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Foreword

The Internet of Things has the potential to become one of the most disruptive tech‐
nological advances of our time. With more than 50 billion devices expected to come
online over the next few years, the IoT will have a profound impact on every industry.
Exciting new connected devices and supporting systems will be developed to solve
problems in medicine, transportation, agriculture, housing, energy, manufacturing,
and more. Many of these projects are already under way, and most companies are
eager to expand their products and capabilities to leverage the IoT.

Built on advancements and cost reductions in sensing, metrology, microelectronics,
wireless communications, cloud services, and the expansion of the World Wide Web,
the Internet of Things is at the intersection of multiple technologies developed over
the last few decades. While this breadth introduces several challenges, it also offers
the opportunity to architect and develop software across traditional career bound‐
aries. The IoT pushes practitioners outside of their comfort zones to explore the full
spectrum of software engineering. In most cases, a solution touches all levels of the
stack: starting with bare-metal code on constrained devices, then aggregated through
more capable edge nodes before heading northbound to the cloud. This means the
designer must have enough expertise at each level to understand the protocols, lan‐
guages, patterns, and frameworks available to build a stable and scalable system.

In Programming the Internet of Things, Andy lays out a carefully crafted guide to
building an end-to-end IoT system. By working step by step through the text and lev‐
eraging the thorough reference materials, you will implement a versatile testbed built
on patterns and protocols used in real commercial IoT systems. I encourage you to
invest in the optional hardware components. One of the most rewarding aspects of
this field is the integration of software and the physical world. The simple act of con‐
trolling an LED from the cloud or capturing indoor environmental conditions will
have you hooked on the IoT.
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The organization of this book and its reference materials shows the significant practi‐
cal experience Andy has, not only in the IoT, but also in software engineering and
architecture overall. The steps are deliberately designed to follow the process of a real
software engineering project, backed by the Kanban-style management system uti‐
lized by most software development teams. If you complete each exercise in combina‐
tion with the supporting reference material, you will gain a better understanding of
the IoT—with the bonus of familiarizing yourself with processes and best practices
common across software development in general.

While Andy covers the IoT down to the implementation level, I think this book also
provides valuable guidance for the technology leader. By working through the soft‐
ware architecture that is the core of most IoT systems, you will gain a better under‐
standing of the complexities involved in their implementation. Each exercise contains
valuable insights regarding the challenges, risks, and trade-offs involved in that seg‐
ment of the system.

I strongly advise readers to pay close attention to the numerous callouts and refer‐
ences regarding security in the Internet of Things. As with any technology, the pres‐
sure to deliver a solution can often overshadow the need for robust security. Deficient
security has already been the downfall of many IoT systems. As this technology
becomes more prevalent, it will become part of many critical systems. It is vital that
security becomes one of the first considerations in any IoT project; it should be con‐
tinually revisited throughout the lifecycle of the solution.

Programming the Internet of Things provides a road map for developers of all skill lev‐
els to break into one of the fastest-growing fields in software engineering. I encourage
you to work through this content carefully and think about how you could apply sol‐
utions based on similar principles to problems in your life. I look forward to seeing
the projects created by the technologists who get inspired by this content and dive
into building the IoT.

— Tim Strunck
Director of Software Engineering

Atom Power
Charlotte, North Carolina

April 2021
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Preface

The Internet of Things (IoT) is a complex, interconnected system-of-systems com‐
posed of different hardware devices, software applications, data standards, communi‐
cations paradigms, and cloud services. Knowing where to start with your own IoT
project can be a bit daunting. Programming the Internet of Things is designed to get
you started on your IoT development journey and shows you, the developer, how to
make the IoT work.

If you decide to stay with me through this book, you’ll learn how to write, test, and
deploy the software needed to build your own basic, end-to-end IoT capability.

Who Is This Book For?
Programming the Internet of Things is, at its core, a book about building IoT solutions
—from device to cloud.

This book was primarily written as a teaching guide for my Connected Devices
course at Northeastern University, and for any students interested in learning how to
program IoT solutions. While it’s structurally focused on assisting students and prac‐
titioners, it can also be helpful for those interesting in learning more about IoT con‐
cepts and principles.

Throughout the book, you will find step-by-step guidelines for building your own
end-to-end IoT capability, with exercises within each chapter that build on one
another to help you cement your knowledge of the IoT. If you’re more interested in
the concepts, however, that’s perfectly fine! You can learn about the what and why but
move quickly through the how and skip the exercises, if you’d prefer.

As an educator and a consultant, I’ve structured the content so it can be used as a
road map for teaching introductory IoT programming courses, with the intent of
stepping through key concepts and gradually building a base of knowledge in this
important area. Whether you’re a college-level instructor or a student looking to
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develop your skills in the IoT, I hope you’ll find this book helpful in building your
course and knowledge.

Lastly, I leave most of the specific instructions and details to the existing specifica‐
tions and open source APIs. While some parts of the book might serve as a high-level
reference, a majority of the content here focuses on helping you leverage such infor‐
mation to build the solution you need. We’re fortunate to have access to well-written
protocol specifications and a vibrant open source community, and I’m grateful to
those who have championed these efforts.

To the Programmer
If you’re embarking on your own IoT learning journey as a practitioner, I assume
you’re mostly interested in expanding your skill set. Perhaps you’ve witnessed the
growth of IoT opportunities and want to be part of this important technology evolu‐
tion. Over the years, I’ve found the step-by-step, “build from the ground up”
approach to implementing integrated and open IoT solutions to be most helpful in
understanding the complexities of this area, and so I follow this model throughout
the book.

The programming examples you’ll encounter here are constructed from my own
journey in learning about the IoT, and many have evolved from lab module assign‐
ments in the graduate-level Connected Devices course I teach as part of Northeastern
University’s Cyber Physical Systems program.

Each chapter and exercise set builds on the one before, so if you are just starting out
with the IoT and are unfamiliar with how an end-to-end IoT system comes together
through software, I’d recommend walking through each as-is, working through each
exercise in the order given. It’s best to consider application customizations only after
you’ve mastered each chapter.

If you’re an experienced programmer and are using this book as a reference guide,
you may find you can skip over some of the basic development environment setup
procedures and simply skim through some of the programming exercises; however, I
do recommend you work through the requirements specified in each, even if you
choose to use your own design.

To the Instructor
The contents that underpin this book have been used successfully in my graduate-
level Connected Devices course for the past few years. This book is the formalization
of these lecture notes, presentations, examples, and lab exercises and is structured in
much the same way as my course.
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1 All the exercises in this book are adapted from my Programming the IoT Kanban board and are used with my
permission.

I originally designed the class as an introduction to the IoT, but with student input
and suggestions from my teaching assistants, it quickly morphed into a project-
oriented software-development course. It’s now one of the final required classes for
students wrapping up their master’s degrees in the Cyber Physical Systems program.
The goal of the course is to establish a strong baseline of IoT knowledge to help stu‐
dents move from academia into industry, bringing foundational IoT skills and knowl‐
edge into their respective organizations.

This book is structured so it can be used as a reference guide or even as a major com‐
ponent of a complete curriculum, to help you with your own IoT-related course. The
content is focused on constructing an end-to-end, open, and integrated IoT solution,
from device to cloud, using a “learn as you build” approach to teaching. Since each
chapter builds on the preceding one, you can use this book to guide your students in
building their own platform from the ground up.

You can remain up to date with the online exercises by reviewing the Programming
the IoT Kanban board.1 Other relevant content useful for teaching and explaining
some of the concepts in this book can be found on the book’s website.

To the Technology Manager or Executive
The contents of this book should help you better understand the integration chal‐
lenges inherent to any IoT project and should provide insight into the skill sets your
technology team(s) will need to succeed across your IoT initiatives.

If you’re part of this group, my assumption is that you’re mostly concerned with
understanding this technology area as a whole—its integration challenges, dev teams’
setup requirements and needs, team skill sets, business user and stakeholder concerns
about the IoT, and the change-management challenges you may encounter as you
embark on your organization’s IoT journey.

For technology executives and managers, you don’t need to implement the exercises
yourself, but it will be helpful to read through the entire book so you understand the
challenges your team will likely encounter.

For business stakeholders interested mostly in understanding what the IoT entails, I
recommend reading—at a minimum—the overview section at the start of each chap‐
ter and then focusing on the final chapter, which discusses a handful of practical
cases, scenarios, and implementation suggestions.
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2 The Appendix provides a basic UML representation for each exercise. The latest UML specification can be
found on the Object Management Group (OMG) website.

What Do I Need to Know?
Although the exercises in this book assume that you have some experience as a pro‐
grammer, most do not require sophisticated programming skills or a formal com‐
puter science background. However, if you intend to complete the exercises at the end
of most chapters, you’ll need to possess a basic level of comfort working with both
Python and Java as coding languages to build simple applications; working in an inte‐
grated development environment (IDE); reading, writing, and executing unit tests;
and configuring Linux-based systems via a shell-based command line.

All exercises are preceded by a target state design diagram for the specific task at
hand that details how any new logical components you build should work with the
existing components you’ve already developed. Most are simple block diagrams that
show the basic relationships among the components of the application.

Many of the diagrams are not designed to fit into a specific docu‐
mentation methodology and show only a high-level view of the
components and their basic interactions. Some diagrams do
require additional specificity, and in such cases I include one or
more Unified Modeling Language (UML)–based class diagrams to
clarify the intention of the design.2

How Is This Book Arranged?
This book will take you through building an end-to-end, full stack, and integrated
IoT solution using various open source libraries and software components that you’ll
build step by step. Each component will be part of the larger system, and you’ll see
how the components interconnect with and map into an end-state architecture as you
work through each chapter’s exercises.

In each chapter, I’ll provide a brief introduction to that chapter’s topic along with
some helpful background material, which will include some pertinent definitions. I’ll
also summarize why the topic is important and what you can expect to learn, and that
will be followed by programming exercises relevant to the topic. Many chapters end
with additional exercises you can choose to implement as well, further cementing
your knowledge of the chapter’s topic.

I have grouped like chapters together and have used this scheme to establish the four
parts of the book: Part I, Getting Started; Part II, Connecting to the Physical World;
Part III, Connecting to Other Things; and Part IV, Connecting to the Cloud. I’ll discuss
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each part and chapter in a bit more detail here and then provide some background on
the IoT itself.

Each part or chapter begins with a haiku that attempts to capture the essence of what
you’ll learn and some of the challenges you’ll likely encounter. How did this come to
be? In my early days as a software developer, one of the teams I worked with had a
policy: if you committed code that caused the nightly build to break, you had to write
a haiku related to the issue and email it to everyone on the team. While you probably
won’t encounter many broken nightly builds as you work through the exercises in this
book, you should feel free to write your own haiku as you make and learn from your
mistakes!

Part I, Getting Started
In this section, we build our initial foundation for IoT development. You’ll start by
creating a development and testing environment and then wrap up the section by
writing two simple applications to validate that your environment is working
properly.

• Chapter 1, Getting Started is the longest chapter in the book. It lays the founda‐
tion for your end-to-end solution and will help you establish a baseline of IoT
knowledge. It will also guide you in setting up your workstation and develop‐
ment environment so you can be productive as quickly as possible. In this chap‐
ter, I cover some basic IoT terms, create a simple problem statement, define core
architectural concepts, and establish an initial design approach that I’ll reference
as the framework for each subsequent exercise.

The IoT consists of a plethora of heterogeneous devices and
systems, and there are many tools and utilities available to
support development and system automation. I use open
source tools and utilities throughout the book. These represent
a small subset of what is available to you and shouldn’t be
taken as carte blanche recommendations; you may have your
own preferences. My goals are simply to keep the content well-
bounded and inform a generalized development and automa‐
tion approach that will help you implement the exercises
successfully.

• Chapter 2, Initial Edge Tier Applications covers setting up your development envi‐
ronment and your approach to capturing requirements and then moves into cod‐
ing. Here you’ll create your first two IoT applications—one in Python and the
other in Java. These are quite simple but set the stage for subsequent chapters.
Even if you’re an experienced developer, it’s important to work through the exer‐
cises as given so we’re working from the same baseline going forward.
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Part II, Connecting to the Physical World
This section covers a fundamental characteristic of the IoT—integration with the
physical world. While the exercises focus on simulation and hardware emulation, the
principles you’ll learn—how to read sensor data and trigger an actuator (virtually)—
will be helpful should you decide to use real hardware in the future.

• Chapter 3, Data Simulation explores ways you can collect data from the physical
world (sensing) and trigger actions based on that data (actuation) using simula‐
tion. You’ll start by building a set of simple simulators, which you’ll continue
using throughout each subsequent exercise. While very basic in design, these
simulators will help you better understand the principles of collecting data and
using that data to trigger actuation events.

• Chapter 4, Data Emulation expands the simulation functionality you developed
in Chapter 3 to emulate sensor and actuator behavior. This chapter remains cen‐
tered in the virtual world through the use of an open source hardware emulator
you can run on your development workstation.

• Chapter 5, Data Management discusses telemetry and data formatting, including
ways to structure your data so both humans and machines can store, transmit,
and understand it easily. This will serve as the foundation for your interoperabil‐
ity with other “things.”

Part III, Connecting to Other Things
This is where the rubber meets the road. Part III focuses on integration across devi‐
ces: to be truly integrated, you’ll need a way to get your telemetry and other informa‐
tion from one place to another. You’ll learn about and utilize application layer
protocols designed for IoT ecosystems. I’ll assume your networking layer is already in
place and working, although I’ll discuss a few wireless protocols along the way.

• Chapter 6, MQTT Integration–Overview and Python Client introduces publish/
subscribe protocols—specifically, Message Queuing Telemetry Transport
(MQTT), which is commonly used in IoT applications. I’ll walk through a select
set of specification details and explain how you can begin building out a simple
abstraction layer that allows you to easily interface with common open source
libraries, beginning with Python.

• Chapter 7, MQTT Integration–Java Client continues to build on your knowledge
of MQTT by digging into an open source library that allows you to connect your
Java applications to an MQTT server. You’ll use this protocol in the exercises and
tests you’ll run at the end of the chapter to integrate with the Python code you
developed in Chapter 6.
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• Chapter 8, CoAP Server Implementation focuses on request/response protocols—
specifically, the Constrained Application Protocol (CoAP), also commonly used
in IoT applications. The big difference here is that you’ll start with Java and build
a CoAP server using another open source library. Optional exercises are also pro‐
vided to build a CoAP server in Python.

• Chapter 9, CoAP Client Integration continues with CoAP but focuses on building
the client code you’ll use to connect to your newly developed Java server. This
client code, written in both Python and Java, will enable you to support device-
to-device communications using CoAP as the protocol.

• Chapter 10, Edge Integration centers on integration, enabling you to connect your
two applications to each other using either MQTT or CoAP. I’ll include exercises
for each protocol, which will help you decide which one may be most relevant for
your solution. Much like Chapter 9, this chapter will require implementation
work in both Python and Java.

Part IV, Connecting to the Cloud
Finally, at the “top” of the integration stack, you’ll learn how to connect all your IoT
device infrastructure to the cloud by using your gateway application as a go-between
for your cloud functionality and all your devices.

This section covers basic cloud connectivity principles and touches on various cloud
services that can store, analyze, and manage your IoT environment. You’ll build the
same simple cloud application across each platform.

• Chapter 11, Integrating with Various Cloud Services discusses the key concepts of
connecting your IoT solution into the cloud and explores various cloud-
integration exercises you can implement using the MQTT protocol. Since there
are many books and tutorials available for these platforms, I’ll simply review
these capabilities rather than going into detail on building anything specific. The
exercises help you choose which cloud platform you’d like to use in your own
implementation.

• Chapter 12, Taming the IoT examines the key enablers of an IoT solution and
maps these into a few simple IoT use cases that I’ve found particularly helpful to
preparing my Connected Devices course. I’ll cover the overall problem state‐
ment, expected outcome, and high-level notional design approach.

My hope is that this book’s approach will allow you to understand and create an inte‐
grated IoT system, end to end.
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3 Encyclopaedia Britannica Online, s.v. “Moore’s law”, by the editors of Encyclopaedia Britannica, last updated
December 26, 2019.

4 Encyclopaedia Britannica Online, s.v. “ARPANET”, by Kevin Featherly, last updated March 23, 2021.
5 Simon Duque Antón et al., “Two Decades of SCADA Exploitation: A Brief History”, in 2017 IEEE Conference

on Application, Information and Network Security (AINS) (New York: IEEE, 2017), 98–104.
6 John Postel, “User Datagram Protocol”, Internet Standard RFC 768, August 28, 1980.
7 For further reading on Tim Berners-Lee’s WWW proposal, please see https://www.w3.org/History/1989/

proposal.html.

Some Background on the IoT
Here’s a brief summary of how the IoT got to this point.

Computing took a big step forward with the invention of the transistor in the 1950s,
followed in the 1960s by Gordon Moore’s paper describing the doubling of transistors
packed in the same physical space (later updated in the 1970s).3

With modern computing came modern networking, and the beginnings of the inter‐
net, with the invention of the ARPAnet in 1969.4 This led in the 1970s to new ways to
chunk or packetize data using the Network Control Protocol (NCP) and Transmis‐
sion Control Protocol (TCP) via the Internet Protocol (IP) and leveraging existing
wired infrastructure. This was useful for industry, allowing electrical industrial auto‐
mation to move down the path of centralized management of distributed, connected
systems. Supervisory Control and Data Acquisition (SCADA) systems—ancestors of
machine-to-machine (M2M) technologies that led to the IoT—emerged from their
proprietary roots, and programmable logic controllers (PLCs)—initially invented just
prior to the ARPAnet—evolved to take advantage of TCP/IP networking and related
equipment standards.5

The 1980s introduced the User Datagram Protocol (UDP)6 and the birth of what
many of us experienced as the early modern internet—the World Wide Web
(WWW), invented in the late 1980s by Tim Berners-Lee.7

This time period has also been an important enabler for what
would eventually be known as the Industrial Internet of Things
(IIoT), a subset of the IoT and an important part of the IoT’s
evolution.

I’m sure you’ve noticed a common theme: a problem is followed by a technology
innovation (often proprietary) to address the challenge, which then becomes
standardized or is superseded by one or more standards, leading to wide adoption
and further innovation.
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8 See an explanation at “The Internet Toaster”.
9 Encyclopaedia Britannica Online, “Know Your Joe: 5 Things You Didn’t Know About Coffee” (2. The Watched

Pot), by Alison Eldridge, accessed January 18, 2021.
10 Kevin Ashton, “That ‘Internet of Things’ Thing”, RFID Journal, June 22, 2009.
11 You can read a brief summary of the Arduino’s birth in the Computer History Museum’s Timeline of Com‐

puter History.

This brings us to the era of the IoT. In the 1980s and early 1990s, the first connected
devices emerged, including an internet-connected toaster demonstrated by John
Romkey and Simon Hackett at Interop 1990.8 In 1991, users of the computer lab near
the Trojan Room at the University of Cambridge set up a web camera to monitor the
coffeepot— because who wants to make a trip only to find the pot empty?9

More devices followed, of course, and I’d guess even more were built and connected
as experiments in college labs, dorms, homes, apartments, and businesses. All the
while, computing and networking continued to become more inexpensive, powerful,
and of course smaller. Kevin Ashton is widely believed to have coined the phrase
Internet of Things in 1999, when he presented on the topic at Proctor & Gamble.10

Fast-forward to 2005, when the Interaction Design Institute Ivrea in Italy gave us the
inexpensive, designed-for-novices Arduino single-board computer (SBC),11 opening
the door for more people to build their own sensing and automation systems. Add
easily accessible storage and the ability to analyze data through services reachable
from anywhere on the internet, and you have the underpinnings of an IoT ecosystem:
that is, a lot of individually unique things that can be connected to each other to serve
a larger purpose.

Yet to view the IoT as a bunch of things that connect the physical world to the inter‐
net does not do the IoT justice. I believe the essence of the IoT, and a key driver
behind its complexity, is heterogeneity: dissimilarity and wide variation among device
types, features and capabilities, purposes, implementation approaches, supported
protocols, security, and management techniques.

Complexity Redefined
So, what exactly is the Internet of Things? It’s a complex set of technology ecosystems
that connect the physical world to the internet using a variety of edge computing
devices and cloud computing services.

For the purposes of this book, we’ll use some slightly simplified definitions. Edge com‐
puting devices refers to the embedded electronics, computing systems, and software
applications that either interact directly with the physical world through sensors and
actuators or provide a gateway, or bridge, for those devices and applications to con‐
nect to the internet. Cloud computing services refers to computing systems, software
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12 The Industrial Internet of Things, Volume G1: Reference Architecture, Version 1.9 (Needham, MA: Industrial
Internet Consortium, 2019).

applications, data storage, and other computing services that live within one or more
data centers and are always accessible via the internet.

Going forward, I’ll refer to these two areas by their representative architectural tier—
that is, Cloud Tier for cloud computing services, and Edge Tier for edge computing
devices. Architectural tiers separate the key functionality of an IoT system both phys‐
ically and logically—meaning, for example, that all sensing and actuation take place
in the Edge Tier, and all long-term storage and complex analytics take place in the
Cloud Tier.

For those interested in a deeper study of architecture and related
standards, there are many organizations actively participating in
and publishing content related to these areas. A few to start with
are:

• The European Telecommunications Standards Institute
(ETSI), a Europe-based standardization organization

• The International Telecommunication Union (ITU), the Uni‐
ted Nations’ agency for information and communication tech‐
nologies

• The Internet Engineering Task Force (IETF), a global internet
standards body

• The Industrial Internet Consortium (IIC), an organization of
businesses and organizations focused on the IIoT

The IIC has published a variety of useful documents. Of particular
interest is the Industrial Internet Reference Architecture, which dis‐
cusses a framework and common vocabulary for IIoT systems and
has heavily influenced my thinking on the topic of IoT
architecture.12

Creating Value
The real value in any IoT system is its ability to provide an improved or enhanced
outcome via integration of the physical and logical worlds and the collection and
analysis of time-series data.

Let’s take a simple example from an appliance-laden residential kitchen. If, for exam‐
ple, I can measure the inside temperature of a refrigerator every minute, I can deter‐
mine how long the items stored in the refrigerator have been exposed to a given
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temperature. If I sample the inside temperature only once a day, I don’t have adequate
detail to make that determination.

Of course, if other systems can’t understand the data I collect, it’s pretty much useless.
Although individually each part may be unique and not dependent on another part,
building integratable IoT solutions requires you, as the developer, to think carefully
about how their design (and data) for each part of an IoT system might interact with
other systems (and other developers).

Another key part of the value chain is scalability. It’s one thing to build a system that
supports a handful of inputs but another thing altogether to handle thousands, mil‐
lions, or even billions of inputs. Scalability—the ability of a system to handle as much
or as little information as we want—is what gives the IoT its true power. For example,
a scalable cloud system that supports the IoT is one that can handle a single gateway
device sending it data, or thousands (or millions or billions) of inputs, without
failing.

It’s probably clear by now that in building an integrated IoT system, you will need to
deal with significant nuances at each step. You can’t expect plug ’n’ play or even con‐
sistent behaviors from the systems that send you data. What’s more, even if you try to
write your code generically enough to function the same way from one hardware
device to another, it might not always work across every platform.

It’s not possible for one book to cover all specialized platforms, nor
is it easy to write consistent, semi-low-level code at the device level
that doesn’t need to be optimized for every device. While every
device may have differences that we need to account for when we
create (and test) our solutions, the code samples I provide in this
book are portable (with some minor exceptions) and usable across
most systems that can run a Java Virtual Machine or Python 3
interpreter.

Living on the Edge
With all the power and flexibility of the Cloud Tier, an IoT solution generally exhibits
the greatest complexity at the edge, which is where most (and often all) of the system’s
heterogeneity lives. The two categories of devices this book will focus on are con‐
strained devices and gateway devices.

To grossly oversimplify: constrained devices have some power, communications, and
processing limitations, whereas gateway devices generally do not.
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I’m leaving out the nomenclature of “smart devices” on purpose,
since it’s becoming less clear how to best define “smart” versus
“not-so-smart” devices.

One way to view a constrained device is as a low-power (sometimes battery-operated)
SBC that either reads data from the environment (such as temperature, pressure, or
humidity) or triggers a mechanical action (such as opening or closing a valve).

The IETF provides detailed definitions and terminology for vari‐
ous “Constrained Devices or Nodes” in RFC 7228.13 It is not the
intent of this book to alter these definitions in any way—I simply
use the terms constrained device and constrained device app to sepa‐
rate the intended functionality of the constrained device from the
gateway device, while implying the nature of each type of device (in
short, that the former has more technical limitations than the
latter).

A gateway device may also be implemented as an SBC but is much more powerful: it
can communicate with many different constrained devices and has enough process‐
ing power to aggregate the data from these other devices, perform some analytics
functions, and determine when (and how) to send any relevant data to the cloud for
further storage and processing.

Figure P-1 envisions a notional IoT systems architecture that represents the relation‐
ships between these device types within the Edge Tier and the services and other
functionality that live within the Cloud Tier.

Figure P-1. Notional IoT system architecture
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For the purposes of this book, I’ll qualify these devices as follows:

• Gateway devices focus primarily on processing, interpreting, and integrating
edge data and interacting with the cloud. They perform “at the edge” analytics,
convert and/or transform protocol stacks, determine how messages should be
routed (if at all), and, of course, connect directly to the internet and the various
cloud services that make the IoT useful for business stakeholders.

• Constrained devices handle only sensing and/or actuation and control while pro‐
cessing messages for themselves, passing messages along if the right communica‐
tions protocol is implemented, and sending messages to a gateway device. In
short, their abilities are limited, and they may not be able to connect directly to
the internet, relying instead on a gateway device for cloud connectivity.

Can a constrained device connect directly to the internet? Sure, if it contains a
TCP/IP stack, has a routable IP address that’s accessible to and from the public inter‐
net, and has the appropriate communications hardware to talk to the internet.

For the purposes of this book, however, I’ll narrow the category of constrained devi‐
ces to these two limitations:

• They do not support packet routing directly to or from the public internet
(although let’s assume they support both TCP/IP and UDP/IP) and must interact
with a gateway device to be part of any IoT ecosystem.

• They do not contain adequate computing resources to intelligently determine
complex courses of action based on the data they collect.

I’ll focus on the “constrained device to gateway device to cloud connection” paradigm
throughout the book, although there are other viable edge computing models that
may be more suitable for your specific use case.

Conclusion
What it all means is this: as we make better computing devices that are smaller, faster,
and cheaper, use them to interact with the physical world, and connect them (or their
data) to the internet for processing using cloud services, we can derive insights that
help deliver better business outcomes.

Thanks for reading!

Preface | xxiii



Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples and documentation templates) can be found
online at https://github.com/programming-the-iot. The code samples in this book are
licensed under the MIT License.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.
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This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Programming the
Internet of Things by Andy King (O’Reilly). Copyright 2021 Andrew D. King,
978-1-492-08141-8.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)
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We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/programming-the-IoT.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia
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PART I

Getting Started

Introduction

I must move forward.
However, where do I start?
First things first—setup.

The preface introduced some basic IoT principles and concepts but probably left
much to be desired in terms of what the IoT is, how it works, and what you can do
about it. This section won’t explain everything there is to know about the IoT as an
ecosystem of widely divergent devices and capabilities; instead, I’ll focus on a basic set
of core concepts to help you create a mental map of how the IoT can help you solve a
variety of problems.

The process I’ll walk through in this section and use throughout the book is the same
one I use to help my students better understand the IoT and—perhaps most impor‐
tantly—how to build a simple, end-to-end IoT solution, from device to cloud.

What You’ll Learn in This Section
Chapters 1 and 2 are focused on three primary topics: (1) problem definition and
functional categorization, (2) development environment setup, and (3) building the
initial edge tier applications. You’ll learn about each of these as I define a simple IoT
problem, create an architecture baseline to address the problem, and discuss the
design philosophy that will drive the suggested implementation path. That path
begins with the construction of two simple applications: the gateway device applica‐
tion and the constrained device application. Ready? Let’s get started.





CHAPTER 1

Getting Started

IoT Basics and Development Environment Setup

A path lies ahead,
Brambles and thorns, then it clears.
Almost there. Patience.

Fundamental concepts: Identify a problem area to tackle and define an architecture
as the baseline for your IoT solution; set up an IoT-centric development environment
that supports multiple deployment options.

You’ve likely gathered by  now that the Internet of Things can be vast, unwieldy, and
very difficult to tame. To plan a way forward, we’ll first want to identify a problem
area to tackle and then create an architecture from which to design and build our IoT
solution.

Let’s start with a few key questions to establish a baseline: What problem are you try‐
ing to solve? Where does it start and end? Why does it require an IoT ecosystem?
How will all of the pieces work together to solve this problem? What outcome can
you expect if everything works as designed? We’ll explore each of these questions in
detail, and along the way we’ll construct an end-to-end, integrated IoT solution that
meets our needs.

What You’ll Learn in This Chapter
To help you really understand how an IoT system can and should be constructed, I’ll
dig into some basic architectural concepts based on the preceding questions and use
this as the basis for each programming activity. From there, you’ll build a solution
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that addresses the problem layer by layer, adding more functionality as you work
through each subsequent chapter.

It goes without saying, of course, that the right development tools will likely save you
time and frustration, not to mention help you with testing, validation, and deploy‐
ment. There are many excellent open source and commercial development tools and
frameworks available to support you.

If you’ve been a developer for any length of time, I expect you have your own specific
development environment preferences that best suit your programming style and
approach. I certainly have mine, and while the examples I present will be based on my
preferred set of tools, my goal in this chapter is not to specify those you must use but
to help you ramp up IoT development in a way that enables you to move out quickly
and eventually choose your own tools for future development projects.

The concepts I present will be what matter most; the programming languages, tools
(and their respective versions), and methods can be changed. These concepts repre‐
sent some of the fundamentals of consistent software development: system design,
coding, and testing.

Defining Your System
Creating a problem statement is probably the most important part of this puzzle. Let’s
start by drafting something that is reasonably straightforward but is enough to
encompass a variety of interesting IoT challenges:

I want to understand the environment in my home, how it changes over time, and
make adjustments to enhance comfort while saving money.

Seems simple enough, but this is a very broad goal. We can narrow it down by defin‐
ing the key actions and objects in our problem statement. Our goal is to isolate the
what, why, and how. Let’s first look at the what and the why and then identify any
action(s) that the design should consider as part of this process.

Breaking Down the Problem
The exercises in this book will focus on building an IoT solution that can help you
understand your home environment and respond appropriately. The assumption is
that you’ll want to know what’s going on within your house (within reason) and take
some sort of action if it’s warranted (for example, turn on the air conditioning if the
temperature is too hot).

This part of your design approach considers three key activities:

Measure: Collect data
Let’s define this in terms of what can be sensed, like temperature, humidity, and
so on. This is centered on the capture and transmission of telemetry
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(measurement data). The action—or rather, the action category—will be named
data collection and will include the following data items (you can add more later):

• Temperature
• Relative Humidity
• Barometric Pressure
• System Performance (utilization metrics for CPU, memory, storage)

Model: Determine relevant changes from a given baseline
To decide which data is relevant and whether or not a change in value is impor‐
tant, we need not only to collect data but also to store and trend time-series data
on the items we can sense (like temperature, humidity, etc., as indicated in the
preceding definition).  This is typically known as data → information conversion.
I’ll refer to this category as data management.

Manage: Take action
We’ll establish some basic rules to determine whether we’ve crossed any impor‐
tant thresholds, which simply means we’ll send a signal to something if a thres‐
hold is crossed that requires some type of action (for instance, turning a
thermostat up or down). This is typically known as information → knowledge con‐
version. I’ll refer to this category as system triggers.

In my university IoT course, I talk about Measure, Model, and Manage often. To me,
they represent the core aspects of any IoT design that ultimately drive toward achiev‐
ing the system’s specified business objectives, or outcomes.

Defining Relevant Outcomes
Now that we know what steps we need to take, let’s explore the why portion of our
problem statement. We can summarize this using the following two points:

• Increase comfort: Ideally, we’d like to maintain a consistent temperature and
humidity in our living environment. Things get a bit more complicated when we
consider the number of rooms, how they’re used, and so forth. I refer to this
action category as configuration management, and it goes hand in hand with both
data management and system triggers.

• Save money: This gets a bit tricky. The most obvious way to save money is to not
spend it! Since we’ll likely need to allocate financial resources to heat, cool, or
humidify a given area, we want to optimize—not too much (wasteful), and not
too little (we could end up with frozen water pipes in the winter). Since we might
have some complexity to deal with here—including utility costs, seasonal
changes, and so on, as well as anything related to configuration management—
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we’ll probably need some more advanced analytics to handle these concerns. I’ll
call this action category analytics.

You’ve likely noticed that each step in the what and why sections has an action cate‐
gory name that will help with the solution design once we move on to the how. As a
reminder, these categories are data collection, data management, system triggers, con‐
figuration management, and analytics. We’ll dig further into each of these as part of
our implementation approach.

Although the problem statement seems rather banal on the surface, it turns out that
the things you’ll need to do to address the problem are actually quite common within
many IoT systems. There’s a need to collect data at its source, to store and analyze
that data, and to take action if some indicator suggests doing so would be beneficial.
Once you define your IoT architecture and start building the components that imple‐
ment it—even though it will be specific to this problem—you’ll see how it can be
applied to many other problem areas.

Let’s take a quick look at a simple data flow that represents this decision process; in
the data flow diagram depicted in Figure 1-1, each action category is highlighted.

Figure 1-1. Simple IoT data flow

Most IoT systems will require at least some of the five action categories I’ve called
out. This means we can define an architecture that maps these into a systems diagram
and then start creating software components that implement part of the system.

This is where the fun starts for us engineers, so let’s get going with an architecture
definition that can support our problem statement (and will in fact be reusable for
others).
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Architecting a Solution
Organization, structure, and clarity are hallmarks of a good architecture, but too
much can make for a rigid system that doesn’t scale well for future needs. And if we
try to establish an architecture that will meet all our plausible needs, we’ll never finish
(or perhaps never even get started)! It’s about balance, so let’s define the architecture
with future flexibility in mind, but let’s also keep things relatively well bounded. This
will allow you to focus on getting to a solution quickly, while still permitting updates
in the future. But first, there are a few key terms that need to be defined to help estab‐
lish a baseline architectural construct to build your solution on.

As you may recall from Figure P-1 in the preface, IoT systems are generally designed
with at least two (and sometimes three or more) architectural tiers in mind. This
allows for the separation of functionality both physically and logically, which permits
for flexible deployment schemes. All of this is to say that the cloud services running
within the Cloud Tier can, technically speaking, be anywhere in the world, while the
devices running within the Edge Tier must be in the same location as the physical sys‐
tems that are to be measured. Just as Figure P-1 implies, an example of this tiering
may include a constrained device with sensors or actuators talking to a gateway
device, which in turn talks to a cloud-based service, and vice versa.

Since we need a place for these five categories of functionality to be implemented, it’s
important to identify their location within the architecture so we can have some
things running close to where the action is, and others running in the cloud where
you and I can access (and even tweak) the functionality easily. Recalling the Edge Tier
and Cloud Tier architecture from the preface, let’s see how to map each of the action
categories from the what and why into each tier:

• Edge Tier (constrained devices and gateway devices): Data collection, data man‐
agement, device triggers, configuration management, and analytics

• Cloud Tier (cloud services): Data management, configuration management, and
analytics

Why do the Edge Tier and Cloud Tier include similar functionality? This is partly out
of necessity, but also because, well, we can. The technical boundaries and separation
of responsibilities between edge and cloud are becoming fuzzier as computing power
increases and as business needs dictate “as close to the edge as possible” computation
and analytics capabilities. For instance, some autonomous decisions may not require
messages to traverse the internet out to the cloud and back again, as the Edge Tier can
manage them directly. So it’s important to account for this capability whenever and
wherever reasonable.

Figure 1-2 shows how the simple data flow from Figure 1-1 fits within a tiered
architecture.
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Figure 1-2. Notional IoT data flow between the Edge and Cloud Tiers

Again, notice that we have some shared responsibility, where some of the action cate‐
gories are implemented within both tiers. Normally, duplication of effort is a bad
thing—but in this case, it can be an advantage! Analytics can be used to determine
whether a trigger should be sent to a device based on some basic settings—for exam‐
ple, if the temperature in your home exceeds 30ºC, you’ll probably want to trigger the
HVAC straight away and start cooling things down to, say, 22ºC. There’s no need to
depend on a remote cloud-based service in the Cloud Tier to do this, although it
would be useful to notify the Cloud Tier that this is happening, and to perhaps store
some historical data for later analysis.
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Our architecture is starting to take shape. Now we just need a way to map it to a sys‐
tems diagram so we can interact with the physical world (using sensors and actua‐
tors). It would also be good to structure things within the Edge Tier to avoid exposing
components to the internet unnecessarily. This functionality can be implemented as
an application that can run either directly on the device or on a laptop or other
generic computing system with simulation logic that can emulate sensor and actuator
behavior. This will serve as the basis for one of the two applications you’ll develop,
beginning in this chapter.

Since you’ll want to access the internet eventually, your design should include a gate‐
way to handle this need and other needs. This functionality can be implemented as
part of a second application you’ll begin developing in this chapter. This application
will be designed to run on a gateway device (or, again, on a laptop or other generic
computing system). Your Gateway Device Application and Constrained Device
Application will comprise the “edge” of your IoT design, which I’ll refer to as the Edge
Tier of your architecture going forward.

You’ll also want to deploy analytics services, storage capabilities, and event managers
in a way that’s secure but accessible from your gateway device and also by human
beings. There are many ways to do this, although I’ll focus on the use of one or more
cloud services for much of this functionality.

Figure 1-3 provides a new view that will give further insight into what you’re going to
build and how you can begin incorporating the five action categories I mentioned. It
represents, in grey boxes, cloud services within the Cloud Tier and the two applica‐
tions within the Edge Tier that will contain the functionality of your constrained
device and your gateway device, respectively.

Figure 1-3. Notional IoT simplified logical architecture with Edge and Cloud Tiers
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Let’s dig into each a bit further:

Constrained Device Application (CDA)
You’ll build this software application to run within the constrained device (emu‐
lated or actual), and it will provide data collection and system triggers functional‐
ity. It will handle the interface between the device’s sensors (which read data from
the environment) and actuators (which trigger actions, such as turning the ther‐
mostat on or off). It will also play a role in taking action when an actuation is
needed. Eventually, it will be connected to a communications library to send
messages to, and receive messages from, the gateway device app.

Gateway Device Application (GDA)
You’ll build this software application to run within the gateway device (emulated
or actual), and it will provide data management, analytics, and configuration
management functionality.  Its primary role is to manage data and the connec‐
tions between the CDA and cloud services that exist within the Cloud Tier. It will
manage data locally as appropriate and will sometimes take action by sending a
command to the constrained device that triggers an actuation. It will also manage
some of the configuration settings—that is, those that represent nominal ranges
for your environment—and will perform some initial analytics when new teleme‐
try is received.

Cloud services
All cloud services applications and functionality do the heavy data processing
and storage work, as they can theoretically scale it ad infinitum. This simply
means that, if they are designed well, you can add as many devices as you want,
store as much data as you want, and do in-depth analysis of that data—trends,
highs, lows, configuration values, and so on—all while passing any relevant
insights along to a human end user, and perhaps even generating Edge Tier
actions based on any defined threshold crossing(s). Technically, cloud services
within an IoT environment can handle all the action categories previously men‐
tioned, with the exception of data collection (meaning they don’t perform sensing
or actuation actions directly). You will build some cloud services to handle this
functionality but mostly will utilize those generic services already available from
some cloud service providers.

Putting it all together into a detailed logical architecture, Figure 1-4 shows how each
major logical component within our two architectural tiers interacts with the other
components.
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Figure 1-4. Notional IoT detailed logical architecture with Edge and Cloud Tiers

We’ll use Figures 1-3 and 1-4 as our baseline architecture for all the exercises in this
book.

Now that we have a handle on what we’re up against, let’s get our development envi‐
ronment set up so we can start slinging code.

Setting Up Your Development and Test Environment
Building and deploying code across different operating systems, hardware configura‐
tions, and configuration systems is no walk in the park.  With typical IoT projects, we
have to deal not only with different hardware components but also with the myriad
ways to develop and deploy across these platforms, not to mention the various con‐
tinuous integration/continuous deployment (CI/CD) idiosyncrasies of the various
cloud service provider environments we often work within.
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With all these challenges, how do we even get started? First things first—what prob‐
lem are we trying to solve? As a developer, you want to implement your IoT design in
code, test it, package it into something that can be easily distributed to one or more
systems, and deploy it safely. We can think of our development challenges in two
build, test, and deploy phases that just so happen to map to our architectural tiering:
Edge Tier environment and Cloud Tier environment. We’ll dig into the functionality
within the Cloud Tier beginning in Chapter 10. For now, we’ll focus just on the Edge
Tier.

Although the Edge Tier could have specialized hardware to deal with, we can simulate
some of the system behavior, and emulate some hardware components within our
local development environment. This will make deployment much easier and is per‐
fectly fine for all the exercises in this book.

There are many ways to get up and running with IoT development, but we’ll focus on
three specific paths. One is purely simulated and, as I mentioned previously, is suffi‐
cient for all the core exercises in this book. The other two require IoT-specific hard‐
ware and will be discussed in more detail in Chapter 4.

Integrated simulated deployment
This approach doesn’t require any specialized device and allows you to use your
development workstation (laptop) as both gateway device and constrained
device. This means you’ll run your GDA and CDA in your local computing envi‐
ronment. You’ll emulate your sensing and actuation hardware by building ele‐
mentary software simulators to capture this functionality within your CDA. All
exercises, with the exception of the optional Chapter 4 exercises posted online,
will work using this deployment approach.

Separated physical deployment
This requires a hardware device, such as a Raspberry Pi, that gives you the ability
to connect to and interact with real sensors and actuators. Although many off-
the-shelf single-board computing (SBC) devices can be used as full-blown com‐
puting workstations, I’ll refer to this as your constrained device, and it will run
your CDA directly on the device. As with the integrated simulated deployment
approach, you’ll run the GDA in your local computing environment.
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1 Carsten Bormann, Mehmet Ersue, and Ari Keränen, “Terminology for Constrained-Node Networks”, IETF
Informational RFC 7228, May 2014, 8–10.

As referenced in the preface, the IETF RFC 7228 document
defines various classes of constrained devices (also referred to
as constrained nodes).  These classes include Class 0 (very con‐
strained), Class 1 (constrained), and Class 2 (somewhat con‐
strained).1 For our purposes, we’ll assume our CDA can run
on Class 2 or even more powerful devices, which typically sup‐
port full IP-based networking stacks, meaning the protocols
we’ll deal with in this book will generally work on these types
of devices. Although it’s technically feasible to connect Class 2
devices directly to the internet, all of the examples and exerci‐
ses will interact indirectly with the internet via the GDA.

Blended physical deployment
This approach is nearly identical to the separated deployment approach but will
run both your CDA and your GDA on the SBC device. This technically means
you can choose to deploy each app to a different SBC, although it isn’t necessary
for any of the exercises listed.

If you choose either of the last two paths for your deployment, there are a wide range
of inexpensive SBCs that may work for you. The only exercises in this book that
require hardware are the optional exercises in Chapter 4, and while you could possi‐
bly implement these on other hardware platforms, they are designed with the follow‐
ing hardware in mind: Raspberry Pi Model 3 or 4 and the Sense HAT board (which
connects to its general-purpose input/output [GPIO] and uses the Inter-Integrated
Circuit [I2C] bus for device communications). If you select a different device for
these exercises, you may want to consider one that includes the following: GPIO
functionality, I2C, TCP/IP and UDP/IP networking via WiFi or Ethernet, support for
a Linux-based operating system (such as Debian or a derivative), and support for 
both Python 3 and Java 11 (or higher).

The exercises in the book will focus on the integrated simulated deployment path.
Part II introduces the concept of integration with the physical world, and I’ll address
some hardware integration concepts in Chapter 4 while maintaining focus on simula‐
ted data and emulated hardware.

Irrespective of the selected deployment path, all exercises and examples assume you’ll
do your development and deployment on a single workstation. This involves a three-
step process that includes preparing your development environment, defining your
testing strategy, and identifying a build and deployment automation approach. I’ll
cover the basics of these steps to get you started in this chapter but will also add to

Setting Up Your Development and Test Environment | 13

https://tools.ietf.org/html/rfc7228


2 Learn more about WSL and how to install it on your platform at https://oreil.ly/YK9Rb.
3 CoAP, or Constrained Application Protocol, is a messaging protocol that I’ll discuss in Part III (specifically, in

Chapters 8 and 9).

each as you dig into later exercises that have additional dependencies and testing and
automation needs.

You may already have experience developing applications in both
Java and Python using your own development environment. If so,
be sure to review the first step—preparation of your development
environment—to ensure that your development environment,
including your operating system, Java runtime, and Python inter‐
preter, are all compatible with the exercise requirements.

Step I: Prepare Your Development Environment
Recall that your CDA will be written in Python, and your GDA will be written in Java. 
While this technically means that any OS supporting Python 3.7 or higher and Java
11 or higher may work for most exercises, there are some Linux-specific dependen‐
cies you should be aware of prior to setting up your development environment:

• Chapter 4: The hardware emulator I’ll discuss in this chapter requires a Unix-
based environment along with an X11 server to support its graphical user inter‐
face (GUI). Linux and macOS should work, whereas Windows will require
Windows Subsystem for Linux (WSL)2 plus an X11 server.

• Chapter 8: The Python-based CoAP3 server is an optional exercise and has been
tested with the Java client from Chapter 9 on Windows 10, macOS, and Linux.
However, advanced protocol and/or library usage may depend on Linux-specific
bindings that might be incompatible with Windows and macOS.

• Chapter 9: Some of the Python-based CoAP client exercises currently depend on
Linux-specific bindings that may be incompatible with Windows and macOS.

Although I’ll discuss setup for Linux, macOS, and Windows, I’d suggest you use
Linux as your development environment to avoid some of the integration challenges I
just mentioned. Be sure to read through PIOT-CFG-01-001 for more information on
operating environment setup and library compatibility considerations. Many of the
open source libraries the exercises depend on are actively maintained; however, this is
not universally the case. Please be sure to check each library for the latest tested ver‐
sion and its operating environment compatibility constraints.
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4 MQTT, or Message Queuing Telemetry Transport, is a messaging protocol that I’ll discuss in Part III (specifi‐
cally, in Chapters 6 and 7).

Most of my own development is done on Windows 10, but most
application execution and testing is done using WSL with an
Ubuntu 20.04LTS kernel. If you must use a non-Linux operating
environment, you can still build your end-to-end IoT solution by
skipping the exercises in Chapter 4, Chapter 8, and Chapter 9 and
relying instead on the data simulators described in Chapter 3 and
the MQTT4 protocol for connectivity. Be sure to read through
them all, however, as each will provide further insights into how to
evolve your applications in the future.

You can make sure your workstation has the right stuff installed to support these lan‐
guages and their associated dependencies by following these steps:

1. Install Python 3.7 or higher on your workstation (the latest version as of this
writing is 3.9.4, although my WSL environment is using 3.8.5). To check if it’s
already installed, or to install it if not:
a. Open a terminal or console window and type the following (be sure to use two

dashes before the parameter):
$ python3 –-version

b. It should return output similar to the following:
Python 3.8.5

c. If the version returned is less than 3.7, or if you get an error (e.g., “not
found”), you’ll need to install Python 3.7 or higher. Follow the instructions for
your operating system (Windows, macOS, Linux) at https://www.python.org/
downloads.

In some cases, you may need to download the source code
for Python and then build and install the executables.
Check out the instructions at https://devguide.python.org/
setup/ if you need to go down this path. As a heads-up, this
process may take a while.

2. Install pip by downloading the bootstrapping and installation script. As with the
Python instructions in Step 1, check whether pip is already installed first. If
you’re using WSL or Ubuntu, you may need to install pip using the apt package
manager.

Setting Up Your Development and Test Environment | 15

https://www.python.org/downloads
https://www.python.org/downloads
https://devguide.python.org/setup
https://devguide.python.org/setup
https://bootstrap.pypa.io/get-pip.py


a. Open a terminal or console window and type the following (again using two
dashes before the parameter):

$ pip –-version

b. It should return output similar to the following:
pip 21.0.1

c. If pip is not installed, or if your version is out of date, use Python to execute
the pip installation script. Open a terminal or console window and type:

$ python3 get-pip.py

3. Ensure Java 11 or higher is installed on your workstation (the latest version of
OpenJDK as of this writing is Java 14). You can check if it’s already installed, or
install it if not, using the following steps:
a. Open a terminal or console window and type the following (there are two

dashes before the parameter, although it will likely work with just one):
$ java –-version

b. It should return something like the following (make sure it’s at least Java 11):
openjdk 14.0.2 2020-07-14
OpenJDK Runtime Environment (build 14.0.2+12-Ubuntu-120.04)
OpenJDK 64-Bit Server VM (build 14.0.2+12-Ubuntu-120.04, mixed mode,
sharing)

c. If you get an error (e.g., “not found”), you’ll need to install Java 11 or higher.
Follow the instructions for your platform (Windows, macOS, or Linux) on the
OpenJDK website.

4. Install Git. Go to “Installing Git” and review the instructions for your specific
operating system.
A prerequisite for any of the exercises in this book, and for setting up your devel‐
opment environment, is a basic understanding of Git, a source code management
and versioning tool. Many IDEs come with source code management already
enabled via an embedded Git client. In a previous step, you installed Git via the
command line so that you can run Git commands independently of your IDE.
For more information on using Git from the command line, see the Git tutorial
documentation.
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5 More information can be found on the GitHub website.

You can use Git as a stand-alone source code management tool
on your local development workstation and manage your
source code in the cloud using a variety of free and commer‐
cial services. GitHub5 is the service I use, and I will leverage
some of the features this platform provides to support CI/CD
pipelines, or workflow steps, that allow you to automate the
build, test, package, and deployment process.

5. Create a working development directory, and download the source code and unit
tests for this book:
a. Open a terminal or console window, create a new working development direc‐

tory, and then change to that directory. Then type the following:
i. Linux/macOS:

mkdir $HOME/programmingtheiot
cd $HOME/programmingtheiot

ii. Windows:
mkdir C:\programmingtheiot
cd C:\programmingtheiot

b. Clone the following two source code repositories for this book by typing the
following:

$ git clone https://github.com/programmingtheiot/python-components.git
$ git clone https://github.com/programmingtheiot/java-components.git

6. Set up your virtual Python environment.
There are a handful of ways to establish a virtual execution environment for
Python on your system, and my goal in this step isn’t to discuss them all. Python
3.3 or higher provides a virtual environment module, so you don’t have to install
virtualenv unless that’s your preferred approach for Python virtualization. You
can read more about using the venv module at https://docs.python.org/3/library/
venv.html.
a. Create a virtual Python environment. Open a terminal or console window,

change your directory to your desired virtual environment installation path
(for example, $HOME/programmingtheiot/.venv), and create a virtual environ‐
ment (venv) as follows:
i. Linux/macOS:

$ python3 -m venv $HOME/programmingtheiot/.venv
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ii. Windows:
C:\programmingtheiot > python -m venv C:\programmingtheiot \.venv

b. Install the requisite Python modules. Change your directory to that of the
python-components code you just cloned from GitHub and then type the
following:
i. Linux/macOS:

$ cd $HOME/programmingtheiot
$ . .venv/bin/activate
(venv) $ pip install -r basic_imports.txt

ii. Windows:
cd C:\programmingtheiot
C:\programmingtheiot > .venv\Scripts\activate.bat
(.venv) C:\programmingtheiot > pip install -r basic_imports.txt

c. Ensure your virtualenv can be activated. You can activate (using the activate
script) and then deactivate virtualenv (using the deactivate command) from
your command line easily enough:
i. Linux/macOS:

$ . .venv/bin/activate
(venv) $ deactivate

ii. Windows:
C:\programmingtheiot > .venv\Scripts\activate.bat
(.venv) C:\programmingtheiot > deactivate

At this point, your development workstation is mostly configured. The next step is to
configure your development environment and clone the sample source code for the
book.

Configuring an integrated development environment (IDE)
There are many excellent tools and IDEs that help you, the developer, write, test, and
deploy applications written in both Java and Python. There are tools that I’m very
familiar with and work well for my development needs. My guess is you’re much the
same and have your own tool preferences. It doesn’t really matter which toolset you
use, provided the tools meet some basic requirements. For me, these include code
highlighting and completion, code formatting and refactoring, debugging, compiling
and packaging, unit and other testing, and source code control.
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There are many fantastic IDEs on the market—both commercial and open source. I
developed the examples in this book using the Eclipse IDE with PyDev installed, as it
meets the requirements I’ve specified and provides a bunch of other convenient fea‐
tures that I regularly use in my development projects. You may be familiar with other
IDEs, such as Visual Studio Code and IntelliJ IDEA, both of which also support Java
and Python. The choice of IDE for the exercises in this book is, of course, completely
up to you.

If you’re already familiar with writing, testing, and managing software applications
using a different IDE, most of this section will be old hat. I do recommend you read
through it, however, as this section sets the stage for the development of your GDA
and CDA.

Set up your Gateway Device Application project
The first step in this process is to install the latest Eclipse IDE for Java development.
You can find the latest download links for Eclipse at https://www.eclipse.org/down
loads. You’ll notice that there are many different flavors of the IDE available. For our
purposes, you can simply choose “Eclipse IDE for Java Developers.” Then follow the
instructions for installing the IDE onto your local system.

Once installed, launch Eclipse, select File → Import, find Git → “Projects from Git,”
and click Next.

Select “Existing local repository” and click Next. If you already have some Git reposi‐
tories in your home path, Eclipse will probably pick them up and present them as
options to import in the next dialog (not shown). To pull in the newly cloned reposi‐
tory, click Add, which will take you to the next dialog, shown in Figure 1-5. From
here, you can add your new Git repository.

On my workstation, the repository I want to import is located at E:\aking\program‐
mingtheiot\java-components. Yours will most likely have a different name, so be sure
to enter it correctly!
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Figure 1-5. Import java-components from your local Git repository

Click Finish, and you’ll see your new repository added to the list of repositories you
can import. Highlight this new repository and click Next. Eclipse will then present
you with another dialog and ask you to import the project using one of several
options, as shown in Figure 1-6.
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Figure 1-6. Import java-components as an existing Eclipse project

You now have a choice: you can import java-components as an existing Eclipse
project using the new project wizard, or as a general project. Unless you want to fully
customize your project environment, I’d recommend the first option—importing an
existing Eclipse project. This process will look for a .project file in the working
directory (which I’ve included in each of the repositories you’ve already cloned),
resulting in a new Java project named piot-java-components. If you’d prefer to cre‐
ate your own project, you can remove this and import as a new project using the
appropriate wizard.

Click Finish, and you’ll see your new project added to the list of projects in the
Eclipse Package Explorer, which by default should be on the left side of your IDE
screen.
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Your GDA project is now set up in Eclipse, so let’s explore the files inside. Navigate to
this project in Eclipse and click on the caret (>) symbol to expand it further, as shown
in Figure 1-7.

Figure 1-7. GDA project now set up and ready for use

What if you don’t like the project name? No problem—you can
right-click the piot-java-components name, select Rename, type
the new name, and click OK. Just know that I’ll continue to refer to
the project by the original name throughout the book :).

You’ll notice that there are already two files in the project—one is GatewayDeviceApp
in the programmingtheiot.gda.app package, and the other one, at the top level, is
called pom.xml. The GatewayDeviceApp is a placeholder to get you started, although
you may replace it with your own. I’d recommend you keep the naming convention
the same, however, as the pom.xml depends on this to compile, test, and package the
code. If you know your way around Maven already, feel free to make any changes
you’d like.
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For those of you less familiar with Maven, the pom.xml is Maven’s
primary configuration file and contains instructions for loading
dependencies, their respective versions, naming conventions for
your application, build instructions, and of course packaging
instructions. Most of these dependencies are already included,
although you may want to add your own if you find others to be
useful. You’ll also notice that Maven has its own default directory
structure, which I’ve kept in place for the Java repository. To learn
more about these and other Maven features, I’d recommend you
walk through the five-minute Maven tutorial.

Now, to make sure everything is in place and you can build, package, and run the
GDA, do the following:

1. Make sure your workstation is connected to the internet.
2. Build your project and create an executable package.

a. Right-click on the project piot-java-components in Project Workspace,
scroll down to “Run As,” and click “Maven install.” (Since Maven will have to
install any missing dependencies specified in the pom.xml, this may take a bit
of time to run, depending on your internet connection speed and other
factors.)

b. Check the output in the console at the bottom of the Eclipse IDE screen.
There should be no errors, with the last few lines similar to the following:

[INFO] --- maven-install-plugin:2.4:install (default-install) @ 
gateway-device-app ---
[INFO] Installing E:\aking\workspace\gda\java-components\target\
gateway-device-app-0.0.1.jar to C:\Users\aking\.m2\repository\
programmingtheiot\gda\gateway-device-app\0.0.1\
gateway-device-app-0.0.1.jar
[INFO] Installing E:\aking\workspace\gda\java-components\pom.xml to
C:\Users\aking\.m2\repository\programmingtheiot\gda\gateway-device-
app\0.0.1\gateway-device-app-0.0.1.pom
[INFO] ---------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ---------------------------------------------------------------
[INFO] Total time:  4.525 s
[INFO] Finished at: 2020-07-04T14:31:45-04:00
[INFO] ---------------------------------------------------------------

3. Run your GDA application within Eclipse.
a. Right-click on the project java-components again and scroll down to “Run

As,” and this time click “Java application.”
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b. Check the output in the console at the bottom of the Eclipse IDE screen. As
with your Maven build, there should be no errors, with the output similar to
the following:

Jul 04, 2020 3:10:49 PM programmingtheiot.gda.app.GatewayDeviceApp
initConfig INFO: Attempting to load configuration.
Jul 04, 2020 3:10:49 PM programmingtheiot.gda.app.GatewayDeviceApp
startApp INFO: Starting GDA...
Jul 04, 2020 3:10:49 PM programmingtheiot.gda.app.GatewayDeviceApp
startApp INFO: GDA ran successfully.

At this point, you’re ready to start writing your own code for the GDA. Now let’s get
your development workstation set up for the CDA.

Set up your Constrained Device Application project
This process will mimic the GDA setup process but requires the addition of PyDev to
Eclipse. Here’s a summary of activities to get you started.

If it’s not already running, launch the Eclipse IDE. In a separate window or screen,
open your web browser and navigate to the PyDev Python IDE for Eclipse download
page; drag the PyDev “Install” icon from the web page and drop it near the top of the
Eclipse IDE (you’ll see a green “plus” icon show up, which is the indicator that you
can drop it into the IDE). Eclipse will then automatically install PyDev and its depen‐
dencies for you.

Once PyDev is installed, you can switch the Python interpreter to use the venv (or
virtualenv) environment if you chose to create it in the previous section. Select Pref‐
erences → PyDev → Interpreters → “Python Interpreter.” Eclipse will present a dialog
similar to that shown in Figure 1-8.

Figure 1-8. Add a new Python interpreter
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Then add a new interpreter using the “Browse for python/pypy.exe” selection and
provide the relevant information in the next pop-up window. Once complete, select
the venv (or virtualenv) interpreter and click Up until it’s at the top of the list. At this
point, venv (or virtualenv) will be your default Python interpreter, as Figure 1-9
indicates.

Click “Apply and Close.”

Figure 1-9. Virtualenv Python interpreter now set as default

Once these steps are complete, select File → Import and import the python-
components Git repository you’ve already cloned from GitHub. Again, this is nearly
identical to the previous steps shown in Figures 1-5, 1-6, and 1-7, except you’ll import
the python-components Git repository you cloned from GitHub.

On my workstation, the repository I want to import is located at:

C:\programmingtheiot\python-components

As with the GDA, your repository name will likely be different, so be sure to use the
correct path. I’ve also included the Eclipse .project file within this repository, so you
can import it as an Eclipse project. This one will default to Python, so it will use
PyDev as the project template. Again, you can import any way you’d like, but my rec‐
ommendation is to import it as you did with the GDA.

Once you complete the import process, you’ll notice a new project in your Package
Explorer named piot-python-components. You now have the CDA components set
up in your Eclipse IDE.

To view the files inside, navigate to piot-python-components and click on the caret
(>) to expand it further, as shown in Figure 1-10.
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Figure 1-10. CDA project now set up and ready for use

You’ll notice that there are already many Python files included in the project, one of
which is ConstrainedDeviceApp.py in the programmingtheiot.cda.app package,
which is the application wrapper for the CDA. There are also __init__.py files in each
package; these are empty files the Python interpreter uses to determine which direc‐
tories to search for Python files (you can ignore these for now). Much like the GDA
example previously given (and written in Java), the ConstrainedDeviceApp is simply
a placeholder to get you started.

There are also two .txt files: basic_imports.txt and cv_imports.txt. The former will be
used to install library dependencies required to support the upcoming CDA pro‐
gramming exercises. The latter won’t be used in any book-related exercises—it’s pro‐
vided as a convenience to help you get started with a basic computer vision setup. If
you choose to explore computer vision applications, please be sure to review the
library documentation on your own.

If you’ve worked extensively with Python, you’re likely familiar
with the PYTHONPATH environment variable. Since I’ve attempted to
keep the GDA and CDA packaging scheme similar, you may need
to tell PyDev (and your virtualenv environment) how to navigate
this directory structure to run your application. Make sure python
is set for both main and test in PYTHONPATH by doing the following:
right-click “piot-python-components,” select “PyDev - PYTHON‐
PATH,” and then click “Add source folder,” as shown in Figure 1-11.
Select the python folder under main and click Apply. Do the same
for the python folder under test. Click “Apply and Close” to finish.
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Figure 1-11. Updating the PYTHONPATH environment variable within PyDev and Eclipse

Run your CDA application within Eclipse.

1. Right-click on the project “piot-python-components” again, scroll down to “Run
As,” and this time click “Python Run.”

2. Check the output in the console at the bottom of the Eclipse IDE screen. As with
your GDA test run, there should be no errors, with the output similar to the
following:

2020-07-06 17:15:39,654:INFO:Attempting to load configuration...
2020-07-06 17:15:39,655:INFO:Starting CDA...
2020-07-06 17:15:39,655:INFO:CDA ran successfully.

Application configuration
After running the CDA and GDA, you’ve likely noticed the log messages related to
configuration, and of course you recall the discussion of configuration management
earlier in this chapter. Since you’ll be dealing with a number of different configura‐
tion parameters for each application, I’ve provided a basic utility class within each
code repository to help with this—it’s named ConfigUtil.
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In Python, ConfigUtil delegates to its built-in configparser module, and in Java,
ConfigUtil delegates to Apache’s commons-configuration library. Both will allow
you to load the default configuration file (./config/PiotConfig.props) or a customized
version. In Python, you can do this by passing the config filename to the constructor,
and in Java, you can do this by setting a system property. For now, I’d suggest you use
the default configuration file, as it will support all of the configuration parameters for
each exercise throughout the book. You can use the “consts” defined in each reposi‐
tory’s ConfigConst class (or add your own if you’d like).

The format of the configuration file is the same for both the CDA and the GDA.
Here’s a brief sample from the CDA’s PiotConfig.props:

[ConstrainedDevice]
deviceLocationID = constraineddevice001
enableEmulator   = False
enableSenseHAT   = False
enableMqttClient = True
enableCoapClient = False
enableLogging    = True
pollCycleSecs    = 60
testGdaDataPath  = /tmp/gda-data
testCdaDataPath  = /tmp/cda-data

And here’s a snippet from the GDA’s PiotConfig.props:
[GatewayDevice]
deviceLocationID        = gatewaydevice001
enableLogging           = True
pollCycleSecs           = 60
enableMqttClient        = True
enableCoapServer        = False
enableCloudClient       = False
enableSmtpClient        = False
enablePersistenceClient = False
testGdaDataPath         = /tmp/gda-data
testCdaDataPath         = /tmp/cda-data

Notice that the sections are designated by a keyword contained in brackets, and the
properties are in key = value format. This makes it easy to add new sections and key/
value pairs alike.

One special case that’s addressed in each implementation of ConfigUtil is the ability
to define—and load—a separate configuration file that contains credentials or other
sensitive data that should not be part of your repository’s configuration. Each section
allows you to specify a value for credFile, which is a key that maps to a local file that
can and should be outside of your repository.
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If you look at PiotConfig.props for the CDA and GDA, you’ll likely
notice it contains a credFile entry for some sections. The reason
for this is to move password references, user authentication tokens,
API keys, and so forth out of the main configuration file so it can
be referenced separately. It’s very important to keep secrets such as
these out of your repos—you should NEVER commit usernames,
passwords, private keys, or any other sensitive data to your Git
repository. If you need a way to store this type of information, you
may want to carefully read through the article “Encrypted Secrets”
to learn more about this process in GitHub. Secure storage of cre‐
dentials is an important topic, but one that’s outside the scope of
this book.

The configuration approach I’ve described here is rather basic and is designed only
for testing and prototyping purposes. In Parts III and IV, you’ll learn about some
additional techniques for dynamically setting configuration information within the
Edge Tier and from the Cloud Tier. If you’ve been programming for a while, you may
already have an application configuration strategy and solution in place. Feel free to
adapt the configuration functionality I’ve introduced here to suit your needs, or use
your own.

At this point, both your GDA and your CDA are set up and working within your
IDE, and you know how the configuration logic functions. You’re ready to start writ‐
ing your own code for both applications!

Before we jump into the exercises in Chapter 2, however, there are two more topics
we should discuss: testing and automation.

Step II: Define Your Testing Strategy
Now that your development environment is established for your GDA and CDA, we
can discuss how you’ll test the code you’re about to develop. Obviously, good testing
is a critically important part of any engineering effort, and programming is no excep‐
tion to this. Every application you build should be thoroughly tested, whether it
works completely independently of other applications or it is tightly integrated with
other systems. Further, every unit of code you write should be tested to ensure it
behaves as expected. What exactly is a unit? For our purposes, a unit is always going
to be represented as a function or method that you want to test.
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6 Detailed information on Python 3’s unittest library can be found in the unittest documentation.

What’s the difference between a function and a method? To grossly
oversimplify, a function is a named grouping of code that performs
a task (such as adding two numbers together) and returns a result.
If the function accepts any input, it will be passed as one or more
parameters. A method is almost identical to a function but is
attached to an object. In object-oriented parlance, an object is just a
class that’s been instantiated, and a class is the formal definition of
a component—its methods, parameters, construction, and decon‐
struction logic. All of the Java examples in this book will be repre‐
sented in class form with methods defined as part of each class. 
Python can be written in script form with functions or as classes
with methods, but I prefer to write Python classes with methods
and will do so for each Python example shown in this book, with
only a few exceptions.

Unit, integration, and performance testing
There are many ways to test software applications and systems, and there are some
excellent books, articles, and blogs on the subject. Developing a working IoT solution
requires careful attention to testing—within an application and between different
applications and systems. For the purposes of the solution you’ll develop, I’ll focus on
just three: unit tests, integration tests, and performance tests.

Unit tests are code modules written to test the smallest possible unit of code that’s
accessible to the test, such as a function or method. These tests are written to verify
that a set of inputs to a given function or method returns an expected result. Bound‐
ary conditions are often tested as well, to ensure the function or method can handle
these types of conditions appropriately.

A unit of code can technically be a single line, multiple lines of
code, or even an entire code library. For our purposes, a unit refers
to one or more lines of code, or an entire code library, that can be
accessed through a single interface that is available on the local sys‐
tem—that is, a function or a method that encapsulates the unit’s
functionality and can be called from your test application. This
functionality can be, for example, a sorting algorithm, a calcula‐
tion, or even an entry point to one or more additional functions or
methods.

I use JUnit for unit testing Java code (included with Eclipse), and Python’s unittest
framework6 for unit testing Python code (part of the standard Python interpreter, and
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available within PyDev). You don’t have to install any additional components to write
and execute unit tests within your IDE if you’re using Eclipse and PyDev.

In your GDA project, you’ve likely noticed two directory structures
for your source code: one for Java source code located in ./src/
main/java, and another Java unit test code located in ./src/test/java.
This is the default convention for Maven projects, and so I’ve opted
to use the same directory naming convention for the CDA as well
(swapping “java” with “python,” of course).

You may have noticed that the CDA and GDA projects contain a ./src/test/python
directory and a ./src/test/java directory, respectively. I provide most of the unit tests
and many integration tests for you to use to check whether your implementation
works, broken down by each chapter. These will work for the core exercises, although
they are not intended to cover every possible edge case. For additional test coverage,
and for all of the optional exercises, you’ll have to create your own unit and/or inte‐
gration tests.

Here’s a simple unit test example in Java using JUnit that checks whether the method
addTwoIntegers() behaves as expected:

@Test
public int testAddTwoIntegers(int a, int b)
{
  MyClass mc = new MyClass();
  
  // baseline test
  assertTrue(mc.addTwoIntegers(0, 0) == 0);
  assertTrue(mc.addTwoIntegers(1, 2) == 3);
  assertTrue(mc.addTwoIntegers(-1, 1) == 0);
  assertTrue(mc.addTwoIntegers(-1, -2) == -3);
  assertFalse(mc.addTwoIntegers(1, 2) == 4);
  assertFalse(mc.addTwoIntegers(-1, -2) == -4);
}

What if you have a single test class with two individual unit tests, but you only want
to run one? Simply add @Ignore before the @Test annotation, and JUnit will skip that
particular test. Remove the annotation to reenable the test.

Let’s look at the same example in Python, using Python 3’s built-in unittest
framework:

def testAddTwoIntegers(self, a, b):
  MyClass mc = MyClass()
  
  # baseline test
  self.assertTrue(mc.addTwoIntegers(0, 0) == 0)
  self.assertTrue(mc.addTwoIntegers(1, 2) == 3)
  self.assertTrue(mc.addTwoIntegers(-1, 1) == 0)
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  self.assertTrue(mc.addTwoIntegers(-1, -2) == -3)
  self.assertFalse(mc.addTwoIntegers(1, 2) == 4)
  self.assertFalse(mc.addTwoIntegers(-1, -2) == -4)

The unittest framework, much like JUnit, allows you to disable specific tests if you
wish. Add @unittest.skip("Put your reason here.") or @unittest.skip as the
annotation before the method declaration, and the framework will skip over that spe‐
cific test.

Unit tests within the python-components and java-components
repositories can be run as automated tests either from the com‐
mand line or within the IDE.  That is, you can script them to run
automatically as part of your build, and each will either pass or fail,
depending on the implementation of the unit under test.

Integration tests are super important for the IoT, as they can be used to verify that the
connections and interactions between systems and applications work as expected.
Let’s say you want to test a sorting algorithm using a basic data set embedded within
the testing class—you’ll typically write one or more unit tests, execute each one, and
verify all is well.

What if, however, the sorting algorithm needs to pull data from a data repository
accessible via your local network or even the internet? So what, you might ask? Well,
now you have another dependency just to run your sort test. You’ll need an integra‐
tion test to verify that data repository connection is both available and working prop‐
erly before exercising the sorting unit test.

These kinds of dependencies can make integration testing challenging with any envi‐
ronment, and even more so with the IoT, since it’s sometimes necessary to set up
servers to run specialized protocols to test our stuff. For this reason, and to keep your
test environment as uncomplicated as possible, all integration tests will be manually
executed and verified.

Manual execution and verification means that the integration tests
within the python-components and java-components repositories
are designed to be executed by you from the command line and
must be observed to determine success or failure. While some can
technically be exercised from within your IDE and can even be
included within an automated test execution environment, others
require some setup prior to execution (described within the test
comments itself or within the requirements card for the module
being tested). I’d suggest you stick with executing them from the
command line only.
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Finally, performance tests are useful for testing how quickly or efficiently a system
handles a variety of conditions. They can be used with both unit and integration tests
when, for instance, response time or the number of supported concurrent or simulta‐
neous connections needs to be measured.

Let’s say there are many different systems that need to retrieve a list of data from your
data repository, and each one wants that list of data sorted before your application
returns it to them. Ignoring system design and database schema optimization for a
moment, a series of performance tests can be used to time the responsiveness of each
system’s request (from the initial request to the response), as well as the number of
concurrent systems that can access your application before it no longer responds
adequately.

Another aspect of performance testing is to test the load of the system your applica‐
tion is running on, which can be quite useful for IoT applications. IoT devices are
generally constrained in some way—memory, CPU, storage, and so forth—whereas
cloud services can scale as much as we need them to. It stands to reason, then, that
our first IoT applications—coming up in Chapter 2—will set the stage for monitoring
each device’s performance individually.

Since performance testing often goes hand in hand with both integration and unit
testing, we’ll continue to use Maven and specialized unit tests for this as well, along
with open source tools where needed.

The performance tests within the python-components and java-
components repositories are all designed as manual tests and must
be observed to determine success or failure, in much the same way
as the integration tests previously described. Again, automation is
technically feasible but is outside the scope of this book. Be sure to
review the setup procedures for each test prior to execution, which
are described as part of the exercise or contained within the
requirements card for the module.

There are many performance testing tools available, and you can also write your own. 
System-to-system and communications protocol performance testing is completely
optional for the purposes of this book, and I’ll only briefly touch on this topic in
Chapter 10. If you’d like to learn more about custom performance testing, you may
want to look into tools designed for this purpose, such as Locust, which allows you to
script your own performance tests and includes a web-based user interface (UI).
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Testing tips for the exercises in this book
The sample code provided for each exercise in this book includes unit tests, which
you can use to test the code you’ll write. These unit tests, which are provided as part
of the java-components and python-components repositories you’ve already pulled
into your GDA and CDA projects (respectively), are key to ensuring your implemen‐
tation works properly.

Some exercises also have integration tests that you can use as is or modify to suit your
specific needs. I’ve also included some sample performance tests you can use to test
how well some of your code performs when under load.

Your implementation of each exercise should pass each provided unit test with 100%
success. You’re welcome to add more unit tests if you feel they’ll be helpful in verify‐
ing the functionality you develop. The provided integration tests and performance
tests will also be helpful validation tools as you implement each exercise.

Remember, tests are your friend—and like a friend, they shouldn’t be ignored. They
can surely be time consuming to write and maintain, but any good friendship takes
investment. These tests—whether unit, integration, or performance—will help you
validate your design and verify your functionality is working properly.

Step III: Manage Your Design and Development Workflow
So you’ve figured out how you want to write your code and test it—terrific! But
wouldn’t it be great if you could manage all your requirements, source code, and
CI/CD pipelines? Let’s tackle this in our last step, which is all about managing your
overall development process workflow. This includes requirements tracking, source
code management, and CI/CD automation.

You’re probably sick of me saying that building IoT systems is hard, and that’s largely
because of the nature of the Edge Tier (since we often have to deal with different types
of devices, communication paradigms, operating environments, security constraints,
and so on). Fortunately, there are many modern CI/CD tools that can be used to help
navigate these troubled waters. Let’s look at some selection requirements for these
tools, and then explore how to build out a CI/CD pipeline that will work for our
needs.

Your IoT CI/CD pipeline should support secure authentication and authorization,
scriptability from a Linux-like command line, integration with Git and containeriza‐
tion infrastructure, and the ability to run pipelines within your local environment as
well as a cloud-hosted environment.
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7 You can learn more about GitHub and its hosting features and create a free account on the GitHub website.

There are many online services that provide these features, some of which also pro‐
vide both free and paid service tiers. When you downloaded the source code for this
book, you pulled it from my GitHub repositories using Git’s clone feature. GitHub is
an online service that supports overall developer workflow management, including
source code control (using Git), CI/CD automation, and planning.

Each exercise will build, test, and deploy locally but will also assume your code is
committed to an online repository using Git for source code management. You’re
welcome to use the online service of your choice, of course. For this book, all exam‐
ples and exercises will assume GitHub is being used.7

There are lots of great resources, tools, and online services available
that let you manage your development work and set up automated
CI/CD pipelines. Read through this section, try things out, and
then as you gain more experience, choose the tools and service that
work best for you.

Managing requirements
Ah yes—requirements. What are we building, who cares, and how are we going to
build it? Plans are good, are they not? And since they’re good, we should have a tool
that embraces goodness, with features such as task prioritization, task tracking, team
collaboration, and (maybe) integration with other tools.

The CDA and GDA repositories both include shell implementations (and some com‐
plete implementations) of the classes and interfaces you’ll complete by following each
chapter’s coding exercise requirements. All of the requirements—including some
informational notes—can be found in another GitHub repository I’ve made available
in the Programming the IoT project. This is the best place to start, as it provides an
ordered list of activities in columns and rows, as is typical in a Kanban board.

From time to time, I’ll make updates to the Kanban board exercises
and instructional cards, along with tweaks to the supporting
Python and Java source code repositories. If you find any discrep‐
ancies between the instructions in the book and those online, the
online content will generally contain the most up-to-date
information.

The specific requirements within each column are captured as cards and actually ref‐
erence “Issues” from the book-exercise-tasks repository I’ve created to make cen‐
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8 You can find out more by reading the Agile Manifesto.

tralized requirements management easier. You can easily drill down into any of these
requirements by clicking on the name or by opening it in a separate tab.

The naming convention for each card should be relatively easy to understand:
{book}-{app type}-{chapter}-{number}. For example, PIOT-CDA-01-001, which
refers to Programming the Internet of Things (PIOT), Constrained Device App
(CDA), Chapter 1 (01), requirement no. 1 (001).

That last number is important, as it indicates the sequence you should follow. For
example, requirement no. 2 (002) would follow requirement no. 1 (001), and so on.
The contents of each requirement contain the implementation instructions that you,
the programmer, should follow, followed by the tests you should execute to verify the
code works correctly.

There are two special numbers to keep in mind, although they, too, follow the
sequence. All tasks ending with “000” are setup-related tasks, such as creating your
branch. All tasks ending with “100” are merge- and validation-related tasks, such as
merging your chapter branch into your primary and verifying that all functionality
works as expected.

All of these cards and notes are organized into a Kanban board, with a single column
for each chapter, so that you can see all the things that need to be implemented for
each chapter’s exercises. You’ve probably heard of Agile8 project management pro‐
cesses such as Scrum and Kanban. With a Kanban board, the idea is that you select a
card, start it, and—once it’s tested, verified, reviewed, and committed—close it.

Even though you can’t pull down the cards I provide and close any of these issues,
they are available for you to review and track on your own as you move through the
exercises in each chapter. I’ll discuss a way to manage your CDA and GDA require‐
ments within your own repositories beginning in Chapter 2, when you start writing
code; for now I’ll provide a quick overview of how I’ve set up requirement cards
(which are just references to one or more repositories’ issues) within the Program‐
ming the IoT Kanban board.

I’m managing the activities for this book within a Kanban board,
too. Each card on the board represents a task I or one of my team
members needs to complete. A card moves to “Done” only after the
team agrees it is complete.

GitHub provides an “Issues” tab to track requirements and other notes related to your
repository. Figure 1-12 shows the task template I used for each requirement through‐
out the book. This is the stuff that goes into each task and can contain text, links, and
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so on. Notice that each of the requirement cards I’ve created contains five items: Title,
Description, Actions, Estimate, and Tests.

Figure 1-12. Task template

Most of these categories are self-explanatory. But why only three levels of effort for
Estimate? In this book, most of the activities should fall into one of the following
“level of effort” categories: 2 hours or less (Small), about half a day (Medium), or
about one day (Large). Keep in mind these are approximations only, and will vary
widely depending on a variety of factors.

For example, a “task” with the name Integrate IoT solution with three cloud services
certainly represents work that may need to be done, but judging by the name only, it’s
clearly way too big and complicated to be a single work activity. In this case, I may
create multiple Issues, with a set of tests specific to each one. In other cases, I may
have multiple modules that are each very basic with similar implementations—all of
which would be contained within the same Issue. I try to keep each Issue self-
contained as much as possible.

Figure 1-13 shows an example of the template filled in with highlights from the first
coding task you’ll have—creating the Constrained Device Application (CDA).
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Figure 1-13. Example of a typical development task

And Figure 1-14 shows the result of adding the task as a Kanban card. This card was
generated automatically after aligning the task to a project. Notice it’s been added to
the “To do” column on the board, since it’s new and there’s no status as of yet. Once
you start working on the task and change its status, it will move to “In progress.”

Figure 1-14. The new example task added into the Kanban board

Again, the requirements are already written for you and are contained within the
Programming the IoT Kanban board, but now you should have a better idea of how
these requirements are defined, and even a template for creating your own, should
you decide to do so.

Next, let’s get your remote Git repositories set up.
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Setting up your remote repositories
There are many excellent cloud-based Git repository services available. As I men‐
tioned, I’m using GitHub, and so I’ve provided some instructions here to help you get
started:

1. Create a GitHub account. (If desired, create an organization associated with the
GitHub account.)

2. Within your account (or organization), create the following:
a. A new private project named “Programming the IoT – Exercises”
b. A new private Git repository named “piot-java-components”
c. A new private Git repository named “piot-python-components”

3. Update the remote repository for both “piot-java-components” and “piot-
python-components.”
a. From the command line, execute the following commands:

git remote set-url origin {your new URL}
git commit -m “Initial commit.”
git push

b. IMPORTANT: Be sure to do this for both “piot-java-components” and “piot-
python-components,” using the appropriate Git repository URL for each!

Once you complete these tasks, your Git repositories will be in place, and you will
have the ability to manage your code locally and synchronize it with your remote
instance.

Code management and branching
One of the key benefits of using Git is the ability to collaborate with others and syn‐
chronize your local code repository with a remote repository stored in the cloud. If
you’ve worked with Git before, you’re already familiar with remotes and branching.
I’m not going to go into significant detail here, but they’re important concepts to
grasp as part of your automation environment.

Branching is a way of enabling each developer or team to segment their work without
negatively impacting the main code base. In Git, this default main branch is currently
called “master” and is typically used to contain the code that has been completed, tes‐
ted, verified, and (usually) placed into production. This is the default branch for both
“java-components” and “python-components,” and while you can leave it as is and
simply work off this default branch, that’s generally not recommended for the reasons
I’ve mentioned.
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Branching strategies can differ from company to company and from team to team;
the one I like to use has each chapter in a new branch, and then once all is working
correctly and properly tested, the chapter branch gets merged into the master. From
there, a new branch is created from the merged master for the next chapter, and so
on.

This approach allows you to easily track changes between chapters, and even to go
back to the historical record of an earlier chapter if you want to see what changed
between, say, Chapter 2 and Chapter 5. In Eclipse, you can right-click on the project
(either “java-components” or “python-components”) and choose Team → “Switch To”
→ “New Branch” to establish a new branch for your code.

I’d suggest you use the naming convention of “chapternn” for each branch name,
where nn is the two-digit chapter number. For instance, the branch for Chapter 1 will
be named “chapter01,” the Chapter 2 branch will be named “chapter02,” and so on. It’s
useful to have a branching strategy that allows you to go back to a previous, “last
known good” branch, or at least to see what changed between one chapter and the
next. I’ve documented the chapter-based branching strategy within the requirements
for each chapter as a reminder.

The gory details on Git branching and merging are outside the
scope of this book, so I’d recommend reading the guide “Git
Branching—Basic Branching and Merging” if you’d like to dig into
them.

Thoughts on Automation
Although outside the scope of this book, automation of software builds, testing, inte‐
gration, and deployment is a key part of many development environments. I’ll discuss
some concepts in this section but won’t be tackling this in this current book release.

Automated CI/CD in the cloud
Within Eclipse, you can write your CDA and GDA code, execute unit tests, and build
and package both applications. This isn’t actually automated, since you have to start
the process yourself by executing a command like mvn install from the command
line or by invoking the Maven install process from within the IDE. This is great for
getting both applications to a point where you can run them, but it doesn’t actually
run them—you still need to manually start the applications and then run your inte‐
gration and/or performance tests.

As a developer, part of your job is writing and testing code to meet the requirements
that have been captured (in cards on a Kanban board, for example), so there’s always
some manual work involved. Once you know your code units function correctly,
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9 GitHub actions is a feature available within GitHub that allows customized workflows to be created for those
who have an account within GitHub.

10 Self-hosted runners, part of GitHub actions, allow you to run your action workflows locally. There are caveats,
of course, and security considerations. You can read more about self-hosted runners in the GitHub actions
documentation.

having everything else run automatically—say, after committing and pushing your
code to the remote dev branch (such as “chapter02,” for example)—would be pretty
slick.

GitHub supports this automation through GitHub actions.9 I’ll talk more about this
in Chapter 2 and help you set up your own automation for the applications you’re
going to build.

Automated CI/CD in your local development environment
There are lots of ways to manage CI/CD within your local environment. GitHub
actions can be run locally using self-hosted runners, for example.10 There’s also a
workflow automation tool called Jenkins that can be run locally, integrates nicely with
Git local and remote repositories, and has a plug-in architecture that allows you to
expand its capabilities seemingly ad infinitum.

There are lots of great third-party Jenkins plug-ins and other utilit‐
ies that I’ve found useful for my own build, test, and deployment
environment, but you should do your own research to determine
which ones are actively maintained and will add value for your spe‐
cific environment. It’s easy to introduce system compatibility issues
and even security vulnerabilities if you’re not fully aware of what a
product will or will not do. It’s ultimately your responsibility to
make this decision.

Once it is installed and secured, you can configure Jenkins to automatically monitor
your Git repository locally or remotely and run a build/test/deploy/run workflow on
your local system, checking the success at each step. If, for example, the build fails
because of a compile error in your code, Jenkins will report on this and stop the pro‐
cess. The same is true if the build succeeds but the tests fail—the process stops at the
first failure point. This ensures your local deployment won’t get overwritten with an
update that doesn’t compile or fails to successfully execute the configured tests.

Setting up any local automation tool can be a complicated and time-consuming
endeavor. It’s super helpful, however, as it basically automates all the stuff you’re
going to do to build, test, and deploy your software. That said, it’s not required for
any of the exercises in this book, and so I won’t go into it here.

Setting Up Your Development and Test Environment | 41

https://docs.github.com/en/actions
https://oreil.ly/VPlkb
https://oreil.ly/VPlkb
https://www.jenkins.io


11 You can read more about containerization concepts and Docker containerization products on the Docker
website.

Containerization
You’ve likely heard of containerization, which is a way to package your application
and all its dependencies into a single image, or container, that can be deployed to
many different operating environments. This approach is very convenient, since it
allows you to build your software and deploy it in such a way as to make the hosting
environment no longer a concern, provided the target environment supports the con‐
tainer infrastructure you’re using.

Docker11 is essentially an application engine that runs on a variety of operating sys‐
tems, such as Windows, macOS, and Linux, and serves as a host for your container
instance(s). Your GDA and CDA, for example, can each be containerized and then
deployed to any hardware device that supports the underlying container infrastruc‐
ture and runtime.

It’s worth pointing out that containerizing any application that has hardware-specific
code may be problematic as it will not be portable to another, different hardware plat‐
form (even if the container engine is supported). If you want your hardware-specific
application to run on any platform that supports Docker, that platform would require
a hardware-specific emulator compatible with the code developed for the application.

For example, if your CDA has code that depends on Raspberry Pi–specific hardware,
that is less of a concern for us at the moment, since you’ll be emulating sensors and
actuators and won’t have any hardware-specific code to worry about until Chapter 4
(which, again, is optional). I’ll discuss this more in Chapter 4, along with strategies to
overcome hardware specificity in your CDA.

When using CI/CD pipelines in a remote or cloud environment, you’ll notice that
these services will likely deploy to virtual machines and run your code within a con‐
tainer that includes the required dependencies, all configured as part of the pipeline.
For many cases, this makes perfect sense and can be an effective strategy to ensure
consistency and ease of deployment. The caveat is that the target platform must sup‐
port the container runtime environment you want to deploy. Cross-platform lan‐
guages can make this easier, but it is a pain point that I don’t expect to go away any
time soon.

42 | Chapter 1: Getting Started

https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container


To keep things simpler, I won’t walk through using containerization within your
development environment and as part of your workstation, even though there are
many benefits to doing so. The primary reason is that it adds another layer of com‐
plexity to manage initially, and I want to get you up and running with your own
applications as soon as possible.

Programming Exercises
All the work you’ve done up to this point is to prepare you to build your CDA and
GDA. You have some initial background in the IoT and a development environment
setup and are ready to code. So far, so good, right? 

If you look through your code base, you’ll see that you have a bunch of components
already in place. In fact, most are just shell implementations of the components that
are required for both the CDA and the GDA. But how are they all supposed to even‐
tually work together?

The remaining chapters of the book will walk you through the requirements docu‐
mented in the Programming the IoT Kanban board to achieve this end state. Figures
1-15 and 1-16 depict the overall design approach we’ll follow to get there for the CDA
and the GDA, respectively.
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Figure 1-15. CDA end-state design
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Figure 1-16. GDA end-state design

Looks like a ton of work! But don’t worry—we’ll take things step by step. Each chap‐
ter adds more functionality to each of these diagrams using the color coding in the
legend (for existing, new, and changed components), along with drilling down into
each area that the chapter addresses.

Let’s take a look at the specific designs of the CDA and GDA that are relevant for this
chapter and walk through the exercises (there’s only one for each application). You
can review the details for each online: PIOT-CDA-01-001 for the CDA and PIOT-
GDA-01-001 for the GDA.
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Figure 1-17. CDA design for Chapter 1 (left) and GDA design for Chapter 1 (right)

These look a bit more tractable! In fact, you’ve already completed the first—and per‐
haps most important—of them all and implemented all the requirements for Chap‐
ter 1! All that remains is to test them out. In the Test section of each requirement
card, you’ll see that you need to execute each application as a manual integration test.

Testing the Constrained Device App
For the CDA, navigate to the ./src/main/python/programmingtheiot/part01/integra‐
tion/app path. You’ll see the ConstrainedDeviceAppTest. After you’ve executed this
test, your output should look similar to the following:

Finding files... done.
.
2020-12-30 13:54:32,915 - MainThread - root - INFO - Testing ConstrainedDeviceApp
class...
2020-12-30 13:54:32,915 - MainThread - root - INFO - Initializing CDA...
2020-12-30 13:54:32,915 - MainThread - root - INFO - Starting CDA...
2020-12-30 13:54:32,916 - MainThread - root - INFO - Loading config:
../../../../../../../config/PiotConfig.props
2020-12-30 13:54:32,917 - MainThread - root - DEBUG - Config:
['Mqtt.GatewayService', 'Coap.GatewayService', 'ConstrainedDevice']
2020-12-30 13:54:32,917 - MainThread - root - INFO - Created instance of
ConfigUtil: <programmingtheiot.common.ConfigUtil.ConfigUtil object at
0x0000026B463E0E48>
2020-12-30 13:54:32,917 - MainThread - root - INFO - CDA started.
2020-12-30 13:54:32,917 - MainThread - root - INFO - CDA stopping...
2020-12-30 13:54:32,917 - MainThread - root - INFO - CDA stopped with exit code 0.
----------------------------------------------------------------------
Ran 1 test in 0.002s

OK
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You may notice numerous module loading log output statements (which I’ve exclu‐
ded)—that’s OK. If your output generally follows the pattern shown here, you can
move on to testing the GDA.

Testing the Gateway Device App
To test the GDA, navigate to the ./src/main/java/programmingtheiot/part01/integra‐
tion/app path. You’ll see the GatewayDeviceAppTest. Your output will be similar, but
just a tad different:

Dec 30, 2020 1:45:50 PM programmingtheiot.gda.app.GatewayDeviceApp <init>
INFO: Initializing GDA...
Dec 30, 2020 1:45:50 PM programmingtheiot.gda.app.GatewayDeviceApp parseArgs
INFO: No command line args to parse.
Dec 30, 2020 1:45:50 PM programmingtheiot.gda.app.GatewayDeviceApp startApp
INFO: Starting GDA...
Dec 30, 2020 1:45:50 PM programmingtheiot.gda.app.GatewayDeviceApp startApp
INFO: GDA started successfully.
Dec 30, 2020 1:45:51 PM programmingtheiot.gda.app.GatewayDeviceApp stopApp
INFO: Stopping GDA...
Dec 30, 2020 1:45:51 PM programmingtheiot.gda.app.GatewayDeviceApp stopApp
INFO: GDA stopped successfully with exit code 0.

If your output looks similar, then you’re ready to actually start writing code. 

Conclusion
Congratulations—you’ve just completed the first chapter of Programming the Internet
of Things! You learned about some basic IoT principles, created a problem statement
to drive your IoT solution, and established a baseline IoT systems architecture that
includes the Cloud Tier and the Edge Tier.

Perhaps most importantly, you now have the shell of two applications in place—the
GDA and the CDA—which will serve as the foundation for much of your IoT soft‐
ware development throughout this book. Finally, you set up your development envi‐
ronment and workflow; learned about requirements management; explored unit,
integration, and performance testing; and considered some basic CI/CD concepts to
help automate your builds and deployment.

You’re now ready to start building real IoT functionality into your CDA and GDA
using Python and Java. If you’re ready to move on, I’d suggest you grab some water or
a good cup of coffee or tea, and then we’ll dig in.
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CHAPTER 2

Initial Edge Tier Applications

Building Two Simple IoT Monitoring Applications

I must have data!
How much memory remains?
I dare not look. Sigh.

Fundamental concepts: Build two IoT performance monitoring applications—one as
an IoT gateway, and the other as an IoT constrained device.

This chapter focuses on the initial steps to getting your IoT solution up and running.
You’ll build on these in the upcoming chapters, so setting the basic design in place
now is very important. The overall architecture presented in Chapter 1 provides the
initial guidance you’ll need to start coding your IoT solution, and we’ll keep building
on that as we blaze ahead in this chapter and beyond. I’m sure you’re anxious to start
building out your own solution based on what you’ll learn, but it’s important to take
things one step at a time.

We’ll start by adding some simple functionality to the two applications you created in
Chapter 1: the Gateway Device App (GDA) that will run on your “gateway device,”
and the Constrained Device App (CDA) that will run on your “constrained device.”

What You’ll Learn in This Chapter
This is the beginning of your official coding journey with the IoT. You’ll learn how to
define a detailed design for both your GDA and your CDA, separate the logical com‐
ponents of your design, and implement the framework for these two applications in
Java and Python, respectively.
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1 It’s believed that Dr. Edsger W. Dijkstra coined the term separation of concerns in the mid-1970s to define the
ordering (and categorization) of thought. See the E. W. Dijkstra Archive for more information.

Right now, these two applications are very simple, but they’ll serve as important foun‐
dation layers for your overall solution. You’ll see how the design for each will evolve a
bit in each subsequent chapter, providing more functionality with each step along the
way.

Design Concepts
Remember the problem statement from Chapter 1? Let’s  briefly review it now:

I want to understand the environment in my home, how it changes over time, and
make adjustments to enhance comfort while saving money.

If you think about all the things your applications will need to do to address this
problem and also consider the importance of testing system behavior and perfor‐
mance, there are some important capabilities you’ll want to “bake in” from the start.

You’ll also want to ensure your application can be extended without redesigning it if
possible. Of course, it’s highly unlikely any of us can design a system that will never
need to be changed! That said, there are three design principles we can keep in mind
that will help mitigate redesign and refactoring work (also known as “technical
debt”):

1. Modularity: Create software components that perform a particular task (or
closely related tasks). The concept behind modularity should be separation of
concerns, a term often used in computer science and application design to define
how a system should be architected.1 In short, create software modules that serve
very specific purposes. Don’t boil the ocean.

2. Interfaces: Well-defined interfaces, or contracts, can make a software design both
elegant and efficient. Poorly designed interfaces can break it. Interfaces provide
the rules for interacting with modules and provide some sanity around how a
system should behave.

3. Validation: I’ve talked quite a bit about testing already, and validation is certainly
a part of testing the quality of a given system. Validation includes checks and bal‐
ances that enforce certain behaviors within a system, including its nominal oper‐
ating conditions, excluding those that could cause problems (or harm). For
instance, a test may permit a wide range of values, such as passing a maximum
temperature value of 100ºC into an emulator. However, if that emulator is an
abstraction for a home heating system, a more reasonable maximum value will

50 | Chapter 2: Initial Edge Tier Applications

https://oreil.ly/QdyXX


likely be much lower. The system must be smart enough to deal with this and act
accordingly (e.g., discard the value, logging a warning or error message).

These design principles will begin to show up in this chapter as you dig into the first
set of exercises for the CDA and GDA. But first let’s do some administrative work.

Tracking Your Requirements
As I mentioned in Chapter 1, keeping track of the issues you’ll be implementing is a
good idea. How you manage this is up to you; there are many ways to keep tabs on
what work you’re tackling, and a plethora of online tools you can use to do so.

GitHub has an issues tracker built into each repository, of course, which you can use,
or you can even create a separate repository to track issues that span both the CDA
and the GDA (which is actually how the requirements listed in book-exercise-tasks
are managed).

As a convenience, I’ve created a separate repository that contains just 12 issues—one
for each chapter (or rather, for each Lab Module, as they’re labeled). You can use this
repository if you’d like—each issue contains a simple checkbox for each exercise
within each Lab Module, whether for the CDA, the GDA, or both.

Figure 2-1 shows the checklist for Lab Module 01; I’ve even clicked the box for PIOT-
CDA-01-001, which is the first (and only) task for the CDA from Chapter 1 (chapter
numbers and Lab Module numbers are synchronized, as I’m sure you’ve figured out
by now).

Figure 2-1. Lab Module 01 exercise checklist
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You can access the checklist repository and create your own issues repository within
each application to help you track any design or implementation issues that need to
be resolved.

With your checklist now in place, you can review the tasks that are part of the Chap‐
ter 2 – Create Initial Apps column in the Programming the IoT project. You’ll notice
that the “000” task number is a simple task designed as a reminder to create a branch
aligned to the current chapter. You can do this now by following the guidelines dis‐
cussed in PIOT-CDA-02-000. All other tasks for the CDA (PIOT-CDA-02-001
through PIOT-CDA-02-007) pertain to implementing the Chapter 2 CDA functional‐
ity. Let’s discuss each in turn.

Programming Exercises
Here’s where you get to (finally) start coding! In these exercises, you’ll dig into the
requirements that discuss system performance and how to add this capability into
your CDA and GDA. 

System performance is one part of your system validation—it allows you to track how
much memory, CPU, and even disk storage is being used by the system each IoT
application runs within. Further, the design of this capability will begin to exercise the
principles of modularity and interface definition I mentioned earlier in this chapter. 
You’ll see how you can apply these concepts across not only the exercises within this
chapter but all the other chapter exercises as well.

Eventually, it should be clear how you can add even more functionality to your CDA
and GDA by following these principles.

The first step in designing both the GDA and the CDA is to create an application
wrapper that can determine what features need to be loaded and then launch those
features consistently. Since this is already provided for you with the exercise in Chap‐
ter 1, we can dig into the specific functionality for each application.

Figures 2-2 and 2-3 show the system performance manager design for the CDA and
GDA, respectively. 
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Figure 2-2. System performance manager design for the CDA

Figure 2-3. System performance manager design for the GDA

These designs are a bit different from those shown in Figures 1-15 and 1-16, right?
 You’ll see in Chapter 3 how this is “corrected,” and yes, it does  mean that a very, very
small amount of technical debt is being introduced in this chapter (where the applica‐
tion wrappers for the CDA and GDA each talk directly to SystemPerformanceMan
ager, as opposed to DeviceDataManager). The purpose behind this is more
educational—that is, it’s intended to help you quickly build and get some functional
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capability in place that doesn’t require much rework to integrate with the final end-
state design.

Before we dig into coding, I want to quickly note that your initial GDA and CDA
designs for this chapter will look very similar to each other. They’ll collect some basic
telemetry, which for now will include just CPU utilization and memory utilization,
and simply log the data to the console. It won’t be long before you’ll have both appli‐
cations talking to each other.

Add System Performance Tasks to the Constrained Device Application
Take a look at the Chapter 2 requirements listed for the CDA. Review each require‐
ment carefully (all of them start with PIOT-CDA-02).  Notice that PIOT-CDA-02-000
instructs you to check out a new branch for this chapter, and each subsequent
requirement instructs you to create (or more accurately, edit) the modules related to
this chapter’s tasks.

ConstrainedDeviceApp is the entry point for the application and creates the instance
of, and manages, SystemPerformanceManager. There are also two other performance
task components: SystemCpuUtilTask and SystemMemUtilTask. As their names
imply, these are components that will collect—you guessed it—system  CPU utiliza‐
tion and system memory utilization. These components will be managed by System
PerformanceManager and run as asynchronous threads that update one of the
methods you’ll define within SystemPerformanceManager.

If you’re already familiar with Python development and comforta‐
ble implementing your solution from Figure 2-2, you can walk
through the requirements labeled as PIOT-CDA-02-{number}, and
simply review this section to verify your implementation is correct.
I’d recommend you do walk through Constrained Device App Test‐
ing Details, however, as it will provide some insights into the unit
test framework that’s part of your code base.

With your branch checked out, let’s dig into this chapter’s requirements for the CDA.

Review the Constrained Device Application module
To get started, let’s walk through the PIOT-CDA-02-001 requirement activities from
the Programming the IoT project. I’ve included most of the detail for this particular
card here, although going forward, I’ll simply summarize the actions and reference
the card by name and link:
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• Create a new Python package in the programmingtheiot\cda source folder
named app and navigate to that folder. Again, this has already been done for you
if you’ve cloned the repository as instructed in Chapter 1.

• Import the Python logging module: import logging.
• Create a new Python module named ConstrainedDeviceApp. Define a class

within the module by the same name of ConstrainedDeviceApp.
• Add the startApp() method, log an info message indicating the app was started.
• Add the stopApp() method, log an info message indicating the app was stopped.
• Add the main entry function to enable running as an application. It will create an

instance of ConstrainedDeviceApp, call startApp(), wait 60 seconds, and then
call stopApp(), as follows:

def main():
    cda = ConstrainedDeviceApp()
    cda.startApp()
 
    while True:
        sleep(60) # 1 min, or make it 2 min’s (120) if you’d prefer

    cda.stopApp()

if __name__ == '__main__':
    main()

To test your implementation, simply follow the test procedure listed in the card:

• Run the ConstrainedDeviceAppTest unit tests. The log output should look simi‐
lar to the following (you can ignore the timestamp, obviously, as well as the non-
INFO messages—these are generated when invoking Run as → Python unit-test
within Eclipse):

Finding files... done.
Importing test modules ... done.

2020-07-20 10:08:20,169:INFO:Initializing CDA...
2020-07-20 10:08:20,169:INFO:Loading configuration...
2020-07-20 10:08:20,169:INFO:Starting CDA...
2020-07-20 10:08:20,169:INFO:CDA started.
2020-07-20 10:08:20,169:INFO:CDA stopping...
2020-07-20 10:08:20,170:INFO:CDA stopped with exit code 0.
----------------------------------------------------------------------
Ran 1 test in 0.001s

OK
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These steps are already implemented for you in the code you’ve cloned and are given
here only to help familiarize you with the formatting for future requirements. You’ll
eventually connect the ConstrainedDeviceApp to SystemPerformanceManager and
hook up the start and stop functions accordingly.

Follow the Test instructions to execute the ConstrainedDeviceAppTest integration
test (there’s only one). Check the output in your IDE console—it will look similar to
what I’ve included here from the original requirement card.

Your ConstrainedDeviceApp is beginning to come together, but you still need a way
to collect data and generate your first telemetry data.

Create and integrate the system performance manager module

The next requirement is to create—or rather, to update—the SystemPerformanceMan
ager class. As the description for PIOT-CDA-02-002 states, this requirement
instructs you to “Create a new Python module named SystemPerformanceManager
with class name SystemPerformanceManager.” Since the shell for SystemPerformance
Manager already exists, you’ll simply have to edit the existing class.

This component will actually live in a different folder than the application, named
“system” under the “cda” package. It’s already created, as is the shell for the SystemPer
formanceManager class, so the key activities involve two simple tasks: adding a log
message to startManager() indicating the manager was, well, started, and adding
another to stopManager() with the opposite message.

Once this is done, you can implement the SystemPerformanceManagerTest integra‐
tion test, with the log output looking similar to what’s listed in the card:

2020-07-06 21:03:03,654:INFO:Initializing SystemPerformanceManager...
2020-07-06 21:03:03,655:INFO:Started SystemPerformanceManager.
2020-07-06 21:03:03,656:INFO:Stopped SystemPerformanceManager.

This next task is also straightforward. With the basics of SystemPerformanceManager
implemented, it’s time to tie it into the CDA. Review the actions in the PIOT-
CDA-02-003 card for integrating this module into your CDA.

The description instructs you to “Create an instance of SystemPerformanceManager
within ConstrainedDeviceApp and invoke the manager’s start/stop methods within
the app’s start/stop methods.” Let’s take a look at the actions listed in the card:

• Create a class-scoped instance of SystemPerformanceManager within the Con
strainedDeviceApp constructor called sysPerfManager using the following:

self.sysPerfManager = SystemPerformanceManager()

• Edit the startApp() method to include a call to self.sysPerfManager.startMan
ager().
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• Edit the stopApp() method to include a call to self.sysPerfManager.stopMan
ager().

Once you’ve completed these tasks, you can again run the CDA integration test,
ConstrainedDeviceAppTest. It will still call the startApp() and stopApp() methods
on ConstrainedDeviceApp, but this time it will generate some additional output, sim‐
ilar to the following:

Finding files... done.
Importing test modules ... done.

2020-07-20 10:23:00,146:INFO:Initializing CDA...
2020-07-20 10:23:00,147:INFO:Loading configuration...
2020-07-20 10:23:00,260:INFO:Starting CDA...
2020-07-20 10:23:00,260:INFO:Started SystemPerformanceManager.
2020-07-20 10:23:00,260:INFO:CDA started.
2020-07-20 10:23:00,260:INFO:CDA stopping...
2020-07-20 10:23:00,260:INFO:Stopped SystemPerformanceManager.
2020-07-20 10:23:00,260:INFO:CDA stopped with exit code 0.
----------------------------------------------------------------------
Ran 1 test in 0.115s

OK

Pretty simple, right? OK—almost there. Let’s create the different modules that will
actually do the system monitoring next and get them connected to the SystemPerfor
manceManager. You can see where I’m going with this, right? 

Create the system utility task modules
Some of the system utility functionality can be abstracted into a base class, which is
described in PIOT-CDA-02-004. If you’re using the sample code from python-
components, the shell of this class—BaseSystemUtilTask—is provided, although it
requires you to complete the implementation. 

It includes a constructor that accepts two parameters—name and typeID—and defines
three methods: getName(), getTypeID(), and getTelemetryValue(). The construc‐
tor parameters will be passed in by the subclass, and the getName() and getTypeID()
methods will return these values.

You can implement these now, along with the constructor logic that will set the
appropriate class-scoped variables, based on the detail provided in PIOT-
CDA-02-004.

The getTelemetryValue() method is technically a template method—that is, a func‐
tion that’s declared in a base class that a subclass must implement. I’ve provided the
implementation for you—it simply passes, as the subclass will need to implement its
own specific functionality for this method.
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There are no unit tests to run, so let’s move on to the next set of requirements. This is
where you can begin collecting some real metrics. The SystemCpuUtilTask module,
described in PIOT-CDA-02-005, will retrieve the current CPU utilization across all
cores, average them together, and return the result as a float. 

For this module and the next, you can use the psutil library. Again, the module is
already created for you, so you will need only to ensure that the import statements are
correct and then implement the following requirements:

You may recall that psutil was one of the libraries you imported
when you set up your virtualenv environment and used pip to
install basic_imports.txt. This library gives you the ability to moni‐
tor system metrics, such as CPU utilization and memory utiliza‐
tion. You’ll likely notice that some functions are system dependent
and may not return the expected result if your system doesn’t sup‐
port those particular calls.

• Make sure you’ve imported psutil.
• In the constructor, call the base class (with parameters specific to this class) using

the following code:
super(SystemCpuUtilTask, self).__init__( \
  name = ConfigConst.CPU_UTIL_NAME, \
  typeID = ConfigConst.CPU_UTIL_TYPE)

• You may recall that BaseSystemUtilTask defines a template method named
getTelemetryValue(self) -> float:, which should be implemented in the
subclass using the following psutil command: return psutil.cpu_percent().

The call to cpu_percent() will aggregate all cores into a single CPU utilization per‐
centage, which makes life rather easy for you as a developer. This class essentially
boils down to returning the value of this single line of code.

I’m sure you’re wondering why the base class abstraction exists at all, since it’s not
really saving much in terms of coding. The point of this exercise is not only to obtain
the CPU utilization but also to establish a pattern of separation of control or separa‐
tion of key functions so they can be managed and updated separately from the rest of
the application’s logic. Introducing BaseSystemUtilTask provides a window into this
concept.
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As with any software design, there’s a balance between complexity,
clever coding, and just getting it done. I’ll attempt to strike that bal‐
ance throughout the book. You may have different ideas—that’s
great! I encourage you to consider how else you might implement
each exercise to meet your specific needs. This is part of what
makes programming creative and fun.

Once you’ve completed the implementation, run the unit tests specified in PIOT-
CDA-02-005 within the SystemCpuUtilTaskTest test case.  If all is well, these tests
should pass with flying colors.

The next module—SystemMemUtilTask, described in PIOT-CDA-02-006—follows
the same pattern as SystemCpuUtilTask, so I’ll spare you the reiteration.

Simply replace the getTelemetryValue(self) -> float: implementation with this
one line of code:

psutil.virtual_memory().percent

This will retrieve the current virtual memory utilization and return the result as a
float. There are other properties you can extract from the call to virtual_memory(),
and you’re welcome to experiment. For now, just return the percent utilization.

Make sure your SystemMemUtilTaskTest unit tests all pass before moving on. And
now, let’s connect both SystemCpuUtilTask and SystemMemUtilTask to SystemPer
formanceManager.

Reading a single value from a sensor (emulated or real) is good but insufficient, since
you’ll want to monitor these values over time to see whether they change. Even after
connecting SystemCpuUtilTask and SystemMemUtilTask into SystemPerformance
Manager, you’ll want to process their data on a recurring basis.

There are many ways to do this in Python: you can build your own scheduling mech‐
anism using Python’s concurrency library or leverage one of many open source libra‐
ries to do this for you. I’ve included APScheduler in basic_imports.txt; it provides a
scheduling mechanism that will suit our purposes rather well.
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Python provides two mechanisms for running code in a way that
appears to execute simultaneously with other code. One is using
concurrency, and the other is using multiprocessing. The former is
handled using threads, whereas the latter is handled using separate
child processes. One key difference is that Python threads actually
get run in sequence using the same processor core as the main
application, but they happen in such a way as to appear to be run‐
ning simultaneously. Multiprocessing allows for true parallelism,
where the code written using the multiprocessor library can be dis‐
tributed to run on a separate processor core, which can execute in
parallel to other code in a different processor core. The CDA-
specific exercises and samples within this book will assume that
threaded concurrency in Python is sufficient for our needs, and so I
won’t discuss multiprocessing for any CDA development.

Integrate the system utility tasks with the system performance manager
Things get a bit more interesting now that you’re going to integrate a couple of com‐
ponents but also run a scheduler to poll for updates. The SystemPerformanceManager
will need to access the SystemCpuUtilTask and SystemMemUtilTask at a regular
interval, checking for new data. Eventually you’ll integrate even more functionality,
but for now you can simply poll each for the latest telemetry value and log it using the
logger.  

Here’s a summary of the actions necessary to complete SystemPerformanceManager,
taken from PIOT-CDA-02-007:

• Update the imports and add a constructor that will use a configured polling rate
and create class-scoped instances of self.cpuUtilTask, self.memUtilTask, and
self.scheduler. You’ll then add a job to the scheduler within the SystemPer
formanceManager using the following code:

self.scheduler.add_job( \
  'self.handleTelemetry', \
  'interval', \
  seconds = pollRate)

• Finally, add the start and stop functionality into the startManager() and stop
Manager() methods.

For the first bullet, you can use code that looks similar to the following:

import logging

from apscheduler.schedulers.background import BackgroundScheduler

from programmingtheiot.common.IDataMessageListener import IDataMessageListener
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from programmingtheiot.cda.system.SystemCpuUtilTask import SystemCpuUtilTask
from programmingtheiot.cda.system.SystemMemUtilTask import SystemMemUtilTask

from programmingtheiot.data.SystemPerformanceData import SystemPerformanceData

class SystemPerformanceManager(object):     
  def __init__(self):
    configUtil = ConfigUtil()
    
    self.pollRate = \
      configUtil.getInteger( \
        section = ConfigConst.CONSTRAINED_DEVICE, \
        key = ConfigConst.POLL_CYCLES_KEY, \
        defaultVal = ConfigConst.DEFAULT_POLL_CYCLES)
    
    self.locationID = \
      configUtil.getProperty( \
        section = ConfigConst.CONSTRAINED_DEVICE, \
        key = ConfigConst.DEVICE_LOCATION_ID_KEY, \
        defaultVal = ConfigConst.CONSTRAINED_DEVICE)
          
    if self.pollRate <= 0:
      self.pollRate = ConfigConst.DEFAULT_POLL_CYCLES
    
    self.scheduler = BackgroundScheduler()
    self.scheduler.add_job( \
      'self.handleTelemetry', \
     'interval', \
     seconds = pollRate)

    self.cpuUtilTask = SystemCpuUtilTask()
    self.memUtilTask = SystemMemUtilTask()

    self.dataMsgListener = None

First, you’ll notice the sample code pulls in a couple properties from the configura‐
tion file via ConfigUtil. This configuration utility code is provided as part of
python-components, so you don’t have to do anything except use it as is. I’ll talk in
much more depth about ConfigUtil and PiotConfig.props (the configuration file) in
the introduction to Part II and in Chapter 3. Essentially, you’re just retrieving the poll
rate for the scheduler and a string value named “locationID” for later use (in
Chapter 5).

The scheduler initialization leverages the previously referenced APScheduler library,
which provides a mechanism for scheduling a background process to poll a method
named handleTelemetry() at regular intervals (hence the poll rate property). I’ll also
discuss this in more detail in Chapter 3, as you’ll use the same mechanism for polling
sensor simulator tasks.
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The last bullet—adding the start and stop functionality—needs to start and stop the
scheduler. You can implement this using code similar to the following:

def startManager(self):
  logging.info("Started SystemPerformanceManager.")

  if not self.scheduler.running:
    self.scheduler.start()
  else:
    logging.warning( \
      "SystemPerformanceManager scheduler already started. Ignoring.")
  
def stopManager(self):
  logging.info("Stopped SystemPerformanceManager.")

  try:
    self.scheduler.shutdown()
  except:
    logging.warning( \
      "SystemPerformanceManager scheduler already stopped. Ignoring.")

With your implementation complete, you can now run the integration tests specified
within PIOT-CDA-02-007, which simply requires you to execute the SystemPeforman
ceManagerTest. It should pass and generate a bunch of log output as shown within
the card. Here’s a sample:

Finding files... done.
Importing test modules ... done.

2020-12-29 14:43:18,520:SystemPerformanceManagerTest:INFO:Testing
SystemPerformanceManager class...
.
.
.
2020-12-29 14:43:18,623:SystemPerformanceManager:INFO:Started
SystemPerformanceManager.
2020-12-29 14:43:18,626:base:INFO:Added job
"SystemPerformanceManager.handleTelemetry" to job store "default"
.
.
.
2020-12-29 14:43:23,629:SystemPerformanceManager:INFO:CPU utilization is 10.1
percent, and memory utilization is 79.1 percent.
.
.
.
2020-12-29 14:44:18,631:base:INFO:Scheduler has been shut down
----------------------------------------------------------------------
Ran 1 test in 60.112s

OK
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Congratulations! You’ve just completed the first iteration of the CDA. It’s a stand-
alone Python app, with a small suite of unit and integration tests for you to build on
over the next chapters.

Now let’s move on to the GDA and start writing some Java code. 

Add System Performance Tasks to the Gateway Device Application
Your GDA will need the same three components as your CDA: an application wrap‐
per, a system performance manager, and components to read the system performance
data that will comprise your GDA’s telemetry. 

In IoT systems, the gateway device may or may not generate its
own telemetry (although it generally should). The example you’ll
build within this book generates only its own system performance
telemetry. The constrained device, implemented as the CDA, will
be responsible for generating not only its specific system perfor‐
mance telemetry but any sensor-specific telemetry as well.

Although the GDA doesn’t have much to do right now, it will eventually process the
data from the CDA, using it to make decisions about any requisite actions, and send
its own telemetry—along with the CDA’s—to the cloud for further processing.
Figure 2-4 provides further detail on the GDA’s system performance design.

Figure 2-4. Detailed design UML for the GDA
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Notice the additional metric the GDA collects. In Chapter 5, I’ll discuss local caching
of messages, so disk utilization will be an important metric to track. In Chapter 6 and
beyond, I’ll dig into passing messages between devices (and eventually the cloud in
Chapter 10), so tracking network utilization will be pretty useful as well. Although
network bits in and bits out are not expressed in Figure 2-4, you can add them as
optional tasks.

Aren’t there tools for monitoring system performance? Yes, and you should use them
when they make sense. Devices that are part of the IoT Edge Tier aren’t always easy to
manage, nor are they always able to participate in network monitoring environments.
This doesn’t mean we need to build everything from scratch! But we will anyway.
Because we can. And it’s fun :).

Back to Figure 2-4. Notice that GatewayDeviceApp is the entry point for the applica‐
tion and creates the instance of, and manages, SystemPerformanceManager, which is
similar to the CDA design. We also have a SystemCpuUtilTask and SystemMemUtil
Task, along with the SystemDiskUtilTask that will be useful to your design later.

It almost goes without saying, but if you’re already familiar with
Java development and comfortable implementing your solution
from the design in Figure 2-4, feel free to do so. But be sure to look
carefully at the requirements in the next section first.

You’ll recognize these next steps, of course, because you already did something simi‐
lar for the CDA. Since the GDA repository is different from the CDA repository, you
may want to set up your issue tracker separately. Again, you can simply use the exer‐
cise checklist I’ve already provided.

You’ll notice that the Programming the IoT Kanban board has a
bunch of optional requirements within some chapters (indicated by
the optional label), and called out in the exercise checklists. You
can either ignore these or choose to implement them. I created
them for my graduate course, and I hope you’ll find them useful for
your own study of this subject.

Notice the first actual requirement for the GDA is to create a branch for GDA-specific
updates related to this chapter, as indicated in PIOT-GDA-02-000. Again, you’ll fol‐
low this pattern for each chapter and application.

Let’s start with the application wrapper for the GDA.
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Review the Gateway Device Application module
Much like with the CDA, the GDA application module requirements are described in
PIOT-GDA-02-001. As I’ve stated previously, the shells of most classes are already
provided for you—they just require the implementation details. In other cases, such
as the GDA application module, much of the basic implementation is already in
place, although you’ll need to update it later in this chapter.

For now, simply verify that the code implements the requirements listed in PIOT-
GDA-02-001 and run the integration test as specified—testRunGatewayApp()—by
using the JUnit 4 Runner. If you’re using Eclipse as your IDE, simply right-click on
GatewayDeviceAppTest and select “Run As → JUnit Test.” You should get a green bar
along with sample output similar to the following (timestamps will obviously be
different):

Sep 05, 2020 5:48:10 PM programmingtheiot.gda.app.GatewayDeviceApp <init>
INFO: Initializing GDA...
Sep 05, 2020 5:48:10 PM programmingtheiot.gda.app.GatewayDeviceApp parseArgs
INFO: No command line args to parse.
Sep 05, 2020 5:48:10 PM programmingtheiot.gda.app.GatewayDeviceApp initConfig
INFO: Attempting to load configuration: Default.
Sep 05, 2020 5:48:10 PM programmingtheiot.gda.app.GatewayDeviceApp startApp
INFO: Starting GDA...
Sep 05, 2020 5:48:10 PM programmingtheiot.gda.app.GatewayDeviceApp startApp
INFO: GDA started successfully.
Sep 05, 2020 5:49:15 PM programmingtheiot.gda.app.GatewayDeviceApp stopApp
INFO: Stopping GDA...
Sep 05, 2020 5:49:15 PM programmingtheiot.gda.app.GatewayDeviceApp stopApp
INFO: GDA stopped successfully with exit code 0.

Embedded within the module are a few commented “TODO” lines of code as place‐
holders for you to eventually add more functionality. As it stands, your GatewayDevi
ceApp has some neat stuff in it, but it’s not very useful as an IoT gateway application.
Let’s start working on the other components to bring this app to life.

Create and integrate the system performance manager module
You’re about to see a pattern emerge between the CDA requirements you just imple‐
mented and the GDA. We’ll see the code bases and designs diverge once you move
into Part III, where you’ll not only build client communications capabilities between
the two applications but also implement your own server.

For now, let’s blaze ahead with building out the SystemPerformanceManager in the
GDA. As the description for PIOT-GDA-02-002 states, this requirement instructs you
to “Create the SystemPerformanceManager module.” Since the shell for SystemPerfor
manceManager already exists, as does the programmingtheiot\gda\system package,
you’ll simply have to edit the existing class.
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The requirements listed under “Actions” are similar to those you found when creating
the SystemPerformanceManager for the CDA, and include the following:

• Create a default constructor and create the initial start and stop manager
methods.

• The start and stop methods—startManager() and stopManager()—should each
log an info message indicating the manager was started or stopped.

Once this is done, you can implement the SystemPerformanceManagerTest integra‐
tion test, with the log output looking similar to what’s listed in the card:

Jul 19, 2020 12:58:42 PM programmingtheiot.gda.system.SystemPerformanceManager
startManager
INFO: SystemPerformanceManager is starting...
Jul 19, 2020 12:58:42 PM programmingtheiot.gda.system.SystemPerformanceManager
stopManager
INFO: SystemPerformanceManager is stopped.

This next task is also straightforward. Now that you have the basics of SystemPerfor
manceManager implemented, it’s time to tie it into the GDA using the requirements
listed in PIOT-GDA-02-003.

The description indicates you’ll need to create an instance of SystemPerformanceMan
ager within GatewayDeviceApp and invoke the manager’s start/stop methods within
the app’s start/stop methods.

To do so, follow the actions listed in the requirements card, as follows:

• Create a class-scoped variable named sysPerfManager.
• Create an instance of SystemPerformanceManager within the GatewayDeviceApp

constructor called this.sysPerfManager. For now, just use “10” as the parameter
to the constructor (you can change this if you’d like).

• Edit the startApp() method: add a call to sysPerfManager.startManager().
• Edit the stopApp() method: add a call to sysPerfManager.stopManager().

The final step is to run the GDA integration test—GatewayDeviceAppTest. It works
in the same manner as the ConstrainedDeviceAppTest and will generate log output
similar to the following:

Jul 19, 2020 1:01:38 PM programmingtheiot.gda.app.GatewayDeviceApp <init>
INFO: Initializing GDA...
Jul 19, 2020 1:01:38 PM programmingtheiot.gda.app.GatewayDeviceApp parseArgs
INFO: No command line args to parse.
Jul 19, 2020 1:01:38 PM programmingtheiot.gda.app.GatewayDeviceApp initConfig
INFO: Attempting to load configuration: Default.
Jul 19, 2020 1:01:38 PM programmingtheiot.gda.app.GatewayDeviceApp startApp
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INFO: Starting GDA...
Jul 19, 2020 1:01:38 PM programmingtheiot.gda.system.SystemPerformanceManager
startManager
INFO: SytemPerformanceManager is starting...
Jul 19, 2020 1:01:38 PM programmingtheiot.gda.app.GatewayDeviceApp startApp
INFO: GDA started successfully.
Jul 19, 2020 1:01:38 PM programmingtheiot.gda.app.GatewayDeviceApp stopApp
INFO: Stopping GDA...
Jul 19, 2020 1:01:38 PM programmingtheiot.gda.system.SystemPerformanceManager
stopManager
INFO: SytemPerformanceManager is stopped.
Jul 19, 2020 1:01:38 PM programmingtheiot.gda.app.GatewayDeviceApp stopApp
INFO: GDA stopped successfully with exit code 0.

If your test was successful, you can move on to creating the system utility task mod‐
ules for the GDA.

Create the system utility task modules
This is the first abstraction you’ll create for the GDA—again, the first of many. As
with the other classes described, the shell is provided for you if you’re using the sam‐
ple code in java-components. The requirements for this abstraction—BaseSystemU

tilTask—are described in PIOT-GDA-02-004.

Notice the class-scoped variables for name and edu—be sure to set those within the
constructor and then implement their corresponding getter methods: getName() and
getTypeID().

Last, much like the getTelemetryValue() method in the CDA’s version of this class,
the getTelemetryValue() method is also a template method. The difference is that in
Java, we can enforce the implementation strategy, as the base class is abstract, and the
template method is as well. This means any subclass must implement the template
method.

The next step is to create the SystemCpuUtilTask, described in PIOT-GDA-02-005.
This module will derive from BaseSystemUtilTask, and as such, it needs to do two
things:

• Call the super class constructor with the appropriate name and typeID (retrieved
from ConfigConst).

• Override the getTelemetryValue() template method from the base class with
the correct implementation for CPU utilization retrieval.

To retrieve system CPU utilization, you can use the Java management interface.

To start, make sure you’ve imported the following:

import java.lang.management.ManagementFactory;
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Next, retrieve the system load average, log the value, and then return it as a float,
using the following code to retrieve the value:

ManagementFactory.getOperatingSystemMXBean().getSystemLoadAverage()

Run ./system/SystemCpuUtilTaskTest. If your operating system supports retrieval
of CPU load, the testGetTelemetryValue() unit test should pass while displaying
values greater than 0.0% and (likely) less than 100.0%.

If your operating system doesn’t support this feature (and some
systems don’t), each test will return a negative value (usually
“–1.0”), as follows:

Test 1: CPU Util not supported on this OS: -1.0
Test 2: CPU Util not supported on this OS: -1.0
Test 3: CPU Util not supported on this OS: -1.0
Test 4: CPU Util not supported on this OS: -1.0
Test 5: CPU Util not supported on this OS: -1.0

Once you’ve completed the implementation, run the unit tests specified in PIOT-
GDA-02-005 within the SystemCpuUtilTaskTest test case, which should pass with
flying colors.

Not surprisingly, the next module—SystemMemUtilTask—follows the same pattern as
SystemCpuUtilTask, although you need to do a little more work to calculate system
memory utilization.

As PIOT-GDA-02-006 states, you’ll need to ensure the class derives from BaseSyste
mUtilTask and imports the following:

import java.lang.management.ManagementFactory;
import java.lang.management.MemoryUsage;

Once you’ve done this, update getTelemetryValue() with the following code:

MemoryUsage memUsage = ManagementFactory.getMemoryMXBean().getHeapMemoryUsage();
double memUtil = ((double) memUsage.getUsed() / (double) memUsage.getMax()) *
100.0d;

This will retrieve the current JVM memory utilization and return the result as a dou‐
ble, which you can log and then cast to float and return. Make sure your SystemMemU
tilTaskTest JUnit tests all pass before moving on.

Before connecting both SystemCpuUtilTask and SystemMemUtilTask to SystemPer
formanceManager, let’s take a look at running repeatable tasks in Java.

Although your GDA isn’t collecting sensor data, it clearly needs to gather and assess
its own system performance (such as CPU and memory utilization, of course). This
type of functionality is typically collected in the background at regular intervals, and
as with Python, Java provides options for creating polling systems.
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Fortunately, there’s no need to import any separate libraries, because this is built into
the core Java Software Development Kit (SDK).

Java’s concurrency library is quite powerful and allows you to use a
basic Timer functionality as well as a ScheduledExecutorService
(you can also create your own threaded polling system if you really
want to, of course). We’ll use ScheduledExecutorService, as it
provides a semiguaranteed way to poll at regular intervals while
handling most of the complexity for us. Modern Java virtual
machines will handle the load distribution across the CPU archi‐
tecture, meaning it will utilize multiple cores if at all possible.

Integrate the system utility tasks with the system performance manager
This particular exercise is a bit more involved, even though it doesn’t take many lines
of code to complete. This is because you’ll be using both concurrency and a Runnable
implementation, the latter of which is just an interface definition for a method that
can be invoked one or more times by a Java thread.

The details are documented in PIOT-GDA-02-007, but let’s walk through each action
in the requirement card:

• Add the following import statements:
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.ScheduledFuture;
import java.util.concurrent.TimeUnit;
import java.util.logging.Logger;

import programmingtheiot.common.ConfigConst;
import programmingtheiot.common.ConfigUtil;
import programmingtheiot.common.IDataMessageListener;
import programmingtheiot.common.ResourceNameEnum;
import programmingtheiot.data.SystemPerformanceData;

• Add the following class-scoped variables:
private ScheduledExecutorService schedExecSvc = null;
private SystemCpuUtilTask sysCpuUtilTask = null;
private SystemMemUtilTask sysMemUtilTask = null;

private String   locationID = ConfigConst.GATEWAY_DEVICE;
private Runnable taskRunner = null;
private boolean  isStarted  = false;
private int      pollRate   = ConfigConst.DEFAULT_POLL_CYCLES;

• Create a public method named handleTelemetry() and add the following code,
and then log a debug message with the CPU and memory utilization values:
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cpuUtilPct = this.cpuUtilTask.getTelemetry()
memUtilPct = this.memUtilTask.getTelemetry()

• Add the following to the constructor. Notice the use of ConfigUtil to retrieve the
poll rate, much like you did with the CDA. I’ll discuss the use of ConfigUtil (and
the configuration file, PiotConfig.props) in the introduction to Part III:

this.pollRate =
  ConfigUtil.getInstance().getInteger(
    ConfigConst.GATEWAY_DEVICE,
    ConfigConst.POLL_CYCLES_KEY,
    ConfigConst.DEFAULT_POLL_CYCLES);

if (this.pollRate <= 0) {
  this.pollRate = ConfigConst.DEFAULT_POLL_CYCLES;
}

this.locationID =
  ConfigUtil.getInstance().getProperty(
    ConfigConst.GATEWAY_DEVICE,
    ConfigConst.DEVICE_LOCATION_ID_KEY,
    ConfigConst.GATEWAY_DEVICE);

this.schedExecSvc   = Executors.newScheduledThreadPool(1);
this.sysCpuUtilTask = new SystemCpuUtilTask();
this.sysMemUtilTask = new SystemMemUtilTask();

this.taskRunner = () -> {
  this.handleTelemetry();
};

• Within the startManager() method, add the following:
if (! this.isStarted) {
  ScheduledFuture<?> futureTask = 
    this.schedExecSvc.scheduleAtFixedRate(
      this.taskRunner, 0L, this.pollRate, TimeUnit.SECONDS);

  this.isStarted = true;
}

• Within the stopManager() method, add the following:
this.schedExecSvc.shutdown();

You may have noticed the retrieval of “locationID” from the GDA’s configuration
(which was also the case for the CDA’s SystemPerformanceManager implementation).
I’ll address this in Chapter 5, as alluded to previously. For now, just leave the code in
place.
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To test all of this new goodness, you need only to run the GatewayDeviceAppTest
unit test named testRunTimedGatewayApp() and follow the preceding instructions
under the Test section.

JUnit unit tests can be included or excluded in a test run by using
the @Test annotation before the unit test method. You can simply
comment it out or uncomment it as desired. Note also that unit
tests are not designed to run in any particular order—you should
expect a random order and write your tests as stand-alone.

On successful execution, your log output for this test will look similar to the
following:

Jul 19, 2020 1:53:19 PM programmingtheiot.gda.app.GatewayDeviceApp <init>
INFO: Initializing GDA...
Jul 19, 2020 1:53:19 PM programmingtheiot.gda.app.GatewayDeviceApp parseArgs
INFO: No command line args to parse.
Jul 19, 2020 1:53:19 PM programmingtheiot.gda.app.GatewayDeviceApp initConfig
INFO: Attempting to load configuration: Default.
Jul 19, 2020 1:53:19 PM programmingtheiot.gda.app.GatewayDeviceApp startApp
INFO: Starting GDA...
Jul 19, 2020 1:53:19 PM programmingtheiot.gda.system.SystemPerformanceManager
startManager
INFO: SystemPerformanceManager is starting...
Jul 19, 2020 1:53:19 PM programmingtheiot.gda.app.GatewayDeviceApp startApp
INFO: GDA started successfully.
Jul 19, 2020 1:53:20 PM programmingtheiot.gda.system.SystemPerformanceManager
handleTelemetry
INFO: Handle telemetry results: cpuUtil=-1.0, memUtil=0.1469148
Jul 19, 2020 1:53:50 PM programmingtheiot.gda.system.SystemPerformanceManager
handleTelemetry
INFO: Handle telemetry results: cpuUtil=-1.0, memUtil=0.1469148
Jul 19, 2020 1:54:20 PM programmingtheiot.gda.system.SystemPerformanceManager
handleTelemetry
INFO: Handle telemetry results: cpuUtil=-1.0, memUtil=0.1469148
Jul 19, 2020 1:54:24 PM programmingtheiot.gda.app.GatewayDeviceApp stopApp
INFO: Stopping GDA...
Jul 19, 2020 1:54:24 PM programmingtheiot.gda.system.SystemPerformanceManager
stopManager
INFO: SystemPerformanceManager is stopped.
Jul 19, 2020 1:54:24 PM programmingtheiot.gda.app.GatewayDeviceApp stopApp
INFO: GDA stopped successfully with exit code 0.

Notice that it’s quite extensive! This is because you’re not only doing a bunch of inter‐
esting things, but you’re also running the app for over a minute.

If your test run yields similar output, you can really celebrate. You’ve just completed
the first iteration of both IoT Edge Tier applications—the GDA and the CDA. As a
final step, be sure to merge your CDA and GDA branches back into each respective
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repository’s main branch following the steps listed in PIOT-CDA-02-100 and PIOT-
GDA-02-100.

The rest of this book is about adding functionality to these applications, connecting
them together, and eventually hooking everything up to a cloud service. Buckle up!

Additional Exercises
Figure 2-4 depicts the GDA’s design with three system performance tasks (CPU uti‐
lization, memory utilization, and disk utilization). While disk utilization isn’t critical
right now, you may want to tackle it at this time. Additionally, see if you can add two
other tasks, SystemNetInTask and SystemNetOutTask, using the patterns for System
CpuUtilTask, SystemMemUtilTask, and SystemDiskUtilTask.

In fact, it’s not a bad idea to implement the network utilization tasks for the CDA as
well (SystemDiskUtilTask is less relevant, as your CDA won’t be storing much [if
any] data).

Conclusion
This wraps up Part I of Programming the Internet of Things—well done! The preface,
Chapter 1, and Chapter 2 all helped you get started on your IoT journey. You learned
about the IoT ecosystem along with a bit of history, some terminology, and some
architectural concepts to help you better understand how these pieces all fit together.
If you’re a developer and tackled the exercises, you also learned how to collect some
basic system performance data using two apps—the CDA (written in Python) and the
GDA (written in Java).

You’re now ready to add some important functionality to your CDA and GDA appli‐
cations and eventually connect them to each other and to the cloud.
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PART II

Connecting to the Physical World

Introduction

To be real or not.
Must I live simulated?
You can always choose.

Connecting computers to the physical world can be tricky. This is because computers
use digital signals (binary data, or 1’s and 0’s), but the physical world operates on
ranges of inputs and outputs (analog data), which can represent all kinds of things,
such as temperature, wind speed and direction, or degrees of force.

Yet a big part of the IoT is connecting computers to the physical world and the inter‐
net to solve problems (as with automatic climate control), right? This connectivity
starts at the Edge Tier, where our software (the CDA in this case) interprets this phys‐
ical world input (sensing) and converts it into the 1’s and 0’s our computing systems
understand. It can also take those 1’s and 0’s and convert them into commands that
can be sent to turn on, turn off, or adjust another physical system (actuation).

Sensing is the process of interpreting a mechanical input signal by converting it into
electricity (and eventually into digital signals—i.e., those 1’s and 0’s I mentioned pre‐
viously). Actuation is the converse of sensing: the process of converting an electrical
signal into a mechanical output.

Depending on the sensor and actuator, how this happens may vary dramatically. For
the purposes of this book, you’ll just need to collect the data from a sensor “source”
and send a command to an actuator “target.” To keep things simple and maintain our
focus on building out the Edge Tier software applications, our goal will be to simulate
—or emulate—this physical world interaction.



1 For more information about JSON, see IETF RFC 4627. For a summary of JSON and a list of libraries that
support JSON conversion, I’ve found https://www.json.org to be very helpful.

Fortunately, this is relatively easy to do. The sensor-source input ranges and relevant
actuation triggers for the target output device can be stored within a configuration
file and processed by the software you’ll develop for your CDA and GDA. You’ll start
this process in Chapter 3 by building a simple simulator capability and carry it for‐
ward into Chapter 4 by incorporating a software emulator that allows manual control
over the process—all without relying on any specific hardware.

Finally, in Chapter 5, you’ll build some of the integration underpinnings that will
allow your CDA and GDA to “talk” with each other.

What You’ll Learn in This Section
This section will begin to address all three key activities discussed in Part I: Measure
(data collection), Model (data management), and Manage (system triggers). However,
most of the focus will be on data collection, at least initially. I’ll dig further into the
simpler aspects of data management and system triggers in Chapters 4 and 5 and then
discuss an integrated approach in Chapter 10.

Chapters 3 and 4 will show you how to add functionality to the CDA to collect data
from simulated and emulated sensors, store and interpret that data within data object
wrappers, and convert that data to and from JSON (JavaScript Object Notation).1 This
will be really important for integration not just with the GDA in Chapter 5 and
Part III but also with the cloud in Part IV, beginning with Chapter 11.

Chapter 5 brings the GDA back into the picture and adds similar data-object-wrapper
and JSON-conversion functionality into its capabilities. This will be important not
only for connecting the applications to each other and eventually to the cloud but
also for performing some basic analytics within the Edge Tier on the GDA directly.
I’ll also introduce local storage mechanisms for the GDA using Redis, an in-memory
data cache.

Before we get started, let’s discuss configuration.

Application Configuration Review

In Chapter 1, I discussed the “common” package in the cloned Python and Java Git
repositories. The configuration utility—ConfigUtil—and its “consts” class—Config

Const—deserve a quick review.

https://www.ietf.org/rfc/rfc4627.html
https://www.json.org
https://redis.io


2 Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software (Boston: Addison-Wesley,
1994).

You may recall that ConfigUtil is a very simple abstraction (really a delegate) to the
Python and Java libraries that I’ll use for the remaining chapters to manage configu‐
ration logic. In both repositories, ConfigUtil is implemented using a Singleton2

design pattern. This generally works well for logging and configuration purposes,
since you’ll typically be writing log messages to a single file or reading configuration
data from a single file. In the forthcoming code examples and exercises, you’ll use
ConfigUtil rather extensively. It’s a very convenient way to load up parameters that
are well suited for some degree of customization without requiring code
modifications.

The Singleton design pattern has been hotly debated for as long as I
can remember. I’ll leave the debate to various internet forums; I use
it where I believe it adds value and clarity to the design.

Using the same configuration style with both applications affords tremendous flexi‐
bility, since you’ll have to maintain only one format for configuration files. That said,
it does make sense to host the configuration file for each app in a different location, if
for no other reason than to ensure that a tweak to one doesn’t negatively affect the
other.

You might want to review (again) the sample configuration files for the CDA and
GDA, which are located in the ./python-components/config path for the CDA and
the ./java-components/config path for the GDA, both are named PiotConfig.props.

The exercises in Part II will rely on some of the configuration parameters specified in
both configuration files, so let’s take a quick look at the relevant entries. In the Con
strainedDevice section of the CDA’s PiotConfig.props, notice the configurable limits
specified for humidity, pressure, and temperature:

# configurable limits for sensor alerts
humiditySensorFloor   = 35.0
humiditySensorCeiling = 45.0
pressureSensorFloor   = 990.0
pressureSensorCeiling = 1010.0
tempSensorFloor       = 15.0
tempSensorCeiling     = 25.0

# configurable limits for actuator triggers
handleTempChangeOnDevice = True
triggerHvacTempFloor   = 18.0
triggerHvacTempCeiling = 22.0



3 Heating, ventilation, and air conditioning—I’ll use “HVAC” to refer to any system that controls heating and
cooling, although it’s not intended to imply the use of one type of system or another.

4 Merriam-Webster, s.v. “hysteresis (n.)”, accessed February 13, 2021.

Notice the various …SensorFloor and …SensorCeiling settings under the “configura‐
ble limits for sensor simulation”? These key/value pairs establish the baseline settings,
or lowest (floor) and highest (ceiling) settings, for each sensor. There are also thres‐
hold crossing parameters used to trigger an HVAC3 alert (triggerHvacTempFloor
and triggerHvacTempCeiling), along with Boolean flags indicating whether the
application should take action.

One important aspect of collecting and then acting on sensor data is dealing with
hysteresis, which is essentially a lagging effect that is influenced by a system’s inputs.4

Consider the following, for instance: if you’re tracking temperature, you probably
don’t want your thermostat to signal your HVAC on and off every time the ambient
temperature oscillates slightly above or slightly below a given value. It would be better
to track the gradual decrease or increase in ambient temperature and then run the
HVAC for a period of time to bring the temperature back into a nominal range.

This is a feature that would be useful in any heating or cooling system, as it would
prevent the system from turning on and off rapidly based on minor fluctuations in
the sensor reading. I’ll address this using a simple set of configuration properties,
although you’re welcome to introduce advanced features into your own code.

Regardless of how you choose to handle hysteresis, some threshold crossings are best
handled as close to the reading as possible, whereas others should be managed further
upstream by the GDA or even in the cloud. As such, it’s important to include these
floor and ceiling settings in the configuration files for both applications.

Speaking of the GDA, here are some of the existing trigger values in its PiotCon‐
fig.props file, contained within the GatewayDevice section:

# configurable limits for actuator triggers
enableHandleHumidityChangeOnDevice = True
triggerHumidityFloor   = 30.0
triggerHumidityCeiling = 40.0

I’ll reference these configurable floor and ceiling settings at various points through‐
out Chapters 3, 4, and 5 as part of the Model and Manage design characteristics of
your system. Of course, you’re welcome to adjust these to your specific needs or even
to add others as appropriate. If you do so, you might also want to add the property
key and some floor and ceiling boundary values within ConfigConst to ensure proper
validation limits in your code.



CHAPTER 3

Data Simulation

Sensing and Actuation Using a Data Generator and Simulator

Is it real or fake?
A matter of perception.
Do I act or not?

Fundamental concepts: Design and build logical components that plug into your IoT
applications and can interact with the emulated sensors and actuators.

Processing data from sensors and sending commands to actuators are important
capabilities of an end-to-end IoT system. Sensors and actuators, as you’ll soon see, are
truly the “edge of the edge,” serving as the final interface between the physical and
logical worlds.

Sensing and actuation capabilities introduce a conundrum, however: there are myriad
types of hardware that support this type of functionality, each with its own set of
interface requirements. To mitigate this, and to stay within the realm of programming
in support of our initial use case, this chapter will focus on using data simulation and
hardware emulation to provide the “physical world” interface needed to program the
IoT.

What You’ll Learn in This Chapter
This chapter focuses on measuring and (to a lesser degree) modeling the data you
generate as part of a simple sensor and actuator simulation environment you’ll build
for the CDA. The generated data will represent a small handful of environmental sen‐
sors, and you’ll learn how to process simple threshold crossings to trigger simulated
actuation events.
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As a reminder, this chapter and Chapter 4 focus exclusively on the CDA, so all of the
code will be written in Python.

Simulating Sensors and Actuators
To simulate a sensor, there are a few things you’ll need to know, including:

• the data type representing the value it will generate
• the type of sensor and its purpose (which can be represented via a name and an

ID value)
• the range of data the sensor can support

There will be similar settings for the actuator, except that you won’t be collecting data
from it—you’ll send it one or more commands (such as an ON or OFF signal), and
perhaps even a value and some other information (such as state data) to go along
with the command.

Finally, you’ll need access to a data source that your simulated sensor logic can use.
There are many ways to integrate a data source within the CDA, so I’ll posit the data
itself must be local to the CDA. This means that you’ll essentially have two options:
use a fixed data set for each sensor (which can simply be stored in the filesystem), or
generate a dynamic data set relative to each sensor. For my Connected Devices
course, I use the latter, and I rely on a simple module I’ve included within the
python-components source tree located within the ./src/main/python/programmingth‐
eiot/cda/sim/SensorDataGenerator.py file called SensorDataGenerator.

Before we get started, be sure to follow the steps listed in PIOT-CDA-03-000 and
check out a new branch for this chapter.

Generating Simulated Data Using a Sensor Data Generator Class
SensorDataGenerator is a relatively simple class that you can use to generate data
sets representing the sensor measurements your CDA will collect, such as tempera‐
ture, pressure, and humidity.  It relies on the NumPy package to generate a series of
float values within a given range over a period of time. It also allows you to introduce
varying degrees of noise, or fluctuations, and apply them to each data value.

While this is a very basic approach to generating simulated data, designed for testing
and prototyping purposes, it will provide sufficient variety in each sensor’s data to
trigger actuation events based on the configuration properties set within PiotCon‐
fig.props for both the CDA and the GDA. Combining this class with the configuration
bounding values provides an initial model capability that encapsulates the limits,
ranges, and time entries for the data we’ll work with in this chapter.
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1 John D. Hunter, “Matplotlib: A 2D Graphics Environment”, Computing in Science & Engineering 9, no. 3
(2007): 90–95.

You’re welcome to create your own model if you like, but I’ll use
SensorDataGenerator throughout this section to create the data
sets needed for each exercise.

If you examine the code, you’ll notice that SensorDataGenerator implements six
methods that can be used to generate values for temperature, pressure, humidity, or
any other float-based range, including one that will render an on-screen graph of the
data (for visual validation purposes). This latter method—named generateOnScreen
Graph()—uses Matplotlib1 to generate the static graph visualization.

The data generation methods generateDailyEnvironmentHumidityDataSet(),
generateDailyEnvironmentPressureDataSet(), generateDailyIndoorTemperature
DataSet(), generateDailyMonitorTemperatureDataSet(), and generateDailySen
sorDataSet() all return a SensorDataSet instance that contains all the timestamp
and float value entries generated by the method calls mentioned.

Each of these methods is parameterized, so you can easily customize the output by
setting the range (floor and ceiling values), sinusoidal type (approximated), noisiness
level (my own levels range from 0% to 100%), the number of items in the set, and
whether or not to use second-level granularity (the default is one sample per minute).
You can review the documentation in the python-components repository.

The generateOnScreenGraph() call accepts the SensorDataSet instance, along with
your choice of labels for the y-axis and x-axis.

Let’s look at some examples of data set visualizations I’ve created using this library. In
Figure 3-1, you can see there’s a bit of noise, included to show what you might expect
from a temperature sensor that might oscillate between 1% and 2% of the real tem‐
perature value for each reading. Over time, you can see the overall floor is about
18°C, with a ceiling of about 22°C and the temperature gradually increasing from its
starting point of about 20°C to its maximum in hour 7, followed by its low in hour 19.
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Figure 3-1. Sample indoor temperature range using generateDailyIndoorTemperature
DataSet()

As you can see, this data set provides simulated temperature data that looks reason‐
able and will suit our testing needs. If you want to simulate a heating system actuation
event (such as turning the heating system on and moving hot water through the radi‐
ator system in a given room), all you need to trigger it is to set the floor to, say, 19°C.
By hour 14 or 15, the event will be generated. This means you can simulate both the
sensor reading data and the actuator triggering event using a simple set of simulated
data, all contained within the CDA.

Let’s take a look at just one more data sample and then dig into some coding
exercises.
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Figure 3-2 depicts another graph—this one representing humidity over time—in an
arc. Humidity levels rise from about 35% relative humidity to as high as about 45%
relative humidity before dropping back down again. In this case, I passed in a lower
noise value to the method to simulate a cleaner value reading from the humidity sen‐
sor. Either way, the trend is clear and provides ample opportunity to set a ceiling
value from which to switch on a dehumidifier or an air-conditioning system via an
actuation event.

Figure 3-2. Sample indoor humidity range using generateDailyIndoorHumidityData
Set()

Programming Exercises
Recall that the overall designs of the Edge Tier applications focus on sensing and
actuation (within the CDA) and integration with the cloud and some analytics func‐
tionality (within the GDA). This means that the CDA is about to get more compli‐
cated, so it will be helpful to look at the application design along with the modules
you’ll be updating.
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Integrating Sensing and Actuation Simulation Within Your
Application Design
Figure 3-3 depicts the Constrained Device App with simulated sensing and actuation
functionality.

Figure 3-3. Constrained Device Application simulator design

In Figure 3-3, you can see that we’re embarking on a more involved software engi‐
neering effort—one that will require a deeper dive into data management, capability
abstractions, and callbacks. No worries, though! I’ll break these parts down piece by
piece, so it should be quite manageable.

One way to implement all this functionality is to begin at the top and work our way
down to the data structures. Implementation-wise, however, it’s easiest to work from
the bottom up, because the components at the top—DeviceDataManager and more—
all depend on these lower-level structures and classes being in place.

Figure 3-4 shows a UML representation of some of the components that need to be
implemented and their relationships. This pattern represents just two instantiation
use cases between the DeviceDataManager, the SystemPerformanceManager, and the
SensorAdapterManager (temperature simulator task only). The other sensor
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simulator tasks and ActuatorAdapterManager instantiation sequences will adhere to
the same pattern.

Figure 3-4. Constrained Device Application simulator UML

We’ll start with these data structures and the tasks that use them. Before we start,
though, be sure to read through PIOT-CDA-03-000 and check out a new branch for
this chapter.

Representing Sensor and Actuator Data Within the Application
Before we go further, let’s take a step back and consider how all this data will be
stored internally and subsequently passed on to the GDA (and the cloud). Since there
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2 The ISO 8601 standard is an internationally recognized specification representation for time and calendar
information.

are similarities between the properties of a simulated sensor and those of an actuator
(as well as with the system performance data you’re already collecting), you can
abstract much of this functionality into a base class. These properties include the
following:

• A unique device name. This will be used to identify the physical device instance,
represented as a string value. It could take many forms, such as a serial number
or network address, for example. For the CDA, you can just use “constrainedde‐
vice” or “constraineddevice001” (which is what I’ve chosen for my
implementation).

• An ID to represent the sensor or actuator type. This will be represented as an
integer (which can be used to map to a string-based name within each
application).

• A timestamp. This will be stored internally as an ISO 86012 time/calendar repre‐
sentation and generated when the data container is initialized (or updated).

• Relevant location information. This can be a bit complicated, so let’s keep things
relatively simple and use float values to store decimal latitude, decimal longitude,
and elevation in meters above (or below) sea level (note that a float value will
provide sufficient precision for the purposes of the exercises in this book).

• An error indicator flag. This is a boolean value that will default to False.
• A status code. This will be used to represent the current status of the sensor or

actuator and will default to 0.

Abstractions can be helpful, but you also need some boundary values, default values,
and preset names for the sensors, actuators, and system performance data. You’ll see
in Part III—specifically in Chapter 10—how these presets can be centralized within
the GDA, but for now they can simply be accessed as “consts” in the ConfigConst
class.

Let’s look at the first requirement for this chapter: PIOT-CDA-03-001.

Create Data Containers to Support Data Collection and Actuation
It can be challenging to determine the appropriate level of detail for each data collec‐
tion activity in any system, never mind for an IoT edge device that might have many
different types of data to handle. The options seem to be endless—ranging from
values with varying degrees of precision (integer or floating point—and if the latter,
how many decimals?) to text-based representations with different encoding schemes.
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3 It can be helpful (and even required) to use a globally unique identifier (GUID), or universally unique identi‐
fier (UUID), to represent the unique device ID as part of your telemetry structure. Throughout this book, I’ll
use the locationID for this purpose, along with human-readable names such as “constraineddevice001.”

Let’s keep things simple and assume that all sensor and actuator data values will be
represented as 32-bit float values. We’ll trust that the precision afforded by the Python
3 float and Java 11 float are sufficient for our needs.

In Python 3, you can use the decimal module for greater precision
if that’s important to your application. The use cases discussed in
this book won’t need that degree of specificity, so a float will suit
our purposes.

With this simplified approach to storing values in mind, you can see that the require‐
ments listed in PIOT-CDA-03-001 may seem a bit pedantic and perhaps tedious, but
the implementation should be relatively straightforward. Let’s start with the base class
—BaseIotData.

Abstracting shared properties within a base class

BaseIotData is a container for all the common properties that we’ll store for all sen‐
sor, system performance, and actuator data. These properties include the following:

• name (string, e.g., tempsensor)
• typeID (integer)
• timeStamp (string, e.g., 20201129T18:48:15Z)
• locationID3 (string, e.g., constraineddevice001)
• latitude (float)
• longitude (float)
• elevation (float)
• hasError (boolean)
• statusCode (integer)

The constructor for BaseIotData accepts the parameters name and typeID, whereas
statusCode is set after initialization via the setter method. The hasError fl ag is set to
True only if statusCode is set to anything less than 0 (you can change this to align
with an alternative error tracking scheme if you’d prefer). The timeStamp variable is
set at initialization and whenever the data is updated via the updateTimeStamp()
method.
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Implement the sensor and actuator data structures

With BaseIotData in place, it’s time to create the subclasses that will store the teleme‐
try and command information (SensorData and ActuatorData, respectively). These
classes have some similarities—both require a value (as a float) and need access to the
same functionality that’s stored in BaseIotData. To create these as subclasses, simply
derive from BaseIotData and implement the additional functionality within each.
They’ll inherit the base class functionality automatically.

The actions listed in PIOT-CDA-03-001 describe the implementation requirements
for each. Let’s first examine SensorData, which inherits from BaseIotData.

First, import both ConfigConst and BaseIotData:

import programmingtheiot.common.ConfigConst \
  as ConfigConst
from programmingtheiot.data.BaseIotData \
  import BaseIotData

Declare the class and inheritance scheme:

class SensorData(BaseIotData):

SensorData now inherits from BaseIotData, so it needs to call its constructor from
within the constructor and initialize the class-scoped value parameter, as follows:

def __init__(self, \
  typeID: int = ConfigConst.DEFAULT_SENSOR_TYPE, \
  name = ConfigConst.NOT_SET):
    super(SensorData, self).__init__( \
      name = name, typeID = typeID)

      self.value = ConfigConst.DEFAULT_VAL

Implement the accessor methods that will get and set the value:

def getValue(self) -> float:
  return self.value

def setValue(self, val: float):
  self.updateTimeStamp()
  self.value = val

Before moving on to the final action, let’s look back at BaseIotData for just a
moment. Notice that it contains a method named updateData(self, data), and that
its only parameter is “data.” It will check if “data” is not None and is also a type of
BaseIotData; if both are true, it will set the local parameters using the values within
data, update the timestamp, and then call the “private” method _handleUpdate
Data(data), which will, by default, simply pass.

The subclass can and should implement this so that it can update its own local
parameters accordingly.
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4 The stateData property is mostly a placeholder for future content that might be relevant for an actuation event
—such as one that displays a message to an LED display (the stateData would then contain the message
content).

For SensorData, the implementation is relatively simple, since the base class did most
of the work for us.  That said, you should still check if data is valid and is also of type
SensorData, since—technically speaking—a “private” method in Python (which is, by
convention, preceded by a single “_”) can still be called externally.

Implement _handleUpdateData() in SensorData:

def _handleUpdateData(self, data):
  if data and isinstance(data, SensorData):
    self.value = data.getValue()

Now that SensorData is complete, let’s move on to ActuatorData. I won’t go into the
same level of detail, since it’s nearly identical. The main differences are:

• The constructor should call the BaseIotData constructor using Config

Const.DEFAULT_ACTUATOR_TYPE as the typeID.
• Within the constructor, declare the class-scoped variables of self.command,
self.value, and self.stateData.

You’ll then create accessor methods for the class-scoped variables and implement
_handleUpdateData().

Going in the order just given, the code within the constructor will look similar to the
following:

self.command = ConfigConst.DEFAULT_COMMAND
self.value = ConfigConst.DEFAULT_VAL
self.stateData = None

Next, implement the accessor methods. These will follow the same pattern as Sensor
Data; just remember to implement accessors for the command and stateData4 in
addition to the value.

Finally, implement the _handleUpdateData() method. You can follow this pattern
provided if you’d like:

def _handleUpdateData(self, data):
  if data and isinstance(data, ActuatorData):
    self.value = data.getValue()
    self.command = data.getCommand()
    self.stateData = data.getStateData()

That was easy, right? We’re almost done—just one more data container remains:
SystemPerformanceData.
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Implement the system performance data structure

SystemPerformanceData is a bit different, because it has two values—one for CPU
utilization, and the other for memory utilization. Fortunately, it still follows the same
pattern as SensorData and ActuatorData. It also inherits from BaseIotData, so the
class declaration will follow the same implementation approach as SensorData and
ActuatorData.

The constructor doesn’t need any parameterization, however, since SystemPerforman
ceData knows what it is. It can call the BaseIotData constructor with a more specific
name and typeID and declare its class-scoped variables:

def __init__(self):
  super(SystemPerformanceData, self).__init__( \
    name = ConfigConst.SYSTEM_PERF_NAME, \
    typeID = ConfigConst.SYSTEM_PERF_TYPE)
  
  self.cpuUtil = ConfigConst.DEFAULT_VAL
  self.memUtil = ConfigConst.DEFAULT_VAL

With the constructor complete, you can add in the accessor methods for getting and
setting the CPU utilization and memory utilization values.

Finally, just like you did with SensorData and ActuatorData, add in the _handleUpda
teData(data) method, as follows:

def _handleUpdateData(self, data):
  if data and isinstance(data, SystemPerformanceData):
    self.cpuUtil = data.getCpuUtilization()
    self.memUtil = data.getMemoryUtilization()

Let’s run the unit tests in the python-components repository and the ./src/test/python/
programmingtheiot/part02/unit/data package—specifically, the three test case files
named for the data containers they test: ActuatorDataTest.py, SensorDataTest.py, and
SystemPerformanceDataTest.py.

These are very simple unit tests and are designed only to verify that the basic func‐
tionality of each class—ActuatorData, SensorData, and SystemPerformanceData—
performs as expected.

If you’re using the Eclipse IDE with PyDev, here’s a sample of the console output you
might see if all the ActuatorDataTest unit tests execute successfully:

Finding files... done.
Importing test modules ... done.

2020-11-29 16:22:51,217:ActuatorDataTest:INFO:Testing ActuatorData
class...
----------------------------------------------------------------------
Ran 3 tests in 0.001s
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OK

Assuming each unit test passes, the next step in the process is to add the sensor and
actuator simulator tasks (requirements PIOT-CDA-03-002 through PIOT-
CDA-03-005). I’ll walk you through it and then show you how to integrate them all
into your CDA application in PIOT-CDA-03-006 through PIOT-CDA-03-008.

Simulating Sensors
Now that your data containers are in place, let’s put them to use and start building out
the sensor simulation infrastructure. This will allow you to generate a steady stream
of (simulated) sensor data information that can be stored within SensorData for easy
processing within the CDA.

Beginning with PIOT-CDA-03-002, you’ll move up the stack to the next level in the
CDA’s software design. Let’s start with yet another base class, called BaseSensorSim
Task. This class, along with the others in this section, is located in the ./program‐
mingtheiot/cda/sim package. We’ll use BaseSensorSimTask to abstract the generic
sensor simulation functionality from that which is specific to each sensor simulator.

BaseSensorSimTask performs two key functions: it creates a SensorData instance,
which it uses to store the latest sensor simulation data, and it provides a public inter‐
face to generate a new instance and access its data.

Here’s a summary of the actions listed in PIOT-CDA-03-002:

• Create (or edit) the Python module named BaseSensorSimTask in the ./program‐
mingtheiot/cda/sim package and add the appropriate import statements.

• Define two class-scoped “consts” to bound the minimum and maximum value
generated by the randomizer (if a random value is used for the sensor value).

• Edit the constructor so it accepts the following parameters and sets class-scoped
variables for each: name, typeID, dataSet, minVal, and maxVal. Use the class-
scoped minimum and maximum “consts” as the defaults for minVal and maxVal.
— dataSet will be an instance of SensorDataSet, which is a class defined within

the SensorDataGenerator module.
— useRandomizer will be set to True if dataSet is None.

• Implement the generateTelemetry(self) -> SensorData: method—this will
generate a new class-scoped SensorData instance using self.name, self.typeID,
and the value extracted from self.dataSet, or a randomized value generated
between self.minVal and self.maxVal if self.dataSet is None.
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• Implement the getTelemetryValue(self) -> float: method to return the lat‐
est SensorData value if it exists; if not, simply invoke generateTelemetry() and
then return the SensorData value.

Let’s unpack these steps.

First, you’ll need to create the class and add the relevant import statements. If you’re
using the python-components code base, this is already done for you and looks simi‐
lar to the following:

import random

import programmingtheiot.common.ConfigConst as ConfigConst
from programmingtheiot.data.SensorData import SensorData
from programmingtheiot.cda.sim.SensorDataGenerator \
  import SensorDataSet

class BaseSensorSimTask():
  DEFAULT_MIN_VAL = ConfigConst.DEFAULT_VAL
  DEFAULT_MAX_VAL = 100.0

You can now create the constructor, and you’ll see from the implementation how the
useRandomizer flag is set:

def __init__(self, \
  name: str = ConfigConst.NOT_SET, \
  typeID: int = ConfigConst.DEFAULT_SENSOR_TYPE, \
  dataSet: SensorDataSet = None, \
  minVal: float = DEFAULT_MIN_VAL, \
  maxVal: float = DEFAULT_MAX_VAL):
  
  self.dataSet = dataSet
  self.name = name
  self.typeID = typeID
  self.dataSetIndex = 0
  self.useRandomizer = False
  
  self.latestSensorData = None
  
  if not self.dataSet:
    self.useRandomizer = True
    self.minVal = minVal
    self.maxVal = maxVal

If self.dataSet is None, then a random value will be generated instead (between
self.minVal and self.maxVal). You’ll see later how dataSet is generated and then
passed into the task, but for now, just trust that it will be done a bit higher up in the
stack.
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Let’s see how self.dataSet will be used and move on to the next method: generate
Telemetry(). As indicated in the actions, this is where the SensorData instance gets
created and populated with relevant data.

As a data container, SensorData is essentially the telemetry for the
sensor, since it contains the information we’ll need further
upstream and will eventually be converted into a format that can be
transmitted via one of the protocols I’ll discuss in Part III.

Here’s an example implementation for generateTelemetry():

def generateTelemetry(self) -> SensorData:
  self.latestSensorData = \
    SensorData(typeID = self.typeID, name = self.name)
  
  sensorVal = ConfigConst.DEFAULT_VAL
  
  if self.useRandomizer:
    sensorVal = random.uniform(self.minVal, self.maxVal)
  else:
    sensorVal = \
      self.dataSet.getDataEntry(index = self.dataSetIndex)

    self.latestSensorData.setValue(sensorVal)
    self.dataSetIndex = self.dataSetIndex + 1
    
    lastEntryIndex = self.dataSet.getDataEntryCount() – 1
    
    if self.dataSetIndex >= lastEntryIndex: 
      self.dataSetIndex = 0
        
  return self.latestSensorData

There’s quite a bit going on here, right? As soon as this method is called, a new
SensorData instance is created using self.typeID and self.name (which were set
when this class was initialized) and assigned to the self.latestSensorData variable.

Then the code determines how to generate the sensor value. If the randomizer is
enabled, a new value is generated as a random value between self.minVal and
self.maxVal. That’s pretty straightforward. But if self.dataSet is valid (not None),
self.useRandomizer should be False, as self.dataSet contains all the data to be
used within the simulator.

To extract it, a simple algorithm can be implemented to just grab the next element in
the data set. Once the algorithm reaches the end of the data set entries, it goes back to
the first index and starts all over again.
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Now that the simulated sensor value is known, it can be set as the value for
self.latestSensorData. Done.

Last, you’ll need a simple method to just get that latest value—you can call this
method getTelemetryValue(), which you may remember from the system perfor‐
mance module back in Chapter 2.

In this case, however, it’s going to return the value stored in self.latestSensorData
—unless it hasn’t been created yet. If that’s the case, the implementation can simply
invoke self.generateTelemetry() and then return the value. Here’s one way to
implement this:

def getTelemetryValue(self) -> float:
  if not self.latestSensorData:
    self.generateTelemetry()
  
  return self.latestSensorData.getValue()

And that’s basically it for the BaseSensorSimTask implementation!

Now comes the easy part. In PIOT-CDA-03-003, the actions list three new classes to
implement. The good news is that these are all subclasses of BaseSensorSimTask, and
since this base class will do most of the heavy lifting, the subclasses each merely need
to pass name and typeID into its constructor. Let’s look at the actions in more detail:

• Create (or edit) HumiditySensorSimTask. The module and class name should be
the same and derive from BaseSensorSimTask.

• Create (or edit) PressureSensorSimTask. The module and class name should be
the same and derive from BaseSensorSimTask.

• Create (or edit) TemperatureSensorSimTask. The module and class name should
be the same and derive from BaseSensorSimTask.

Take a look at the implementation of HumiditySensorSimTask:

import programmingtheiot.common.ConfigConst as ConfigConst

from programmingtheiot.cda.sim.BaseSensorSimTask \
  import BaseSensorSimTask
from programmingtheiot.cda.sim.SensorDataGenerator \
  import SensorDataGenerator

class HumiditySensorSimTask(BaseSensorSimTask):
  def __init__(self, dataSet = None):
    super(HumiditySensorSimTask, self).__init__( \
      name = ConfigConst.HUMIDITY_SENSOR_NAME, \
      typeID = ConfigConst.HUMIDITY_SENSOR_TYPE, \
      dataSet = dataSet, \
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      minVal = SensorDataGenerator.LOW_NORMAL_ENV_HUMIDITY, \
      maxVal = SensorDataGenerator.HI_NORMAL_ENV_HUMIDITY)

That’s all there is to it! Now let’s add the other two classes—PressureSensorSimTask

and TemperatureSensorSimTask—but using the correct name, type ID, minVal and
maxVal.

See if you can add them on your own; the guidelines are provided in PIOT-
CDA-03-003.

Time to test these new classes. You’ll see the test cases in the test path under ./
programmingtheiot/part02/unit/sim. Run all the tests in the following test case mod‐
ules: HumiditySensorSimTaskTest, PressureSensorSimTaskTest, and Temperature
SensorSimTaskTest. All unit tests should pass.

Here’s some sample log output from HumiditySensorSimTaskTest when running
within Eclipse using PyUnit:

Finding files... done.
Importing test modules ... done.

2020-11-29 22:50:41,644:HumiditySensorSimTaskTest:INFO:Testing
HumiditySensorSimTask class...
2020-11-29 22:50:41,645:HumiditySensorSimTaskTest:INFO:SensorData:
name=HumiditySensor,timeStamp=20201129T22:50:41,value=40.19161945800801
2020-11-29 22:50:41,645:HumiditySensorSimTaskTest:INFO:Humidity data: 40.191619
----------------------------------------------------------------------
Ran 2 tests in 0.001s

OK

With your sensor simulation infrastructure working, it’s time to move on to simula‐
tion actuation events.

Simulating Actuators
Gathering data is pretty cool. Doing something with the data is even cooler.

Remember that actuators are responsible for triggering some kind of mechanical
action. While the cooler-than-cool path forward is clearly to use the sensor data to do
something tangible, like turning on the A/C or heating system, what you’ll do right
now is to log a message to the console indicating that the action was taken.

Before disappointment sets in, let me assure you that all the actuation functionality
you’re about to build can in fact be used to send real actuation events to real actua‐
tors. I’ll get to this (sort of) in Chapter 4. For now, let’s start building the
infrastructure.

In much the same vein as the simulated sensor functionality, you’ll move up from the
data containers to the next level of simulated actuator functionality, beginning with
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PIOT-CDA-03-004. In this task, you’ll implement BaseActuatorSimTask, which con‐
tains most of the functionality needed to simulate simple actuation events (that result
in log messages). 

BaseActuatorSimTask abstracts  both the “activate” and “deactivate” functions of an
actuator via a single call to updateActuator(ActuatorData).

This is possible because ActuatorData contains a command parameter that can be
used to instruct the actuator to turn on, turn off, rotate, and so on in conjunction
with the activate and deactivate functions mentioned earlier.

Here’s a summary of the actions listed in PIOT-CDA-03-004:

• Create (or edit) the Python module named BaseActuatorSimTask in
the ./programmingtheiot/cda/sim package.

• Create a constructor that includes the parameter’s name, typeID, and simpleName,
and set class-scoped variables to these values.

• Within the constructor, define a class-scoped variable to store the last executed
command—you can call this self.lastKnownCommand.

• Create private methods to handle activation and deactivation of the actuator.
• Create a public method to accept an ActuatorData instance, validate the data

(and type), and use the command to determine whether the activation or deacti‐
vation private method should then be invoked.

Let’s take a look at each one of these steps, starting with the constructor (I’m assum‐
ing the module/class creation bit is well understood):

def __init__(self, \
  name: str = ConfigConst.NOT_SET, \
  typeID: int = ConfigConst.DEFAULT_ACTUATOR_TYPE, \
  simpleName: str = "Actuator"):

Notice the simpleName parameter. This isn’t really necessary; however, it will allow
you to add a customized actuator name that displays nicely on-screen. Why not just
use “name” instead? You can—just remove simpleName as a parameter.

I left simpleName in because this is a simulator, and I like to have additional informa‐
tion within each log message for future debugging. It also shows you one other way to
customize this logic. If you need to add other parameters to suit your own
simulation-environment needs, feel free to do so.

Let’s move on to the next two methods—these are “private,” as denoted by the preced‐
ing underscore character that begins the method name. The first, _activateActua
tor(), is shown in all its glory as follows:

94 | Chapter 3: Data Simulation

https://oreil.ly/RFxWX
https://oreil.ly/RFxWX


def _activateActuator(self, \
  val: float = ConfigConst.DEFAULT_VAL, \
  stateData: str = None) -> int:
  
  msg = "\n*******"
  msg = msg + "\n* O N *"
  msg = msg + "\n*******"
  msg = msg + "\n" + self.simpleName + \
    " VALUE -> " + str(val) + "\n======="
    
  logging.info( \
    "Simulating %s actuator ON: %s", self.name, msg)
  
  return 0

Nothing fancy: the activation functionality just logs some messages on-screen to indi‐
cate the actuator is being enabled.

Notice that the parameters are represented as a float (for the value) and a string (for
the state data, if any). Neither may technically be needed—some actuators need only
an ON (or OFF) to do their job. It makes sense to pass these parameters, however,
since other actuators may need additional parameters as part of any actuation event.

The deactivation functionality is similar. Here’s a look at the implementation:

def _deactivateActuator(self, \
  val: float = ConfigConst.DEFAULT_VAL, \
  stateData: str = None) -> int:

  msg = "\n*******"
  msg = msg + "\n* OFF *"
  msg = msg + "\n*******"
  
  logging.info( \
    "Simulating %s actuator OFF: %s", self.simpleName, msg)
          
  return 0

Almost the same, right? The difference is in the log message, where “ON” is replaced
by “OFF.” Interestingly, the parameters for the method call are the same. So why does
an actuator need a value and/or state data for an OFF command?

Let’s assume there’s a display update associated with the “OFF” command. The mes‐
sage to display as part of the deactivation needs to be passed into the method. In
other cases, a value may be relevant—possibly to serve as the default in case it’s not
preset within the actuator implementation.

What about data validation and the actual update logic? This can be contained within
the updateActuator() method. This is the public interface to the actuator simulation
task. It accepts a single ActuatorData parameter and returns the same (albeit a new
instance of one).
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You may be wondering why the activation and deactivation methods don’t simply
accept an ActuatorData instance as well. You can certainly change this if you’d like;
however, this approach allows your base class implementation of updateActuator()
to handle the generic ActuatorData parsing, so your activation and deactivation
methods need only focus on processing values and taking the action. These two func‐
tions can be abstracted to subclasses at a later time, leaving the core ActuatorData
processing in a single place: the base class.

Notice that the check on data is to ensure it’s not “None” and also to confirm that
typeID matches the actuator task’s typeID. This should be handled for us in the class
that calls this method (as you’ll soon see), but it’s best to validate here to ensure no
error is made prior to the call.

One other type of validation you could do here (or in the activation or deactivation
methods), which isn’t explicitly called out, is boundary checking on the value. Since
this implementation is only logging messages, it doesn’t really matter. It will matter,
however, if you’re invoking an emulator or a real actuator. Keep that in mind. Data
validation at each public interface (and also within many private functions) is criti‐
cally important. It may seem like overkill, but it can mean the difference between log‐
ging a warning or an error and passing on a dangerous setting to an actuator.

In the example that follows, I’ll demonstrate some very basic data validation within
updateActuator(), including a check to ensure we’re not acting on a repeated com‐
mand; however, I strongly suggest you incorporate additional validation to accom‐
modate your specific needs:

if data and self.typeID == data.getTypeID():
  statusCode = ConfigConst.DEFAULT_STATUS
  
  # check if the new command is repeated - if so, ignore
  curCommand = data.getCommand()
  
  if curCommand == self.lastKnownCommand:
    logging.debug( \
      "Ignoring repeated actuator command: %s", \
      str(curCommand))
  else:
    if curCommand == ConfigConst.COMMAND_ON:
      logging.info("Activating actuator...")
      statusCode = \
        self._activateActuator( \
          val = data.getValue(), \
          stateData = data.getStateData())
      
    elif curCommand == ConfigConst.COMMAND_OFF:
      logging.info("Deactivating actuator...")
      statusCode = \
        self._deactivateActuator( \
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          val = data.getValue(), \
          stateData = data.getStateData())
      
    else:
      logging.warning( \
        "Unknown actuator command: %s", str(curCommand))
      statusCode = -1
    
    # update the last known actuator command
    self.lastKnownCommand = curCommand
    
    # create the ActuatorData response from the command
    actuatorResponse = ActuatorData()
    actuatorResponse.updateData(data)
    actuatorResponse.setStatusCode(statusCode)
    actuatorResponse.setAsResponse()
    
    return actuatorResponse

return None

Let’s see what we have here:

• Simple data validation: Check.
• Command validation: Check.
• Invocation of the correct actuator method: Check.
• Creation of a response: Check.

Clearly, the updateActuator() method serves as the orchestrator for all internal calls.
As long as the “rules” for this orchestration and sequence of events remain the same,
the base class can manage it all, even if you handle the specific activation and deacti‐
vation within a subclass.

That last step—creating a response—can take many forms. I’ve opted to use an Actua
torData instance with a flag indicating that it’s a response to an actuation command.
This allows me to set the end value and resultant state data if I choose and avoids cre‐
ating yet another data container class that would contain the same information as
ActuatorData, but with a single Boolean flag as the delta.

OK, almost done with actuation tasks. You’ll need to add just a couple more classes
in, and they’ll be as simple as their corresponding sensor task classes.

In PIOT-CDA-03-005, the actions list two new classes to implement: HumidifierAc
tuatorSimTask and HvacActuatorSimTask. You can certainly add more classes later,
but for now let’s focus on these two. They are similar to their sensor simulator coun‐
terparts, and both are subclasses of a common base class named BaseActuatorSim
Task. Like BaseSensorSimTask, they will do most of the heavy lifting. The two
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subclasses each need merely to pass their name and type ID into its constructor. Let’s
look at the actions in more detail:

• Create (or edit) HumidifierActuatorSimTask. The module and class name
should be the same and derive from BaseActuatorSimTask.

• Create (or edit) HvacActuatorSimTask. The module and class name should be
the same and derive from BaseActuatorSimTask. 

Again, both implementations will be very simple. Here’s the HumidifierActuatorSim
Task:

import programmingtheiot.common.ConfigConst as ConfigConst

from programmingtheiot.data.ActuatorData \
  import ActuatorData
from programmingtheiot.cda.sim.BaseActuatorSimTask \
  import BaseActuatorSimTask

class HumidifierActuatorSimTask(BaseActuatorSimTask):
  def __init__(self):
    super(HumidifierActuatorSimTask, self).__init__( \
      name = ConfigConst.HUMIDIFIER_ACTUATOR_NAME, \
      typeID = ConfigConst.HUMIDIFIER_ACTUATOR_TYPE, \
      simpleName = "HUMIDIFIER")

Let’s add the other class now—HvacActuatorSimTask—but using the correct name
and type ID. You can add this final actuator sim task on your own, following the
guidelines provided in PIOT-CDA-03-005.

With the actuator sim tasks implemented, let’s test them out (the test cases are in the
test path under ./programmingtheiot/part02/unit/sim). Run all the tests in the test case
modules HumidifierActuatorSimTaskTest and HvacActuatorSimTaskTest. All unit
tests should pass.

Here’s some sample log output from HumidifierActuatorSimTaskTest when run‐
ning within Eclipse using PyUnit:

Finding files... done.
Importing test modules ... done.

2020-12-28 11:02:01,478:HumidifierActuatorSimTaskTest:INFO:Testing
HumidifierActuatorSimTask class...
.
.
.
2020-12-28 11:02:01,481:BaseActuatorSimTask:INFO:Activating actuator...
2020-12-28 11:02:01,481:BaseActuatorSimTask:INFO:Simulating HumidifierActuator
actuator ON: 
*******
* O N *
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*******
HumidifierActuator VALUE -> 18.2
=======
.
.
.
2020-12-28 11:02:01,481:BaseActuatorSimTask:INFO:Deactivating actuator...
2020-12-28 11:02:01,482:BaseActuatorSimTask:INFO:Simulating HumidifierActuator
actuator OFF: 
*******
* OFF *
*******
2020-12-28 11:02:01,482:HumidifierActuatorSimTaskTest:INFO:ActuatorData: name=Not
Set,typeID=2,timeStamp=2020-12-
28T16:02:01.482102+00:00,statusCode=0,hasError=False,locationID=constraineddevice
001,elevation=0.0,latitude=0.0,longitude=0.0,command=0,stateData=None,value=21.4,
isResponse=True
----------------------------------------------------------------------
Ran 1 test in 0.004s

OK

Obviously, these tests are very simple, as are all the simulator classes I’ve been discus‐
sing. Ultimately, the objective is to build a system that permits both flexibility and
simplicity via a modular architecture. The abstractions you just completed are impor‐
tant parts of this design approach and provide the basis to support the three core
principles discussed earlier: Measure, Model, and Manage, with an initial focus on
measure.

In Chapter 4, you’ll build emulators that simulate sensing function‐
ality and allow you to trigger one or more actuation events should
the simulated sensors generate data that requires your device to
take action. The exercises in this chapter will enable you to build
additional capability into your Edge Tier environment.

With basic (and simulated) measurement capability now in place, let’s take a look at
the management aspects of processing this data. Eventually, much of this will be in
the hands of the GDA and later as part of your cloud service infrastructure. For now,
you’ll build a simple test function within your CDA that looks for a simple threshold
crossing and send an actuation event to the simulated actuator. Once this is function‐
ing properly, you’ll see how the infrastructure you’ve developed will be an important
part of the next set of exercises.

First, though, let’s put some basic functionality in place to use these simulators.
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Connecting Simulated Sensors with the Sensor Adapter Manager
Remember the SystemPerformanceManager class you created in Chapter 2? It man‐
ages the initialization and data collection activities of the system performance tasks.
You’ll create similar functionality for your sensor and actuator simulators and see
how each manager can also be used to control the emulator functionality you’ll build
in Chapter 4.

Let’s start with the simulator manager first. PIOT-CDA-03-006 describes the SensorA
dapterManager class, which you’ll eventually use to manage the initialization of all
sensor tasks, simulated and emulated.

Take a look at the key activities for this module:

• Create (or rather edit) the SensorAdapterManager class in the ./src/main/python/
programmingtheiot/cda/system package.

• Define a constructor that accepts parameters for choosing between simulated
data and emulated data and poll cycle rate. Initialize a scheduler to retrieve data
from the sensor tasks at the poll cycle rate interval.

• Initialize the sensor simulator (or emulator) tasks. If using simulation, create a
data model for each using SensorDataGenerator (or your own model if you’d
prefer).

• Add functions to start and stop the manager and trigger any necessary callbacks
to an external data message listener.

On the surface, this seems relatively straightforward. There are some interesting
design decisions to consider: for example, which component owns the data genera‐
tion logic? I’ll tackle this question when I walk through one implementation
approach for the third bullet.

But first things first—let’s create the SensorAdapterManager class. If you’re using the
sample python-components code, you’ll notice it already exists, although it doesn’t
have much in the way of implementation detail:

import logging

import programmingtheiot.common.ConfigConst as ConfigConst

from programmingtheiot.common.ConfigUtil import ConfigUtil
from programmingtheiot.common.IDataMessageListener \
  import IDataMessageListener

from programmingtheiot.cda.sim.SensorDataGenerator \
  import SensorDataGenerator
from programmingtheiot.cda.sim.HumiditySensorSimTask \
  import HumiditySensorSimTask
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from programmingtheiot.cda.sim.TemperatureSensorSimTask \
  import TemperatureSensorSimTask
from programmingtheiot.cda.sim.PressureSensorSimTask \
  import PressureSensorSimTask

from apscheduler.schedulers.background import BackgroundScheduler

class SensorAdapterManager(object):

There are quite a few import statements here! Logging is an important part of both
debugging and monitoring, so the Python logging infrastructure is imported, along
with the utility classes ConfigConst and ConfigUtil. You can use these to incorpo‐
rate configurable floor and ceiling values, as well as any simple threshold crossing
parameters that are relevant for the CDA.

Other imports include the sensor simulator tasks themselves, along with the Sensor
DataGenerator, which will collectively be used to generate the simulated sensor data
that your CDA will utilize (and eventually send to the GDA and cloud service).

One final import is from a library called APScheduler, which I use in my solution set
for scheduling the calls to each simulator. You could create your own scheduling
mechanism, but you may find it easier to start with a library designed for this pur‐
pose.

With the imports in place and the class declared, create the SensorAdapterManager
constructor and initialize the configuration properties and class-scoped variables.
Let’s take a look at a sample implementation:

def __init__(self):
  configUtil = ConfigUtil()
  
  self.pollRate = \
    configUtil.getInteger( \
      section = ConfigConst.CONSTRAINED_DEVICE, \
      key = ConfigConst.POLL_CYCLES_KEY, \
      defaultVal = ConfigConst.DEFAULT_POLL_CYCLES)
  
  self.useEmulator = \
    configUtil.getBoolean( \
      section = ConfigConst.CONSTRAINED_DEVICE, \
      key = ConfigConst.ENABLE_EMULATOR_KEY)
    
  self.locationID = \
    configUtil.getProperty( \
      section = ConfigConst.CONSTRAINED_DEVICE, \
      key = ConfigConst.DEVICE_LOCATION_ID_KEY, \
      defaultVal = ConfigConst.NOT_SET)
    
  if pollRate <= 0:
    self.pollRate = ConfigConst.DEFAULT_POLL_CYCLES
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  self.scheduler = BackgroundScheduler()
  self.scheduler.add_job( \
    self.handleTelemetry, \
    'interval', \
    seconds = self.pollRate)
    
  self.dataMsgListener = None

I’ll cover the first few lines of code in the next paragraph. The last line of code refer‐
encing the self.dataMsgListener instance will eventually be set to the class instance
that implements IDataMessageListener. It will be used as the callback container for
passing relevant messages from SensorAdapterManager to another class you’ll soon
create, named DeviceDataManager. For now, set it to “None”—you’ll update it later in
the code base.

Going back to the beginning of the constructor, notice the use of ConfigUtil, which
will be the primary interface into the configuration file discussed within the introduc‐
tion to this chapter. Loading data from the configuration is relatively straightforward,
since ConfigUtil does all the heavy lifting. You simply need to pass in the configura‐
tion section, the name of the key, and—optionally—a default value (if the section
and/or key doesn’t exist).

Notice the pollRate parameter initialization code. The value is retrieved from the
ConfigUtil (which pulls it from the ConfigConst.CONSTRAINED_DEVICE section). Con
figConst.DEFAULT_POLL_CYCLES will be used as the default should the key (or sec‐
tion) not exist.

However, that’s not quite good enough: the value still requires validation to ensure the
poll rate isn’t a negative value, or even “0.” While “–1” and “0” are valid integer values,
neither is useful as a poll rate. Basic validation is paramount.

You’ll see how convenient it can be to use a configuration file to
provide basic system and application settings, but it also increases
the need for validation. A mistyped configuration entry can cause
erroneous data, negatively affect a system’s performance, or worse.
Internally validating configuration settings and data values in gen‐
eral is critical to designing and implementing an effective system.

The next configuration parameter—enableEmulator—is a simple boolean that
doesn’t require much in the way of validation: it’s either True or False. Until we get
into Chapter 4, it will be False. Be sure to reflect this in PiotConfig.props, within the
ConstrainedDevice section, as follows:

enableEmulator = False
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The last configuration parameter, locationID, will be applied to each SensorData
instance generated and processed within the SensorAdapterManager. This will be
useful later on if you need to handle data from multiple devices, since it provides a
convenient and user-readable way to align a SensorData instance to a specific device.

By default, the configuration file uses “constraineddevice001” for this value; keep it as
is for now, since I’ll refer to it in Part III. That said, be sure to check if it’s a valid text
string and set it accordingly if it can’t be loaded from the configuration file.

With the poll rate and other configuration parameters set, you can now initialize the
scheduler. Assuming you’re following the code pattern listed previously (using
APScheduler), create an instance of BackgroundScheduler and configure it by adding
a single job that will call the soon-to-be-created self.handleTelemetry function
with a poll rate of self.pollRate seconds as the interval:

self.scheduler = BackgroundScheduler()
self.scheduler.add_job( \
  self.handleTelemetry, 'interval', seconds = self.pollRate)

In the preceding example, I’m using the interval scheduler,
although the library supports other types as well. You can find
additional APScheduler examples at https://github.com/agronholm/
apscheduler.

The second step within the constructor of SensorAdapterManager is to initialize the
sensor simulator tasks. I’ll walk through the initialization for TemperatureSensorSim
Task, and you can implement the others on your own (see PIOT-CDA-03-006):

if not self.useEmulator:
  tempFloor = \
    configUtil.getFloat( \
      section = ConfigConst.CONSTRAINED_DEVICE, \
      key = ConfigConst.TEMP_SIM_FLOOR_KEY, \
      defaultVal = \
      SensorDataGenerator.LOW_NORMAL_INDOOR_TEMP)

  tempCeiling = \
    configUtil.getFloat( \
      section = ConfigConst.CONSTRAINED_DEVICE, \
      key = ConfigConst.TEMP_SIM_CEILING_KEY, \
      defaultVal = \
        SensorDataGenerator.HI_NORMAL_INDOOR_TEMP)
  
  tempData = \
    self.dataGenerator.generateDailyIndoorTemperatureDataSet( \
      minValue = tempFloor, \
      maxValue = tempCeiling, \
      useSeconds = False)
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  self.tempAdapter = \
    TemperatureSensorSimTask(dataSet = tempData)

There’s quite a bit going on in this code segment, so let’s break it down.

The instance of ConfigUtil allows you to retrieve the floor and ceiling values for the
humidity sensor simulation, as well as any other sensor simulation data sets. The data
generator needs these to generate a reasonable range—from floor to ceiling—for each
data set it produces.

Next, create an instance of SensorDataGenerator, which will be used to generate a
time-based data set of humidity data with the floor and ceiling values as parameters.

Following your SensorDataGenerator instance creation code, create an instance of
TemperatureSensorSimTask and pass to it a reference to the data set you just gener‐
ated using SensorDataGenerator. You can also use your own or even let the simula‐
tor task generate a data set internally.

I’ve chosen to generate the simulated data set within SensorAdap
terManager, largely because it gives me direct control over not just
one sensor simulator (or emulator) task but all of them. This cen‐
tralized approach allows my implementation to define sensor gen‐
eration logic in a single place, with one set of related dependencies
(such as SensorDataGenerator). Feel free to adjust the design to
meet your specific needs. This is one of many approaches that
could work and yield similar results.

The final step in creating the initial version of SensorDataGenerator is to implement
the remaining methods that will start and stop the manager, handle telemetry collec‐
tion via the scheduler, and invoke the callback functions defined within the
self.dataMsgListener instance.

Let’s work backward. We’ll first create a method to set the self.dataMsgListener. It
will look similar to the following:

def setDataMessageListener( \
  self, \
  listener: IDataMessageListener):
  
  if listener:
    self.dataMsgListener = listener

That’s about as easy as it gets. Notice that the listener is of type IDataMessageLis
tener, which is already defined in the sample source code contained within the
python-components repository. It’s not really an interface, as you’d expect in Java—it’s
more of a concrete class with method declarations that simply pass. Stylistically, how‐
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ever, it’s a good idea to think of it as an interface contract, since it will be the primary
mechanism for sending data from this manager to other components within the
CDA.

Next, create the handleTelemetry() function. This will be just as simple: it will dele‐
gate to another private method that will handle polling each sensor and passing its
data to the self.dataMsgListener callback.

The following code sample assumes you’ve implemented the logic
to instantiate self.humidityAdapter and self.pressureAdapter
within the constructor:

def handleTelemetry(self):
  humidityData = self.humidityAdapter.generateTelemetry()
  pressureData = self.pressureAdapter.generateTelemetry()
  tempData     = self.tempAdapter.generateTelemetry()
  
  humidityData.setLocationID(self.locationID)
  pressureData.setLocationID(self.locationID)
  tempData.setLocationID(self.locationID)
  
  logging.info( \
    'Generated humidity data: ' + str(humidityData))
  logging.info( \
    'Generated pressure data: ' + str(pressureData))
  logging.info('Generated temp data: ' + str(tempData))
  
  if self.dataMsgListener:
    self.dataMsgListener.handleSensorMessage(humidityData)
    self.dataMsgListener.handleSensorMessage(pressureData)
    self.dataMsgListener.handleSensorMessage(tempData)

Recall the generateTelemetry() function you created within each sensor adapter
task. It produces a SensorData instance that you can now modify by setting the loca‐
tionID, and other properties if needed, such as longitude, latitude, and elevation.
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IoT data is often time-bounded, so it’s generally referred to as time
series data (in most cases). The source of the data, including its
location, should also be included. One way to capture it is via an ID
value, which can either be mapped to location coordinates or
embellish the location data already provided. The locationID value
represents this user-friendly label and will be adequate for the tests
you’ll execute in this book. For additional granularity, you can store
the device latitude, longitude, and elevation within the configura‐
tion file for each device application. Simply use ConfigUtil to
retrieve each value as a float (which should provide sufficient coor‐
dinate detail for simple IoT environments) and then set the values
within each SensorData instance using their respective setter
methods.

Finally, the startManager() and stopManager() functions need to be implemented.
These are very straightforward, so let’s take a quick look and then move on to testing:

def startManager(self):
  logging.info('Started SensorAdapterManager.')
  
  if not self.scheduler.running:
    self.scheduler.start()
  else:
    logging.warning( \
      'SensorAdapterManager scheduler already started.')

def stopManager(self):
  logging.info('Stopped SensorAdapterManager.')
  
  try:
    self.scheduler.shutdown()
  except:
    logging.warning( \
      'SensorAdapterManager scheduler already stopped.')

Let’s test your implementation to ensure it delivers the expected results. Testing the
SensorAdapterManager (and the ActuatorAdapterManager, which is next) is a bit
tricky, as there aren’t any unit tests that provide any useful output. You’ll need to test
manually, using a simple test harness that’s already part of the python-components
code base.

You’ll see the SensorAdapterManagerTest within the ./src/test/python/program‐
mingtheiot/part02/integration/system path. Before you run the test, make sure the ena
bleEmulator = False key/value pair is set within the configuration file (./config/
PiotConfig.props).

The output will be a bit lengthy, and by default, the test will take about a minute to
run. Assuming you added logging in the correct places, the key things to look for are
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(a) a successful start (and eventual stop) of SensorAdapterManagerTest, and (b) that
the SensorData is generated from the three simulator tasks (humidity, pressure, and
temperature). Let’s take a look:

Finding files... done.
Importing test modules ... done.

2020-12-28 21:16:12,936:SensorAdapterManagerTest:INFO:Testing SensorAdapterManager
class...
2020-12-28 21:16:12,936:ConfigUtil:INFO:Loading config:
../../../../../../../config/PiotConfig.props
.
.
.
2020-12-28 21:16:13,034:SensorAdapterManager:INFO:Started SensorAdapterManager.
2020-12-28 21:16:13,036:base:INFO:Added job "SensorAdapterManager.handleTelemetry"
to job store "default"
2020-12-28 21:16:13,036:base:INFO:Scheduler started
2020-12-28 21:16:13,037:base:DEBUG:Looking for jobs to run
2020-12-28 21:16:13,037:base:DEBUG:Next wakeup is due at 2020-12-28
21:16:43.032124-05:00 (in 29.995003 seconds)
.
.
.
2020-12-28 21:17:13,037:base:INFO:Running job "SensorAdapterManager.handleTelemetry
(trigger: interval[0:00:30], next run at: 2020-12-28 21:17:43 EST)" (scheduled at
2020-12-28 21:17:13.032124-05:00)
2020-12-28 21:17:13,038:SensorAdapterManager:INFO:Generated humidity data:
name=HumiditySensor,typeID=1,timeStamp=2020-12-
29T02:17:13.037902+00:00,statusCode=0,hasError=False,locationID=constraineddevice00
1,elevation=0.0,latitude=0.0,longitude=0.0,value=35.16090174436236
2020-12-28 21:17:13,038:SensorAdapterManager:INFO:Generated pressure data:
name=PressureSensor,typeID=2,timeStamp=2020-12-
29T02:17:13.037973+00:00,statusCode=0,hasError=False,locationID=constraineddevice00
1,elevation=0.0,latitude=0.0,longitude=0.0,value=1001.786134547049
2020-12-28 21:17:13,038:SensorAdapterManager:INFO:Generated temp data:
name=TempSensor,typeID=3,timeStamp=2020-12-
29T02:17:13.038030+00:00,statusCode=0,hasError=False,locationID=constraineddevice00
1,elevation=0.0,latitude=0.0,longitude=0.0,value=20.128837377948486
.
.
.
2020-12-28 21:17:13,039:SensorAdapterManager:INFO:Stopped SensorAdapterManager.
----------------------------------------------------------------------
Ran 1 test in 60.105s

OK

You can run the test for much longer than 60 seconds if you’d like; however, a couple
of scheduled iterations that generate SensorData output for each task will be suffi‐
cient for now.
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Looking at the log file, the start and stop messages are logged (near the top and bot‐
tom, respectively), and the SensorData is generated and logged within SensorAdap
terManager for each of the sensor tasks: humidity, pressure, and temperature.

Chapter 4 will add some additional functionality using emulator tasks. For now, let’s
move on to the ActuatorAdapterManager.

Connecting Simulated Actuators with the Actuator Adapter Manager
ActuatorAdapterManager, defined in PIOT-CDA-03-007, has some similarities to
SensorAdapterManager. Key implementation activities include the following:

• Within the constructor, set the self.useEmulator and self.locationID class-
scoped variables by retrieving their values from the configuration file using Con
figUtil, and define the self.dataMsgListener class-scoped variable for later
use. Create an instance of each actuator simulator task—specifically, Humidifier
ActuatorSimTask and HvacActuatorSimTask. (Chapter 4 will also add emulator
functionality to the constructor, but that’s not needed right now.)

• Create a setter for self.dataMsgListener using the same code you used for Sen
sorAdapterManager. This will be needed to handle actuator command responses,
which will be important when you get to Parts III and IV.

• Implement the sendActuatorCommand() function, which accepts an Actuator
Data instance as a parameter, performs validation on the request, and sends it to
the appropriate actuator task.

The first two activities are relatively straightforward and mimic much of what you’ve
already implemented in SensorAdapterManager. The sendActuatorCommand() func‐
tion is a bit more involved, however, so let’s look at a sample implementation:

def sendActuatorCommand(self, data: ActuatorData) -> bool:
  if data and not data.isResponseFlagEnabled():
    if data.getLocationID() is self.locationID:
      logging.info( \
        'Processing actuator command for loc ID %s.', \
        str(data.getLocationID()))
                     
      aType = data.getTypeID()
      responseData = None

      if aType == ConfigConst.HUMIDIFIER_ACTUATOR_TYPE:
        responseData = self.humidifierEmulator.updateActuator(data)

      elif aType == ConfigConst.HVAC_ACTUATOR_TYPE:
        responseData = self.hvacEmulator.updateActuator(data)

      elif aType == ConfigConst.LED_DISPLAY_ACTUATOR_TYPE:
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        responseData = self.ledDisplayEmulator.updateActuator(data)

      else:
        logging.warning( \
          'No valid actuator type: %s', data.getTypeID())

      if responseData:
        if self.dataMsgListener:
          self.dataMsgListener.handleActuatorCommandResponse(responseData)
          
        return True
    else:
      logging.warning( \
        'Invalid loc ID match: %s', str(self.locationID))
  else:
    logging.warning( \
      'Invalid actuator msg. Response or null. Ignoring.')

  return False

Much like SensorAdapterManager’s handleTelemetry() function, there are a few
things to do. Let’s break down the code and ensure it aligns with the activities set
forth in the previous list.

First, and perhaps most important, is parameter validation. Check if the Actuator
Data instance is valid and ensure it’s an incoming actuation event (that is, the isRes
ponse flag is False). If for some reason a response ActuatorData is passed back into
this function, log a message and immediately return False.

You’ll also want to match the ActuatorData’s locationID with the local self.locatio
nID to ensure that any received ActuatorData is truly intended for this application
and not for another one.

Proper data validation and message verification are crucial parts of
an appropriate security strategy for any application that processes
data from both internal components and external systems.
Although these details are beyond the scope of this book, I’ll tackle
some very basic data validation strategies throughout. For a more
thorough discussion of data and cybersecurity for applications and
the IoT, see Sean Smith’s book The Internet of Risky Things
(O’Reilly).

The next validation step is to check the ActuatorData typeID against the list of
known actuator simulators and, if there’s a match, pass the ActuatorData instance to
the appropriate actuator task. Of course, none of these steps will prevent an invalid
actuator command being passed into the function, but they do serve as initial steps to
mitigate the chances that an inadvertent request will be processed. Ultimately, the
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actuator adapter itself will need to verify that the command, value, and state data are
legitimate before taking any action.

As you can see in the sample code, the typeID is used to look up preconfigured
“consts” (set within ConfigConst) that use a simple integer as the lookup value to
match against an existing actuator type and task instance. There are other ways to do
this, each with more complexity and maintenance; this simple approach will work for
our purposes.

You’ll see the ActuatorAdapterManagerTest within the same path as the SensorAdap
ter ManagerTest (./src/test/python/programmingtheiot/part02/integration/system).
Again, before you run the test, make sure the enableEmulator = False key/value
pair is set within the configuration file (./config/PiotConfig.props).

The output will be a bit lengthy, and by default, the test will take about a minute to
run. Assuming you added logging in the correct places, the key things to look for are
(a) a successful start (and eventual stop) of SensorAdapterManagerTest, and (b) that
the SensorData is generated from the three simulator tasks (humidity, pressure, and
temperature). Let’s take a look:

Finding files... done.
Importing test modules ... done.

2020-12-28 21:38:37,361:ActuatorAdapterManagerTest:INFO:Testing ActuatorAdapter
Manager class...
2020-12-28 21:38:37,361:ConfigUtil:INFO:Loading config: ../../../../../../../
config/PiotConfig.props
.
.
.
2020-12-28 21:38:37,363:ActuatorAdapterManager:INFO:Actuator command received for
location ID constraineddevice001. Processing...
.
.
.
2020-12-28 21:38:37,363:BaseActuatorSimTask:INFO:Activating actuator...
2020-12-28 21:38:37,364:BaseActuatorSimTask:INFO:Simulating HvacActuator actuator ON: 
*******
* O N *
*******
HvacActuator VALUE -> 22.5
=======
2020-12-28 21:38:37,364:DefaultDataMessageListener:INFO:Actuator Command: 1
2020-12-28 21:38:37,364:ActuatorAdapterManager:INFO:Actuator command received for
location ID constraineddevice001. Processing...
2020-12-28 21:38:37,365:BaseActuatorSimTask:INFO:Deactivating actuator...
2020-12-28 21:38:37,365:BaseActuatorSimTask:INFO:Simulating HvacActuator actuator
OFF: 
*******
* OFF *
*******
2020-12-28 21:38:37,365:DefaultDataMessageListener:INFO:Actuator Command: 0
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----------------------------------------------------------------------
Ran 2 tests in 0.004s

OK

Since there’s no scheduled activity with this test, you can let it run its course. You’ll
see ON and OFF messages for all actuators that you’ve enabled within ActuatorAdap
terManager, assuming the code was implemented correctly. (I’m showing only the
HvacActuatorSimTask output here to provide some sample output for you to com‐
pare with your own.)

The next piece of the CDA puzzle is creating and integrating the DeviceDataManager,
which serves as the orchestration engine. It will process and eventually transmit the
sensor data generated by the CDA and manage any incoming (or internal) actuation
events by sending them to the ActuatorAdapterManager.

Before we go any further, you might want to take a break. Bask in the glory of getting
this far! Your sensor and actuator simulators are working, which is a big step in build‐
ing your end-to-end IoT solution.

Create and Integrate the Device Data Manager
This class becomes the central focus of the CDA (there’s also one within the GDA)
because it handles all data collection, actuation, and redirection complexities. It’s also
responsible for directing the communications with the GDA, so we’ll use it to facili‐
tate data management within the CDA in many upcoming exercises.

Look back to Figure 3-3 for just a moment. Here DeviceDataManager actually replaces
the SystemPerformanceManager and becomes the primary interface with Constrai
nedDeviceApp. The SystemPerformanceManager certainly isn’t going away—it’s
simply going to be called by DeviceDataManager instead, just like SensorAdapterMan
ager and ActuatorAdapterManager.

This updated functionality is captured within the key actions called out in PIOT-
CDA-03-008, summarized as follows:

• Create the DeviceDataManager class, using IDataMessageListener as the base
class. Import all relevant classes, including SystemPerformanceManager, SensorA
dapterManager, and ActuatorAdapterManager, and instance these classes within
the constructor.

• Create the startManager() and stopManager() functions. These invoke the like-
named functions on SystemPerformanceManager and SensorAdapterManager.
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• Implement the IDataMessageListener-defined methods and create separate pri‐
vate functions to handle the processing complexity these callback methods might
require now or in future exercises.

These first two activities follow the same pattern you’ve grown accustomed to with
SystemPerformanceManager, SensorAdapterManager, and ActuatorAdapterManager.

Here’s a quick look at how you might want to create your constructor for DeviceData
Manager:

def __init__(self):
  self.configUtil = ConfigUtil()
  
  self.sysPerfMgr = SystemPerformanceManager()
  self.sysPerfMgr.setDataMessageListener(self)
  
  self.sensorAdapterMgr = SensorAdapterManager()
  self.sensorAdapterMgr.setDataMessageListener(self)
  
  self.actuatorAdapterMgr = ActuatorAdapterManager()
  self.actuatorAdapterMgr.setDataMessageListener(self)
  
  self.enableHandleTempChangeOnDevice = \
    self.configUtil.getBoolean( \
      section = ConfigConst.CONSTRAINED_DEVICE, \
      key = \
        ConfigConst.ENABLE_HANDLE_TEMP_CHANGE_ON_DEVICE_KEY)

  self.triggerHvacTempFloor = \
    self.configUtil.getFloat( \
      section = ConfigConst.CONSTRAINED_DEVICE, \
      key = ConfigConst.TRIGGER_HVAC_TEMP_FLOOR_KEY)
  
  self.triggerHvacTempCeiling = \
    self.configUtil.getFloat( \
      section = ConfigConst.CONSTRAINED_DEVICE, \
      key = ConfigConst.TRIGGER_HVAC_TEMP_CEILING_KEY)

Unpacking the logic a bit, you’ll see the creation of the manager classes I’ve been dis‐
cussing: SystemPerformanceManager, SensorAdapterManager, and ActuatorAdapter
Manager. You may recall that each of these classes also implements the
setDataMessageListener(IDataMessageListener) function, which is called here in
the constructor with a reference to “self,” or DeviceDataManager, as the IDataMessa
geListener instance. DeviceDataManager becomes the message orchestration engine
—it will be used to handle all callbacks from these three classes, as well as the com‐
munications infrastructure that you’ll build in Part III.
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Implementing startManager() and stopManager()is easier: just invoke these func‐
tions within the relevant class (SystemPerformanceManager and SensorAdapterMan
ager), as follows:

def startManager(self):
  logging.info("Started DeviceDataManager.")
  
  self.sysPerfMgr.startManager()
  self.sensorAdapterMgr.startManager()

def stopManager(self):
  logging.info("Stopped DeviceDataManager.")
  
  self.sysPerfMgr.stopManager()
  self.sensorAdapterMgr.stopManager()

Finally, it’s time to implement the IDataMessageListener callbacks. I’m using the
word callback to define these functions, but they’re just, well, regular functions.
SystemPerformanceManager, SensorAdapterManager, and ActuatorAdapterManager
will invoke them when they have something to pass back to DeviceDataManager.

IDataMessageListener defines the contract that DeviceDataManager will use in the
form of these functions, and any class that has a reference to an instance of Device
DataManager “knows” it can call any of those functions on the instance.

Again, in Python, the implementation I’m using is technically just a base class, not an
interface per se. The Java implementation of the same name in Chapter 5 will use a
real interface, so the design pattern introduced here will probably make more sense at
that time.

What are these functions exactly? Each one serves its own purpose, which should be
somewhat obvious from its name; however, they also serve a common goal—to move
sensor or actuator data between components within the CDA and between the CDA
and the GDA.

Here’s the list of callback functions that you’ll implement within DeviceDataManager,
with their basic signatures defined in a language-neutral manner:

handleActuatorCommandMessage(ActuatorData)

Processes an incoming ActuatorData message and passes it to the ActuatorAdap
terManager. This could be called internally or in response to a message received
from the GDA (via the communications components, which will be explored in
Part III).

handleActuatorCommandResponse(ActuatorData)

Processes the response to an incoming ActuatorData message (usually called by
ActuatorAdapterManager in response to handling the actuator request); will also
pass the response back up to the GDA.
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handleSensorMessage(SensorData)

Processes an incoming SensorData message (usually called by the SensorAdap
terManager in response to the sensor task polling scheduler). This will serve two
purposes: analyzing the data to determine whether an immediate action needs to
be taken (such as turning the HVAC on or off if the temperature boundary is
reached), and passing the sensor data back up to the GDA.

handleIncomingMessage(ResourceNameEnum, String)

Processes an incoming string-based payload (which should always be in JSON
format—more about this in Chapter 5). This will usually be invoked from the
communications components on receipt of a message from the GDA. Once the
message is validated and reconstituted into its object form, it will then be passed
to the appropriate handler function—for example, handleActuatorCommandMes
sage(). You won’t do much more with this callback function until Chapter 10,
when you’ll see how the integration between the CDA and the GDA comes to
light.

handleSystemPerformanceMessage(SystemPerformanceData)

Processes an incoming SystemPerformanceData message (usually called by the
SystemPerformanceManager in response to the performance task polling schedu‐
ler.) This will also pass the data back up to the GDA.

Feel free to add other callback functions to suit your needs.
The five listed here are designed to work within the context of
the exercises described throughout the book, but they cer‐
tainly are not exhaustive or comprehensive.

Let’s dig into the implementation by tackling the low-hanging fruit first. For
handleActuatorCommandResponse(ActuatorData), handleIncomingMessage(Resour
ceNameEnum, String), and handleSystemPerformanceMessage(SystemPerformance
Data), you can simply verify that the parameter(s) for each is valid (that is, not None)
and log a debug message indicating the method was called. Until you’ve implemented
the exercises in Part III (which will allow the CDA and GDA to communicate), there’s
really nothing more to be done with these callbacks.

Here are just a few shell implementation examples with embedded comments stating
the work to be done. I’ll leave this implementation work to you!

def handleActuatorCommandResponse( \
  self, data: ActuatorData) -> bool:
  # TODO: validate ‘data’ and log a simple message (DEBUG!)
  return True

def handleIncomingMessage( \
  self, resourceEnum: ResourceNameEnum, msg: str) -> bool:
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  # TODO: validate ‘data’ and log a simple message (DEBUG!)
  return True

def handleSystemPerformanceMessage( \
  self, data: SystemPerformanceData) -> bool:
  # TODO: validate ‘data’ and log a simple message (DEBUG!)
  return True

Don’t worry about the method signature to handleIncomingMessage(ResourceNameE
num, String) just yet—I’ll explain the ResourceNameEnum in more detail once you
get to Chapter 5 and then again in Part III. The code that represents this class is
already provided as part of the python-components repository, so you can leave it as
is for now.

The remaining two callback functions play a particularly important role—one will
process incoming sensor data and determine whether an actuation event needs to
take place within the CDA, and the other will handle the actuation event.

Let’s look at the sensor processing function first. Here’s one way to implement this
function. Keep in mind you’ll still need to address the requirement to handle any
appropriate actuation events locally:

def handleSensorMessage(self, data: SensorData) -> bool:
  if data:
    self._handleSensorDataAnalysis(data)
    
    return True
  else:
    logging.warning("Invalid sensor data. Ignoring.")
    
    return False

This function checks that data is not null and then delegates the work to a “private”
method named _handleSensorDataAnalysis(SensorData). (In Part III, you’ll also
add a method that will convert the data to JSON and send it upstream to the GDA.)

Let’s look at _handleSensorDataAnalysis(SensorData):

def _handleSensorDataAnalysis(self, data: SensorData):
  if self.handleTempChangeOnDevice and \
    data.getTypeID() == ConfigConst.TEMP_SENSOR_TYPE:
    
    ad = \
      ActuatorData(typeID = ConfigConst.HVAC_ACTUATOR_TYPE)
    
    if data.getValue() > self.triggerHvacTempCeiling:
      ad.setCommand(ActuatorData.COMMAND_ON)
      ad.setValue(self.triggerHvacTempCeiling)
    elif data.getValue() < self.triggerHvacTempFloor:
      ad.setCommand(ActuatorData.COMMAND_ON)
      ad.setValue(self.triggerHvacTempFloor)
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    else:
      ad.setCommand(ActuatorData.COMMAND_OFF)
    
    self.handleActuatorCommandMessage(ad)

Remember the ConstrainedDevice section in PiotConfig.props? It lists a handful of
parameters that set floor and ceiling values for temperature, along with a Boolean flag
that indicates whether or not temperature change should be handled on the device.

These properties were loaded in the DeviceDataManager constructor and stored in
the class-scoped variables self.handleTempChangeOnDevice, self.triggerHvacTemp
Floor, and self.triggerHvacTempCeiling. If the sensor data value is above the ceil‐
ing or below the floor, the HVAC will be turned on via a newly instanced
ActuatorData object that gets passed to the handleActuatorCommand(ActuatorData)
function.

This is a very simple mechanism for checking if a value is above or below a particular
mark and triggering an actuation event. It also assumes that the actuator itself knows
whether or not to turn on the heat or the air conditioning. Not very smart, is it?

Or is it? The objective is to handle an actuation event as close as appropriate to the
system that will control the actuation, while also enabling the passing of data
upstream to other systems (like the GDA). This approach provides us with a solution
to this challenge, if a simple and certainly improvable one.

Let’s move on. With the SensorData processing logic now in place, it’s time to look at
that actuation processing functionality alluded to in the previous code and required
as the final callback method necessary to make DeviceDataManager functional.

Here’s a very simple example of the handleActuatorCommandMessage(ActuatorData)
method:

def handleActuatorCommandMessage( \
  self, data: ActuatorData) -> bool:
  if data:
    logging.debug("Processing actuator command.")
    
    self.actuatorAdapterMgr.sendActuatorCommand(data)
    
    return True
else:
    logging.warning("Invalid actuator command.")
    
    return False

It will handle basic data validation (checking that it’s non-null, for instance), log a
simple message indicating it’s doing some work, and then pass the ActuatorData
instance to the ActuatorAdapterManager for processing.

116 | Chapter 3: Data Simulation



Since ActuatorAdapterManager is already written, you’re basically done! But first, it’s
time to test things out.

Check out the DeviceDataManagerNoCommsTest in the ./src/test/python/program‐
mingtheiot/part02/integration/app path, as explained in PIOT-CDA-03-008. Also, you
may want to change the following in the ConstrainedDevice section of your Piot‐
Config.props configuration file to move things along a bit faster:

pollCycleSecs = 5
triggerHvacTempFloor = 19.5
triggerHvacTempCeiling = 20.2

Let the test run its course, examining the log output as it runs. You’ll notice quite a
few log messages, which you can clean up later by removing those that are unneeded
—or ideally, by converting them to debug messages. More importantly, you’ll see the
scheduler processing system performance data as well as simulated sensor data,
including temperature readings. Eventually, you should see one or more actuator
messages triggered that will tell the actuator simulator to adjust the temperature.

Here’s a small snippet of various log output sections depicting this process:
Finding files... done.
.
.
.
2020-12-29 13:43:46,960 - MainThread - root - INFO - Testing DeviceDataManager
class...
.
.
.
2020-12-29 13:43:52,048 - ThreadPoolExecutor-0_0 - root - INFO - Incoming sensor
data received (from sensor manager): name=TempSensor,typeID=3,timeStamp=2020-12-
29T18:43:52.045967+00:00,statusCode=0,hasError=False,locationID=constraineddevice00
1,elevation=0.0,latitude=0.0,longitude=0.0,value=19.924998417268583
2020-12-29 13:43:52,048 - ThreadPoolExecutor-0_0 - root - INFO - Handle temp
change: True - type ID: 3
2020-12-29 13:43:52,048 - ThreadPoolExecutor-0_0 - root - INFO - Processing
actuator command message.
2020-12-29 13:43:52,048 - ThreadPoolExecutor-0_0 - root - INFO - Actuator command
received for location ID constraineddevice001. Processing...
2020-12-29 13:43:52,049 - ThreadPoolExecutor-0_0 - root - DEBUG - New actuator
command is a repeat of current state. Ignoring: 0
.
.
.
2020-12-29 13:44:07,050 - ThreadPoolExecutor-0_0 - root - INFO - Incoming sensor
data received (from sensor manager): name=TempSensor,typeID=3,timeStamp=2020-12-
29T18:44:07.048203+00:00,statusCode=0,hasError=False,locationID=constraineddevice00
1,elevation=0.0,latitude=0.0,longitude=0.0,value=20.1185355927757
2020-12-29 13:44:07,050 - ThreadPoolExecutor-0_0 - root - INFO - Handle temp
change: True - type ID: 3
2020-12-29 13:44:07,051 - ThreadPoolExecutor-0_0 - root - INFO - Processing
actuator command message.
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2020-12-29 13:44:07,051 - ThreadPoolExecutor-0_0 - root - INFO - Actuator command
received for location ID constraineddevice001. Processing...
2020-12-29 13:44:07,051 - ThreadPoolExecutor-0_0 - root - INFO - Activating
actuator...
2020-12-29 13:44:07,051 - ThreadPoolExecutor-0_0 - root - INFO - Simulating
HvacActuator actuator ON: 
*******
* O N *
*******
HvacActuator VALUE -> 20.0
=======
.
.
.

Notice that the logic implemented within DeviceDataManager processes all valid
SensorData. It sends actuation events only if the SensorData is from TemperatureSen
sorSimTask AND if the configuration has handleTempChangeOnDevice = True set.
From there, the ActuatorAdapterManager handles the actuation event and passes it
to TemperatureSensorSimTask, which ignores the command if it’s a duplicate of
what’s already been processed.

If your log output has similar content, congratulations! Your CDA functionality is
really coming together now, with internal message processing and actuation support.
Nicely done!

Let’s connect everything. Remember ConstrainedDeviceApp? It’s been a while since
you had to make any changes to its functionality. PIOT-CDA-03-009 walks through
the process of adding DeviceDataManager to ConstrainedDeviceApp.

The key steps involve replacing the calls to SystemPerformanceManager with the
same calls to DeviceDataManager. It’s a quick update that finally erases the technical
debt introduced in Chapter 2 for the ConstrainedDeviceApp component.

Finally, remember to merge your Lab Module 03 branch into the primary branch as
described in PIOT-CDA-03-100. Once you’ve completed this step, you’re officially
done with this chapter’s exercises!
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Additional Exercises
With the right data model, you can simulate a wide range of difference sensors and
trigger appropriate actuation events based on test scenarios involving threshold
crossings within your CDA. Here are two you may want to consider implementing on
your own.

Hysteresis Management
Create an algorithm that can be used by the SensorAdapterManager module within
the CDA to determine the temperature rise or fall trajectory and determine when,
and for how long, a temperature adjustment should be actuated.

You can implement this for both temperature and humidity readings and use this
algorithm to trigger actuation events for your HVAC and/or humidifier actuator
simulators.

Conclusion
In this chapter, you’ve implemented the bulk of the CDA’s core functionality—well
done! You learned how to create abstractions around sensor and actuator simulators,
generate time-series data related to a given sensor task, and process simple sensor
threshold crossings within the DeviceDataManager orchestration engine, sending ON
and OFF commands to the actuator simulator when appropriate.

The next chapter will expand on the simulation capabilities you’ve just constructed
and use emulated hardware to provide a bit more realism. Chapter 5 follows with a
look at data management functionality and puts in place the basis for CDA to GDA
message passing using JSON translations of the sensor and actuator data you’ve cre‐
ated in this chapter.

Again, great work!
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1 The Sense HAT is a board that can be attached to various Raspberry Pi single-board computer modules via its
40-pin GPIO interface. You can read more about the Sense HAT on the Raspberry Pi website.

CHAPTER 4

Data Emulation

Sensing and Actuation Using a Hardware Emulator

I see, hear, and smell.
Should I transmit a warning?
False alarm. Ignore.

Fundamental concepts: Design and build logical components that plug into your IoT
applications and can interact with the physical world through both real and emulated
sensing and actuation.

Processing sensor data from simulators and generating log output as part of an actua‐
tion event is pretty cool, but wouldn’t it be even cooler to use sliders to adjust the val‐
ues your sensor task is reading? Even better would be the ability to display messages
on a real (or emulated) LED display when an actuation event is triggered, right?

This chapter explores how to set up, configure, and use an emulator that can provide
a virtual LED display, plus temperature, pressure, humidity, and other readings.

What You’ll Learn in This Chapter
Much of this chapter is dedicated to setting up and configuring the Sense-Emu emu‐
lator, which is a virtual Sense HAT1 device you can run on Windows, Mac, or Linux
platforms (although I’ve found it easiest to run on Linux).
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2 If you’re interested in using the Raspberry Pi, see Raspberry Pi Cookbook, Third Edition, by Simon Monk
(O’Reilly).

The Sense HAT is a board that can attach to a Raspberry Pi’s 40-pin
GPIO and provides a variety of sensing capabilities, including
humidity, pressure, and temperature. The LED matrix displays text
or graphics in multiple colors on an 8x8 grid. It also contains a
built-in inertial measurement unit (IMU) and magnetometer to
measure compass readings, x/y/z-axis orientation, and acceleration.
The Sense-Emu emulator provides a virtual instance of the Sense
HAT, which will be the focus of this chapter.

Configuring an IoT device can present you with interesting challenges, and so can
installing and configuring an emulator. I’ll focus on the emulator in this chapter and
assume you’ll be using it for future exercises, but you can certainly opt to use real
hardware, such as a Raspberry Pi, to run your CDA (and GDA).2 Should you decide
to move forward with this deployment strategy, setting up your device so it can work
as both a gateway device and a constrained device is a bit involved and in most cases
will be specific to your device.

If you decide to set up Jenkins 2 to help with CI/CD on your local
system, check out Brent Laster’s book Jenkins 2 Up & Running
(O’Reilly). If you want to run this directly on a Raspberry Pi run‐
ning a Linux-based operating system (such as Raspbian), pay atten‐
tion to the setup and configuration for Linux-based environments. 
While it is outside the scope of this book, you might want to con‐
sider this extra configuration step, as it can help with automating
your development environment.

As a friendly reminder, this chapter focuses exclusively on the CDA, so the code is
written in Python. As with the previous chapters, be sure to follow the steps listed in
PIOT-CDA-04-000 and check out a new branch for this chapter.

Emulating Sensors and Actuators
Sensors read data from a system and cover a wide range of capabilities. For this next
application, you’ll build emulators that simulate sensing functionality and allow you
to trigger one or more actuation events, should the simulated sensors generate data
that requires your device to take action.

Eventually, the determination of this action will lie in the hands of the Gateway
Device App and, perhaps later, the analytics component of your cloud service
infrastructure. For now, you will build a simple test function within your Constrained
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3 You can read more about the Sense HAT board online. If you’re interested in other features of the emulator,
you can review the online documentation and check out the built-in demos located under the emulator GUI’s
File → “Open example” menu.

Device App that looks for a threshold crossing and will use that to send an actuation
event to the simulated actuator. Once this is functioning properly, you’ll see how the
infrastructure you’ve developed will be an important part of the next set of exercises.

Setting Up and Configuring an Emulator
The modularity of the CDA design will allow you to add new emulator functionality
without making too many changes—essentially, you’ll add functionality to the Sensor
AdapterManager and ActuatorAdapterManager classes to support the switch from
simulation to emulation and then add in new emulator tasks for sensing and
actuation.

The emulator tasks for sensing will be derived from BaseSensorSimTask, while those
related to actuation will be derived from BaseActuatorSimTask. Within the manager
classes, the switch between simulation and emulation will be managed within the
constructor of each class.

Before I dig into the exercises and code, let’s explore some of the dependencies to
make the emulator functionality work properly.

The Sense-Emu Sense HAT Emulator
Building emulators can be complicated, and we’re fortunate to have access to a num‐
ber of different tools that support testing and emulating various hardware compo‐
nents useful in IoT Edge Tier processing. One such tool mentioned previously is the
Sense-Emu Sense HAT emulator, which includes a graphical user interface (GUI)
with levers that allow you to emulate the sensor readings from a Sense HAT card.3

The Sense HAT is a board that can be added to a Raspberry Pi
using the 40-pin general-purpose input/output (GPIO) header. 
While a detailed discussion of this capability is beyond the scope of
this book, a quick online search will list numerous resources with
detailed descriptions of the board and its sensors, example projects,
and sample code that may be useful if you plan to incorporate real
hardware into your design.

Figure 4-1 is a screenshot of the Sense-Emu emulator running on my local system.
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Figure 4-1. Sense-Emu Sense HAT emulator screenshot

As you can see, there are several ways to generate data within the GUI. Before taking
this screenshot, I adjusted the temperature to 28.8°C, the pressure to 984.5 mbar, and
humidity to 40.2%.

Once the emulator is up and running, you’ll need a way to interface with it using your
CDA. The Python library pisense supports integration with the Sense-Emu emulator
and the actual Sense HAT board. You can switch between them by setting a flag
within the initialization of the Sense HAT class in the pisense library.

Before we dig into the code, review PIOT-CFG-04-001, which walks through the
installation and configuration of the Sense-Emu emulator. I won’t spend much time
discussing it here, but there will likely be other dependencies to get the emulator
working on your system. I’ve successfully run the Sense-Emu emulator on Windows
using WSL (with a separate X11 server) and on macOS.

Last, the PiotConfig.props configuration file has a property under the ConstrainedDe
vice section named enableEmulator. Once your emulator is set up and properly con‐
figured, and after you’ve completed the exercises in this section, flip the property
value to “True” and you should be able to test your code against the emulator.

Let’s start coding.

Programming Exercises
You’ll notice a common pattern in the component relationships for the emulator
functionality—it’s the same as your design and implementation from Chapter 3
regarding the simulator functionality. This provides a great deal of flexibility for your
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implementation, as you’ll be able to add new capabilities to your CDA that exceed the
requirements specified in these exercises.

Integrating Sensing and Actuation Emulation Within Your Application
Design
Figure 4-2 provides a simple design view of the CDA once these new features are
incorporated.

Figure 4-2. Constrained Device Application—integrated sensing and actuation app
design

Notice the design looks strikingly similar to the design in Figure 3-3, where you inte‐
grated simulation functionality into your CDA. Its modularity permits adding emula‐
tor tasks with minor modifications to the manager logic.

Now let’s take a look at the detailed design represented as UML. Figure 4-3 depicts
one way to represent the key components of this exercise, with some of the details
from the previous exercise left out for clarity.

As with the high-level design in Figure 4-2, this detailed design is similar to the UML
depicted in Figure 3-4.
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Figure 4-3. Constrained Device Application—integrated sensing and actuation app
UML

Let’s look at the requirements and implementation for Lab Module 04.

Emulating Sensors
Recall the two key functions that BaseSensorSimTask performs: it creates a Sensor
Data instance, which it uses to store the latest sensor simulation data, and it provides
a public interface to generate a new instance and access its data.

In PIOT-CDA-04-001, you’ll create three new sensor emulator tasks, each of which
will derive from BaseSensorSimTask, just as the sensor simulator tasks did in Chap‐
ter 3. The difference will be in the constructor and the generateTelemetry()
method. These sensor tasks reside in the ./programmingtheiot/cda/emulated package.
Here’s a summary of the actions involved:

• Create (or edit) HumiditySensorEmulatorTask, PressureSensorEmulatorTask,
and TemperatureSensorEmulatorTask.

• Initialize the SenseHAT class instance using the pisense library.
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• Update generateTelemetry() to retrieve data from the Sense HAT emulator.

Let’s unpack these actions step by step. I’ll focus on TemperatureSensorEmulator
Task, since the others will look very similar.

Like the other Python modules you’ve edited or created, you’ll need to create the class
and add the relevant import statements. If you’re using the python-components code
base, this is already done for you and looks similar to the following:

from programmingtheiot.data.SensorData import SensorData

import programmingtheiot.common.ConfigConst as ConfigConst

from programmingtheiot.common.ConfigUtil import ConfigUtil
from programmingtheiot.cda.sim.BaseSensorSimTask import BaseSensorSimTask
from programmingtheiot.cda.sim.SensorDataGenerator import SensorDataGenerator

The class declaration for TemperatureSensorEmulatorTask will look like this:

class TemperatureSensorEmulatorTask(BaseSensorSimTask):

When you create the constructor, notice its similarity to the simulator tasks you’ve
already written. The primary differences are the construction logic and the SenseHAT
class instance logic from the pisense library:

def __init__(self):
  super(TemperatureSensorEmulatorTask, self).__init__( \
    name = ConfigConst.TEMP_SENSOR_NAME, \
    typeID = ConfigConst.TEMP_SENSOR_TYPE)
  
  self.sh = SenseHAT(emulate = True)

If you decide to use a real Sense HAT board and Raspberry Pi
single-board computer combination, you can add another parame‐
ter to your PiotConfig.props within the ConstrainedDevice section
indicating that hardware is (or isn’t) present. If real hardware will
be used in your CDA, the SenseHAT class should be initialized with
emulate = False instead. If you want to dynamically switch
between simulated data, emulated data, and real data (using hard‐
ware), consider using an integer value to reflect this initialization
behavior in your configuration file instead.

With this complete, let’s move on to the generateTelemetry() function. Here’s an
example you might want to use (again, for the TemperatureSensorEmulatorTask
class):

def generateTelemetry(self) -> SensorData:
  SensorData = \
    SensorData(name = self.getName(), typeID = self.getTypeID())
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  sensorVal = self.sh.environ.temperature
  
  SensorData.setValue(sensorVal)
  self.latestSensorData = SensorData
          
  return SensorData

It’s actually a bit simpler without the simulated (or randomized) data, isn’t it?

Now you can move on to the other two tasks: HumiditySensorEmulatorTask and
PressureSensorEmulatorTask. Just be sure to use the correct SenseHAT function call
to retrieve the appropriate value for each.

Time for the actuation emulators.

Emulating Actuators
Remember the BaseActuatorSimTask base class from Chapter 3? Like BaseSensor
SimTask, it performs two primary functions—in this case, abstracting the “activate”
and “deactivate” functions of an actuator, using the public method updateActua
tor(ActuatorData). This will be very useful for the emulated actuator tasks, so we’ll
create those by deriving from BaseActuatorSimTask.

Now for the tricky part. What types of actuation events do you want to trigger? Recall
our problem statement from Chapter 1:

I want to understand the environment in my home, how it changes over time, and
make adjustments to enhance comfort while saving money.

One way to interpret “comfort” is through temperature control and humidity (which
plays a role in how humans feel temperature and contributes to the overall comfort
and health of an indoor environment). Let’s use both measurements as potential
actuation triggers and name two of the actuator tasks HvacEmulatorTask and Humidi
fierEmulatorTask. The HVAC will be used to control the temperature, and the
humidifier will be used to adjust relative humidity.

The actuator task-naming convention drops the word “Actuator”
since I think it’s quite clear these devices will be turned on or off. A
real-world system may also collect sensor readings from these devi‐
ces. For simplicity, our virtual devices will merely accept actuation
commands.

Since you’ll also be using the LED matrix on the emulator, it might be helpful to dedi‐
cate an actuator to illuminating the screen, so PIOT-CDA-04-002 also specifies an
LedDisplayEmulatorTask.

Let’s review the actions listed in PIOT-CDA-04-002:
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• Create (or edit) HvacEmulatorTask, HumidifierEmulatorTask, and LedDisplayE
mulatorTask.

• Initialize the SenseHAT instance using the pisense library.
• Update _handleActuation() to write the appropriate data to the LED display

using the SenseHAT instance.

Consider that last bullet. Since the emulator doesn’t actually emulate an HVAC sys‐
tem or a humidifier, we’ll just use its LED display to notify the user that an actuation
event is taking place, turning something ON or OFF. You can certainly get creative
with the implementation, but for now, we’ll simply scroll a message on the screen.

Here’s an example of the HvacEmulatorTask, including the imports, class declaration,
and constructor initialization. It looks very similar to TemperatureSensorEmulator
Task, doesn’t it?

import logging

from time import sleep

import programmingtheiot.common.ConfigConst as ConfigConst

from programmingtheiot.common.ConfigUtil import ConfigUtil
from programmingtheiot.cda.sim.BaseActuatorSimTask import BaseActuatorSimTask

from pisense import SenseHAT

class HvacEmulatorTask(BaseActuatorSimTask):
  def __init__(self):
    super(HvacEmulatorTask, self).__init__( \
      name = ConfigConst.HVAC_ACTUATOR_NAME, \
      typeID = ConfigConst.HVAC_ACTUATOR_TYPE, \
      simpleName = "HVAC")
  
  self.sh = SenseHAT(emulate = True)

Remember that the base class, BaseActuatorSimTask, defines two private methods
named _activateActuator() and _deactivateActuator(). Both will automatically
get called based on the command being sent to the updateActuator() method
defined within the base class. Granted, this isn’t ideal for every situation, but it will
suit our needs.

Here’s an example implementation for each of these methods:

def _activateActuator(self, \
  val: float = ConfigConst.DEFAULT_VAL, \
  stateData: str = None) -> int:
  
  if self.sh.screen:
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    msg = self.getSimpleName() + ' ON: ' + \
    str(val) + 'C'

    self.sh.screen.scroll_text(msg)
    return 0
  else:
    logging.warning('No LED screen instance available.')
    return -1

The implementation looks rather similar to the simulated actuator that logged a mes‐
sage to the console, doesn’t it?

The deactivation functionality is similar. Here’s a look at the implementation:

def _deactivateActuator(self, \
  val: float = ConfigConst.DEFAULT_VAL, \
  stateData: str = None) -> int:
  
  if self.sh.screen:
    msg = self.getSimpleName() + ' OFF'
    self.sh.screen.scroll_text(msg)
    
    sleep(5)
    
    # optionally, clear the screen when done scrolling
    self.sh.screen.clear()
    return 0
  else:
    logging.warning('No LED screen instance available.')
    return -1

The big difference here is the sleep delay. While this is completely optional, I included
it here to give the message time to scroll; however, this does interfere with the timing
of the call, since it will block and hold up other CDA processing unless executed
within a thread.

If you decide to pursue a multithreaded approach as part of your
design, consider using a queue to store messages in case they are
sent in faster than the display can process them. This brings up
another interesting challenge: how can you know the rate at which
to poll an emulated (or real) sensor, or how long an emulated (or
real) actuation event will take?
The short answer is that you need to know the hardware specifica‐
tion of the sensor or actuator, the timing constraints of the device
(or emulator), how often it will be invoked, and how to factor these
timings into your CDA design. It can be a real problem if not man‐
aged appropriately. It’s out of our scope here, but I encourage you
to keep it in mind as you design your edge solution.
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What, then, would be the better path forward for the deactivation functionality? If the
message must have time to scroll and you know how long each character will take
(let’s assume it’s about one half of a second, or 500 milliseconds), just calculate the
length of the string to display and then multiply it by the number of seconds (or par‐
tial seconds). If, for example, the string is 20 characters, and each character takes 500
milliseconds to display and scroll, you’d need to wait for approximately 10 seconds
for every character to scroll.

Perhaps a better option is to maintain a graphical 8x8 rendition with icons and/or
colors indicating the state and leave it illuminated while the given state is in effect.
Ah, yes—that would be an excellent supplemental exercise, wouldn’t it? But I digress.
Now that you know the challenge and a plausible path forward to address it, you can
choose a different implementation approach!

You’re almost done. There are just two more steps: integration with SensorAdapter
Manager and integration with ActuatorAdapterManager.

Connecting Emulated Sensors with the Sensor Adapter Manager
This exercise, defined in PIOT-CDA-04-003, updates SensorAdapterManager by
introducing the newly created emulator tasks within the constructor initialization.
The design approach will let you switch easily between emulated sensor tasks and
simulated sensor tasks by flipping the enableEmulator flag in PiotConfig.props from
True to False.

The key actions are as follows:

• Add support for the enableEmulator flag from PiotConfig.props.
• Add the emulator sensor tasks for temperature, pressure, and humidity (and any

others you wish to include).
• Use the enableEmulator flag to switch between using simulated sensor tasks and

using emulated sensor tasks.

Since you’re already familiar with the constructor of SensorAdapterManager, here’s
the code that follows immediately after declaring self.dataMsgListener = None
(which should be the last line of code in the constructor initialization):

if not self.useEmulator:
  self.dataGenerator = SensorDataGenerator()
  
  tempFloor = \
    configUtil.getFloat( \
      section = ConfigConst.CONSTRAINED_DEVICE, \
      key = ConfigConst.TEMP_SIM_FLOOR_KEY, \
      defaultVal = SensorDataGenerator.LOW_NORMAL_INDOOR_TEMP)
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  tempCeiling = \
    configUtil.getFloat( \
      section = ConfigConst.CONSTRAINED_DEVICE, \
      key = ConfigConst.TEMP_SIM_CEILING_KEY, \
      defaultVal = SensorDataGenerator.HI_NORMAL_INDOOR_TEMP)
  
  tempData = \
    self.dataGenerator.generateDailyIndoorTemperatureDataSet( \
      minValue = tempFloor, \
      maxValue = tempCeiling, \
      useSeconds = False)
               
  self.tempAdapter = \
    TemperatureSensorSimTask(dataSet = tempData)
  
  # TODO: add other sensor simulator tasks

else:
  # load the Temperature emulator
  tempModule = \
    import_module( \
      'programmingtheiot.cda.emulated.TemperatureSensorEmulatorTask', \
      'TemperatureSensorEmulatorTask')

  teClazz = \
    getattr(tempModule, 'TemperatureSensorEmulatorTask')

  self.tempAdapter = teClazz()
    
  # TODO: add other sensor emulator tasks

If the self.useEmulator flag is False, then the simulated sensor functionality will be
used. The remaining code within this section is the same code you implemented in
Chapter 3. But what about the else clause? Let’s break it down.

The first line after the else clause is as follows:

  tempModule = \
    import_module( \
      'programmingtheiot.cda.emulated.TemperatureSensorEmulatorTask', \
      'TemperatureSensorEmulatorTask')

If you’ve been coding in Python for a while, this may be familiar to you. The code
instructs the Python interpreter to dynamically load the TemperatureSensorEmula
torTask module (and the like-named class) using import_module. This simply wraps
the __import__ built-in with a slightly more user-friendly interface to perform the
module load (again, only if self.useEmulator is True).
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If you’d prefer to use the __import__ built-in instead, you can
replace the import_module() call with the following:

tempModule = \
  __import__( \

    'programmingtheiot.cda.emulated.TemperatureSens
orEmulatorTask', \

    fromlist =
['TemperatureSensorEmulatorTask']).

Is this dynamic module and class-loading capability strictly required for the purposes
of this chapter? No, it is not. It is, however, a tool you can use for future integration. It
serves two purposes, neither of which is needed at this time:

1. It establishes a pattern for dynamically loading modules that may not exist using
a simple configuration file flag. Interesting exercise, but not critical. Yet.

2. With this pattern in place, you can implement hardware-specific code within the
existing `programmingtheiot.cda.embedded` python-components package. This
might be useful if you decide to tackle some of the optional Lab Module 04
exercises.

You can follow this same pattern to dynamically load the humidity and pressure
tasks, HumiditySensorEmulatorTask and PressureSensorEmulatorTask, respec‐
tively. Be sure to add those components into your code before running the manual
integration test.

Let’s test things out and ensure you can flip between simulated sensing and emulated
sensing. Check out the test at the end of the requirement card—you’ll see the instruc‐
tions are a bit more involved than in previous tests. Here’s a summary:

• Make sure the enableEmulator flag in PiotConfig.props is set to True and then
start the Sense-Emu emulator. From the command line, you should be able to
just type sense_emu_gui.

• Run SensorAdapterManagerTest within the python-components ./src/test/
python/programmingtheiot/part02/integration/system path.

If you’re running the Sense-Emu emulator under WSL and your IDE under Win‐
dows, you may find that the manual integration tests for SensorAdapterManagerTest
generate an error. This is probably because your IDE isn’t able to communicate with
the X11 server. The easy (and quick) fix is simply to run your test from the command
line. You can do this by navigating to the path containing SensorAdapterManagerT
est and executing it using the following command within your virtualenv:
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python -m unittest SensorAdapterManagerTest

If you decided to set up your Python environment without using a
virtualenv, make sure you’re using the appropriate Python inter‐
preter executable (such as Python 3). Also, be sure your PYTHON‐
PATH is set within your environment. It will need to include both
the ./src/main/python and ./src/test/python paths.

The output should include various message sequences similar to the following
(depending on how long you run your tests):

2021-01-01 15:06:39,776:SensorAdapterManagerTest:INFO:Testing SensorAdapterManager
class...
.
.
2021-01-01 15:06:45,126:SensorAdapterManager:INFO:Generated humidity data:
name=HumiditySensor,typeID=1,timeStamp=2021-01-
01T20:06:45.125842+00:00,statusCode=0,hasError=False,locationID=constraineddevice00
1,elevation=0.0,latitude=0.0,longitude=0.0,value=0.0
2021-01-01 15:06:45,128:SensorAdapterManager:INFO:Generated pressure data:
name=PressureSensor,typeID=2,timeStamp=2021-01-
01T20:06:45.125956+00:00,statusCode=0,hasError=False,locationID=constraineddevice00
1,elevation=0.0,latitude=0.0,longitude=0.0,value=848.703369140625
2021-01-01 15:06:45,129:SensorAdapterManager:INFO:Generated temp data:
name=TempSensor,typeID=3,timeStamp=2021-01-
01T20:06:45.125996+00:00,statusCode=0,hasError=False,locationID=constraineddevice00
1,elevation=0.0,latitude=0.0,longitude=0.0,value=24.984375
.
.
2021-01-01 15:07:20,139:base:INFO:Job "SensorAdapterManager.handleTelemetry
(trigger: interval[0:00:05], next run at: 2021-01-01 15:07:25 EST)" executed
successfully
.
.

If this log output aligns reasonably well with your own, great! Time to move on to the
actuator emulators.

Connecting Emulated Actuators with the Actuator Adapter Manager
The last formal exercise in this chapter, defined in PIOT-CDA-04-004, follows the
same pattern as the previous one for ActuatorAdapterManager:

• Add support for the enableEmulator flag from PiotConfig.props.
• Add the emulator actuator tasks for the HVAC, humidifier, and LED matrix.
• Use the enableEmulator flag to switch between using simulated actuator tasks

and using emulated actuator tasks.
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Keep in mind that the construction pattern for ActuatorAdapterManager will only
change to support the emulator/simulator switch. Immediately after declaring
self.dataMsgListener = None (which, again, should be the last line of code in the
constructor initialization), add the following:

if not self.useEmulator:
  # create the humidifier actuator
  self.humidifierActuator = HumidifierActuatorSimTask()

  # create the HVAC actuator
  self.hvacActuator = HvacActuatorSimTask()
else:
  # load the HVAC emulator
  hvacModule = \
    import_module( \
      'programmingtheiot.cda.emulated.HvacEmulatorTask', \
      'HvacEmulatorTask')
  
  hveClazz = \
    getattr(hvacModule, 'HvacEmulatorTask')
  
  self.hvacActuator = hveClazz()
  
  # TODO: add other actuator tasks

Nothing new here, right? This time, you’re dynamically loading the HvacEmulator
Task but using the same logic as for the TemperatureSensorEmulatorTask.

Be sure to add in the HumidifierEmulatorTask and LedDisplayEmulatorTask before
moving on to the manual integration tests. The same constraints hold here as for the
SensorAdapterManager when using the Sense-Emu emulator: make sure the enable
Emulator flag is True in PiotConfig.props and start the emulator.

As with the SensorAdapterManagerTest, you may want to run ActuatorAdapterMana
gerTest from within the python-components path ./src/test/python/programmingth‐
eiot/part02/integration/system/:

python -m unittest ActuatorAdapterManagerTest

For this test, be sure to also monitor the Sense-Emu GUI and observe the LED dis‐
play along with the log output.

Figure 4-4 provides an example screenshot depicting the first letter of the LED “ON”
message.
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Figure 4-4. Sending an “ON” message to the Sense-Emu LED matrix

Figure 4-4 shows one small part of the scrolling text message that indicates the HVAC
is being turned “ON” (the “O” is shown). One exercise to consider is triggering two
actuation events when the temperature needs to be adjusted: one to the HVAC emula‐
tor (which can technically just log a message) and the other to the LED matrix, where
you can provide a more creative visualization of the HVAC and humidifier within the
8×8 matrix.

As for log messages, they’ll look similar to the pattern expressed here:
2021-01-01 16:58:17,797:ActuatorAdapterManagerTest:INFO:Testing ActuatorAdapterManager
class...
.
.
.
2021-01-01 16:58:25,909:ActuatorAdapterManager:INFO:Actuator command received for
location ID constraineddevice001. Processing...
2021-01-01 16:58:25,910:BaseActuatorSimTask:INFO:Deactivating actuator...
2021-01-01 16:58:36,729:DefaultDataMessageListener:INFO:Actuator Command: 0
2021-01-01 16:58:36,736:ActuatorAdapterManager:INFO:Actuator command received for
location ID constraineddevice001. Processing...
2021-01-01 16:58:36,745:BaseActuatorSimTask:INFO:Activating actuator...
2021-01-01 16:58:42,325:DefaultDataMessageListener:INFO:Actuator Command: 1
2021-01-01 16:58:42,326:ActuatorAdapterManager:INFO:Actuator command received for
location ID constraineddevice001. Processing...
2021-01-01 16:58:42,327:BaseActuatorSimTask:INFO:Deactivating actuator...
2021-01-01 16:58:51,120:DefaultDataMessageListener:INFO:Actuator Command: 0
.
.
.
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If your tests indicate success, then it’s time to celebrate. You now have not only the
simulated CDA functionality working but also sensor and actuator emulation! The
next chapter will look at ways to manage the data you’re now generating so it can be
collected, transmitted (eventually), and interpreted.

Additional Exercises
The Sense-Emu emulator’s GUI allows you to adjust values via the given sliders and
the joystick control. This can be a particularly useful tool for manually changing val‐
ues within your emulated sensor environment to test various threshold crossing
events.

Threshold Management
Create another emulator adapter that interprets the Sense-Emu GUI’s joystick con‐
trols and adjusts the floor (down button) and ceiling (up button) of either your tem‐
perature or your humidity threshold crossing value.

With this in place, see if you can exercise the hysteresis management function you
implemented in the additional exercise of Chapter 3 using these new threshold cross‐
ings and the simulated data values generated from SensorDataGenerator (or your
own custom version).

Conclusion
In this chapter, you learned about hardware emulation and how to integrate the Sense
HAT emulator into your CDA. You also learned about some of the challenges associ‐
ated with triggering actuation events, and how the logic to handle such events isn’t
always as simple as just sending an ON or OFF command. Design-wise, you learned
more about the modularity of the CDA’s design and how it can help you overcome
some of these challenges.

You’re now ready to dive into the final chapter of Part II—Chapter 5—where you’ll
learn about data transformation, which will help you eventually integrate your CDA
and GDA.
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CHAPTER 5

Data Management

Data Formatting and Integration

High values and low.
Make the data consistent.
Else, none may use it.

Fundamental concepts: Build two IoT performance monitoring applications—one as
an IoT gateway, and the other as an IoT constrained device.

Generating telemetry within a device is one thing. Making that telemetry usable by
other devices is a whole new ball game. Fortunately, there are ways to translate this
raw data into a format that can address this challenge.

What You’ll Learn in This Chapter
To enable the CDA and GDA to “talk” with each other, we need to have a common
language and data format in place. While it would be convenient to simply send a
Python object to a Java application and vice versa, that’s not easily doable without
using an intermediary translation first.

Data Translation and Management Concepts
With the CDA’s data collection capabilities now in place, you’re on track to eventually
share that data with the GDA and leverage it to inform a better outcome than could
likely be achieved if that data hadn’t been collected (and analyzed) in the first place.
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In Chapters 3 and 4, you added functionality to the CDA that allowed it to collect
information from simulated (or emulated) sensors and trigger simple actuation
events, including the creation of three data containers to facilitate this process: Sen
sorData, ActuatorData, and SystemPerformanceData.

With the GDA, you can use these data containers to support more advanced manage‐
ment functionality. The GDA will need to interpret the CDA’s data and use it to sup‐
port any analytics functions you need.

We’ll have to tackle two key activities to support this:

Data translation
This entails converting (and comprehending) the data generated, and in use by,
the CDA so that the GDA and relevant cloud services can process the informa‐
tion, regardless of how each application is implemented.

Data management
Once the data is available and understandable, you can use it to make decisions
about how to manage the environment and ultimately achieve your objective.

The programming exercises in this chapter are designed to help you work through
the details of these two activities. You’ll start with building translation functionality
for the CDA and then move on to the GDA and build out not only data translation
capabilities but also some key management functionality that we’ll continue to
expand on in later chapters.

Programming Exercises
You’ll be developing code for both the CDA and the GDA in this chapter, so let’s take
a look at both designs. Figure 5-1 provides a simple design view of the CDA with the
data translation and conversion logic incorporated.

Figure 5-2 depicts the GDA’s design for this chapter and includes the DataUtil,
DeviceDataManager, and data wrapper classes that were implemented for the CDA
back in Chapter 3. There’s also a PersistenceClientAdapter class, which will be dis‐
cussed later in this chapter.
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Figure 5-1. Constrained Device Application—data management design

Figure 5-2. Gateway Device Application—data management design
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You can see that the design concepts are nearly identical between the two applica‐
tions. Each uses a DeviceDataManager to orchestrate the information flow within the
application (which is new for the GDA in this chapter), and a new component is
added—DataUtil—to provide a centralized data translation utility for converting the
CDA’s data container objects into a format that other systems can readily consume.
You may have guessed by now that the data format you’ll use for each translation
exercise is JSON.

Let’s start with the CDA, since only a few things need to be added and tested before
we move on to the GDA.

Data Translation in the Constrained Device App
As you get started, be sure to check out a new branch (as explained in PIOT-
CDA-05-000). This will help you keep your newly added functionality separate from
the code you’ve already implemented, tested, and merged into your primary branch.

Before digging into each exercise for the CDA, take a look at the notional UML
shown in Figure 5-3 (some details have been removed for clarity).

Figure 5-3. Constrained Device Application—data management UML

You can use this UML to help guide your implementation.
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Now look at PIOT-CDA-05-001. This will be straightforward to implement. You’re
going to add SystemPerformanceData containers into the SystemPerformanceMan
ager implementation you created back in Chapter 2.

Update the system performance manager

The only function that requires modification in SystemPerformanceData is handleTe
lemetry(). Here’s  the new implementation:

cpuUtilPct = self.cpuUtilTask.getTelemetryValue()
memUtilPct = self.memUtilTask.getTelemetryValue()

logging.debug( \
  'CPU utilization is %s percent, and memory utilization is %s percent.', \
  str(cpuUtilPct), str(memUtilPct))

sysPerfData = SystemPerformanceData()
sysPerfData.setLocationID(self.locationID)
sysPerfData.setCpuUtilization(cpuUtilPct)
sysPerfData.setMemoryUtilization(memUtilPct)

if self.dataMsgListener:
  self.dataMsgListener.handleSystemPerformanceMessage(sysPerfData)

It’s additive in the sense that you’re still retrieving the telemetry value from the CPU
and memory utilization tasks, but now you’re adding it into a newly instanced System
PerformanceData. Finally, if you’ve set the IDataMessageListener instance, you’ll
pass the new SystemPerformanceData to its callback method, which is designed to
handle this type of information. 

The next and final CDA programming task for this chapter is outlined in PIOT-
CDA-05-002. It contains the activities you’ll need to add JSON conversion functional‐
ity for your ActuatorData, SensorData, and SystemPerformanceData instances.

Add JSON translation using a data utility class
The implementation requirements for PIOT-CDA-05-002 all center on one action:

• Create (or rather edit) the DataUtil class in the programmingtheiot.data pack‐
age, and then add a function to convert each BaseIotData subclass type into
JSON, and another to do the opposite. 

For this exercise, I’ll focus on the ActuatorData type, since implementing the other
two (SensorData and SystemPerformanceData) will look nearly identical. 

If you’re using the sample code from python-components, you’ll notice an existing
DataUtil shell implementation in the programmingtheiot.data package. It relies on
some of the built-in JSON translation functionality included with Python 3.
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Scroll to the bottom of the sample code. There’s another class contained within the
DataUtil module named JsonDataEncoder. This is a very simple class that converts
an object’s parameters to a dictionary of key/value pairs. I’ll get to this shortly, but for
now, let’s move on to the next action: converting ActuatorData into a JSON string. 

Create a new function named ActuatorDataToJson():

def ActuatorDataToJson(self, data):
  if not data:
    logging.warning('ActuatorData is null. Ignoring conversion to JSON.')
    return None
  
  logging.debug('Encoding ActuatorData to JSON [pre]  --> ' + \
    str(data))
  
  jsonData = self._generateJsonData(data)
  
  logging.debug('Encoding ActuatorData to JSON [post] --> ' + \
    str(jsonData))
  
  return jsonData

There’s not much here, is there? That’s because the heavy lifting is performed by a pri‐
vate function named _generateJsonData(). Let’s add that implementation now (and
yes, it is just one line of code):

def _generateJsonData(self, obj) -> str:
  return json.dumps(obj, indent = 4, cls = JsonDataEncoder)

But what’s the purpose of the cls = JsonDataEncoder parameter?  It overrides the
default JSON encoder with JsonDataEncoder and tells the json.dumps() function
how to extract the data from the custom BaseIotData subclasses you created in
Chapter 3. Without this, the function doesn’t know how to handle the conversion and
will throw a TypeError exception.

Logging in Python

You’ve likely noticed the plethora of debug messages sprinkled
throughout the code base. I find these useful for keeping tabs on
the inner workings of the code even when running the unit tests. If
you choose to keep these log messages in place (or even to add
more), you may want to use debug or fine-grained logging so you
can easily control how much content is logged. This is particularly
important if you reduce the polling time. You can read more about
Python logging in the Python documentation.
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Your code now supports ActuatorData to JSON conversion. Next, you’ll need a way
to convert a JSON representation of ActuatorData back into an ActuatorData
instance. Here’s a sample implementation:

def jsonToActuatorData(self, jsonData):
  if not jsonData:
    logging.warning('JSON data is empty or null.')
    return None

  jsonStruct = self._formatDataAndLoadDictionary(jsonData)
  ad = ActuatorData()
  self._updateIotData(jsonStruct, ad)
  
  return ad

After a simple validation check to verify the JSON string isn’t null or empty, the con‐
version process is started. You can see the three calls:

1. Call the _formatDataAndLoadDictionary() function to generate a JSON struc‐
ture (a dictionary of key/value pairs).

2. Create a new ActuatorData instance.
3. Call the _updateIotData() function to set the ActuatorData instance values

with the dictionary.

You’ll need to create both _formatDataAndLoadDictionary() and _updateIot
Data(). They will be separate functions for the same reason _generateJsonData() is
a separate function: you’ll be reusing the other functions you’ll create (to convert
JSON data to a SensorData object and to a SystemPerformanceData object,
respectively).

Here’s the sample code for both methods:

def _formatDataAndLoadDictionary(self, jsonData: str) -> dict:
  jsonData = \
    jsonData.replace("\'", "\"").replace( \
      'False', 'false').replace('True', 'true')
  
  jsonStruct = json.loads(jsonData)
  
  return jsonStruct

def _updateIotData(self, jsonStruct, obj):
  varStruct = vars(obj)
  
  for key in jsonStruct:
    if key in varStruct:
      setattr(obj, key, jsonStruct[key])
    else:
      logging.warn('JSON data key not mappable to object: %s', key)
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The _formatDataAndLoadDictionary() function does two things. First, it converts
any single quotes to double quotes and any boolean string representations to lower‐
case. This typically won’t be needed for testing between the GDA and the CDA; how‐
ever, it is necessary to ensure parsing accuracy by the JSON library. Second, it parses
the JSON string into a dictionary of key/value pairs.

The _updateIotData() function accepts the JSON dictionary and the newly created
BaseIotData subclass data container instance as parameters. It looks up the keys and
values within the JSON dictionary so the value can be applied to the data container
instance. It will check if the key from the JSON dictionary first exists as a variable
within the data container instance: this is another validation step you should be sure
to include.

With these functions now in place, you can create the jsonToSensorData(), jsonTo
SystemPerformanceData(), SensorDataToJson(), and SystemPerformanceDataToJ
son() functions. Each implementation will align to functions you’ve just created for
jsonToActuatorData() and ActuatorDataToJson(), respectively. See if you can do
these on your own!

You can read more about JSON and the conversion functionality
built into Python in the Python documentation. There’s much
more you can do with this module; for the CDA exercises in this
chapter, you’ll need to use only the json.dumps() and
json.loads() functions.

Once you’ve completed these steps, it’s time to test everything out. The DataUtilTest
in the ./src/test/python/programmingtheiot/unit/data path will run through a number
of unit tests and let you know whether or not everything is working.

If each test passes, you should be good to go. Now you can finally get back to pro‐
gramming the GDA.

Data Translation in the Gateway Device App
Recall the data containers you created for the CDA in Chapter 3: ActuatorData,
SensorData, and SystemPerformanceData. In this section, you’ll build the same con‐
tainers for the GDA.

Figure 5-4 depicts the notional detailed design in UML for the GDA’s data manage‐
ment design.

You can think of this design as a cross between the CDA’s design in this chapter and
its design from Chapter 3. Does this design seem redundant? Why would you need to
build these containers for the GDA when it’s not responsible for sensing or actuation?
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It’s true that the GDA does not need to handle sensing and actuation in this design; it
does, however, need to handle the sensing and actuation data it will receive from, and
ultimately send to, the CDA. Programmatically, it will be much easier to operate on
typed instances of these data containers than to parse the JSON throughout the code
base. The GDA also needs to generate its own SystemPerformanceData, so you’ll
need data containers for each.

I’ll briefly summarize the activities here, since each will follow the same pattern that
you’ve implemented for the CDA. But first, be sure to check out a new branch for the
GDA related to this chapter, as specified in PIOT-GDA-05-000.

Figure 5-4. Gateway Device Application—data management UML
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Implement all data container structures
Take a moment to review the content in PIOT-GDA-05-001, the first implementation
exercise for the GDA in this chapter. It walks through the data containers described in
Chapter 3 (ActuatorData, SensorData, and SystemPerformanceData), but in ways
specific to the GDA and implemented in Java. 

Let’s look at the key actions this exercise entails:

• Review the existing code for BaseIotData (part of the java-components sample
code). Feel free to create your own, but be aware that this serves as the base class
for all other data containers within the GDA, much like it did for the CDA in the
python-components sample code.

• Create the concrete GDA-specific implementations of the data containers you
already know: ActuatorData, SensorData, and SystemPerformanceData. These
will all derive from BaseIotData, so their respective implementations will be
rather straightforward.

• I’ll briefly walk through the same routine described in Chapter 3 with the CDA’s
implementation of ActuatorData, SensorData, and SystemPerformanceData.
But first, be sure to review the sample code for BaseIotData provided in java-
components.

The Java version of BaseIotData contains the same data elements as the Python
version. It will set various defaults, including setting the typeID to Config
Const.DEFAULT_TYPE, with string values either empty (“”) or set to Config

Const.NOT_SET. It also represents the timestamp String in ISO 8601 format just like
its Python counterpart does: by relying on the Java class DateTimeFormatter, specifi‐
cally the ISO_INSTANT constant. This means we should be able to parse the time/date
string the same way with both applications, should that be necessary.

Assuming you’re keeping BaseIotData in place, it’s time to create the subclasses that
will store the telemetry and command information (SensorData and ActuatorData,
respectively). Both will inherit from BaseIotData, so you need only to add in the
functionality specific to each.

The actions listed in PIOT-GDA-05-001 should be familiar by now, since they essen‐
tially repeat those from PIOT-CDA-03-001, but for the GDA. Here’s the detail for
SensorData.

Import ConfigConst and java.io.Serializable (BaseIotData doesn’t need to be
explicitly imported, as it’s in the same package as SensorData):

import java.io.Serializable;
import programmingtheiot.common.ConfigConst;
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Set the static final serialVersionUID (which allows you to maintain serialization
compatibility across implementation updates) and the internal value. Be sure to use
“value,” since other systems will rely on this variable name:

// NOTE: Be sure to generate this yourself!
private static final long serialVersionUID = 1L;

private float value = 0.0f;

public SensorData()
{
  super();
}

Implement the accessor methods that will get and set the value:

public float getValue()
{
  return this.value;
}

public void setValue(float val)
{
  super.updateTimeStamp();
  
  this.value = val;
}

Remember that BaseIotData implements updateTimeStamp(), and it’s not overrid‐
den in SensorData, so including the super keyword here is not necessary. It is a good
practice, however. You may recall that BaseIotData also defines a template method
named handleUpdateData(). It must be implemented by the subclass since it’s
declared as abstract in the base class. As with the CDA version of SensorData, the
implementation is relatively simple.

Implement the base class template method handleUpdateData():

protected void handleUpdateData(BaseIotData data)
{
  if (data instanceof SensorData) {
    SensorData sData = (SensorData) data;
    this.setValue(sData.getValue());
  }
}

There’s one more action that is completely optional yet very helpful in terms of
debugging: adding a toString() implementation. Here’s how to do that:

public String toString()
{
  StringBuilder sb = new StringBuilder(super.toString());
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  sb.append(',');
  sb.append(
    ConfigConst.VALUE_PROP).append('=').append(this.getValue());
  
  return sb.toString();
}

Since BaseIotData already implements its own toString() version, you can leverage
that within SensorData’s toString() by creating a new StringBuilder with the base
class string representation and simply appending the unique properties of Sensor
Data. This pattern applies to the other data containers, too! You don’t have to imple‐
ment, but it will make some debugging operations easier.

ActuatorData follows the same implementation pattern as SensorData, with the
main differences being the addition of class-scoped variables representing the integer
command, float-based value, String-based stateData, and boolean isResponse.

The isResponse flag is an extra layer of protection that can help
avoid resending an actuation event received by the GDA from the
CDA (which I’ll discuss in more detail in Part III). The logic you’ll
implement will manage this process so that should never occur. I
mostly use it for debugging purposes in my own implementation.

Here’s a quick breakdown of these activities:

• First, use the same imports that were included with SensorData, set the serial
VersionUID, and create class-scoped variables for the value, command, stateData,
and isResponse Boolean flag.

• Implement the accessor methods for all four class-scoped variables (value, com
mand, stateData, and isResponse), and be sure to call super.updateTimeS
tamp() whenever any of these setter methods are invoked.

• Implement the base class template method handleUpdateData():
protected void handleUpdateData(BaseIotData data)
{
  if (data instanceof ActuatorData) {
    ActuatorData aData = (ActuatorData) data;
    this.setCommand(aData.getCommand());
    this.setValue(aData.getValue());
    this.setStateData(aData.getStateData());
    
    if (aData.isResponseFlagEnabled()) {
      this.isResponse = true;
    }

150 | Chapter 5: Data Management



  }
}

Finally, implement SystemPerformanceData. Like its counterparts ActuatorData and
SensorData, this also derives from BaseIotData, except it has three class-scoped vari‐
ables: CPU utilization, memory utilization, and disk utilization. (You’ll see later in
this chapter why disk utilization is important.)

• You’ll use the same import process as with ActuatorData and SensorData but be
sure to declare class-scoped variables for cpuUtil, memUtil, and diskUtil.

• Implement the accessor methods for all three class-scoped variables (cpuUtil,
memUtil, and diskUtil), and remember to call super.updateTimeStamp()
whenever any of these setter methods are invoked.

• Implement the base class template method handleUpdateData():
protected void handleUpdateData(BaseIotData data)
{
  if (data instanceof SystemPerformanceData) {
    SystemPerformanceData sData = (SystemPerformanceData) data;
    
    this.setCpuUtilization(sData.getCpuUtilization());
    this.setDiskUtilization(sData.getDiskUtilization());
    this.setMemoryUtilization(sData.getMemoryUtilization());
  }
}

Let’s run the unit tests in the java-components repository and the ./src/test/java/
programmingtheiot/part02/unit/data path—specifically, the three test cases named for
the data containers they test: ActuatorDataTest.java, SensorDataTest.java, and System‐
PerformanceDataTest.java.

Here’s some sample console output generated after running the SystemPerformance
DataTest test case:

Jan 03, 2021 1:21:33 PM
programmingtheiot.part02.unit.data.SystemPerformanceDataTest testFullUpdate
INFO: Created first data obj: name=,typeID=0,timeStamp=2021-01-
03T18:21:33.036582100Z,statusCode=0,hasError=false,locationID=Not
Set,latitude=0.0,longitude=0.0,elevation=0.0,cpuUtil=0.0,diskUtil=0.0,memUtil=0.0
Jan 03, 2021 1:21:33 PM
programmingtheiot.part02.unit.data.SystemPerformanceDataTest testFullUpdate
INFO: Created second data obj: name=,typeID=0,timeStamp=2021-01-
03T18:21:33.097419200Z,statusCode=0,hasError=false,locationID=Not
Set,latitude=0.0,longitude=0.0,elevation=0.0,cpuUtil=10.0,diskUtil=10.0,memUtil=10.0
Jan 03, 2021 1:21:33 PM
programmingtheiot.part02.unit.data.SystemPerformanceDataTest testFullUpdate
INFO: Updated second data obj: name=,typeID=0,timeStamp=2021-01-
03T18:21:33.097419200Z,statusCode=0,hasError=false,locationID=Not
Set,latitude=0.0,longitude=0.0,elevation=0.0,cpuUtil=10.0,diskUtil=10.0,memUtil=10.0
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Jan 03, 2021 1:21:33 PM
programmingtheiot.part02.unit.data.SystemPerformanceDataTest testDefaultValues
INFO: Created data obj: name=,typeID=0,timeStamp=2021-01-
03T18:21:33.101409500Z,statusCode=0,hasError=false,locationID=Not
Set,latitude=0.0,longitude=0.0,elevation=0.0,cpuUtil=0.0,diskUtil=0.0,memUtil=0.0
Jan 03, 2021 1:21:33 PM
programmingtheiot.part02.unit.data.SystemPerformanceDataTest testParameterUpdates
INFO: Created data obj: name=,typeID=0,timeStamp=2021-01-
03T18:21:33.103403500Z,statusCode=0,hasError=false,locationID=Not
Set,latitude=0.0,longitude=0.0,elevation=0.0,cpuUtil=10.0,diskUtil=10.0,memUtil=10.0

Since these are unit tests, you should see a green bar in your JUnit console for the
ones that execute successfully, assuming you’re running this within an IDE that sup‐
ports JUnit. After successfully passing each test, you can move on to the next task 
within the GDA exercise set: updating SystemPerformanceManager.

Update the system performance manager

The update you’ll make to the GDA’s SystemPerformanceManager, described in
PIOT-GDA-05-002, is essentially the same as what you’ve already done for the CDA’s
version. Add functionality to handleTelemetry() by creating a new SystemPerfor
manceData instance, set the appropriate values, and then invoke the IDataMessageLis
tener instance’s callback (if set). Here’s the updated implementation for this method:

float cpuUtil = this.sysCpuUtilTask.getTelemetryValue();
float memUtil = this.sysMemUtilTask.getTelemetryValue();

// add diskUtil too!

_Logger.fine(
  "CPU utilization: " + cpuUtil + ", Mem utilization: " + memUtil);

SystemPerformanceData spd = new SystemPerformanceData();
spd.setLocationID(this.locationID);
spd.setCpuUtilization(cpuUtil);
spd.setMemoryUtilization(memUtil);

if (this.dataMsgListener != null) {
  this.dataMsgListener.handleSystemPerformanceMessage(
    ResourceNameEnum.GDA_SYSTEM_PERF_MSG_RESOURCE, spd);
}

Just remember that you’ll want to create a new task to track disk utilization, much like
you’re already doing for CPU utilization and memory utilization.

Let’s move on to the next key component in your GDA implementation journey—
adding JSON conversion.
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Add JSON translation using a data utility class
The implementation requirements for PIOT-GDA-05-003 all center on the same sin‐
gle action you tackled for the DataUtil implementation within the CDA: creating (or
editing) the DataUtil class in the programmingtheiot.data package and adding the
requisite public methods to convert your BaseIotData subclass instances into JSON
and vice versa.

This time I’ll focus on the SystemPerformanceData conversion and leave Actuator
Data and SensorData to you as an implementation exercise.

Since the shell implementation of DataUtil already exists in java-components, you
can simply edit it in place or add your own. Within the shell implementation, notice
the import statement: import com.google.gson.Gson, provided by Google, is one of
many Java-based JSON libraries. We’ll use it for JSON conversion within the GDA.

Here’s the sample code that will convert a SystemPerformanceData instance to JSON
and back again:

public String SystemPerformanceDataToJson(
  SystemPerformanceData sysPerfData)
{
  String jsonData = null;
  
  if (sysPerfData != null) {
    Gson converter = new Gson();
    jsonData = converter.toJson(sysPerfData);
  }
  
  return jsonData;
}

public SystemPerformanceData jsonToSystemPerformanceData(String jsonData)
{
  SystemPerformanceData sysPerfData = null;
  
  if (jsonData != null && jsonData.trim().length() > 0) {
    Gson converter = new Gson();
    sysPerfData =
      converter.fromJson(jsonData, SystemPerformanceData.class);
  }
  
  return sysPerfData;
}

Clearly, the use of a library such as Gson can save development time. The logic to
translate from SystemPerformanceData to JSON and back again is essentially just two
lines of code. Since your CDA and GDA implementations of this class (and of the
other classes, ActuatorData and SensorData) are identical (regarding their respective
properties), the process is very straightforward.
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The complexity arises from maintenance. Both code bases need to be maintained to
ensure compatibility of type properties—if you change a parameter name in the
GDA, for instance, you’ll need to do the same in the CDA.

Logging in Java

A common way to track activity at runtime within a Java applica‐
tion is to use logging. This is not a replacement for good unit and
automated testing, of course, but it can be helpful when you need
to see the results of a particular call, or even the various transfor‐
mation steps associated with a method call.

See if you can implement the remaining classes on your own. Just create the two
methods for conversion to/from JSON for each remaining BaseIotData subclass
using the pattern just shown for SystemPerformanceData.

After completing this final step, run the unit tests in DataUtilTest (it’s in the ./src/
test/java/programmingtheiot/unit/data path). It will run a bunch of unit tests that each
should pass. On success, you can move on to the next exercise.

Create and integrate the device data manager

The DeviceDataManager class is the heart and soul of the GDA, much as it is for the
CDA. It is, however, more involved: it orchestrates data moving from and to the CDA
as well as to and from the cloud. It also plays a role in Edge Tier management: it
implements the Manage functionality that lives at the edge.

The PIOT-GDA-05-004 card sets the stage for all of this functionality and will take a
little bit of time to get through. Here’s a high-level summary of the actions you’ll need
to tackle within the class:

• Create (or edit) the DeviceDataManager class within the programmingth

eiot.gda.app package.
• The constructor will check the configuration for the connection flags you’ll use

in Part III. While not critical right now, it will be good to add in the placeholders
during this exercise.

• Like other management classes, this, too, will have a startManager() and stop
Manager() implementation. For now, it will simply start and stop the SystemPer
formanceManager, but it will soon enable or disable the various configured
connections so the GDA can communicate with both the CDA and the cloud
over the network.
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• It will implement IDataMessageListener, so all method definitions in the inter‐
face class will need to be created within DeviceDataManager and (eventually)
implemented.

• The card suggests some private methods you can create to delegate functionality
that you’ll likely call from one or more of the IDataMessageListener methods
you’ll implement.

DeviceDataManager is also the right place to handle any additional Manage-related
code you want to include later. It doesn’t have to provide the actual implementation of
analysis algorithms, but it will serve as the gatekeeper for all message processing.

To keep things simple, you may want to consider using this class to contain all your
device-specific management and message orchestration logic.

First, create (or rather edit) the DeviceDataManager class within the programmingth
eiot.gda.app package and make sure it implements the IDataMessageListener
interface. A stubbed-out version already exists within the sample java-components
code you cloned in Chapter 1, with the interface implementation declared and with
the import statements you’ll need later. Feel free to use it as your starting point.

Create a constructor that sets class-scoped boolean values for the following configu‐
ration flags:

this.enableMqttClient  =
  configUtil.getBoolean(
    ConfigConst.GATEWAY_DEVICE, ConfigConst.ENABLE_MQTT_CLIENT_KEY);

this.enableCoapServer  = 
  configUtil.getBoolean(
    ConfigConst.GATEWAY_DEVICE, ConfigConst.ENABLE_COAP_SERVER_KEY);

this.enableCloudClient = 
  configUtil.getBoolean(
    ConfigConst.GATEWAY_DEVICE, ConfigConst.ENABLE_CLOUD_CLIENT_KEY);

this.enablePersistenceClient = 
  configUtil.getBoolean(
    ConfigConst.GATEWAY_DEVICE, ConfigConst.ENABLE_PERSISTENCE_CLIENT_KEY);

initManager();

I’ll cover the first three boolean values beginning in Part III and continuing into
Part IV, and you’ll get to use them as part of future updates to DeviceDataManager as
you progress through the related exercises.

For now, create a new private method named initManager(). You can use this to ini‐
tialize the connection objects you’ll use to connect to the CDA and cloud service in
Part III.
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The last boolean value, however—this.enablePersistenceClient—will be explored
as an optional activity in this chapter as an introduction to capturing and storing data
locally within the GDA, so it can have a way to store state or CDA messages it may
need to analyze over a period of time.

Here’s an example of how you can implement the initial version of initManager():

private void initManager()
{
  this.sysPerfMgr = new SystemPerformanceManager();
  this.sysPerfMgr.setDataMessageListener(this);
  
  if (this.enableMqttClient) {
    // TODO: implement this in Lab Module 7
  }
  
  if (this.enableCoapServer) {
    // TODO: implement this in Lab Module 8
  }
  
  if (this.enableCloudClient) {
    // TODO: implement this in Lab Module 10
  }
  
  if (this.enablePersistenceClient) {
    // TODO: implement this as an optional exercise in Lab Module 5
  }
}

Notice the initialization of SystemPerformanceManager? This is similar to the behav‐
ior you implemented in the CDA, where the DeviceDataManager manages the System
PerformanceManager initialization and execution, and the application handles the
start and stop of DeviceDataManager. I’ll cover this for the GDA briefly in PIOT-
GDA-05-005.

The initialization of DeviceDataManager is almost complete. Let’s move on to the
start and stop methods.

Add the initial startManager() and stopManager() implementations. For now, these
will be relatively simple. Eventually, you’ll also use these methods to start and stop
any stateful connections initialized in initManager() to communicate between devi‐
ces and the cloud.

Here’s a simple example of each method:

public void startManager()
{
  _Logger.info("Starting DeviceDataManager...");
  
  this.sysPerfMgr.startManager();
}
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public void stopManager()
{
  _Logger.info("Stopping DeviceDataManager...");
  
  this.sysPerfMgr.stopManager();
}

This implementation is fairly simple, which means you can move on to the next
piece: implementing the IDataMessageListener interface. In Java, an interface pro‐
vides a contract that must be honored—it’s just a declaration of the different methods
and their respective signatures that an implementing class must, well, implement.

Here’s a summary of the methods defined in the interface:

public boolean handleActuatorCommandResponse(
  ResourceNameEnum resourceName, ActuatorData data);

public boolean handleIncomingMessage(
  ResourceNameEnum resourceName, String msg);
    
public boolean handleSensorMessage(
  ResourceNameEnum resourceName, SensorData data);
    
public boolean handleSystemPerformanceMessage(
  ResourceNameEnum resourceName, SystemPerformanceData data);

Each of these will need to be implemented within DeviceDataManager. Notice that
each accepts a reference to ResourceNameEnum and another parameter. The Resource
NameEnum type is a Java enum that simply represents a common set of names and
other related properties for passing messages between the CDA and the GDA.

Feel free to adjust the interface and method signatures to suit your
needs as you progress through the exercises in Parts III and IV. I’ve
used these as a common way to capture the necessary parameters
for the exercises in this book, but you may find an alternative sig‐
nature will work more effectively with your design.

Let’s look at the initial implementation of each method in turn. You’ll be adding more
functionality to these methods later:

handleActuatorCommandResponse(ResourceNameEnum, ActuatorData)
This will be invoked when an ActuatorData message is received in response to
an actuation event on the CDA. For this callback, simply check whether the
ActuatorData reference is non-null, and then log a debug message indicating the
message was received. You can also check whether the ActuatorData reference is
in fact a response by calling the isResponseFlagEnabled() function. If so, check
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whether the hasError() flag is set and log a warning message indicating an error
occurred on the actuation response.

handleIncomingMessage(ResourceNameEnum, String)
This will be invoked when a message is received from the cloud service, and the
String parameter will represent the data in JSON format. It will almost always be
an ActuatorData message, so we could technically name it handleIncomingAc
tuatorCommand(). For the implementation, simply log a message that the mes‐
sage was received if the String is non-null and not empty.

handleSensorMessage(ResourceNameEnum, SensorData)
This will be invoked when a SensorData message is received from the CDA. For
this callback, check whether the SensorData reference is non-null, and then log a
debug message indicating the message was received. You can also check if the
SensorData reference has an error by checking whether the hasError() flag is
set; if so, log a warning message.

handleSystemPerformanceMessage(ResourceNameEnum, SystemPerformanceData)
This will be invoked when a SystemPerformanceData message is received either
internally or from the CDA. For this callback, you can implement the same logic
as for handleSensorMessage().

These four callback methods provide the entry point to all analysis the GDA will per‐
form on internally generated data and on data coming in from the CDA or the cloud.
You’ll see in the requirements card that there are a couple of private methods defined
to handle the analysis of this incoming data:

handleIncomingDataAnalysis()
This will eventually be called by handleIncomingMessage(), handleSensorMes
sage(), and handleSystemPerformanceMessage() and parameterized to meet
your specific design needs. It’s responsible for handling any incoming message
analysis and deciding what to do. For instance, if an actuation event is received
from the cloud, it must first be validated and then—if appropriate—sent on to
the CDA via one of the connection paradigms I’ll discuss in Part III.

handleUpstreamTransmission()
This will eventually be called by the handleIncomingDataAnalysis() method
after data analysis is complete. Its primary responsibility is to send SensorData
and SystemPerformanceData messages up to the cloud service, possibly after
locally persisting the information within the GDA.

Clearly, there’s much more work to be done with DeviceDataManager—heart and
soul, as I stated earlier. But no worries! You’ll get to add much more functionality as
you progress through the remaining chapters.
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But first, a quick dive into the optional exercises related to local data persistence.

Add local data persistence
The GDA’s persistence requirements are technically optional, so you can stop here
and move on to Part III if you’d like. I think you’ll find this functionality useful, how‐
ever, so I’ll explain the exercises at a high level and leave the implementation up to
you.

Since the GDA is the gateway device and provides the interface between the Edge Tier
and the Cloud Tier, it can be useful for it to have some persistence ability. It should be
able to at least temporarily store some state information about the Edge Tier as a
whole and draw upon that state to make decisions in the future.

An example might include storing SensorData JSON data from one or more CDA
implementations. Over time, the GDA can read the incoming data, detect an anom‐
aly, and then draw upon n minutes (or hours) of locally stored data to make a deci‐
sion that might shut down one of those CDA instances, instruct it to reboot, or
perhaps take another action, all without having to rely on an active connection to the
internet. This flexibility to act locally can prove invaluable if network connectivity is
sporadic or shut down.

Additional Exercises
Your GDA now has the ability to store data locally and track your disk utilization. But
what happens if your disk utilization begins to creep up to the point where you risk
running out of local storage space?

Proactive Disk Utilization Management
Within the DeviceDataManager, implement the necessary functionality to monitor
disk utilization on the GDA via the SystemPerformanceData messages sent by the
SystemPerformanceManager. If disk utilization approaches a configured threshold
(say, 50%), be sure to log a warning message.

Next, decide whether to start clearing out the older cached data entries stored in
Redis (assuming you’re using Redis for your object cache), or simply stop caching
data entries altogether.

While neither option is ideal, it’s probably better than running out of disk space and
turning the GDA into a nonoperational gateway. Determine what trade-off is best and
take the appropriate action, being careful not to delete needed data!
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Conclusion
In this chapter, you learned about data management and transformation by convert‐
ing your data objects into JSON and back again. This is a huge step forward! With
this knowledge, you can add new features and data containers to support many more
capabilities in the future.

It’s time to learn how to connect your CDA and GDA using different messaging pro‐
tocols, which I’ll talk about in the introduction to Part III. From there, you’ll be able
to connect your systems to the cloud and complete your initial end-to-end IoT
solution.
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PART III

Connecting to Other Things

Introduction

Need a connection?
Enable, then disable.
You get the message?

In Part I, I stressed that the IoT is all about integration. You set up your development
environment and built your first two applications. At the end of Part I, you had your
applications up and running and generating some very basic performance data, but
little more.

Part II advanced the integration concept further and helped you build out a basis for
connecting with the physical world. You also established more advanced data collec‐
tion, transformation, and storage capabilities for your two applications, enabling your
CDA and GDA to finally do something a bit more useful, although they aren’t yet
talking directly to each other.

Cue Part III. This is where you’ll take the next step forward in your integration jour‐
ney and enable your applications to talk reliably with each other.

What You’ll Learn in This Section
There are purpose-built protocols for communicating between IoT devices and even
many IoT-friendly cloud services, and they’re in active use as of this writing. These
protocols tend to fall into one of two categories: publish/subscribe (pub/sub) or



1 R. Braden (Editor). Requirements for Internet Hosts – Communication Layers. IETF Standard RFC 1122,
1989.

request/response. These categories simply refer to the style of messaging that devices
agree on in order to send or receive data over the network.

Pub/sub protocols are generally best suited for those messaging situations in which
one device wants to send data to one or more unknown recipients, based on a topic
name that the device and all recipients know in advance. The sending device is called
the publisher, and the receiving device is called the subscriber. Pub/sub protocols typi‐
cally allow multiple publishers and subscribers and include a broker, or server, that
handles these interactions.

Request/response protocols are generally designed to support a one-to-one interac‐
tion between a device that’s requesting something (such as data from a remote data‐
base) and another that’s responding to the request (by reading data from a database to
return it to the requester, for example). While request/response can certainly work in
a true one-to-one fashion in which there’s only one requester and one responder, we
usually see it implemented in cases in which the responder is a server that provides
many requesting clients with access to resources.

The protocols I’ll discuss in the next few chapters adhere to either the pub/sub or the
request/response paradigm. All function at the application layer, as defined by IETF
RFC 1122. Figure III-1 provides an example of this,1 including a handful of protocols
you may already know and some you’ll learn about in the next four chapters.

Figure III-1. Internet Protocol Suite categorization—we’ll focus on the application layer
in this section

https://tools.ietf.org/html/rfc1122
https://tools.ietf.org/html/rfc1122


You’ve undoubtedly heard about some of the many protocols used
within the Edge Tier to communicate with sensors, actuators, and
the devices that manage them. It’s not in the scope of this book to
work through these protocols, or even to explain them. As such, I’ll
focus exclusively on those that work within an IP-based environ‐
ment and on the software development techniques you can employ
to leverage them in your IoT solution.

Naming Conventions for Topics and Resources

Finally, these protocols all have at least one thing in common: naming conventions
for topics (pub/sub) or resources (request/response). Although naming can be highly
subjective, there are a few things to keep in mind to help you avoid inconsistencies
and confusion for your development teams and projects. As for naming strategies, a
location-based, top-down structure may work for one business, while a type-based
structure may work best for another. Here are four tips for naming topics and resour‐
ces, regardless of the protocol you choose:

• Topics and resources may be case sensitive. The placement of the forward slash
(/) to separate different levels of naming always matters.

• Choose a top-level naming convention based on a category that represents the
highest level your business needs. If that’s geographic, great, but don’t assume
that all devices will reside in the same geographic center. As your business
expands, you’ll likely grow into other geographies as well. Similarly, you probably
don’t need to consider a topical structure that includes celestial objects, like Mil‐
kyWay/Sun/Earth/{NextSubTopic}. If you’re considering deploying devices to
Mars, great! However, it’s probably not necessary to incorporate that into your
naming strategy right now. (In 10 or 20 years, I’ll probably be wrong.)

• Avoid spaces and special characters and choose a naming convention that your
business and stakeholders can generally agree on. Although I use CamelCase for
topic and resource names throughout the exercises in this book, you may opt for
a different convention. Just be consistent and stick with the semantics and char‐
acters supported by the specification. Generally speaking, the lowest-common-
denominator approach will help you avoid integration problems later. This may
mean using basic ASCII lowercase characters and numbers exclusively (i.e., a–z
and 0–9).

In short, like many other technical decisions, naming is about balance. I find it easiest
to structure my naming strategy around categories that I’ll most likely care about
over the next two to five years and try not to concern myself with structures that I
may care about in a decade. As you build out your infrastructure and implement the



2 This topic/resource naming convention will generally work well for simple testing, but in later chapters you’ll
see how you can adapt this to support a more detailed naming hierarchy for your own use, or to support a
modified convention for integration with the cloud.

examples in each chapter, your own objectives will shape the naming conventions you
ultimately settle on.

So what does this all mean for your own implementation? Basically, you’ll have four
types of messages to manage:

Sensor messages
These are messages sent from the sensor device upstream (from the CDA).

Actuator commands
These are messages sent from the cloud or gateway device downstream (to the
CDA).

Device management status messages
These are messages that will be sent from either the CDA or the GDA upstream
to either the GDA or the cloud, respectively.

Device management commands
These are messages that will be sent from either the cloud or the GDA down‐
stream to either the GDA or the CDA, respectively.

It’s easy to go overboard with naming conventions and nested subtopics, so I’ll use
the following relatively simple pattern for both topics and resources going forward:2

{project name}/{device name}/{message type}

The exercises in this part, and throughout the remainder of the book, require three
categories of resource and topic names, as follows:

Sensor messages
• PIOT/ConstrainedDevice/SensorMsg

Actuator commands and responses
• PIOT/ConstrainedDevice/ActuatorCmd
• PIOT/ConstrainedDevice/ActuatorResponse

System performance messages
• PIOT/ConstrainedDevice/SystemPerfMsg
• PIOT/GatewayDevice/SystemPerfMsg

This naming approach is granular enough for the CDA and GDA integration exerci‐
ses and allows for easy filtering on message type or device name. You may have
another strategy that’s preferable for your own environment and overall architecture.



Since the message itself can contain any detail you’d like, such as the message name,
type ID, or location, you can simply filter for specifics by parsing the JSON message.

If you decide to add more device instances in your own environ‐
ment, you can add another subtopic—perhaps based on region, or
even on device-specific naming—or simply include the device spe‐
cificity in the message itself.

As a convenience, I’ve defined “consts” in both python-components and java-
components to represent these names. Further, I created a special “enum” class called
ResourceNameEnum within the CDA and GDA source trees that uses these “consts” to
represent the topic and resource names specific to each application. This “enum” class
is provided to make development easier and more efficient, as the type ResourceNa
meEnum can be used in place of a string-based topic or resource name throughout the
code base. This allows you to add additional properties to extend its functionality
without modifying interface and class signatures.

In addition to the three categories already mentioned, there are two additional cate‐
gories included within ResourceNameEnum that are not needed for the exercises in this
book but may be helpful for future projects:

Device management status messages
• PIOT/ConstrainedDevice/MgmtStatusMsg
• PIOT/GatewayDevice/MgmtStatusMsg

Device management commands
• PIOT/ConstrainedDevice/MgmtStatusCmd
• PIOT/GatewayDevice/MgmtStatusCmd

Feel free to use these if you’d like, or you can ignore them.

All of these topic and resource names could just as easily be loaded from the configu‐
ration file (which I’ll talk about next), but I decided to include each name within the
Java and Python code to simplify the exercises and avoid potential integration issues
stemming from mistyped string names. Of course, this means you’ll need to ensure
that any changes you make in one language’s ResourceNameEnum are appropriately
reflected in the other.



Configuration Considerations

The sample configuration file and configuration utility (introduced in Chapter 1) has
dedicated sections for each connection type. These properties can, of course, be
modified to suit your needs, but it’s worth calling them out here so you know what to
expect when the implementation exercises begin:

#
# MQTT client configuration information
#
[Mqtt.GatewayService]
credFile       = ./cred/PiotMqttCred.props
certFile       = ./cert/PiotMqttLocalCertFile.pem
host           = localhost
port           = 1883
securePort     = 1884
defaultQoS     = 0
keepAlive      = 30
enableCrypt    = False

The host key refers to the location of the server for that particular protocol and can
be changed. You can change this from localhost to a different server name; however,
keep in mind that it’s your responsibility to ensure the data you send to any server is
not sensitive in any way (or that it’s protected and encrypted), because it’s no longer
under your control once it leaves your computer. This is one reason the examples in
this section use local servers running on your local system to get you started.

Implementing Exercises and Validation

For each protocol that I’ll discuss, it’s important to validate that your code is passing
the correct messages. After each key step in the implementation process, I’ll pause
briefly and ask you to run some tests with a protocol analyzer, such as Wireshark.
This will help with your testing and overall understanding of the protocol.

There are other protocol analyzers available, too! Choose one you’re comfortable
with. All of the related examples and screenshots I’ll show use Wireshark (v3.2.6 or
higher).

Wireshark is an open source protocol analyzer that runs as an
application on your computer and supports the IoT protocols that
I’ll discuss throughout this section. For installation instructions,
see the Wireshark website.

https://gitlab.com/wireshark/wireshark
https://www.wireshark.org


Security Considerations

Since we’re dealing with application-layer protocols that work on top of the transport
layer, encrypting the connections can be handled at the transport layer. TCP/IP con‐
nections can use Transport Layer Security (TLS); UDP/IP connections can use Data‐
gram Transport Layer Security (DTLS). Once data traversing the connection “pipe” is
encrypted, you can consider authentication (verifying who’s who) and authorization
(allowing or disallowing access to certain things).

At the end of each chapter in this section, I discuss protocol encryption support and
provide some additional references for you to consider in your own implementations.
I then suggest exercises for you to implement and integrate into your environment.
For initial testing and validation, you’ll be communicating with a local server on your
local system and analyzing the network traffic using a protocol analyzer such as
Wireshark to see the packet detail, so all examples will use unencrypted connections.

In determining an appropriate architecture, implementation, and deployment
approach for any IoT ecosystem, security must be front and center. Your security
strategy will largely depend on legal, technical, data management, and business
requirements that will vary, so I won’t provide guidance on this subject other than to
point out what I believe to be rather obvious steps: use encryption, ensure you have
an appropriate authentication and authorization strategy, and validate all inputs, out‐
puts, and data at each logical layer.

https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc6347
https://tools.ietf.org/html/rfc6347




CHAPTER 6

MQTT Integration–Overview and
Python Client

Build a Publish/Subscribe Client in Python Using MQTT

Did you even hear?
I have nothing in return.
Finally—an ACK!

Fundamental concepts: Overview of publish/subscribe messaging at the application
layer; features of MQTT; implementation strategies and exercises specific to the Con‐
strained Device App written in Python.

Messaging between devices and systems is a key concept in facilitating robust and
meaningful data integration across the Internet of Things. It also poses a variety of
challenges for the architect and developer that go beyond just “making it work.” With
IP-based transport protocols (such as TCP and UDP), we’re generally interested in
packet reliability, latency, loss, speed, efficiency, and of course security (to name just a
few areas of concern). 

At the application layer, our concerns with protocol choice become more nuanced.
What problem is the business trying to solve? Does it just want to send data sets relia‐
bly between two or more systems, or does it need a way to stream video from remote
devices? While these are two basic examples and could both technically use the same
underlying transport protocol(s), they have very different application-layer protocol
needs.

In addition to business needs, you’ll also need to consider the implementation chal‐
lenges associated with the messaging protocols you plan to use.
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2 The MQTT FAQ page provides a brief history of MQTT and other information about the protocol.

Publish/subscribe (or pub/sub) is a term that captures the type of messaging between
one application or system and another. One will publish a message to a destination
using a specific name, which is usually called a topic. The other will subscribe to the
destination system using the same topic name as the publisher. Whenever the pub‐
lisher sends a message, the subscriber is notified and forwarded that message. This
process is handled by a broker application that can support multiple publishers and
subscribers and that may reside on the same system or on another system that’s acces‐
sible to each system and application.

There are quite a few pub/sub protocols, but in this chapter, I’ll focus on the Message
Queuing Telemetry Transport (MQTT) protocol.1

What You’ll Learn in This Chapter
After working through this content and the code examples and exercises, you’ll
understand the principles behind publish/subscribe protocols and how to use these
protocols in your own software applications. Specifically, you’ll learn how pub/sub
works, why it’s useful, and how to write client software that can interact with a
pub/sub broker (the server) to support your application’s needs. You’ll also learn how
to incorporate Quality of Service (QoS) in your message distribution strategy.

The exercises in this chapter are specific to the Constrained Device Application writ‐
ten in Python.

About MQTT
The first version of the MQTT messaging protocol was written by Dr. Andy
Stanford-Clark and Arlen Nipper in 1999.2 Originally designed to monitor oil pipe‐
lines, it’s now widely used as a messaging protocol across a range of industries for
exchanging IoT messages between devices on internal networks and those communi‐
cating with IoT-centric cloud services.

The nonprofit consortium Organization for the Advancement of Structured Informa‐
tion Standards (OASIS) standardized version 3.1.1 of the MQTT protocol specifica‐
tion in 2013, and the International Standards Organization (ISO) ratified it in 2016.

As of this writing, the latest version of the specification is version 5.0, which introdu‐
ces many new features to the protocol, including the ability to support request/
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3 See Section 4.10 of MQTT version 5.0.

response interactions.3 There’s also an extremely lightweight version of MQTT called
MQTT-SN that’s designed for wireless networks and constrained devices.

For this chapter and the remainder of the book, I’ll refer to MQTT version 3.1.1, as
it’s currently the most widely used version across available commercial cloud services
using the protocol.

Connecting to a Broker
Before any messages can be sent or received, each client must first connect to the
broker (server) over TCP/IP, with Transport Layer Security (TLS) enabled if encryp‐
ted connections are important.

MQTT does not specify encryption—only topic-level authentica‐
tion, which will be discussed later. To enable encryption, TLS can
be configured with many broker implementations, and it is sup‐
ported by many MQTT client library implementations.

Once a connection is established, the client can send messages to or receive messages
from other clients that are also connected to the broker. A pub/sub system permits a
many-to-many relationship scheme between clients via the message broker (the
MQTT server). Some MQTT brokers offer high availability by permitting multiple
broker instances to share state information. For our purposes, we’ll assume that a sin‐
gle broker instance is being utilized, but with two or more clients.

Figure 6-1 depicts the connections between two clients and an MQTT broker, with
Client A as the publisher and Client B as the subscriber.

Figure 6-1. Connection between two clients and an MQTT broker

As implied, the order of the connections to the MQTT broker from Client A and Cli‐
ent B doesn’t matter to the broker. Of course, if Client B connects after Client A starts
publishing messages, it won’t receive any messages sent prior to connecting!

About MQTT | 171

https://oreil.ly/yfRBK
https://oreil.ly/9QwVP


Message Passing
Messages are passed between clients using topics. Simply put, a topic is a name that’s
used to identify a place on the server to temporarily store and distribute messages. 
Topics in MQTT are case sensitive, meaning that the topic names MyTopic and
mytopic are completely different. MQTT supports hierarchical topic names, allowing
you to create subtopics and sub-subtopics simply by separating each topic name with
a “/” character to represent parent → child → grandchild → relationships (such as
MyTopic/Category/Data). Topics can also contain wildcards, which any subscriber can
use to filter topics and receive only those messages that map to a specific naming con‐
vention or even all subtopics for a specific topic.

Example 1: Client A (the CDA) wants to send, or publish, messages to any interested
listener, or subscriber, on topic PIOT/ConstrainedDevice. Assuming Client A doesn’t
specify any authentication requirement for PIOT/ConstrainedDevice, any subscriber
that knows the name of this topic and has a connection to the same broker that Client
A is connected to can subscribe and receive those messages.

Example 2: Client A (again, the CDA) wants to send messages to any interested sub‐
scriber on the following topics:

• PIOT/ConstrainedDevice/SensorMsg
• PIOT/ConstrainedDevice/MgmtStatusMsg

Client B (the GDA) wants to receive all messages from Client A, so—assuming there
are no authentication requirements for any of the topics Client A is publishing to, and
Client A and Client B are both connected to the same broker—Client B will now need
to subscribe to PIOT/ConstrainedDevice (since Client A may publish messages to this
top-level topic), PIOT/ConstrainedDevice/SensorMsg, and PIOT/ConstrainedDevice/
MgmtStatusMsg.

Wildcards are a powerful and convenient way to subscribe to complex topic hierar‐
chies. The “#” character allows access to all subtopics from that point on (such as
PIOT/#). The “+” character provides access to a single level in the hierarchy (e.g.,
PIOT/+/MgmtStatusMsg).

Using the “#” wildcard, you can make your programming work easier. Instead of sub‐
scribing to the three subtopics separately, simply subscribe to PIOT/ConstrainedDe‐
vice/#. Only subscribers can use wildcards.

Be aware that overusing wildcards when subscribing to MQTT
topics can potentially be problematic—the subscriber must be pre‐
pared for an influx of unnecessary messages that will need to be
processed, and it also places additional load on the broker. Thus it
should be used only when needed.
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Figure 6-2 depicts this entire process, including the connection sequence of Client A
and Client B to the MQTT broker. Note the numbering of each step—Client A
doesn’t need to wait for Client B to subscribe, although it’s implied in this example.

Figure 6-2. Example of a publish/subscribe interaction using MQTT

There are many strategies for defining topic structures for pub/sub environments.
While a location-based, top-down structure may work for one business, a type-based
structure may work best for another. In addition to the naming convention hints
mentioned in the introduction for this section, here are a few specific considerations
for naming MQTT topics:

• MQTT topics are case sensitive. The topic PIOT/ConstrainedDevice is NOT the
same as piot/constraineddevice.

• There’s no need to start your topic with a “/”; doing so only adds confusion, since
it is likely to be treated as the second level by your broker implementation. Con‐
sider starting all topics with the name only.

• Although powerful, wildcards are your frenemies. They can be super helpful in
that your subscribers can collect vast amounts of data without knowing every
single subtopic ever devised. But this does, of course, come with a cost: more data
to parse, more load on the network and broker, and more information that you
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4 There’s a great deal of discussion on how and when the words “power” and “responsibility” were first linked.
An interesting exploration of this topic can be found on the website Quote Investigator.

5 Andrew Banks and Rahul Gupta, MQTT Version 3.1.1. OASIS Standard, 2014. Section 2.
6 See Section 2.2 of MQTT version 3.1.1.
7 See Section 2.2.3 of MQTT version 3.1.1.
8 See Section 2.3 of MQTT version 3.1.1.
9 See Section 2.4 of MQTT version 3.1.1.

may never care about. It’s all about trade-offs. Use wildcards wisely, and remem‐
ber that with great power… (you get the point).4

Control Packets and the Structure of an MQTT Message
Every MQTT message is packaged within a Control Packet.5 A Control Packet can be
thought of as the envelope containing all the context and data for an MQTT message.
To minimize the space required for a message, Control Packets have at least one and
no more than three components:

Fixed header (required: 2 to 5 bytes in length)6

All Control Packets have a fixed header, where the first byte includes four bits
representing the type, with the remaining four bits reserved for other flags
(depending on the specific Control Packet type). Bytes two through five represent
the size of the Control Packet, which can be up to 256 MB in length.7

Variable header (optional: 2+ bytes)8

Most Control Packets have a variable header, which contains the protocol type
and protocol level, connection flags, and any authentication credentials. Connec‐
tion flags are simply on/off bits that indicate what other items may be included in
the payload, such as authentication, QoS, and Wills (more on each of these in the
next section).

Payload (optional: 0+ bytes)9

Some Control Packets have a payload. The payload may contain message data or
connection-specific data (like authentication credentials), as alluded to in the
previous bullet describing connection flags within the variable header.

The Control Packet type represents the type of message that’s being sent—either from
a client to the server or vice versa—and what, if anything, will be contained in the
variable header and payload (as well as how the payload will be constructed). As a 4-
bit field, there’s room for up to 16 different types, although MQTT v3.1.1 specifies
only 14 types, with 2 reserved and unused.
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10 See Section 3.15 of MQTT version 5.0.
11 See Section 3 of MQTT version 3.1.1.

MQTT v5.0 uses one of these two reserved Control Packet types,
leaving only one remaining as reserved. This new Control Packet—
AUTH—allows the client and server to support a protracted
authentication model, such as challenge and response.10

Here’s a brief summary of the different Control Packet types you’ll encounter when
using MQTT:11

CONNECT (client to server)
This is the first Control Packet sent from the client to server after establishing a
connection.

CONNACK (server to client)
This is the first Control Packet sent from the server to the client when acknowl‐
edging the CONNECT Control Packet.

PUBLISH (client to server, or server to client)
This is sent from the publishing client to the server, or from the server to the sub‐
scribing client, to transmit a message.

PUBACK (client to server, or server to client)
This is sent from the server to the publishing client, or from the subscribing cli‐
ent to the publishing server, when QoS 1 is set. For more information on MQTT
v3.1.1 QoS levels and their meaning, see the next section on QoS.

PUBREC (client to server, or server to client)
This is sent from the server to the publishing client, or from the subscribing cli‐
ent to the publishing server, when QoS 2 is set.

PUBREL (client to server, or server to client)
This is sent in response to a PUBREC Control Packet when QoS 2 is set.

PUBCOMP (client to server, or server to client)
This is sent in response to a PUBREL Control Packet when QoS 2 is set.

SUBSCRIBE (client to server)
This is sent from the client to the server when requesting a subscription to one or
more topics.

SUBACK (server to client)
This is sent from the server to the subscribing client in response to a SUBSCRIBE
Control Packet.
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12 See Section 4.3 of MQTT version 3.1.1.

UNSUBSCRIBE (client to server)
This is sent from the client to the server when unsubscribing from one or more
topics.

UNSUBACK (server to client)
This is sent from the server to the unsubscribing client in response to an
UNSUBSCRIBE Control Packet.

PINGREQ (client to server)
This is sent from the client to the server for Keep Alive processing. I’ll discuss
this further in the next section.

PINGRESP (server to client)
This is sent from the server to the client in response to a PINGREQ Control
Packet.

DISCONNECT (client to server)
This is sent from the client to the server to indicate a clean disconnect from the
server.

MQTT also provides support for message delivery behavior through different QoS
levels. Version 3.1.1 of the specification supports three QoS levels, as follows:12

QoS 0: Fire and forget
A message is sent from the sender to the receiver once at most, and no attempt is
made by the sender to retry.

QoS 1: At least once
A message is sent from the sender to the receiver at least once. The sender will
retry until the receiver sends it a PUBACK Control Packet; hence, there is the
possibility of duplicate messages being sent to the receiver by the sender.

QoS 2: At most once
A message is sent from the sender to the receiver exactly once. At the MQTT
protocol level, a series of Control Packets are exchanged between the sender and
receiver to assure delivery without duplicates. Once a message is published, the
receiver must send a PUBREC Control Packet, after which the sender will send
the PUBREL Control Packet, followed by the receiver’s PUBCOMP Control
Packet being sent back to the sender.

QoS relationships are between a single sender and a receiver. When a client sends a
message to the server, it does at a QoS level specific to that connection. Likewise, a
client that subscribes to a given topic does so with a desired QoS level pertaining to
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13 See Section 4 of MQTT version 3.1.1.

their unique connection to the server. This will make more sense after implementing
the publish and subscribe functionality in the next section.

Depending on the MQTT client and/or server implementation
you’re working with, you may find that adherence to QoS levels
varies. Check the documentation for the given implementation to
see where it may diverge from the specification regarding QoS
behavior.

Finally, there’s the Retain flag, which can be set as part of any PUBLISH message. This
tells the server to store the message and its QoS level so it can be sent to a future sub‐
scriber for the same topic in which it was originally published.13

You’ll almost always use an MQTT client library, such as Eclipse Paho, to connect to
an MQTT broker. This will help to mask much of the complexity of creating and han‐
dling the different Control Packets and their respective options. Although the proto‐
col specifics are abstracted, you’ll want to choose your QoS levels carefully, as each
QoS level will come with its own benefits and potential costs.

Performance considerations related to QoS levels are important,
and I expect to dig into those in further detail with a later release.

The next section walks through the process of adding MQTT to your CDA and GDA.
The exercises walk you through some basic MQTT integration logic and will help you
get a better understanding of how some of these Control Packets look when using a
protocol analyzer such as Wireshark. 

Adding MQTT to Your Applications
Let’s recall our overall design plan. We have two device types that we’d like to connect:
a constrained device and a gateway device. Each is running a dedicated application—
a Constrained Device App and a Gateway Device App, respectively. To keep things
simple, we’ll continue with our implementation approach in Python (Constrained
Device App) and Java (Gateway Device App) and use the Eclipse Paho MQTT client
for each. For now, let’s just run both applications on our workstation—we’ll integrate
them into our systems architecture soon enough.
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14 Roger A. Light, “Mosquitto: Server and Client Implementation of the MQTT Protocol”, Journal of Open
Source Software 2, no. 13 (2017): 265.

Figure 6-3 depicts a systems view of these relationships. Notice the broker is a sepa‐
rate application, or service, and is not implemented within either of our applications;
it stands alone and can even be deployed to a different, dedicated device if desired.
For our purposes, we’ll simply run it alongside the other applications on our worksta‐
tion. We’ll use the Mosquitto14 MQTT Broker for this and all other MQTT examples
that run on our local network.

Figure 6-3. Systems view of pub/sub message flow between two applications

MQTT has a lot of qualities and features that are important to cover for both your
CDA and your GDA. The next section digs into the broker setup, which your CDA
and GDA will rely on, followed by some additional specifics on the protocol itself. I’ll
first walk you through a client implementation in Python within the CDA and discuss
the protocol idiosyncrasies along the way, and then I’ll move more quickly through
the Java implementation within the GDA.
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Installing and Configuring an MQTT Broker
To test and validate our client MQTT code, we’ll need a server to talk to. Mosquitto is
an open source broker that can be installed on Windows, Mac, or Linux. For the
MQTT exercises in this chapter, I’m using Mosquitto version 1.4.8. Remember, the
broker is the MQTT server, so I’ll use the terms broker and server interchangeably
when discussing MQTT and other pub/sub protocols.

For now, you can just use the default Mosquitto broker configuration, so you don’t
need to provide your own. Once it’s installed, start it up and watch the log file to
ensure it’s running.

If you decide to modify the default configuration file, be sure to
first back up the original in case you need to return to it later.

Running Mosquitto within a bash terminal will generate output similar to the follow‐
ing after startup:

1597076291: mosquitto version 1.4.8 (build date Tue, 18 Jun 2019 11:59:34 -0300)
starting
1597076291: Using default config.
1597076291: Opening ipv4 listen socket on port 1883.
1597076291: Opening ipv6 listen socket on port 1883.

Programming Exercises
This is where the fun begins with MQTT—I’ll walk you through the details of inte‐
grating your CDA with an MQTT broker so they can communicate. Let’s take a look
at the overall design of the approach, shown in Figure 6-4.

Notice that there is one new component that will need to be implemented (plus two
related interfaces that are already created for you), along with a reference to the
MQTT broker (shown in gray).
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Figure 6-4. Constrained Device Application design with integrated MQTT client

Figure 6-5 depicts the notional UML for this design, with a focus on the relationship
between DeviceDataManager and MqttClientConnector, along with a few other
components for context.

Figure 6-5. Constrained Device Application UML with integrated MQTT client
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1994).

Let’s look at the client connector and the two interfaces you’ll be working with:

• MqttClientConnector: A simple adaptor that delegates the calls made to it to the
underlying MQTT client instance (implemented using the delegation design
pattern15).

• IDeviceMessageListener: A simple interface that defines callbacks for handling
various message types.

• IPubSubClient: A simple interface that defines the accessor methods for any
pub/sub client connector (such as MqttClientConnector).

As I mentioned previously, you need to implement only the first one—MqttClient

Connector. I’ve provided sample implementations of the two interfaces, IDeviceMes
sageListener and IPubSubClient, for you to use as is or to modify to your liking.

As of this writing, Python doesn’t have a formal interface specifica‐
tion, unlike Java or C++. There are a few ways to implement inter‐
face functionality in Python, but to keep things simple, I’m going to
define both IDeviceMessageListener and IPubSubClient as sim‐
ple informal interfaces—basically, as classes that have empty imple‐
mentations that can be defined by the implementing class. Feel free
to use an alternative approach, such as a metaclass or base class
definition.

Let’s get started with the MqttClientConnector. This adaptor, which acts as a delegate
to the paho-mqtt client that connects to the MQTT broker, should allow you to swap
out MQTT client implementations if you want to experiment with others or perhaps
even build your own implementation.

The first step, of course, is to review the information in the Programming the IoT
project board under Chapter 6—MQTT Client (CDA) and check out a new branch
for this chapter (PIOT-CDA-06-000).

You may recall that paho-mqtt was one of the libraries you impor‐
ted when setting up your virtualenv environment and used pip to
install basic_imports.txt. This library gives you the ability to con‐
nect to an MQTT server to publish messages and subscribe for
updates from a topic. You can read all about its features online.
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Create the MQTT Connector Abstraction Module
As is our typical pattern, you may want to create your own issue and simply map it to
the one I’ve already created. Let’s review PIOT-CDA-06-001 in more detail. I’ll walk
through the specifics, as this one is a bit involved.

The actions are summarized as follows:

• Navigate to the programmingtheiot/cda/connection package in the sample code.
• Within the MqttClientConnector, make sure the following import statements

exist at the beginning of the module:
import paho.mqtt.client as mqttClient

from programmingtheiot.common import ConfigUtil
from programmingtheiot.common import ConfigConst
from programmingtheiot.common import IDataMessageListener

from programmingtheiot.cda.connection import IPubSubClient

• Create a constructor that initializes the MQTT client properties. You can keep
the clientID empty or null for now, but be sure to retrieve the MQTT host, port,
and keepAlive values from the configuration file and store them in locally scoped
variables (you’ll need them when you establish the connection in the next action
step). The code will look similar to the following:

self.config = ConfigUtil()

self.dataMsgListener = None

self.host = \
  self.config.getProperty( \
    ConfigConst.MQTT_CLOUD_SECTION, \
    ConfigConst.HOST_KEY, \
    ConfigConst.DEFAULT_HOST)

self.port = \
  self.config.getInteger( \
    ConfigConst.MQTT_CLOUD_SECTION, \
    ConfigConst.PORT_KEY, \
    ConfigConst.DEFAULT_MQTT_PORT)

self.keepAlive = \
  self.config.getInteger( \
    ConfigConst.MQTT_CLOUD_SECTION, \
    ConfigConst.KEEP_ALIVE_KEY, \
    ConfigConst.DEFAULT_KEEP_ALIVE)

logging.info('\tMQTT Broker Host: ' + self.host)

182 | Chapter 6: MQTT Integration–Overview and Python Client

https://oreil.ly/MVr81


logging.info('\tMQTT Broker Port: ' + str(self.port))
logging.info('\tMQTT Keep Alive:  ' + str(self.keepAlive))

NOTE: The clientID must be unique if you plan to use multiple clients with your
local broker, as you’ll need to ensure the clientID doesn’t conflict with any other
name being used.

• Add the connectClient() method, add the logic to create an instance of the cli‐
ent if needed, and then connect to the broker, if not already connected, and log
an info message indicating the connector was started. Your code should look
similar to the following:

if not self.mqttClient:
    self.mqttClient = \
      mqttClient.Client( \
        client_id = self.clientID, clean_session = True)
    self.mqttClient.on_connect = self.onConnect
    self.mqttClient.on_disconnect = self.onDisconnect
    self.mqttClient.on_message = self.onMessage
    self.mqttClient.on_publish = self.onPublish
    self.mqttClient.on_subscribe = self.onSubscribe

if not self.mqttClient.is_connected():
    self.mqttClient.connect(self.host, self.port, self.keepAlive)
    self.mqttClient.loop_start()
    return True
else:
    logging.warn( \
      'MQTT client already connected. Ignoring connect.')
    return False

• Add the disconnectClient() method, add the logic to disconnect from the
broker if currently connected, and log an info message indicating the connector
was stopped. Be sure to stop the network loop, as indicated in the following sam‐
ple code:

if self.mqttClient.is_connected():
    self.mqttClient.loop_stop()
    self.mqttClient.disconnect()

• Implement the remaining three methods from the IPubSubClient interface:
publishMessage(), subscribeToTopic(), and setDataMessageListener(). For
now, just log a message indicating they were called, and return False. A follow-up
task will address their implementation details.

• Add a setter for the IDataMessageListener instance. You’ll use this for passing
incoming MQTT messages to the DeviceDataManager a bit later in Part III.
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I’ve created a bunch of tests for you to use; be sure to review the code and the instruc‐
tions under the Test section, especially since you’ll need to ensure your MQTT broker
is up and running first!

OK, now that you’ve written the code and verified it works, let’s unpack some of the
complexities this task introduces.

In the action step called “Create a constructor that initializes the MQTT client prop‐
erties,” most of the code is simply pulling (and checking) the MQTT client initializa‐
tion parameters from the configuration. Keep these configuration parameters in
mind, as you’ll need them for the next key action: Add the connectClient() method.

The content of connectClient() is pretty simple. Basically, you need to first check
whether the client’s been created—if not, create it. Then check whether the client is
already connected, and if it isn’t, connect to the MQTT server.

This should be reasonably self-explanatory, except perhaps for that last line of code:
self.mqttClient.loop_start(). Why is this necessary? The documentation for the
paho-mqtt client network loop tells us that this is one of a handful of methods within
the client class that processes network events. This is necessary to ensure that all
incoming and outgoing messages are processed.

If you want more control over this process, you can call one of the other loop meth‐
ods manually, although for our purposes, the loop_start() method will suffice.

The loop_start() runs as a background thread and won’t block
your main application thread, allowing you to perform other tasks.
It also provides another benefit—it will attempt to reconnect to the
server automatically if the client disconnects from the broker
without sending an explicit disconnect request. This is tremen‐
dously useful, as your connection uses a stateful TCP/IP connec‐
tion with MQTT at the application layer. If that connection fails
(which I’ve certainly experienced on a few occasions), you’ll proba‐
bly want this connection to be reestablished without your having to
write a ton of retry logic yourself.

Before we go any further, let’s create the disconnect logic. Look at the Add the discon‐
nectClient() method action step. Note that the loop_stop() method is called to tell the
background network data processing thread to quit. Although the disconnect()
method on your client instance will close the connection, you should call this method
to ensure the network loop thread is properly stopped if you followed the example
and called loop_start() after connect().
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Finally, create the setter function for the IDataMessageListener callback implemen‐
tation. This will look identical to the same setter functionality you implemented in
other classes, such as the SystemPerformanceManager.

You now have an MQTT client that will connect to the MQTT server and then dis‐
connect on demand using the configuration parameters you’ve specified in your Piot‐
Config.props file. Granted, this doesn’t do much that’s functionally interesting in
terms of building your solution. It does, however, trigger a number of Control Pack‐
ets that you can observe in Wireshark or another protocol analyzer of your choosing.

Testing and validating the connection
Let’s run a quick test and see what Control Packets get generated. If you’re using
Wireshark, launch it now. Make sure it can listen for packets on your loopback
adapter, and start listening for packets. Start the Mosquitto broker as well.

Now, in the MqttClientConnectorTest unit test, uncomment the testConnectAnd
Disconnect() test method, and run the test—it will take about 35 seconds to execute
(assuming keepAlive property in the PiotConfig.props configuration file is set to 30).

In Wireshark, click on the “Protocol” tab and scroll until you see the first of what
should be five MQTT packets, as shown in Table 6-1.

Table 6-1. MQTT CONNECT and DISCONNECT Control Packet Sequence as shown in
Wireshark

No. Time Source Destination Protocol Length Info
6158 259.168438 ::1 ::1 MQTT 109 Connect Command

6160 259.171805 ::1 ::1 MQTT 68 Connect Ack

6712 289.185977 ::1 ::1 MQTT 66 Ping Request

6714 289.186184 ::1 ::1 MQTT 66 Ping Response

6814 294.169673 ::1 ::1 MQTT 66 Disconnect Req

Notice that there are five Control Packets exchanged between the client and the
server: CONNECT, CONNACK, PINGREQ, PINGRESP, and DISCONNECT.

If you click on each one of these, you’ll notice that the largest in terms of bytes is the
CONNECT Control Packet (78 bytes total, with 12 bytes specific to the MQTT Con‐
trol Packet). The other packets represent, in order, the following Control Packets:
CONNACK (4 bytes), PINGREQ (2 bytes), PINGRESP (2 bytes), and DISCONNECT
(2 bytes).

Programming Exercises | 185



16 See Section 3.1.3 of MQTT version 3.1.1.

I’ve set up an MQTT-specific filter within Wireshark to display
only the packets I care about, which is why Table 6-1 is showing
only MQTT protocol packets and nothing else.

Let’s look more closely at the CONNECT Control Packet, as it has some properties
that will be helpful to more fully understand. The following text output shows a
detailed expansion of the MQTT portion of this packet in Wireshark:

MQ Telemetry Transport Protocol, Connect Command
    Header Flags: 0x10, Message Type: Connect Command
     0001 .... = Message Type: Connect Command (1)
     .... 0000 = Reserved: 0
    Msg Len: 12
    Protocol Name Length: 4
    Protocol Name: MQTT
    Version: MQTT v3.1.1 (4)
    Connect Flags: 0x02, QoS Level: At most once delivery (Fire and Forget), Clean
Session Flag
     0... .... = User Name Flag: Not set
     .0.. .... = Password Flag: Not set
     ..0. .... = Will Retain: Not set
     ...0 0... = QoS Level: At most once delivery (Fire and Forget) (0)
     .... .0.. = Will Flag: Not set
     .... ..1. = Clean Session Flag: Set
     .... ...0 = (Reserved): Not set
    Keep Alive: 30
    Client ID Length: 0
    Client ID:

Notice the Connect Flags listed from top to bottom: User Name Flag, Password
Flag, Will Retain, QoS Level, Will Flag, and Clean Session Flag.

User Name and Password.    These allow for basic user/password authentication of con‐
necting clients by the server. If these flags are set, the payload must contain this infor‐
mation. As per the MQTT v3.1.1 specification, you can have a username without a
password but not the other way around. You can read about the details of the payload
structure of the CONNECT Control Packet pertaining to username and password in
the specification.16 Additional security topics can be found in the MQTT v3.1.1 speci‐
fication under the Security section.

Will Retain, QoS Level, and Will Flag.    A will in MQTT is just a message that the client
can set on the server that will be sent out to other connected clients on its behalf if it
gets disconnected without sending a DISCONNECT, among other reasons docu‐
mented in the specification. The QoS and Retain flags relate to how the will message
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will be published. I’ll discuss both QoS and Retain in a bit more detail in “Add Pub‐
lish, Subscribe, and Unsubscribe Functionality” on page 192.

You can see the Keep Alive is set to 30 (seconds), which is expected, since that’s the
value pulled from the configuration file. This simply tells the server to expect a mes‐
sage from the client every 30 seconds—if not a published message, it will be a PING‐
REQ. The server will disconnect the client if one is not received within a certain
amount of time after the Keep Alive period.

Finally, there’s the Client ID—currently set to nothing (as it’s 0 bytes in length). This
is kind of interesting, since the MQTT broker has logged what looks like a client ID,
as shown in the following log output:

1597319136: mosquitto version 1.4.8 (build date Tue, 18 Jun 2019 11:59:34 -0300)
starting
1597319136: Using default config.
1597319136: Opening ipv4 listen socket on port 1883.
1597319136: Opening ipv6 listen socket on port 1883.
1597319155: New connection from ::1 on port 1883.
1597319155: New client connected from ::1 as 05c3d124-0286-4447-a4c0-7d4e07005441
(c1, k30).
1597319190: Client 05c3d124-0286-4447-a4c0-7d4e07005441 disconnected.

In the PIOT-CDA-06-001 task, I didn’t specify a client ID, and in my sample code, I
didn’t set one. Notice that one has been created for the client session within the
broker—specifically, 05c3d124-0286-4447-a4c0-7d4e07005441. This is for the
broker to handle the client connection on its end and will be valid only while the cli‐
ent is connected.

If you look at both the paho-mqtt source code documentation and the MQTT proto‐
col specification pertaining to client IDs, this all makes sense. The Paho library tells
us how it will handle zero-length client IDs for each version of MQTT (v3.1.1 is the
default): that is, a zero-length client ID will be sent to the broker. The MQTT v3.1.1
specification also makes it clear how it will handle this situation: one will be gener‐
ated by the broker. The one caveat is that a client connection with NO client ID must
NOT set Clean Session to “False”—it MUST be established as a new clean session
(which is the default).

You can easily test this yourself by setting the clean_session = False parameter
when you create the MQTT client instance without a valid client ID. You’ll see that
the Paho library will throw an exception and fail to create the client instance. Unless
this exception is handled, it will result in your CDA being terminated.
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If an MQTT v3.1.1 broker were to receive a CONNECT request
with no client ID but with the Clean Session flag set to “False,” the
spec would state that it must return an error and close the connec‐
tion. The Paho library catches this for us and throws the exception
straightaway.

So, in short, these examples are all fine:

• self.mqttClient = \

mqttClient.Client( \
   client_id = “MyValidClientID”, clean_session = False)

• self.mqttClient = \

mqttClient.Client( \
  client_id = “MyValidClientID”, clean_session = True)

• self.mqttClient = mqttClient.Client(clean_session = True)

• self.mqttClient = mqttClient.Client()

But these are NOT:

• self.mqttClient = \

mqttClient.Client(client_id = “”, clean_session = False)

• self.mqttClient = mqttClient.Client(clean_session = False)

Make sense? Let’s rerun this test, but add in your own client ID this time. It’s super
easy—you just need to set it as the client_id parameter when you create the MQTT
client instance in the MqttClientConnector constructor. For example:

if not clientID:
    clientID = 'myMqttClientID'

self.mqttClient = \
  mqttClient.Client(client_id = clientID, clean_session = False)

Save the updates and then run the MqttClientConnectorTest again. You’ll see some‐
thing similar to the following in your server’s log file:

1597321903: mosquitto version 1.4.8 (build date Tue, 18 Jun 2019 11:59:34 -0300)
starting
1597321903: Using default config.
1597321903: Opening ipv4 listen socket on port 1883.
1597321903: Opening ipv6 listen socket on port 1883.
1597321915: New connection from ::1 on port 1883.
1597321915: New client connected from ::1 as myMqttClientID (c1, k30).
1597321950: Client myMqttClientID disconnected.

188 | Chapter 6: MQTT Integration–Overview and Python Client



Let’s look at the Wireshark output and see how the CONNECT Control Packet has
changed in the MQTT portion of the packet:

MQ Telemetry Transport Protocol, Connect Command
    Header Flags: 0x10, Message Type: Connect Command
     0001 .... = Message Type: Connect Command (1)
     .... 0000 = Reserved: 0
    Msg Len: 41
    Protocol Name Length: 4
    Protocol Name: MQTT
    Version: MQTT v3.1.1 (4)
    Connect Flags: 0x02, QoS Level: At most once delivery (Fire and Forget), Clean
Session Flag
     0... .... = User Name Flag: Not set
     .0.. .... = Password Flag: Not set
     ..0. .... = Will Retain: Not set
     ...0 0... = QoS Level: At most once delivery (Fire and Forget) (0)
     .... .0.. = Will Flag: Not set
     .... ..1. = Clean Session Flag: Set
     .... ...0 = (Reserved): Not set
    Keep Alive: 30
    Client ID Length: 29
    Client ID: CDAMqttClientConnectorTest001

This time, the MQTT packet length is 29 bytes, since the client ID “CDAMqttClient
ConnectorTest001” is 17 bytes and is the only thing that has changed from the previ‐
ous CONNECT Control Packet (which was only 12 bytes in length).

An additional and important note on the use of client IDs: if you
attempt to connect to the broker with two (or more) different cli‐
ents that each use the same client ID, the MQTT v3.1.1 specifica‐
tion states that the server must disconnect the earlier connection.
Recall that the loop_start() call in the paho-mqtt library will
attempt to automatically reconnect the client to the server if the
connection fails. Under these circumstances, if you have two (or
more) clients attempting to connect (or automatically reconnect) to
the broker using the same client ID, a race condition will ensue,
with the broker dropping the earlier connection in favor of the
more recent one, in perpetuity. The moral of the story is: don’t
reuse client IDs across multiple clients.

If you’re using a clean session with each new connection, using a custom client ID
doesn’t really help, so you shouldn’t set it if you’re not going to take advantage of the
reliability features from storing previous connection state with the broker. This will
help avoid some of the issues I just warned about.

Now that your CDA is connected to the server, how will it get notified when a mes‐
sage is received from a topic it’s subscribed to?
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Dealing with callbacks
The Paho library provides several callback functions, or methods that get invoked
when an event is triggered (such as when a message is received by the client). Call‐
backs are a common way to handle asynchronous (or even synchronous) events. It’s
kind of like registering your phone number for a callback from customer service
instead of waiting on the phone for someone to pick up. You can do other things until
the phone rings and they’re ready to handle your request. There’s really no magic
here, although it sometimes seems like magic when it’s set up properly.

The paho-mqtt library defines a number of empty callbacks that represent the signa‐
ture of the method but don’t actually do anything (yet). Since they’re definitions only,
they’re designed so you can swap them out with your own method implementations.

In Python, this is easy to do—you just create your own method (named however you
wish) with the same signature as the empty callback method and assign that to the
empty callback referenced within your paho-mqtt client instance.

You can review all the callbacks defined by the paho-mqtt library,
along with their associated (and well-written) documentation,
within the client code itself. The documentation is, I believe, rela‐
tively self-explanatory, so I’ll discuss only the specific callbacks and
associated parameters that will be useful for your CDA implemen‐
tation.

For the purposes of your CDA implementation, the callbacks you’ll need to imple‐
ment are as follows (there are more, of course, but these are most important for the
current task at hand):

• on_connect()

• on_disconnect()

• on_message()

• on_publish()

• on_subscribe()

That was a lot to digest. Now you should be familiar with how MQTT works in gen‐
eral, and with some of the complexities a library helps to abstract, making your devel‐
opment tasks much easier.

Some of this complexity does require additional development work, including the
callback implementations, so let’s dig into that now.
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Add Callbacks to Support MQTT Events
This is where, once implemented, you’ll see the fruits of your effort realized. You can
create your own task to link to PIOT-CDA-06-002, of course. Here are the steps you’ll
take to implement the callback functions:

• Update the onConnect() callback method to handle connection notification
events. For now, just log a message indicating the client has successfully connec‐
ted. Use the following signature:

def onConnect(self, client, userdata, flags, rc):

• Update the onDisconnect() callback method to handle connection notification
events. For now, just log a message indicating the client has successfully connec‐
ted. Use the following signature:

def onDisconnect(self, client, userdata, rc):

• Update the onMessage() callback method, which is perhaps most important—
this will be called whenever a message is received on the topic for which your cli‐
ent has subscribed; you can add a log message for now, although eventually this
will invoke another callback on the IDataMessageListener instance. Use the fol‐
lowing signature:

def onMessage(self, client, userdata, msg):

NOTE: The onMessage() callback parameter named “msg” will be of type
MQTTMessage, which will contain all the context—including the byte[] payload—
of the message received from the broker.

• Update the onPublish() callback to handle message publish notification events.
For now, just log a message with the MID, or message ID. Use the following sig‐
nature:

def onPublish(self, client, userdata, mid):

• Update the onSubscribe() callback to handle topic subscription notification
events. For now, just log a message with the MID. Use the following signature:

def onSubscribe(self, client, userdata, mid, granted_qos):

• Back in the connectClient() method, add the callback assignments before the
connection call is issued to the broker, as follows:

self.mqttClient.on_connect = self.onConnect
self.mqttClient.on_disconnect = self.onDisconnect
self.mqttClient.on_message = self.onMessage
self.mqttClient.on_publish = self.onPublish
self.mqttClient.on_subscribe = self.onSubscribe
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Although this looks like a lot of work, it should be relatively quick, since you’ll just
log messages indicating something happened after the callbacks were invoked.

To test this, you can uncomment the testPublishAndSubscribe() test case, and run
the MqttClientConnectorTest unit test. The connect/disconnect and publish/
subscribe test cases should now succeed.

Before moving on to publishing messages and subscribing to topics, let’s look back
for just a moment. Notice the signatures for these callback functions—the connect
and disconnect callbacks have an “rc” parameter, which represents the result code.
You can use this to determine if there is an error condition associated with the con‐
nect or disconnect and take appropriate action. Another important parameter—
“mid”—is used in the publish and subscribe callbacks to represent the message ID.
This is particularly useful if you need to track a specific publish or subscribe event for
a given topic. Specifics for these and the other callback parameters can be found in
the Paho client documentation.

Once the callbacks are all implemented, it’s time to run another test. This time, you’ll
want to observe the log messages that are generated by your onConnect() and onDis
connect() callbacks. For now, if these callbacks are triggered and your log messages
look correct, the tests pass.

With your callback infrastructure now in place, it’s time to get to publishing and
subscribing.

Add Publish, Subscribe, and Unsubscribe Functionality
The core of any pub/sub protocol is, of course, publishing messages and subscribing
to topics (to receive messages published by other clients). I’ve already mentioned how
QoS works with MQTT, so let’s get to writing code that can take advantage of the core
capabilities of this protocol.

The requirements to support pub/sub within your MqttClientConnector are located
in PIOT-CDA-06-003. Here’s a summary of the steps:

• Update the publishMessage() method to handle all publish functionality. It will
accept the topic name, message content, and requested QoS level for parameters.
It must validate the topic name and QoS level. If the topic is invalid, return False.
If the QoS level is < 0 or > 2, set it to ConfigConst.DEFAULT_QOS, which must be
defined as a class-scoped “constant.” If the publish is valid and the call to the
MQTT client is successful, return True.

• Update the subscribeToTopic() and unsubscribeFromTopic() methods to han‐
dle all subscribe/unsubscribe functionality. The subscribe function will accept the
topic name and requested QoS level for parameters. It must validate the topic
name and QoS level. If the topic is invalid, return False. If the QoS level is < 0 or
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> 2, set it to ConfigConst.DEFAULT_QOS, which must be defined as a class-scoped
“constant.” If the subscription is valid and the call to the MQTT client is success‐
ful, return True.

Let’s take a look at the implementation for all of these methods, starting with publish
Message():

def publishMessage( \
  self, resource: ResourceNameEnum = None, \
  msg: str = None, \
  qos: int = ConfigConst.DEFAULT_QOS) -> bool:
  
  if qos < 0 or qos > 2:
    qos = ConfigConst.DEFAULT_QOS
  
  if resource:
    msgInfo = \
      self.mqttClient.publish( \
        topic = resource.value, payload = msg, qos = qos)
    
    # this will block and wait for the publish to complete
    msgInfo.wait_for_publish()
    
    return True
  
  return False

The function wait_for_publish() will block until the publish event is complete. You
can read more about this in the Paho documentation.

Moving on to the subscribe/unsubscribe functionality, you’ll notice a similar method
signature for subscribe, with unsubscribe requiring only the topic name:

def subscribeToTopic( \
  self, resource: ResourceNameEnum = None, \
  callback = None, \
  qos: int = ConfigConst.DEFAULT_QOS) -> bool:
  
  if qos < 0 or qos > 2:
    qos = ConfigConst.DEFAULT_QOS
  
  if resource:
    logging.info('Subscribing to topic %s', resource.value)
    
    self.mqttClient.subscribe(resource.value, qos)
  
    return True
  
  return False

def unsubscribeFromTopic(self, resource: ResourceNameEnum):
  if resource:
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    logging.info('Unsubscribing from topic %s', resource.value)
    self.mqttClient.unsubscribe(resource.value)
    return True
  
  return False

For both the publish and the subscribe functionality, your callbacks
will be notified when the server receives and acknowledges the
events, so the boolean return to each method is just an indicator
that the call itself succeeded. You’ll need to track the MID within
the callbacks if you want to be assured of successful message deliv‐
ery or topic subscription to the broker.

A final note on topic subscriptions: you can define a unique callback method per sub‐
scription topic, which you won’t need until Chapter 10, so I’ll cover this advanced
capability at that time.

Time to test things out. Let’s observe the integration tests with Wireshark running.
Fire up Wireshark and run the integration test named MqttClientConnectorTest.

If everything is implemented correctly, you’ll see log output that aligns closely with
that specified in the test instructions.

Table 6-2 shows the protocol analyzer output from running this new test.

Table 6-2. MQTT PUBLISH and SUBSCRIBE Control Packet Sequence using QoS 2 as
shown in Wireshark

No. Time Source Destination Protocol Length Info
90 3.614652 ::1 ::1 MQTT 107 Connect Command

93 3.615603 ::1 ::1 MQTT 117 Subscribe Request (id=1) [PIOT/

ConstrainedDevice/MgmtStatusMsg]

96 3.619205 ::1 ::1 MQTT 68 Connect Ack

98 3.619368 ::1 ::1 MQTT 69 Subscribe Ack (id=1)

248 8.615582 ::1 ::1 MQTT 154 Publish Message (id=2) [PIOT/

ConstrainedDevice/MgmtStatusMsg]

250 8.61579 ::1 ::1 MQTT 68 Publish Received (id=2)

254 8.61614 ::1 ::1 MQTT 68 Publish Release (id=2)

256 8.616308 ::1 ::1 MQTT 68 Publish Complete (id=2)

348 13.615976 ::1 ::1 MQTT 116 Unsubscribe Request (id=3)

350 13.616152 ::1 ::1 MQTT 68 Unsubscribe Ack (id=3)

1522 43.630572 ::1 ::1 MQTT 66 Ping Request

1524 43.630766 ::1 ::1 MQTT 66 Ping Response

1623 48.6168 ::1 ::1 MQTT 66 Disconnect Req
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Notice the additional Control Packets! Since I’m monitoring the loopback adapter on
my PC, I’m actually seeing the client publishing a message to the server and the
server publishing that same message back to my client, since my client has subscribed
to the same topic that it’s publishing to. To make the table cleaner, I’ve removed these
duplicate Control Packet types.

If you add them up, you’ll notice that there are (drumroll)...13.

Wait, what? There are supposed to be 14, right? Correct—we’re missing one:
PUBACK, which we’ll see only when using QoS 1. This is because the test uses QoS 2
for the publish and subscribe calls.

If I rerun the same test using QoS 1, you’ll see that the PUBREL and PUBCOMP have
been replaced with a single PUBACK.

Table 6-3 shows us the change reflected in Wireshark’s capture.

Table 6-3. MQTT publish and subscribe Control Packet Sequence using QoS 1 as shown in
Wireshark

No. Time Source Destination Protocol Length Info
689 19.684216 ::1 ::1 MQTT 107 Connect Command

693 19.685325 ::1 ::1 MQTT 117 Subscribe Request (id=1) [PIOT/

ConstrainedDevice/MgmtStatusMsg]

695 19.68849 ::1 ::1 MQTT 68 Connect Ack

697 19.689293 ::1 ::1 MQTT 69 Subscribe Ack (id=1)

786 24.686409 ::1 ::1 MQTT 154 Publish Message (id=2) [PIOT/

ConstrainedDevice/MgmtStatusMsg]

788 24.686661 ::1 ::1 MQTT 68 Publish Ack (id=2)

955 29.68658 ::1 ::1 MQTT 116 Unsubscribe Request (id=3)

957 29.686801 ::1 ::1 MQTT 68 Unsubscribe Ack (id=3)

1763 59.703109 ::1 ::1 MQTT 66 Ping Request

1765 59.703298 ::1 ::1 MQTT 66 Ping Response

1837 64.688483 ::1 ::1 MQTT 66 Disconnect Req

The PUBACK now shows up. So we have 14 Control Packets in total, but you need to
run separate tests using two different QoS levels to see them all.

Finally, let’s look at two details—one for SUBSCRIBE and the other for PUBLISH:

MQ Telemetry Transport Protocol, Subscribe Request
    Header Flags: 0x82, Message Type: Subscribe Request
     1000 .... = Message Type: Subscribe Request (8)
     .... 0010 = Reserved: 2
    Msg Len: 51
    Message Identifier: 1
    Topic Length: 46
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    Topic: PIOT/ConstrainedDevice/MgmtStatusMsg
    Requested QoS: At least once delivery (Acknowledged deliver) (1)

In the SUBSCRIBE Control Packet detail shown in the preceding protocol analyzer
output, the topic name of PIOT/ConstrainedDevice/MgmtStatusMsg is included in the
request, as well as the requested QoS. This simply means that the client is asking the
server to deliver messages on the specified topic at the maximum QoS level of 2,
although the server may not be able to do so:

MQ Telemetry Transport Protocol, Publish Message
    Header Flags: 0x32, Message Type: Publish Message, QoS Level: At least once 
    delivery (Acknowledged deliver)
     0011 .... = Message Type: Publish Message (3)
     .... 0... = DUP Flag: Not set
     .... .01. = QoS Level: At least once delivery (Acknowledged deliver) (1)
     .... ...0 = Retain: Not set
    Msg Len: 88
    Topic Length: 46
    Topic: PIOT/ConstrainedDevice/MgmtStatusMsg
    Message Identifier: 1
    Message: 544553543a20546869732069732074686520434441206d65…

In the PUBLISH Control Packet detail shown in this protocol analyzer output, the
topic name of PIOT/ConstrainedDevice/MgmtStatusMsg is once again included in the
request, as well as the specific QoS level (2). As this is a publish message, and I’ve
included the actual payload, it’s shown encoded within the message, bringing the total
bytes for this particular message to 88 (as shown in the Msg Len property).

The following protocol analyzer output shows the full content of the message, includ‐
ing the payload, which you can make out as “TEST: This is the CDA message
payload”:

0000   32 58 00 2e 50 72 6f 67 72 61 6d 6d 69 6e 67 49   2X..ProgrammingI
0010   6f 54 2f 43 6f 6e 73 74 72 61 69 6e 65 64 44 65   oT/ConstrainedDe
0020   76 69 63 65 2f 4d 67 6d 74 53 74 61 74 75 73 4d   vice/MgmtStatusM
0030   73 67 00 01 54 45 53 54 3a 20 54 68 69 73 20 69   sg..TEST: This i
0040   73 20 74 68 65 20 43 44 41 20 6d 65 73 73 61 67   s the CDA messag
0050   65 20 70 61 79 6c 6f 61 64 2e                     e payload.

That was definitely a lift, but it was well worth it, since you should now have a good
handle on how MQTT works. But we’re not quite done—you still need to integrate
this functionality within the rest of the CDA and then make sure everything is work‐
ing properly.
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Integrate the MQTT Connector into Your CDA
The final CDA exercise for this chapter is generally straightforward but involves a few 
steps:

• Add/manage the MqttClientConnector instance within DeviceDataManager.
• Subscribe/unsubscribe to actuator commands when the DeviceDataManager

starts/stops, respectively.

Take a look at PIOT-CDA-06-004—it walks through the steps to accomplish this.

You’ll need to initialize the MqttClientConnector in the constructor, start it up
within the startManager() function and subscribe to the appropriate topic(s), and
then stop the client and unsubscribe when stopManager() is called.

Here’s some example code you can use within the constructor:

enableMqttClient = \
  configUtil.getBoolean( \
    section = ConfigConst.CONSTRAINED_DEVICE, \
    key = ConfigConst.ENABLE_MQTT_CLIENT_KEY)
          
self.mqttClient = None

if enableMqttClient:
  self.mqttClient = MqttClientConnector()

And finally, the updated start/stop logic for DeviceDataManager:

# use within the startManager() function
if self.mqttClient:
  self.mqttClient.connectClient()
  self.mqttClient.subscribeToTopic( \
    resource = ResourceNameEnum.CDA_ACTUATOR_CMD_RESOURCE, qos = 1)

# use within the stopManager() function
if self.mqttClient:
  self.mqttClient.disconnectClient()
  self.mqttClient.unsubscribeFromTopic( \
    resource = ResourceNameEnum.CDA_ACTUATOR_CMD_RESOURCE)

Notice I’m using qos = 1 in the subscription call. Feel free to use 0 or 2—all three
levels are supported by the Mosquitto broker, although some broker instances—par‐
ticularly those that are hosted within some cloud services—may not be.

Also, check out the resource = ResourceNameEnum.CDA_ACTUATOR_CMD_RESOURCE
parameter. I created ResourceNameEnum in both the python-components package and
the java-components package to normalize resource and topic names  between both
applications. There are certainly other ways to manage this; I simply chose this path.
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You can update the method definitions for publish, subscribe, and unsubscribe to
simply accept strings if you’d like.

With these updates in place, you’re ready to test out your code. The ./src/test/python/
programmingtheiot/part03/integration/app path contains a test case class named Data‐
DeviceManagerTestWithComms you can use to run a few simple tests to verify that
your MQTT connection (still) works and that your newly added publish and sub‐
scribe functionality works as planned.

You may want to make a temporary edit to DeviceDataManager and simply comment
out the startup of SystemPerformanceManager and SensorAdapterManager within its
startManager() function for this one test (then uncomment them after testing). This
will make your search through the log messages a bit easier.

The output you’ll see in the console depends on the log messages you’ve decided to
include, of course, but might look similar to the following:

Finding files... done.
.
.
.
2021-01-04 23:12:04,193 - MainThread - root - INFO - Testing DeviceDataManager class...
.
.
.
2021-01-04 23:12:04,277 - MainThread - root - INFO - Started DeviceDataManager.
2021-01-04 23:12:04,277 - MainThread - root - INFO - Using auto-generated
client ID: None
2021-01-04 23:12:04,277 - MainThread - root - INFO -        MQTT Broker Host: localhost
2021-01-04 23:12:04,277 - MainThread - root - INFO -        MQTT Broker Port: 1883
2021-01-04 23:12:04,277 - MainThread - root - INFO -        MQTT Keep Alive:  30
2021-01-04 23:12:04,278 - MainThread - root - INFO - Attempting to connect to MQTT
broker: localhost
2021-01-04 23:12:04,279 - Thread-2   - root - INFO - [Callback] Connected to MQTT
broker. Result code:
0
2021-01-04 23:12:04,279 - MainThread - root - INFO - Created DataUtil instance.
2021-01-04 23:12:04,279 - MainThread - root - DEBUG - Encoding ActuatorData to JSON
[pre]  -->
name=Not Set,typeID=0,timeStamp=2021-01-
05T04:12:04.279662+00:00,statusCode=0,hasError=False,locationID=constraineddevice00
1,elevation=0.0,latitude=0.0,longitude=0.0,command=1,stateData=None,value=0.0,isRes
ponse=False
2021-01-04 23:12:04,279 - MainThread - root - INFO - Encoding ActuatorData to JSON
[post] --> {
    "timeStamp": "2021-01-05T04:12:04.279662+00:00",
    "hasError": false,
    "name": "Not Set",
    "typeID": 0,
    "statusCode": 0,
    "latitude": 0.0,
    "longitude": 0.0,
    "elevation": 0.0,
    "locationID": "constraineddevice001",
    "isResponse": false,
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    "command": 1,
    "stateData": null,
    "value": 0.0
}
2021-01-04 23:12:04,280 - Thread-2   - root - INFO - [Callback] Subscribed MID: 1
2021-01-04 23:12:04,280 - Thread-2   - root - INFO - [Callback] Actuator command
message received. Topic: PIOT/ConstrainedDevice/ActuatorCmd.
2021-01-04 23:12:14,280 - MainThread - root - INFO - Disconnecting from MQTT
broker: localhost
2021-01-04 23:12:14,281 - Thread-2   - root - INFO - [Callback] Disconnected from
MQTT broker. Result
code: 0
2021-01-04 23:12:14,281 - MainThread - root - INFO - Stopped DeviceDataManager.
2021-01-04 23:12:14,282 - MainThread - root - INFO - Stopped
SystemPerformanceManager.
2021-01-04 23:12:14,282 - MainThread - root - INFO - SystemPerformanceManager
scheduler already stopped. Ignoring.
2021-01-04 23:12:14,282 - MainThread - root - INFO - Stopped SensorAdapterManager.
2021-01-04 23:12:14,282 - MainThread - root - INFO - SensorAdapterManager scheduler
already stopped.
Ignoring.
----------------------------------------------------------------------
Ran 3 tests in 10.090s

OK (skipped=2)

The log output I care about (mostly) is the following:

2021-01-04 23:12:04,280 - Thread-2   - root - INFO - [Callback] Actuator command
message received. Topic: PIOT/ConstrainedDevice/ActuatorCmd.

If you also received something similar, great! Your CDA is now well on its way to
being a valuable member of your Edge Tier design.

What About Security?
MQTT supports username and password authentication, and—while not explicitly
specified—can (and should) be used over an encrypted network connection. I’ll talk
more about enabling TLS to encrypt your MQTT connection in Chapter 10. User‐
name authentication over an encrypted MQTT connection will be part of one of the
exercises in Chapter 11.

Additional Exercises
I mentioned you can implement subscription callback logic later in Chapter 10, but
why not now? If you’d like, you can read through Chapter 10 now and see if you can
implement the CDA’s MqttClientConnector callback subscriber functionality at this
time. One option is to create a dictionary of resource names to callback functions that
can be used to support this capability. See if you can make this work on your own.
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Conclusion
As always, remember to commit your code and merge your Lab Module 06 branch
into the primary branch as specified in PIOT-CDA-06-100. Once you’ve done that,
let’s recap what you learned. In this chapter, you learned about the MQTT protocol,
and how to use the paho-mqtt Python library to connect to an MQTT broker using a
new class abstraction named MqttClientConnector.

Your CDA is now connection-enabled—congratulations! Now let’s move on to Chap‐
ter 7 and add MQTT support to your GDA.
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CHAPTER 7

MQTT Integration–Java Client

Build a Publish/Subscribe Client in Java Using MQTT

Wash, rinse, and repeat.
What purpose does it now serve?
Practice makes perfect!

Fundamental concepts: Continued work with the MQTT pub/sub protocol; imple‐
mentation strategies and exercises specific to the Gateway Device App written in Java;
integration strategies using MQTT to communicate between the Constrained Device
App and the Gateway Device App.

This chapter continues with the patterns established in Chapter 6, but with a focus on
building your MQTT client connection logic within the GDA. This will eventually be
used to support integration between the CDA and the GDA and will also lay the
groundwork for the GDA to communicate with one or more cloud services using
MQTT.

What You’ll Learn in This Chapter
You’ll continue digging into MQTT fundamentals, but this time you’ll focus on build‐
ing out your GDA functionality via integration with an open source MQTT library.
Not only will this allow you to test your gateway and eventually integrate with remote
cloud services that implement the MQTT protocol via a hosted broker, but it will also
enable you to talk to the CDA in a reliable manner.

You’ll see how MQTT can be used to push updates to one or more devices (such as
your CDA) via a gateway (your GDA) and learn how to do so using an open source
MQTT Java client library.
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Programming Exercises
The steps you need to take to integrate MQTT with your GDA are nearly identical to
those you just implemented for your CDA, allowing the GDA and the MQTT broker
to communicate. Figure 7-1 depicts the components specific to the GDA.

Figure 7-1. Gateway Device Application design with integrated MQTT client

As with the CDA design, there are four new components, only one of which you need
to implement: MqttClientConnector. The others are provided for you from the java-
components source code you’ve already downloaded.

Figure 7-2 depicts the notional UML for this design. In a similar fashion to the CDA,
the diagram focuses on the relationship between DeviceDataManager and
MqttClientConnector; a few of the other GDA components are shown to provide
context.
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Figure 7-2. Gateway Device Application UML with integrated MQTT client

The MqttClientConnector will also provide an adapter to the Eclipse Paho Java cli‐
ent, which is referenced in the pom.xml that’s part of java-components and should be
available for your client adapter to import. Because I’ve included this reference in the
pom.xml that’s part of java-components, you shouldn’t have anything left to do to gain
access to the client library.

OK, let’s get started on the GDA’s MQTT client implementation. The first step is, of
course, to review the information in the Programming the IoT project board under
Chapter 7–MQTT Client Integration and check out a new branch for this chapter
(PIOT-GDA-07-000).

Create the MQTT Connector Abstraction Module
Review the card named PIOT-GDA-07-001. This will focus on getting your GDA’s
version of MqttClientConnector working—again, with the Paho Java client.

Here are the steps:

• Ensure the following import statements exist in the class:
import java.util.logging.Level;
import java.util.logging.Logger;

import org.eclipse.paho.client.mqttv3.IMqttDeliveryToken;
import org.eclipse.paho.client.mqttv3.MqttCallbackExtended;
import org.eclipse.paho.client.mqttv3.MqttClient;
import org.eclipse.paho.client.mqttv3.MqttConnectOptions;
import org.eclipse.paho.client.mqttv3.MqttException;
import org.eclipse.paho.client.mqttv3.MqttMessage;
import org.eclipse.paho.client.mqttv3.MqttPersistenceException;
import org.eclipse.paho.client.mqttv3.MqttSecurityException;
import org.eclipse.paho.client.mqttv3.persist.MemoryPersistence;
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import programmingtheiot.common.ConfigConst;
import programmingtheiot.common.ConfigUtil;
import programmingtheiot.common.IDataMessageListener;
import programmingtheiot.common.ResourceNameEnum;

• Create class-scoped declarations for MqttClient and IDataMessageListener.
Just set these to null for now.

• Edit the no-arg constructor and initialize the class-scoped properties the MQTT
client will eventually need when a connection is made. Retrieve the host, port,
and keepAlive values from the configuration file using ConfigUtil. Use the fol‐
lowing code sample to guide your implementation:

ConfigUtil configUtil = ConfigUtil.getInstance();

this.host =
  configUtil.getProperty(
    ConfigConst.MQTT_GATEWAY_SERVICE,
    ConfigConst.HOST_KEY,
    ConfigConst.DEFAULT_HOST);

this.port =
  configUtil.getInteger(
    ConfigConst.MQTT_GATEWAY_SERVICE,
    ConfigConst.PORT_KEY,
    ConfigConst.DEFAULT_MQTT_PORT);

this.brokerKeepAlive =
  configUtil.getInteger(
    ConfigConst.MQTT_GATEWAY_SERVICE,
    ConfigConst.KEEP_ALIVE_KEY,
    ConfigConst.DEFAULT_KEEP_ALIVE);

// paho Java client requires a client ID
this.clientID = MqttClient.generateClientId();

// these are specific to the MQTT connection
// which will be used during connect
this.persistence = new MemoryPersistence();
this.connOpts = new MqttConnectOptions();

this.connOpts.setKeepAliveInterval(this.brokerKeepAlive);
this.connOpts.setCleanSession(false);
this.connOpts.setAutomaticReconnect(true);

// NOTE: URL does not have a protocol handler for "tcp",
// so we need to construct the URL manually
this.brokerAddr =
  this.protocol + "://" + this.host + ":" + this.port;

NOTE: The clientID must be set before initializing the MQTT client.
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• Update the connectClient() method, add the logic to connect to the broker if
not already connected, and log an info message indicating the connector was
started. The key lines of code include the following; however, be sure to enclose
within a try/catch and handle an MqttException, logging a message with the
exception stack trace on error:

if (this.mqttClient == null) {
  this.mqttClient =
    new MqttClient(
      this.brokerAddr, this.clientID, this.persistence);
  
  this.mqttClient.setCallback(this);
}

if (! this.mqttClient.isConnected()) {
    this.mqttClient.connect(this.connOpts);
}

• Update the disconnectClient() method, add the logic to disconnect from the
broker if currently connected, and log an info message indicating the connector
was stopped.

• Implement the remaining three methods from the IPubSubClient interface:
publishMessage(), subscribeToTopic(), and setDataMessageListener(). For
now, just log a message indicating they were called, and return False. A follow-up
task will address their implementation details.

• Implement the required callback methods from MqttCallbackExtended. For
now, just log a message indicating they were called. A follow-up task will address
their implementation details.

• Create a setter for the IDataMessageListener—this will allow you to pass
incoming MQTT messages back to the DeviceDataManager implementation,
which implements this interface.

To test your initial implementation, once your MQTT broker is operational and run‐
ning, run the MqttClientConnectorTest integration tests. For now, only one should
pass (the connect and disconnect test case).

As with the CDA implementation, it makes sense to look at some of the details for the
GDA implementation. As you read through the issue, I’m sure you’ve noticed that the
Java-specific implementation of the paho-mqtt client introduces some differences
from the Python implementation. In terms of constructing the client and issuing a
simple CONNECT message, there are three differences to keep in mind:

1. A client ID is required. You can use the static MqttClient.generateClientId()
method or create your own. The rules about client IDs are the same as those I
mentioned previously, so be sure each client uses a unique client ID.
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2. Persistence is required for reliable messaging. If you want to use QoS levels 1 or 2
on the client side, you’ll need to specify an implementation of MqttClientPersis
tence. This can be file-based or in-memory, using default implementations of
each. For now, you can use MemoryPersistence, although keep in mind that any
internal state will be lost if the client restarts.

3. Connection options are contained within a class instance called MqttConnectOp
tions. This is used to store the keepAlive value, Clean Session Flag, and, perhaps
most importantly, the automatic reconnect flag.

In the constructor for your MqttClientConnector, you should create (or generate)
the client ID, MqttClientPersistence instance (using either MemoryPersistence or
MqttDefaultFilePersistence), and MqttConnectOptions, for use later when the
connectClient() method is called.

Let’s quickly tackle that last bullet next: create the setter method for the IDataMessage
Listener callback implementation. Functionally, this is the same as the like-named
setter within the CDA’s MQTT client adapter and will look identical to the same setter
functionality you implemented in Chapters 2 and 5.

Moving on to the connectClient(), you’ll see one significant difference from the
Python implementation—no network loop. This is because the client library imple‐
ments this functionality for you, so there’s no need to explicitly call it on your own.

Finally, the disconnectClient() is very straightforward. I didn’t include any sample
code, as it’s only three lines of code (two if you want to be a bit clever): first, check
whether the client exists, then see if it’s connected, and if so, call the disconnect()
method. Easy.

Testing and validating the connection
Let’s run a quick test and see what Control Packets get generated. If you’re using
Wireshark, launch it now. Make sure it can listen for packets on your loopback
adapter and then start listening for packets. Start the Mosquitto broker as well.

In the MqttClientConnectorTest test case, uncomment the testConnectAndDiscon
nect() test method, and run the test—just like the CDA version of this test, it will
take about 35 seconds to execute.

Table 7-1 depicts the Wireshark output you can expect to see after successfully run‐
ning the testConnectAndDisconnect() integration test.
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Table 7-1. MQTT CONNECT and DISCONNECT Control Packet Sequence as shown in
Wireshark

No. Time Source Destination Protocol Length Info
31342 667.426633 127.0.0.1 127.0.0.1 MQTT 77 Connect Command

31344 667.428227 127.0.0.1 127.0.0.1 MQTT 48 Connect Ack

31944 697.430629 127.0.0.1 127.0.0.1 MQTT 46 Ping Request

31946 697.430955 127.0.0.1 127.0.0.1 MQTT 46 Ping Response

32042 702.438447 127.0.0.1 127.0.0.1 MQTT 46 Disconnect Req

Besides the loopback address (127.0.0.1) in the source and destination, the output is
essentially the same as that shown in Table 6-1. All five expected Control Packets are
shown: CONNECT, CONNACK, PINGREQ, PINGRESP, and DISCONNECT.

The main difference is seen in the packet detail for CONNECT, as shown below:

MQ Telemetry Transport Protocol, Connect Command
    Header Flags: 0x10, Message Type: Connect Command
     0001 .... = Message Type: Connect Command (1)
     .... 0000 = Reserved: 0
    Msg Len: 31
    Protocol Name Length: 4
    Protocol Name: MQTT
    Version: MQTT v3.1.1 (4)
    Connect Flags: 0x00, QoS Level: At most once delivery (Fire and Forget)
     0... .... = User Name Flag: Not set
     .0.. .... = Password Flag: Not set
     ..0. .... = Will Retain: Not set
     ...0 0... = QoS Level: At most once delivery (Fire and Forget) (0)
     .... .0.. = Will Flag: Not set
     .... ..0. = Clean Session Flag: Not set
     .... ...0 = (Reserved): Not set
    Keep Alive: 30
    Client ID Length: 19
    Client ID: paho226689729099300

Notice that the Client ID is set (paho226689729099300), which also lines up with
what we should expect, since I explicitly set it with my Java client using the
MqttClient.generateClientId() method.

Add Callbacks to Support MQTT Events
The Paho Java library also provides a number of callback definitions, but as of this
writing, they’re different from those in the Python library.  Using the MqttCallbackEx
tended interface, you have four to implement: connectComplete(), connection
Lost(), deliveryComplete(), and—perhaps most useful for the purposes of the
GDA—messageArrived().
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The requirements for this activity can be found in PIOT-GDA-07-002. Here are the
implementation details:

• Add the connectComplete() and connectionLost() callback methods to handle
connection notification events. For now, just log a message indicating the client
has successfully connected. Use the following signatures:

public void connectComplete(boolean reconnect, String serverURI);
public void connectionLost(Throwable t);

• Add the deliveryComplete() callback method to handle publish notification
events. For now, just log a message indicating the client has successfully pub‐
lished a message. Use the following signature:

public void deliveryComplete(IMqttDeliveryToken token);

• Add the messageArrived() callback method, which is perhaps most important—
this will be called whenever a message is received on the topic for which your cli‐
ent has subscribed; you can add a log message for now, although eventually this
will invoke another callback on the IDataMessageListener instance. Use the fol‐
lowing signature:

public void messageArrived(String topic, MqttMessage message);

NOTE: The messageArrived() callback parameter named “message” (of type
MqttMessage) will contain all the context—including the byte[] payload—of the
message received from the broker.

• Back in the connectClient() method, make sure you set the callback reference
to “this,” which is the MqttClientConnector, since it implements MqttCallback
Extended:

this.mqttClient.setCallback(this);

Testing will be similar to that for the CDA. Start up your MQTT broker if it’s not
already running, enable the testConnectAndDisconnectCallbacks() test case, and
run the MqttClientConnectorTest unit test. All test cases should succeed.

In Java, you’ll need to implement the method signatures as defined,
since you’re implementing an interface contract. That said, you can
name the parameters whatever you want.

Once the callbacks are all implemented, run the integration test as described in the
“Tests” section of the issue. Make sure the callbacks get triggered and verify with the
test case that all is well.
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You can review all the callbacks defined by the Paho Java library,
along with their associated (and well-written) Javadoc documenta‐
tion.

Add Publish, Subscribe, and Unsubscribe Functionality
You already know about QoS levels and have some experience using the pub/sub fea‐
tures of MQTT with your CDA, so let’s get right into the related GDA code.

Take a look at the requirements described in PIOT-GDA-07-003, and implement the
following:

• Update the publishMessage() method to handle all publish functionality. It will
accept the topic name, message content, and requested QoS level for parameters.
The topic name and QoS validation rules from the CDA apply here as well, of
course.

• Update the subscribeToTopic() and unsubscribeFromTopic() methods to han‐
dle all subscribe and unsubscribe functionality. Remember to validate all
parameters!

Let’s take a look at the implementation for all these methods, starting with publish
Message() (and yes, I added isConnected() as a convenience):

public boolean isConnected()
{
  return (this.mqttClient != null && this.mqttClient.isConnected());
}
    
public boolean publishMessage(
  ResourceNameEnum resource, String msg, int qos)
{
  if (isConnected()) {
    try {
      return this.publishMessage(
        resource.getResourceName(), msg.getBytes(), qos);
    } catch (Exception e) {
      _Logger.log(
        Level.SEVERE,
        "Failed to publish MQTT message: " + e.getMessage());
    }
  } else {
    _Logger.warning(
      "No connection to broker. Ignoring publish. Broker/topic: " + 
        this.mqttClient.getCurrentServerURI() +
        resource.getResourceName());
  }
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  return false;
}

Moving on to the subscribe/unsubscribe functionality, you’ll notice these follow the
same pattern as their CDA counterpart:

public boolean subscribeToTopic(ResourceNameEnum resource, int qos)
{
  if (isConnected()) {
    _Logger.info("Subscribing to topic: " +
      resource.getResourceName());
  
    subscribeToTopic(resource.getResourceName(), qos);
    
    return true;
  } else {
    _Logger.warning(
      "No connection to broker. Ignoring. Topic: " +
        resource.getResourceName());
  }
  
  return false;
}

public boolean unsubscribeFromTopic(ResourceNameEnum resource)
{
  if (isConnected()) {
    _Logger.info("Unsubscribing from topic: " + 
      resource.getResourceName());
    
    unsubscribeFromTopic(resource.getResourceName());
    
    return true;
  }
  
  return false;
}

A final note on topic subscriptions: as with the Python MQTT client, you can also
define unique callbacks per subscription topic. It’s a bit more involved in Java, as you
need to implement a separate callback interface for each. I’ll discuss this further in
Chapter 10, as you won’t need this capability for any of the exercises in this chapter.

Time to test things out. Let’s observe the integration tests with Wireshark running.
Fire up Wireshark and run the integration test named MqttClientConnectorTest.
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Following the testing patterns with the previous GDA requirements, make sure your
MQTT broker is running, and uncomment the testPublishAndSubscribe() unit
test in the MqttClientConnectorTest test case. As with the other MQTT tests you’ve
already run, this should run without any errors.

Now for some real fun—let’s compare this output with that from the CDA. Make sure
Wireshark is running along with your MQTT broker, and let’s execute this test again.
You may want to execute only testPublishAndSubscribe() to avoid any extra noise
in your protocol analyzer output.

While the test executes, look at Wireshark and examine the output. It should look
similar to the content shown in Table 7-2.

Table 7-2. MQTT PUBLISH and SUBSCRIBE Control Packet Sequence using QoS 2 as
shown in Wireshark

No. Time Source Destination Protocol Length Info
75 5.168764 127.0.0.1 127.0.0.1 MQTT 77 Connect Command

77 5.170104 127.0.0.1 127.0.0.1 MQTT 48 Connect Ack

79 5.176926 127.0.0.1 127.0.0.1 MQTT 93 Subscribe Request (id=1) 

[PIOT/GatewayDevice/MgmtSta

tusMsg]

81 5.177121 127.0.0.1 127.0.0.1 MQTT 49 Subscribe Ack (id=1)

225 10.180238 127.0.0.1 127.0.0.1 MQTT 130 Publish Message (id=2) [PIOT/

GatewayDevice/MgmtStatusMsg]

227 10.18053 127.0.0.1 127.0.0.1 MQTT 48 Publish Received (id=2)

229 10.181193 127.0.0.1 127.0.0.1 MQTT 48 Publish Release (id=2)

231 10.181389 127.0.0.1 127.0.0.1 MQTT 48 Publish Complete (id=2)

303 15.183483 127.0.0.1 127.0.0.1 MQTT 92 Unsubscribe Request (id=3)

305 15.183721 127.0.0.1 127.0.0.1 MQTT 48 Unsubscribe Ack (id=3)

1087 45.185789 127.0.0.1 127.0.0.1 MQTT 46 Ping Request

1089 45.186054 127.0.0.1 127.0.0.1 MQTT 46 Ping Response

1191 50.189787 127.0.0.1 127.0.0.1 MQTT 46 Disconnect Req

As expected, there are 13 Control Packets—everything except PUBACK, as this test
was run with QoS 2 enabled.

Table 7-3 shows us the same test run, but with QoS 1 enabled instead. Lo and behold,
there’s our missing PUBACK.
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Table 7-3. MQTT publish and subscribe Control Packet Sequence using QoS 1 as shown in
Wireshark

No. Time Source Destination Protocol Length Info
163 5.919503 127.0.0.1 127.0.0.1 MQTT 77 Connect Command

165 5.920732 127.0.0.1 127.0.0.1 MQTT 48 Connect Ack

167 5.928247 127.0.0.1 127.0.0.1 MQTT 93 Subscribe Request (id=1) 

[PIOT/GatewayDevice/MgmtSta

tusMsg]

169 5.928458 127.0.0.1 127.0.0.1 MQTT 49 Subscribe Ack (id=1)

348 10.93348 127.0.0.1 127.0.0.1 MQTT 130 Publish Message (id=2) [PIOT/

GatewayDevice/MgmtStatusMsg]

350 10.933754 127.0.0.1 127.0.0.1 MQTT 48 Publish Ack (id=2)

405 15.936125 127.0.0.1 127.0.0.1 MQTT 92 Unsubscribe Request (id=3)

407 15.936365 127.0.0.1 127.0.0.1 MQTT 48 Unsubscribe Ack (id=3)

1773 45.938298 127.0.0.1 127.0.0.1 MQTT 46 Ping Request

1775 45.938511 127.0.0.1 127.0.0.1 MQTT 46 Ping Response

1969 50.939777 127.0.0.1 127.0.0.1 MQTT 46 Disconnect Req

So we have reasonable confidence that our two MQTT client applications—one for
the CDA and the other for the GDA—are behaving as expected. Let’s do one more
quick comparison, though.

Recall the PUBLISH payload content that followed the QoS 1 run depicted in
Table 6-3. Here it is one more time:

0000   32 58 00 2e 50 72 6f 67 72 61 6d 6d 69 6e 67 49   2X..ProgrammingI
0010   6f 54 2f 43 6f 6e 73 74 72 61 69 6e 65 64 44 65   oT/ConstrainedDe
0020   76 69 63 65 2f 4d 67 6d 74 53 74 61 74 75 73 4d   vice/MgmtStatusM
0030   73 67 00 01 54 45 53 54 3a 20 54 68 69 73 20 69   sg..TEST: This i
0040   73 20 74 68 65 20 43 44 41 20 6d 65 73 73 61 67   s the CDA messag
0050   65 20 70 61 79 6c 6f 61 64 2e                     e payload.

For comparison purposes, I published the same message again, but with a slightly dif‐
ferent topic name and message. Here it is:

0000   32 54 00 2a 50 72 6f 67 72 61 6d 6d 69 6e 67 49   2T.*ProgrammingI
0010   6f 54 2f 47 61 74 65 77 61 79 44 65 76 69 63 65   oT/GatewayDevice
0020   2f 4d 67 6d 74 53 74 61 74 75 73 4d 73 67 00 02   /MgmtStatusMsg..
0030   54 45 53 54 3a 20 54 68 69 73 20 69 73 20 74 68   TEST: This is th
0040   65 20 47 44 41 20 6d 65 73 73 61 67 65 20 70 61   e GDA message pa
0050   79 6c 6f 61 64 2e                                 yload.

Besides the topic name and the payload content, they’re nearly the same. Take a quick
look at the third and fourth byte in both (in bold)—for the CDA test it was “00 2e”
and for the GDA test it was “00 2a.” This happens to be the 2-byte representation of
the topic length. The CDA’s topic was 46 bytes, and the GDA’s topic was 42 bytes.
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Again, this is validation that we have protocol compatibility between the two clients.
This is good, since we’re going to see if we can get them to talk with each other.

Integrate the MQTT Connector into Your GDA
The final GDA exercise for this chapter is generally straightforward but involves a few
steps:

• Add and manage the MqttClientConnector instance within DeviceDataManager.
• Subscribe/unsubscribe to actuator commands when the DeviceDataManager

starts/stops, respectively.

Take a look at PIOT-GDA-07-004—this activity follows a similar path to the MQTT
Connector integration logic for the CDA but includes additional work, since the
GDA serves as the orchestration engine for all Edge Tier messages.

This means the initialization logic is a bit more involved. Let’s take a look at one way
you can pull this off, using the following class-scoped member declarations and con‐
structor implementation as a guide:

private boolean enableMqttClient = true;
private boolean enableCoapServer = false;
private boolean enableCloudClient = false;
private boolean enableSmtpClient = false;
private boolean enablePersistenceClient = false;

private SystemPerformanceManager sysPerfMgr = null;

private IPubSubClient mqttClient = null;
private ICloudClient cloudClient = null;
private IPersistenceClient persistenceClient = null;
private IRequestResponseClient smtpClient = null;
private CoapServerGateway coapServer = null;
    
public DeviceDataManager()
{
  super();
  
  ConfigUtil configUtil = ConfigUtil.getInstance();
  
  this.enableMqttClient = configUtil.getBoolean(
    ConfigConst.GATEWAY_DEVICE,
    ConfigConst.ENABLE_MQTT_CLIENT_KEY);

  this.enableCoapServer = configUtil.getBoolean(
    ConfigConst.GATEWAY_DEVICE,
    ConfigConst.ENABLE_COAP_SERVER_KEY);

  this.enableCloudClient = configUtil.getBoolean(
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    ConfigConst.GATEWAY_DEVICE,
    ConfigConst.ENABLE_CLOUD_CLIENT_KEY);

  this.enablePersistenceClient = configUtil.getBoolean(
    ConfigConst.GATEWAY_DEVICE,
    ConfigConst.ENABLE_PERSISTENCE_CLIENT_KEY);
  
  initManager();
}

The class-scoped declarations are self-explanatory—they simply declare variables that
will hold boolean values that indicate whether or not a particular connection is
enabled, and of course the references to those connection implementations (e.g., IPub
SubClient, which will be the MqttClientConnector instance).

The constructor also looks relatively straightforward, as it pulls these connection ena‐
blement flags from the configuration file.

But then it invokes initManager(). Let’s take a look at that implementation:

private void initManager()
{
  this.sysPerfMgr = new SystemPerformanceManager();
  this.sysPerfMgr.setDataMessageListener(this);
    
  if (this.enableMqttClient) {
    this.mqttClient = new MqttClientConnector();
    this.mqttClient.setDataMessageListener(this);
  }

  // TODO: put other connection initializers here
}

We’ll get to the connector initializations for the other protocols and cloud client later
in Parts III and IV, so let’s just focus on the two of importance: SystemPerformance
Manager and MqttClientConnector.

With the connection classes instanced, you can add them into the DeviceDataMan
ager’s startManager() and stopManager() methods. As part of this process, you can
also subscribe to/unsubscribe from any relevant topics the GDA will be interested in,
including sensor data, system performance data, and actuator command responses
coming from the CDA.

You can add other subscriptions as well, of course, including for
those topics that might be hosted in the cloud—more on that in
Chapter 11.

Here’s some sample code for the start sequence:
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public void startManager()
{
  _Logger.info("Starting DeviceDataManager...");
  
  this.sysPerfMgr.startManager();
  
  if (this.enableMqttClient) {
    try {
      int qos = ConfigConst.DEFAULT_QOS;
      
      if (this.mqttClient.connectClient()) {
        this.mqttClient.subscribeToTopic(
          ResourceNameEnum.CDA_ACTUATOR_RESPONSE_RESOURCE, qos);
        
        this.mqttClient.subscribeToTopic(
          ResourceNameEnum.CDA_SENSOR_MSG_RESOURCE, qos);
        
        this.mqttClient.subscribeToTopic(
          ResourceNameEnum.CDA_SYSTEM_PERF_MSG_RESOURCE, qos);
        
        _Logger.info("MQTT client connection started.");
      } else {
        _Logger.warning("MQTT client connection start failed.");
      }
    } catch (Exception e) {
      _Logger.warning("Failed to start MQTT client.”);
    }
  }

Last, the stop functionality might look like the following:

The unsubscribe is necessary only if your GDA will be starting and
stopping the DeviceDataManager more than once during its
runtime.

public void stopManager()
{
  _Logger.info("Stopping DeviceDataManager...");
  
  this.sysPerfMgr.stopManager();
  
  if (this.enableMqttClient) {
    try {
      if (this.mqttClient.disconnectClient()) {
        this.mqttClient.unsubscribeFromTopic(
          ResourceNameEnum.CDA_ACTUATOR_RESPONSE_RESOURCE);
        
        this.mqttClient.unsubscribeFromTopic (
          ResourceNameEnum.CDA_SENSOR_MSG_RESOURCE);
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        this.mqttClient.unsubscribeFromTopic (
          ResourceNameEnum.CDA_SYSTEM_PERF_MSG_RESOURCE);
        
        _Logger.info("Stopped MQTT client.");
      } else {
        _Logger.warning("Failed to stop MQTT client.");
      }
    } catch (Exception e) {
      _Logger.warning("Failed to stop MQTT client.");
    }
  }
}

Ready to test everything? The DeviceDataManagerWithCommsTest contains the man‐
ual integration tests to check this functionality. It’s located in the ./programmingtheiot/
part03/integration/app path. testStartAndStopManagerWithMqtt is the specific test
you’ll want to run.

As with the CDA, you may want to make a temporary edit to DeviceDataManager
and simply comment out the startup of SystemPerformanceManager within its start
Manager() function for this one test (then uncomment them after testing).

Your log output may vary, of course, but should be of similar form and function to
the following:

Jan 07, 2021 9:26:54 PM programmingtheiot.gda.connection.MqttClientConnector
initCredentialConnectionParameters
INFO: Checking if credentials file exists and us loadable...
Jan 07, 2021 9:26:54 PM programmingtheiot.common.ConfigUtil getCredentials
.
.
.
Jan 07, 2021 9:26:54 PM programmingtheiot.gda.app.DeviceDataManager startManager
INFO: Starting DeviceDataManager...
Jan 07, 2021 9:26:54 PM programmingtheiot.gda.connection.MqttClientConnector
connectClient
programmingtheiot.gda.connection.MqttClientConnector connectClient
INFO: Using client ID for broker connection: paho97098106156000
Jan 07, 2021 9:26:55 PM programmingtheiot.gda.connection.MqttClientConnector
connectClient
INFO: Attempting to connect to broker: tcp://localhost:1883
Jan 07, 2021 9:26:55 PM programmingtheiot.gda.connection.MqttClientConnector
connectClient
INFO: Connected to broker: tcp://localhost:1883
Jan 07, 2021 9:26:55 PM programmingtheiot.gda.connection.MqttClientConnector
connectComplete
INFO: MQTT connection successful (is reconnect = false). Broker: 
  tcp://localhost:1883
Jan 07, 2021 9:26:55 PM programmingtheiot.gda.app.DeviceDataManager
startManager
INFO: MQTT client connection established.
.
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.

.
Jan 07, 2021 9:26:55 PM programmingtheiot.gda.connection.MqttClientConnector
subscribeToTopic
INFO: Subscribing to topic: PIOT/ConstrainedDevice/SensorMsg
Jan 07, 2021 9:26:55 PM programmingtheiot.gda.connection.MqttClientConnector
publishMessage
INFO: Publishing message to topic: PIOT/ConstrainedDevice/SensorMsg
Jan 07, 2021 9:26:55 PM programmingtheiot.gda.connection.MqttClientConnector
messageArrived
INFO: MQTT message received.
    Topic: PIOT/ConstrainedDevice/SensorMsg
    Timestamp: 1610072815718
    Payload: {"value":0.0,"name":"Some Sensor","timeStamp":"2021-01-
08T02:26:55.651361600Z","statusCode":0,"typeID":0,"loca
tionID":"constraineddevice001","latitude":0.0,"longitude":0.0,"elevation":0.0,
"timeStampMillis":1610072815651}
.
.
.
Jan 07, 2021 9:27:55 PM programmingtheiot.gda.connection.MqttClientConnector
disconnectClient
INFO: Disconnecting from broker...
Jan 07, 2021 9:27:55 PM programmingtheiot.gda.connection.MqttClientConnector
disconnectClient
INFO: Disconnected from broker: tcp://localhost:1883
Jan 07, 2021 9:27:55 PM programmingtheiot.gda.app.DeviceDataManager stopManager
INFO: Stopping DeviceDataManager...
Jan 07, 2021 9:27:55 PM programmingtheiot.gda.connection.MqttClientConnector
disconnectClient
INFO: Disconnecting from broker...
Jan 07, 2021 9:27:55 PM programmingtheiot.gda.connection.MqttClientConnector
disconnectClient
INFO: Disconnected from broker: tcp://localhost:1883
Jan 07, 2021 9:27:55 PM programmingtheiot.gda.app.DeviceDataManager stopManager
INFO: Disconnected MQTT client.

My own solution includes a number of additional log messages, which I’ve omitted
here for brevity. The point is that the following were successful, as indicated by
receipt of the message on the subscription topic:

• Connection to the MQTT broker succeeded
• Subscription, publish, and receipt of message to/on the topic PIOT/Constrained‐

Device/SensorMsg succeeded
• Disconnect from the MQTT broker succeeded

This functionality serves as the core MQTT integration logic the GDA will need not
only to communicate with the CDA but also to process relevant messages and take
action as appropriate. This is certainly a well-earned milestone!
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What About Security and Overall System Performance?
Chapter 10 brings these concepts together in one place since the concepts apply to
both the CDA and the GDA. I’ll explore some security aspects of MQTT as well as
the performance implications of different QoS levels in the related exercises for the
chapter.

Additional Exercises
At this point in your IoT programming journey, you may be thinking about some
Edge Tier projects you can implement using the knowledge you’ve acquired. Here are
two simple exercises to get you started.

Subscriber Callbacks
The additional exercise described in Chapter 6 mentions the use of subscriber call‐
backs for your CDA. These are relatively straightforward to implement in Python,
since you just need to add a method that can handle incoming messages for a given
topic. In Java, it’s a bit more involved, as you need to define a callback class to handle
this. Although I’ll cover this in Chapter 10, you may want to briefly skip ahead and
read through that chapter’s section describing the IMqttMessageListener interface to
see how you might tackle this functionality now.1

CDA to GDA Integration
I’m sure you’re wondering why we don’t tackle CDA to GDA integration using
MQTT at this point, especially since you finally have your MQTT clients up and run‐
ning with both applications. The exercises in Chapter 10 work through many differ‐
ent integration scenarios, so you can skip ahead and work through those MQTT-
specific exercises now if you’d like!

The next two chapters work through another messaging protocol that adheres to the
request/response paradigm, and so Chapter 10 will consider ways you might want to
use pub/sub, request/response, or perhaps even both to address your Edge Tier inte‐
gration objectives.

Conclusion
Remember to merge all your changes back into the primary branch by following the
instructions in PIOT-GDA-07-100!
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In this chapter, you’ve learned about the MQTT protocol and how it works. You inte‐
grated an open source MQTT client (Eclipse Paho) using both Python and Java with
your CDA and GDA, respectively, and ran a bunch of tests to prove protocol compat‐
ibility between the two, wrapping up with an integration test that passed a message
back and forth.
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CHAPTER 8

CoAP Server Implementation

Building a Request/Response Server Using CoAP

What is your response?
I made my request again.
Finally confirmed!

Fundamental concepts: Overview of request/response messaging at the application
layer; features of CoAP; creating a CoAP server in Java for your GDA.

In Chapters 6 and 7, we explored IoT messaging basics using the MQTT protocol for
pub/sub communications. In this chapter, we’ll explore IoT messaging using request/
response protocols, specifically the Constrained Application Protocol (CoAP), which
has similarities to Hypertext Transfer Protocol (HTTP) but was designed for light‐
weight communications between devices. 

Like pub/sub, request/response is a term that captures a type of messaging interaction
between two systems. This can be thought of as a peer-to-peer protocol, in which a
client sends an action request to a server for a specific resource, which the server can
accept or reject. A resource is just something that the server manages. This could be a
static file (like a simple web page, video clip, or image), a database or other enterprise
system, or one part of a more dynamic interaction that involves multiple requests and
responses. In each case, the response includes some indication of the action the
server took (or didn’t take) in the form of a response code.

Much like talking to an MQTT server, CoAP requires knowledge of the server’s
address and the port. Once you identify the target server and port, the resource name
will follow similar naming conventions to those of pub/sub topics.
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1 Zach Shelby, Klaus Hartke, and Carsten Bormann, The Constrained Application Protocol (CoAP), IETF Pro‐
posed Standard RFC 7252 (2014), 68.

If you’re familiar with Representational State Transfer (REST), you’ll recognize the
four different actions (referred to as methods) a client can request: GET, PUT, POST,
and DELETE. I’ll discuss each of these as you progress through the chapter.

What You’ll Learn in This Chapter
After working through this content and the code examples and exercises, you’ll
understand the principles behind request/response protocols and how to use these
protocols in your own IoT environment. Specifically, you’ll learn how request/
response works, why it’s useful, and how to write a simple CoAP server to support
your application’s needs.

About CoAP
The CoAP IETF specification, RFC 7252, was designed as a machine-to-machine
(M2M) protocol for use with low-power devices running over a UDP/IP datagram
socket connection. You can think of it as a lightweight HTTP, since it doesn’t require
the same overhead as a typical HTTP connection that uses TCP/IP sockets. The IETF
CoRE working group began work on the CoAP specification in 2010, and the IETF
adopted it as a standard in 2014.

Client to Server Connections
Although there is a current specification for CoAP over TCP/IP (RFC 8323), RFC
7252 specifies a CoAP implementation that relies on UDP/IP datagram sockets, with
Datagram Transport Layer Security (DTLS) enabled if encrypted connections are
required.

There are four security modes defined in the CoAP specification:

• NoSec: No encryption
• PreSharedKey: DTLS is enabled with a list of preshared keys
• RawPublicKey: DTLS is enabled with an asymmetric key pair without a certificate
• Certificate: DTLS is enabled with an asymmetric key pair with an X.509

certificate1

Typical CoAP clients simply set the target URL (protocol, host, port, and resource
URI) and open and close the UDP connection for each request/response. CoAP
supports asynchronous message exchanges, using both confirmed (CON) and
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2 Shelby, Hartke, and Bormann, CoAP, 47–48.

nonconfirmed (NON) message exchanges. CON messages are managed through a
stop-and-wait message retransmission capability with an exponential backoff to pro‐
vide a reliability mechanism.

Both CON and NON messages benefit from duplicate detection to avoid duplicates.
The client implementations we’ll work with set CON and NON flags through a sim‐
ple boolean parameter in the method request.

Figure 8-1 depicts a simple request interaction between a single CoAP client and the
server.

Figure 8-1. Connection between a single client and a CoAP server

As shown, the client application creates a CoAP client module and then uses it to
issue a GET, POST, PUT, or DELETE request to the server, which responds in kind.

Request Methods
Although RESTful protocols may provide additional method options (such as
PATCH or FETCH), IETF RFC 7252 specifies only GET, POST, PUT and DELETE,2

so I’ll focus on those methods in this chapter.

Here’s a quick rundown of the behaviors you can expect from a compliant server
when issuing a request with any of these method options in your own client
application:

GET
This is the data retrieval method, which asks the server to “get” the data associ‐
ated with a given resource. This method is specified as “safe,” meaning it doesn’t
incur a change on the server and is idempotent. What does this mean, exactly?
Irrespective of how many times the request is invoked (that is, how many times
the request is sent to the server), the server will simply respond with the existing
data associated with the request. In other words, the server won’t change the data
based on the request.
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POST
This method is sent to represent a creation request and is expected to result in
the server creating the specified resource with the given content. The specifica‐
tion allows a POST to succeed and not create a new resource but instead trigger
an update or a delete on the given resource. As should be obvious, a POST
method request is not “safe”: it will incur a change on the server, and it is not
idempotent. If a POST is issued over and over again, the client should expect to
find, on success, that the POST caused the requisite change on the server with
each request.

PUT
This method is sent to represent an update request but can also trigger a creation
action on the server if the resource to be updated doesn’t already exist. The con‐
text of the message represents the updated content for the named resource. This
means that it isn’t “safe,” as it will incur a change on the server, but it is
idempotent.

DELETE
This method is designed to delete a resource on the server. On success, the client
can expect the requested resource to be deleted from the server. As such, it isn’t
“safe,” but it is idempotent. Once a resource is deleted, issuing a DELETE request
against the deleted resource repeatedly should have no effect on the server.

Message Passing
Datagram messages are passed from the client to the server as request messages tar‐
geting a specific named resource, with the server returning a response message
(assuming it’s up, running, and capable of sending a response). Message passing is
asynchronous in CoAP. However, the client library used by the client application may
mask this, or at least provide the option of sending what appears to be a synchronous
request to the server, returning only after a response has been received.

In CoAP, a resource is a hierarchical name to a server-based, well, resource, much like
you’d see in an HTTP URL. The naming convention of the client request conforms to
the URI generic syntax, so resource names in CoAP are only case sensitive following
the port in the URL (for example, coap://lcoalhost:5683/resourceName), similar to
MQTT topics.

As implied, CoAP supports hierarchical resource names, where you can create child
resources from a parent resource simply by separating each resource entry with a for‐
ward slash (/) character to represent this relationship (as in SomeCategory/SomeDe‐
vice/SomeMessageType/SomeElement, for example, or perhaps just SomeCategory/
SomeDevice/SomeMessageType).
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While the URI generic syntax supports a limited number of special
characters, don’t confuse that with wildcard support. CoAP does
not specify wildcards, in kind with the URI generic syntax specifi‐
cation, so don’t try to use them in your CoAP resource naming
scheme!

Let’s look at two simple examples.

Example 1: One client updates the server using PUT, while another retrieves it using
GET.

Client A will write new data to a single resource on a given CoAP server. Let’s name
this resource as follows: PIOT/ConstrainedDevice/SensorMsg.

The client will create a URI that represents the resource. The URI will include the
requisite access and location information, such as the protocol, host, port, and path
(e.g., coap://localhost:5683/PIOT/ConstrainedDevice/SensorMsg). Then it will issue a
PUT method request with the payload data. Once the data is successfully received
and processed (that is, stored locally) by the server, any authorized client can retrieve
this information using the GET method issued to the same resource.

Example 2: One client updates the server using PUT, while another is notified of these
updates using OBSERVE (a specialized GET).

Client A will perform the same task as described in Example 1, but Client B will be
notified of updates to this data and sent the updated information after it’s successfully
processed by the server. Let’s use the same resource name: PIOT/ConstrainedDevice/
SensorMsg.

To retrieve the data Client A wrote to the resource, Client B has two choices:

• Poll the server at regular intervals using a GET request for each of the preceding
resources.

• Observe and be notified when a resource is updated and simply process the data
as it’s available.

For the first option, Client B simply needs to issue the GET request for the resource
whenever it wants to check for updates. This process is pretty straightforward but can
be inconvenient for the client, since it doesn’t really know when the data is updated. It
simply requests whatever happens to be the current information at its configured poll
interval.

The second option is perhaps a better path forward. While the CoAP specification
doesn’t define an observe method directly, it can be added, since the protocol is
designed to be extensible (in this case, via IETF RFC 7641). This allows the client to
send the server a specialized GET request, or an OBSERVE, which instructs the
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server to push new information for the requested resource whenever it’s available.
This can be convenient since the client no longer has to manage this process itself
(although it certainly needs to process the notifications).

Figure 8-2 depicts a simple CoAP request/response process, including the connection
sequence of Client A and Client B to the CoAP server.

Figure 8-2. Two clients communicating via a CoAP server

Note the numbering of each step in Figure 8-2. Client A doesn’t know or care about
Client B. Nor does the server, for that matter. Client B and Client A are simply indi‐
vidual peer-to-peer connections to the same server, each issuing its respective
requests for specific resources.

Figure 8-3 depicts a more involved CoAP request/response process using the
observer pattern. Look at step B3— notice that it’s now followed by two additional
steps (B4 and B5). This is because Client B is telling the CoAP server it wants to
observe the PIOT/ConstrainedDevice/SensorMsg resource and receive updates
without asking again.

As with Figure 8-2, Figure 8-3 shows how each client connects and issues its own
request method to achieve its desired outcome using PUT and GET initially, and then
PUT and OBSERVE.
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Figure 8-3. Two clients communicating via a CoAP server with OBSERVE enabled

There are many strategies for defining resource names for use in request/response
environments. The MQTT topic–naming tips in Chapter 6 mostly apply to CoAP
resource names as well.

In addition to the CoAP URI scheme description from the specifi‐
cation,3 you may also want to review the URI naming syntax speci‐
fied in IETF RFC 3986 to ensure the resource names you  create
follow convention.

Unlike MQTT topic names, however, the leading “/” is always assumed and therefore
is not needed when creating the resource name without the preceding URL protocol,
host, and port information. In fact, depending on the library, the forward slash, if it
exists, may need to be stripped from the beginning.
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5 Shelby, Hartke, and Bormann, CoAP, 16.
6 Shelby, Hartke, and Bormann, CoAP, 17–20.
7 Shelby, Hartke, and Bormann, CoAP, 89–91.
8 Shelby, Hartke, and Bormann, CoAP, 81–93.

Datagram Packets and the Structure of a CoAP Message
Like MQTT Control Packets, CoAP messages follow a compact binary format that
contains a required header and other optional sections, including a payload. The for‐
mat is defined such that each message can fit within a UDP datagram, up to its maxi‐
mum packet size, including UDP/IP overhead. CoAP messages will always have a
fixed header and up to three additional (but optional) components, as follows:

Fixed header (required: 4 bytes long)4

All messages have a fixed header, which represents:

• the version (currently always set to 01 binary)
• the message type (0: Confirmable, 1: Nonconfirmable, 2: Acknowledgment,

or 3: Reset)
• the token length
• the request or response code (documented as “c.dd,” such as “0.01,” which

represents a GET request, or “4.04,” which represents a “not found”
response)

• the message ID (used for message deduplication and for mapping Confirma‐
ble and Nonconfirmable messages)

Token (optional: 0...8 bytes)5

Although technically optional, the messages you’ll create and process will include
a token (which the library will include). This is necessary for mapping responses
to their respective requests.

Options (optional: 0+ bytes) 6

This field allows us to set various options, as specified by the CoAP Option Num‐
bers Registry,7 each of which has its own semantics (meaning, format, length of
the value, and so on). One such option is “Content-Formats,”8 which has its own
registry and allows you to set an internet media type, which in turn dictates the
format of the payload.
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63–68.

Payload (optional: 0+ bytes)9

If there is a payload included in the message, it will be preceded by a payload
marker of 1 byte, set to 0xFF, immediately following any of the previous compo‐
nents. Note that the specification states that a payload market followed by a zero-
length payload must be processed as an error.

Fortunately, the CoAP libraries we’ll use hide much of this complexity. We can just
focus on setting the flags that we care about and/or that must be customized. For
example, we’ll want to set the CON flag to enable message confirmation, ensuring
we’ll receive an acknowledgment that the message was processed.

As you’ve likely already noticed, the IETF RFC 7252 specification discusses the
specifics associated with each message in significant detail. I’ll discuss those relevant
to the upcoming exercise and the context of the software we’re going to start writing.

Regarding the implementation, I’ll walk through the creation of two simple CoAP
servers: one hosted within the GDA that will use the Eclipse Californium CoAP Java
library, and the other hosted within the CDA that will use either the aiocoap10 CoAP
Python library or the CoAPthon311 Python library. These open source libraries
include test code and client libraries that I’ll revisit in Chapter 9 when you build your
corresponding CoAP client in either Java or Python.

Putting It All Together
What we’ll do here is much like the design from Chapter 6 that uses MQTT. Here,
instead of MQTT as the communications protocol connecting both applications,
you’ll use CoAP in a request/response setting.

A request is made for a resource, such as PIOT/ConstrainedDevice/SensorMsg/Temp‐
Sensor, and must be interpreted by the server according to the specific type of request
(e.g., GET, PUT, POST, or DELETE). So how are these resources managed within the
CoAP server?

A CoAP server manages resources using resource handlers for each resource, where
the resource handler will implement the supported request method(s)—that is, GET,
PUT, POST, and/or DELETE (there are others as well, although this section will
discuss only GET and PUT). You can think of a resource handler as a delegate of sorts
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—that is, a component to which the server passes an incoming request for further
processing.

Each resource handler has a name and is actually part of a tree structure once added
to the server. Recall the “/” separator from one of the previous examples: PIOT/
ConstrainedDevice/SensorMsg. In this case, there’s only three levels, with the final
level named “SensorMsg.” This may be fine for some applications, but let’s say you
want to access a specific sensor. You can either replace “SensorMsg” with the sensor
name (e.g., “TempSensor”) or use “SensorMsg” as a category and add the sensor
name to the end (e.g., PIOT/ConstrainedDevice/SensorMsg/TempSensor).

The specific naming approach will depend on your implementation. You’ll see where
this differential comes into play during the implementation exercise: resource names
within the GDA’s CoAP server may not require the additional granularity, whereas
those within the CDA’s CoAP server probably will.

Let’s take a look at how this tree structure works with the last example: PIOT/
ConstrainedDevice/SensorMsg/TempSensor. Each level is separated by the “/” charac‐
ter, so there are actually four levels, with the fourth and final level, named “TempSen‐
sor,” responsible for handling any request that’s issued to the server for PIOT/
ConstrainedDevice/SensorMsg/TempSensor. Yet the others need to be in place for the
invocation chain to succeed, which means each level must have a resource handler.

It’s probably easiest to think of this as a tree structure, as shown in Figure 8-4.

Figure 8-4. CoAP resource handler tree structure example

I’ve included a couple more leaf nodes to showcase the relationship between Temp‐
Sensor and SensorMsg, namely HumiditySensor and PressureSensor, but I’ll focus
only on TempSensor for now.
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To make the TempSensor resource available via the server, the chain of resources
must exist and must be named appropriately within the server as well. Depending on
the library being used, the creation of this tree structure can be somewhat manually
intensive. The good news is that the only real functionality required is for the
resource handler representing the leaf nodes—again, our focus is on TempSensor.
The SensorMsg, ConstrainedDevice, and PIOT resource handlers are basically empty
implementations. In fact, the default implementation of a resource handler can sim‐
ply return an error code or no data if the requester decides it wants to issue a GET
against, say, PIOT/ConstrainedDevice.

Now that you have a handle on, well, resource handlers, you’ll need to consider the
server’s design, and where within the Edge Tier it will be instanced. As a lightweight
request/response protocol, you can choose whether to implement the CoAP server
within the CDA or within the GDA.

Implement the server within the GDA
The CDA will issue PUT requests to the GDA to submit the latest sensor read‐
ings and GET requests (via asynchronous resource observations or a scheduled
poll) to retrieve actuator command updates.

Implement the server within the CDA
The GDA will issue GET requests to the CDA (via asynchronous resource obser‐
vations or a scheduled poll) to retrieve the latest sensor readings and PUT
requests to update actuator values.

For example, the GET handler for a given resource must, in fact, retrieve a resource—
or at least try to do so—and must be both safe and idempotent. We can technically
run our GDA on a different system, but we’ll continue to run both applications within
our local network.

Figures 8-5 and 8-6 depict a logical view of this updated relationship, where the GDA
is the CoAP server (Figure 8-5) or the CDA is the CoAP server (Figure 8-6). Notice
that, in each case, the server is now integrated as part of the application and is not a
separate process. This provides tremendous flexibility in handling requests but also
introduces further complexity and implementation responsibilities on the part of the
CDA or GDA application.
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Figure 8-5. Notional interaction between a CoAP client (CDA) and a CoAP server
(GDA)

Building an effective server is a complicated business, even when
using well-known specifications and existing open source libraries.
This chapter will address some of the basics to help you get your
CoAP server up and running, but it won’t delve into all the nuances
and edge cases a server must typically address, such as authentica‐
tion, authorization, validation, and encryption. Chapter 10 will dig
into some of these topics; however, it’s your responsibility to ensure
you’re addressing the security and access requirements for your
environment.

Of course, knowing the lightweight nature of CoAP, it’s natural to ask: why not build
the server into the CDA instead? You can! In fact, considering the protocol’s support
for GET and PUT specifically, there’s natural alignment with sensor data retrieval
(GET) and actuator command signaling (PUT).
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Figure 8-6. Notional interaction between a CoAP client (GDA) and a CoAP server
(CDA)

It’s your decision, and you can certainly go down this design path. The examples I’ll
provide in this chapter, and the requirements specified in the Kanban board, explore
both approaches. Which one to choose? As with most things, it depends.

Hosting the CoAP server within the CDA allows you to use a resource naming con‐
vention that maps directly to each device and sensor/actuator hosted on that device.
Since CoAP supports observability, you can configure the CoAP client (in this case,
the GDA) to observe one or more resources on the CDA, and the CDA will notify the
client whenever the resource is updated. Further, any actuation event can be triggered
via a PUT or a POST. Your CDA will also have to manage incoming connections and
decide how to throttle requests, which introduces additional technical and security
challenges.
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If you choose to host your CoAP server within the GDA, you may find this provides
some additional flexibility in resource naming, where a more generic resource name
can be used, and the payload content can be parsed to determine device or sensor
specificity. It also permits the CDA—as the client—to determine when it should send
sensor data to the GDA, which can be beneficial if the CDA’s updates are sporadic and
don’t warrant the overhead of observation from a separate client. Finally, hosting the
server within the GDA allows it to be implemented as an event aggregator, that is, as a
central clearing house of sorts for incoming CoAP (and perhaps MQTT) messages—
it simply awaits messages to be sent, slightly reducing its complexity.

It goes without saying that any connected system—especially one
that hosts a server that permits one or more connections—introdu‐
ces additional networking and security complexities that are out‐
side the scope of this book.

The series of cards related to this chapter provide some exercises you can implement
that relate to creating a CoAP server in both the GDA and the CDA. However, the
CoAP examples throughout this book (and specifically those in Chapters 8, 9, and
Chapter 10, Edge Integration) focus on the GDA as the CoAP server and on the CDA
as the CoAP client.

Now, let’s dig into the CoAP server programming exercises and build out this
functionality.

Programming Exercises
Figure 8-7 provides a notional design diagram representing the GDA with a built-in
CoAP server, with Figure 8-8 depicting the same but with the CDA providing the
built-in CoAP server. Notice that the pattern for both is similar to what you’ve
already seen (and implemented) with MQTT, except this time you’ll be implementing
a server within the GDA and CDA and using resource handlers to process the incom‐
ing requests.
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Figure 8-7. Gateway Device App design with an integrated CoAP server

If you choose to implement the CDA CoAP server exercises, Figure 8-8 depicts an
example design, which looks strikingly similar to the GDA’s design.
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Figure 8-8. Constrained Device App design with an integrated CoAP server

While the core design and implementation principles are very similar between the
GDA and the CDA, each depends on different open source libraries and will certainly
have different detailed implementations. Again, the focus on this chapter will be on
the GDA, with brief callouts to supplemental exercises pertaining to the CDA.

Add CoAP Server Functionality to the Gateway Device Application
Ensure your Java project has the Eclipse Californium CoAP libraries installed. If you
followed the system configuration instructions and configured your pom.xml accord‐
ingly, this should already be available to your development environment or can be
accessed via this book’s java-components sample code repository referenced in
Chapter 1.

Before you start developing your server, it’s helpful to have access to some tools that
you can use for testing. PIOT-CFG-08-001 provides some very basic instructions on
installing and using the Eclipse Foundation Californium (Cf) Tools project.
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As with each preceding chapter, be sure to follow the instructions listed in PIOT-
GDA-08-000 so you’re starting with a new branch for this set of exercises.

Create the CoAP server abstraction and integrate it with DeviceDataManager
The first exercise, PIOT-GDA-08-001, walks through the basic server implementa‐
tion. It won’t add all the features you’ll need just yet but will get your server container
in place so that it can create and manage the resource handlers that will come next.

The key design principle with the server for both the GDA and the CDA is centered
on adaptation—the implementation for your server provides an adapter to an existing
CoAP library, but with an API that’s suited for the purposes of this exercise and
future exercises. The goal is to enable the server to abstract the library functionality
without reinventing the wheel. We’re very fortunate to have access to excellent open
source libraries that solve many implementation and integration challenges, so you
can keep the server implementation relatively simple and still avoid unnecessary
imports throughout the rest of your code.

As a reminder, if you’re using the sample code, you won’t have to
create a server adapter class—it already exists but has no real
implementation. This will be the case for other components within
this exercise as well.

The description of PIOT-GDA-08-001 is self-explanatory, so let’s take a look at the
actions. Here’s a summary:

• Create (or edit) the CoapServerGateway class, add the relevant class-scoped vari‐
ables, and create the initialization logic.

• Create accessor methods—start with the setter for IDataMessageListener.
• Add resource handler registration functionality.

While these appear very simple on the surface, there’s some nuance to each action
that is worthy of further exploration. Let’s break things down.

The first is straightforward, of course—create your adapter class named CoapServer
Gateway within the programmingtheiot.gda.connection package following the
instructions listed in the card. The only implementation decision is to either inherit
from CoapServer (provided by the californium-core package) or instance it within
the class. I’d suggest the latter option, as it will allow you to fully control your adapter
interface and simply delegate to the server instance.

As part of your adapter implementation, you’ll need (at least) two class-scoped vari‐
ables: one to reference CoapServer (assuming you’re using an adapter pattern and not
deriving from the class) and the other to reference IDataMessageListener. The for‐
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mer will reference the californium-core server instance, while the latter will be an
instance of your DeviceDataManager. Recall that DeviceDataManager is the orches‐
tration “engine” for all of your GDA functionality and will be passed into some of
your resource handlers as the callback that will handle incoming SensorData and
SystemPerformanceData messages from the CDA.

When you create your constructor, decide whether you want to pass in a reference to
IDataMessageListener when CoapServerGateway is instantiated, and identify any
other parameters that might be useful. For this exercise, you won’t need any extras,
but feel free to update your design to meet your specific needs.

As for accessor methods, you can create a setter for IDataMessageListener. If you
pass the reference into the constructor, this isn’t really needed; however, it’s good to
have it in place in case you decide to change your instancing strategy later.

Add a resource handler registration method. While this will be public facing, it will
generally be used internally only. That’s because the server should have enough
knowledge about its environment to know which resource handlers need to be
instanced and when. Of course, this can be managed externally as well—for instance,
via the DeviceDataManager. This method design gives you the option of doing either
(or both). Here’s one example signature to consider:

public void addResource(
  ResourceNameEnum name, String endName, Resource resource)
{
    // TODO: implement this
}

ResourceNameEnum contains predefined resource (or topic) names that you can use
throughout this project. These predefined names may not be granular enough to sup‐
port all users of the server. To maintain some flexibility with naming granularity, the
preceding signature example includes the endName parameter, which can simply be
appended to the ResourceNameEnum name (preceded by a forward slash, of course) to
provide that detail. If the parameter is null or empty, you can simply ignore it.

Hardcoding names is rarely a good idea; however, every device
within the Edge Tier that may want to communicate with your
CoAP GDA server will have to know the resource it’s interested in
using. Using a common naming strategy across all resources is crit‐
ical to supporting this objective, which is one of the reasons Resour
ceNameEnum exists in both the GDA and the CDA source tree. As
shown in the addResource() signature, you can add an endName,
but then your CDA instances will also need to know about it—
either dynamically through discovery or by using a preconfigured
naming convention. Otherwise, the resource won’t be found, and
your server will not provide much value.
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There’s not much left to your server adapter. The penultimate step is to initialize the
CoapServer, which is essentially one line of code. However, I’d suggest you create a
private initServer() method to be invoked by the constructor—you can also use it
to handle the creation of all relevant resource handlers.

For now, it will consist of only a few lines of code; however, once the resource handler
classes are defined, it will require more work. Also, in Chapter 10, I’ll briefly delve
into DTLS, which provides encryption support for CoAP messaging and will require
additional coding.

The last steps for this module are simply to add the startServer() and stop
Server() methods. These are very simple and just delegate to the start() and
stop() methods already implemented by CoapServer. You can choose to handle
exceptions that may get thrown, as well as handle any additional logic you decide to
add later.

Finally, review the last few steps of this card, in which you integrate CoapServerGate
way into DeviceDataManager. You can add a new flag to the PiotConfig.props file
under the GatewayDevice section called “enableCoapServer = True” and parse it
within the DeviceDataManager constructor to determine whether CoapServerGate
way should be initialized and started or stopped via the startManager() and stopMan
ager() methods.

There are no tests for this exercise since there’s not much to test at this point. Before
moving on to the next step, however, it may help to review a detailed design diagram
—in UML—for the current state of the GDA. Figure 8-9 depicts the notional UML
for the functionality that will be included in this chapter.
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Figure 8-9. Gateway Device App UML with an integrated CoAP server

I’ve highlighted the new or modified components according to the legend provided in
the diagram and removed many of the other components that you implemented in
previous exercises. There are five new components, one of which you’ve just imple‐
mented (CoapServerGateway). Three are resource handlers, and the last one is an
interface.

You’ll implement two resource handlers in the next exercise, and the last resource
handler (along with its interface) in the exercise that follows. While there is a sem‐
blance of complexity in this design, if you trace it through, you’ll see how CoAP mes‐
sages will flow through the application.

Notice that the two “Update” resource handlers (which you’ll implement next) are
responsible for receiving SensorData and SystemPerformanceData. These will arrive
in JSON format (remember Chapter 5?) from the CDA and will need to be validated
and instanced as their associated data containers. Once this is complete, each handler
needs a way to send the newly instanced data container to the orchestration manager
—that is, the instance of IDataMessageListener (which will be DeviceDataManager).

Once DeviceDataManager has the information, it can then decide what to do next:
store the information locally (again, from Chapter 5), send it up to the cloud for
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storage and processing (which I’ll discuss in Chapter 11), or determine whether an
action should be taken.

That last decision—whether to trigger an action—is why the “Get” resource handler
exists. It implements the IActuatorDataListener interface, which DeviceDataMan
ager will reference. This allows DeviceDataManager to pass an ActuatorData mes‐
sage to the resource handler. Implementation details aside, the CDA will be asking
this resource for actuation commands, essentially completing our circle of Edge Tier
life.

Ready to move on? Let’s create all the resource handlers described in PIOT-
GDA-08-002 and PIOT-GDA-08-003.

Create resource handlers to support data update requests
Recall that resource handlers provide the implementation of the GET, PUT, POST,
and DELETE requests for a named resource. In this exercise, you’ll be implementing
the PUT request only (you can certainly implement the others if you’d like, although
this exercise will focus on the PUT method, as the others aren’t relevant for the work
I’m about to discuss).

Since the GDA is hosting the CoAP server, the CDA needs a way to send in its Sensor
Data and SystemPerformanceData updates. As such, your CoAP server will need
resource handlers that can provide this capability—one to process SensorData
updates, and the other to process SystemPerformanceData updates.

PIOT-GDA-08-002 explains the requirements for each resource handler—UpdateSys

temPerformanceResourceHandler and UpdateTelemetryResourceHandler (or sim‐
ply UpdateSensorDataResourceHandler, if you’d prefer); you’ll see that their
implementations are nearly identical, with only very minor differences. The java-
components source repository includes a class named GenericCoapResourceHandler
within the programmingtheiot.cda.connection.handlers package. You can use this as a
template for your two new resource handlers.

Take a look at PIOT-GDA-08-002 in detail. The key activities include the following:

• Make sure each resource handler is derived from CoapResource.
• The constructor should accept a reference to ResourceNameEnum (be sure to store

this in a class-scoped variable—it will be needed when valid PUT requests are
processed).

• Include a setter for IDataMessageListener—or, more conveniently, include a
parameter in the constructor to set an IDataMessageListener reference (be sure
to store the reference in a class-scoped variable).
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• Add the PUT handler functionality.

The last bullet, where you add the PUT functionality, is where much of the interesting
work occurs. Let’s review one implementation solution (which is the handlePUT()
implementation for UpdateSystemPerformanceResourceHandler):

@Override
public void handlePUT(CoapExchange context)
{
  ResponseCode code = ResponseCode.NOT_ACCEPTABLE;
  
  context.accept();
  
  if (this.dataMsgListener != null) {
    try {
      String jsonData = new String(context.getRequestPayload());
      
      SystemPerformanceData sysPerfData =
        DataUtil.getInstance()
          .jsonToSystemPerformanceData(jsonData);
      
      // TODO: Choose the following (but keep it idempotent!) 
      //   1) Check MID to see if it’s repeated for some reason
      //      - the underlying lib should handle this…
      //   2) Cache the previous update – is the PAYLOAD repeated?
      //   2) Delegate the data check to this.dataMsgListener
      
      this.dataMsgListener.handleSystemPerformanceMessage(
        this.resourceName, sysPerfData);
      
      code = ResponseCode.CHANGED;
    } catch (Exception e) {
      _Logger.warning(
        "Failed to handle PUT request. Message: " +
        e.getMessage());
      
      code = ResponseCode.BAD_REQUEST;
    }
  } else {
    _Logger.info(
      "No callback listener for request. Ignoring PUT.");
    
    code = ResponseCode.CONTINUE;
  }
  
  String msg =
    "Update system perf data request handled: " + super.getName();
  
  context.respond(code, msg);
}
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Your implementation of handlePUT() needs to override the base class implementa‐
tion, which will return an unimplemented response back to the requester, hence the
@Override annotation.

Within the method, you’ll need to accept the message (via context.accept()), parse
the CoapExchange message—which contains everything you need to know about the
CoAP request that the server handed off to this method—and then decide what to do
with it.

Data and request validation is critically important within an IoT environment, and
there are excellent books that delve into this topic in much more detail than I can.

The CoapExchange parameter (named “context”) contains the payload, which should
carry the JSON data representing either a SystemPerformanceData or a SensorData
message. You won’t know until you parse it, because there’s really nothing preventing
the client from sending something completely different, like a plain-text message that
says “hey, how are you?”

One way to do this is to wrap the data conversion within a try/catch block. The con‐
version itself will be handled by DataUtil (which you implemented in Chapter 5).
On success, you’ll end up with your data container instance—a reference to either
SystemPerformanceData (UpdateSystemPerformanceResourceHandler) or Sensor
Data (UpdateTelemetryResourceHandler).

This next step is important: what will you do with the converted data? Recall that
PUT requests must be idempotent, which means the same request issued with the
same data should NOT change the internal state. First, is the request itself repeated?
Deduplication is part of the spec, so we shouldn’t have to concern ourselves with a
duplicate request. But what if the client sends the same thing as a separate request?
One solution is to compare the incoming data with the previously cached data’s time‐
stamp to avoid storing redundant copies of data that may negatively impact your
downstream analysis.

All of this validation begs the question: Should you implement a
PUT or a POST? They result in similar status code responses, so for
the purposes of this exercise, either can be used. I’ve opted to use
the PUT request, although you may find POST is more appropriate
for your needs.

Depending on your decision logic, some of this validation process may be best dele‐
gated to the IDataMessageListener callback; however, bear in mind that the client is
expecting a valid response code that represents the action the server did or didn’t
take. So if the validation is delegated, you’ll need to also handle any return value from
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12 Shelby, Hartke, and Bormann, CoAP, 47.

the IDataMessageListener callback and use that to inform which response code is
set.

The callbacks defined in IDataMessageListener and implemented
in DeviceDataManager—handleSystemPerformanceMessage() and
handleSensorMessage()—require the ResourceNameEnum for inter‐
nal routing, so you need to keep a reference to the ResourceNameE
num that was used as part of the name for the resource handler.

If the conversion fails or throws an exception, decide whether logging an error mes‐
sage makes sense (for debugging, yes, but recognize that a flood of bad requests can
quickly fill your local log file storage), and set the response code to Response
Code.BAD_REQUEST (or similar).

On success, simply call the respond() method on the context, passing in the response
code and the response payload, which can technically be anything you’d like, although
IETF RFC 7252 does provide some guidance, depending on the request method
chosen. For instance, if you choose to implement POST, and the result is the creation
of a new resource (which PUT also supports), the server should return the new URI
for that resource.12

Does this mean you need to change your design? Nope. Recall that the resource
names (and, once registered with the CoAP server, their respective URIs) are prede‐
fined as part of the server initialization process. See “Additional Exercises” at the end
of this chapter for further ideas on enhanced CoAP server functionality.

Create resource handlers to support data retrieval requests
In the previous exercise, you learned how to create data ingest points for the CDA to
pass its generated data to the GDA using CoAP resource handlers specific to each
data type—SensorData and SystemPerformanceData. In this exercise, you’ll build a
resource handler that allows the CDA to retrieve ActuatorData (in JSON format)
from the GDA.

PIOT-GDA-08-003 specifies the requirements for this handler; you can model it after
the GenericCoapResourceHandler class in the programmingtheiot.gda.connec
tion.handlers package and name it GetActuatorCommandResourceHandler, which
will look similar to the previous handler implementations. The main differences are
as follows:

244 | Chapter 8: CoAP Server Implementation

https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252
https://oreil.ly/cZBvw


• It will implement the IActuatorDataListener interface (which is provided in the
java-components repository within the programmingtheiot.common package).

• It will need to store a class-scoped reference to an ActuatorData instance, which
will be set by the onActuatorDataUpdate() method defined in IActuatorData
Listener.

• It will support observability, meaning the client (CDA) can register for updates to
the resource and be notified when an actuator command is available. You’ll need
to call super.setObservable(true) in the constructor.

• It will implement GET only.

First, let’s take a look at one way to implement the IActuatorDataListener interface.
It defines a single method that will be used by the DeviceDataManager to notify the
resource handler when a new ActuatorData message is available:

public boolean onActuatorDataUpdate(ActuatorData data)
{
  if (data != null) {
    if (this.actuatorData == null) {
      this.actuatorData = new ActuatorData();
    }
     
    this.actuatorData.updateData(data);
    
    // notify all connected clients
    super.changed();
    
    _Logger.fine(
      "Actuator data updated for URI: " + super.getURI() +
      ": Data value = " + this.actuatorData.getValue());
    
    return true;
  }
  
  return false;
}

Since this method will be invoked by the DeviceDataManager instance, it will need a
reference to this handler (although it will see the handler as just an instance of IActua
torDataListener). The IDataMessageListener interface, which DeviceDataManager
implements, contains a method that supports this. You’ll see in the next exercise how
the CoapServerGateway will use this to register the handler so this handshake can
function.

Most of the logic is probably self-explanatory—the data parameter is quickly valida‐
ted, and then it’s copied into the class-scoped instance of ActuatorData (which is cre‐
ated if it doesn’t yet exist).
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This one method covers most of the key requirements, but we’re not yet done. Let’s
implement the GET request next. Here’s one way to do this:

@Override
public void handleGET(CoapExchange context)
{
  String       jsonData = "";
  ResponseCode code     = ResponseCode.NOT_ACCEPTABLE;
  
  context.accept();
  
  // TODO: validate the request
  
  try {
    jsonData =
      DataUtil.getInstance().actuatorDataToJson(
        this.actuatorData);
    code = ResponseCode.CONTENT;
  } catch (Exception e) {
    _Logger.warning(
      "Failed to handle PUT request. Message: " + e.getMessage());
    
    code = ResponseCode.INTERNAL_SERVER_ERROR;
  }
  
  context.respond(code, jsonData);
}

This implementation looks very similar to the handlePUT() method from the previ‐
ous exercise; the main difference is the payload and response code (Response
Code.CONTENT, if successful).

You can (and should) add further validation of the request as well. While I’ve imple‐
mented only one actuation handler, you can create unique handlers for each type of
actuation if they require special handling on the server side. For the purposes of this
exercise, one handler type is actually sufficient, as the CDA will only need to register
for actuation events for temperature adjustment.

While the coding for this handler is relatively simple, the complexity associated with
this handler and the others is really in the sequencing of instance creation and regis‐
tration with the DeviceDataManager. With all handlers now implemented, let’s move
on and explore how this sequencing will occur.

Create the resource handlers within the Gateway Device App CoAP server
The final exercise for the GDA in this chapter, described in PIOT-GDA-08-004,
involves updates to two classes: CoapServerGateway and DeviceDataManager, with
the latter being very minor, so we’ll start there.
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The first category of actions in the card is simply to implement the setActuatorData
Listener(String name, IActuatorDataListener listener) method within
DeviceDataManager. This requires a class-scoped variable of type IActuatorDataLis
tener to be declared within DeviceDataManager. Once this is created, simply set it to
the listener parameter.

If you plan to create multiple IActuatorDataListener instances (via two or more
resource handlers that operate on ActuatorData GET requests), you may want to use
the name parameter as a key and store each instance in a Map. This isn’t necessary for
the purposes of this exercise, but it may be helpful for your own implementation.

The next and last category of actions is to complete the CoapServerGateway imple‐
mentation, which involves creating and registering the resource handlers that you
created earlier.

PIOT-GDA-08-004 breaks this down into a number of steps that can be summarized
as follows:

• Create all required handler instances within the initServer() method, and call
it either from the startServer() method (before actually starting the CoAP
server) or from the constructor.

• Implement the addResource() method, which will perform simple parameter
validation and then delegate its work to another method responsible for creating
the resource hierarchy.

• Implement the resource hierarchy method that will process each resource
instance, expanding its name into the appropriate hierarchy of generic resources,
with the actual resource at the very end of the hierarchy, and finally, adding the
top-level resource to the server’s root resource.

One way to understand how the resource handler chain will be created is to use a
simple coding example:

CoapResource top =
    new CoapResource("PIOT").add(
        new CoapResource("ConstrainedDevice").add(
            new UpdateSystemPerformanceResourceHandler(
              "SystemPerfMsg")));

this.coapServer.add(top);

You can use this approach for all your resources, of course—it’s certainly the most
straightforward one! The other approach is to parse the string representing the
resource name (e.g., PIOT/ConstrainedDevice/SystemPerfMsg) and create the resource
chain dynamically. While the code will not be nearly as clean or as easy to follow as
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the preceding snippet, it does provide tremendous flexibility, as you can add more
resource names to ResourceNameEnum to suit your project needs.

Let’s assume the latter path is best and work through that implementation. First,
you’ll need to create all the handler instances, and register the GetActuatorComman
dResourceHandler with the DeviceDataManager. The initServer() method will
handle this and will call addResource() whenever a resource has been instanced.

Here’s a slightly trimmed down version of initServer(), which should provide
enough detail on how each resource handler type is created and registered; feel free to
add the others on your own (e.g., UpdateTelemetryResourceHandler, and any other
custom resource handlers you implement):

private void initServer()
{
  this.coapServer = new CoapServer();
  
  GetActuatorCommandResourceHandler getActuatorCmdResourceHandler=
    new GetActuatorCommandResourceHandler(
      ResourceNameEnum.CDA_ACTUATOR_CMD_RESOURCE);
  
  if (this.dataMsgListener != null) {
    this.dataMsgListener.setActuatorDataListener(
      null, // not needed for now
      getActuatorCmdResourceHandler);
  }
  
  addResource(
    ResourceNameEnum.CDA_ACTUATOR_CMD_RESOURCE, 
    null, // not needed for now
    getActuatorCmdResourceHandler);
  
  // TODO: implement the telemetry resource handler(s)
  
  UpdateSystemPerformanceResourceHandler   
    updateSysPerfResourceHandler =
      new UpdateSystemPerformanceResourceHandler(
        ResourceNameEnum.CDA_SYSTEM_PERF_MSG_RESOURCE, 
        this.dataMsgListener);
  
  addResource(
    ResourceNameEnum.CDA_SYSTEM_PERF_MSG_RESOURCE,
    null, // not needed for now
    updateSystemPerformanceResourceHandler);
}

The addResource() implementation is just the public-facing interface to the server
for adding new resources and provides some basic validation of the parameter values.
It delegates the resource hierarchy creation logic as follows:
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public void addResource(
  ResourceNameEnum resourceType,
  String endName,
  Resource resource)
{
  // TODO: while not needed for this exercise, you may want to
  // include the endName parameter as part of this resource
  // chain creation process
  
  if (resourceType != null && resource != null) {
    // break out the hierarchy of names and build the resource
    // handler generation(s) as needed, checking if any parent 
    // already exists - and if so, add to the existing resource
    createAndAddResourceChain(resourceType, resource);
  }
}

And finally, we come to the resource chain hierarchy creation method, of which only
the signature is shown (due to the length of the method):

createAndAddResourceChain(
  ResourceNameEnum resource, Resource resource)

A full sample implementation is posted within the card—just scroll down to the
resource tree creation action in PIOT-GDA-08-004.

Finally, your GDA CoAP server is nearing completion! Run the tests at the end of the
card as indicated, and you should see log output similar to that posted in the card.
Here’s a small sample of the end of the log file my test generated:

Feb 22, 2021 6:54:57 PM
programmingtheiot.part03.integration.connection.CoapServerGatewayTest
testRunSimpleCoapServerGatewayIntegration
INFO:  --> WebLink: /PIOT/ConstrainedDevice/ActuatorCmd. Attributes:
org.eclipse.californium.core.server.resources.ResourceAttributes@32eebfca
Feb 22, 2021 6:54:57 PM
programmingtheiot.part03.integration.connection.CoapServerGatewayTest
testRunSimpleCoapServerGatewayIntegration
INFO:  --> WebLink: /PIOT/ConstrainedDevice/SensorMsg. Attributes:
org.eclipse.californium.core.server.resources.ResourceAttributes@4e718207
Feb 22, 2021 6:54:57 PM
programmingtheiot.part03.integration.connection.CoapServerGatewayTest
testRunSimpleCoapServerGatewayIntegration
INFO:  --> WebLink: /PIOT/ConstrainedDevice/SystemPerfMsg. Attributes:
org.eclipse.californium.core.server.resources.ResourceAttributes@1d371b2d
Feb 22, 2021 6:56:57 PM org.eclipse.californium.core.CoapServer stop
INFO: Stopping server
Feb 22, 2021 6:56:57 PM org.eclipse.californium.core.network.CoapEndpoint stop
INFO: Stopping endpoint at address 0.0.0.0/0.0.0.0:5683
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14 Tanganelli, Vallati, and Mingozzi, “CoAPthon”.

With your CoAP server functionality in place, your GDA now supports two different
IoT protocols—MQTT and CoAP. Congratulations! Be sure to commit and merge
your code as indicated in PIOT-GDA-08-100.

If you’d like to add CoAP server functionality to your CDA, read on for a brief intro‐
duction to adding this capability. Otherwise, feel free to move on to Chapter 9, where
I’ll discuss integrating a CoAP client into your CDA so it can interact with your GDA
server.

Add CoAP Server Functionality to the Constrained Device Application
(Optional)
While incorporating a CoAP server within your CDA lies generally outside the scope
of this book, you can do so either by building your own CoAP library by implement‐
ing the IETF RFC 7252 specification or by using an existing open source library. The
examples I discuss in the programming exercises for this chapter focus on two open
source libraries: aiocoap,13 which relies upon asyncio, and CoAPthon3.14

The library you choose is up to you, of course, and all the Chapter 8 numbered cards
provide some simple integration examples for the two I mentioned.

If you followed the system configuration instructions and configured your Python
development environment accordingly, you should already have both libraries avail‐
able. PIOT-CFG-08-002 provides additional documentation links that may be help‐
ful. I found that a thorough review of the online documentation and open source
code repositories was useful in my own study.

Much like with the GDA’s CoAP server implementation, a CDA CoAP server will
need to do the following:

• Create the CoAP server abstraction (PIOT-CDA-08-001).
• Create the resource handler(s) to support data update requests (PIOT-

CDA-08-002).
• Create the resource handler(s) to support data retrieval requests (PIOT-

CDA-08-003).
• Create and manage the resource handlers within the CDA’s CoAP server abstrac‐

tion (PIOT-CDA-08-004).

If you decide to go down this path, be sure to follow the instructions listed in PIOT-
CDA-08-000 before implementing your server.
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A brief summary of the Constrained Device Application’s CoAP server abstraction
As with the GDA’s implementation, PIOT-CDA-08-001 walks through the basic
server implementation, which includes details on how to manage the start and stop
process using both referenced open source libraries.

As with the GDA’s first exercise in this chapter, there are no existing tests specific to
this exercise since there’s not much to test at this point. However, you may want to
create your own test, just to verify that the server can start and, perhaps after a
minute or so, stop cleanly.

Before moving into a review of the remaining steps, it’s helpful to review a notional
UML design diagram to depict the design differences with the GDA (as shown in
Figure 8-10).

Figure 8-10. Constrained Device App UML with an integrated CoAP server

The modified component is the same as with the GDA—DeviceDataManager. The
new functionality is slightly different, aside from the CoapServerAdapter. You’ve
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15 Depending on your deployment approach, polling may or may not be a good idea, as it can be difficult to
manage and hard to scale.

probably noticed the name change from the GDA—this is to avoid any potential con‐
fusion from naming a CDA component as a “gateway.”

The main difference, however, is with the resource handler names and implementa‐
tions. The GDA’s CoAP server and associated resource handlers are designed to man‐
age incoming SensorData and SystemPerformanceData PUT updates from the CDA,
and ActuatorData GET requests from the CDA. The CDA’s CoAP server does the
opposite—it will need to permit SensorData and SystemPerformanceData GET
requests from the GDA, and incoming ActuatorData PUT updates from the GDA.

The single “Update” resource handler (UpdateActuatorResourceHandler) is respon‐
sible for receiving an ActuatorData message. This will arrive in JSON format (see
Chapter 5)—this time from the GDA—and of course must be validated and instanced
as its associated data containers.

Let me again stress the importance of building a secure resource
handler and server in general, especially when dealing with incom‐
ing actuation events. While doing so is outside the scope of this
book, you will need to ensure that the incoming connection is
secure, the request is authenticated and authorized, and the data is
valid and appropriate.

Once incoming data validation and conversion is complete, the handler will need a
way to send the newly instanced data container to the orchestration manager—that is,
the instance of IDataMessageListener (which will be DeviceDataManager). Once
DeviceDataManager has the information, it can then decide what to do next: pass it to
the ActuatorAdapterManager (which should perform additional validation), or log
the message if DeviceDataManager determines the data shouldn’t be processed.

The “Get” resource handlers exist to provide access to SensorData and SystemPerfor
manceData instances generated by the CDA. These can also be implemented to sup‐
port observability, which allows the GDA to simply request updates from each
resource when available (or it can poll the resources at regular intervals itself15). The
GetTelemetryResourceHandler will implement (or rather inherit from) the ITeleme
tryDataListener class, and the GetSystemPerformanceResourceHandler will derive
from the ISystemPerformanceDataListener class.

Both handlers will need to be referenced with the DeviceDataManager class. IData
MessageListener provides an interface for setting these references: setSystemPerfor
manceDataListener and setTelemetryDataListener, respectively.
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The implementation within DeviceDataManager should account for multiple ITeleme
tryDataListener instances, although there will be only one ISystemPerformanceDa
taListener instance within the CDA.

I’ve shortened the names for some components in the UML for
rendering purposes. For example, ISystemPerformanceDataLis
tener is shown as ISysPerfDataListener.

The online exercises provide further detail on implementation options, of course, and
are regularly reviewed and updated (as needed), so be sure to check back for updates.
If you choose to implement the CDA exercises, be sure to commit and merge your
branches back into the primary branch by following the instructions in PIOT-
GDA-08-100.

If you’ve worked through all the exercises in Chapter 8—congratulations! At this
point, you should technically have a functioning CoAP server within (at least) the
GDA, and possibly within the CDA as well.

Additional Exercises
There’s no end to the new capabilities you may want to add to your CoAP servers.
Here are just three.

Add More Resource Handlers
This is relatively straightforward, since you now have practice implementing a few
resource handlers in both Java and Python. See if you can identify others that might
be relevant to your needs and add them to your server. Write a custom resource han‐
dler for each and test it out using the command-line client discussed in PIOT-
CFG-08-001.

Add a Custom Discovery Service
CoAP supports resource discovery via the issuance of a specially formatted GET
request. You can create your own using a separate resource name and resource han‐
dler. The resource handler queries the server for all existing resource names and
returns a custom JSON response with the resource names and other relevant
metadata that a client may need to issue requests (assuming you trust the clients issu‐
ing the request in the first place).
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Add Dynamic Resource Creation
You may recall the brief discussion in the previous section on PUT versus POST and
the integration of a CoAP server within the GDA. For this exercise, add POST func‐
tionality to your SensorData and SystemPerformanceData resource handler, and see
if you can dynamically create a new resource handler instance and register it with the
same naming prefix as the existing one (e.g., PIOT/ConstrainedDevice/SensorMsg),
but appended with the name of the sensor itself (e.g., PIOT/ConstrainedDevice/
SensorMsg/TempSensor). Once this is complete, return the new URI to the client. In
Chapter 9, you’ll implement a CoAP client, which you may want to use to verify this
new (but again, optional) feature.

Conclusion
In this chapter, you learned about the CoAP protocol and how you can implement a
CoAP server within your Gateway Device Application. Optionally, you learned about
some of the design considerations for implementing a CoAP server within your Con‐
strained Device Application and may have even implemented the server in both
applications. This chapter provided the groundwork for communicating between
both applications using CoAP. To complete this circle, you’ll need a CoAP client, of
course, which will be discussed in Chapter 9.
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CHAPTER 9

CoAP Client Integration

Building a Request/Response Client Using CoAP

Request is received.
Send the notification.
Who is listening?

Fundamental concepts: Create a CoAP client in Python for your CDA to communi‐
cate with the GDA’s CoAP server.

This chapter continues our exploration of CoAP with a discussion of the client imple‐
mentation—specifically, within the CDA, with some guidance on building a CoAP
client within your GDA as well.

What You’ll Learn in This Chapter
Chapter 8 discussed the basics of CoAP and developing a server hosted within the
GDA, with an optional set of exercises enabling a CoAP server within the CDA. This
chapter focuses on building a CoAP client that will be part of the CDA, with optional
exercises enabling the GDA to support a CoAP client. If you implement the exercises
in this chapter, you’ll learn how to integrate CoAP client functionality into your CDA
(and optionally into your GDA) so it can communicate with the GDA’s CoAP server.
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Concepts
Let’s quickly review the two client connection examples discussed in Chapter 8, with
some minor modifications to each example. We’ll discuss them in more detail in this
chapter—that is, the CDA as the CoAP client and the GDA as the CoAP server.

Example A-1: The CDA writes telemetry updates to the GDA’s CoAP server.

1. The CDA will write new data to a single resource hosted within the GDA’s CoAP
server. This resource’s name will be PIOT/ConstrainedDevice/SensorMsg.

2. The CDA will connect to the resource at coap://localhost:5683/PIOT/Constrained‐
Device/SensorMsg hosted by the GDA and issue a PUT request with a Sensor
Data instance converted to JSON as its payload.

3. On success, the server will respond with a response code indicating the resource
was CREATED or CHANGED. On failure, the client will need to handle the
exception or unsuccessful response code and react accordingly.

Example A-2: The CDA observes actuator commands on the GDA’s CoAP server.

1. The CDA will monitor an existing resource for updates via an OBSERVE request
(which is essentially a slightly modified GET). The resource’s name will be PIOT/
ConstrainedDevice/ActuatorCmd.

2. The CDA will connect to the resource at coap://localhost:5683/PIOT/Constrained‐
Device/ActuatorCmd and issue an OBSERVE request.

3. The GDA will respond whenever it has an ActuatorData instance—in the form
of a JSON payload—that needs to be sent to the CDA. If no update is available,
neither application takes any action.

The GDA hosts both resources and is already designed to support these request types
—PUT for Example A-1 and OBSERVE (GET) for Example A-2.

What if we want to switch roles and have the CDA host our resources while the GDA
issues the requests? As discussed in Chapter 8, this is certainly feasible, and you may
have opted to build a CoAP server as part of your CDA when you worked through
the optional exercises.

Let’s examine two similar examples, but with the CDA acting as the server and the
GDA as the client.
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Example B-1: The GDA writes actuator commands to the CDA’s CoAP server.

1. The GDA will write new data to a single resource hosted within the CDA’s CoAP
server. This resource’s name will be PIOT/ConstrainedDevice/ActuatorCmd.

2. The GDA will connect to the resource at coap://localhost:5683/PIOT/Constrained‐
Device/ActuatorCmd hosted by the CDA and issue a PUT request with an Actua
torData instance converted to JSON as its payload.

3. On success, the server will respond with a response code indicating the resource
was CREATED or CHANGED. On failure, the client will need to handle the
exception or unsuccessful response code and react accordingly.

Example B-2: The GDA observes telemetry updates on the CDA’s CoAP server.

1. The GDA will monitor an existing resource for updates via an OBSERVE request
(which is essentially a slightly modified GET). The resource’s name will be PIOT/
ConstrainedDevice/SensorMsg/TempSensor.

2. The GDA will connect to the resource at coap://localhost:5683/PIOT/Constrained‐
Device/SensorMsg/TempSensor hosted by the CDA and issue an OBSERVE
request.

3. The CDA will respond whenever it has a SensorData instance—in the form of a
JSON payload—that needs to be sent to the GDA. If no update is available, no
action is taken by either application.

Figures 9-1 (CDA CoAP client) and 9-2 (GDA CoAP client) provide a high-level
design view of each application.
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Figure 9-1. Constrained Device App design with an integrated CoAP client

Both diagrams depict the use of CoapClientConnector to talk to the CoAP server—in
Figure 9-1, the CDA is the client and the GDA is the server, while Figure 9-2 depicts
the opposite arrangement. 

Since this chapter is about building a CoAP client within the CDA, Figure 9-1 will be
central to the exercises in the next section.
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Figure 9-2. Gateway Device App design with an integrated CoAP client

Before jumping into the programming exercises, it will be helpful to review the series
of cards related to this chapter, which provide some exercises you can implement
related to creating a CoAP server in both the GDA and the CDA. However, the CoAP
examples throughout this book (particularly in Chapters 8, 9, and 10) focus on the
GDA as the CoAP server and the CDA as the CoAP client.

Now, let’s dig into the CoAP server programming exercises and build out this
functionality.

Programming Exercises
The programming exercises in this section concentrate on integration CoAP client
capabilities within the CDA—in particular the client adapter, or the implementation
of GET, PUT, POST, DELETE, and OBSERVE request method types as part of the cli‐
ent adapter.

The integration tests, which you’ll execute manually, will attempt to connect from
your CDA’s CoAP client to your GDA’s CoAP server. To do this, you’ll probably want
to run your GDA as an application within a separate console. This will allow you to
click on the various Python unit tests and execute them individually within your IDE
while the GDA is running. And yes, I’ve provided a few simple command-line
instructions you can execute within your console to handle this.
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1 Amsüss, Christian and Wasilak, Maciej, “aiocoap: Python CoAP Library.” Energy Harvesting Solutions, 2013–.
http://github.com/chrysn/aiocoap.

2 Giacomo Tanganelli, Carlo Vallati, and Enzo Mingozzi, “CoAPthon: Easy Development of CoAP-Based IoT
Applications with Python”, 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT) (Milan: IEEE, 2015).

3 Be sure to review the aiocoap FAQ before beginning any of these exercises.

Before running each integration test, you may want to fire up your protocol analyzer
as well, since I’ll show some examples of CoAP messages passed between the CoAP
client you’ll implement and the server you implemented within Chapter 8.

Recall the development environment setup instructions back in
Chapter 1, which suggest using Linux as your operating environ‐
ment. Most of my own unit and integration testing is done in Linux
(WSL, specifically). Depending on the library you choose for
implementing your CDA’s CoAP client, you will need to be aware
of any potential low-level Python-specific networking calls that rely
on OS-specific bindings.

Add CoAP Client Functionality to the Constrained Device Application
The CDA-specific examples I discuss in the programming exercises for this chapter
leverage two different CoAP libraries: aiocoap,1 which relies on asyncio, and CoAP‐
thon3.2 If you implemented the CDA CoAP server exercises in Chapter 8, at least one
of these will be familiar. The examples I discuss in this section use aiocoap3 and
Python’s asyncio module.

As with each preceding chapter, be sure to follow the instructions listed in PIOT-
CDA-09-000 so you’re starting with a new branch for this set of exercises.

Create the CoAP client abstraction and integrate it with DeviceDataManager
The first exercise, PIOT-CDA-09-001, walks through the basic client implementation.
This will primarily initialize the client using the configuration properties in PiotCon‐
fig.props, so it will be important to ensure the configuration file has the correct set‐
tings in place.

Here’s a sample section from the python-components configuration file (PiotCon‐
fig.props):

[Coap.GatewayService]
credFile       = ./cred/PiotCoapCred.props
certFile       = ./cert/PiotCoapLocalCertFile.pem
host           = localhost
port           = 5683
securePort     = 5684
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enableAuth     = False
enableCrypt    = False

For the time being, only the host and port properties are relevant. Assuming your
CoAP server (GDA) is running on the same system as your CDA, you can leave these
configuration properties as they are. For these exercises, I’d suggest you do run both
your GDA and your CDA on the same system. This will make debugging more con‐
venient and help limit other potential connectivity issues that are unrelated to the
software implementation.

Before implementing the CoapClientConnector, let’s take a look at the UML design
for the CDA’s end state, once the CoAP client functionality is integrated. Figure 9-3
depicts a notional UML design that includes the key components most relevant to
this chapter’s exercises (many other components have been removed for clarity).

Figure 9-3. Constrained Device App UML with an integrated CoAP client

DeviceDataManager will get some updates (eventually), while the main component
for this entire chapter is CoapClientConnector. This means that each exercise will
add a bit more functionality to CoapClientConnector. This also means that as you go
you’ll have the opportunity to test each feature—that is, GET, PUT, POST, DELETE,
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4 Amsüss, Christian and Wasilak, Maciej, “aiocoap: Python CoAP Library”.

and OBSERVE—using your updated CoapClientConnector and existing GDA CoAP
server.

PIOT-GDA-09-001 focuses on initializing the CoAP client instance and adding some
helper methods to make it easier to process GET, PUT, POST, DELETE, and
OBSERVE requests. The key activities include:

• Creating (or editing) the CoapClientConnector class
• Adding the relevant class-scoped variables
• Creating the initialization logic—it’s already stubbed out within the python-
components sample source repository

• Adding the resource name creation function—this is boilerplate code that creates
the URI you’ll use for each request

As always, there are some nuances, especially since the sample code and library (aio‐
coap)4 both use asyncio.

I’ve only successfully tested the next set of CDA exercises—begin‐
ning with PIOT-CDA-09-001—within a Linux (specifically, WSL)
operating environment.

The first step—creating the class and initializing all relevant local variables—can be
implemented a few ways. Here’s one approach you may want to consider:

import logging
import socket
import traceback
import asyncio

from aiocoap import *

# TODO: import other relevant modules (part of the sample code)

def __init__(self, dataMsgListener: IDataMessageListener = None):
  self.config = ConfigUtil()
  self.dataMsgListener = dataMsgListener
  self.enableConfirmedMsgs = False
  self.coapClient = None
  
  self.observeRequests = { }
  
  self.host    = \
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    self.config.getProperty( \
      ConfigConst.COAP_GATEWAY_SERVICE, \
      ConfigConst.HOST_KEY, \
      ConfigConst.DEFAULT_HOST)
  
  self.port    = \
    self.config.getInteger( \
      ConfigConst.COAP_GATEWAY_SERVICE, \
      ConfigConst.PORT_KEY, \
      ConfigConst.DEFAULT_COAP_PORT)
  
  self.uriPath = \
    "coap://" + self.host + ":" + str(self.port) + "/"
  logging.info('\tHost:Port: %s:%s', self.host, str(self.port))
  
  # optional – but be sure to call self._initClient()
  try:
    tmpHost = socket.gethostbyname(self.host)
    
    if tmpHost:
      self.host = tmpHost
      self._initClient()
    else:
      logging.error("Can't resolve host: " + self.host)
  except socket.gaierror:
    logging.info("Failed to resolve host: " + self.host)

The basic initialization pattern is probably familiar by now. The constructor is para‐
meterized and accepts an IDataMessageListener reference. (This can also be set via
a separate setter method, such as the MqttClientConnector class from Chapter 6.)

Next is initializing class-scoped variables and loading configuration parameters. This
includes declaring self.coapClient, which will be set to the appropriate reference
via a call to self._initClient(), and retrieving the CoAP host and port parameters
from the configuration file.

The final step is simply to check whether the CoAP host is reachable via the network
(or, as is likely for this exercise, the loopback adapter) and then to instance the CoAP
client.

With the constructor complete, you can now implement the _initClient() method.
If you’re using aiocoap5 and asyncio, here’s one way to pull this off:

def _initClient(self):
  asyncio.get_event_loop().run_until_complete( \
    self._initClientContext())
  
async def _initClientContext(self):
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  try:
    logging.info( \
      "Creating CoAP client for URI path: " + self.uriPath)
    
    self.coapClient = await Context.create_client_context()
    
    logging.info( \
      "Client context created. Will invoke resources at: " + \
        self.uriPath)
  except Exception as e:
    # obviously, this is a critical failure - you may want to
    # handle this differently
    logging.error( \
      "Failed to create CoAP client to URI path: " + self.uriPath)
    traceback.print_exception(type(e), e, e.__traceback__)

If you’re not already familiar with Python’s asyncio module, you
should review the documentation thoroughly, as well as the develo‐
per’s guide. The asyncio module is a very powerful concurrency
feature and is important to understand for these exercises.

In the preceding example, the _initClient() method is retrieving the asyncio event
loop and passing in the _initClientContext() coroutine to be run until complete
(defined as such by async preceding the method declaration).

Within _initClientContext(), an aiocoap6 Context is used to create the client “con‐
text,” which is referred to simply as self.coapClient throughout the CoapClientCon
nector class. On success, this new context provides access to the underlying CoAP
infrastructure via methods that allow you to send GET, PUT, POST, DELETE, and
OBSERVE requests to a CoAP server.

The final step is to create a simple helper method that will create a resource URI from
a set of given parameters. You’ll need to generate this for each request prior to send‐
ing, since the request APIs you’ll create in the following exercises allow the caller to
specify a different ResourceNameEnum each time. 

Here’s one implementation approach to consider:

def _createResourcePath( \
  self, resource: ResourceNameEnum = None, name: str = None):
  
  resourcePath = ""
  hasResource = False
  
  if resource:
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    resourcePath = resourcePath + resource.value
    hasResource = True
  
  if name:
    if hasResource:
      resourcePath = resourcePath + '/'
    
    resourcePath = resourcePath + name
  
  return self.uriPath + resourcePath

You’ll reuse this method often, so feel free to make modifications as you see fit. Just
be sure to return the full URI, including the protocol, host, port, and resource path.

Finally, review the last few steps of this card, which integrate CoapClientConnector
into DeviceDataManager. This pattern should be familiar by now, since it’s the same
process you followed for integrating the MqttClientConnector, so simply follow the
listed steps.

With the basic shell of the CoapClientConnector in place, let’s move on to the request
method implementation exercises, starting with GET.

Add the GET request method implementation
You may recall the brief discussion on CoAP CON (confirmed) and NON (noncon‐
firmed) messages near the beginning of Chapter 8. CON requests trigger an acknowl‐
edgment (ACK) from the server to the client for a request, and again from the client
to the server when a response is received.

It’s easy to enable a request to be either CON or NON. You can
choose to set this by default or enable it through the request meth‐
ods you’ll adapt. The examples I provide all include a boolean
parameter as part of each method’s signature (required for the inte‐
gration test cases that have already been written), so you may want
to leave it as it is. Feel free to edit this out across the board if you’d
prefer; just keep in mind that there likely will be times you’ll want
to issue either a NON or a CON request, depending on the prob‐
lem you’re looking to solve.

Let’s quickly review the requirements for PIOT-CDA-09-002—the GET request—in
which you’ll add support for GET CON and NON requests. Notice the method signa‐
ture:

sendGetRequest( \
  self, \
  resource: ResourceNameEnum = None, \
  name: str = None, \
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  enableCON: bool = False, \
  timeout: int = IRequestResponseClient.DEFAULT_TIMEOUT) -> bool:

The parameters are clear enough. The resource parameter represents the Resource
NameEnum that will be used to construct the URI, a name that, if non-null, can be
appended to resource. The enableCON parameter—set to “False” by default—pro‐
vides a means to set a request as either NON or CON. A timeout value is provided in
case the underlying infrastructure supports this, or in case you want to implement
your own (you can ignore it for this exercise).

Finally, the return will be a Boolean. While Python doesn’t enforce this, the annota‐
tion provided is helpful to understanding the intent. This means that there must be a
callback within the CoapClientConnector to handle the requested data. Enter the
IDataMessageListener instance (set during construction). The complexity with this
method, like others that expect a meaningful server response, is mostly in parsing
that response and passing it along to the appropriate callback function. Fortunately,
our case will be straightforward, since this client will generally send GET requests for
ActuatorData commands from the GDA. This means, of course, that the response
payload, on success, should be an ActuatorData instance in JSON format. 

Let’s look at one implementation approach:

sendGetRequest( \
  self, \
  resource: ResourceNameEnum = None, \
  name: str = None, \
  enableCON: bool = False, \
  timeout: int = IRequestResponseClient.DEFAULT_TIMEOUT) -> bool:
  
  if resource or name:
    resourcePath = self._createResourcePath(resource, name)
    
    logging.debug("Issuing GET to path: " + resourcePath)
    
    asyncio.get_event_loop().run_until_complete( \
      self._handleGetRequest( \
        resourcePath = resourcePath, enableCON = enableCON))
  else:
    logging.warning( \
      "Can't issue GET - no path or path list provided.")

Notice the call to self._createResourcePath(), which will generate the URI to use
in the upcoming GET request. This is followed by a call to yet another method—a
coroutine—that can be executed within the event loop. This applies the same techni‐
que used to create the client context: the coroutine is invoked within the event loop,
and the caller simply waits for it to complete, effectively executing this as a blocking
call.
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You may choose to alter this implementation approach and return
control to the main thread immediately. If so, you need to devise
an alternative approach for handling the async response to the
request.

Here’s one way to implement the coroutine:

async def _handleGetRequest( \
  self, resourcePath: str = None, enableCON: bool = False):
  
  try:
    msgType = NON
    
    if enableCON:
      msgType = CON
    
    msg = \
      Message( \
        mtype = msgType, code = Code.GET, uri = resourcePath)
    
    req = self.coapClient.request(msg)
    responseData = await req.response
    
    # TODO: process the response data
  
  except Exception as e:
    # TODO: for debugging, you may want to optionally include
    # the stack trace, as shown
    logging.warning( \
      "Failed to process GET request for path: " + resourcePath)
    traceback.print_exception(type(e), e, e.__traceback__)

Notice the check of enableCON—if True, the msgType is set to CON, or else it defaults
to NON. Following this test is a three-step process:

1. Create the message: This will include the message type (CON or NON), the
request method code (GET), and the URI (resourcePath).

2. Create and send the request: This will be a Future that represents the client con‐
text and the request message.

3. Wait for the response: This will contain the payload and other relevant informa‐
tion sent from the server in response to the request.

Shall we kick the tires? Check out the test instructions embedded near the end of the
card. They suggest creating your own CoAP GET test cases: one for CON and the
other for NON. You can place the code for the three steps just listed, plus the two test
cases for PUT, POST, and DELETE, within the same test class. However, it may be
easier to create separate test classes, as you’ll be able to execute one at a time without
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telling the interpreter to skip over any other tests in the same class (since some func‐
tionality won’t be implemented yet and the tests will fail).

Once these new test cases are created, I’d suggest running your GDA CoAP server as
a stand-alone application. Just be sure to update the GatewayDeviceApp so it doesn’t
force an exit after n seconds.

The default main() method implementation for the GatewayDevi
ceApp in the java-components repository will run for some num‐
ber of minutes before automatically exiting. You can easily change
this by modifying the code within the main() method, but again,
this is up to you.

Before recompiling and starting your GDA, be sure to set its configuration to enable
the CoAP server. In the java-components/config/PiotConfig.props file, simply set all
the other connectors to “False” and set enableCoapServer to “True”:

[GatewayDevice]
# …
enableMqttClient        = False
enableCoapServer        = True
enableCoapClient        = False
enableCloudClient       = False
enableSmtpClient        = False
# …

Assuming you have Maven installed and accessible from your console, you can run
the GDA by opening a console, navigating to the java-components (or piot-java-
components) directory, and typing in the following:

cd piot-java-components
mvn install -DskipTests
java -jar target/gateway-device-app-0.0.1-jar-with-dependencies.jar

With your GDA running, you can test your new CoAP client GET functionality and
analyze the request and response data using a protocol analyzer such as Wireshark
(discussed in Chapters 6 and 7).

You can filter on CoAP messages within Wireshark by using “coap”
as the filter string.

While the test executes, look at Wireshark and examine the output. It should look
similar to the content shown in Table 9-1.
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Table 9-1. CoAP GET nonconfirmed (NON) request as shown in Wireshark

No. Time Source Destination Protocol Length Info
179 3.633710 ::1 ::1 CoAP 104 NON, MID:46636, GET, TKN:08 88, 

coap://localhost/PIOT/ConstrainedDe

vice/ActuatorCmd

180 3.715214 ::1 ::1 CoAP 328 NON, MID:19866, 2.05 Content, TKN:08 

88, coap://localhost/PIOT/Constrained

Device/ActuatorCmd (text/plain)

As expected, there are two packets—the request from the client to the server, followed
by the response from the server to the client.

Here’s the payload of the response:

0000   18 00 00 00 60 0d 12 de 01 1c 11 80 00 00 00 00   ....`...........
0010   00 00 00 00 00 00 00 00 00 00 00 01 00 00 00 00   ................
0020   00 00 00 00 00 00 00 00 00 00 00 01 16 33 dd fe   .............3..
0030   01 1c d2 43 52 45 4d 9a 08 88 c0 ff 7b 22 63 6f   ...CREM.....{"co
0040   6d 6d 61 6e 64 22 3a 30 2c 22 76 61 6c 75 65 22   mmand":0,"value"
0050   3a 30 2e 30 2c 22 69 73 52 65 73 70 6f 6e 73 65   :0.0,"isResponse
0060   22 3a 66 61 6c 73 65 2c 22 73 74 61 74 65 44 61   ":false,"stateDa
0070   74 61 22 3a 22 54 45 53 54 49 4e 47 20 50 55 52   ta":"TESTING PUR
0080   50 4f 53 45 53 20 4f 4e 4c 59 21 22 2c 22 6e 61   POSES ONLY!","na
0090   6d 65 22 3a 22 4e 6f 74 20 53 65 74 22 2c 22 74   me":"Not Set","t
00a0   69 6d 65 53 74 61 6d 70 22 3a 22 32 30 32 31 2d   imeStamp":"2021-
00b0   30 32 2d 32 36 54 30 34 3a 31 39 3a 32 37 2e 37   02-26T04:19:27.7
00c0   35 32 38 34 38 5a 22 2c 22 73 74 61 74 75 73 43   52848Z","statusC
00d0   6f 64 65 22 3a 30 2c 22 74 79 70 65 49 44 22 3a   ode":0,"typeID":
00e0   30 2c 22 6c 6f 63 61 74 69 6f 6e 49 44 22 3a 22   0,"locationID":"
00f0   4e 6f 74 20 53 65 74 22 2c 22 6c 61 74 69 74 75   Not Set","latitu
0100   64 65 22 3a 30 2e 30 2c 22 6c 6f 6e 67 69 74 75   de":0.0,"longitu
0110   64 65 22 3a 30 2e 30 2c 22 65 6c 65 76 61 74 69   de":0.0,"elevati
0120   6f 6e 22 3a 30 2e 30 2c 22 74 69 6d 65 53 74 61   on":0.0,"timeSta
0130   6d 70 4d 69 6c 6c 69 73 22 3a 31 36 31 34 33 31   mpMillis":161431
0140   33 31 36 37 37 35 32 7d                           3167752}

Although the formatting doesn’t make for easy reading, it’s very clearly a JSON-
formatted representation of an ActuatorData instance. It’s also very kind of the
server to let us know that this ActuatorData instance is for “TESTING PURPOSES
ONLY!”

For final verification, I added some additional debug messages to my CDA’s CoAP cli‐
ent. Here’s a sample of the log output:

2021-02-25 23:24:11,530:DataUtil:INFO:Created DataUtil instance.
2021-02-25 23:24:11,530:DataUtil:DEBUG:Converting JSON to ActuatorData [pre]  -->
{'command': 0, 'value': 0.0, 'isResponse': False, 'stateData': 'TESTING PURPOSES
ONLY!', 'name': 'Not Set', 'timeStamp': '2021-02-26T04:24:11.526788Z',
'statusCode': 0, 'typeID': 0, 'locationID': 'Not Set', 'latitude': 0.0,
'longitude': 0.0, 'elevation': 0.0, 'timeStampMillis': 1614313451526}
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2021-02-25 23:24:11,530:DataUtil:WARNING:JSON data contains key not mappable to
object: timeStampMillis
2021-02-25 23:24:11,530:DataUtil:DEBUG:Converted JSON to ActuatorData [post] -->
name=Not Set,typeID=0,timeStamp=2021-02
-26T04:24:11.526788Z,statusCode=0,hasError=False,locationID=Not
Set,elevation=0.0,latitude=0.0,longitude=0.0,command=0,stateData=TESTING PURPOSES
ONLY!,value=0.0,isResponse=False
2021-02-25 23:24:11,530:DefaultDataMessageListener:INFO:Actuator Command Msg: 0

You may have noticed the one warning message indicating the time
StampMillis key isn’t mappable to an object; this is by design. I
include the timeStampMillis variable in the Java BaseIotData
class, but not in the Python version. My DataUtil implementation
picks this up and logs a warning indicating the delta, although it
doesn’t fundamentally change the content, as the timestamp is
already embedded.

So far, so good. Let’s run the test once more—but this time, execute the Confirmed
GET request. Be sure to launch Wireshark before running the test. Your test results
should look similar to those depicted in Table 9-2.

Table 9-2. CoAP GET Confirmed (CON) request as shown in Wireshark

No. Time Source Destination Protocol Length Info
10251 287.435938 ::1 ::1 CoAP 104 CON, MID:41837, GET, TKN:bd 54, 

coap://localhost/PIOT/Constrained

Device/ActuatorCmd

10252 287.438018 ::1 ::1 CoAP 56 ACK, MID:41837, Empty Message

10253 287.440199 ::1 ::1 CoAP 328 CON, MID:19229, 2.05 Content, 

TKN:bd 54, coap://localhost/PIOT/

ConstrainedDevice/ActuatorCmd 

(text/plain)

10254 287.441059 ::1 ::1 CoAP 56 ACK, MID:19229, Empty Message

Notice that there are now four packets shown in Table 9-2—the request from the cli‐
ent to the server, followed by an ACK from the server; and the response from the
server to the client, followed by an ACK from the client. Each ACK includes the same
MID, or message ID, from the preceding request or response.

After checking the Wireshark output, the payload content is an ActuatorData
instance in JSON format, which looks identical to the previous example (except for
the timestamp, of course).

Getting information is good, right? How about giving information? Let’s implement
the PUT request method next.
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Add the PUT request method implementation
The requirements for PIOT-CDA-09-003—the PUT request—will be very similar to
those for the GET request, except that this request will allow your client to send a
payload to the server. This means that the method signature needs to include a pay‐
load parameter. To keep things simple, I’d suggest interpreting this as a string, as it’s
going to be converted to a byte array before sending upstream.

Here’s the method signature, along with a sample implementation:

sendPutRequest( \
  self, \
  resource: ResourceNameEnum = None, \
  name: str = None, \
  payload: str = None, \
  enableCON: bool = False, \
  timeout: int = IRequestResponseClient.DEFAULT_TIMEOUT) -> bool:
  
  if resource or name:
    resourcePath = self._createResourcePath(resource, name)
    
    logging.debug("Issuing PUT to path: " + resourcePath)
    
    asyncio.get_event_loop().run_until_complete( \
      self._handlePutRequest( \
        resourcePath = resourcePath, \
        payload = payload, \
        enableCON = enableCON))
  else:
    logging.warning( \
      "Can't issue PUT - no path or path list provided.")

Here again is a call to a coroutine (although this one also accepts a payload parame‐
ter, which is of course necessary if you’re going to be sending the server some data).
Here’s one way to implement it:

async def _handlePutRequest( \
  self, \
  resourcePath: str = None, \
  payload: str = None, \
  enableCON: bool = False):
  
  try:
    msgType = NON
    
    if enableCON:
      msgType = CON
    
    payloadBytes = b''
    
    # decide which encoding to use – this can also
    # be loaded from the configuration file but must
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    # also align to the server
    if payload:
      payloadBytes = payload.encode('utf-8')
    
    msg = \
      Message( \
        mtype = msgType, payload = payloadBytes, \
        code = Code.PUT, uri = resourcePath)
    
    req = self.coapClient.request(msg)
    responseData = await req.response
    
    # TODO: process the response data
  
  except Exception as e:
    # TODO: for debugging, you may want to optionally include
    # the stack trace, as shown
    logging.warning( \
      "Failed to process PUT request for path: " + resourcePath)
    traceback.print_exception(type(e), e, e.__traceback__)

The process is very similar to the one used for sending a GET request; the only differ‐
ence is the inclusion of a payload. This adds one additional step—converting the pay‐
load string to bytes with an appropriate encoding scheme.

The encoding you choose needs to support the character set used within the string
being sent, of course. Let’s assume for our purposes that UTF-8 encoding is sufficient.

With the payload now converted to bytes, you can set the related payload parameter
within the message object, create and send the request, and wait for the response.

Time to test out your new PUT functionality. Make sure the GDA is running, and
that you’ve added the requisite PUT tests for CON and NON within your test suite
(just follow the same pattern as with your GET tests). You can create an empty
SensorData message for this exercise within the test case, convert it to JSON using
DataUtil, and send it on its way.

Let’s use Wireshark again to review the messaging sequence, starting with NON
requests. It should look similar to the content shown in Table 9-3.

Table 9-3. CoAP PUT nonconfirmed (NON) request as shown in Wireshark

No. Time Source Destination Protocol Length Info
4516 125.290961 ::1 ::1 CoAP 367 NON, MID:15734, PUT, TKN:93 c0, 

coap://localhost/PIOT/ConstrainedDe

vice/SensorMsg

4537 125.370967 ::1 ::1 CoAP 103 NON, MID:50505, 2.04 Changed, TKN:

93 c0, coap://localhost/PIOT/

ConstrainedDevice/SensorMsg (text/

plain)
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As expected, there are two packets—the request from the client to the server, followed
by the response from the server to the client. This time, the server responded with the
expected Changed response code (this is good).

Here’s the payload of the response:

0000   18 00 00 00 60 0d 38 e7 00 3b 11 80 00 00 00 00   ....`.8..;......
0010   00 00 00 00 00 00 00 00 00 00 00 01 00 00 00 00   ................
0020   00 00 00 00 00 00 00 00 00 00 00 01 16 33 cd 74   .............3.t
0030   00 3b e3 c9 52 44 c5 49 93 c0 c0 ff 55 70 64 61   .;..RD.I....Upda
0040   74 65 20 74 65 6c 65 6d 65 74 72 79 20 72 65 71   te telemetry req
0050   75 65 73 74 20 68 61 6e 64 6c 65 64 3a 20 53 65   uest handled: Se
0060   6e 73 6f 72 4d 73 67                              nsorMsg

This time, the payload response is a simple text message: “Update telemetry request
handled: SensorMsg.” For now, this is fine (and it is what I coded in my GDA
resource handler), although it would be better to use a JSON-formatted message
that’s easier for the CDA to interpret. This is an opportunity! Feel free to add another
response-specific data type—derived from BaseIotData if you wish—and incorpo‐
rate the JSON conversion logic within DataUtil in both the GDA and the CDA.

Once again, for final verification, here’s a sample of the CDA’s log output:
2021-02-26 00:17:13,090:CoapAsyncClientConnector:DEBUG:Path:    ('PIOT',
'ConstrainedDevice', 'SensorMsg')
2021-02-26 00:17:13,090:CoapAsyncClientConnector:DEBUG:Query:   ()
2021-02-26 00:17:13,090:CoapAsyncClientConnector:DEBUG:Options: ()
2021-02-26 00:17:13,090:CoapAsyncClientConnector:DEBUG:Response code: 2.04 Changed
2021-02-26 00:17:13,090:CoapAsyncClientConnector:DEBUG:Request code:  PUT
2021-02-26 00:17:13,090:CoapAsyncClientConnector:DEBUG:Token:   b'\x93\xc0'
2021-02-26 00:17:13,090:CoapAsyncClientConnector:DEBUG:MID:     50505
2021-02-26 00:17:13,090:CoapAsyncClientConnector:DEBUG:Host:    localhost
2021-02-26 00:17:13,090:CoapAsyncClientConnector:DEBUG:Payload: b'Update telemetry
request handled: SensorMsg'
2021-02-26 00:17:13,090:CoapAsyncClientConnector:INFO:SUCCESS: Changed
2021-02-26 00:17:13,090:CoapAsyncClientConnector:INFO:Response valid for this
device. Processing...
2021-02-26 00:17:13,090:CoapAsyncClientConnector:INFO:PUT response received.

Seems we’re on a roll, so let’s keep going—this time, send a Confirmed PUT request. 
Again, be sure to launch Wireshark and filter on “coap.” Your results should look sim‐
ilar to those depicted in Table 9-4.
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Table 9-4. CoAP PUT confirmed (CON) request as shown in Wireshark

No. Time Source Destination Protocol Length Info
37571 1068.829198 ::1 ::1 CoAP 367 CON, MID:41213, PUT, TKN:1e 0c, 

coap://localhost/PIOT/Constrained

Device/SensorMsg

37572 1068.901062 ::1 ::1 CoAP 56 ACK, MID:41213, Empty Message

37573 1068.903746 ::1 ::1 CoAP 103 CON, MID:21527, 2.04 Changed, 

TKN:1e 0c, coap://localhost/PIOT/

ConstrainedDevice/SensorMsg 

(text/plain)

37574 1068.905111 ::1 ::1 CoAP 56 ACK, MID:21527, Empty Message

Notice there are now four packets: the request from the client to the server, followed
by an ACK from the server; and the response from the server to the client, followed
by an ACK from the client. Each ACK includes the same message ID (MID) as the
preceding request or response.

The Wireshark output shows that the payload content is an ActuatorData instance in
JSON format, which looks identical to the previous example.

I also checked the GDA log file, which included this in the output:
INFO: Sensor data message received. Pushing upstream:
PIOT/ConstrainedDevice/SensorMsg. Message: name=,typeID=0,timeStamp=2021-02-
26T05:32:56.543297+00:00,statusCode=0,hasError=false,locationID=constraineddevice00
1,latitude=0.0,longitude=0.0,elevation=0.0,value=0.0

The GDA handled the PUT request from the CDA, converted the JSON payload to a
SensorData instance, passed the data to the DeviceDataManager, and then logged a
message indicating it’s going to send the data upstream (to the cloud—eventually).

This is good news indeed. The glue that connects the CDA and GDA to each other
via CoAP is holding, and the GDA is doing its job by (or at least telling me it’s plan‐
ning on) sending the SensorData onward to the cloud. Your CDA CoAP client is
nearly complete.

There are the other two request types, POST and DELETE, which are described in
PIOT-CDA-09-004 and PIOT-CDA-09-005. The pattern for POST will be nearly
identical to PUT, and DELETE will be nearly identical to GET. Due to their similari‐
ties, I’ll skip over these remaining types. Feel free to take some time and work on
those two exercises.

This leaves us with the OBSERVE functionality. This requires a bit more work. It’s no
harder to implement than a PUT (there’s really just one additional parameter in the
request), but it does need to be managed. A method that supports the observation
start process should also have an observation stop, right?
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Add the OBSERVE (GET) request method implementation
Since OBSERVE is essentially a special type of GET request, there will be some imple‐
mentation similarities. However, as discussed in PIOT-CDA-09-006, OBSERVE will
require some additional work. Here’s the breakdown of activities:

• Send the initial GET request with the OBSERVE flag enabled and register that
request resource within the client.

• After receiving the initial response, send another request that waits for updates
from the server.

• When a stop observation request is received, look up the initial request resource
and cancel the appropriate observation (or assume there’s only one observer per
client and avoid this registration complexity altogether).

Here are the start and stop method signatures, along with their notional
implementations:

def startObserver( \
  self, \
  resource: ResourceNameEnum = None, \
  name: str = None) -> bool:
  
  if resource or name:
    resourcePath = self._createResourcePath(resource, name)
    
    asyncio.get_event_loop().run_until_complete( \
      asyncio.ensure_future( \
        self._handleStartObserveRequest(resourcePath)))
  else:
    logging.warning( \
      "Can't issue OBSERVE - GET - no path or provided.")

def stopObserver( \
  self, \
  resource: ResourceNameEnum = None, \
  name: str = None) -> bool:
  
  if resource or name:
    resourcePath = self._createResourcePath(resource, name)
    
    asyncio.get_event_loop().run_until_complete( \
      self._handleStopObserveRequest(resourcePath))
  else:
    logging.warning( \
      "Can't cancel OBSERVE - GET - no path provided.")
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Nothing new here—both the startObserver() and stopObserver() methods do
some preprocessing and then simply delegate to their respective coroutines. Let’s look
at each in turn:

async def _handleStartObserveRequest( \
  self, \
  resourcePath: str = None):
  
  msg = Message(code = Code.GET, uri = resourcePath, observe = 0)
  req = self.coapClient.request(msg)
    
  # TODO: track which resources are under observation
  self.observeRequests[resourcePath] = req
  
  try:
    # send the initial request
    responseData = await req.response
    
    # TODO: validate response first         
    self._onGetResponse(responseData)
    
    # wait for each observed update
    async for responseData in req.observation:
      # TODO: validate response first
      self._onGetResponse(responseData)
      
      req.observation.cancel()
      break

  except Exception as e:
    # TODO: log warning and possibly stack trace,
    # then be sure to stop observing...
    logging.warning( \
      "Failed to execute OBSERVE - GET. Recovering...")
    traceback.print_exception(type(e), e, e.__traceback__)

Notice that the message object is created with the observe = 0 parameter. This will
tell the server that it should register this client’s context and request for future notifi‐
cations. The first request, then, sets the stage for this observation interaction between
the client and the server. The next, which follows the “wait for each observed update”
comment, will wait for notifications from the server until explicitly told to cancel
observing.

Which brings us to the stop observation coroutine, shown next:

async def _handleStopObserveRequest( \
  self, \
  resourcePath: str = None, \
  ignoreErr: bool = False):
  
  if resourcePath in self.observeRequests:
    logging.info('Handle stop observe invoked: ' + resourcePath)
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    try:
      observeRequest = self.observeRequests[resourcePath]
      observeRequest.observation.cancel()
    except Exception as e:
      if not ignoreErr:
        logging.warning( \
          "Failed to cancel OBSERVE - GET: " + resourcePath)
        
    try:
      del self.observeRequests[resourcePath]
    except Exception as e:
      if not ignoreErr:
        logging.warning( \
          "Failed to remove observable from list: " + \
          resourcePath)
  
  else:
    logging.warning( \
      'Resource not currently under observation. Ignoring: ' + \
      resourcePath)

Now that the observe functionality is complete, you’ll need a resource to observe. It
needs to be updated regularly in order to test whether the observation functionality is
working. Table 9-5 shows the initial GET (CON) request (and ACK) to establish the
OBSERVE interaction, followed by four NON responses with content.

Table 9-5. CoAP OBSERVE (CON first, then NON) request as shown in Wireshark

No. Time Source Destination Protocol Length Info
248 6.724864 ::1 ::1 CoAP 108 CON, MID:37992, GET, TKN:95 08, 

coap://localhost/PIOT/ConstrainedDe

vice/TestUpdateMsg

249 6.808216 ::1 ::1 CoAP 313 ACK, MID:37992, 2.05 Content, TKN:

95 08, coap://localhost/PIOT/

ConstrainedDevice/TestUpdateMsg 

(text/plain)

466 12.692861 ::1 ::1 CoAP 313 NON, MID:17749, 2.05 Content, TKN:

95 08, coap://localhost/PIOT/

ConstrainedDevice/TestUpdateMsg 

(text/plain)

850 22.692874 ::1 ::1 CoAP 313 NON, MID:17750, 2.05 Content, TKN:

95 08, coap://localhost/PIOT/

ConstrainedDevice/TestUpdateMsg 

(text/plain)

1179 32.692583 ::1 ::1 CoAP 313 NON, MID:17751, 2.05 Content, TKN:

95 08, coap://localhost/PIOT/

ConstrainedDevice/TestUpdateMsg 

(text/plain)
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You’ve probably noticed the resource URI: coap://localhost/PIOT/ConstrainedDevice/
TestUpdateMsg. To support this new resource, I created a new ResourceNameEnum
entry specifically for this purpose. I also built a custom resource handler that creates a
thread that updates an ActuatorData instance every 10 seconds. Feel free to do the
same within your own development environment.

Another observation from the output in Table 9-5 is that the first GET request is a
CON message, while the server to client notifications are NON messages. The custom
resource handler explicitly sets the response message type to NON, although it could
just as easily be set to CON.

It’s very important to ensure that your OBSERVE client explicitly
cancels the observation request when complete. Otherwise, the
server may continue to try to connect to the client and send it an
update. Of course, the connection will fail if the client is no longer
listening, but the server may continue trying to send updates in
perpetuity. Be sure to handle these exceptional cases at both ends of
the connection.

At this point, congratulations are certainly in order. With the completion of the CDA’s
CoAP client, you now can now pass messages between your GDA and your CDA
using either MQTT or CoAP. This is a major milestone! If you’re interested in
branching out further, you can also add a CoAP client to your GDA. I’ll briefly dis‐
cuss this next, although  it’s not required for the remaining exercises in the book.

Add CoAP Client Functionality to the Gateway Device App (Optional)
You can optionally incorporate a CoAP client within your GDA. The Californium
CoAP library provides both server and client libraries, so adding CoAP client support
to the GDA is relatively straightforward. It follows the same design pattern as CDA’s
CoAP client approach and is also documented within the PIOT-GDA-09 cards.

If you decide to go down this path, be sure to follow the instructions listed in PIOT-
GDA-09-000 before implementing your server.

A brief summary of the Gateway Device Application’s CoAP client abstraction
As with the CDA’s implementation, PIOT-GDA-09-001 walks through the basic
CoAP client abstraction for the GDA. Figure 9-4 depicts the associated detailed UML
design, which introduces a couple of additional classes—response handlers, to be spe‐
cific—that implement a simple interface used for handling callbacks when an observe
response is received asynchronously from the server.
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Figure 9-4. Gateway Device App UML with an integrated CoAP client

The online exercises provide further detail on implementation options and are regu‐
larly reviewed and updated. If you choose to implement the GDA exercises, be sure to
commit and merge your branches back into the primary branch by following the
instructions in PIOT-GDA-09-100.

Additional Exercises
There’s no end to the new capabilities you can add to your CoAP servers. Here are
two more you might want to consider.

Add a Robust OBSERVE Cancel Feature
I’ve mentioned the importance of incorporating a robust OBSERVE cancellation fea‐
ture within your CoAP client. This is to ensure that the CoAP server will stop send‐
ing observation updates to a registered CoAP observer client, should that client either
fail without sending the cancellation or simply forget to implement the cancellation
request. Ideally, this will be handled at both the client and the server, so the server will
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decide to simply remove the client registration if the client is no longer reachable
after a period of time.

Add Support for DELETE and POST
The exercises in this book don’t require support for resource deletion, and you can
use PUT to address resource updates. What would it look like to incorporate
DELETE support for a resource? How about POST? See if you can identify some use
cases that may benefit from each, and then implement these request methods within
your CoAP server’s resource handlers and CoAP client on your own.

Conclusion
In this chapter, you learned about the CoAP protocol and how you can implement a
CoAP client within your Constrained Device Application. You also learned about
(and optionally tried out) some of the design differences between a CDA CoAP client
and a GDA CoAP client. This chapter continued building on your CoAP knowledge
framework, which began in Chapter 8 with a CoAP server and completes now with 
your CoAP client. You’re now ready to tackle Edge Tier integration, which follows in
Chapter 10.
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CHAPTER 10

Edge Integration

Integration at the Edge Using MQTT and CoAP

The request has failed.
Fall back and try another.
Now, fire and forget.

Fundamental concepts: Connect your Constrained Device App and Gateway Device
App using the CoAP and MQTT protocols to send data and trigger actuation events.

At this point, you’re probably anxious to pass messages between your CDA and your
GDA. This chapter is all about connecting these two applications in a meaningful
way, using both CoAP and MQTT.

What You’ll Learn in This Chapter
Edge integration is one of the more challenging aspects of designing and implement‐
ing an IoT ecosystem, since it often involves multiple protocols, security constraints,
data formatting idiosyncrasies, and much more. While I won’t tackle all of these con‐
cerns, all of your work leading up to this point has been to prepare for this moment:
the integration of your Edge Tier applications—the CDA and the GDA.

In this chapter, you’ll learn how to finally integrate your two applications using both
CoAP (which you started digging into in Chapters 8 and 9) and MQTT (which you
learned about in Chapters 6 and 7).

Most of the attention in this chapter will be on testing your connection layers (for
example, MqttClientConnector with your locally running MQTT broker, and your
GDA’s CoapServerGateway with your CDA’s CoapClientConnector).
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You’ll also learn some basic encryption concepts, including how to use TLS to
encrypt the connection between your two MQTT clients and your locally running
MQTT broker. I’ll briefly introduce DTLS encryption between your CoAP server and
your client as well, although the exercises will focus on the former.

Concepts
Security is a critical  component of any IoT ecosystem, and this chapter will just
barely scratch its surface. One of its key concepts is enabling encrypted MQTT con‐
nections between your CDA and GDA devices. This sets the stage for future encryp‐
ted MQTT connections between your GDA and the cloud.

As of this writing, the latest proposed TLS standard is v1.3, speci‐
fied by the IETF RFC 8446.

This chapter will help you configure your MQTT communications to use Transport
Layer Security (TLS) to encrypt the messaging traffic between your CDA and your
GDA. With connection encryption enabled, you’ll be able to pass messages between
your CDA and your GDA securely and act on the data your application receives,
whether that’s an actuation command received by the CDA from the GDA or teleme‐
try that the CDA sends to the GDA for processing and interpretation.

Since the encryption requirements are a bit more involved, I’ll spend a bit more time
discussing them and leave most of the internal business logic (interpreting data and
deciding what to do with it) for homework.

The exercises in this chapter actually span configuration, programming, and integra‐
tion testing, so I renamed that section “Functional Exercises.” Before digging into
these exercises, however, let’s briefly review your forthcoming updates to the CDA
and GDA.

You’ll add features to both applications that will enable them to pass messages to each
other and make reasonably intelligent decisions regarding any appropriate actions.
(You implemented some of this in Chapter 9 using CoAP; this chapter completes the
Edge Tier integration circle.)

Design-wise, nothing here is new—only modified. The MQTT client connector class
for each application will be slightly modified to support TLS-encrypted connections
with the broker, and the DeviceDataManager will incorporate some additional intelli‐
gence to process those messages that each application instance needs to act on.
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As with all preceding chapters, be sure to check out a new branch for both your CDA
and your GDA, as explained in PIOT-CDA-10-000 and PIOT-GDA-10-000.

Let’s get started.

Security Exercises
This section centers on security and encryption—specifically, on configuring TLS
within your MQTT communications environment.  I’ll point you to a Kanban board
exercise that will help you configure your MQTT broker to support TLS, and then I’ll
walk through two programming exercises, one for the GDA and the other for the
CDA, that enable TLS within your MqttClientConnector.

Adding TLS Support to Your MQTT Broker
Enabling TLS (via port 8883) on the Mosquitto broker is documented on the Mos‐
quitto website. I’ve written a brief summary in PIOT-CFG-10-001 with links to the
documentation and specific instructions related to the development environment
you’ve been working in.

PIOT-CFG-10-001 points out the importance of keeping private
keys safe and secure, and I want to shout that again here. Even
though you’re likely generating only test keys, be sure to keep them
in a safe place.

Be sure to run the tests described at the end of the exercise to verify that TLS is
enabled and functioning.

Incidentally, you can also enable preshared key (PSK) encryption and authorization
using a client-specific key. Further discussion is outside the scope of this chapter, but
you may want to consider enabling PSK in your environment as a further verification
step for all clients connecting into your MQTT broker.

Add Security Features to Your Gateway Device App MQTT Client
Connector
With your Mosquitto instance now TLS-enabled, it’s time to do the same with your
Gateway Device Application’s MQTT client connector.

You can refer to the Appendix for the notional UML representation of the GDA,
although there’s really nothing new with the design, aside from tweaks to the
MqttClientConnector.
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PIOT-GDA-10-001 walks through this setup and explains how you can use the java-
components module SimpleCertManagementUtil (located in the programmingth
eiot.common package) to load an X.509 certificate at runtime from within your
MqttClientConnector class.

Take a look at the key actions:

• Import the requisite dependencies.
• Add a private method to load credentials from a separate file (referenced by the

configuration file).
• Add a private method to handle SSL socket factory initialization.
• Initialize the MQTT client connection with encryption enabled.

The code samples within the requirements card may look involved, but they’re
actually quite straightforward. You’ll parse your configuration file and check if the
enableCrypt flag is True in the Mqtt.GatewayService section.

Before enabling encryption, notice that the first implementation action in this exer‐
cise is to create the private method initCredentialConnectionParameters(String
configSectionName).

This method provides a relatively simple way to load key/value auth pairs (user and
password, for instance) from a separate file that is referenced by PiotConfig.props but
is not part of the code repository.

ConfigUtil already supports this feature, so you just need to use it or load your cre‐
dentials using your own method.

The Properties object loaded by ConfigUtil will contain any cre‐
dentials specified in credFile from the referenced section of your
PiotConfig.props. This is to help prevent you (if not stop you) from
making inadvertent credential commits to git, which is generally a
bad idea. Also, keep in mind that any credentials stored within the
Properties object returned by this method will remain in memory
until the Properties object is properly garbage collected.

Here’s one way to implement this method:

private void initCredentialConnectionParameters(
  String configSectionName)
{
  ConfigUtil configUtil = ConfigUtil.getInstance();
  
  try {
    _Logger.info(
      "Checking if credentials file exists...");
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    Properties props =
      configUtil.getCredentials(configSectionName);
    
    if (props != null) {
      this.connOpts.setUserName(
        props.getProperty(
          ConfigConst.USER_NAME_TOKEN_KEY, ""));
      
      this.connOpts.setPassword(
        props.getProperty(
          ConfigConst.USER_AUTH_TOKEN_KEY,
          "").toCharArray());
      
      _Logger.info("Credentials now set.");
    } else {
      _Logger.warning("No credentials are set.");
    }
  } catch (Exception e) {
    _Logger.log(
      Level.WARNING,
        "Credential file non-existent. Disabling auth.");
  }
}

The next method you’ll create within MqttClientConnector is another private
method, named initSecureConnectionParameters(String configSectionName).
The parameter allows you to specify either the Mqtt.GatewayService or the
Cloud.GatewayService section name to be used for loading configuration properties.

This will allow you to use the same code for encrypting your connection to your local
MQTT broker and one of the cloud service MQTT brokers I’ll discuss in Chapter 11
—all by simply loading different configuration values from another configuration file
section.

Here’s the code sample:

private void initSecureConnectionParameters(
  String configSectionName)
{
  ConfigUtil configUtil = ConfigUtil.getInstance();
  
  try {
    _Logger.info("Configuring TLS...");
    
    if (this.pemFileName != null) {
      File file = new File(this.pemFileName);
    
      if (file.exists()) {
        _Logger.info(
          "PEM file valid. Using secure connection: " + 
          this.pemFileName);
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      } else {
        this.enableEncryption = false;
        
        _Logger.log(
          Level.WARNING,
          "PEM file invalid. Using insecure connection: " + 
          pemFileName, new Exception());
        
        return;
      }
    }

    SSLSocketFactory sslFactory =
      SimpleCertManagementUtil.getInstance()
        .loadCertificate(this.pemFileName);

    this.connOpts.setSocketFactory(sslFactory);

    // override current config parameters
    this.port =
      configUtil.getInteger(
        configSectionName,
        ConfigConst.SECURE_PORT_KEY,
        ConfigConst.DEFAULT_MQTT_SECURE_PORT);

    this.protocol = ConfigConst.DEFAULT_MQTT_SECURE_PROTOCOL;

    _Logger.info("TLS enabled.");
  } catch (Exception e) {
    _Logger.log(
      Level.SEVERE,
      "Failed to init MQTT TLS. Using insecure connection.", e);

      this.enableEncryption = false;
  }
}

Most of this code is built to handle exceptions and fall back to an unencrypted
MQTT connection if the certificate (PEM) file can’t be found or it fails to load from
within the SimpleCertManagementUtil class.

You can change this, of course. In some cases, if the connection can’t be secured, it
may be best (or even required) that you shut down the application or disable the
MQTT connection. For local loopback adapter testing on your own protected system,
this may not be as much of an issue. How you handle this is up to you.

If all goes well, you’ll be the proud new owner of an SSLSocketFactory instance,
returned by the utility class. Once this is in hand, simply tell the Paho library to use it
as the socket factory:

this.connOpts.setSocketFactory(sslFactory);
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That’s it. Just one line of code. There are still a couple things remaining, however.

Since the MQTT broker will, by default, use TCP port 1883 for unencrypted connec‐
tions and TCP port 8883 for encrypted connections, the logic needs to set the proper
port based on the success of the certificate load. It also needs to change the protocol
from “tcp” to “ssl.” You may recall that the protocol and port are class-scoped vari‐
ables, which will be used when the connection is established.

The next step is to call this method. There are two ways to do this. The first is from
within the constructor, after the MqttConnectOptions() class is instanced and stored
within the this.connOpts class-scoped variable. The second is by migrating all of the
initialization code to a new private method named initClientParameters(String
configSectionName). The approach you choose is up to you. The requirements card
suggests creating the new private method, but this isn’t strictly necessary.

The important part of this logical flow is to check if the configuration specifies that
the MQTT connection should be encrypted. Here’s the code to perform this work:

this.enableEncryption =
  configUtil.getBoolean(
    configSectionName, ConfigConst.ENABLE_CRYPT_KEY);

// if encryption is enabled, try to load and apply the cert(s)
if (this.enableEncryption) {
  initSecureConnectionParameters(configSectionName);
}

My implementation stores the enableEncryption flag in a class-scoped variable for
convenience. You may choose to enable encryption by default, in which case this
check is moot.

With this work complete, you’re actually ready to run some basic integration tests
between the GDA and the MQTT broker with TLS enabled. The requirements card
technically allows you to skip this in favor of completing the next two GDA-specific
assignments. It would be better to try it out before moving on, though, so start up
your MQTT broker, making sure that TLS is enabled. You might also want to start up
your protocol analyzer and filter on TLS packets for your loopback adapter.

Copy the CA certificate you generated in PIOT-CFG-10-001 to the “cert” or another
directory you want to reference. (Make sure it’s not part of your Git repository.) Then
update PiotConfig.props as follows:

[Mqtt.GatewayService]
certFile       = /someNonGitPath/cert/ca.crt
host           = localhost
port           = 1883
securePort     = 8883
defaultQoS     = 0
keepAlive      = 60
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enableAuth     = False
enableCrypt    = True

There are only two tests to run at this point—connectAndDisconnect() and testPu
blishAndSubscribe(). Both are simple test cases within the MqttClientConnectorT
est test class, which already exists in the java-components sample source code as
part of the programmingtheiot.part03.integration.connection package.

You can highlight each test individually and execute the tests one at a time within
Eclipse. Although my solution implementation and yours will likely be different,
here’s a small output sample from running the testPublishAndSubscribe() test:

Feb 27, 2021 8:37:34 PM programmingtheiot.gda.connection.MqttClientConnector
initSecureConnectionParameters
INFO: Configuring TLS...
Feb 27, 2021 8:37:34 PM programmingtheiot.gda.connection.MqttClientConnector
initSecureConnectionParameters
INFO: PEM file valid. Using secure connection: ./cert/ca.crt
.
.
.
Feb 27, 2021 8:37:40 PM programmingtheiot.gda.connection.MqttClientConnector
messageArrived
INFO: MQTT message received.
    Topic: PIOT/GatewayDevice/MgmtStatusMsg
    Timestamp: 1614476260345
    Payload: TEST: This is the GDA message payload 3.
.
.
.
Feb 27, 2021 8:39:10 PM programmingtheiot.gda.connection.MqttClientConnector
disconnectClient
INFO: Disconnecting from broker...
Feb 27, 2021 8:39:10 PM programmingtheiot.gda.connection.MqttClientConnector
disconnectClient
INFO: Disconnected from broker: ssl://localhost:8883
During the test execution, I also captured some output from the Mosquitto broker,
which accepted the connection:
1614476254: New connection from 127.0.0.1 on port 8883.
1614476255: New client connected from 127.0.0.1 as paho300417207003000 (p2, c1, k60).
1614476325: Saving in-memory database to /var/lib/mosquitto/mosquitto.db.
1614476350: Client paho300417207003000 disconnected.

Table 10-1 shows the initial output from Wireshark. It shows that I am indeed com‐
municating via TLS (v1.3) between the GDA’s MQTT client and the Mosquitto
MQTT broker.
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Table 10-1. TLS v1.3 handshake snapshot between the GDA’s MQTT client and the MQTT
broker

No. Time Source Destination Protocol Length Info
447 13.477683 127.0.0.1 127.0.0.1 TLSv1.3 441 Client Hello

449 13.479117 127.0.0.1 127.0.0.1 TLSv1.3 2393 Server Hello, Change Cipher 

Spec…

451 13.491547 127.0.0.1 127.0.0.1 TLSv1.3 50 Change Cipher Spec

453 13.543462 127.0.0.1 127.0.0.1 TLSv1.3 134 Application Data

455 13.543740 127.0.0.1 127.0.0.1 TLSv1.3 299 Application Data

457 13.543842 127.0.0.1 127.0.0.1 TLSv1.3 299 Application Data

Now let’s tackle this same challenge for the CDA.

Add Security Features to Your Constrained Device App MQTT Client
Connector
PIOT-GDA-10-001 walks through this setup and explains how you can use the java-
components module SimpleCertManagementUtil (located in the programmingth
eiot.common package) to load an X.509 certificate at runtime from within your
MqttClientConnector class.

The Appendix also provides a notional UML representation for the CDA. Again, the
only change for this part of Chapter 10 is with the MqttClientConnector.

Since MQTT supports a username and password (or just a username without a pass‐
word), you can add the same credential load feature you recently implemented for
your GDA as part of your CDA. (It’s not required for the exercises in this book, so I
excluded it as a requirement.) The ConfigUtil class in python-components supports
a similar credential properties load feature as the GDA’s version of ConfigUtil,
defined by the method def getCredentials(self, section: str) -> dict. Feel
free to try it out if you’d like.

Take a look at the key actions:

• Import the requisite dependencies.
• Check the configuration file for the enableCrypt flag and the certificate file.
• Initialize the MQTT client connection with encryption enabled.

There’s only one import statement to add:

import ssl

Checking the configuration is also straightforward. You can do it within the
constructor:
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self.enableEncryption = \
  self.config.getBoolean( \
    ConfigConst.MQTT_GATEWAY_SERVICE,
      ConfigConst.ENABLE_CRYPT_KEY)

self.pemFileName = \
  self.config.getProperty( \
    ConfigConst.MQTT_GATEWAY_SERVICE,
      ConfigConst.CERT_FILE_KEY)

Finally, enabling TLS on the Paho connection is essentially one line of code, wrapped
in a try/except block. Within the connectClient() method, and before you call
self.mqttClient.connect(), add the following:

try:
  if self.enableEncryption:
    logging.info("Enabling TLS encryption...")
    
    self.port = \
      self.config.getInteger( \
        ConfigConst.MQTT_GATEWAY_SERVICE,
        ConfigConst.SECURE_PORT_KEY,
        ConfigConst.DEFAULT_MQTT_SECURE_PORT)
    
    self.mqttClient.tls_set( \
      self.pemFileName, tls_version = ssl.PROTOCOL_TLSv1_2)
except:
  logging.warn( \
    "Failed to enable TLS. Using unencrypted connection.")

Notice the protocol version—TLS v1.2. As of this writing, this is the latest supported
TLS version within Python 3.9.

That’s basically it. Let’s give a go and run one of the tests within the MqttClientCon
nectorTest test case, named testActuatorCmdPubSub().

Be sure to update the CDA’s PiotConfig.props to set the secure MQTT port to 8883
and point to the proper file location for the certFile. Make sure your MQTT broker is
still running and configured to use TLS and run the test.

Your CDA log output will probably include messages similar to the following:

Finding files... done.
Importing test modules ... done.

2021-02-27 21:27:07,812:MqttClientConnectorTest:INFO:Testing MqttClientConnector
class...
.
.
.
2021-02-27 21:27:07,816:MqttClientConnector:INFO:Attempting to connect to MQTT
broker: localhost
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2021-02-27 21:27:07,817:MqttClientConnector:INFO:Enabling TLS encryption...
2021-02-27 21:27:07,834:MqttClientConnector:INFO:[Callback] Connected to MQTT
broker. Result code: 0
2021-02-27 21:27:07,834:MqttClientConnector:INFO:Subscribing to topic
PIOT/ConstrainedDevice/ActuatorCmd
2021-02-27 21:27:07,835:MqttClientConnector:INFO:[Callback] Subscribed MID: 1
2021-02-27 21:27:12,834:MqttClientConnector:INFO:[Callback] Actuator command
message received. Topic: PIOT/ConstrainedDe
vice/ActuatorCmd.
2021-02-27 21:27:12,834:MqttClientConnector:INFO:ActuatorData JSON: {
    "timeStamp": "2021-02-28T02:27:07.816353+00:00",
    "hasError": false,
    "name": "Not Set",
    "typeID": 0,
    "statusCode": 0,
    "latitude": 0.0,
    "longitude": 0.0,
    "elevation": 0.0,
    "locationID": "constraineddevice001",
    "isResponse": false,
    "command": 7,
    "value": 0.0,
    "stateData": "Not Set"
}
.
.
.
2021-02-27 21:28:17,835:MqttClientConnector:INFO:[Callback] Disconnected from MQTT
broker. Result code: 0
Ran 5 tests in 70.025s

OK (skipped=4)

The Mosquitto log indicates the connection was accepted:

1614479212: New connection from 127.0.0.1 on port 8883.
1614479212: New client connected from 127.0.0.1 as … (p2, c1, k60).
1614479227: New connection from ::1 on port 8883.
1614479227: New client connected from ::1 as constraineddevice001 (p2, c1, k60).
1614479297: Client constraineddevice001 disconnected.

Since we’re using TLS v1.2, the Protocol is different than the GDA’s, as shown in
Table 10-2.
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Table 10-2. TLS v1.2 handshake snapshot between the CDA’s MQTT client and the MQTT
broker

No. Time Source Destination Protocol Length Info
173 3.550736 ::1 ::1 TLSv1.2 276 Client Hello

177 3.558601 ::1 ::1 TLSv1.2 2254 Server Hello, Certificate, Server 

Key…

179 3.559846 ::1 ::1 TLSv1.2 157 Client Key Exchange, Change Cipher 

Spec…

181 3.560315 ::1 ::1 TLSv1.2 306 New Session Ticket, Change Cipher 

Spec…

185 3.560937 ::1 ::1 TLSv1.2 127 Application Data

187 3.562012 ::1 ::1 TLSv1.2 97 Application Data

Now for the real fun. Each of the two MqttClientConnectorTest classes you ran—
one for the GDA and the other for the CDA—includes a “testIntegrateWith...” test
case. You can use these test cases to kick the tires on this fancy new TLS-encrypted
MQTT connection. There’s still some implementation work remaining within both
the CDA and the GDA, so the tests won’t do anything interesting, but they will give
you a taste of how both applications can connect and exchange messages.

The other implementation exercises in this chapter focus on building out business
logic, which the Kanban cards walk through in detail. I’ll touch briefly on each one
but will leave the implementation exercises to you.

Functional Exercises
The remaining CDA and GDA exercises center mostly on the DeviceDataManager
within each application. They afford you a great deal of flexibility in how you tackle
them. The Kanban cards provide some guidance, but you’re welcome to tweak the
logic to meet your needs. This work will set you up for the remaining exercises in the
book, when you connect into the cloud and handle actuation events from a simple
analytics function hosted in the cloud service you select.

Let’s look at the Gateway Device App (GDA) exercises first.

Adding Business Logic to the Gateway Device App
PIOT-GDA-10-002 requires one more modification to the GDA’s MqttClientConnec
tor. This functionality will simply handle incoming CDA messages on subscribed
topics for SystemPerformanceData and SensorData.

Perhaps the easiest method is to receive the message, check the topic it was received
on, and identify the appropriate DataUtil method to call and convert the JSON
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payload into the correct data container (such as SystemPerformanceData or Sensor
Data).

An alternative is to implement the IMqttMessageListener interface and register the
instance as a callback for messages on a given topic. This provides a cleaner abstrac‐
tion and also allows you to separate the logic, placing it in a new class that can live
outside MqttClientConnector or simply be implemented as an inner class.

Here’s one implementation  approach that uses the IMqttMessageListener interface:

private class ActuatorResponseMessageListener
  implements IMqttMessageListener
{
  private ResourceNameEnum resource = null;
  private IDataMessageListener dataMsgListener = null;
  
  ActuatorResponseMessageListener(
    ResourceNameEnum resource,
    IDataMessageListener dataMsgListener)
  {
    this.resource = resource;
    this.dataMsgListener = dataMsgListener;
  }
  
  @Override
  public void messageArrived(
    String topic, MqttMessage message)
    throws Exception
  {
    try {
      ActuatorData actuatorData =
        DataUtil.getInstance().jsonToActuatorData(
          new String(message.getPayload()));
      
      if (this.dataMsgListener != null) {
        this.dataMsgListener.handleActuatorCommandResponse(
          resource, actuatorData);
      }
    } catch (Exception e) {
      _Logger.warning(
        "Failed to create  ActuatorData from payload.");
    }
  }
}

You can now add IMqttMessageListener as the callback reference for your actuation
event subscriptions. What better place to handle this than in the connectComplete()
callback? After all, it gets called once the GDA’s MQTT connection to the MQTT
broker is, well, complete!
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Here’s one approach you might consider:

@Override
public void connectComplete(
  boolean reconnect, String serverURI)
{
  _Logger.info(
    "MQTT connection successful (is reconnect = " + 
    reconnect + "). Broker: " + serverURI);
  
  int qos = 1; // TODO: read this from the config file
  
  try {
    this.mqttClient.subscribe(
      ResourceNameEnum.CDA_ACTUATOR_RESPONSE_RESOURCE
        .getResourceName(),
      qos,
      new ActuatorResponseMessageListener(
        ResourceNameEnum.CDA_ACTUATOR_RESPONSE_RESOURCE,
        this.dataMsgListener));
  } catch (MqttException e) {
    _Logger.warning(
      "Failed to subscribe to CDA actuator topic.");
  }
}

Whether you choose this or the generic-message-handler approach, they ultimately
do the same thing—handle the incoming message, convert the JSON to the appropri‐
ate data container, and then send it to the appropriate IDataMessageListener
method (implemented by DeviceDataManager).

This brings us to the next activity—implementing PIOT-GDA-10-003. This require‐
ments card picks up where the previous card left off: by interpreting the incoming
data from the MqttClientConnector within the DeviceDataManager and doing some‐
thing useful with it.

Again, the implementation details are up to you. One option is to store the data tem‐
porarily and then (once you’ve implemented the exercises in Chapter 11) blast it up
to the cloud. The other is to analyze the data and determine if an actuation event
might be appropriate (which is what the card suggests). For instance, if the incoming
SensorData indicates an anomaly within the CDA, it may make sense to track it for a
few more messages and then generate an ActuatorData for the related actuator (such
as the HVAC) and enable or disable the system. Suggested implementation details are
included within the card.

With these exercises complete, you can now move on to the CDA.
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Adding Business Logic to the Constrained Device App
PIOT-CDA-10-002 focuses on the DeviceDataManager and on interpreting Actuator
Data commands received via the GDA. Regardless  of where the ActuatorData is
sourced, the CDA needs to interpret the message and decide if it should be passed on
to the ActuatorAdapterManager (which already contains the necessary logic to pass
an actuation event to the appropriate actuator instance). The logic you implement
here can be a simple pass-through, or you can introduce some additional analysis to
decide if you want to stop it in its tracks and take some other course of action (such
as reading another sensor value to determine whether you really want to trigger the
requested actuation).

The Kanban card leaves much on the table. It introduces a few lines of code for you to
use as they are or as a basis for adding more functionality.

Of course, you’ll need to receive actuation events if you’re going to act on them,
which is the focus of PIOT-CDA-10-003. This card introduces callback handler logic
to the CDA’s MqttClientConnector that’s similar to what you implemented within the
GDA, except this implementation is concerned only with processing incoming Actua
torData messages.

The card suggests one approach for handling this. Recall the onConnect() callback
method from Chapter 6. The underlying MQTT client infrastructure invokes it when
the MQTT client connection succeeds. At this point, and assuming it’s successful, the
CDA knows it’s connected to the MQTT broker. Since it also knows it’s interested in
receiving actuator events, you can subscribe to those events within this method.

But it gets better. You can specify a callback function for a specific topic that will get
called whenever a message is published to said topic. The card provides the details,
with only a dozen lines of code or so between the subscription and the callback.

Here’s the subscription and callback registration code:

self.mqttClient.subscribe( \
  topic = \
    ResourceNameEnum.CDA_ACTUATOR_CMD_RESOURCE.value, \
  qos = 1)

self.mqttClient.message_callback_add( \
  sub = ResourceNameEnum.CDA_ACTUATOR_CMD_RESOURCE.value, \
  callback = self.onActuatorCommandMessage)

These two calls go hand in hand. The first is the subscription, which is required to let
the broker know you’re interested in receiving messages on a given topic. The second
is the callback to be invoked when a topic’s message is published and received by your
client.
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I set the default QoS to 1 in this example. However, it would be better to pull this
from the configuration file so you can easily adjust it and other configuration param‐
eters from a single source (like PiotConfig.props). You can place this within your
onConnect() callback.

Last, the callback needs to consider the incoming message payload (which will be a
byte array) and transform that to an ActuatorData instance. That instance can then
be passed along to the appropriate IDataMessageListener callback function (again,
implemented by DeviceDataManager).

Here’s one implementation approach:

def onActuatorCommandMessage(self, client, userdata, msg):
  logging.info( \
    "[Callback] Actuator command received. Topic: %s.", \
    msg.topic)
  
  if self.dataMsgListener:
    try:
      # assumes all data is encoded using UTF-8
      actuatorData = \
        DataUtil().jsonToActuatorData( \
          msg.payload.decode('utf-8'))

      self.dataMsgListener.handleActuatorCommandMessage( \
        actuatorData)
    except:
      logging.exception( \
        "Failed to convert payload to ActuatorData: ")

Notice the “decode” call: it requires an encoding scheme to properly convert the data
into a string that can be parsed by DataUtil. You can handle this within DataUtil
and check if the parameter to jsonToActuatorData() is a byte array or not, or you
can handle it here, as I have. Either way, you’ll need to ensure the string data is con‐
sistently encoded throughout your system. I’m using UTF-8, which is a relatively
transferable encoding scheme.

The final exercise for the CDA, PIOT-CDA-10-004, is similar to the final exercise in
this chapter for the GDA, except it handles SensorData and SystemPerformanceData.
It will publish it to the appropriate MQTT topic for the GDA to retrieve or else PUT
it in a CoAP request to the GDA for further processing.

Performance Testing Exercises
You’ve likely noticed a number of “INT”-related integration tasks within this chapter
in the Programming the IoT Kanban board. While all deal with various integration-
related tasks, there are two that you should execute within your local environment
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(only). This will give you a better sense of how QoS levels in MQTT, confirmed mes‐
sages in CoAP, and TLS-enabled MQTT connections can affect system performance.

PIOT-INT-10-001 (MQTT) and PIOT-INT-10-002 (CoAP) walk through a few sim‐
ple performance tests to see how the reliability features of each protocol affect mes‐
saging performance between applications.

Be sure to run each test ONLY on your local system.
Here are some questions to ponder while you’re executing these
tests:

• How does the QoS level impact the timing of messages pro‐
cessed by the CDA or GDA using MQTT?

• What happens when you run the same QoS test with TLS
enabled?

• What performance gain is achieved from using NON requests
in CoAP?

Let’s take a look at some data pertaining to the first two questions. Table 10-3 depicts
the results of one test I ran to answer both.

Table 10-3. MQTT message performance example with and without TLS
using QoS 0, 1, and 2

Java client to local MQTT broker

QoS level TLS enabled (Y/N) Message count Payload size (bytes) Elapsed time (sec)
0

1

2

N

N

N

10000

10000

10000

264

264

264

1.973

2.385

3.747

0

1

2

Y

Y

Y

10000

10000

10000

264

264

264

2.120

2.729

4.822

The values in Table 10-3 were generated while running my MQTT client and broker
on the same system (via the loopback network adapter). In this example, I ran my
GDA instance under WSL (Ubuntu 20.04LTS) with OpenJDK 14.0.2. The GDA’s
MqttClientConnector delegated its MQTT calls to the Java Paho library. Notice the
time delta between QoS 0 and QoS 2 messages (and also when using TLS or
unencrypted).

In some cases, QoS 2 may be unnecessary; in others, it may absolutely be needed to
meet a message delivery robustness requirement. Ultimately, you’ll need to examine
your requirements and determine which QoS is most appropriate for your needs.
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1 Amsüss, Christian and Wasilak, Maciej, “aiocoap: Python CoAP Library.” Energy Harvesting Solutions, 2013–.
http://github.com/chrysn/aiocoap.

Table 10-4 exercises a similar test for CoAP but compares confirmed (CON) and
nonconfirmed (NON) request types using GET and PUT only. I’ve kept my server
implementation and handlers for each request type as simple as possible—that is, no
server-based logging, with the GET request creating a new ActuatorData instance
with a fixed payload with each invocation. In this example, I ran my GDA instance
under the same operating environment as before, with my CoapServerGateway dele‐
gating its CoAP calls to Eclipse Californium. My CDA also ran under WSL with
Python 3.9.1, with its CoapClientConnector delegating its CoAP calls to aiocoap.1

Table 10-4. CoAP message performance example using CON and NON requests

Python client to Java server (local)

Request type ACK type Message count Payload size (bytes) Elapsed time (sec)
GET

GET

CON

NON

10000

10000

264

264

13.708

12.095

PUT

PUT

CON

NON

10000

10000

264

264

12.227

10.149

Performance testing is highly system (and implementation) specific, so your own
tests will probably yield very different results. Irrespective of your system configura‐
tion, you’ll likely experience some kind of performance hit when introducing reliable
message delivery with either protocol.

See if you can generate your own performance data using similar parameters on your
local system for both protocols. What did you observe? Did the results inform your
thinking on how you might design your IoT edge integration solution?

Additional Exercises
This chapter is chock-full of opportunity. I’ve given you quite a few additional exerci‐
ses to test integration and try out new message interpretation paradigms. My guess is
you already have some in mind.

You may want to start your own Kanban board and add cards to capture some of
these integration exercises. I believe you’ll find the process to be both tedious and
incredibly rewarding. You’ll have a growing tally of use cases and “out of the box”
tests that you can apply to IoT challenges you’re facing now or in the future. Feel free
to use the empty requirement template I introduced back in Chapter 1.

To get you started, here’s one you may want to tackle.
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Add DTLS Support to Your CoAP Client and Server
There are two optional exercises that very briefly touch on DTLS support for your
CDA’s CoapClientConnector and GDA’s CoapServerGateway modules. Check out
PIOT-CDA-10-005 (related to the CDA) and PIOT-GDA-10-004 (related to the
GDA) to learn more, and see if you can incorporate DTLS support between your own
CoAP server and the CoAP client.

These optional exercises, along with others that may be added in the future, will likely
be modified to support new learning opportunities. Be sure to monitor updates to the
Programming the IoT Kanban board for updates.

Conclusion
This wraps up Part III, Connecting to Other Things. If you’ve implemented the exerci‐
ses, you should now have an Edge Tier design and implementation that allow messag‐
ing and actionable notifications between your CDA and your GDA. You should also
have the ability to enable TLS-based encryption if you’re using MQTT. This means
you can add MQTT authentication and authorization and have some confidence that
this sensitive information will be encrypted on your network.

Your GDA is almost ready to connect to a cloud service that supports MQTT and
TLS encryption. Be sure to commit and merge your CDA and GDA branches back
into the primary branch by following the instructions in PIOT-GDA-10-100.

On to Part IV and the final two chapters of the book. 
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PART IV

Connecting to the Cloud

Introduction

Blue skies, no limits.
How oddly trite a statement.
There is sky...with clouds.

So far, you’ve learned how to pull your Edge Tier together, and you’ve added some
useful capabilities to your GDA and CDA applications. Your system can collect data
from simulated and emulated sensors, process it within the Edge Tier, and trigger
actuation events based on preconfigured floor and ceiling limits.

Of course, this doesn’t make your system part of the IoT, since you haven’t yet con‐
nected it to the internet—at least not yet!

What You’ll Learn in This Section
Chapter 11 digs into the internet connectivity aspect of the IoT by walking through
some exercises to connect your GDA into one or more IoT-enabled cloud services
using the MQTT protocol. There are certainly other ways to do this—many cloud
services provide numerous mechanisms for connecting gateway devices into their
platform. To keep things simple and largely platform agnostic, though, I’ll focus the
exercises on MQTT connectivity only.

Finally, in Chapter 12, I’ll discuss a few IoT-specific use cases that you can implement
on your own. These will help you apply the concepts and principles from earlier
chapters to new IoT problem areas and build solutions.



While cloud computing is a complex topic, I think you’ll soon see how straightfor‐
ward the process of connecting to the cloud can be. And once your code is function‐
ing in the cloud, the sky is the limit for what you can do next.



1 As securely as reasonable and appropriate, although we all know that the most secure computer system is one
that’s locked up, disconnected from the internet, and never powered on.

CHAPTER 11

Integrating with Various Cloud Services

Using MQTT to Connect to Various Cloud Platforms

Free thought and action.
Select a wise path forward
And make your future.

Fundamental concepts: Learn how to use MQTT to integrate your GDA with various
IoT-enabled cloud services.

More cloud services are now supporting the IoT, which opens numerous doors for
cloud integration. There are many excellent books and online training guides that
explore those services in detail, but it’s not possible to cover them all meaningfully
here. Instead, this chapter will cover the basics of using MQTT to connect into a
small handful of these services. It focuses on connectivity, not on analytics or cloud-
specific services.

Why the limited focus?

Connecting different types of systems together is hard and often complex. This is
particularly true when integrating the Cloud Tier and Edge Tier within an IoT envi‐
ronment. Once you’ve successfully (and securely1) established this connection and are
properly managing your devices, the challenges are mostly centered on data manage‐
ment, event management, and analytics, which are common to non-IoT systems as
well.
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If you’re interested in further study on IoT security and various
IoT-enabled cloud services, you might find these two other O’Reilly
books useful: The Internet of Risky Things by Sean Smith, and Scala‐
ble Architecture for the Internet of Things by Dejan Mijic, Draško
Draškovic, and Ervin Varga.

What You’ll Learn in This Chapter
How exactly do you connect your GDA to the cloud? Depending on the service
you’re using, you may have multiple options: an API embedded within a cloud-
service provider library that uses HTTP/S, MQTT over WebSockets, MQTT directly,
TCP/IP sockets, and so forth.

The protocol you choose will depend on your objectives and network configuration:
that is, your firewall rules and other internet connectivity constraints. This chapter, as
noted, will focus on using MQTT. All of the IoT-enabled cloud services I’ll discuss
support MQTT (as of this writing, version 3.1.1).

I’ll show you one way to create a simple cloud connection abstraction layer that uses
MQTT over TLS to connect your GDA to various cloud services. I’ll also introduce a
simple high-level design for Functions-as-a-Service (FaaS) that can reside within your
selected cloud service and help manage data coming from your GDA and actions
(actuation events) that will be sent back.

Concepts
At this point, your Edge Tier design is mostly complete. All it lacks is that final con‐
nector abstraction to provide access to the virtually unlimited scalability of the cloud.

Figure 11-1 depicts this missing link: CloudClientConnector. Notice the implied
relationship with MqttClientConnector? We’ll leverage this relationship to facilitate
GDA-to-cloud connectivity using MQTT.
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Figure 11-1. Notional design for the Gateway Device Application

There’s always some nuance in a design, of course, and the GDA updates for this
chapter are no different. Figure 11-2 sheds light on these nuances and provides a
detailed view of the design for your GDA. (I have removed many of the existing com‐
ponents for clarity.)
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Figure 11-2. UML design for the Gateway Device Application

Notice the addition of two new components: ICloudClient and CloudClientConnec
tor. ICloudClient provides a contractual interface definition for CloudClientConnec
tor, which you may find useful as we explore connectivity with different cloud
service providers (CSPs). It will be the primary interface to the cloud used by Device
DataManager (not explicitly shown in Figure 11-2, but part of the upcoming imple‐
mentation detail).

You can use this abstraction to create custom implementations of CloudClientCon
nector for each cloud service without affecting the core design of the GDA or the
work you need to do within DeviceDataManager.

The primary example in this chapter doesn’t utilize a CSP-specific API, only MQTT.
That’s why CloudClientConnector creates and manages an instance of MqttClient
Connector. You’ll delegate the communications work to it for the primary exercise.
The optional exercises will connect into other cloud services and may require you to
create a custom CloudClientConnector implementation for each.

Some CSPs require only a server certificate(s) to enable TLS, along
with a client auth credential for connectivity. Others may require
both client and server certificates to encrypt the connection and
authorize the client.
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Programming Exercises
In this section, I’ll first cover the basic plumbing to update your GDA design by
implementing the components in Figure 11-2. I’ll then cover some CSP integration
specifics.

As of this writing, the CSP-specific exercises work as described;
however, CSPs may introduce changes that render some or all of
these exercises moot. Be sure to check each provider’s website and
integration instructions regularly for changes that may impact your
implementation.

These exercises are centered on the GDA, so you won’t have to implement anything
within your CDA. Be sure to quickly review PIOT-GDA-11-000 and check out a new
GDA branch for this chapter so you can easily track (and then merge) your cloud-
integration-specific changes.

Add the Cloud Client and Other Related Components
The implementation for the GDA starts with PIOT-GDA-11-001, where you’ll make
minor adjustments to your MqttClientConnector. (They should remind you of the
updates you made to this module back in Chapter 10 when you implemented PIOT-
GDA-10-001.) These adjustments let you leverage MqttClientConnector from your
soon-to-be-implemented CloudClientConnector.

First, you’ll add a new constructor that lets you choose between the Cloud.Gateway
Service and Mqtt.GatewayService configuration file sections.

Then you’ll add protected methods for publish and subscribe/unsubscribe that accept
the topic name parameter as a String and the payload as a byte[].

Update the MQTT client connector implementation
Let’s take a look at one way to implement the constructor update requirements:

public MqttClientConnector()
{
  this(false);
}

public MqttClientConnector(boolean useCloudGatewayConfig)
{
  super();
  
  this.useCloudGatewayConfig = useCloudGatewayConfig;
  
  if (useCloudGatewayConfig) {
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    initClientParameters(ConfigConst.CLOUD_GATEWAY_SERVICE);
  } else {
    initClientParameters(ConfigConst.MQTT_GATEWAY_SERVICE);
  }
}

You may have already migrated the initialization functionality to initClientParame
ters(String), so this update should be a breeze. If not, no worries! Simply review
PIOT-GDA-10-001 and introduce those changes now.

The next set of methods might seem like a reimplementation of the public publish
Message(), subscribeToTopic(), and unsubscribeFromTopic() methods. Fortu‐
nately, they’re not! You can delegate the publish, subscribe, and unsubscribe calls to
the new, protected methods that use similar names. CloudClientConnector, which
you’ll implement next, will invoke these directly. Protected methods in Java can be 
accessed by classes in the same package, so while the IPubSubClient interface won’t
define them, CloudClientConnector can use them by leveraging all of the awesome‐
ness your existing MqttClientConnector provides.

Here’s what their signatures will look like:

protected boolean publishMessage(
  String topic, byte[] payload, int qos)
 {
  // TODO: implement this and return true on success
  return false;
}

protected boolean subscribeToTopic(String topic, int qos)
{
  // TODO: implement this and return true on success
  return false;
}

protected boolean unsubscribeFromTopic(String topic)
{
  // TODO: implement this and return true on success
  return false;
}

You can easily implement these methods using the logic you’ve already implemented
for their public counterparts.

For publish, you will probably want to move the functionality to this new protected
method so it can be reused as is. For subscribe and unsubscribe, your implementation
may vary depending on how you’ve implemented callback listeners for subscription
events.

You can change these signatures, but since CloudClientConnector will also use them,
I suggest keeping them as simple as possible.
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Add the Cloud Client Connector implementation

The CloudClientConnector provides the requisite functionality to communicate
with one or more cloud services by abstracting some configuration logic and adjust‐
ing topic names so they’re compatible with the CSP’s topic naming constructs.

It then delegates all of the MQTT-specific functionality to MqttClientConnector,
meaning your initial implementation of CloudClientConnector will be relatively
basic.

PIOT-GDA-11-002 defines the requirements for ICloudClient, which is essentially
implemented for you within the card. This is the interface DeviceDataManager will
use after creating the instance of CloudClientConnector.

You may have noticed that none of the methods specifies a QoS level. The primary
reason is that most CSPs permit only two QoS levels for MQTT messaging—“0” (fire
and forget) and “1” (at least once). With limited QoS levels and the probability of set‐
ting a single level for your application, this is well suited as a configuration parameter.

QoS “0” messaging may be fine internally, since you typically have
more control over the networking environment and the traffic tra‐
versing the network. However, you may want to specify QoS “1” for
cloud integration and just deal with any potential duplicate mes‐
sages.

If you choose to use dynamic QoS levels (for example, switching between “0” and “1”
depending on the message type), you can adjust these interfaces.

PIOT-GDA-11-003 specifies the initial implementation for CloudClientConnector,
which will create and manage the instance of MqttClientConnector. It will subse‐
quently be instanced by DeviceDataManager, which will access its functionality via
the ICloudClient public method signatures.

This card has three key requirements:

• Implement the interfaces defined in ICloudClient.
• Add the logic necessary to use MqttClientConnector as the connector to the

CSP’s MQTT broker.
• Integrate CloudClientConnector with DeviceDataManager.

Let’s stub out the interface defined in ICloudClient first. This requires the “imple
ments ICloudClient” statement in the class declaration and concrete implementa‐
tions of the following method interfaces:

public boolean connectClient();
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public boolean disconnectClient();

public boolean sendEdgeDataToCloud(
  ResourceNameEnum resource, SensorData data);

public boolean sendEdgeDataToCloud(
  ResourceNameEnum resource, SystemPerformanceData data);

public boolean subscribeToCloudEvents(ResourceNameEnum resource);

public boolean unsubscribeFromCloudEvents(
  ResourceNameEnum resource);

public boolean setDataMessageListener(
  IDataMessageListener listener);

The connectClient() and disconnectClient() methods can simply delegate
directly to the MqttClientConnector. You should do the same with setDataMessage
Listener() as well, although you may decide to also keep a reference to IDataMessa
geListener internally for other functionality you might decide to implement later.

The subscribeToCloudEvents() and unsubscribeFromCloudEvents() implementa‐
tions can also be delegated directly to the MqttClientConnector instance by creating
the appropriate topic name from the ResourceNameEnum and then calling the pro‐
tected subscribeToTopic() and unsubscribeFromTopic() methods.

Last but not least, the sendEdgeDataToCloud() methods will need to convert their
respective data objects to JSON and then invoke the protected publishMessage()
method on the MqttClientConnector instance.

I’ll walk through an example of sendEdgeDataToCloud() later in this section.

The first step, however, is to create an instance of the MqttClientConnector and then
properly configure it.

In CloudClientConnector, create a class-scoped reference to MqttClientConnector
—this time using the class type, not the interface. You’ll need to reference the pro‐
tected methods it declares as part of your ICloudClient implementation.

Create an instance of MqttClientConnector in the constructor, passing in “true” to
the overloaded constructor and storing the reference in your class-scoped variable.

Because MqttClientConnector will now use the Cloud.GatewayService section of
the configuration, it can also load a PEM file that holds the CSP’s root certificates.
After Chapter 10’s work, you should have a functioning MqttClientConnector that
works over TLS connections. 

You’ll probably need a couple additional properties that can also be loaded from the
configuration file. Here are two that you’ll need later:
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API key or user credential
Remember the work you did to integrate this with your MqttClientConnector in
Chapter 10? You can load credentials via the PiotConfig.props file indirectly
because it references a separate credential file that will never be stored in your
repository and that looks for the userToken and authToken key.

Topic prefix or base name
Each CSP discussed in this chapter uses its own topic prefix to identify API ver‐
sion, region, service type, and so on. This can be extracted a number of different
ways, but I’ll show only one.

PiotConfig.props defines the “baseTopic” property that can store this value.

As a reminder, do NOT use PiotConfig.props to store any auth cre‐
dentials or secrets. Store them in the credential file instead—and
remember NOT to commit that to your repository.

Out of these two steps, MqttClientConnector won’t handle dynamic topic creation
based on a customized scheme (e.g., one that requires prepending a base topic name)
—you’ll have to handle this in CloudClientConnector.

Every call to publish or subscribe will require this custom topic. An easy solution is to
create a new method—a protected one would be ideal, as you will see in the next sec‐
tion—that accepts a ResourceNameEnum and then prepends the base topic name and
any other cloud-specific topic information.

Here’s what it might look like:

private String createTopicName(ResourceNameEnum resource)
{
  return (
    this.topicPrefix + resource.getDeviceName() +
    "/" + resource.getResourceType()).toLowerCase();
}

And finally, here’s how you can invoke it using the ICloudClient-specific publish
methods:

@Override
public boolean sendEdgeDataToCloud(
  ResourceNameEnum resource, SensorData data)
{
  if (resource != null && data != null) {
    String topicName = createTopicName(resource);
    
    try {
      String payload =

Programming Exercises | 311



        DataUtil.getInstance().sensorDataToJson(data);
      
      _Logger.finest(
        "Publishing payload value(s) to cloud: " + topicName);
      
      // TODO: retrieve QoS level from config and set
      // as a class-scoped variable: this.qosLevel
      this.mqttClient.publishMessage(
        topicName, payload.getBytes(), this.qosLevel);
      
      return true;
    } catch (Exception e) {
      _Logger.warning(
        "Failed to publish message to cloud: " + topicName);
    }
  }
    
  return false;
}

Follow the instructions at  the end of the card to integrate CloudClientConnector
with DeviceDataManager. It follows the same pattern you’ve used previously for
MQTT and CoAP.

Your GDA now has what it needs to connect into the cloud.

You’ll eventually modify your CloudClientConnector to meet your CSP’s specific
integration requirements. The next section discusses an optional design consideration
to make this easier, though it does require some additional plumbing.

Another design consideration (optional—sort of)

As you build out your cloud connectivity abstraction layer using CloudClientConnec
tor, you may be wondering how you could experiment with multiple cloud services
without redesigning your GDA or maintaining multiple versions of CloudClientCon
nector.

If you’re feeling ambitious, you can create yet another layer of abstractions using the
notional detailed design specified in Figure 11-3. However, you may want to hold off
until you’ve successfully tested your first cloud integration using CloudClientConnec
tor as it is.
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2 Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software (Boston: Addison-Wesley,
1994).

Figure 11-3. Notional detailed design with multiple cloud client abstractions (optional)

Here’s where another design pattern comes into play—Factory.2 A Factory pattern
provides a generic interface for creating complex objects that provide specific imple‐
mentations of a given interface.

To get more specific, the Factory (named CloudClientFactory) provides a method to
create (or retrieve) an instance of a complex type that implements a given interface
(such as ICloudClient). The caller doesn’t know about the implementation details
and doesn’t care. It just wants access to the functionality specified by the interface.

By generalizing the public interface to CloudClientConnector and abstracting the
core functionality within a new class—BaseCloudClient—you can effectively create a
custom cloud integration layer for each CSP.
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Notice the divergence from the design depicted in Figure 11-2. The core design
actually remains the same. Adding the BaseCloudClient provides an opportunity to
incorporate the MqttClientConnector directly in the base class, should it provide
sufficient capabilities for securely connecting with your selected CSP, all while
remaining generically implemented.

Optionally, each ICloudClient implementation can leverage the CSP’s SDK and
bypass MqttClientConnector completely.

This design approach provides tremendous flexibility in how you create your cloud
integration logic. It also allows the end user of the cloud client—DeviceDataManager

—to focus on its job: orchestrating all of the messages that traverse the edge and flow
to and from the cloud.

It can be helpful to consider how the cloud-based design of your ecosystem may be
affected. Figure 11-4 depicts a notional and very simplistic microservices design sup‐
porting data ingestion, processing, and event generation, depending on the CSP you
select.

Figure 11-4. Notional design for the cloud services functions (optional)

The notional high-level designs depicted in Figures 11-3 and 11-4 serve as mostly
optional design constructs to consider for experimentation purposes.
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Integrating with an IoT Cloud Service Provider (CSP)
The number of IoT-enabled CSPs continues to grow, and the services being offered—
both in the cloud and at the edge—are expanding rapidly. New service offerings are
regularly added, including advanced gateway applications and ML-based Edge Tier
inference capabilities.

The GDA functionality you’ve already developed, including the recent ICloudClient
abstraction, can be used as part of your integration logic to communicate with some
of these services using MQTT over TLS.

In the following list are a few CSPs that support MQTT as of this writing:

• AWS IoT Core
• Azure IoT Hub
• Google Cloud IoT
• IoT on IBM Cloud
• Ubidots

You’ll find that each CSP may implement the MQTT specification a
little differently. You can usually find a link to a CSP’s MQTT docu‐
mentation, where an explanation is provided on where the CSP’s
MQTT broker is aligned to the spec and where it differs. Be sure to
review this information before settling on MQTT as your cloud
connection paradigm.

This is not an exhaustive accounting—just a handful of CSPs that, as of this writing,
support the MQTT protocol. The list should be helpful if you’d like to use your GDA
(with additional modifications) to connect into one or more of these services.

If you’re interested in a self-hosted and open source IoT platform
that leverages a microservices design and incorporates multiproto‐
col support, you may also want to look into the Mainflux IoT Plat‐
form.
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Each CSP works differently, but you can probably expect most to do the following:

• Create an account.
• Generate and register the appropriate credentials (auth token and/or PKI [public

key infrastructure] for your device).
• Provision one or more virtual devices (manually or automatically) and create the

appropriate security policies for access.
• Configure your data processing logic (manually or using the CSP’s services).
• Create any requisite event-triggering rules to invoke other services or publish

messages back to your GDA.
• Create a dashboard to graphically monitor (and manually act on) your device’s

telemetry.

While I won’t go into significant detail on any of these CSPs’ IoT solutions, I’ll briefly
cover two very simple MQTT-based connectivity examples using Ubidots and AWS
IoT Core.

Ubidots Connectivity Overview Using MQTT
Ubidots is an IoT CSP that supports device integration with your edge system using
several protocols, including MQTT over TLS. This is the service provider I discuss in
my Connected Devices class because it provides a way for students to integrate their
GDA with the cloud without having to deploy any custom code.

As of this writing, Ubidots supports two types of accounts: industrial (with a brief
free trial period) and STEM (for educational use only and with limited features).

The Ubidots dashboard provides a number of widgets, along with a drag-and-drop
web-based interface for integrating them with a data stream coming from your GDA.

Figure 11-5 depicts a dashboard I created to track system performance across three
different IoT gateways deployed in my home, along with a few basic environmental
measures collected from one of those gateway devices connected to a Sense HAT
module.
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Figure 11-5. Ubidots dashboard depicting three IoT GDA instances

Neat, huh? So how does it work? Be sure you’ve reviewed PIOT-CFG-11-001, and
then let’s talk devices and telemetry.

Data sources and variables
In a nutshell: devices are data sources, and data sources have variables. Variables rep‐
resent time-series data, or dots, that are collected and can be represented within a
dashboard environment like the one I created in Figure 11-5.

Now, there needs to be some kind of tie-in with your physical device and the sensor
or system performance data it’s generating, right? Indeed, there is! Using MQTT top‐
ics, each device (or data source) has its own topic name and ID. Variables have their
own topic names and IDs, each one mapped to a data source.

Topic names
Let’s look at an example. The notional topic name “mydevice/myvariable” represents
portions of an MQTT topic representing a data source (mydevice) and dot (myvaria‐
ble). This topic will always be preceded by the Ubidots API topic structure.

At the time of this writing, the Ubidots MQTT topic structure begins with “/v1.6/
devices/,” and is followed by the device label and, optionally, the variable label. Using
the notional topic name mentioned previously, this means the topic for “myvariable”
would be “/v1.6/devices/mydevice/myvariable.” You can read more about Ubidots
MQTT topic names online.
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Auth tokens
Ubidots provides an administrative console and an API you can use to generate
authentication tokens. You can read more about this process online.

The token you generate will be used as the username in your MQTT message.
Remember way back in Chapter 6, when you learned that MQTT supports usernames
and passwords? You finally get to use that feature of the protocol!

Be sure to keep in mind the API token usage instructions. And
always keep your API token, and any other generated tokens, safe
and private. Treat them the same as you would any other highly
sensitive information!

Connecting to the MQTT service using TLS
Once you’ve generated a new token, you can add it to your credential file as the value
for the userAuth key and, if needed, update your PiotConfig.props Cloud.GatewaySer
vice section with credFile = {your credential file}.

With the updates you introduced to your MqttClientConnector in Chapter 10 to
support credential loading from a separate file, PiotConfig.props and your credential
file should be set up properly. If so, the value should be loaded and set as the user‐
name for all MQTT requests.

To use TLS (and I strongly recommend that you do), you’ll need the Ubidots PEM
certificate. The SimpleCertManagementUtil class (discussed in Chapter 10) should be
integrated with your MqttClientConnector. As long as you specify the PEM filename
properly within the Cloud.GatewayService section as the value for certFile and
you’ve set the enableCrypt flag in the configuration file to “true,” MqttClientConnec
tor should load it automatically.

Never connect your IoT device to a cloud service (or any external
system over an unsecured network) without enabling encryption
and strong authentication measures. Choose security over conve‐
nience. You can read more about how this works in the Ubidots
MQTT documentation.

For clients that have a high keepAlive value, watch for autodisconnects. The current
documentation states that a PINGREQ Control Packet must be received at least every
180 minutes, or else the broker will disconnect the client.
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Creating data sources and variables
The admin console makes it very easy to create new data sources and associated vari‐
ables. You can also publish a message to a data source topic using the appropriate
JSON content.

This latter approach can be very convenient if you don’t want to track data sources
and variable names in two different places. The Ubidots send data documentation
explains the JSON structure in detail.

Figure 11-6 shows a way to create new data sources and variables. I’ve used it to cre‐
ate my own (hence the name “LBS IoT Gateway”).

Figure 11-6. Ubidots dashboard for creating new devices

(Hmm...“No last activity.” Looks like I need to update my auth key 😊)

Publishing messages
If you’re using MQTT, there are two ways to publish messages to your data source:
use JSON or just use the raw value. I’ll focus on JSON, as the message format is simi‐
lar to that which your DataUtil will generate. This is where you may have to make
some adjustments to your code in CloudClientConnector.

My own solution for generating consistent Ubidots topic names involves the follow‐
ing implementation of CloudClientConnector’s createTopicName() method:

protected String createTopicName(
  ResourceNameEnum resource, String itemName)
{
  // e.g., /v1.6/devices/constraineddevice/sensormsg-tempsensor
  StringBuilder buf = new StringBuilder(this.topicPrefix);
  
  buf.append(
    resource.getDeviceName().toLowerCase()).append('/');
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  buf.append(
    resource.getResourceType().toLowerCase()).append('-');
  
  buf.append(itemName);
  
  return buf.toString();
}

How does this work? It will generate the following String representation:

/v1.6/devices/{device name}/{telemetry type}-{item name}

The approach I’ve chosen allows me to keep my internal naming convention while
supporting a more granular naming convention and adapting to the Ubidots conven‐
tion with little effort.

Each time I publish a message, I invoke createTopicName() to generate the topic
name and then delegate nearly everything else to the MqttClientConnector. I’ve also
created a separate private method named publishMessageToCloud(), which is
invoked by the public sendEdgeDataToCloud() method. Here’s how they work in tan‐
dem, along with createTopicName(), to align with the Ubidots MQTT topic naming
convention:

@Override
public boolean sendEdgeDataToCloud(
  ResourceNameEnum resource, SensorData data)
{
  if (resource != null && data != null) {
    String payload =
      DataUtil.getInstance().sensorDataToJson(data);
    
    return this.publishMessageToCloud(
      resource, data.getName(), payload);
  }
  
  return false;

private boolean publishMessageToCloud(
  ResourceNameEnum resource, String itemName, String payload)
{
  String topicName = createTopicName(resource, itemName);
  
  try {
    _Logger.finest(
      "Publishing payload value(s) to Ubidots: " + topicName);
    
    return this.mqttClient.publishMessage(
      topicName, payload.getBytes(), 1);
  } catch (Exception e) {
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    _Logger.warning(
      "Failed to publish message to Ubidots: " + topicName);
  }
  
  return false;
}

As you can see, the itemName is just the SensorData name, which in this case is set all
the way down in the CDA!

Incidentally, you can also add features to DataUtil to customize the payload to be
specific to the JSON formatting rules of Ubidots or any other CSP. It’s just another
method, and you can invoke it from within CloudClientConnector to avoid propa‐
gating a different format throughout your code base.

Subscribing to events
Topic subscription messages follow a similar paradigm to publishing—identify the
topic (data source and variable) from which you’d like to receive updates and issue
the subscribe request.

The same adjustment you made to CloudClientConnector for publishing should
carry over here, provided you invoke the createTopicName() method to generate
your topic string. Just keep in mind that you’ll have to parse whatever data you’re
sent.

Triggering actions
How about triggering an actuation event from the cloud? You can use the Ubidots
interface to create a rule for publishing a dynamically generated (or existing) value to
an existing variable and add a subscription for that variable within your CloudClient
Connector.

Figure 11-7 represents a screenshot for a temperature event.

Figure 11-7. Creating an event trigger in Ubidots

I created this event to send a text message to my phone if the inside temperature of
my house drops below a certain threshold or rises above another threshold for a cer‐
tain period of time.
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When I first created this event, I inadvertently set the floor and ceiling temperatures
very close together, so I was getting text message alerts multiple times a day. Not quite
what I was looking for. I adjusted the range so I would receive an event only when I
had left a window open too long during the winter.

Further information
If you’d like to dig further into the details of the Ubidots MQTT-specific connections,
be sure to review the Ubidots MQTT broker article.

Also, Ubidots supports API authentication using HTTP or HTTPS. If this is impor‐
tant for your implementation, you can read more about this functionality in the Ubi‐
dots API authentication article.

AWS IoT Core Connectivity Overview Using MQTT
Amazon Web Services (AWS) is likely a familiar name. AWS provides a number of
IoT services and capabilities that allow you to manage your devices and handle their
data across a wide range of scalable services and tools.

Within the Edge Tier, you can use AWS IoT Greengrass to pull in some cloud-based
functionality to process data streams, whether connected to AWS or temporarily dis‐
connected from the cloud.

As of this writing, AWS provides a variety of free-tier services that support IoT tele‐
metry processing; many others offer free trials.

It’s very important to review the service offerings and associated
costs of the CSP you select before committing to a particular design
and usage pattern. Most CSPs offer tools that let you calculate your
planned usage and associated costs.

The first step in connecting your GDA into AWS is to create an AWS account (if you
haven’t created one already). Then navigate to your AWS console, which as of this
writing can be accessed from your web browser.

I recommend reviewing the AWS IoT quick start tutorial first. For a more detailed
hands-on tutorial, you may also want to review the AWS IoT Core hands-on tutorial.
As always, these details may change with time.

Provisioning a new device
In AWS, you can onboard a single device or multiple devices at once. Each device
provisioned through the onboarding process will have a device shadow: an associated
JSON file representing its most recent state. You can use the shadow to update the
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3 You may also want to review Chapter 2 of Dejan Mijic, Draško Draškovic, and Ervin Varga, Scalable Architec‐
ture for the Internet of Things (O’Reilly).

device state, whether or not it’s currently connected to AWS. I’ll briefly walk through
the setup process for a single device: your GDA.3

From the AWS Console, find the Services drop-down and select “Internet of Things –
IoT Core.” On the left navigation pane, click Onboard → “Get started” and then
“Onboard a device” → “Get started.” Select “Get started” again, and then choose your
operating environment and language (specifically, Java).

The next window will ask you to name your device; I’ve chosen “PiotGDA01” for my
device’s name. This will also generate your shadow.

Figure 11-8 shows a portion of a screen similar to the one you’ll see after clicking
“Next step.”

Figure 11-8. Thing successfully created; just need to download the connection kit
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At this point, I have a thing registered and named “PiotGDA01,” along with a policy
and a connection kit automatically generated by AWS. I’ll use the policy to set access
permissions within AWS, and the connection kit to retrieve the PKI infrastructure my
GDA will need to securely connect into AWS IoT Core.

Figure 11-9 shows the dialog box that you’ll see after clicking on the operating system
button (in my case, it’s Linux/OSX).

Figure 11-9. Downloading the connection kit, along with your PKI

This file is super important—not only does it contain a shell script you can execute to
retrieve the SDK, but it also contains your PKI, which includes your private key. Be
sure to keep this safe and secure at all times!

Once this is downloaded, click “Next step.” The next page provides instructions for
executing the shell script, which will download the AWS root CA, along with the
AWS Java SDK, its dependencies, and some examples you can use to get started.

If all goes well, the script will also execute a simple publish/subscribe application to
verify connectivity with AWS IoT Core. When I ran this on my own system (under
WSL), the application generated the following log output (only partially represented
here):

Cert file:../PiotGDA01.cert.pem Private key: ../PiotGDA01.private.key
Mar 07, 2021 8:27:47 PM com.amazonaws.services.iot.client.core.AwsIotConnection
onConnectionSuccess
INFO: Connection successfully established
Mar 07, 2021 8:27:47 PM com.amazonaws.services.iot.client.core.AbstractAwsIotClient
onConnectionSuccess
INFO: Client connection active: sdk-java
1615166867709: >>> hello from blocking publisher - 1
1615166867709: >>> hello from non-blocking publisher - 1
1615166867750: <<< hello from blocking publisher - 1
1615166867766: <<< hello from non-blocking publisher - 1
1615166868710: >>> hello from non-blocking publisher - 2
1615166868711: >>> hello from blocking publisher - 2
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1615166868742: <<< hello from non-blocking publisher - 2
1615166868768: <<< hello from blocking publisher - 2

I ran this test for a bit longer than the log indicates, so you’ll see in Figure 11-10 the
AWS IoT Monitor depicting the total messages published, along with the single suc‐
cessful connection.

Figure 11-10. Snippet from the AWS IoT monitor after running the initial connectivity
test

Of course, the real fun begins after you’ve incorporated similar connection and mes‐
saging functionality into your GDA. But let’s first discuss topic names, certificates,
and keys.

Topic names
Since you’ll connect into your AWS IoT environment using a client endpoint name,
you can use the same topic names you’re already using within your Edge Tier. (You
can read more about topic names within AWS in the developer guide.) Two of the
topic names I’ll use in this section are:

PIOT/ConstrainedDevice/SensorMsg

PIOT/ConstrainedDevice/ActuatorCmd
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The resource and topic naming convention for this book uses
CamelNotation, which is supported by the MQTT specification
and can work well for disambiguation. You may want to alter this
to align with your CSP’s best practices.

Authentication and authorization
Your GDA will be able to connect to and interact with IoT Core only if it is authenti‐
cated and your requests— including to connect—are authorized.

In this section, I’ll briefly describe authentication using the X.509 certificates you
already downloaded as part of the connection kit. Authorization is handled via one or
more policies that you specify and attach to your device shadow within AWS. For
more information on AWS IoT security, including client and server authentication,
see the developer guide.

Policies are an important part of your configuration. A policy can provide or limit
access to certain resources and activities, so it’s important to ensure proper setup.
AWS should have generated a default policy based on your device name (e.g.,
PiotGDA01-Policy) and attached your device certificate.

This default policy permits publish, subscribe, and connect messages for a default list
of test resources. Your GDA and its client ID will need permission to connect, pub‐
lish, and subscribe, so you’ll need to edit the policy to include this information. Any
topic to which your GDA will either publish or subscribe will need to be listed as a
permitted resource in the policy as well.

Editing the policy is straightforward. Within the IoT console, on the left side of the
screen, expand Secure and click Policies. You should see your device name with
“-Policy” appended. Click the policy name and scroll through to see where the topic
names and client IDs are listed. You can simply choose to “Edit policy document” and
add the new planned topics as resources (they’ll map to ResourceNameEnum) and the
client ID you plan to use for your GDA at the end of the document in the iot:Con
nect section.

Here’s an example (sensitive info replaced with “XXXXX” and test policies removed):

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": [
        "iot:Publish",
        "iot:Receive"
      ],
      "Resource": [
        "arn:aws:iot:XXXXX:XXXXX:topic/PIOT/GatewayDevice/SystemPerfMsg",
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        "arn:aws:iot: XXXXX:XXXXX:topic/PIOT/GatewayDevice/SensorMsg",
        "arn:aws:iot: XXXXX:XXXXX:topic/PIOT/ConstrainedDevice/SystemPerfMsg",
        "arn:aws:iot: XXXXX:XXXXX:topic/PIOT/ConstrainedDevice/SensorMsg"
      ]
    },
    {
      "Effect": "Allow",
      "Action": [
        "iot:Subscribe"
      ],
      "Resource": [
        "arn:aws:iot: XXXXX:XXXXX:topicfilter/PIOT/ConstrainedDevice/ActuatorCmd"
      ]
    },
    {
      "Effect": "Allow",
      "Action": [
        "iot:Connect"
      ],
      "Resource": [
        "arn:aws:iot: XXXXX:XXXXX:client/gatewaydevice001"
      ]
    }
  ]
}

Notice that the publish section of the policy has two actions—iot:Publish and
iot:Receive—whereas the subscribe section has just one—iot:Subscribe.

The connect section specifies the iot:Connect action, which will need to identify
your device’s client ID to permit connection events. These updates will be important
—they define whether your GDA will be able to effectively integrate with IoT Core.
For example, your GDA (named gatewaydevice001, as shown in the preceding
example) won’t be permitted to connect to IoT Core using MQTT unless you’ve
defined a policy that permits this behavior.

When your edits are complete, save the policy. Time to write some code.

As of this writing, each policy can maintain only five versions, so if
you find you’re unable to save your edits, you may have reached
this limit. Simply click Versions and, if appropriate, delete those
you are certain you no longer need. Then set the default for the
version you want to use.

Integrating with an IoT Cloud Service Provider (CSP) | 327



Connecting to the MQTT service using TLS
When you downloaded the connectivity kit for your language (Java) and platform,
the zip file included your public certificate and PKI pair (private key and public key).
The public certificate is used to prove your ownership of the public key, which the
server will use to decrypt the data you send as encrypted locally by your private key.
All are important in ensuring trusted and secure communications with an endpoint.

I’ve written some detailed requirements and related instructions to help you build out
your remaining GDA infrastructure within the Kanban board. Be sure to review
PIOT-GDA-11-005 and PIOT-GDA-11-006 for the plumbing, and PIOT-
GDA-11-007 for the AWS-specific connectivity requirements and instructions.

Once you’ve completed these tasks, you can update your PiotConfig.props with the
following:

[Cloud.GatewayService]
cloudServiceName = AWS

[Cloud.GatewayService.AWS]
certFile         = ./cert/PiotGDA01.cert.pem
privateKeyFile   = ./cert/PiotGDA01.private.key
cloudServiceName = AWS
securePort       = 8883
defaultQoS       = 0
keepAlive        = 60
clientEndpoint   = <client>.iot.<region>.amazonaws.com

With the introduction of CloudClientFactory, which you can use for any of your
cloud client connection abstractions, the Cloud.GatewayService section now has
only one entry: cloudServiceName. This tells the Factory which class to instantiate.
The CSP-specific ICloudClient implementation will use the appropriate configura‐
tion section name to retrieve the parameters it needs to initialize the connection (for
instance, the AWS ICloudClient instance will retrieve its properties from
Cloud.GatewayService.AWS).

The CloudClientFactoryTest test class provided within the programmingth

eiot.part04.integration.connection package provides a very simple set of calls to
kick the tires on the connection logic and log a bunch of messages that should help
with debugging.

In my own implementation, I added some additional log messages to verify message
conversion. I also sent a SensorData instance to the actuator listener just to see if it
was received (it was). Of course, this means I’ll need to do more validation within my
topic listener!
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Your log output may look similar or not. Here’s a quick sample of the log output from
my own test:

Mar 08, 2021 1:14:36 PM programmingtheiot.gda.connection.CloudClientFactory
createCloudClient
INFO: Attempting to instance cloud client using cloud service name: AWS
Mar 08, 2021 1:14:36 PM programmingtheiot.gda.connection.AwsCloudClientConnector
initMqttClient
INFO: Initializing AWS MQTT client...
Cert file:./cert/PiotGDA01.cert.pem Private key: ./cert/PiotGDA01.private.key
.
.
.
Mar 08, 2021 1:14:37 PM com.amazonaws.services.iot.client.core.AbstractAwsIotClient
onConnectionSuccess
INFO: Client connection active: gatewaydevice001
Mar 08, 2021 1:14:42 PM programmingtheiot.gda.connection.AwsCloudClientConnector
subscribeToCloudEvents
INFO: Successfully subscribed to topic: PIOT/ConstrainedDevice/ActuatorCmd
.
.
.
Mar 08, 2021 1:14:42 PM programmingtheiot.common.DefaultDataMessageListener
handleActuatorCommandResponse
INFO: Topic: PIOT/ConstrainedDevice/ActuatorCmd, Message:
name=,typeID=0,timeStamp=2021-03-08T18:14:42.385353700Z,status
Code=0,hasError=false,locationID=Not
Set,latitude=0.0,longitude=0.0,elevation=0.0,command=0,isResponse=false,value=0.0
Mar 08, 2021 1:14:47 PM com.amazonaws.services.iot.client.core.AwsIotConnection
onConnectionClosed
INFO: Connection permanently closed
Mar 08, 2021 1:14:47 PM com.amazonaws.services.iot.client.core.AbstractAwsIotClient
onConnectionClosed
INFO: Client connection closed: gatewaydevice001

If I refresh the AWS IoT Monitor, Figure 11-11 shows the results (after many, many
test runs).

This is the proof you need to verify that your GDA has connected and can publish
messages and receive notifications on subscriptions. Now to actually do something
with all of this information: let’s build out a simple Lambda function to handle these
events.
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Figure 11-11. Snippet from the AWS IoT monitor after running a few GDA integration
tests

Creating a function to handle incoming messages
Going back to Figure 11-4 (“Notional design for the cloud services functions”), I’ve
highlighted a few simple functions that can be implemented within an environment
like AWS. Functions such as these (implemented using AWS Lambda) can be used to
provide custom handling for incoming messages from the MQTT broker hosted
within AWS IoT Core.

To create an AWS Lambda, select the Services drop-down from the top of your man‐
agement console. Click Lambda under the “Compute” section and then click “Create
function” in the next window (or select one you’ve already created if you have a
Lambda ready to go).

You can use the built-in code editor (“Author from scratch”) or an existing template.
I’ve chosen “Author from scratch” in the example that follows. Give your function a
name (such as PiotHandleSensorData) and select the runtime you’d like to use (such
as Python 3.7). I’m using the default execution role for my implementation.

Click “Create function” to complete the creation process.

From this point on, you can use the embedded code editor to write your function or
develop it within your IDE. If you choose to use your IDE, you’ll need to generate a
zip file with the files and directory structure for each module dependency that is not
part of Python 3.7 and upload it to your function.
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If you choose “Author from Scratch” in Python and use the IDE
within your local environment, you can use Maven to generate
your zip file. If you’re developing your function in Python and
using your python-components repository, I’ve described one way
to do this in PIOT-CFG-11-002.

Figure 11-12 depicts a screen similar to the one you’ll likely see.

Figure 11-12. Snippet from the AWS Lambda function overview screen for PiotHandle
SensorData

Some of the code is already generated; you can change it to support your specific
needs. The default module name is lambda_function.py, and the invoked function
name is lambda_handler(event, context):. Feel free to leave these, since the
Lambda function will be invoked from within your soon-to-be rules environment
using the name you gave it.
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For convenience, I’ve renamed the module SensorDataHandlerFunction.py and
changed the function name to handleSensorData(event, context):. To rename
yours, you’ll need to scroll down to “Runtime settings” and edit the Handler, which
defaults to lambda_function.lambda_handler.

Figure 11-13 provides a snippet from the Lambda editor screen. You can see that the
Handler info is now SensorDataHandlerFunction.handleSensorData.

Figure 11-13. Creating a Lambda function using the web-based code editor

For all of this to work, the Lambda function will need to be deployed and have a pol‐
icy attached permitting access to DynamoDB. You can configure this using the Iden‐
tity and Access Manager (IAM): select IAM from the Services drop-down menu.

AWS provides numerous prebuilt policies that you can use to support this type of
activity. To learn more about policy management and IAM in general, please see the
AWS IAM documentation.
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With your policy attached and the Lambda deployed, you can create and execute a
test to verify that it functions properly. Click on the Test drop-down and click “Con‐
figure test event.” Select a test template (like hello-world), provide a name, and drop
in some sample JSON as the input.

Figure 11-14 shows a snippet from the “Configure test event” pop-up window.

Figure 11-14. Creating a Lambda test event

You may need to click the “Format JSON” button before creating the test; otherwise
you may get an error.

With your Lambda created, an appropriate policy attached, and a test in place, you
can deploy the function and invoke it when data arrives within IoT Core.

Triggering actions
You can create a rule within the AWS IoT console based on a simple query statement
(using SQL). Once the rule is defined, it will “fire” whenever there’s an event that
aligns with the specified SQL.

Let’s say you want to fire a rule whenever a new SensorData instance (in JSON) is
received. In the AWS IoT console, navigate to Act on the left side of the interface and
click Rules. Give it a name, such as StoreSensorData, along with a description, and
then choose the SQL version you’d like to use from the drop-down.
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In the terminal-like window below the SQL version selector, type in the SQL com‐
mand. In this case, you might type:

SELECT * FROM ‘PIOT/ConstrainedDevice/SensorMsg’

That’s it! The screenshot in Figure 11-15 provides a bit more clarity.

Figure 11-15. Creating an AWS IoT rules query

So what does SELECT * FROM 'PIOT/ConstrainedDevice/SensorMsg' do? Not much
—yet. It will fire whenever a new SensorData JSON payload is published to the PIOT/
ConstrainedDevice/SensorMsg topic. From here, you can assign an action.

Here’s where you need to think a bit about your overall design (and budget!). What
do you want to happen? Which service is best designed to handle that action? Is there
anything else that should happen when this rule is fired? If you’re in the process of
designing a system, you may have already answered those questions. The “Add
action” button will, well, add the action.

At this point, you’ll have many different options available. You can simply insert the
data into a DynamoDB table, store the JSON within an S3 bucket, pass the content on
to another Lambda function, and so forth.

Using existing provisioned services or provisioning a new service
may incur charges. Be sure to review the costs before deciding on a
course of action.
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Once you’ve settled on the “what” (store the data), choose the service to which you’d
like to pass the message (invoke a Lambda function) and click “Configure action.”
From here, you can configure the resource however you’d like.

The final step is to create the rule by clicking on the “Create rule” button and then
enable it (assuming you want it to actually fire). The next page allows you to do so by
clicking on the “...” next to the rule name and selecting Enable.

The no-code approach involves passing the data to an existing service that can pro‐
cess (or store) JSON messages natively, such as DynamoDB or S3. If you want greater
control over the behavior of the event, you can trigger a Lambda function like the one
you just created, as shown in Figure 11-16.

Figure 11-16. Snippet depicting the action configured to call the HandleSensorData
Lambda

After completing the Chapter 11 Kanban board exercises and the AWS exercise
described in PIOT-GDA-11-007, you can test your implementation, monitoring
activity using the AWS IoT Monitor to see whether IoT Core is receiving messages
and triggering any rules.

Figure 11-17 shows the monitor once more, this time with the additional data—
which now includes data within the “Rules executed” graph.
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Figure 11-17. Snippet from the AWS IoT monitor showing rules executed

Further information
The example in PIOT is very basic and provides some initial ideas for managing IoT
Core topic publish and subscribe events. One of the articles I found helpful for pro‐
cessing time-series data is described in the AWS Database Blog, titled “Patterns for
AWS IoT time series data ingestion with Amazon Timestream”.

For more information on the details of AWS IoT, see the developer’s guide.

Additional Exercises
Lab Module 11 within the Programming the IoT Kanban board lists all the current
exercises for this chapter, with more in the works. I’ll be adding more exercises to the
Kanban board in the future but have listed one you may want to tackle on your own.

Analyzing and Acting on Time-Series Performance Data
If you had access to hours, days, or even weeks of time-series data from your IoT
devices, what would you want to know? How about the GDA’s overall network utiliza‐
tion trends? If the data the GDA is sending to the cloud is not time-critical, and its
network (and perhaps CPU) utilization is gradually increasing, would it be helpful to
send it data streaming pacing instructions? Perhaps throttle back a bit (again, assum‐
ing the data it’s sending can be more efficiently batched)?

Using the additional exercises from Chapter 2 for the GDA specifically, see if you can
implement a cloud-based rule that observes GDA system performance trends and
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generates an event back to the GDA, instructing it to throttle back its data streaming
(again, for noncritical data). This use case will require an advanced cloud-based rule,
along with another topic the GDA can subscribe to related to system management. In
fact, you may need to add another data type as well—perhaps you can call it SystemMa
nagementData (also derived from BaseIotData)—that will contain the instructions
the GDA will need to temper its data streaming activities a bit.

Conclusion
My objective with this chapter was to introduce you to some of the core concepts
associated with connecting your GDA into the cloud. You learned how to create a
simple cloud client abstraction layer within your code that uses MQTT to connect to
two different CSP MQTT brokers. You also learned how to use some cloud services
to interpret the data published by your GDA and to then publish an ActuatorData
message back to the GDA.

Clearly, much more can be done in the cloud than I’ve explored in this chapter, so be
sure to review the CSP documentation and use case examples provided in the various
AWS developer guides for more detailed information on the various services and
capabilities each service provides. 
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CHAPTER 12

Taming the IoT

A Discussion of Key IoT Enablement Principles
and Some Simple Use Cases

Has my goal been reached?
Measure, Model, and Manage.
Now it all makes sense.

Fundamental concepts: A way to tackle an IoT challenge and a few sample IoT sce‐
narios are covered, including notional implementation approaches.

This is the chapter you’ve been waiting for, where we bounce out of the technical gob‐
bledygook and look at the bigger picture of the IoT ecosystem. If you’re planning on
tackling a business problem, this chapter will help you bring together the concepts
you’ve learned.

What You’ll Learn in This Chapter
All technology-enabled systems do something, and they generally share some com‐
mon characteristics. They also share a set of core requirements that—for the most
part—can be abstracted into groups. I’ll call these IoT ecosystem enablers and discuss
them next.

IoT Ecosystem Enablers
Most systems comprise more than just categorized requirements and architecture,
however, so it’s helpful to think about the enablers that facilitate a robust, integrated
platform—not only technically but also systematically. This requires considering a
broader range of requirement categories, as well as processes to ensure consistency.
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You can think of these requirement categories as interdependent enablers, as shown in
Figure 12-1.

Figure 12-1. IoT ecosystem enablers and their relationships

At the center, where all of the enablers intersect, is a holistic, balanced, and effective
IoT ecosystem—one that provides value for all stakeholders.

While these enablers might seem obvious, I find it helpful to keep them at the front of
my mind to help me avoid focusing only on the technology solution. It’s all about
perspective.

Security
Not surprisingly, security is crucial to any technology ecosystem, and the IoT is no
exception. Here is a brief and nonexhaustive high-level checklist of IoT ecosystem
security categories that may help you think about potential gaps and resolutions.

System
What is the software validation procedure (firmware, applicates, services, etc.)?
What type of authentication and authorization will be used? How will tokens,
certificates, secrets, and so on be protected on the system? How will the system
data’s provenance be ensured so you know you can trust it?

Administrative
How will the system (devices and services) be physically and logically accessed?
Who will be authorized to access and administer this system? What level of pro‐
tection is required to keep each device safe?

Manageability
How will system code or certificate updates be managed? How will the system
recover from a failed management action? What happens if the system or any
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part of it (such as keys, credentials, or data) is compromised? How will you pro‐
tect your (or your customer’s) intellectual property data within the ecosystem?

Capability
A secure and functioning system needs to meet business objectives and—most likely
—to support future enhancements without negatively impacting either. It also needs
to accept automated or manual instructions. Here are three general capability cate‐
gories to keep in mind:

Functionality
What core functions must the system support? Who’s responsible for defining
these functions? What is the decision process for approving or changing system
functionality?

Expandability
What future capabilities may be plausible? What’s the timeline for system expan‐
sion? What does the system need now to support these activities?

Commandability
This extends beyond security manageability and centers on the ability of the sys‐
tem to receive instructions to start or stop a process. How will the ecosystem be
managed? Who will manage it? What is your process for dealing with uninten‐
ded management events?

Reliability
An effective IoT ecosystem needs to be secure and provide business value. It also
needs to provide assurance that it is both robust and accurate, because your outcomes
are only as good as the quality and robustness of your device interactions and the
data they produce. If data is available sporadically or otherwise unreliably, it may be
difficult to extract business value that informs the bigger picture. Here are some con‐
siderations to keep in mind regarding IoT ecosystem reliability:

Sustainability
How will the devices be powered? How will the ecosystem respond if one or
more devices lose power? What is the duty cycle or longevity of each device?
How will the devices be updated or replaced, and what’s the process for doing so?

Connectivity
Where (physically and geographically) will the devices be deployed? How will
they connect to the internet: wirelessly, wired, via a gateway, as the gateway? How
will the ecosystem (and devices) respond if connectivity is lost?
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Accessibility
What are the system responsiveness timelines? Are any devices within the IoT
environment expected to send recurring “ping” messages? How will you know if
a given device is accessible and available?

Governance
Good governance is important for a successful IoT ecosystem. At the end of the day,
some stakeholder team needs to oversee the well-being of the current and future IoT
ecosystem, including the processes and associated rules for managing its security,
capability, and reliability enablers. This generally involves business unit stakeholders
and the engineering team to ensure consistency in execution and system manage‐
ment. Here are some categories to consider:

Compatibility
How will system software updates be versioned? How will partner APIs be man‐
aged? How will all functions—including those that support interoperability—be
tested and validated? What is the process for mapping these interdependencies
and ensuring nothing breaks on update?

Data management
How will data element updates be decided? What data will be stored and where?
Who owns the data at each capture point? What service level agreements (SLAs)
will be put into place?

Regulatory
What, if any, regulatory constraints apply to the environment (devices, connec‐
tions, data, access, etc.)? What, if any, local jurisdiction rules might apply now or
in the future? Who is responsible for approvals and other sign-off activities?

These enablers are not exhaustive, of course; consider them a starting point, and add
your own.

Now let’s look at some sample IoT use cases that apply these enablers and touch on
the key activities of an IoT ecosystem: Measure, Model, and Manage.

Sample IoT Use Cases
It seems there’s no end to the potential benefits of an effective IoT ecosystem. Vol‐
umes can be (and have been) written about IoT use cases and their potential impact
on business outcomes. This section covers a tiny sliver of this space, which I hope is
helpful in establishing a mental map of how an IoT ecosystem comes together.

These sample IoT use cases serve merely as notional high-level design concepts; they
are not intended to be complete. Many details—including but not limited to Cloud
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Tier and Edge Tier security, data management considerations, and system manage‐
ment and control—are either left out completely or only marginally referenced.

The three use cases I’ll discuss are:

• Home environment monitoring and temperature adjustment (manual and auto‐
matic)

• Garden monitoring and water adjustment (manual)
• Pond water quality monitoring (automatic)

Shared Enablers and a Common Notional Design
It turns out these three use cases can all be based on the same notional high-level
design (HLD). Figure 12-2 generalizes this design in a way that captures the key com‐
ponents and their interactions without diving into the details.

Figure 12-2. Notional HLD for generic edge to cloud IoT implementation

The enablers—security, capability, reliability, and governance—are related across
each.
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Enablers (security, capability, reliability, and governance)
Each use case incorporates the key enablers from the start:

Security
The Edge Tier is protected by a firewall. Messaging between the Edge Tier devices
is encrypted (using TLS for MQTT messages or DTLS for CoAP messages). The
Cloud Tier leverages the CSP’s authorization and authentication capabilities,
which require messaging traffic to be encrypted. Only authorized users can
access the Cloud Tier through an API gateway that routes messages to the appro‐
priate destination. Any data stored is encrypted and accessible only by authorized
functions.

Capability
Each use case will impose its own capability requirements, but many will still be
shared across all use cases. These requirements might include telemetry storage
and analysis, or trend reporting that’s available for authorized and authenticated
end users to retrieve and view. Scalability is also important, since more Edge Tier
devices may be added in the future. The cloud design—using a scalable microser‐
vices design for collecting data and triggering actions—supports this, along with
the ability to distribute workloads across regions. Rules-based event management
provides the ability to manage and scale new process flows using existing and
future services.

Reliability
While not explicitly called out in Figure 12-2, features within the MQTT client
library in the gateway device allow automatic reconnects, should the device lose
its connection to the MQTT broker hosted by the CSP. Constrained devices rely
on the connectionless CoAP over UDP (and DTLS) protocol, which means it is
possible to lose a message; however, the CDA and GDA should be implemented
to handle this type of situation.

Governance
Governance (though not covered in Figure 12-2) can be partially built into the
rules and event management functionality. In addition to the organization’s oper‐
ations objectives and processes, this helps ensure that any significant changes that
could influence organizational outcomes are approved before execution.

Now that we have a baseline established, let’s move on to the use cases before analysis
paralysis sets in!
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Use Case 1: Home Environment Monitoring and Temperature
Adjustment
Wouldn’t it be wonderful to come home and find the lighting, music, temperature,
and humidity at optimal comfort levels? The home automation market is growing
rapidly, and opportunities to add even more “smart” features to your living environ‐
ment seem to grow by leaps and bounds each year. How can you align these home
automation ideas and your own monitoring needs with the knowledge you’ve gleaned
here?

Let’s go all the way back to that first problem statement in Chapter 1:

I want to understand the environment in my home, how it changes over time, and
make adjustments to enhance comfort while saving money.

Figure 12-3 aligns a notional HLD to the problem statement but is still based on
Figure 12-2.

Figure 12-3. Notional HLD for home environment monitoring and temperature adjust‐
ment

Let’s briefly unpack this diagram.
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Measure, Model, and Manage
At the Edge Tier, the diagram depicts the measurement of temperature and humidity.
It also uses a passive infrared (PIR) sensor to capture basic movement within a given
space, such as when someone enters or exits a room. The PIR sensor simply reports a
boolean—True or False—if it detects IR motion within its range.

We need a model to ensure that the right baselines are in place and that the measured
data has some meaning. I discussed this process at length in Chapters 3 and 4, so I
won’t revisit it here; let’s just assume that the appropriate measurement model and
floor/ceiling configurations exist and are available within both the Edge Tier and the
Cloud Tier.

This leaves the management activity, which will be active within the following com‐
ponents:

Constrained device B
If the measured temperature “settles” above or below the threshold set by the
local model (via a simple hysteresis analysis process), the HVAC actuation will be
triggered to reduce or increase the temperature accordingly. Measurement activi‐
ties continue, enabling the gateway device to track updates and pass these along
to the cloud.

Gateway device
This is receiving measurements from the PIR sensor attached to constrained
device A, along with temperature and humidity readings (and HVAC actuation
responses) from constrained device B. These readings let the gateway device
determine whether it should send an actuation event to constrained device B that
will raise or lower the temperature in a given area. It might do this if, for exam‐
ple, no movement is detected in a room or heating zone for a period of time yet
its temperature is set to “high.”

Cloud services
The reporting function can generate temperature and humidity usage across a
larger range of devices (not shown in Figure 12-3), showing the bigger picture of
how the HVAC is engaged, how long it’s active, and whether it’s heating or cool‐
ing unused space. The user can manually adjust the model (if desired) or even
permit automatic adjustments.

You can see how you might be able to add even more home automation capabilities to
the system.
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Use Case 2: Garden Monitoring and Water Adjustment
Let’s say you like to travel, but you also keep houseplants, or perhaps a small indoor
vegetable garden. You’d like your plants to thrive even when you’re away from home.
Figure 12-4 provides a notional HLD IoT system that may be helpful.

Figure 12-4. Notional HLD for garden monitoring and water adjustment

You’ll notice this figure’s similarity with Figure 12-3, but there are a few key differ‐
ences—for example, the third constrained device (C), which is solely responsible for
activating or deactivating a watering event. Let’s dig in.

Measure, Model, and Manage
At the Edge Tier, Figure 12-4 depicts constrained device B’s measurement of tempera‐
ture, humidity, and light (UV and visible). Constrained device A measures carbon
dioxide levels and soil moisture content. These sensor readings are passed along to
the gateway device for further processing and transmission to the Cloud Tier. No
analysis is really required at this point.
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The model for this notional HLD is represented in two locations: within the Edge
Tier’s gateway device and the Cloud Tier. The Edge Tier model only needs access to
the model representing the minimum and maximum (floor and ceiling) soil moisture
levels for the constrained device instances and their paired plants, while the Cloud
Tier model represents this information for all monitored plants (if, for example, there
are multiple Edge Tier instances in play).

The management activity is generally confined to two components:

Gateway device
If the measured soil moisture level settles at or above the ceiling, the gateway
device can instruct constrained device C to disable all watering until further
instructions. If the level falls to or below the floor, it can either signal a watering
actuation event to constrained device C or report back to the Cloud Tier that a
given plant needs to be watered.

Cloud services
The reporting function can generate garden monitoring statistics across all man‐
aged devices, and potentially across many Edge Tier instances. When paired with
plant-specific data and optimal soil moisture rules, it can produce human-
readable reports recommending manual actions, which the human user can then
trigger through the trigger actuation function (such as sending a water actuation
event to the Edge Tier).

I purposely excluded the automatic watering actuation event within the Cloud Tier to
show how, in some cases, it may be more appropriate for a human to review a report
and manually trigger an action, even if the IoT ecosystem is capable of managing it
automatically.

Use Case 3: Pond Quality Monitoring
This use case focuses solely on monitoring various quality metrics within a small
body of water, such as a fishpond or tank. Figure 12-5 provides a notional HLD rep‐
resenting this type of monitoring system.
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Figure 12-5. Notional HLD for pond quality monitoring

This is clearly less complicated than the other use cases, since it’s monitoring only a
few water properties and reporting back within a cloud service.

Measure, Model, and Manage
At the Edge Tier, the diagram depicts only measurement capabilities using a single
constrained device: water temperature, water pH level, and water flow (via an appro‐
priately placed water flow sensor). These measurements are collected by constrained
device A, transmitted to the gateway device, and finally sent up to the cloud.

The only model needed for this use case is hosted exclusively within the Cloud Tier—
it will provide comparative statistics and possibly some recommended floor and ceil‐
ing values for water temperature and pH (both important to the health of aquatic life)
and water flow (to determine filtration activity).

The management activity is equally straightforward. It needs only to generate reports,
not to trigger any actuation events.

Consider how you might want to incorporate actuation within this design. What
additional measurements, if any, might be needed to facilitate automatic actuation of
a feature at the Edge Tier?

Sample IoT Use Cases | 349



Conclusion
Did these IoT use cases resonate with you? They represent some of the first IoT prob‐
lems I tackled as personal projects. There are numerous use cases that could benefit
from an IoT ecosystem, of course!

For my Connected Devices course, I’ve documented some basic requirements for a
simple use case in Lab Module 12. I’d encourage you to consider whether any of these
requirements may be relevant for you, and how you might apply the concepts presen‐
ted in this book to help you design and build an IoT solution for your own unique
use case.

I hope you’ve enjoyed Programming the Internet of Things and have found it educa‐
tional and useful. It has been a labor of love.

If you’re interested in expanding your IoT technical knowledge, be sure to check the
Programming the IoT Kanban board regularly. I expect to continuously refine and
update the cards and even add new exercises. 

Thanks for reading!
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APPENDIX

Design Road Maps

A view of the whole,
Shown as a system of parts
Assembled for all.

This appendix serves as the overarching detailed design road map for each chapter,
leading up to your end-state IoT solution. It contains references to each application
and to the applications’ respective tie-ins to each other and the cloud, viewed step by
step, starting from the exercises in Chapter 1 through those in Chapter 11.

As you walk through each diagram, you’ll notice that the overall design remains the
same, but each chapter’s components are highlighted in the same manner as their
related exercises discussed previously in the book. You can use this as a reference to
assist with your understanding of the technical road map for each exercise, or even as
a general guide to build a completely new solution.

Each of the UML designs in this section are notional, representing only class names
(sometimes abbreviated to save page space) and the general associations with other
classes. None of the diagrams explicitly call out instance multiplicity or declare inter‐
nal members or their visibility.

These diagrams are best used as a guide to assist you with understanding the design
principles outlined in each chapter. Please feel free to modify these and even change
the names to suit your specific needs.
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Part I, Getting Started—Design Road Maps
Chapter 1 Designs
The initial application shells are already written and included as part of the python-
components and java-components repositories, but you can certainly add or change
whatever features you’d like. Figures A-1 and A-2 represent this chapter’s notional
UML designs for the CDA and GDA, respectively.

Constrained Device Application design

Figure A-1. CDA notional UML for Chapter 1

Gateway Device Application design

Figure A-2. GDA notional UML for Chapter 1
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Chapter 2 Designs
With your development environment established and the initial application shells
functioning, the next phase of the design for each application is to add system perfor‐
mance monitoring. This affects both the Gateway Device App and the Constrained
Device App. Figures A-3 and A-4 represent this chapter’s notional UML designs for
the CDA and GDA, respectively.

Constrained Device Application design

Figure A-3. CDA notional UML for Chapter 2
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Gateway Device Application design

Figure A-4. GDA notional UML for Chapter 2

Part II, Connecting to the Physical World—Design Road
Maps
Chapter 3 Design
For this chapter’s design (and the next), only the CDA will be updated. In this exer‐
cise, the CDA design is focused on generating simulated data for sensing and simple
commands that can be sent to a simulated actuator. Figure A-5 represents this chap‐
ter’s notional UML design for the CDA.
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Constrained Device Application design

Figure A-5. CDA notional UML for Chapter 3

Chapter 4 Design
With your development environment established and the initial application shells
functioning, the next phase of the design for each application is to add system perfor‐
mance monitoring. As with Chapter 3, only the CDA is affected. Figure A-6 repre‐
sents this chapter’s notional UML design for the CDA.
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Constrained Device Application design

Figure A-6. CDA notional UML for Chapter 4
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Chapter 5 Designs
Now that you’ve updated the CDA with sensing and actuation simulators and emula‐
tors, it’s time to focus on data management for both applications. Included in this sec‐
tion are the designs for each application with these components highlighted, as well
as the additional persistence functionality added into the GDA. Figures A-7 and A-8
represent this chapter’s notional UML designs for the CDA and GDA, respectively.

Constrained Device Application design

Figure A-7. CDA notional UML for Chapter 5
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Gateway Device Application design

Figure A-8. GDA notional UML for Chapter 5
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Part III, Connecting to Other Things—Design Road Maps
Chapter 6 Design
Part III moves your solution into the communications realm, where your CDA and
GDA will use common IoT messaging protocols to pass messages among themselves. 
This chapter focuses on MQTT and CDA. Figure A-9 represents this chapter’s
notional UML design for the CDA.

Constrained Device Application design

Figure A-9. CDA notional UML for Chapter 6
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Chapter 7 Design
The previous chapter’s exercises focused on building an MQTT connector within the
CDA. This chapter does the same but for the GDA. Once this is complete, both the
CDA and the GDA will be able to communicate using MQTT through a separate
MQTT broker (server) application. Figure A-10 represents this chapter’s notional
UML design for GDA.

Gateway Device Application design

Figure A-10. GDA notional UML for Chapter 7
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Chapter 8 Designs
The next two chapters focus on the design road map for CoAP integration. This
introduces the request/response paradigm and focuses on building your own server
using CoAP within the GDA.

As an optional Chapter 8 exercise, you can build your CoAP server adapter in Python
and integrate it with your CDA. Figure A-12 depicts this approach in UML. Figures
A-11 and A-12 represent this chapter’s notional UML designs for the GDA and
optional CDA, respectively.

Gateway Device Application design

Figure A-11. GDA notional UML for Chapter 8
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Constrained Device Application design (optional)

Figure A-12. CDA notional UML for Chapter 8 (optional)

Chapter 9 Designs
A CoAP server is great to have, but it’s not very useful to your overall design unless
you have a client that can use it. In this chapter’s exercises, the design road maps show
the components that will be used to create a CoAP client for the CDA that can con‐
nect to the GDA CoAP server.

362 | Appendix: Design Road Maps



As an optional exercise, the GDA can also implement a CoAP client. Figures A-13
and A-14 represent this chapter’s notional UML designs for the CDA and optional
GDA, respectively.

Constrained Device Application design

Figure A-13. CDA notional UML for Chapter 9
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Gateway Device Application design (optional)

Figure A-14. GDA notional UML for Chapter 9 (optional)

Chapter 10 Designs
At long last, it’s time to implement the business logic that connects all these pieces
together! You’ll use your choice of MQTT or CoAP (or both). The design road maps
in this chapter show how to do this for both the CDA and the GDA. Figures A-15 and
A-16 represent this chapter’s notional UML designs for the CDA and GDA,
respectively.
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Constrained Device Application design

Figure A-15. CDA notional UML for Chapter 10
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Gateway Device Application design

Figure A-16. GDA notional UML for Chapter 10

Part IV, Connecting to the Cloud—Design Road Maps
Chapter 11 Designs
Neither last nor least: it’s time to connect your GDA into the cloud. (This is one of
many ways to design a solution in the cloud.) The GDA will be updated to include a
cloud connector that uses the existing MQTT client connector functionality, and the
cloud implementation will draw on some of the data management functionality built
to support the CDA. (Yes, that means the cloud functions will be written in Python.)
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Figures A-16 and A-17 represent two notional UML designs—a basic design for the
GDA using a single CloudClientConnector type, and an optional design for the GDA
using a CloudClientConnector Factory to instance unique types specific to a given
cloud service provider. Figure A-18 represents a notional UML design for the
optional cloud service functions (CSF).

Gateway Device Application design (basic)

Figure A-17. GDA notional UML for Chapter 11 (basic)
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Gateway Device Application design (optional)

Figure A-18. GDA notional UML for Chapter 11 (optional)
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Cloud Service Functions design (optional)

Figure A-19. CSF notional UML for Chapter 11 (optional)

Design Road Maps | 369





Bibliography

Antón, Simon Duque, Daniel Fraunholz, Christopher Lipps, Frederic Pohl, Marc
Zimmermann, and Hans. D. Schotten. “Two Decades of SCADA Exploitation: A
Brief History.” 2017 IEEE Conference on Application, Information and Network
Security (AINS) (New York: IEEE, 2017): 98–104. 10.1109/AINS.2017.8270432.

The Apache Software Foundation. “Commons CLI.” (2019) [Online]. Available:
https://commons.apache.org/proper/commons-cli.

The Apache Software Foundation. “Commons Configuration.” (2020) [Online].
Available: https://commons.apache.org/proper/commons-configuration.

Ashton, Kevin. “That ‘Internet of Things’ Thing.” RFID Journal (June 22, 2009).

Amsüss, Christian and Wasilak, Maciej. “aiocoap: Python CoAP Library”. Energy
Harvesting Solutions, 2013– . http://github.com/chrysn/aiocoap.

AWS (2021). AWS IoT Core – Developer Guide. “Try the AWS Iot quick con‐
nect.”https://docs.aws.amazon.com/iot/latest/developerguide/iot-quick-start.html.

AWS (2021). AWS IoT Core – Developer Guide. “Explore AWS IoT Core services in
hands-on tutorial.”https://docs.aws.amazon.com/iot/latest/developerguide/iot-gs-
first-thing.html.

AWS (2021). AWS IoT Core – Developer Guide. “Security in AWS IoT.” https://
docs.aws.amazon.com/iot/latest/developerguide/security.html.

AWS (2021). AWS Identity and Access Management – User Guide. “What is IAM?”
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html.

Banks, Antón and Rahul Gupta. MQTT Version 3.1.1. OASIS Standard, 2014.

Berners-Lee, Tim, Roy T. Fielding, and Larry Masinter. “Uniform Resource Identifier
(URI): Generic Syntax.” IETF Internet Standard RFC 3986, (January 2005).

371

https://doi.org/10.1109/AINS.2017.8270432
https://doi.org/10.1109/AINS.2017.8270432
https://commons.apache.org/proper/commons-cli
https://commons.apache.org/proper/commons-configuration
http://www.rfidjournal.com/articles/view?4986
http://github.com/chrysn/aiocoap
https://docs.aws.amazon.com/iot/latest/developerguide/iot-quick-start.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-gs-first-thing.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-gs-first-thing.html
https://docs.aws.amazon.com/iot/latest/developerguide/security.html
https://docs.aws.amazon.com/iot/latest/developerguide/security.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html


Bormann, Carsten, Mehmet Ersue, and Ari Keränen. “Terminology for Constrained-
Node Networks.” IETF Informational RFC 7228, (May 2014): 8–10.

Bormann, Carsten, Simon Lemay, Hannes Tschofenig, Klaus Hartke, and Bilhanan
Silverajan. “CoAP (Constrained Application Protocol) over TCP, TLS, and Web‐
Sockets.” IETF Proposed Standard RFC 8323, (February 2018).

Braden, Robert. “Requirements for Internet Hosts – Communication Layers.” IETF
Internet Standard RFC 1122, (October 1989).

Brooks, Tyson T. Cyber-Assurance for the Internet of Things. IEEE Press, 2017.

Crockford, Douglas. “The application/json Media Type for JavaScript Object Nota‐
tion (JSON).” IETF Informational Memo RFC 4627, (July 2006).

Eclipse Foundation, Inc. “Californium (Cf) - CoAP for Java.” (2020) [Online]. Avail‐
able: https://github.com/eclipse/californium.

Eclipse Foundation, Inc. “Eclipse Paho Java Client.” (2020) [Online]. Available:
https://github.com/eclipse/paho.mqtt.java.

Eclipse Foundation, Inc. “Eclipse PahoTM MQTT Python Client.” (2020) [Online].
Available: https://github.com/eclipse/paho.mqtt.python.

Eclipse Foundation, Inc. “Scandium (Sc) - Security for Californium.” (2021) [Online].
Available. https://github.com/eclipse/californium/tree/master/scandium-core.

Oracle. “JavaMail.” (2020) [Online]. Available: https://javaee.github.io/javamail.

Encyclopaedia Britannica Online, s.v. “Moore’s law,” by the editors of Encyclopaedia
Britannica, last updated December 26, 2019.

Encyclopaedia Britannica Online, s.v. “ARPANET,” by Kevin Featherly, last updated
March 23, 2021.

Encyclopaedia Britannica Online, “Know Your Joe: 5 Things You Didn’t Know About
Coffee” (2. The Watched Pot), by Alison Eldridge, accessed January 18, 2021.

Gamma, Erich et al. Design Patterns: Elements of Reusable Object-Oriented Software.
Boston: Addison-Wesley, 1994.

Google. “Gson.” (2008) [Online]. Available: https://github.com/google/gson.

Grönholm, Alex. “Advanced Python Scheduler (APScheduler).” (2020) [Online].
Available: https://github.com/agronholm/apscheduler.

Hartke, Klaus. “Observing Resources in the Constrained Application Protocol
(CoAP).” IETF Proposed Standard RFC 7641, (September 2015).

Herrero, Rolando. Fundamentals of IoT Communication Technologies. 1st ed., Springer
International Publishing, forthcoming.

372 | Bibliography

https://tools.ietf.org/html/rfc7228
https://tools.ietf.org/html/rfc7228
https://github.com/eclipse/californium
https://github.com/eclipse/paho.mqtt.java
https://github.com/eclipse/paho.mqtt.python
https://github.com/eclipse/californium/tree/master/scandium-core
https://javaee.github.io/javamail
https://github.com/google/gson
https://github.com/agronholm/apscheduler


Hunter, John D. “Matplotlib: A 2D Graphics Environment.” Computing in Science &
Engineering 9, no. 3 (2007): 90–95.

The Industrial Internet of Things, Volume G1: Reference Architecture, Version 1.9.
Needham, MA: Industrial Internet Consortium, 2019.

The Industrial Internet of Things, Volume G5: Connectivity Framework, Version 1.0.1.
Needham, MA: Industrial Internet Consortium, 2017.

Jones, Dave. “pisense.” (2015 – 2018) [Online]. Available: https://github.com/wave‐
form80/pisense.

JUnit. “JUnit 4.” (2020) [Online]. Available: https://junit.org/junit4.

King, Andrew D. “Programming the IoT – Source Code, Documentation, and Task
Repositories.” (2020) [Online]. Available: https://github.com/programming-the-iot.

King, Andrew D. “Programming the IoT – Exercises Kanban Board.” (2020) [Online].
Available: https://github.com/orgs/programming-the-iot/projects/1.

Kucherawy, Murray. “Message Header Field for Indicating Message Authentication
Status.” IETF Proposed Standard RFC 8601, (May 2019).

Laster, Brent. Jenkins 2 Up & Running. O’Reilly Media, Inc., 2018.

Lea, Perry. Internet of Things for Architects: Architecting IoT Solutions by Implementing
Sensors, Communication Infrastructure, Edge Computing, Analytics, and Security.
Packt Publishing, 2018.

Light, Roger A. “Mosquitto: Server and Client Implementation of the MQTT Proto‐
col.” Journal of Open Source Software 2, no. 13 (2017): 265.

Linn, John. “Privacy Enhancement for Internet Electronic Mail: Part I: Message
Encryption and Authentication Procedures.” IETF Historic RFC 1421, (February
1993).

Leibiusky, Jonathan. “Jedis.” (2020) [Online]. Available: https://github.com/redis/jedis.

Mijic, Dejan, Draško Draškovic, and Ervin Varga. Scalable Architecture for the Inter‐
net of Things. O’Reilly Media, Inc., 2018.

Monk, Simon. Raspberry Pi Cookbook. 3rd ed., O’Reilly Media, Inc., 2019.

Montenegro, Gabriel, Nandakishore Kushalnagar, Jonathan W. Hui, and David E.
Culler. “Transmission of IPv6 Packets over IEEE 802.15.4 Networks.” IETF Pro‐
posed Standard RFC 4944, (September 2007).

NumPy. “NumPy.” (2020) [Online]. Available: https://numpy.org.

Postel, Jon. “Transmission Control Protocol.” IETF Internet Standard RFC 793, (Sep‐
tember 1981).

Bibliography | 373

https://matplotlib.org
https://www.iiconsortium.org/IIRA.htm
https://github.com/waveform80/pisense
https://github.com/waveform80/pisense
https://junit.org/junit4
https://github.com/programming-the-iot
https://github.com/orgs/programming-the-iot/projects/1
https://doi.org/10.21105/joss.00265
https://doi.org/10.21105/joss.00265
https://github.com/redis/jedis
https://numpy.org


Postel, John. “User Datagram Protocol.” Internet Standard RFC 768, (August 1980).

Quote Investigator (2021). “With Great Power Comes Great Responsibility.” https://
quoteinvestigator.com/2015/07/23/great-power [Online; accessed 05 June 2021].

The Raspberry Pi Foundation. “Sense HAT Emulator.” (2016) [Online]. Available:
https://github.com/astro-pi/python-sense-emu.

Rescorla, Eric and Nagendra Modadugu. “Datagram Transport Layer Security Ver‐
sion 1.2.” IETF Proposed Standard RFC 6347, (January 2012).

Rescorla, Eric. “The Transport Layer Security (TLS) Protocol Version 1.3.” IETF Pro‐
posed Standard RFC 8446, (August 2018).

Rodola, Giampaolo, Jay Loden, and Dave Daeschler. “Process and system utilities
(psutil).” (2009 – 2020) [Online]. Available: https://github.com/giampaolo/psutil.

Selander, Goeran, John Mattsson, Francesca Palombini, and Ludwig Seitz. “Object
Security for Constrained RESTful Environments (OSCORE).” IETF Proposed
Standard RFC 8613, (July 2019).

Shelby, Zach, Klaus Hartke, and Carsten Bormann. The Constrained Application Pro‐
tocol (CoAP). IETF Proposed Standard RFC 7252, (2014): 68.

Smith, Sean. Internet of Risky Things. Trusting the Devices That Surround Us. O’Reilly
Media, Inc., 2017.

Song, Jimmy. Programming Bitcoin. Learn How to Program Bitcoin from Scratch.
O’Reilly Media, Inc., 2019.

Tanganelli, Giacomo, Carlo Vallati, and Enzo Mingozzi. “CoAPthon: Easy Develop‐
ment of CoAP-Based IoT Applications with Python.” 2015 IEEE 2nd World
Forum on Internet of Things (WF-IoT) (Milan: IEEE, 2015), 63–68.

The Unified Modeling Language, Version 2.5.1. Milford, MA: Object Management
Group, 2017.

Ubidots (2021). Ubidots API docs. “[hardware engineers].” Available: https://
ubidots.com/docs/hw.

Ubidots (2021). Ubidots Developer Guides. “API Authentication.” Available: https://
help.ubidots.com/en/articles/570026-api-authentication.

Ubidots (2021). Ubidots Developer Guides. “Ubidots MQTT Broker.” Available:
https://help.ubidots.com/en/articles/570008-ubidots-mqtt-broker.

Vieru, Catalin, Massimiliano Angelino, and Philipp Sacha. “Patterns for AWS IoT
time series data ingestion with Amazon Timestream.” AWS Database Blog.
https://aws.amazon.com/blogs/database/patterns-for-aws-iot-time-series-data-
ingestion-with-amazon-timestream [Online; accessed 05 June 2021].

374 | Bibliography

https://tools.ietf.org/html/rfc768
https://quoteinvestigator.com/2015/07/23/great-power
https://quoteinvestigator.com/2015/07/23/great-power
https://github.com/astro-pi/python-sense-emu
https://github.com/giampaolo/psutil
https://doi.org/10.1109/WF-IoT.2015.7389028
https://doi.org/10.1109/WF-IoT.2015.7389028
https://ubidots.com/docs/hw
https://ubidots.com/docs/hw
https://help.ubidots.com/en/articles/570026-api-authentication
https://help.ubidots.com/en/articles/570026-api-authentication
https://help.ubidots.com/en/articles/570008-ubidots-mqtt-broker
https://aws.amazon.com/blogs/database/patterns-for-aws-iot-time-series-data-ingestion-with-amazon-timestream
https://aws.amazon.com/blogs/database/patterns-for-aws-iot-time-series-data-ingestion-with-amazon-timestream


Index

A
accessibility, 342
ACK messages, 265, 270
ActuatorData

DeviceDataManager in GDA passing mes‐
sage to resource handler, 241

Java version, 148
converting to/from JSON, 153
handleUpdateData method, 150
implementing for the GDA, 150

JSON representation of, 269
Python version

checking if instance is valid, 109
converting JSON representation to, 145
converting to JSON, 143
implementing, 87
translating to JSON, 146
unit testing, 88

actuators, 77
emulated, connecting with actuator adapter

manager, 134-137
emulating, 128-131
representing data in CDA, 83
simulated, connecting with actuator adapter

manager, 108-111
simulating, 78, 93-99
triggering actuation events from the cloud,

321
administrative security, 340
Agile project management processes, 36
aiocoap CoAP Python library, 229, 260, 262
analytics, 6
APScheduler library, 59, 101, 103
architecture

defining for IoT solution, 7-11
separation of concerns, 50

asynchronous message exchanges, CoAP sup‐
port for, 223

asyncio module, 260
documentation, 264

authentication
AWS IoT core connectivity using MQTT,

326-327
generating auth tokens in Ubidots, 318
MQTT support for, 199
topic-level in MQTT, 171
Ubidots support of API authentication

using HTTP or HTTPS, 322
authorization on AWS IoT, 326
automation, 40-43

automated CI/CD in local development
environment, 41

automated CI/CD in the cloud, 40
automated unit tests in Python and Java

components repos, 32
containerization, 42

AWS IoT core connectivity using MQTT,
322-336
authentication and authorization, 326-327
connecting to MQTT service using TLS,

328-329
creating function to handle incoming mes‐

sages, 330-333
provisioning a new device, 322-325
topic names, 325
triggering actions, 333-336

375



B
BaseActuatorSimTask

Python version, 94-98, 128
BaseCloudClient, 314
BaseIotData

Java version, 148
data elements in, 148

Python version
shared properties for sensor system per‐

formance, and actuator data, 85
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scribe functionality, 192-196

creating MQTT connector abstraction
module, 182-190

design with integrated MQTT client, 179
integrating MQTT connector, 197-199

security features, adding to MQTT client
connector, 289-292

setting up CDA project, 24-27
system performance manager design (exer‐

cise), 52
system performance tasks, adding, 54-63

creating and integrating system perfor‐
mance manager module, 56-57

creating system utility task modules,
57-60

integrating system utility tasks with per‐
formance manager, 60-63

reviewing CDA module, 54
systems view of message flow between GDA
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ent, 179

client IDs, 187-189
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creating class-scoped reference to
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CoAP

about, 222
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adding DTLS support to, 299
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260-265
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integration designs, 362-364
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237-241
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GDA, 231-234
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implementation designs, 361
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request interaction between CoAP client
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using CoAP in request/response setting, 229

CoapClientConnector
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Python version

client context, 264
creating and integrating with DeviceDa‐

taManager, 261-265
CoapServerGateway

Java version, 237-240
creating and registering resource han‐

dlers within, 247
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code management and branching (in Git), 39
commandability, 341
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CON and NON messages, 223, 265

CON GET request in CDA CoAP client, 270
enableCON check, 267
GET CON and NON requests in CDA

CoAP client, 265
GET NON request in CDA CoAP client,

268
OBSERVE CON and NON requests in CDA

CoAP client, 277
performance gain for CoAP NON requests,

298
PUT CON request in CDA CoAP client, 273
PUT NON request in CDA CoAP client,

272
concurrency libraries

Java, 69
Python's APScheduler, 59

configuration management, 5
application configuration for CDA and
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ConfigUtil

Java version
host, port, and keepAlive values, 204

Python version, 61
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feature, 289
using to load credentials in GDA MQTT cli‐

ent connector, 284
CONNECT Control Packet, 185-189

connectivity, 341
Constrained Application Protocol (see CoAP;

CoAP client; CoAP server)
constrained device application (see CDA)
constrained devices, classes of, 13
ConstrainedDeviceApp

connecting DataDeviceManager with, 118
containerization, 42
containers

creating data containers to support data col‐
lection and actuation, 84-89

Control Packets, 174
components, 174
MQTT PUBLISH and SUBSCRIBE using

QoS 2 or QoS 1, 211
observing in Wireshark, 185
reserved types, 174
types encountered using MQTT, 175

coroutines
CDA CoAP client handlePutRequest, 271
handleGetRequest for CDA CoAP client

request, 266
observer start and stop, 276

CPU utilization, 52
(see also SystemCpuUtilTask)

credentials
loading from separate file, MqttClientCon‐

nector support for, 318
loading in GDA MQTT client connector,

284
CSPs (cloud service providers), 306

changes affecting integration, 307
how they work, 316
importance of reviewing service offerings

and costs for, 322
supporting MQTT, 315

D
data analysis

cloud services enabling, 10
in the GDA, 158

data collection, 5
data container structures

creating to support data collection and
actuation, 84-89

implementing for the GDA, 148-152
data emulation, 121-137

connecting emulated actuators with actua‐
tor adapter manager, 134-137
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connecting emulated sensors with sensor
adapter manager, 131-134

design for, 355
emulating actuators, 128-131
emulating sensors, 126-128
emulating sensors and actuators, 122-124
hardware emulator, 14
integrating sensing and actuation emulation

in CDA design , 125-126
threshold management, 137
using Sense-Emulator GUI to adjust values,

137
data management, 5, 139-160, 342

CDA design for, 140
CDA, UML illustrating, 142
data translation and, 139
designs for, 357
GDA design for, 142, 146

data message listener, 104
data simulation, 77-119

connecting simulated actuators with actua‐
tor adapter manager, 108-111

connecting simulated sensors with sensor
adapter manager, 100-108

creating data containers to support data col‐
lection and actuation, 84-89
implementing sensor and actuator data

structures, 86-87
implementing system performance data

structure, 88
design for, 354
integrating sensing and actuation simulating

in application design, 81-83
representing sensor and actuator data

within CDA, 83
simulating actuators, 93-99
simulating sensors, 89-93
simulating sensors and actuators, 78-81

additional exercises, 119
data sources and variables, 317

creating in Ubidots, 319
topic names representing, 317

data translation, 140
in the CDA, 142-146

adding JSON translation using data util‐
ity class, 143

updating system performance manager,
143

in design view of CDA, 140

in the GDA, 146-159
implementing data contrainer structures,

148-152
Datagram Transport Layer Security (DTLS),

222
support for, adding to CoAP client and

server, 299
DataUtil class

features to customize payload JSON format‐
ting for CSPs, 321

JSON conversion logic in GDA and CDA,
273

using to add JSON translation to CDA, 143
using to add JSON translation to GDA, 153

DELETE method, 222, 224
adding support to CoAP client, 280

dependencies
challenges in integration testing, 32
Linux-specific, in development environ‐

ment, 14
deployment

blended physical deployment, 13
integrated simulated deployment, 12
separated physical deployment, 12

design principles, 50
design road maps, 351

CDA and GDA initial design, 352
cloud integration designs, 366
CoAP client integration, 362-364
CoAP server implementation designs, 361
data emulation design, 355
data management designs, 357
data simulation design, 354
Edge integration designs, 364
initial EdgeTier applications, 353
MQTT integration and design, 359
MQTT integration, Java client design, 360

development
automation, 40-43
example of typical task, 37
managing design and developmment work‐

flow, 34-43
development environment, setting up, 11-29

configuring an IDE, 18
integraed simulated deployment, 12
preparing your development environment,

14-29
CDA and GDA configuration, 27-29
setting up CDA project, 24-27
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setting up GDA project, 19-24
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device shadow, 322
DeviceDataManager

Java version
adding and managing MqttClientCon‐

nector in GDA, 213-217
creating and integrating with GDA,

154-159
implementing functionality to monitor

disk utilization on the GDA, 159
integrating CloudClientConnector with,

312
integrating GDA CoapServerGateway

into, 239-241
interface to the cloud, 306
interpreting and handling data from

MqttClientConnector, 294
orchestrating information flow in CDA and

GDA, 142
Python version

adding and managing MqttClientCon‐
nector in CDA, 197-199

creating and integrating with CDA,
111-118

integrating CDA CoAP client into, 265
interpreting ActuatorData commands

from GDA, 295
disk utilization management in the GDA, 159
Docker, 42
DTLS (Datagram Transport Layer Security),

222
support for, adding to CoAP client and

server, 299

E
Eclipse Californium CoAP Java library, 229,

236
Eclipse IDE

installing PyDev in, 24
with PyDev installed, 19
running CDA application in, 27
running GDA application in, 23

Eclipse Paho (MQTT client library), 177
Java client, 203

callbacks defined in, 209
Edge integration, 281-299

concepts, 282
designs for, 364

functional exercises for GDA, 292-294
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performance testing, 296-298
security features, adding to CDA MQTT cli‐

ent connector, 289-292
security in the GDA, 283-289

adding security features to MQTT client
connector, 283-289

adding TLS support to MQTT broker,
283

supplementary exercise, adding DTLS sup‐
port to CoAP client and server, 298

Edge Tier, 7, 12
detailed logical IoT architecture with, 10
initial applications, 49-72

adding system performance tasks to
CDA, 54-63

design concepts, 50
designs for, 353
programming exercises, 52
system performance tasks, adding addi‐

tional, 72
tracking requirements, 51

integration of applications (see Edge inte‐
gration)

integration with Cloud Tier (see cloud inte‐
gration)

simplified IoT logical architecture with, 9
using AWS IoT Greengrass, 322

emulating data (see data emulation)
enableEncryption flag
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289

storing in class-scoped variable, 287
encryption, enabling for MQTT brokers, 171
expandability, 341

F
Factory design pattern, 313
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GDA (gateway device application), 10
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CoAP client functionality, adding, 278-279
CoAP client in, interaction with CoAP

server in CDA, 232
CoAP server functionality, adding, 236-250
CoAP server implementation in, 231

benefits of, 234
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232
connecting to the cloud, 304
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nents, 307-314

designs for, 366
provisioning GDA on AWS, 322-325
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design with integrated CoAP client, 258
design with integrated CoAP server, 234
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