverage	by	written	test	cases	for	parts	or	all	of	the	test	basis.	This	is	because	at

each	stage,	we	have	built-in,	bi-directional	traceability.	It	may	be	possible	to	see
how	many	test	procedures	have	been	written	that	cover	a	specific	requirement,
or	area	of	functionality.

Test	execution	work	products

The	three	key	work	products	created	by	test	execution	activities	are	given	below:

•The	status	of	individual	tests	(passed,	failed,	skipped,	ready	to	run,	blocked,
etc.).

•Defect	reports	as	a	result	of	test	execution.

•Details	of	what	was	involved	in	the	testing	(test	item(s),	test	objects,	testware
and	test	tools).	This	includes	the	version	identifier	of	each	of	these	items	–	so
that	if	necessary,	the	exact	test	can	be	replicated	at	a	future	time.

When	testing	is	complete,	if	there	is	bi-directional	traceability	between	the	test
basis,	test	conditions,	test	cases,	test	procedures	and	test	suites,	it	is	possible	to
work	backwards	and	say	which	requirements	have	failed	tests	against	them,
where	the	impact	of	defects	touches	the	business	areas	and	so	on.	This	will
enable	checking	that	the	pre-determined	coverage	level	has	been	met,	or	not,	and
help	reporting	in	ways	that	business	stakeholders	understand.

Test	completion	work	products

When	testing	is	complete,	the	following	can	be	created	from	the	test	completion
activities:

•test	summary	reports,	which	could	be	a	‘test	completion	report’;

•a	list	of	improvements	for	future	work	(the	next	iteration,	or	next	project);

•change	requests	or	product	backlog	items;

•finalised	testware	(and	sometimes,	the	test	environment)	for	future	usage.

Traceability	between	the	test	basis	and	test	work	products

Throughout	the	descriptions	of	the	test	process	groups	of	activities,	and	the	work
products	that	are	created	by	these	activity	groups,	there	has	been	a	sub-story	of
bi-directional	traceability.	Primarily,	this	enables	the	evaluation	of	test	coverage:
how	does	this	one	failed	test	reflect	back	to	requirements	or	business	goals?
There	are	several	great	advantages	to	having	full	traceability:

•assessing	the	impact	of	changes	(if	one	requirement	changes,	how	many	test
conditions,	test	cases,	test	procedures	and	test	suites	may	be	affected);

•making	testing	auditable;

•enabling	IT	governance	criteria	to	be	met;

•improving	the	understandability	of	test	progress	reports	and	test	summary
reports	to	reflect	passed,	failed	and	blocked	tests	back	to	requirements	or	other
aspects	of	the	test	basis;

•relating	testing	to	stakeholders	in	terms	that	they	can	understand	(it	is	not	‘three
failed	tests’	but	‘three	tests	failed,	which	means	that	creating	a	customer	is	not
possible’);

•enabling	the	assessment	of	product	quality,	process	capability	and	project
progress	against	the	goals	of	the	business.

CHECK	OF	UNDERSTANDING

1.	What	are	the	activity	groups	in	the	generalised	test	process	described	(in	the
correct	sequence)?

2.	Give	advantages	of	maintaining	traceability	between	the	test	basis	and	test
work	products	(including	test	cases).

3.	When	should	the	expected	outcome	of	a	test	be	defined?

4.	Give	three	work	products	that	are	created	during	the	test	execution	group	of
activities.

THE	PSYCHOLOGY	OF	TESTING

A	variety	of	different	people	may	be	involved	in	the	total	testing	effort,	and	they
may	be	drawn	from	a	broad	set	of	backgrounds.	Some	will	be	developers,	some
professional	testers	and	some	will	be	specialists,	such	as	those	with	performance
testing	skills,	while	others	may	be	users	drafted	in	to	assist	with	acceptance
testing.	Whoever	is	involved	in	testing	needs	at	least	some	understanding	of	the
skills	and	techniques	of	testing	to	make	an	effective	contribution	to	the	overall
testing	effort.

Testing	can	be	more	effective	if	it	is	not	undertaken	by	the	individual(s)	who
wrote	the	code,	for	the	simple	reason	that	the	creator	of	anything	(whether	it	is
software	or	a	work	of	art)	has	a	special	relationship	with	the	created	object.	The
nature	of	that	relationship	is	such	that	flaws	in	the	created	object	are	rendered
invisible	to	the	creator.	For	that	reason,	it	is	important	that	someone	other	than
the	creator	should	test	the	object.	Of	course,	we	do	want	the	developer	who
builds	a	component	or	system	to	debug	it,	and	even	to	attempt	to	test	it,	but	we
accept	that	testing	done	by	that	individual	cannot	be	assumed	to	be	complete.
Developers	can	test	their	own	code,	but	it	requires	a	mindset	change,	from	that
of	a	developer	(to	prove	it	works)	to	that	of	a	tester	(trying	to	show	that	it	does
not	work).

Testers	and	developers	think	in	different	ways.	However,	although	we	know	that
testers	should	be	involved	from	the	beginning,	it	is	not	always	good	to	get	testers
involved	in	code	execution	at	an	early	stage;	there	are	advantages	and
disadvantages.	Getting	developers	to	test	their	own	code	has	advantages	(as	soon
as	problems	are	discovered,	they	can	be	fixed,	without	the	need	for	extensive
error	logs),	but	also	difficulties	(it	is	hard	to	find	your	own	mistakes	–	the	so-
called	‘confirmation	bias’).	People	and	projects	have	objectives,	and	we	all
modify	actions	to	blend	in	with	the	goals.	If	a	developer	has	a	goal	of	producing
acceptable	software	by	certain	dates,	then	any	testing	is	aimed	towards	that	goal.

If	a	defect	is	found	in	software,	the	software	author	may	see	this	as	criticism.
Testers	need	to	use	tact	and	diplomacy	when	raising	defect	reports.	Defect
reports	need	to	be	raised	against	the	software,	not	against	the	individual	who
made	the	mistake.	The	mistake	may	be	in	the	code	written,	or	in	one	of	the
documents	on	which	the	code	is	based	(requirement	documents	or	system
specification).	When	we	raise	defects	in	a	constructive	way,	bad	feeling	can	be
avoided.

We	all	need	to	focus	on	good	communication,	and	work	on	team	building.
Testers	and	developers	are	not	opposed	but	working	together,	with	the	joint
target	of	better-quality	systems.	Communication	needs	to	be	objective,	and
expressed	in	impersonal	ways:

•The	aim	is	to	work	together	rather	than	be	confrontational.	Keep	the	focus	on
delivering	a	quality	product.

•Results	should	be	presented	in	a	non-personal	way.	The	work	product	may	be
wrong,	so	say	this	in	a	non-personal	way.

•Attempt	to	understand	how	others	feel;	it	is	possible	to	discuss	problems	and
still	leave	all	parties	feeling	positive.

•At	the	end	of	discussions,	confirm	that	you	have	both	understood	and	been
understood.	‘So,	am	I	right	in	saying	that	you	will	aim	to	deliver	with	all	the
agreed	priority	fixes	on	Friday	this	week	by	12.00?’

As	testers	and	developers,	one	of	our	goals	is	better-quality	systems	delivered	in
a	timely	manner.	Good	communication	between	testers	and	the	development
teams	is	one	way	that	this	goal	can	be	reached.

CHECK	OF	UNDERSTANDING

1.	Describe	ways	in	which	testers	and	developers	think	differently.

2.	Contrast	the	advantages	and	disadvantages	of	developers	testing	their	own
code.

3.	Suggest	three	ways	that	confrontation	can	be	avoided.

CODE	OF	ETHICS

It	should	be	noted	that	this	section	is	not	examinable	but	is	retained	(being	in
earlier	versions	of	the	syllabus,	but	not	the	current	one),	as	it	is	a	useful	topic	for
the	tester	and	aspiring	tester	to	be	aware	of.

We	will	now	look	at	how	testers	should	behave	as	professionals	in	the
workplace,	a	code	of	ethics,	before	we	move	onto	the	more	detailed	coverage	of
topics	in	the	following	chapters.	Testers	can	have	access	to	confidential	and/or
privileged	information,	and	they	are	to	treat	any	information	with	care	and
attention,	and	act	responsibly	when	dealing	with	the	owner(s)	of	this
information,	employers	and	the	wider	public	interest.	Of	course,	anyone	can	test
software,	so	the	declaration	of	this	code	of	ethics	applies	to	those	who	have
achieved	software	testing	certification.	The	code	of	ethics	applies	to	the
following	areas:

•Public	–	certified	software	testers	shall	consider	the	wider	public	interest	in
their	actions.

•Client	and	employer	–	certified	software	testers	shall	act	in	the	best	interests	of
their	client	and	employer	(being	consistent	with	the	wider	public	interest).

•Product	–	certified	software	testers	shall	ensure	that	the	deliverables	they
provide	(for	any	products	and	systems	they	work	on)	meet	the	highest
professional	standards	possible.

•Judgement	–	certified	software	testers	shall	maintain	integrity	and	independence

in	their	professional	judgement.

•Management	–	certified	software	test	managers	and	leaders	shall	subscribe	to
and	promote	an	ethical	approach	to	the	management	of	software	testing.

•Profession	–	certified	software	testers	shall	advance	the	integrity	and	reputation
of	the	profession	consistent	with	the	public	interest.

•Colleagues	–	certified	software	testers	shall	be	fair	to,	and	supportive	of,	their
colleagues	and	promote	cooperation	with	software	developers.

•Self	–	certified	software	testers	shall	participate	in	lifelong	learning	regarding
the	practice	of	their	profession	and	shall	promote	an	ethical	approach	to	the
practice	of	the	profession.

The	code	of	ethics	is	far-reaching	in	its	aims,	and	a	quick	review	of	the	eight
points	reveals	interaction	with	specific	areas	of	the	syllabus.	The	implementation
of	this	code	of	ethics	is	expanded	on	in	all	chapters	of	this	book,	and	perhaps	is
the	reason	for	the	whole	book	itself.

SUMMARY

In	this	chapter,	we	have	looked	at	key	ideas	that	are	used	in	testing	and
introduced	some	terminology.	We	examined	some	of	the	types	of	software
problems	that	can	occur,	and	why	the	blanket	explanation	of	‘insufficient	testing’
is	unhelpful.	The	problems	encountered	then	led	us	through	some	questions
about	the	nature	of	testing,	why	errors	and	mistakes	are	made,	and	how	these	can
be	identified	and	eliminated.	Individual	examples	enabled	us	to	look	at	what
testing	can	achieve,	and	the	view	that	testing	does	not	improve	software	quality
but	provides	information	about	that	quality.

We	have	examined	both	general	testing	principles	and	a	standard	template	for
testing:	a	generalised	test	process.	These	are	useful	and	can	be	effective	in
identifying	the	types	of	problems	we	considered	at	the	start	of	the	chapter.	The
chapter	finished	by	examining	how	developers	and	testers	think,	and	how	testers
should	behave	by	adhering	to	a	code	of	ethics.

This	chapter	is	an	introduction	to	testing,	and	to	themes	that	are	developed	later
in	the	book.	It	is	a	chapter	in	its	own	right,	but	also	points	to	information	that
will	come	later.	A	rereading	of	this	chapter	when	you	have	worked	through	the
rest	of	the	book	will	place	all	the	main	topics	into	context.

Example	examination	questions	with	answers

E1.	K1	question

What	is	a	test	condition?

a.	A	set	of	test	data	written	to	exercise	one	or	more	logic	paths	through	the
software	under	test.

b.	An	aspect	of	the	test	basis	appropriate	to	achieve	specific	test	objectives.

c.	The	body	of	knowledge	used	as	the	foundation	for	test	analysis	and	design.

d.	The	pre-determined	goals	that	will	enable	a	decision	to	be	made	about
whether	testing	is	complete.

E2.	K2	question

Which	of	the	following	definition	pairs	for	testing	and	debugging	is	correct?

a.	Debugging	can	show	failures	in	the	software;	testing	is	investigating	the
causes	of	any	failures	and	performing	corrections.

b.	Debugging	is	investigating	the	causes	of	software	failures	and	undertaking
corrective	action;	testing	attempts	to	uncover	problems	by	executing	the
software.

c.	Debugging	is	always	undertaken	by	developers;	testing	can	be	performed	by
development	or	testing	personnel.

d.	Debugging	checks	that	software	fixes	have	been	resolved;	testing	is	looking
for	any	unintended	consequences	of	a	software	fix.

E3.	K1	question

Which	of	the	following	are	aids	to	good	communication	within	the
development	team?

i.	Try	to	understand	how	the	other	person	feels.

ii.	Communicate	personal	feelings,	concentrating	on	individuals.

iii.	Confirm	the	other	person	has	understood	what	you	have	said	and	vice	versa.

iv.	Emphasise	the	common	goal	of	better	quality.

v.	Each	discussion	is	a	battle	to	be	won.

a.	i,	ii	and	iii	aid	good	communication.

b.	iii,	iv	and	v	aid	good	communication.

c.	i,	iii	and	iv	aid	good	communication.

d.	ii,	iii	and	iv	aid	good	communication.

E4.	K2	question

Which	of	the	following	illustrates	one	of	the	testing	principles?

a.	No	unresolved	defects	does	not	mean	the	software	will	be	successful.

b.	The	more	you	test,	the	more	defects	will	be	found.

c.	All	software	can	be	tested	in	the	same	way	using	the	same	test	techniques.

d.	Defects	are	usually	found	evenly	distributed	throughout	the	software	under
test.

E5.	K2	question

Which	of	the	following	activities	are	part	of	the	test	implementation	activity
group,	and	which	part	of	test	execution?

i.	Developing	and	prioritising	test	procedures,	creating	automated	test	scripts.

ii.	Comparing	actual	and	expected	results.

iii.	Verifying	and	updating	bi-directional	traceability	between	the	test	basis,	test
conditions,	test	cases,	test	procedures	and	test	results.

iv.	Preparing	test	data	and	ensuring	it	is	properly	loaded	in	the	test	environment.

v.	Verifying	and	updating	bi-directional	traceability	between	the	test	basis,	test
conditions,	test	cases,	test	procedures	and	test	suites.

a.	i,	ii	and	iii	are	part	of	test	implementation,	iv	and	v	are	part	of	test	execution.

b.	i,	iii	and	v	are	part	of	test	implementation,	ii	and	iv	are	part	of	test	execution.

c.	i,	ii	and	iv	are	part	of	test	implementation,	iii	and	v	are	part	of	test	execution.

d.	i	iv	and	v	are	part	of	test	implementation,	ii	and	iii	are	part	of	test	execution.

E6.	K2	question

Which	of	the	following	ways	of	thinking,	broadly	apply	to	developers	and
which	to	testers?

i.	Curiosity,	professional	pessimism	and	a	critical	eye.

ii.	Interested	in	designing	and	building	solutions.

iii.	Can	be	subject	to	the	confirmation	bias.

iv.	Has	good	attention	to	detail.

v.	Contemplates	what	might	go	wrong.

a.	ii	and	iii:	developers;	i,	iv	and	v:	testers.

b.	i	and	ii:	developers;	iii,	iv	and	v:	testers.

c.	iv	and	v:	developers;	i,	ii	and	iii:	testers.

d.	iii	and	v:	developers;	i,	ii	and	iv:	testers.

E7.	K2	question

Which	of	the	following	is	a	recognised	reason	for	testing	to	be	carried	out?

a.	Using	testers	in	the	review	of	requirements	will	verify	that	the	software	is	fit

for	purpose.

b.	Evidence	suggests	that	between	25%	and	45%	of	the	project	costs	should	be
used	in	the	testing	process.

c.	The	detection	and	removal	of	defects	increases	the	likelihood	that	the	software
meets	stakeholder	needs.

d.	Testing	ensures	that	there	are	no	residual	defects	in	the	software	under	test.

E8.	K2	question

Problems	persist	with	the	online	customer	interface	for	a	utilities	company,
after	the	introduction	of	smart	meters	in	customer	homes.	Which	one	of	the
following	is	a	root	cause	of	a	defect	rather	than	an	effect	of	a	defect?

a.	Consumption	usage	for	some	days	is	shown	as	zero,	while	that	for	other	days
is	abnormally	high.

b.	Some	chosen	menu	options	intermittently	display	the	‘system	busy’	icon,	but
never	the	correct	information	at	the	time	it	is	selected.

c.	Customer	consumption	data	is	only	displayed	for	up	to	three	days	ago,	with
year-to-date	and	month-to-date	excluding	the	last	three	days.

d.	Systems	architects	did	not	anticipate	the	amount	of	web	traffic	the
introduction	of	smart	meters	would	generate.

E9.	K2	question

Which	two	of	the	following	work	products	are	created	during	the	test
implementation	activity?

i.	Documentation	about	which	test	item(s),	test	object(s),	test	tools	and	testware
were	involved	in	the	testing.

ii.	Test	execution	schedule.

iii.	Test	cases.

iv.	Documentation	about	the	status	(e.g.	‘pass’,	‘fail’,	‘not	run’	etc.)	of	individual
test	cases	or	procedures.

v.	Test	procedures	and	their	sequencing.

a.	iii	and	v.

b.	ii	and	v.

c.	i	and	iii.

d.	ii	and	iv.

Answers	to	questions	in	the	chapter

SA1.	The	correct	answer	is	c.

SA2.	The	correct	answer	is	b.

SA3.	The	correct	answer	is	d.

Answers	to	example	examination	questions

E1.	The	correct	answer	is	b.

a.	is	the	definition	of	a	test	case.

c.	is	the	description	of	a	test	basis.

d.	is	a	broad	description	of	test	exit	criteria.

E2.	The	correct	answer	is	b.

a.	the	two	parts	are	‘switched’;	what	is	described	as	‘debugging’	is	in	fact
‘testing’,	and	vice	versa.

c.	is	not	true.	The	syllabus	states	that	in	some	life	cycles,	testers	may	be	involved
in	debugging.

d.	indicates	that	debugging	is	involved	in	retesting	software	after	fixes.	This	is	a
description	of	‘retesting’,	a	testing	activity.	The	description	given	to	‘testing’	is
that	of	regression	testing;	testing	involves	more	than	this.

E3.	The	correct	answer	is	c.

Choices	ii	and	v	are	factors	that	will	not	help	good	communication,	but	will
cause	mistrust,	antagonism	and	stress	in	the	team.	These	are	ruled	out.	Option	c
is	the	answer	that	has	the	other	choices.	A	quick	check	sees	that	these	are	all
matters	that	will	encourage	openness	and	trust	–	and	are	therefore	correct
choices.

E4.	The	correct	answer	is	a.

b.	this	option	has	some	truth	to	it,	but	it	is	not	one	of	the	testing	principles.
However,	if	there	are	no	defects	in	the	code,	no	amount	of	testing	will	find
defects.

c.	is	not	true.	It	is	in	direct	contradiction	to	the	‘testing	is	context	dependent’

principle.

d.	is	again	not	true.	This	is	usually	found	not	to	be	the	case,	being	the	opposite	of
the	‘defect	clustering’	principle.

E5.	The	correct	answer	is	d.

Two	of	the	choices	are	very	similar,	choices	iii	and	v.	The	differences	here	is
test	results	(choice	iii)	and	test	suites	(choice	v).	This	points	to	choice	iii
being	part	of	test	execution	and	choice	v	being	part	of	test	implementation.
Option	d	is	the	only	one	that	has	these	assigned	in	this	way.

E6.	The	correct	answer	is	a.

This	question	is	not	implying	that	all	developers	think	in	one	way	and	all	testers
in	another,	nor	that	individual	developers	cannot	exhibit	‘think	as	testers’
characteristics.	The	choices	provided	are	fairly	straightforward,	with	the
exception	of	iv	(has	good	attention	to	detail).	This	last	choice	is	given	as	an
attribute	of	the	way	a	tester	thinks,	but	is	not	exclusive	to	testers!	Choices	i	and
iii	are	more	aligned	to	testers,	whereas	choices	ii	and	v	relate	to	developers.	This
points	to	option	a	being	the	correct	answer.

E7.	The	correct	answer	is	c.

Reviewing	requirements	can	never	verify	that	software	is	fit	for	purpose	(option
a).	Just	because	evidence	may	suggest	that	a	proportion	of	project	cost	should	be
spent	on	testing	is	not	a	reason	to	perform	testing.	This	rules	out	option	b.
Option	d	states	that	testing	can	find	all	defects,	which	means	that	we	can	show
that	there	are	no	remaining	defects	–	contrary	to	one	of	the	testing	principles
about	testing	only	finding	defects;	it	cannot	show	that	are	no	defects.	This	leaves
option	c,	which	is	the	correct	answer.

E8.	The	correct	answer	is	d.

A	root	cause	is	why	something	has	happened,	as	opposed	to	what	has	happened.
Options	a,	b	and	c	describe	unusual	events	(which	may	or	may	not	be	defects	but
are	certainly	irritating	for	customers).	Option	b	could	be	a	system	overload
problem	–	this	could	be	as	a	result	of	a	higher	than	expected	amount	of	web
traffic.	This	root	cause	is	described	in	option	d,	the	correct	answer.

E9.	The	correct	answer	is	b.

We	will	consider	each	of	the	work	products	in	turn:

i.	Documentation	about	which	test	item(s),	test	object(s),	test	tools	and	testware
were	involved	in	the	testing	–	test	execution	.

ii.	Test	execution	schedule	–	test	implementation	.

iii.	Test	cases	–	test	execution	.

iv.	Documentation	about	the	status	(e.g.	‘pass’,	‘fail’,	‘not	run’	etc.)	of	individual
test	cases	or	procedures	–	test	implementation	.

v.	Test	procedures	and	their	sequencing	–	test	execution	.

Option	b	gives	the	correct	choices.

1Kit,	E.	(1995)	Software	Testing	in	the	Real	World.	Reading,	MA:	Addison-
Wesley.

2LIFE	CYCLES

Angelina	Samaroo

INTRODUCTION

In	the	previous	chapter,	we	looked	at	testing	as	a	concept	–	what	it	is	and	why
we	should	do	it.	In	this	chapter,	we	will	look	at	testing	as	part	of	the	overall
software	development	process.	Clearly,	testing	does	not	take	place	in	isolation;
there	must	be	a	product	first.

We	will	refer	to	work	products	and	products.	A	work	product	is	an	intermediate
deliverable	required	to	create	the	final	product.	Work	products	can	be
documentation	or	code.	The	code	and	associated	documentation	will	become	the
product	when	the	system	is	declared	ready	for	release.	In	software	development,
work	products	are	generally	created	in	a	series	of	defined	stages,	from	capturing
a	customer	requirement,	to	creating	the	system,	to	delivering	the	system.	These
stages	are	usually	shown	as	steps	within	a	Software	Development	Life	Cycle.

In	this	chapter,	we	will	look	at	two	life	cycle	models	–	sequential	and	iterative.
For	each	one,	the	testing	process	will	be	described	and	the	objectives	at	each
stage	of	testing	explained.

Finally,	we	will	look	at	the	different	types	of	testing	that	can	take	place
throughout	the	development	life	cycle.

Learning	objectives

The	learning	objectives	for	this	chapter	are	listed	below.	You	can	confirm	that
you	have	achieved	these	by	using	the	self-assessment	questions	at	the	start	of	the

chapter,	the	‘Check	of	understanding’	boxes	distributed	throughout	the	text	and
the	example	examination	questions	provided	at	the	end	of	the	chapter.	The
chapter	summary	will	remind	you	of	the	key	ideas.

The	sections	are	allocated	a	K	number	to	represent	the	level	of	understanding
required	for	that	section;	where	an	individual	topic	has	a	lower	K	number	than
the	section	as	a	whole,	this	is	indicated	for	that	topic;	for	an	explanation	of	the	K
numbers,	see	the	Introduction.

Software	development	lifecycle	models	(K2)

•FL-2.1.1	Explain	the	relationships	between	software	development	activities	and
test	activities	in	the	software	development	lifecycle.

•FL-2.1.2	Identify	reasons	why	software	development	lifecycle	models	must	be
adapted	to	the	context	of	project	and	product	characteristics	(K1).

Test	levels	(K2)

•FL-2.2.1	Compare	the	different	test	levels	from	the	perspective	of	objectives,
test	basis,	test	objects,	typical	defects	and	failures,	and	approaches	and
responsibilities.

Test	types	(K2)

•FL-2.3.1	Compare	functional,	non-functional,	and	white-box	testing.

•FL-2.3.2	Recognize	that	functional,	non-functional,	and	white-box	tests	occur	at
any	test	level.	(K1)

•FL-2.3.3	Compare	the	purposes	of	confirmation	testing	and	regression	testing.

Maintenance	testing	(K2)

•FL-2.4.1	Summarize	triggers	for	maintenance	testing.

•FL-2.4.2	Describe	the	role	of	impact	analysis	in	maintenance	testing.

Self-assessment	questions

The	following	questions	have	been	designed	to	enable	you	to	check	your	current
level	of	understanding	for	the	topics	in	this	chapter.	The	answers	are	at	the	end
of	the	chapter.

Question	SA1	(K2)

Which	of	the	following	is	true	of	the	V	model?

a.	Coding	starts	as	soon	as	each	function	in	a	system	has	been	defined.

b.	The	test	activities	occur	after	all	development	activities	have	been	completed.

c.	It	enables	the	production	of	a	working	version	of	the	system	as	early	as
possible.

d.	It	enables	test	planning	to	start	as	early	as	possible.

Question	SA2	(K2)

Which	of	the	following	is	true	of	white-box	testing?

a.	It	is	carried	out	only	by	developers.

b.	It	can	be	used	to	test	data	file	structures.

c.	It	is	used	only	at	unit	and	integration	test	levels.

d.	Coverage	achieved	using	white-box	test	techniques	is	not	measurable.

Question	SA3

Which	of	the	following	is	a	test	object	for	integration	testing?

a.	A	sub-system.

b.	An	epic.

c.	A	risk	analysis	report.

d.	A	sequence	diagram.

SOFTWARE	DEVELOPMENT	MODELS

A	development	life	cycle	for	a	software	product	involves	capturing	the	initial
requirements	from	the	customer,	expanding	on	these	to	provide	the	detail
required	for	code	production,	writing	the	code	and	testing	the	product,	ready	for
release.

A	simple	development	model	is	shown	in	Figure	2.1.	This	is	known	traditionally
as	the	waterfall	model.

Figure	2.1	Waterfall	model

The	waterfall	model	in	Figure	2.1	shows	the	steps	in	sequence,	where	the
customer	requirements	are	progressively	refined	to	the	point	where	coding	can
take	place.	This	type	of	model	is	often	referred	to	as	a	linear	or	sequential	model.
Each	work	product	or	activity	is	completed	before	moving	on	to	the	next.

In	the	waterfall	model,	testing	is	carried	out	once	the	code	has	been	fully
developed.	Once	this	is	completed,	a	decision	can	be	made	on	whether	the
product	can	be	released	into	the	live	environment.

This	model	for	development	shows	how	a	fully	tested	product	can	be	created,
but	it	has	a	significant	drawback:	what	happens	if	the	product	fails	the	tests?	Let
us	look	at	a	simple	case	study.

CASE	STUDY	–	DEVELOPMENT	PROCESS

Let	us	consider	the	manufacture	of	a	smartphone.	Smartphones	have	become	an
essential	part	of	daily	life	for	many.	They	must	be	robust	enough	to	withstand	the
rigours	of	being	thrown	into	bags	or	on	floors	and	must	be	able	to	respond
quickly	to	commands.

Many	phones	now	have	touchscreens.	This	means	that	the	apps	on	the	phone
must	be	accessible	via	a	tap	on	the	screen.	This	is	done	via	a	touchscreen	driver.
The	driver	is	a	piece	of	software	that	sits	between	the	screen	(hardware)	and	the
apps	(software),	allowing	the	app	to	be	accessed	from	a	tap	on	an	icon	on	the
screen.

If	a	waterfall	model	were	to	be	used	to	manufacture	and	ship	a	touchscreen
phone,	then	all	functionality	would	be	tested	at	the	very	end,	just	prior	to
shipping.

If	it	is	found	that	the	phone	can	be	dropped	from	a	reasonable	height	without
breaking,	but	that	the	touchscreen	driver	is	defective,	then	the	phone	will	have
failed	in	its	core	required	functionality.	This	is	a	very	late	stage	in	the	life	cycle
to	uncover	such	a	fault.

In	the	waterfall	model,	the	testing	at	the	end	serves	as	a	quality	check.	The
product	can	be	accepted	or	rejected	at	this	point.	In	the	smartphone
manufacturing	example,	this	model	could	be	adopted	to	check	that	the	phone
casings	after	manufacture	are	crack	free,	rejecting	those	that	have	failed.

In	software	development,	however,	it	is	unlikely	that	we	can	simply	reject	the
parts	of	the	system	found	to	be	defective	and	release	the	rest.	The	nature	of
software	functionality	is	such	that	removal	of	software	is	often	not	a	clear-cut
activity	–	this	action	could	cause	other	areas	to	function	incorrectly.	It	might
even	cause	the	system	to	become	unusable.	If	the	touchscreen	driver	is	not
functioning	correctly,	then	some	of	the	apps	might	not	be	accessible	via	a	tap	on
the	icon.	On	a	touchscreen	phone,	this	would	be	an	intolerable	fault	in	the	live
environment.

What	is	needed	is	a	process	that	assures	quality	throughout	the	development	life
cycle.	At	every	stage,	a	check	should	be	made	that	the	work	product	for	that
stage	meets	its	objectives.	This	is	a	key	point:	work	product	evaluation	taking
place	at	the	point	where	the	product	has	been	declared	complete	by	its	creator.	If
the	work	product	passes	its	evaluation	(test),	we	can	progress	to	the	next	stage	in
confidence.	In	addition,	finding	problems	at	the	point	of	creation	should	make
fixing	any	problems	cheaper	than	fixing	them	at	a	later	stage.	This	is	the	cost
escalation	model,	described	in	Chapter	1.

The	checks	throughout	the	life	cycle	include	verification	and	validation.

Verification	–	checks	that	the	work	product	meets	the	requirements	set	out	for	it.
An	example	of	this	is	to	ensure	that	a	website	being	built	follows	the	guidelines
for	making	websites	usable	by	as	many	people	as	possible.	Verification	helps	to
ensure	that	we	are	building	the	product	in	the	right	way.

Validation	–	changes	the	focus	of	work	product	evaluation	to	evaluation	against
user	needs.	This	means	ensuring	that	the	behaviour	of	the	work	product	matches
the	customer	needs	as	defined	for	the	project.	For	example,	for	the	same	website
above,	the	guidelines	may	have	been	written	with	people	familiar	with	websites
in	mind.	It	may	be	that	this	website	is	also	intended	for	novice	users.	Validation
would	include	these	users	checking	that	they	too	can	use	the	website	easily.
Validation	helps	to	ensure	that	we	are	building	the	right	product	as	far	as	the
users	are	concerned.

There	are	two	types	of	development	model	that	facilitate	early	work	product
evaluation.

The	first	is	an	extension	to	the	waterfall	model,	known	as	the	V	model.	The
second	is	a	cyclical	model,	where	the	coding	stage	often	begins	once	the	initial
user	needs	have	been	captured.	Cyclical	models	are	often	referred	to	as	iterative
models.

We	will	consider	first	the	V	model.

V	model	(sequential	development	model)

There	are	many	variants	of	the	V	model.	One	of	these	is	shown	in	Figure	2.2.

Figure	2.2	V	model	for	software	development

As	for	the	waterfall	model,	the	left-hand	side	of	the	model	focuses	on
elaborating	the	initial	requirements,	providing	successively	more	technical	detail
as	the	development	progresses.	In	the	model	shown,	these	are:

•Requirement	specification	–	capturing	of	user	needs.

•Functional	specification	–	definition	of	functions	required	to	meet	user	needs.

•Technical	specification	–	technical	design	of	functions	identified	in	the
functional	specification.

•Program	specification	–	detailed	design	of	each	module	or	unit	to	be	built	to
meet	required	functionality.

These	specifications	could	be	reviewed	to	check	for	the	following:

•Conformance	to	the	previous	work	product	(so	in	the	case	of	the	functional
specification,	verification	would	include	a	check	against	the	requirement
specification).

•That	there	is	sufficient	detail	for	the	subsequent	work	product	to	be	built
correctly	(again,	for	the	functional	specification,	this	would	include	a	check	that
there	is	sufficient	information	in	order	to	create	the	technical	specification).

•That	it	is	testable	–	is	the	detail	provided	sufficient	for	testing	the	work	product?

Formal	methods	for	reviewing	documents	are	discussed	in	Chapter	3.

The	middle	of	the	V	model	shows	that	planning	for	testing	should	start	with	each
work	product.	Thus,	using	the	requirement	specification	as	an	example,
acceptance	testing	is	planned	for,	right	at	the	start	of	the	development.	Test
planning	is	discussed	in	more	detail	in	Chapter	5.

The	right-hand	side	focuses	on	the	testing	activities.	For	each	work	product,	a
testing	activity	is	identified.	These	are	shown	in	Figure	2.2:

•Testing	against	the	requirement	specification	takes	place	at	the	acceptance
testing	stage.

•Testing	against	the	functional	specification	takes	place	at	the	system	testing
stage.

•Testing	against	the	technical	specification	takes	place	at	the	integration	testing
stage.

•Testing	against	the	program	specification	takes	place	at	the	unit	testing	stage.

This	allows	testing	to	be	concentrated	on	the	detail	provided	in	each	work
product,	so	that	defects	can	be	identified	as	early	as	possible	in	the	life	cycle,

when	the	work	product	has	been	created.	The	different	stages	of	testing	are
discussed	later.

Remembering	that	each	stage	must	be	completed	before	the	next	one	can	be
started;	this	approach	to	software	development	pushes	validation	of	the	system
by	the	user	representatives	right	to	the	end	of	the	life	cycle.	If	the	customer
needs	were	not	captured	accurately	in	the	requirement	specification,	or	if	they
change,	then	these	issues	may	not	be	uncovered	until	the	user	testing	is	carried
out.	As	we	saw	in	Chapter	1,	fixing	problems	at	this	stage	could	be	very	costly;
in	addition,	it	is	possible	that	the	project	could	be	cancelled	altogether.

Iterative–incremental	development	models

Let	us	now	look	at	a	different	model	for	software	development	–	iterative
development.	This	is	one	where	the	requirements	do	not	need	to	be	fully	defined
before	coding	can	start.	Instead,	a	working	version	of	the	product	is	built,	in	a
series	of	stages,	or	iterations	–	hence	the	name	iterative/incremental
development.	Each	stage	encompasses	requirements	definition,	design,	code	and
test.	This	is	shown	diagrammatically	in	Figure	2.3.

Figure	2.3	Iterative	development

This	type	of	development	is	often	referred	to	as	cyclical	–	we	go	‘round	the
development	cycle	a	number	of	times’,	within	the	project.	The	project	will	have
a	defined	timescale	and	cost.	Within	this,	the	cycles	will	be	defined.	Each	cycle
will	also	have	a	defined	timescale	and	cost.	The	cycles	are	commonly	referred	to
as	time-boxes.	For	each	time-box,	a	requirement	is	defined	and	a	version	of	the
code	is	produced,	which	will	allow	testing	by	the	user	representatives.	At	the	end
of	each	time-box,	a	decision	is	made	on	what	extra	functionality	needs	to	be
created	for	the	next	iteration.	This	process	is	then	repeated	until	a	fully	working
system	has	been	produced.

Some	models	incorporate	the	idea	of	‘self-organising’	teams.	This	does	not	mean
that	the	team	is	leaderless,	rather	that	the	team	decides	how	to	best	manage	and
execute	the	tasks	amongst	themselves.	This	will	of	course	include	the
relationship	between	testers	and	developers,	and	how	defects	are	reported.

A	key	feature	of	this	type	of	development	is	the	involvement	of	user
representatives	in	the	testing.	Having	the	users	represented	throughout	minimises
the	risk	of	developing	an	unsatisfactory	product.	The	user	representatives	are
empowered	to	request	changes	to	the	software,	to	meet	their	needs.

Components	or	systems	developed	using	these	methods	often	involve
overlapping	and	iterating	test	levels	throughout	development.	Ideally,	each
feature	is	tested	at	several	test	levels	before	delivery.	This	is	often	facilitated	by
continuous	delivery	or	deployment,	enabled	by	making	use	of	significant
automation.

This	approach	to	software	development	can	pose	problems,	however.

The	lack	of	formal	documentation	can	make	it	difficult	to	test.	To	counter	this,
developers	may	use	test-driven	development	(TDD).	This	is	where	functional
tests	are	written	first,	and	code	is	then	created	and	tested.	It	is	reworked	until	it
passes	the	tests.

In	addition,	the	working	environment	may	be	such	that	developers	make	any
changes	required,	without	formally	recording	them.	This	approach	could	mean
that	changes	cannot	be	traced	back	to	the	requirements,	nor	to	the	parts	of	the
software	that	have	changed.	Thus,	traceability	as	the	project	progresses	is
reduced.	To	mitigate	this,	a	robust	process	must	be	put	in	place	at	the	start	of	the
project	to	manage	these	changes	(often	part	of	a	configuration	management
process	–	this	is	discussed	further	in	Chapter	5).

Another	issue	associated	with	changes	is	the	amount	of	testing	required	to	ensure
that	implementation	of	the	changes	does	not	cause	unintended	changes	to	other
parts	of	the	software	(this	is	called	regression	testing,	discussed	later	in	this
chapter).

Forms	of	iterative	development	include	Scrum,	Kanban,	Spiral	and	the	Rational
Unified	Process	(RUP).	Agile	is	an	umbrella	term	incorporating	these	and	other
methods.

•Scrum	–	here	the	focus	is	on	short	iterations	spanning	just	hours,	days	or	a	few
weeks.	The	increments	developed	are	thus	correspondingly	small.	This	term	may
already	be	familiar	to	those	of	you	already	working	in	an	Agile	environment.

•Kanban	–	as	for	Scrum,	you	may	already	be	familiar	with	this	term.	It	allows
for	easy	visualisation	of	a	workflow,	via	the	usual	task	board	used	in	Agile
development	projects.	It	is	not	a	time-boxing	tool;	it	can	be	used	to	show
progress	of	a	single	enhancement	or	group	of	features,	from	a	‘to-do’	state,	to	a

‘done’	state.

•Rational	Unified	Process	–	iterations	here	tend	to	be	longer	than	in	Scrum,	with
correspondingly	larger	feature	sets.	Those	of	you	working	in	this	environment
may	recall	the	Inception	–	Elaboration	–	Construction	–	Transition	phases.

•Spiral	–	Dr	Barry	Boehm	(whom	you	came	across	in	Chapter	1	when	discussing
the	cost	escalation	model)	created	this	model.	Here,	risk	is	used	as	the	driver	for
determining	the	levels	of	documentation	and	effort	required	for	a	given	project.
This	can	include	a	prototyping	model,	where	increments	created	may	be
reworked	significantly	or	even	abandoned	if	the	risks	are	too	high.

Agile	methods	of	developing	software	have	gained	significant	ground	in	recent
years.	Organisations	across	business	sectors	have	embraced	this	collaborative
way	of	working	and	many	qualifications	focusing	on	Agile	methodologies	now
exist.	The	syllabus	for	this	qualification	does	not	dwell	on	Agile;	however,	for
completeness	of	learning,	a	summary	will	now	be	provided.

The	Agile	development	methodology	is	supported	through	the	Agile	Alliance,
www.agilealliance.org.	The	Alliance	has	created	an	Agile	manifesto	with	four
points,	supported	by	12	principles.	The	essence	of	these	is	to	espouse	the	value
of	adopting	a	can-do	and	collaborative	approach	to	creating	a	product.	The	idea
is	that	the	development	teams	work	closely	with	the	business,	responding	to	their
needs	at	the	time,	rather	than	attempting	to	adhere	to	a	contract	for	requirements
that	might	well	need	to	be	changed	prior	to	the	launch	date.	Many	examples	can
be	provided	to	suggest	that	this	is	a	suitable	way	of	working.	Going	back	to	our
smartphone	example,	there	are	many	well-known	phone	manufacturers	who
failed	to	move	with	consumer	demands,	costing	them	significant	market	share.

A	popular	framework	for	Agile	is	Scrum.	Scrum	is	not	an	acronym;	it	was	taken
from	the	game	of	rugby.	In	rugby	the	team	huddles	to	agree	tactics;	the	ball	is
then	passed	back	and	forth	until	a	sprint	to	the	touchline	is	attempted.	In	Scrum,
there	is	a	daily	stand-up	meeting	to	agree	tactics	for	the	day;	an	agreed	set	of
functions	to	be	delivered	at	the	end	of	a	time-box	(Sprint);	periodic	reviews	of
functionality	by	the	customer	representatives;	and	a	team	retrospective	to	reflect
on	the	previous	Sprint	in	order	to	improve	on	the	next.	In	Agile,	the	term	‘user
story’	is	common	when	referring	to	requirements,	as	is	the	term	‘backlog’	when
referring	to	a	set	of	requirements	or	tasks	for	a	particular	Sprint.

The	ISTQB	now	offers	a	qualification	in	Agile	testing	as	an	extension	to	this
Foundation	in	software	testing.	Further	information	can	be	found	at
www.istqb.org

CHECK	OF	UNDERSTANDING

1.	What	is	meant	by	verification?

2.	What	is	meant	by	validation?

3.	Name	three	work	products	typically	shown	in	the	V	model.

4.	Name	three	activities	typically	shown	in	the	V	model.

5.	Identify	a	benefit	of	the	V	model.

6.	Identify	a	drawback	of	the	V	model.

7.	Name	three	activities	typically	associated	with	an	iterative	model.

8.	Identify	a	significant	benefit	of	an	iterative	model.

9.	List	three	challenges	of	an	iterative	development.

10.	List	three	types	of	iterative	development.

11.	Compare	the	work	products	in	the	V	model	with	those	in	an	iterative	model.

For	both	types	of	development,	testing	plays	a	significant	role.	Testing	helps	to
ensure	that	the	work	products	are	being	developed	in	the	right	way	(verification)
and	that	the	product	will	meet	the	user	needs	(validation).

Characteristics	of	good	testing	across	the	development	life	cycle	include:

•Early	test	design	–	in	the	V	model,	we	saw	that	test	planning	begins	with	the
specification	documents.	This	activity	is	part	of	the	test	process,	discussed	in

Chapter	1	.	After	test	planning,	the	documents	are	analysed	and	test	cases
designed.	This	approach	ensures	that	testing	starts	with	the	development	of	the
requirements;	that	is,	a	proactive	approach	to	testing	is	undertaken.	Proactive
approaches	to	test	design	are	discussed	further	in	Chapter	5	.	As	we	saw	in
iterative	development,	test-driven	development	may	be	adopted,	pushing	testing
to	the	front	of	the	development	activity.

•Each	work	product	is	tested	–	in	the	V	model,	each	document	on	the	left	is
tested	by	an	activity	on	the	right.	Each	specification	document	is	called	the	test
basis,	that	is,	it	is	the	basis	on	which	tests	are	created.	In	iterative	development,
the	functionality	for	each	iteration	is	tested	before	moving	on	to	the	next.

•Each	test	level	has	objectives	specific	to	that	level.	Thus,	at	unit	level	the	focus
is	on	individual	pieces	of	code;	at	integration	level	the	focus	is	on	the	interfaces
and	so	on.

•Testers	are	involved	in	reviewing	requirements	before	they	are	released	–	in	the
V	model,	testers	are	invited	to	review	associated	documents	from	a	testing
perspective.	Techniques	for	reviewing	documents	are	outlined	in	Chapter	3	.

TEST	LEVELS

In	Figure	2.2,	the	test	stages	of	the	V	model	are	shown.	They	are	often	called	test
levels.	The	term	test	level	provides	an	indication	of	the	focus	of	the	testing,	and
the	types	of	problems	it	is	likely	to	uncover.	The	typical	levels	of	testing	are:

•component	(unit)	testing;

•integration	testing;

•system	testing;

•acceptance	testing.

Each	of	these	test	levels	will	include	tests	designed	to	uncover	problems
specifically	at	that	stage	of	development.	These	levels	of	testing	can	also	be
applied	to	iterative	development.	In	addition,	the	levels	may	change	depending
on	the	system.	For	instance,	if	the	system	includes	some	software	developed	by
external	parties,	or	bought	off	the	shelf	(commercial	off-the	shelf	(COTS)
based),	acceptance	testing	on	these	may	be	conducted	before	testing	the	system
as	a	whole.

Each	test	level	will	have	a	test	basis	(a	description	of	the	item)	and	a	test	object
(the	item	under	test).	A	test	basis	is	some	form	of	definition	of	what	the	code	is
intended	to	do	and	is	used	as	a	reference	for	deriving	the	tests.	It	can	include	the

requirements;	user	stories;	the	source	code;	or	the	knowledge	of	the	tester,	based
on	experience.	The	higher	the	level	of	documentation,	the	more	precise	the	test
design	can	be.	Typically,	in	V	model	development,	there	is	more	documentation
than	in	iterative	development.	Techniques	for	test	design	will	be	covered	in
Chapter	4.

Test	levels	are	characterised	by	the	following	attributes:

•specific	objectives;

•test	basis,	referenced	to	derive	test	cases;

•test	object	(i.e.	what	is	being	tested);

•typical	defects	and	failures;

•specific	approaches	and	responsibilities.

Let	us	now	look	at	these	levels	of	testing	in	more	detail.

Component	(unit)	testing

Before	testing	of	the	code	can	start,	clearly	the	code	has	to	be	written.	This	is
shown	at	the	bottom	of	the	V	model.	Generally,	the	code	is	written	in	component
parts,	or	units.	The	components	are	usually	constructed	in	isolation,	for
integration	at	a	later	stage.	Components	are	also	called	programs,	modules	or
units.

Component	(unit)	testing	is	often	done	in	isolation	from	the	rest	of	the	system,
depending	on	the	Software	Development	Life	Cycle	model	and	the	system,
which	may	require	mock	objects,	service	virtualisation,	harnesses,	stubs	and
drivers.

Component	(unit)	testing	may	cover:

•Functional	requirements	(such	as	the	ability	to	remove	items	from	a	shopping
cart).

•Non-functional	characteristics	(such	as	checking	for	memory	leaks	–	this	is
where	the	program	holds	on	to	memory	it	is	no	longer	using,	which	may	cause
the	system	to	slow	down	when	in	use).

•Structural	testing	–	this	is	checking	the	percentage	of	code	exercised	through
testing.	Testing	based	on	code	(white-box	testing)	is	discussed	in	Chapter	4	.

Component	(unit)	testing	is	intended	to	check	the	quality	of	the	individual	piece
of	code	prior	to	its	integration	with	other	units.

•Specific	objectives:

reducing	risk;

verifying	whether	the	functional	and	non-functional	behaviours	of	the
component	are	as	designed	and	specified;

building	confidence	in	the	component’s	quality;

finding	defects	in	the	component;

preventing	defects	from	escaping	to	higher	test	levels.

•Test	bases	include:

a	detailed	design;

a	component	specification;

a	data	model	or	other	document	describing	the	expected	functionality	of	the	unit;

the	code	itself	can	be	used	as	a	basis	for	component	testing.

•Test	objects	include:

the	components;

the	programs;

code	and	data	structures;

classes;

database	modules	and	other	pieces	of	code.

•Typical	defects	and	failures	include:

incorrect	functionality,	perhaps	due	to	incorrect	logic	–	for	example	introducing
too	short	a	time	for	displaying	an	error	message	to	a	user	before	removing	it,
causing	them	not	to	see	it	properly;

data	flow	problems	–	for	instance,	a	part	of	the	code	requests	an	input,	but
provides	no	output;

code	that	contains	overly	complicated	constructs,	reducing	maintainability	of	the
code.

•Specific	approaches	and	responsibilities:

Developers	tend	to	fix	defects	are	soon	as	they	are	found.

One	approach	to	unit	testing	is	called	test-driven	development.	This	originated	in
eXtreme	Programming.	As	its	name	suggests,	test	cases	are	written	first,	and
then	the	code	is	built,	tested	and	changed	until	the	unit	passes	its	tests.	This	is	an
iterative	approach	to	unit	testing.

Unit	testing	is	often	supported	by	a	unit	test	framework,	as	well	as	debugging
tools.	These	assist	the	developer	in	finding	and	fixing	defects,	without	the	need
for	a	formal	defect	management	process	at	this	stage.	If	defects	are	logged	and
analysed	however,	they	can	provide	opportunities	for	root	cause	analysis	to
improve	the	test	process	for	future	releases.

Regression	testing	is	automated	so	that	issues	with	a	software	build	can	be
detected	quickly.	This	is	now	typical	in	iterative	development	models.

Integration	testing

Once	the	units	have	been	written,	the	next	stage	is	to	put	them	together	to	create

the	system.	This	is	called	integration.	It	involves	building	something	larger	from
a	number	of	smaller	pieces.

The	purpose	of	integration	testing	is	to	expose	defects	in	the	interfaces	and	in	the
interactions	between	integrated	components	or	systems.

There	are	two	different	levels	of	integration	testing	described	in	the	ISTQB
syllabus,	which	may	be	carried	out	on	test	objects	of	varying	size	as	follows:

Component	integration	testing,	which	focuses	on	the	interactions	and	interfaces
between	integrated	components.	It	is	performed	after	component	testing	and	is
generally	automated.	In	iterative	and	incremental	development,	component
integration	tests	are	usually	part	of	the	continuous	integration	process.

System	integration	testing,	which	focuses	on	the	interactions	and	interfaces
between	systems,	packages	and	microservices	(where	an	application	is
decomposed	into	fine-grained	services,	loosely	coupled	to	make	up	the	system).
It	can	also	cover	interactions	and	interfaces	with	external	organisations.	For
example,	a	trading	system	in	an	investment	bank	may	interact	with	the	stock
exchange	to	get	the	latest	prices	for	its	stocks	and	shares	on	the	international
market.	Where	external	organisations	are	involved,	extra	challenges	for	testing
present	themselves,	since	the	developing	organisation	will	not	have	control	over
the	interfaces.	This	can	include	creating	the	test	environment,	defect	resolution
and	so	on.

•Specific	objectives:

reducing	risk;

verifying	whether	the	functional	and	non-functional	behaviours	of	the	interfaces
are	as	designed	and	specified;

building	confidence	in	the	quality	of	the	interfaces;

finding	defects	(which	may	be	in	the	interfaces	themselves	or	within	the
components	or	systems);

preventing	defects	from	escaping	to	higher	test	levels.

•Test	bases	include:

software	and	system	design;

sequence	diagrams;

interface	and	communication	protocol	specifications;

use	cases;

architecture	at	component	or	system	level;

workflows;

external	interface	definitions.

•Test	objects	include:

sub-systems;

databases;

infrastructure;

interfaces;

Application	Program	Interfaces	(APIs);

microservices.

•Typical	defects	and	failures	for	component	integration	testing	include:

incorrect	or	missing	data;

incorrect	data	encoding;

incorrect	sequencing	or	timing	of	interface	calls;

interface	mismatches;

failures	in	communication	between	components;

ignored	or	improperly	handled	communication	failures	between	components;

incorrect	assumptions	about	the	meaning,	units	or	boundaries	of	the	data	being
passed	between	components.

•Typical	defects	and	failures	for	system	integration	testing	include:

inconsistent	message	structures	between	systems;

incorrect	or	missing	data;

incorrect	data	encoding	(as	above)	for	component	integration	testing;

interface	mismatch	(as	above)	for	component	integration	testing;

failures	in	communication	between	systems;

ignored	or	improperly	handled	communication	failures	between	systems;

incorrect	assumptions	about	the	meaning,	units	or	boundaries	of	the	data	being
passed	between	systems;

failure	to	comply	with	mandatory	security	regulations.

•Specific	approaches	and	responsibilities.

Component	integration	testing	is	usually	carried	out	by	developers.

System	integration	testing	may	be	done	after	system	testing	or	in	parallel	with
ongoing	system	test	activities	(in	both	sequential	development	and	iterative	and
incremental	development).	It	is	usually	carried	out	by	testers.

Continuous	integration,	where	software	is	integrated	on	a	component-by-
component	basis	(i.e.	functional	integration),	is	now	commonplace.	This	allows

integration	defects	to	be	found	as	soon	as	they	are	introduced.

Regression	testing	is	often	automated,	as	we	saw	for	component	testing.

Before	integration	testing	can	be	planned,	an	integration	strategy	is	required.
This	involves	making	decisions	on	how	the	system	will	be	put	together	in	a
systematic	way	prior	to	testing.

Systematic	integration	strategies	may	be	based	on	the	system	architecture	(e.g.
top-down	and	bottom-up),	functional	tasks,	transaction	processing	sequences	or
some	other	aspect	of	the	system	or	components.

There	are	three	commonly	quoted	integration	strategies,	as	follows.

Big-bang	integration

This	is	where	all	units	are	linked	at	once,	resulting	in	a	complete	system.	When
the	testing	of	this	system	is	conducted,	it	is	difficult	to	isolate	any	errors	found
because	attention	is	not	paid	to	verifying	the	interfaces	across	individual	units.

This	type	of	integration	is	generally	regarded	as	a	poor	choice	of	integration
strategy.	It	introduces	the	risk	that	problems	may	be	discovered	late	in	the
project,	when	they	are	more	expensive	to	fix.

Top-down	integration

This	is	where	the	system	is	built	in	stages,	starting	with	components	that,	when
activated,	cause	other	components	to	become	active.	These	are	called	‘calling’
components.	Components	that	call	others	are	usually	placed	above	those	that	are
called.	Top-down	integration	testing	permits	the	tester	to	evaluate	component
interfaces,	starting	with	those	at	the	‘top’.

Let	us	look	at	the	diagram	in	Figure	2.4	to	explain	this	further.

The	control	structure	of	a	program	can	be	represented	in	a	chart.	In	Figure	2.4,
component	1	can	call	components	2	and	3.	Thus	in	the	structure,	component	1	is
placed	above	components	2	and	3.	Component	2	can	call	components	4	and	5.
Component	3	can	call	components	6	and	7.	Thus	in	the	structure,	components	2
and	3	are	placed	above	components	4	and	5	and	components	6	and	7,
respectively.

Figure	2.4	Top-down	control	structure

In	this	chart,	the	order	of	integration	might	be:

•1,2

•1,3

•2,4

•2,5

•3,6

•3,7

Top-down	integration	testing	requires	that	the	interactions	of	each	component
must	be	tested	when	they	are	built.	Those	lower	down	in	the	hierarchy	may	not
have	been	built	or	integrated	yet.	In	Figure	2.4,	in	order	to	test	component	1’s
interaction	with	component	2,	it	may	be	necessary	to	replace	component	2	with	a
substitute	since	component	2	may	not	have	been	integrated	yet.	This	is	done	by
creating	a	skeletal	implementation	of	the	component,	called	a	stub.	A	stub	is	a
passive	component,	called	by	other	components.	In	this	example,	stubs	may	be
used	to	replace	components	4	and	5	when	testing	component	2.

The	use	of	stubs	is	commonplace	in	top-down	integration,	replacing	components
not	yet	integrated.

Bottom-up	integration

This	is	the	opposite	of	top-down	integration	and	the	components	are	integrated
in	a	bottom-up	order.	This	is	shown	in	Figure	2.5.

Figure	2.5	Bottom-up	integration

The	integration	order	might	be:

•4,2

•5,2

•6,3

•7,3

•2,1

•3,1

So,	in	bottom-up	integration,	components	4–7	would	be	integrated	before
components	2	and	3.	In	this	case,	the	components	that	may	not	be	in	place	are
those	that	actively	call	other	components.	As	in	top-down	integration	testing,
they	must	be	replaced	by	specially	written	components.	When	these	special
components	call	other	components,	they	are	called	drivers.	They	are	so	called
because,	in	the	functioning	program,	they	are	active,	controlling	other
components.	Components	2	and	3	could	be	replaced	by	drivers	when	testing
components	4–7.	They	are	generally	more	complex	than	stubs.

System	testing

Having	checked	that	the	components	all	work	together	at	unit	integration	level,
the	next	step	is	to	consider	the	functionality	from	an	end-to-end	perspective.
This	activity	is	called	system	testing.

System	testing	is	necessary	because	many	of	the	criteria	for	test	selection	at	unit
and	integration	testing	result	in	the	production	of	a	set	of	test	cases	that	are
unrepresentative	of	the	operating	conditions	in	the	live	environment.	Thus,
testing	at	these	levels	is	unlikely	to	reveal	errors	due	to	interactions	across	the
whole	system,	or	those	due	to	environmental	issues.

System	testing	serves	to	correct	this	imbalance	by	focusing	on	the	behaviour	of
the	whole	system/product	as	defined	by	the	scope	of	a	development	project	or
programme,	in	a	representative	live	environment.	It	is	usually	carried	out	by	a
team	that	is	independent	of	the	development	process.	The	benefit	of	this
independence	is	that	an	objective	assessment	of	the	system	can	be	made,	based
on	the	specifications	as	written,	and	not	the	code.

System	testing	often	produces	information	that	is	used	by	stakeholders	to	make
release	decisions,	which	may	include	checking	that	legal	or	regulatory
requirements	and	standards	have	been	met.

The	behaviour	required	of	the	system	may	be	documented	in	functional
specifications,	use	cases	or	user	stories.	These	should	include	the	functional	and
non-functional	requirements	of	the	system	or	feature.

A	functional	requirement	is	a	requirement	that	specifies	a	function	that	a	system

or	system	component	must	perform.	Functional	requirements	can	be	specific	to	a
system.	For	instance,	you	expect	to	be	able	to	search	for	flights	on	a	travel
agent’s	website,	whereas	you	visit	your	online	bank	to	check	that	you	have
sufficient	funds	to	pay	for	the	flight.	Thus,	functional	requirements	provide
detail	on	what	the	application	being	developed	will	do.

Non-functional	system	testing	looks	at	those	aspects	that	are	important	but	not
directly	related	to	what	functions	the	system	performs.	These	tend	to	be	generic
requirements,	which	can	be	applied	to	many	different	systems.	In	the	example
above,	you	can	expect	that	both	systems	will	respond	to	your	inputs	in	a
reasonable	time	frame,	for	instance.	Typically,	these	requirements	will	consider
both	normal	operations	and	behaviour	under	exceptional	circumstances.	Thus,
non-functional	requirements	detail	how	the	application	will	perform	in	use.

Examples	of	non-functional	requirements	include:

•installability	–	installation	procedures;

•maintainability	–	ability	to	introduce	changes	to	the	system;

•performance	–	expected	normal	behaviour;

•load	handling	–	behaviour	of	the	system	under	increasing	load;

•stress	handling	–	behaviour	at	the	upper	limits	of	system	capability;

•portability	–	use	on	different	operating	platforms;

•recovery	–	recovery	procedures	on	failure;

•reliability	–	ability	of	the	software	to	perform	its	required	functions	over	time;

•usability	–	ease	with	which	users	can	engage	with	the	system.

The	amount	of	testing	required	at	system	testing,	however,	can	be	influenced	by
the	amount	of	testing	carried	out	(if	any)	at	the	previous	stages.	In	addition,	the
amount	of	testing	advisable	also	depends	on	the	amount	of	verification	carried
out	on	the	requirements	(this	is	discussed	further	in	Chapter	3).

•Specific	objectives:

reducing	risk;

verifying	whether	the	functional	and	non-functional	behaviours	of	the	system	are
as	designed	and	specified;

validating	that	the	system	is	complete	and	will	work	as	expected;

building	confidence	in	the	quality	of	the	system	as	a	whole;

finding	defects;

preventing	defects	from	escaping	to	higher	test	levels	or	production.

•Test	bases	include:

system	and	software	requirement	specifications	(functional	and	non-functional);

risk	analysis	reports;

use	cases;

epics	and	user	stories;

models	of	system	behaviour;

state	diagrams;

system	and	user	manuals.

•Test	objects	include:

applications;

hardware/software	systems;

operating	systems;

system	under	test	(SUT);

system	configuration	and	configuration	data	(i.e.	data	that	can	be	configured	to
suit	a	particular	use	or	need).

•Typical	defects	and	failures	include:

incorrect	calculations;

incorrect	or	unexpected	system	behaviour;

incorrect	control	and/or	data	flows	within	the	system.

•Specific	approaches	and	responsibilities:

Testers	should	be	involved	in	the	static	review	of	documents	to	avoid
ambiguities	in,	and	lack	of	understanding	of,	requirements.	These	can	lead	to	the
false	positives	and	negatives	discussed	in	Chapter	1	.	Reviews	will	be	explored
further	in	Chapter	3	.

System	testing	should	use	the	most	appropriate	techniques	(to	be	covered	in
Chapter	4)	for	the	aspect(s)	of	the	system	to	be	tested.

The	test	environment	should	mimic	the	target	or	production	environment	as	far
as	practicable.

System	testing	is	typically	carried	out	by	independent	testers.

As	we	saw	earlier,	automation	is	often	used	in	regression	testing	to	aid	in
providing	confidence	in	the	eventual	system	functionality.

Acceptance	testing

The	purpose	of	acceptance	testing	is	to	provide	the	end	users	with	confidence
that	the	system	will	function	according	to	their	expectations.

Unlike	system	testing,	however,	the	testing	conducted	here	should	be

independent	of	any	other	testing	carried	out.	Its	key	purpose	is	to	demonstrate
system	conformance	to,	for	example,	the	customer	requirements	and	operational
and	maintenance	processes.	For	instance,	acceptance	testing	may	assess	the
system’s	readiness	for	deployment	and	use.

Typical	forms	of	acceptance	testing	include	the	following:

•User	acceptance	testing	–	testing	by	user	representatives	to	check	that	the
system	meets	their	business	needs.	This	can	include	factory	acceptance	testing,
where	the	system	is	tested	by	the	users	before	moving	it	to	their	own	site.	Site
acceptance	testing	could	then	be	performed	by	the	users	at	their	own	site.

•Operational	acceptance	testing	–	often	called	operational	readiness	testing.	This
involves	checking	that	the	processes	and	procedures	are	in	place	to	allow	the
system	to	be	used	and	maintained.	This	can	include	checking:

back-up	facilities;

installing,	uninstalling	and	upgrading;

performance	testing;

procedures	for	disaster	recovery;

user	management;

maintenance	procedures;

data	load	and	migration	tasks;

security	vulnerabilities.

•Contract	and	regulatory	acceptance	testing:

Contractual	acceptance	testing	–	sometimes	the	criteria	for	accepting	a	system
are	documented	in	a	contract.	Testing	is	then	conducted	to	check	that	these
criteria	have	been	met,	before	the	system	is	accepted.	This	is	typical	of	custom-
developed	software.

Regulatory	acceptance	testing	–	in	some	industries,	systems	must	meet
governmental,	legal	or	safety	standards.	Examples	of	these	are	the	defence,
banking	and	pharmaceutical	industries.	The	results	of	tests	here	may	be
witnessed	or	audited	by	regulatory	bodies.

•Alpha	and	beta	testing:

Alpha	testing	takes	place	at	the	developer’s	site	–	the	operational	system	is	tested
while	still	at	the	developer’s	site	by	internal	staff,	before	release	to	external
customers.	Note	that	testing	here	is	still	independent	of	the	development	team.

Beta	testing	takes	place	at	the	customer’s	site	–	the	operational	system	is	tested
by	a	group	of	customers,	who	use	the	product	at	their	own	locations	and	provide
feedback,	before	the	system	is	released.	This	is	often	called	‘field	testing’.

Both	alpha	and	beta	testing	are	typically	used	by	developers	of	COTS	software
in	order	to	get	feedback	before	final	go-live.

•Specific	objectives:

establishing	confidence	in	the	quality	of	the	system	as	a	whole;

validating	that	the	system	is	complete	and	will	work	as	expected;

verifying	that	functional	and	non-functional	behaviours	of	the	system	are	as
specified.

It	is	worth	noting	that	defect	finding	is	not	a	main	aim	of	acceptance	testing,
although	they	must	of	course	be	logged	and	resolved	when	found.

•Test	bases	include:

user,	business,	legal,	regulatory	and	system	requirements;

use	cases	and	business	processes;

installation	procedures;

risk	analysis	reports.

•Test	bases	for	operational	acceptance	testing	include:

back-up,	restore	and	disaster	recovery	procedures;

security	standards	or	regulations;

non-functional	requirements;

operations	documentation;

deployment	and	installation	instructions;

performance	targets;

database	packages.

•Test	objects	include:

system	under	test;

system	configuration,	configuration	and	production	data;

business	processes	for	a	fully	integrated	system;

recovery	systems	and	hot	sites	(for	business	continuity	and	disaster	recovery
testing);

operational	and	maintenance	processes;

forms	and	reports.

•Typical	defects	and	failures.

System	workflows	do	not	meet	business	or	user	requirements.

Business	rules	are	not	implemented	correctly.

System	does	not	satisfy	contractual	or	regulatory	requirements.

Non-functional	failures	such	as	security	vulnerabilities,	inadequate	performance
efficiency	under	high	loads,	or	improper	operation	on	a	supported	platform.

•Specific	approaches	and	responsibilities.

Acceptance	testing	is	often	the	responsibility	of	the	customers	or	users	of	a
system,	although	other	project	team	members	may	be	involved	as	well.

Acceptance	testing	is	often	thought	of	as	the	last	test	level	in	a	sequential
development	life	cycle,	but	it	may	also	occur	at	other	times;	for	example:

When	a	COTS	software	product	is	installed	or	integrated.

Before	system	testing	for	a	new	functional	enhancement.

At	the	end	of	each	iteration	in	iterative	development	–	for	verification	against	the
documented	acceptance	criteria	and	validation	against	the	user	needs.	This	can
also	include	alpha	and	beta	testing.

In	iterative	development,	project	teams	can	employ	various	forms	of	acceptance
testing	during	and	at	the	end	of	each	iteration,	such	as	those	focused	on	verifying

a	new	feature	against	its	acceptance	criteria	and	those	focused	on	validating	that
a	new	feature	satisfies	the	users’	needs.	In	addition,	alpha	tests	and	beta	tests
may	occur,	either	at	the	end	of	each	iteration,	after	the	completion	of	each
iteration,	or	after	a	series	of	iterations.	User	acceptance	tests,	operational
acceptance	tests,	regulatory	acceptance	tests	and	contractual	acceptance	tests
also	may	occur,	either	at	the	close	of	each	iteration,	after	the	completion	of	each
iteration,	or	after	a	series	of	iterations.

CHECK	OF	UNDERSTANDING

1.	List	two	documents	that	could	be	used	as	the	test	basis	for	unit	testing.

2.	Describe	test	driven	development	(TDD).

3.	Identify	two	typical	test	objects	used	for	integration	testing.

4.	List	three	documents	used	as	the	test	basis	for	system	testing.

5.	Compare	a	functional	requirement	with	a	non-functional	requirement.

6.	What	is	the	purpose	of	acceptance	testing?

7.	List	three	documents	used	as	a	test	basis	for	acceptance	testing.

8.	Identify	three	types	of	acceptance	testing.

TEST	TYPES

In	the	previous	section	we	saw	that	each	test	level	has	specific	testing	objectives.
In	this	section	we	will	look	at	the	types	of	testing	required	to	meet	these
objectives.

Test	types	fall	into	the	following	categories:

•functional	testing;

•non-functional	testing;

•white-box	testing;

•testing	after	code	has	been	changed.

Functional	testing

As	you	saw	in	the	section	on	system	testing,	functional	testing	looks	at	the
specific	functionality	of	a	system,	such	as	searching	for	flights	on	a	website,	or
perhaps	calculating	employee	pay	correctly	using	a	payroll	system.	This	can
include	checks	for	completeness,	correctness	and	appropriateness.

Functional	testing	is	carried	out	at	all	levels	of	testing,	from	unit	through	to
acceptance	testing.	In	the	example	above,	the	testing	of	the	employee	pay	may
be	done	during	unit	testing;	whereas	searching	for	a	flight	is	often	done	during
system	testing.

Functional	testing	is	also	called	specification-based	testing	or	black-box	testing
(covered	in	Chapter	4).	It	can	be	measured	in	terms	of	the	percentage	of
requirements	covered	by	the	tests.

Designing	tests	at	this	level	often	requires	specific	domain	skills.	In	today’s
world,	testing	the	blockchain	used	in	crypto-currencies	requires	different
knowledge	and	skills	to	those	used	in	designing	tests	for	normal	banking
operations,	for	instance.

Non-functional	testing

This	is	where	the	behavioural	aspects	of	the	system	are	tested.	As	you	saw	in	the
section	on	system	testing,	examples	include	usability,	performance,	efficiency
and	security	testing	among	others.

As	for	functional	testing,	non-functional	testing:

•should	be	performed	at	all	levels	so	that	potential	defects	are	detected	as	early
as	possible.

•can	make	use	of	black-box	testing	techniques,	such	as	checking	that	a	flight	can
be	booked	within	a	specific	time	frame;

•often	requires	specialist	knowledge	(such	as	knowing	the	inherent	weaknesses
of	specific	technologies)	and	skills	(such	as	having	an	understanding	of	how	to
carry	out	performance	testing);

•can	be	measured	–	for	instance	checking	the	percentage	of	mobile	devices
tested	for	compatibility	with	an	application.

These	tests	can	be	referenced	against	a	quality	model,	such	as	the	one	defined	in
ISO/IEC	25010	Systems	and	software	Quality	Requirements	and	Evaluation
(SQuaRE).	Note	that	a	detailed	understanding	of	this	standard	is	not	required	for
the	exam.

White-box	testing

In	white-box	testing	our	focus	is	on	the	internal	structure	of	the	system.	This
could	be	the	code	itself,	an	architectural	definition	or	data	flows	through	the
system.

White-box	testing	is	commonly	carried	out	at	unit	and	component	integration
test	levels.	Here,	common	measures	include	code	and	interface	coverage
(percentage	of	code	and	interfaces	exercised	by	tests).	Further	detail	on	code
coverage	measures	is	provided	in	Chapter	4.

It	can	also	be	carried	out	at	the	higher	levels	of	testing	where	a	structural
definition	of	the	system	exists.	An	example	is	a	business	flow	(represented	as	a
flow	chart),	which	could	be	used	to	design	tests	at	system	or	higher	levels.

As	before,	this	type	of	testing	also	requires	specialised	knowledge	and	skills,
such	as	code	creation,	data	storage	on	databases	and	use	of	the	associated	tools.

Testing	related	to	changes

The	previous	sections	detail	the	testing	to	be	carried	out	at	the	different	stages	in
the	development	life	cycle.	At	any	level	of	testing,	it	can	be	expected	that	defects
will	be	discovered.	When	these	are	found	and	fixed,	the	quality	of	the	system
being	delivered	is	improved.

After	a	defect	is	detected	and	fixed,	the	changed	software	should	be	retested	to
confirm	that	the	problem	has	been	successfully	removed.	This	is	called	retesting
or	confirmation	testing.	Note	that	when	the	developer	removes	the	defect	this
activity	is	called	debugging,	which	is	not	a	testing	activity.	Testing	finds	a
defect,	debugging	fixes	it.

The	unchanged	software	should	also	be	retested	to	ensure	that	no	additional
defects	have	been	introduced	as	a	result	of	changes	to	the	software.	This	is	called
regression	testing.	Regression	testing	should	also	be	carried	out	if	the
environment	has	changed.

Regression	testing	involves	the	creation	of	a	set	of	tests,	which	serve	to
demonstrate	that	the	system	works	as	expected.	These	are	run	many	times	over	a
testing	project,	when	changes	are	made,	as	discussed	above.	This	repetition	of

tests	makes	regression	testing	suitable	for	automation	in	many	cases.	Test
automation	is	covered	in	detail	in	Chapter	6.

In	iterative	development	projects	such	as	Agile	development,	the	requirements
churn	introduces	a	great	need	for	both	confirmation	and	regression	testing.	There
is	also	a	concept	of	code	refactoring	(where	a	developer	seeks	to	increase	the
quality	of	the	code	written),	which	also	necessitates	change-related	testing.

CHECK	OF	UNDERSTANDING

Which	of	the	following	is	correct?

a.	Regression	testing	checks	that	a	problem	has	been	successfully	addressed,
while	confirmation	testing	is	done	at	the	end	of	each	release.

b.	Regression	testing	checks	that	all	problems	have	been	successfully	addressed,
while	confirmation	testing	refers	to	testing	individual	fixes.

c.	Regression	testing	checks	that	fixes	to	errors	do	not	introduce	unexpected
functionality	into	the	system,	while	confirmation	testing	checks	that	fixes	have
been	successful.

d.	Regression	testing	checks	that	all	required	testing	has	been	carried	out,	while
confirmation	testing	checks	that	each	test	is	complete.

MAINTENANCE	TESTING

For	many	projects	(though	not	all)	the	system	is	eventually	released	into	the	live
environment.	Hopefully,	once	deployed,	it	will	be	in	service	as	long	as	intended,
perhaps	for	years	or	decades.

During	this	deployment,	it	may	become	necessary	to	change	the	system.

Triggers	for	maintenance	include:

•additional	features	being	required;

•the	system	being	migrated	to	a	new	operating	platform;

•the	system	being	retired	–	data	may	need	to	be	migrated	or	archived;

•planned	upgrade	to	COTS-based	systems;

•new	faults	being	found	requiring	fixing	(these	can	be	‘hot	fixes’).

Once	changes	have	been	made	to	the	system,	they	will	need	to	be	tested

(retesting),	and	it	also	will	be	necessary	to	conduct	regression	testing	to	ensure
that	the	rest	of	the	system	has	not	been	adversely	affected	by	the	changes.
Testing	that	takes	place	on	a	system	that	is	in	operation	in	the	live	environment	is
called	maintenance	testing.

When	changes	are	made	to	migrate	from	one	platform	to	another,	the	system
should	also	be	tested	in	its	new	environment.	When	migration	includes	data
being	transferred	in	from	another	application,	then	conversion	testing	also
becomes	necessary.

As	we	have	suggested,	all	changes	must	be	tested,	and,	ideally,	all	of	the	system
should	be	subject	to	regression	testing.	In	practice,	this	may	not	be	feasible	or
cost-effective.	An	understanding	of	the	parts	of	the	system	that	could	be	affected
by	the	changes	could	reduce	the	amount	of	regression	testing	required.	Working
this	out	is	termed	impact	analysis;	that	is,	analysing	the	impact	of	the	changes	on
the	system.

Impact	analysis	for	maintenance

The	purpose	of	impact	analysis	is	to	determine	the	likely	impact	of	a	change	to	a
system.	We	need	to	understand	the	intentions	of	the	change,	any	potential	side
effects	of	the	change,	and	how	existing	tests	may	need	to	be	changed.

This	can	be	difficult	for	a	system	that	has	already	been	released	and	is	in
maintenance.	This	is	because	the	specifications	may	be	out	of	date	(or	non-
existent);	test	cases	may	have	not	been	documented;	there	is	a	lack	of
traceability	of	tests	backs	to	requirements;	there	is	weak	or	non-existent	tool
support;	or	the	original	development	team	may	have	moved	on	to	other	projects
or	left	the	organisation	altogether.

CHECK	OF	UNDERSTANDING

1.	How	do	functional	requirements	differ	from	non-functional	requirements?

2.	For	which	type	of	testing	is	code	coverage	measured?

3.	What	is	the	purpose	of	maintenance	testing?

4.	Give	examples	of	when	maintenance	testing	is	necessary.

5.	What	is	meant	by	the	term	impact	analysis?

SUMMARY

In	this	chapter	we	have	explored	the	role	of	testing	within	the	Software
Development	Life	Cycle.	We	have	looked	at	the	basic	steps	in	any	development
model,	from	understanding	customer	needs	to	delivery	of	the	final	product.
These	were	built	up	into	formally	recognisable	models,	using	distinct	approaches
to	software	development.

The	V	model,	as	we	have	seen,	is	a	stepwise	approach	to	software	development,
meaning	that	each	stage	in	the	model	must	be	completed	before	the	next	stage
can	be	started,	if	a	strict	implementation	of	the	model	is	required.	This	is	often
the	case	in	safety-critical	developments.	The	V	model	typically	has	the	following
work	products	and	activities:

1.	requirement	specification;

2.	functional	specification;

3.	technical	specification;

4.	program	specification;

5.	code;

6.	unit	testing;

7.	integration	testing;

8.	system	testing;

9.	acceptance	testing.

Work	products	1–5	are	subject	to	verification,	to	ensure	that	they	have	been
created	following	the	rules	set	out.	For	example,	the	program	specification	is
assessed	to	ensure	that	it	meets	the	requirements	set	out	in	the	technical
specification,	and	that	it	contains	sufficient	detail	for	the	code	to	be	produced.

In	activities	6–9,	the	code	is	assessed	progressively	for	compliance	to	user	needs,
as	captured	in	the	specifications	for	each	level.

An	iterative	model	for	development	has	fewer	steps	but	involves	the	user	from
the	start.	These	steps	are	typically:

1.	define	iteration	requirement;

2.	build	iteration;

3.	test	iteration.

This	sequence	is	repeated	for	each	iteration	until	an	acceptable	product	has	been
developed.

An	explanation	of	each	of	the	test	levels	in	the	V	model	was	given.	For	unit
testing	the	focus	is	the	code	within	the	unit	itself,	for	integration	testing	it	is	the
interfacing	between	units,	for	system	testing	it	is	the	end-to-end	functionality,
and	for	acceptance	testing	it	is	the	user	perspective.

An	explanation	of	test	types	was	then	given	and	by	combining	test	types	with
test	levels	we	can	construct	a	test	approach	that	matches	a	given	system	and	a
given	set	of	test	objectives	very	closely.	The	techniques	associated	with	test
types	are	covered	in	detail	in	Chapter	4	and	the	creation	of	a	test	approach	is
covered	in	Chapter	5.

Finally,	we	looked	at	the	testing	required	when	a	system	has	been	released,	but	a
change	has	become	necessary	–	maintenance	testing.	We	discussed	the	need	for
impact	analysis	in	deciding	how	much	regression	testing	to	do	after	the	changes
have	been	implemented.	This	can	pose	an	added	challenge	if	the	requirements
associated	with	the	system	are	missing	or	have	been	poorly	defined.

In	the	next	chapter,	techniques	for	improving	requirements	will	be	discussed.

Example	examination	questions	with	answers

E1.	K1	question

Which	of	the	following	are	test	levels	where	white-box	testing	is	applicable?

i.	Unit	testing.

ii.	Acceptance	testing.

iii.	Regression	testing.

iv.	Performance	testing.

a.	i	and	ii.

b.	i	only.

c.	ii	and	iii.

d.	ii	and	iv.

E2.	K2	question

Which	of	the	following	is	true	of	non-functional	testing?

a.	Examples	of	non-functional	testing	are	provided	in	ISO	Standard	20246.

b.	It	is	best	carried	out	at	system	and	acceptance	test	levels.

c.	It	cannot	usually	be	measured.

d.	It	can	make	use	of	black-box	test	techniques.

E3.	K2	question

Which	of	the	following	iterative	development	models	tends	to	work	with
shorter	iterations	relative	to	the	others?

a.	Waterfall	model.

b.	Rational	Unified	Process.

c.	Scrum.

d.	V	model.

E4.	K2	question

Which	of	the	following	statements	are	true?

i.	For	every	development	activity	there	is	a	corresponding	testing	activity.

ii.	Each	test	level	has	the	same	test	objectives.

iii.	The	analysis	and	design	of	tests	for	a	given	test	level	should	begin	after	the
corresponding	development	activity.

iv.	Testers	should	be	involved	in	reviewing	documents	as	soon	as	drafts	are
available	in	the	development	life	cycle.

a.	i	and	ii.

b.	iii	and	iv.

c.	ii	and	iii.

d.	i	and	iv.

E5.	K2	question

Which	of	the	following	is	not	true	of	regression	testing?

a.	It	can	be	carried	out	at	each	stage	of	the	life	cycle.

b.	It	serves	to	demonstrate	that	the	changed	software	works	as	intended.

c.	It	serves	to	demonstrate	that	software	has	not	been	unintentionally	changed.

d.	It	is	often	automated.

Answers	to	questions	in	the	chapter

SA1.	The	correct	answer	is	d.

SA2.	The	correct	answer	is	b.

SA3.	The	correct	answer	is	a.

Answers	to	example	examination	questions

E1.	The	correct	answer	is	a.

White-box	testing	is	applicable	at	all	test	levels.	Regression	and	performance
testing	are	not	test	levels;	they	are	test	types.

E2.	The	correct	answer	is	d.

Option	a	provides	a	standard	for	use	in	reviews.	The	standard	used	for	non-
functional	testing	is	ISO	25010.	Option	b	is	incorrect	–	non-functional	testing
should	be	carried	out	all	levels.	Option	c	is	incorrect,	it	can	be	measured	in	terms
of	percentage	of	non-functional	requirements	covered.

E3.	The	correct	answer	is	c.

Options	a	and	d	are	sequential	models	and	do	not	use	iterative	development.
Option	b	–	the	Rational	Unified	Process	–	tends	to	use	longer	iterations	than
Scrum.

E4.	The	correct	answer	is	d.

Option	ii	is	incorrect	–	each	test	level	has	a	different	objective.	Option	iii	is	also
incorrect–test	analysis	and	design	should	start	once	the	documentation	has	been
completed.

E5.	The	correct	answer	is	b.

This	is	a	definition	of	confirmation	testing.	The	other	three	options	are	true	of
regression	testing.

3STATIC	TESTING

Geoff	Thompson

INTRODUCTION

This	chapter	provides	an	introduction	to	an	important	area	of	software	testing	–
static	testing.	Static	testing	techniques	test	software	without	executing	it.	They
are	important	because	they	can	find	errors	and	defects	before	code	is
built/executed	and	therefore	earlier	in	the	life	cycle	of	a	project,	making
corrections	easier	and	cheaper	to	achieve	than	for	the	same	defects	found	during
test	execution.	Review	types	and	techniques	are	central	to	the	static	testing
approach,	and	in	this	chapter	we	will	look	at	the	alternative	types	of	review	and
how	they	fit	with	the	test	process	that	was	defined	in	Chapter	1.

Learning	objectives

The	learning	objectives	for	this	chapter	are	listed	below.	You	can	confirm	that
you	have	achieved	these	by	using	the	self-assessment	questions	that	follow	the
‘Check	of	understanding’	boxes	distributed	throughout	the	text	and	the	example
examination	questions	provided	at	the	end	of	the	chapter.	The	chapter	summary
will	remind	you	of	the	key	ideas.

The	sections	are	allocated	a	K	number	to	represent	the	level	of	understanding
required	for	that	section;	where	an	individual	topic	has	a	lower	K	number	than
the	section	as	a	whole,	this	is	indicated	for	that	topic;	for	an	explanation	of	the	K
numbers,	see	the	Introduction.

Static	testing	basics	(K2)

•FL-3.1.1	Recognize	types	of	software	work	product	that	can	be	examined	by	the
different	static	testing	techniques.	(K1)

•FL-3.1.2	Use	examples	to	describe	the	value	of	static	testing.

•FL-3.1.3	Explain	the	difference	between	static	and	dynamic	techniques,
considering	objectives,	types	of	defects	to	be	identified,	and	the	role	of	these
techniques	within	the	software	lifecycle.

Review	process

•FL-3.2.1	Summarize	the	activities	of	the	work	product	review	process.

•FL-3.2.2	Recognize	the	different	roles	and	responsibilities	in	a	formal	review.
(K1)

•FL-3.2.3	Explain	the	differences	between	different	review	types:	informal
review,	walkthrough	technical	review,	and	inspection.	(K2)

•FL-3.2.4	Apply	a	review	technique	to	a	work	product	to	find	defects.	(K3)

•FL-3.2.5	Explain	the	factors	that	contribute	to	a	successful	review.	(K2)

Self-assessment	questions

The	following	questions	have	been	designed	to	enable	you	to	check	your	current
level	of	understanding	for	the	topics	in	this	chapter.	The	answers	are	at	the	end
of	the	chapter.

Question	SA1	(K1)

One	of	the	roles	in	a	review	is	that	of	facilitator.	Which	of	the	following	best
describes	this	role?

a.	Ensures	the	effective	running	of	the	review	meetings,	where	it	is	decided	that
a	meeting	is	required.

b.	Allocates	time	in	the	plan,	decides	which	reviews	will	take	place	and	ensures
that	the	benefits	are	delivered.

c.	Writes	the	document	to	be	reviewed,	agrees	that	the	document	can	be
reviewed	and	updates	the	document	with	any	changes.

d.	Documents	all	issues	raised	in	the	review	meeting,	records	problems	and	open
points.

Question	SA2	(K2)

Which	of	the	following	statements	are	correct	for	walkthroughs?

i.	Often	led	by	the	author.

ii.	Documented	and	defined	results.

iii.	All	participants	have	defined	roles.

iv.	Used	to	aid	learning.

v.	Main	purpose	is	to	find	defects.

a.	i,	ii	and	v	are	correct.

b.	ii,	iii	and	iv	are	correct.

c.	i,	iv	and	v	are	correct.

d.	iii,	iv	and	v	are	correct.

Question	SA3	(K1)

Which	of	the	following	is	an	activity	in	the	review	process?

a.	Design	of	the	document.

b.	Booking	meeting	rooms.

c.	Writing	program	code.

d.	Fixing	and	reporting.

BACKGROUND	TO	STATIC	TESTING

Static	testing	tests	software	and	work	products	without	executing	the	code.
Typically,	this	includes	requirements	or	specification	documents,	and	the	testing
of	code	without	actually	executing	it.	The	first	of	these	is	known	as	a	review	and
is	typically	used	to	find	and	remove	errors	and	ambiguities	in	documents	before
they	are	used	in	the	development	process,	thus	reducing	one	source	of	defects	in
the	code;	the	second	is	known	as	static	analysis,	and	it	enables	code	to	be
analysed	for	structural	defects	or	systematic	programming	weaknesses	that	may
lead	to	defects.

Static	techniques	find	the	causes	of	failures	rather	than	the	failure	itself,	which	is
found	during	test	execution.

Reviews	are	normally	completed	manually;	static	analysis	is	normally	completed
automatically	using	tools.

Giving	a	draft	document	to	a	colleague	to	read	is	the	simplest	example	of	a
review,	and	one	that	can	yield	a	larger	crop	of	errors	than	often	anticipated	(see
Chapter	5	regarding	‘world	view’	to	understand	why).

WORK	PRODUCTS	THAT	CAN	BE	EXAMINED	BY	STATIC	TESTING

Virtually	any	work	product	can	be	examined	using	static	testing	techniques.	A
work	product	is	anything	that	is	written	down	and	can	include:

•specifications	such	as	business	requirements,	functional	requirements,	security
requirements	and	non-functional	requirements;

•epics,	user	stories	and	acceptance	criteria;

•architecture	and	design	specifications;

•code;

•testware	such	as	test	plans	and	test	cases;

•user	guides;

•web	pages;

•contracts,	plans,	schedules	and	budgets;

•design	models.

BENEFITS	OF	STATIC	TESTING

The	earlier	in	the	life	cycle	that	static	testing	is	applied,	the	larger	the	benefits
are.	If	work	products	are	statically	tested	before	any	code	is	written,	this	will
remove	defects	from	the	work	product	and	ensure	these	defects	are	not	built	into
the	code.	As	has	been	shown	in	Chapter	1	the	earlier	a	defect	is	found,	the
cheaper	it	is	to	fix.	If	a	defect	in	the	design	documentation	is	built	into	code	and
even	deployed	to	the	user	base,	the	fix	can	be	enormously	expensive.	How	much
more	expensive	a	defect	found	in	live	use	could	be,	can	be	seen	in	the	following
example:	a	bank	develops	a	letter	to	inform	their	clients	of	a	change	in	interest
rates.	A	small	defect	(spelling	mistake),	if	found	in	the	initial	letter	design	before
the	letter	is	coded,	costs	no	more	than	a	few	seconds	of	the	author’s	time	to
correct.	However,	if	that	spelling	mistake	moves	from	the	design,	into	the	coded
letter	and	goes	into	live	use	without	being	spotted,	the	cost	to	fix	it	increases
considerably.	The	letter	needs	to	be	taken	out	of	live	use,	corrected	and	retested,
which	could	take	up	to	a	week	to	complete	but	could	have	been	fixed	in	a	few
seconds	if	found	earlier.

Static	testing	benefits	may	include:

•detecting	and	correcting	defects	more	efficiently,	and	prior	to	test	execution;

•identification	of	defects	not	easily	found	by	dynamic	testing;

•preventing	defects	in	design	or	coding	by	uncovering	inconsistencies,
ambiguities,	contradictions,	omissions,	inaccuracies	and	redundancies	in
requirements;

•increasing	development	productivity;

•reducing	development	cost	and	time;

•reducing	dynamic	testing	cost	and	time;

•reducing	total	cost	of	quality	over	the	software’s	lifetime,	due	to	fewer	failures
later	in	the	life	cycle	or	after	delivery	into	live	operation;

•improving	communication	between	team	members	in	the	course	of	participating
in	reviews.

Benefits	recognition	is	key	to	ensuring	that	static	testing	remains	a	focus,	as
when	no	one	recognises	any	benefits	there	is	a	better	than	average	chance	that
static	testing	will	be	removed	from	the	project	plans.	It	is	important,	therefore,
that	results	of	static	testing	are	made	clear	to	all	stakeholders	regularly.

DIFFERENCES	BETWEEN	STATIC	AND	DYNAMIC	TESTING

Static	and	dynamic	testing	have	the	same	objective:	to	find	defects	as	soon	as
possible.	The	main	difference	is	that	static	testing	is	carried	out	against	work
products	without	actually	executing	any	code,	whereas	dynamic	testing	is	carried
out	by	executing	actual	code	or	the	final	software	or	hardware	product.

Often,	code	may	not	be	exercised	that	often,	or	is	deeply	embedded,	so	building
a	dynamic	test	to	find	defects	is	sometimes	too	hard	or	impossible	to	do.	Static
testing	is	most	effective	when	it	is	used	to	find	defects	before	any	code	is
written,	thereby	ensuring	that	the	code	that	is	written	is	not	based	on	wrong	or
faulty	specifications	and	so	on.	Static	testing	can	often	be	used	in	this	situation
to	find	defects	quicker	and	more	easily	than	in	dynamic	testing.

Static	testing	improves	the	consistency	and	quality	of	work	products,	while
dynamic	testing	focuses	on	externally	visible	behaviours;	perhaps	the	next
screen	that	is	displayed,	or	the	customer	details	displayed	on	the	screen.

Typical	defects,	that	are	easier	and	cheaper	to	find	during	static	testing,	include:

•requirements	defects	(e.g.	inconsistencies,	ambiguities,	contradictions,
omissions,	inaccuracies	and	redundancies);

•design	defects	(inefficient	algorithms	or	database	structures,	high	coupling	(the
lack	of	interdependence	between	software	modules)	and	low	cohesion
(associated	with	undesirable	traits	such	as	being	difficult	to	maintain,	test,	reuse
or	even	understand));

•coding	defects	(e.g.	variables	with	undefined	values,	variables	that	are	declared
but	never	used,	unreachable	code	and	duplicate	code);

•deviations	from	standards	(e.g.	lack	of	adherence	to	coding	standards);

•incorrect	interface	specifications	(e.g.	different	units	of	measurement	used	by
the	calling	system	than	by	the	called	system);

•security	vulnerabilities	(e.g.	susceptibility	to	buffer	overflows);

•gaps	or	inaccuracies	in	test	basis	traceability	or	coverage	(e.g.	missing	tests	for
an	acceptance	criterion).

Maintainability	defects,	such	as	poor	reuse	of	components,	code	that	is	difficult
to	analyse	and	modify	without	introducing	new	defects,	improper	modularisation
or	no	documentation	at	all,	can	all	be	found	using	static	testing	techniques.

REVIEW	PROCESS

There	are	two	types	of	review,	informal	and	formal.

An	informal	review	is	identified	by	the	principle	that	it	is	not	following	a	defined
process	and	has	no	formal	documented	output.

A	formal	review	is	identified	by	team	participation,	documented	results	and
documented	procedures	are	followed.	Often	there	will	also	be	defined	roles.

The	decision	on	the	appropriate	level	of	formality	for	a	review	is	usually	based
on	combinations	of	the	following	factors:

•The	type	of	Software	Development	Life	Cycle	(there	are	different	approaches	to
reviews	in	an	Agile	project	compared	to	a	waterfall	project.

•The	maturity	of	the	development	process.	The	more	mature	the	process	is,	the
more	formal	reviews	tend	to	be.

•The	complexity	of	the	work	product.

•Legal	or	regulatory	requirements.	These	are	used	to	govern	the	software
development	activities	in	certain	industries,	notably	in	safety-critical	areas	such

as	railway	signalling,	and	determine	what	kinds	of	review	should	take	place.

•The	need	for	an	audit	trail.	Formal	review	processes	ensure	that	it	is	possible	to
trace	backwards	throughout	the	Software	Development	Life	Cycle.	The	level	of
formality	in	the	types	of	review	used	can	help	to	increase	how	much	is	contained
within	the	audit	trail.

Reviews	can	also	have	a	variety	of	objectives,	where	the	term	‘review	objective’
identifies	the	main	focus	for	a	review.	Typical	review	objectives	include:

•finding	defects;

•gaining	understanding;

•generating	discussion;

•education;

•decision	making	by	consensus.

The	way	a	review	is	conducted	will	depend	on	what	its	specific	objective	is,	so	a
review	aimed	primarily	at	finding	defects	will	be	quite	different	from	one	that	is
aimed	at	gaining	understanding	of	a	document.

All	reviews,	formal	and	informal	alike,	exhibit	the	same	basic	elements	of
process:

•The	document	under	review	is	studied	by	the	reviewers.

•Reviewers	identify	issues	or	problems	and	inform	the	author	either	verbally	or
in	a	documented	form,	which	might	be	as	formal	as	raising	a	defect	report	or	as
informal	as	annotating	the	document	under	review.

•The	author	decides	on	any	action	to	take	in	response	to	the	comments,	and
updates	the	document	accordingly.

This	basic	process	is	always	present,	but	in	the	more	formal	reviews	it	is
elaborated	to	include	additional	stages	and	more	attention	to	documentation	and
measurement.

WORK	PRODUCT	REVIEW	PROCESS

Reviews	all	follow	the	same	basic	process:	the	more	formal	the	review,	the	more
formal	the	process	surrounding	the	review	is.	The	following	list	explains	the	key
stages	in	more	detail.	See	also	Figure	3.1	the	work	product	review	process	flow.

Planning

•Defining	the	scope	–	this	includes	the	purpose	of	the	review;	for	example
finding	defects,	what	documents	or	parts	of	documents	are	to	be	reviewed	and
the	quality	characteristics.

•Estimating	the	effort	required	and	the	time	frame	that	the	review	will	be
undertaken	in	–	much	like	the	estimating	required	to	fund	the	test	activity,
reviews	need	to	be	estimated	so	they	can	be	costed	in	a	project	budget.

Figure	3.1	Stages	of	a	formal	review

•Identifying	the	review	characteristics	such	as	review	type,	roles,	activities	and
checklists	–	as	described	above,	there	are	many	factors	that	help	the	decision;	for
example,	what	type	of	review	characteristics	will	be	used.

•Selecting	the	people	to	undertake	the	review	–	ensuring	that	those	selected	can
and	will	add	value	to	the	process.	There	is	little	point	in	selecting	a	reviewer	who
will	agree	with	everything	written	by	the	author	without	question.	As	a	rule	of
thumb,	it	is	best	to	include	some	reviewers	who	are	from	a	different	part	of	the
organisation,	who	are	known	to	be	‘picky’	and	known	to	be	dissenters.	Reviews,
like	weddings,	are	enhanced	by	including	‘something	old,	something	new,
something	borrowed,	something	blue’.	In	this	case	‘something	old’	would	be	an
experienced	practitioner;	‘something	new’	would	be	a	new	or	inexperienced
team	member;	‘something	borrowed’	would	be	someone	from	a	different	team;
and	‘something	blue’	would	be	the	dissenter	who	is	hard	to	please.	At	the	earliest
stage	of	the	process,	a	moderator	(review	leader)	must	be	identified.	This	is	the
person	who	will	coordinate	all	of	the	review	activity.	This	also	includes
allocating	roles.

•Allocating	roles	–	each	reviewer	is	given	a	role	to	provide	them	with	a	unique
focus	on	the	document	under	review.	Someone	in	a	tester	role	might	be	checking
for	testability	and	clarity	of	definition,	while	someone	in	a	user	role	might	look
for	simplicity	and	a	clear	link	to	business	values.	This	approach	ensures	that,
although	all	reviewers	are	working	on	the	same	document,	each	individual	is
looking	at	it	from	a	different	perspective.

•Defining	the	entry	and	exit	criteria,	especially	for	the	most	formal	review	types
(e.g.	inspections)	–	before	a	review	can	start	certain	criteria	have	to	be	met.
These	are	defined	by	the	moderator,	and	could	include:	all	reviewers	must	have
received	the	review	papers;	all	reviewers	have	a	kick-off	meeting	booked	in	their
diaries;	any	training	of	reviewers	has	been	completed.

•Checking	entry	criteria	(mainly	used	for	more	formal	review	types	such	as
inspections)	–	this	stage	is	where	the	entry	criteria	agreed	earlier	are	checked	to
ensure	that	they	have	been	met	so	that	the	review	can	continue.

Initiate	review

•Distributing	the	work	products	–	the	facilitator	distributes	all	of	the	required
documents	to	all	reviewers.

•Explaining	the	scope,	objectives,	process,	roles	and	work	products	to	the
participants	–	this	can	be	run	as	a	meeting	or	simply	by	sending	out	the	details	to
the	reviewers.	The	method	used	will	depend	on	timescales	and	the	volume	of
information	to	pass	on.	A	lot	of	information	can	be	disseminated	better	by	a
meeting	rather	than	expecting	reviewers	to	read	pages	of	text.

•Answering	any	questions	raised	by	the	review	team.

Individual	review

•Reviewing	all	parts	of	the	work	product	including	the	source	documents.

•Noting	potential	defects,	questions	and	comments	–	in	this	stage	the	potential
defects,	questions	and	comments	found	during	individual	preparation	are	logged.

Issue	communication	and	analysis

•Communicating	potential	defects	either	in	a	review	meeting	or	via	a	defect	log.

•Analysing	potential	defects;	if	agreed	that	there	is	a	defect,	assigning	ownership
of	the	repair	work.

•Evaluating	and	documenting	the	required	quality	criteria,	identifying	whether
they	have	been	met	or	not.

•Evaluating	the	review	results	against	the	review	exit	criteria	to	decide	whether
the	work	product	is	to	be	rejected	for	major	change	or	simply	updated	with
minor	changes.

Fixing	and	reporting

•Creating	defect	reports	for	those	findings	that	require	changes,	which	may
include	making	recommendations	regarding	handling	the	defects,	making
decisions	about	the	defects	and	so	on.

•Fixing	defects	found	–	here,	typically,	the	author	will	be	fixing	defects	that	were
found	and	agreed	as	requiring	a	fix.

•Communicating	defects	to	the	appropriate	person	or	team.

•Recording	updated	status	of	defects	(in	formal	reviews)	–	always	done	during
more	formal	review	techniques;	optional	for	others.

•Gathering	metrics,	such	as	how	much	time	was	spent	on	the	review	and	how
many	defects	were	found,	to	show	notionally	how	the	quality	of	the	reviewed
item	has	increased,	but	also	the	value	added	by	the	review	to	later	stages	of	the
life	cycle;	for	example,	how	much	the	defect	would	have	cost	if	it	hadn’t	been
found	until	user	acceptance	testing.

•Checking	on	exit	criteria	–	the	moderator	will	also	check	the	exit	criteria	(for
more	formal	review	types	such	as	inspections)	to	ensure	that	they	have	been	met
so	that	the	review	can	be	officially	closed.

•Accepting	the	work	product	when	the	exit	criteria	has	been	met.

ROLES	AND	RESPONSIBILITIES

The	role	of	each	reviewer	is	to	look	at	the	documents	under	review	(and	any
appropriate	source	documents)	from	their	assigned	perspective;	this	may	include
the	use	of	checklists.	For	example,	a	checklist	based	on	a	particular	perspective
(such	as	user,	maintainer,	tester	or	operations)	may	be	used,	or	a	more	general
checklist	(such	as	typical	requirements	problems)	may	be	used	to	identify
defects.

In	addition	to	these	assigned	review	roles,	the	review	process	itself	defines
specific	roles	and	responsibilities	that	should	be	fulfilled	for	formal	reviews.
They	are:

•Author:	the	author	is	the	writer	or	person	with	chief	responsibility	for	the
development	of	the	document(s)	to	be	reviewed.	The	author	will	in	most
instances	also	take	responsibility	for	fixing	any	agreed	defects.

•Manager:	the	manager	decides	on	what	is	to	be	reviewed	(if	not	already
defined),	assigns	staff,	ensures	that	there	is	sufficient	time	allocated	in	the
project	plan	for	all	of	the	required	review	activities,	monitors	ongoing	cost-
effectiveness	of	the	review,	determines	if	the	review	objectives	have	been	met,
and	executes	control	decisions	if	objectives	are	not	met.	Managers	do	not
normally	get	involved	in	the	actual	review	process	unless	they	can	add	real
value;	for	example,	they	have	technical	knowledge	key	to	the	review.

•Facilitator	(often	called	a	moderator):	ensures	effective	running	of	the	review.
The	moderator	may	mediate	between	the	various	points	of	view	and	is	often	the
person	on	whom	the	success	of	the	review	rests.	The	facilitator	will	also	make

the	final	decision	as	to	whether	to	release	an	updated	document.

•Review	leader:	the	review	leader	is	the	person	who	leads	the	review	of	the
document	or	set	of	documents,	including	planning	the	review,	running	the
meeting,	and	follow-ups	after	the	meeting.

•Reviewers:	these	are	individuals	with	a	specific	technical	or	business
background	(also	called	subject	matter	experts,	checkers	or	inspectors)	who,
after	the	necessary	preparation,	identify	and	describe	findings	(e.g.	defects)	in
the	product	under	review.	As	discussed	above,	reviewers	should	be	chosen	to
represent	different	perspectives	and	roles	in	the	review	process	and	take	part	in
any	review	meetings.

•Scribe	(or	recorder):	the	scribe	attends	the	review	meeting	and	documents	all	of
the	issues	and	defects,	problems	and	open	points	that	were	identified	during	the
meeting.

An	additional	role	not	normally	associated	with	reviews	is	that	of	the	tester.
Testers	have	a	particular	role	to	play	in	relation	to	document	reviews.	In	their	test
analysis	role,	they	will	be	required	to	analyse	a	document	to	enable	the
development	of	tests.	In	analysing	the	document,	they	will	also	review	it;	for
example,	in	starting	to	build	end-to-end	scenarios	they	will	notice	if	there	is	a
‘hole’	in	the	requirements	that	will	stop	the	business	functioning,	such	as	a
process	that	is	missing	or	some	data	that	is	not	available	at	a	given	point.	So,
effectively	a	tester	can	either	be	formally	invited	to	review	a	document	or	may
do	so	by	default	in	carrying	out	the	tester’s	normal	test	analysis	role.

CHECK	OF	UNDERSTANDING

1.	Identify	three	benefits	of	reviews.

2.	What	happens	during	the	planning	phase	of	a	review?

3.	Who	manages	the	review	process?

TYPES	OF	REVIEW

A	single	document	or	related	work	product	may	be	subject	to	many	different
review	types:	for	example,	an	informal	review	may	be	carried	out	before	the
document	is	subjected	to	a	technical	review	or,	depending	on	the	level	of	risk,	a
technical	review	or	inspection	may	take	place	before	a	walkthrough	with	a
customer.

Figure	3.2	shows	the	different	levels	of	formality	by	review	type.

Figure	3.2	Formality	of	reviews

Each	type	of	review	has	its	own	defining	characteristics.	We	identify	four	review
types	to	cover	the	spectrum	of	formality.	These	are	usually	known	as:

1.	Informal	review	(least	formal)	(e.g.	buddy	check,	pairing,	pair	review).	Key
characteristics:

•The	main	purpose	is	detecting	potential	defects.

•A	possible	additional	purpose	could	be	to	generate	new	ideas,	or	to	quickly
resolve	a	problem.

•There	is	no	formal	process	underpinning	the	review.

•It	may	not	involve	a	review	meeting.

•It	may	be	performed	by	a	colleague	of	the	author	or	opened	up	to	many	people.

•The	review	may	be	documented	but	this	is	not	required;	many	informal	reviews
are	not	documented.

•There	may	be	some	variations	in	the	usefulness	of	the	review	depending	on	the
reviewer;	for	example,	the	reviewer	does	not	have	the	technical	skills	but	is	just
available	to	check	quickly	and	ensure	that	the	document	makes	sense.

•Use	of	a	checklist	is	optional.

•This	is	a	common	review	in	Agile	development.

2.	Walkthrough.	Key	characteristics:

•The	main	purpose	is	to	find	defects,	improve	the	software	product,	consider
alternative	implementations,	and/or	evaluate	conformance	to	standards	and
specifications.

•Possible	additional	purposes	include	exchanging	ideas	about	techniques	or	style
variations,	the	training	of	participants	and	achieving	consensus.

•Preparation	by	reviewers	before	the	walkthrough	meeting,	production	of	a
review	report	or	a	list	of	findings,	and	appointment	of	a	scribe	who	is	not	the
author	are	all	optional	components.

•The	meeting	is	led	by	the	author	of	the	document	under	review	and	attended	by
members	of	the	author’s	peer	group.

•A	scribe	is	mandatory.

•Use	of	a	checklist	is	optional.

•Review	sessions	are	open-ended	and	may	vary	in	practice	from	quite	informal
to	very	formal.

•Walkthroughs	typically	explore	scenarios,	or	conduct	dry	runs	of	code	or
processes.

•Potential	defect	logs	and	review	reports	may	be	produced.

•It	may	vary	in	practice	from	quite	informal	to	very	formal.

3.	Technical	review.	Key	characteristics:

•The	main	purpose	is	gaining	consensus	and	detecting	potential	defects.

•Possible	additional	purposes	are	evaluating	quality	and	building	confidence	in
the	work	product,	generating	new	ideas,	motivating	authors	to	improve	future
work	products	and	to	consider	alternative	implementations.

•Technical	reviews	are	documented	and	use	a	well-defined	defect	detection
process	that	includes	peers	and	technical	experts.

•Individual	preparation	before	the	review	meeting	is	required.

•A	review	meeting	is	optional;	if	one	takes	place	it	is	ideally	led	by	a	trained
facilitator.

•A	scribe	is	mandatory,	ideally	not	the	author.

•Reviewers	using	checklists	is	optional.

•Potential	defect	logs	and	review	reports	are	typically	produced.

4.	Inspection	(most	formal).	Key	characteristics:

•The	main	purpose	is	to	detect	potential	defects,	evaluate	quality	and	build
confidence	in	the	work	product,	preventing	future	similar	defects	through	author
learning	and	root	cause	analysis.

•A	possible	further	purpose	includes	authors	improving	future	work	products	and
the	software	development	process,	achieving	consensus.

•The	inspection	process	is	formal,	based	on	rules	and	checklists,	and	uses	entry
and	exit	criteria.

•Pre-meeting	preparation	is	essential,	which	includes	the	reading	of	any	source
documents	to	ensure	consistency.

•Reviewers	are	either	peers	of	the	author	or	experts	in	other	disciplines	that	are
relevant	to	the	work	product.

•Specific	entry	and	exit	criteria	are	used.

•A	scribe	is	mandatory.

•Review	meetings	are	led	by	a	trained	facilitator	who	is	not	the	author	and
usually	involve	peer	examination	of	a	document;	individual	inspectors	work
within	defined	roles.

•The	author	cannot	lead	the	review,	or	scribe.

•All	potential	defects	are	logged	and	a	review	report	is	produced.

•Metrics	are	collected	and	used	to	improve	the	entire	software	development
process,	including	the	inspection	process.

In	reality,	the	lines	between	the	review	types	often	get	blurred	and	what	is	seen
as	a	technical	review	in	one	company	may	be	seen	as	an	inspection	in	another.
The	above	is	the	‘classic	view’	of	reviews.	The	key	for	each	company	is	to	agree
the	objectives	and	benefits	of	the	reviews	that	they	plan	to	carry	out.

A	single	work	product	during	its	development	may	be	subject	to	many	different
types	of	review.

APPLYING	REVIEW	TECHNIQUES

As	with	testing,	there	are	specific	techniques	that	can	be	used	with	all	of	the
aforementioned	types	of	review.	The	effectiveness	of	the	techniques	will	vary
dependant	on	what	type	of	review	they	are	used	on.	Examples	of	review
techniques	are	as	follows.

Ad	hoc

Used	mainly	in	the	less	formal	review	types,	in	an	ad	hoc	review	those	involved
are	provided	with	little	or	no	guidance	on	what	is	expected	of	them	and	how	the
review	should	be	performed.	This	technique	is	very	dependent	on	the	reviewer’s
skills	and	leads	to	issues	like	duplication	of	potential	defects	identified.

Checklist	based

Uses	a	checklist	to	deliver	a	systematic	approach	to	a	review,	ensuring	that	the
reviewers	detect	potential	defects	based	on	the	checklist	rules.	A	review
checklist	documents	the	activities	to	be	undertaken,	or	the	types	of	defects	to	be
identified;	for	example	typos,	or	differences	to	source	documents	or	technical
content.

Scenarios	and	dry	runs

A	reviewer	of	a	scenario	and	dry	runs	is	given	structured	guidelines	on	how	to
read	the	document	under	review.	The	scenario	allows	dry	runs	of	products	to
take	place	based	on	expected	usage	of	the	work	product.	A	scenario	provides
better	guidelines	on	how	to	identify	specific	defect	types	and	is	sometimes	seen
as	better	than	the	checklist	approach.

Role	based

In	a	role-based	review,	the	work	product	is	examined	from	a	specific	role
perspective.	Typical	roles	include	end	user	administrator,	system	administrator
and	so	on.

Perspective	based

A	perspective-based	review	is	a	little	like	a	role-based	review	in	that	the
reviewer	will	take	on	a	different	stakeholder’s	viewpoint.	Perspectives	such	as
end	user,	marketing,	designer,	tester	or	operations	may	be	required.	This
approach	leads	to	more	depth	in	the	review	as	well	as	a	reduction	in	the
duplication	of	potential	defects	found.

In	addition,	this	type	of	review	requires	the	reviewer	to	attempt	to	deliver	the
result	of	the	work	product.	For	example,	a	tester	may	have	to	produce	draft
acceptance	tests	if	reviewing	a	requirement	specification.

This	approach	has	been	shown	to	be	the	most	effective	general	review	technique.

Success	factors	for	reviews

A	successful	review	will	depend	on	using	the	right	type	of	review	and
techniques.	There	are	other	factors	that	can	influence	the	successful	outcome	of
a	review.	These	fall	into	two	types	of	factors:

1.	organisational;

2.	people	related.

Examples	of	organisational	success	factors	are:

•Each	review	should	have	a	clearly	predefined	and	agreed	objective	and	the	right
people	should	be	involved	to	ensure	that	the	measurable	outcome	is	met.	For
example,	in	an	inspection,	if	the	objective	is	technically	based,	each	reviewer
will	have	a	defined	role	and	have	the	experience	to	complete	the	technical
review;	this	should	include	testers	as	valued	reviewers.	Any	defects	found	are
welcomed	and	expressed	objectively.

•Review	techniques	(both	formal	and	informal)	that	are	suitable	to	the	type	and
level	of	software	work	products	and	reviewers	(this	is	especially	important	in
inspections).

•Review	techniques	like	checklist-based	or	role-based	reviewing	provide
effective	defect	identification	of	the	work	product	being	reviewed.

•Checklists	are	used	to	ensure	focus	on	areas	of	main	risk	and	are	up	to	date.

•Reviewing	large	documents	in	small	chunks,	providing	frequent	feedback	on
defects	as	early	as	possible	to	the	author.

•Review	participants	have	sufficient	time	to	prepare,	which	may	include	reading
all	supporting	work	products.

•Reviews	are	scheduled	with	adequate	notice.

•Management	support	is	essential	for	a	good	review	process	(e.g.	by
incorporating	adequate	time	for	review	activities	in	project	schedules).

Examples	of	people-related	success	factors	are:

•The	right	people	are	involved	to	ensure	that	the	objectives	are	met;	for	example,
people	with	different	skill	sets	from	the	relevant	user	community.

•The	use	of	testers	as	valued	reviewers	so	that	they	can	learn	about	the	work
product,	enabling	the	development	of	better	and	more	effective	tests,	and	to	be
able	to	develop	those	tests	early.

•Adequate	time	is	allocated	to	each	participant.

•Chunking	of	the	work	product	into	smaller	sections	enables	the	reviewer	to
focus	and	not	lose	attention	during	the	actual	review	meeting.

•Defects	found	should	be	acknowledged,	appreciated	as	helping	the	author	and
handled	objectively.

•The	review	meeting	is	well	managed,	so	that	it	is	seen	as	a	valuable	use	of	time.

•There	is	an	atmosphere	of	trust	during	the	review;	there	is	no	evaluation	of	the
person,	just	the	work	product.

•The	use	of	negative	body	language	can	show	boredom,	exasperation	or	hostility
and	should	be	avoided.

•Ensuring	that	adequate	training	is	provided,	especially	for	the	formal	review
processes	such	as	inspections.

•The	culture	of	review	is	all	about	learning	and	process	improvement	and	is
promoted.

CHECK	OF	UNDERSTANDING

1.	Compare	the	differences	between	a	walkthrough	and	an	inspection.

2.	Name	three	characteristics	of	a	walkthrough.

3.	Identify	at	least	five	success	factors	for	a	review.

SUMMARY

In	this	chapter,	we	have	looked	at	how	review	techniques	and	static	analysis	fit
within	the	test	process	defined	in	Chapter	1.	We	have	understood	that	a	review	is
a	static	test	–	that	is	it	is	a	test	carried	out	without	executing	any	code	(by
reading	and	commenting	on	any	work	product	such	as	a	requirement
specification,	a	piece	of	code	or	a	test	plan/test	case).	We	have	also	looked	at	the
different	types	of	review	techniques	available,	such	as	walkthroughs	and
inspections,	as	well	as	spending	time	understanding	the	benefits	of	reviews
themselves.

Reviews	vary	in	formality.	The	formality	governs	the	amount	of	structure	and
documentation	that	surround	the	review	itself.

To	obtain	the	most	benefit	from	reviews,	they	should	be	carried	out	as	early	in
the	project	life	cycle	as	possible,	preferably	as	soon	as	the	document	to	be
reviewed	has	been	written	and	definitely,	in	the	case	of	work	products	such	as
requirement	specifications	and	designs,	before	any	code	is	written	or	executed.
The	roles	of	the	participant	reviewers	need	to	be	defined	and,	in	the	more
structured	review	techniques,	written	output	from	reviews	is	expected.

We	have	learnt	that	static	analysis	is	checking	the	developed	software	code
before	it	is	executed,	checking	for	defects	such	as	unreachable	(dead	code)	and
the	misuse	of	development	standards.	We	have	also	learnt	that	static	analysis	is
best	carried	out	using	tools,	which	are	referenced	in	Chapter	6.

Example	examination	questions	with	answers

E1.	K1	question

Which	of	the	following	is	most	likely	to	be	examined	using	static	testing?

a.	User	guides.

b.	Defect	reports.

c.	Test	logs.

d.	Attendance	reports.

E2.	K2	question

Which	of	the	following	has	the	typical	formal	review	activities	in	the	correct
sequence?

a.	Kick-off,	initiate,	review	meeting,	planning,	follow-up.

b.	Kick-off,	planning,	review	meeting,	issue	communications	and	analysis,
rework.

c.	Planning,	initiate,	individual	review,	issue	communications	and	analysis,

fixing	and	reporting.

d.	Planning,	individual	preparation,	initiate,	individual	review,	follow-up,	fixing
and	reporting.

E3.	K2	question

Which	of	the	following	statements	are	true?

i.	Defects	are	likely	to	be	found	earlier	in	the	development	process	by	using
reviews.

ii.	Walkthroughs	require	code	but	static	analysis	does	not	require	code.

iii.	Informal	reviews	are	used	to	detect	potential	defects.

iv.	Ad	hoc	techniques	need	lots	of	preparation	time.

v.	Dynamic	testing	occurs	after	reviews	have	been	used	to	find	defects.

a.	i,	ii,	iv.

b.	ii,	iii,	v.

c.	i,	iv,	v.

d.	i,	iii,	v.

E4.	K2	question

Which	of	the	following	defects	could	be	identified	by	static	testing?

a.	Execution	defects,	coding	defects	and	security	vulnerabilities.

b.	Coding	defects,	requirements	defects	and	security	vulnerabilities.

c.	Security	vulnerabilities,	test	basis	issues	and	environment	defects.

d.	Design	defects,	user	defects	and	test	basis	issues.

E5.	K1	question

Which	one	of	the	following	roles	is	typically	used	in	a	review?

a.	Champion.

b.	Author.

c.	Project	sponsor.

d.	Custodian.

E6.	K2	question

Which	of	the	following	is	a	success	factor	for	reviews?

a.	The	total	count	of	lines	of	code.

b.	Walkthrough	of	a	requirements	document.

c.	Large	documents	reviewed	as	a	whole.

d.	Each	review	has	clear	objectives.

Answers	to	questions	in	the	chapter

SA1.	The	correct	answer	is	a.

SA2.	The	correct	answer	is	c.

SA3.	The	correct	answer	is	d.

Answers	to	example	examination	questions

E1.	The	correct	answer	is	a.

The	other	answers	could	be	examined	in	a	static	review;	only	a	is	identified	in
the	syllabus.

E2.	The	correct	answer	is	c.

The	correct	sequence	is:	planning,	initiate,	individual	review,	issue
communications	and	analysis,	fixing	and	reporting.	All	of	the	other	options	have
either	the	activities	in	the	wrong	order	or	activities	missing	from	the	strict	flow.

E3.	The	correct	answer	is	d.

The	other	answers	are	incorrect	because:

ii.	Walkthroughs	do	not	require	code	and	static	analysis	does	require	code.

iv.	Ad	hoc	reviews	need	little	preparation.

E4.	The	correct	answer	is	b.

All	other	options	have	a	dynamic	testing	defect	amongst	the	options.

E5.	The	correct	answer	is	b.

The	Author	is	the	only	role	that	is	typically	used	in	a	review.	A	Champion	might
sponsor	the	review	process	but	is	not	a	defined	role	within	an	actual	review;	a
Project	sponsor,	if	technically	competent,	might	be	asked	to	play	a	defined	role
within	the	review	process,	but	while	in	that	role	they	will	not	be	a	Project
sponsor;	finally,	a	Custodian	might	ensure	that	the	results	are	stored	safely	but	is
not	involved	in	the	actual	review	itself.

E6.	The	correct	answer	is	d.

Each	review	has	clear	objectives.	The	remaining	answers	are	not	success	factors
for	reviews.

4TEST	TECHNIQUES

Brian	Hambling

INTRODUCTION

This	chapter	addresses	the	area	of	test	techniques,	which	is	a	range	of	techniques
used	throughout	test	analysis	and	design.	The	2018	syllabus	has	significantly
reduced	the	content	of	this	section,	so	the	main	flow	of	the	chapter	will	be
aligned	with	the	2018	syllabus.	The	more	advanced	material	on	white-box
techniques	has	been	clearly	identified	so	that	those	readers	interested	in
understanding	how	white-box	tests	are	designed	can	engage	with	this	section,
and	there	are	exercises	on	white-box	techniques	and	on	determining	the	level	of
test	coverage	achieved	by	a	suite	of	tests	included	with	this	material.	Readers
interested	only	in	examinable	material	can	safely	skip	this	material.

The	chapter	begins	with	an	introduction	to	key	terms	and	the	basic	process	of
creating	test	suites	for	execution	and	then	explores	the	three	main	categories	of
test	techniques:	black-box	(also	called	behavioural	or	behaviour-based
techniques	and	formerly	known	as	specification-based	techniques);	white-box
(also	called	structural	or	structure-based	techniques);	and	experience-based
techniques.	In	each	case,	specific	techniques	are	explained	and	examples	are
given	of	their	use.

In	the	section	on	white-box	techniques	we	introduce	the	theory	and	skills	needed
to	analyse	structured	representations	(such	as	control	flow	graphs	and	program
code)	and	draw	both	flow	charts	and	control	flow	graphs	to	represent	structure
and	facilitate	analysis.	Flow	charts	and	control	flow	graphs	have	many
applications	outside	software	testing	and	are	valuable	tools	for	the	simple
expression	of	logical	structures	such	as	user	interfaces.	This	section	is	not
essential	reading	for	those	aiming	only	to	pass	the	Foundation	Level
examination,	but	will	be	a	sound	basis	for	the	more	advanced	techniques.	The
rest	of	the	section	on	white-box	techniques	is	examinable.

Learning	objectives

The	learning	objectives	for	this	chapter	are	listed	below.	You	can	confirm	that
you	have	achieved	these	by	using	the	self-assessment	questions	that	follow	the
‘Check	of	understanding’	boxes	distributed	throughout	the	text	and	the	example
examination	questions	provided	at	the	end	of	the	chapter.	The	chapter	summary
will	remind	you	of	the	key	ideas.

The	sections	are	allocated	a	K	number	to	represent	the	level	of	understanding
required	for	that	section;	where	an	individual	topic	has	a	lower	K	number	than
the	section	as	a	whole,	this	is	indicated	for	that	topic;	for	an	explanation	of	the	K
numbers,	see	the	Introduction.

Categories	of	test	techniques	(K2)

•FL-4.1.1	Explain	the	characteristics,	commonalities,	and	differences	between
black-box	test	techniques,	white-box	test	techniques,	and	experience-based	test
techniques.

Black-box	test	techniques	(K3)

•FL-4.2.1	Apply	equivalence	partitioning	to	derive	test	cases	from	given
requirements.

•FL-4.2.2	Apply	boundary	value	analysis	to	derive	test	cases	from	given

requirements.

•FL-4.2.3	Apply	decision	table	testing	to	derive	test	cases	from	given
requirements.

•FL-4.2.4	Apply	state	transition	testing	to	derive	test	cases	from	given
requirements.

•FL-4.2.5	Explain	how	to	derive	test	cases	from	a	use	case.	(K2)

White-box	test	techniques	(K2)

•FL-4.3.1	Explain	statement	coverage.

•FL-4.3.2	Explain	decision	coverage.

•FL-4.3.3	Explain	the	value	of	statement	and	decision	coverage.

Experience-based	test	techniques	(K2)

•FL-4.4.1	Explain	error	guessing.

•FL-4.4.2	Explain	exploratory	testing.

•FL-4.4.3	Explain	checklist-based	testing.

Self-assessment	questions

The	following	questions	have	been	designed	to	enable	you	to	check	your	current
level	of	understanding	for	the	topics	in	this	chapter.	The	answers	are	at	the	end
of	the	chapter.	If	you	struggled	with	the	questions	it	suggests	that,	while	your
recall	of	key	ideas	might	be	reasonable,	your	ability	to	apply	the	ideas	needs
developing.	You	need	to	study	this	chapter	carefully	and	be	careful	to	recognise
all	the	connections	between	individual	topics.

Question	SA1	(K2)

Which	of	the	following	are	characteristics	of	white-box	testing?

a.	The	test	basis	typically	includes	specifications	and	use	cases.

b.	Test	coverage	cannot	be	measured.

c.	The	test	basis	can	be	based	on	the	knowledge	and	experience	of	stakeholders.

d.	Test	coverage	is	based	on	the	items	tested	within	a	given	structure.

Question	SA2	(K2)

Which	of	the	following	statements	about	statement	and	decision	coverage	is
true?

a.	Statement	coverage	measures	how	many	statements	there	are	in	a	fragment	of
code.

b.	Achievement	of	100%	statement	coverage	guarantees	the	achievement	of	at
least	50%	of	decision	coverage.

c.	Achievement	of	100%	decision	coverage	does	not	guarantee	the	achievement
of	100%	statement	coverage.

d.	The	achievement	of	100%	decision	coverage	ensures	that	the	true	and	false
outcomes	of	every	decision	in	the	code	are	exercised.

Question	SA3	(K2)

Which	of	the	following	statements	correctly	characterises	use	case	testing?

a.	Use	case	coverage	is	measured	by	the	number	of	error	cases	tested.

b.	Use	case	coverage	is	measured	as	the	number	of	use	case	behaviours	tested
divided	by	the	total	number	of	use	case	behaviours.

c.	In	use	case	testing,	tests	are	derived	from	the	basic	behaviour,	including	error
cases,	defined	by	a	set	of	use	cases,	but	do	not	test	exceptional	or	alternative
behaviours.

d.	In	use	case	testing,	tests	are	derived	from	the	basic,	exceptional	or	alternative
behaviours	defined	by	a	set	of	use	cases	but	do	not	test	error	cases.

THE	TEST	DEVELOPMENT	PROCESS

The	specification	of	test	cases	is	a	key	step	in	any	test	process.	The	terms
specification	and	design	are	used	interchangeably	in	this	context;	in	this	section,
we	discuss	the	creation	of	test	cases	by	design.

The	design	of	tests	comprises	three	main	steps:

1.	identify	test	conditions;

2.	specify	test	cases;

3.	specify	test	procedures.

Our	first	task	is	to	become	familiar	with	the	terminology.

A	test	basis	is	the	body	of	knowledge	used	as	the	basis	for	test	analysis	and
design.

A	test	condition	is	an	aspect	of	the	test	basis	that	is	relevant	in	order	to	achieve

specific	test	objectives.

In	other	words,	a	test	condition	is	some	characteristic	of	our	software	that	we	can
check	with	a	test	or	a	set	of	tests.

A	test	case	is	a	set	of	preconditions,	inputs,	actions	(where	applicable),	expected
results	and	postconditions,	based	on	test	conditions.

In	other	words,	a	test	case:	gets	the	system	to	some	starting	point	for	the	test
(execution	preconditions);	then	applies	a	set	of	input	values	that	should	achieve	a
given	outcome	(expected	result);	then	leaves	the	system	at	some	end-point
(execution	postcondition).

Our	test	design	activity	will	generate	the	set	of	input	values	and	we	will	predict
the	expected	outcome	by,	for	example,	identifying	from	the	specification	what
should	happen	when	those	input	values	are	applied.

We	have	to	define	what	state	the	system	is	in	when	we	start	so	that	it	is	ready	to
receive	the	inputs,	and	we	have	to	decide	what	state	it	is	in	after	the	test	so	that
we	can	check	that	it	ends	up	in	the	right	place	(and	to	make	it	easier	to	design
additional	test	cases	that	start	from	where	this	one	ended).

A	test	procedure	is	a	sequence	of	test	cases	in	execution	order,	and	any
associated	actions	that	may	be	required	to	set	up	the	initial	preconditions	and	any

wrap-up	activities	post	execution.

A	test	procedure	therefore	identifies	all	the	necessary	actions	in	sequence	to
execute	a	test.	Test	procedure	specifications	are	often	called	test	scripts	(or
sometimes	manual	test	scripts	to	distinguish	them	from	the	automated	scripts
that	control	test	execution	tools,	introduced	in	Chapter	6).

So,	going	back	to	our	three-step	process	above,	we:

1.	decide	on	a	test	condition,	which	is	typically	a	small	section	of	the
specification	for	our	software	under	test;

2.	design	a	test	case	that	will	verify	the	test	condition;

3.	write	a	test	procedure	to	execute	the	test;	that	is,	get	it	into	the	right	starting
state,	input	the	values	and	check	the	outcome.

Despite	the	technical	language,	this	is	quite	a	simple	set	of	steps.	Of	course,	we
will	have	to	carry	out	a	very	large	number	of	these	simple	steps	to	test	a	whole
system,	but	the	basic	process	is	still	the	same.	To	test	a	whole	system,	we	write	a
test	execution	schedule,	which	puts	all	the	individual	test	procedures	in	the	right
sequence	and	sets	up	the	system	so	that	they	can	be	run.

Bear	in	mind	as	well	that	the	test	development	process	may	be	implemented	in
more	or	less	formal	ways.	In	some	situations,	it	may	be	appropriate	to	produce

very	little	documentation	and	in	others	a	very	formal	and	documented	process
may	be	appropriate.	It	all	depends	on	the	context	of	the	testing,	taking	account	of
factors	such	as	maturity	of	development	and	test	processes,	the	amount	of	time
available	and	the	nature	of	the	system	under	test.	Safety-critical	systems,	for
example,	will	normally	require	a	more	formal	test	process.

The	best	way	to	clarify	the	process	is	to	work	through	a	simple	example.

TEST	CASE	DESIGN	BASICS

Suppose	we	have	a	system	that	contains	the	following	specification	for	an	input
screen:

1.2.3	The	input	screen	shall	have	three	fields:	a	title	field	with	a	drop-down
selector;	a	surname	field	that	can	accept	up	to	20	alphabetic	characters	and
the	hyphen	(-)	character;	a	first	name	field	that	can	accept	up	to	20
alphabetic	characters.	All	alphabetic	characters	shall	be	case	insensitive.	All
fields	must	be	completed.	The	data	is	validated	when	the	Enter	key	is
pressed.	If	the	data	is	valid,	the	system	moves	on	to	the	job	input	screen;	if
not,	an	error	message	is	displayed.

This	specification	enables	us	to	define	test	conditions;	for	example,	we	could
define	a	test	condition	for	the	surname	field	(i.e.	it	can	accept	up	to	20	alphabetic
characters	and	the	hyphen	(-)	character)	and	define	a	set	of	test	cases	to	test	that
field.

To	test	the	surname	field,	we	would	have	to	navigate	the	system	to	the

appropriate	input	screen,	select	a	title,	tab	to	the	surname	field	(all	this	would	be
setting	the	test	precondition),	enter	a	value	(the	first	part	of	the	set	of	input
values),	tab	to	the	first	name	field	and	enter	a	value	(the	second	part	of	the	set	of
input	values	that	we	need	because	all	fields	must	be	completed),	then	press	the
Enter	key.	The	system	should	either	move	on	to	the	job	input	screen	(if	the	data
we	input	was	valid)	or	display	an	error	message	(if	the	input	data	was	not	valid).
Of	course,	we	would	need	to	test	both	of	these	cases.

The	preceding	paragraph	is	effectively	the	test	procedure,	though	we	might	lay	it
out	differently	for	real	testing.

A	good	test	case	needs	some	extra	information.	First,	it	should	be	traceable	back
to	the	test	condition	and	the	element	of	the	specification	that	it	is	testing;	we	can
do	this	by	applying	the	specification	reference	to	the	test,	for	example	by
identifying	this	test	as	T1.2.3.1	(because	it	is	the	first	test	associated	with
specification	element	1.2.3).

Second,	we	would	need	to	add	a	specific	value	for	the	input,	say	‘Hambling’	and
‘Brian’.	Finally,	we	would	specify	that	the	system	should	move	to	the	job	input
screen	when	‘Enter’	is	pressed.

TEST	CASE	DESIGN	EXAMPLE

As	an	example,	we	could	key	in	the	following	test	cases:

All	these	are	valid	test	cases;	even	though	Compo	Simmonite	was	an	imaginary
male	character	in	a	TV	series,	the	input	is	correct	according	to	the	specification.

We	should	also	test	some	invalid	inputs,	such	as:

There	are	many	more	possibilities	that	infringe	the	rules	in	the	specification,	but
these	should	serve	to	illustrate	the	point.	You	may	be	thinking	that	this	simple
specification	could	generate	a	very	large	number	of	test	cases	–	and	you	would
be	absolutely	right.	One	of	our	aims	in	using	systematic	test	case	design
techniques	will	be	to	cut	down	the	number	of	tests	we	need	to	run	to	achieve	a
given	level	of	confidence	in	the	software	we	are	testing.

The	test	procedure	needs	to	add	some	details	along	the	following	lines:

1.	Select	the	<Name	or	Personal	Details>	option	from	the	main	menu.

2.	Select	the	‘input’	option	from	the	<Name	or	Personal	Details>	menu.

3.	Select	‘Mr’	from	the	‘Title’	drop-down	menu.

4.	Check	that	the	cursor	moves	to	the	‘surname’	field.

5.	Type	in	‘Hambling’	and	press	the	tab	key	once;	check	that	the	cursor	moves	to
the	‘first	name’	field.

6.	Type	in	‘Brian’	and	press	the	Enter	key.

7.	Check	that	the	Job	Input	screen	is	displayed.

8.	.	.	.

That	should	be	enough	to	demonstrate	what	needs	to	be	defined,	and	also	how
slow	and	tedious	such	a	test	is	to	run,	and	we	have	only	completed	one	of	the	test
cases	so	far!

The	test	procedure	collects	together	all	the	test	cases	related	to	this	specification
element	so	that	they	can	all	be	executed	together	as	a	block;	there	would	be
several	to	test	valid	and	non-valid	inputs,	as	you	have	seen	in	the	example.

In	the	wider	test	process,	we	move	on	to	the	test	execution	step	next.	In
preparation	for	execution,	the	test	execution	schedule	collects	together	all	the
tests	and	sequences	them,	considering	any	priorities	(highest	priority	tests	are
run	first)	and	any	dependencies	between	tests.	For	example,	it	makes	sense	to	do
all	the	tests	on	the	input	screen	together	and	to	do	all	the	tests	that	use	input	data
afterwards;	that	way	we	get	the	input	screen	tests	to	do	the	data	entry	that	we
will	need	for	the	later	tests.	There	might	also	be	technical	reasons	why	we	run
tests	in	a	particular	sequence;	for	example,	a	test	of	the	password	security	needs
to	be	done	at	the	beginning	of	a	sequence	of	tests	because	we	need	to	be	able	to
get	into	the	system	to	run	the	other	tests.

THE	IDEA	OF	TEST	COVERAGE

Test	coverage	is	a	very	important	idea	because	it	provides	a	quantitative
assessment	of	the	extent	and	quality	of	testing.	In	other	words,	it	answers	the
question	‘How	much	testing	have	you	done?’	in	a	way	that	is	not	open	to
interpretation.	Statements	such	as	‘I’m	nearly	finished’,	or	‘I’ve	done	two	weeks’
testing’	or	‘I’ve	done	everything	in	the	test	plan’	generate	more	questions	than
they	answer.	They	are	statements	about	how	much	testing	has	been	done	or	how
much	effort	has	been	applied	to	testing,	rather	than	statements	about	how
effective	the	testing	has	been	or	what	has	been	achieved.	We	need	to	know	about
test	coverage	for	two	very	important	reasons:

•It	provides	a	quantitative	measure	of	the	quality	of	the	testing	that	has	been
done	by	measuring	what	has	been	achieved.

•It	provides	a	way	of	estimating	how	much	more	testing	needs	to	be	done.	Using
quantitative	measures,	we	can	set	targets	for	test	coverage	and	measure	progress
against	them.

Statements	like	‘I	have	tested	75	per	cent	of	the	decisions’	or	‘I’ve	tested	80	per
cent	of	the	requirements’	provide	useful	information.	They	are	neither	subjective
nor	qualitative;	they	provide	a	real	measure	of	what	has	actually	been	tested.	If
we	apply	coverage	measures	to	testing	based	on	priorities,	which	are	themselves
based	on	the	risks	addressed	by	individual	tests,	we	will	have	a	reliable,
objective	and	quantified	framework	for	testing.

Test	coverage	can	be	applied	to	any	systematic	technique;	in	this	chapter	we	will
apply	it	to	specification-based	techniques	to	measure	how	much	of	the

functionality	has	been	tested,	and	to	structure-based	techniques	to	measure	how
much	of	the	code	has	been	tested.	Coverage	measures	may	be	part	of	the
completion	criteria	defined	in	the	test	plan	(step	1	of	a	generalised	test	process)
and	used	to	determine	when	to	stop	testing	in	the	final	step	of	this	process.

CHECK	OF	UNDERSTANDING

1.	What	defines	the	process	of	test	execution?

2.	Briefly	compare	a	test	case	and	a	test	condition.

3.	Which	document	identifies	the	sequence	in	which	tests	are	executed?

4.	Describe	the	purpose	of	a	test	coverage	measure.

CATEGORIES	OF	TEST	CASE	DESIGN	TECHNIQUES

There	are	very	many	ways	to	design	test	cases.	Some	are	general,	others	are	very
specific.	Some	are	very	simple	to	implement,	others	are	difficult	and	complex	to
implement.	The	many	excellent	books	published	on	software	testing	techniques
every	year	testify	to	the	rate	of	development	of	new	and	interesting	approaches
to	the	challenges	that	confront	the	professional	software	tester.

There	is,	however,	a	collection	of	test	case	design	techniques	that	has	come	to	be
recognised	as	the	most	important	ones	for	a	tester	to	learn	to	apply,	and	these
have	been	selected	as	the	representatives	of	test	case	design	for	the	Foundation
Certificate,	and	hence	for	this	book.

The	test	case	design	techniques	we	will	look	at	are	grouped	into	three	categories:

•Those	based	on	deriving	test	cases	directly	from	a	specification	or	a	model	of	a
system	or	proposed	system,	known	as	black-box	techniques.	So	black-box
techniques	are	based	on	an	analysis	of	the	test	basis	documentation,	including
both	functional	and	non-functional	aspects.	They	do	not	use	any	information
regarding	the	internal	structure	of	the	component	or	system	under	test.

•Those	based	on	deriving	test	cases	directly	from	the	structure	of	a	component	or
system	are	known	as	white-box	techniques.	We	will	briefly	introduce	this
category,	which	concentrates	on	tests	based	on	the	code	written	to	implement	a
component	or	system	in	this	chapter,	but	other	aspects	of	structure,	such	as	a
menu	structure,	can	be	tested	in	a	similar	way.	An	optional	section	of	the	chapter
provides	a	more	in-depth	treatment	of	these	techniques.

•Those	based	on	deriving	test	cases	from	the	tester’s	experience	of	similar
systems	and	general	experience	of	testing,	known	as	experience-based
techniques.

It	is	convenient	to	categorise	techniques	for	test	case	design	in	this	way	(it	is
easier	for	you	to	remember,	for	one	thing)	but	do	not	assume	that	these	are	the
only	categories	or	the	only	techniques;	there	are	many	more	that	can	be	added	to
the	tester’s	‘tool	kit’	over	time.

The	category	known	as	‘black-box’	techniques	is	so-called	because	the
techniques	in	it	take	a	view	of	the	system	that	does	not	need	to	know	what	is
going	on	‘inside	the	box’.	Some	will	recognise	‘black	box’	as	the	name	of
anything	technical	that	you	can	use	but	about	which	you	know	nothing	or	next	to
nothing.	The	natural	alternative	to	‘black	box’	is	‘white	box’	and	so	‘white-box’
techniques	are	those	that	are	based	on	internal	structure	rather	than	external
function.

Experience-based	testing	was	not	really	treated	as	‘proper’	testing	in	testing
prehistory,	so	it	was	given	disdainful	names	such	as	‘ad	hoc’;	the	implication
that	this	was	not	a	systematic	approach	was	enough	to	exclude	it	from	many
discussions	about	testing.	Both	the	intellectual	climate	and	the	sophistication	of
experience-based	techniques	have	moved	on	from	those	early	days.	It	is	worth
bearing	in	mind	that	many	systems	are	still	tested	in	an	experience-based	way,
partly	because	the	systems	are	not	specified	in	enough	detail	or	in	a	sufficiently
structured	way	to	enable	other	categories	of	technique	to	be	applied,	or	because
neither	the	development	team	nor	the	testing	team	have	been	trained	in	the	use	of
specification-based	or	structure-based	techniques.

Before	we	look	at	these	categories	in	detail,	think	for	a	moment	about	what	we
are	trying	to	achieve.	We	want	to	try	to	check	that	a	system	does	everything	that
its	specification	says	it	should	do	and	nothing	else.	In	practice,	the	‘nothing	else’
is	the	hardest	part	and	generates	the	most	tests;	that	is	because	there	are	far	more

ways	of	getting	something	wrong	than	there	are	ways	of	getting	it	right.	Even	if
we	just	concentrate	on	testing	that	the	system	does	what	it	is	supposed	to	do,	we
will	still	generate	a	very	large	number	of	tests.	This	will	be	expensive	and	time-
consuming,	which	means	it	probably	will	not	happen,	so	we	need	to	ensure	that
our	testing	is	as	efficient	as	possible.	As	you	will	see,	the	best	techniques	do	this
by	creating	the	smallest	set	of	tests	that	will	achieve	a	given	objective,	and	they
do	that	by	taking	advantage	of	certain	things	we	have	learned	about	testing;	for
example,	that	defects	tend	to	cluster	in	interesting	ways.

Bear	this	in	mind	as	we	take	a	closer	look	at	the	categories	of	test	case	design
techniques.

CHOOSING	TEST	TECHNIQUES

The	decision	of	which	test	technique	to	use	is	not	a	simple	one.	There	are	many
factors	to	bear	in	mind,	some	of	which	are	listed	in	the	box.

KEY	SELECTION	FACTORS

•Type	of	system	or	component	that	we	are	testing;	for	example	it	may	be	a
database	or	a	system	to	control	a	manufacturing	process.

•Any	regulatory	standards	that	may	apply.	These	may	be	related	to	the	type	of
system;	for	example	safety	critical,	the	type	of	industry	in	which	the	system	will
be	used;	for	example	railway	systems,	or	other	regulated	applications.

•Customer	or	contractual	requirements.	Some	customers	may	demand	more
rigorous	testing	than	others	and	this	will	likely	be	identified	in	any	contract	for
purchase	of	the	system.

•Level	of	risk.	Risk	may	be	defined	rigorously,	as	in	safety-critical	systems,	or
more	colloquially;	for	example	relating	to	business	risk.

•Type	of	risk.	Commercial	risk	and	risk	to	human	safety	are	examples	of
different	types	of	risk.

•Test	objectives,	which	will	define,	formally	or	informally,	how	much	and	what
kind	of	testing	is	needed.

•Documentation	available	as	a	test	basis.

•Knowledge	of	the	testers,	which	will	determine	what	kinds	of	testing	can	be
designed	and	implemented.

•Time	and	budget.	Both	set	limits	on	how	much	testing	can	be	done.

•Development	life	cycle,	which	may	define	specific	testing	stages,	as	in	the	V
model	(see	Chapter	2),	or	testing	may	be	an	implicit	part	of	development,	as	in
Agile	development.

•Use	case	models.	Use	case	models	identify	how	a	system	is	expected	to
function	from	a	user	perspective,	so	the	use	case	model	will	effectively
determine	the	scope	and	level	of	testing.

•Experience	of	the	type	of	defects	found	in	similar	systems,	which	may	enable
better	informed	testing	that	focuses	on	problem	areas.

One	or	more	of	these	factors	may	be	important	on	any	given	occasion.	Some
leave	no	room	for	selection:	regulatory	or	contractual	requirements	leave	the
tester	with	no	choice.	Test	objectives,	where	they	relate	to	exit	criteria	such	as

test	coverage,	may	also	lead	to	mandatory	techniques.	Where	documentation	is
not	available,	or	where	time	and	budget	are	limited,	the	use	of	experience-based
techniques	may	be	favoured.	All	others	provide	pointers	within	a	broad
framework:	level	and	type	of	risk	will	push	the	tester	towards	a	particular
approach,	where	high	risk	is	a	good	reason	for	using	systematic	techniques;
knowledge	of	testers,	especially	where	this	is	limited,	may	narrow	down	the
available	choices;	the	type	of	system	and	the	development	life	cycle	will
encourage	testers	to	lean	in	one	direction	or	another	depending	on	their	own
particular	experience.	There	are	few	clear-cut	cases,	and	the	exercise	of	sound
judgement	in	selecting	appropriate	techniques	is	a	mark	of	a	good	test	manager
or	team	leader.

BLACK-BOX	TEST	TECHNIQUES

The	main	thing	about	black-box	test	techniques	is	that	they	derive	test	cases
directly	from	the	specification	or	from	some	other	kind	of	model	of	what	the
system	should	do.	The	source	of	information	on	which	to	base	testing	is	known
as	the	‘test	basis’.	If	a	test	basis	is	well	defined	and	adequately	structured,	we
can	easily	identify	test	conditions	from	which	test	cases	can	be	derived.

The	most	important	point	about	black-box	test	techniques	is	that	specifications
or	models	do	not	(and	should	not)	define	how	a	system	should	achieve	the
specified	behaviour	when	it	is	built;	it	is	a	specification	of	the	required	(or	at
least	desired)	behaviour.	One	of	the	hard	lessons	that	software	engineers	have
learned	from	experience	is	that	it	is	important	to	separate	the	definition	of	what	a
system	should	do	(a	specification)	from	the	definition	of	how	it	should	work	(a
design).	This	separation	allows	the	two	specialist	groups	(testers	for
specifications	and	designers	for	design)	to	work	independently	so	that	we	can
later	check	that	they	have	arrived	at	the	same	place;	that	is,	they	have	together
built	a	system	and	tested	that	it	works	according	to	its	specification.

If	we	set	up	test	cases	so	that	we	check	that	desired	behaviour	actually	occurs,
then	we	are	acting	independently	of	the	developers.	If	they	have	misunderstood
the	specification	or	chosen	to	change	it	in	some	way	without	telling	anyone	then
their	implementation	will	deliver	behaviour	that	is	different	from	what	the	model
or	specification	said	the	system	behaviour	should	be.	Our	test,	based	solely	on
the	specification,	will	therefore	fail	and	we	will	have	uncovered	a	problem.

Bear	in	mind	that	not	all	systems	are	defined	by	a	detailed	formal	specification.
In	some	cases,	the	model	we	use	may	be	quite	informal.	If	there	is	no
specification	at	all,	the	tester	may	have	to	build	a	model	of	the	proposed	system,
perhaps	by	interviewing	key	stakeholders	to	understand	what	their	expectations

are.	However	formal	or	informal	the	model	is,	and	however	it	is	built,	it	provides
a	test	basis	from	which	we	can	generate	tests	systematically.

Remember,	also,	that	the	specification	can	contain	non-functional	elements	as
well	as	functions;	topics	such	as	reliability,	usability	and	performance	are
examples.	These	need	to	be	systematically	tested	as	well.

What	we	need,	then,	are	techniques	that	can	explore	the	specified	behaviour
systematically	and	thoroughly	in	a	way	that	is	as	efficient	as	we	can	make	it.	In
addition,	we	use	what	we	know	about	software	to	‘home	in’	on	problems;	each
of	the	test	case	design	techniques	is	based	on	some	simple	principles	that	arise
from	what	we	know	in	general	about	software	behaviour.

You	need	to	know	five	specification-based	techniques	for	the	Foundation
Certificate:

•equivalence	partitioning;

•boundary	value	analysis;

•decision	table	testing;

•state	transition	testing;

•use	case	testing.

You	should	be	capable	of	generating	test	cases	for	the	first	four	of	these
techniques.

CHECK	OF	UNDERSTANDING

1.	What	do	we	call	the	category	of	test	case	design	techniques	that	requires
knowledge	of	how	the	system	under	test	actually	works?

2.	What	do	black-box	techniques	derive	their	test	cases	from?

3.	How	do	we	make	specification-based	testing	work	when	there	is	no
specification?

Equivalence	partitioning

Input	partitions

Equivalence	partitioning	is	based	on	a	very	simple	idea:	it	is	that	in	many	cases
the	inputs	to	a	program	can	be	‘chunked’	into	groups	of	similar	inputs.	For
example,	a	program	that	accepts	integer	values	can	accept	as	valid	any	input	that
is	an	integer	(i.e.	a	whole	number)	and	should	reject	anything	else	(such	as	a	real
number	or	a	character).	The	range	of	integers	is	infinite,	though	the	computer
will	limit	this	to	some	finite	value	in	both	the	negative	and	positive	directions

(simply	because	it	can	only	handle	numbers	of	a	certain	size;	it	is	a	finite
machine).	Let	us	suppose,	for	the	sake	of	an	example,	that	the	program	accepts
any	value	between	−10,000	and	+10,000	(computers	actually	represent	numbers
in	binary	form,	which	makes	the	numbers	look	much	less	like	the	ones	we	are
familiar	with,	but	we	will	stick	to	a	familiar	representation).	If	we	imagine	a
program	that	separates	numbers	into	two	groups	according	to	whether	they	are
positive	or	negative,	the	total	range	of	integers	could	be	split	into	three
‘partitions’:	the	values	that	are	less	than	zero;	zero;	and	the	values	that	are
greater	than	zero.	Each	of	these	is	known	as	an	‘equivalence	partition’	because
every	value	inside	the	partition	is	exactly	equivalent	to	any	other	value	as	far	as
our	program	is	concerned.	So,	if	the	computer	accepts	−2,905	as	a	valid	negative
integer	we	expect	it	also	to	accept	−3.	Similarly,	if	it	accepts	100	it	should	also
accept	2,345	as	a	positive	integer.	Note	that	we	are	treating	zero	as	a	special
case.	We	could,	if	we	chose	to,	include	zero	with	the	positive	integers,	but	my
rudimentary	specification	did	not	specify	that	clearly,	so	it	is	really	left	as	an
undefined	value	(and	it	is	not	untypical	to	find	such	ambiguities	or	undefined
areas	in	specifications).	It	often	suits	us	to	treat	zero	as	a	special	case	for	testing
where	ranges	of	numbers	are	involved;	we	treat	it	as	an	equivalence	partition
with	only	one	member.	So,	we	have	three	valid	equivalence	partitions	in	this
case.

The	equivalence	partitioning	technique	takes	advantage	of	the	properties	of
equivalence	partitions	to	reduce	the	number	of	test	cases	we	need	to	write.	Since
all	the	values	in	an	equivalence	partition	are	handled	in	exactly	the	same	way	by
a	given	program,	we	need	only	test	one	of	them	as	a	representative	of	the
partition.	In	the	example	given,	then,	we	need	any	positive	integer,	any	negative
integer	and	zero.	We	generally	select	values	somewhere	near	the	middle	of	each
partition,	so	we	might	choose,	say,	−5,000;	0;	and	5,000	as	our	representatives.
These	three	test	inputs	exercise	all	three	partitions	and	the	theory	tells	us	that	if
the	program	treats	these	three	values	correctly,	it	is	very	likely	to	treat	all	of	the
other	values,	all	19,998	of	them	in	this	case,	correctly.

The	partitions	we	have	identified	so	far	are	called	valid	equivalence	partitions
because	they	partition	the	collection	of	valid	inputs,	but	there	are	other	possible
inputs	to	this	program	that	are	not	valid	–	real	numbers,	for	example.	We	also

have	two	input	partitions	of	integers	that	are	not	valid:	integers	less	than	–10,000
and	integers	greater	than	10,000.	We	should	test	that	the	program	does	not	accept
these,	which	is	just	as	important	as	the	program	accepting	valid	inputs.

If	you	think	about	the	example	we	have	been	using,	you	will	soon	recognise	that
there	are	far	more	possible	non-valid	inputs	than	valid	ones,	since	all	the	real
numbers	(e.g.	numbers	containing	decimals)	and	all	characters	are	non-valid	in
this	case.	It	is	generally	the	case	that	there	are	far	more	ways	to	provide	incorrect
input	than	there	are	to	provide	correct	input;	as	a	result,	we	need	to	ensure	that
we	have	tested	the	program	against	the	possible	non-valid	inputs.	Here	again,
equivalence	partitioning	comes	to	our	aid:	all	real	numbers	are	equally	non-
valid,	as	are	all	alphabetic	characters.	These	represent	two	non-valid	partitions
that	we	should	test,	using	values	such	as	9.45	and	‘r’	respectively.	There	will	be
many	other	possible	non-valid	input	partitions,	so	we	may	have	to	limit	the	test
cases	to	the	ones	that	are	most	likely	to	crop	up	in	a	real	situation.

EXAMPLE	EQUIVALENCE	PARTITIONS

•valid	input:	integers	in	the	range	100	to	999;

•valid	partition:	100	to	999	inclusive;

•non-valid	partitions:	less	than	100,	more	than	999,	real	(decimal)	numbers	and
non-numeric	characters;

•valid	input:	names	with	up	to	20	alphabetic	characters;

•valid	partition:	strings	of	up	to	20	alphabetic	characters;

•non-valid	partitions:	strings	of	more	than	20	alphabetic	characters,	strings
containing	non-alphabetic	characters.

Exercise	4.1

Suppose	you	have	a	bank	account	that	offers	variable	interest	rates:	0.5	per	cent
for	the	first	£1,000	credit;	1	per	cent	for	the	next	£1,000;	1.5	per	cent	for	the	rest.
If	you	wanted	to	check	that	the	bank	was	handling	your	account	correctly,	what
valid	input	partitions	might	you	use?

The	answer	can	be	found	at	the	end	of	the	chapter.

Output	partitions

Just	as	the	input	to	a	program	can	be	partitioned,	so	can	the	output.	The	program
in	the	exercise	above	could	produce	outputs	of	0.5	per	cent,	1	per	cent	and	1.5
per	cent,	so	we	can	use	test	cases	that	generate	each	of	these	outputs	as	an
alternative	to	generating	input	partitions.	An	input	value	in	the	range	£0.00–
£1,000.00	generates	the	0.5	per	cent	output;	a	value	in	the	range	£1,001.00–
£2,000.00	generates	the	1	per	cent	output;	a	value	greater	than	£2,000.00
generates	the	1.5	per	cent	output.

Other	partitions

If	we	know	enough	about	an	application,	we	may	be	able	to	partition	other
values	instead	of	or	as	well	as	input	and	output.	For	example,	if	a	program
handles	input	requests	by	placing	them	on	one	of	a	number	of	queues	we	could,
in	principle,	check	that	requests	end	up	on	the	right	queue.	In	this	case,	a	stream
of	inputs	can	be	partitioned	according	to	the	queue	we	anticipate	it	will	be	placed
into.	This	is	more	technical	and	difficult	than	input	or	output	partitioning,	but	it
is	an	option	that	can	be	considered	when	appropriate.

PARTITIONS	–	EXAMPLE	4.1

A	mail-order	company	charges	£2.95	postage	for	deliveries	if	the	package
weighs	less	than	2	kg,	£3.95	if	the	package	weighs	2	kg	or	more	but	less	than	5
kg,	and	£5	for	packages	weighing	5	kg	or	more.	Generate	a	set	of	valid	test	cases
using	equivalence	partitioning.

The	valid	input	partitions	are:	under	2	kg;	2	kg	or	over	but	less	than	5	kg;	and	5
kg	or	over.

Input	values	could	be	1	kg,	3.5	kg,	7.5	kg.	These	produce	expected	results	of
£2.95,	£3.95	and	£5	respectively.

In	this	case	there	are	no	non-valid	inputs	(unless	the	scales	fail).

Exercise	4.2

A	mail-order	company	selling	flower	seeds	charges	£3.95	for	postage	and
packing	on	all	orders	up	to	£20	value	and	£4.95	for	orders	above	£20	value	and
up	to	£40	value.	For	orders	above	£40	value,	there	is	no	charge	for	postage	and
packing.

If	you	were	using	equivalence	partitioning	to	prepare	test	cases	for	the	postage
and	packing	charges	what	valid	partitions	would	you	define?

What	about	non-valid	partitions?

The	answer	can	be	found	at	the	end	of	the	chapter.

Boundary	value	analysis

One	thing	we	know	about	the	kinds	of	mistakes	that	programmers	make	is	that
errors	tend	to	cluster	around	boundaries.	For	example,	if	a	program	should
accept	a	sequence	of	numbers	between	1	and	10,	the	most	likely	fault	will	be	that
values	just	outside	this	range	are	incorrectly	accepted	or	that	values	just	inside
the	range	are	incorrectly	rejected.	In	the	programming	world,	these	faults
coincide	with	particular	programming	structures	such	as	the	number	of	times	a
program	loop	is	executed	or	the	exact	point	at	which	a	loop	should	stop
executing.

This	works	well	with	our	equivalence	partitioning	idea	because	partitions	must
have	boundaries.	(Where	partitions	do	not	have	boundaries,	for	example	in	the
set	of	days	of	the	week,	the	boundary	analysis	technique	cannot	be	used.)	A

partition	of	integers	between	1	and	99,	for	instance,	has	a	lowest	value,	1,	and	a
highest	value,	99.	These	are	called	boundary	values.	Actually,	they	are	called
valid	boundary	values	because	they	are	the	boundaries	on	the	inside	of	a	valid
partition.	What	about	the	values	on	the	outside?	Yes,	they	have	boundaries	too.
So,	the	boundary	of	the	non-valid	values	at	the	lower	end	will	be	zero	because	it
is	the	first	value	you	come	to	when	you	step	outside	the	partition	at	the	bottom
end.	(You	can	also	think	of	this	as	the	highest	value	inside	the	non-valid	partition
of	integers	that	are	less	than	one,	of	course.)	At	the	top	end	of	the	range	we	also
have	a	non-valid	boundary	value,	100.

This	is	the	boundary	value	technique,	more	or	less.	For	most	practical	purposes
the	boundary	value	analysis	technique	needs	to	identify	just	two	values	at	each
boundary.	For	reasons	that	need	not	detain	us	here	there	is	an	alternative	version
of	the	technique	that	uses	three	values	at	each	boundary.	For	this	variant,	which
is	the	one	documented	in	BS	7925-2,	we	include	one	more	value	at	each
boundary	when	we	use	boundary	value	analysis:	the	rule	is	that	we	use	the
boundary	value	itself	and	one	value	(as	close	as	you	can	get)	either	side	of	the
boundary.

So,	in	this	case	lower	boundary	values	will	be	0,	1,	2	and	upper	boundary	values
will	be	98,	99,	100.	What	does	‘as	close	as	we	can	get’	mean?	It	means	take	the
next	value	in	sequence	using	the	precision	that	has	been	applied	to	the	partition.
If	the	numbers	are	to	a	precision	of	0.01,	for	example,	the	lower	boundary	values
are	0.99,	1.00,	1.01	and	the	upper	boundary	values	are	98.99,	99.00,	99.01.

When	you	come	to	take	your	exam,	you	will	find	that	the	exam	recognises	that
there	are	two	possible	approaches	to	boundary	value	analysis.	For	this	reason,
any	questions	about	boundary	value	analysis	will	clearly	signal	whether	you	are
expected	to	identify	two	or	three	values	at	any	boundary.	You	will	find	that	this
causes	no	problems,	but	there	are	examples	below	using	both	the	two	value	and
the	three	value	approach,	just	to	be	on	the	safe	side,	to	ensure	that	you	do	not	get
taken	by	surprise	in	the	exam.

The	best	way	to	consolidate	the	idea	of	boundaries	is	to	look	at	some	examples.

BOUNDARY	VALUES	–	EXAMPLE	4.2

•The	boiling	point	of	water	–	the	boundary	is	at	100	degrees	Celsius,	so	for	the
three	value	boundary	approach,	the	boundary	values	will	be	99	degrees,	100
degrees,	101	degrees	–	unless	you	have	a	very	accurate	digital	thermometer,	in
which	case	they	could	be	99.9	degrees,	100.0	degrees,	100.1	degrees.	For	the
two	value	approach	the	corresponding	values	are	100	and	101.

•Exam	pass	–	if	an	exam	has	a	pass	boundary	at	40	per	cent,	merit	at	60	per	cent
and	distinction	at	80	per	cent	the	three	value	boundaries	are	39,	40,	41	for	pass,
59,	60,	61	for	merit,	79,	80,	81	for	distinction.	It	is	unlikely	that	marks	would	be
recorded	at	any	greater	precision	than	whole	numbers.	The	two	value	equivalents
are	39	and	40,	59	and	60,	and	79	and	80	respectively.

Exercise	4.3

A	system	is	designed	to	accept	scores	from	independent	markers	who	have
marked	the	same	examination	script.	Each	script	should	have	five	individual
marks,	each	of	which	is	out	of	20,	and	a	total	for	the	script.	Two	markers’	scores
are	compared	and	differences	greater	than	three	in	any	question	score	or	10
overall	are	flagged	for	further	examination.

Using	equivalence	partitioning	and	boundary	value	analysis,	identify	the
boundary	values	that	you	would	explore	for	this	scenario.

(In	practice,	some	of	the	boundary	values	might	actually	be	in	other	equivalence
partitions,	and	we	do	not	need	to	test	them	twice,	so	the	total	number	of
boundary	values	requiring	testing	might	be	less	than	you	might	expect.)	The
answer	can	be	found	at	the	end	of	the	chapter.

CHECK	OF	UNDERSTANDING

1.	What	is	the	relationship	between	a	partition	and	a	boundary?

2.	Why	are	equivalence	partitioning	and	boundary	value	analysis	often	used
together?

3.	Explain	what	is	meant	by	‘as	close	as	possible	to	a	boundary’?

Decision	table	testing

Specifications	often	contain	business	rules	to	define	the	functions	of	the	system
and	the	conditions	under	which	each	function	operates.	Individual	decisions	are
usually	simple,	but	the	overall	effect	of	these	logical	conditions	can	become
quite	complex.	As	testers	we	need	to	be	able	to	assure	ourselves	that	every
combination	of	these	conditions	that	might	occur	has	been	tested,	so	we	need	to
capture	all	the	decisions	in	a	way	that	enables	us	to	explore	their	combinations.
The	mechanism	usually	used	to	capture	the	logical	decisions	is	called	a	decision
table.

A	decision	table	lists	all	the	input	conditions	that	can	occur	and	all	the	actions
that	can	arise	from	them.	These	are	structured	into	a	table	as	rows,	with	the
conditions	at	the	top	of	the	table	and	the	possible	actions	at	the	bottom.	Business
rules,	which	involve	combinations	of	conditions	to	produce	some	combination	of
actions,	are	arranged	across	the	top.	Each	column	therefore	represents	a	single
business	rule	(or	just	‘rule’)	and	shows	how	input	conditions	combine	to	produce
actions.	Thus,	each	column	represents	a	possible	test	case,	since	it	identifies	both
inputs	and	expected	outputs.	This	is	shown	schematically	in	the	box	below.

DECISION	TABLE	STRUCTURE

Business	rule	1	requires	all	conditions	to	be	true	to	generate	action	1.	Business
rule	2	results	in	action	2	if	condition	1	is	false	and	condition	2	is	true,	but	does
not	depend	on	condition	3.	Business	rule	3	requires	conditions	1	and	2	to	be	true
and	condition	3	to	be	false.

In	reality	the	number	of	conditions	and	actions	can	be	quite	large,	but	usually	the
number	of	combinations	producing	specific	actions	is	relatively	small.	For	this
reason,	we	do	not	enter	every	possible	combination	of	conditions	into	our
decision	table	but	restrict	it	to	those	combinations	that	correspond	to	business
rules	–	this	is	called	a	limited	entry	decision	table	to	distinguish	it	from	a
decision	table	with	all	combinations	of	inputs	identified.	In	this	chapter	we	will
always	mean	the	limited	entry	kind	when	we	refer	to	a	decision	table.

As	usual,	we	use	an	example	to	clarify	what	we	mean.

DECISION	TABLE	TESTING	–	EXAMPLE	4.3

A	supermarket	has	a	loyalty	scheme	that	is	offered	to	all	customers.	Loyalty
cardholders	enjoy	the	benefits	of	either	additional	discounts	on	all	purchases
(rule	3)	or	the	acquisition	of	loyalty	points	(rule	4),	which	can	be	converted	into
vouchers	for	the	supermarket	or	to	equivalent	points	in	schemes	run	by	partners.
Customers	without	a	loyalty	card	receive	an	additional	discount	only	if	they
spend	more	than	£100	on	any	one	visit	to	the	store	(rule	2),	otherwise	only	the
special	offers	offered	to	all	customers	apply	(rule	1).

From	the	decision	table,	we	can	determine	test	cases	by	setting	values	for	the
conditions	and	determining	the	expected	output;	for	example,	from	rule	1	we
could	input	a	normal	customer	with	a	£50	transaction	and	check	that	no	discount
was	applied.	The	same	customer	with	a	£150	transaction	(rule	2)	should	attract	a
discount.	Thus,	we	can	see	that	each	column	of	the	decision	table	represents	a
possible	test	case.

CHECK	OF	UNDERSTANDING

1.	What	is	a	decision	table	derived	from?

2.	Why	does	decision	table	testing	use	limited	entry	decision	tables?

3.	Describe	how	test	cases	are	identified	from	decision	tables.

4.	Which	element	of	a	decision	table	defines	the	expected	output	for	a	test	case?

Exercise	4.4

A	mutual	insurance	company	has	decided	to	float	its	shares	on	the	stock
exchange	and	is	offering	its	members	rewards	for	their	past	custom	at	the	time	of

flotation.	Anyone	with	a	current	policy	will	benefit	provided	it	is	a	‘with-profits’
policy	and	they	have	held	it	since	2001.	Those	who	meet	these	criteria	can	opt
for	either	a	cash	payment	or	an	allocation	of	shares	in	the	new	company;	those
who	have	held	a	qualifying	policy	for	less	than	the	required	time	will	be	eligible
for	a	cash	payment	but	not	for	shares.	Here	is	a	decision	table	reflecting	those
rules.

What	result	would	you	expect	to	get	for	the	following	test	case?

Billy	Bunter	is	a	current	policy	holder	who	has	held	a	‘with-profits’	policy	since
2003.

The	answer	can	be	found	at	the	end	of	the	chapter.

State	transition	testing

The	previous	technique,	decision	table	testing,	is	particularly	useful	in	systems
where	combinations	of	input	conditions	produce	various	actions.	Now	we
consider	a	similar	technique,	but	this	time	we	are	concerned	with	systems	in
which	outputs	are	triggered	by	changes	to	the	input	conditions,	or	changes	of
‘state’;	in	other	words,	behaviour	depends	on	current	state	and	past	state,	and	it
is	the	transitions	that	trigger	system	behaviour.	It	will	be	no	surprise	to	learn	that
this	technique	is	known	as	state	transition	testing	or	that	the	main	diagram	used
in	the	technique	is	called	a	state	transition	diagram.

Look	at	the	box	to	see	an	example	of	a	state	transition	diagram.

STATE	TRANSITION	DIAGRAMS

A	state	transition	diagram	is	a	representation	of	the	behaviour	of	a	system.	It	is

made	up	from	just	two	symbols.

which	is	the	symbol	for	a	state.	A	state	is	just	what	it	says	it	is:	the	system	is
‘static’,	in	a	stable	condition	from	which	it	will	only	change	if	it	is	stimulated	by
an	event	of	some	kind.	For	example,	a	TV	stays	‘on’	unless	you	turn	it	‘off’;	a
multifunction	watch	tells	the	time	unless	you	change	mode.	The	second	is

which	is	the	symbol	for	a	transition;	that	is,	a	change	from	one	state	to	another.
The	state	change	will	be	triggered	by	an	event	(e.g.	pressing	a	button	or
switching	a	switch).	The	transition	will	be	labelled	with	the	event	that	caused	it
and	any	action	that	arises	from	it.	So,	we	might	have	‘mode	button	pressed’	as	an
event	and	‘presentation	changes’	as	the	action.	Usually	(but	not	necessarily)	the
start	state	will	have	a	double	arrowhead	pointing	to	it.	Often	the	start	state	is
obvious	anyway.

If	we	have	a	state	transition	diagram	representation	of	a	system,	we	can	analyse
the	behaviour	in	terms	of	what	happens	when	a	transition	occurs.

Transitions	are	caused	by	events	and	they	may	generate	outputs	and/or	changes
of	state.	An	event	is	anything	that	acts	as	a	trigger	for	a	change;	it	could	be	an
input	to	the	system,	or	it	could	be	something	inside	the	system	that	changes	for
some	reason,	such	as	a	database	field	being	updated.

In	some	cases,	an	event	generates	an	output;	in	others,	the	event	changes	the
system’s	internal	state	without	generating	an	output;	and	in	still	others,	an	event
may	cause	an	output	and	a	change	of	state.	What	happens	for	each	change	is
always	deducible	from	the	state	transition	diagram.

STATE	TRANSITION	DIAGRAM	–	EXAMPLE	4.4

A	hill-walker’s	watch	has	two	modes:	Time	and	Altimeter.	In	Time	mode,
pressing	the	Mode	switch	causes	the	watch	to	switch	to	Alt	mode;	pressing
Mode	again	returns	to	Time	mode.	While	the	watch	is	in	Alt	mode	the	Set	button

has	no	effect.

When	the	watch	is	in	Time	mode	pressing	the	Set	button	transitions	the	watch
into	Set	Hrs,	from	which	the	Hrs	display	can	be	incremented	by	pressing	the	Set
button.	If	the	Mode	switch	is	pressed	while	the	watch	is	in	Set	Hrs	mode	the
watch	transitions	to	Set	Mins	mode,	in	which	pressing	the	Set	button	increments
the	Mins	display.	If	the	Mode	button	is	pressed	in	this	mode,	the	watch
transitions	back	to	Time	mode	(Figure	4.1).

Note	that	not	all	events	have	an	effect	in	all	states.	Where	an	event	does	not	have
an	effect	on	a	given	state	it	is	usually	omitted,	but	it	can	be	shown	as	an	arrow
starting	from	the	state	and	returning	to	the	same	state	to	indicate	that	no
transition	takes	place;	this	is	sometimes	known	as	a	‘null’	transition	or	an
‘invalid’	transition.

Rather	than	work	out	what	happens	for	each	event	each	time	we	want	to	initiate
a	test,	we	can	take	the	intermediate	step	of	creating	what	is	known	as	a	state
table	(ST).	An	ST	records	all	the	possible	events	and	all	the	possible	states;	for
each	combination	of	event	and	state	it	shows	the	outcome	in	terms	of	the	new
state	and	any	outputs	that	are	generated.

The	ST	is	the	source	from	which	we	usually	derive	test	cases.	It	makes	sense	to
do	it	this	way	because	the	analysis	of	state	transitions	takes	time	and	can	be	a
source	of	errors;	it	is	better	to	do	this	task	once	and	then	have	a	simple	way	of
generating	tests	from	it	than	to	do	it	every	time	we	want	to	generate	a	new	test
case.

Table	4.1	provides	an	example	of	what	an	ST	looks	like.

Figure	4.1	State	transition	diagram	of	the	hill-walker’s	watch

STATE	TABLE	–	EXAMPLE	4.4

An	ST	has	a	row	for	each	state	in	the	state	transition	diagram	and	a	column	for
every	event.	For	a	given	row	and	column	intersection,	we	read	off	the	state	from
the	state	transition	diagram	and	note	what	effect	(if	any)	each	event	has.	If	the
event	has	no	effect,	we	label	the	table	entry	with	a	symbol	that	indicates	that
nothing	happens;	this	is	sometimes	called	a	‘null’	transition	or	an	‘invalid’
transition.	If	the	event	does	have	an	effect,	label	the	table	entry	with	the	state	to
which	the	system	transitions	when	the	given	event	occurs;	if	there	is	also	an
output	(there	is	sometimes	but	not	always)	the	output	is	indicated	in	the	same
table	entry	separated	from	the	new	state	by	the	‘/’	symbol.	The	example	shown
in	Table	4.1	is	the	ST	for	Figure	4.1,	which	we	drew	in	the	previous	box.

Table	4.1	ST	for	the	hill-walker’s	watch

Once	we	have	an	ST	it	is	a	simple	exercise	to	generate	the	test	cases	that	we
need	to	exercise	the	functionality	by	triggering	state	changes.

STATE	TRANSITION	TESTING	–	EXAMPLE	4.4

We	generate	test	cases	by	stepping	through	the	ST.	If	we	begin	in	Time	mode,
then	the	first	test	case	might	be	to	press	Mode	and	observe	that	the	watch
changes	to	Alt	state;	pressing	Mode	again	becomes	test	case	2,	which	returns	the
watch	to	Time	state.	Test	case	3	could	press	Set	and	observe	the	change	to	Set
Hrs	mode	and	then	try	a	number	of	presses	of	Set	to	check	that	the	incrementing
mechanism	works.	In	this	way	we	can	work	our	way	systematically	round	the	ST
until	every	single	transition	has	been	exercised.	If	we	want	to	be	more
sophisticated,	we	can	exercise	pairs	of	transitions;	for	example,	pressing	Set
twice	as	a	single	test	case	to	check	that	Hrs	increments	correctly.	We	should	also
test	all	the	negative	cases;	that	is,	those	cases	where	the	ST	indicates	there	is	no
valid	transition.

CHECK	OF	UNDERSTANDING

1.	What	is	the	main	use	of	an	ST	for	testers?

2.	Name	three	components	of	a	state	transition	diagram.

3.	How	are	negative	tests	identified	from	an	ST?

4.	What	is	meant	by	the	term	‘invalid’	transition?

Exercise	4.5

In	the	state	transition	diagram	in	Figure	4.2,	which	of	the	sequences	of
transitions	below	is	valid?

a.	ABCDE

b.	FEABC

c.	ABCEF

d.	EFADC

The	answer	can	be	found	at	the	end	of	the	chapter.

Figure	4.2	State	transition	diagram

Use	case	testing

Use	cases	are	one	way	of	specifying	functionality	as	business	scenarios	or
process	flows.	They	capture	the	individual	interactions	between	‘actors’	and	the
system.	An	actor	represents	a	particular	type	of	user	and	the	use	cases	capture
the	interactions	that	each	user	takes	part	in	to	produce	some	output	that	is	of
value.	Test	cases	based	on	use	cases	at	the	business	process	level,	often	called
scenarios,	are	particularly	useful	in	exercising	business	rules	or	process	flows
and	will	often	identify	gaps	or	weaknesses	in	these	that	would	not	be	found	by
exercising	individual	components	in	isolation.	This	makes	use	case	testing	very
effective	in	defining	acceptance	tests	because	the	use	cases	represent	actual
likely	use.

Use	cases	may	also	be	defined	at	the	system	level,	with	preconditions	that	define
the	state	the	system	needs	to	be	in	on	entry	to	a	use	case	to	enable	the	use	case	to
complete	successfully,	and	postconditions	that	define	the	state	of	the	system	on
completion	of	the	use	case.	Use	cases	typically	have	a	mainstream	path,	defining
the	expected	behaviour,	and	one	or	more	alternative	paths	related	to	such	aspects
as	error	conditions.	Well-defined	use	cases	can	therefore	be	an	excellent	basis	for
system	level	testing,	and	they	can	also	help	to	uncover	integration	defects	caused
by	incorrect	interaction	or	communication	between	components.

In	practice,	writing	a	test	case	to	represent	each	use	case	is	often	a	good	starting
point	for	testing,	and	use	case	testing	can	be	combined	with	other	specification-
based	testing.

USE	CASES

In	a	use	case	diagram	(e.g.	Figure	4.3),	each	type	of	user	is	known	as	an	actor
and	an	actor	stands	for	all	users	of	the	type.	Use	cases	are	activities	carried	out
for	that	actor	by	the	system.	This	is,	in	effect,	a	high-level	view	of	requirements.

The	diagram	alone	does	not	provide	enough	detail	for	testing,	so	we	need	some
textual	description	of	the	processes	involved	as	well.

Figure	4.3	Use	case	example

Use	case	testing	has	the	major	benefit	that	it	relates	to	real	user	processes,	so	it
offers	an	opportunity	to	exercise	a	complete	process	flow.	The	principles	applied
elsewhere	can	be	applied	here:	first,	test	the	highest	priority	(highest	value)	use
cases	by	taking	typical	examples;	then	exercise	some	attempts	at	incorrect
process	flows;	and	then	exercise	the	boundaries.

CHECK	OF	UNDERSTANDING

1.	What	is	the	purpose	of	a	use	case?

2.	What	is	the	relationship	between	a	use	case	and	a	test	case?

3.	Briefly	compare	equivalence	partitioning	and	use	case	testing.

WHITE-BOX	TEST	TECHNIQUES

White-box	test	techniques	are	used	to	explore	system	or	component	structures	at
several	levels.	At	the	component	level,	the	structures	of	interest	will	be	program
structures	such	as	program	statements	and	decisions;	at	the	integration	level,	we
may	be	interested	in	exploring	the	way	components	interact	with	other
components	(in	what	is	usually	termed	a	calling	structure);	at	the	system	level,
we	may	be	interested	in	how	users	will	interact	with	a	menu	structure.	All	these
are	examples	of	structures	and	all	may	be	tested	using	white-box	test	techniques.

Instead	of	exercising	a	component	or	system	to	see	if	it	functions	correctly,	using
a	specification	or	model	of	the	system	to	determine	correct	functioning,	white-
box	tests	focus	on	ensuring	that	elements	of	the	structure	of	a	component,	sub-
system	or	system	are	correctly	exercised.	For	example,	we	can	use	white-box
test	techniques	to	ensure	that	each	statement	in	the	code	of	a	component	is
executed	at	least	once,	using	a	technique	called	statement	testing;	we	can	test
that	each	decision	in	a	component	is	exercised	and	behaves	as	expected;	we	can
test	that	components	interact	correctly	in	a	sub-system;	we	can	test	that	user
interaction	with	menus	is	correct.

We	will	focus	here	on	statement	testing	and	decision	testing,	both	of	which	are
usually	deployed	at	the	component	or	program	level.

Statement	testing	and	coverage

Statement	testing	exercises	the	executable	statements	in	the	code.	Tests	are
designed	to	attempt	to	force	the	program	to	execute	particular	statements	by
setting	a	program	to	a	known	start	state	and	inputting	data	that	will	cause	the

required	statements	to	be	executed.	The	expected	outputs	of	the	test	will	also	be
predicted	from	the	program	code	so	that,	on	completion	of	the	test,	it	can	be
determined	whether	the	test	executed	the	required	statements.	An	analyser	tool
can	also	be	used	to	determine	which	statements	were	executed	by	a	test	run.

Statement	coverage	is	measured	as	the	number	of	statements	executed	by	the
tests	divided	by	the	total	number	of	executable	statements	in	the	test	object,
normally	expressed	as	a	percentage.	A	target	for	statement	coverage	can	be	set
and	statement	testing	would	continue	until	the	required	target	statement	coverage
is	achieved.

Decision	testing	and	coverage

Decision	testing	exercises	the	decisions	in	the	code.	In	a	similar	way	to
statement	testing,	tests	are	designed	to	attempt	to	force	the	program	to	execute
particular	decisions	in	particular	ways.	This	will	be	achieved	by	setting	the
program	to	a	known	start	state	and	inputting	data	that	is	expected	to	set	given
decisions	so	that	the	program	exits	them	from	the	required	exit	(true	or	false).	To
do	this,	the	test	cases	follow	the	control	flows	that	occur	from	a	decision	point
(e.g.	for	an	IF	statement,	one	for	the	true	outcome	and	one	for	the	false	outcome;
for	a	CASE	statement,	test	cases	are	required	for	all	the	possible	outcomes,
including	the	default	outcome).	As	with	statement	testing,	the	expected	outputs
of	the	test	will	also	be	predicted	from	the	program	code	so	that,	on	completion	of
the	test,	it	can	be	determined	whether	the	test	executed	the	required	decisions
appropriately.	An	analyser	tool	can	also	be	used	to	determine	which	decisions
were	executed	by	a	test	run.

Decision	coverage	is	measured	as	the	number	of	decision	outcomes	executed	by
the	tests	divided	by	the	total	number	of	decision	outcomes	in	the	test	object,
normally	expressed	as	a	percentage.	A	target	for	decision	coverage	can	be	set
and	decision	testing	would	continue	until	the	required	target	decision	coverage	is

achieved.

The	value	of	statement	and	decision	testing

When	100	per	cent	statement	coverage	is	achieved,	it	ensures	that	all	executable
statements	in	the	code	have	been	tested	at	least	once,	but	it	does	not	ensure	that
all	decision	logic	has	been	tested.	Of	the	two	white-box	techniques	discussed	in
this	syllabus,	statement	testing	may	provide	less	coverage	than	decision	testing.
To	achieve	100	per	cent	decision	coverage,	all	decision	outcomes	must	be
exercised,	so	for	each	decision,	both	the	true	outcome	and	the	false	outcome,
even	when	there	is	no	explicit	false	statement	(e.g.	in	the	case	of	an	IF	statement
without	an	ELSE	in	the	code),	must	be	executed	successfully.

Statement	coverage	can	help	to	find	defects	in	code	that	was	not	exercised	by
other	tests.	For	example,	a	functional	test	may	run	and	confirm	the	correct
output,	even	though	the	program	does	not	always	process	the	inputs	correctly.	A
functional	test	is	limited	to	checking	that	a	given	input	achieves	the	correct
functional	output,	but	it	may	be	that	it	only	exercises	part	of	a	program.	A	more
thorough	test	of	the	program	in	isolation	may	discover	that	the	program	does	not
always	behave	exactly	as	expected,	and	this	defect	may	have	functional
implications	that	were	not	discovered	during	black-box	testing.

Similarly,	decision	testing	may	help	to	find	defects	in	code	where	functional	tests
have	not	forced	the	program	to	take	both	true	and	false	decision	exits.	Here
again,	a	more	thorough	exploration	of	the	decision	structures	in	the	code	can
unearth	problems	that	could	not	easily	be	detected,	or	could	not	be	detected	at
all,	by	black-box	testing.

Achieving	100	per	cent	decision	coverage	guarantees	that	100	per	cent	statement

coverage	has	also	been	achieved,	but	the	reverse	is	not	necessarily	true.

The	following	material	is	not	examinable.	Readers	who	wish	to	skip	this
material	at	first	reading	may	resume	the	examinable	material	on	page	145.

WHITE-BOX	TESTING	IN	DETAIL

White-box	test	techniques	are	used	to	explore	system	or	component	structures	at
several	levels.	At	the	component	level,	the	structures	of	interest	are	program
structures	such	as	decisions;	at	the	integration	level	we	may	be	interested	in
exploring	the	way	components	interact	with	other	components	(in	what	is
usually	termed	a	calling	structure);	at	the	system	level,	we	may	be	interested	in
how	users	will	interact	with	a	menu	structure.	All	these	are	examples	of
structures	and	all	may	be	tested	using	white-box	test	case	design	techniques.
Instead	of	exercising	a	component	or	system	to	see	if	it	functions	correctly,
white-box	tests	focus	on	ensuring	that	particular	elements	of	the	structure	itself
are	correctly	exercised.	For	example,	we	can	use	structural	testing	techniques	to
ensure	that	each	statement	in	the	code	of	a	component	is	executed	at	least	once.
At	the	component	level,	where	white-box	testing	is	most	commonly	used,	the
test	case	design	techniques	involve	generating	test	cases	from	code,	so	we	need
to	be	able	to	read	and	analyse	code.	As	you	will	see	later,	in	Chapter	6,	code
analysis	and	white-box	testing	at	the	component	level	are	mostly	done	by
specialist	tools,	but	a	knowledge	of	the	techniques	is	still	valuable.	You	may
wish	to	run	simple	test	cases	on	code	to	ensure	that	it	is	basically	sound	before
you	begin	detailed	functional	testing,	or	you	may	want	to	interpret	test	results
from	programmers	to	ensure	that	their	testing	adequately	exercises	the	code.

The	CTFL	syllabus	does	not	require	this	complete	level	of	understanding	and
takes	a	simplified	approach	that	uses	simplified	control	flow	graphs	(introduced
in	the	section	on	Simplified	control	flow	graphs).	The	following	paragraphs	can
therefore	be	considered	optional	for	readers	whose	interest	is	solely	to	pass	the
CTFL	exam	at	this	stage	but,	for	anyone	intending	to	progress	to	the	more
advanced	levels,	they	provide	an	essential	introduction	to	code	analysis	that	will
be	required	for	these	exams	and	that	will	be	needed	in	testing	real	software.

Our	starting	point,	then,	is	the	code	itself.	The	best	route	to	a	full	understanding
of	white-box	techniques	is	to	start	here	and	work	through	the	whole	section.

READING	AND	INTERPRETING	CODE

Often	the	term	‘code’	will	be	taken	to	mean	pseudo	code,	and	this	is	particularly
relevant	when	addressing	a	non-specific	audience	or	an	international	audience.
Pseudo	code	is	a	much	more	limited	language	than	any	real	programming
language,	but	it	enables	designers	to	create	all	the	main	control	structures	needed
by	programs.	It	is	sometimes	used	to	document	designs	before	they	are	coded
into	a	programming	language.

In	the	next	few	boxes	we	will	introduce	all	the	essential	elements	of	pseudo	code
that	you	will	need	to	be	able	to	analyse	code	and	create	test	cases.

Wherever	you	see	the	word	‘code’	from	here	on	in	this	chapter,	read	it	as
‘pseudo	code’.

Real	programming	languages	have	a	wide	variety	of	forms	and	structures	–	so
many	that	we	could	not	adequately	cover	them	all.	The	advantage	of	pseudo
code	in	this	respect	is	that	it	has	a	simple	structure.

OVERALL	PROGRAM	STRUCTURE

Code	can	be	of	two	types:	executable	and	non-executable.	Executable	code
instructs	the	computer	to	take	some	action;	non-executable	code	is	used	to

prepare	the	computer	to	do	its	calculations,	but	it	does	not	involve	any	actions.
For	example,	reserving	space	to	store	a	calculation	(this	is	called	a	declaration
statement)	involves	no	actions.	In	pseudo	code,	non-executable	statements	will
be	at	the	beginning	of	the	program;	the	start	of	the	executable	part	is	usually
identified	by	BEGIN,	and	the	end	of	the	program	by	END.	So,	we	get	the
following	structure:

If	we	were	counting	executable	statements,	we	would	count	lines	2,	4	and	6.
Line	1	is	not	counted	because	it	is	non-executable.	Lines	3	and	5	are	ignored
because	they	are	blank.

If	there	are	no	non-executable	statements	there	may	be	no	BEGIN	or	END
either,	but	there	will	always	be	something	separating	non-executable	from
executable	statements	where	both	are	present.

Now	we	have	a	picture	of	an	overall	program	structure	we	can	look	inside	the
code.	Surprisingly,	there	are	only	three	ways	that	executable	code	can	be
structured,	so	we	only	have	three	structures	to	learn.	The	first	is	simple	and	is
known	as	sequence:	that	just	means	that	the	statements	are	exercised	one	after
the	other	as	they	appear	on	the	page.	The	second	structure	is	called	selection:	in
this	case	the	computer	has	to	decide	if	a	condition	(known	as	a	Boolean
condition)	is	true	or	false.	If	it	is	true	the	computer	takes	one	route,	and	if	it	is
false	the	computer	takes	a	different	route.	Selection	structures	therefore	involve
decisions.	The	third	structure	is	called	iteration:	it	simply	involves	the	computer
exercising	a	chunk	of	code	more	than	once;	the	number	of	times	it	exercises	the
chunk	of	code	depends	on	the	value	of	a	condition	(just	as	in	the	selection	case).
Let	us	look	at	that	a	little	closer.

PROGRAMMING	STRUCTURES

SEQUENCE

The	following	program	is	purely	sequential:

The	BEGIN	and	END	have	been	omitted	in	this	case,	since	there	were	no	non-
executable	statements;	this	is	not	strictly	correct	but	is	common	practice,	so	it	is
wise	to	be	aware	of	it	and	remember	to	check	whether	there	are	any	non-
executable	statements	when	you	do	see	BEGIN	and	END	in	a	program.	The
computer	would	execute	those	three	statements	in	sequence,	so	it	would	read
(input)	a	value	into	A	(this	is	just	a	name	for	a	storage	location),	then	read
another	value	into	B,	and	finally	add	them	together	and	put	the	answer	into	C.

SELECTION

Here	we	ask	the	computer	to	evaluate	the	condition	P	>	3,	which	means	compare
the	value	that	is	in	location	P	with	3.	If	the	value	in	P	is	greater	than	3,	then	the
condition	is	true;	if	not,	the	condition	is	false.	The	computer	then	selects	which
statement	to	execute	next.	If	the	condition	is	true	it	will	execute	the	part	labelled
THEN,	so	it	executes	line	3.	If	the	condition	is	false,	it	will	execute	line	5.	After
it	has	executed	either	line	3	or	line	5	it	will	go	to	line	6,	which	is	the	end	of	the
selection	(IF	THEN	ELSE)	structure.	From	there,	it	will	continue	with	the	next
line	in	sequence.

There	may	not	always	be	an	ELSE	part,	as	below:

In	this	case	the	computer	executes	line	3	if	the	condition	is	true	or	moves	on	to
line	4	(the	next	line	in	sequence)	if	the	condition	is	false.

ITERATION

Iteration	structures	are	called	loops.	The	most	common	loop	is	known	as	a	DO
WHILE	(or	WHILE	DO)	loop	and	is	illustrated	below:

As	with	the	selection	structures,	there	is	a	decision.	In	this	case	the	condition	that
is	tested	at	the	decision	is	X	<	20.	If	the	condition	is	true,	the	program	‘enters	the
loop’	by	executing	the	code	between	DO	and	END	DO.	In	this	case	the	value	of
X	is	increased	by	one	and	the	value	of	Count	is	increased	by	one.	When	this	is
done	the	program	goes	back	to	line	3	and	repeats	the	test.	If	X	<	20	is	still	true,
the	program	‘enters	the	loop’	again.	This	continues	as	long	as	the	condition	is
true.	If	the	condition	is	false,	the	program	goes	directly	to	line	6	and	then
continues	to	the	next	sequential	instruction.	In	the	program	fragment	above,	the
loop	will	be	executed	five	times	before	the	value	of	X	reaches	20	and	causes	the
loop	to	terminate.	The	value	of	Count	will	then	be	5.

There	is	another	variation	of	the	loop	structure	known	as	a	REPEAT	UNTIL
loop.	It	looks	like	this:

The	difference	from	a	DO	WHILE	loop	is	that	the	condition	is	at	the	end,	so	the
loop	will	always	be	executed	at	least	once.	Every	time	the	code	inside	the	loop	is
executed,	the	program	checks	the	condition.	When	the	condition	is	true,	the
program	continues	with	the	next	sequential	instruction.	The	outcome	of	this
REPEAT	UNTIL	loop	will	be	exactly	the	same	as	the	DO	WHILE	loop	above.

CHECK	OF	UNDERSTANDING

1.	What	is	meant	by	the	term	executable	statement?

2.	Briefly	describe	the	two	forms	of	looping	structure	introduced	in	this	section.

3.	What	is	a	selection	structure?

4.	How	many	different	paths	are	there	through	a	selection	structure?

Flow	charts

Now	that	we	can	read	code,	we	can	go	a	step	further	and	create	a	visual
representation	of	the	structure	that	is	much	easier	to	work	with.	The	simplest
visual	structure	to	draw	is	the	flow	chart,	which	has	only	two	symbols.

Rectangles	represent	sequential	statements	and	diamonds	represent	decisions.
More	than	one	sequential	statement	can	be	placed	inside	a	single	rectangle	as
long	as	there	are	no	decisions	in	the	sequence.	Any	decision	is	represented	by	a
diamond,	including	those	associated	with	loops.

Let	us	look	at	our	earlier	examples	again.

To	create	a	flow	chart	representation	of	a	complete	program,	all	we	need	to	do	is
to	connect	together	all	the	different	bits	of	structure.

Figure	4.4	Flow	chart	for	a	sequential	program

Figure	4.5	Flow	chart	for	a	selection	(decision)	structure

Figure	4.6	Flow	chart	for	an	iteration	(loop)	structure

PROGRAM	ANALYSIS	–	EXAMPLE	4.5

Here	is	a	simple	program	for	calculating	the	mean	and	maximum	of	three
integers.

Note	one	important	thing	about	this	code:	it	has	some	non-executable	statements
(those	before	the	Begin	and	those	after	the	Begin	that	are	actually	blank	lines)
that	we	will	have	to	take	account	of	when	we	come	to	count	the	number	of
executable	statements	later.	The	line	numbering	makes	it	a	little	easier	to	do	the
counting.

By	the	way,	you	may	have	noticed	that	the	program	does	not	recognise	if	two	of
the	numbers	are	the	same	value,	but	simplicity	is	more	important	than
sophistication	at	this	stage.

This	program	can	be	expressed	as	a	flow	chart;	have	a	go	at	drawing	it	before
you	look	at	the	solution	in	the	text.

Figure	4.7	shows	the	flow	chart	for	Example	4.5.

Figure	4.7	Flow	chart	representation	for	Example	4.5

Before	we	move	on	to	look	at	how	we	generate	test	cases	for	code,	we	need	to
look	briefly	at	another	form	of	graphical	representation	called	the	control	flow
graph.

Control	flow	graphs

A	control	flow	graph	provides	a	method	of	representing	the	decision	points	and
the	flow	of	control	within	a	piece	of	code,	so	it	is	just	like	a	flow	chart	except
that	it	only	shows	decisions.	A	control	flow	graph	is	produced	by	looking	only	at
the	statements	affecting	the	flow	of	control.

The	graph	itself	is	made	up	of	two	symbols:	nodes	and	edges.	A	node	represents
any	point	where	the	flow	of	control	can	be	modified	(i.e.	decision	points),	or	the
points	where	a	control	structure	returns	to	the	main	flow	(e.g.	END	WHILE	or
ENDIF).	An	edge	is	a	line	connecting	any	two	nodes.	The	closed	area	contained
within	a	collection	of	nodes	and	edges,	as	shown	in	the	diagram,	is	known	as	a
region.

We	can	draw	‘subgraphs’	to	represent	individual	structures.	For	a	flow	graph	the
representation	of	sequence	is	just	a	straight	line,	since	there	is	no	decision	to
cause	any	branching.

The	subgraphs	show	what	the	control	flow	graph	would	look	like	for	the
program	structures	we	are	already	familiar	with.

Any	chunk	of	code	can	be	represented	by	using	these	subgraphs.

DRAWING	A	CONTROL	FLOW	GRAPH

The	steps	are	as	follows:

1.	Analyse	the	component	to	identify	all	control	structures;	that	is,	all	statements
that	can	modify	the	flow	of	control,	ignoring	all	sequential	statements.

2.	Add	a	node	for	any	decision	statement.

3.	Expand	the	node	by	substituting	the	appropriate	subgraph	representing	the
structure	at	the	decision	point.

As	an	example,	we	will	return	to	Example	4.5.

Step	1	breaks	the	code	into	statements	and	identifies	the	control	structures,

ignoring	the	sequential	statements,	in	order	to	identify	the	decision	points;	these
are	highlighted	below.

Step	2	adds	a	node	for	each	branching	or	decision	statement	(Figure	4.8).

Step	3	expands	the	nodes	by	substituting	the	appropriate	subgraphs	(Figure	4.9).

Figure	4.8	Control	flow	graph	showing	subgraphs	as	nodes

Figure	4.9	Control	flow	graph	with	subgraphs	expanded

CHECK	OF	UNDERSTANDING

1.	What	is	the	difference	between	a	flow	chart	and	a	control	flow	graph?

2.	Name	the	three	fundamental	program	structures	that	can	be	found	in
programs.

3.	Briefly	explain	what	is	meant	by	an	edge,	a	node	and	a	region	in	a	control
flow	graph.

Exercise	4.6

Draw	a	flow	chart	and	a	control	flow	graph	to	represent	the	following	code:

The	answer	can	be	found	at	the	end	of	the	chapter.

Statement	testing	and	coverage

Statement	testing	is	testing	aimed	at	exercising	programming	statements.	If	we
aim	to	test	every	executable	statement,	we	call	this	full	or	100	per	cent	statement
coverage.	If	we	exercise	half	the	executable	statements	this	is	50	per	cent
statement	coverage,	and	so	on.	Remember:	we	are	only	interested	in	executable
statements,	so	we	do	not	count	non-executable	statements	at	all	when	we	are
measuring	statement	coverage.

Why	measure	statement	coverage?	It	is	a	very	basic	measure	that	testing	has
been	(relatively)	thorough.	After	all,	a	suite	of	tests	that	had	not	exercised	all	of
the	code	would	not	be	considered	complete.	Actually,	achieving	100	per	cent
statement	coverage	does	not	tell	us	very	much,	and	there	are	much	more	rigorous
coverage	measures	that	we	can	apply,	but	it	provides	a	baseline	from	which	we
can	move	on	to	more	useful	coverage	measures.	Look	at	the	following	pseudo
code:

A	flow	chart	can	represent	this,	as	in	Figure	4.10.

Having	explored	flow	charts	and	flow	graphs	a	little,	you	will	see	that	flow
charts	are	very	good	at	showing	you	where	the	executable	statements	are;	they
are	all	represented	by	diamonds	or	rectangles	and	where	there	is	no	rectangle,
there	is	no	executable	code.	A	flow	graph	is	less	cluttered,	showing	only	the
structural	details,	in	particular	where	the	program	branches	and	rejoins.	Do	we
need	both	diagrams?	Well,	neither	has	everything	that	we	need.	However,	we	can
produce	a	version	of	the	flow	graph	that	allows	us	to	determine	statement
coverage.

To	do	this	we	build	a	conventional	control	flow	graph	but	then	we	add	a	node	for
every	branch	in	which	there	are	one	or	more	statements.	Take	the	Coverage
example:	we	can	produce	its	flow	graph	easily	as	shown	in	Figure	4.11.

Before	we	proceed,	let	us	confirm	what	happens	when	a	program	runs.	Once	the
program	starts,	it	will	run	through	to	the	end	executing	every	statement	that	it
comes	to	in	sequence.	Control	structures	will	be	the	only	diversion	from	this
end-to-end	sequence,	so	we	need	to	understand	what	happens	with	the	control
structures	when	the	program	runs.	The	best	way	to	do	that	is	to	‘dry	run’	the
program	with	some	inputs;	this	means	writing	down	the	inputs	and	then	stepping
through	the	program	logic,	noting	what	happens	at	each	step	and	what	values
change.	When	you	get	to	the	end,	you	will	know	what	the	output	values	(if	any)
will	be	and	you	will	know	exactly	what	path	the	program	has	taken	through	the
logic.

Figure	4.10	Flow	chart	for	Coverage	example

THE	HYBRID	FLOW	GRAPH

Figure	4.11	The	hybrid	flow	graph

Note	the	additional	nodes	that	represent	the	edges	with	executable	statements	in
them;	they	make	it	a	little	easier	to	identify	what	needs	to	be	counted	for
statement	coverage.

PATHS	THROUGH	A	PROGRAM

Flow	charts,	control	flow	graphs	and	hybrid	flow	graphs	all	show	essentially	the
same	information,	but	sometimes	one	format	is	more	helpful	than	another.	We
have	identified	the	hybrid	flow	graph	as	a	useful	combination	of	the	control	flow
graph	and	the	control	flow	chart.	To	make	it	even	more	useful	we	can	add	to	it
labels	to	indicate	the	paths	that	a	program	can	follow	through	the	code.	All	we
need	to	do	is	to	label	each	edge;	paths	are	then	made	up	from	sequences	of	the
labels,	such	as	abeh,	which	make	up	a	path	through	the	code	(see	Figure	4.12).

Figure	4.12	Paths	through	the	hybrid	flow	graph	example

In	the	Coverage	example,	for	which	we	drew	the	flow	chart	in	Figure	4.10,	100
per	cent	statement	coverage	can	be	achieved	by	writing	a	single	test	case	that
follows	the	path	acdfgh	(using	lower	case	letters	to	label	the	arcs	on	the	diagram
that	represent	path	fragments).	By	setting	A	=	2	and	X	=	2	at	point	a,	every
statement	will	be	executed	once.	However,	what	if	the	first	decision	should	be	an
OR	rather	than	an	AND?	The	test	would	not	have	detected	the	error,	since	the
condition	will	be	true	in	both	cases.	Similarly,	if	the	second	decision	should	have
stated	X	>	2,	this	error	would	have	gone	undetected	because	the	value	of	A
guarantees	that	the	condition	is	true.	Also,	there	is	a	path	through	the	program	in
which	X	goes	unchanged	(the	path	abeh).	If	this	were	an	error,	it	would	also	go
undetected.

Remember	that	statement	coverage	takes	into	account	only	executable
statements.	There	are	12	in	the	Coverage	example	if	we	count	the	BEGIN	and
END	statements,	so	statement	coverage	would	be	12/12	or	100	per	cent.	There
are	alternative	ways	to	count	executable	statements:	some	people	count	the
BEGIN	and	END	statements;	some	count	the	lines	containing	IF,	THEN	and
ELSE;	some	count	none	of	these.	It	does	not	matter	as	long	as:

•You	exclude	the	non-executable	statements	that	precede	BEGIN	.

•You	ignore	blank	lines	that	have	been	inserted	for	clarity.

•You	are	consistent	about	what	you	do	or	do	not	include	in	the	count	with	respect
to	control	structures.

As	a	general	rule,	for	the	reasons	given	above,	statement	coverage	is	too	weak	to

be	considered	an	adequate	measure	of	test	effectiveness.

STATEMENT	TESTING	–	EXAMPLE	4.6

Here	is	an	example	of	the	kind	you	might	see	in	an	exam.	Try	to	answer	the
question,	but	if	you	get	stuck	the	answer	follows	immediately	in	the	text.

Here	is	a	program.	How	many	test	cases	will	you	need	to	achieve	100	per	cent
statement	coverage	and	what	will	the	test	cases	be?

Figure	4.13	shows	what	the	flow	graph	looks	like.	It	is	drawn	in	the	hybrid	flow
graph	format	so	that	you	can	see	which	branches	need	to	be	exercised	for
statement	coverage.

Figure	4.13	Paths	through	the	hybrid	flow	graph	–	Example	4.6

It	is	clear	from	the	flow	graph	that	the	left-hand	side	(Balance	below	£1,000)
need	not	be	exercised,	but	there	are	two	alternative	paths	(Balance	between
£1,000	and	£10,000	and	Balance	>	£10,000)	that	need	to	be	exercised.

So,	we	need	two	test	cases	for	100	per	cent	statement	coverage	and	Balance	=
£5,000,	Balance	=	£20,000	will	be	suitable	test	cases.

Alternatively,	we	can	aim	to	follow	the	paths	abcegh	and	abdfgh	marked	on	the
flow	graph.	How	many	test	cases	do	we	need	to	do	that?

We	can	do	this	with	one	test	case	to	set	the	initial	balance	value	to	a	value
between	£1,000	and	£10,000	(to	follow	abcegh)	and	one	test	case	to	set	the
initial	balance	to	something	higher	than	£10,000,	say	£12,000	(to	follow	path
abdfgh).

So,	we	need	two	test	cases	to	achieve	100	per	cent	statement	coverage	in	this
case.

Now	look	at	this	example	from	the	perspective	of	the	tester	actually	trying	to
achieve	statement	coverage.	Suppose	we	have	set	ourselves	an	exit	criterion	of
100	per	cent	statement	coverage	by	the	end	of	component	testing.	If	we	ran	a
single	test	with	an	input	of	Balance	=	£10,000	we	can	see	that	that	test	case
would	take	us	down	the	path	abdfgh,	but	it	would	not	take	us	down	the	path
abcegh,	and	line	14	of	the	pseudo	code	would	not	be	exercised.	So	that	test	case
has	not	achieved	100	per	cent	statement	coverage	and	we	will	need	another	test
case	to	exercise	line	14	by	taking	path	abcegh.	We	know	that	Balance	=	£5,000
would	do	that.	We	can	build	up	a	test	suite	in	this	way	to	achieve	any	desired
level	of	statement	coverage.

CHECK	OF	UNDERSTANDING

1.	What	is	meant	by	statement	coverage?

2.	In	a	flow	chart,	how	do	you	decide	which	paths	to	include	in	determining	how
many	test	cases	are	needed	to	achieve	a	given	level	of	statement	coverage?

3.	Does	100	per	cent	statement	coverage	exercise	all	the	paths	through	a
program?

Exercise	4.7

For	the	following	program:

How	many	test	cases	are	needed	for	100	per	cent	statement	coverage?

The	answer	can	be	found	at	the	end	of	the	chapter.

Exercise	4.8

Now	using	the	program	Grading	in	Exercise	4.7	again,	try	to	calculate	whether
100	per	cent	statement	coverage	is	achieved	with	a	given	set	of	data.

Suppose	we	ran	two	test	cases,	as	follows:

Test	Case	1	StudentScore	=	50

Test	Case	2	StudentScore	=	30

1.	Would	100	per	cent	statement	coverage	be	achieved?

2.	If	not,	which	lines	of	pseudo	code	will	not	be	exercised?

The	answer	can	be	found	at	the	end	of	the	chapter.

Decision	testing	and	coverage

Decision	testing	aims	to	ensure	that	the	decisions	in	a	program	are	adequately
exercised.	Decisions,	as	you	know,	are	part	of	selection	and	iteration	structures;
we	see	them	in	IF	THEN	ELSE	constructs	and	in	DO	WHILE	or	REPEAT
UNTIL	loops.	To	test	a	decision,	we	need	to	exercise	it	when	the	associated
condition	is	true	and	when	the	condition	is	false;	this	guarantees	that	both	exits
from	the	decision	are	exercised.

As	with	statement	testing,	decision	testing	has	an	associated	coverage	measure
and	we	normally	aim	to	achieve	100	per	cent	decision	coverage.	Decision
coverage	is	measured	by	counting	the	number	of	decision	outcomes	exercised
(each	exit	from	a	decision	is	known	as	a	decision	outcome)	divided	by	the	total
number	of	decision	outcomes	in	a	given	program.	It	is	usually	expressed	as	a
percentage.

The	usual	starting	point	is	a	control	flow	graph,	from	which	we	can	visualise	all
the	possible	decisions	and	their	exit	paths.	Have	a	look	at	the	following	example.

This	program	has	a	WHILE	loop	in	it.	There	is	a	golden	rule	about	WHILE
loops.	If	the	condition	at	the	WHILE	statement	is	true	when	the	program	reaches
it	for	the	first	time,	then	any	test	case	will	exercise	that	decision	in	both
directions	because	it	will	eventually	be	false	when	the	loop	terminates.	For
example,	as	long	as	Index	is	less	than	Count	when	the	program	reaches	the	loop
for	the	first	time,	the	condition	will	be	true	and	the	loop	will	be	entered.	Each
time	the	program	runs	through	the	loop	it	will	increase	the	value	of	Index	by
one,	so	eventually	Index	will	reach	the	value	of	Count	and	pass	it,	at	which	stage
the	condition	is	false	and	the	loop	will	not	be	entered.	So,	the	decision	at	the	start
of	the	loop	is	exercised	through	both	its	true	exit	and	its	false	exit	by	a	single	test
case.	This	makes	the	assumption	that	the	logic	of	the	loop	is	sound,	but	we	are
assuming	that	we	are	receiving	this	program	from	the	developers,	who	will	have
debugged	it.

Now	all	we	have	to	do	is	to	make	sure	that	we	exercise	the	If	statement	inside
the	loop	through	both	its	true	and	false	exits.	We	can	do	this	by	ensuring	that	the
input	stream	has	both	negative	and	positive	numbers	in	it.

For	example,	a	test	case	that	sets	the	variable	Count	to	5	and	then	inputs	the
values	1,	5,	−2,	−3,	6	will	exercise	all	the	decisions	fully	and	provide	us	with	100
per	cent	decision	coverage.	Note	that	this	is	considered	to	be	a	single	test	case,
even	though	there	is	more	than	one	value	for	the	variable	New,	because	the
values	are	all	input	in	a	single	execution	of	the	program.	This	example	does	not
provide	the	smallest	set	of	inputs	that	would	achieve	100	per	cent	decision
coverage,	but	it	does	provide	a	valid	example.

Although	programs	with	loops	are	a	little	more	complicated	to	understand	than
programs	without	loops,	they	can	be	easier	to	test	once	you	get	the	hang	of	them.

DECISION	TESTING	–	EXAMPLE	4.7

Let	us	try	an	example	without	a	loop	now.

Have	a	go	at	calculating	how	many	test	cases	are	needed	for	100	per	cent
decision	coverage	and	see	if	you	can	identify	suitable	test	cases.

Figure	4.14	shows	the	flow	graph	drawn	in	the	hybrid	flow	graph	format.

Figure	4.14	Paths	through	the	hybrid	flow	graph	–	Example	4.7

How	many	test	cases	will	we	need	to	achieve	100	per	cent	decision	coverage?
Well	each	test	case	will	just	run	through	from	top	to	bottom,	so	we	can	only
exercise	one	branch	of	the	structure	at	a	time.

We	have	labelled	the	path	fragments	a,	b,	c,	d,	e,	f,	g,	h,	i,	j	and	you	can	see	that
we	have	three	alternative	routes	through	the	program	–	path	abhj,	path	acegij	and
path	acdfij.	That	needs	three	test	cases.

The	first	test	case	needs	decision	1	to	be	true	–	so	CandidateAge	=	16	will	be
OK	here.	The	second	needs	to	make	the	first	decision	false	and	the	second
decision	true,	so	CandidateAge	must	be	more	than	18	and	more	than	30	–	let	us
say	40.	The	third	test	case	needs	the	first	decision	to	be	false	and	the	second
decision	to	be	false,	so	CandidateAge	of	21	would	do	here.	(You	cannot	tell
which	exit	is	true	and	which	is	false	in	the	second	decision;	if	you	want	to,	you
can	label	the	exits	T	and	F,	though	in	this	case	it	does	not	really	matter	because
we	intend	to	exercise	them	both	anyway.)

So,	we	need	three	test	cases	for	100	per	cent	decision	coverage:

CandidateAge	=	16

CandidateAge	=	21

CandidateAge	=	40

which	will	exercise	all	the	decisions.

Note	that	when	we	are	testing	decisions,	we	need	to	exercise	the	true	and	false
outcomes	of	each	decision,	even	if	one	of	these	has	no	statements	associated
with	it.	So,	decision	coverage	gives	us	that	little	bit	extra	in	return	for	a	little
more	work.	One	hundred	per	cent	decision	coverage	guarantees	100	per	cent
statement	coverage,	but	100	per	cent	statement	coverage	may	be	less	than	100
per	cent	decision	coverage.

CHECK	OF	UNDERSTANDING

1.	What	is	the	purpose	of	decision	testing?

2.	How	many	test	cases	are	needed	to	exercise	a	single	decision?

3.	How	many	test	cases	are	needed	to	exercise	a	loop	structure?

Exercise	4.9

This	program	reads	a	list	of	non-negative	numbers	terminated	by	−1.

How	many	test	cases	are	needed	to	achieve	100	per	cent	decision	coverage?

The	answer	can	be	found	at	the	end	of	the	chapter.

Exercise	4.10

Using	Program	Counting	Numbers	from	Exercise	4.9,	what	level	of	decision
coverage	is	achieved	by	the	single	input	A	=	–1?

The	answer	can	be	found	at	the	end	of	the	chapter.

Simplified	control	flow	graphs

Simplified	control	flow	graphs	(CFGs)	share	the	format	used	for	flow	charts.
They	incorporate	less	detail,	since	their	purpose	is	to	identify	control	structures
but	not	the	detail	of	code.	The	testing	literature	sometimes	provides	examples
and	questions	using	simplified	CFGs	instead	of	code,	so	this	section	deals	with
the	interpretation	of	simplified	CFGs	and	provides	examples	and	exercises	that
cover	these	structures.

In	simplified	CFGs,	a	sequence	of	code	is	presented	as	one	or	more	boxes	in	a
line.	Strictly	speaking,	only	a	single	box	is	needed	but	additional	boxes	are
sometimes	included	to	make	the	CFG	easier	to	follow.	Decisions	are	represented

by	a	single	box	with	two	exits,	usually	labelled	T	and	F	(for	True	and	False
respectively).

Figure	4.15	shows	a	simplified	CFG	depicting	a	sequence	of	code	followed	by	a
decision	based	on	the	evaluation	of	a	decision.

Figure	4.15	Simplified	control	flow	graph:	a	decision

Looping	structures	can	have	a	decision	at	the	beginning	of	the	loop	or	at	the	end
(see	Figure	4.16).

Figure	4.16	Simplified	control	flow	graph:	location	of	a	decision	in	a	loop

Here	is	an	example	of	how	simplified	CFGs	are	read	and	interpreted	for	simple
structures.

SIMPLIFIED	CONTROL	FLOW	GRAPHS	–	EXAMPLE	4.8

Figure	4.17	Example	of	how	simplified	control	flow	graphs	are	read	and
interpreted

Which	of	the	following	pairs	of	tests	achieve	100	per	cent	decision	coverage	for
the	structure	shown	in	Figure	4.17?

a.	A	=	1,	B	=	2;	A	=	0,	B	=	1

b.	A	=	2,	B	=	4;	A	=	1,	B	=	2

c.	A	=	3,	B	=	0;	A	=	0,	B	=	1

d.	A	=	0,	B	=	4;	A	=	1,	B	=	3

Answer	–	The	correct	answer	is	d.

Option	a.	In	the	first	decision	A	is	greater	than	zero	in	the	first	test	and	equals
zero	in	the	second,	so	this	decision	has	been	exercised	in	both	directions.	B	is
less	than	3	in	both	tests,	so	decision	B	>	3	is	not	exercised	in	both	directions.
Therefore	100	per	cent	decision	coverage	has	not	been	achieved.

Option	b.	A	is	greater	than	zero	in	both	tests,	so	the	decision	A	>	0	has	not	been
exercised	in	both	directions.	Therefore	100	per	cent	decision	coverage	has	not
been	achieved.

Option	c.	A	is	greater	than	zero	in	test	1	and	equals	zero	in	test	2,	so	decision	A

>	0	has	been	exercised	in	both	directions.	B	is	less	than	3	in	both	tests,	so
decision	B	>	3	has	not	been	exercised	in	both	directions.	Therefore	100	%
decision	coverage	has	not	been	achieved.

Option	d.	A	equals	zero	on	test	1	and	equals	1	in	test	2,	so	test	A	>	0	has	been
exercised	in	both	directions.	B	is	greater	than	3	in	test	1,	but	not	in	test	2,	so
decision	B	>	3	has	been	exercised	in	both	directions.	Therefore	100	per	cent
decision	coverage	has	been	achieved.

SIMPLIFIED	CONTROL	FLOW	GRAPHS	–	50	PER	CENT	DECISION
COVERAGE	–	EXAMPLE	4.9

Using	the	same	diagram	as	in	Example	4.8,	which	of	the	following	sets	of	test
cases	achieve	50	per	cent	decision	coverage?

a.	A	=	1,	B	=	2;	A	=	0,	B	=	3

b.	A	=	0,	B	=	4;	A	=	1,	B	=	3

c.	A	=	1,	B	=	2;	A	=	2,	B	=	2

d.	A	=	5,	B	=	4;	A	=	0,	B	=	3

Answer	–	The	correct	answer	is	c.

Option	a.	The	decision	A	>	0	has	been	exercised	in	both	directions,	but	decision
B	>	3	has	been	exercised	in	only	one	direction.	Therefore,	the	decision	coverage
would	be	3/4	or	75	per	cent.

Option	b.	The	decision	A	>	0	has	been	exercised	in	both	directions	and	decision
B	>	3	has	been	exercised	in	both	directions.	Therefore,	the	decision	coverage
would	be	4/4	or	100	per	cent.

Option	c.	The	decision	A	>	0	has	not	been	exercised	in	both	directions	and
decision	B	>	3	has	not	been	exercised	in	both	directions.	Therefore,	the	decision
coverage	is	2/4	or	50	per	cent.

Option	d.	The	decision	A	>	0	has	been	exercised	in	both	directions	and	decision
B	>	3	has	been	exercised	in	both	directions.	Therefore,	the	decision	coverage
would	be	4/4	or	100	per	cent.

Exercise	4.11

In	the	simplified	CFG	shown	in	Figure	4.18,	which	of	the	following	sets	of	test
cases	achieve	100	per	cent	statement	coverage?

Figure	4.18	Control	flow	graph	for	Exercise	4.11

a.	X	=	7,	Y	=	6;	X	=	3,	Y	=	5

b.	X	=	3,	Y	=	3;	X	=	4,	Y	=	4

c.	X	=	6,	Y	=	5;	X	=	1,	Y	=	1

d.	X	=	5,	Y	=	4;	X	=	4,	Y	=	4

The	answer	can	be	found	at	the	end	of	the	chapter.

Exercise	4.12

In	the	same	CFG	shown	in	the	previous	exercise,	how	many	test	cases	are
required	to	achieve	100	per	cent	decision	coverage?

a.	1

b.	2

c.	3

d.	4

The	answer	can	be	found	at	the	end	of	the	chapter.

There	are	further	questions	for	you	to	try	at	the	end	of	this	chapter.

Other	white-box	test	techniques

More	sophisticated	techniques	are	available	to	provide	increasingly	complete
code	coverage.	In	some	applications	these	are	essential:	for	example,	in	a	safety-
critical	system	it	is	vital	to	know	that	nothing	unacceptable	happens	at	any	point
when	the	code	is	executed.	Would	you	like	to	‘fly	by	wire’	if	you	did	not	know
what	was	happening	in	the	software?	The	many	well-documented	mishaps	in
computer-controlled	systems	provide	compelling	examples	of	what	can	happen
if	code	–	even	code	that	is	not	providing	essential	functionality	in	some	cases	–
does	something	unexpected.	Measures	such	as	condition	coverage	and	multiple
condition	coverage	are	used	to	reduce	the	likelihood	that	code	will	behave	in
unpredictable	ways	by	examining	more	of	it	in	more	complex	scenarios.

Coverage	is	also	applicable	to	other	types	and	levels	of	structure.	For	example,
at	the	integration	level	it	is	useful	to	know	what	percentage	of	modules	or
interfaces	has	been	exercised	by	a	test	suite,	while	at	the	functional	level	it	is
helpful	to	step	through	all	the	possible	paths	of	a	menu	structure.	We	can	also
apply	the	idea	of	coverage	to	areas	outside	the	computer;	for	example,	by
exercising	all	the	possible	paths	through	a	business	process	as	testing	scenarios.

Exercise	4.13

Figure	4.19	Test	case	for	Exercise	4.13

Using	Figure	4.19,	test	case	1	is	executed	with	the	values	X	=	6,	Y	=	2.	Which	of
the	following	paths	will	be	executed	by	test	case	1?

a.	ABCEFBGIJK

b.	ABCDFBGIJK

c.	ABCDFBGHJK

d.	ABCDFBCEFGHJK

Exercise	4.14

In	Figure	4.20,	the	goal	for	the	project	is	100	per	cent	decision	coverage	and	the
following	tests	have	so	far	been	executed:

•Test	1	covers	path	ABCDFBGHJK.

•Test	2	covers	path	ABGIJK.

Figure	4.20	Test	case	for	Exercise	4.14

Which	of	the	following	statements	about	decision	coverage	is	correct?

a.	Decision	B	has	not	been	tested	completely.

b.	100	per	cent	decision	coverage	has	been	achieved.

c.	Decision	G	has	not	been	tested	completely.

d.	Decision	C	has	not	been	tested	completely.

The	main	examinable	material	continues	from	here.

EXPERIENCE-BASED	TECHNIQUES

Experience-based	techniques	are	those	that	you	fall	back	on	when	there	is	no
adequate	specification	from	which	to	derive	specification-based	test	cases	or	no
time	to	run	the	full	structured	set	of	tests.	They	use	the	users’	and	the	testers’
experience	to	determine	the	most	important	areas	of	a	system	and	to	exercise
these	areas	in	ways	that	are	both	consistent	with	expected	use	(and	abuse)	and
likely	to	be	the	sites	of	errors	–	this	is	where	the	experience	comes	in.	Even
when	specifications	are	available,	it	is	worth	supplementing	the	structured	tests
with	some	that	you	know	by	experience	have	found	defects	in	other	similar
systems.

Techniques	range	from	the	simplistic	approach	of	ad	hoc	testing	or	error
guessing	through	to	the	more	sophisticated	techniques	such	as	exploratory
testing,	but	all	tap	the	knowledge	and	experience	of	the	tester	rather	than
systematically	exploring	a	system	against	a	written	specification.

Error	guessing

Error	guessing	is	a	very	simple	technique	that	takes	advantage	of	a	tester’s	skill,
intuition	and	experience	with	similar	applications	to	identify	special	tests	that
may	not	be	easy	to	capture	by	the	more	formal	techniques.	When	applied	after
systematic	techniques,	error	guessing	can	add	value	in	identifying	and	exercising
test	cases	that	target	known	or	suspected	weaknesses	or	that	simply	address
aspects	of	the	application	that	have	been	found	to	be	problematical	in	the	past.

The	main	drawback	of	error	guessing	is	its	varying	effectiveness,	depending	as	it
does	on	the	experience	of	the	tester	deploying	it.	However,	if	several	testers

and/or	users	contribute	to	constructing	a	list	of	possible	errors	and	tests	are
designed	to	attack	each	error	listed,	this	weakness	can	be	effectively	overcome.
Another	way	to	make	error	guessing	more	structured	is	by	the	creation	of	defect
and	failure	lists.	These	lists	can	use	available	defect	and	failure	data	(where	this
exists)	as	a	starting	point,	but	the	list	can	be	expanded	by	using	the	testers’	and
users’	experience	of	why	the	application	under	test	in	particular	is	likely	to	fail.
The	defect	and	failure	list	can	be	used	as	the	basis	of	a	set	of	tests	that	are
applied	after	the	systematic	techniques	have	been	used.	This	systematic
approach	is	known	as	fault	attack.

Exploratory	testing

Exploratory	testing	is	a	technique	that	combines	the	experience	of	testers	with	a
structured	approach	to	testing	where	specifications	are	either	missing	or
inadequate	and	where	there	is	severe	time	pressure.	It	exploits	concurrent	test
design,	test	execution,	test	logging	and	learning	within	time-boxes	and	is
structured	around	a	test	charter	containing	test	objectives.	In	this	way
exploratory	testing	maximises	the	amount	of	testing	that	can	be	achieved	within
a	limited	time	frame,	using	test	objectives	to	maintain	focus	on	the	most
important	areas.

Checklist-based	testing

Checklist-based	testing	is	testing	based	on	high-level	checklists,	which	may	be
drawn	from	many	sources	and	generally	encapsulate	individuals’	experience	and
information	gleaned	from	other	sources,	such	as	standards,	known	problem
areas,	expected	use	scenarios	and	any	other	relevant	sources.	Checklists	are	a
guide	to	the	testing	required,	so	are	used	mainly	by	experienced	testers	as	a
source	of	ideas	from	which	detailed	tests	are	derived.

The	checklist	is	drawn	up	during	test	analysis	as	a	set	of	test	conditions	and	may
reuse	or	update	previous	checklists.	Checklists	can	support	both	functional	and
non-functional	testing.	Coverage	is	defined	by	completion	of	the	checklist	and
may	be	higher	than	for	other	forms	of	testing,	though	repeatability	will	typically
be	lower	than	for	more	formal	testing.

SYSTEMATIC	AND	EXPERIENCE-BASED	TECHNIQUES

How	do	we	decide	which	is	the	best	technique?	There	are	some	simple	rules	of
thumb:

1.	Always	make	functional	testing	the	first	priority.	It	may	be	necessary	to	test
early	code	products	using	structural	techniques,	but	we	only	really	learn	about
the	quality	of	software	when	we	can	see	what	it	does.

2.	When	basic	functional	testing	is	complete	that	is	a	good	time	to	think	about
test	coverage.	Have	you	exercised	all	the	functions,	all	the	requirements,	all	the
code?	Coverage	measures	defined	at	the	beginning	as	exit	criteria	can	now	come
into	play.	Where	coverage	is	inadequate,	extra	tests	will	be	needed.

3.	Use	structural	methods	to	supplement	functional	methods	where	possible.
Even	if	functional	coverage	is	adequate,	it	will	usually	be	worth	checking
statement	and	decision	coverage	to	ensure	that	enough	of	the	code	has	been
exercised	during	testing.

4.	Once	systematic	testing	is	complete,	there	is	an	opportunity	to	use	experience-
based	techniques	to	ensure	that	all	the	most	important	and	most	error-prone	areas

of	the	software	have	been	exercised.	In	some	circumstances,	such	as	poor
specifications	or	time	pressure,	experience-based	testing	may	be	the	only	viable
option.

CHECK	OF	UNDERSTANDING

1.	What	is	meant	by	experience-based	testing?

2.	Briefly	compare	error	guessing	and	exploratory	testing.

3.	When	is	the	best	time	to	use	experience-based	testing?

SUMMARY

In	this	chapter	we	have	considered	the	most	important	terminology	needed	in
discussing	the	specification	stage	of	a	generalised	test	process,	which	was
introduced	in	Chapter	1.	We	explained	how	test	conditions	are	derived	and	how
test	cases	can	be	designed	and	grouped	into	test	procedures	for	execution.

Test	design	techniques	were	categorised	into	three	main	groups	known	as
specification-based	or	black-box	techniques,	structure-based	or	white-box
techniques,	and	experience-based	techniques.

The	specification-based	techniques	introduced	were	equivalence	partitioning,
boundary	value	analysis,	state	transition	testing,	decision	table	testing	and	use
case	testing.	Specific	worked	examples	of	all	except	use	case	testing	were	given
(and	this	was	excluded	solely	because	the	examination	does	not	require	the
ability	to	generate	test	cases	from	use	cases).	Structure-based	techniques	were
introduced	and	worked	examples	were	given	for	statement	testing	and	decision
testing.	Experience-based	techniques	introduced	included	error	guessing	and
exploratory	testing.

Finally,	the	factors	involved	in	selecting	test	case	design	techniques	were
discussed	and	guidance	given	on	the	selection	criteria	to	be	applied.

Example	examination	questions	with	answers

E1.	K2	question

Which	of	the	following	correctly	characterises	white-box	test	techniques?

a.	Test	cases	may	be	used	to	detect	differences	between	requirements	and
implementation.

b.	Test	cases	may	be	used	to	determine	deviations	from	requirements.

c.	Test	cases	may	be	based	on	software	architecture	and	used	to	exercise
interfaces.

d.	Test	cases	may	be	based	on	user	stories	and	used	to	exercise	use	cases.

E2.	K2	question

Which	of	the	following	identifies	a	key	difference	between	black-box	and
white-box	test	techniques?

a.	Coverage	measures	are	applied	to	white-box	test	cases	but	not	to	black-box
test	cases.

b.	Black-box	test	cases	may	be	based	on	requirements	or	on	the	tester’s
experience;	white-box	test	cases	are	based	on	structure.

c.	Coverage	measures	are	applied	to	black-box	test	cases	but	not	to	white-box
test	cases.

d.	Black-box	tests	can	determine	deviations	from	requirements;	white-box	test
can	determine	deviations	from	design.

E3.	K3	question

A	washing	machine	has	three	temperature	bands	for	different	kinds	of	fabrics:
fragile	fabrics	are	washed	at	temperatures	between	15	and	30	degrees	Celsius;
normal	fabrics	are	washed	at	temperatures	between	31	and	60	degrees	Celsius;
heavily	soiled	and	tough	fabrics	are	washed	at	temperatures	between	61	and	100
degrees	Celsius.

Which	of	the	following	contains	only	values	that	are	in	different	equivalence
partitions?

a.	15,	30,	60

b.	20,	35,	60

c.	25,	45,	75

d.	12,	35,	55

E4.	K2	question

Which	of	the	following	correctly	identifies	the	derivation	of	test	cases	in	use
case	testing?

a.	Test	cases	are	derived	solely	from	interactions	between	human	actors	and
system	subjects.

b.	Test	cases	can	be	based	on	interactions	and	activities	represented	by
workflows,	which	must	be	represented	graphically.

c.	Test	cases	can	be	derived	from	defined	behaviours,	alternative	or	exceptional
behaviours,	or	error	handling	behaviours.

d.	Test	cases	specify	behaviour	that	a	single	subject	can	perform	in	collaboration
with	a	single	actor.

E5.	K3	question

Which	one	of	the	following	statements	is	correct?

a.	The	given	test	cases	cover	both	valid	and	invalid	transitions	in	the	state
transition	diagram.

b.	The	given	test	cases	represent	only	the	possible	valid	transitions	in	the	state
transition	diagram.

c.	The	given	test	cases	represent	only	some	of	the	valid	transitions	in	the	state
transition	diagram.

d.	The	given	test	cases	represent	sequential	pairs	of	transitions	in	the	state
transition	diagram.

Answers	to	questions	in	the	chapter

SA1.	The	correct	answer	is	d.

SA2.	The	correct	answer	is	d.

SA3.	The	correct	answer	is	b.

Exercise	4.1

The	partitions	are:	£0.00–£1,000.00,	£1,000.01–£2,000.00,	and	>=	£2,000.01.

Exercise	4.2

The	valid	partitions	are:	£0.00–£20.00,	£20.01–£40.00,	and	>=	£40.01.	Non-
valid	partitions	would	include	negative	values	and	alphabetic	characters.

Exercise	4.3

The	partitions	are:	question	scores	0–20;	total	0–100;	question	differences:	0–3
and	>	3;	total	differences	0–10	and	>	10.

Boundary	values	are:	−1,	0,	1	and	19,	20,	21	for	the	question	scores;	−1,	0,	1
(again)	and	99,	100,	101	for	the	question	paper	totals;	−1,	0,	1	(again)	and	2,	3,	4
for	differences	between	question	scores	for	different	markers;	and	−1,	0,	1
(again)	and	9,	10,	11	for	total	differences	between	different	markers.

In	this	case,	although	the	−1,	0,	1	values	occur	several	times,	they	may	be
applied	to	different	parts	of	the	program	(e.g.	the	question	score	checks	will
probably	be	in	a	different	part	of	the	program	from	the	total	score	checks)	so	we
may	need	to	repeat	these	values	in	the	boundary	tests.

Exercise	4.4

Billy	will	be	eligible	for	a	cash	payment	but	not	for	a	share	allocation.

Exercise	4.5

The	correct	answer	is	b.

Option	a	includes	the	transition	DE;	option	c	includes	the	transition	CE;	option	d
includes	the	transition	FA.	None	of	these	is	valid	from	the	diagram.

Exercise	4.6

The	flow	chart	is	shown	in	Figure	4.21.	The	control	flow	graph	is	shown	in
Figure	4.22.

Exercise	4.7

The	answer	is	four	because	there	are	three	decisions	and	every	outcome	has	an
executable	statement	in	it.

Figure	4.21	Flow	chart	for	Exercise	4.6

Figure	4.22	Control	flow	graph	for	Exercise	4.6

Exercise	4.8

1.	No,	100	per	cent	statement	coverage	would	not	be	achieved.	We	know	from
Exercise	4.7	that	four	test	cases	are	needed.

2.	Statements	11	and	14	would	not	be	exercised	because	they	need	inputs	higher
than	79	and	59	respectively.

Exercise	4.9

The	answer	is	one	because	a	single	list	terminated	by	−1	(say	4,	6,	3,	−1)	will
enter	the	loop	the	first	three	times	and	then	exit	on	the	fourth;	hence	the	WHILE
decision	will	be	true	three	times	and	then	false,	which	exercises	the	decision	in
both	directions	with	one	test	case.

A	single	test	case	with	values	of	1,	−1	would	also	exercise	all	decisions.

Exercise	4.10

Decision	coverage	of	50	per	cent	will	be	achieved.	The	–1	input	will	make	the
While	condition	False	and	the	loop	will	not	be	entered.	The	program	will	print
the	message	‘There	are	0	integers	in	the	list’	and	terminate,	so	the	True	outcome
of	the	decision	will	not	be	exercised.

Exercise	4.11

The	correct	answer	is	a.

There	are	statements	in	the	false	exit	from	decision	X	<	5	and	in	the	true	exit
from	decision	Y	>	4,	so	we	need	two	tests	because	the	test	that	makes	X	<	5	false
will	bypass	the	decision	Y	>	4.	One	of	the	test	cases	can	be	any	pair	of	values
that	has	X	>=	5,	so	X	can	be	5	or	more	and	Y	is	irrelevant.	In	the	other	test,	X
must	be	less	than	5	and	Y	must	also	be	greater	than	4.	Many	pairs	of	values,	such
as	X	=	4,	Y	=	5,	would	be	suitable.	The	two	tests	must	have	X	>=	5	in	one	test
and	X	<	5	AND	Y	>	4	in	the	other.	Option	a	meets	these	criteria.	Option	b	has	X
<	5	in	both	tests,	so	it	cannot	be	correct.	Option	c	has	one	test	with	X	>	5	but,
although	the	other	test	has	X	<	5,	it	also	sets	Y	to	1,	so	Y	>	4	is	not	true.	Option
d	has	X	=	5	in	one	test	and	X	<	5	in	the	other,	but	in	this	case	the	value	of	Y	is	4,
so	Y	>	4	is	not	true.

Exercise	4.12

The	correct	answer	is	c.

In	this	case	we	must	not	only	execute	every	branch	with	a	statement	in	it,	but	we
must	exercise	every	decision	in	both	its	true	and	false	states.	We	could	arrive	at
the	correct	answer	by	recognising	that	the	CFG	has	two	regions	and	two
decisions.	The	questions	regions	+	1	and	decisions	+	1	both	give	the	answer	3.
We	could	also	work	it	out	from	first	principles.	The	paths	we	would	need	to
follow	would	be:

1.	False	through	X	<	5

2.	True	through	X	<	5	AND	True	through	Y	>	4

3.	True	through	X	<	5	AND	False	through	Y	>	4

These	three	tests	would	exercise	both	decisions	in	their	true	and	false	states	and
would	therefore	achieve	100	per	cent	decision	coverage.

Exercise	4.13

The	correct	answer	is	c.

For	a	to	be	true,	Y	>=	3	would	have	to	be	true.	For	b	to	be	true,	Y	>=	5	would
have	to	be	true.	For	d	to	be	true,	Y	>=	3	would	have	to	be	true	after	one	traversal
of	the	loop.

Exercise	4.14

The	correct	answer	is	d.

Option	a	is	not	true	because	B	was	exercised	one	way	in	test	case	1	and	the	other
way	in	test	case	2.	Option	b	is	not	true	because	E	has	not	been	traversed,	which
means	that	decision	E	has	not	been	exercised	in	both	directions.	Option	c	is	not
true	because	decision	G	is	exercised	one	way	in	test	case	1	and	the	other	way	in
test	case	2.

Answers	to	example	examination	questions

E1.	The	correct	answer	is	c.

White-box	techniques	are	about	the	structure	of	software	solutions,	so	they
typically	exercise	interfaces	and	check	that	the	software	architecture	has	been
correctly	implemented.	They	do	not	reference	requirements	as	such,	and
therefore	cannot	determine	deviations	from	requirements	or	whether
requirements	have	been	correctly	implemented.	User	stories	are	a	form	of
requirements,	so	white-box	testing	is	not	appropriate	to	user	stories	or	use	cases.

E2.	The	correct	answer	is	d.

Answer	a	is	incorrect	because	coverage	measures	can	be	applied	to	both	black-
box	and	white-box	tests.	Answer	b	is	partially	correct,	in	that	white-box	test
cases	are	based	on	structure,	and	black-box	test	cases	are	based	on	requirements
but	not	the	tester’s	experience.	Experience-based	testing	is	based	on	the	tester’s
experience.	Option	c	is	incorrect	for	the	same	reason	as	option	a	is	incorrect.
Option	d	is	the	correct	answer	because	black-box	testing	is	based	on
requirements	and	white-box	testing	is	based	on	design.

E3.	The	correct	answer	is	c.

Option	a	includes	two	values	from	the	lower	partition;	option	b	contains	two
values	from	the	second	partition;	option	d	contains	one	value	that	is	invalid	(out

of	range).

E4.	The	correct	answer	is	c.

Option	a	is	incorrect	because	test	cases	are	not	solely	based	on	interactions	and
may	also	incorporate	preconditions	and	postconditions.	Option	b	is	incorrect
because	workflows	are	not	the	only	option	for	describing	interactions;	activity
diagrams	or	business	process	models	are	other	alternatives.	Option	d	is	incorrect
because	a	use	case	may	represent	interactions	between	a	subject	and	one	or	more
actors.	Option	c	is	correct;	use	cases	may	represent	defined	behaviours,
alternative	or	exceptional	behaviours,	and	error	handling	behaviours.

E5.	The	correct	answer	is	a.

Option	a	is	correct	because	the	test	cases	represent	all	the	valid	transitions	and
one	possible	invalid	transition.	Option	b	is	incorrect	because	the	test	cases
recognise	one	invalid	transition.	Option	c	is	incorrect	because	the	test	cases
represent	all	of	the	valid	transitions.	Option	d	is	incorrect	because	none	of	the
test	cases	represents	sequential	pairs	of	transitions.

5TEST	MANAGEMENT

Geoff	Thompson

INTRODUCTION

This	chapter	provides	a	generic	overview	of	how	testing	is	organised	and	how
testing	is	managed	within	organisations.	A	generic	view	of	testing	will,
inevitably,	not	match	the	way	testing	is	organised	in	specific	organisations.	The
issues	addressed	are	nevertheless	important	for	any	organisation	and	need	to	be
considered	by	all.

We	will	start	by	looking	at	how	testing	and	risk	fit	together,	as	well	as	providing
detailed	coverage	of	test	planning	and	the	control	of	testing,	and	we	will	identify
how	independence	assists	the	test	process.	One	very	important	area	in	managing
the	test	process	is	the	understanding	of	the	different	roles	and	tasks	associated
with	the	testing	role	such	as	the	test	manager	and	the	tester.

We	cannot,	in	one	chapter,	provide	all	the	knowledge	required	to	enable	the
reader	to	become	a	practising	test	manager,	but	we	do	aim	to	provide	the
background	information	necessary	for	a	reader	to	understand	the	various	facets
of	the	test	management	role.

Learning	objectives

The	learning	objectives	for	this	chapter	are	listed	below.	You	can	confirm	that
you	have	achieved	these	by	using	the	self-assessment	questions	that	follow	the
‘Check	of	understanding’	boxes	distributed	throughout	the	text	and	the	example
examination	questions	provided	at	the	end	of	the	chapter.	The	chapter	summary
will	remind	you	of	the	key	ideas.

The	sections	are	allocated	a	K	number	to	represent	the	level	of	understanding
required	for	that	section;	where	an	individual	topic	has	a	lower	K	number	than
the	section	as	a	whole,	this	is	indicated	for	that	topic;	for	an	explanation	of	the	K
numbers,	see	the	Introduction.

Test	organization

•FL-5.1.1	Explain	the	benefits	and	drawbacks	of	independent	testing.

•FL-5.1.2	Identify	the	tasks	of	a	test	manager	and	tester.	(K1)

Test	planning	and	estimation

•FL-5.2.1	Summarize	the	purpose	and	content	of	a	test	plan.	(K2)

•FL-5.2.2	Differentiate	between	various	test	strategies.	(K2)

•FL-5.2.3	Give	examples	of	potential	entry	and	exit	criteria.	(K2)

•FL-5.2.4	Apply	knowledge	of	prioritization,	and	technical	and	logical
dependencies,	to	schedule	test	execution	for	a	given	set	of	test	cases.

•FL-5.2.5	Identify	factors	that	influence	the	effort	related	to	testing.	(K1)

•FL-5.2.6	Explain	the	difference	between	two	estimation	techniques:	the
metrics-based	technique	and	the	expert-based	technique.	(K2)

Test	monitoring	and	control

•FL-5.3.1	Recall	metrics	used	for	testing.	(K1)

•FL-5.3.2	Summarize	the	purposes,	contents,	and	audiences	for	test	reports.

Configuration	management

•FL-5.4.1	Summarize	how	configuration	management	supports	testing.

Risks	and	testing

•FL-5.5.1	Define	risk	level	by	using	likelihood	and	impact.	(K1)

•FL-5.5.2	Distinguish	between	project	and	product	risks.

•FL-5.5.3	Describe,	by	using	examples,	how	product	risk	analysis	may	influence
the	thoroughness	and	scope	of	testing.

Defect	management

•FL-5.6.1	Write	a	defect	report,	covering	defects	found	during	testing.

Self-assessment	questions

The	following	questions	have	been	designed	to	enable	you	to	check	your	current
level	of	understanding	for	the	topics	in	this	chapter.	The	answers	are	at	the	end
of	the	chapter.

Question	SA1	(K1)

Which	of	the	following	is	a	valid	exit	criterion	from	the	test	execution
phase?

a.	All	tests	have	been	defined.

b.	All	defects	reported	have	been	corrected.

c.	All	planned	tests	have	been	executed.

d.	All	testing	tasks	have	been	assigned.

Question	SA2	(K2)

Which	of	the	following	are	most	likely	to	be	used	when	developing	a	test
strategy	or	test	approach?

i.	Failure-based	approach.

ii.	Test	specification	approach.

iii.	Model-based	approach.

iv.	Analytical-based	approach.

a.	iii	and	iv.

b.	i	and	iv.

c.	ii	and	i.

d.	i	and	iii.

Question	SA3	(K1)

What	can	a	risk-based	approach	to	testing	provide?

a.	The	types	of	test	techniques	to	be	employed.

b.	The	total	tests	needed	to	provide	100	per	cent	coverage.

c.	An	estimation	of	the	total	cost	of	testing.

d.	Only	that	test	execution	is	effective	at	reducing	risk.

RISK	AND	TESTING

It	is	not	possible	to	talk	about	test	management	without	first	looking	at	risk	and
how	it	affects	a	generic	test	process	as	defined	in	Chapter	1.	If	there	were	no	risk
of	adverse	future	events	in	software	or	hardware	development,	then	there	would
be	no	need	for	testing.	In	other	words,	if	risks	did	not	exist	then	neither	would
testing.

Risk	can	be	defined	as	the	chance	of	an	event,	hazard,	threat	or	situation
occurring	and	its	undesirable	consequences:

Risk	–	a	factor	that	could	result	in	future	negative	consequences,	usually
expressed	as	impact	and	likelihood.

In	a	project,	a	test	manager	will	manage	two	different	types	of	risk:	project	and
product.	In	both	instances	the	calculation	of	the	risk	will	be:

Level	of	risk	=	probability	of	the	risk	occurring	×	impact	if	it	did	happen

Project	risks

While	managing	the	testing	project,	a	test	manager	will	use	project	risks	to
manage	the	capability	to	deliver.

Project	risks	include:

•Project	issues:

Delays	in	delivery.

Inaccurate	estimates.

Late	changes.

•Organisational	issues:

Skills	and	training	or	staff	may	be	inadequate.

Personal	issues	between	staff	impacting	progress.

Users,	business	staff	or	subject	matter	experts	may	be	unavailable	when	needed.

•Political	issues:

Testers	may	not	communicate	their	needs	and/or	test	results	adequately.

Developers	and/or	testers	may	fail	to	follow	up	on	information	found	in	testing
and	reviews;	for	example	not	following	up	on	process	improvements	identified.

There	may	be	an	improper	attitude	to	or	understanding	of	the	value	of	testing.

•Supplier	issues:

Failure	of	a	third	party	to	deliver	on	time	or	at	all.

Contractual	issues,	such	as	meeting	acceptance	criteria.

•Technical	issues:

Problems	in	defining	the	right	requirements.

The	extent	that	requirements	can	be	met	given	existing	project	constraints.

Test	environment	not	ready	on	time.

Late	data	conversion,	migration	planning	and	development,	and	testing	data
conversion/migration	tools.

Weakness	in	the	development	process	that	impacts	the	quality	of	the	work
products.

Poor	defect	management	resulting	in	an	increase	in	technical	debt.

Low	quality	of	the	design,	code,	configuration	data,	test	data	and	tests.

For	each	risk	found,	a	probability	(chance	of	the	risk	being	realised)	and	impact
(what	will	happen	if	the	risk	is	realised)	should	be	identified	as	well	as	the
identification	and	management	of	any	mitigating	actions	(actions	aimed	at
reducing	the	probability	of	a	risk	occurring,	or	reducing	the	impact	of	the	risk	if
it	did	occur).

So,	for	example,	if	there	was	a	risk	identified	that	the	third-party	supplier	may	be
made	bankrupt	during	the	development,	the	test	manager	would	review	the
supplier’s	accounts	and	might	decide	that	the	probability	of	this	is	medium	(1	on
a	scale	of	1	to	5,	1	being	a	high	risk	and	5	a	low	one).	The	impact	on	the	project
if	this	did	happen	would	be	very	high	(1	using	the	same	scale).	The	level	of	risk
is	therefore	3	×	1	=	3.	The	lower	the	number,	the	more	the	risk.	With	3	being	in
the	medium	risk	area,	the	test	manager	would	now	have	to	consider	what
mitigating	actions	to	take	to	try	to	stop	the	risk	becoming	a	reality.	This	might
include	not	using	the	third	party	or	ensuring	that	payment	for	third-party
deliverables	is	made	efficiently.

When	analysing,	managing	and	mitigating	these	risks,	the	test	manager	is
following	well-established	project	management	principles	provided	within
project	management	methods	and	approaches.	The	project	risks	recognised
during	test	planning	should	be	documented	in	the	test	plan	(see	later	in	this
chapter	for	details	of	the	test	plan);	for	the	ongoing	management	and	control	of
existing	and	new	project	risks,	a	risk	register	should	be	maintained	by	the	test
manager.

Product	risks

When	planning	and	defining	tests,	a	test	manager	or	tester	using	a	risk-based
testing	approach	will	be	managing	product	risks.

Product	risks	are	risks	to	the	quality	of	the	product.	In	other	words,	the	potential
of	a	defect	occurring	in	the	live	environment	is	a	product	risk.	Examples	of
product	risks	are:

•Failure-prone	software	delivered	–	not	able	to	perform	as	intended	according	to
the	specification	and/or	the	user	requirements.

•System	architecture	may	not	adequately	support	non-functional	requirement(s)
(e.g.	security,	reliability,	usability,	performance).

•A	particular	computation	may	be	performed	incorrectly	in	certain
circumstances.

•A	loop	structure	may	be	coded	incorrectly.

•Feedback	from	users	indicates	that	the	product	may	not	meet	expectations.

•The	potential	that	a	defect	in	the	software/hardware	could	cause	harm	to	an
individual	or	company.

•Poor	data	integrity	and	quality	(e.g.	data	migration	issues,	data	conversion
problems,	data	transport	problems,	violation	of	data	standards).

•Software	that	does	not	perform	its	intended	functions.

Risks	are	used	to	decide	where	to	start	testing	in	the	Software	Development	Life
Cycle;	for	example,	the	risk	of	poor	requirements	could	be	mitigated	by	the	use
of	formal	reviews	as	soon	as	the	requirements	have	been	documented	at	the	start
of	a	project.	Product	risks	also	provide	information	enabling	decisions	regarding
how	much	testing	should	be	carried	out	on	specific	components	or	systems;	for
example,	the	more	risk	there	is,	the	more	detailed	and	comprehensive	the	testing
may	be.	In	these	ways	testing	is	used	to	reduce	the	risk	of	an	adverse	effect
(defect)	occurring	or	being	missed.

Mitigating	product	risks	may	also	involve	non-test	activities.	For	example,	in	the
poor	requirements	situation,	a	better	and	more	efficient	solution	may	be	simply
to	replace	the	analyst	who	is	writing	the	poor	requirements	in	the	first	place.

As	already	stated,	a	risk-based	approach	to	testing	provides	proactive
opportunities	to	reduce	the	levels	of	product	risk	starting	in	the	initial	stages	of	a
project.	It	involves	the	identification	of	product	risks	and	how	they	are	used	to
guide	the	test	planning,	specification	and	execution.	In	a	risk-based	approach,
the	risks	identified:

•will	determine	the	test	techniques	to	be	employed,	and/or	the	extent	of	testing	to
be	carried	out;	for	example,	the	Motor	Industry	Software	Reliability	Association
(MISRA)	defines	which	test	techniques	should	be	used	for	each	level	of	risk:	the
higher	the	risk,	the	higher	the	coverage	required	from	test	techniques;

•will	determine	the	levels	and	types	of	testing	to	be	performed,	such	as	security
testing	or	accessibility	testing;

•will	determine	the	extent	of	testing	to	be	carried	out;	for	example	what	the
depth	of	test	coverage	should	be;

•prioritise	testing	in	an	attempt	to	find	the	critical	defects	as	early	as	possible;	for
example,	by	identifying	the	areas	most	likely	to	have	defects	(the	most	complex)
the	testing	can	be	focused	on	these	areas;

•will	determine	any	non-test	activities	that	could	be	employed	to	reduce	risk;	for
example,	to	provide	training	to	inexperienced	designers.

Risk-based	testing	draws	on	the	collective	knowledge	and	insights	of	the	project
stakeholders,	testers,	designers,	technical	architects,	business	reps	and	anyone
with	knowledge	of	the	solution	to	determine	the	risks	and	the	levels	of	testing
required	to	address	those	risks.

To	ensure	that	the	chance	of	a	product	failure	is	minimised,	risk	management
activities	provide	a	disciplined	approach:

•To	analyse	(and	re-evaluate	on	a	regular	basis)	what	can	go	wrong.	Reviews	of
existing	product	risks	and	looking	for	any	new	product	risks	should	occur
periodically	throughout	the	life	cycle.

•To	determine	what	risks	are	important	to	deal	with	(probability	×	impact).	As
the	project	progresses,	owing	to	the	mitigation	activities,	risks	may	reduce	in
importance,	or	disappear	altogether.

•To	implement	actions	to	deal	with	those	risks	(mitigating	actions).

•To	make	contingency	plans	to	deal	with	risks	should	they	become	actual	events.

Testing	supports	the	identification	of	new	risks	by	continually	reviewing	risks	of
the	project	deliverables	throughout	the	life	cycle;	it	may	also	help	to	determine
what	risks	are	important	to	reduce	by	setting	priorities;	it	may	lower	uncertainty
about	risks	by,	for	example,	testing	a	component	and	verifying	that	it	does	not
contain	any	defects;	and	lastly	by	running	specific	tests	it	may	verify	other
strategies	that	deal	with	risks,	such	as	contingency	plans.

Testing	is	a	risk	control	activity	that	provides	feedback	about	the	residual	risk	in
the	product	by	measuring	the	effectiveness	of	critical	defect	removal	and	by
reviewing	the	effectiveness	of	contingency	plans.

CHECK	OF	UNDERSTANDING

1.	What	are	the	two	types	of	risks	that	have	to	be	considered	in	testing?

2.	Compare	and	contrast	these	two	risk	types.

3.	How	early	in	the	life	cycle	can	risk	impact	the	testing	approach?

4.	What	does	MISRA	determine	when	the	level	of	risk	is	understood?

TEST	ORGANISATION

Test	organisation	and	independence

Independent	testing	is	testing	carried	out	by	someone	other	than	the	creator
(developer)	of	the	item	being	tested.	By	remaining	independent,	it	is	possible	to
improve	the	effectiveness	of	testing	if	implemented	correctly.

As	humans	we	are	all	capable	of	making	mistakes,	from	the	simplest	misspelling
or	wrong	use	of	syntax	to	fundamental	errors	at	the	core	of	any	documents	we
write.	The	problem	is	that	as	authors	we	are	less	able	to	see	our	own	errors	than
someone	else,	who	is	less	directly	associated	with	the	document,	would	be.	This
is	a	problem	that	is	made	worse,	in	the	world	of	software	development,	by	the
differing	‘world	view’	of	testers	and	developers.	A	developer,	as	the	creator	and
owner	of	documents	and	code	related	to	development,	perceives	these
deliverables	as	being	correct	when	they	are	delivered.	The	general	awareness
that	we	all	make	mistakes	is,	at	this	stage,	overridden	by	the	belief	that	what	has
been	produced	is	what	is	required.	A	tester,	by	contrast,	will	take	the	view	that
anything	delivered	for	testing	is	likely	to	contain	errors	and	will	search	diligently
to	identify	and	locate	those	errors.

This	is	where	independent	testing	is	important	because	it	is	genuinely	hard	for
authors	to	identify	their	own	errors,	but	it	is	easier	for	others	to	see	them.	There
are	many	options	for	many	levels	of	independence.	In	general,	the	more	remote	a
tester	is	from	the	production	of	the	item,	the	greater	is	the	level	of	independence.
Figure	5.1	indicates	the	most	common	roles	and	the	levels	of	independence	they
bring.

Of	course,	independence	comes	at	a	price.	The	greater	the	level	of	independence,
the	greater	the	likelihood	of	errors	in	testing	arising	from	unfamiliarity.	Levels	of
independence	will	also	depend	on	the	size	of	the	organisation.	In	smaller
organisations	where	everybody	contributes	to	every	activity,	it	is	harder	to
differentiate	the	role	of	the	tester	from	any	other	role,	and	therefore	testers	may
not	be	very	independent	at	all.	The	key	in	these	circumstances	is	for	the	testers	to
have	independence	of	mind,	not	necessarily	to	be	in	an	independent	(separate)
team.	In	organisations	where	there	are	clearly	defined	roles,	it	is	a	lot	easier	for	a
tester	to	remain	independent.

Figure	5.1	Levels	of	independent	testing

It	is	also	possible	to	mix	and	match	the	levels	of	independence;	for	example,	a
test	team	made	up	of	permanent	resources,	business	unit	resources	and
contractors.	For	large,	complex	or	safety-critical	projects,	it	is	usually	best	to
have	multiple	levels	of	testing,	with	some	or	all	of	the	levels	done	by
independent	testers.

The	Agile	approach	to	development	challenges	the	traditional	approach	to
independence.	In	this	approach	everybody	takes	on	multiple	roles,	so
maintaining	total	independence	is	not	always	possible.	A	tester	in	this	situation
has	to	be	able	to	switch	to	an	independent	view,	at	the	relevant	points	in	the
project.	Testers	achieve	this	independence	of	view	by	not	assuming	anything	and
by	not	starting	to	own	the	software	in	the	way	that	a	developer	might;	for
example,	taking	the	view	that	the	way	the	software	works	is	the	way	it	was
developed	to	work.

Independence	in	the	implementation	of	testing	has	some	key	benefits	and
drawbacks,	as	in	Table	5.1.

Table	5.1	Features	of	independent	testing

CHECK	OF	UNDERSTANDING

1.	Why	is	independent	testing	more	effective	at	finding	errors	than	simply
allowing	the	developer	and	author	to	test	their	own	product?

2.	Name	two	benefits	of	independence.

3.	Which	organisation	provides	the	lowest	level	of	independence	and	which
provides	the	highest?

Tasks	of	a	test	manager	and	tester

Test	tasks	are	traditionally	carried	out	by	people	who	make	testing	a	career;
however,	test	tasks	may	also	be	carried	out	by	non-testers	such	as	a	project
manager,	quality	manager,	developer,	business	and	domain	expert,	infrastructure
personnel	or	IT	operations.	The	availability	of	resources	usually	determines	the
resource	types	that	are	deployed	on	each	project;	for	example,	if	there	are	no
career	testers	available	an	organisation	may	identify	non-testing	IT	or	business
resources	to	carry	out	the	role	of	tester	for	a	specific	project	or	time	period.

The	syllabus	defines	two	testing	roles:	the	test	manager	and	the	tester.	Other
roles	may	exist	in	your	organisation,	but	they	are	not	covered	here.

The	testing	roles	can	be	undertaken	by	anyone	with	the	required	skills	or	anyone
who	is	given	the	right	training.	For	example,	the	role	of	a	test	manager	could	be
undertaken	by	a	project	manager.	The	decision	as	to	who	does	what	will	depend
on	how	a	project	or	organisation	is	structured,	as	well	as	the	size	and	number	of
resources	working	on	a	given	project.

It	is	important	to	understand	here	the	difference	between	a	testing	role	and	a
testing	job.	A	role	is	an	activity,	or	a	series	of	activities,	given	to	a	person	to
fulfil;	for	example,	the	role	of	test	manager.	A	person	may	therefore	have	more
than	one	role	at	any	moment	depending	on	their	experience	and	the	level	of
workload	on	a	project.	A	job	is	effectively	what	an	individual	is	employed	to	do,
so	one	or	many	roles	could	make	up	a	job.	For	example,	a	test	manager	could
also	be	a	tester.

The	tasks	undertaken	by	a	test	manager	align	very	closely	with	those	undertaken
by	a	project	manager	and	align	closely	with	standard	approaches	to	project
management.	In	this	context	a	test	manager	is	anyone	who	leads	a	team	of	testers
(be	that	one	or	many	testers).	Test	managers	are	also	known	as	test	programme
managers,	test	team	leaders	and	test	coordinators.

Typical	test	manager	tasks	may	include:

•Coordinating	or	developing	the	test	policy	and	test	strategy	for	the	organisation.

•Planning	the	test	activities	by	considering	the	context	and	understanding	the	test
objectives	and	risks.	This	may	include	selecting	test	approaches,	estimating	test
time,	effort	and	cost,	acquiring	resources,	defining	test	levels	and	test	cycles,	and
planning	defect	management.

•Writing	and	updating	test	plan(s).

•Coordinating	the	test	plan(s)	with	project	managers,	product	owners	and	others.

•Sharing	test	perspectives	with	other	project	activities,	such	as	the	code
integration	planning.

•Initiating	the	analysis,	design,	implementation	and	execution	of	tests,
monitoring	test	progress	and	results,	and	checking	the	status	of	execution	criteria
(or	definition	of	‘done’).

•Preparing	and	delivering	test	progress	reports	and	test	summary	reports	based
on	the	information	gathered.

•Adapting	planning	based	on	test	results	and	progress;	for	example	if	more
defects	than	planned	are	found,	this	will	impact	the	time	taken	to	complete
testing	and	so	action	will	need	to	be	taken	to	realign	the	plan.

•Supporting	the	setting	up	of	the	defect	management	system	and	adequate
configuration	management	of	testware.

•Introducing	suitable	metrics	for	measuring	test	progress	and	evaluating	the
quality	of	the	testing	and	the	product.

•Supporting	the	selection	and	implementation	of	tools	to	support	the	test	process,

including	budget,	and	the	allocation	of	time	for	the	effort	required	to	build	and
support	tools.

•Deciding	about	the	implementation	of	test	environment(s).

•Promoting	and	advocating	the	tester,	the	test	team,	and	the	test	profession
within	the	organisation.

•Developing	the	skills	and	careers	of	testers	through	training	plans,	performance
evaluations,	coaching	and	so	on.

These	tasks	are	not,	however,	all	of	the	tasks	that	could	be	carried	out	by	test
managers,	just	the	most	common	ones.	In	fact,	other	resources	could	take	on	one
or	more	of	these	tasks	as	required,	or	they	may	be	delegated	to	other	resources
by	the	test	manager.	In	Agile	development,	some	of	the	above	tasks	will	be
handled	by	the	Agile	team,	especially	with	reporting.	The	key	is	to	ensure	that
everyone	is	aware	of	who	is	doing	what	tasks,	that	they	are	completed	on	time
and	within	budget,	and	that	they	are	tracked	through	to	completion.

The	other	role	covered	by	the	syllabus	is	that	of	the	tester,	also	known	as	test
analyst	or	test	executor.

The	tasks	typically	undertaken	by	a	tester	may	include:

•Reviewing	and	contributing	to	test	plans.

•Analysing,	reviewing	and	assessing	user	requirements,	user	stories	and
acceptance	criteria,	specifications	and	models	for	testability.

•Creating	test	specifications	from	the	test	basis;	for	example	test	conditions,	and
the	traceability	between	test	cases,	test	conditions	and	the	test	basis.

•Setting	up	the	test	environment	(often	coordinating	with	system	administration
and	network	management).	In	some	organisations	the	setting	up	and
management	of	the	test	environment	could	be	centrally	controlled;	in	this
situation	a	tester	would	directly	liaise	with	the	environment	management	to
ensure	that	the	test	environment	is	delivered	on	time	and	to	specification.

•Designing	and	implementing	test	cases	and	test	procedures.

•Preparing	and	acquiring/copying/creating	test	data.

•Executing	tests	on	all	test	levels,	logging	the	tests,	evaluating	the	results	and
documenting	the	deviations	from	expected	results	as	defects.

•Using	test	administration,	or	management	and	test	monitoring	tools	as	required.

•Automating	tests	(may	be	supported	by	a	developer	or	a	test	automation	expert).

•Evaluating	non-functional	characteristics	such	as	performance	efficiency,
reliability	and	usability.

•Reviewing	tests	developed	by	other	testers.

As	mentioned	earlier,	the	thing	to	remember	when	looking	at	roles	and	tasks
within	a	test	project	is	that	one	person	may	have	more	than	one	role	and	carry
out	some	or	all	of	the	tasks	applicable	to	the	role.	This	is	different	to	having	a
‘job’:	a	‘job’	may	contain	many	roles	and	tasks.

CHECK	OF	UNDERSTANDING

1.	What	other	names	are	given	to	the	test	manager	role?

2.	Detail	five	possible	tasks	of	a	test	manager.

3.	Detail	five	possible	tasks	of	a	tester.

4.	Describe	the	differences	between	a	test	manager	role	and	a	test	manager	task.

TEST	STRATEGY	AND	TEST	APPROACHES

The	test	strategy	will	define	how	testing	will	be	implemented	either	in	a	project
or	company-wide.	It	can	be:

•developed	early	in	the	life	cycle,	which	is	known	as	preventative	–	in	this
approach	the	test	design	process	is	initiated	as	early	as	possible	in	the	life	cycle
to	stop	defects	being	built	into	the	final	solution;

•left	until	just	before	the	start	of	test	execution,	which	is	known	as	reactive	–	this
is	where	testing	is	the	last	development	stage	and	is	not	started	until	after	design
and	coding	have	been	completed	(sometimes	it	is	identified	as	the	waterfall
approach,	i.e.	all	development	stages	are	sequential,	the	next	not	starting	until
the	previous	one	has	nearly	finished).

There	are	many	strategies	that	can	be	employed,	and	they	may	include:

•Analytical	strategies	rely	on	the	analysis	of	some	factor	such	as	risk-based
testing,	where	testing	is	directed	to	areas	of	greatest	risk	(see	earlier	in	this
chapter	for	an	overview	of	risk-based	testing).

•Model-based	strategies	base	tests	on	a	model	such	as	statistical	information
about	failure	rates	(such	as	reliability	growth	models)	or	usage	models	(such	as
operational	profiles).

•Methodical	strategies	rely	on	the	systematic	use	of	some	predefined	tests	or	test
conditions	such	as	failure	based	(including	error	guessing	and	fault	attacks),
checklist	based	and	quality-characteristic	based.

•Process-compliant	(or	standard-compliant)	strategies	adhere	to	the	processes
developed	for	use	with	standards	(see	ISO/IEC/IEEE	29119-2	or	MISRA)	and
various	Agile	or	traditional	waterfall	approaches.

•Reactive	(or	dynamic	and	heuristic)	strategies,	such	as	exploratory	testing
where	testing	is	more	reactive	to	events	than	pre-planned,	and	where	execution
and	evaluation	are	concurrent	tasks.

•Directed	(or	consultative)	strategies,	such	as	those	where	test	coverage	is	driven
primarily	by	the	advice	and	guidance	of	technology	and/or	business	domain
experts	outside	or	within	the	test	team.

•Regression-averse	strategies	are	designed	with	the	desire	to	avoid	regression	of
existing	capabilities	such	as	those	that	include	reuse	of	existing	test	material,
extensive	automation	of	functional	regression	tests	and	standard	test	suites.

Different	strategies	may	be	combined	if	required.	The	decision	as	to	how	and
why	they	will	be	combined	will	depend	on	the	circumstances	prevalent	in	a
project	at	the	time.	For	example,	an	organisation	may	as	a	standard	use	an	Agile
method,	but	in	a	particular	situation	the	structure	of	the	test	effort	could	use	a
risk-based	approach	to	ensure	that	the	testing	is	correctly	focused.

A	test	strategy	will	contain	generalised	descriptions	of	the	test	processes	to	be
used;	the	test	approach	provides	tailoring	of	the	strategy	for	a	particular	project

or	projects.	A	test	approach	includes	all	of	the	decisions	made	on	how	testing
should	be	implemented,	based	on	the	(test)	project	goals	and	objectives,	as	well
as	the	risk	assessment.	It	forms	the	starting	point	for	test	planning,	selecting	the
test	design	techniques	and	test	types	to	be	employed.	It	should	also	define	the
software	under	test	and	test	entry	and	exit	criteria,	often	called	the	definition	of
‘done’	in	Agile	projects.

The	selected	approach	will	depend	on	the	context	within	which	the	test	team	is
working,	and	may	consider	risks,	hazards	and	safety,	available	resources	and
skills,	the	technology,	the	nature	of	the	system	(e.g.	custom	built	versus	COTS),
test	objectives	and	regulations.

CHECK	OF	UNDERSTANDING

1.	Name	and	explain	five	approaches	to	the	development	of	the	test	approach	or
test	strategy.

2.	Name	one	of	the	standards	referred	to	that	dictate	the	test	approach.

3.	Can	discretion	be	used	when	defining	a	test	approach	and,	if	so,	what	can
influence	the	decision	as	to	which	way	to	approach	testing?

TEST	PLANNING	AND	ESTIMATION

Test	planning

Test	planning	is	the	most	important	activity	undertaken	by	a	test	manager	in	any
test	project.	It	ensures	that	there	is	initially	a	list	of	tasks	and	milestones	in	a
baseline	plan	to	track	progress	against,	as	well	as	defining	the	shape	and	size	of
the	test	effort.	Test	planning	is	used	in	development	and	implementation	projects
(sometimes	called	‘greenfield’)	as	well	as	maintenance	(change	and	fix)
activities.

The	main	document	produced	in	test	planning	is	often	called	a	master	test	plan
or	a	project	test	plan.	This	document	defines	at	a	high	level	the	test	activities
being	planned.	It	is	normally	produced	during	the	early	phases	of	the	project
(e.g.	initiation)	and	updated	as	required	via	change	control	as	the	project
develops.	It	will	provide	sufficient	information	to	enable	a	test	project	to	be
established	(bearing	in	mind	that	at	this	point	in	a	project	little	more	than
requirements	may	be	available	from	which	to	plan).

The	details	of	the	test-level	activities	are	documented	within	test-level	plans,	for
example	the	system	test	plan.	These	documents	will	contain	the	detailed
activities	and	estimates	for	the	relevant	test	level.

Figure	5.2	shows	where	test-level	test	plans	fit	into	the	V	model.	It	shows	how	a
test	plan	exists	for	each	test	level	and	that	they	will	usually	refer	to	the	master
test	plan.

Figure	5.2	Test	plans	in	the	V	model

The	contents	sections	of	a	test	plan	for	either	the	master	test	plan	or	test-level
plans	are	normally	identical	or	very	similar.	ISO/IEC/IEEE	29119-3,	the
Software	Testing	test	document	standard,	contains	details	of	what	the	content	of
the	plans	should	be.

The	ISO	29119-3	Software	Testing	Standard	identifies	that	there	should	be	a
minimum	of	15	sections	present	in	a	test	plan,	as	in	Table	5.2.

Test	planning	is	a	continual	activity	that	spans	the	life	of	the	test	project;	it	takes
place	in	all	life	cycle	stages.	As	risks	and	changes	occur,	the	plan	and	planning
should	be	amended	to	recognise	these	and	reflect	the	current	position.	The	plans
will	have	been	baselined	(locked	down)	after	initial	sign-off,	so	these	changes
would	normally	be	managed	by	the	project	change	process.	Baselining	a
document	effectively	secures	it	from	further	change	unless	authorised	via	a
change	control	process.

Table	5.2	Test	plan	sections

Test-planning	activities

During	test	planning	various	activities	for	an	entire	system	or	a	part	of	a	system
have	to	be	undertaken	by	those	working	on	the	plan.	They	include:

•Working	with	the	project	manager	and	subject	matter	experts	to	determine	the
scope	and	the	risks	that	need	to	be	tested.	Also	identifying	and	agreeing	the
objectives	of	the	testing,	be	they	time,	quality	or	cost	focused,	or	a	mixture	of	all
three.	The	objectives	will	enable	the	test	project	to	know	when	it	has	finished	–
has	time	or	money	run	out,	or	has	the	right	level	of	quality	been	met?

•Understanding	what	delivery	model	is	to	be	used	(waterfall,	iterative,	Agile,
etc.)	and	defining	the	overall	approach	of	testing	(sometimes	called	the	test
strategy)	based	on	this,	ensuring	that	the	test	levels	and	entry	and	exit	criteria	are
defined.

•Liaising	with	the	project	manager	and	making	sure	that	the	testing	activities
have	been	included	within	the	software	life	cycle	activities	such	as:

design	–	the	development	of	the	software	design;

development	–	the	building	of	the	code;

implementation	–	the	activities	surrounding	implementation	into	a	live
environment.

•Working	with	the	project	to	decide	what	needs	to	be	tested,	what	roles	are
involved	and	who	will	perform	the	test	activities,	planning	when	and	how	the
test	activities	should	be	done,	deciding	how	the	test	results	will	be	evaluated,	and
defining	when	to	stop	testing	(exit	criteria).

•Building	a	plan	that	identifies	when	and	who	will	undertake	the	test	analysis
and	design	activities.	In	addition	to	the	analysis	and	design	activities	test
planning	should	also	document	the	schedule	for	test	implementation,	execution
and	evaluation.	The	plan	can	either	be	sequential;	for	example	particular	dates
are	defined,	or	iterative,	where	the	context	of	each	iteration	will	need	to	be
considered.

•Deciding	what	the	documentation	for	the	test	project	will	be;	for	example,
which	plans,	how	the	test	cases	will	be	documented	and	so	on.

•Defining	the	management	information,	including	the	metrics	required,	and
putting	in	place	the	processes	to	monitor	and	control	test	preparation	and
execution,	defect	resolution	and	risk	issues.

•Ensuring	that	the	test	documentation	generates	repeatable	test	assets;	for
example,	test	cases.

ENTRY	CRITERIA	AND	EXIT	CRITERIA	(DEFINITION	OF	‘READY’
OR	DEFINITION	OF	‘DONE’)

Entry	criteria	are	used	to	determine	when	a	given	test	activity	can	start.	This
could	include	the	planning,	when	test	design	and/or	when	test	execution	for	each
level	of	testing	is	ready	to	start.	Entry	criteria	(also	known	as	definition	of
‘ready’	in	Agile	projects)	define	the	preconditions	for	undertaking	a	test	activity.

Examples	of	some	typical	entry	criteria	to	test	execution	(for	example)	may
include:

•Availability	of	testable	requirements,	user	stories	or	models.

•Test	environment	available	and	ready	for	use	(it	functions).

•Test	tools	installed	in	the	environment	are	ready	for	use.

•Testable	code	is	available.

•All	test	data	is	available	and	correct.

•All	previous	test	activity	has	completed	and	met	its	exit	criteria.

Exit	criteria	are	used	to	determine	when	a	given	test	activity	has	been	completed
or	when	it	should	stop,	typically	called	the	definition	of	‘done’	in	an	Agile
project.	Exit	criteria	can	be	defined	for	all	of	the	test	activities,	such	as	planning,
specification	and	execution	as	a	whole,	or	to	a	specific	test	level	for	test
specification	as	well	as	execution.

Exit	criteria	should	be	included	in	the	relevant	test	plans.

Some	typical	exit	criteria	might	be:

•All	tests	planned	have	been	executed.

•A	certain	level	of	coverage	has	been	achieved.

•The	number	of	unresolved	defects	is	within	an	agreed	limit.

•All	high-risk	areas	have	been	fully	tested,	with	only	minor	residual	risks	left
outstanding.

•Cost	–	when	the	budget	has	been	spent.

•The	number	of	estimated	remaining	defects	is	sufficiently	low.

•The	evaluated	level	of	quality	criteria,	such	as	reliability	and	performance,	is
sufficient.

•The	schedule	has	been	achieved;	for	example,	the	release	date	has	been	reached
and	the	product	has	to	go	live.	This	was	the	case	with	the	millennium	testing	(it
had	to	be	completed	before	midnight	on	31	December	1999),	and	is	often	the
case	with	government	legislation.

Exit	criteria	should	have	been	agreed	as	early	as	possible	in	the	life	cycle;
however,	they	can	be,	and	often	are,	subject	to	controlled	change	as	the	detail	of
the	project	becomes	better	understood	and	therefore	the	ability	to	meet	the
criteria	is	better	understood	by	those	responsible	for	delivery.

CHECK	OF	UNDERSTANDING

1.	What	is	the	international	standard	for	testing	called?

2.	Identify	the	15	sections	of	the	test	plan.

3.	What	activities	are	contained	within	test	planning?

4.	Detail	four	typical	exit	criteria.

TEST	EXECUTION	SCHEDULE

Having	developed	various	test	cases	and	test	procedures	(including	any
automated	test	procedures),	which	have	been	assembled	into	test	suites,	the	test
suites	can	be	arranged	into	a	test	execution	schedule.	A	test	execution	schedule
documents	what	test	suite	will	be	run	in	what	order	and	on	what	day.	The	order
of	the	execution	of	test	suites	will	be	determined	by	many	things	such	as
prioritisation,	processing	dependencies;	for	example	suite	1	has	to	run	before
suite	7	can	be	run,	whether	there	are	confirmation	and	regression	tests,	and
finally	in	the	most	efficient	sequence	possible.

Figure	5.3	(page	175)	reflects	a	high-level	test	execution	schedule	for	the	various
system	components	of	a	Microsoft	Outlook	migration.

FACTORS	INFLUENCING	THE	TEST	EFFORT

Many	things	affect	the	level	of	effort	required	to	fulfil	the	test-related	aspects	of
a	project	to	ensure	that	the	objectives	of	the	project,	release	or	iteration	are	met.
These	can	be	split	into	four	main	categories,	as	shown	below.

1.	Product	characteristics:

•The	risks	associated	with	the	product	(defined	during	risk-based	testing).

•The	quality	of	the	test	basis;	for	example	requirements,	user	stories	and	so	on.

•The	complexity	of	the	product	domain.

•The	number	of	quality	characteristics	such	as	reliability.

•The	number	of	non-functional	requirements.

•The	security	requirements	(perhaps	meeting	ISO	27001,	the	security	standard).

•How	much	documentation	is	required	(e.g.	some	legislation-driven	changes
demand	a	certain	level	of	documentation	that	may	be	more	than	an	organisation

would	normally	produce).

•Requirements	for	legal	or	regulatory	compliance.

2.	Development	process	characteristics:

•The	stability	and	maturity	of	the	organisation;	for	example	a	very	process
mature	organisation	will	take	a	lot	less	time	to	achieve	what	an	immature	(seat	of
their	pants)	organisation	would	take,	as	they	are	likely	to	make	less	mistakes.

Figure	5.3	A	high-level	test	execution	schedule

•The	development	model	in	use,	such	as	Agile	or	sequential.

•The	agreed	test	approach.

•The	tools	in	use,	automation,	test	management	and	so	on.

•The	test	process	defined	in	the	test	strategy	and	approach.

•Timescales.

3.	People	characteristics

•The	skills	of	those	involved	in	the	testing	and	development	activity	(the	lower
the	skill	level	in	development,	the	more	defects	could	be	introduced,	and	the
lower	the	skill	level	in	testing,	the	more	detailed	the	test	documentation	needs	to
be).

•Team	cohesion	and	leadership.

4.	Test	results:

•The	number	and	severity	of	defects	expected	to	be	found.

•The	amount	of	rework	needed.

Test	estimation

There	are	many	approaches	to	test	estimation:	two	of	the	most	used	are	metrics-
based	and	expert-based.	The	two	approaches	are	quite	different,	the	former	being
based	on	data	while	the	latter	is	a	somewhat	subjective	approach.

The	metrics-based	approach

This	approach	relies	on	data	collected	from	previous	or	similar	projects.	This
kind	of	data	might	include:

•the	number	of	test	conditions;

•the	number	of	test	cases	written;

•the	number	of	test	cases	executed;

•the	time	taken	to	develop	test	cases;

•the	time	taken	to	run	test	cases;

•the	number	of	defects	found;

•the	number	of	environment	outages	and	how	long	on	average	each	one	lasted.

With	this	approach	and	the	right	data,	it	is	possible	to	estimate	quite	accurately
what	the	cost	and	time	required	for	a	similar	project	would	be.

It	is	important	that	the	actual	costs	and	time	for	testing	are	accurately	recorded.
These	can	then	be	used	to	revalidate	and	possibly	update	the	metrics	for	use	on
the	next	similar	project.

The	expert-based	approach

This	alternative	approach	to	metrics	is	to	use	the	experience	of	owners	of	the
relevant	tasks	or	experts	to	derive	an	estimate	(this	is	also	known	as	the	Wide
Band	Delphi	approach).	In	this	context,	‘experts’	could	be:

•business	experts;

•test	process	consultants;

•developers;

•technical	architects;

•analysts	and	designers;

•anyone	with	knowledge	of	the	application	to	be	tested	or	the	tasks	involved	in
the	process.

There	are	many	ways	that	this	approach	could	be	used.	Here	are	two	examples:

•Distribute	a	requirement	specification	to	the	task	owners	and	get	them	to
estimate	their	task	in	isolation.	Amalgamate	the	individual	estimates	when
received	and	build	in	any	required	contingency,	to	arrive	at	the	estimate.

•Distribute	a	requirement	specification	to	known	experts	who	develop	their
individual	view	of	the	overall	estimate	and	then	meet	together	to	agree	on	and/or
debate	the	estimate	that	will	go	forward.

Expert	estimating	can	use	either	of	the	above	approaches	individually	or	mix	and
match	them	as	required.

Taking	all	of	this	into	account,	once	the	estimate	is	developed	and	agreed,	the
test	manager	can	set	about	identifying	the	required	resources	and	building	the
detailed	plan.

CHECK	OF	UNDERSTANDING

1.	Compare	and	contrast	the	two	approaches	to	developing	estimates.

2.	Provide	three	examples	of	what	a	metrics	approach	to	estimates	would	use	as
a	base.

3.	Name	three	areas	that	affect	the	level	of	effort	to	complete	the	test	activity.

TEST	MONITORING	AND	CONTROL

Having	developed	the	test	plan,	the	activities	and	timescales	determined	within
the	test	execution	schedule	need	to	be	constantly	reviewed	against	what	is
actually	happening.	This	is	test	monitoring.	The	purpose	of	test	monitoring	is	to
provide	feedback	and	visibility	of	the	progress	of	test	activities.

The	data	required	to	monitor	progress	can	be	collected	manually;	for	example,
counting	test	cases	developed	at	the	end	of	each	day,	or,	with	the	advent	of
sophisticated	test	management	tools,	it	is	also	possible	to	collect	the	data	as	an
automatic	output	from	a	tool	either	already	formatted	into	a	report,	or	as	a	data
file	that	can	be	manipulated	to	present	a	picture	of	progress.

The	progress	data	is	also	used	to	measure	exit	criteria	such	as	test	coverage;	for
example,	50	per	cent	requirements	coverage	achieved.

Having	implemented	test	monitoring	to	understand	progress	through	the	test
plan,	test	control	is	the	corrective	action	undertaken	for	issues	identified	through
test	monitoring.	Slippage	of	test	activity	dates	or	delays	in	delivery	of	external
components	are	two	potential	issue	areas.	Test-control	actions	could	include:

•reprioritising	tests	if,	for	example,	software	is	delivered	late	(a	potential	risk);

•changing	the	test	schedule;

•re-evaluating	the	entry/exit	criteria;

•changing	the	scope	of	the	test	activity.

The	following	test-control	activities	are	likely	to	be	outside	the	test	manager’s
responsibility.	However,	this	should	not	stop	the	test	manager	making	a
recommendation	to	the	project	manager:

•descoping	of	functionality;	that	is,	removing	some	less	important	planned
deliverables	from	the	initial	delivered	solution	to	reduce	the	time	and	effort
required	to	achieve	that	solution;

•delaying	release	into	the	production	environment	until	exit	criteria	have	been
met;

•continuing	testing	after	delivery	into	the	production	environment	so	that	defects
are	found	before	they	occur	in	production.

Metrics	used	in	testing

In	any	project,	metrics	can	be	collected	at	any	time	–	either	during	or	at	the	end
of	the	project,	in	order	to	assess:

•progress	against	the	plan,	both	in	terms	of	activities	and	budget;

•current	quality	of	the	item	under	test	(test	object);

•adequacy	of	the	test	approach	(will	it	enable	all	testing	to	be	completed?);

•effectiveness	of	the	test	activities	with	respect	to	the	test	objectives.

Common	test	metrics	in	use	include:

•percentage	of	planned	work	done	in	test	case	preparation	(or	percentage	of
planned	test	cases	prepared);

•percentage	of	planned	work	done	in	test	environment	preparation;

•test	case	execution	(e.g.	number	of	test	cases	run/not	run,	and	test	cases
passed/failed);

•defect	information	(e.g.	defect	density,	defects	found	and	fixed,	failure	rate	and
retest	results);

•test	coverage	of	requirements,	risks	or	code;

•subjective	confidence	of	testers	in	the	product;

•task	completion,	resource	allocation	and	usage,	and	effort;

•dates	of	test	milestones;

•testing	costs,	including	the	cost	compared	with	the	benefit	of	finding	the	next
defect	or	running	the	next	test.

Ultimately,	test	metrics	are	used	to	track	progress	towards	the	completion	of
testing,	which	is	determined	by	the	exit	criteria.	So,	test	metrics	should	relate
directly	to	the	exit	criteria.

There	is	a	trend	towards	‘dashboards’,	which	reflect	all	of	the	relevant	metrics
on	a	single	screen	or	page,	ensuring	maximum	impact.	For	a	dashboard,	and
generally	when	delivering	metrics,	it	is	best	to	use	a	relatively	small	but	impact-
worthy	subset	of	the	various	metric	options	available.	This	is	because	the	readers
do	not	want	to	wade	through	lots	of	data	for	the	key	item	of	information	they	are
after,	which	invariably	is	‘Are	we	on	target	to	complete	on	time?’

These	metrics	are	often	displayed	in	graphical	form,	examples	of	which	are
shown	in	Figure	5.4.	This	reflects	progress	on	the	running	of	test	cases	and
reports	on	defects	found.	There	is	also	a	box	at	the	top	left	for	some	commentary
on	progress	to	be	documented	(this	could	simply	be	the	issues	and/or	successes
of	the	previous	reporting	period).

The	graph	in	Figure	5.5	is	the	one	shown	at	the	bottom	left	of	the	dashboard	in
Figure	5.4.	It	reports	the	number	of	defects	raised,	and	also	shows	the	planned
and	actual	numbers	of	defects.

Test	reporting

Test	reporting	is	the	process	whereby	test	metrics	are	reported	in	a	summarised
format	both	during	and	at	the	end	of	a	test	activity,	to	update	the	reader	regarding
the	testing	tasks	undertaken.	Test	reports	produced	during	the	test	activity	are
referred	to	as	test	progress	reports,	whereas	a	test	report	produced	after	a	test
activity	has	completed	may	be	referred	to	as	a	test	summary	report.

The	test	manager	regularly	issues	a	test	progress	report	during	test	monitoring
and	control	for	the	project	stakeholders	such	as	the	sponsor,	project	and
programme	managers	and	any	product	owners.	When	exit	criteria	have	been	met
and	a	test	activity	completes,	the	test	manager	issues	a	test	summary	report.	This
report	provides	an	overview	of	the	test	activity	undertaken,	using	data	derived
from	the	test	progress	reports.

Figure	5.4	iTesting	executive	dashboard

Figure	5.5	Incidents	planned/raised

The	following	information	may	be	included	in	both	a	test	progress	report	and	a
test	summary	report:

•summary	of	testing	performed;

•information	on	what	occurred	during	a	test	period;

•any	deviations	from	the	plan,	such	as	schedule	changes;

•the	status	of	testing	and	product	quality,	relating	to	either	the	exit	criteria	or	the
definition	of	‘done’;

•blocking	factors	that	have	impacted	the	test	schedule;

•metrics	reflecting	defects,	test	cases,	test	coverage,	activity	progress	and
resource	consumption;

•residual	risk;

•reusable	test	work	products	produced.

In	addition	to	the	above,	test	progress	reports	may	also	include:

•the	status	of	test	activities	and	progress	against	the	test	plan;

•factors	impacting	progress;

•testing	planned	for	the	next	reporting	period;

•the	quality	of	the	test	object.

Key	for	any	report	is	that	it	is	focused	on	the	information	required	based	upon
the	report’s	audience;	some	recipients	may	require	graphs,	while	others	wish	to
see	the	detailed	data.	It	is	the	responsibility	of	the	test	manager	to	ensure	that	the
recipient	requirements	for	reports	are	understood	before	any	test	activity	starts.

In	an	Agile	project,	the	test	progress	reporting	may	be	included	in	task	boards,
effect	summaries	and	burn-down	charts,	which	may	also	be	discussed	in	the
daily	stand-up	meeting,	where	the	project	team	review	progress	during	the
previous	period	(often	a	day)	and	what	is	planned	for	the	next	period.

ISO	29119-3	documents	required	contents	for	both	test	progress	reports	(called
test	status	report	in	the	standard)	and	a	test	summary	report	(called	a	test
completion	report	in	the	standard).

Tables	5.3a	and	5.3b	detail	the	two	separate	standard	contents.

The	information	gathered	can	also	be	used	to	help	with	any	process
improvement	opportunities.	This	information	can	be	used	to	assess	whether:

•the	goals	for	testing	were	correctly	set	(where	they	achievable;	if	not	why	not?);

•the	test	approach	or	strategy	was	adequate	(e.g.	did	it	ensure	there	was	enough
coverage?);

•the	testing	was	effective	in	ensuring	that	the	objectives	of	testing	were	met.

Table	5.3a	Test	progress	report	outline

Table	5.3b	Test	summary	report	outline

CHECK	OF	UNDERSTANDING

1.	Name	four	common	test	metrics.

2.	Name	the	10	headings	in	the	ISO	29119-3	test	summary	report.

3.	Identify	three	ways	a	test	manager	can	control	testing	if	there	are	more	tests
than	there	is	time	to	complete	them.

DEFECT	MANAGEMENT

A	defect	is	any	unplanned	event	occurring	that	requires	further	investigation.	In
testing,	this	translates	into	anything	where	the	actual	result	is	different	from	the
expected	result.	A	defect	when	investigated	may	be	a	defect;	however,	it	may
also	be	a	change	to	a	specification	or	an	issue	with	the	test	being	run.	It	is
important	that	a	process	exists	to	track	all	defects	through	to	closure.	This
process	has	to	be	agreed	by	all	parties	involved	and	can	be	quite	informal.

Defects	can	be	raised	at	any	time	throughout	the	Software	Development	Life
Cycle,	from	reviews	of	the	test	basis	(requirements,	specifications	etc.),	coding,
static	analysis,	test	specification	and	dynamic	testing.

Typical	defect	reports	have	the	following	objectives:

•To	provide	developers	and	other	parties	with	feedback	on	the	problem	to	enable
identification,	isolation	and	correction	as	necessary.	It	must	be	remembered	that
most	developers	and	other	parties	who	will	correct	the	defect	or	clear	up	any
confusion	will	not	be	present	at	the	point	of	identification,	so	without	full	and
concise	information	they	will	be	unable	to	understand	the	problem,	and	possibly
therefore	be	unable	to	understand	how	to	go	about	fixing	it.	The	more
information	provided,	the	better.

•To	provide	test	managers	with	a	means	of	tracking	the	quality	of	the	system
under	test	and	the	progress	of	the	testing.	Key	metrics	used	to	measure	progress
is	a	view	of	how	many	defects	are	raised,	their	priority	and	finally	that	they	have
been	corrected	and	signed	off.

•To	provide	ideas	for	test	process	improvement.	For	each	defect	the	point	of
injection	should	be	documented,	for	example	a	defect	in	requirements	or	code,
and	subsequent	process	improvement	can	focus	on	that	particular	area	to	stop	the
same	defect	occurring	again.

A	defect	report	filed	during	dynamic	testing	typically	includes:

•an	identifier;

•a	title	or	a	short	summary	of	the	defect	being	raised;

•date	of	the	defect	report,	issuing	organisation	and	author;

•identification	of	the	test	item	and	environment	being	used;

•the	development	life	cycle	phase	it	was	identified	in;

•a	description	of	the	defect	to	enable	reproduction	and	resolution;

•expected	and	actual	results;

•scope	or	degree	of	impact	(severity)	of	the	defect	on	the	stakeholders;

•urgency	(priority)	to	fix;

•state	of	the	defect	report;	for	example	is	it	open,	deferred,	closed	and	so	on?

•conclusion,	recommendations	and	approvals;

•change	history	(updates	reflecting	the	sequence	of	action	taken	to	resolve	the
defect);

•any	references.

Defect	management	is	the	process	of	recognising,	investigating,	taking	action
and	disposing	of	defects.	It	involves	recording	defects,	classifying	them	and
identifying	the	impact.	The	process	of	defect	management	ensures	that	defects
are	tracked	from	recognition	to	correction,	and	finally	through	retest	and	closure.
It	is	important	that	organisations	document	their	defect	management	process	and
ensure	that	they	have	appointed	someone	(often	called	a	defect
manager/coordinator)	to	manage/police	the	process.

Defects	are	raised	on	defect	reports,	either	electronically	via	a	defect
management	system	(from	Microsoft	Excel	to	sophisticated	defect	management
tools)	or	on	paper.

The	syllabus	also	recognises	that	ISO	29119-3	defines	a	test	defect	report	(called
a	test	defect	report)	which	has	sections	aligned	with	those	documented	above.

CHECK	OF	UNDERSTANDING

1.	Identify	three	details	that	are	usually	included	in	a	defect	report.

2.	What	is	the	name	of	the	standard	that	includes	an	outline	of	a	test	defect
report?

3.	What	is	a	test	defect?

CONFIGURATION	MANAGEMENT

The	purpose	of	configuration	management	is	to	establish	and	maintain	the
integrity	of	the	component	or	system,	the	testware	and	their	relationships	to	one
another	throughout	the	project	and	product	life	cycle.	It	involves	managing
products,	facilities	and	processes	by	managing	the	information	about	them,
including	changes,	and	ensuring	that	they	are	what	they	are	supposed	to	be	in
every	case.

For	testing,	configuration	management	will	involve	controlling	both	the	versions
of	code	to	be	tested	and	the	documents	used	during	the	development	process;	for
example,	requirements,	design	and	plans.

In	both	instances,	configuration	management	should	ensure	that	each	test	item	is
uniquely	identified	and	provide	full	traceability	throughout	the	test	process;	for
example,	a	requirement	should	be	traceable	through	to	the	test	cases	that	are	run
to	test	its	levels	of	quality	and	vice	versa.

Effective	configuration	management	is	important	for	the	test	process	as	the
contents	of	each	release	of	software	into	a	test	environment	must	be	understood
and	at	the	correct	version,	otherwise	testers	could	end	up	wasting	time	because
either	they	are	testing	an	invalid	release	of	the	software	or	the	release	does	not
integrate	successfully,	leading	to	the	failure	of	many	tests.

In	most	instances	the	project	will	have	already	established	configuration
management	processes	that	will	define	the	documents	and	code	to	be	held	under
configuration	management.	If	this	is	not	the	case,	then	during	test	planning	the
process	and	tools	required	to	establish	the	right	configuration	management

processes	will	need	to	be	selected/implemented	by	the	test	manager.

The	same	principle	applies	to	testware.	Each	item	of	testware	(such	as	a	test
procedure)	should	have	its	own	version	number	and	be	linked	to	the	version	of
the	software	it	was	used	to	test.	For	example,	test	procedure	TP123a	might	be
used	for	software	Release	A	and	TP123b	might	be	used	for	software	Release	B	–
even	though	both	have	the	same	purpose	and	even	expected	results.	However,
another	test	procedure,	TP201,	may	be	applicable	to	all	releases.

A	good	configuration	management	system	will	ensure	that	the	testers	can
identify	exactly	what	code	they	are	testing	as	well	as	have	control	over	the	test
documentation	such	as	test	plans,	test	specification,	defect	logs	and	so	on.

CHECK	OF	UNDERSTANDING

1.	Define	configuration	management.

2.	What	can	be	stored	under	configuration	management?

3.	Why	is	it	important	to	have	effective	configuration	management?

SUMMARY

In	this	chapter	we	have	looked	at	the	component	parts	of	test	management.	We
initially	explored	risk	and	testing.	When	developing	the	test	plan,	the	test
manager	and	tester	will	look	at	the	product	risks	(risks	that	relate	directly	to	the
failure	of	the	product	in	the	live	environment)	to	decide	what	is	important	to	test,
as	well	as	ensuring	that	any	project	risks	(risks	relating	to	the	delivery	of	the
project)	are	mitigated.

The	importance	of	independence	in	the	test	organisation	and	how	independence
helps	to	ensure	that	the	right	focus	is	given	to	the	test	activity	was	reviewed.
Independence	is	gained	by	separating	the	creative	development	activity	from	the
test	activity	and	we	looked	at	the	different	levels	of	independence	that	are
achievable:

•the	developers	–	low	independence;

•independent	testers	ceded	to	the	development	team;

•independent	permanent	test	team,	a	centre	of	excellence	within	the	organisation;

•independent	testers	or	test	team	provided	by	the	operational	business	unit;

•outsourced	test	team	or	the	use	of	independent	contractors	–	high	independence.

We	have	looked	at	the	test	strategy	and	approach	and	how	they	shape	the	test
activity	based	on	many	influences,	including	risks	and	the	objectives	of	the
testing.

We	have	reviewed	two	roles	that	exist	within	a	test	project:	test	manager	and
tester.	Both	roles	are	important	to	the	delivery	of	testing,	but	could	be	vested	in
one	or	many	people;	for	example,	one	person	could	have	the	role	of	test	manager
and	tester.	A	test	manager	has	responsibility	for	all	of	the	planning	activity,	while
the	tester	has	responsibility	for	activities	that	surround	the	preparation	of	test
cases.

ISO	29119-3	provides	outlines	of	four	test-planning	documents:

•the	test	plan;

•the	test	progress	report;

•the	test	summary	report;

•the	test	defect	report.

Test	management	depends	not	only	on	the	preparation	of	the	required	documents
but	also	on	the	development	of	the	right	entry	and	exit	criteria	and	estimates,	the
monitoring	of	progress	through	the	plan	and	the	control	activities	implemented
to	ensure	the	plan	is	achieved.

Test	estimating	can	be	achieved	in	one	of	two	ways:	metrics	or	an	expert-based
approach.

After	a	plan	of	activity	has	been	developed	and	time	begins	to	pass,	the	test
manager	needs	to	monitor	the	progress	of	the	activities.	If	any	activity	is	delayed
or	there	has	been	a	change	of	any	kind	in	the	project	itself,	the	test	manager	may
need	to	revise	the	plan	or	take	other	actions	to	ensure	that	the	project	is	delivered
on	time.

We	explored	how	the	defects	found	during	testing	are	recorded,	and	we	reviewed
the	level	of	detail	that	needs	to	be	recorded	to	ensure	that	any	defect	is	fully
understood	and	that	any	fix	then	made	is	the	right	one.

Finally,	we	looked	at	configuration	management.	When	running	test	cases
against	the	code,	it	is	important	that	the	tester	is	aware	of	the	version	of	code
being	tested	and	the	version	of	the	test	being	run.	Controlling	the	versioning	of
the	software	and	test	assets	is	called	configuration	management.	Lack	of
configuration	management	may	lead	to	issues	like	loss	of	already-delivered
functionality,	reappearance	of	previously	corrected	errors	and	no	understanding
of	which	version	of	the	test	was	run	against	which	version	of	the	code.

Example	examination	questions	with	answers

E1.	K1	question

When	assembling	a	test	team	to	work	on	an	enhancement	to	an	existing
system,	which	of	the	following	has	the	highest	level	of	test	independence?

a.	A	business	analyst	who	wrote	the	original	requirements	for	the	system.

b.	A	permanent	programmer	who	reviewed	some	of	the	new	code	but	who	has
not	written	any	of	it.

c.	A	permanent	tester	who	found	the	most	defects	in	the	original	system.

d.	A	contract	tester	who	has	never	worked	for	the	organisation	before.

E2.	K2	question

Which	of	the	following	correctly	identify	a	metrics-based	approach	to
estimation?

a.	Groups	of	experts	provide	estimates	based	on	their	experience.

b.	Volumes	of	defects	identified	at	a	given	stage	in	a	project.

c.	Records	of	defects	found	in	a	similar	stage	in	another	project	and	the	time
taken	to	remove	them.

d.	Comparison	of	the	estimates	given	by	testers	on	the	project	and	independent
experts.

E3.	K2	question

Which	of	the	following	is	appropriate	content	for	a	test	summary	report?

i.	The	status	of	testing	and	progress	against	the	test	plan.

ii.	Information	about	what	occurred	during	a	test	period.

iii.	A	review	of	test	activity	progress	and	resource	consumption	for	the	system
testing	phase.

iv.	An	assessment	of	the	quality	of	the	test	object	at	the	present	stage	of	testing.

a.	i	and	ii.

b.	ii	and	iii.

c.	iii	and	iv.

d.	i	and	iv.

E4.	K1	question

Which	of	the	following	terms	is	used	to	describe	the	management	of
software	components	comprising	an	integrated	system?

a.	Configuration	management.

b.	Defect	management.

c.	Test	monitoring.

d.	Risk	management.

E5.	K1	question

A	new	system	is	about	to	be	developed.	Which	of	the	following	functions	has
the	highest	level	of	risk?

a.	Likelihood	of	failure	=	20%;	impact	value	=	£100,000.

b.	Likelihood	of	failure	=	10%;	impact	value	=	£150,000.

c.	Likelihood	of	failure	=	1%;	impact	value	=	£500,000.

d.	Likelihood	of	failure	=	2%;	impact	value	=	£200,000.

E6.	K2	question

Which	of	the	following	statements	about	risks	is	most	accurate?

a.	Project	risks	rarely	affect	product	risk.

b.	Product	risks	rarely	affect	project	risk.

c.	A	risk-based	approach	is	more	likely	to	be	used	to	mitigate	product	rather	than
project	risks.

d.	A	risk-based	approach	is	more	likely	to	be	used	to	mitigate	project	rather	than
product	risks.

Answers	to	questions	in	the	chapter

SA1.	The	correct	answer	is	c.

SA2.	The	correct	answer	is	a.

SA3.	The	correct	answer	is	a.

Answers	to	example	examination	questions

E1.	The	correct	answer	is	d.

In	this	scenario,	the	contract	tester	who	has	never	worked	for	the	organisation
before	has	the	highest	level	of	test	independence.	The	three	others	are	less
independent	because	they	are	likely	to	make	assumptions	based	on	their	previous
knowledge	of	the	requirements,	code	and	general	functionality	of	the	original
system.

Note	that	independence	does	not	necessarily	equate	to	most	useful.	In	practice,
most	test	or	project	managers	would	recruit	a	permanent	tester	who	has	worked
on	the	original	system	in	preference	to	a	contract	tester	with	no	knowledge	of	the
system.	However,	when	assembling	a	team,	it	is	useful	to	have	staff	with	varying
levels	of	test	independence	and	system	knowledge.

E2.	The	correct	answer	is	c.

a.	This	approach	is	known	as	the	Wide	Band	Delphi	estimation	technique	and	is
based	on	multiple,	well-informed	estimates	but	not	on	data,	as	required	by	a
metrics-based	approach.

b.	Volumes	of	defects	identified	is	a	valid	metric	and	could	be	valuable	in
estimation,	but	without	data	about	how	much	effort	was	required	to	remove	them
we	would	not	be	able	to	use	the	data	about	volumes	in	a	metrics-based	approach.

c.	This	is	a	valid	metrics-based	approach	because	data	about	the	volume	of
defects	and	the	time	taken	to	remove	them	is	provided,	albeit	on	a	different

project.

d.	This	is	potentially	an	effective	way	to	improve	the	ability	of	testers	to	estimate
accurately,	but	it	is	expert-based	rather	than	metrics-based	because	there	is	no
actual	data	to	provide	measures	of	achievement.

E3.	The	correct	answer	is	b.

While	all	of	the	options	describe	content	that	summarises	activity,	option	i	is
focused	on	identifying	specific	progress	information,	that	is,	whether	or	not
progress	is	consistent	with	the	plan.	Item	iv	is	also	specific	to	progress	towards
an	objective	(the	quality	of	the	test	object).	Items	ii	and	ii,	in	contrast,	provide	a
broader	view	of	what	happened	and	what	has	been	done,	that	is,	they	summarise
rather	than	report	specific	progress.	For	these	reasons,	items	ii	and	iii	are	more
appropriate	to	a	test	summary	report,	while	items	i	and	iv	are	more	appropriate
to	a	test	progress	report.

E4.	The	correct	answer	is	a.

Defect	management	is	the	collection	and	processing	of	defects	raised	when
errors	and	defects	are	discovered.	Test	monitoring	identifies	the	status	of	the
testing	activity	on	a	continual	basis.	Risk	management	identifies,	analyses	and
mitigates	risks	to	the	project	and	the	product.	Configuration	management	is
concerned	with	the	management	of	changes	to	software	components	and	their
associated	documentation	and	testware.

E5.	The	correct	answer	is	a.

In	b,	the	product	of	probability	×	impact	has	the	value	£15,000;	in	c,	the	value	is
£5,000	and	in	d,	it	is	£4,000.	The	value	of	£20,000	in	a	is	therefore	the	highest.

E6.	The	correct	answer	is	c.

In	general,	project	risk	and	product	risk	can	be	hard	to	differentiate.	Anything
that	impacts	on	the	quality	of	the	delivered	system	is	likely	to	lead	to	delays	or
increased	costs	as	the	problem	is	tackled.	Anything	causing	delays	to	the	project
is	likely	to	threaten	the	delivered	system’s	quality.	The	risk-based	approach	is	an
approach	to	managing	product	risk	through	testing,	so	it	impacts	most	directly
on	product	risk.

6TOOL	SUPPORT	FOR	TESTING

Peter	Williams

INTRODUCTION

As	seen	in	earlier	chapters	there	are	many	tasks	and	activities	that	need	to	be
performed	during	the	testing	process.	In	addition,	other	tasks	need	to	be
performed	to	support	the	testing	process.

In	order	to	assist	in	making	the	testing	process	easier	to	perform	and	manage,
many	different	types	of	test	tools	have	been	developed	and	used	for	a	wide
variety	of	testing	tasks.	Some	of	them	have	been	developed	in-house	by	an
organisation’s	own	software	development	or	testing	department.	Others	have
been	developed	by	software	houses	(also	known	as	test-tool	vendors)	to	sell	to
organisations	that	perform	testing.	More	recently,	open	source	tools	have	been
developed	that	can	be	reused	and	enhanced.	Even	within	the	same	type	of	tool,
some	will	be	home-grown	while	others	will	be	developed	as	open	source	tools	or
by	test-tool	vendors.

This	chapter	discusses	the	potential	benefits	and	pitfalls	associated	with	test
tools	in	general.	It	then	describes	the	most	commonly	used	types	of	test	tools	and
concludes	with	a	process	for	introducing	a	tool	into	a	test	organisation.

Learning	objectives

The	learning	objectives	for	this	chapter	are	listed	below.	You	can	confirm	that
you	have	achieved	these	by	using	the	self-assessment	questions	that	follow	the
‘Check	of	understanding’	boxes	distributed	throughout	the	text	and	the	example
examination	questions	provided	at	the	end	of	the	chapter.	The	chapter	summary
will	remind	you	of	the	key	ideas.

The	sections	are	allocated	a	K	number	to	represent	the	level	of	understanding
required	for	that	section;	where	an	individual	topic	has	a	lower	K	number	than
the	section	as	a	whole,	this	is	indicated	for	that	topic;	for	an	explanation	of	the	K
numbers,	see	the	Introduction	(page	2).

Test	tool	considerations	(K2)

•FL-6.1.1	Classify	test	tools	according	to	their	purpose	and	the	test	activities
they	support.

•FL-6.1.2	Identify	benefits	and	risks	of	test	automation.	(K1)

•FL-6.1.3	Remember	special	considerations	for	test	execution	and	test
management	tools.	(K1)

Effective	use	of	tools	(K1)

•FL-6.2.1	Identify	the	main	principles	for	selecting	a	tool.

•FL-6.2.2	Recall	the	objectives	for	using	pilot	projects	to	introduce	tools.

•FL-6.2.3	Identify	the	success	factors	for	evaluation,	implementation,

deployment,	and	on-going	support	of	test	tools	in	an	organization.

Self-assessment	questions

The	following	questions	have	been	designed	to	enable	you	to	check	your	current
level	of	understanding	for	the	topics	in	this	chapter.	The	answers	are	at	the	end
of	the	chapter.

Question	SA1	(K2)

Which	of	the	following	pairs	of	test	tools	are	likely	to	be	most	useful	during
the	test	analysis	stage	of	the	test	process?

i.	Test	execution	tool.

ii.	Test	data	preparation	tool.

iii.	Test	management	tool.

iv.	Requirements	management	tool.

a.	i	and	ii.

b.	i	and	iv.

c.	ii	and	iii.

d.	iii	and	iv.

Question	SA2	(K1)

Which	of	the	following	is	most	likely	to	cause	failure	in	the	implementation
of	a	test	tool?

a.	Underestimating	the	demand	for	a	tool.

b.	The	purchase	price	of	the	tool.

c.	No	agreed	requirements	for	the	tool.

d.	The	cost	of	resources	to	implement	and	maintain	the	tool.

Question	SA3	(K2)

What	benefits	do	static	analysis	tools	have	over	test	execution	tools?

a.	Static	analysis	tools	find	defects	earlier	in	the	life	cycle.

b.	Static	analysis	tools	can	be	used	before	code	is	written.

c.	Static	analysis	tools	test	that	the	delivered	code	meets	business	requirements.

d.	Static	analysis	tools	are	particularly	effective	for	regression	testing.

WHAT	IS	A	TEST	TOOL?

Definition	of	a	test	tool

The	ISTQB	Glossary	of	Testing	Terms	defines	a	test	tool	as:

A	software	product	that	supports	one	or	more	test	activities,	such	as	planning	and
control,	specification,	building	initial	files	and	data,	test	execution	and	test
analysis.

Therefore,	a	test	tool	can	be	thought	of	as	a	piece	of	software	that	is	used	to
make	the	testing	process	more	effective	or	efficient.	In	other	words,	anything
that	makes	testing	easier,	quicker,	more	accurate	and	so	on.

This	book	will	focus	on	those	test	tools	that	are	listed	in	the	2018	syllabus.	These
are	listed	in	Table	6.5	on	pages	227	to	232	and	are,	generally,	the	test	tools	that
are	most	commonly	used	in	the	testing	process.	Other	test	tools	that	have	been
removed	from	the	2018	syllabus	(such	as	Test	Comparators)	are	also	discussed
to	help	understand	newer	tools	and	for	completeness.	But	they	do	not	need	to	be
studied	for	the	exam	and	are	marked	with	[Not	in	Syllabus].

Benefits	and	risks	of	using	any	type	of	tool

Let	us	consider	the	building	of	a	new	hotel	and	examine	the	similarities	with	the
introduction	and	use	of	test	tools.	Test	tools	need	to	be	thought	of	as	long-term
investments	that	need	maintenance	to	provide	long-term	benefits.	Similarly,
building	a	hotel	requires	a	lot	of	upfront	planning,	effort	and	investment.	Even
when	the	hotel	is	ready	for	use,	there	is	still	a	continual	long-term	requirement
for	the	provision	of	services	such	as	catering,	cleaning,	building	maintenance,
provision	of	staff	to	provide	ad	hoc	services	to	customers	and	so	on	and,	from
time	to	time,	the	need	for	upgrades	to	infrastructure	to	keep	up	with	new
technology	and	customer	demands.	The	long-term	benefit	is	that	this	upfront
investment	and	ongoing	maintenance	and	support	can	provide	substantial
income	in	return.

In	addition,	there	are	risks	that,	over	a	period	of	time,	the	location	of	the	hotel
will	become	less	attractive,	resulting	in	lower	demand,	lower	usage	and	a
maintenance	cost	that	is	greater	than	the	income	received.	Therefore,	the	initial
investment	is	wasted	because	the	ongoing	need/requirement	did	not	exist.

The	graph	in	Figure	6.1	demonstrates	a	typical	payback	model	for	implementing
a	test	execution	tool.	The	same	principle	applies	to	the	majority	of	test	tools.
Note	that	there	is	an	ongoing	maintenance	cost	of	using	the	tool,	but	this
ongoing	maintenance	cost	needs	to	be	less	than	the	cost	of	performing	testing
activities	without	the	tool	if	the	investment	is	to	be	worthwhile.

Figure	6.1	Test	tool	payback	model

The	same	advantages	and	disadvantages	apply	to	the	use	of	most	types	of	test
tool.	However,	there	are	exceptions	to	this	generalisation	(and	to	the	same
generalisation	made	in	the	ISTQB	syllabus).	Some	tools,	such	as	comparators,
can	be	used	virtually	straight	out	of	the	box.	A	comparator	can	check	whether
one	large	test	file	is	the	same	as	another.	If	it	is	different,	it	can	identify	and
report	on	the	differences.	This	is	very	difficult	and	time-consuming	to	do
manually.	In	addition,	defect	management	tools	are	fairly	intuitive	and	easy	for
both	experienced	and	novice	testers	to	use.	They	are	also	likely	to	provide	a
‘quick	win’.

Other	tools	can	be	built	by	developers	in-house	as	the	need	arises.	For	instance,
test	harnesses,	test	oracles	or	test	data	preparation	tools	may	be	relatively	easy	to
produce	for	developers	with	a	good	understanding	of	the	tool	requirements	and
the	systems	and	databases	in	the	test	environment.	More	recently,	open	source
tools	have	allowed	developers	and	testers	to	use	freeware	tools	as	the	building
blocks	for	developing	in-house	tools	to	meet	specific	needs.	In	addition,	test
tools	have	been	developed	by	the	UK	Financial	Conduct	Authority	for	use	by
banks	and	building	societies	that	participate	in	the	Faster	Payments	and	Account
Switcher	schemes.

Benefits

The	main	benefit	of	using	test	tools	is	similar	to	the	main	benefit	of	automating
any	process.	That	is,	the	amount	of	time	and	effort	spent	performing	routine,
mundane,	repetitive	tasks	is	greatly	reduced.	For	example,	consider	the	time	and
cost	of	making	consumer	goods	by	hand	or	in	a	factory.

This	time	saved	can	be	used	to	reduce	the	costs	of	testing	or	it	can	be	used	to
allow	testers	to	spend	more	time	on	the	more	intellectual	tasks	of	test	planning,
analysis	and	design.	In	turn,	this	can	enable	more	focused	and	appropriate	testing
to	be	done	–	rather	than	having	many	testers	working	long	hours,	running

hundreds	of	tests.

Related	to	this	is	the	fact	that	the	automation	of	any	process	usually	results	in
more	predictable	and	consistent	results.	Similarly,	the	use	of	test	tools	provides
more	predictable	and	consistent	results	as	human	failings,	such	as	manual-
keying	errors,	misunderstandings,	incorrect	assumptions,	forgetfulness	and	so
on,	are	eliminated.	It	also	means	that	any	reports	or	findings	tend	to	be	objective
rather	than	subjective.	For	instance,	humans	often	assume	that	something	that
seems	reasonable	is	correct,	when	in	fact	it	may	not	be	what	the	system	is
supposed	to	do.

The	widespread	use	of	databases	to	hold	the	data	input,	processed	or	captured	by
the	test	tool,	means	that	it	is	generally	much	easier	and	quicker	to	obtain	and
present	accurate	test	management	information,	such	as	test	progress,	defects
found/fixed	and	so	on	(see	Chapter	5).	The	introduction	of	web-based	tools	that
have	databases	stored	in	the	cloud	means	that	such	information	is	available	to
global	organisations	24	hours	per	day,	seven	days	per	week.	This	facilitates
round	the	clock	working	and	can	reduce	elapsed	times	to	analyse,	fix	and	retest
defects.

Risks

Most	of	the	risks	associated	with	the	use	of	test	tools	are	concerned	with	over-
optimistic	expectations	of	what	the	tool	can	do	and	a	lack	of	appreciation	of	the
effort	required	to	implement	and	obtain	the	benefits	that	the	tool	can	bring.

For	example,	consider	the	production	environments	of	most	organisations
thinking	about	using	test	tools.	They	are	unlikely	to	have	been	designed	and	built
with	test	tools	in	mind.	Therefore,	assuming	that	you	want	a	test	environment	to
be	a	copy	of	production	(or	at	least	as	close	to	it	as	possible),	you	will	also	have
a	test	environment	that	is	not	designed	and	built	with	test	tools	in	mind.

Consider	the	test	environments	used	by	vendors	to	demonstrate	their	test	tools.	If
you	were	the	vendor,	would	you	design	the	environment	to	enable	you	to
demonstrate	the	tool	at	its	best	or	to	demonstrate	the	shortcomings	it	may
encounter	in	a	typical	test	environment?

Therefore,	unless	detailed	analysis	and	evaluation	is	done,	it	is	likely	that	test
tools	will	end	up	as	something	that	seemed	a	good	idea	at	the	time	but	have	been
largely	a	waste	of	time	and	money.	A	process	for	avoiding	such	problems	when
introducing	a	tool	into	an	organisation	is	described	later	in	this	chapter.

After	a	test	tool	has	been	implemented	and	measurable	benefits	are	being
achieved,	it	is	important	to	put	in	sufficient	effort	to	maintain	the	tool,	the
processes	surrounding	it	and	the	test	environment	in	which	it	is	used.	Otherwise
there	is	a	risk	that	the	benefits	being	obtained	will	decrease	and	the	tool	will
become	redundant.	Additionally,	opportunities	for	improving	the	way	in	which
the	tool	is	used	could	also	be	missed.

For	example,	the	acquisition	of	various	test	tools	from	multiple	vendors	will
require	interfaces	to	be	built	or	configured	to	import	and	export	data	between
tools.	Otherwise	much	time	may	be	spent	manually	cutting	and	pasting	data
from	one	tool	to	another.	If	this	is	not	done,	then	data	inconsistencies	and	version
control	problems	are	likely	to	arise.	Similar	problems	may	arise	when	testing
with	third-party	suppliers	or	as	a	result	of	mergers	and	acquisitions.	The	increase
in	common	standards	for	interfaces	such	as	Extensible	Markup	Language	(XML)
means	that	the	capability	for	developing	successful	interfaces	is	greater,	but
substantial	time	and	effort	are	often	still	required.

Maintenance	effort	will	also	be	required	to	upgrade	and	reconfigure	tools	so	that
they	remain	compliant	with	new	platforms	or	operating	systems.

EXAMPLE	–	HOTEL	CHAIN	SCENARIO

An	example	of	a	hotel	chain	with	several	UK-based	hotels	will	be	used
throughout	this	chapter.	The	systems	that	comprise	the	organisation’s	system
architecture	are	shown	in	Figure	6.2.

The	general	public	can	book	rooms	at	any	of	the	chain’s	hotels	by:

•contacting	staff	in	the	hotel,	who	then	use	a	Graphical	User	Interface	(GUI)
front-end	to	make	the	booking;

•telephoning	customer	services	who	then	use	a	GUI	front-end	to	make	the
booking;

•using	the	company’s	website	to	make	the	booking	online;

•using	a	mobile	app	that	can	be	downloaded	from	the	hotel	chain’s	website.

Figure	6.2	Hotel	system	architecture

In	all	cases,	communication	with	the	mainframe	computer	is	done	via	a
middleware	layer	of	XML	messages.

There	is	a	document	production	system	that	produces	PDF	versions	of	customer
correspondence	such	as	booking	confirmations,	bills,	invoices	and	so	on.	These
are	stored	securely	and	can	be	downloaded	by	customers	from	the	website.

Direct	debit	payments	are	made	via	Bankers	Automated	Clearing	Services
(BACS).	Files	are	transmitted	and	confirmation	and	error	messages	are	received
back.	Credit	card	payments	can	be	made.	An	enhancement	to	the	security
systems	is	being	made	to	comply	with	Payment	Card	Industry	standards.
Payments	can	also	be	made	by	leading	electronic	payment	systems	(e.g.	PayPal).

Validation	of	bank	account	details	is	performed	by	sending	XML	messages	to
and	from	a	third-party	system.

Validation	and	enquiry	of	address	and	postcode	is	also	performed	by	sending
XML	messages	to	and	from	a	third-party	system.

A	new	release	of	the	system	is	planned	for	six	months’	time.	This	will	include:

•Code	changes	to	replace	the	XML	middleware	layer.	Mainframe	changes	will
be	performed	by	an	outsourced	development	team	in	India.

•Various	changes	to	website	screens	to	improve	usability.

•The	introduction	of	a	new	third-party	calendar	object	from	which	dates	can	be
selected.

•Removal	of	the	ability	for	customers	to	pay	by	cheque.

•An	amended	customer	bill,	plus	two	other	amended	documents.

•Two	new	output	documents.

•Fixes	to	various	existing	low-	and	medium-severity	defects.

•Improvements	to	disaster	recovery	by	using	cloud-based	methods.

•Ongoing	enhancements	to	the	mobile	app	using	Agile	development	methods.
These	will	be	deployed	to	production	approximately	every	three	weeks.

CHECK	OF	UNDERSTANDING

1.	Would	you	expect	a	quick	return	on	your	investment	in	test	tools?	Why?

2.	Describe	three	potential	benefits	of	using	test	tools.

3.	Describe	two	risks	of	using	test	tools.

TEST	TOOLS

Types	of	tool

There	are	several	ways	in	which	test	tools	can	be	classified.	They	can	be
classified	according	to:

•their	purpose;

•the	test	process	and	the	Software	Development	Life	Cycle	with	which	they	are
primarily	associated;

•the	type	of	testing	that	they	support;

•the	source	of	tool	(shareware,	open	source,	free	or	commercial);

•the	technology	used;

•who	uses	them.

In	this	book,	test	tools	will	be	classified	according	to	the	type	of	activity	they

support	(as	in	the	ISTQB	Foundation	Level	syllabus).

Tool	support	for	management	of	testing	and	testware

Test	management	tools	and	application	life	cycle	management	tools	Test
management	tools	and	application	life	cycle	management	(ALM)	tools	provide
support	for	various	activities	and	tasks	throughout	the	testing	process.	The
main	difference	between	a	test	management	tool	and	an	ALM	tool	is	that:

•A	test	management	tool	tends	to	focus	on	the	test	process	and	allow	integration
to	other	tools	(but	this	integration	may	need	to	be	built	using	APIs).

•An	ALM	tool	typically	has	built-in	integration	with	other	tools.

In	the	remainder	of	this	section	any	service/function	provided	by	a	test
management	tool	will	also	be	met	by	an	ALM	tool	unless	otherwise	stated.

Consequently,	standalone	test	management	tools	tend	to	be	cheaper	than	ALM
tools.

The	diagram	in	Figure	6.3	shows	how	a	test	management	tool	(or	ALM	tool)	is
the	hub	or	centre	of	a	set	of	integrated	test	tools.

Test	management	(and	ALM)	tools	provide	an	architecture	for	creating,	storing

and	editing	test	procedures.	These	may	be	linked	or	traced	to	requirements,	test
conditions	and	risks.	Such	test	procedures	can	then	be	prioritised	or	grouped
together	and	scheduled	so	that	they	are	run	in	the	most	effective	and	efficient
order.	Some	test	management	tools	allow	dependencies	to	be	recorded	so	that
tests	that	will	fail	owing	to	a	known	defect	can	be	highlighted	and	left
unexecuted.	This	allows	testers	to	be	redirected	to	run	the	highest	priority	tests
available	rather	than	waste	their	time	and	the	test	data	they	have	prepared	on
tests	that	are	certain	to	fail.

Figure	6.3	An	integrated	set	of	tools

Tests	can	be	recorded	as	passed	or	failed	and	usually	a	test	management	(or
ALM)	tool	provides	an	interface	to	a	defect	management	tool	so	that	a	defect	can
be	raised	if	the	actual	and	expected	results	differ.

Test	management	(or	ALM)	tools	can	provide	management	information	and
reports	on	test	procedures	passed	or	failed.	The	amount	of	integration	with	other
specialist	tools	is	significant	here.	For	instance,	integration	with	requirements
management	tools	allows	reports	to	be	produced	on	test	progress	against	one	or
more	requirements.	Integration	with	incident	management	tools	also	allows
reports	to	include	analysis	of	defects	against	requirements.

Test	management	tools	generally	hold	data	in	a	database.	This	allows	a	large
amount	of	reports	and	metrics	to	be	produced.	The	metrics	produced	can	be	used
as	inputs	to:

•test	and	project	management	to	control	the	current	project;

•estimates	for	future	projects;

•identify	weaknesses	or	inefficiencies	in	the	development	or	test	processes	that
can	be	subsequently	investigated	with	the	aim	of	improving	them.

Test	management	information	reports	should	be	designed	to	meet	the	needs	of
project	managers	and	other	key	users.	It	may	be	necessary	to	export/import	data
in	appropriate	formats	to	other	tools	such	as:

•spreadsheets;

•project	management/scheduling	tools;

•management	accounting	systems;

•human	resources/personnel	systems	and	so	on.

A	test	management	(or	ALM)	tool	can	also	enable	reuse	of	existing	testware	in
future	test	projects.

USE	IN	HOTEL	CHAIN	SCENARIO

In	the	scenario,	a	test	management	(or	ALM)	tool	can	be	used	to	write	down	and
store	requirements	for	new	functionality	and	subsequently	to	hold	the	test
conditions	necessary	to	test	these	requirements.

It	can	also	be	used	to	record	whether	tests	have	passed	or	failed	and	to	produce
test	management	information	on	progress	to	date.

Additionally,	requirements	and	test	conditions	from	previous	developments	will
already	exist	in	the	test	management	tool.	These	can	be	used	as	the	basis	for	the

regression	testing	required.	Indeed,	a	regression	test	pack	may	already	exist.
Clearly	the	regression	test	pack	would	have	to	be	reviewed	and	amended	as
necessary	to	make	it	relevant	to	this	release.	However,	the	benefit	is	that	much	of
the	previous	work	could	be	reused,	which,	in	turn,	means	that	much	less	effort
will	be	involved	to	create	a	regression	test	pack.

Defect	management	tools	Defect	management	tools	(also	known	as	incident
management	tools)	are	one	of	the	most	widely	used	types	of	test	tool.	At	a	basic
level,	defect	management	tools	are	used	to	perform	two	critical	activities:
creation	of	a	defect	report;	and	maintenance	of	details	about	the	defect	as	it
progresses	through	the	defect	life	cycle.

The	level	of	detail	to	be	captured	about	the	defect	can	be	varied	depending	on
the	characteristics	of	the	tool	itself	and	the	way	in	which	the	defect	management
tool	is	configured	and	used	by	the	test	organisation.

For	example,	the	defect	management	tool	can	be	configured	so	that	lots	of
mandatory	information	is	required	in	order	to	comply	with	industry	or	generic
standards	such	as	IEEE	1044.	In	addition,	workflow	rules	may	also	be	applied	to
ensure	that	the	agreed	defect	life	cycle	is	strictly	adhered	to,	with	defects	only
able	to	be	assigned	to	particular	teams	or	users.	Alternatively,	the	tool	can	be
configured	to	require	very	limited	mandatory	information,	with	most	fields	being
free	format.

Defect	management	tools	also	use	a	database	to	store	and	manage	details	of
defects.	This	allows	the	defect	to	be	categorised	according	to	the	values	stored	in
appropriate	fields.	Such	values	will	change	during	the	defect	life	cycle	as	the
defect	is	analysed,	debugged,	fixed	and	retested.	It	is	often	possible	to	view	the
history	of	changes	made	to	the	defect.

The	database	structure	also	enables	defects	to	be	searched	and	analysed	(using
either	filters	or	more	complex	Structured	Query	Language	(SQL)-type	queries).
This	provides	the	basis	for	management	information	about	defects.	Note	that	as
the	values	held	against	each	defect	change,	the	management	information	will
also	change.	Therefore,	users	need	to	be	aware	of	the	danger	of	using	outdated
reports.

This	data	can	be	used	in	conjunction	with	data	held	in	test	management	tools
when	planning	and	estimating	for	future	projects.	It	can	also	be	analysed	to
provide	input	to	test	process	improvement	projects.

Fields	in	the	database	structure	normally	include:

•priority	(e.g.	high,	medium,	low);

•severity	(e.g.	high,	medium,	low);

•assignee	(the	person	to	whom	the	defect	is	currently	assigned,	e.g.	a	developer
for	debugging,	a	tester	to	perform	retesting);

•status	in	the	defect	life	cycle	(e.g.	New,	Open,	Fixed,	Reopen,	Closed).

This	allows	management	information	to	be	produced	from	the	defect
management	database	about	the	number	of	high-priority	defects	with	a	status	of
Open	or	Reopen	that	are	assigned	to,	say,	Peter	Morgan,	compared	with	the
number	assigned	to	Brian	Hambling.

ALM	tools	typically	include	fully	integrated	defect	management	tools	as	part	of
their	core	product,	while	other	defect	management	tools	can	be	integrated	with
test	management,	requirements	management	and/or	test	execution	tools.	Such
integration	enables	defects	to	be	input	and	traced	back	to	test	cases	and
requirements.

USE	IN	HOTEL	CHAIN	SCENARIO

A	defect	management	tool	can	be	used	to	raise	new	defects	and	process	them
through	the	defect	life	cycle	until	resolved.	It	can	also	be	used	to	check	whether
defects	(or	similar	defects)	have	been	raised	before,	especially	for	defects	raised
during	regression	testing.

A	defect	management	tool	could	also	be	used	to	prioritise	defects	so	that
developers	fix	the	most	important	ones	first.	It	could	also	highlight	clusters	of
defects.	This	may	suggest	that	more	detailed	testing	needs	to	be	done	on	the
areas	of	functionality	where	most	defects	are	being	found,	as	it	is	probable	that
further	defects	will	be	found	as	well.

Requirements	management	tools	Requirements	management	tools	are	used	by
business	analysts	to	record,	manage	and	prioritise	the	requirements	of	a
system.	They	can	also	be	used	to	manage	changes	to	requirements	–	something
that	can	be	a	significant	problem	for	testers,	as	test	cases	are	designed	and
executed	to	establish	whether	the	delivered	system	meets	its	requirements.
Therefore,	if	requirements	change	after	tests	have	been	written	then	test	cases
may	also	need	to	change.	There	is	also	a	potential	problem	of	changes	not
being	communicated	to	all	interested	parties,	thus	testers	could	be	using	an	old
set	of	requirements	while	new	ones	are	being	issued	to	developers.

The	use	of	a	traceability	function	within	a	requirements	tool	(and/or	integrated
with	an	ALM	or	test	management	tool)	enables	links	and	references	to	be	made
between	requirements,	functions,	test	conditions,	defects	and	other	testware
items.	This	means	that	as	requirements	change,	it	is	easy	to	identify	which	other
items	may	need	to	change.

Some	requirements	management	tools	can	be	integrated	with	test	management
tools,	while	ALM	tools	typically	enable	requirements	to	be	input	and	related	to
test	cases	within	the	ALM	tool.

Requirements	management	tools	also	enable	requirements	coverage	metrics	to
be	calculated	easily,	as	traceability	enables	test	cases	to	be	mapped	to
requirements.

As	can	be	seen,	traceability	can	create	a	lot	of	maintenance	work,	but	it	does
highlight	those	areas	that	are	undergoing	change.

USE	IN	HOTEL	CHAIN	SCENARIO

A	change	is	required	to	three	PDF	documents	that	are	stored	securely	on	the
website	so	that	customers	can	log	in	and	download	them.	The	requirements	are
documented	in	the	requirements	management	tool.	Testers	obtain	the
requirements	from	the	tool	and	begin	to	devise	test	conditions	and	test	cases.	A
subsequent	change	means	that	further	changes	are	made	to	the	requirements.	The
testers	should	be	made	aware	of	the	changes	so	that	they	can	provide	input	to	the
impact	analysis.	Traceability	within	a	requirements	management	tool	will	also
highlight	the	test	conditions	affected	by	the	changed	requirement.	The	testers	can

review	the	change	in	requirements	and	then	consider	what	changes	need	to	be
made	to	the	test	conditions	and	test	cases.

Configuration	management	tools	and	continuous	integration	tools
Configuration	management	tools	are	designed	primarily	for	managing	the
versions	of	different	software	(and	hardware)	components	that	comprise	a
complete	build	of	the	system;	and	various	complete	builds	of	systems	that	exist
for	various	software	platforms	over	a	period	of	time.

Continuous	integration	tools	have	been	developed	more	recently	and	can	be	used
in	conjunction	with	configuration	management	tools	to	ensure	that	the	correct
versions	of	different	programs	are	integrated	into	the	Daily	Build	that	is
deployed	into	the	test	environment.	This	is	particularly	advantageous	for	Agile
developments	where	it	is	important	to	produce	builds	automatically	and	quickly.

A	build	is	a	development	activity	where	a	complete	system	is	compiled	and
linked	(typically	daily)	so	that	a	consistent	system	is	available	at	any	time
including	all	the	latest	changes.

USE	IN	HOTEL	CHAIN	SCENARIO

Within	the	hotel	booking	system,	there	will	be	many	versions	of	sub-systems	due
to	the	date	at	which	the	version	was	included	in	a	build,	or	the	operating	system
on	which	the	version	works	and	so	on.	Each	version	of	a	sub-system	will	have	a
unique	version	number	and	will	comprise	many	different	components	(e.g.	web
services,	program	files,	data	files,	etc.).

The	configuration	management	tool	maps	the	version	number	of	each	sub-
system	to	the	build	(or	release)	number	of	the	integrated	system.	As	shown	in
Table	6.1,	Build	A	(UNIX)	and	Build	B	(Windows	Server	2016)	might	use	the
same	version	(v1.02)	of	the	Payments	In	sub-system,	but	Release	C	might	use
version	v1.04.

Table	6.1	Configuration	traceability

The	same	principle	applies	to	testware	with	a	different	version	number	for	a	test
procedure	being	used,	depending	on	the	version	number	of	the	build.	For
instance,	test	procedure	TP123a	might	be	used	for	Build	A	and	TP123b	might	be
used	for	Build	B	–	even	though	both	have	the	same	purpose	and	even	expected
results.	However,	another	test	procedure,	TP201,	may	be	applicable	to	all	builds.

A	continuous	integration	tool	will	support	the	Agile	development	methods	being
used	for	the	mobile	app	so	that	deployments	into	the	test	environment	can	be
done	automatically	and	quickly.

The	amount	of	benefit	to	be	obtained	from	using	configuration	management
tools	and	continuous	integration	tools	is	largely	dependent	on:

•the	complexity	of	the	system	architecture;

•the	number	and	frequency	of	builds	of	the	integrated	system;

•how	much	choice	(options)	is	available	to	customers	(whether	internal	or
external).

For	example,	a	software	house	selling	different	versions	of	a	product	to	many
customers	who	run	on	a	variety	of	operating	systems	is	likely	to	find
configuration	management	tools	more	useful	than	an	internal	development
department	working	on	a	single	operating	system	for	a	single	customer.
However,	an	internal	development	department	using	an	Agile	approach	will	find

continuous	integration	tools	almost	essential	for	managing	frequent	deployments
(Daily	Builds)	into	the	test	environment.

The	use	of	configuration	management	tools	allows	traceability	between	testware
and	builds	of	an	integrated	system	and	versions	of	sub-systems	and	modules.
Traceability	is	useful	for:

•identifying	the	correct	version	of	test	procedures	to	be	used;

•determining	which	test	procedures	and	other	testware	can	be	reused	or	need	to
be	updated/maintained;

•assisting	the	debugging	process	so	that	a	failure	found	when	running	a	test
procedure	can	be	traced	back	to	the	appropriate	version	of	a	sub-system.

CHECK	OF	UNDERSTANDING

1.	What	is	traceability?

2.	Which	tool	is	likely	to	be	most	closely	integrated	with	a	requirements
management	tool?

3.	Which	tool	would	you	use	to	identify	the	version	of	the	software	component
being	tested?

4.	Which	tool	would	you	use	to	produce	a	Daily	Build?

Tool	support	for	static	testing

Tools	that	support	reviews	Tools	that	support	reviews	(also	known	as	review
tools	or	review	process	support	tools	in	previous	versions	of	the	syllabus)
provide	a	framework	for	reviews	or	inspections.	This	can	include:

•maintaining	information	about	the	review	process,	such	as	rules	and	checklists;

•the	ability	to	record,	communicate	and	retain	review	comments	and	defects;

•the	ability	to	amend	and	reissue	the	deliverable	under	review	while	retaining	a
history	or	log	of	the	changes	made;

•traceability	functions	to	enable	changes	to	deliverables	under	review	to
highlight	other	deliverables	that	may	be	affected	by	the	change;

•the	use	of	web	technology	to	provide	access	from	any	geographical	location	to
this	information.

Review	tools	can	interface	with	configuration	management	tools	to	control	the
version	numbers	of	a	document	under	review.

If	reviews	and	inspections	are	already	performed	effectively,	then	a	review	tool
can	be	implemented	fairly	quickly	and	relatively	cheaply.	However,	if	such	a
tool	is	used	as	a	means	for	imposing	the	use	of	reviews,	then	the	training	and
implementation	costs	will	be	fairly	high	(as	is	the	case	for	implementing	a
review	process	without	such	tools).	These	tools	support	the	review	process,	but
management	buy-in	to	reviews	is	necessary	if	benefits	from	them	are	to	be
obtained	in	the	long	run.

Review	tools	tend	to	be	more	beneficial	for	peer	(or	technical)	reviews	and
inspections	rather	than	walkthroughs	and	informal	reviews.

USE	IN	HOTEL	CHAIN	SCENARIO

The	hotel	company	could	use	a	review	tool	to	perform	a	review	of	a	system
specification	written	in	the	UK,	so	that	offshore	developers	can	be	involved	in
the	review	process.	In	turn,	the	review	of	program	code,	written	offshore,	could
also	be	performed	using	such	a	tool.	This	means	that	both	the	UK	and	offshore
staff	could	be	involved	in	both	reviews,	with	no	excuses	for	the	right	people	not
being	available	to	attend.

Static	analysis	tools	Static	analysis	tools	(also	known	as	static	code	analysers)
analyse	code	before	it	is	executed	in	order	to	identify	defects	as	early	as
possible.	Therefore,	they	are	used	mainly	by	developers	prior	to	unit	testing.	A
static	analysis	tool	generates	lots	of	error	and	warning	messages	about	the
code.	Training	may	be	required	in	order	to	interpret	these	messages	and	it	may

also	be	necessary	to	configure	the	tool	to	filter	out	particular	types	of	warning
messages	that	are	not	relevant.	The	use	of	static	analysis	tools	on	existing	or
amended	code	is	likely	to	result	in	lots	of	messages	concerning	programming
standards.	A	way	of	dealing	with	this	situation	should	be	considered	during	the
selection	and	implementation	process.	For	instance,	it	may	be	agreed	that
small	changes	to	existing	code	should	not	use	the	static	analysis	tool,	whereas
medium	to	large	changes	to	existing	code	should	use	the	static	analysis	tool.	A
rewrite	should	be	considered	if	the	existing	code	is	significantly	non-
compliant.

Static	analysis	tools	can	find	defects	that	are	hard	to	find	during	dynamic	testing.
They	can	also	be	used	to	enforce	programming	standards	(including	secure
coding),	to	improve	the	understanding	of	the	code	and	to	calculate	complexity
and	other	metrics	(see	Chapter	3).

Some	static	analysis	tools	are	integrated	with	dynamic	analysis	tools	and
coverage	measurement	tools.	They	are	usually	language	specific,	so	to	test	code
written	in	C++	you	need	to	have	a	version	of	a	static	analysis	tool	that	is	specific
to	C++.

Other	static	analysis	tools	come	as	part	of	programming	languages	or	only	work
with	particular	development	platforms.	Note	that	debugging	tools	and	compilers
provide	some	basic	functions	of	a	static	analysis	tool,	but	they	are	generally	not
considered	to	be	test	tools	and	are	excluded	from	the	ISTQB	syllabus.

The	types	of	defect	that	can	be	found	using	a	static	analysis	tool	can	include:

•Syntax	errors	(e.g.	spelling	or	missing	punctuation).

•Variance	from	programming	standards	(e.g.	too	difficult	to	maintain).

•Invalid	code	structures	(missing	ENDIF	statements).

•The	structure	of	the	code	means	that	some	modules	or	sections	of	code	may	not
be	executed.	Such	unreachable	code	or	invalid	code	dependencies	may	point	to
errors	in	code	structure.

•Portability	(e.g.	code	compiles	on	Windows	but	not	on	UNIX).

•Security	vulnerabilities.

•Inconsistent	interfaces	between	components	(e.g.	XML	messages	produced	by
component	A	are	not	of	the	correct	format	to	be	read	by	component	B).

•References	to	variables	that	have	a	null	value	or	variables	declared	but	never
used.

USE	IN	HOTEL	CHAIN	SCENARIO

Static	analysis	tools	may	be	considered	worthwhile	for	code	being	developed	by
offshore	development	teams	who	are	not	familiar	with	in-house	coding
standards.	Such	tools	may	also	be	considered	beneficial	for	high-risk	functions
such	as	BACS	and	other	external	interfaces.

CHECK	OF	UNDERSTANDING

1.	Which	of	the	tools	used	for	static	testing	is/are	most	likely	to	be	used	by
developers	rather	than	testers?

2.	In	which	part	of	the	test	process	are	static	analysis	tools	likely	to	be	most
useful?

Tool	support	for	test	design	and	implementation

Test	design	tools	Test	design	tools	are	used	to	support	the	generation	and
creation	of	test	cases.	In	order	for	the	tool	to	generate	test	cases,	a	test	basis
needs	to	be	input	and	maintained.	Therefore,	many	test	design	tools	are
integrated	with	other	tools	that	already	contain	details	of	the	test	basis	such	as:

•requirements	management	tools;

•static	analysis	tools;

•test	management	tools.

The	level	of	automation	can	vary	and	depends	on	the	characteristics	of	the	tool
itself	and	the	way	in	which	the	test	basis	is	recorded	in	the	tool.	For	example,
some	tools	allow	specifications	or	requirements	to	be	specified	in	a	formal
language.	This	can	allow	test	cases	with	inputs	and	expected	results	to	be
generated.	Other	test	design	tools	allow	a	GUI	model	of	the	test	basis	to	be
created	and	then	allow	tests	to	be	generated	from	this	model.

Some	tools	(sometimes	known	as	test	frames)	merely	generate	a	partly	filled
template	from	the	requirement	specification	held	in	narrative	form.	The	tester
will	then	need	to	add	to	the	template	and	copy	and	edit	as	necessary	to	create	the
test	cases	required.

Tests	designed	from	database,	object	or	state	models	held	in	modelling	tools	can
be	used	to	verify	that	the	model	has	been	built	correctly	and	can	be	used	to
derive	some	test	cases.	Tests	derived	can	be	very	thorough	and	give	high	levels
of	coverage	in	certain	areas.

Some	static	analysis	tools	integrate	with	tools	that	generate	test	cases	from	an
analysis	of	the	code.	These	can	include	test	input	values	and	expected	results.

A	test	oracle	[Not	in	Syllabus]	is	a	type	of	test	design	tool	that	automatically
generates	expected	results.	However,	these	are	rarely	available	because	they
perform	the	same	function	as	the	software	under	test.	Test	oracles	tend	to	be
most	useful	for:

•replacement	systems;

•migrations;

•regression	testing.

USE	IN	HOTEL	CHAIN	SCENARIO

A	test	oracle	could	be	built	using	a	spreadsheet	to	support	the	testing	of
customers’	bills.	The	tester	can	then	input	details	for	calculating	bills,	such	as	the
total	bill	based	on	various	transaction	types,	refunds,	VAT	and	so	on.	The
spreadsheet	could	then	calculate	the	total	bill	amount	and	this	should	match	the
bill	calculated	by	the	system	under	test.

However,	test	design	tools	should	be	only	part	of	the	approach	to	test	design.
They	need	to	be	supplemented	by	other	test	cases	designed	with	the	use	of	other
techniques	and	the	application	of	risk.

Test	design	tools	could	be	used	by	the	test	organisation	in	the	scenario	but	the
overhead	to	input	the	necessary	data	from	the	test	basis	may	be	too	great	to	give
any	real	overall	benefit.	However,	if	the	test	design	tool	can	import	requirements
or	other	aspects	of	the	test	basis	easily,	then	it	may	become	worthwhile.

Test	design	tools	tend	to	be	more	useful	for	safety-critical	and	other	high-risk
software	where	coverage	levels	are	higher	and	industry,	defence	or	government
standards	need	to	be	adhered	to.	Commercial	software	applications,	like	the
hotel	system,	do	not	usually	require	such	high	standards	and	therefore	test	design
tools	are	of	less	benefit	in	such	cases.

Model-based	testing	tools	(also	known	as	modelling	tools)	Model-based	testing
tools	are	used	primarily	by	developers	during	the	analysis	and	design	stages	of
the	development	life	cycle.	The	reason	modelling	tools	are	included	here	is
because	they	are	very	cost-effective	at	finding	defects	early	in	the	development
life	cycle.

Their	benefits	are	similar	to	those	obtained	from	the	use	of	reviews	and
inspections,	in	that	modelling	tools	allow	omissions	and	inconsistencies	to	be
identified	and	fixed	early	so	that	detailed	design	and	programming	can	begin
from	a	consistent	and	robust	model.	This	in	turn	prevents	fault	multiplication
that	can	occur	if	developers	build	from	the	wrong	model.

For	instance,	a	visual	model-based	testing	tool	using	Unified	Modeling
Language	(UML)	can	be	used	by	designers	to	build	a	model	of	the	software
specification.	The	tool	can	map	business	processes	to	the	system	architecture
model,	which,	in	turn,	enables	programmers	and	testers	to	have	a	better	and
common	understanding	of	what	programs	should	do	and	what	testing	is	required.

Similarly,	the	use	of	database,	state	or	object	models	can	help	to	identify	what
testing	is	required	and	can	assist	in	checking	whether	tests	cover	all	necessary
transactions.	Integration	with	test	design	tools	may	also	enable	modelling	tools
to	support	the	generation	of	test	cases.

USE	IN	HOTEL	CHAIN	SCENARIO

The	model-based	testing	tool	could	help	to	identify	missing	scenarios	from	letter
templates	or	the	need	to	update	letters	with	new	paragraphs.	Again,	the	benefits
of	a	clearly	defined,	consistent	model	of	the	software	will	assist	offshore
companies	to	develop	software	that	meets	the	requirements	of	the	customer.

The	use	of	modelling	tools	is	particularly	useful	in	complex	system	architectures
such	as	in	this	scenario.

Test	data	preparation	tools	Test	data	preparation	tools	are	used	by	testers	and
developers	to	manipulate	data	so	that	the	environment	is	in	the	appropriate
state	for	the	test	to	be	run.	This	can	involve	making	changes	to	the	field	values
in	databases,	data	files	and	so	on,	and	populating	files	with	a	spread	of	data
(including	depersonalised	dates	of	birth,	names	and	addresses,	etc.	to	support
data	anonymity).

USE	IN	HOTEL	CHAIN	SCENARIO

A	set	of	test	data	may	be	created	by	taking,	say,	5	per	cent	of	all	records	from	the
live	system	and	scrambling	personal	details	so	that	data	is	protected	and	to
ensure	that	customer	letters	being	tested	are	not	wrongly	sent	to	real	customers.
Data	could	be	taken	from	the	mainframe	system,	but	it	is	also	very	important	to
retain	integrity	of	data	between	different	systems.	Data	that	is	held	in	other
databases	would	need	to	remain	consistent	with	records	on	the	mainframe.

The	knowledge	of	the	database	structure	and	which	fields	need	to	be
depersonalised	is	likely	to	lie	with	the	development	team	–	so	it	is	important	to
consider	whether	to	buy	a	tool	or	build	it	within	the	organisation.

TDD,	ATDD	and	BDD	tools	As	technology	has	evolved	and	processes	have
improved,	new	test	tools	have	been	developed	to	support	TDD	and	BDD

approaches	(outlined	in	syllabus	sections	1.4.2	and	2.2.1).	Readers	should	be
aware	that	tools	exist	to	support	these	processes	(although	many	readers	may
not	have	used	these	processes	or	such	tools	because	they	are	configured	and
used	primarily	by	developers	during	component	testing).

TDD,	ATDD	and	BDD	tools	can	be	further	integrated	with	other	types	of	test
tools	to	design,	implement	and	execute	test	cases.	This	integration	enables	code
changes	to	be	compiled	quickly,	accurately	and	regularly,	and	the	test	suite
executed	automatically.

TDD	tools	have	been	built	to	support	the	test-driven	development	process	and
these	tools	enable	developers	to	design	test	cases	and	test	procedures	at
component	level.	These	tools	usually	integrate	with	or	provide	interfaces	to
types	of	test	execution	tools.

ATDD	is	an	extension	of	TDD	and,	consequently,	ATDD	tools	are	an	extended
version	of	TDD	tools.

BDD	tools	are	also	an	extension	of	TDD	tools	and	provide	an	interface	to	allow
acceptance	testers	to	define	user	stories	or	test	cases	in	their	own	business
language	(Domain-Specific	Language	–	DSL).	The	BDD	is	then	configured	by
the	developer	to	interpret	the	user	story	and	produce	automatically	executable
test	procedures	(scripts).

Developers	can	configure	ATDD	and	BDD	tools	to	enable	users	to	define	test
cases	in	a	structured	format/template	that	enables	such	test	cases	to	be	captured
by	ATDD	and	BDD	tools.

USE	IN	HOTEL	CHAIN	SCENARIO

As	shown	in	Figure	6.4	below,	a	TDD	development	approach	(and	a	TDD	tool)
can	be	used	in	the	Agile	workstream	for	the	mobile	app.	Developers	can	use	the
continuous	integration	tool	(and	configuration	management	tool)	in	conjunction
with	the	TDD	tool	to	design	test	cases	and	execute	frequent	tests	of	Daily
Builds.

Figure	6.4	Testing	of	daily	builds	using	a	set	of	test	tools

ATDD	and/or	BDD	templates	can	be	used	by	acceptance	testers	to	define	test
cases	in	a	structured	version	of	their	own	hotel	business	language.	These
structured	test	cases	can	then	be	automated	and	run	by	test	execution	tools/unit
test	framework,	which	enables	the	automated	part	of	acceptance	testing	to	be
carried	out	more	efficiently.

CHECK	OF	UNDERSTANDING

1.	What	types	of	inputs	can	a	test	design	tool	use	to	generate	test	cases?

2.	What	is	a	significant	benefit	of	using	model-based	testing	tools	from	a	testing
perspective?

3.	In	what	part	of	the	software	development	life	cycle	are	test-driven
development	tools	most	likely	to	be	used?

Many	of	the	tools	discussed	in	the	section	above	(Tool	support	for	test	design
and	implementation)	are	also	used	for	test	execution	(or	can	interface	with	test
execution	tools).

Tool	support	for	test	execution	and	logging

Test	execution	tools	cover	a	wide	range	from	basic	test	comparators	to	ATDD
tools	(see	above)	that	convert	acceptance	test	cases	into	executable	scripts	and

then	report	upon	whether	they	have	passed	or	failed.

Test	comparators	[Not	in	Syllabus]	Test	comparators	compare	the	contents	of
files,	databases,	XML	messages,	objects	and	other	electronic	data	formats.
This	allows	expected	results	and	actual	results	to	be	compared.	They	can	also
highlight	differences	and	thus	provide	assistance	to	developers	when	localising
and	debugging	code.

They	often	have	functions	that	allow	specified	sections	of	the	file,	screen	or
object	to	be	ignored	or	masked	out.	This	means	that	a	date	or	time	stamp	on	a
screen	or	field	can	be	masked	out	because	it	is	expected	to	be	different	when	a
comparison	is	performed.

Table	6.2	shows	an	extract	from	the	transaction	table	in	the	hotel	chain	database
for	data	created	on	20/10/2018.

Table	6.2	Hotel	system	extract	(20/10/2018)

A	regression	test	was	run	on	5/11/2018.	Table	6.3	shows	an	extract	from	the
transaction	table	for	this	data.

Table	6.3	Hotel	system	extract	(5/11/2018)

The	Transaction	ID	and	Trans_Date	fields	contain	different	values.	But	we	know
why	this	is	the	case	and	we	would	expect	them	to	be	different.	Therefore,	we	can
mask	out	these	values.	Note	that	some	automated	test	comparators	use	test
oracles	while	others	provide	functions	to	add	on	values	to	take	into	account
known	differences	(e.g.	15	days	later)	so	that	the	actual	results	and	expected
results	can	be	compared.

Comparators	are	particularly	useful	for	regression	testing	since	the	contents	of
output	or	interface	files	should	usually	be	the	same.	This	is	probably	the	test	tool
that	provides	the	single	greatest	benefit.	For	instance,	manually	comparing	the
contents	of	a	database	query	containing	thousands	of	rows	is	time-consuming,
error	prone	and	demotivating.	The	same	task	can	be	performed	accurately	and	in
a	fraction	of	the	time	using	a	comparator.	Comparators	are	usually	included	in
test	execution	tools,	which	is	why	they	are	no	longer	specified	in	the	syllabus.

Test	execution	tools	Test	execution	tools	allow	test	scripts	to	be	run
automatically	(or	at	least	semi-automatically).	A	test	script	(written	in	a
programming	language	or	scripting	language)	is	used	to	navigate	through	the
system	under	test	and	to	compare	predefined	expected	outcomes	with	actual
outcomes.	The	results	of	the	test	run	are	written	to	a	test	log.	Test	scripts	can
then	be	amended	and	reused	to	run	other	or	additional	scenarios	through	the
same	system.	Some	tools	offer	GUI-based	utilities	that	enable	amendments	to
be	made	to	scripts	more	easily	than	by	changing	code.	These	utilities	may
include:

•configuring	the	script	to	identify	particular	GUI	objects;

•customising	the	script	to	allow	it	to	take	specified	actions	when	encountering
particular	GUI	objects	or	messages;

•parameterising	the	script	to	read	data	from	various	sources.

Record	(or	capture	playback)	tools	Record	(or	capture	playback)	tools	can
be	used	to	record	a	test	script	and	then	play	it	back	exactly	as	it	was
executed.	However,	a	test	script	usually	fails	when	played	back	owing	to
unexpected	results	or	unrecognised	objects.	This	may	sound	surprising,	but
consider	entering	a	new	customer	record	onto	a	system:

•When	the	script	was	recorded,	the	customer	record	did	not	exist.	When	the
script	is	played	back	the	system	correctly	recognises	that	this	customer	record
already	exists	and	produces	a	different	response,	thus	causing	the	test	script	to
fail.

•When	a	test	script	is	played	back	and	actual	and	expected	results	are	compared
a	date	or	time	may	be	displayed.	The	comparison	facility	will	spot	this	difference
and	report	a	failure.

•Other	problems	include	the	inability	of	test	execution	tools	to	recognise	some
types	of	GUI	control	or	object.	This	might	be	able	to	be	resolved	by	coding	or
reconfiguring	the	object	characteristics	(but	this	can	be	quite	complicated	and
should	be	left	to	experts	in	the	tool).

Also	note	that	expected	results	are	not	necessarily	captured	when	recording	user
actions	and	therefore	may	not	be	compared	during	playback.

The	recording	of	tests	can	be	useful	during	exploratory	testing	for	reproducing	a

defect	or	for	documenting	how	to	execute	a	test.	In	addition,	such	tools	can	be
used	to	capture	user	actions	so	that	the	navigation	through	a	system	can	be
recorded.	In	both	cases,	the	script	can	then	be	made	more	robust	by	a	technical
expert	so	that	it	handles	valid	system	behaviours	depending	on	the	inputs	and	the
state	of	the	system	under	test.

Data-driven	testing	Robust	test	scripts	that	deal	with	various	inputs	can	be
converted	into	data-driven	tests.	This	is	where	hard-coded	inputs	in	the	test
script	are	replaced	with	variables	that	point	to	data	in	a	data-table.	Data-
tables	are	usually	spreadsheets	with	one	test	case	per	row,	with	each	row
containing	test	inputs	and	expected	results.	The	test	script	reads	the
appropriate	data	value	from	the	data-table	and	inserts	it	at	the	appropriate
point	in	the	script	(e.g.	the	value	in	the	Customer	Name	column	is	inserted
into	the	Customer	Name	field	on	the	input	screen).

Keyword-driven	testing	A	further	enhancement	to	data-driven	testing	is	the
use	of	keyword-driven	(or	action	word)	testing.	Keywords	are	included	as
extra	columns	in	the	data-table.	The	script	reads	the	keyword	and	takes	the
appropriate	actions	and	subsequent	path	through	the	system	under	test.
Conditional	programming	constructs	such	as	IF	ELSE	statements	or
SELECT	CASE	statements	are	required	in	the	test	script	for	keyword-
driven	testing.

Technical	skills	Programming	skills	and	programming	standards	are
required	to	use	the	tool	effectively.	It	may	be	that	these	can	be	provided	by	a
small	team	of	technical	experts	within	the	test	organisation	or	from	an
external	company.	In	data-driven,	and	particularly	keyword-driven,
approaches,	the	bulk	of	the	work	can	be	done	by	manual	testers,	with	no
knowledge	of	the	scripting	language,	defining	their	test	cases	and	test	data
and	then	running	their	tests	and	raising	defects	as	required.	However,	this
relies	on	robust	and	well-written	test	scripts	that	are	easy	to	maintain.	This
takes	much	time	and	effort	before	any	sort	of	payback	is	achieved.

Maintenance	It	is	essential	that	time	(and	consequently	budget)	is	allowed
for	test	scripts	to	be	maintained.	Any	change	to	a	system	can	mean	that	the
test	scripts	need	to	be	updated.	Therefore,	the	introduction	of	a	new	type	of
object	or	control	could	result	in	a	mismatch	being	found	between	the
previous	object	type	and	the	new	one.	The	relevant	level	of	technical	skills
and	knowledge	is	also	required	to	do	this.

Effective	and	efficient	use	The	efficiency	and	effectiveness	benefits	that
come	from	the	use	of	a	test	execution	tool	take	a	long	time	to	come	to
fruition.	First,	the	selection	and	implementation	process	needs	to	be	planned
and	conducted	effectively	(a	generic	process	for	selecting	and	implementing
any	type	of	test	tool	is	detailed	later	in	this	chapter).	However,	there	are
certain	issues	that	are	particularly	relevant	to	test	execution	tools	and	these
are	described	below.

The	long-term	benefits	of	test	execution	tools	include:

•cost	savings	as	a	result	of	the	time	saved	by	running	automated	tests	rather	than
manual	tests;

•accuracy	benefits	from	avoiding	manual	errors	in	execution	and	comparison;

•the	ability	and	flexibility	to	use	skilled	testers	on	more	useful	and	interesting
tasks	(than	running	repetitive	manual	tests);

•the	speed	with	which	the	results	of	the	regression	pack	can	be	obtained.

Note	that	benefits	come	primarily	from	running	the	same	or	very	similar	tests	a
number	of	times	on	a	stable	platform.	Therefore,	they	are	generally	most	useful
for	regression	testing.

USE	IN	HOTEL	CHAIN	SCENARIO

Let	us	assume	that	a	test	execution	tool	is	already	used	for	regression	testing.
Existing	automated	test	scripts	could	be	analysed	to	identify	which	ones	can	be
reused	and	to	identify	gaps	in	the	coverage	for	the	new	enhancement.	These	gaps
could	be	filled	by	running	cases	manually	or	by	writing	new	automated	test
scripts.	Rather	than	starting	from	scratch,	it	may	be	possible	to	produce
additional	automated	scripts	by	reusing	some	code	or	modules	already	used	by
existing	scripts,	or	by	using	parameterisation	and	customisation	utilities.	In	this
enhancement,	the	automated	scripts	used	to	test	the	unchanged	documents	could
be	run	without	having	to	be	amended.

The	automated	scripts	to	produce	the	amended	documents	would	need	to	be
analysed	and	updated	as	required.	The	navigation	part	of	the	script	would	be
largely	unchanged	but	the	comparison	between	actual	and	expected	results
would	probably	be	performed	manually	the	first	time	round.	Once	the	test	has
passed	manually,	the	comparison	could	be	added	to	the	script	for	reuse	in	the
future.

Automated	scripts	for	new	documents	could	be	added	to	the	regression	pack
after	this	release	is	complete.

The	graph	in	Figure	6.5	shows	how	the	benefits	of	using	test	execution	tools	take
some	time	to	pay	back.	Note	how	in	the	early	stages	the	cost	of	using	automated

regression	testing	is	greater	than	the	cost	of	manual	regression	testing.	This	is
due	to	the	initial	investment,	implementation,	training,	initial	development	of
automated	scripts	and	so	on.	However,	the	cost	each	additional	time	the	test	is
run	is	less	for	automated	regression	testing	than	it	is	for	manual	regression
testing.	Therefore,	the	lines	on	the	graph	converge	and	at	a	point	in	time	(known
as	the	break-even	point)	the	lines	cross.	This	is	the	point	at	which	the	total	cost
to	date	for	automated	testing	is	less	than	the	total	cost	to	date	for	manual
regression	testing.

This	is	clearly	a	simplistic	view,	but	it	demonstrates	how	an	initial	investment	in
test	execution	tools	can	be	of	financial	benefit	in	the	medium	to	long	term.	There
are	other	less	tangible	benefits	as	well.	However,	to	get	this	financial	benefit	you
will	need	to	be	sure	that	there	is	a	requirement	to	run	the	same	(or	very	similar)
regression	tests	on	many	occasions.

Test	harnesses	and	unit	test	frameworks	A	test	harness	is	a	test	environment
comprised	of	stubs	and	drivers	needed	to	execute	a	test.	It	is	used	primarily	by
developers	to	simulate	a	small	section	of	the	environment	in	which	the
software	will	operate.	Test	harnesses	are	usually	written	in-house	by
developers	to	perform	component	or	integration	testing	for	a	specific	purpose.
Test	harnesses	often	use	‘mock	objects’	known	as	‘stubs’	(which	stub	out	the
need	to	have	other	components	or	systems	by	returning	predefined	values)	and
‘drivers’	(which	replace	the	calling	component	or	system	and	drive
transactions,	messages	and	commands	through	the	software	under	test).

Figure	6.5	Test	execution	tools	payback	model

Test	harnesses	can	be	used	to	test	various	systems	or	objects	ranging	from	a
middleware	system	(as	in	Figure	6.6)	to	a	single	or	small	group	of	components.
They	are	frequently	used	in	Agile	development	so	that	existing	tests	can	be	rerun
as	regression	tests	to	establish	whether	existing	functionality	is	adversely
impacted	by	the	changes	made.

A	unit	test	framework	is	generally	more	robust	and	reusable	than	a	standalone
test	harness	and	is	typically	able	to	support	multiple	test	harnesses	for	related
purposes.	It	may	also	provide	additional	support	for	the	developer,	such	as
debugging	capabilities.

USE	IN	HOTEL	CHAIN	SCENARIO

Bookings	are	entered	via	the	web	or	GUI	front-ends	and	are	loaded	onto	the
mainframe.	An	overnight	batch	runs	on	the	mainframe	and	generates	XML
messages	that	are	then	processed	by	the	middleware	system,	which	makes	a
further	call	to	the	mainframe	to	read	other	data.	The	middleware	system	then
generates	further	XML	messages,	which	are	processed	by	other	systems,
resulting	in	the	production	of	letters	to	customers.

There	are	several	benefits	that	can	be	obtained	from	using	a	test	harness	that
generates	the	XML	messages	produced	by	the	mainframe:

•It	would	take	a	lot	of	time	and	effort	to	design	and	execute	test	cases	on	the
mainframe	system	and	run	the	batch.

•It	would	be	costly	to	build	a	full	environment.

•The	mainframe	code	needed	to	generate	the	XML	messages	may	not	yet	be
available.

•A	smaller	environment	is	easier	to	control	and	manage.	It	enables	developers
(or	testers)	to	perform	component	and	integration	testing	more	quickly	because	it
is	easier	to	localise	defects.	This	allows	a	quicker	turnaround	time	for	fixing
defects.

The	diagram	in	Figure	6.6	shows	that	a	test	harness	has	been	built	using	a
spreadsheet	and	macros	(the	driver)	to	generate	XML	messages	and	send	them	to
the	middleware.	A	stub	is	used	to	simulate	the	calls	made	by	the	middleware	to
the	mainframe.	The	contents	of	the	XML	messages	produced	by	the	middleware
can	then	be	compared	with	the	expected	results.	This	could	be	enhanced	into	a
more	robust	and	reusable	unit	test	framework	that	can	support	additional	test
harnesses	for	multiple	XML	messages.

Figure	6.6	Test	harness	for	middleware

There	are	similarities	with	the	principle	behind	data-driven	testing	using	test
execution	tools	because	the	harness	allows	many	different	test	cases	to	be
designed	and	run	without	the	time-consuming	process	of	keying	them	manually.
This	raises	the	question	of	how	much	benefit	can	be	obtained	from	using	a	test
execution	tool	when	a	test	harness	can	be	used	instead.	As	usual,	it	depends	on
the	circumstances,	the	risk,	the	purpose	and	the	level	of	testing	being	performed.

Coverage	tools	Coverage	tools	measure	the	percentage	of	the	code	structure
covered	across	white-box	measurement	techniques	such	as	statement	coverage
and	branch	or	decision	coverage.	In	addition,	they	can	also	be	used	to
measure	coverage	of	modules	and	function	calls.	Coverage	tools	are	often
integrated	with	static	and	dynamic	analysis	tools	and	are	primarily	used	by
developers.

Coverage	tools	can	measure	code	written	in	several	programming	languages,	but
not	all	tools	can	measure	code	written	in	all	languages.	They	are	useful	for
reporting	coverage	measurement	and	can	therefore	be	used	to	assess	test
completion	criteria	and/or	exit	criteria.

Coverage	measurement	of	requirements	and	test	cases/scripts	run	can	usually	be
obtained	from	test	management	tools.	This	function	is	unlikely	to	be	provided	by
coverage	tools.

Coverage	measurement	can	be	carried	out	using	intrusive	or	non-intrusive
methods.	Non-intrusive	methods	typically	involve	reviewing	code	and	running
code.	Intrusive	methods,	such	as	‘instrumenting	the	code’	involve	adding	extra
statements	into	the	code.	The	code	is	then	executed	and	the	extra	statements
write	back	to	a	log	in	order	to	identify	which	statements	and	branches	have	been
executed.

Instrumentation	code	can	then	be	removed	before	it	goes	into	production.

Intrusive	methods	can	affect	the	accuracy	of	a	test	because,	for	example,	slightly
more	processing	will	be	required	to	cope	with	the	additional	code.	This	is	known
as	the	probe	effect	and	testers	need	to	be	aware	of	its	consequences	and	try	to
keep	its	impact	to	a	minimum.

USE	IN	HOTEL	CHAIN	SCENARIO

Coverage	tools	are	generally	used	on	high-risk	and	safety-critical	systems	and
therefore	would	probably	not	be	used	in	the	Hotel	Chain	Scenario.	However,	as
an	example,	assume	that	the	exit	criteria	for	a	test	phase	include	the	criteria
shown	in	Table	6.4.

Tool	support	for	performance	measurement	and	dynamic	analysis

Dynamic	analysis	tools	Dynamic	analysis	tools	are	used	to	detect	the	type	of
defects	that	are	difficult	to	find	during	static	testing.	They	are	typically	used	by
developers,	during	component	testing	and	component	integration	testing,	to:

•report	on	the	state	of	software	during	its	execution;

•monitor	the	allocation,	use	and	deallocation	of	memory;

•identify	memory	leaks;

Table	6.4	Exit	criteria

In	this	case,	coverage	tools	would	be	the	most	appropriate	method	of	assessing
whether	the	exit	criteria	have	been	met.

•detect	time	dependencies;

•identify	unassigned	pointers;

•check	pointer	arithmetic.

They	are	generally	used	for	safety-critical	and	other	high-risk	software	where
reliability	is	critical.

Dynamic	analysis	tools	are	often	integrated	with	static	analysis	and	coverage
tools.	For	example,	a	developer	may	want	to	perform	static	analysis	on	code	to
localise	defects	so	that	they	can	be	removed	before	component	test	execution.
The	integrated	tool	may	allow:

•the	code	to	be	analysed	statically;

•the	code	to	be	instrumented;

•the	code	to	be	executed	(dynamically).

Dynamic	analysis	tools	are	usually	language	specific,	so	to	test	code	written	in
C++	you	need	to	have	a	version	of	a	dynamic	analysis	tool	that	is	specific	to
C++.

The	tool	could	then:

•report	static	defects;

•report	dynamic	defects;

•provide	coverage	measurement	figures;

•report	on	the	code	being	(dynamically)	executed	at	various	instrumentation
points.

USE	IN	HOTEL	CHAIN	SCENARIO

The	hotel	chain	would	probably	not	use	dynamic	analysis	tools	as	the	benefits
for	a	normal	commercial	software	system	(such	as	this)	are	relatively	small
compared	with	the	investment	and	ongoing	costs	of	dynamic	testing	tools.
However,	if	static	analysis	and	coverage	tools	are	used,	then	the	additional	cost
of	using	dynamic	analysis	tools	may	be	reduced	because	they	usually	come	in
the	same	package.	Another	contributory	factor	in	the	decision	is	that	the	work
done	during	static	analysis	and	coverage	measurement	may	mean	that	little

additional	effort	is	required	to	run	dynamic	tests.

Performance	testing	tools	Performance	testing	is	very	difficult	to	do	accurately
and	in	a	repeatable	way	without	using	test	tools.	Therefore,	performance
testing	tools	have	been	developed	to	carry	out	both	load	testing	and	stress
testing.

Load	testing	reports	on	the	performance	of	a	system	under	test,	under	various
loads	and	usage	patterns.	A	load	generator	(which	is	a	type	of	test	driver)	can	be
used	to	simulate	the	load	and	required	usage	pattern	by	creating	virtual	users	that
execute	predefined	scripts	across	one	or	more	test	machines.	Alternatively,
response	times	or	transaction	times	can	be	measured	under	various	levels	of
usage	by	running	automated	repetitive	test	scripts	via	the	user	interface	of	the
system	under	test.	In	both	cases	output	will	be	written	to	a	log.	Reports	or	graphs
can	be	generated	from	the	contents	of	the	log	to	monitor	the	level	of
performance.

Performance	testing	tools	can	also	be	used	for	stress	testing.	In	this	case,	the	load
on	the	system	under	test	is	increased	gradually	(ramped	up)	in	order	to	identify
the	usage	pattern	or	load	at	which	the	system	under	test	fails.	For	example,	if	an
air	traffic	control	system	supports	200	concurrent	aircraft	in	the	defined	air
space,	the	entry	of	the	201st	or	205th	aircraft	should	not	cause	the	whole	system
to	fail.

Performance	testing	tools	can	be	used	against	whole	systems,	but	they	can	also
be	used	during	system	integration	test	to	test	an	integrated	group	of	systems,	one
or	more	servers,	one	or	more	databases	or	a	whole	environment.

If	the	risk	analysis	finds	that	the	likelihood	of	performance	degradation	is	low,

then	it	is	likely	that	no	performance	testing	will	be	carried	out.	For	instance,	a
small	enhancement	to	an	existing	mainframe	system	does	not	necessarily	require
any	formal	performance	testing.	Normal	manual	testing	may	be	considered
sufficient	(during	which	poor	performance	might	be	noticed).

There	are	similarities	between	performance	testing	tools	and	test	execution	tools
in	that	they	both	use	test	scripts	and	data-driven	testing.	They	can	both	be	left	to
run	unattended	overnight	and	both	need	a	heavy	upfront	investment,	which	will
take	some	period	of	time	to	pay	back.

Performance	testing	tools	can	find	defects	such	as:

•general	performance	problems;

•performance	bottlenecks;

•memory	leakage	(e.g.	if	the	system	is	left	running	under	heavy	load	for	some
time);

•record-locking	problems;

•concurrency	problems;

•excess	usage	of	system	resources;

•exhaustion	of	disk	space.

The	cost	of	some	performance	tools	is	high,	and	the	implementation	and	training
costs	are	also	high.	In	addition,	finding	experts	in	performance	testing	is	not	that
easy.	Therefore,	it	is	worth	considering	using	specialist	consultancies	to	come	in
and	carry	out	performance	testing	using	such	tools.

USE	IN	HOTEL	CHAIN	SCENARIO

The	likelihood	of	poor	website	performance	and	the	cost	of	lost	business	and
reputation	are	likely	to	be	sufficient	to	justify	the	use	of	performance	testing	to
mitigate	this	risk.	Performance	testing	can	range	from	using	a	relatively	cheap
tool	to	indicate	whether	performance	has	improved	or	deteriorated	as	a	result	of
the	enhancement,	to	an	extensive	assessment	of	response	times	under	normal	or
maximum	predicted	usage	and	identification	of	the	usage	pattern	that	will	cause
the	system	to	fail.

It	is	likely	that	performance	test	tools	will	have	been	used	when	the	website	was
first	developed.	Therefore,	it	may	be	easy	to	reuse	existing	tools	to	do	a
regression	test	of	performance.	If	performance	tools	were	not	used	when	the
website	was	developed	it	is	unlikely	to	be	worthwhile	buying	and	implementing
expensive	performance	testing	tools.

An	alternative	option	would	be	to	use	tools	that	already	exist	on	servers	or	in	the
test	environment	to	monitor	performance.	It	may	also	be	worth	considering	using
external	consultants.

Monitoring	tools	Monitoring	tools	are	used	to	check	whether	whole	systems	or
specific	system	resources	are	available	and	whether	their	performance	is
acceptable.	Such	tools	are	mainly	used	in	live	rather	than	test	environments
and	are	therefore	not	really	testing	tools.	They	tend	to	be	used	for	monitoring
ecommerce,	ebusiness	or	websites,	as	such	systems	are	more	likely	to	be
affected	by	factors	external	to	the	organisation	and	the	consequences	can	be
severe	in	terms	of	business	lost	and	bad	publicity.	Generally,	if	a	website	is	not
available,	customers	will	not	report	it	but	will	go	elsewhere.	For	example,	it
was	reported	in	2003	that	a	well-known	online	retailer	would	lose	sales	of
$660,000	per	hour	if	it	were	offline	during	the	US	trading	day.	The	advent	of
websites	that	continually	check	the	status	of	popular	websites	means	that	such
information	is	easily	available	to	the	general	public.

The	use	of	monitoring	tools	is	generally	less	important	for	internal	systems
because	failure	is	more	likely	to	be	noticed	only	within	the	organisation	and
contingency	plans	may	also	exist.	However,	the	availability	of	monitoring	tools
on	mainframes,	servers	and	other	forms	of	hardware	means	that	it	is	relatively
easy	to	monitor	the	majority	of	an	organisation’s	infrastructure.

USE	IN	HOTEL	CHAIN	SCENARIO

A	monitoring	tool	may	be	beneficial	to	monitor	the	website.	A	monitoring	tool
may	also	exist	as	part	of	the	mainframe	system.	However,	it	is	less	likely	that
monitoring	tools	will	be	used	for	the	GUI	front-end	that	is	used	by	internal	staff.

CHECK	OF	UNDERSTANDING

1.	Describe	two	types	of	defect	that	can	typically	be	found	using	dynamic
analysis	tools.

2.	Describe	two	drawbacks	associated	with	performance	testing	tools.

3.	Which	of	the	tools	that	provide	support	for	performance	and	monitoring	is
most	likely	to	be	used	by	developers?

Tool	support	for	specialised	testing	needs

In	addition	to	tools	that	support	the	general	test	process,	there	are	many	other
tools	that	support	more	specific	testing	issues.

Data	quality	assessment	tools	Data	quality	assessment	tools	allow	files	and
databases	to	be	compared	against	a	format	that	is	specified	in	advance.	They
are	typically	used	on	large-scale,	data-intensive	projects	such	as:

•conversion	of	data	used	on	one	system	into	a	format	suitable	for	another
system;

•migration	of	data	from	one	system	to	another;

•loading	of	data	into	a	data	warehouse.

Data	quality	assessment	tools	are	not	specifically	designed	for	testing	purposes.
They	are	used	primarily	for	the	migration	of	production	data,	but	typically	the
development	and	testing	of	a	migration	project	will	also	use	these	tools.

USE	IN	HOTEL	CHAIN	SCENARIO

Suppose	that	the	hotel	chain	buys	a	smaller	group	of	hotels,	‘Small	Hotel
Group’.

It	could	use	a	data	quality	assessment	tool	during	the	development	and	testing	of
an	enhancement	to	its	existing	systems	to	include	the	additional	hotels.

The	data	quality	assessment	tools	could	be	configured	to	establish	whether	the
customer	data	being	migrated	meets	particular	quality	requirements.	These
requirements	may	include:

•valid	postcodes;

•valid	title	for	gender;

•numeric	values	in	financial	fields;

•numeric	values	in	date	fields.

The	tool	could	also	be	used	to	reconcile	file	record	counts	with	data	held	in
header	and	footer	records	to	confirm	that	the	number	of	records	in	the	file	equals
the	number	of	records	loaded	into	the	database.

Data	conversion	and	migration	tools	Data	conversion	tools	are	used	to	map
data	from	the	data	structures	in	the	source	system	into	the	data	structures
required	for	the	receiving	system.

Security	testing	tools	Security	testing	tools	are	used	to	test	the	functions	that
detect	security	threats	and	to	evaluate	the	security	characteristics	of	software.
The	security	testing	tool	is	typically	used	to	assess	the	ability	of	the	software
under	test	to:

•handle	computer	viruses;

•protect	data	confidentiality	and	data	integrity;

•prevent	unauthorised	access;

•carry	out	authentication	checks	of	users;

•remain	available	under	a	denial	of	service	(DOS)	attack;

•check	non-repudiation	attributes	of	digital	signatures.

Security	testing	tools	are	mainly	used	to	test	ecommerce,	ebusiness	and
websites.	For	example,	a	third-party	security	application	such	as	a	firewall	may
be	integrated	into	a	web-based	application.

USE	IN	HOTEL	CHAIN	SCENARIO

Security	testing	tools	could	be	used	to	test	that	the	firewall	and	other	security
applications	built	into	the	hotel	chain’s	systems	can:

•resist	a	DOS	attack;

•prevent	unauthorised	access	to	data	held	within	the	database;

•prevent	unauthorised	access	to	encrypted	XML	messages	containing	bank
account	details.

This	work	could	be	carried	out	by	a	third-party	consultancy	that	specialises	in
penetration	testing	and	related	services.

The	skills	required	to	develop	and	use	security	testing	tools	are	very	specialised
and	such	tools	are	generally	developed	and	used	on	a	particular	technology
platform	for	a	particular	purpose.	Therefore,	it	may	be	worth	considering	the	use
of	specialist	consultancies	to	perform	such	testing.	For	example,	specialist
consultancies	are	often	engaged	to	carry	out	penetration	testing.	This	type	of
testing	is	to	establish	whether	malicious	attackers	can	penetrate	the
organisation’s	firewall	and	hack	into	its	systems.

Security	testing	tools	need	to	be	constantly	updated	because	there	are	problems
solved	and	new	vulnerabilities	discovered	all	the	time	–	consider	the	number	of
Windows	security	releases	to	see	the	scale	of	security	problems.

Usability	testing	tools	(including	accessibility	and	localisation	test	tools)
Usability	test	tools	typically	record	the	mouse	clicks	made	by	remote	usability
testers	when	carrying	out	a	specified	task.	Some	tools	also	enable	other	data	to
be	captured	such	as	screenshots,	written	comments	and	voice	recordings	of
verbal	comments.	This	recorded	data	is	generally	stored	in	a	database	so	that	it
can	then	be	analysed	easily	by	staff	at	the	organisation	commissioning	the
testing.

Note	that	the	usability	testing	tool	market	is	changing	very	quickly,	and	new
types	of	usability	tools	may	appear	over	the	next	few	years.	Recent
developments	include:

•accessibility	test	tools	–	which	are	an	extension	to	usability	test	tools.
Accessibility	testing	is	defined	as	testing	to	determine	the	ease	by	which	users
with	disabilities	can	use	a	component	or	system;

•localisation	test	tools	–	which	have	been	developed	to	support	the	testing	of
local	language	versions	of	widely	available	global	software	products.

Portability	testing	tools	Portability	is	defined	as	the	ease	with	which	the
software	product	can	be	transferred	from	one	hardware	or	software
environment	to	another.	Portability	test	tools	are	generally	used	by	Portability
testing	specialists.

USE	IN	HOTEL	CHAIN	SCENARIO

The	changes	to	the	website	to	improve	usability	could	be	tested	by	a	specialist
usability	testing	company	who	employ,	say	50,	remote	users.	The	remote	users
would	be	given	a	high-level	requirement	that	would	exercise	the	website
changes	such	as:

•Go	to	a	specified	test	URL	and	book	three	rooms	from	3	August	to	5	August
and	two	rooms	from	7	August.	Pay	by	credit	card	XYZ.

The	mouse	clicks,	other	inputs	and	comments	recorded	by	the	50	remote	users	in
carrying	out	this	task	would	be	stored	in	a	database	and	an	analysis	report
produced	by	the	specialist	usability	testing	company	for	the	hotel	chain.	This
analysis	could	highlight	poor	areas	of	usability	in	the	test	website,	which	could
be	improved	before	being	deployed	to	the	live	website.

Other	tools	that	are	not	designed	specifically	for	testers	or	developers	can	also	be
used	to	support	one	or	more	test	activities.	These	include:

•spreadsheets;

•word	processors;

•email;

•back-up	and	restore	utilities;

•SQL	and	other	database	query	tools;

•project	planning	tools;

•debugging	tools	(although	these	are	more	likely	to	be	used	by	developers	than
testers).

For	example,	in	the	absence	of	test	management	or	defect	management	tools,
defects	could	be	recorded	on	word	processors	and	could	be	tracked	and
maintained	on	spreadsheets.	Tests	passed	or	failed	could	also	be	recorded	on
spreadsheets.

USE	IN	HOTEL	CHAIN	SCENARIO

Other	software	tools	could	also	be	used:

•A	spreadsheet	could	be	used	for	producing	decision	tables	or	working	out	all	the
different	test	scenarios	required.	It	could	also	be	used	to	manipulate	test
management	information	so	that	it	can	be	presented	in	the	format	required	in
weekly	or	daily	test	progress	reports.

•Word	processors	could	be	used	for	writing	test	strategies,	test	plans,	weekly
reports	and	other	test	deliverables.

•Email	could	be	used	for	communicating	with	developers	about	defects	and	for
distributing	test	reports	and	other	deliverables.

•Back-up	and	restore	utilities	could	be	used	to	restore	a	consistent	set	of	data	into
the	test	environment	for	regression	testing.

•SQL	could	be	used	for	analysing	the	data	held	in	databases	in	order	to	obtain
actual	or	expected	results.

•Project	planning	tools	could	be	used	to	estimate	resources	and	timescales,	and
monitor	progress.

•Debugging	tools	can	be	used	by	developers	to	localise	and	fix	defects.

CHECK	OF	UNDERSTANDING

Name	four	tools	that	are	not	specifically	designed	for	testers.	Give	an	example	of
how	each	of	them	could	be	of	use	to	a	tester.

Summary	of	test	tools

Table	6.5	summarises	the	types	of	test	tools	discussed	above.	It	includes	the
definition	given	in	the	ISTQB	Glossary	of	Testing	Terms	v3.2	and	gives	a	guide
to:

•the	main	ISTQB	syllabus	classification;

•the	activity	in	the	test	process	for	which	the	tool	is	usually	most	useful;

•the	most	likely	users	of	the	tool.

INTRODUCING	A	TOOL	INTO	AN	ORGANISATION

There	are	many	stages	in	the	process	that	should	be	considered	before
implementing	a	test	tool.

Analyse	the	problem/opportunity

An	assessment	should	be	made	of	the	maturity	of	the	test	process	used	within	the
organisation.	If	the	organisation’s	test	processes	are	immature	and	ineffective
then	the	most	that	the	tool	can	do	is	to	make	the	repetition	of	these	processes
quicker	and	more	accurate	–	quick	and	accurate	ineffective	processes	are	still
ineffective.

It	is	therefore	important	to	identify	the	strengths,	weaknesses	and	opportunities
that	exist	within	the	test	organisation	before	introducing	test	tools.	Tools	should
only	be	implemented	that	will	either	support	an	established	test	process	or
support	required	improvements	to	an	immature	test	process.	It	may	be	beneficial
to	carry	out	a	TPI	(Test	Process	Improvement)	or	CMMI	(Capability	Maturity
Model	Integration)	assessment	to	establish	the	maturity	of	the	organisation
before	considering	the	implementation	of	any	test	tool.

Table	6.5	Types	of	test	tool

Generate	alternative	solutions

It	may	be	more	appropriate	and	cost-effective	to	do	something	different.	In	some
organisations,	performance	testing,	which	may	only	need	to	be	done	from	time
to	time,	could	be	outsourced	to	a	specialist	testing	consultancy.	Training	or
recruiting	better	staff	could	provide	more	benefits	than	implementing	a	test	tool
and	improve	the	effectiveness	of	a	test	process	more	significantly.	In	addition,	it
is	more	effective	to	maintain	a	manual	regression	pack	so	that	it	accurately
reflects	the	high-risk	areas	than	to	automate	an	outdated	regression	pack	(that	is
no	longer	relevant)	using	a	test	execution	tool.

An	early	investigation	of	what	tools	are	available	is	likely	to	form	part	of	this
activity.

Constraints	and	requirements

A	thorough	analysis	of	the	constraints	and	requirements	of	the	tool	should	be
performed.	Interested	parties	should	attend	workshops	and/or	be	interviewed	so
that	a	formal	description	of	the	requirements	can	be	produced	and	approved	by
the	budget	holder	and	other	key	stakeholders.

A	failure	to	specify	accurate	requirements	(as	with	a	failure	to	specify	accurate
requirements	for	a	piece	of	software)	can	lead	to	delays,	additional	costs	and	the
wrong	things	being	delivered.	This	could	lead	to	a	review	tool	being
implemented	that	does	not	allow	access	across	the	internet,	even	though	there	is
a	need	for	staff	from	many	countries	to	participate	in	reviews.	Any	financial	or
technical	constraints	(e.g.	compatibility	with	particular	operating	systems	or

databases)	should	also	be	considered.

It	is	useful	to	attach	some	sort	of	priority	or	ranking	to	each	requirement	or
group	of	requirements.

Training,	coaching	and	mentoring	requirements	should	also	be	identified.	For
example,	experienced	consultants	could	be	used	for	a	few	weeks	or	months	to
work	on	overcoming	implementation	problems	with	the	tool	and	to	help	transfer
knowledge	to	permanent	staff.	Such	consultants	could	be	provided	by	the	vendor
or	could	be	from	the	contract	market.

Requirements	for	the	tool	vendor	should	also	be	considered.	These	could	include
the	quality	of	training	and	support	offered	by	the	vendor	during	and	after
implementation	and	the	ability	to	enhance	and	upgrade	the	tool	in	the	future.	In
addition,	their	financial	stability	should	be	considered	because	the	vendor	could
go	bankrupt	or	sell	to	another	vendor.	Therefore,	using	a	small	niche	vendor	may
be	a	higher	risk	than	using	an	established	tool	supplier.

If	non-commercial	tools	(such	as	open	source	and	freeware)	are	being
considered	then	there	are	likely	to	be	risks	around	the	lack	of	training	and
support	available.	In	addition,	the	ability	or	desire	of	the	service	support	supplier
(or	open-source	provider)	to	continue	to	develop	and	support	the	tool	should	be
taken	into	account.

Evaluation	and	shortlist

The	tools	available	in	the	marketplace	should	be	evaluated	to	identify	a	shortlist
of	the	tools	that	provide	the	best	fit	to	the	requirements	and	constraints.	This

may	involve:

•searching	the	internet;

•attending	exhibitions	of	test	tools;

•discussions	with	tool	vendors;

•engaging	specialist	consultants	to	identify	relevant	tools.

It	may	also	be	useful	for	the	test	organisation	to	send	a	copy	of	its	list	of
requirements	and	constraints	to	tool	vendors	so	that:

•the	vendor	is	clear	about	what	the	test	organisations	wants;

•the	vendor	can	respond	with	clarity	about	what	its	own	tools	can	do	and	what
workarounds	there	are	to	meet	the	requirements	that	the	tool	cannot	provide;

•the	test	organisation	does	not	waste	time	dealing	with	vendors	that	cannot
satisfy	its	key	requirements.

The	outcome	of	this	initial	evaluation	should	result	in	a	shortlist	of	perhaps	one,
two	or	three	tools	that	appear	to	meet	the	requirements.

Detailed	evaluation/proof	of	concept

A	more	detailed	evaluation	(proof	of	concept)	should	then	be	performed	against
this	shortlist.	This	should	be	held	at	the	test	organisation’s	premises	in	the	test
environment	in	which	the	tool	will	be	used.	This	test	environment	should	use	the
system	under	test	and	other	software,	operating	systems	and	hardware	with
which	the	tool	will	be	used.	There	are	several	reasons	why	there	is	little	benefit
from	evaluating	the	tool	on	something	different.	For	example:

•Test	execution	tools	do	not	necessarily	recognise	all	object	types	in	the	system
under	test,	or	they	may	need	to	be	reconfigured	to	do	so.

•Performance	measurement	tools	may	need	to	be	reconfigured	to	provide
meaningful	performance	information.

•Test	management	tools	may	need	to	have	workflow	redesigned	to	support
established	test	processes	and	may	need	to	be	integrated	with	existing	tools	used
within	the	test	process.

•Static	analysis	tools	may	not	work	on	the	version	of	programming	languages
used.

In	some	cases,	it	may	be	worth	considering	whether	changes	can	be	made	to	the
organisation’s	test	environments	and	infrastructure,	but	the	costs	and	risks	need
to	be	understood	and	quantified.

(Note	that	if	there	is	only	one	tool	in	the	shortlist	then	it	may	be	appropriate	to
combine	the	proof	of	concept	and	the	pilot	project.)

After	each	proof	of	concept	the	performance	of	the	tool	should	be	assessed	in
relation	to	each	predefined	requirement.	Any	additional	features	demonstrated
should	be	considered	and	noted	as	potential	future	requirements.

Once	all	proofs	of	concept	have	been	carried	out	it	may	be	necessary	to	amend
the	requirements	as	a	result	of	what	was	found	during	the	tool	selection	process.
Any	amendments	should	be	agreed	with	stakeholders.	Each	tool	should	then	be
assessed	against	the	finalised	set	of	requirements.

There	are	three	likely	outcomes	at	this	stage:

•None	of	the	tools	meets	the	requirements	sufficiently	well	to	make	it
worthwhile	purchasing	and	implementing	them.

•One	tool	meets	the	requirement	much	better	than	the	others	and	is	likely	to	be
worthwhile.	In	this	case	select	this	tool.

•The	situation	is	unclear	and	more	information	is	needed.	In	this	case	a
competitive	trial	or	another	cycle/iteration	of	the	process	may	be	needed.
Perhaps	the	requirements	need	to	be	revised	or	further	questions	need	to	be	put
to	vendors.	It	may	also	be	time	to	start	negotiations	with	vendors	about	costs.

Negotiations	with	vendor	of	selected	tool

Once	a	tool	has	been	selected	discussions	will	be	held	with	the	vendor	to
establish	and	negotiate	the	amount	of	money	to	be	paid	and	the	timing	of
payments.	This	will	include	some	or	all	of	the	following:

•purchase	price;

•annual	licence	fee;

•consultancy	costs;

•training	costs;

•implementation	costs.

Discussions	should	establish	the	amount	to	be	paid,	first,	for	a	pilot	project	and,
secondly	(assuming	the	pilot	project	is	successful),	the	price	to	be	paid	for	a
larger	scale	implementation.

The	pilot	project

The	aims	of	a	pilot	project	include	the	following:

•It	is	important	to	establish	what	changes	need	to	be	made	to	the	high-level
processes	and	practices	currently	used	within	the	test	organisation.	This	involves
assessing	whether	the	tool’s	standard	workflow,	processes	and	configuration
need	to	be	amended	to	fit	with	the	test	process	or	whether	the	existing	processes
need	to	be	changed	to	obtain	the	optimum	benefits	that	the	tool	can	provide.

•To	determine	lower	level	detail	such	as	templates,	naming	standards	and	other
guidelines	for	using	the	tool.	This	can	take	the	form	of	a	user	guidelines
document.

•To	establish	whether	the	tool	provides	value	for	money.	This	is	done	by	trying
to	estimate	and	quantify	the	financial	and	other	benefits	of	using	the	tool	and
then	comparing	this	with	the	fees	paid	to	the	vendor	and	the	projected	internal
costs	to	the	organisation	(e.g.	lost	time	that	could	be	used	for	other	things,	the
cost	of	hiring	contractors	etc.).

•A	more	intangible	aim	is	to	learn	more	about	what	the	tool	can	and	cannot	do
and	how	these	functions	(or	workarounds)	can	be	applied	within	the	test
organisation	to	obtain	maximum	benefit.

The	pilot	project	should	report	back	to	the	group	of	stakeholders	that	determined
the	requirements	of	the	tool.

If	a	decision	is	made	to	implement	the	tool	on	a	larger	scale	then	a	formal	project
should	be	created	and	managed	according	to	established	project	management
principles.

Key	factors	in	successful	implementations	of	test	tools

There	are	certain	factors	or	characteristics	that	many	successful	tool
implementation	projects	have	in	common:

•Implementing	findings	from	the	pilot	project	such	as	high-level	process	changes
and	using	functions	or	workarounds	that	can	add	additional	benefits.

•Identifying	and	subsequently	writing	user	guidelines,	based	on	the	findings	of
the	pilot	project.

•An	incremental	approach	to	rolling	out	the	tool	into	areas	where	it	is	likely	to	be
most	useful.	For	example,	this	can	allow	‘quick	wins’	to	be	made	and	good
publicity	obtained,	resulting	in	a	generally	positive	attitude	towards	the	tool.

•Improving	the	process	to	fit	with	the	new	tool,	or	amending	the	use	of	the	tool
to	fit	with	existing	processes.

•Ensuring	that	the	appropriate	level	of	training,	coaching	and	mentoring	is
available.	Similarly,	there	may	be	a	need	to	recruit	permanent	or	contract
resources	to	ensure	that	sufficient	skills	exist	at	the	outset	of	the	tool’s	use	within
the	organisation.

•Using	a	database	(in	whatever	format)	of	problems	encountered	and	lessons

learnt	to	overcome	them.	This	is	because	new	users	are	likely	to	make	similar
mistakes.

•Capturing	metrics	to	monitor	the	amount	of	use	of	the	tool.	Recording	the
benefits	obtained.	This	can	then	be	used	to	support	arguments	about
implementing	to	other	areas	within	the	test	organisation.

•Agreeing	or	obtaining	a	budget	to	allow	the	tool	to	be	implemented
appropriately.

Summary	of	test	tool	implementation	process

The	diagram	in	Figure	6.7	outlines	the	process	for	selecting	and	implementing	a
test	tool	in	an	organisation.	This	shows	that	there	are	several	points	at	which	a
decision	could	be	made	not	to	introduce	a	tool.	It	also	demonstrates	that	the
activities	during	the	evaluation	and	negotiation	stages	can	follow	an	iterative
process	until	a	decision	is	made.

CHECK	OF	UNDERSTANDING

1.	Why	is	an	understanding	of	the	test	organisation’s	maturity	essential	before
introducing	a	test	tool?

2.	What	is	the	purpose	of	defining	requirements	for	the	tool?

3.	Why	is	it	important	to	evaluate	the	tool	vendor	as	well	as	the	tool	itself?

4.	What	is	meant	by	a	proof	of	concept?

5.	What	is	the	purpose	of	a	pilot	project?

6.	When	is	it	appropriate	to	combine	a	proof	of	concept	and	pilot	project?

7.	Name	three	factors	in	the	successful	implementation	of	tools.

SUMMARY

We	have	seen	that	the	main	benefits	of	using	test	tools	are	generally	the	same	as
the	benefits	of	automating	a	process	in	any	industry.	These	are:	time	saved	and
predictable	and	consistent	results.

However,	we	have	also	seen	that	there	can	be	considerable	costs	in	terms	of	both
time	and	money	associated	with	obtaining	such	benefits.	The	point	at	which	the
use	of	tools	becomes	economically	viable	depends	on	the	amount	of	reuse,
which	is	often	difficult	to	predict.

Other	risks	include	over-optimistic	expectations	of:

•what	the	tool	can	do;

•how	easy	it	is	to	use;

•the	amount	of	maintenance	required.

We	have	seen	that	there	are	many	types	of	test	tools	and	that	they	provide
support	to	a	variety	of	activities	within	the	test	process.	We	have	also	seen	that
tools	are	used	by	a	variety	of	staff	in	the	software	development	process	and	that
some	are	of	greater	benefit	to	developers	than	testers.

We	have	looked	at	the	different	scripting	techniques	that	can	be	used	with	test
execution	tools.	This	ranges	from	the	simple	record–playback	to	data-driven	and
keyword-driven	scripts.

We	identified	a	process	for	selecting	and	introducing	a	test	tool	into	an
organisation.	This	involves	understanding	the	interactions	between	activities
within	the	process	and	examining	the	purposes	of	a	proof	of	concept	and	of	a
pilot	project.	We	also	examined	the	problems	likely	to	be	encountered	when
implementing	a	tool	and	looked	at	actions	that	can	be	taken	in	an	attempt	to
overcome	or	avoid	such	problems.

Figure	6.7	Test	tool	implementation	process

We	also	noted	that	a	decision	not	to	introduce	a	tool	could	well	be	a	valid
decision	at	several	stages	within	the	process.

Example	examination	questions	with	answers

E1.	K1	question

A	project	requires	test	tools	to	support	both	requirements	management	and
usability	testing.	Which	two	of	the	following	classes	of	test	tool	are
appropriate	to	select	tools	from?

i.	Tool	support	for	management	of	testing	and	testware.

ii.	Tool	support	for	test	design	and	implementation.

iii.	Tool	support	for	static	testing.

iv.	Tool	support	for	specialised	testing	needs.

v.	Tool	support	for	test	execution	and	logging.

a.	i	and	iv.

b.	ii	and	iii.

c.	iii	and	iv.

d.	i	and	v.

E2.	K2	question

Which	of	the	following	correctly	identifies	a	benefit	of	test	automation?

a.	Version	control	of	test	assets	is	no	longer	required.

b.	Greater	consistency	and	repeatability	of	tests.

c.	The	tool	vendor	is	always	available	for	help	and	advice.

d.	Regression	testing	will	not	be	needed.

E3.	K1	question

Which	of	the	following	is	a	special	consideration	for	test	execution	tools?

a.	Expertise	in	scripting	languages	is	required.

b.	Test	execution	tools	need	to	interface	with	spreadsheets	and	other	tools.

c.	Tests	cannot	be	captured	by	recording	the	actions	of	a	manual	tester.

d.	Every	tester	will	need	to	be	trained	in	the	use	of	the	test	execution	tool.

E4.	K2	question

Which	of	the	following	is	not	an	important	principle	for	test	tool	selection?

a.	Evaluation	of	the	tool	against	clear	requirements	and	objective	criteria.

b.	Consideration	of	pros	and	cons	of	various	licensing	models.

c.	Identification	of	opportunities	for	an	improved	test	process	supported	by	tools.

d.	Identification	of	changes	needed	to	the	tool	to	ensure	that	it	operates
effectively	with	the	existing	test	process.

E5.	K1	question

Which	of	the	following	is	a	typical	objective	for	a	pilot	project	for
introduction	of	a	test	tool	into	an	organisation?

a.	Gaining	an	understanding	of	the	requirements	for	a	tool.

b.	Evaluating	how	the	tool	fits	with	existing	processes	and	practices.

c.	Determining	what	changes	will	be	needed	to	the	tool’s	functionality.

d.	Deciding	what	benefits	the	tool	might	bring.

E6.	K1	question

Which	of	the	following	is	a	typical	positive	success	factor	for
implementation	of	a	test	tool	within	an	organisation?

a.	Ensuring	that	the	tool	is	rolled	out	across	the	entire	organisation
simultaneously.

b.	Identifying	ways	to	improve	the	tool	once	it	is	implemented.

c.	Ensuring	that	all	software	development	projects	make	maximum	use	of	the
tool.

d.	Monitoring	tool	use	and	benefits.

Answers	to	questions	in	the	chapter

SA1.	The	correct	answer	is	d.

SA2.	The	correct	answer	is	c.

SA3.	The	correct	answer	is	a.

Answers	to	example	examination	questions

E1.	The	correct	answer	is	a.

The	correct	classes	of	tool	are	tool	support	for	management	of	testing	and
testware	(requirements	management	tool)	and	tool	support	for	specialised	testing
needs	(usability	testing).	The	only	answer	that	identifies	this	combination	is	a.

E2.	The	correct	answer	is	b.

Option	a	is	incorrect;	neglect	of	version	control	is	listed	in	section	6.1.2	as	a
potential	risk.	Option	c	is	incorrect;	vendors	going	out	of	business	or
discontinuing	support	of	a	tool	are	potential	risks.	Option	d	is	incorrect;
regression	testing	may	be	easier	and	quicker	to	do	but	will	still	be	required.
Option	b	is	specifically	listed	as	a	potential	benefit	of	test	automation	and	is	the
correct	answer.

E3.	The	correct	answer	is	a.

Option	a	is	correct.	At	least	one	member	of	a	testing	team	will	need	to	be	able	to
develop	test	scripts	using	a	scripting	language,	so	expertise	by	some	of	the	test
team	is	required	–	but	this	does	not	mean	every	tester	needs	to	be	able	to
read/write	in	any	scripting	language(s).	Option	b	is	incorrect;	this	is	a	special
consideration	for	test	management	tools	but	not	for	test	execution	tools.	Option	c
is	incorrect;	although	capturing	manual	tests	is	not	the	optimum	approach	to
automated	test	execution,	it	can	be	done.	Option	d	is	incorrect;	at	least	one	tester
will	need	to	be	trained	to	use	the	tools,	but	not	necessarily	the	entire	team.

E4.	The	correct	answer	is	d.

Options	a,	b	and	c	are	all	key	principles	listed	in	the	syllabus,	section	6.2.1.
Option	d	contradicts	option	c	and	is	generally	considered	a	dangerous	approach
that	could	significantly	impair	the	benefits	of	using	a	tool	and	incur	significant
costs.

E5.	The	correct	answer	is	b.

Option	a	is	incorrect;	this	needs	to	be	done	before	selecting	the	tool.	Option	c	is
incorrect;	changes	may	be	needed	to	processes	and	practices,	but	changes	to	a
tool	are	expensive	and	risky.	Option	d	is	incorrect	because	the	anticipated
benefits	would	have	been	determined	earlier	to	support	the	selection	process;	at
this	stage	the	aim	is	to	determine	if	the	expected	benefits	can	be	achieved.	The
correct	option	is	b,	which	is	listed	in	section	6.2.2	of	the	syllabus.

E6.	The	correct	answer	is	d.

Option	a	is	incorrect;	section	6.2.3	of	the	syllabus	suggests	that	tools	should	be
rolled	out	incrementally.	Option	B	is	incorrect	because	changes	to	a	tool	are
potentially	expensive	and	risky;	any	changes	to	accommodate	the	tool	should	be
made	to	processes	and	practices.	Option	c	is	unlikely	to	be	successful	because	no
tool	is	likely	to	be	successful	in	all	cases	or	in	all	types	of	project;	the	syllabus
suggests	defining	guidelines	for	the	use	of	the	tool	so	that	users	can	best	decide
where	it	will	add	most	value.	Option	d	is	correct	and	is	listed	in	the	syllabus,

section	6.2.3.

7THE	EXAMINATION

THE	EXAMINATION

The	examination	structure

The	Certified	Tester	Foundation	Level	(CTFL)	examination	is	a	one-hour
examination	made	up	of	40	multiple	choice	questions.	There	are	five	main
aspects	to	the	examination’s	structure:

•The	questions	are	all	equally	weighted.

•Questions	are	set	from	learning	objectives	stated	in	each	section.

•The	number	of	questions	associated	with	each	section	of	the	syllabus	is	in
proportion	to	the	amount	of	time	allocated	to	that	section	of	the	syllabus,	which
roughly	translates	into:

Section	1,	8	questions.

Section	2,	5	questions.

Section	3,	5	questions.

Section	4,	11	questions.

Section	5,	9	questions.

Section	6,	2	questions.

These	proportions	are	now	mandatory.

•The	number	of	questions	at	each	level	of	understanding	will	be	as	follows:

K1	20	per	cent,	that	is	8	questions.

K2	60	per	cent,	that	is	24	questions.

K3	20	per	cent,	that	is	8	questions.

This	is	also	a	mandatory	requirement.

•The	pass	mark	is	26	correct	answers	and	there	are	no	penalties	for	incorrect
answers.

The	question	types

All	questions	will	contain	a	‘stem’,	which	states	the	question,	and	four	optional
answers.	One	and	only	one	of	the	optional	answers	will	be	correct.	The
remainder	can	be	expected	to	be	plausibly	incorrect,	which	means	that	anyone
knowing	the	correct	answer	will	be	unlikely	to	be	drawn	to	any	of	the	incorrect
answers,	but	anyone	unsure	of	the	correct	answer	will	be	likely	to	find	one	or
more	alternatives	equally	plausible.

Questions	will	be	stated	as	clearly	as	possible,	even	emphasising	keywords	by
emboldening	where	this	will	add	clarity.	There	should	be	very	few	negative
questions	(e.g.	which	of	the	following	is	not	true?)	and	any	negative	questions
included	will	be	worded	so	that	there	is	no	ambiguity.	Questions	will	be	set	to
test	your	knowledge	of	the	content	of	the	topics	covered	in	the	syllabus	and	not
your	knowledge	of	the	syllabus	itself.

There	are	no	absolute	rules	for	question	types	as	long	as	they	are	appropriate	to
the	level	of	understanding	they	are	testing,	but	there	are	some	common	types	of
questions	that	are	likely	to	arise.

As	a	general	rule,	K1	questions	will	be	of	the	straightforward	variety	shown	in
the	next	box.

EXAMPLE	OF	A	K1	QUESTION

(This	one	is	taken	from	Chapter	3.)

What	do	static	analysis	tools	analyse?

a.	Design.

b.	Test	cases.

c.	Requirements.

d.	Program	code.

(The	correct	answer	is	d.)

K2	questions	may	be	of	the	same	type	as	the	K1	example	but	with	a	more
searching	stem.	Another	form	of	K2	question	is	known	as	the	Roman	type.	This
is	particularly	well	suited	to	questions	involving	comparisons	or	testing	the
candidate’s	ability	to	identify	correct	combinations	of	information.	The	example
in	the	next	box	is	a	K2	question	of	the	Roman	type.

EXAMPLE	OF	A	K2	QUESTION

(This	one	is	taken	from	Chapter	3.)

Which	of	the	following	statements	are	correct	for	walkthroughs?

i.	Often	led	by	the	author.

ii.	Documented	and	defined	results.

iii.	All	participants	have	defined	roles.

iv.	Used	to	aid	learning.

v.	Main	purpose	is	to	find	defects.

a.	i	and	v	are	correct.

b.	ii	and	iii	are	correct.

c.	i	and	iv	are	correct.

d.	iii	and	iv	are	correct.

(The	correct	answer	is	c.)

K3	questions	test	the	candidate’s	ability	to	apply	a	topic,	so	the	most	common
form	of	these	is	related	to	test	design	techniques	(though	this	is	not	the	only
topic	that	can	be	examined	at	the	K3	level).	The	next	box	gives	a	typical
example	of	a	techniques	question.

EXAMPLE	OF	A	K3	QUESTION

(This	one	is	taken	from	Chapter	4.)

A	system	is	designed	to	accept	values	of	examination	marks	as	follows:

Fail				0–39	inclusive

Pass				40–59	inclusive

Merit				60–79	inclusive

Distinction				80–100	inclusive

Which	of	the	following	sets	of	values	are	all	in	different	equivalence	partitions?

a.	25,	40,	60,	75

b.	0,	45,	79,	87

c.	35,	40,	59,	69

d.	25,	39,	60,	81

(The	correct	answer	is	b.)

Remember	that	K1,	K2	and	K3	do	not	equate	to	easy,	moderate	or	hard.	The	K
level	identifies	the	level	of	understanding	being	tested,	not	the	difficulty	of	the
question.	It	is	perfectly	possible	to	find	K2	questions	that	are	more	difficult	(in
the	sense	of	being	more	challenging	to	answer)	than	a	K3	question.	It	is,
however,	true	that	K1	questions	will	always	be	the	most	straightforward	and
anyone	who	knows	the	material	in	the	syllabus	should	have	no	difficulty	in
answering	any	K1	question.	Every	question	has	the	same	value;	any	26	correct
answers	will	guarantee	a	pass.

Questions	in	the	examination	are	not	labelled	by	the	K	level	they	are	testing,	but
the	example	questions	at	the	end	of	each	chapter	of	this	book	include	examples
of	K1,	K2	and	K3	questions,	and	these	are	labelled	by	level	for	your	guidance.

The	sample	examination

A	sample	examination	paper	is	available	from	the	ISTQB	website.	It	is	designed
to	provide	guidance	on	the	structure	of	the	paper	and	the	‘rubric’	(the	rules
printed	on	the	front	of	the	paper)	of	the	real	examination.	The	questions	in	the
sample	paper	are	not	necessarily	typical,	though	there	will	be	examples	of	the
various	types	of	questions	so	that	candidates	are	aware	of	the	kinds	of	questions
that	can	arise.	Any	topic	or	type	of	question	in	the	sample	paper	can	be	expected
to	arise	in	a	real	examination	at	some	time.	Bear	in	mind	that	the	sample	paper
may	change	from	time	to	time	to	reflect	any	changes	in	the	syllabus	or	to	reflect
any	changes	in	the	way	questions	are	set.

Examination	technique

In	a	relatively	short	examination	there	is	little	time	to	devote	to	studying	the
paper	in	depth.	However,	it	is	wise	to	pause	before	beginning	to	answer
questions	while	you	assimilate	the	contents	of	the	question	paper.	This	brief	time
of	inactivity	is	also	a	good	opportunity	to	consciously	slow	down	your	heart	rate
and	regulate	your	breathing;	nervousness	is	natural,	but	it	can	harm	your
performance	by	making	you	rush.	A	few	minutes	spent	consciously	calming
down	will	be	well	repaid.	There	will	still	be	time	enough	to	answer	the
questions;	a	strong	candidate	can	answer	40	questions	in	less	than	45	minutes.

When	you	do	start,	go	through	the	whole	paper	answering	those	questions	that
are	straightforward	and	for	which	you	know	the	answer.	When	you	have	done
this,	you	will	have	a	smaller	task	to	complete	and	you	will	probably	have	taken
less	than	a	minute	for	each	question	that	you	have	already	answered,	giving	you
more	time	to	concentrate	on	those	that	you	will	need	more	time	to	answer.

Next,	turn	to	those	you	feel	you	understand	but	that	will	take	you	a	little	time	to
work	out	the	correct	answer,	and	complete	as	many	of	those	as	you	can.	The
questions	you	are	left	with	now	should	be	those	that	you	are	uncertain	about.
You	now	know	how	long	you	have	to	answer	each	of	these	and	you	can	take	a
little	more	time	over	each	of	them.

REVISION	TECHNIQUES

There	are	some	golden	rules	for	exam	revision:

•Do	as	many	example	questions	as	you	can	so	that	you	become	familiar	with	the
types	of	questions,	the	way	questions	are	worded	and	the	levels	(K1,	K2,	K3)	of
questions	that	are	set	in	the	examination.

•Be	active	in	your	reading.	This	usually	means	taking	notes,	but	this	book	has
been	structured	to	include	regular	checks	of	understanding	that	will	provide	you
with	prompts	to	ensure	that	you	have	remembered	the	key	ideas	from	the	section
you	have	just	revised.	In	many	cases	information	you	need	to	remember	is
already	in	note	form	for	easy	learning.

•One	important	way	to	engage	with	the	book	is	to	work	through	all	the	examples
and	exercises.	If	you	convince	yourself	you	can	do	an	exercise,	but	you	do	not
actually	attempt	it,	you	will	only	discover	the	weakness	in	that	approach	when
you	are	sitting	in	the	examination	centre.

•Learning	and	revision	need	to	be	reinforced.	There	are	two	related	ways	to	do
this:

By	making	structured	notes	to	connect	together	related	ideas.	This	can	be	done
via	lists,	but	a	particularly	effective	way	to	make	the	connections	is	by	using	a
technique	known	as	mind	mapping	(there	are	many	free	tools	on	the	web	or,	if
you	find	you	really	like	the	technique,	you	can	invest	in	a	more	feature-rich
product).

By	returning	to	a	topic	that	you	have	revised	to	check	that	you	have	retained	the
information.	This	is	best	done	the	day	after	you	first	revised	the	topic	and	again	a
week	after,	if	possible.	If	you	begin	each	revision	section	by	returning	to	the
‘Check	of	understanding’	boxes	in	some	or	all	of	the	chapters	you	worked	with
in	previous	revision	sessions,	it	will	help	to	ensure	that	you	retain	what	you	are
revising.

•Read	the	syllabus	and	become	familiar	with	it.	Questions	are	raised	directly
from	the	syllabus	and	often	contain	wording	similar	to	that	used	in	the	syllabus.
Familiarity	with	the	syllabus	document	will	more	than	repay	the	time	you	will
spend	gaining	that	familiarity.

REVIEW

The	layout,	structure	and	style	of	this	book	are	designed	to	maximise	your
learning:	by	presenting	information	in	a	form	that	is	easy	to	assimilate;	by	listing
things	you	need	to	remember;	by	highlighting	key	ideas;	by	providing	worked
examples;	and	by	providing	exercises	with	solutions.	All	you	need	for	an	intense
and	effective	revision	session	is	in	these	pages.

The	best	preparation	for	any	examination	is	to	practise	answering	as	many
realistic	questions	as	possible	under	conditions	as	close	to	the	real	examination
as	possible.	This	is	one	way	to	use	the	ISTQB	sample	paper,	or	you	can
construct	a	sample	paper	of	your	own	from	the	questions	included	in	this	book.
However,	the	best	check	of	your	readiness	for	tackling	the	real	examination	is	to
attempt	the	mock	exam	that	is	contained	in	Appendix	A1.	All	the	answers	are
provided	in	Appendix	A2	so	that	you	can	see	how	well	you	did,	and	a	full
commentary	is	provided	in	Appendix	A3	so	that	you	can	identify	where	you
went	wrong	in	any	questions.

Good	luck	with	your	Foundation	Certificate	examination.

APPENDICES

A1	MOCK	CTFL	EXAMINATION

Question	1

Which	of	the	following	is	most	likely	to	lead	to	the	success	of	testing?

a.	Point	out	in	defect	reports	why	the	problems	should	not	have	happened.

b.	Have	a	chart	of	the	developers	and	the	number	of	defects	that	they	have
created.

c.	Communicate	information	about	defects	and	failures	in	a	constructive	way.

d.	Locate	testers	and	developers	in	separate	buildings,	to	aid	internal	team
building.

Question	2

What	is	decision	table	testing?

a.	Placing	decisions	in	tables	to	make	them	easier	to	test.

b.	A	black-box	technique	to	exercise	combinations	of	causes	and	effects.

c.	A	table	used	to	show	sets	of	conditions	and	resulting	actions.

d.	A	white-box	test	technique	to	test	conditions	and	their	outcomes.

Question	3

Which	of	the	following	is	true	of	non-functional	testing?

a.	Non-functional	testing	always	requires	specialist	skills.

b.	Non-functional	testing	is	technical	so	should	be	carried	out	by	developers.

c.	Non-functional	testing	should	be	carried	out	at	all	levels	of	testing.

d.	Due	to	the	nature	of	non-functional	testing,	the	coverage	achieved	cannot	be
measured.

Question	4

Which	of	the	following	correctly	identifies	a	key	role	and	associated
responsibilities	for	a	formal	review?

a.	Management	assigns	staff	and	executes	control	decisions	in	the	event	of

inadequate	outcomes.

b.	Review	leader	assigns	staff	and	takes	overall	responsibility	for	the	review.

c.	Reviewers,	who	must	be	subject	matter	experts,	identify	potential	defects.

d.	A	moderator	decides	who	will	be	involved	and	organises	where	and	when	a
meeting	will	take	place.

Question	5

Of	the	following,	which	is	the	most	suitable	test	basis	for	component	testing?

a.	A	detailed	design.

b.	A	database	module.

c.	An	interface	definition.

d.	A	business	process.

Question	6

Which	of	the	following	statements	best	describes	the	role	of	testing?

a.	Testing	ensures	that	the	right	version	of	code	is	delivered.

b.	Testing	can	be	used	to	assess	quality.

c.	Testing	improves	quality.

d.	Testing	shows	that	the	software	is	error	free.

Question	7

Which	of	the	following	best	demonstrates	the	value	of	static	testing?

a.	Project	A	was	late	starting	testing	and	subsequently	overran	the	project	target
and	budget.

b.	Project	B	was	late	starting	development	because	detailed	requirements
reviews	were	held	but	later	completed	on	time	and	on	budget.

c.	Project	C	involved	all	testers	in	reviewing	test	specifications	and	subsequently
completed	late	and	over	budget.

d.	Project	D	overran	because	a	defect	occurred	late	in	development,	resulting	in
long	delays.

Question	8

Which	of	the	following	characteristics	will	affect	the	test	effort	required	to
achieve	the	testing	objectives	of	a	project?

a.	The	development	model	in	use.

b.	The	number	of	testers	available.

c.	The	availability	of	suitable	test	environments.

d.	The	cost	of	required	testing	tools.

Question	9

Which	of	the	following	is	a	common	test	metric?

a.	Number	of	testers	in	a	test	team.

b.	Number	of	test	cases	prepared.

c.	Number	of	test	cases	run/not	run.

d.	Number	of	requirements	to	be	tested.

Question	10

Which	of	the	following	is	not	a	main	consideration	for	tool	selection?

a.	Evaluation	of	the	tool	against	clear	requirements	and	objective	criteria.

b.	Evaluating	how	the	tool	fits	with	existing	processes	and	practices,	and
determining	what	needs	to	change.

c.	Identification	of	opportunities	for	an	improved	test	process	supported	by	the
tool.

d.	Identification	of	internal	requirements	for	coaching	and	mentoring	in	the	use
of	the	tool.

Question	11

Youngsters	aged	12	are	incorrectly	issued	with	‘child’	tickets	on	an
adventure	park	website,	instead	of	an	‘adult’	ticket.	Which	of	the	following
describes	this?

a.	Failure.

b.	Unprofessional.

c.	Error.

d.	Defect.

Question	12

Which	of	the	following	does	not	correctly	describe	how	to	derive	test	cases
from	a	use	case?

a.	Use	case	tests	can	be	designed	to	test	all	defined	behaviour,	including
exceptional	or	alternative	behaviour	and	error	handling.

b.	Use	case	testing	is	appropriate	only	for	identifying	behaviours	that	have	not
been	defined.

c.	Use	case	testing	is	used	to	ensure	that	all	error	handling	is	correctly	executed.

d.	Use	case	testing	can	be	based	on	exceptional	or	alternative	behaviours.

Question	13

Which	of	the	following	is	generally	true?

a.	Code	coverage	is	typically	measured	when	carrying	out	functional	testing.

b.	Non-functional	testing	can	make	use	of	black-box	techniques.

c.	White-box	testing	focuses	on	system	behaviours.

d.	Functional	testing	is	best	done	at	system	and	acceptance	testing.

Question	14

Which	of	the	following	statements	about	the	purpose	and	content	of	a	test
plan	is	not	correct?

a.	The	content	of	a	master	test	plan	must	be	completed	before	the	project	is
initiated.

b.	Test	planning	is	a	continuous	activity	and	the	content	of	test	plans	may	change
as	the	project	progresses.

c.	There	may	be	separate	test	plans	for	different	test	types.

d.	There	is	integration	of	test	activities	into	the	Software	Development	Life
Cycle	activities.

Question	15

Which	of	the	following	statements	about	decision	coverage	is	correct?

a.	Decision	coverage	is	a	measure	of	the	number	of	white-box	tests	that	have
been	executed.

b.	Decision	testing	is	the	percentage	of	decision	outcomes	in	a	test	object
exercised	by	a	suite	of	tests	divided	by	the	total	number	of	decision	outcomes	in
the	test	object.

c.	Decision	testing	compares	the	number	of	decision	outcomes	executed	by	a
suite	of	tests	with	the	total	number	of	tests.

d.	Decision	testing	is	the	percentage	of	decision	outcomes	in	a	test	object	divided
by	the	number	of	decision	outcomes	exercised	by	a	suite	of	tests.

Question	16

Which	of	the	following	correctly	explains	error	guessing?

a.	Error	guessing	is	based	on	testing	for	the	types	of	mistakes	that	developers

tend	to	make.

b.	Error	guessing	is	a	technique	for	creating	lists	of	mistakes,	defects	and	failures
that	can	be	used	by	developers	to	avoid	mistakes	in	the	future.

c.	Error	guessing	is	based	solely	on	the	tester’s	experience	of	past	mistakes.

d.	Error	guessing	uses	evidence	from	defect	reports	to	ensure	that	the	defect
reported	is	no	longer	present.

Question	17

Which	of	the	following	is	a	valid	entry	criterion	for	a	testing	phase?

a.	Testers	are	available	to	carry	out	the	tests.

b.	A	suitable	test	environment	is	available.

c.	All	previous	phases	of	testing	have	been	completed.

d.	The	defects	reported	in	previous	phases	have	been	cleared.

Question	18

Which	of	the	following	lists	of	activities	are	correctly	sequenced	for	a
product	review	process?

a.	Distributing	the	work	product,	estimating	effort	and	timescale,	reviewing	the
work	product,	creating	defect	reports,	analysing	potential	defects.

b.	Estimating	effort	and	timescale,	distributing	the	work	product,	gathering
metrics,	analysing	potential	defects,	creating	defect	reports.

c.	Selecting	reviewers,	explaining	scope	and	objectives,	noting	potential	defects,
evaluating	quality	characteristics,	fixing	defects	found.

d.	Identifying	the	review	type,	distributing	the	work	product,	analysing	potential
defects,	fixing	defects,	communicating	identified	defects.

Question	19

What	is	a	test	oracle?

a.	A	person	who	knows	most	about	testing	within	an	organisation.

b.	A	means	to	identify	expected	results	for	specific	test	inputs.

c.	A	process	to	identify	test	conditions	from	source	documents.

d.	A	means	of	estimating	how	long	testing	will	take.

Question	20

Which	of	the	following	statements	about	exploratory	testing	is	correct?

a.	In	exploratory	testing,	predefined	tests	are	executed,	logged	and	evaluated
dynamically	during	test	execution.

b.	Exploratory	testing	is	strongly	associated	with	model-based	test	strategies	and
can	incorporate	other	black-box	techniques.

c.	In	exploratory	testing,	test	results	are	used	to	learn	more	about	the	software
under	test	and	to	create	additional	tests	for	areas	that	may	need	more	testing.

d.	Exploratory	testing	always	uses	session-based	testing	to	ensure	that	tests	are
documented.

Question	21

Which	of	the	following	are	part	of	test	execution?

a.	Identifying	suitable	test	techniques,	determining	testing	tasks	and	drawing	up
a	test	schedule.

b.	Creating	test	suites	from	the	test	procedures,	building	the	test	environment	and
preparing	test	data.

c.	Comparing	actual	results	with	expected	results,	running	tests	manually	or
using	tools,	and	logging	the	outcome	of	tests	run.

d.	Examining	the	test	basis,	evaluating	the	quality	of	the	test	basis,	and
identifying	and	prioritising	test	conditions.

Question	22

What	is	the	key	difference	between	the	metrics-based	approach	to
estimation	and	the	expert-based	approach?

a.	The	metrics-based	approach	uses	a	mathematical	equation	to	calculate	total
effort,	whereas	the	expert-based	approach	uses	data	from	previous	projects.

b.	The	metrics-based	approach	uses	data	from	previous	projects,	while	the
expert-based	approach	uses	the	experience	of	the	tester	doing	the	tests.

c.	The	expert-based	approach	uses	the	experience	of	testers,	while	the	metrics-
based	approach	uses	previous	estimates	as	a	guide.

d.	The	expert-based	approach	uses	the	experience	of	experts,	while	the	metrics-
based	approach	uses	data	from	former	similar	projects.

Question	23

Which	of	the	following	statements	about	checklist-based	testing	is	correct?

a.	Checklists	are	used	to	ensure	that	there	is	no	variability	in	the	actual	testing.

b.	Checklists	can	be	used	to	support	functional	but	not	non-functional	testing.

c.	During	analysis,	testers	may	select	an	existing	checklist	and	use	it	without
modification	or	create	a	new	checklist;	modifications	to	existing	checklists	are
not	allowed.

d.	In	checklist-based	testing,	testers	design,	implement	and	execute	tests	to	cover
test	conditions	found	in	a	checklist.

Question	24

Which	of	the	following	test	tool	types	is	classified	as	a	test	tool	for	test
execution	and	logging	and	is	also	considered	more	appropriate	for	use	by
developers	than	by	testers?

a.	Model-based	testing	tools.

b.	Test-driven	development	tools.

c.	Test	data	preparation	tools.

d.	Coverage	tools.

Question	25

Which	of	the	following	is	a	complete	definition	of	how	configuration
management	supports	testing?

a.	It	ensures	that	testware	and	system	components	are	uniquely	identified.

b.	It	identifies	and	maintains	the	system	components,	the	testware	and	the
relationship	between	them.

c.	It	ensures	that	all	identified	documents	are	referenced	unambiguously	in	test
documentation.

d.	It	ensures	that	all	test	items	are	version	controlled,	tracked	for	changes	and
related	to	each	other.

Question	26

A	company	rewards	its	sales	people	on	the	basis	of	their	sales	in	each	month.
Sales	staff	who	make	sales	worth	more	than	£10,000	are	paid	the	highest
bonus,	followed	by	those	who	earn	more	than	£8,000,	those	who	earn	more

than	£5,000	and	those	who	earn	more	than	£3,000,	with	each	group	earning
a	bonus	of	1	per	cent	less	than	the	group	above.	Sales	staff	who	earn	£3,000
or	less	are	paid	no	bonus	for	that	month.	What	is	the	minimum	number	of
test	cases	required	to	cover	all	valid	equivalence	partitions	for	calculating
the	sales	bonus?

a.	6

b.	5

c.	4

d.	3

Question	27

Which	of	the	following	is	the	best	reason	to	maintain	traceability	between
the	test	basis	and	test	work	products?

a.	Traceability	ensures	that	all	requirements	have	been	tested.

b.	Traceability	assists	in	the	impact	analysis	of	potential	changes.

c.	Traceability	enables	the	project	to	be	delivered	on	time.

d.	Traceability	highlights	who	is	to	blame	when	defects	are	found.

Question	28

A	central	heating	system	timer	is	calibrated	in	hours	and	minutes,	using	a
24-hour	clock.	The	system	allows	up	to	four	time	zones	for	each	day.	On	a
particular	day	the	system	is	set	to	switch	on	from	06.00	to	08.45,	from	11.45
to	13.15,	and	from	16.45	to	22.45.	Using	a	two-point	boundary	value	system,
which	of	the	following	times	are	needed	to	test	this	day’s	functionality?

a.	06.00,	06.01,	08.45,	08.46,	11.45,	11.46,	13.15,	13.16,	16.45,	16.46,	22.45,
22.46

b.	05.59,	06.00,	08.44,	08.45,	11.44,	11.45,	13.14,	13.15,	16.44,	16.45,	2.244,
22.45

c.	06.00,	06.01,	08.44,	08.45,	11.44,11.45,	13.14,	13.15,	16.45,	16.46,	22.44,
22.45

d.	05.59,	06.00,	08.45,	08.46,	11.44,	11.45,	13.15,	13.16,	16.44,	16.45,	22.45,
22.46

Question	29

A	requirements	document	for	a	new	supermarket	checkout	system	has	been
produced.	It	is	743	pages	long	and	contains	an	overall	description	of	the
system,	detailed	workflows	and	use	cases,	with	mocked	up	screenshots	of

specific	functions,	and	an	outline	of	the	proposed	approach	to	development.
Which	of	the	following	is	a	key	success	factor	for	a	successful	review	of	this
document?

a.	The	review	team	must	include	designers,	developers	and	testers	but	the
document	is	too	technical	for	users	to	review.

b.	The	document	should	be	reviewed	in	small	chunks	and	defects	fed	back	to	the
authors	as	early	as	possible.

c.	The	review	must	take	the	form	of	an	inspection	so	that	detailed	metrics	are
available.

d.	The	review	should	be	arranged	at	the	earliest	possible	opportunity	so	that	the
development	team	is	not	held	up.

Question	30

Which	of	the	following	is	a	trigger	for	maintenance	testing?

a.	A	new	feature	is	required	for	an	iteration.

b.	A	fix	is	required	before	the	system	goes	live.

c.	The	system	functionality	has	been	descoped	to	hit	a	deadline.

d.	Data	is	being	migrated	for	a	live	system	to	a	different	platform.

Question	31

A	system	is	being	developed	to	manage	the	operation	of	a	warehouse-based
robot	that	collects	items	from	shelves	and	takes	them	to	a	packaging	area.
The	location	in	which	the	robot	will	operate	also	has	human	operators
working,	though	in	a	separate	area	of	the	warehouse.	How	should	a	product
risk	analysis	inform	the	testing?

a.	By	helping	to	determine	the	particular	types	and	levels	of	testing	to	be
performed.

b.	By	defining	the	specific	safety	features	to	be	incorporated.

c.	By	mandating	the	use	of	particular	test	tools.

d.	By	mandating	that	all	testers	are	experienced	in	safety-related	systems.

Question	32

A	university	examination	system	sets	all	examinations	for	a	module	with	the
same	criteria.	A	pass	is	awarded	to	any	student	who	scores	at	least	40	per
cent,	a	merit	is	awarded	to	any	student	scoring	at	least	60	per	cent,	and	a
distinction	is	awarded	to	any	student	scoring	85	per	cent	or	over.	Any
student	scoring	at	least	35	per	cent	but	below	40	per	cent	is	offered	a	viva
voce	exam	and	any	student	who	scores	at	least	30	per	cent	but	below	35	per

cent	is	offered	a	resit.	Any	student	scoring	below	30	per	cent	is	deemed	to
have	failed	the	relevant	module.	All	examination	paper	results	are	recorded
as	whole	numbers.	Which	of	the	following	sets	of	values	needs	to	be
identified	for	two-point	boundary	value	analysis?

a.	0,	1,	30,	34,	35,	40,	41,	60,	61,	85,	86

b.	29,	30,	34,	35,	39,	40,	59,	60,	84,	85

c.	30,	31,	35,	36,	40,	41,	60,	61,	85,	86

d.	29,	30,	31,	34,	35,	36,	39,	40,	41,	59,	60,	61,	84,	85,	86

Question	33

A	suite	of	tests	has	been	run	and	some	changes	have	been	made	to	the
relevant	modules	that	have	affected	the	priority	of	the	tests.

The	original	priorities	were	as	follows:

Test	case Priority

1 H

2 M

3 H

4 L

5 L

6 H

After	the	initial	tests	some	remedial	work	was	done,	and	this	work	has
changed	the	dependencies	between	the	test	cases	as	follows:

Test	case	3	is	now	dependent	on	test	case	5

Test	case	2	is	now	dependent	on	test	case	3

What	should	be	the	sequence	of	tests	in	the	test	execution	schedule?

a.	1,	3,	6,	2,	4,	5

b.	1,	6,	5,	3,	2,	4

c.	1,	5,	3,	2,	6,	4

d.	1,	6,	3,	2,	5,	4

Question	34

Which	of	the	statements	about	the	state	transition	diagram	and	table	of	test
cases	is	true?

a.	The	given	test	cases	cover	all	valid	transitions	and	at	least	one	invalid
transition	in	the	state	transition	diagram.

b.	The	given	test	cases	test	all	valid	transitions	but	not	invalid	transitions	in	the
state	transition	diagram.

c.	The	given	test	cases	test	only	some	of	the	valid	transitions	in	the	state
transition	diagram.

d.	The	given	test	cases	represent	only	some	of	the	valid	transitions	and	all
invalid	transitions	in	the	state	transition	diagram.

Question	35

A	defect	report	has	been	raised	for	a	system	that	separates	apples	from	a
conveyor	belt	into	different	sizes	and	diverts	them	to	appropriate	belts.	The
test	found	that	the	system	correctly	channelled	apples	below	a	certain	size
but	failed	to	detect	larger	apples	and	divert	them	to	their	own	belt.

The	dated	defect	report	has	a	title	and	provides	a	short	summary	of	the
defect,	the	degree	of	risk	involved	and	the	severity	allocated	to	the	defect.	It
identifies	the	test	script	that	was	run	and	the	expected	result	of	the	test,
which	was	that	apples	above	10	cm	in	diameter	should	be	diverted	to	belt	4.

Which	of	the	following	information,	if	any,	is	the	most	important	omission
from	this	defect	report?

a.	Recommendations.

b.	Actual	result.

c.	Priority	to	fix.

d.	Author.

Question	36

Requirements	for	a	new	supermarket	checkout	system	are	being	reviewed
by	a	team	made	up	from	checkout	staff,	developers,	testers,	technical
support	and	management.

The	requirements	document	provides	detailed	explanations	of	scenarios
involving	common	problem	situations,	such	as	missing	bar	codes,
unreadable	labels,	damaged	goods	and	customers	who	find	they	have
insufficient	funds	to	pay	the	final	bill.

It	is	important	that	the	system	meets	all	the	needs	of	all	the	key
stakeholders.

Which	of	the	following	review	techniques	is	the	best	one	to	select	to	ensure
that	the	right	outcomes	are	achieved?

a.	Checklist-based.

b.	Scenarios	and	dry	runs.

c.	Ad	hoc.

d.	Perspective-based.

Question	37

Which	of	the	following	best	describes	the	purpose	of	impact	analysis	for
maintenance	testing?

a.	To	determine	if	the	test	cases	are	out	of	date.

b.	To	determine	if	the	current	system	should	be	changed.

c.	To	identify	areas	of	code	where	maintainability	might	be	an	issue.

d.	To	identify	areas	of	the	testing	process	that	could	be	improved.

Question	38

Which	of	the	following	do	you	want	to	find	in	the	mindset	of	a	tester?

i.	Professional	pessimism.

ii.	Attention	to	detail.

iii.	Assuming	nothing	will	go	wrong.

iv.	The	confirmation	bias.

v.	Ability	to	design	solutions.

a.	i	and	iii.

b.	iv	and	v.

c.	iii	and	iv.

d.	i	and	ii.

Question	39

A	vehicle	insurance	policy	is	subject	to	certain	surcharges	on	the	standard
premium,	added	as	percentages	of	the	standard	premium	under	certain
conditions.	The	conditions	are	cumulative,	so	each	condition	that	is	met
affects	the	premium.

Penalty	points	are	applied	for	specific	infringements	of	driving	regulations
and	each	offence	can	attract	up	to	3	penalty	points.	If	a	driver	infringes
more	than	one	aspect	of	the	driving	regulations,	only	the	highest	penalty	is
applied.

The	following	decision	table	has	been	designed	to	test	the	logic	for
determining	insurance	premiums.

Which	test	case	must	be	eliminated	because	it	is	infeasible?

a.	T1

b.	T4

c.	T5

d.	T6

Question	40

Which	of	the	following	statements	correctly	describes	the	defect	clustering
testing	principle?

a.	Testing	should	be	targeted	at	the	most	junior	developer’s	code.	This	is	where
most	defects	will	occur.

b.	If	no	defects	are	found	in	the	first	25	per	cent	of	the	time	available,	the	code
can	be	deemed	safe	to	deliver	to	production.

c.	Testing	effort	is	to	be	targeted	at	what	is	thought	to	be	the	riskiest	areas,	and
later	those	areas	where	there	are	more	defects	found.

d.	Finding	and	fixing	defects	does	not	help	if	the	system	built	is	unstable	and
does	not	match	user	needs/expectations.

A2	MOCK	CTFL	EXAMINATION	ANSWERS

Q1 c
Q2 b
Q3 c
Q4 a
Q5 a
Q6 b
Q7 b
Q8 a
Q9 c
Q10b
Q11 a
Q12b
Q13b
Q14a
Q15b
Q16a
Q17b
Q18c
Q19b
Q20c
Q21c
Q22d
Q23d
Q24d
Q25b

Q26b
Q27b
Q28d
Q29b
Q30d
Q31a
Q32b
Q33b
Q34a
Q35b
Q36d
Q37b
Q38d
Q39b
Q40c

A3	MOCK	CTFL	EXAMINATION	COMMENTARY

Question	1

This	is	a	K1	question	relating	to	Learning	Objective	FL-1.5.1	–	Identify	the
psychological	factors	that	influence	the	success	of	testing.

Options	a,	b	and	d	are	all	helping	to	build	a	‘them	and	us’	culture	between	testers
and	developers,	whereas	option	c	is	clearly	mentioned	in	the	syllabus	as	helping
to	lead	to	successful	testing.	This	is	therefore	the	required	answer.

Question	2

This	is	a	K1	question	relating	to	the	keywords	from	Chapter	4.

Option	a	is	about	creating	tables	to	facilitate	testing	but	is	not	related	to	testing
of	decision	tables.

Option	c	is	a	different	way	of	expressing	the	ideas	in	option	a	and	is	not	about
decision	table	testing.

Option	d	is	about	a	white-box	technique	for	testing	conditions	in	code	or	other
logic.

Decision	table	testing	is	a	black-box	technique	related	to	the	testing	of	decision
tables	as	expressed	in	option	b,	which	is	taken	from	the	glossary.

Question	3

This	is	a	K1	question	relating	to	Learning	Objective	FL-2.3.2	–	Recognize
that	functional,	non-functional,	and	white-box	tests	occur	at	any	test	level.

The	correct	answer	is	c,	as	confirmed	by	the	glossary.

Option	a	is	incorrect	because	some	types	of	non-functional	testing	require
specialist	skills,	such	as	performance	testing,	but	not	all.

Option	b	is	also	incorrect,	because	whilst	some	non-functional	testing	can	be
carried	out	by	developers,	such	as	looking	for	memory	leaks,	non-functional
testing	should	also	be	carried	out	at	the	higher	test	levels.

Option	d	is	incorrect	because	the	coverage	can	be	measured	against	the	targets
set.

Question	4

This	is	a	K1	question	relating	to	Learning	Objective	FL-3.2.2	–	Recognize
the	different	roles	and	responsibilities	in	a	formal	review.

Option	b	incorrectly	allocates	the	task	of	assigning	staff	to	the	review	leader	(this
is	a	management	function).

Option	c	incorrectly	suggests	that	reviewers	must	be	subject	matter	experts,	but
reviewers	can	be	drawn	from	any	stakeholders	as	well	as	other	specialists.

Option	d	incorrectly	suggests	that	moderators	decide	who	will	be	involved	and
time/place	of	a	review	(this	are	the	review	leader’s	responsibilities).

Option	a	correctly	identifies	the	responsibilities	of	management	as	defined	in	the
syllabus	(section	3.2.2).

Question	5

This	is	a	K2	question	relating	to	Learning	Objective	FL-2.2.1	–	Compare
the	different	test	levels	from	the	perspective	of	objectives,	test	basis,	test
objects,	typical	defects	and	failures,	and	approaches	and	responsibilities.

Option	b	–	a	database	module	–	is	incorrect;	a	database	module	could	be	a	test
object	for	component	testing,	but	not	a	test	basis.

Option	c	–	an	interface	definition	–	is	incorrect;	this	could	be	a	test	basis	for
integration	testing.

Option	d	–	a	business	process	–	is	incorrect;	this	could	be	a	test	basis	for
acceptance	testing.

Option	a	–	a	detailed	design	–	is	a	suitable	test	basis	for	component	testing.

Question	6

This	is	a	K2	question	relating	to	Learning	Objective	FL-1.2.1	–	Give
examples	of	why	testing	is	necessary.

Testing	cannot	ensure	that	the	right	version	of	software	being	delivered	–	that	is
the	task	of	configuration	management	–	so	option	a	is	incorrect.

Testing,	in	itself,	does	not	improve	quality	(option	c).	Testing	can	identify
defects,	but	it	is	in	the	fixing	of	defects	that	quality	is	actually	improved.

Testing	cannot	show	that	software	is	error	free	–	it	can	only	show	the	presence	of
defects	(this	is	one	of	the	seven	testing	principles),	which	rules	out	option	d.

Testing	can	be	used	to	assess	quality;	for	example,	by	measuring	defect	density
or	reliability,	so	option	b	is	correct.

Question	7

This	is	a	K2	question	relating	to	Learning	Objective	FL-3.1.2	–	Use
examples	to	describe	the	value	of	static	testing.

Option	a	is	a	straightforward	example	of	project	delay;	there	is	no	indication	of
whether	or	not	static	testing	was	employed,	so	the	value	of	static	testing	cannot
be	determined.

Option	c	indicates	that	test	specifications	were	rigorously	reviewed,	but	this	did
not	prevent	project	overrun,	so	does	not	indicate	the	value	of	static	testing.

Option	d	does	not,	in	itself,	demonstrate	the	value	of	static	testing	because	it
identifies	a	situation	in	which	delay	and	overspend	occurred,	whether	or	not
static	testing	was	deployed.

Option	b	is	the	best	option	because	it	identifies	a	situation	in	which,	although
delay	occurred	early	in	the	life	cycle	because	static	testing	was	deployed,	the
project	still	completed	on	time	and	on	budget.	This	suggests	that	the	use	of	static
techniques	may	have	made	the	development	phase	more	efficient	and	effective.

Question	8

This	is	a	K1	question	relating	to	Learning	Objective	FL-5.2.5	–	Identify
factors	that	influence	the	effort	related	to	testing.

Option	b	is	incorrect	because	the	overall	effort	required	is	not	related	to	the
number	of	testers.	It	may	take	longer	with	fewer	testers,	but	the	overall	effort
will	be	the	same.

Option	c	is	incorrect	because,	although	testing	cannot	proceed	without	test
environments,	this	does	not	affect	the	effort	required	to	complete	the	testing.

Option	d	is	incorrect	because	the	effort	required	is	not	affected	by	the	cost	of	any
tools,	though	the	testing	budget	may	be.

Option	a	is	correct	because	it	will	determine	how	much	testing	is	needed	at	each
stage	and	how	many	stages	there	will	be.

Question	9

This	is	a	K1	question	relating	to	Learning	Objective	FL-5.3.1	–	Recall
metrics	used	for	testing.

Option	a	is	not	a	measure	of	testing,	just	a	head	count.

Option	b	is	a	count	of	how	many	test	cases	were	written;	it	does	not	count	test
cases	actually	used	in	the	tests.

Option	d	is	a	measure	of	the	size	of	the	test	basis	but	not	a	metric	of	testing.

Option	c	is	correct;	it	measures	the	total	number	of	tests	prepared	and	identifies
how	many	were	actually	run	and	how	many	were	not	run.

Question	10

This	is	a	K1	question	relating	to	Learning	Objective	FL-6.2.1	–	Identify	the
main	principles	for	selecting	a	tool.

Options	a,	c	and	d	are	correct;	all	are	taken	directly	from	the	syllabus,	section
6.2.1.

Option	b	is	drawn	from	syllabus	section	6.2.2	and	is	about	the	use	of	pilot
projects	for	introducing	a	tool	into	an	organisation.	Tool	evaluation	can	only	be
achieved	by	using	the	tool	in	the	organisation,	so	could	not	be	part	of	the	initial
selection.

Question	11

This	is	a	K2	question	relating	to	Learning	Objective	FL-1.2.3	–	Distinguish
between	error,	defect,	and	failure.

Option	b	is	incorrect	because,	while	problems	happen	in	software	and	software
projects,	even	though	work	is	undertaken	by	professionals,	this	does	not	in	itself
imply	unprofessional	behaviour.	Option	b	really	describes	an	attitude	rather	than
what	was	done,	and	we	have	no	way	of	knowing	anything	about	the	attitude	of
those	working	on	this	website.

An	error	is	the	underlying	cause	(perhaps	the	person	writing	the	program
specification	misunderstood	what	was	written	in	the	requirements	document)	of
a	failure	but	not	the	failure	itself,	so	option	c	is	incorrect.

A	defect	may	be	the	cause	of	a	failure	(e.g.	perhaps	the	developer	used	‘>’	rather
than	‘>=’	in	a	condition	in	the	code)	but	is	not	the	actual	failure,	so	option	d	is
incorrect.

Incorrect	tickets	being	issued	is	an	observed	consequence,	which	is	the	failure
itself	–	so	option	a	is	the	correct	answer.

Question	12

This	is	a	K2	question	relating	to	Learning	Objective	FL-4.2.5	–	Explain	how
to	derive	test	cases	from	a	use	case.

Options	a,	c	and	d	are	all	derived	from	the	syllabus,	section	4.2.5,	and	accurately
describe	how	some	aspect	of	use	case	testing	is	carried	out.

Behaviours	that	have	not	been	defined	could	not	be	systematically	tested	by	use
case	testing,	so	option	b	is	the	correct	answer	because	it	does	not	describe	how	to
derive	test	cases	from	a	use	case.

Question	13

This	is	a	K2	question	relating	to	Learning	Objective	FL-2.3.1	–	Compare
functional,	non-functional,	and	white-box	testing

Option	a	is	incorrect	because	code	coverage	is	normally	measured	in	white-box
testing,	not	when	carrying	out	functional	testing.

Option	c	is	incorrect	because	white-box	testing	focuses	on	program	behaviour,
not	system	behaviour.

Option	d	is	incorrect	because	functional	testing	should	be	done	at	all	levels,	not
just	at	system	and	acceptance	testing.

Option	b	is	correct	because	non-functional	testing	can,	and	usually	does,	make
use	of	black-box	techniques.

Question	14

This	is	a	K2	question	relating	to	Learning	Objective	FL-5.2.1	–	Summarize
the	purpose	and	content	of	a	test	plan.

Options	b,	c	and	d	are	all	directly	lifted	from	the	syllabus,	section	5.2.1.

Option	a	incorrectly	states	that	a	master	test	plan	must	be	completed	before	a
project	starts.	This	explicitly	contradicts	the	correct	statement	in	option	b.	A
master	test	plan	may	be	used,	with	separate	test	plans	for	different	test	levels	or
test	types,	but	since	these	can	be	updated	throughout	the	project	the	master	test
plan	must	also	change.

Question	15

This	is	a	K2	question	relating	to	Learning	Objective	FL-4.3.2	–	Explain
decision	coverage.

Option	a	is	incorrect	because	it	measures	only	the	number	of	white-box	tests
executed	and	not	the	coverage	achieved.

Option	c	is	incorrect	because	it	calculates	the	number	of	decision	outcomes
achieved	per	test	rather	than	the	coverage	achieved.

Option	d	is	incorrect	because	it	measures	the	inverse	of	decision	coverage.

Option	b	correctly	defines	decision	coverage	in	line	with	section	4.3.2	of	the
syllabus.

Question	16

This	is	a	K2	question	relating	to	Learning	Objective	FL-4.4.1	–	Explain
error	guessing.

Option	b	is	incorrect	because,	while	such	lists	may	be	of	value	in	avoiding
defects,	they	are	not	used	in	error	guessing.

Option	c	is	incorrect	because,	while	error	guessing	may	be	based	partly	on	an
individual	tester’s	experience	the	technique	utilises	other	sources,	such	as
failures	that	have	occurred	in	other	applications.

Option	d	is	incorrect	because	this	is	an	example	of	retesting,	not	error	guessing.

Option	a	is	correct	and	reflects	the	syllabus,	section	4.4.1.

Question	17

This	is	a	K2	question	relating	to	Learning	Objective	FL-5.2.3	–	Give
examples	of	potential	entry	and	exit	criteria.

Option	a	is	a	project	management	issue	and	not	an	entry	criterion	for	a	testing
phase.

Option	c	is	not	necessarily	relevant,	since	some	earlier	testing	phases	may	not
have	delivered	components	or	sub-systems	for	the	part	of	the	system	about	to	be
tested.

Option	d	is	incorrect	because	not	all	defects	reported	in	previous	phases	may	be
relevant,	and	clearance	of	defects	that	are	relevant	should	be	addressed	by	exit
criteria	from	previous	phases.

Option	b	is	correct	because	testing	cannot	begin	until	a	test	environment	is
available.

Question	18

This	is	a	K2	question	relating	to	Learning	Objective	FL-3.2.1	–	Summarize
the	activities	of	the	work	product	review	process.

Option	a	incorporates	two	planning	activities,	omits	the	initiation	phase,	includes
the	reviewing	phase	and	swaps	the	issue	communication	and	analysis	phase	with
the	fixing	and	reporting	phase.

Option	b	also	includes	two	items	from	the	planning	phase	and	one	correct	item
from	the	initiation	phase,	but	then	omits	the	individual	review	phase	before
moving	on	to	issue	communication	and	analysis	and	fixing	defects	phases.

Option	d	correctly	includes	items	from	the	planning	phase,	the	initiation	phase
and	the	individual	review	phase,	but	then	moves	straight	to	fixing	defects	before

the	details	of	defects	have	been	communicated	(part	of	‘issue	communication
and	analysis’).

Option	c	is	correct	because	it	includes	one	item	from	each	phase	in	the	correct
sequence.

Question	19

This	is	a	K1	question	relating	to	Learning	Objective	Keyword

Option	a	identifies	a	test	expert	or	test	guru,	which	is	not	the	same	thing	as	a	test
oracle,	so	option	a	is	incorrect.

Option	c	encapsulates	the	process	of	test	analysis,	so	option	c	is	incorrect.

Option	d	is	a	test	estimation	method,	so	option	d	is	incorrect.

Option	b	is	clearly	defined	in	the	syllabus	and	is	the	correct	answer.

Question	20

This	is	a	K2	question	relating	to	Learning	Objective	FL-4.4.2	–	Explain
exploratory	testing.

Option	a	is	incorrect	because	exploratory	testing	does	not	use	predefined	tests.

Option	b	is	incorrect	because	exploratory	testing	is	not	associated	with	model-
based	test	strategies	but	may	sometimes	be	associated	with	reactive	test
strategies.

Option	d	is	incorrect	because,	while	exploratory	testing	may	sometimes	use
session-based	testing,	this	is	not	characteristic	of	exploratory	testing.	When
session-based	testing	is	used,	this	is	to	structure	the	testing	activity	rather	than	to
ensure	that	tests	are	documented.

Option	c	is	correct	and	corresponds	to	a	statement	in	section	4.4.2	of	the
syllabus.

Question	21

This	is	a	K2	question	relating	to	Learning	Objective	FL-1.4.2	–	Describe	the
test	activities	and	respective	tasks	within	the	test	process.

All	of	the	options	list	activities	from	one	of	the	groups	of	testing	activities,	so	the
task	is	to	identify	activities	for	test	execution.

Option	a	is	incorrect	because	it	lists	test-planning	activities.

Option	b	is	incorrect	because	it	lists	test	implementation	activities.

Option	d	is	incorrect	because	it	lists	test	analysis	activities.

Option	c	is	correct	because	it	lists	test	execution	activities.

Beware	of	option	b	–	the	activities	listed	are	preparation	for	test	execution,	rather
than	for	the	running	of	tests	themselves.

Question	22

This	is	a	K2	question	relating	to	Learning	Objective	FL-5.2.6	–	Explain	the
difference	between	two	estimation	techniques:	the	metrics-based	technique
and	the	expert-based	technique

Option	a	is	incorrect	because	the	use	of	a	mathematical	equation	is	not
necessarily	based	on	data	from	previous	projects	as	required	by	the	metrics
approach,	and	the	expert-based	approach	does	not	necessarily	use	data	from
previous	projects.

Option	b	is	incorrect	because	the	expert-based	approach	requires	an	expert	or	at
least	an	experienced	tester.

Option	c	is	incorrect	because	it	bases	metrics	on	previous	estimates	rather	than
on	data	about	what	actually	happened.

Option	d	is	correct	as	defined	in	the	syllabus,	section	5.2.6.

Question	23

This	is	a	K2	question	relating	to	Learning	Objective	FL-4.4.3	–	Explain
checklist-based	testing.

Option	a	is	incorrect	because	checklists	are	high-level	lists	and	some	variability
in	testing	is	likely	to	occur.

Option	b	is	incorrect	because	checklists	can	be	used	to	support	a	wide	variety	of
test	types.

Option	c	is	incorrect	because	testers	may	create	new	checklists,	expand	exiting
checklists	or	use	an	existing	checklist.

Option	d	is	correct	as	defined	in	section	4.4.3	of	the	syllabus.

Question	24

This	is	a	K2	question	relating	to	Learning	Objective	FL-6.1.1	–	Classify	test
tools	according	to	their	purpose	and	the	test	activities	they	support.

Option	a	is	incorrect	because	model-based	testing	tools	are	categorised	as	tools
for	test	design	and	implementation	and	they	are	suitable	for	use	by	testers.

Option	b	is	incorrect	because	test-driven	development	tools	are	best	suited	to
developers	but	are	categorised	as	tool	support	for	test	design	and
implementation.

Option	c	is	incorrect	because	test	data	preparation	tools	are	categorised	as	tool
support	for	test	design	and	implementation	and	are	suitable	for	use	by	testers.

Option	d	is	the	correct	answer	because	coverage	tools	are	classified	as	tool
support	for	test	execution	and	logging	and	are	most	suitable	for	developers.

Question	25

This	is	a	K2	question	relating	to	Learning	Objective	FL-5.4.1	–	Summarise
how	configuration	management	supports	testing.

Option	a	is	correct	but	incomplete	because	it	mentions	only	the	testware	and
system	components	separately	and	there	is	no	mention	of	the	relationships
between	items.

Option	c	is	correct	but	incomplete	because	it	relates	only	to	documentation.

Option	d	is	incorrect	because	it	relates	only	to	test	items.

Option	b	correctly	refers	to	managing	the	system	components,	the	testware	and
the	relationship	between	them.

Question	26

This	is	a	K3	question	relating	to	Learning	Objective	FL-4.2.1	–	Apply
equivalence	partitioning	to	derive	test	cases	from	given	requirements

The	required	partitions	are:

•>	£10,000

•£8,001–£10,000

•£5,001–£8,000

•£3,001–£5,000

•<	£3,001

There	are	five	partitions,	so	option	b	is	correct.

Question	27

This	is	a	K2	question	relating	to	Learning	Objective	FL-1.4.4	–	Explain	the
value	of	maintaining	traceability	between	the	test	basis	and	test	work
products.

Option	a	is	incorrect.	This	could	help	in	clarifying	whether	all	requirements	are
covered	by	one	or	more	test	cases,	but	the	requirements	could	be	included	in	a
test	case	that	was	not	actually	run.

Option	c	is	incorrect	because	traceability	has	no	direct	bearing	on	whether	the
project	will	be	delivered	on	time,	and	it	is	not	something	that	is	stated	(in	the
syllabus	or	elsewhere)	as	a	‘benefit’	of	traceability.

Option	d	is	incorrect	and	inappropriate	in	that	it	implies	a	‘blame	culture’	rather
than	one	where	cooperation	and	product	quality	are	to	the	forefront.

Option	b	is	correct	and	is	specifically	mentioned	in	section	1.4.4	of	the	syllabus.

Question	28

This	is	a	K3	question	relating	to	Learning	Objective	FL-4.2.2	–	Apply
boundary	value	analysis	to	derive	test	cases	from	given	requirements.

Option	a	is	incorrect	because	it	starts	each	time	zone	on	the	boundary	rather	than
just	under,	but	ends	each	time	zone	correctly.

Option	b	is	incorrect	because	it	starts	each	time	zone	correctly	but	does	not
check	the	end	of	each	time	zone	correctly.

Option	c	is	incorrect	because	it	starts	each	time	zone	on	the	boundary	rather	than
before	the	boundary	and	ends	each	time	zone	too	early.

Option	d	is	correct	because	it	correctly	tests	the	values	just	before	and	on	the
lower	boundaries,	and	on	and	just	over	the	higher	boundaries.

Question	29

This	is	a	K2	question	relating	to	Learning	Objective	FL-3.2.5	–	Explain	the
factors	that	contribute	to	a	successful	review.

Option	a	is	incorrect:	it	is	always	important	for	users	to	review	requirements
documents;	the	presence	of	designers,	developers	and	testers	may	help	with	any
technical	terms.

Option	c	is	incorrect:	an	inspection	is	not	likely	to	be	appropriate	for	this
document	and	one	key	success	factor	is	that	an	appropriate	review	type	is
applied.	Metrics	are	not	important	at	this	stage,	but	removal	of	ambiguity,	clarity
of	expression	and	understandability	for	users	are	vital.

Option	d	is	incorrect:	reviews	should	always	be	scheduled	with	adequate	notice
and	time	for	participants	to	prepare.

Option	b	is	the	correct	answer	(in	line	with	section	3.2.5	in	the	syllabus):	it	will
allow	reviews	to	begin	earlier	and	will	provide	earlier	feedback	to	authors	to
enable	improvements	to	be	made	continually.

Question	30

This	is	a	K2	question	relating	to	Learning	Objective	FL-2.4.1	–	Summarize
triggers	for	maintenance	testing.

Option	a	is	incorrect	because	a	new	feature	required	for	an	iteration	implies

development	rather	than	maintenance.

Option	b	is	incorrect	because	it	again	implies	development	rather	than
maintenance.

Option	c	is	incorrect	for	the	same	reason.

Option	d	is	correct	because	data	migration	is	a	typically	maintenance	activity.

Question	31

This	is	a	K2	question	relating	to	Learning	Objective	FL-5.5.3	–	Describe,	by
using	examples,	how	product	risk	analysis	may	influence	the	thoroughness
and	scope	of	testing.

Options	b,	c	and	d	are	incorrect	because	they	are	all	related	to	managing	the
project.

Option	a	specifically	relates	to	the	testing	activities	and	how	these	need	to	be
driven	by	risk	levels.

Question	32

This	is	a	K3	question	relating	to	Learning	Objective	FL-4.2.2	–	Apply
boundary	value	analysis	to	derive	test	cases	from	given	requirements.

Option	a	is	incorrect	because	it	incorrectly	tests	for	0	and	1	as	well	as	incorrectly
identifying	boundary	values	for	partitions.

Option	c	is	incorrect	because	it	tests	the	lower	boundaries	incorrectly	(though	it
tests	the	upper	boundaries	correctly).

Option	d	incorrectly	uses	three	values	at	each	boundary.

Option	b	is	correct,	testing	below	and	on	the	lower	boundaries	and	on	and	above
the	upper	boundaries.

Question	33

This	is	a	K3	question	relating	to	Learning	Objective	FL-5.2.4	–	Apply
knowledge	of	prioritization,	and	technical	and	logical	dependencies,	to
schedule	test	execution	for	a	given	set	of	test	cases.

Option	a	was	the	original	schedule,	but	this	has	now	been	altered,	so	option	a	is
incorrect.

Option	c	places	test	cases	5,	3	and	2	in	the	correct	sequence	but	test	case	6,
which	is	high	priority,	is	relegated	to	fifth	place,	so	option	c	is	incorrect.

Option	d	places	6	in	second	position	but	does	not	make	test	case	3	dependent	on
test	case	5,	so	option	d	is	incorrect.

Option	b	is	the	correct	answer	because	it	correctly	sequences	5,	3	and	2	and
places	test	case	6	ahead	of	this	trio.

Question	34

This	is	a	K3	question	relating	to	Learning	Objective	FL-4.2.4	–	Apply	state
transition	testing	to	derive	test	cases	from	given	requirements.

Option	b	is	incorrect	because	an	invalid	transition	is	represented	(test	case	6).

Option	c	is	incorrect	because	all	of	the	valid	transitions	are	represented	(test
cases	1–5	correspond	to	the	five	valid	transitions	shown	in	the	diagram).

Option	d	is	incorrect	because	all	valid	transitions	are	represented,	and	one
invalid	transition	is	addressed	in	test	case	6.

Option	a	is	correct	because	the	table	correctly	identifies	the	five	valid	transitions
(test	cases	1–5)	and	one	invalid	transition	(test	case	6).

Question	35

This	is	a	K3	question	relating	to	Learning	Objective	FL-5.6.1	–	Write	a
defect	report,	covering	defects	found	during	testing.

Options	a,	c	and	d	are	all	incorrect	because	they	list	valid	fields	on	a	defect
report,	but	none	of	them	prevents	action	being	taken	to	resolve	the	problem.

Option	b	is	the	correct	answer	because	the	actual	result	is	needed	to	enable
corrective	action	to	be	correctly	applied.

Question	36

This	is	a	K3	question	relating	to	Learning	Objective	FL-3.2.4	–	Apply	a
review	technique	to	a	work	product	to	find	defects.

Option	a	is	not	the	best	answer.	Checklists	can	help	to	focus	attention	on	specific
aspects	of	a	system	and	to	ensure	that	typical	defect	types	are	addressed,	but	this
is	not	an	ideal	mechanism	for	addressing	defects	that	will	affect	multiple
stakeholders.

Option	b	is	a	better	option,	in	that	it	provides	specific	scenarios	for	reviewers	to
consider,	but	it	still	does	not	provide	the	breadth	of	involvement	required.

Option	c	is	unlikely	to	be	effective	in	that	it	provides	little	or	no	guidance	to
reviewers.

Option	d	is	the	best	answer	because	it	encourages	individual	reviewers	to	take	on
multiple	stakeholder	viewpoints.	This	makes	the	overall	review	more	effective
and	could	be	modified	to	enable	reviewers	to	cooperate	in	working	through
scenarios	incorporated	into	the	requirements	document	(and	possibly	also
identify	new	scenarios	to	be	considered).

Question	37

This	is	a	K2	question	relating	to	Learning	Objective	FL-2.4.2	–	Describe	the
role	of	impact	analysis	in	maintenance	testing.

Option	a	is	incorrect	because	out-of-date	test	cases	are	a	hindrance	to
maintenance,	but	this	is	not	the	purpose	of	impact	analysis.

Option	c	is	incorrect	because	achieving	maintainability	is	an	issue	for
development,	not	maintenance.

Option	d	is	incorrect;	this	might	be	part	of	a	retrospective	or	post-
implementation	review	but	is	not	related	to	impact	analysis.

Option	b	is	correct	because	a	decision	should	be	based	on	the	likely
consequences	of	the	change,	which	is	one	purpose	of	impact	analysis.	Impact
analysis	is	also	about	determining	what	testing	will	be	needed	following	a
change.

Question	38

This	is	a	K2	question	relating	to	Learning	Objective	FL-1.5.2	–	Explain	the
difference	between	the	mindset	required	for	test	activities	and	the	mindset
required	for	development	activities.

All	of	the	choices	are	mentioned	in	section	1.5.2	of	the	syllabus	–	but	not	all	in	a
positive	light	from	the	perspective	of	testers.

Two	of	the	choices	(i	and	ii)	are	listed	as	favourable	for	testers.	Items	iii	and	iv

in	the	list	are	possible	aspects	of	a	developer’s	mindset	that	are	detrimental	to	a
tester	perspective.	Item	v	is	a	positive	component	of	a	developer	mindset	that	has
no	particular	bearing	on	testing.

Option	d	is	the	correct	answer	because	it	is	the	only	option	that	mentions	items	i
and	ii.

Question	39

This	is	a	K3	question	relating	to	Learning	Objective	FL-4.2.3	–	Apply
decision	table	testing	to	derive	test	cases	from	given	requirements.

Option	a	is	feasible	and	will	apply	to	most	applicants,	so	it	is	not	the	correct
answer.

Options	c	and	d	both	involve	penalising	for	3	points	and	for	6+	points,	which	is
valid	within	the	rules,	so	neither	of	these	is	the	correct	answer.

Option	b	is	infeasible	because	it	is	not	possible	to	incur	6	penalty	points	without
also	incurring	3	penalty	points.

Option	b	is	therefore	the	correct	answer.

Be	careful	in	questions	like	this	one	to	note	that	the	question	asked	for	infeasible
test	cases.	It	is	easy,	especially	under	time	pressure,	to	opt	for	the	more	usual
expectation	of	identifying	feasible	test	cases.

Question	40

This	is	a	K2	question	relating	to	Learning	Objective	FL-1.3.1	–	Explain	the
seven	testing	principles.

Option	a	appears	to	reflect	the	defect	clustering	principle,	but	there	is	no	reason
to	assume	that	defect	clustering	will	be	associated	with	the	work	of	the	most
junior	developer,	so	option	a	is	incorrect.

Option	b	is	an	example	of	the	‘absence	of	errors’	fallacy	–	the	fact	that	no	errors
have	been	found	does	not	mean	that	code	can	be	released	into	production	–	so
option	b	is	incorrect.

Option	d	is	a	direct	statement	of	the	‘absence	of	errors’	fallacy,	so	option	d	is
incorrect.

Option	c	is	the	best	statement	of	the	defect	clustering	principle	–	defects	are
often	found	in	the	same	places,	so	testing	should	focus	first	on	areas	where
defects	are	expected	or	where	defect	density	is	high.	Option	c	is	therefore	the
correct	answer.

INDEX

absence-of-errors	22

acceptance	testing	81,	85,	114,	169

acceptance	test	driven	development	see	ATDD

fundamentals	of	testing	20,	25,	27,	35

Software	Development	Life	Cycle	48–9,	50,	53,	62–5,	70

accessibility	test	tools	224,	232

actors	113–14

ad	hoc	reviews	85

Agile	methodologies	3,	77,	83

fundamentals	of	testing	21,	29,	30–1

Software	Development	Life	Cycle	51–2,	67

test	management	163,	166,	167,	168,	172–3,	182

tool	support	for	testing	239–41	203,	204–5,	211,	216

aims	of	testing	14–15

Airbus	A380	9,	12

ALM	(application	life	cycle	management)	tools	199–201,	202,	203,	227

alpha	testing	63,	65

analytical	strategies	167

application	under	test	(AUT)	19,	21,	22,	145

ATDD	(acceptance	test	driven	development)	27,	210–11,	212,	230

automated	test	scripts	28,	33,	215

BACS	(Bankers	Automated	Clearing	Services)	197,	198,	207,	219

baselining	170

BDD	(behaviour	driven	development)	27,	210–11,	230

beta	testing	63,	65

‘bi-directional	traceability’	27,	28,	29,	33,	34

big-bang	integration	58

black-box	testing	66,	91,	98–9,	101–15,	147

bottom-up	integration	59–60

boundary	value	analysis	105–6,	147

business	rules	106–9,	114

CATIA	(Computer	Aided	Three-Dimensional	Interactive	Application)	software
12

changes,	testing	related	to	67

checklist-based	testing	81,	85,	86,	146,	167

‘checks	of	understanding’	5

Fundamentals	of	testing	7,	14,	18,	23,	35,	36

Software	Development	Life	Cycle	44,	52,	65,	68,	69

static	testing	73,	82,	87

test	management	156,	162,	164,	167,	168,	174,	177,	185,	186,	187

test	techniques	91,	98,	102,	106,	108,	113,	115,	120,	127,	133,	137,	147

tool	support	for	testing	192,	198,	205,	207,	211

CMMI	(Capability	Maturity	Model	Integration)	assessment	233

code	of	ethics	36–7,	38

communication	(developers/testers)	36

companies,	impacts	on	10–11

comparators	195,	212–13

completion	criteria	13,	26,	98,	171,	218

component	integration	testing	56–7,	66–7,	218–19

component	(unit)	testing	16,	32,	48–9,	53,	54–5,	56,	57,	66,	70,	132,	206,	218

configuration	management	51

test	management	165,	186–7,	188–9

tools	200,	203–5,	206,	211,	228

constraints	and	requirements	(tool	introduction	process)	233

context	of	testing	22,	23

continuous	integration	56,	57,	203–5,	211,	228

contractual	acceptance	testing	63,	65

control	flow	graphs	91,	117,	124–7,	128,	130,	134

simplified	control	flow	graphs	117,	138–43

see	also	hybrid	flow	graphs

cost	escalation	model	20–1,	47,	51

COTS	(commercial	off-the	shelf)	software	53,	63,	65,	68,	168

coverage	tools	218,	219,	220,	231

Daily	Builds	203–4,	205,	211

dashboards	179,	180–1

data	conversion	and	migration	tools	159,	160,	223,	231

data-driven	testing	213–14,	217,	220,	237

data	quality	assessment	tools	222–3,	231

debugging	16,	55,	67,	135,	201,	202,	205,	207,	212,	216,	225,	226,	230

decision	table	testing	106–9,	147,	225

decision	testing	116–17,	134–43,	147

defect	clustering	8,	21,	42

defect	lists	145

defect	management

test	management	159,	165,	185–6,	188

tools	32,	195,	200,	201–2,	225,	227

definitions	of	‘testing’	14,	15

detailed	evaluation	(tool	introduction	process)	234–5

developer	testing	35–6

development	process	characteristics	174,	176

directed	strategies	167

drivers	47,	60,	215,	217,	230

dry	runs	83,	85,	128

dynamic	analysis	tools	206,	218–20,	231

dynamic	testing	17,	22,	76–7,	185,	206,	220

early	testing	17,	19–21,	75–6

edges	124,	129,	130

effective	and	efficient	use	(test	execution	tools)	214–15

effects	(of	defects)	16–17

‘enough	is	enough’	13

entry	criteria	79–80,	84

test	management	157,	168,	172–3,	178,	188

environmental	impacts	10–11

equivalence	partitioning	102–4,	105,	106,	147

‘error–defect–failure’	cycle	20

error	guessing	145,	147,	167

‘errors	of	migration’	20

evaluation	and	shortlist	(tool	introduction	process)	234

examination

examination	technique	245

mock	examination	5,	251–78

question	types	243–5

revision	techniques	246

sample	examination	245

structure	242

see	also	example	examination	questions

example	examination	questions

fundamentals	of	testing	38–43

Software	Development	Life	Cycle	71–2

static	testing	88–90

test	management	189–91

test	techniques	148–55

tool	support	for	testing	239–41

executable	code	118,	128

executable	statements	115–16,	118,	120,	122,	127–8,	129,	130–1

exhaustive	testing	11,	19

exit	criteria	26,	32,	100,	146

static	testing	79,	80,	81,	84

test	management	168,	172–3,	178,	179,	182,	188

tool	support	for	testing	218,	219

experience-based	testing	27,	91,	99,	100,	145–7

expert-based	approach	177,	188,	191

exploratory	testing	28,	33,	146,	147,	167,	213

facilitators/moderators	81

failure	lists	145

fault	attacks	145,	167

Financial	Conduct	Authority	195

fixing	and	reporting	(work	product	review	process)	80–1

flow	charts	91,	120–4,	127,	128,	129–30

formal	reviews	77–9,	80–1,	82,	85,	87,	160

functional	requirements	54,	60

functional	specification	46,	48,	49,	60

functional	(specification-based)	testing	51,	66,	98,	99,	101–2,	114,	116,	117,	145,
146,	147

see	also	black-box	testing

fundamentals	of	testing	2,	6–7,	37–8

acceptance	testing	20,	25,	27,	35

Agile	methodologies	21,	29,	30–1

‘checks	of	understanding’	7,	14,	18,	23,	35,	36

code	of	ethics	36–7,	38

definitions	and	functions	of	testing	14–18

example	examination	questions	38–43

general	testing	principles	18–23

keeping	software	under	control	11–14

learning	objectives	7–8

levels	of	understanding	7–8

psychology	of	testing	35–6,	38

self-assessment	questions	8

software	failure	9–11

test	execution	17,	23–6,	28,	29,	30,	32,	34

test	process	23–35

general	testing	principles	18–23

GUI	(Graphical	User	Interface)	197,	208,	213,	216

hybrid	flow	graphs	129–30,	131–2,	136

impact	analysis	69,	70,	203

independent	testing	162–4,	188

individual	review	(work	product	review	process)	80

informal	reviews	77–8,	82,	83,	87,	206

initiate	review	(work	product	review	process)	80

input	partitions	102–4

inspections	79–80,	82,	84,	86–7,	205–6,	209

‘insufficient	testing’	11,	37

integration	strategies	57–60

integration	testing	48,	53,	55–60,	70,	169,	215,	217,	218,	220

issue	communication	and	analysis	(work	product	review	process)	80

iteration	structures	119–20,	121,	134

iterative	life	cycles	44,	50–2,	53–4,	55–6,	57,	65,	67,	70,	172,	237

Kanban	(iterative	development	model)	51

keeping	software	under	control	11–14

keyword-driven	testing	214,	237

learning	objectives	2,	4–5,	242

fundamentals	of	testing	7–8

Software	Development	Life	Cycle	44–5

static	testing	73–4

test	management	156–7

test	techniques	91–2

tool	support	for	testing	192–3

levels	of	understanding	2–3,	4

fundamentals	of	testing	7–8

Software	Development	Life	Cycle	44–5

static	testing	73–4

test	management	156–8

test	techniques	91–3,	117

tool	support	for	testing	192–4

localisation	test	tools	224,	232

loops	105,	119–21,	134–5,	138–9

loyalty	schemes	108

maintenance	costs	(test	tools)	194–5

maintenance	testing	68–9,	70

mapping	app	9,	11,	19

methodical	strategies	167

metrics-based	approach	176

MISRA	(Motor	Industry	Software	Reliability	Association)	161

mock	examination	5,	251–78

model-based	strategies	167

model-based	testing	tools	209,	229

monitoring	tools	166,	221–2,	231

negotiations	with	vendor	(tool	introduction	process)	235

nodes	124–6,	128,	129

non-executable	code	118

non-executable	statements	118,	122,	128,	131

non-functional	characteristics	12,	13,	18,	26,	27,	54,	56,	166

non-functional	requirements	13,	60,	61,	64,	75,	160,	174

non-functional	testing	66,	146

online	tax	returns	9,	12

open	source	tools	192,	195,	233

operational	acceptance	testing	63

organisational	success	factors	86

output	partitions	104

Pareto	principle	21

payback	models	194–5,	214,	216

Payment	Card	Industry	standards	198

PDF	documents	198,	203

people,	impacts	on	10–11

people	characteristics	86–7,	176

performance	testing	35,	220–1,	231,	233

perspective-based	reviews	85

pesticide	paradox	22

pilot	project	(tool	introduction	process)	235–6

planning	(work	product	review	process)	78–80

portability	test	tools	224–5,	232

prioritisation	13,	19,	27,	28,	33,	97,	98,	161,	174,	199,	202

process,	testing	as	17

process-compliant	strategies	167

product	characteristics	44,	174

product	risks	160–2,	171,	187

programming	structures	105,	119–20

program	specification	46,	48,	49,	70

project	risks	159–60,	171,	187

proofs	of	concept	234–5

psychology	of	testing	35–6,	38

quality	12–13

quality	assurance/control	13,	17

quality	management	17,	164

quantitative	measures	97–8

reactive	strategies	167

reading	and	interpreting	code	117–18

record	(or	capture	playback)	tools	213

regression-averse	strategies	168

regression	testing	22,	31

Software	Development	Life	Cycle	51,	55,	57,	62,	67,	68–9,	70

test	management	168,	171,	174

tool	support	for	testing	201,	202,	212,	215–16,	221,	226,	230

regulatory	acceptance	testing	63,	65

requirement	documents	20,	36

requirements	management	tools	202–3,	227

requirement	specification	46,	48,	49,	61,	85,	87,	177,	208

resources	triangle	12–13

retesting	18,	20,	67,	68,	76,	171,	186,	196,	201,	202

reviewers	78–80,	81,	83–4,	85–6,	87

review	leaders	79,	81

review	process	(static	testing)	77–81,	87

review	tools	205–6,	228,	233

revision	techniques	246

risk

fundamentals	of	testing	12,	13,	14,	15,	19,	22,	26

risk	analysis	27,	61,	64,	157,	220

Software	Development	Life	Cycle	51,	58

test	management	156,	158–62,	167,	168,	169–72,	173,	174,	187,	188

test	techniques	98,	100–1

tool	support	for	testing	194–5,	196–7,	208–9,	217,	218,	219,	220,	221,	233,	234,
237

role-based	reviews	85,	86

root	causes	(of	defects)	16–17

RUP	(Rational	Unified	Process)	51

safety-critical	systems	69,	77,	95,	100,	143,	163,	209,	218,	219

scribes	82,	83,	84

Scrum	(iterative	development	model)	51,	52

security	testing	tools	223–4,	232

self-assessment	questions	4,	5

fundamentals	of	testing	8

Software	Development	Life	Cycle	45

static	testing	74

test	management	157–8

test	techniques	92–3

tool	support	for	testing	193–4

‘self-organising’	teams	50

service	virtualisation	29,	33,	54

set	of	techniques,	testing	as	18

simplified	control	flow	graphs	117,	138–43

Software	Development	Life	Cycle	(SDLC)	2,	14,	44,	69–70

acceptance	testing	48–9,	50,	53,	62–5,	70

Agile	methodologies	51–2,	67

case	study	46–7

‘checks	of	understanding’	44,	52,	65,	68,	69

early	testing	20

example	examination	questions	71–2

iterative	life	cycles	see	iterative	life	cycles

learning	objectives	44–5

maintenance	testing	68–9,	70

regression	testing	51,	55,	57,	62,	67,	68–9,	70

self-assessment	questions	45

software	development	models	46–52

static	testing	77,	78

test	levels	53–65

test	management	160–1

test	process	23

test	types	65–7,	70

V	model	see	V	model

work	products	44,	46,	47–8,	49,	53,	69,	70

software	development	models	46–52

software	failure	9–11

specification-based	testing	see	functional	(specification-based)	testing

Spiral	(iterative	development	model)	51

sprints	30–1,	52

ST	(state	table)	111–13

statement	testing	115–17,	127–34,	147

state	transition	testing	109–13,	147

static	testing	2,	17,	73,	87

applying	review	techniques	85–7

background	75

benefits	75–6

‘checks	of	understanding’	73,	82,	87

comparison	with	dynamic	testing	76–7

example	examination	questions	88–90

learning	objectives	73–4

review	process	77–81,	87

roles	and	responsibilities	81–2

self-assessment	questions	74

static	analysis	tools	75,	87,	206–8,	219,	220,	227,	229,	234

tool	support	for	testing	205–7,	234

types	of	review	82–5

work	products	75,	76,	78,	78–81,	82,	84–7

structural	testing	54,	117

‘stubs’	54,	59–60,	215,	217,	230

subgraphs	124–6

success	factors	(reviews)	86

system	integration	testing	56,	57,	220

system	testing	20,	25,	48,	49,	57,	60–2,	66,	70,	169

TDD	(test-driven	development)	51,	53,	55,	210–11,	230

technical	reviews	82,	84,	86,	206

technical	skills	214

technical	specification	46,	48,	49,	70

test	activities	and	tasks	23–30

test	analysis	24–5,	26–7,	32–3,	82,	91,	146,	172

test	basis	53–4,	77,	207–8,	209

fundamentals	of	testing	15,	26–7,	28,	29,	32,	33,	34

test	management	166,	174,	185

test	techniques	94,	98,	100,	101

test	cases

fundamentals	of	testing	11,	15,	16,	27,	28–9,	33–4,	35

Software	Development	Life	Cycle	53,	55,	60,	69

test	management	166,	172,	174,	176,	178–9,	182,	187,	188

test	techniques	93–7,	98–9,	101–2,	103,	104,	107–9,	111–18,	124,	130,	131–7,
142,	143–4,	145,	147

tool	support	for	testing	202–3,	207–12,	214,	216–17,	218,	230

test	charters	27,	33,	146

test	completion	24–5,	26,	29–30,	31–2,	34,	182,	184,	218

test	conditions

fundamentals	of	testing	15–16,	26–9,	33–4

test	management	166–7

test	techniques	94–6,	101,	146,	147

tool	support	for	testing	199,	201,	203,	229

test	coverage	26,	34,	91,	97–8,	100,	146,	161,	167,	178,	179,	182

test	data	preparation	tools	195,	209–10,	229

test	design	tools	207–9,	229

test	development	(process	test	techniques)	93–7

test	environment

fundamentals	of	testing	28,	29,	30,	33

test	management	166,	171,	173,	178,	187

tool	support	for	testing	195,	196,	203,	204–5,	215,	221,	228,	230,	234

tester	roles	164–5,	166,	188

test	estimation	176–7,	188

test	execution

fundamentals	of	testing	17,	23–6,	28,	29,	30,	32,	34

static	testing	73,	75,	76

test	management	167,	172–3,	174,	175,	177,	180

test	techniques	94–5,	146

tool	support	for	testing	200,	202,	210,	211–18,	219,	220,	227–8,	230–2,	234,	237

test	frames	208

test	harnesses	195,	215–17,	230–1

test	implementation	24–5,	28–9,	33–4

test	levels	53–65

test	management	2,	156,	187–9

Agile	approach	163,	166,	167,	168,	172–3,	182

‘checks	of	understanding’	156,	162,	164,	167,	168,	174,	177,	185,	186,	187

entry	and	exit	criteria	168,	172–3,	178,	179,	182,	188

example	examination	questions	189–91

factors	influencing	test	effort	174,	176–7

learning	objectives	156–7

risk	156,	158–62,	167,	168,	169–72,	173,	174,	187,	188

self-assessment	questions	157–8

Software	Development	Life	Cycle	160–1

test	execution	167,	172–3,	174,	175,	177,	180

test	monitoring	and	control	177–84

test	organisation	162–7,	188

test	planning	160,	161,	168–72,	187,	188

test	reporting	179,	182–4

test	strategy	and	approaches	167–8,	188

test	management	tools	32,	178,	199–201,	202–3,	218,	227,	234

test	manager	roles	164–6,	188

test	metrics	178–9,	180–1

test	monitoring	and	control	24–5,	26,	32,	177–84

test	oracles	34,	195,	208,	212

test	organisation	162–7,	188,	192,	201,	209,	214,	226,	234,	235–6

test	planning	48–9,	53,	195

fundamentals	of	testing	24–5,	26,	30–1,	32

test	management	160,	161,	168–72,	187,	188

test	procedure

fundamentals	of	testing	15,	16,	28–9,	33,	34

test	management	174,	187

test	techniques	94–7,	147

tool	support	for	testing	199–200,	204–5,	210

test	process

fundamentals	of	testing	17,	23–35,	37

static	testing	73,	87

test	management	156,	158,	165,	168,	185,	187

test	techniques	93–7,	98,	147

tool	support	for	testing	199–200,	202,	222,	226,	227–32,	233,	234,	235,	237

test	reporting	32,	179,	182–4,	227

test	scripts	28,	33,	94,	213–14,	215,	220

test	status	report	182,	183

test	strategies	167–8,	171,	172,	188,	225

test	suites	28,	29,	33,	34,	91,	132,	143,	168,	174,	210

test	summary	reports	30,	32,	34,	35,	165,	179,	182,	184

test	tasks	164–7

test	techniques	2,	91,	147

black-box	techniques	91,	98–9,	101–15,	147

categories	of	test	case	design	techniques	98–9

‘checks	of	understanding’	91,	98,	102,	106,	108,	113,	115,	120,	127,	133,	137,
147

choosing	100–1

control	flow	graphs	91,	117,	124–7,	128,	130,	134

example	examination	questions	148–55

experience-based	techniques	91,	99,	100,	145–7

flow	charts	91,	120–4,	127,	128,	129–30

learning	objectives	91–2

self-assessment	questions	92–3

test	cases	93–7,	98–9

test	conditions	94–6,	101,	146,	147

test	coverage	97–8

test	development	process	93–7

test	procedures	93–7

white-box	techniques	91,	99,	115–45

test	types	65–7,	70,	168

tool	support	for	testing	2,	192,	237–8

Agile	methodologies	203,	204–5,	211,	216

benefits	of	test	tools	194–6,	237

‘checks	of	understanding’	192,	198,	205,	207,	211,	222,	226,	237

defining	test	tools	194

example	examination	questions	239–41

introducing	tools	into	an	organisation	226,	233–7,	238

learning	objectives	192–3

management	of	testing	and	testware	199–205,	235

performance	measurement	and	dynamic	analysis	218–22,	231,	235

regression	testing	201,	202,	212,	215–16,	221,	226,	230

risk	194–5,	196–7,	208–9,	217,	218,	219,	220,	221,	233,	234,	237

self-assessment	questions	193–4

specialised	testing	needs	222–6

static	testing	205–7,	235

successful	tool	implementation	236–7,	238

test	design	and	implementation	207–12

test	execution	and	logging	200,	202,	210,	211–18,	219,	220,	227–8,	230–2,	234,

237

types	of	tool	199–226,	227–32,	237

top-down	integration	58–9,	60

TPI	(Test	Process	Improvement)	assessment	226,	233

traceability	77,	166,	187

‘bi-directional’	27,	28,	29,	33,	34

fundamentals	of	testing	32,	34–5

Software	Development	Life	Cycle	51,	69

tool	support	for	testing	203,	204,	205

UML	(Unified	Modeling	Language)	209

unit	test	framework	55,	211,	215,	216,	217,	230

usability	test	tools	163,	224–5,	232

use	case	testing	93,	113–15,	147

user	acceptance	testing	63,	65,	81

user	representatives	31,	49,	50,	63

using	the	book	4–5,	246–7

validation	47–8,	49,	53,	65,	197–8

verification	33,	47,	49,	53,	61,	65,	70

V	model	(sequential	development	model)	48–9,	53–4,	69–70,	169

walkthroughs	82,	83,	87,	206

waterfall	model	46–7,	48,	167

white-box	testing	66–7,	91,	99,	115–45

‘with-profits’	insurance	policies	109

work	products	159,	182,	228

fundamentals	of	testing	14,	20,	31–4,	36

Software	Development	Life	Cycle	44,	46,	47–8,	49,	53,	69,	70

static	testing	75,	76,	78,	78–81,	82,	84–7

XML	(Extensible	Markup	Language)	197–8,	216,	217

	Cover Page
	Front Cover
	Half-Title Page
	BCS, THE CHARTERED INSTITUTE FOR IT
	Title Page
	Copyright Page
	Contents
	List of Figures and tables
	Authors
	Abbreviations
	Preface
	Introduction
	Purpose of Foundation
	The Certified Tester Foundation Level syllabus
	Relationship of the book to the syllabus
	How to get the best out of this book
	1. The Fundamentals of Testing
	Introduction
	Why software fails
	Keeping software under control
	What testing is and what testing does
	General testing principles
	Test process
	The psychology of testing
	Code of ethics
	Summary
	2. Life Cycles
	Introduction
	Software development models
	Test levels
	Test types
	Maintenance testing
	Summary
	3. Static Testing
	Introduction
	Background to static testing
	Work products that can be examined by static testing
	Benefits of static testing
	Differences between static and dynamic testing
	Review process
	Work product review process
	Roles and responsibilities
	Types of review
	Applying review techniques
	Summary
	4. Test Techniques
	Introduction
	The test development process
	The idea of test coverage
	Categories of test case design techniques
	Choosing test techniques
	Black-box test techniques
	White-box test techniques
	White-box testing in detail
	Experience-based techniques
	Summary
	5. Test Management
	Introduction
	Risk and testing
	Test organisation
	Test strategy and test approaches
	Test planning and estimation
	Entry criteria and exit criteria (definition of ‘ready’ or definition of ‘done’)
	Test execution schedule
	Factors influencing the test effort
	Test monitoring and control
	Defect management
	Configuration management
	Summary
	6. Tool Support for Testing
	Introduction
	What is a test tool?
	Test tools
	Introducing a tool into an organisation
	Summary
	7. The Examination
	The examination
	Revision techniques
	Review
	Appendices
	A1 Mock CTFL examination
	A2 Mock CTFL examination answers
	A3 Mock CTFL examination commentary
	Index
	Back Cover

