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PREFACE

The idea of writing a book has had a relatively long gestation period. From a young age in the
mid-eighties,  as  a  biology  and  biochemistry  volunteer  tutor  for  underrepresented  and
disadvantaged high school students in Tunisia, I have had a profound desire to contribute to
the  personal  and  professional  development  of  others.  I  feel  the  most  fulfilled  when  I  am
educating and serving others. At that time, several students suggested that my notes could be
organized  and  compiled  in  a  text  book.  Unfortunately,  although  the  idea  was  inspiring,  I
couldn’t write the book for diverse reasons including lack of infrastructure (computer, etc.)
and scientific maturity as well as economic disadvantages and constraints.

As I am drawn to the challenges of teaching and research because it gives me the opportunity
to mentor students and contribute to their intellectual growth, which I consider to be the most
valuable  and  worthwhile  accomplishment,  I  joined  the  University  of  Arkansas  in  2013  to
conduct  research  on  avian  molecular  nutrition  and  to  develop  and  taught  a  biochemical
nutrition  course  (POSC/ANSC  5143).  At  the  beginning  of  this  class,  my  students  from
different departments (poultry, animal, and food science, kinesiology, and nursing) and I used
several biochemistry and nutrition conventional textbooks that we ordered through textbook
department.  After  interaction  with  several  students,  the  idea  of  organizing  and  collate  my
course notes  in  a  text  book was revived and regenerated.  Taking advantage of  technology
expanding and advancement, I decided to compile my course in an electronic book (book) to
enhance the learning process, encourage the students’ creativity and learning autonomy, and
reduce  the  burden  of  carrying  heavy  textbooks.  This  in  turn,  allows  me  to  gain  new
perspectives on biochemical nutrition topics that inform my research, and reexamine the key
ideas and assumptions that shape the production of knowledge in my field.

This  book  is  intended  to  provide  the  readers  with  a  comprehensive  account  of  the
interrelationship of  nutrition and metabolism as  well  as  an understanding of  physiological
changes  that  occur  in  the  whole  body  as  a  result  of  excessive  or  deficient  diets,  and  the
endocrine and molecular regulatory mechanisms controlling such changes.

I tried to keep the book current with latest scientific advances and at the same time maintain a
clear and readable style. It is my wish that this book will be revised and updated every five
years because of the plenitude of new information and progress. Mrs. Humaira Hashmi, In-
charge  eBook  department,  at  Bentham  Science  has  been  a  source  of  support  and
encouragement.  I  owe  a  debt  of  gratitude  to  my  family,  my  wife  and  my  kids,  for  their
unflagging support and their tolerance of my absence. Also, my students were the original
inspiration for this book and I remain endlessly grateful to them, because from them I learn
how to think and how to communicate knowledge in the most efficient, clear, and meaningful
way.
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INTRODUCTION

Biochemical nutrition can be defined as the science of nutrition and chemical basis of life. It
is a combination of two very broad, but tightly interconnected and complementary disciplines.
As the cell is the basic unit of life, and nutrition is meant to provide the necessary energy for
cellular functions (maintenance, proliferation, differentiation, division, etc.), thus biochemical
nutrition  can  also  be  described  as  the  study  of  the  interaction  between  nutrients  and  the
chemical  constituents  of  living  cells  and  of  the  reactions  and  processes  they  undergo.
Following this definition, biochemical nutrition encompasses various and diverse aspects of
biochemistry  (the  study  of  chemical  characteristics  and  reactions  of  a  particular  living
organism or  biological  substance),  nutrition  (the  study  of  nutritional  needs  of  a  particular
living  organism),  dietetics  (diet  formulation),  integrative  physiology  (the  study  of  body
function), pathology (the study of causes and effects of diseases), cellular biology (the study
of cell structure and function), molecular biology (the study of the structure and function of
cellular macromolecules such as proteins and nucleic acids), neuroendocrinology (the study
of  the  physiological  interactions  between  the  central  nervous  system  and  the  endocrine
system),  immunology  (the  study  of  the  immune  system),  microbiology  (the  study  of
microorganisms and their interaction with the host), behavior (the study of organismal action
and response patterns to stimuli  or stress),  and more recently modeling and computational
biology (the study of biological system networks using algorithms and models). The ultimate
goal  of  biochemical  nutrition  is  to  help  apprehend  the  origin  of  life  by  unraveling,  at  the
molecular  levels,  all  the  chemical  pathways  associated  with  living  cells,  to  define  their
energetic (nutrient) requirements, and to integrate biochemical and nutritional knowledge into
efforts  to  not  only  maintain  life  and  well-being  through  health  improvement,  but  also  to
understand diseases for subsequent development of effective preventions or therapies.

The major objectives of the present book are to provide students and readers with a detailed,
simplified, and comprehensive account of the interrelationship of nutrition and metabolism
which is defined as the totality of chemical processes that occur in a living organism in order
to maintain life, an understanding of physiological changes that occur in specific organs and
in the whole body as a result of feeding diets with excess or deficient amounts of nutrients,
and the endocrine and molecular regulatory mechanisms controlling such changes. As there
are considerable differences in metabolism, nutrient requirement, and sometime in molecular
pathways between mammalian and non-mammalian species, a comparative approach is often
taken.

I know that biochemistry and nutrition present sometime an unusual challenge for students
due to their diverse backgrounds, learning preferences, and aptitude and levels of interest. By
writing this book, my fervent hope is to help diverse students from anywhere at any time to
learn fast, integrate relevant principles in physiology, biochemistry, and molecular signaling
pathways as they relate to nutrition of the whole organism, and to evaluate current nutrition
concepts  with  a  better  understanding  of  how  nutrition  affects  health,  welfare,  and
performance. This book should enable students to formulate a biochemical approach to an
experimental nutrition problem thus supporting the application of basic sciences and problem
solving skills.
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After an overview of the need of food and water (chapter 1), and describing the cell and organ
system components (Chapter 2), the book focuses on the regulation of food intake from the
factor influencing appetite to the central and peripheral underlying mechanisms (chapters 3, 4,
and 5). In chapter 6, author will discuss water intake and water homeostasis regulation. In
chapters 7, 8, and 9, protein, carbohydrate, and lipid metabolism are addressed from digestion
and absorption to transport, utilization, synthesis, degradation, and molecular regulation. In
conclusion, chapter 10 briefly summarizes the whole objective of the book.
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CHAPTER 1

Setting the Stage: The Need of Water and Food

Abstract: This chapter sets the stage and provides current knowledge related to water
and  food  necessities.  Both  water  and  food  are  essential  for  life  and  major  keys  to
survival.  Although water  is  not  included in  the  diet  formulation,  it  is  considered an
inorganic nutrient, and it is consumed mostly as drinking water and from feedstuffs. A
further source of water is metabolic water or oxidation water, which is produced when
macronutrients (carbohydrates, fats, and proteins) are oxidized to yield energy. Water
comprises 75% body weight in infants to 55% in the elderly and is essential for cellular
homeostasis.  Similarly,  the  macronutrients  provide  energy  (measured  in  Kcals)  and
essential components to sustain cellular homeostasis and life. These macronutrients are
consumed  in  different  combinations  and  ratios  to  help  achieve  different  goals  and
health (disease) states. In this chapter, a brief description of these nutrients is provided.

Keywords:  Food,  Water,  Nutrients,  Macronutrients,  Energy,  Proteins,
Carbohydrates,  Fats.

INTRODUCTION

Before discussing various aspects of biochemistry and metabolism, one might ask
the following two basic questions: why do we need to eat? And why do we need
to drink water? The simple and instinctive answers  are:  we eat  because we are
hungry and drink because we are thirsty. By eating food and drinking water, we
live,  we  survive,  and  we  allow  our  bodies  to  accomplish  various  tasks  and
physical  works  on  a  daily  basis.  An  adult  eats  about  a  ton  of  food  and  drinks
around 1095 L a year, and the human body contains about 60% water- a total of
42 L in a 70-kg person. It is like a power station, which requires fuel to generate
energy and power the turbine. Food and water are the fuel that provides the body
with the necessary nutrients and energy (metabolic fuels).

A  brief  description  of  nutrients  and  energy  will  be  given  for  an  introductory
purpose,  and  they  will  be  discussed  in-depth  in  later  chapters.

Sami Dridi
All rights reserved-© 2022 Bentham Science Publishers
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1.1. Nutrients

By definition, nutrients are substances used by an organism to survive, grow, and
reproduce.  Thus,  they  are  building  blocks  of  all  organisms.  They  can  be
categorized  into  two  types:  macronutrients  (or  Major  nutrients)  and
micronutrients. Macronutrients, which are consumed in great (gram, g) amounts,
comprise carbohydrates, proteins, lipids or fats, and ethanol (alcohol). As these
nutrients contain carbon-hydrogen bonds, they can also be categorized as organic
nutrients.  Micronutrients,  however,  are  usually  consumed  in  small  (milligram,
mg)  quantities,  include  vitamins  and  minerals.  Vitamins  are  organic,  however
minerals are inorganic nutrients. Although nutrients are dietary essentials, not all
animals and all species require all nutrients. It has long been considered that all
animals,  with  the  exceptions  of  primates,  humans,  guinea  pigs,  and  fish,  can
produce their own vitamin C or ascorbic acid [1]. Humans and primates have lost
the ability to synthesize vitamin C as a result of a mutation in the gene coding for
L-gulonolactone oxidase, a rate-limiting enzyme in the biosynthesis of vitamin C
through  the  glucuronic  acid  pathway  [2].  Thus,  vitamin  C  must  be  obtained
through  the  diet,  and  an  intake  of  90-100  mg  of  vitamin  C  is  required  for
nonsmoking  men  and  women  [3].  A  deficient  diet  in  vitamin  C  causes  scurvy
disease [4 - 7]. As a comparison, a typical 70 kg goat is capable of producing over
13  g  of  vitamin  C  daily  [1].  Similarly,  adult  ruminant  animals  are  capable  of
synthesizing B-complex vitamins (thiamin, riboflavin, niacin, biotin, folic acid,
pyridoxine  or  B6,  pantothenic  acid,  and  B12)  in  their  rumen  flora  and  do  not
normally have a dietary requirement for it [8 - 10].

The ambiguity about what is and what is not a nutrient as well as for their specific
requirements,  still  exists.  For instance,  glucose and other  sugars are commonly
considered  to  be  nutrients  however  there  are  no  specific  requirements  for
individual  sugar.  Instead,  there  is  a  collective  requirement  for  carbohydrates.
Similarly, there is a combined requirement for fatty acids and proteins. Some of
these  individual  sugars,  fats,  or  amino  acids  can  be  omitted  from  the  diet  if
appropriate  dietary  adjustments  are  made.  For  minerals  and  vitamins,  the
requirements  are  unambiguous  because  they  have  specific  metabolic  roles  that
cannot be replaced by other nutrients.

Following  a  myriad  of  biochemical  processes  during  ingestion,  digestion,
metabolism, and storage throughout the organism, the purpose of food (nutrients)
is to provide the required energy (metabolic fuels) for the body needs and thereby
maintain the stability of its milieu interieur (internal environment). As evidenced
from the homeostatic perspective of Claude Bernard and Walter Cannon [11, 12],
the  body  is  able  to  monitor  its  internal  conditions  and  make  the  necessary
adjustments  to  sustain  its  stability,  referred  to  us  as  energy  homeostasis  or
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homeostatic  control  of  energy  balance.  Obviously,  energy  intake  has  to  be
appropriate for the level of energy expenditure, and neither excess intake nor a
deficiency is desirable. In fact, an imbalance between energy inflow and outflow
that  results  from  gene-environmental  interactions  can  derive  a  positive  (body
weight  gain)  or  negative  (body  weight  loss)  energy  balance.  Total  energy
expenditure is composed primarily of basal metabolic rate (also known as resting
energy expenditure or resting metabolic rate),  diet-induced thermogenesis (also
called  specific  dynamic  action,  the  specific  effect  of  food,  or  thermic  effect  of
food),  exercise  or  physical  activity,  and  adaptive  thermogenesis.  Each  of  these
components  will  be discussed in detail  in  later  chapters.  As the energy used in
various activities can be measured, as can the metabolic energy yield of the foods
that provide the fuel for that work, it is possible to calculate the balance between
the energy intake and energy expenditure.

1.1.1. Macronutrients

1.1.1.1. Proteins

Protein was first discovered by the Dutch chemist Gerhardus Johannes Mulder in
1837, who described it as a nitrogen-containing part of food essential to life. One
year later, Jons Jacob Berzelius supported the theory of Mulder and proposed the
name  “protein”  which  is  derived  from  the  Greek  word  “proteos”,  and  means
“primary” or “first, for most” because it appears to be the primitive or principal
substance  of  animal  nutrition.  In  addition  to  carbon,  oxygen,  and  hydrogen,
protein  also  contains  nitrogen  and  sulfur  [13].

Proteins are essential parts of the diet (Table 1.1) and they are composed of amino
acids. Plant and animal proteins are composed of about 20 amino acids, organized
in  various  sequences  to  form  specific  proteins.  Intriguingly,  there  is  a  great
number  (over  900)  in  plants  that  are  non-protein  amino  acids  with  no  role  in
animal nutrition [14]. During digestion, proteins are broken down in the digestive
tract  to  free  amino  acids  that,  after  absorption,  are  used  to  exert  significant
biological  functions and are also used by the body to rebuild new proteins and
other necessary molecules such as neurotransmitters and hormones. The human
body,  for  instance,  can  make  some  amino  acids  (non-essential  or  dispensable
amino  acids),  but  others  must  be  obtained  from  the  diet;  these  are  so-called
essential  or  indispensable  amino  acids  (histidine,  isoleucine,  leucine,  lysine,
methionine, phenylalanine, threonine, tryptophan, and valine) [15]. In addition to
the abovementioned essential amino acids, poultry and swine need arginine [16].

#t1.1
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Table  1.1.  Food  composition  charts.  Macronutrients  are  in  g/100g,  minerals  and  vitamins  are  in
mg/100g, and E in kcal. Carbs, carbohydrates; E, energy; - traces.

- Food Protein Carbs Fat Thiamin Na E

- Flounder, baked 25 0 11 0.06 235 200

Fish Haddock, fried 21 4 8 0 180 175

- Lobster, boiled 22 0 3 0.08 330 120

- Fillet steak, fried 28 0 9 0.08 85 200

- Sirloin, roast 24 0 21 0.06 55 285

Meat Chicken, boiled 29 0 7 0.06 80 185

- Duck, roast 20 0 29 0 80 340

- Pork, grilled 22 0 19 0.5 70 260

- Turkey, roast 28 0 7 0 50 170

- Veal, roast 31 4 8 0 110 215

- Cheese, camembert 23 - 23 0.05 1410 300

- Danish blue 23 - 29 0.03 1420 355

Milk products Swiss cheese 29 - 29 0.01 155 375

- Milkshake, flavored 3 17 5 0.04 - 120

- Yoghurt, favored 3 11 4 0.04 40 100

- Cow milk, skim 10 60 - 0.1 180 265

- Apple 0.2 9 - 0.03 2 35

Fruits Apricot 0.5 6 - 0.04 - 25

- Raspberries 0.9 6 - 0.02 3 25

- Watermelon 0.2 3 - 0.01 2 10

Egg Egg, boiled 12 - 11 0.08 140 145

- Egg, fried 14 - 20 0.07 220 230

- Barely, boiled 3 28 1 - 1 120

- Wheat, starch-red 45 37 8 0.2 610 390

- Bread, wheat 14 48 2 0.2 540 205

Cereal products Cake, fruit 5 58 13 0.08 250 355

- Pasta, boiled 4 25 1 0.01 8 115

- Pizza, cheese 9 25 12 0.1 340 235

- Rice, boiled 2 30 - 0.01 2 125

- Lentils, boiled 8 17 1 0.1 10 100

- Asparagus, boiled 2 1 - 0.05 1 9

Vegetables Soya, boiled 11 11 6 0.2 2 130
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- Food Protein Carbs Fat Thiamin Na E

- Chickpeas, cooked 8 22 3 0.1 850 145

Nuts Almonds 17 4 54 0.2 6 555

- Peanuts, raw 24 6 34 0.6 4 395

Fat Butter, salted 0.4 - 81 - 840 730

- Vegetable oil - 0 100 - - 900

- Beer 0.3 2 - - 9 40

Beverages Cola-type drink - 11 0 0 8 40

- Lemonade - 10 0 - 7 40
The values of the above food composition charts were obtained from http://apjcn.nhri.org.tw

As protein and amino acids contain nitrogen, the protein digestibility by livestock
is often determined by measuring the nitrogen content of feed and feces, with the
difference  reflecting  the  amount  of  protein  (amino acids)  absorbed.  In  general,
proteins contain about 16% of nitrogen (6.26g of protein contains 1 g nitrogen).
The  nitrogen  (N)  content  is  measured  by  Kjeldahl1  procedure,  and  the  crude
proteins  (CP)  are  determined  using  the  following  equation:  CP=  N  x  6.25.

1.1.1.2. Carbohydrates

The  name of  carbohydrate  was  originally  assigned  to  substances  thought  to  be
hydrates  of  carbon  and  having  the  formula  Cn(H2O)n  where  not  only  the  molar
ratio  of  carbon  to  hydrogen  to  oxygen  is  1:2:1,  but  also  the  ratio  of  carbon  to
water  is  1:1.  Therefore,  carbohydrate  is  literally  means  “carbon  with  water  or
water  of  carbon”.  In  1747,  the  German  chemist  Andreas  Sigismund  Marggraf
discovered beet sugar. In 1811, the Russian chemist Constantine Kirchoff isolated
crystalline sugar from sweet syrup obtained from starch under the action of acids.
In 1844, Carl Schmidt designated carbohydrates (kohlenhydrate) as compounds
containing carbon, hydrogen, and oxygen and showed that sugar was also found
in the blood. In 1838, the French chemist Jean Baptiste Andre Dumas named the
molecule  glucose.  The  structure  of  simple  sugars,  including  glucose,  was
established by about 1900, mainly by the brilliant work of the Germain chemist
Emil  Fisher  who  thereby  laid  the  foundations  of  carbohydrate  chemistry.  The
main  members  of  the  complex  carbohydrate  macromolecule  are  plant  starch,
pectin,  cellulose,  and  gums.  Simple  carbohydrates  encompass  hexose
monosaccharides (glucose, galactose, and fructose) and the disaccharide maltose
(glucose-glucose),  sucrose  (glucose-fructose),  and  lactose  (glucose-galactose).
Other carbohydrates include trioses (glycerose), tetroses (erythrose), and pentoses
(ribose  and  desoxyribose),  which  are  important  constituents  of  nucleic  acids.
Today, carbohydrates comprise polyhydroxy aldehydes, ketones, alcohols, acids,

(Table 1) cont.....
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and amines, their simple derivatives and the products formed by the condensation
of  these  different  compounds  through  glycosidic  linkages  (mainly  oxygen
bridges)  into  oligomers  (oligosaccharides  which  yield  three  to  ten
monosaccharides on hydrolysis) and polymers (polysaccharides which yield more
than ten oligosaccharides). Carbohydrates can also link proteins or lipids to form
glycoproteins or glycolipids, respectively [17].

Carbohydrates  are  the  major  dietary  energy  source  for  most  animals,  with  the
exception of carnivores. Plant tissues contain pigments including chlorophyll and
carotenoid  that  harness  solar  energy  to  provide  electrons  and  produce
carbohydrates according to the following reaction: Solar energy + 6CO2 + 6H2O
→ C6H12O6  + 6O2.  According to rough estimates, more than 100 billion tons of
carbohydrates are formed each year on the earth from carbon dioxide and water
by the photosynthesis process. When animals digest plants, the energy contained
in carbohydrates is converted into another form of energy that can be utilized by
living cells and organisms (See chapter 6, section 6.3.2.4).

1.1.1.3. Lipids

Lipids are organic compounds of plant and animal tissues that are oily (fatty acids
or their derivatives) and are insoluble in water but soluble in organic solvents like
ether, acetone, and chloroform. The lipid content in feeds is determined by diethyl
ether extraction and is often referred to as the ether extract. In the early 1900s,
dietary  fat  was  viewed  simply  as  energy-rich  sources  interchangeable  with
carbohydrates, having about 218% of the energy content of carbohydrates on an
equal weight basis. In 1929, the Arkansian biochemist George Oswald Burr and
his  wife  Mildred  Burr  challenged  the  above  well-established  view  by
demonstrating  that  free-fat  diet  caused  the  deficiency  disease  in  rats  and
concluded that  fat  was an essential  dietary component  [18].  Their  discovery of
essential  fatty  acids  (linoleic  and  linolenic  acids)  was  a  paradigm-changing
finding and it is now viewed as one of the milestone discoveries in lipid research.
In  1933,  Arild  Hansen  (Burr’s  student)  found  infant  eczema  to  respond  to
supplement of lard which contained both linoleic and arachidonic acids [19]. In
1938, arachidonic acid was determined to be an essential fatty acid.

Fat and lipids vary considerably in size and polarity, ranging from hydrophobic
triglycerides  and  sterol  esters  to  more  water-soluble  phospholipids  and
cardiolipins. They also differ in the number of carbon atoms and in the amount of
hydrogen  they  contain.  For  example,  those  which  are  fully  saturated  with
hydrogen  are  named saturated  fatty  acids;  however,  the  unsaturated  fatty  acids
incorporate one or more carbon-carbon double bonds that are not saturated with
hydrogen. Dietary lipids also include cholesterol and phytosterols. Unlike other
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macronutrients,  and  due  to  non-water  miscibility,  lipids  undergo  different
processing  during  digestion,  absorption,  transport,  storage,  and  utilization  (see
chapter 7, sections 7.2.).

1.1.2. Micronutrients

1.1.2.1. Minerals

Mineral  elements  are  the  inorganic  constituents  of  plant  and  animal  tissues.  In
animal nutrition, they are categorized into two classes:

Macro-minerals which refer to those elements needed by the body in milligram1.
quantities  on  a  daily  basis  including  sodium,  potassium,  chloride,  calcium,
phosphorus,  and  magnesium.  They  serve  as  electrolytes  and  they  have  a
structural  as  well  as  metabolic  regulation  function.
Micro-minerals are the elements needed by the body in far smaller amounts.2.
They are divided in two groups: trace-minerals which include iron (Fe), copper
(Cu),  and  zinc  (Zn)  while  the  other  group,  ultra-trace  minerals,  contains
chromium (Cr), manganese (Mn), fluorine (F), iodine (I), cobalt (Co), selenium
(Se), silicon (Si), arsenic (As), boron (B), vanadium (V), nickel (Ni), cadmium
(Cd), lithium (Li), lead (Pb), and molybdenum (Mo). Of these trace-minerals,
only zinc, iron, iodine, and selenium have a recommended dietary allowance
(RDA) (Table 1.2)  because they are the most  studied.  For  some of  the other
minerals there is an intake recommendation known as generally recognized as
safe and adequate (GRSA) (Table 1.3). No intake recommendation, however,
has been made for the remaining minerals, including cobalt which is important
for microbial synthesis of vitamin B12.

Table 1.2. Recommended dietary allowance (RDA) for minerals.

- RDA

Group Age Fe (mg) Zn (mg) I (mg) Se (µg)

Infants 0-6 months 6 5 40 10

- 7-12 months 10 5 50 15

- 1-3 years 10 10 70 20

Children 4-7 years 10 10 90 20

- 8-11 years 10 10 120 30

- 12-14 years 12 15 150 40

Males 15-18 years 12 15 150 50

#t1.2
#t1.3
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- RDA

Group Age Fe (mg) Zn (mg) I (mg) Se (µg)

- 19-24 years 10 15 150 70

- 25-50 years 10 15 150 70

- +51 years 10 15 150 70

- 12-14 years 15 12 150 45

- 15-18 years 15 12 150 50

Females 19-24 years 15 12 150 55

- 25-50 years 15 12 150 55

- +51 years 10 12 150 55

Pregnancy 30 15 175 65

Lactation 0-6 months 15 19 200 75

- 7-12 months 15 16 200 75
Fe, Iron; I, Iodide; Se, Selenium; Zn, Zinc.

Table 1.3. Safe intake for selected minerals.

Minerals Safe Intake/day

Cu 1.5-3.0 mg

F 1.4-4.0 mg

Mn 2-5.0 mg

Cr 50-200 µg

Mo 75-250 µg
Cr, Chromium; Cu, Copper; F, Fluoride; Mn, Manganese; Mo, Molybdenum

Although these elements play a pivotal role, inadvertent exposure to a variety of
minerals can elicit a toxic response (Table 1.4). Similarly, deficiency can lead to
pathology and diseases (Table 1.4).

Table 1.4. Health conditions related to some of micro-mineral deficiency or excess.

Mineral Deficiency Excess-Toxicity

Cu Myeloneuropathy [20], myelodysplasia [21],
Osteoporosis, osteoarthritis, colon cancer,

cardiovascular disease [22 - 25]

Alzheimer [26]
Cirrhosis [27]

Anemia, leukopenia [28],
Tachycardia [29], Wilson disease [30]

Menkes disease [31]
Idiopathic Cu toxicosis

Fe Anemia [32] Hemochromatosis

(Table 2) cont.....
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Mineral Deficiency Excess-Toxicity

Zn Acne, eczema, xerosis, alopecia, stomatitis,
angular cheilitis, burning mouth syndrome, and

night blindness [33, 34]

Abdominal pain, nausea, vomiting, diarrhea,
red blood cell microcytosis, neutropenia,

I Goitre, Cretinism, thyroiditis [35, 36] Thyroid dysfunction

Co Pernicious anemia, neurological disorders
Wool break (sheep) and scours in calves

Cardiomyopathy, goiter, kidney and nerve
damage

F Dental caries, osteoporosis, bone disorder [37 -
39]

Skeletal fluorosis, bone fractures, irritable-
bowel syndrome, arthritis, ankylosing
spondylitis, nephrotoxicity [40, 41]

Mn Skeletal deformation, inhibit collagen production,
Perthes’ disease, arthritis [42 - 44]

Toxicity, liver failure, brain damage [45, 46]

Se Keshan disease, Kashin-Beck disease,
hypothyroidism, goiter, cretinism, recurrent

miscarriage [47]

Dyspnea, respiratory failure, endocarditis,
myocarditis, tibia erosion, chronic selenosis

Co, Cobalt; Cu, Copper; F, Fluorine; Fe, iron; I, Iodine; Mn, Manganese; Se, selenium; Zn, Zinc

1.1.2.2. Vitamins

Perhaps the earliest articulation of the “vitamin theory” came from Jean Baptist
Dumas  (French  chemist,  1800-1884),  Frederick  Gowland  Hopkins  (English
biochemist, 1861-1947), and Nicolai Ivanovich Lunin (Soviet pediatrician, 1853-
1937),  who  showed  that  in  addition  to  proteins,  fats,  carbohydrates,  salts,  and
water,  certain  special  substances  (named  accessory  factors  and  later  called
vitamin” are also needed for the animal to develop and live normally [48 - 51]. In
1912, the Polish biochemist Casimir Funk proposed the term “vitamine or vital
amine” instead of accessory food factors because these amines were vital to the
animal  survival  [52].  Later,  after  it  discovered  that  not  all  vitamins  contained
amines, the final “e” vowel was removed from the word.

Vitamins  are  a  large  group  of  potent  organic  compounds  other  than  proteins,
carbohydrates, and lipids that have specific roles in metabolism and are required
in the diet in minute amounts. They are divided into two categories based on their
solubility  characteristics.  The  fat-soluble  vitamins  contain  vitamin  A  (retinol),
vitamin  D  (cholecalciferol),  vitamin  E  (α-tocopherol),  and  vitamin  K
(phylloquinone),  which  are  soluble  in  one  or  more  solvents  such  as  alcohol  or
chloroform [53]. The water-soluble vitamins, including vitamin C (ascorbic acid)
and the  members  of  the  vitamin B-complex [vitamin B1 (thiamin),  vitamin B2
(riboflavin),  vitamin  B6  (pyridoxine),  vitamin  B12  (cyanocobalamin),  niacin
(nicotinic  acid),  folacin  (folic  acid),  biotin,  and  pantothenic  acid]  [54].

(Table 4) cont.....
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Deficiency in one or more vitamins causes a specific disease, which is cured or
prevented only by restoring the vitamin to the diet. Similarly, a toxic condition
can be developed when high levels of the vitamin are consumed. As an example,
vitamin A deficiency can result in blindness [55 - 57] and hypervitaminosis A can
lead  to  intoxication  in  humans,  rodents,  and  chickens  [58  -  61].  In  chickens,  a
depressed growth rate and an encrustation of the eyelids were observed. In rats,
the obvious clinical signs were bone fractures. In humans, hypervitaminosis A is
characterized by increased intracranial pressure resulting in headaches, blurring of
vision, skin lesions, anorexia, nausea, vomiting, and weight loss.

1.1.2.3. Other Organic Nutrients

Choline, carnitine, inositol, and several other biological active compounds such as
pyrroloquinoline  quinone  (PQQ),  ubiquinone,  lipoic  acid,  bioflavonoids,  and
pseudovitamins  are  not  actually  considered  minerals  or  vitamins,  but  they  are
known  to  be  important  nutrients  needed  for  many  functions  of  the  body.  The
structure, metabolism and function of these nutrients will not be discussed in this
edition, and I hope to include it in detail along with micro-nutrients in the next
edition.

1.1.3. Water

Although water is not included in the diet formulation in livestock or domestic
animals,  it  is  considered  an  inorganic  nutrient  as  it  does  not  possess  carbon-
hydrogen bonds.  Water  is  generally  required in  greater  quantity  than any other
orally  ingested  substance,  and  it  is  consumed  mostly  as  drinking  water.  In
addition to beverages, feedstuffs can provide 22% of total water intake and up to
60-90% if  they  are  fruits  or  vegetables.  A further  source  of  water  is  metabolic
water, also known as oxidation water, which is produced when macro-nutrients
(carbohydrates, fats, and proteins) are oxidized to yield energy. This accounts for
about 12% of total water intake and more on a high fat diet, or when metabolizing
fat  reserves.  Indeed,  animal  metabolism  produces  about  100,  42,  or  60g  of
metabolic  water  per  100g  of  fat,  proteins,  or  carbohydrates,  respectively  [62].

As for nutrients, water homeostasis is a balance between water intake and water
outputs. As shown in Table 1.5, in adult men, urine accounts for 47% of the total
fluid output from the body. The remainder is made up of sweat (22%) produced
by  the  sweat  gland,  water  in  exhaled  air  (11%),  insensible  losses  via  the  skin
(17%), and a relatively small amount (about 3%) in feces. Although water losses
in  exhaled  air  and  other  insensible  losses  are  relatively  constant,  sweat  losses
depend largely on the surrounding temperature and physical activity. Water losses

#t1.5


Water and Food Nutritional Biochemistry: From the Classroom to the Research Bench   11

in  feces  depend  on  the  diet;  the  more  the  diet  is  rich  in  fibers  more  the  water
losses  are,  because  the  fiber  retains  water  in  the  intestinal  tract  and  thereby
softening  the  feces.

Table 1.5. Daily fluid balance in human.

- Gender
Adult Man Adult Woman

- - mL/day % of total mL/day % of total

- Fluids 1950 65 1400 67

Input Water in food 700 23 450 21

- Metabolic water 350 12 250 12

- Total 3000 100 2100 100

- Urine 1400 47 1000 48

- Sweat 650 22 420 20

Output Exhaled air 320 11 320 15

- Insensible losses 530 17 270 13

- Water in faeces 100 3 90 4

- Total 3000 100 2100 100

The question is whether drinking water alone is sufficient to balance large losses
in  sweat  after  intense  exercise  or  under  high  environmental  temperatures.  The
answer is probably not because sweating involves not only water losses but also
mineral salts losses. Milk, fruit juices, and various sports drinks contain balanced
mixtures of mineral salts in the same proportion as they are lost in sweat.

Several species, including desert animals (e.g. pack rat, kangaroo rat) survive on
metabolic  water.  Because  of  lack  of  sweat  gland,  high  concentrated  urine
excretion, and low evaporation rate from the expired air, the kangaroo rat has a
very low rate of water loss [63]. The camel is able to survive for a considerable
time in desert conditions without drinking because it metabolizes the fat reserve
stored  in  its  hump [64].  Marine  mammals  such  as  seals,  sea  lions,  walrus,  and
whales and most marine fish, however, obtain their water from their food [65].

As shown in Table 1.6, there is a large difference in water requirements between
species.  One  of  the  factors  that  influence  this  difference  is  the  nature  of  the
nitrogenous  end  products  of  protein  metabolism  excreted  in  the  urine.

#t1.6
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Table 1.6. Estimated average water consumption of various species in a temperate climate (adapted
from NRC 1994).

Species Species Water (L/day)

Homo Sapiens
Homo Sapiens

Bos Taurus
Bos Taurus

Equus Ferus Caballus
Sus scrofa domesticus

Ovis aries
Capra hircus

Gallus gallus domesticus
Meleagris gallopavo

Man
Woman

Beef cattle
Dairy cattle

Horse
Pig

Sheep
Goat

Chicken
Turkey

~3
~2.1

26-66
38-110
30-45
11-19
4-15
4-15

0.2-0.4
~0.4

In fact,  large mammals require a  large amount of  water  to dilute urea which is
toxic to the tissues unless in dilute solution.  Birds excrete uric acid in a nearly
solid form and therefore require less water than mammals. Fish excrete ammonia
directly  from  the  gills.  The  surrounding  environmental  temperatures,  diet
composition,  feeding  strategies,  and  the  nature  of  the  digestive  tract  influence
water  requirements.  For  instance,  high  protein  diets  in  mammals  increase  the
amount  of  water  required  to  dilute  urinary  urea.  Compared  to  non-ruminant
species,  ruminants  require  a  larger  amount  of  water  to  form  a  suspension  of
ingesta in the rumen. Feedstuffs with high water-absorbing characteristics such as
dry hay augment the water requirements. Although water requirement is expected
to  increase  during  cold  weather  due  to  augmented-feed  intake,  it  is  more
intensified  under  hot  climates,  due  to  the  complex  interplay  between  the
hunger/satiety  and  thirst  centers.

1.2. Units of Energy

Thousands of years ago, an inherent internal energy flow within the human body
was  discovered  and  named  Qi  by  the  Chinese  and  Prana  by  the  Indians.
According  to  traditional  Chinese  and  Indian  Medicines,  this  flowing  energy
regulates the human body functions. In 1779, the French chemist Antoine-Laurent
Lavoisier coined the name Oxygen for the element released by mercury oxide and
found that oxygen was essential for combustion and respiration, confirming his
new fundamental law of nature “law of conservation of mass”. In collaboration
with  the  French  mathematician  Pierre-Simon  Laplace,  Lavoisier  developed  the
caloric theory of heat by demonstrating that the expiration of carbon dioxide by
mammals  increased  with  physical  activities.  The  oxidation  of  sugars  and  fats
accounted for the energy needed for animal heat production [66]. Later and during
the  period  1803-1873,  the  German  organic  chemist  Justus  Freiherr  von  Liebig
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asserted that protein was the only true nutrient serving as the source of energy for
muscular contraction by the breakdown that was followed by the synthesis and
then the excretion of urea.

Although Lavoisier named the calorimeter (calorimètre) by 1789, the word calorie
was being used as unit of heat by 1824 [67]. It was defined as the amount of heat
needed to raise the temperature of 1 g of water by 1°C. The calorie is still used to
some extent in nutrition. In biological systems, however, the kilocalorie (kcal or
103  cal  also  written  as  Calorie  with  a  capital  C)  is  used  and  is  defined  as  the
quantity  of  heat  required  to  raise  the  temperature  of  1  kg  of  water  by  1°C.  In
collaboration  with  Lord  Kelvin  to  develop  the  absolute  scale  of  temperature
(Kelvin scale), James Prescott Joule (English physicist and mathematician, 1818-
1889) estimated the mechanical equivalent of heat as 4.1868 joules per calorie of
work  to  raise  the  temperature  of  1g  of  water  by  1  Kelvin  [68].  In  biological
systems, the kilojoule (kJ= 103J) and Megajoule (MJ=106J) are used. The equation
below are given to convert between calories and joules:

1 kcal = 4.186 kJ and 1 kJ = 0.239 kcal.

Justus Freiherr von Liebig was the first to suggest that animals have the capability
to synthesize fats from sugars and starch. Other researchers built upon his work,
confirming the abilities of animals to synthesize molecules from dietary metabolic
fuels or metabolic energy (Table 1.7).

Table 1.7. Average energy yield of metabolic fuels.

- Kcal/g kJ/g

Carbohydrates 4 17

Protein 4 16

Fat 9 37

Alcohol 7 29
Note that 1 kcal = 4.186 kJ and 1 kJ = 0.239 kcal

The  metabolism  of  these  fuels  results  in  the  production  of  carbon  dioxide  and
water (and also urea in the case of proteins). They can be converted to the same
end products chemically by burning in air. Although the metabolic pathways and
processes in the body are complex, it is a fundamental law of chemistry that if the
starting material and end products are the same (law of mass conservation), the
energy yield is the same regardless of the route taken. Thus, the energy yield of
foodstuffs can be determined by measuring the heat produced when they are burnt
in the air.

#t1.7
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Every  living  organism  must  capture,  transduce,  store,  and  use  energy  to  live.
Following the first Law of thermodynamics, this energy is conserved; though it
can be changed from one form to another, it can be neither created nor destroyed.
As a living organism is an open system, it  is  able to exchange both matter and
energy with its surrounding environment and increase the entropy2 of the universe
and thereby follow the Second Law of thermodynamics. For instance, human or
animals digest food by breaking it down into metabolic fuels (sugar, fatty acids,
amino acids) and absorb them to build up cells and tissues and provide the energy
necessary for the daily needs of the body. Although this process increase the body
entropy, it decreases the order of the universe because the body dissipate (loses)
energy via conduction, convection, and radiation as well as eliminating waste.

As the cell is the basic unit and the microcosm of life, next chapter will describe
the components of cells.

CONCLUSION

Each  of  water  and  food,  including  carbohydrates,  proteins,  fats,  minerals,  and
vitamins,  has  a  unique  set  of  properties  that  influence  health.  Over  the  past
century, there has been tremendous progress in defining the mechanisms by which
the intake of each is regulated and the pathways by which each may contribute to
energy  homeostasis.  This  chapter  aims  to  describe  water  and  food  and  set  the
stage for the next chapters where their regulation and their physiological effects
will be discussed in more detail.

NOTES
1  Kjeldahl  method  or  Kjeldahl  digestion,  developed  by  Johan  Kjeldahl,  is  a
procedure  for  the  quantitative  determination  of  nitrogen  contained  in  organic
substances plus the nitrogen contained in the inorganic compounds ammonia and
ammonium

2 Entropy is a scientific concept, as well as a measurable physical property that is
most commonly associated with a state of disorder.
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CHAPTER 2

The Cell: The Basic Functional Unit of Life

Abstract: Cell  is  the smallest  and the basic functional unit  of  life.  Every organism,
whether prokaryotic, archaeans, or eukaryotic, is composed of a basic building block
which is the Cell. A cell consists of a cell membrane, a nucleus, and a cytoplasm where
intricate  arrangements  of  fine  fibers  and  organelles  lie.  Cells  are  specialized  for  a
specific purpose, they form tissues which in turn form organs, and several organs make
up  the  system,  and  several  systems  that  function  together  form  the  organism.  The
present chapter aims to describe the body, tissues, system, organism, and the structure
and function of the major cell organelles with a focus on eukaryotic cells.

Keywords: Cell, Organism, Organ, Organelle, Tissue, System.

INTRODUCTION

Cell is the basic structural, organizational, functional, biological, and fundamental
unit of all known living organisms. This statement sounds simple and evident to
any student with some background in the biological sciences. Nonetheless, it took
centuries for this concept to be demonstrated, developed, and accepted. Because
the cells are too small to be discerned with the naked eye, and because cutting-
edge technologies and microscopes did not exist, the very existence of cells was
not even surmised until the seventeenth century.

Although there are disputes and controversies regarding the original inventors of
telescopes  and  microscopes,  the  Italian  animal  and  plant  anatomist  Marcello
Malpighi (1628-1694) was among the first to use a microscope to investigate and
describe thin  slices  of  animal  tissues  and to  describe the  development  of  chick
embryo.  He  also  suggested  that  plant  tissues  contain  structural  units  called
“utricles” (later to be called “cells”). He was also among the first to observe red
blood  cells  under  a  microscope.  Because  of  his  work,  many  microscopic
anatomical  structures  were  named after  him including the  Malpighi  layer  (skin
layer), Malpighian corpuscles and Malpighian pyramids in the kidney, Malpighian
bodies or Malpighian corpuscles of the spleen as well as the Malpighian tubules in
the  excretory  system  of  insects.  The  botanical  family  Malpighiaceae  was  also
named after him [1].

Sami Dridi
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Later  on,  the Dutch scientist  Anton Van Leeuwenhoek (1632-1723) became an
expert  in  making  superior  lenses  and  building  microscopes  with  a  higher
magnifying power of 270x. He was the first to see and describe bacteria, protozoa,
rotifers,  and  hydra.  He  also  described  the  circulation  of  blood  corpuscles  in
capillaries  as  well  as  mammalian  sperm  cells.

The work of Leeuwenhoek was confirmed and further developed by the English
architect and scientist Robert Hooke (1635-1703), who published Micrographia in
1665.  Using  his  microscope,  Hooke  examined  a  thin  slice  obtained  from dried
cork and observed the pores where he decided to call  them cells [2].  Later,  the
French  physician,  botanist,  and  physiologist  René  Joachim  Henri  Dutrochet
(1776-1847) was given credit for discovering plant and animal cells and the actual
discovery of the process osmosis. He wrote that all animal and plant tissues were
“aggregates  of  globular  cells”  [3].  Robert  Brown,  the  Scottish  botanist  (1773-
1858),  made  a  critical  contribution  to  cell  biology  via  the  earliest  detailed
description of the cell nucleus and cytoplasm [4]. In 1839, the Czech anatomist
and  physiologist  Johann  Evangelist  Purkinje  coined  the  term  “protoplasm”  to
describe  the  content  of  cells.  The  German  botanist  Matthias  Jacob  Schleiden
(1804-1881)  extended the studies  begun by Robert  Brown on the structure  and
function of the cell nucleus (which Schleiden called a “cytoblast”) and was the
first to describe the nucleoli.

In 1839 and in association with Theodor Schwann (a German physiologist, 1810-
1882)  and  Rudolf  Ludwig  Carl  Virchow  (a  German  physician  and  biologist),
Schleiden established the cell theory, which contains three tenets: 1) all organisms
are composed of one or more cells, 2) the Cell is the basic unit of structure and
organization  in  organisms,  and  3)  cells  arise  from  pre-existing  cells.  The
abovementioned  cell  doctrine  was  the  foundation  of  modern  biology  where
unprecedented  growth  of  science  and  knowledge  about  the  Cell,  its  structural
organization  and  diversity  as  well  as  the  function  of  its  components  parts,  has
been  made.  The  modern  version  of  the  cell  theory  includes  the  following
additional  tenets:  1)  energy  flow  occurs  within  cells,  2)  heredity  information
(DNA) is passed from Cell to Cell, and 3) all cells have the same basic chemical
composition.

This unprecedented understanding is founded on the contributions of thousands
and thousands of scientists  from across the globe who partook in breakthrough
discoveries leading to solutions that make the world of today a better place.

In this chapter, after a brief description of the body, tissues, system, organism, I
will describe the structure and function of the major cell organelles with a focus
on eukaryotic cells.
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2.1. From the Cell to the Body

As  the  cell  theory  stated,  all  organisms  are  composed  of  one  or  more  cells.
Unicellular organisms, such as amoebas, bacteria, yeast, and plankton, consist of
only  a  single  cell.  Plants  and  animals  are,  however,  complex  multicellular
organisms. The structure of the animal body, is arranged into particular systems
with their specific functions. Cells together form tissue, which is grouped to form
organ. Each body organ has a specific shape and is composed of various types of
tissues that provide complex physiologic activities. Usually, two or more organs
together  with  other  tissue  that  provide  particular  types  of  body  functions  are
called  body  organ  systems.

2.1.1. Organ Systems

In animals, there are eleven distinguish organ systems: integumentary, nervous,
immune  and  lymphatic,  cardiovascular,  respiratory,  digestive,  urinary,
reproductive,  muscular,  skeletal,  and  endocrine  systems.

2.1.1.1. The Integumentary System

It  is  the  largest  organ  system  and  it  is  formed  of  three  main  parts:  epidermis,
dermis, and subcutis or hypodermis (Fig. 2.1). Among the skin related structures,
we can include hair, nails, sense receptors, glands, claws, declaws, hooves, horns,
and feathers (in birds). An important part of the integumentary system is formed
by  the  sebaceous  glands,  located  in  the  dermis,  which  produce  sebum  (oily
matter) that helps hydrate the skin. The second gland, sweat gland, plays a key
role in thermoregulation. Its primary function is to cool the organism, to a high
degree in horses and a lesser degree in swine, sheep and goat. Birds do not have
sweat  glands,  but  they  do  have  additional  integuments  such  as  beaks,  comb,
wattles, and feathers. Thus, the integumentary system serves as a barrier to protect
the body internal parts from injury, damage, hydration, or invasion by infectious
agents  and  regulate  temperature,  produce  pigments,  vitamin  D,  store  nutrients,
and provide sensory perception. In birds, the feathers serve also for flight.

2.1.1.2. The Nervous System

The nervous system is divided into two basic parts: 1) the central nervous system
(CNS) containing the brain and the spinal which is known as the control center
where  information  is  evaluated  and  decisions  are  made,  and  2)  the  peripheral
nervous  system  (PNS)  containing  the  sensory  nerves  and  sense  organs  which
monitor conditions inside and outside the body and communicate this information
with the CNS (Fig. 2.2).
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Fig. (2.1). Generalized features of integumentary system.

Fig. (2.2). Generalized structure of the nervous system. ANS, autonomic nervous system; CNS, central
nervous system; PNS, peripheral nervous system; SNS, somatic nervous system.
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The PNS contains the somatic nervous system (SNS), which includes all of the
voluntary efferent neurons and controls conscious efforts such as skeletal muscle
contraction.  The  autonomic  nervous  system  (ANS),  however,  includes  all  the
involuntary  efferent  neurons  and controls  subconscious  efforts  such as  visceral
and  cardiac  muscles.  There  are  two  divisions  of  the  ANS  in  the  body:  1)  the
sympathetic division, which is responsible for the “fight or flight” responses to
stress, stimuli, dangers, emotions, excitement, exercise, and embarrassment. This
sympathetic division increases respiration and heart rates and releases adrenaline
and  other  stress  hormones  such  as  corticosterone  or  cortisol  and  2)  the
parasympathetic division, which controls the “rest and digest” responses during
relaxation, resting, or feeding. This division functions to decrease respiration and
heart  rates  and  increase  digestion.  The  ANS  also  contains  the  enteric  nervous
system  (ENS),  which  controls  the  digestive  organs  and  regulates  digestion.
Although it communicates with the CNS via the sympathetic and parasympathetic
divisions, the ENS works independently without any outside inputs and thereby it
is frequently called “brain of the gut”, “little brain” or the “second brain” [5 - 7].

The nervous system is thus responsible for collecting, transferring, and processing
information  as  well  as  consciousness  or  awareness  of  living  organisms,
intelligence and learning.  It  also detects  special  senses like vision,  taste,  smell,
hearing, and balance.

2.1.1.3. The Immune and Lymphatic System

The immune and lymphatic  systems are  two closely related organ systems that
share  several  organs  and  immune-physiological  functions.  This  system plays  a
key  role  in  defending  the  animal  body  against  infectious  pathogens  (virus,
bacteria, fungi, etc.) and other foreign bodies. It contains several organs, including
capillaries,  vessels,  lymph,  lymph  nodes,  bone  marrow,  thymus,  spleen,  and
tonsils  (lymphoid  tissues).  Additional  to  these  organs,  the  lymphatic-immune
system in birds contains the Harderian gland and the bursa of Fabricius [8] (Fig.
2.3).  The  bone  marrow,  a  soft,  spongy,  and  fatty  substance  in  the  cavities  of
bones,  contains  blood-forming hematopoietic  stem cells,  which are  a  source  of
erythrocytes (red blood cells), leukocytes (white blood cells), and thrombocytes
(platelets).  The  afferent  lymph  vessels  transport  the  lymph  to  the  lymph  node,
where it is filtered before it is returned to the circulatory system. The spleen filter
and cleans the blood and lymph, recycle the old red blood cells, and store platelets
and white  blood cells.  In  the  thymus,  thymocytes  (bone-marrow hematopoietic
precursors)  mature  into  T  cells  which  emigrate  to  form  peripheral  T  cells
responsible  for  directing  many  parts  of  the  adaptive  immune  response  [9].
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Fig. (2.3). Generalized features of the immune-lymphatic system in human (a) and birds (b).

2.1.1.4. The Cardiovascular System

The cardiovascular system comprises the heart, blood vessels and the network of
the lymphatic system (Fig. 2.4). Its main function is to transport oxygen, nutrients,
hormones, and cellular waste products throughout the whole body. This system is
powered  by  the  heart,  cone-shaped  muscular  pumping  organ,  which  uses  two
primary  circulatory  loops.  The  pulmonary  circulation  transports  deoxygenated
blood from the right side of the heart (atrium and ventricle) to the lungs, where
the blood picks up oxygen and returns to the left side of the heart. The systemic
circulation carries highly oxygenated blood from the left atrium and ventricle to
all body tissues. This systemic circulation removes waste from body tissues and
returns deoxygenated blood to the right side of the heart.

The blood flows away from the heart via the arteries (blood vessels with a thick
wall around the lumen) and exchanges oxygen and nutrients with the cells of the
tissues via capillaries (blood vessels with a thin wall around the lumen). The veins
carry back the blood to the heart.

The  cardiovascular  system  plays  a  pivotal  role  in  transportation  (oxygen,
nutrients, cellular wastes), protection against pathogens via white blood cells and
transport  of  antibodies,  and  regulation  and  homeostatic  maintenance  of  several
internal conditions, including the core body temperature and the body’s pH.
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Fig. (2.4). Generalized features of the cardiovascular or circulatory system. The systemic circulation (in
red) caries oxygenated blood and the pulmonary circulation (in blue) transports deoxygenated blood.

2.1.1.5. The Respiratory System

The  respiratory  system  contains  three  major  parts,  including  the  airway  (nose,
mouth,  pharynx,  larynx,  trachea,  bronchi,  and  bronchioles),  the  lung,  and  the
respiration  muscles  (diaphragm  and  the  intercostal  muscles)  (Fig.  2.5).  The
respiratory system exchanges gases between internal body tissues and the external
environment. Oxygen in the air is inhaled from the external environment through
the airway into the lung, which helps to pass the oxygen to the blood and tissues.
Through vessels, the carbon dioxide is carried back from tissues into the lung and
is expelled out of the body.

In comparison with mammals and in addition to the lung, birds also have air sacs
(Fig.  2.5).  Depending  upon  the  species,  birds  have  seven  or  nine  air  sacs  (2
cervical, 2 cranial thoracic, 2 caudal thoracic, 2 abdominal, and 1 interclavicular
air sacs). Additionally, birds do not have a diaphragm; instead air is moved in and
out of the respiratory system via pressure changes in the air sac. Bird lungs do not
expand  or  contract  like  that  of  mammals.  Mammalian  lungs  contain  alveoli
(microscopic  sacs)  where  the  exchange  of  oxygen  and  carbon  dioxide  occurs;
however  bird  lungs  contain  air  capillaries  (walls  of  microscopic  tubules).
Respiration  in  birds  requires  two  respiratory  cycles  (inspiration,  expiration,
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inspiration, and expiration) to move air through the entire respiratory system. In
mammals, however, only one respiratory cycle is required.

Fig. (2.5).  Diagram of the respiratory system in human (a) and birds (b).

2.1.1.6. The Muscular System

The  muscular  system  is  responsible  for  the  movement  of  the  animal  body.  In
humans, for example, there are 700 named muscles attached to the bones of the
skeletal system. Each of these muscles is a discrete organ constructed of skeletal
muscle  tissue,  blood  vessels,  tendons,  and  nerves.  There  are  three  types  of
muscles,  including  visceral,  cardiac,  and  skeletal  muscle  (Fig.  2.6).

The  visceral  muscle  also  known  as  smooth  muscle  is  located  inside  of  the
gastrointestinal tract (stomach and intestines) as well as in the blood vessels. Its
function  is  to  move  substances  through  the  organ.  It  is  an  involuntary  muscle
because it is controlled by the unconscious part of the brain.

The cardiac muscle is  located only in the heart  and is  responsible  for  pumping
blood  throughout  the  body.  It  is  an  involuntary  muscle  and  is  intrinsically
controlled.

The only voluntary muscle is the skeletal muscle, which is controlled consciously.
Its primary function is to contract and move the other parts of the body for every
physical  action  (speaking,  walking,  or  writing).  The  secondary  function  is  to
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maintain the posture and body position. The final function of the muscular system
is to generate body heat via shivering thermogenesis.

Fig. (2.6). The human muscular system. Adapted from McGraw-Hill Education.

2.1.1.7. The Skeletal System

The skeletal system encompasses all of the bones and joints in the body. For an
adult human, this system contains 206 individual bones arranged into axial and
appendicular skeleton (Fig. 2.7). The axial skeleton, which runs along the body’s
midline  axis,  is  made  up  of  80  bones  in  the  skull,  hyoid,  auditory  ossicles,
sternum,  vertebral  column,  and  ribs.  The  appendicular  skeleton  contains  126
bones  in  the  upper  limbs,  lower  limbs,  pelvic  girdle,  and  pectoral  girdle.

The bones can be categorized into four types (Fig. 2.7):  1) long bones, such as
femur, tibia, fibula, and metatarsals, are responsible for the bulk of our height as
adults. They contain a medullary cavity in the center and serve as storage for bone
marrow. 2) Short bones, like the tarsal bones of the foot, are often cubed or round
in shape.  3)  Flat  bones,  such as  the  occipital  bones  of  the  cranium and the  hip
bones,  do  not  have  a  medullary  cavity.  4)  Irregular  bone  contains  the  sacrum,
vertebrae and coccyx of the spine as well as the zygomatic bones of the skull. 5)
The sesamoid bones, the patella and the pisiform bone, protect the tendon from
stress.
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Fig. (2.7). Diagram of the skeletal system. a) Long bone, b) short bone, c) flat bone, d) irregular bone, and
e) sesamoid bone. Adapted from www.pinterest.com

The function of the skeletal muscle is to form a solid framework that supports and
protects the body’s organs, such as the skull and the brain. It plays a key role in
hematopoiesis (production of red and white blood cells from the bone marrow). It
is also involved in the storage of many different types of essential substances such
as calcium to facilitate the growth and repair of the body.

2.1.1.8. The Urinary System

The urinary system consists of the kidney and the urinary tract, which contains the
ureter,  urinary  bladder,  and  urethra  (Fig.  2.8).  The  kidney  filters  the  blood  to
remove wastes and produce urine. The urinary tract acts as a plumbing system to
drain, store, and release urine during urination. This system plays a key role in
maintaining the homeostasis of water, ions, pH, osmolarity, and blood pressure
(see chapter 4). In comparison to mammals, birds do not have a bladder, but they
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do have a cloaca where solid and liquid wastes are mixed together. The major end
product of nitrogen catabolism in birds is uric acid, accounting for 70-80% of the
nitrogen excreted [10].

Fig. (2.8). Diagram of the urinary system.

2.1.1.9. The Digestive System

The digestive system contains a group of organs working together to convert food
into energy and basic nutrients to feed the entire body. The main alimentary canal,
where  food  passes  through,  comprises  the  oral  cavity,  pharynx,  esophagus,
stomach, small  and large intestines.  Several  other accessory organs such as the
teeth,  tongue,  salivary  glands,  liver,  gallbladder,  and  pancreas  help  the  body
digest  food  (Fig.  2.9).

This system has six major functions, including ingestion, secretion, mixing and
movement, digestion, absorption, and excretion (see chapters 7, 8, and 9, sections
7.3, 8.2, and 9.2.).

The  anatomy  and  function  of  the  digestive  system  differ  between  species.  For
instance,  in  avian  species,  known  as  modified  monogastric,  the  beak  is  the
prehension  tool.  Additionally,  although  humans  and  birds  both  have  small  and
large intestines as well as the esophagus, birds have proventriculas compared to
stomachs in humans. They also have gizzards compared to teeth in humans. The
proventriculus is a glandular stomach however the gizzard is a muscular stomach
for mechanical breakdown. The digestive system of birds comprises also a crop
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for feed storage and moistening and a cloaca. Unlike monogastrics, the digestive
system achieved its highest complexity in anatomy and function in ruminants such
as cows, sheep, and goats. The term ruminant was derived from the Latin word
“ruminare”  which  means  “chew  again”.  Thus  ruminants  chew  their  cud  by
regurgitation of  ingested materials.  Their  stomach contains  four  compartments,
including the rumen, reticulum, omasum, and abomasum (Fig. 2.9). As it contains
many anaerobic bacteria, the rumen, also known as anaerobic fermentation vat,
secretes enzymes that digest the consumed food and produce volatile fatty acids
and  ammonia.  The  rumen  also  synthesizes  amino  acids  and  water-soluble
vitamins.  The  reticulum  functions  to  eliminate  foreign  materials.  The  primary
function of the omasum is to further grind and break down feed. Fluids and small
particles flow through the omasum to the abomasum, true gastric stomach, where
acid  digestion  rather  than  microbial  digestion  takes  place.  The  acidity  in  the
abomasum kills the rumen microbes in the digesta before they move to the small
intestine.

Fig.  (2.9).  The  general  features  of  simple  monogastric,  modified  gastric  and  complex  ruminant
digestive  tract.  a)  Human,  b)  avians,  c)  bovine  and  d)  porcine.

2.1.1.10. The Reproductive System

The reproductive system is different in males and females (Fig. 2.10). The female
reproductive system includes the ovaries, fallopian tubes, uterus, vagina, vulva,
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mammary gland, and breasts. Its main function is to facilitate the fertilization of
ova  by  sperm  and  supports  the  development  of  offspring  during  pregnancy
(gestation  in  animal)  and  infancy.  The  male  reproductive  system,  however,
contains the scrotum, testes, spermatic ducts, seminal vesicle, prostate gland, and
penis. Its primary function is to produce sperm, the male gamete, and the other
components of semen.

Fig. (2.10). The reproductive system. a) Man, b) woman, c) roster, and d) hen.

Similarly, the reproductive system differs between mammals and avian species.
Hens  lay  eggs  instead  of  live  birth  in  mammals,  they  do  not  have  mammary
glands,  and  only  their  left  oviduct  and  ovary  are  functional.  Male  birds  do  not
have a penis, and their tests are internal versus  externals in mammals. In birds,
females are heterogametic sex (ZW) and males are homogametic (ZZ).  Female
birds determine the sex of offspring [11, 12].

2.1.1.11. The Endocrine System

The endocrine system comprises all the glands and their related hormones. The
glands  are  controlled  directly  by  stimulation  from  the  CNS  and  from  the
peripheral organ-producing hormones. In response to various stimuli (nutritional
status,  environment,  stress,  etc.),  glands  (pituitary,  pineal,  thyroid,  parathyroid,
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adrenal,  pancreas,  gonads,  thymus,  etc.)  (Fig.  2.11)  and  several  other  organs
secrete hormones in the bloodstream, which affect any cell with a receptor for a
particular hormone (Table 2.1). By affecting cells in several organs or throughout
the  entire  body,  the  main  function  of  the  endocrine  system  is  to  maintain  the
body’s  homeostasis  as  well  as  the  function  of  other  systems,  including
reproduction,  heart  rate,  digestion,  etc.

Fig. (2.11). The endocrine system.
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Table 2.1. List of some important polymers and their roles.

Organs/Glands Hormones and/or Peptides Function

Hypothalamus

Orexin [13] Appetite and wakefulness

Antidiuretic hormone (ADH) [14] Thirst regulation

Oxytocin [15] Feeling and emotion

Pituitary gland

Thyroid-stimulating hormone [16] Thyroid hormone regulation

Prolactin [17] Mammary gland growth

Follicle-stimulating hormone [18] Oocyte and ovarian follicle control

Luteinizing hormone [19] Induces ovulation

Adrenocorticotrophic hormone [20] Control corticosteroid production

Growth hormone [21] Induce growth and regulate metabolism

Pineal gland Melatonin [22] Regulates circadian rhythm (biological clock)

Thyroid gland Thyroid hormone (T3 and T4) [23] Regulate energy metabolism and heat production

Parathyroid gland Parathyroid hormone [24] Regulate calcium in bone tissues

Thymus Thymosin, thymulin [25] Maturation of T-lymphocytes

Adrenal cortex Mineralcorticoids [26] Control of glucose and glycogen metabolism

Pancreas Insulin and glucagon [27] Regulates glucose levels

Testes Testosterone [28] Regulates male reproductive system

Ovaries Estrogen and progesterone [29] Regulate female reproductive system

Kidney Erythropoietin [30] Controls the production of red blood cells

Liver Angiotensinogen [31] Regulates blood pressure

Stomach Gastrin [32] Regulates digestion

Small intestine Secretin, cholecystokinin [33] Regulates digestion and feed intake

Adipose tissue Leptin, visfatin [34, 35] Regulate energy homeostasis

Placenta Leptin [36] Regulates energy homeostasis

Hormones  are  classified  into  two  classes:  1)  water-soluble  hormones  such  as
insulin, epinephrine, and oxytocin. These hormones are unable to pass through the
phospholipid  bilayer  of  the  cell  plasma membrane and are  therefore  dependent
upon their receptors on the cell surface. 2) Lipid-soluble hormones include steroid
hormones such as testosterone, estrogens and glucocorticoids. As they are lipid-
soluble, these hormones pass through the phospholipid bilayer of the cell plasma
membrane and bind directly to its receptors inside the cell nucleus.

2.1.2. Tissues

As mentioned above, every organ in the body is made up of two or more tissues,
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aggregates  of  similar  cells  (shape  and  function)  and  cell  products  forming  a
definite  kind  of  structural  material  with  a  specific  function  in  a  multicellular
organism.  In  humans  and  other  animals,  there  are  four  basic  types  of  tissues:
epithelial, connective, muscular, and nervous tissue.

2.1.2.1. Epithelial Tissue

Epithelial  tissue  consists  of  tightly  packed  sheets  of  cells  (epithelial  cells)  that
cover the body surface and form the lining for most internal cavities. Depending
on  where  they  are  in  the  body,  they  have  different  shapes  (Fig.  2.12):  1)  Flat
shape for  squamous epithelial  cells  which are  usually  found lining surface that
require a smooth flow of fluid such as blood vessels, or lining areas that require a
thin surface for molecules to pass through like the air sacs of the lung. 2) Cuboid
shape for cuboidal epithelial cells, which are typically found in organs that secrete
or absorb substances such as the kidney and glands. 3) Columnar epithelial cells
are long and thin. They are typically found in organs that secrete mucus, such as
the stomach and intestine. 4) Ciliated columnar epithelial cells are found in the
upper respiratory tract, the fallopian tubes, the uterus, and the central part of the
spinal  cord.  They  are  covered  by  cilia  in  their  apical  surface.  Additionally,
epithelial  cells  can  be  described  as  being  either  simple  with  only  one  layer  or
stratified with many layers stacked on top of each other such as the skin.

Fig. (2.12). Different shapes of simple and stratified epithelium. a) Simple squamous lining the artery; b)
simple  cuboidal,  pancreas;  c)  simple  columnar,  digestive  tract;  d)  ciliated  columnar,  fallopian  tube;  e)
stratified squamous, salivary gland; f) transitional, bladder; g) pseudostratified columnar, male genital tract;
and h) pseudostratified ciliated columnar, epididymis.
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Epithelial cells are polarized with an apical (top) side that faces the inside of a
cavity  or  the  outside  of  a  structure  and  is  usually  exposed  to  fluid  or  air.  The
bottom side or basal side faces the underlying cells. The epithelial cells are joined
together by tight junctions that hold them tightly together to prevent leaks. The
epithelial  cells  exchange  nutrients  via  specialized  gap  junctions.  The  major
function  of  epithelial  cells  includes  protection,  secretion,  absorption,  and
filtration.

2.1.2.2. Connective Tissue

As the name implies, connective tissue serves a connecting function. It consists of
cells suspended in an extracellular matrix, which is made up of protein fibers such
as collagen and fibrin in a solid, liquid, or jelly-like ground substance. Connective
tissue supports and binds other tissues in the body.

Connective  tissue  fibers  and  matrix  are  synthesized  by  specialized  cells  called
fibroblasts and are divided into three types, including collagenous (to strengthen
the connective tissue), elastic (to help stretch the connective tissue), and reticular
fibers  (to  join  connective  and  other  tissues).  There  are  three  categories  of
connective  tissues  (Fig.  2.13):  1)  Loose  connective  tissue,  the  most  common
tissue in vertebrates, holds organs in place and attaches epithelial tissue to other
underlying tissues.

Fig. (2.13). Different types of connective tissues. a) Areolar connective tissue (loose connective tissue), b)
dense regular connective tissue from a tendon, c) dense irregular connective tissue from the dermis of the
skin,  d)  elastic  connective tissue in  the wall  of  the aorta,  e)  Hyaline cartilage connective tissue from the
shoulder joint,  f)  fibrous cartilage from the intervertebral  disc,  g)  adipose tissue,  and h)  bone connective
tissue.
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2) Dense or fibrous connective tissue is found in tendons and ligaments, which
connect muscles to bones and bones to each other, respectively. It also forms a
protective  capsule  layer  around  organs  such  as  the  liver  and  kidney.  Dense
connective tissue can be categorized into dense regular (tendons and ligaments),
dense irregular (dermis of the skin), and elastic connective tissue (artery, trachea,
and vocal cord). 3) Specialized connective tissues include a number of different
tissues  with  specialized  cells  and  unique  ground  substances.  Some  tissues  are
solid and strong, while others are fluid and flexible. For instance, adipose tissue,
cartilage, bone, blood, and lymph are all specialized connective tissues.

2.1.2.3. Muscle Tissue

Because of their “excitable” cells, muscle tissue is capable of contraction. Similar
to  connective  tissue,  muscle  tissue  is  also  the  most  abundant  tissue  in  most
animals.  It  contains  microfilaments  that  are  composed  of  contractile  proteins,
namely  actin  and  myosin  which  are  responsible  for  muscle  contraction  and
movement.  There  are  three  types  of  muscle  tissue  (Fig.  2.14):

2.1.2.3.1. Skeletal Muscle

Skeletal muscle is a striated (striped) muscle that is attached to bones by tendons,
controlled by the peripheral nervous system (PNS), and is associated with body’s
conscious  and  voluntary  movements.  Skeletal  muscle  cells  are  covered  and
protected  by  connective  tissues.  Blood  vessels

and  nerves  run  through  the  connective  tissue  and  supply  the  muscle  cells  with
oxygen, nutrients, and nerve impulses that induce contractions. Skeletal muscle
can be organized from top to  bottom in four  major  groups,  including head and
neck muscles (facial expression, chewing, neck movement), trunk muscle (chest
and abdominal muscles), upper extremity muscle (deltoid and biceps responsible
for  the movement  of  shoulders,  arms,  hands,  and fingers),  and lower extremity
muscle  (quadriceps,  hamstring,  groin,  and  calf  muscles  responsible  for  the
movement  of  legs,  ankles,  feet,  and  toes)  (Fig.  2.14a-c).

2.1.2.3.2. Visceral (Smooth) Muscle

Visceral muscles are mainly found in the walls of blood vessels and the digestive
tract as well as in many other hollow organs (Fig. 2.14d, e). Visceral muscles are
also  called  smooth  muscles  because  of  lack  of  cross  striations.  They  are
involuntary  and  regulated  by  the  autonomic  nervous  system  (ANS).  Visceral
muscles contract slower than skeletal muscle however, the contraction could be
sustained for  a  longer  period.  They are  two types  of  smooth  muscle,  including
smooth rhythmic muscles which contract periodically and spend most of the time
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in  a  relaxed  state,  and  tonic  smooth  muscles  which  remain  contracted  for  the
majority  of  the  time  and  only  relax  periodically.  Organs  of  the  cardiovascular,
respiratory, digestive, and reproductive systems are lined with smooth muscle.

Fig.  (2.14).  Different types of  muscle tissue.  a)  Frontal  and back muscle diagram, (b  and c)  skeletal  or
striated muscle tissue structure showing that skeletal muscle has striated, tubular, and multinucleated fibers,
(d and e) structure of smooth muscle from the small intestine and the wall of the artery, respectively. It shows
that smooth muscle has spindle-shaped, non-striated and uninucleated fibers. (f and g) structure of cardiac
muscle which has striated, branched, and uninucleated fibers.
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2.1.2.3.3. Cardiac Muscle

Cardiac muscles are found only in the walls of the heart. They are branched and
striated.  Cells  are  joined  to  one  another  by  intercalated  discs,  which  allow  the
synchronization of  the heart  contraction and beat  (Fig.  2.14f  and g).  The heart
wall consists of three layers: epicardium, myocardium, and endocardium.

2.1.2.4. Nervous Tissue

Nervous tissue is the main component of the nervous system, which includes the
brain, spinal cord, and nerves. It  is involved in integrating and sensing stimuli-
external  or  internal  cues-  and  processing,  transmitting,  and  communicating
information. Nervous tissue contains two categories of cells, including nerve cells
(neurons) and neuroglia known as glia (Fig. 2.15).

The  neurons  are  highly  specialized  nerve  cells  that  convey  information  very
rapidly  across  long  distances  through  generating  conducted  nerve  impulses  or
action  potentials.  There  are  several  types  of  neurons,  including motor  neurons,
sensory neurons, and relay neurons. A typical neuron consists of an enlarged part
called the cell body (or perikaryon), which contains the nucleus and dendrites that
receive the nerve impulse and an axon. Depending on the processes, neurons can
be unipolar (having an exon going towards and from the soma), which is mainly
found  in  insects,  bipolar  (having  two  processes,  an  axon  and  dendrite,  and  are
usually  seen  in  sensory  function  such  as  the  bipolar  cells  of  the  retina),  or
multipolar which contain one axon and multiple dendrites and commonly seen in
motor and sensory functions

The neuroglia acts mainly to support neuronal function. There are several types of
glia  cells:  1)  Astrocytes  (also known as  astroglial  cells),  which supply neurons
with nutrients, help migration of neurons during brain development, aid formation
of  the  blood-brain  barrier  (BBB),  maintain  appropriate  balance  of  Ca2+  and  K+

ions, and remove excess transmitters.

Ependymal cells form the lining of the ventricles of the brain and central canal1.
of  the  spinal  cord  and  aid  formation  and  circulation  of  cerebrospinal  fluid
(CSF).
Microglial cells play a key scavenging role by clearing debris and dead cells2.
and thereby protecting the central neurons from diseases.
Oligodentrocyte cells are found in the CNS and produce myelin sheath around3.
several adjacent axons of the CNS neurons.
Schwann  cells  are  found  in  the  PNS and  form myelin  around  a  portion  of  a4.
single axon only and they help with the regeneration of PNS axons.
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Fig. (2.15). General features of nerve tissue. (a and b) Different types of neurons, (c) structure of astrocytes
and  oligodendrocytes,  (d)  immunofluorescence  staining  of  astrocyte  cell  from  rat  brain  grown  in  tissue
culture and double-stained with antibodies against the glial fibrillary acidic protein (GFAP, red) and vimentin
(green)  which  make  the  astrocyte  cell  appears  yellow.  The  nucleus  of  the  Cell  appears  blue  with  DAPI
staining. (e) Immunofluorescence staining of rat oligodendrocytes using oligodentrocyte marker O1 antibody
(red) and the nuclei were stained with DAPI. (f)  Immunofluorescence picture of primary microglial  cells
isolated from mouse brain
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2.1.3. Cells

Fundamentally,  there  are  three  types  of  cells:  prokaryotic,  archaeans,  and
eukaryotic  cells.  Cells  of  all  multicellular  organisms  are  eukaryotic  and  their
name comes  from the  Greek  eu,  meaning  “well  or  true”  and  karyon indicating
“kernel  or  nucleus”.  In  contrast,  prokaryotic  (i.e.  before  nucleus)  cells  such  as
bacteria  lack  a  membrane-enclosed  nucleus  and  thereby  do  not  have  a  defined
nucleus.  Archaea  were  classified  in  the  past  as  bacteria  and  were  called
archaebacterial,  but  it  was  discovered  that  they  have  a  distinct  evolutionary
history and biochemistry (more complex RNA polymerase, no peptidoglycan in
the cell wall, and different membrane lipid bonding from bacteria). Because this
ebook addresses comparative biochemical nutrition in animals, all discussions of
cellular  structure  and  function  in  this  and  subsequent  chapters  pertain  to
eukaryotic  cells.

Although  animal  cells  vary  considerably  in  size  (from  1  to  100  µm),  shape,
organelle composition, and physiological role, they have a common structure and
similar  organization (Fig.  2.16).  All  animal  cells  have a plasma membrane and
nucleus,  and  most  of  them contain  an  endoplasmic  reticulum,  Golgi  apparatus,
mitochondrion, and several other organelles, including centrioles, lysosomes and
peroxisomes. In addition, they comprise ribosomes macromolecules made of both
RNA and proteins. Whether ribosomes are considered as organelle or not, it is a
debate  matter.  Originally,  the  term  organelle  referred  to  only  membranous
structures however it has come to mean any well-defined subcellular structure that
performs a particular function (Table 2.2). Yet it is noteworthy that animal cells
do not have a cell wall or chloroplast, but they do have small vacuoles to store
nutrients or water.

2.1.3.1. The Plasma Membrane

The  plasma  membrane  also  called  the  cell  membrane  or  plasmalemma  is
composed of a phospholipid bilayer embedded with protein molecules (Fig. 2.17).
It forms a boundary that separates the living contents of the Cell (cytoplasm and
organelles) from the surrounding external environment. It regulates the passage of
molecules into and out of the cytoplasm, and in some tissues such as the nervous
tissue,  it  is  involved  in  intracellular  communication.  In  the  apical  surface  of
secretory and absorptive tissues, portions of the plasma membrane are modified to
form microvilli (fingerlike projections) which greatly increase the surface area of
the Cell  and provide for the increased exchange of materials  across the plasma
membrane.
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Fig. (2.16). Structure and composition of eukaryotic Cell. The upper panel is a cartoon image of animal
cell  structure  and  composition.  The  lower  panel  is  transmission  electron  micrograph  showing  different
organelles  of  porcine  intestinal  enterocytes  (IPEG-J2)  cells.  AP,  autophagosome;  Cr,  cristae;  GV,  Golgi
vacuole; IM, inner membrane; IS, intermediate space; L, lysosome; Mx, matrix; NE, nuclear envelop; OM,
outer membrane; P, peroxisome; V, vacuole. Sections were viewed at 100 kV, with a transmission electron
microscope  (JEM-1011,  JEOL,  Tokyo,  Japan)  at  the  Institute  for  Nanoscience  and  Engineering  at  the
University of Arkansas, Fayetteville.
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Table 2.2. Structure and composition of eukaryotic cell.

Organelle Composition Function

Plasma membrane Phospholipid bilayer with embedded proteins
Defines cell boundary and
regulates molecule passage into
and out of the cell

Nucleus Nuclear envelope, nucleoplasm, nucleoli, and
chromatin

Storage of genetic information and
synthesis of RNA/DNA

Endoplasmic reticulum Membranous flattened channels and tubular
canals

Synthesis and/or modification of
proteins and other substances, and
distribution by vesicle formation

Golgi apparatus Stack of small membranous sacs Processing, packaging, and
distribution of proteins and lipids

Mitochondrion Inner membrane bounded by an outer
membrane Cellular respiration

Cytoskeleton Microtubules, intermediate filaments, and
actin filaments

Shape of cell and movement of its
parts

Centriole
A self-replicating, minute, fibrous, cylindrical-
shaped organelle near the nucleus. It contains
9 pairs of microtubules

Nuclear division

Lysosomes Membranous vesicle containing digestive
enzymes Intracellular digestion

Autophagosomes
Double-membraned vesicles that contain
cellular material including organelle slated to
be degraded

Intracellular digestion

Peroxisomes Membranous vesicle containing specific
enzymes such as catalase and peroxidase

Essential metabolic functions,
decomposition of fatty acids and
hydrogen peroxide

Ribosomes RNA and associated proteins Protein and polypeptide synthesis

Flagelle and cilia Extension of the cell membrane containing
microtubules Cell movement
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Fig. (2.17). Structure and composition of the cell membrane. Proteins of the cell membrane is divided into
two groups: Integral proteins (directly incorporated within the lipid bi-layer) and Peripheral proteins (loosely
associated with membrane surface).

The  plasma  membrane  of  neighboring  cells  in  a  tissue  frequently  exhibits
specialized junctional regions that play a role in cell-cell adhesion/communication
and  in  intercellular  transport.  The  most  common  of  these  junctions  are  tight
junction  (zonula  occludens),  intermediate  junctions  or  belt  desmosomes  (also
known as zonula adherens), spot desmosomes (macula adherens), gap junctions
(connexons or nexuses), and plasmodesmata.

2.1.3.2. The Nucleus

The nucleus is the largest cellular organelle with a diameter of about 5 µm. The
nucleus  is  separated  from  the  cytoplasm  by  the  nuclear  envelope  which  is
composed of two membranes (an inner and an outer membrane) that appear to be
a  dynamic  structure.  These  membranes  are  continuous  channels  with  the
endoplasmic reticulum, which make possible communication between the nucleus
and the cytoplasmic matrix. At various positions, the outer and inner membranes
fuse  to  form  the  nuclear  pores  of  sufficient  size  (~  100  nm),  allowing  the
bidirectional  transport  of  proteins  and  ribosomal  subunits.

The matrix held within the nuclear envelope is composed of chromatin plus all the
enzyme and minerals necessary for the activity of the nucleus. Condensed regions
of  the  chromatin  are  called nucleoli,  in  which are  found not  only  DNA and its
associated alkaline proteins (histones)  but  also a  considerable amount of  RNA.
Thousands of protein-coding genes are encoded within the nuclear DNA of the
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Cell.  The  protein  synthesis  occurs  in  phases,  referred  to  as  transcription,
translation, and elongation, each of which requires DNA and/or RNA activity, and
that will be reviewed in chapter 7 (section 7.4).

2.1.3.3. Mitochondria

Mitochondria  is  the  energy-related  membranous  organelle  that  specializes  in
converting  energy  to  a  form  the  Cell  can  use,  and  they  are  often  called  the
powerhouse of the Cell. Mitochondria are usually 0.5 to 1 µm in diameter and 2 to
5  µm  in  length  however,  the  size  and  shape  of  the  mitochondria  in  different
tissues vary according to the function(s) of the tissue. For instance, mitochondria
are held tightly among the fibers in the muscle, but they appear spherical-shaped
with freely moving in the liver. Each mitochondrion in the cytoplasm is bordered
by two membranes:  the  outer  membrane,  which is  smooth  and porous,  and the
inner  membrane,  which  contains  numerous  cristae  (invaginations).  The  space
between  neighboring  cristae  is  known  as  the  mitochondrial  matrix.  The  inner
membrane  contains  enzymatic  complexes  essential  for  the  electron  transport
(respiratory)  chain  by  which  most  cellular  adenosine  triphosphate  (ATP)  is
produced. The mitochondria matrix contains various metabolic enzyme systems
involved in catalyzing reactions of the Krebs cycle, fatty acid oxidation, oxidative
decarboxylation  and  carboxylation  of  pyruvate,  and  certain  reactions  of  amino
acid metabolism, which will be discussed in depth in chapters 6 and 7.

Although the nucleus contains most of the Cell’s DNA, the mitochondrial matrix
encompasses 13 protein-encoding genes and ribosomes that are vital for oxidative
metabolism [37]. Interestingly and unlike the nuclear genes, these mitochondrial
genes are inherited only from the mother. The rest of the enzymes operating in the
mitochondria are coded by nuclear DNA, synthesized on the rough endoplasmic
reticulum and then are imported into existing mitochondria.

All cells in the mammalian body, with the exception of the erythrocyte, possess
mitochondria.  The  erythrocyte  lose  their  mitochondria  during  erythropoiesis  at
phase  3  (maturation)  where  normoblast  eject  the  nucleus  and  organelle  (Fig.
2.18). Functional erythrocytes produce energy by fermentation through anaerobic
glycolysis.  The  only  and  first  mysterious  eukaryote,  oxymonad
monocercomonoides  species,  was  found  without  mitochondria  [38].
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Fig. (2.18). Schematic illustration of erythropoesis. Erythropoesis starts with a haematopoietic stem cell,
which differentiates into a common myeloid progenitor and then into a megakaryocyte-erythroid progenitor.
Further differentiation results in a commitment to the erythroid lineage. The proerythroblast is the earliest
morphologically  identifiable  bone  marrow  red  cell  precursor,  characterized  by  a  large  cell  with  a  high
nuclear/cytoplasmic ratio, prominent nucleoli and blue cytoplasm (presence of RNA). As the erythroid cells
mature,  they  become  smaller,  have  more  condensed  chromatin,  lose  their  nucleoli,  and  their  cytoplasm
changes  from  blue  to  pink.  The  nucleus  and  the  organelle  (mitochondria)  are  extruded,  resulting  in  a
reticulocyte. Most of the process takes place in the bone marrow over three weeks. The resulting reticulocyte
retains  some ribosomal  RNA to  make  haemoglobin  and  after  1-2  days  in  the  bone  marrow,  it  enters  the
peripheral blood where the RNA is lost after 1-2 days resulting in a mature RBC. RBC, red blood cell.

2.1.3.4. Endoplasmic Reticulum

The  endoplasmic  reticulum  (ER)  is  an  extensive  network  of  branching  and
anastomosing  membrane-limited  channels  and  sacs  (cisternae  and  flattened
vesicles).  The  ER  membrane  divides  the  cytoplasm  into  two  phases:  the
intracisternal  (luminal)  phase  and  the  hyaloplasmic  (cytosol)  phase.

The ER is classified as either rough (granular) or smooth (agranular). Rough ER
is  studded  with  ribosomes.  These  ribosomes  are  distributed  either  along  the
cytosol or free in the cytosol and thereby named “attached” or “free” ribosomes,
respectively. Ribosomes associated with the rough ER are mainly composed of
ribosomal RNA and structural proteins and they are primarily involved in protein
synthesis,  a  subject  covered  at  length  in  chapter  5.  Smooth  ER,  which  is
continuous  with  rough  ER,  however,  does  not  have  attached  ribosomes  and
synthesizes phospholipids found in cell membranes as well as those that perform
various other functions. In fact, smooth ER in the testes, for example, produces
testosterone.  In  the  liver,  smooth  ER  plays  an  important  role,  through  the
cytochrome P450 and mixed-function oxidase system, in the detoxification and
metabolism  of  many  different  drugs.  In  muscle  cells,  the  smooth  ER  stores
calcium  ions.  Certain  portions  of  the  ER  may  be  continuous  with  the  plasma
membrane and the nuclear envelope. Regardless of any specialized function, the
smooth  ER  also  forms  vesicles  in  which  products  are  transported  to  the  Golgi
apparatus.
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2.1.3.5. Golgi Apparatus

The Golgi apparatus (also known as Golgi body or Golgi complex) was named for
the  Italian  neuroscientist  and  biologist  Camillo  Golgi  (1843-1926),  who
discovered  its  presence  in  Cell  in  1898  and  who was  given  the  Nobel  Prize  in
Physiology  and  Medicine  in  1906  in  recognition  of  his  work  on  the  nervous
system  structure.

The  Golgi  apparatus  consists  of  a  set  of  membrane-enclosed,  smooth,  and
flattened  cisternae  stacked  in  parallel.  It  functions  closely  with  the  ER  in  the
trafficking and sorting of proteins synthesized in the Cell. Three tubular networks
at either end of the Golgi stacks have been identified [39]: the cis-Golgi network,
which  acts  as  an  acceptor  compartment  of  newly  synthesized  proteins  coming
from the ER, the trans-Golgi network, which is responsible for sorting proteins
for  delivery  to  their  next  destination  [40],  and  the  medial  cisternae  which  are
positioned between the cis- and trans-Golgi.

The Golgi apparatus receives proteins and lipid-filled vesicles that bud from the
ER. The vesicle transport from the ER to the cis-Golgi complex, via the medial
Golgi  stacks,  and  from  the  trans-Golgi  network  to  the  plasma  membrane  is
specifically  controlled  by  specific  proteins  that  serve  as  tags  to  tell  the  Golgi
complex  whether  they  are  destined  for  secretion,  inclusion  in  the  plasma
membrane,  or  incorporation  in  lysosomes.

2.1.3.6. Lysosomes

Lysosomes  were  discovered  by  the  1974  Nobel  Prize-winner  Christian  René
Marie  Joseph,  Viscount  de  Duve  (1917-2013),  a  Belgian  cytologist  and
biochemist.  They  are  membrane-bound  vesicles  produced  and  budded  in  the
cytoplasm by the Golgi apparatus with the digestive enzymes (acid hydrolases)
inside. Approximately 36 powerful enzymes, including proteases,  glycosidases,
and sulfatases capable of breaking down biomolecules like proteins, nucleic acids,
carbohydrates,  and  lipids  from  the  cell  surface  presented  via  endocytosis.
Lysosomes  also  digest  foreign  materials  such  as  viruses  and  bacteria  during
phagocytosis. Another catabolic activity of lysosomes is autolysis or autophagy,
in which intracellular components including damaged organelles are digested as a
result of dysfunction, degeneration or cell injury. Lysosomes are particularly large
and  abundant  in  macrophages  and  leukocytes,  and  they  are  humorously  called
“suicide sacs”.

Lysosomes play a key role in maintaining cellular homeostasis, plasma membrane
repair, cell signaling [41], and energy metabolism. For instance, lysosomes of the
osteoblasts promote the dissolution of minerals and the digestion of collagen, both
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of which actions are necessary in bone resorption/remodeling and regulation of
calcium and phosphorus homeostasis [42]. In addition, lysosomes are involved in
the  regulation  of  hormone  secretion,  such  as  that  of  thyroid  hormones  [43].
Malfunction of lysosomes can result in lysosomal storage diseases such as Tay-
Sachs and Pompe’s diseases.

2.1.3.7. Peroxisomes

Similar to lysosomes, peroxisomes are also discovered by Christian René Marie
Joseph, Viscount de Duve, and are membrane-bound vesicles or microbodies that
also contain a variety of enzymes. However and in contrast to lysosomes which
are formed in the Golgi complex, peroxisomes self-replicate, and their enzymes
are  synthesized  by  cytoplasmic  ribosomes  and  transported  into  peroxisome  by
carrier proteins. The primary function of these enzymes is to rid the Cell of toxic
substances, and in particular, hydrogen peroxide (H2O2) by the catalase enzyme
[44]. Indeed, Catalase converts the potentially harmful H2O2 to water and oxygen.
Some types of peroxisomes, such as those in liver cells, detoxify alcohol (ethanol)
via  oxidation  by  alcohol  dehydrogenase  and  microsomal  cytochrome  P-450
systems. The ethanol is oxidatively degraded to acetaldehyde and then to acetate.
The  acetate  is  subsequently  converted  to  acetyl-CoA,  transported  to  the
mitochondria for oxidation via the Krebs cycle (chapter 6). Absence or reduced
number of peroxisomes in the Cell has been shown to   be   linked   to   Zellweger
syndrome, which usually causes death within the first year of life and for which
there is no effective treatment [45, 46].

2.1.3.8. Autophagosomes

Autophagosomes are spherical structures with double-layer membranes. They are
key  structures  in  macroautophagy,  the  evolutionary  conserved  intracellular
degradation process for cytoplasmic contents (damaged organelles, etc.) and also
for invading microorganisms. Several autophagy-related (Atg) genes orchestrate
the  different  sequential  steps  of  autophagosome formation.  The first  two steps,
initiation  (step  1)  and  nucleation  (step  2),  involve  the  recruitment  of  cytosolic
components of the core autophagic Atg1 kinase complex to the omegasomes [47].
The  third  step  is  the  expansion  and  elongation  of  the  double-membrane
phagophores  [48].  The  phagophores  surround,  engulf,  and  entrap  the  cargo
designated for autophagy and are close to forming mature autophagosomes (step
4)  [49].  The  autophagosomes  fuse  either  directly  to  lysosomes  to  form
autophagolysosomes or to late endosomes to give amphisomes that subsequently
fuse with lysosomes resulting in degradation of the contents [50].

Autophagy machinery plays a pivotal role in maintaining cellular metabolism and
homeostasis  and  thereby  participates  in  a  plethora  of  (patho)physiological
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processes ranging from starvation adaptation, intracellular protein and organelle
clearance,  cell  differentiation  and  development,  innate  and  adaptive  immunity,
tumor suppression, and lifespan extension [51, 52]. Autophagy dysregulation is
linked  with  various  diseases  such  as  cancer,  metabolic  syndrome,
cardiomyopathy,  muscular  disorders,  and  neurodegeneration

2.1.3.9. Ribosomes

Ribosomes are first described by the Romanian-American cell biologist George
Emil Palade who was awarded the Nobel Prize in Physiology and Medicine along
with Christian de Duve in 1974. Ribosomes are present in large numbers in all
living cells and serve as the site of protein synthesis (chapter 5). They can be free
or attached to the membrane of the ER and a single actively replicating eukaryotic
cell  may  contain  as  many  as  10  million  ribosomes.  The  size  of  the  ribosomes
within cells varies depending on the cell type and physiological status (resting or
replicating) of the Cell.

Ribosomes  are  made  up  of  about  40%  ribosomal  proteins  and  60%  ribosomal
RNA (rRNA) by weight. Based on their relative size, each ribosome is composed
of two subunits,  a large one called the 60S containing three rRNA species (5S,
5.8S, and 28S), and a smaller one designated 40S (18S) and 50 or more proteins.
The subunits typically are referred to in terms of their sedimentation rate which is
measured in Svedberg units (S). Proteins, synthesized at ribosomes attached to the
endoplasmic  reticulum  have  a  different  destination  from  that  of  proteins
synthesized  at  ribosomes  free  in  the  cytoplasm.

2.1.3.10. Centrosome

The  centrosome  was  discovered  by  Edouard  Van  Beneden  in  1883  and  was
described and named in  1988 by Theodor  Boveri.  As its  Greek name indicates
(centrum “center” and Soma “body”), the centrosome is an organelle that serves
as the main microtubule-organizing center of the animal cell as well as a regulator
of cell-cycle progression.

Centrosomes contain two centrioles arranged at right-angles to each other and are
surrounded by the pericentriolar material (proteins) such as γ-tubulin, pericentrin,
and mine in, which are responsible for microtubule nucleation and anchoring [53].
In  many  cell  types,  the  centrosome  is  replaced  by  a  cilium  during  cellular
differentiation.  Once  the  Cell  starts  to  divide,  the  cilium  is  however  replaced
again by the centrosome [54]. During the prophase in the process of cell division,
the  centrosomes  migrate  to  opposite  poles  of  the  Cell  and  interact  with  the
chromosomes  to  build  the  mitotic  spindle.  Upon  division,  each  daughter  cell
receives  one  centrosome.
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2.1.3.11. Flagella and Cilia

In  eukaryotic  cells,  cilia  are  much  shorter  than  flagella,  but  they  have  similar
construction. Both are membrane-bound cylinders. The cylinders are composed of
nine microtubule doublets arranged in a circle around two central microtubules. In
contrast to protozoa and other microorganisms where cilia and flagella are used
for  locomotion,  in  eukaryotic  cells,  these  organelles  are  employed  to  move
substrate  across  the  cell  surface  such  as  mucus  in  the  respiratory  tract.

2.1.3.12. The Cytoskeleton

The cytoskeleton consists of arrays of thin filaments, intermediate filaments, thick
filaments, and microtubules. These structures give shape and form to the Cell and
are also involved in the movement of the Cell and its organelles. However, the
cytoskeleton  is  dynamic  because  its  protein  components  can  assemble  and
disassemble  as  needed.

CONCLUSION

At the lowest level of the hierarchy of an organismal biological structure,  cells
(the smallest units of life) are organized into tissues that carry out a specific task.
Tissues are arranged together to form organs that execute particular functions, and
group of organs with related functions compose the organ systems.

Organisms  need  an  outside  source  of  materials  and  energy  to  maintain  their
homeostatic  organization  and  perform  other  life’s  activities.  This  energy  is
acquired by eating food. The consumed food passes through fascinating processes
from ingestion to excretion, where it is mechanically and chemically broken down
to provide the necessary nutrients and energy for the cells.
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CHAPTER 3

Food Intake Regulation: Factors Influencing Food
Intake

Abstract:  Understanding  the  regulation  of  food  intake  is  critical  to  managing  body
weight,  health,  growth,  and  metabolic  disorders.  Eating  behavior  is  controlled  by
various factors and signals. This chapter aims to define and discuss the external factors,
such as chemical senses, flavor, taste, aroma, texture, sight of food, and a variety of
environmental, social and psychological that regulate appetite and feeding behavior.

Keywords: Appetite, Cultural factors, Environmental factors, Feeding behavior,
Food choice, (Psycho)-socioeconomic factors, Physiological factors.

INTRODUCTION

As I stated in Chapter 1, we eat because we are hungry and drink because we are
thirsty. Before I discuss the chemistry and biochemistry determining the fate of
food  and  water  in  the  body,  I  will  describe,  in  this  chapter,  the  complex
physiological and psychological mechanisms involved in the control of not only
hunger, thirst, and satiety but also the appetite for different types of food. I will
also uncover the relationship between food intake, energy expenditure, and body
weight  and  close  the  chapter  by  describing  some  of  the  known  disorders  of
appetite.

3.1. Regulation of Feed Intake

The first two questions that one might ask are: 1) Is there a “set point” for human
and  animal  body  weight?  And  2)  in  comparison  to  humans,  is  feed  intake  in
animals tightly controlled or random and unplanned?

The  set-point  theory  postulates  that  human  body  weight  is  regulated  at  a
predetermined level and is maintained at a relatively stable level for long periods.
This  regulation  involves  a  feedback  mechanism between  the  periphery  and  the
CNS to correct any deviations in body weight from set-point. Evidence indicates
that many factors, including nutrients,   dietary   composition,   hormones,   neural
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pathways, behavioral, and physiological mechanisms, are involved to “defend” a
certain range of body weight [1 - 3].

The best evidence for this is that when people choose a diet to eat less, most of
them can lose some weight. However, throughout time, the body weight returns to
about  the  same  level.  Moreover,  when  people  lose  weight  following  fat  tissue
removal by lipectomy or liposuction, they gain body weight through an increase
in their  food intake,  which, in turn,  allows body fat  to slide back to its  former,
pre-operational level.

Similar to humans, large farm animals do have body weight set-point [4]. Birds
are also able to adjust their feed intake according to their metabolisable energy,
protein, and/or carbohydrate requirement. Indeed, Plavnik and Hurwitz showed, in
the  1990’s,  that  chickens  (gallus  gallus  domesticus)  and  turkeys  (meleagris
gallopavo)  were able to return to their  initial  body weight after feed restriction
followed  by  ad  libitum  re-feeding  [5].  It  has  also  been  reported  that  force-fed
birds were able to return to their initial body weight when they had free access to
food [6].

For  both  humans  and  animals,  the  set-point  for  bodyweight  varies  among
individuals and sometimes in a time-dependent manner, with some remaining lean
throughout their lives while others stand at a normal weight or in the overweight
(obesity) range. This is due mainly to genetic determinants and their interactions
with  environmental  factors.  The  individual  has  no  control  over  some  of  these
factors, including developmental determinants, genetic makeup, gender, and age.
Other factors that influence body weight over which the individual has potential
government encompass a level of physical activity, diet, and some environmental
and social factors.

Interestingly,  the  animal  genetic  selection  for  high  growth  rate  and  high
phenotypic feed efficiency, which is defined as the ability of an animal to convert
feed  nutrients  into  products;  milk,  meat,  egg,  etc.,  has  markedly  improved
livestock  productivity  over  the  past  70  years.  However,  associated  with  these
successes,  there  have  been  a  number  of  unwanted  changes  in  the  regulation  of
feed  intake.  For  instance,  modern  broilers  (meat-type)  chickens  became
hyperphagic1  and  achieved  a  100-fold  increase  in  body  weight  arising  mainly
from pectoralis (breast) muscle and abdominal fat during a period of 56 days [7,
8]. This indicates that modern broilers might lose their body weight set-point due
to changes in the complex molecular mechanisms regulating feed intake, energy
expenditure,  and/or  intermediary  metabolism  related  to  nutrient  utilization  and
partition.
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3.1.1. Factors that Influence the Choice of Food

3.1.1.1. Food Intake and Chemical Senses

Human  beings  have  developed  and  elaborated  complex,  overlapping,  and
sometimes redundant  physiological  mechanisms to ensure that  the needs of  the
body  for  metabolic  fuels,  nutrients,  and  energy  are  met  and  the  energy
homeostasis2  (relative  stable  equilibrium),  which  is  the  balance  between  feed
intake  and  energy  expenditure,  is  maintained.

One of the key components that controls feed intake is appetite, which is related
not only to physiological need (hunger) but also to the pleasure of eating-flavor,
taste,  aroma,  texture,  sight  of  food,  and  a  variety  of  social  and  psychological
factors.  In  fact,  the  sensory  properties  of  food  is  largely,  if  not  primarily,
determinant  of  food  choice  [9].

3.1.1.1.1. Gustation

In mammals, the peripheral gustatory system is composed of specialized epithelial
cells located on the tongue, soft palate, pharynx, epiglottis, larynx, and upper third
of the esophagus. The tongue taste buds (5,000 average number), which contain
sensory cells with microvilli, can distinguish five basic tastes: salt, sweet, bitter,
sour,  and  umami  (the  Japanese  for  savory).  An  additional  taste  mechanism for
dietary fat with particular sensitivity for essential fatty acids has been postulated
[10].

There is evidence that the sensation of savor is largely due to the presence of free
amino acids in foods, and permits detection and selection of protein-rich foods.
Sensitivity  to  sweetness  aids  carbohydrate  detection  and  consumption,  the  salt
taste is related to electrolyte (mainly mineral sodium) balance, sourness facilitates
avoidance  of  strong acids,  and  bitterness  enables  toxin  detection  and rejection.
Increasing  evidence  indicates  that  chemosensory  inputs  aid  in  correcting  some
specific nutrient imbalances such as calcium [11] and amino acids [12].

It  has  been  reported  that  25%  of  the  population  are  non-tasters,  and  75%  are
tasters. This differential taste ability was reported in 1931 by Arthur L. Fox, who
discovered that some individuals found phenylthiocarbamide (PTC) to be bitter,
however  others  found  it  tasteless  [13].  Subsequent  work  conducted  by  Linda
Bartoshuk and colleagues revealed that the taster group could be further divided
into medium tasters and supertasters [14]. This heightened response was thought
to be related to the presence of bitter-taste receptor genes TAS2Rs, which are G
protein-coupled  receptors  expressed  on  the  microvilli  of  taste  receptor  cells
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located in the taste buds on the tongue [15] (Fig. 3.1a-c). Supertasters tend to have
more fungiform papillae and pain receptors than medium tasters and non-tasters
[16]  (Fig.  3.1b).  The  perception  of  bitter  taste  is  thought  to  have  evolved  as  a
protective  mechanism  for  the  avoidance  of  toxic  substances,  mainly  those
produced by plants [17]. The expression of RAS2Rs outside of taste buds suggests
that these receptors might have other functions beyond bitter taste perception. For
instance,  TAS2Rs  are  expressed  in  rodent  nasal  epithelium  on  solitary
chemosensory  cells  and  thereby  can  detect  airborne  irritants  and  trigger  a
protective respiratory response [18]. Shah et al. [19] showed that TAS2Rs are also
expressed  on  the  motile  cilia  of  human  airway  epithelial  cells,  suggesting  a
potential defensive response that aids in eliminating inhaled noxious compounds.
Sternini et al. [20], on the other hand, found TAS2Rs to be expressed in the gut
enteroendocrine  cells  and  hypothesized  that  TAS2Rs  might  invoke  protective
responses  such  as  vomiting  after  ingestion  of  harmful  substances.

Fig. (3.1). Taste area distribution (not for scale) and taste bud anatomy. (a) Schematic representations of
the taste (sweet, salty, sour, bitter, and umami) are on a human tongue. (b) Comparison of supertaster- and
non-taster-tongue. (c) Diagram of the anatomical structure of a taste bud on a tongue. The figure was made
using Biorender.com.

Although birds, for example, have fewer taste receptors and taste receptor genes
relative to other vertebrates, they have a well-developed system for gustation and
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can  use  taste  cues  to  select  nutrients  and  avoid  toxins  [21].  TAS2R sequences
have  been  described  in  chickens  and  white-throated  sparrows  (Zonotrichia
albicollis) [22, 23]. Interestingly, the sweet taste receptor gene TAS1R2 is absent
in  all  bird  genomes  sequenced  thus  far,  yet  birds  are  able  to  taste  sweet.  For
instance, the sugar detection thresholds of broad-billed hummingbirds (Cynanthus
latirostris) are between 1.54-1.75 mM and 1.31-1.54 mM for glucose and sucrose,
respectively [24, 25]. The salt (sodium chloride, NaCl) rejection threshold varies
from 0.35% in parrot to 37% in the pine siskin (Carduelis pinus). Birds are also
able to detect sour and bitter as well as umami [26, 27].

3.1.1.1.2. Olfaction

In addition to the sensation of taste provided by the taste buds on the tongue, the
flavor  can  be  distinguished  by  the  sense  of  smell.  Volatile  molecules  from
olfactory stimuli reach the olfactory epithelium, which contains about 107 receptor
cells and more than 900 genes coding for various types of receptors, and thereby
detect more than 10,000 distinct odors. The smell of some flavors and aromas is
pleasurable, stimulating appetite and tempting people to eat more. However, other
smells  are repulsive,  warning people not  to eat  food.  Intriguingly,  sometimes a
pleasant  smell  to  one  person  might  be  repulsive  to  another.  This  variability  in
people’s perception is probably due in large part to genetic variations in a single
or several odorant receptors [28].

In  domestic  chickens,  for  example,  the  olfactory  epithelium  contains  receptor
cells  with  6  to  15  7-10  µm cilia.  By  using  the  cardiac  conditioning  technique,
Davis  RG  [29]  has  shown  that  most  birds  exhibit  olfactory  capabilities
comparable to mammals. Interestingly, the European starlings (Sturnus vulgaris)
can distinguish between plant odors during spring only (period of nest building),
rather than in summer and fall, suggesting a hormonal milieu influence [30].

3.1.1.2. (Psycho)socio-economic and Cultural Factors

Among the key factor that determines the choice of food is the availability and the
cost of food itself. For instance, in developed countries, the availability of food is
not a limitation because there is a wide variety of abundant foods available, and if
not,  they are  imported,  frozen,  canned and/or  dried.  By contrast,  in  developing
countries, the availability of food is a major constraint. This (un)availability plays
a  major  role  in  determining  the  cost  of  foods,  and  for  the  most  disadvantaged
members of the community, limited incomes may impose severe restrictions on
their choice of foods.
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Health status and age are two important factors affecting not only the choice but
also the quantities of food consumed. Illness impairs appetite (see section 3.1.1.7),
and  some  of  the  medicines  (drugs)  depress  appetite  through  distortion  of  taste
and/or by causing nausea.

Many lonely single people, especially the elderly, have little motivation to prepare
food and less desire to eat, and even to carry food when they have health issues
such  as  arthritis  or  osteomyelitis.  If  these  conditions  are  combined  with  low
incomes,  this  would severely limit  the range of  foods consumed and,  in  severe
cases, can lead to undernutrition.

Conversely, humans are likely to eat more and better when they are in a group
compared to  people  eating alone.  This  is  due not  only to  the  greater  variety  of
dishes offered but also to the social facilitation or group stimulation/motivation
[31, 32]. Similarly, animals have also developed the social facilitation of eating
[33, 34]. In a previous study, we have administered an anorexigenic3 compound
(leptin, appetite inhibitor) in one group of chickens, while the control group was
untreated,  and  we  have  monitored  the  feeding  behavior  of  both  groups.  The
treated birds ate less but displayed similar time-spent eating and number of access
to  the  feeders  as  the  control  group,  indicating  a  clear  congener  imitation  and
social motivation [35].

Regional,  cultural,  habit,  tradition,  ethical  consideration,  and  religion  are
important factors in determining the choice of foods. For instance, observant Jews
and  Muslims  eat  only  kosher  meat  from  animals  that  have  cloven  hooves  and
chew  the  cud.  Hindus,  for  example,  on  the  other  hand,  do  not  eat  beef.  Other
people refrain from eating meat due to humanitarian concerns for animals and the
environment or because of real/perceived health benefits.  Some avoid red meat
because of the high levels of saturated fat, however others prefer red meat for the
high levels  of  iron.  Some people specifically  avoid bovine,  ovine,  and /or  deer
meat because of the potential risk of transmissible spongiform encephalopathies
(TSEs)  such as  bovine  spongiform encephalopathy (BSE or  mad cow disease),
scrapie, and chronic wasting disease. Pescetarians eat fish, but no meat or poultry.
Ovo-lacto-vegetarians eat eggs and milk, but no meat or fish. Lacto-vegetarians
eat dairy but not eggs however, vegans eat only plant- but not animal-based foods.

Eating  habits  as  adults  continue  the  habits  learned  as  children.  My  wife,  for
example, never eats green salad as a mixture of vegetable pieces, but she drinks it
as juice. Some people are more adventurous than others and like to try new foods.
Others are yet  conservative,  and they do not  like new foods because they have
never eaten them before. Many people choose to eat organically produced foods
in preference to those produced by conventional or intensive farming methods.
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3.1.1.3. Chemical and Physical Properties of the Food

In human nutrition, a given food can exert specific satiety by limiting the intake of
itself, or general satiety by inhibiting further consumption of other foods [36]. For
instance, Porrini and co-workers have shown that baked macaroni and meat balls
consumption  had  a  higher  satiety  index  than  mixed  boiled  vegetables  and  fruit
salad, which might be associated with the energy and protein content of the food
[37].  Rolls  and  colleagues,  on  the  other  hand,  using  a  pudding  and  a  jello  test
meal varied in energy density, found that subjects ate a constant weight of food
rather  than  a  constant  number  of  calories  [38].  They  further  hypothesized  that
sensory-specific satiety, in terms of the changing hedonic4 response, is associated
with  the  sensory  property  of  the  food  consumed  rather  than  the  macronutrient
composition [36].

In  livestock and particularly  in  poultry,  food is  a  complex  matrix  in  which  the
physical  and  chemical  characteristics  interact  in  different  ways.  Because  it
represents  the  highest  cost  in  the  production  cycle  [39]  and  it  is  primarily
responsible for the growth performances, feedstuff is an aspect of high economic
importance  in  commercial  poultry  production.  Although  the  expensive
manufacturing cost, using processed feed has been proven to be advantageous in
commercial  poultry  production  [40],  however  feed  particle  size  and  physical
forms have been reported to differently affect feed intake. Indeed, Nir et al. [41]
found greater  feed  intake  and weight  gain  in  the  use  of  particles  by  roller  mill
because of the larger particle size and better uniformity of feed. As birds are able
to select different sizes of feed particles, the uniformity of feed particles is very
important for good performance. It has been suggested that at least 20-30% of the
particle  should  present  a  size  greater  than  1000  µm  because  finely  ground
particles could inhibit the gizzard function [42]. Similarly, the moisture content of
the feed has been reported to modulate feed intake and growth in broilers. In fact,
Dei and Bumbie [43] have shown that broilers fed with wet mash exhibited higher
feed intake and weight gain compared to those fed with dry mash in a hot climate.

3.1.1.4. Physiological Conditions of the Animal

3.1.1.4.1. Pregnancy-gestation

Pregnancy  and  gestation  are  complex  states  where  changes  in  maternal
physiology have evolved to favor the development and growth of the placenta and
the fetus. Along with these adaptations, women often make dietary changes, with
generally  decreased  ingested  food,  although  the  reasons  for  these  dietary
modifications are not well defined. One potential common reason for reducing or
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eliminating specific foods is the health of the baby, aversion, and/or nausea [44].
Women  increased  consumption  of  sweet  foods  more  frequently  than  savory  or
spicy foods to satisfy the craving. This, in turn, may promote excess calorie intake
and increased gestational weight gain [45].

In small ruminants (ewes and goats), the practice of increasing nutrient intake and
body  conditions  during  gestation  is  called  steaming  up.  This  is  generally
accomplished by providing ewes or goats with fresh pasture, supplemental forage,
or grain on a daily basis. Flushing, however, is the practice of increasing nutrient
intake and body condition prior to and during the breeding season. Its purpose is
to increase the rate of ovulation. The response to both practices is influenced by:
1)  age  of  the  animal,  2)  breed  and  strain,  3)  initial  body  condition,  4)
environmental condition and season (availability of forage), and 5) stage of the
breeding season.

3.1.1.5. Management Factors

Although a meal might mean something different to everyone, the psychologists
Spence  and  Piqueras-Fiszman  agreed  and  reported  in  their  book  “The  perfect
meal:  the  multisensory  science  of  food  and  dining”,  that  differential  food
arrangement  and  plating  can  enhance  the  dining  experience  and  differentially
stimulate appetite and eating behavior [46]. It has been reported that the shape and
color of the dinnerware can affect the taste and food intake [47, 48]. For instance,
round and white  plates  tend  to  enhance  sweet  flavors  in  food,  while  black  and
angular  plates  are  likely  to  bring  out  more  savory  flavors  [49].  Red  plates,
however, tend to reduce food intake [49, 50]. Although solid scientific evidence is
not  abundant,  the  hue  of  light/shade  in  the  room  may  also  affect  food/drink
perception and ingested quantities.  For  example,  a  strong coffee drinker  would
drink more under bright light, however, a weak coffee drinker tends to drink more
under dim light. Rosenthal and colleagues have shown appetitive disturbances in
seasonal affective disorder (SAD), which is a variant of clinical depression that is
seasonal in nature and responsive to light therapy [51, 52]. Using rodents, studies
showed  a  reduced  appetite  during  constant  light  exposure  [53],  however,  its
relevance to human physiology is questionable as rodents are nocturnal feeders.
Similarly, one environmental stimulus shown to impact food and fluid intake is
music  [54  -  56].  Distraction  and  modulation  of  mood  states  are  some  of  the
potential mechanisms by which music influences feeding and drinking behaviors
[57,  58].  It  has  also  been  suggested  that  music  can  affect  taste  and  flavor
perception  and  thereby  affect  feeding  and  drinking  behaviors  [59  -  61].

As mentioned above, people enjoy meals more when they are eating with a group
of  friends  than  when they  are  eating  alone.  It  is  noteworthy  to  clarify  here  the
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meaning of appetite, feed intake, and hunger because there is enormous variability
in  what  individuals,  including  scientists,  mean  when  they  use  them,  and  these
terms  are  often  used  interchangeably  and  confusingly.  Based  on  Wikipedia,
appetite  is  the  desire  to  eat  food,  whereas  hunger  usually  refers  to  a  more
objective deprivation state, which is provoked by energy deficit. Although they
are related (hunger often produces a desire of eating or appetite), someone may be
hungry without feeling a desire to eat (case of anorexia nervosa5, for example), or
someone may desire to eat something even in the absence of a need for it. Food
intake, the third appetite-related term, is the ingestion of any substance consisting
of carbohydrates, proteins, fats, vitamins, and minerals. In contrast to animals, it
is  possible  to  distinguish  in  humans  between  what  a  person  wants  (desire  and
appetite), or needs (hunger), from what he/she actually eats.

In  livestock,  feeding  behavior  can  be  measured  by  feeding  time,  time-spent
eating,  meal  frequency,  feeding rate,  and rumination time (for  ruminants).  It  is
affected  by  various  hedonic6,  managerial,  and  motivational  factors,  including
social  interactions.  Ginane  et  al.  [62]  have  shown  that  social  facilitation  is  a
feeding  motivation  enhancer,  in  which  an  animal’s  motivation  (whether  that
animal  is  hungry  or  not)  to  eat  is  stimulated  by  the  sight  and  sound  of  other
animals  eating.  In  chickens,  as  shown  in  Fig.  (3.2),  a  leptin-treated  group
manifested similar feeding behavior (time-spent eating and number of access to
the feeders) as the control group, confirming the effect of social interaction and
motivation.  Designing  and  managing  feeders  and  drinkers  is,  therefore,  crucial
and  must  consider  social  interaction  and  behavior  [63].  Some authors  consider
that feeding management regulates eating behavior [64].

At the rearing environment, it is very critical that the food and water sources are
properly arranged and well managed. Studies showed that design features such as
size, location, geometry, spacing, and angle could affect the feeding and drinking
behavior of the animal (for review see [65]). It is essential that the feeding and
drinking  equipment  provide  ease  of  access,  reduce  wastage,  and  avoid
competition  and  crowd.  The  feeders  and  drinkers  must  be  maintained  at  an
optimal height.  In fact,  it  has been reported that,  at  a lower height,  the average
body weight of chickens can be up to 7% higher [66], with a lower percentage of
intramuscular fat in the thighs and greater muscle in drumsticks [67].



Food Intake Nutritional Biochemistry: From the Classroom to the Research Bench   63

Fig. (3.2). Social motivation and congener imitation in chickens. Leptin (anorexigenic hormone)-treated
chickens showed the same feeding behavior (time-spent eating and number of access to the feeders) as the
placebo, confirming that social facilitation is a feeding motivation enhancer.

3.1.1.6. Environmental Factors

The thermostatic theory of food intake, originally proposed by Brobeck in 1948
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[68],  is  that  the  body  experiences  a  temperature-dependent  variation  in  energy
needs  that  should  be  reflected  in  appetite  and  food  intake.  As  the  body  core
temperature raises through feeding (dietary-induced thermogenesis, also known as
the thermic effect of food or specific dynamic action) in all endothermic (warm-
blooded)  animals,  common  knowledge  and  literature  indicate  that  all  these
animals in laboratory or field setting eat less when the environmental temperature
is high than when it is low. Body core and skin temperature as well as heart rate
and blood volume and pressure,  have been used as indices of  the ability of  the
body to defend body temperature set point (thermoregulation7).

3.1.1.6.1. Heat Stress

Heat stress occurs in animals when there is an imbalance between heat production
within  the  body  and  its  dissipation  [69],  and  stress  is  generally  defined  as  the
magnitude of forces external to the body which tend to displace its system from
its resting or ground state. Under heat load conditions, the body core temperature
increases,  and  the  thermoregulatory  mechanisms  involved  in  dissipating  heat
become  fully  operative.  If  normal  food  intake  continues  under  these  heat  load
conditions,  the  additional  heat  produced  by  ingested  food  may  lead  to
hyperthermia. One of the earliest observations of the depressive effects of heat on
appetite and food intake in a human was reported by Johnson and Kark in 1947
[70]  and  has  been  confirmed  by  succeeding  studies  [71  -  73].  In  experimental
models,  Brobecks  found  that  increased  temperature  above  32°C  reduced  food
intake and body weight in rats [68]. Similar results have been extensively reported
in  other  rodents  [74  -  76].  In  large  farm  animals,  Hamzaoui  et  al.  [77],  have
shown  that  goats  eat  less  under  hot  ambient  temperatures.  Rhoads  et  al.  [78]
demonstrated that thermal stress also depressed feed intake in cows. Heat-stressed
(32°-35°C) swine ate half as much as their counterparts maintained at 10° to 12°C
[79, 80]. In modern poultry, which is particularly sensitive to high environmental
temperature,  the adverse effect  of  heat  stress on feed intake is  well  known and
extensively reported in many studies, including our own [81 - 87]. This reduced
intake in the heat  would thus seem to be adaptive mechanism to cope with hot
environment.  It  is  noteworthy  to  mention  that  the  ability  to  defend  one’s  body
temperature against heat stress is influenced by level of activity, acclimatization
state, aerobic fitness, and hydration level.

From  a  physiological  standpoint,  mechanisms  for  heat  defense  include
thermoregulatory  behavior  to  increase  heat  loss,  cutaneous  vasodilation  to
facilitate  heat  loss  by  conducting  heat  from  the  body  core  to  the  skin  (body
surface),  and  evaporative  cooling  via  sweating,  saliva  spreading,  or  panting,
employed  to  a  various  degree  by  different  species  [88].  From  an  anatomical
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standpoint,  however,  the  early  results  were  confusing.  For  instance,  Andersson
and Larsson [89] showed similar responses as external cues to inhibit eating when
heating the preoptic and anterior hypothalamus regions in animals. Spector et al.
[90],  however,  showed  a  biphasic  effect  with  increased  eating  when  the
temperature  of  the  preoptic  medialis  region  was  raised  to  43°C,  and  decreased
intake  when  the  area  was  heated  to  35°C.  The  general  consensus  is  that
maintaining  body  temperature  during  environmental  temperature  challenges  is
orchestrated by thermoreceptors in primary sensory nerve endings distributed in
the skin. These thermosensory signals are transmitted in a feedforward manner to
a second-order thermal sensory neurons in the spinal and trigeminal dorsal horn,
which project to third-order sensory neurons in the dorsal subnucleus of the lateral
parabrachial nucleus (LPB) area. The thermosensory signals for thermoregulation
responses are, then, transmitted from the LPB to the preoptic area which provide
command  signals  descending  to  peripheral  effectors  and  evoke  behavioral,
autonomic,  somatic,  and  hormonal  responses  counteracting  changes  in
environmental temperatures before they impact body core temperature [91 - 93].

As  an  example  of  non-mammalian  species,  chickens  are  endothermic8

homeotherms9 that regulate their body core temperature. As for mammals, avian
thermoregulation is characterized by the maintenance of brain temperature below
body core temperature, reflecting the high thermal sensitivity of brain tissues. It is
important to mention that the body temperature in avians can differ from the skin
temperature  by  several  degrees.  The  mean  deep  body  temperature  measured  in
202 species spanning most avian orders varied between 38.5°C and 41°C, and can
reach up to 45°C under heat stress exposure. Heat can be transferred from bird’s
surface via radiation, convection, conduction, and evaporation. These processes
will not be described in this chapter as they are out of the scope, but readers can
find a detailed description in elegant reviews elsewhere [94].

The thermogenic response of avians and endotherms in general to changes in the
environmental temperatures can be divided into three zones (Fig. 3.3).

Comfort  zone  (thermoneutral  zone)  where  body  temperature  is  controlled1.
mainly by conduction.
Zone  of  evaporative  regulation  where  the  body  temperature  is  regulated  by2.
vasodilation, followed by evaporation and sensible heat loss.
Zone  of  body  cooling  where  the  body  temperature  is  maintained  by3.
vasoconstriction for heat retention, followed by shivering10 and non-shivering
thermogenesis11.
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Fig. (3.3).  Thermogenic curve of endothermic organisms.  The thermoneutral and comfort zone ranged
between the lower and upper critical temperatures. Below the LCT and under cold stress exposure, heat is
generated by ST and NST and food intake is stimulated. Under heat stress conditions and above the UCT,
thermogenesis increases to permit EWL mainly via panting and SHL. EWL, evaporative water loss; LCT,
lower  critical  temperature;  NST,  non-shivering  thermogenesis;  SHL,  sensible  heat  loss;  ST,  shivering
thermogenesis; UCT, upper critical temperature.

3.1.1.6.2. Dehydration

One consequence related to heat stress is dehydration, which occurs with excess
loss  of  total  body  water  (sweating  for  example)  and  is  often  associated  with
electrolyte  unbalance.  There  are  three  types  of  dehydration:  1)  hypertonic
dehydration,  which  occurs  when  more  water  than  sodium  is  lost  from  the
extracellular  fluid  compartment  (inadequate  water  intake,  sweating,  osmotic
laxatives), 2) hypotonic dehydration, which occurs when sodium loss is greater
than water (vomiting, diarrhea, renal failure), and 3) isotonic dehydration, which
results from a similar amount of water and sodium loss (ascites, vomiting).

It  has  been  reported  that  decreased  feed  intake  in  non-acclimatized  subjects  in
tropical  climates  may  be  mediated  by  hypertonicity  associated  with  initial
dehydration [95]. Furthermore, the administration of hypertonic solutions in rats
resulted in decreased feed intake [96]. Dehydration has been shown to reduce feed
intake  in  many  species.  For  instance,  Silanikove  found  that  food  consumption
decreases with the lengthening of  the dehydration period in goats  [97].  Similar
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effects  were  observed  in  white-tailed  deer  under  water  restriction  (33%)
conditions  [98].  Water  restriction  has  been  shown  to  reduce  feed  intake  and
growth performance in chickens [99, 100]. In addition to reduced feed intake and
growth  performance,  Arad  [101]  observed  that,  after  48  hours  of  water
deprivation,  dehydrated  birds  presented  slightly  higher  body  temperature  when
compared  to  normally  hydrated  birds.  Dehydrated  fowls  were  capable  of
recovering 92% of the initial body weight within 30 min of drinking. However,
birds that lost more than 15% of their weight failed to recover it.

In  humans,  however,  it  is  postulated  that  increased  water  consumption  before
and/or during meals may help obese individuals to lose body weight via reducing
their  food  intake  [102].  This  regime  seemed  to  work  only  for  certain  subjects
[103,  104].  Recent  studies  indicated  that  the  reducing  effect  of  water  on  body
weight  is  also associated with  enhanced thermogenesis  and energy expenditure
[105 - 107].

3.1.1.6.3. Cold Stress

As for heat stress, cold exposure induces physiological changes. It is known that
cold  exposure  increases  appetite  and  energy  intake  in  a  wide  range  of  animal
species, but not in humans [68, 108, 109]. In contrast, LeBlanc reported that six
studies conducted with military soldiers in arctic conditions showed an average
body  weight  gain  of  1  kg/month,  which  might  be  due  to  a  change  in  appetite;
however,  these  expeditions  (studies)  were  not  necessarily  planned  for  research
purposes  [110].  Continuous  cold  exposure  experiments  in  rodents  have  also
yielded  conflicting  results,  with  some  investigations  showing  declined  body
weight gain in rats and others showing no alteration in body weights [111 - 114].
In broiler (meat-type) chickens, Qureshi and colleagues showed that cumulative
feed  intake  was  significantly  increased  in  birds  reared  under  cold  conditions
compared to those maintained under thermoneutral conditions [115]. Baarendse et
al.  [116]  reported  that  moderate  cold  exposure  by  reducing  the  environmental
temperature by 1°C every day in five-day period, during the early post-hatch life
caused long-term negative effects on chicken growth performance. Shinder et al.
[117], on the other hand, showed that acute cold exposure at late embryogenesis
improved  growth  performances.  Dridi’s  group  showed  that  chronic  mild  cold
conditioning improved body weight and feed conversion ratio (FCR)12 during the
first-week post-hatch and at the market age [118]. These discrepancies might be
due  to  various  factors,  including  the  experimental  conditions  (environmental
temperature,  exposure duration,  severity  and type),  chicken strain and age,  and
diet composition. Independently of the effects on energy intake and expenditure,
one  might  ask  the  question  whether  heat  and  cold  stress  produce  differentially
sensory responses and affect food choice.
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3.1.1.6.4. Effects of Environmental Factors (Heat or Cold) on Food Choice

It  appears  that,  in  the  summer  or  winter  seasons,  food  choices  do  change,
however,  whether  these  changes  are  associated  with  the  environmental
temperature per se or to other factors such as availability and price have not been
well  established.  Although  Drewnowski  and  colleagues  [119]  reported  that
humans  have  an  expressed  preference  for  fats  and  sweets  in  temperate
environments, there is still a dearth of solid experimental research on human food
consumption  preference  under  heat  variations.  Generally,  intake  of  vegetables,
fruits, and beverages increases in the summer however intake of legumes, sweets,
meats,  and  eggs  increases  in  the  winter.  Within  each  food  subgroup,  the
consumption  appeared  to  mirror  the  seasonal  availability.  For  instance,  more
citrus fruits are eaten during winter, while apple intake is higher during summer.
Intake of fats and oils increase in the winter and decline in the summer, except for
the use in salad dressing.

It has been reported that cooling the tongue reduced the perceived intensity of the
sucrose  sweetness  and  the  caffeine  bitterness,  but  not  that  of  sodium  chloride
saltiness and citric acid sourness [120], indicating that the temperature of the food
itself affect the tastes of food. Trant and Pangborn [121] reported that warming
certain food and beverages enhance their flavor and aroma.

3.1.1.6.5. Effect of Light

The evident effect  of light  on appetite and feed intake can be supported by the
seasonal affective disorder (SAD) where the depressive phase is associated with
overeating, carbohydrate craving, and body weight gain [51, 122]. Light therapy
of  SAD  patients  via  periodic  exposure  to  bright  light  (2500  lux  full-spectrum
fluorescent light) produced weight loss. There is still no scientific evidence that
the  appetite  of  normal  individuals  is  affected by light  exposure.  In  avian (non-
mammalian)  species,  normothermic  body  temperature  is  characterized  by  a
circadian rhythm, which is entrained by photoperiod and regulated by melatonin,
suggesting that light regulates feeding behavior. Light (intensity, color, duration)
inputs  are  perceived  by  the  eye  and  pineal  gland  and  reach  the  hypothalamic
suprachiasmatic  nucleus,  with  the  melatonin  hormone  being  the  major  signal.
Melatonin  has  been  reported  to  regulate  food  intake  [123,  124].  Melatonin
synthesis  by  gastrointestinal  cells  has  also  been  suggested  to  be  involved  in
adjusting  body  temperature  in  response  to  restricted  food  availability  [125].
Photoperiod  manipulation  in  broilers  has  largely  consisted  of  maximizing  feed
intake [126].  Hester  et  al.  [127] have shown that  a  low light  intensity program
resulted in more rapid and efficient growth at an older age.
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However,  Deep  et  al.  [128]  reported  no  effects  of  light  intensity  on  feed
consumption,  body  weight,  and  FCR.

3.1.1.7. Effects of Disease and Fever

Several diseases such as cancer, viral, parasitic, or bacterial infection, endocrine
and  metabolic  disorders,  gastrointestinal  disorders  including  Celiac  disease,
ulcers,  and  gastroesophageal  reflux  disease  (GERD),  psychiatric  disorders
(anxiety, depression, trauma, anorexia nervosa), cognitive disorders (dementia),
organ  failure  can  affect  appetite  and  food  intake.  Some  of  the  diseases  are
associated  with  fever,  which  is  not  an  exogenous  source  of  hyperthermia.
Generally  fever  suppresses  food  intake  [129].  However  McCarthy  et  al.  [130]
showed  that  intraperitoneal  injection  of  interleukin  1  (IL-1),  pro-inflammatory
cytokine, raised body temperature in rats and suppressed food intake, while IL-1
intracerebroventricular  (ICV)  administration  raised  body  temperature  without
affecting energy intake. These data suggested that fever-induced anorexia may not
be mediated by thermoregulatory mechanisms.

Fig. (3.4). Factors influencing food choice and intake.  Appetite and feeding behavior are stimulated or
inhibited by various external factors including the physical and chemical properties of the food itself as well
as the environmental, cultural, psychological, sociological, and economic factors.
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CONCLUSION

Appetite  and  feeding  behavior  are  stimulated  or  inhibited  by  various  external
factors, including the physical and chemical properties of the food itself as well as
the  environmental,  cultural,  psychological,  sociological,  and  economic  factors
(Fig. 3.4). However, there is also considerable variability related to the effects of
the  above-mentioned  factors.  For  instance,  some  people  may  be  particularly
susceptible  to  one  or  more  of  these  factors,  while  others  may  be  resistant.

NOTES
1 Hyperphagia is an abnormally great desire for food and excessive eating

2  Energy  homeostasis  is  a  biological  process  that  involves  the  coordinated
homeostatic  regulation  of  energy  inflow  (feed  intake)  and  outflow  (energy
expenditure).

3 Anorexigenic or appetite inhibitor is a drug, hormone, or compound that blocks
appetite and may induce hypophagia

4 Hedonic is connected with feeling of pleasure and rewarding.

5  Anorexia Nervosa is a life-threatening eating disorder that is characterized by
self-starvation and excessive body weight loss

6 Hedonic is connected with feeling of pleasure and rewarding.

7  Thermoregulation:  is  the  ability  of  an  organism  to  maintain  a  core  body
temperature  within  an  optimal  physiological  range  and  state  of  equilibrium.

8  Endothermy:  The  pattern  of  thermoregulation  of  animals  in  which  the  body
temperature depends on a high and controlled rate of heat production (based on
IUPS Thermal Commission 2001).

9  Homeothermy:  is  thermoregulation  that  maintains  a  stable  internal  body
temperature  regardless  of  external  influence  (Wikipedia).
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10 Shivering thermogenesis is a response to sudden exposure to cold and is a major
contributor to enhanced heat production

11  Nonshivering  thermogenesis  is  defined  as  an  increase  in  metabolic  heat
production  (above  the  basal  metabolism)  that  is  not  associated  with  muscle
activity

12 FCR: is the efficiency with which the body of livestock convert animal feed into
desired output (meat, egg, milk, etc.)
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CHAPTER 4

Regulation of Food Intake: Central Mechanisms

Abstract:  Food  intake  is  regulated  by  complex  hypothalamic  neuronal  systems
originally  identified  as  hunger  and  satiety  centers.  The  search  for  the  underlying
mechanisms  led  to  the  discovery  of  several  central  orexigenic  and  anorexigenic
peptides.  The  present  chapter  summarizes  the  current  knowledge  about  the  role  of
classical hypothalamic neuropeptides such NPY/AgRP, POMC/CART, melanocortin,
and orexin system, as well as several new central signals such as AMPK, ncRNA, and
autophagy involved in the regulation of appetite and food intake.

Keywords:  Hypothalamus,  central  signals,  hunger  center,  satiety  center,
orexigenic  neuropeptides,  anorexigenic  neuropeptides,  ncRNA,  autophagy.

INTRODUCTION

Feed intake regulation is highly conserved across animals, and a series of highly
integrated regulatory and neuronal mechanisms are involved. Brain lesioning and
stimulation studies performed several decades ago involved the hypothalamus as a
major site controlling feed intake and body weight. Early researchers found that
lesions  of  the  ventromedial  hypothalamus (VMH) resulted in  hyperphagia1  and
thereby  defined  it  as  the  “satiety  center”  [1,  2],  while  lesions  of  the  lateral
hypothalamus area (LHA) resulted in aphagia2 and thereby it was termed “hunger
center”  [3].  As  in  mammals,  lesioning  VMH  of  avian  species  increased  feed
intake, whereas lesioning LHA decreased feed intake [4]. As our knowledge of
specific  neuronal  subpopulations  involved  in  the  regulation  of  feed  intake  has
expanded,  the  term  of  brain  “center”  has  been  replaced  by  that  of  discrete
neuronal pathways that generated responses to afferent inputs related to changing
body fuel stores [5].

4.1. Classical Central Effector Pathways

The hypothalamus contains multiple neuronal systems essential in the regulation
of feed intake. Stimulation of some of these systems results in a net increase in
energy  intake  and  storage  and  is  thereby  referred  to  as  anabolic  or  orexigenic3

systems. However,  for  others  (catabolic or anorexigenic4), stimulation triggers a
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net decrease in feed intake and storage. In general, these classical hypothalamic
effectors act similarly between mammals and avian species; however, there are
notable exceptions (Table 4.1).

4.1.1. NPY/AgRP and POMC/CART Neuropeptides

Two separate  populations  of  neuronal  cell  types  are  located  in  the  mammalian
arcuate nucleus (ARC, equivalent of infundibular nucleus in avian species); one
synthesizes the powerfully orexigenic peptides (neuropeptide Y, NPY and agouti-
related  peptide,  AgRP),  while  the  other  produces  the  anorexigenic  pro-
opiomelanocortin  (POMC)  and  cocaine  and  amphetamine-regulated  transcript
(CART) [5]  (Fig.  4.1).  In  both mammals and avian species,  NPY is  one of  the
most potent appetite stimulators. Central administration of NPY increases energy
intake, decreases energy expenditure, and enhances adipogenesis and lipogenesis
(de novo fatty acid synthesis, see chapter 9, section 9.4) [6 - 9]. Repeated central
NPY administration induces obesity within a matter of days [10]. The effects of
NPY on feed intake are  mainly mediated via  NPY receptor  2  (NPY Y2) and 5
(NPY Y5) [11], which belong to G-protein coupled receptors. The search for the
underlying  mechanism  for  the  agouti  obesity  syndrome,  in  part  led  to  the
discovery  of  an  endogenous  melanocortin  receptor  (MCR)  antagonist,  AgRP.
AgRP is  co-expressed  with  NPY in  the  ARC,  and  when  it  is  released  from its
neurons,  it  binds  to  MC3R  and  MC4R  and,  in  turn,  induces  feed  intake.
Transgenic  overexpression  of  AgRP  produces  an  obesity  syndrome  [84].
Similarly,  genetic  deficiency  of  the  MC4R  in  mice  results  in  hyperphagia  and
obesity  [85].  Unlike  rodent  models  where  prolonged  effects  of  AgRP  on  feed
intake have been reported [86], the effects of AgRP in sheep were not apparent
after  24h.  In  pigs,  neither  AgRP  nor  SHU9119  (MC4-R  antagonist)  had  any
effects  on feed intake thought to be due to a mutation in the MC4-R [87].  The
expression and activity of NPY and AgRP are increased in conditions associated
with weight loss, such as caloric restriction, lactation, and intense exercise [88 -
90] of particular interest among central catabolic systems are the melanocortins,
neurotransmitters cleaved from the POMC precursor polypeptide. Mice lacking
POMC are obese [91] and mutations that cause loss of POMC function in humans
produce  obesity  and  insulin  resistance  [92].  The  alpha-melanocyte  stimulating
hormone (α-MSH), POMC-derived neuropeptide, is an endogenous MCR agonist
that reduces feed intake when it acts on MC3R and MC4R [93]. Chronic infusion
of  α-MSH  in  the  third  cerebral  ventricle  of  rats  reduced  feed  intake  and  body
weight [94]. Similarly, central administration of α-MSH suppresses feed intake in
chickens  [95].  In  mammals,  β-MSH  binds  MC4R  with  higher  affinity  than  α-
MSH, however, the opposite (α-MSH has a higher affinity to MC4R than does β-
MSH) occurs in chicken [96, 97].

#t4.1
#f4.1
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Table 4.1. Comparison of neuropeptide effects on feeding behavior in mammalian and avian species.

(An)Orexigenic Peptides Avian Species Mammalian Species

Pancreatic Peptides

NPY + [7, 12-16] + [46-49]

PP + [17] -          [50, 51]

Peptide YY + [7] -          [52, 53]

Other Peptides

AgRP + [18] + [54]

Galanin + [19] + [55]

Somatostatin + [20] + [56]

CGRP - [21] -          [57]

CART - [22] -          [58]

NPFF - [23] -          [59]

NPK - [24] -          [60]

NPS - -          [61]

Mesotocin - [25] -          [62]

Substance P - [26] -          [63]

Vasotocin - [12] -          [64]

RFamide Peptides

GnIH + [27] + [65]

26RFa + [28] + [66]

PrRP + [29] -          [67]

Melanocortins

ACTH - [30] -          [68]

Α-MSH - [31] -          [69]

CRF Family

CRH - [32] + [70]

Urotensin 1 - [33] + [71]

Urocortin - [34] + [72]

Stresscopin - [35] + [73]

Glucagon Family  

GLP-1/2 - [36] -       [74, 75]

Oxyntomodulin - [37] -          [76]

GHRH - [38] + [77]

Brain-gut Peptide  
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CCK - [39] -          [78]

Gastrin - [40] -          [79]

GRP - [41] -          [80]

Neuromedin B/C/S/U - [42] -          [81]

Opioid Family

Β-endorphin + [43] + [82]

Endomorphin-2 + [44] + [44]

Nociceptin + [45] + [83]
ACTH, adrenocorticotropic hormone; AgRP, agouti related peptide; α-MSH, alpha-melanocyte stimulating
hormone; CART, cocaine-amphetamine-regulated transcript; CCK, cholecystokinin; CGRP, calcitonin gene-
related peptide; CRH, corticotropin-releasing hormone; GHRH, growth hormone releasing hormone; GLP1/2,
glucagon-like peptide1/2; GnIH, gonadotropin-inhibiting hormone; GRP, gastrin-releasing peptide; NPFF,
neuropeptide  FF;  NPS,  neuropeptide  S;  NPY,  neuropeptide  Y;  PP,  pancreatic  peptide;  PrRP,  prolactin-
releasing peptide; +, stimulates; -, inhibits.

Another  classical  anorexigenic  neuropeptide  is  CART  which  is  also  found  in
POMC neurons in the ARC. However, in the PVN, CART mRNA was found to
be localized with vasopressin and corticotropin-releasing factor (CRF)-containing
neurons  in  rats  [98].  When  injected  intracerebroventricularly5  into  rats  and
chickens, recombinant CART peptide inhibits both normal and starvation-induced
feeding [22, 58].

Fig.  (4.1).  Myth  of  hypothalamic  hunger  and  satiety  centers  and  feeding-related  (an)orexigenic
neuropeptides. Sagittal diagram of the brain outlines the major hypothalamic centers involved in the control
of energy balance (a, b). Populations of first-order orexigenic NPY/AgRP and anorexigenic POMC/CART
neurons are located in the ARC and they project to the PVN, LHA, and VMH, which are the location of
second-order  hypothalamic  neuropeptide  neurons  involved  in  the  regulation  of  feed  intake  and  energy
homeostasis. AgRP, agouti-related peptide; ARC, arcuate nucleus; BDNF, brain-derived neurotrophic factor;
CART,  cocaine  and  amphetamine  regulated  transcript;  CRH,  corticotropin-releasing  hormone;  DMH,
dorsomedial hypothalamus; LHA, lateral hypothalamus; MCH, melanin-concentrating hormone; MC3/4R,
melanocortin  receptor  3  and 4;  NPY, neuropeptide Y;  ORX, orexin;  POMC, proopiomelanocortin;  PVN,
paraventricular nucleus; TRH, thyrotropin-releasing hormone; VMH, ventromedial hypothalamus.

(Table 1) cont.....



84   Nutritional Biochemistry: From the Classroom to the Research Bench Sami Dridi

4.1.2. Melanocortin System

Although  there  are  5  MCRs,  MC3R  and  MC4R  are  the  key  players  in  the
regulation  of  energy  homeostasis.  MC3R  and  MC4R  mRNA  are  expressed  in
several hypothalamic areas involved in regulating feeding behavior such as ARC,
PVN,  and  LHA  as  well  as  in  numerous  extra-hypothalamic  sites  [99].  As
mentioned  above,  MC4R  blockade  causes  an  obesity  phenotype  and  MC4R
deficient  mice  and  humans  are  obese.  Recent  studies  suggest  that  the
melanocortin  system  may  contribute  not  only  to  the  homeostatic  regulation  of
feed  intake  but  also  to  its  hedonic  aspects  via  the  MC4R inputs  to  the  nucleus
accumbens  [100].  Interestingly,  MC3Rs  are  also  expressed  in  limbic  regions
involved in controlling ingestive behaviors and autonomic function. It seems that
increased adiposity and accelerated diet-induced obesity in MC3R knockout mice
to  be  hyperphagia-independent.  Several  studies  showed  that  MC3R-/-  mice
displayed reduced physical activity and locomotor behavior, suggesting a key role
of  MC3R  in  the  regulation  of  energy  expenditure  [101].  This  hypothesis  was
supported by the observation that fatty acid oxidation and citrate synthase activity
are reduced in skeletal muscle of female MC3R deficient mice, indicating reduced
mitochondrial  activity  [102].  However,  the  mechanisms  underlying  the
differences  in  mitochondrial  activity  have  not  been  completely  defined.

4.1.3. Melanin-concentrating Hormone (MCH)

The mammalian form of MCH, is a 19-amino acid cyclic peptide encoded within
a 165-amino acid prepro-MCH. The MCH preprohormone can generate, through
alternative processing, two additional putative peptides, designated neuropeptide
E-I (NEI) and neuropeptide G-E (NGE) with unknown functions [103]. Several in
vivo  studies  have  shown  that  MCH  plays  a  role  in  a  variety  of  physiological
processes,  including  energy  homeostasis,  sleep,  arousal,  and  emotionality.
Neurobiological, genetics and pharmacological studies demonstrate that MCH is
an orexigenic peptide which induces obesity [104]. Investigation on the effector
mechanisms  by  which  MCH is  orexigenic  has  largely  focused  on  the  MCHR1
receptor in the nucleus accumbens shell, which has been thought to be involved in
motivational  aspects  of  eating.  MCRH2  is  absent  in  rodents  but  is  present  in
higher species such as primates [105]. Although they are hyperphagic on high-fat
diet  (HFD),  MCHR1  knockout  mice  are  resistant  to  obesity,  which  is  due  to
hyperactivity  and  higher  metabolic  rate  [106].

4.1.4. Orexins/hypocretins

The  neuropeptides  orexin  A  and  orexin  B  (also  known  as  hypocretin  1  and
hypocretin  2,  respectively)  are  produced  in  cell  bodies  of  the  LHA,  but  have
extensive projections to many brain regions, including the ARC [107]. They bind
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to  two  G-protein-coupled  receptors,  orexin  receptors  1  and  2  (ORXR1  and
ORXR2), which are encoded by two separate genes [108]. Orexins are appetite-
stimulating  neuropeptides  in  mammals,  but  they  also  have  several  other
physiological  functions  such  as  sleep-wakefulness,  stress,  anxiety,  and  energy
metabolism.

Central  administration  of  orexin  stimulates  feed  intake  in  mammals  [108].
However, an important difference in the effects on feeding between orexin and
other feeding-related hypothalamic neuropeptides such as NPY and MCH, is that
orexin increases both energy intake and expenditure, whereas the others generally
decrease  energy expenditure  [109].  It  must  be  recognized that  multiple  peptide
systems interact to control the feeding response, and the hierarchy within those
systems  is  not  completely  defined.  For  instance,  studies  suggested  that  NPY
neurons are located downstream to orexin; however other evidence does exist for
the opposite diagram where orexin neurons were found to be located downstream
to NPY [110]. Similarly, ICV injection of orexin increases feeds intake in sheep at
2  and  4h  post-administration  [111].  Intriguingly,  the  central  administration  of
orexin did not affect feed intake in neonatal chicks [112], suggesting that orexin
may  play  other  physiological  roles  in  avian  species.  Recently,  our  laboratory
found that the orexin system is expressed in muscle and regulates muscle energy
metabolism in avian species [113].

4.1.5. Galanin

Galanin is a 29-amino acid C-terminally amidated, found in both the CNS (PVN
and ARC nuclei) and intestine, is conserved across species. In the brain, galanin is
co-expressed with NPY. Central administration of galanin elicits a potent feeding
response in mammals [114]. Furthermore, administration of galanin in the PVN
area  causes  a  macronutrient  selection  with  a  preferential  increase  in  the
consumption of the fat diet compared to carbohydrates and proteins [115]. There
are  two  characterized  galanin  subtype  receptors:  GalR1  and  GalR2,  which  are
majorly  distributed  in  the  hypothalamus,  brainstem,  hippocampus,  spinal  cord,
and many other tissues [116]. It has also been reported that mammalian galanin
participate  in  modulating  learning,  memory,  inflammation,  sexual  behavior,
insulin, and pituitary hormone release [117, 118]. In birds, the effects of galanin
on feeding are controversial. In fact, Tachibana and coworkers have shown that
ICV administration of galanin stimulates feed intake but not water consumption in
both broiler (meat-type) and layer (egg-type) chickens [119].  In contrast,  Ando
and  colleagues  reported  that  ICV  injection  of  galanin  does  not  increase  feed
intake  in  neonatal  chicks  [120].  The  effects  of  galanin  on  feeding  seem  to  be
mediated via µ-opioid receptors and α2 adrenoceptors.
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4.1.6. Galanin-like Peptide (GALP)

Galanin-like  peptide  is  a  60-amino  acid  peptide,  with  residues  9-21  being
identical to the biologically active N-terminal (1-13) portion of galanin [121]. By
using  double-label  in  situ  hybridization,  Cunningham  et  al.  [122]  found  that
GALP-containing neurons in primates express the NPY receptor 1, indicating that
NPY may regulate GALP neurons in the ARC. Central infusion of GALP into the
rat lateral ventricle increases feed intake in the first 1-2h, and this effect was 10
times higher than that of galanin [123, 124].

It  has  been  postulated  that  the  effect  of  GALP  on  rat  hypothalamus  could  be
mediated by an increase in NPY release and a decrease in CART release [125]. In
vivo chronic injection of GALP reduced POMC expression in the ARC of ob/ob
mouse [126]. Kageyama et al. [127] showed that blocking orexin action with an
anti-orexin antibody inhibited GALP-induced hyperphagia, indicating that orexin
mediated the effects of GALP. The receptor responsible for the orexigenic effect
of GALP in rodents is likely to be GALR1, and there is no evidence to support a
role for GALR2 or GALR3.

4.1.7. Cerebellin 1

Cerebellin 1 (Cbln1) is highly expressed in the mammalian hypothalamus. Central
administration of Cbln1 stimulated feed intake and the release of NPY, suggesting
that the orexigenic effects of Cbln1 are probably mediated through hypothalamic
NPY  [128].  Reiner  et  al.  [129]  previously  identified  the  chicken  homolog  of
Cbln2 and found that it is frequently expressed in primary sensory neurons and
second-order sensory regions. However, the effect of Cbln1 in feeding behavior in
chickens is unknown yet.

4.1.8. Glucagon-like Peptide

When  it  is  released  from  the  nucleus  of  the  solitary  tract  and  from  neuronal
projections to the PVN, glucagon-like peptide-1 (GLP-1) activates its receptor and
promotes  satiety  and  anorexia.  Furthermore,  activated  GLP-1  neurons  also
projected to the ARC and modulated vagal motor outflow to the pancreas, leading
to an increase in insulin secretion and reduction of glucagon levels and thereby
lowering blood glucose levels. Peripheral (intravenous) administration of GLP-1
in normal  and obese humans inhibited feed intake in  a  dose-dependent  manner
and reduced gastric emptying [130]. GLP-2 is co-localized with GLP-1, and it is a
potent  inhibitor  of  feed  intake  when  centrally  injected  [131].  GLP-2  receptor
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knockout  in  POMC  neurons  increased  feed  intake,  which  is  mainly  due  to
increased  gastric  motility  and increased  meal  frequency,  indicating  that  central
GLP-2 is a key satiety signal. Guan and coworkers demonstrated that this effect
was  mediated  by  MC4R [132].  The  anorexigenic  effects  of  GLP-1  and  GLP-2
have also been observed in chickens [133, 134].

4.1.9. Corticotropin-releasing Factor (CRF)

Corticotropin-releasing factor or corticotropin-releasing hormone (CRF or CRH,
respectively) is a 41-amino acid mammalian neuropeptide that is best known as
the key physiological regulator of pituitary adrenocorticotropic hormone (ACTH)
secretion. Central administration of CRF inhibited feed intake and body weight in
rodents [71].

Similarly, CRH acted within the brain to inhibit feed intake in both broilers and
layers [32], and this effect seemed to be mediated via CRH receptor. Moreover,
blocking nitric oxide has been shown to attenuate the effect of CRH on feeding in
chickens [135].

4.1.10. Neurotensin

The 13-amino acid peptide, neurotensin, is mainly produced in the ARC, PVN,
and DMH and is anorexigenic when injected centrally in mammals [136]. In the
chicken,  neurotensin  is  produced in  both  the  brain  and intestine.  Masuda et  al.
[137] found high expression of neurotensin in the hypothalamic infundibulum and
have  reported  that  central  administration  of  neurotensin  had  no  effect  on  feed
intake in chickens, suggesting that the effect of neurotensin on feeding behavior is
species-specific.

4.1.11. Nesfatin 1

Although three nesfatin peptides; nesfatin 1, 2, and 3 have been identified, only
nesfatin  1  is  known  to  be  biologically  active  [138].  Administration  of  the
bioactive  core  of  nesfatin  1  inhibited  feed  intake  and  reduced  body  weight  in
rodents [138]. The effects of nesfatin 1 seem to be mediated by direct inhibition of
ARC neurons containing NPY. Nesfatin 1 is also likely to act on oxytocin, CRF2,
and  MCR3/4  to  reduce  feed  intake  [139].  The  contention  that  nesfatin  1  is  an
appetite suppressive molecule has been further confirmed in avian species, where
peripheral  and  central  administration  of  nesfatin  1  has  been  shown to  decrease
feed intake in quails [140].
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4.1.12. FMR Famides

Several RFamide peptides have been characterized and identified as key players
in the regulation of feed intake. For instance, prolactin-releasing peptide reduced
feed intake and mediated satiety signaling in rodents [141], however, it stimulated
feed intake when centrally injected in chickens [29]. Wang and co-workers have
shown that this orexigenic effect of prolactin-releasing peptide is associated with
hypothalamic  NPY  [142].  Similarly,  central  administration  of  gonadotropin-
inhibiting hormone-induced feeding behavior in chickens and this effect is likely
mediated via µ-opioid receptor [27].

Central administration of 26RFa, another RFamide, stimulated appetite in broilers
but  not  in  layers,  indicating  strain-specific  effects  [28].  Likewise,  several
members of the neuropeptide FF subfamily of the RFamide have also been shown
to decrease feed intake in chickens [23].

Many other (an)orexigenic neuropeptides have been identified, and their effect on
feed  intake  in  both  mammalian  and  avian  (non-mammalian)  species  are
summarized  in  Table  4.1.

4.2. New Central Molecular Pathways

4.2.1. Neurosecretory Protein GL and GM (NPGL and NPGM)

With  the  advances  in  molecular  approaches  and  sequencing  technologies,  new
hypothalamic neuropeptides were identified, including NPGL and NPGM. These
neuropeptides  have  been  characterized  in  humans,  rats,  chickens,  and  several
other  species,  and  they  are  highly  conserved  (Fig.  4.2)  [143].  Each  of  these
precursor proteins contains a signal peptide at the N-terminus, a glycine amidation
signal, and a dibasic amino acid cleavage site [143]. It has been shown that the
mediobasal hypothalamic expression of NPGL increased with the age of chickens
[144]  and  that  chronic  ICV6  administration  of  NPGL  induced  feed  intake  and
water consumption [145].

Although  NPGL regulates  feeding  behavior  in  chickens,  its  effect  seems  to  be
independent of classical neuropeptides. Indeed, Shikano and coworkers reported
that NPGL administration did not affect the expression of NPY, AgRP, POMC,
GLP-1,  or  CCK  [145].  In  mice,  ICV  administration  of  NPGL  increased  feed
intake and this effect was hypothesized to be mediated at least via inhibition of
POMC [147]. Similarly, adenovirus-mediated overexpression of NPGL increased
feed intake and body mass in rats [148].

#t4.1
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Interestingly,  NPGL and its  paralog NPGM are co-localized in the chicken IN7

(the  equivalent  of  mammalian  ARC),  however  and  in  contrast  to  NPGL,  ICV
administration of NPGM decreased feed intake in chicken [149].

Fig.  (4.2).  Alignment  and  phylogeny  tree  of  NPGL.  Amino  acid  sequence  alignment  of  NPGL  from
chicken  (gallus  gallus,  BA065664),  human  (homo  sapiens,  obtained  from (208)),  mouse  (mus  musculus,
BAZ91800), and rats (rattus norvegicus, BBA46262) (a). The evolutionary distances and the phylogenetic
tree  of  NPGL  (b)  were  inferred  using  the  Neighbor-Joining  method  in  MEGA6  [146].  Identical  (*)  and
similar (:) amino acid residues are indicated.

4.2.2. AMP-activated Protein Kinase (AMPK) Pathway

AMPK is a serine/threonine kinase that is evolutionarily conserved from yeast to
mammals. It is a heterotrimeric complex consisting of a catalytic α subunit and
regulatory β/γ subunits, each of which is encoded by two or three distinct genes
(α1, α2, β1, β2, γ1, γ2, and γ3). AMPK is a master cellular fuel gauge and energy
sensor [150]. In fact, as described in previous chapters, every living cell contains
a “rechargeable battery” formed by interconverted ATP and ADP according to the
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following  reaction:  ATP  ↔  ADP  +  phosphate,  and  every  cellular  function
requires  energy;  thus  ATP  generation  needs  to  remain  in  balance  with  ATP
consumption.  However,  under  stress  conditions  that  deplete  cellular  energy
(inhibition of ATP production or increase of ATP consumption), the AMP/ATP
and ADP/ATP ratios  increase,  which  in  turn  activate  AMPK by binding to  the
regulatory  nucleotide-binding  domains  of  the  AMPKγ  subunit  (Fig.  4.3).
Activation of AMPK represses ATP-consuming anabolic pathways and induces
ATP-producing  catabolic  pathways  at  cellular  levels.  AMPK  also  regulates
energy balance at the whole body level mainly via  effects on the hypothalamus
and feed intake.

Fig. (4.3). Illustration of AMPK activation. AMPK is a heterotrimeric complex of α, β, and γ subunits.
When cellular ATP levels are high, AMP/ATP ratio decreases, and little AMP is bound to γ subunit, and
AMPK is in its inactive form. When the AMP/ATP ratio increases with energetic stress, more AMP is bound
to the γ subunit and the AID subunit releases from the KD and AMPK is phosphorylated at Thr172 site and is
activated.  AID,  autoinhibitory domain;  AMP, adenosine monophosphate;  AMPK, AMP-activated protein
kinase; ATP, adenosine triphosphate; GBD, glycogen binding domain; KD, bilobar kinase domain.

Central  injection  of  pharmacological  activator  of  AMPK  or  DNA  encoding
activated  mutant  stimulated  feed  intake  [151,  152].  Changes  in  hypothalamic
AMPK  activity  resulted  in  alteration  of  hypothalamic  feeding-related
neuropeptides.  Indeed,  overexpression  of  dominant-negative  AMPK  in  medial
basal hypothalamus suppressed NPY and AgRP expression in the ARC, whereas
overexpression of constitutively active AMPK stimulated NPY/AgRP in the ARC
and MCH in the LHA [152]. Together, these studies indicated that the effect of
AMPK  on  feeding  behavior  is  likely  to  be  mediated  via  the  hypothalamic
neuropeptides.
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To identify specific hypothalamic neurons in which AMPK mediated its effect on
feeding behavior, Claret and coworkers generated mice lacking the α2 catalytic
subunit of AMPK specifically in POMC- or AgRP-expressing neurons and found
a reduced body weight in AgRP-AMPKα2-KO8, but increased body weight and
adiposity in POMC-AMPKα2-KO mice [153].

These  divergent  effects  suggest  that  AMPK  plays  specific  roles  in  specific
neuronal  populations.

In chickens,  AMPK subunits  were characterized in 2006 by McMurtry’s  group
[154]. Nutritional states (fasting and refeeding) have been reported to modulate
hypothalamic  AMPK  expression  [155].  Xu  et  al.  [156]  have  shown  that
administration of AICAR (AMPK inducer) and compound C (AMPK inhibitor)
affected feed intake independently of AMPK activation. Dridi’s group has shown
that ICV administration of leptin activated hypothalamic AMPKα1/2 at Thr172
site and reduced feed intake in chickens [157]. Together, these data suggested that
AMPK is responsive to the nutritional status and that AMPK regulated feed intake
in chickens. However, further in-depth studies are warranted to determine the up-
and  down-stream  mediators  of  avian  AMPK.  The  changes  in  neuropeptides
following AMPK activation are similar to those observed with ICV administration
of fatty acids or manipulation of hypothalamic fatty acids [158].

4.2.3. Hypothalamic Fatty Acids

The role of central fatty acid metabolism in the regulation of energy homeostasis
has attracted the attention of many researchers and has become a hot spot research
area. Systemic administration of fatty acids gains access to various brain regions
[159].  Both  passive  diffusion  and  protein  carrier  (cluster  of  differentiation  36,
CD36 and fatty acid transporter 1, FATP1)-mediated models for the translocation
of plasma fatty acids across the blood-brain barrier (BBB) have been proposed.
Once they gain  access  to  the  cytosolic  compartment,  these  fatty  acids  generate
fatty acyl-CoA molecules via activation of acyl-CoA synthetase enzyme. These
generated fatty acyl-CoA molecules can be uptaken by the mitochondria for  β-
oxidation  (the  rate  is  very  low  in  the  brain),  or  converted  into  phospholipids,
triacylglycerol, and fatty acyl carnitine.

Le  Foll  et  al.  [160]  have  shown  that  the  hypothalamus  contains  “metabolic
sensing  neurons”  which  monitor  substrate  levels  such  as  fatty  acids.  These
neurons alter their membrane potential and activity in response to these substrate
levels and regulate feed intake. Several studies have shown that fatty acid-sensing
neurons are localized in the VMN and ARC [161].  In 2009, Jo and co-workers
[162]  showed  that  40%  of  ARC  POMC  neurons  sense  long-chain  fatty  acids.
Further, ICV administration of the long-chain fatty acid oleic acid (OA) inhibited
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feed intake in rodents via an increase in hypothalamic POMC mRNA expression
and blocking MC4R completely reversed the anorectic effect of OA [163]. Obici
et al. [164], however, reported that central administration of OA in rats inhibited
food  intake  independently  of  leptin  but  was  accompanied  by  a  decrease  in  the
hypothalamic expression of NPY. These data indicated that fatty acids regulated
feed  intake  via  modulation  of  hypothalamic  (an)orexigenic  neuropeptides  (Fig.
4.4). It has been also suggested that fatty acids can signal nutrient availability to
the CNS and that their esterification to LCFA-CoAs is a key step for their central
anorexigenic  action  [165],  because  inhibition  of  esterification  by  triascin  C
blocked  the  anorexic  effects  of  ICV  LCFA.

Fig.  (4.4).  Model  and  potential  mechanisms  of  central  fatty  acid  sensing  and  detection  in  feeding
behavior. Fatty acids cross the BBB and are taken up via both passive diffusion and protein carriers (CD36,
FATP1). During fasting or low blood glucose levels, FFAs are elevated, metabolized by astrocytes, and enter
the  mitochondria  via  CPT1c  for  β-oxidation  and  ATP production.  During  HFD,  hypothalamic  astrocytes
produce ketone bodies from FAs, which in turn are uptaken into neurons by MCT2 and are then metabolized
in the mitochondria to produce ATP. Another type of glial cell, tenocytes, has been found to play a crucial
role in central fatty acid sensing, storage, and metabolization with the production of PGE2 and GnRH; both
were reported to regulate feeding behavior. FAs in the brain can also originate from de novo synthesis, with
the first step being the production of malonyl-CoA from acetyl-CoA (comes from citrate produced in the
mitochondria), a reaction catalyzed by ACC. Malonyl-CoA is then catalyzed by FAS to produce palmitoy-
CoA, LCFAs, and LCFA-CoA, all of which are the regulator of feed intake. ACC, acetyl-CoA carboxylase;
AgRP, agouti-related protein; AMPK, AMP-activated protein kinase; ARN, arcuate nucleus; CART, cocaine-
and  amphetamine-regulated  transcript;  CD36,  cluster  of  differentiation  36;  CPT1c,  carnitine
palmitoyltransferase 1c; CSF, cerebrospinal fluid; DMN, dorsomedial hypothalamic nucleus; FAS, fatty acid
synthase;  FATP1,  fatty  acid  transport  protein  1;  GnRH,  gonadotropin-releasing  hormone;  MCT1/2,
monocarboxylate  transporter;  OA,  oleic  acid:  PA,  palmitic  acid;  PGE2,  prostaglandin  2;  POMC,
proopiomelanocortin;  VMN,  ventromedial  nucleus

The  fatty  acid  translocase  CD36  has  been  found  to  be  a  major  regulator  of
neuronal  fatty  acid  sensing  and  food  intake  [166].  Depletion  of  CD36  in  the
ventromedial  hypothalamus  (VMH)  of  diet-induced  obese  (DIO)  rats  fed  45%
high-fat diet increased their food intake and body weight gain compared to DIO
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controls [167]. More recently, several molecular pathways involved in the fatty
acid synthesis, lipolysis, or oxidation have been reported to regulate feed intake.

4.2.3.1. Central De-novo Fatty acid Synthesis

In addition to peripheral (derived from the diet) source, central LCFAs can result
from  local  hypothalamic  de-novo  synthesis.  The  synthesis  of  fatty  acid  is  a
cytosolic  process,  which  involves  two  key  enzymes,  acetyl-CoA  carboxylase
(ACC)  and  fatty  acid  synthase  (FASN).  ACC  carboxylates  acetyl-CoA  (which
comes from citrate produced in the mitochondria by the citric acid cycle) to form
malonyl-CoA. The malonyl-CoA is further converted, by FASN, to form LCFAs.
Conversely,  malonyl-CoA  can  be  decarboxylated  into  acetyl-CoA  and  CO2  by
malonyl-CoA decarboxylase (MCD) and results in a decrease in the de-novo fatty
acid synthesis. Thus, the generation of a new LCFA molecule in the hypothalamic
ARC  depends  heavily  on  the  metabolism  of  glucose  to  produce  the  necessary
substrates  (acetyl-CoA,  malonyl-CoA,  and  NADPH,  which  is  a  cofactor  of
FASN).  It  is  noteworthy  that  when  phosphorylated,  ACC  is  inhibited  whereas
MCD is activated, two events that lower malonyl-CoA levels. Previous studies,
including our own ones, showed that the abovementioned enzymes are expressed
in  the  hypothalamus  [168].  Intraperitoneal  or  ICV  administration  of  FAS
inhibitors (C75 or cerulenin) increased hypothalamic malonyl-CoA concentration,
reduced  food  intake  and  body  weight,  and  increased  energy  expenditure  [169,
170]. These effects were also accompanied by increased activation of neurons in
the hypothalamic ARC, decreased expression of NPY and AgRP, and increased
expression of POMC and αMSH [171, 172]. The two isoforms, ACC1 and ACC2,
outer  mitochondrial  membrane  proteins,  were  also  found  in  the  hypothalamus.
Interestingly, ICV administration of 5-(tetradecyloxy)-2-furoic acid (TOFA), an
inhibitor  of  ACC,  prior  injection  of  C75,  blocked  the  anorectic  effect  of  C75
[169].  Although  both  TOFA  and  C75  inhibit  fatty  acid  synthesis,  TOFA
antagonized  the  anorectic  effect  of  C75.  This  led  to  the  hypothesis  that
hypothalamic malonyl-CoA plays a  key role  in  the control  of  feeding behavior
[173],  because  C75 increased  and  TOFA reduced  malonyl-CoA levels.  Further
nutritional (fasting and refeeding) studies confirmed this hypothesis.  Following
fasting  (negative  energy  balance  status),  malonyl-CoA  levels  dropped  and
stimulated  food  intake  however  refeeding  would  limit  the  rebound  feeding
response  via  an  increase  of  malonyl-CoA  levels.  Further  hormonal  (leptin,
ghrelin)  studies  showed  the  key  role  of  AMPK-ACC-malonyl-CoA  axis  in  the
regulation  of  food  intake  [152,  174,  175].  Leptin  administration  inhibited
hypothalamic AMPK activity, activated ACC, increased malonyl-CoA levels, and
reduced  food  intake.  Blockade  of  ACC  by  TOFA,  or  overexpression  of  MCD
prevented leptin’s anorectic action [152,  176,  177].  Ghrelin stimulated appetite
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and  food  intake  via  AMPK  activation,  ACC  inhibition,  and  malonyl-CoA
decrease  in  the  hypothalamus  [175].

4.2.3.2.  Central  Fatty  Acid  Oxidation  and  Carnitine  Palmitoyl-transferase
(CPT)

The two isoforms of CPT1, CPT1a in the liver and CPT1b in the muscle, catalyze
the  first  step  of  the  translocation  of  LCFA-CoAs  into  mitochondria  for  β-
oxidation.  Usually,  the  brain  relies  on  glucose  as  a  primary  fuel  source  when
carbohydrate  is  available  or  ketones  during  starvation  and  high-fat  feeding.
Although neural tissues do not normally use fatty acids as a major physiological
fuel,  a  recent  study  has  characterized  a  novel  CPT1c  isoform  predominantly
expressed in the brain [178]. Initial studies showed that CPT1c did not possess
acyltranferase activity and did not support fatty acid translocation and oxidation in
mitochondria  of  hypothalamic  explants,  nor  in  cell  culture  [178],  however,  it
binds  to  malonyl-CoA.  In  a  later  study,  Sierra  et  al.  [179]  showed  that  brain
CPT1c had a very weak acyltransferase activity and preferentially used palmitoyl-
CoA as a substrate. Further studies have shown that central CPT1c plays a key
role  in  the  regulation  of  food intake.  Indeed,  CPT1c knockout  mice  fed  with  a
regular chow diet have reduced food intake [180], while overexpression of CPT1c
in  the  hypothalamic  ARC  increased  food  intake  [181].  In  addition,  ARC
overexpression of CPT1c blocked leptin or cerulenin-induced anorectic effects.
Carrasco  and  colleagues  have  shown  that  brain  CPT1c  regulated  ceramide  de
novo biosynthesis [182], and both CPT1c and ceramide are downstream mediators
in malonyl-CoA action on food intake.

4.2.3.3. Central Lipolysis and Lipoprotein Lipase (LPL)

Lipoproteins  are  produced  within  the  CNS  and  contribute  to  the  brain's  lipid
sensing [183]. They are triglyceride-enriched particles, and they are hydrolyzed
by  lipases.  Lipoprotein  lipase  is  expressed  in  the  brain  [184],  and  depletion  of
LPL in the VMH induced body weight gain in rodents [185]. Depletion of LPL in
the dorsal hippocampus, however, increased body weight gain without affecting
food  intake  in  rodents  [186].  These  studies  indicated  that  the  increase  in  body
weight gain was associated with a decrease in energy expenditure and locomotor
activity.

4.2.4. Hypothalamic Glucose

Maintaining  a  healthy  body  weight  requires  balancing  food  intake,  energy  and
nutrient  partitioning  and  deposition,  and  energy  expenditure.  This  energy
homeostasis necessitates an ability of the brain to detect the status of energy stores
and match energy intake with energy expenditure. In 1953, Jean Mayer was the
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first to propose the “glucostatic hypothesis” and postulated that reduced glucose
utilization  in  critical  brain  area  leads  to  perception  and  expression  of  hunger,
however,  increased  glucose  utilization  in  the  same  area  induces  satiety  and
cessation  of  eating  [187].  Subsequent  studies  have  shown  that  fall  in  blood
glucose  was  correlated  with  meal  initiation  in  both  humans  and  rodents  [188  -
190] and argued that glucose accounts for the short-term control of feed intake.
However, lipostatic theory (described above) account for the long-term regulation
of  body  weight  and  energy  balance  [191].  Bray  [192]  revisited  Mayer’s
glucostatic theory and renamed it “glucodynamic theory” as the glucose levels is
not static but it is rather dynamic. As described above, glucose is the primary fuel
of  the  brain  thus  it  is  critical  to  maintaining  adequate  glucose  levels  for
appropriate  brain  function  at  all  times.  Blood  glucose  across  the  BBB  via  the
saturable glucose transporter isoform 1. Brain glucose varies with blood glucose
and is lower than that in the periphery [193]. In 1964, two groups suggested the
presence  of  glucose-sensing  neurons  in  the  VMH  (formerly  known  as  satiety
center)  and  LHA  (formerly  known  as  hunger  center)  using  cats  and  dogs,
respectively [194, 195]. Intravenous administration of glucose increased VHM-
and reduced LHA-neuronal activities. Based on their responses to the extracellular
glucose changes, these neurons are referred to glucose-excited (GE) or glucose-
inhibited  (GI)  [196].  GE  neurons  are  found  in  several  hypothalamic  areas,
including ARC, VMN, PVN, and LHA (for review see [197]). As in pancreatic β-
cell,  increased  central  glucose  activates  glucokinase  and  raises  ATP/ADP ratio
leading to depolarization via  closing ATP sensitive potassium channel  (KATP)
[198, 199]. In addition, neuronal glucose uptake is mediated by several glucose
transporters such as GLUT3, GLUT2, and GLUT4 [200]. Kang et al. [200] have
shown that  insulin receptor  is  expressed in GE neurons.  These glucose-sensing
neurons  have  been  shown to  interact  with  several  (an)orexigenic  hypothalamic
neuropeptides [201 - 204].

Recent  study  has  shown  that  glucose  levels  in  the  cerebrospinal  fluid  (CSF)
change  proportionally  to  variations  in  blood  glucose  concentrations  [205],
suggesting the presence of a mechanism that transfers glucose from the blood to
CSF. Further studies on primates and rodents showed that GLUTs, glucokinase
(GK), and regulatory glucokinase protein (GKRP) are expressed in hypothalamic
tanycytes [206, 207]. This indicates that tanycytes sense glucose variations in CSF
and allow the incorporation of glucose from CSF to hypothalamic neuronal nuclei
(Fig. 4.5). Genetic inhibition of monocarbohydrate transporter, GLUT2, or GK in
tanycytes  showed  impeded  neuronal  response  to  fasting  and  acute  glucose
administration,  dysregulated  expression  of  (an)orexigenic  neuropeptides,  and
altered  feeding  behavior  [208  -  210].  A  recent  study  has  shown  that  glucose
activated  sweet  taste  receptors  and  increased  Ca2+  concentrations  in  tanycytes
(Fig. 4.5) [211].
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Fig. (4.5). Model and potential mechanisms of glucose sensing mediated by tanycytes. Tanycytes (α1, α2,
β1,  and  β2)  are  distributed  over  the  wall  of  the  third  ventricle  (3V).  The  tanycytes  have  projections  to
hypothalamic neuronal nuclei such as VMN and ARC, and are joined by tight junctions forming part of ME-
CSF  barrier.  Tanycytes  sense  CSF  glucose  variations  via  GLUTs,  GK,  Tas1r2/3,  and  MCT  and  allow
incorporation of glucose to hypothalamic nuclei. Glucose can also generate metabolites like lactate. Inhibition
of tanycyte GLUT, MCT, or GK alters the expression of hypothalamic (an)orexigenic neuropeptides and
feeding  behavior.  AgRP,  agouti  regulated  protein;  ARC  or  ARN,  arcuate  nucleus;  ATP,  adenosine
triphosphate;  CART,  cocaine  and  amphetamine-regulated  transcript;  CSF,  cerebrospinal  fluid;  DMN,
dorsomedial nucleus; GLUTs, glucose transporters; GK, glucokinase, GKRP, glucokinase regulated protein;
MCT, monocarbohydrate transporter; Tas1r2/3, sweet taste receptors; VMN, ventromedial nucleus.

4.2.5. Hypothalamic Proteins and Amino Acids

In 1956, Mellinkoff and colleagues showed a relationship between serum amino
acid  concentration  and  appetite  and  thereby  advanced  the  a  monostatic  theory
[212]. Several succeeding studies showed key roles for proteins in the regulation
of appetite, food intake, body weight, and body composition. The satiety effect of
proteins  is  source-dependent  in  both  humans  and  animals  [213],  and  has  been
demonstrated using deficient- or excess-protein diets. For instance, when rodents
were fed a high protein diet with no other choice, they ate less compared with a
regular diet containing a standard amount of proteins [214]. Similarly, when given
a choice of 2 diets (high and low CP9), rodents balance their dietary and protein
intake  [215].  Due  to  its  suppressive  effect  on  food  intake,  high  protein  diets
became  very  popular  and  promoted  weight  loss  [216].

Similar effects were observed in livestock. For instance, in both meat (broilers)-
and egg (layer)-type chickens, reduced dietary protein content has been shown to
induce  feed  intake  [217,  218].  Pigs  also  eat  more  diets  that  are  moderately
deficient in CP or amino acids [219]. The association between diet CP content and
dry matter intake has also been found in ruminants (for review see [220]).
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The variety of proteins in a diet, with different amino acid sequences, digestion
kinetics,  and  bioactive  peptides,  might  explain  their  differential  metabolic  and
physiological  responses.  For  example,  whey  proteins  have  rapid  and  stronger
satiety  effects  compared  to  casein  [221].

Because  the  levels  of  brain  and  plasma  amino  acids  rise  relatively  later  after
protein intake [222], it is likely that the satiety signal starts in the gastrointestinal
tract (GI). Among the mechanisms involved in the satiety effects of proteins are:

Low palatability of proteins and generation of pre-absorptive signals while they1.
are  still  in  the  GI.  It  has  been  shown  that  proteins  trigger  the  release  of
intestinal  hormones  such  as  cholecystokinin  (CCK)  [223]  by  mucosal
enteroendocrine cells, and evidence exists that CCK inhibits food intake [224].
Proteins have a greater thermogenic effect compared to other macronutrients2.
[225].
Proteins  induced  gluconeogenesis10  to  prevent  a  decrease  in  glucose  levels3.
thereby contributing to satiety [226].
Interconnection  between  plasma  and  brain  amino  acid  and  central  nutrient4.
chemosensor system [227].

From a mechanistic standpoint, amino acids enter the brain via several facilitative
carriers  and  amino  acid  transporter  systems  that  are  expressed  in  the  BBB
endothelial cells [228]. In addition, an amino-acid taste receptor (Tas1r1/Tas1r3)
and umami taste receptor (mGLuR4) were detected in tanycytes, indicating a key
role for tanycytes in amino acid sensing and detection (Fig. 4.6).

Reports of anorexia-associated with indispensable amino acids (IAAs) deficiency
in animal models dated from 1990 [229], and seemed to be orchestrated by the
CNS [230]. As free amino acids are not stored like a carbohydrate (glycogen) or
lipid  (triglycerides),  it  was  hypothesized  that  the  decreased  appetite  associated
with IAA deficiency is a protective mechanism to minimize any deleterious effect
of  disproportional  IAA  diets  [231].  Tews  et  al.  [232]  used  a  branched-chain
amino  acid  analog,  norleucine,  which  competes  with  BCAA  at  the  BBB,  and
showed  a  typical  IAA  deficiency-induced  anorexia.  Further  lesioning  studies
suggested that the anterior piriform cortex (APC) is the primary IAA chemosensor
[233].  Sharp  et  al.  (reviewed  in  [227])  reported  that  mitogen-activated  protein
kinase  (MAPK)  was  involved  in  mediating  the  anorectic  effects  of  IAA
deficiency.  Magrum  et  al.  [234]  have  shown,  on  the  other  hand,  that  central
intracellular calcium concentration played a key role in the initial signal leading to
alterations in neurotransmitters activity and food intake depression. Beverly and
colleagues  showed,  by  using  inhibitor  injection  in  the  APC,  a  crucial  role  for
intact  RNA  and  protein  synthesis  in  mediating  the  anorectic  effects  of  IAA
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deficiency  [235].  Microdialysis  studies  demonstrated  a  consistent  increase  in
BCAA  concentration,  but  not  the  other  amino  acids  with  the  exception  of
methionine  and  tyrosine,  in  the  rodent  LHA  and  PVN  within  20-40  min  after
ingestion of a balanced amino acid mix or 50% protein meal [236].

Fig.  (4.6).  Model  and  potential  mechanisms  of  central  amino  acid  sensing  and  detection  in  feeding
behavior. (a) Amino acids enter the brain via facilitative carriers in the luminal and parenchymal membrane
(system  L1,  y+,  xG-,  and  n  for  large  essential  neutral  AA,  cationic  AA,  acidic  AA,  and  glutamine,
respectively). Other AA transporters systems such as system A (for small nonessential neutral AA, alanine),
ASC (for some large and small neutral AA), N (for nitrogen-rich AA), EAAT (for the excitatory acidic AA),
and Na+-LNAA (for large neutral AA) were also identified in the parenchymal membrane. Sensing protein
excess regulates feeding behavior via  ATP, mTOR, and ERK signaling pathways. Sensing protein deficit
regulates  feeding  behavior  through  GCN2 and  eiF2α.  (b)  schematic  section  of  brain  regions  involved  in
amino acid sensing: APC senses amino acid imbalanced diets or very low-protein diets, NTS senses increased
amino acid concentrations, MBH is involved in sensing bidirectional changes in amino acids, PVN and LH
are involved in neuro-circuitory of amino acid sensing. The representation is not for scale. APC, anterior
piriform  cortex;  ATP,  adenosine  triphosphate;  eiF2α,  Eukaryotic  Translation  Initiation  Factor  2  Subunit
Alpha;  ERK,  extracellular  regulated  kinase;  GCN2,  general  control  of  amino-acid  synthesis;  LH,  lateral
hypothalamus;  MBH,  mediobasal  hypothalamus;  mTOR,  mechanistic  target  of  rapamycin;  NTS,  nucleus
tractus solitaries; PVN, paraventricular nucleus.

At the molecular  level,  the  detection of  IAA-deficient  diet  within the APC has
been shown to occur through general control of amino-acid synthesis 2 (GCN2)-
dependent  mechanism  in  both  rodent  and  drosophila  [237  -  239].  GCN2  is  a
serine/threonine-protein kinase that senses amino acid deficiency through binding
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to  uncharged  tRNA  [240].  Early  work  from  Panksepp  and  booth  in  1971  has
shown that  central  administration of  a  balanced mixture  of  amino acid  reduces
food  intake  [241],  suggesting  a  hypothalamic  amino  acid  sensing  mechanism.
Subsequently,  several  studies  have  shown  that  ICV  administration  of  leucine
induces a hyperphagic response [242 - 244]. This anorectic effect is not produced
by  other  BCAAs  or  any  aromatic  amino  acid.  In  2006,  Seeley’s  group
demonstrated that activation of the mechanistic target of rapamycin (mTOR) was
associated  with  central  leucine  sensing  in  the  regulation  of  feeding  behavior
[245].  The  serine/threonine-protein  kinase  mTOR,  a  member  of  the
phosphatidylinositol 3-kinase (PI3K)-kinase-related kinase superfamily, couples
nutrient and growth factor sensing in the control of protein synthesis, growth, cell
survival, and other cellular processes [246]. Injection of leucine phosphorylated
ribosomal  p70  S6  kinase  1  (S6k1),  a  major  downstream  mediator  of  mTOR
pathway  [247].  mTOR  has  been  shown  to  be  co-localized  with  hypothalamic
feeding-related  neuropeptides,  and  leucine  was  found  to  modulate  the
hypothalamic  expression  of  AgRP  [248].  Heeley  and  Blouet  [249],  however,
suggested  that  mTOR signaling  alone  is  not  sufficient  to  explain  the  anorectic
effect of leucine and hypothesized that the intracellular leucine metabolism and
ATP production might play a role. Indeed, leucine produces α-ketoisocaproic acid
(KIC)  and  isovaleryl-CoA  via  BCAA  transferase  (BCAT)  and  branched-chain
ketoacid dehydrogenase (BCKDH), and KIC administration has been reported to
suppress  food  intake  in  rodents  [242].  Further  studies  have  shown  crosstalk
between mTOR and GCN2 and their potential interaction with fibroblast growth
factor 21(FGF21) in regulating food choice and metabolism [250 - 252] (Fig. 4.6).

4.2.6. Non-coding RNAs

Non-coding RNAs (ncRNAs) are functional RNA molecules that are transcribed
from  DNA  but  not  translated  into  protein.  Transfer  RNA  and  ribosomal  RNA
were the  first  to  be  discovered in  the  1950s.  Other  functional  ncRNAs such as
RNAse P, snRNAs, and 7SL were identified in the early 1980s. In 1993, Lee and
colleagues  made  a  breakthrough  by  discovering  microRNAs  (miRNAs)  in  the
nematodes (Caenorhabditis elegans) [253]. The period that followed was marked
by  an  inundate  of  information  wherein  several  teams  characterized  numerous
miRNAs  from  various  species.

Based  on  current  knowledge,  DNA  regions  capable  of  generating  mature
functional miRNA can be present in diverse locations within the genome (introns,
exons).  An overview of miRNA biogenesis  stepwise is  illustrated in Fig.  (4.7).
Briefly,  Initial  nuclear  processing  of  miRNA  transcripts  involves  the
microprocessor complex, which contains Drosha and DiGeorge syndrome critical
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region gene 8 (DGCR8),  also known as Pasha [254,  255].  This microprocessor
cleaves pri-miRNA into pre-miRNA, which is transported into the cytoplasm by
exportin  5,  and where  it  is  further  processed into  mature  ~18-  to  23-nucleotid-
-long  duplexes  by  DICER1,  with  help  from  dsRNA-binding  proteins,  protein
kinase RNA activator, and transactivation response RNA binding protein (TRBP)
[256]. One strand of the dsRNA duplex is then loaded into an Argonaute (Ago)
protein  and  drives  the  recruitment  of  a  complex  of  effector  proteins  called  the
RNA-induced silencing complex (RISC) that inhibits the expression of targeted
transcripts [257, 258].

Fig.  (4.7).  Schematic  representation of  miRNA biogenesis.  After  transcription by RNA polymerase II,
miRNA primary transcripts (pri-miRNAs) are cleaved by the microprocessor complex (Drosha/DGCR8) to
produce a ~70 nucleotide precursor hairpin pre-miRNA in the nuclear compartment. The pre-miRNAs are
then transported, via exportin 5, to the cytoplasm, where they are excised by dicer1 to form mature 22-nt
miRNAs. One strand is selected for stable association with Argonaute, where it serves, in coordination with
RISC, as a guide to target and regulate specific mRNAs. DGCR8, DiGeorge Syndrome Critical Region gene
8; RISC, RNA-induced silencing complex, TRBP, transactivation-responsive RNA binding protein.

The brain is considered a major site for miRNA expression, and miRNAs are key
regulators  for  neurodevelopment,  neurotransmission,  and  synaptic  plasticity
[259].  An  alteration  of  miRNA machinery  expression  with  an  up-regulation  of
RISC genes (DGCR8 and Ago2) was found in the hypothalamus of the anx/anx
anorexia  mouse  model  [260],  suggesting  a  potential  role  in  the  regulation  of
energy homeostasis. Interestingly, Claret’s group has shown that more than 90%
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of  hypothalamic  POMC  and  NPY/AgRP  neurons  express  DICER1,  which  is
modulated by fasting or overeating [261]. Furthermore, neuron-specific deletion
of DICER1 induced hyperphagia and obesity in rodents [220, 262]. The effect of
Dicer deletion/mutation seemed to be mediated by the activation of PI3K, AKT,
and mTOR and loss of mir-103 [262].

Several studies revealed enrichment of miRNAs in the ARC and PVN of rodents
and  the  preferential  expression  of  miR-7a  in  NPY/AgRP  neurons  [263,  264].
Overexpression of miR-200a in the hypothalamus of ob/ob mice down-regulated
the  hypothalamic  expression  of  insulin  receptor  substrate-2  (IRS2)  and  leptin
receptor  (Ob-R),  which  are  key  regulators  of  feeding  behavior  [265].  Sangiao-
Alvarellos and colleagues demonstrated an alteration of hypothalamic let7a, mir-
9, mir-30e, mir-132, mir-145, mir-200a, and mir-218 in high fat diet-fed rats and
after chronic caloric restriction [266]. Based on their predicted targets, the effects
of the abovementioned miRNAs were probably mediated via PI3K, AKT, insulin
receptor  (IR),  P70S6K,  JAK/STAT [266].  Using  in  situ  hybridization,  Derghal
and  co-workers,  on  the  other  hand,  have  shown  that  mir-383,  mir-384-3p,  and
mir-488 are expressed in the POMC neurons and potentially can bind the 3-UTR
of  POMC mRNA [267].  The  same  group  reported  that  the  expression  of  these
miRNAs was  upregulated in  the  hypothalamus of  ob/ob and db/db mice  [267].
ICV administration of leptin down-regulated the hypothalamic expression of these
miRNAs in both wild-type and obese (ob/ob) mice [267]. Recently, it  has been
shown that DICER1 is a prerequisite for food deprivation-induced autophagy in
primary  cortical  neurons,  partly  via  let-7  [268],  suggesting  a  key  role  of
autophagy in  the  regulation of  food intake (see  next  section 4.2.7).  Altogether,
these  studies  showed  that  miRNA  machinery  plays  a  key  role  in  the  central
regulation  of  energy  homeostasis.

4.2.7. Autophagy

4.2.7.1. Autophagy Machinery

Autophagy is an evolutionary preserved intracellular self-eating or self-digestion
mechanism,  whereby  double-membrane  autophagosome  cloisters  organelles  or
cytosol  portions  and  delivers  them  to  lysosomes  for  breakdown  by  resident
hydrolases  to  provide  nutrients  and  energy  to  the  starved  cells  [269,  270].

Although  the  final  destination  of  autophagy  is  the  delivery  of  cargo  to  the
lysosome  for  degradation  and  recycling,  there  are  three  primary  types  of
autophagy:
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1- Microautophagy: where cargos are captured by invaginations or protrusions of
the  lysosomal  membrane  [271].  The  uptake  occurs  directly  at  the  limiting
membrane  of  the  lysosome,  and  can  include  intact  organelles.
2- Chaperone-mediated autophagy: where chaperones are used to identify cargo
proteins  with  particular  pentapeptide  motif  to  unfold  and  translocate  them
individually  directly  across  the  lysosome  membrane  [272].
3-  Macroautophagy:  where  a  de  novo  synthesized  double-membrane  vesicles,
called the autophagosome, are used to sequester cargo and subsequently transport
it to the lysosome [273].

The  macroautophagy  (autophagy)  process  contains  more  than  30  genes  that
function  in  key  stages  of  the  pathway:  initiation  (or  induction  and  nucleation),
elongation, closure and maturation, fusion with the lysosomes, and degradation
are shown in Fig. (4.8). During the initiation, the membrane is expanded to form a
phagophore, which is the primary double-membrane sequestering compartment.
Several  studies  indicated  that  plasma  membrane,  endoplasmic  reticulum  (ER),
mitochondria, and Golgi apparatus are possible sources of the phagophore [274 -
276].  In  mammalian  cells,  initiation  and  nucleation  of  the  phagophore  is
controlled  by  ULK1/2,  ATG13,  C12orf44/ATG101,  and  RB1-inducible  coiled-
coil  1  (RB1CC1/FIP200)  [277].  Under  food-deprivation  conditions,  mTOR1
dissociates  from  the  abovementioned  induction  complex,  leading  to  partial
dephosphorylation  of  ULK1/2  and  ATG13,  activating  them  and  inducing
autophagy. The nucleation stage is controlled by the ATG14-containing class III
phosphatidylinositol  3  kinase  (PtdIns3K)  complex,  which  consists  of
PIK3C3/VPS34,  PIK3R4/p150,  BECN1,  ATG14,  and  UVRAG (for  review see
[278]).  There  are  two  conjugation  systems  involving  ubiquitin-like  (UBL)
proteins  that  contribute  to  the  phagophore  elongation.  The  first  one  contains
ATG12-ATG5-ATG16L1  complex,  and  the  second  system  is  composed  of
ATG8-LC3 complex [279, 280]. In order to form a complete autophagosome, the
phagophore  must  mature  and  close.  The  autophagosome  traffics  and  fuse  with
endosome  and/or  lysosome,  and  this  movement  is  dependent  on  microtubules.
VTI1B,  UVRAG,  and  SNARE  machinery  (VAM7/9  and  syntaxin)  have  been
reported  to  have  a  role  in  this  fusion  process  [281  -  283].

#f4.8


Central Mechanisms Nutritional Biochemistry: From the Classroom to the Research Bench   103

Fig.  (4.8).  A  schematic  representation  of  autophagy  machinery  process.  The  sequential  process  of
autophagy consists of induction, nucleation, and elongation of the phagophore, followed by the formation of
autophagosome and amphisome,  which in  turn,  fuse with a  lysosome to  form autolysosome that  leads to
cargo degradation and recycling of macromolecules. These stages and processes are controlled by different
sets of autophagy-related genes (ATGs). ATG, autophagy-related gene; BECN1, beclin 1; FIP200, family
kinase-interacting protein of 200 kDa; LC3, microtubule-associated protein 1A/1B light chain 3; ULK, Unc-
51 like autophagy activating kinase; VPS, vacuolar protein sorting.

4.2.7.2. Autophagy and Food Intake

It has been hypothesized that hypothalamic autophagy is nutrient-responsive and
that  the  induction  of  autophagy  in  the  hypothalamus  during  food  deprivation
mobilizes  neuron-intrinsic  lipids  to  generate  free  fatty  acids  that  control  food
intake [284].  The same group demonstrated that  fasting activated autophagy in
both rodent  MBH and GT1-7 cell  culture  [285].  Specifically,  they showed that
fasting increased hypothalamic fatty acid uptake and suggested that the source of
central  lipids  during  food  deprivation  is  the  periphery  [285].  Exposure  of
hypothalamic GT1-7 cells to fatty acids (OA and PA) induced AMPK and ULK1
phosphorylated  levels  and  activated  autophagy  [285].  Specific  knock-out  of
ATG7 in AgRP neurons, orexigenic cell types, significantly reduced food intake
in  mice  upon  refeeding  after  6  or  24h  fast  [285].  These  changes  were
accompanied  by  an  increased  expression  of  hypothalamic  α-MSH.  In  contrast,
Meng and Cai [286] found that chronic high-fat diet and obesity were associated
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with  reduced  hypothalamic  ATG7  expression.  Furthermore,  they  showed  that
genetic  knockdown  of  ATG7  resulted  in  increased  food  intake  and  obesity
potentially via NF-KB-mediated inflammation [286]. Xiao and co-workers have
shown that hypothalamic activating transcription factor 4 (ATF4)/ATG5 axis in
POMC neurons play a key role in the regulation of energy balance (intake and
expenditure) [287].  Interestingly,  Malhotra et al.  [288] have shown that loss of
ATG12, but not ATG5, in POMC neurons increased food intake and accelerated
weight gain and adiposity. Together these elegant studies demonstrated a key role
of autophagy in the regulation of energy homeostasis and raised more questions
that open new research vistas. For instance, what other hypothalamic ATGs are
involved in the regulation of energy balance? Do the manipulation of these ATG
in  specific  neurons  have  specific  outcomes?  Similar  to  fatty  acids,  does
hypothalamic  autophagy  glucose-  or  amino  acid-responsive?  What  are  the
upstream  regulators  of  hypothalamic  autophagy?

4.2.8. Hypothalamic Mitochondrial Mitofusin 2

Mitofusin 2 (MFN2) plays a critical role in both mitochondrial dynamic (fusion)
and the establishment of mitochondria-ER interactions. Claret’s group has shown
that POMC-specific knock down of MFN2 resulted in the loss of mitochondria-
ER  contacts,  induced  hyperphagia,  reduced  energy  expenditure,  and  induced
obesity  and  leptin  resistance  [289].  MFN2 overexpression  in  the  ARC reduced
food  intake,  body  weight,  adiposity,  and  plasma  leptin  levels  in  diet-induced
obese  (DIO)  mice  [289].  The  study  unraveled  a  pivotal  role  of  mitochondria
network  and  mitochondria-ER  contact  in  regulating  hypothalamic  POMC
neuronal  function  and  whole-body  energy  homeostasis.

CONCLUSION

Classical  and  new information  regarding  central  neuronal  circuits  that  regulate
appetite and food intake has extended our understanding of energy balance. Many
research  groups  and  seminal  works  broke  through  by  identifying  several
hypothalamic signaling pathways (orexigenic and anorexigenic) that regulate food
intake  and  body  weight  and  constitute  potential  therapeutic  targets  to  treat
metabolic  and  feeding-related  disorders.

NOTES
1 Hyperphagia is an abnormal condition of intense hunger and excessive eating

2  Aphagia:  passive  aphagia  when  an  animal  does  not  respond  to  food  if  it  is
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presented;  active  aphagia  when  an  animal  rejects  the  food;  and  mixed  aphagia
when an  animal  does  not  react  to  food  when presented,  but  spit  it  out  when is
placed in the mouth.

3 Orexigenic: appetite stimulator

4 Anorexigenic: appetite inhibitor

5 ICV, intracerebroventricular

6 ICV, intracerebroventricular

7 IN, infindibular nucleus

8 KO mice, knock out mice

9 CP: crude proteins

10 Gluconeogenesis is a metabolic pathway resulting in the generation of glucose
from non-carbohydrate substrates
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CHAPTER 5

Regulation of Food Intake: Peripheral Mechanisms

Abstract:  In  addition to  central  mechanisms,  food intake is  regulated by peripheral
pathways, including gastric distension and the release of peripheral peptide signals that
communicate  with  the  hypothalamus  to  induce  appetite  and  hunger  or  satiety  and
satiation. The present chapter summarizes the current knowledge related to peripheral
peptides involved in the short- and long-term regulation of food intake.

Keywords: Long-term regulation of food intake, Peripheral peptides, Peripheral
signaling, Short-term regulation of food intake.

INTRODUCTION

The maintenance of  the body weight  set  point  (i.e.  at  a  stable level)  is  a  major
determinant in keeping the higher animals survive [1]. As described in previous
chapters,  it  is  the  result  of  a  balance  between  energy  intake  and  energy
expenditure [2]. Animals take in energy through food and drink consumption and
expend  energy  via  the  resting  metabolic  rate,  the  thermic  effect  of  food,  and
physical  activity.  A dysregulation of  this  balance can lead to a  change in body
weight:  increased  BW  when  energy  intake  exceeds  energy  expenditure,  or
decreased BW when the energy expenditure surmounts the energy intake [3]. The
energy (um)balance and its components continuously change over time, and they
are regulated by complex physiological, metabolic, and molecular control systems
[4  -  8].  As  described  in  Chapter  4,  there  has  been  tremendous  progress  in
identifying  the  important  role  of  the  CNS  and  the  hypothalamus  in  the
homeostatic  regulation  of  energy  balance.  However,  the  central  system  is  not
working  independently,  but  it  rather  interacts  and  crosstalk  with  the  peripheral
system. In fact, under steady-state conditions, ingested nutrients (energy intake)
are  digested,  absorbed,  metabolized,  and  stored.  A neural  regulator  senses  fuel
(energy)  availability  in  the  internal  milieu  (nutrient  sensing)  and  generates
appropriate (satiety and adiposity) signals to the neural circuits controlling food
intake and energy expenditure. The key components of the peripheral system are
the gustatory system [9,  10],  gastrointestinal  tract  [11,  12],  pancreas [13],  liver
[14],  muscle  [15],  and  adipose  tissue  [16,  17].  All  these  components  are  in
complex  interplay  and multidirectional  communication  with the brain via either
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neural  connections,  hormones  and/or  metabolites.  This  peripheral  regulation  of
food intake can be categorized in a short-term regulation, which determines the
beginning and the end of a meal (hunger and satiation), and a long-term control
via adiposity signals, which monitor energy storage and helps regulating the body
energy depots [18]. The purpose of the present chapter is to provide an overview
of peripheral pathways and summarize the current knowledge related to peripheral
peptides involved in the short- and long-term regulation of food intake.

5.1. Short-term Regulation of Food Intake

Quartermain and coworkers [19] divided the short-term component of food intake
into two phases: early pre-absorptive and delayed absorptive or digestive phases.
The  decision  of  meal  initiation  is  mostly  dictated  by  food  availability,  social
conventions,  and  learned  associations  with  physiological  signals  playing  a
relatively  minor  role  [20].  However,  data  have  suggested  a  role  for  the  gastric
peptides. The CNS uses inputs from mechanoreceptors in the stomach and the GI
to determine how much food is enough. Shortly after food ingestion, the presence
of  nutrients  in  the  stomach  and  proximal  small  intestine,  as  well  as  nutrients
arriving via the portal vein, activate afferent signal that travel in vagal nerve fibers
and control meal termination. Food ingestion releases gastrointestinal hormones
and activates gastrointestinal  motility,  gastric,  and pancreatico-biliary secretion
and absorption. It has been estimated that the motor and secretory activities in the
upper  and mid-gut  contribute  to  over  50% of  the  overall  postprandial  response
[21]. The gut or pancreatic hormones, secreted from the mucosal enteroendocrine
cells,  act  on  vagal  or  other  pathways  (gut-brain  interaction)  to  induce  (e.g.
ghrelin)  or  inhibit  appetite  and  food  intake  (e.g.  CCK,  GLP-1,  PYY,  etc.).

5.1.1. Ghrelin

Peripheral  or  central  administration  of  ghrelin  stimulated  food  intake  at  times
when  feeding  would  not  normally  occur  and  increased  meal  numbers  without
changing meal sizes [22], indicating that ghrelin regulates meal initiation [23]. In
support of these data, the pattern of human plasma ghrelin is characterized by an
increase before meals and a rapid decline after food consumption [24]. In rodents,
circulating ghrelin rises during food deprivation and before the dark cycle, which
is  known  as  the  main  period  for  food  consumption  [25].  In  avian  species,
however,  ghrelin  seemed to  have  the  opposite  effects  compared  to  mammalian
species [26]. This divergent action of ghrelin on food intake seems to be specie-
specific.

Ghrelin is a 28-amino acid peptide, produced mainly in the oxyntic gland cells in
the mucosa of the mammalian stomach [27] and avian proventriculus [28]. It has
been reported that it is also expressed in other tissues such as the intestine, lung,
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and  brain  [28,  29].  Ghrelin  exerts  its  effect  via  growth  hormone  secretagogue
receptor  (GHS-R),  which  has  been  found  to  be  expressed  in  many  tissues,
including the stomach innervating vagal afferent neurons in the nodose ganglion
[30]. GHS-R is also expressed in hypothalamic NPY neurons [31]. Peripheral or
central  administration  of  ghrelin  induces  c-fos  immunoreactivity  in  the
hypothalamic  ARC,  PVN,  and  LHA  [32].  Furthermore,  ghrelin  administration
modulates the expression of hypothalamic NPY, AgRP, and orexin independently
of  the  nutritional  status  [33  -  35],  and  antibodies  and  antagonists  of  NPY  and
AgRP  abolish  ghrelin-induced  feeding  behavior  [34].  Ghrelin  injection  blocks
leptin-induced  feeding  reduction,  and  ghrelin  orexigenic  effect  is  inhibited  by
central administration of Y1 receptor antagonist [36]. The peripheral and central
effects of ghrelin on energy balance are likely to reflect complex interactions of
NPY, AgRP, orexin, CRF, and other hypothalamic feeding-related neuropeptides
[37].

5.1.2. CCK

CCK,  literary  “bile-sack-move”  from  Greek  word,  was  originally  called
pancreozymin  because  it  is  mainly  synthesized  and  secreted  by  duodenal
enteroendocrine  cells  where  it  plays  a  crucial  role  in  the  release  of  pancreatic
exocrine enzymes, gallbladder contraction via the sphincter of Oddi and release of
bile acids, and gastric motility and emptying [38, 39]. CCK is first synthesized as
a  115  –amino  acid  prepro-CCK,  which  is  then  subjected  to  cleavage  by
prohormone  convertases  (PCs)  and  extensive  tissue  (cell)-specific  post-
translational processing, leading to the production of several CCK hormones with
various sizes (CCK83, CCK58, CCK39, CCK33, CCK22, and CCK8) [40]. For
instance, CCK22 and 33 are particularly expressed in the gut and plasma however
CCK8 is predominantly presented in neurons [41, 42]. CCK is expressed in many
brain areas such as the hippocampus, amygdala,  septum, and the hypothalamus
[43],  where  it  is  co-localized  with  several  neurotransmitters,  including  γ-
aminobutyric  acid  (GABA),  endocannabinoids,  dopamine,  and  serotonin  [44  -
46]. CCK receptors (CCK1 or CCK-A and CCK2 or CCK-B) are also expressed
in the brain [47, 48]. Numerous studies showed the satiating effects of CCK in
various  species,  including  humans,  in  whom  CCK8  reduces  meal  size  and
duration, and this anorexigenic effect seems to be mediated by CCK1R [49, 50].
Rodents  lacking  CCK1R  increase  their  food  intake  via  high  expression  of
hypothalamic NPY [51]. Fan and co-workers showed that CCK suppresses food
intake via activation of POMC and MC4R neurons [52]. Intraperitoneal injection
of CCK inhibits AgRP neurons and reduces food intake [53]. Together these data
demonstrate the gut-brain communication in short-term regulation of food intake.
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5.1.3. Glucagon-like Peptide-1 (GLP-1)

GLP-1 is secreted by L-cells in the distal small intestine and colon, predominantly
in response to carbohydrates and fat. GLP-1 is co-localized with oxyntomodulin
and peptide YY (PYY). It is cleaved from proglucagon, which is expressed in the
gut, pancreas, and brain. GLP-1 is involved in the ileum brake (also known as the
distal ileus feedback mechanism), which controls the rate at which food moves
through the gut to ensure optimal digestion and absorption [54]. This mechanism
results  in  inhibition  of  gastroduodenal  motility,  relaxation  of  the  proximal
stomach, inhibition of gastric acid and pancreatic secretion, decreased movement
of the food, and decreased food intake [55 - 57]. Several studies have shown that
infusion  of  physiological  dose  of  GLP-1  inhibits  food  intake  in  human  and  in
other species [58 - 60]. The anorexigenic effect of GLP-1 is mediated mainly via
GLP1R as these effects are abolished in GLP1R-deficient mice and are reversed
with  selective  GLP1R  antagonists  [61].  GLP1R  is  expressed  in  many  tissues,
including the gut, pancreas, hypothalamus, and vagal-afferent nerves [62], which
indicate that GLP-1 induces anorexia via both vagal and direct central pathways.
The  vagal  effect  was  shown  to  be  abolished  by  vagal  transaction  or
deafferentation1 [63]. GLP-1 can cross the BBB, and activation of GLP1R in the
hypothalamus  decreases  food  intake  [64].  GLP-1  administration  reduces  food
intake and modulates the hypothalamic expression of NPY, AgRP, POMC, and
CART [65].

5.1.4. Oxyntomodulin (OXM)

OXM, like GLP-1, is a 37 amino-acid proglucagon-derived peptide secreted from
distal-intestinal L (oxyntic) cells proportionally to ingested calories [66]. OXM
decreases gastric acid and pancreatic exocrine secretion and increases intestinal
glucose uptake [67 - 69]. The effects of OXM on gastric emptying differ between
humans  (inhibition  following  IV  infusion)  and  rodents  (no  change  after  acute
administration)  [70,  71].  OXM  inhibits  food  intake  and  stimulates  energy
expenditure in both humans and rodents [72 - 74]. The anorectic effects of OXM
are blocked by co-administration of the GLP1R antagonist, extendin9-39, and are
not  observed  in  GLP1R  knockout  mice,  indicating  that  the  effect  of  OXM  is
mediated  by  the  GLP1R  [75].  OXM  has  been  shown  to  be  a  dual  agonist  for
GLP1R  and  glucagon  receptor  (GCGR)  [76].  It  has  also  been  shown  that  the
anorectic effect of OXM is mediated via αMSH, but not NPY [77].

5.1.5. Pancreatic Polypeptide (PP)

The 36-amino acid anorexigenic peptide PP is mainly synthesized and released
from the endocrine pancreas, and to a lesser extent, from the colon and the rectum
[78].  Plasma  levels  of  PP  are  low  during  fasting  status,  and  increase
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proportionally to caloric intake [79]. Peripheral administration of PP reduces food
intake in  both humans and rodents  [80,  81].  Sainsbury and co-workers  showed
that the anorectic effects of PP are mediated via hypothalamic orexin- and brain-
derived  neurotropic  factor  (BNDF)-dependent  pathways  [82].  PP  has  a  higher
affinity for the Y4 receptor, and its anorectic effect is abolished in Y4 receptor
knockout rodents, indicating that Y4 receptor is a key mediator for PP [83, 84].

5.1.6. Peptide YY (PYY)

Peptide YY is primarily expressed and synthesized in the endocrine L cells in the
lower gastrointestinal  tract,  and to a lesser  extent,  in the enteric neurons of  the
stomach  and  pancreatic  endocrine  cells  [85,  86].  Following  a  meal,  the  main
circulation form of PYY is the cleaved PYY3-36,  which rises within 15 minutes,
peaks  at  90  minutes,  and  remains  high  for  up  to  6  hours  and  this  elevation  is
proportional  to  energy  intake  [87,  88].  The  cleavage  of  PYY  to  PYY3-36  is
controlled by the dipeptidyl peptidase IV (DDP-IV). PYY3-36 release was observed
when the nutrients reach the distal gut, and it is induced by fat-rich diets [89]. In
the fasted status, the original PYY form predominates in circulation.

Peripheral  administration  of  PYY3-36  reduces  food  intake  in  both  humans  and
rodents  [90].  Similarly,  PYY3-36  inhibits  food  intake  in  obese  subjects,  which
indicates that obesity is not associated with PYY3-36 resistance [91]. Subsequent
studies  showed  that  ARC  is  an  important  site  for  PYY3-36  action,  as  a  single
peripheral  administration  of  PYY3-36  induces  c-fos  gene  expression  in  the
hypothalamic ARC. Furthermore, administration of PYY3-36 causes a decrease in
the hypothalamic NPY gene expression. Electrophysiological studies showed that
PYY3-36 acts via POMC neurons and the release of α-MSH. The anorectic effects
of PYY3-36  is  absent in Y2 receptor knockout mice,  indicating a key role of Y2
receptor in mediating PYY3-36 action. Together, these data indicate that circulating
PYY3-36 gains access to the brain (ARC) [92] where it binds to Y2 receptor and
increases the activity of anorexigenic POMC/α-MSH neurons whilst decreasing
that of orexigenic NPY neurons.

PYY and PYY3-36 have profound effects on gastrointestinal motility and secretion
(gastric  acid  secretion,  gastric  emptying,  cephalic  phase  of  gallbladder
concentration,  and  mouth-to-caecum  transit),  indicating  that  PYY  control  food
intake  via  the  ileal  and  colonic  brakes  and  the  vagus-brainstem-hypothalamic
pathway  [93  -  95].  Disruption  of  this  pathway  has  been  shown  to  abolish  the
anorectic  effect  of  PYY3-36.  These  effects  are  mediated  via  Y1  receptors  on
enterocytes,  myenteric  and  submucosal  neurons  and  endothelial  cells,  Y2
receptors on myenteric and submucosal neurons, extrinsic primary afferent nerve
fibers, and Y4 receptors on enterocytes [96 - 98].
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5.1.7. Amylin

Amylin,  also  known  as  islet  amyloid  polypeptide  (IAPP),  is  a  37-amino  acid
pancreatic  peptide  that  is  co-secreted with  insulin  from pancreatic  β  cells  [99].
Peripheral administration of amylin reduces food intake and meal size [100, 101].
It has been shown that calcitonin, an amylin agonist which irreversibly binds to
the amylin receptor, is a potent inhibitor of food intake in humans, primates, and
rodents  [102].  The  anorectic  effect  of  amylin  is  mediated  via  its  calcitonin
(CTRs)- and receptor activity-modifying proteins (RAMPs)- receptor localized in
the brain [103], where amylin interact with hypothalamic neuropeptides such as
NPY  [104].  In  amylin  knockout  rodents,  the  density  of  hypothalamic  AgRP-
immunoreactive  fibers  increases,  while  the  density  of  α-MSH-immunoreactive
fibers  decreases,  indicating  that  amylin  signals  also  onto  AgRP  and  POMC
neurons  to  suppress  food  intake  [105].  Additionally,  it  has  been  reported  that
amylin phosphorylates the extracellular signal-regulated kinase (ERK) in the area
postrema and synergizes with leptin to phosphorylate the signal  transducer and
activator of transcription 3 (STAT3) in the ARC and VMN to reduce food intake
[106, 107].

Amylin has been shown to inhibit gastric secretion, delay gastric emptying, and
control gallbladder contraction, but its anorectic effect seems not to be associated
with the vagus nerve [12].

5.1.8. Enterostatin

Enterostatin  is  a  pentapeptide  cleaved  by  trypsin  from  the  precursor  protein
procolipase, which is secreted from the exocrine pancreas in response to ingested
fats to facilitate their digestion. Procolipase is also produced in the gastric mucosa
of the gastrointestinal  tract  and several  brain areas,  including the hypothalamic
ARC [108, 109]. Enterostatin reduces food intake, in particular fat intake when
given  peripherally  or  centrally  [110,  111].  The  mechanisms  underlying  these
anorectic effects are complex but seem to involve the F1-ATPase β subunit as the
putative  enterostatin  receptor  [112],  with  downstream  signaling  pathways
including  serotonergic  and  opioidergic  systems  [113].  Furthermore,  Lin  and
colleagues [114] have shown that the response to enterostatin is also dependent
upon MC4R and might be affected partly at least through the regulation of agouti-
related protein (AgRP).

5.1.9. Apolipoprotein A-IV (ApoA-IV)

ApoA-IV is a lipid-binding protein, which is primarily synthesized in the small
intestine, packaged into chylomicrons, and secreted into intestinal lymph during
fat absorption [115]. ApoA-IV has a myriad spectrum of physiological functions
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from lipid metabolism, reverse cholesterol transport, glucose metabolism to food
intake  regulation  [116  -  118].  Lo  and  colleagues  have  shown  that  peripheral
administration  of  apoA-IV  reduces  food  intake  [119],  and  this  anorectic  effect
requires CCK and vagus nerve, because apoA-IV could not cross the BBB [120].
Furthermore,  both  apoA-IV  mRNA  and  proteins  are  also  detected  in  the
hypothalamus, where the signal for regulating food intake and energy homeostasis
are integrated [121]. Although the central effect of apoA-IV seems to be mediated
via  phosphoinositide  3-kinase/  (PI3K)/protein  kinase  B (PKB) pathways  [122],
the downstream mediators of the peripheral anorectic effects are not well defined.
Yan  et  al.  [123]  have  shown  that  apoA-IV  inhibits  AgRP/NPY  and  activates
POMC  neurons  in  the  ARC,  resulting  in  food  intake  suppression.

5.2. Long-term Regulation of Food Intake

According  to  the  bodyweight  set  point  theory,  it  is  conceivable  that  embodied
energy balance must be a long-term component that, over time (days or weeks),
gradually adjusts food intake to maintain body weight (mainly fat content) within
a  narrow  range.  Since  the  1950’s,  many  scientists  have  been  interested  in
explaining how the body can estimate the quantity of triglyceride in the fat tissue
and thereby regulate the energy intake and fat depot. As adipocytes are directly
innervated,  Wertheimer  and  Shapiro  [124]  suggested  that  CNS  can  directly
monitor  fat  content.  In  1953,  Kennedy  advanced  the  lipostatic  theory  for  the
regulation of energy homeostasis,  proposing that the hypothalamus could sense
humoral information on adiposity degree rather than monitor absolute food intake
in rats [125]. Circulating free fatty acids (FFA) and glycerol, as well as adipocyte
hypertrophy, were regarded as the signals that inform the hypothalamus about the
body’s  fat  (triglycerides)  reserves  [126].  In  1969,  Hervey  proposed  that  the
hypothalamus might monitor fat depot via  blood steroid levels [127]. Baile and
colleagues have suggested, in 1973, that prostaglandin might communicate the fat
depot  status  with  the  hypothalamus  [128]  based  on  their  data  showing  that
peripheral  or  central  administration  of  PGE12  reduces  food  intake  in  rodents.
Several circulating factors were subsequently proposed but inconclusively proven
until the revolutionary discovery of leptin by Friedman’s group in 1994 [129].

5.2.1. Leptin

The Obese (Ob) gene was firstly characterized in 1994 in rodents and humans by
Friedman’s  group  at  the  Rockefeller  University  [129].  It  is  localized  in  mouse
chromosome  6  and  human  chromosome  7q31.3.  The  product,  leptin  (from  the
Greek word “leptos” meaning lean” contains 167 amino acids and it is secreted by
white adipose tissue proportionally to fat mass [130] and it  is thought to signal
longer-term energy status [131]. Leptin was found to be also expressed in other
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tissues  such  as  placenta,  mammary  gland,  ovary,  skeletal  muscle,  stomach,
pituitary gland, and lymphoid tissue (for review see [132]). Peripheral or central
administration of  leptin  has  been demonstrated to  reduce food intake and body
weight [133]. Circulating leptin enters the brain with tanycytes mediation [134]
and exerts its anorectic effects through binding to specific leptin receptors located
throughout  the  CNS  [135].  Leptin  interacts  with  a  complex  neural  circuit  to
control appetite and feed intake, activating feeding-related anorexigenic neurons
that synthesize POMC and CART, and inhibiting orexigenic neurons that produce
NPY and AgRP [136 - 139]. Other hypothalamic mediators of leptin’s anorectic
action have been found, including melanocortin system. Indeed, leptin receptors
are  expressed  on  most  POMC  neurons  in  the  ARC,  and  the  satiety  effect  of
exogenously  administered  leptin  was  reversed  by  MCR  antagonist  (SHU9119)
pretreatment [140]. Furthermore leptin administration alters the firing rate of ARC
POMC neurons in an ex vivo electrophysiological slices [141]. ICV administration
of leptin inhibits the fasting-induced increase in preproorexin mRNA levels in the
rodent  hypothalamus  [142].  There  is  considerable  evidence  indicating  that  the
effect of leptin is also mediated via CRF [143]. Leptin has also been reported to
inhibit food intake in rodents via hypothalamic NUCB2/nesfatin-1 [144]. Central
co-injection of leptin and CCK reduced food intake via increased hypothalamic
CART  and  thyrotropin-releasing  hormone  (TRH)  [145],  indicating  that  leptin
interacts with central CCK and TRH to regulate food intake. Liao and co-workers
have  shown  that  leptin  targets  hypothalamic  brain-derived  neurotrophic  factor
(BNDF) to regulate food intake [146].

Overall  the  ability  of  leptin  to  regulate  feeding  behavior  depends  on  several
neuronal populations, neuro-circuits, and neurotransmitters. For instance, leptin
receptor is expressed in the median preoptic area (MPO), and its pharmacogenetic
activation induces a robust suppression of food intake in rodents [147]. Similarly,
administration of leptin in the ventral tegmental dopamine neurons (VTA), where
leptin receptor is expressed, inhibits food intake [148]. In the Edinger-Westphal
(EW) nucleus, leptin modulates the activity of urocortin 1 neurons and regulates
food intake [149]. Scott et al. [150] showed that leptin regulates food intake via
hindbrain  GLP-1  neurons.  Hayes  et  al.  [151]  have  demonstrated  that  leptin
signaling in the caudal nucleus tractus solitaries and area postrema is required for
the regulation of food intake and energy homeostasis. Recent studies suggest that
leptin  signaling in  non-neuronal  cells,  such as  astrocytes,  regulates  food intake
[152]. As summarized in Fig. (5.1), leptin interacts with various neurotransmitters
in various hypothalamic nuclei (ARC, LHA, MPO, VTA, NTS, etc.) to regulate
food intake.

#f5.1
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Fig. (5.1). Leptin and its neuroendocrine circuit in the regulation of energy intake. Leptin is secreted
from  adipose  tissue,  crosses  the  BBB,  and  interacts  with  many  important  feeding-related  hypothalamic
neuropeptides and hypothalamic nuclei involved in the control of appetite, including the ARC, VMH, LH,
and DMH. AgRP, agouti-related peptide; ARC, arcuate nucleus; CART, cocaine and amphetamine-regulated
transcript; CRH, corticotropin-releasing hormone; Lep-R, leptin receptor; LHA, lateral hypothalamus; MCH,
melanin-concentrating hormone; NPY, neuropeptide Y; ORX, orexin; PACAP, pituitary adenylate cyclase-
activating peptide; POMC, proopiomelanocortin; PVN, paraventricular hypothalamus; SF-1, steroidogenic
factor-1; VMH, ventromedial hypothalamus.

Leptin  action  is  mediated  by  its  membrane  leptin  receptor  (LepR),  which  is
expressed in many tissues. The LepR is a single transmembrane-spanning receptor
and  a  member  of  the  cytokine  receptor  superfamily  that  includes  the  gp130
signal-transducing  component  of  the  receptors  for  interleukin  6  (IL-6),
granulocyte  colony-stimulating  factor  (G-CSF),  and  leukemia  inhibitory  factor
(LIF) [153]. In mammals, six LepR isoforms (lepRa-e) were identified (Fig. 5.2)
[154]. Although they all share a common extracellular ligand-binding domain at
the  N-terminus,  the  LepR  isoforms  differ  in  their  intracellular  domain  and,
therefore  in  their  physiologic  roles.  The  soluble  LepR  (LepRe)  lacks  the
transmembrane  domain,  and  it  is  possibly  involved  in  clearing  leptin  from  the
circulation [155]. The short isoform LepRa is abundantly expressed in the choroid
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plexus,  and  has  been  hypothesized  to  be  implicated  in  leptin  transport  into  the
CNS  through  the  BBB  [156].  The  longest  isoform  LepRb  is  the  only  receptor
capable of full signal transduction and consequently is essential for leptin action
[157].

Fig. (5.2). Schematic representation of leptin receptor forms. Six spiced isoforms of leptin receptor (Ob-
Ra to Ob-Re) have been identified. All the isoforms share identical extracellular ligand-binding domains, but
they  differ  in  the  intracellular  domain  length,  with  the  exception  of  the  Ob-Re,  which  does  not  have  an
intracellular domain. The long-form Ob-Rb is the only isoform that contains three tyrosine conserved regions
(Y985, Y1077, and Y1138), enabling the leptin-induced activation of the JAK-STAT pathway. Box1 and
Box2 are involved in JAK association and activation. CRH1/2, cytokine receptor homology; FN, fibronectin
type III domain.

5.2.2. Insulin

The best-known action of insulin is to increase glucose uptake in most peripheral
tissues and consequently lower the level of blood glucose. The view that the brain
is insensitive to insulin was scattered by the finding that insulin crosses the BBB,
enters the brain, reacts with its related receptors on neurons, and triggers various
physiological effects. Numerous studies have shown that ICV administration of
insulin reduces food intake [158 - 160]. Inhibition of insulin signaling in the brain
has an orexigenic effect, which results in increased body weight gain [161, 162].
Mechanistically, the anorexigenic effects of insulin in the CNS are mediated via
hypothalamic  neuropeptides:  decrease  of  orexigenic  NPY  and  increase  of
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anorexigenic CRH and αMSH [163 - 165]. Because insulin is secreted acutely in
response to an increase in blood glucose and because circulating insulin levels are
also directly correlated with body fat depots, insulin provides both short-term and
long-term homeostatic signals [166 - 168].

To initiate signaling in the CNS, insulin has to reach its receptor. In humans, the
insulin receptor (IR) has two subunits, alpha and beta. Two IR (long and short)
isoforms are generated by alternative splicing in a tissue-specific manner [169].
The long isoform IR-B is the most prominent isoform in classical insulin-sensitive
tissues,  including skeletal  muscle,  liver,  and adipose tissue. However,  the short
isoform IR-A is mainly expressed in the brain [169]. Studies on the presence of
IRs in the CNS began in the early 1970s [170]. In situ hybridization showed that
IR mRNA was the most abundant in the granule cell layers of the olfactory bulb,
cerebellum,  dentate  gyrus,  in  the  pyramidal  cell  body  layers  of  the  piriform
cortex,  hippocampus,  in  the  choroid  plexus,  and  in  the  arcuate  nucleus  of  the
hypothalamus [171].

Although it is clear that peripheral insulin crosses the BBB and regulates feeding
behavior [172], the central production of insulin has also been widely studied. In
situ  hybridization  showed the  presence  of  insulin  mRNA in  the  periventricular
nucleus  of  the  rat  hypothalamus  [173].  Several  other  studies  using  other
techniques have also shown the presence of insulin genes in the mammalian brain
[174, 175]. Taken together, these studies indicate that insulin has both peripheral
and central effects on energy homeostasis and feeding behavior regulation.

5.2.3. Adiponectin

Adiponectin,  also  named  gelatin-binding  protein  28,  adipocyte  complement
related protein 30 (Acrp30), adipose most abundant gene transcript 1 (apM1), or
adipoQ,  is  the  most  abundant  adipokine,  which  structurally  belongs  to  the
complement 1q family. Unlike leptin and other adipose tissue-derived hormones,
which circulate at picograms or nanograms per milliliter, adiponectin circulates at
levels of micrograms per milliliter [176]. In mammalian plasma, adiponectin can
be found as low (dimers or trimers), medium (hexamers), or high (dodecamers)
molecular weights. Studies related to the effects of adiponectin on energy intake
have  yielded  controversial  results.  Indeed,  peripheral  administration  of
adiponectin  has  been  reported  to  reduce  body  weight  by  enhancing  fatty  acid
oxidation  and  energy  expenditure  without  apparent  effect  on  feed  intake  [177,
178]. However, sustained peripheral expression of transgene adiponectin through
a viral vector reduces food intake and body weight [179]. Adiponectin exerts its
effects by binding to adiponectin receptors AdipoR1 and AdipoR2. AdipoR1 and
AdipoR2 are integral  membrane proteins;  the N terminus is  internal,  and the C
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terminus  is  external,  which  is  opposite  to  the  topology  of  all  other  reported  G
protein-coupled receptors [180]. AdipoR1 is a receptor for globular adiponectin,
whereas  AdipoR2  is  a  receptor  for  full-length  adiponectin,  and  AdipoRs  may
form  both  homo-  and  heteromultimers.  In  rodents,  AdipoR1  is  ubiquitously
expressed and is  most abundant in skeletal  muscle,  whereas AdipoR2 is  highly
expressed  in  the  liver.  Both  receptors  are  also  located  throughout  the  CNS,
notably in regions of the hypothalamus and brainstem, important in controlling
autonomic function and feeding behavior [181]. Fluorescent immunofluorescence
analyses showed colocalization of AdipoR1 and AdipoR2 with POMC and NPY
neurons [182]. Although adiponectin has been reported to not affect the mRNA
expression  of  NPY/AgRP  and  POMC/CART  [183],  its  effects  seemed  to  be
mediated  through  CRH  and  TRH  [183,  184].  Circulating  adiponectin
concentrations decrease in obesity and increase after weight loss [185], and have
been  found  to  be  inversely  correlated  to  triglyceride  levels  and  visceral  fat
accumulation  [186].  Together  these  studies  indicate  that  adiponectin  is  a  long-
term regulator of energy homeostasis.

5.2.4. Visfatin

Visfatin, also known as a nicotinamide phosphoribosyltransferase (NAMPT), is
an adipokine highly expressed in visceral adipose tissue [187]. Two isoforms of
Nampt  are  currently  characterized:  the  intracellular  form  of  Nampt  (iNampt),
which is the rate limiting-enzyme for NAD+ biosynthesis in mammalian cells, and
the  extracellular  form  of  Nampt  (eNampt),  which  is  considered  as  a
multifunctional  cytokine-like  molecule  that  is  synthesized  and  released  by
adipocytes and other cells exposed to pro-inflammatory stimuli [188]. To date, no
specific receptor has been identified for visfatin/eNampt, while some of its actions
have been attributed to its intrinsic Nampt enzymatic activity [189]. Recently, Tu
et  al.  have  shown  that  visfatin  reduces  food  intake  and  body  weight  through
activating  POMC  neurons  and  the  hypothalamic  microglia  [190].

5.2.5. Downstream Signaling Pathways and Feeding

As  stated  above,  the  regulation  of  food  intake  and  energy  balance  requires  a
complex  system  to  homeostatically  maintain  the  body  weight  set  point.  The
abovementioned  adipokines  and  hormones  act  through  various  downstream
signaling  cascades  (Fig.  5.3).  The  most  known  and  common  intracellular
signaling pathway is the Janus Kinase (JAK)-signal transducers and activators of
transcription  (STAT).  In  mammals,  seven  different  STAT  genes  have  been
identified, STAT1–4, 5A, 5B and 6. Once phosphorylated, STAT molecules form
dimers  and  translocate  to  the  nucleus,  where  they  modify  the  transcription  of
target  genes.  The  contribution  of  STAT  in  regulating  food  intake  was
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demonstrated in a number of transgenic animal models. For instance, mice with a
specific  deletion  of  STAT3  from  the  CNS  are  obese  and  hyperphagic  [191],
demonstrating the necessity of neuronal STAT3 signaling in maintaining normal
energy  homeostasis.  Bates  and  colleagues  developed  a  transgenic  mouse  (s/s
mouse) in which the phosphorylation site Y1138 that is required for leptin-STAT3
signaling was deleted and showed that the s/s mouse was hyperphagic and obese
[192].  In  addition,  mice  with  a  deletion  of  STAT3  from  either  NPY/AgRP  or
POMC neurons are slightly hyperphagic and mildly obese [193, 194]. Together
these studies provided evidence of the critical role of STAT3 in the regulation of
food  intake,  particularly  in  the  role  of  leptin,  which  has  been  confirmed  by
Buettner et al. [195]. STAT3 is also activated by various hormones and cytokines,
including insulin [196], adiponectin [197], visfatin [198], tumor necrosis factor-
alpha (TNFα) [199], and ciliary neurotrophic factor (CNTF) [200], all of which
affects  feeding  behavior.  The  activation  by  numerous  cytokines  suggests  that
cytokines may be involved in the suppression of food intake during an immune
response [201]. The transcriptional targets involved in food intake regulation by
STAT3 include the suppressor of cytokine signaling 3 (SOCS3), POMC and TRH
[202 - 204].

Fig. (5.3). Cross-talk between leptin, adiponectin, insulin and their downstream signaling pathways in
the  regulation  of  food  intake.  The  scheme  summarizes  the  main  intracellular  pathways  activated  by
peripheral  adipokines.  Leptin  binds  to  its  receptor  Lep-R,  which dimerizes  and through the  activation of
JAK2,  phosphorylates  STAT3  and  STAT5  that  translocate  to  the  nucleus  and  modulate  transcription  of
several  hypothalamic  neuropeptide  genes,  including  NPY,  SOCS3  and  POMC  and  regulate  food  intake.
Leptin also acts through components of the insulin signaling cascade since JAK2 phosphorylates IRS proteins
and activates PI3K and MAPK signaling pathways. MAPK pathway is also activated by leptin via.
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Transgenic mice with a conditional deletion of STAT5A and STAT5B in the CNS
are  hyperphagic  and  develop  severe  obesity,  indicating  that  central  STAT5
signaling  play  a  crucial  role  in  the  regulation  of  energy  homeostasis  [205].

Mitogen-activated  protein  kinase  (MAPK)  is  another  signaling  pathway
downstream  of  leptin,  insulin,  and  several  other  adipokines.  For  instance,
extracellular signal-regulated kinase (ERK), a member of the MAPK family, has
been  shown  to  be  activated  by  leptin  in  a  receptor-mediated  manner  involving
JAK2  [206].  The  activation  of  ERK1/2  by  leptin  was  restricted  to  the
hypothalamic  ARC,  and  Pharmacological  blockade  of  hypothalamic  ERK1/2
reverses the anorectic and weight-reducing effects of leptin [206]. Similarly, PI3K
signaling  pathway  in  the  brain  has  been  shown  to  play  a  pivotal  role  in  the
regulation of food intake. Indeed, pretreatment with pharmacological inhibitors of
PI3K (wortmannin or LY294002) was effective in blunting the anorectic effect of
central injection of leptin [207].

Lep-R-mediated recruitment of SHP2. Insulin binds to its receptor and activates
an intrinsic tyrosine kinase, leading to phosphorylation of the intracellular domain
of the insulin receptor. IRS proteins bind to the phosphorylated residues on the IR,
become activated by tyrosine phosphorylation, and, in turn, initiate downstream
cascades  such as  the  activation of  the  Ras-Raf-MAPK cascade or  activation of
PI3K pathway including PDK1, GSK3β, and PKB/Akt. SHP2. Adiponectin binds
to the extracellular C-terminus of Adip-R1 and recruits APPL1 to the intracellular
N-terminus of Adip-R1 and activates leptin/insulin signaling pathways. It is also
possible  that  activation  of  the  AMPK  pathway  by  adiponectin  lead  to  the
activation  of  TSC1/2  signaling  that  reduce  mTOR/S6K-mdiated  serine
phosphorylation of IRS proteins. This results in the enhancement of IRS tyrosine
phosphorylation  and  insulin  signaling.  Adip-R,  adiponectin  receptor;  AgRP,
agouti-related  peptide;  Akt,  protein  kinase  B;  CAMKK2,  Ca(2+)/calmodulin-
dependent protein kinase kinases 2; ERK1/2, extracellular signal-regulated kinase
1/2; FOXO, forkhead transcription factor O; GSK3, glycogen synthase kinase 3;
IR,  insulin  receptor;  JAK,  janus  kinase;  Lep-R,  leptin  receptor;  LKB,
serine/threonine  kinase  11,  MAPK,  mitogen  activated  protein  kinase;  MEK,
MAPK  kinase;  mTOR,  mammalian  target  of  rapamycin;  PDE3B,
phosphodiesterase  3B;  PDK,  protein-dependent  kinase;  PI3K,
phosphatidylinositol  3  kinase;  Ras,  Ras  small  GTPase,  SHP2,  SH2-domai-
-containing  cytoplasmic  tyrosine  phosphatase;  SOCS,  suppressor  of  cytokine
signaling;  STAT,  signal  transducer  and  activator  of  transcription;  TAK,  TGFβ
activated kinase; TSC, tuberous sclerosis
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5.3. Hedonic (Non Homeostatic) Regulation of Food Intake

Although the  term addiction is  applied only  to  drugs  of  abuse  such as  alcohol,
cannabis,  nicotine,  and  cocaine,  the  concept  of  food  addiction  has  received
considerable attention in recent years. One of the definitions of food addiction is
“food craving and loss  of  control  over  food intake”  [208].  Increasing evidence
indicates  that  both  drugs  of  abuse  and  high  palatable  foods  share  common
pathways in the limbic system [209]. Increased dopaminergic transmission is one
of the key pathways, which occurs via direct action on dopaminergic neurons or
indirectly through inhibition of GABAergic neurons in the ventral tegmental area
(VTA) [210]. Ingestion of sugars and palatable foods is known to induce striatal
dopamine  release  [211],  and  the  dopaminergic  system is  dysregulated  in  obese
humans  and  animal  models  of  obesity  [212].  Recently,  orexin  has  also  been
shown to play a key role in mediating drug-induced activation of VTA dopamine
neurons  and  in  reward-seeking  [213,  214].  Barrot  et  al.  [215]  showed  that
decreased activity of VTA cyclic AMP response element-binding protein (CREB)
induces  the  preference  for  both  natural  rewards  (sucrose)  and  a  drug  of  abuse
(morphine). Similar to exposure of drug of abuse, mice fed a high-fat diet for 4
weeks exhibited a higher expression of delta Fos B [216], which indicate that this
gene play a key role in addiction.

CONCLUSION

Several peripheral peptides controlling food intake have been discovered. These
peptides interact in the most complex way with the hypothalamic neuro-circuits.
Overall, day-to-day food intake involves the coordination of both homeostatic and
hedonic feedback. Although substantial progress has been made, further studies
are  needed  to  identify  key  molecular  signatures  and  effective  strategies  to
prevent/treat  metabolic  disorders.

NOTES
1  Deafferentation: The interruption or destruction of the afferent connections of
nerve cells

2 PGE1: Prostaglandin E1
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CHAPTER 6

Body  Fluid  Homeostasis  and  Water  Intake
Regulation

Abstract:  Water  is  essential  for  life  and  a  major  key  for  survival.  It  is  originated
mostly  from drinking,  feedstuffs,  and  metabolic  pathways  (metabolic  water).  Water
comprises from 75% body weight in infants to 55% in the elderly and is essential for
cellular  homeostasis.  Thirst  and  water  consumption  are  centrally  and  peripherally
regulated by complex and tightly interconnected mechanisms. This chapter summarizes
current  progress  and  knowledge  associated  with  body  fluid  homeostasis  and  the
regulation  of  water  intake  at  the  central  and  peripheral  levels.

Keywords:  Central  circuit,  ncRNA,  Osomoregulation,  Peripheral  pathways,
RAAS,  Thirst,  TRPV,  Water  intake.

INTRODUCTION

As  I  stated  in  Chapter  1,  we  drink  because  we  are  thirsty.  Water  is  the  most
abundant constituent  (50-60% of body weight)  in the body.  Approximately 55-
75% of total  body water  is  in the intracellular  compartment,  and the rest  (~25-
45%) in the extracellular compartment with a ratio of 1:3 intravascular (plasma)
and  extravascular  (interstitial)  spaces.  Animals  and  humans  continuously  lose
water  by  various  physiological  and  cellular  processes,  including  sweating,
urination,  and  basal  metabolic  activity.  To  maintain  water  homeostasis  and
compensate for such losses, animals must drink sufficient water and ingest food
from  external  sources.  The  maintenance  of  this  in-and-out  water  balance
represents a key homeostatic function for survival in all organisms. It specifically
occurs through a balance between water intake/excretion and salt intake/excretion
to  keep the  osmolality  of  the  extracellular  fluid  at  the  optimal  set-point.  These
processes are finely and tightly controlled at the entire organism level, including
the  peripheral  sensory  system  and  the  central  neural  circuits.  This  chapter
highlights recent advances in the field and describes the molecular mechanisms
involved in the regulation of body fluid homeostasis.

Sami Dridi
All rights reserved-© 2022 Bentham Science Publishers
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6.1. Organs Involved in Osmoregulation

Based on the Encyclopaedia, osmoregulation is the maintenance by an organism
of  an  internal  balance  between  water  and  dissolved  materials  regardless  of
environmental  conditions.  As  water  and  sodium  are  associated  (where  goes
sodium, water soon follows whether by osmosis1 or bolus flows), all organisms
have  to  regulate  sodium  and  water  in  order  to  remain  in  homeostasis.  Several
organs, depending on vertebrate species, are involved in osmoregulation to inhabit
a wide variety of environments.  With the exception of the mammals where the
only kidney is involved, all other vertebrates use more than one organ/system to
maintain  the  osmoregulatory  homeostasis.  Birds,  for  instance,  use  kidney,
intestine,  and  salt  glands  for  the  maintenance  of  fluid  and  electrolyte  balance.
Reptiles  utilize  the  kidney,  intestine,  bladder,  and  salt  glands.  Fish  employ
kidneys, intestine, bladder, and gills. In addition to the skin, amphibians make use
of  the  same  organs  as  fish.  It  is  noteworthy  that  mammals  can  lose  water  and
electrolytes  via  various  routes,  including  skin,  lungs,  GI,  but  not  for
osmoregulation. The mammalian urinary bladder is a urine storage organ and is
not involved in osmoregulation [1].

Changes  in  body  water/sodium  balance  disturb  the  extracellular  fluid  volume,
which in turn affects arterial blood pressure. The CNS receives continuous inputs
from  the  peripheral  organs  about  the  status  of  ECF  osmolality,  sodium
concentration,  sense  of  taste,  fluid  volume,  and  blood  pressure,  and  acts
accordingly  to  adjust  the  body  fluid  homeostasis.

6.2. Water and Sodium Taste

The question that one might ask is whether water has a taste receptor or not. In
Drosophila, water taste is mediated by ppk28, a member of the epithelial sodium
channel/degenerin (ENac/Deg) family, which is expressed in gustatory receptor
neurons  [2,  3].  In  fact,  functional  studies  showed  that  water  consumption  was
reduced in flies lacking ppk28 [4]. In mammals, however, data are not conclusive,
although electrophysiological studies have shown that water can stimulate taste
nerves in several species, including cats and dogs [5]. Recent study showed that
water  and  sour  (acid)  tastes  are  encoded  by  the  same  taste  receptor  cells  [6].
Zocchi  et  al.  [6]  demonstrated  that  the  application  of  water  on  the  tongue
selectively activates PKD2L1, a member of the taste receptor cell channel family.

Sodium  (salt),  depending  on  its  concentration,  can  result  in  two  opposite
behaviors: appetitive at low to moderate concentration and aversive at high levels
[7]. These two-opposing behavioral responses are mediated by distinct anatomical
and  molecular  pathways.  It  has  been  shown  that  knocking  out  the  epithelial
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sodium  channel  (ENaC)  alpha  subunit  abolished  attraction  and  taste  nerve
response to low salt without affecting aversive response-induced by high salt [8,
9].  High  salt,  however,  recruits  additional  pathways  such  as  bitter-  and  sour-
sensing  taste  receptor  cells.

6.3. Central Sensing Mechanisms for Internal Water Homeostasis and Thirst
Regulation

6.3.1. Neurochemical Circuits

Thirst  is  defined  as  the  conscious  need  for  water  or  liquid,  and  its  onset  starts
when the osmolality of the blood rises above a threshold of ~292 mOsm/kg water,
which in turn triggers vasopressin increase, water intake, and varying renal urine
flow  [10].  Thus,  vasopressin  secretion,  water  ingestion,  and  the  renal
concentrating  mechanism  work  jointly  to  maintain  body  fluid  osmolality  and
water set-point. For instance, high extracellular fluid (ECF) osmolality stimulates
the  thirst  sensation,  promotes  water  intake,  increases  vasopressin  release,  and
enhances  water  reabsorption  in  the  kidney  [11].  Water  deprivation  or  salt
ingestion/administration  increases  plasma  osmolality  however  drinking  water
lowers  osmolality  in  dehydrated  individuals  [12,  13].

Peripheral and central osmoreceptors are postulated to sense the rapid change in
local  osmolality  and  exchange  information  that  leads  to  behavioral  modulation
and maintenance of water homeostasis. Osmoreceptors are defined as neurons that
are endowed with an intrinsic ability to detect changes in ECF osmolality [14].
The presence of central osmoreceptors is known 80 years ago when Verney E.B.
correlated the effects of carotid infusion of various osmolytes on urine output and
the release of the antidiuretic hormone [15].  The primary central  and dominant
“osmostat” is the lamina terminalis (LT), which is located in the forebrain and is
the  main  brain  structure  monitoring  internal  water  balance  by  detecting  blood
tonicity  and  sensing  blood  osmolality  [14].  This  brain  region  contains  the
subfornical organ (SFO), the organum vasculosum of LT (OVLT), and the median
preoptic  nucleus  (MnPO)  (Fig.  6.1).  Furthermore,  injection  of  hypertonic
solutions  in  this  brain  area  provokes  thirst  and  vasopressin  release  [16].
Experimental ablation of the OVLT and adjacent regions leads to a defect in water
intake and VP release [17]. Combined ablation of all three regions; OVLT, SFO,
and MnPO is required for complete abolition of thirst  and osmotic-induced VP
release [18]. The osmoreceptive and osmosensitive neurons are largely distributed
within the CNS, including OVLT, MnPO, and SFO [19]. Neurons from the OVLT
and  SFO  project  to  magnocellular  neurons  within  the  supraoptic  (SON)  and
paraventricular  (PVN)  nuclei  [20]  (Fig.  6.1).  These  neurons  are  activated  by

#f6.1
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hypertonic conditions. Signals detected by peripheral organs and osmoreceptors
(taste  receptors,  peripheral  osmo-sodium,  volume  receptors,  and
arterial/cardiopulmonary baroreceptors) reach the CNS through the cranial nerves
to the nucleus of the solitary tract (NTS) or via the OVLT/SFO that contain cells
sensitive  to  humoral  signals  associated  with  sodium  concentration  changes  in
plasma and CSF, osmolality, and angiotensin II (ANGII) levels [21, 22]. These
humoral and neural signals activate central circuits that include the MnPO, PVN,
SON,  lateral  parabrachial  nucleus  (LPBN),  dorsal  raphe  nucleus  (DRN),  and
neurochemical systems such as angiotensinergic, vasopressinergic, oxytocinergic,
and  serotonergic  systems  to  trigger  appropriate  behavioral,  endocrine,  and
sympathetic responses and adjust body fluid homeostasis. For instance, it has been
shown  that  ANGII  induced  drinking  via  its  receptor  Agtr1a,  which  is  highly
enriched  in  the  LT  [23].

Fig.  (6.1).  Central  neurochemical  circuits  are  involved in  the  regulation  of  body fluid  homeostasis.
DRN,  dorsal  raphe  nucleus;  LPBN,  lateral  parabrachial  nucleus;  LT,  lamina  terminalis;  MnOP,  median
preoptic nucleus; OVLT, organum vasculosum of LT; PVN, paraventricular nucleus; SFO, subfornical organ;
SON, supraoptic nucleus. The figure was made using BioRender.

6.4. Peripheral Osmoreceptors

Studies from rodents to primates and humans indicated that there are peripheral
osmoreceptors. Kuramoch and Kobayashi [24] have shown that such receptors are
located  in  the  oropharyngeal  cavity.  The  GIT  [13,  25],  the  hepatic  portal  vein
[26], the liver [27], and the splanchnic mesentery [28] have been shown to also
site that harbor osmoreceptors. Although the cellular and molecular structures of
the  peripheral  osmoreceptors  are  not  well  defined,  it  has  been  shown  that  the
information they collect  reaches the CNS via  the vagus nerve [29,  30].  In fact,
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nodose  ganglion  osmosensitive  neurons  from  which  axons  that  ascend  in  the
vagus  nerve  can  make  synapses  in  the  NTS  [14]  (Fig.  6.2).

Fig.  (6.2).  Peripheral  osmoregulatory  circuits.  Schematics  showing  that  the  NTS  and  LPBN  integrate
peripheral  and  visceral  signals  and  communicate  with  LT  area  to  regulate  body  fluid  homeostasis.  GIT,
gastrointestinal tract; DRN, dorsal raphe nucleus; LPBN, lateral parabrachial nucleus; LT, lamina terminalis;
MnOP, median preoptic nucleus; OVLT, organum vasculosum of LT; PVN, paraventricular nucleus; SFO,
subfornical organ; SON, supraoptic nucleus. The figure was made using BioRender.

6.5. Molecular Basis of Body Fluid Regulation

6.5.1. Transient Receptor Potential Vanilloid (TRPV) Channels

Members  of  the  TRP  cation  channels  have  been  implicated  in  neuronal
osmosensing since many subtypes are blocked by gadolinium and ruthenium red,
potent inhibitors of osmosensory transduction in OVLT [31, 32]. The mammalian
TRPV type 4 (TRPV4) was first identified by Liedtke and co-workers [33] and
found to be expressed in osmoreceptor neurons in the OVLT and MnPO. TRPV4
knockout mice manifested reduced drinking behavior, which was associated with
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a  mild  increase  in  serum  osmolality  [34].  After  water  deprivation  or
intraperitoneal administration of hypertonic saline solution, the TRPV-/- mice had
increased  serum  osmolality,  a  blunted  increase  in  vasopressin,  and  attenuated
induction of induction OVLT c-fos expression [34]. Furthermore, ICV infusion of
a TRPV4 agonist reduces both spontaneous and ANGII-induced drinking, but not
that  of  water  deprivation-induced  drinking  [35].  In  contrast  to  TRPV4-/-  mice
developed by Liedtke et al., Mizuno and colleagues found in a separate TRPV4
KO  mice  no  difference  in  water  intake  and  serum  osmolality,  however  they
noticed  higher  vasopressin  secretion  [36].

Similar  to  TRPV4,  TRPV1  has  also  been  implicated  in  the  activation  of
osmoreceptor neurons by hypertonic stimuli. First, TRPV1 is expressed in SON,
OVLT, and vasopressin neurons [31, 37]. TRPV1-/- mice exhibit an impairment of
osmotic-induced vasopressin release [37]. When intraperitoneally challenged with
hypertonic  saline  solution,  TRPV1-/-  showed  a  reduction  in  drinking  water
compared to control wild-type counterparts [31]. In another study conducted by
Taylor and colleagues, TRPV-/- mice have no abnormality in water consumption
induced  by  hypovolemic  or  osmotic  stimuli,  with  no  detectable  difference  in
OVLT  c-fos  induction  by  hypertonicity  [38].

TRPV2  has  been  shown  to  be  co-localized  in  vasopressin  and  oxytocin
magnocellular neurons of the SON and PVN in an animal model of hyponatremia2

[39]. In primates, TRPV2 was found to be highly expressed in the hypothalamic
paraventricular,  suprachiasmatic,  and  supraoptic  nucleus  and  colocalized  with
oxytocinergic and vasopressinergic neurons [40]. In rodents, TRPV2 is expressed
in the SON, PVN, OVLT, LT, SOF, and MnPO, suggesting a potential role in the
regulation of body fluid homeostasis [41].

6.5.2. The Renin-Angiotensin-Aldosterone System (RAAS)

The RAAS is a peptidergic hormone system involved in the regulation of water
and  body  fluid  homeostasis  and  blood  pressure.  It  is  mainly  comprised  of  the
three hormones renin, angiotensin II (ANG II), and aldosterone. The first stage of
the RAAS is the release of renin, which is produced from prorenin in the granular
cells (juxtaglomerular, JG) of the kidney, in response to reduced sodium delivery
to  the  distal  convoluted  tubule  or  reduced  perfusion  pressure  in  the  kidney
detected  by  baroreceptors  [42].  Renin  release  is  inhibited  by  increased  blood
pressure  and  the  activation  of  the  atrial  natriuretic  peptide  (ANP).

Once  it  has  been  released  into  the  circulation,  Renin  cleaves  angiotensinogen,
which is produced in the liver,  to form Angiotensin I (ANGI). ANGI is further
cleaved  by  the  angiotensin  converting  enzyme  (ACE)  to  produce  the  active
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peptide  ANGII.  ANGII  stimulates  aldosterone  release  in  the  adrenal  cortex,
stimulates  Na+  and  Cl-  reabsorption  in  the  kidney,  and  increases  the  thirst
sensation and salt appetite in the hypothalamus. Peripheral or ICV administration
of ANGII induced thirst-related behavior and caused a dose-response increase in
water  intake  in  various  species  [43].  Second,  ANGII  stimulates  the  release  of
antidiuretic hormone (ADH), also known as arginine vasopressin, by the posterior
pituitary, which in turn increases fluid retention in the kidney via aquaporins and
help  conserve  blood  volume  [44].  Hypovolemic  treatments  and  dehydration
increased circulating ANGII levels, which is associated with an increase in serum
osmolality and Na+ concentration. Activation of ANGII receptors in the brain also
increases sympathetic output to the heart and vasculature, which increases cardiac
output and total peripheral resistance, thus increasing blood pressure (Fig. 6.3).

Fig. (6.3). Role of RAAS in body fluid balance. Renin catalyses the conversion of angiotensinogen into Ang
I, which is converted by the ACE into Ang II. ANG II controls the secretion of aldosterone, which stimulates
Na+  retention  and  ADH  that  stimulates  H2O  reabsorption  by  the  kidney.  Plasma  volume  and  plasma
osmolality control salt appetite and drinking behavior. High-Na+ intake leads to change in plasma volume
and  osmolality,  which  negatively  affects  renin  secretion.  ACE,  angiotensin-converting  enzyme;  ADH,
antidiuretic  hormone;  Ang  I/II,  angiotensin  I/II;  ECF,  extracelluar  fluid.  The  figure  was  made  using
BioRender.
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It has been postulated that there are two RAAS, one peripheral and one central
[45]. Indeed, ANGII modulates thirst sensation via two mechanisms:

The circulating ANGII may act  on its  receptor AT1 in the circumventricular1.
organ (CVO) of the brain,
Central ANGII may act as a neurotransmitter, which coordinates and integrate2.
osmotic and hormonal information.

ANGII exerts its action by binding to different receptors such as AT1 and AT2
that  are  widely  distributed  throughout  the  body,  and  many  of  its  classical
functions  (aldosterone  release  and  thirst  induction)  are  mediated  by  AT1.  This
receptor  subtype  is  predominantly  coupled  to  the  G protein  Gq/11,  and signals
through phospholipases A, C, and D, inositol phosphates, calcium channels, and a
variety of serine/threonine and tyrosine kinases.

6.5.3. Antidiuretic Hormone (ADH)

ADH, also known as arginine vasopressin (AVP) or vasopressin, is a nonapeptide
derived from the preprohormone prepropressophysin, and is mainly synthesized in
the  hypothalamic  supraoptic  nucleus,  and  to  a  less  extent  in  the  hypothalamic
PVN,  and  released  in  the  posterior  pituitary  to  enter  the  body’s  systemic
circulation [46].  ADH release is  stimulated by hypovolemia3  or  hypernatremia4

and it  plays  essential  roles  in  the  control  of  the  body’s  osmotic  balance,  blood
pressure regulation, sodium homeostasis, and kidney functioning.

As ADH is stored in the neurons that contain osmoreceptors and are responsive to
blood  osmolarity,  elevation  in  osmolarity  results  in  ADH  secretion  which
primarily  targets  the  kidney  to  increase  water  reabsorption  [47].  During
hypovolemia, baroreceptors sense low blood pressure and send information to the
vagus  nerve,  which  in  turn  stimulates  ADH  to  release  and  promote  water
reabsorption in the kidney and induces vasoconstriction to increase blood volume
and pressure [47]. It has been shown that central administration of ADH into the
hypothalamic lateral septal area (LSA) increased water intake in a dose-dependent
manner, and this effect was inhibited by central administration of ADH receptor
(V1)  antagonist  into  the  PVN  [48].  Three  different  receptors  for  ADH,  V1aR,
V1bR, also called V3R, and V2R, have been characterized [49]. The effects via
V2R activation are mediated by cyclic AMP. For instance, ADH binds V2R in the
principal kidney cells of the collecting duct and activates adenylate cyclase, which
causes  a  subsequent  increase  in  the  second  messenger  cAMP,  leading  to  the
activation  of  the  second  messenger  cAMP  protein  kinase  A  (PKA).  PKA
activation  initiates  an  intracellular  phosphorylation  cascade,  including
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phosphorylation of the water channel aquaporin 2 (AQP2), which moves into the
luminal membrane of the collecting duct cells and increases water reabsorption
[50,  51].  Additionally,  via  V2R  and  its  action  on  the  luminal  sodium  channel
ENac, ADH stimulates sodium reabsorption in the cortical and outer medullary
collecting tubes, which helps concentrate all solutes in the lumen. In the terminal
inner  medullary  collecting  tubes  and  via  urea  transporters  UT-A1  and  UT-A3,
ADH increases the urea concentration favoring water reabsorption [52].

The  effects  of  ADH  following  V1aR  and  V1bR  activation  are  mediated  by
calcium  signals.  For  example,  in  vascular  smooth  muscle,  ADH  activates  G
protein,  which  phosphorylates  phospholipase  C  (PLC)  and  produces  inositol
triphosphate  (IP-3)  and  diacylglycerol  (DAG),  leading  to  increased  release  of
intracellular calcium from the endoplasmic reticulum. Calcium and DAG activate
protein kinase C (PKC) and its downstream phosphorylation cascades leading to a
contraction of vascular smooth muscle and increased blood pressure (Fig. 6.4).

Fig. (6.4). Schematic illustration of ADH system contribution in the regulation of body fluid and blood
pressure homeostasis. ADH binds to V2R, activates AC-cAMP-PKA pathway, and induces the translocation
of AQP2 and water reabsorption in the kidney. Similarly, the ADH/V1aR system activates PLC pathways and
Ca2+  signaling.  Both  systems  regulate  blood  pressure.  ADH/V1aR  also  stimulates  RAS  activity  and
aldosterone release. In addition, AVP stimulates vascular contraction through V1aR and enhances baroreflex
sensitivity, which controls the heart rate. All together regulate blood pressure. AC, adenylate cyclase; ACE,
angiotensin converting enzyme; ADH, Antidiuretic hormone; Ang I/II, angiotensin I/II; AQP2, aquaporin 2;
DAG, diacylglycerol; IP3, inositol triphosphate.
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6.5.4. Oxytocin

Oxytocin is a 9 amino-acid peptide hormone closely related to ADH with seven
identical amino acids and is both released from the posterior pituitary. Depending
on species and hormone dosage, oxytocin has been found to have both diuretic
and antidiuretic functions. Early studies showed that peripheral administration of
oxytocin raised the urinary excretion of sodium [53]. Li et al. [54] reported that
oxytocin infusion increased urine osmolality and solute-free water reabsorption in
Brattleboro rats. Bernal and co-workers showed that subcutaneous administration
of oxytocin increased water intake and urine excretion in food-deprived rodents
[55].

As receptors for oxytocin and ADH share structural homology and are G protein-
coupled receptors, oxytocin can bind to V2R with low affinity [56], which may
explain  its  antidiuretic  activity.  Using  inner  medullary  collecting  duct  (IMCD)
cells,  Jeon  et  al.  [57]  showed  that  oxytocin  induce  AQP  redistribution  in
predominantly  apical  and  subapical  localization.  Furthermore,  peripheral
administration  of  oxytocin  induces  AQP2  translocation  into  the  apical  plasma
membrane [54]. Together, these studies support the role of oxytocin in stimulating
AQP2 trafficking in the kidney and indicating a similar role as ADH.

6.5.5. Secretin

Secretin is a peptide hormone encoded by the SCT gene and mainly produced in
the  S  cells  of  the  duodenum.  Its  primary  function  is  to  modulate  water  and
electrolyte transport in pancreatic duct cells [58], liver cholangiocytes [59], and
epididymis epithelial  cells  [60].  Earlier  studies suggested a diuretic function of
secretin in humans and dogs [61]. In fact, secretin administration caused a rise in
urinary  water,  sodium,  calcium,  and  solute  excretion  [62].  Transgenic  secretin
receptor  (SCTR)-null  mice  drank  more  water  and  exhibited  polyuria5  and
polydipsia6 phenotype compared to their wild-type counterparts [63]. These mice
also showed reduced levels of AQP2 and AQP4 in the kidney [63]. In vitro study
using inner medullary tubular cells showed that secretin increased AQP2 levels in
a  dose-dependent  manner.  Consistent  with  this,  Li  et  al.  (2001)  showed  that
secretin induces AQP2 redistribution from the intracellular vesicles to the plasma
membrane  in  inner  medullary  tubular  cells  from  rat  kidneys.  This  effect  was
abolished  by  the  secretin  antagonist  and  cAMP-PKA  inhibitor.

Immunohistochemical  staining  demonstrated  the  presence  of  SCTR  in  the
cuboidal epithelium of the collecting ducts and the proximal tubules and the thick
ascending segment of the loop of Henle [63].
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Secretin was also found in the magnocellular neurons of the PVN and supraoptic
nucleus  and  along  the  neurohypophysial  tract.  The  role  of  secretin  in  water
regulation was further supported by the observation that secretin levels increased
during water deprivation [64]. As the expression of V2R did not differ between
the  SCTR-/-  and  their  wild-type  counterparts,  the  data  suggest  that  secretin
regulates  water  homeostasis  independently  of  ADH.  ICV  administration  of
secretin has been shown to increase water intake in coordination with ANGII and
oxytocin [65, 66]. Additional pieces of evidence came from the co-localization of
secretin and AT1R in the PVN and the induction of secretin expression in SFO
and OVLT following central injection of ANGII [66]. Similar to ADH, secretin
increases intracellular cAMP levels via binding to SCTR, which is coupled to AC,
leading to activation of PKA and AQP2 phosphorylation [67].

6.5.6. Serotonin

Serotonin (also known as 5-hydroxytryptamine, 5-HT) was first identified in the
CNS  in  1953  [68].  Serotonin-containing  neurons  in  the  median  raphe  nucleus
(MRN), dorsal raphe nucleus (DRN), and raphe centralis superior (B7–B9 groups)
provide extensive serotonergic innervations to telencephalon and diencephalon,
whereas  the  intermediate  and  posterior  groups  (B1–B6  groups)  send  local
projections at the pons, and descendent projections to the mesencephalon, medulla
and  spinal  cord  [69].  Lesions  of  the  DRN and  MRN increased  water  intake  in
rodents [70, 71]. Peripheral administration of serotonin or its agonist, however,
stimulates  water  intake  [72,  73].  Pharmacological  manipulation
(activation/inhibition)  of  serotonin  receptors  also  affects  water  intake.  For
instance, activation of central 5-HT1D receptor following L-694,247 administration
decreases  water  intake  in  both  dehydrated  rodents  and  in  rodents  receiving  a
central injection of ANGII [74]. Similarly, injection of 8-OH-DPAT (8-hydrox-
-2-(di-n-propylamino)tetralin),  a  5-HT1A  agonist,  into  the  PVN  and  LSA
decreases water intake in water-deprived animals [75, 76]. Central administration
of 5-HT2 agonists inhibits water intake in rodents [77, 78]. Interestingly, 5-HT4
receptor seemed to have dual effects depending on the physiological status of the
animal. In fact, central administration of 5-HT4 antagonists stimulate water intake
in hypovolemic animals but reduces water intake in hyperosmotic animals [79].
Together, these studies indicate that central 5-HT receptors inhibit water intake
via  angiotensinergic  and cholinergic  pathways.  As for  the  water  intake,  central
serotonergic  receptors  also  control  sodium  appetite.  Indeed,  Castro  et  al.  [80]
showed that ICV administration of serotonergic agents reduces the salt intake in
sodium-depleted rodents. Neil and Cooper [81] and Rouah-Rosilio et al. [82] have
shown that modulation of the serotonergic system inhibits salt appetite and intake
in rodents. Via its receptors, serotonin regulates blood volume, cardiac output, and
blood pressure [83].
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6.5.7. Aquaporins (AQPs)

AQPs  constitute  a  group  of  integral  membrane  proteins  characterized  by  six
transmembrane helices connected by five loops that are organized in monomers,
dimers, and tetramers, forming pores in the cell membrane [84]. AQP0 was first
characterized as a major intrinsic polypeptide (MIP) in the lens [85], followed by
the isolation and identification of AQP1 in human erythrocytes and renal proximal
tubule membranes by Denker et al. [86] and Preston and Agre [87]. Since these
discoveries, several other AQPs (13 in total, AQP0-AQP12) were described and
found to be widely distributed in the body (Table 6.1). AQPs are subdivided into
three  classes  including  AQPs  (AQP0,  1,  2,  4,  5,  6,  8)  transporting  water
exclusively, aquaglyceroporins (AQP3, 7, 9, 10) transporting not only water but
also glycerol, and superaquaporins or unorthodox AQPs (AQP11, 12) with a non-
well defined function. To cite few examples, AQP2 for instance is expressed in
collecting  principal  duct  cells  and  is  translocated  into  the  apical  membrane  by
exocytosis from a subapical pool of vesicles during ADH stimulation to induce
water reabsorption and urine concentration [50]. Dysfunction of AQP2 in humans
is  associated  with  diabetes  insipidus.  AQP1  is  expressed  in  the  apical  and
basolateral membrane of kidney proximal tubule cells, thin descending limb cells
and the endothelium of vasa recta.  AQP1 knockout mice displayed lower urine
osmolality  compared  to  their  wild-type  counterparts  [88].  AQP3  null  mice
manifested  lower  urine  osmolality  alongside  higher  urine  volume  and  water
intake, although they appeared grossly normal [89].  AQP4 null  mice,  however,
had a normal growth but they were enable to concentrate urine during long period
of water deprivation [90].

Table 6.1. Aquaporins distribution and functions.

AQPs Tissue Distribution And Cellular Localization Physiological Function

AQP0 Eye: lens fiber cells
Red blood cells

Fluid balance within the lens
Osmoregulation

AQP1 Kidney: proximal tubule
Eye: ciliary epithelium
Brain: choroid plexus

Lung: alveolar epithelial cells

Urine concentration
Production of aqueous humor

Production of CSF7

Alveolar hydration

AQP2 Kidney: collecting ducts Mediate ADH8 activity

AQP3 Kidney: collecting ducts
Keratinocytes (epidermal)
Trachea: epithelial cells

Water reabsorption
Hydration and epidermal proliferation

Water secretion into the trachea

#t6.1
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AQPs Tissue Distribution And Cellular Localization Physiological Function

AQO4 Kidney: collecting ducts
Brain: ependymal cells
Brain: hypothalamus

Brain: astrocytes
Lung: bronchial epithelium

Water reabsorption
CSF fluid balance

Osmosensing function
Water permeability

Bronchial fluid secretion

AQP5 Salivary gland
Lacrimal glands

Saliva production
Tear production

AQP6 Kidney Water permeability

AQP7 Adipocyte cells Transport of glycerol out of adipocytes

AQP8 Colon
liver

Colonic water adsorption
Hepatocyte bile formation

AQP9 Brain Transports energy substrates

AQP10 Epithelial of organs Permeate neutral solute (urea)

AQP11 Brain, kidney, heart, ER Role not clear yet

AQP12 Pancreatic acinar cells Secretion of digestive enzymes and fluid

Although  AQPs  are  well  known  to  play  key  roles  in  water  fluid  homeostasis,
recent advances showed that they are also involved in many other physiological
functions, such as cell migration and inflammatory responses. This part is not in
the scoop of this ebook, however, readers can refer to elegant reviews elsewhere
[91].

6.5.8. Other Regulators of Water Fluid Homeostasis

Several  other  molecular  signatures  involved  in  water  fluid  balance  have  been
identified,  such  as  NHE3,  NKCC2,  ENaC,  NCC,  CLC-K1,  and  ROMK.  The
sodium-hydrogen  antiporter  3,  also  known  as  sodium-hydrogen  exchanger  3
(NHE3),  is  a  solute  carrier  family  9  members  3  and  is  expressed  in  the  apical
membrane  of  the  proximal  tubule  and  thick  ascending  limb.  NHE3-null  mice
exhibited lower arterial blood pressure, decreased proximal reabsorption rate, and
higher plasma K+ compared to wild-type mice [92]. NHE3 knockout mice display
a decreased protein expression of AQP2 in the inner medulla and cortex [93]. The
Na-K-2Cl  cotransporter  (NKCC2)  is  located  in  the  apical  membrane  of  the
epithelial cells of the thick ascending limb of the loop of Henle, and has higher
reabsorptive  activity  in  the  kidney.  It  has  been  shown that  changes  in  NKCC2
transport  activity  alter  the  renal  reabsorptive  capacity  for  NaCl  and  eventually
lead to perturbations of the salt and water homeostasis [94]. Takahashi et al. [95]
showed  that  NKCC2  knockout  mice  suffer  severe  dehydration  and  growth
retardation  and  do  not  survive  longer  than  2  weeks  after  birth.  The  apical

(Table 1) cont.....
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epithelial sodium channel (ENaC) is composed of three homologous subunits (α,
β,  and  γ)  and  allows  the  flow  of  Na+  ions  across  high  resistance  epithelia,
maintaining body salt and water homeostasis [96]. ENaCβ- and ENaCγ-KO mice
exhibited a severe salt wasting phenotype and did not survive beyond 48h after
birth [97]. Specific collecting duct ENaCα-KO mice had high plasma aldosterone
concentrations [98]. The sodium-chloride cotransporter (NCC) is expressed in the
distal convoluted tubule and plays a key role in regulating blood pressure. Loss of
function of NCC results  in Gitelman’s syndrome, a renal  salt  wasting disorder,
with many patients suffering from arterial hypotension [99]. The chloride channel
CLC-K1 mediates transepithelial transport of chloride in the thin ascending limb
in the inner medulla [100]. CLC-K1 null mice displayed polyuria and an increase
in urine volume along with a decreased urine osmolality compared to their wild-
type  counterparts  [101].  The  renal  outer  medullary  potassium  (K+)  channel
(ROMK)  is  expressed  in  the  thick  ascending  limb,  macula  densa,  distal
convoluted  tubule,  connecting  tubule  and  CD  and  secretes  K+  into  the  tubular
lumen.  ROMK-KO  mice  displayed  severe  dehydration  by  one  week  of  age,
displayed growth retardation, and only 5% survived until adulthood [102]. Adult
ROMK null  mice  manifested  lower  blood pressure  and urine  osmolality,  along
with higher Na+ and K+ excretion and increased water consumption compared to
the wild-type mice [103].

6.5.9. Non-coding RNAs

Emerging  studies  in  vertebrates  indicate  a  pivotal  role  for  non-coding  RNA,
particularly micro RNAs (miRNAs), in the regulation of osmotic and water fluid
homeostasis. MicroRNAs are transcribed from the genomic DNA, resulting in a
transcript  called  pri-miRNA,  which  is  trimmed  into  pre-miRNA  by  a  nuclear
complex involving the  enzyme RNase III  endonucleases  Drosha and DiGeorge
syndrome  Critical  Region  8  (DGCR8).  Pre-miRNAs  are  transported  into  the
cytoplasm  via  Exportin-5,  and  are  further  processed  by  Dicer  RNase  into  a
miRNA duplex. The duplex unwinds, and the mature miRNA (~ 22 nucleotides
long,  the  guide  RNA) assembles  into  RNA-induced silencing complex (RISC),
which contains argonaute 2 (ARG2) and transactivating response RNA-binding
protein 1 (TRBP1). The other miRNA strand (passenger strand) is degraded. The
mature  miRNA  base  pairs  with  target  mRNA  to  direct  gene  silencing  through
mRNA cleavage or translation repression (Fig. 6.5) [104 - 106]. Recent studies in
plants  and  mammals  have  shown  that  water  deprivation  affects  miRNA
biogenesis machinery and that miRNAs regulate the expression of ion and water
channels as well as neurohumoral factors, including ADH involved in water and
electrolyte balance. For instance, Tian et al. [107] identified 17 miRNAs that were
differentially expressed in the renal cortex and medulla of rodents. In response to
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high NaCl exposure in cultured renal medullary epithelial cells, Huang et al. [108]
reported  rapid  and  significant  changes  of  miRNA  profiles  and  expressions,
indicating  potential  roles  of  renal  miRNAs  in  osmotic  stress  responses.
Specifically,  it  has  been  shown  that  miRNAs  targets  ion  channels  and
transporters.  For  example,  miR-192  was  found  to  regulate  the  Na+/K+  ATPase
(ATP1β1),  which  is  the  driving  force  of  tubular  transport  in  the  kidney  [109].
Tobon  and  colleagues  [110],  reported  that  miR-142-3p  regulate  renal  D1
dopamine  receptor  which  modulates  the  Na+/K+  ATPase  and  the  Na+/H+

exchangers  and thereby regulates  diuresis  and natriuresis.  Marques  et  al.  [111]
have  shown  that  miR-181  modulates  RAAS  system  via  regulation  of  renin
expression in the human hypertensive kidney. Similarly, conditional deletion of
Dicer1  decreased  renin  expression  and  severely  reduced  the  number  of
juxtaglomerular cells along with low blood pressure [112]. miR-421 was found to
be  a  down  regulator  of  ACE2,  which  hydrolyses  ANGII  to  ANG(1-7)  [113].
Further  functional  studies  conducted  by  Jin  et  al.  [114]  showed  that  miR-132
attenuates  ANGII-induced  CREB  activation,  and  this  effect  was  mediated  via
AT1R. Other studies have shown in rodents that salt depletion, potassium load, or
chronic aldosterone infusion down regulate miR-192 expression [115]. Transgenic
mice  with  overexpression  of  miR-466a-3p  displayed  polydipsia,  polyuria,  ion
homeostasis dysregulation, and altered kidney morphology [116]. In another study
by the same group, exposure to sodium chloride down regulated miR-200b and
miR-717  expression,  and  these  miRNAs  regulate  the  expression  of  the
transcription  factor  osmotic  response  element-binding  protein  (OREBP),
demonstrating  their  critical  roles  in  cellular  osmoresponses.

In a study using birds non-mammalian species, our group have shown that water
restriction for 3h up-regulated the renal expression of AQP2, AQP3, AQP4, ADH,
ATP1β1, and miRNA biogenesis machinery (Dicer1, Arg2, DGCR8, and TRBP1)
in a population-dependent manner [117].

6.6. Interaction Between Hunger- and Thirst-motivational Drives

Based on the principle of “singleness of action”, animals need to choose a specific
behavior over another and this depends on the physiological conditions, resources
availability,  and  environmental  conditions.  One  might  ask  the  question  how
hunger and thirst motivational drives interact? And if the animal needs to choose,
then which one overrides the other? In flies, genetically defined four interoceptive
neurons in the subesophageal zone are activated under hunger states and inhibited
under  thirst  states  [118].  Furthermore,  stimulation  of  these  neuron  populations
induced sugar consumption and inhibited water intake. In rodents, activation of
AgRP neurons has been reported to suppress competing drives such as thirst, pain,
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fear, and territory marking [119 - 121]. The integration mechanism of hunger and
thirst has been tested in an elegant study conducted by Takei et al. [122] using the
Spinifex hopping (Notomys alexis) mice, in which water deprivation for either 12
or 29 days induced a biphasic pattern of feed intake. An initial hypophagia was
followed by a sustained increase in appetite for the latter phase of water restriction
that was above that of water-replete mice. In the early phase of water deprivation,
the changes in feed intake were driven by appropriate changes in plasma leptin
and  ghrelin  however  the  sustained  feed  intake  during  the  later  phase  of  water
restriction occurred despite an increase in circulating leptin that should act as an
anorexigenic hormone. This study suggests that the signals controlling thirst and
water  intake  might  override  the  signals  controlling  appetite,  hunger,  and  feed
intake, which might be supported by the need for substrates for metabolic water.
Furthermore,  a  switch  of  metabolic  strategy  from  lipids  mobilization  to
carbohydrate  storage  was  observed,  indicating  potential  enhancement  of
metabolic  water  production  per  oxygen  molecule  [122].

Fig. (6.5). Schematic illustration of miRNA biogenesis. miRNA biogenesis begins in the nucleus, where
RNA-polymerase  II-dependent  (RNAPII)  transcription  of  a  relatively  large  capped  and  polyadenylated
transcript known as primary miRNA (pri-miRNA). Pri-miRNA is processed by the RNase III endonuclease,
Drosha, and its cofactor,  DGCR8, into smaller stem-looped structures known as precursor miRNAs (pre-
miRNA). Pre-miRNAs are transported out of the nucleus by Exportin 5 into the cytoplasm, where further
processing by a second RNase III enzyme, Dicer 1, leads to the generation of mature miRNA. The mature
miRNA is  associated  with  the  miRNA-induced  silencing  complex  (miRISC),  where  Watson-Crick  base-
pairing  between  the  seed-sequence  of  a  mature  miRNA and  complementary  sequences  primarily  located
within  3’-UTRs  of  mRNAs  results  in  post-transcriptional  gene  silencing.  Ago  2,  argonaute  2;  DGCR8,
DiGeorge syndrome Critical Region 8; TRBP1/2, transactivating response RNA-binding protein.

CONCLUSION

Animals  must  drink  sufficient  water  and  ingest  food  from  external  sources  to
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maintain  water  homeostasis  and  compensate  for  water  losses.  Water  intake  is
regulated at both central and peripheral levels and involves neurochemical circuits
and peripheral  osmoreceptors.  At  molecular  levels,  several  signaling pathways,
such as RAAS, ADH, AQPs, TRPV, ncRNA, and several others involved in water
homeostasis regulation have been discovered and discussed in this chapter.

NOTES
1 Osmosis: is a spontaneous movement of solvent molecules through a selectively
permeable  membrane,  from  a  less  concentrated  to  a  higher  concentration,  to
equalize  the  solute  concentration  on  each  side  of  the  membrane.

2 Hyponatremia occurs when the concentration of sodium in blood is abnormally
low

3 Hypovolemia is an abnormal decrease in the volume of blood plasma which can
occur with dehydration or bleeding

4 Hypernatremia is a rise in serum sodium concentration caused by a decrease in
total body water

5 Polyuria is a production of abnormally large volume of dilute urine.

6 Polydipsia is a constant excessive drinking due to thirst

7 CSF, cerebrospinal fluid

8 ADH, antidiuretic hormone
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CHAPTER 7

Proteins, Amino Acids, and Nitrogen Metabolism

Abstract: Animals require proteins, which are large nutrients made up of amino acids,
in their diets. The body can make some amino acids, but others (essential amino acids)
need to be provided by the diet. The ingested proteins go through digestion via various
digestive  enzymes  to  produce  amino  acids  and  peptides  that  are  absorbed  and
transported via specific transporters. The whole body protein pool is determined by the
balance between the processes of protein synthesis and degradation, which are under
the control of hormonal, nutritional, and neuronal factors. Protein and amino acids play
crucial roles in cellular and body weight homeostasis from regulation of appetite and
food intake, metabolic reactions to cellular signaling within and between cells as well
as energy production for survival. This chapter aims to discuss protein and amino acid
metabolisms and provide a summary of current progress in the field.

Keywords: Amino acids, Absorption, Autophagy, Digestion, Protein synthesis,
Protein degradation, Proteins, Ubiqitine-proteasome.

INTRODUCTION

As described in chapter 1, an adult eats approximately a ton of food/year, which
contains substrates (proteins, lipids, carbohydrates, vitamins, minerals, water) that
provide  the  body  with  the  necessary  energy  (metabolic  fuels)  for  surviving,
maintenance, growth, and reproduction. After describing the regulation of water
and food intake in the previous chapters,  I  will  describe here protein digestion,
absorption, and metabolism.

7.1. Protein and Amino Acid Structure

The  word  protein  is  derived  from  the  Greek  word  “proteos”,  which  means
“primary” or “to take place first”. Protein was discovered in the early 19th century
and  was  described  as  a  nitrogen-containing  part  of  food  essential  to  life.
Compared  to  other  macronutrients  that  contain  only  carbon,  oxygen,  and
hydrogen,  proteins  contain  also  nitrogen  (N)  and  sulfur  (S).

Proteins  are  polypeptides-polymers  of  amino  acids  linked  by  peptide  bonds.
Although approximately 140 types or more of amino acids are known to exist   in
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nature, plant and animal proteins are composed of about 20 amino acids arranged
in  diverse  sequences  to  form  specific  proteins.  The  biological  properties  of  a
protein are, therefore, determined by the amino acids it contains, the sequence in
which  they  are  linked  together,  and  the  configuration  and  spatial  relationships
among amino acids within the protein molecule.

All amino acids contain at least one amino group (-NH2) and one carboxyl group
(-COOH) (Fig. 7.1a-d), with the exception of proline which is an imino acid as it
lacks  a  free  amino  group.  A  common  characteristic  of  amino  acids  found  in
proteins is that they have an asymmetric or alpha carbon, and thereby called alpha
amino acid and constitute the major building block of proteins. In addition to the
NH2  and  COOH  groups,  the  alpha  carbon  is  attached  to  hydrogen  and  one
additional  group designated as  R-group or  side group that  can vary in size and
length. The R group is unique from one amino acid to the next (Fig. 7.1b). For
example, in glycine, R is a hydrogen atom; in alanine, it is a methyl group (-CH3),
while in methionine, it is –CH2-CH2-S-CH3.

Fig. (7.1). Amino acid structure. a) General structure; b) Alpha amino acid, c) L- and D-isomere structure,
and d) structure of all amino acids. Figures a, b, and d were made using Biorender. Figure c was adapted with
permission from Ajinomoto.com.
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Amino acids can exist in two isomeric forms, namely the D- and L-isomers. The
two isomers differ in their configuration of groups around the asymmetric alpha-
carbon.  D-isomers (dextrorotary) rotate the plane of polarized light  to the right
however, L-isomers (levorotary) rotate it to the left (Fig. 7.1c). Only the L-amino
acids are used in protein synthesis. Some amino acids such as methionine can be
converted  by  animals  from  D-  to  L-isomers,  and  that  is  why  DL-methionine
(racemic mixture) is used as a feed additive. However, the animal cannot convert,
for  example,  the  D-lysine,  and  thus  commercial  lysine  is  available  only  as  L-
lysine.

7.2. Classification of Amino Acids

Amino  acids  can  be  classified  into  three  categories:  essential  or  indispensable,
non-essential  or  dispensable,  and  conditionally  essential  (Table  7.1).  Essential
amino acids  (phenylalanine,  valine,  threonine,  tryptophan,  methionine,  leucine,
isoleucine, lysine, and histidine) cannot be synthesized by the organism and must
therefore  be  produced  by  the  diet.  Non-essential  amino acids  (alanine,  aspartic
acid, asparagine, glutamic acid, serine, and selenocysteine, which are considered
the 21st  amino acid)  can be synthesized in sufficient  quantities  in the body.  An
additional non-essential amino acid, pyrrolysine, is not used for most organisms,
including humans. The synthesis of conditionally essential amino acids, however,
can be limited by special (patho)physiological conditions, and these amino acids
are arginine, cysteine, glycine, glutamine, proline, and tyrosine.

Table 7.1. Essential, conditionally essential, and non-essential amino acids.

Essential amino acids
Histidine (His or H)
Isoleucine (Ile or I)
Leucine (Leu or L)
Lysine (Lys or L)

Methionine (Met or M)
Phenylalanine (Phe or F)

Threonine (Thr or T)
Tryptophan (Trp or W)

Valine (Val or V)

Non-essential amino acids
Alanine (Ala or A)

Aspartic acid (Asp or D)
Asparagine (Asn or N)

Glutamic acid (Glu or E)
Serine (Ser or S)

Selenocysteine (Sec or U)
Pyrrolysine (Pyl or O)

Conditionally essential amino acids
Arginine (Arg or R)
Cysteine (Cys or C)

Glutamine (Gln or Q)
Glycine (Gly or G)
Proline (Pro or P)

Tyrosine (Tyr or Y)

Additionally,  and based on the characteristics of  the R group and the nature of
atoms  incorporated  in  the  functional  groups,  amino  acids  can  be  further
categorized as polar, non-polar, acidic, basic, and also to aliphatic, aromatic, and
positively or negatively charged (Table 7.2).
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Table 7.2. Classification of amino acids.

Hydrophobic Amino Acids - Nonpolar Hydrophilic Amino Acids - Polar

Alkyl Side Chain Aromatic Side Chain Neutral Acidic Basic

Glycine Phenylalanine Tyrosine Glutamic Acid Lysine

Alanine Tryptophan Serine Aspartic Acid Histidine

Valine - Threonine - Arginine

Leucine - Cysteine - -

Isoleucine - Glutamine -

Methionine - Asparagine - -

Proline - - - -

Polar amino acids are those whose side chains are capable of forming one or more
hydrogen bonds, have a polarity, and are hydrophilic. These amino acids can be
neutral, positively, or negatively charged (Table 7.2). Depending on the pK and
the pH of a solution, the polar amino acids with a positive charge contain more
NH2 group than COOH groups  and are  therefore  basic.  When the  polar  amino
acid (side chain) loses a proton, they are negatively charged and they are therefore
acid. The nonpolar amino acids can largely be subdivided into two more specific
classes,  the  aliphatic  and  the  aromatic  amino  acids.  The  aliphatic  amino  acids
typically contain branched hydrocarbon chains, with the simplest being glycine to
the more complicated structures of leucine and valine. The aromatic amino acids
contain  aromatic  functional  groups  within  their  structure,  making  them largely
nonpolar and hydrophobic due to the high carbon/hydrogen content (Table 7.2).

Amino acids are also classified as  standard and non-standard amino acids.  The
standard ones are those encoded by universal genetic codes and are incorporated
in protein sequences. The Non-standard amino acids, however, are incorporated
into proteins by a unique synthetic mechanism. Selenocysteine,  for example,  is
incorporated when mRNA translated included selenocysteine insertion sequence
(SECIS), which causes the UGA codon to encode for selenocysteine instead of the
stop codon.  Pyrrolysine,  on  the  other  hand,  is  an  α-amino acid  encoded by the
stop  codon  UAG  and  is  involved  in  protein  synthesis  in  some  methanogenic
archaea  and  bacteria  [1].  Other  classifications  of  amino  acids  include:  1)  non-
protein  amino  acids,  which  are  those  amino  acids  found  in  the  free  state  as
intermediates of  metabolic pathways for  standard amino acids and they are not
encoded  by  genetic  codes  such  as  ornithine  and  citrulline  involved  in  urea
biosynthesis. 2) Non α-amino acids where the NH2 group is not attached to the α-
carbon atom such as γ-aminobutyric acid (GABA) and β-alanine [2]. 3) Modified
protein-amino  acids,  which  are  amino  acids  that  undergo  modification  such  as
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hydroxylation of proline and lysine to form hydroxyproline and hydroxylysine,
respectively, and are essential for mature collagen formation [3 - 5].

Among the 20 amino acids, there are three branched-chain amino acids (BCAAs),
leucine,  isoleucine,  and  valine,  and  are  so-called  because  of  their  structures
include a branched side chain with carbon and hydrogen atoms (Fig. 7.2). These
BCAAs play many key physiological roles such as protein synthesis and energy
production.  The  requirements  of  BCAAs  and  essential  amino  acids  by  age
categories  is  summarized  in  Table  7.3.

Fig. (7.2).  Structure of branched-chain amino acids (BCAAs).

Table 7.3. Requirement in mg/kg BW/day of essential amino acids by age categories.

- - Age Category

Essential Amino Acids 2 Years 10-12 Years Adult

Leucine 73 45 14

Isoleucine 37 30 10

Valine 38 33 10

Tryptophan 12.5 4 3.5

Threonine 37 35 7

Lysine 64 60 12

Methionine and Cysteine 27 27 13

Phenylalanine and tyrosine 69 27 14

To form a  (poly)  peptide  or  proteins,  these  amino  acids  are  linked  together  by
peptide bonds. This bond is formed by the reaction of the α-amino group of one
amino acid with the α-carboxyl group of another amino acid. A dipeptide contains
two amino acids linked by one peptide bond. If an additional amino acid is added,
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a  tripeptide  is  formed.  A  polypeptide  contains  more  than  ten  amino  acids.  A
protein is a large polypeptide with a molecular weight expressed in Dalton, the
mass of hydrogen ions.

7.3. Protein Digestion and Absorption

Protein  digestion  is  the  breakdown  of  protein  into  end  products  (single  amino
acids) via hydrolysis of the peptide bonds between amino acids. It is a complex
process  in  that  a  variety  of  enzymes  and  tissues  are  involved  (Fig.  7.3).  The
protein digestion starts in the stomach with a secretion of fluid rich in HCl (pH
0.8-0.9) by stomach parietal cells1, which creates a very acidic milieu (pH 1.5-2.5)
when mixed with other stomach intrinsic factors of the gastric juice. This stomach
acidic  environment  induces  the  secretion  and  the  activation  of  pepsin  from
pepsinogen  in  the  chief  mucosal  cells2  and  enhances  its  proteolytic  activity.  In
addition, the acidity of the stomach denatures proteins, which in turn facilitates
the  access  of  proteolytic  enzymes.  Activated  pepsin  stimulates  hydrolysis  at
peptide  bonds  involving  the  carboxyl  group  of  the  aromatic  amino  acids  and
probably acidic amino acids. The hydrolyzed proteins from the stomach enter the
small  intestine  along  with  the  pancreatic  inactive  zymogens  trypsinogen,
chymotrypsinogen,  and  procarboxypeptidase  A/B.  The  intestinal  mucosal  cells
secrete  the  enterokinase  enzyme  that  cleaves  trypsinogen  into  active  trypsin,
which in turn cleaves further the trypsinogen to form more trypsin. Trypsin acts as
an endopeptidase to cleave proteins and peptides internal to the chain as well as
the peptide linkages involving the carboxyl groups of arginine and lysine. Trypsin
also activates the other zymogens to form chymotrypsin and carboxypeptidases A
and B. Chymotrypsin produces small polypeptides, peptides, and some individual
amino acid via degradation of proteases, denatured proteins, peptones, and large
polypeptides. Chymotrypsin is an endopeptidase specific for bonds involving the
carboxyl  ends  of  phenylalanine,  tyrosine,  and  tryptophan.  Carboxypeptidase  A
cleaves the carboxyl terminal residues that possess aromatic and aliphatic linkage.
Carboxypeptidase B hydrolyzes the terminal residues of arginine and lysine. In
order to be protected from auto-digestion, the pancreas produces intrinsic trypsin
inhibitors.
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Fig. (7.3).  Protein digestion: tissues and enzymes involved.

These  peptides  produced  by  the  gastric  and  pancreatic  reactions  (enzymes)  are
subjected to the final step of digestion and hydrolysis in microvilli membranes of
the  intestinal  mucosal  cells,  where  aminopeptidases,  tripeptidases,  and
dipeptidases produce short oligopeptide fragments, dipeptides and single amino
acids.

The  end  products  of  the  digestion  and  the  action  of  endopeptidases  and
exopeptidases are a mixture of free amino acids, dipeptides, tripeptides, and short
oligopeptides,  all  of  which  are  absorbed  from  the  intestinal  lumen  and  then
hydrolyzed to single amino acids by intracellular peptidases.  The oligopeptides
(dipeptides and tripeptides), major end-products of protein digestion, enter by H+-
coupled  oligopeptide  transporter  SLC15A1  (PepT1),  and  once  inside  of  the
enterocytes, the oligopeptides are degraded by di- and tri-peptidases into single
amino  acids  (Fig.  7.4).  Free  amino  acids  use  Na+-  or  H+-dependent  active
transport.  The  inwardly  directed  Na+  electrochemical  gradient  that  is  used  as  a
driving force for the uptake of Na+-coupled amino acids transport is maintained by
the basolateral Na+/K+-ATPase. To enable H+-coupled amino acid uptake, the Na+

gradient is converted to an inwardly directed H+ gradient by the apical SLC9A3
(NHE3)  Na+/H+  exchanger.  Amino  acid  transporters  are  membrane-bound
transport proteins that mediate the transfer of amino acids into and out of cells or
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organelles. There are several different amino acid transporters, with specificity for
the nature of the side chain of the amino acid, including aromatic, cationic, and
neutral  amino  acids  (Table  7.4).  On  the  basolateral  side,  several  amino  acid
transporters facilitate the exit of various amino acids into the circulation (blood)
(Fig. 7.4).

Fig. (7.4). Major intestinal amino acid transporters. Representative illustration showing major amino acid
transporters  involved  in  intestinal  amino  acid  absorption.  The  oligopeptides  (dipeptides  and  tripeptides),
major end-products of protein digestion, enter by H+-coupled oligopeptide transporter SLC15A1 (PepT1), and
once inside of the enterocytes, the oligopeptides are degraded by di- and tri-peptidases into single amino
acids. Free amino acids use Na+- or H+-dependent active transport. The inwardly directed Na+ electrochemical
gradient that is used as a driving force for the uptake of Na+-coupled amino acids transport is maintained by
the basolateral Na+/K+-ATPase. To enable H+-coupled amino acid uptake, the Na+ gradient is converted to an
inwardly  directed  H+  gradient  by  the  apical  SLC9A3 (NHE3)  Na+/H+  exchanger.  AA,  amino acid;  AAA,
aromatic AA; CAA, cationic AA; NAA, neutral AA; Pro, proline.

Table 7.4. Intestinal amino acid transporters.

Protein Name Gene Name System Substrates

EAAT3/EAAC1 SLC1A1 X- AG/Na+, H+, K+ E, D, C

ASCT1 SLCA4 ASC/antiporter A, S

ASCT2 SLC1A5 ASC/antiporter D, C, Q

B0AT1 SLC6A19 Na+ NAAs
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Protein Name Gene Name System Substrates

SIT1/IMINO SLC6A20 Na+/Cl- P

CAT-1 SLC7A1 y+/uniporter CAAs (R)

y+LAT1/LAT2 SLC7A6/A7 y+L CAAs, LNAAs

LAT2 SLC7A8 L/antiporter LNAAs

b0,+AT SLC7A9 b0,+ CAAs, NAAs, C

Asc-1 SLC7A10 Asc/antiporter Small NAAs

PHT2 and PHT1 SLC15A3/A4 H+ H

MCT10/TAT1 SLC16A10 Facilitated transporter AAAs (F, Y, W)

ORC2/ORC1 SLC25A2/A15 H+/antiporter R, H, Orn, Cit

PAT1 SLC36A2 H+ GABA

LAT4 SLC43A2 L BCAAs
A, alanine; AAA, aromatic amino acid; ASCT, alanine, serine, cysteine, and threonine exchanger; b0AT1,
system B(0) neutral amino acid transporter; BCAA, branched-chain amino acid; C, cysteine; CAA, cationic
amino acid; CAT, cationic amino acid transporter; Cit, citrulline; D, aspartic acid; E, glutamic acid; EAAT,
excitatory amino acid transporter; GABA, gamma-aminobutyric acid; H, histidine; LAT, Na+-independent
system L neutral amino acid transporter; LNAA, large neutral amino acid; MCT10/TAT, monocarboxylate
transporter  10/T-type  amino  acid  transporter;  NAA,  neutral  amino  acids;  ORC,  mitochondrial  ornithine
transporter; P, proline; Orn, ornithine; PAT, proton-dependent amino acid transporter; PHT, peptide/histidine
transporter; Q, glutamine; R, arginine; S, serine; SIT, sodium/imino acid transporter; y+LAT, y+L amino acid
transporter.

Based  on  their  transport  function,  amino  acid  transporters  are  classified  in
different systems (A, N, ASC, L, T, x-

c,  and y+).  These systems have acronyms
that  denote  substrate  specificity.  Uppercase  letters  indicate  Na+-dependent
transporters,  with  the  exception  of  L  and  T  systems.  Lowercase  letters  denote
Na+-independent  transporters.  x-  indicates  transporter  for  AAA.  In  X-

AG,  AG
indicates that the transporter accepts aspartate and glutamate. In x-

c, the subscript c
indicates that the transporter accepts cysteine. y+ denotes transporters for cationic
amino acids. B refers to a transporter accepting NAAs, and superscript + indicates
a transporter for CAA. T indicates transporter for AAA, N indicates transporter
selective for an amino acid with N atoms in the side chain, L system indicates a
preference  to  leucine  as  substrate,  and  ASC  indicates  a  transporter  preferring
alanine.

7.4. Protein Synthesis

7.4.1. Importance of Balanced Dietary Amino Acids

Ingested proteins need to be of high quality and meet the body's needs for growth,
survival,  immunity,  energy  homeostasis,  and  daily  functions.  A  protein  that

(Table 4) cont.....



Nitrogen Metabolism Nutritional Biochemistry: From the Classroom to the Research Bench   191

contains the required essential amino acids will be completely useable for tissue
protein  synthesis  however  a  protein  deficient  in  one  or  more  of  the  essential
amino acids will not. Similarly excess essential amino acids can be detrimental.
For  instance,  as  described  in  previous  chapters,  excess  leucine  was  shown  to
depress feed intake and growth [6]. On the other hand, histidine appears to be one
of the most toxic amino acids, and high dietary histidine has been shown to cause
serious adverse effects in both humans and animals [7]. In animals, excess dietary
lysine leads to reduced growth and feed intake without any apparent toxicity but
induces accumulation of triglycerides in the liver [8, 9]. In humans, lysine excess
is  toxic  and  was  used  as  a  treatment  for  the  herpes  virus  [10].  Excess
supplementation of methionine suppressed feed intake, stopped growth, induced
hemosiderin accumulation and erythrocyte engorgement, as well as liver damage
in animals [11 - 13]. High dietary tryptophan levels reduce feed intake depressed
motor  activity  and  affect  sleep  latency  in  animals  [14].  In  humans,  tryptophan
supplementation  was  associated  with  the  outbreak  of  eosinophilia-myalgia
syndrome (EMS)3 in the eighty [15]. Concerns of phenylalanine safety arose from
the brain development abnormality observed in humans with phenylketonuria and
in rodents administered with phenylalanine [16]. Excess of dietary non-essential
amino  acids  can  be  harmful  also.  For  example,  rats  on  low-protein  diets  died
following intake  of  high  tyrosine  levels.  Similarly,  high  plasma tyrosine  levels
were  associated  with  eye  lesions  and  mental  retardation  [17].  Together,  the
intensive  nutritional  studies,  the  bulk  of  data,  and  the  rich  literature  indicate
supplementation and dosage of amino acids need to be closely managed because
insufficiency  or  excess  can  be  detrimental  to  cell  growth  and  metabolism,
including  defective  cellular  protein  synthesis.

7.4.2. Mechanism of Protein Synthesis

7.4.2.1. Transcription

The blueprint for protein synthesis in most organisms is the nucleotide sequence
of  the  DNA that  carries  the  raw genetic  information,  which  can  be  turned  into
functional products, usually proteins. Protein synthesis starts with the production
of  a  strand  of  messenger  RNA  that  is  complementary  to  the  DNA  gene  being
expressed  in  a  process  called  transcription4.  Transcription  is  carried  out  by  an
enzyme  called  RNA  polymerase  and  a  number  of  accessory  proteins  called
transcription  factors,  activators,  and  repressors.  To  initiate  transcription,  RNA
polymerase recognizes the promoter region at the beginning of the gene (Fig. 7.5),
open  the  double-strand  DNA,  and  initiates  the  synthesis  and  the  elongation  of
mRNA.  Three  RNA  polymerases  were  characterized:  Pol  I  produces  the  large
ribosomal  RNA  precursor,  Pol  II  produces  mRNAs  and  various  non-coding
RNAs,  and  Pol  III  produces  transfer  RNAs  and  small  ribosomal  RNAs.
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After the opening of the chromatin, Pol II gains access to the promoter region of
the target expressed gene [18]. Different classes of promoters are known, some
contain  CpG  islands  which  are  found  in  housekeeping  genes  [19].  Other
promoters  contain TATA elements  upstream of the transcription start  site  [20].
The  activation  of  the  promoters  is  under  the  control  of  nuclear  transcription
factors that bind, in a sequence-dependent manner (called response element), to
DNA  and  guide  polymerase  to  their  targets  [21  -  24].  Approximately  1,600
transcription factors are known in humans. These transcription factors can recruit
proteins, including histone acetyltransferases that regulate promoter accessibility
and  initiation  of  transcription.  The  first  step  is  the  recognition  of  the  promoter
where the Pol II assembles with transcription initiation factors such as TBP and
TFIIB  to  form  a  specific  pre-initiation  complex  (PIC)  on  the  promoter  and
induces  initial  mRNA  synthesis  [25  -  27]  (Fig.  7.5).

Fig. (7.5). Protein synthesis mechanism: transcription cycle. Pol II assembles with transcription initiation
factors such as TBP and TFIIB to form a specific pre-initiation complex (PIC) on the promoter and induces
initial  mRNA  synthesis.  The  transcription  initiation  is  regulated  by  the  mediator,  which  facilitates  the
transition  to  the  phase  of  transcription  elongation.  ADP,  adenosine  diphosphate;  ATP,  adenosine
triphosphate;  Pol  II,  RNA  polymerase  II;  TBP,  TATA-box  binding  protein;  TF,  transcription  factor.

Next,  Pol  II  uses XPB, DNA translocase that  hydrolyses ATP to unwind DNA
and open the promoter [28]. Transcription initiation is regulated by co-activator
complex, also known as mediator [29] that stimulates the phosphorylation of Pol
II and facilitates the transition to the phase of transcription elongation. When the
RNA strand reaches a critical length, the elongation complex (DNA-RNA hybrid)
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is formed [30] and Pol II moves from one template position to another by closing
the active site and catalyzing the formation of a phosphodiester bond [31]. The
recruitment of the capping enzyme results in the protection of the nascent RNA 5’
end with a cap structure [32] and the mature single-strand RNA is transported to
the cytoplasm (ribosome) for translation.

7.4.2.2. Translation

Translation is the second major step in gene expression and protein synthesis. It is
simply a reading and decoding process of mRNA to produce a specific sequence
of amino acids and to synthesize proteins, which are the workhorses of the living
cell.  These  proteins  (enzymes,  housekeeping,  etc.)  carry  out  all  the  functions
necessary  for  life.

Three key components, namely mRNA, ribosome, and transfer RNA are required
during the translation. The nucleotide bases of mRNA are read as codons of three
bases, and each codon specifies a unique amino acid (Fig. 7.6). Multiple codons
can code for the same amino acids, such as AGA, CGC, and AGG for arginine.

Fig. (7.6). mRNA codons. The nucleotide bases of mRNA are read as codons of three bases, and each codon
specifies a unique amino acid. Multiple codons can code for the same amino acids. The codons are written 5’
to 3’ as they appear in the mRNA sequence. AUG code for the start codon “methionine”, and UAA, UAG,
and UGA are stop codons.
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The  translation  of  the  coding  region,  but  not  that  of  the  untranslated  region
(UTR), starts at the 5’ cap of the mRNA. The first step in the translation process
is the initiation step with the formation of the pre-initiation complex containing
initiation factor proteins (IF1, 2, and 3), ribosome small subunits, and the Met-
carrying tRNA. Subsequently, the ribosome's large subunit binds to complete the
initiation complex. The ribosome's large subunit binds to the initiation complex.
The  ribosome’s  large  subunit  has  three  binding  sites:  an  amino  acid  site  A,  a
polypeptide site P, and an exit site E. The Met-tRNA (carrying methionine) binds
to the start codon AUG of the mRNA at the ribosome’s P site where it will be the
first  amino  acid  incorporated  in  the  protein  chain  at  the  N-terminal  side.
Methionine moves from the P site to the A site on the ribosome's large subunit to
bond to a new amino acid there, and so the growth of the peptide has begun. The
tRNA molecule in the P site no longer has attached amino acid and thereby leaves
the ribosome. The ribosome translocates along the mRNA to the next codon and
the polypeptide chain is built up in the direction from N- to C-terminal (Fig. 7.7).
At the terminal step, one of the three stop codons (UAA, UAG, or UGA) enters
the ribosome A site to block any tRNA binding, and then the peptide and tRNA in
the P site become hydrolyzed, releasing the polypeptide into the cytoplasm.

Fig. (7.7). Translation of protein synthesis. The translation process incorporates 20 different amino acids in
the presence sequence dictated by the three-base codons. a) tRNA structure, b) rRNA structure, C) translation
initiation, and d) translation elongation and termination.
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Protein  synthesis  is  an energy-expensive process.  Energy is  needed for  peptide
bond formation (4 mol of ATP equivalent per each peptide bond), attachment of
amino acid to tRNA (2 mol of ATP per each amino acid attached), attachment of
tRNA to ribosome A site, and the movement of the growing polypeptide from the
A to the P site.

7.4.2.3. Regulation of Protein Synthesis by Mechanistic Target of Rapamycin
(mTOR)

Several  extrinsic  factors  regulate  protein  synthesis.  mTOR,  which  controls  a
number  of  translation initiation and elongation,  is  the  most  studied factor  (Fig.
7.8). In fact, protein synthesis induced by insulin, growth factors, or other growth-
promoting agonists is inhibited by rapamycin. The downstream cascade of mTOR
includes  activation  of  the  eukaryotic  translation  initiation  factor  4E-binding
protein 1 (4E-BP1) and the S6 kinases. The eIFs mediate key steps in translation
initiation, such as the recruitment of the mRNA to the small ribosome subunit and
the  recruitment  of  Met-tRNA.  Furthermore,  stimuli  (insulin,  amino  acids)  that
activate mTOR induce translation elongation. Blockade mTOR by AMPK slows
elongation  [33].  The  S6  kinase  lies  in  a  region  of  the  ribosome  close  to  the
interface  between  the  two  ribosome  subunits  (small  and  large),  and  contacts
mRNA  and  tRNA.  Rapamycin  inhibits  S6  Kinase  phosphorylation  and  protein
synthesis [34]. mTOR regulates the ribosome biogenesis and the transcription of
polymerase RNAs [35 - 38].

Fig. (7.8). Role of mTOR in protein synthesis. A schematic depiction of regulation of protein synthesis by
mTOR. Activation of mTOR by insulin and growth factors results in activation of the eukaryotic translation
initiation factor 4E-binding proteins and the ribosomal S6 kinases, which in turn induce protein synthesis.
mTOR  also  regulates  polymerase  and  rRNA  biogenesis.  IR,  insulin  receptor;  PI3K,  phosphoinositide  3-
kinase; PKB, protein kinase B; TIF-1, tripartie motif-containing protein 1; TSC, tuberous sclerosis protein.
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7.4.2.4. Protein Structure

The  primary  structure  of  a  protein  is  simply  the  sequence  of  the  linked  amino
acids that are placed in a very specific order dictated by genetic information. This
primary  protein  sequence  is  linked  together  by  peptide  bonds  formed  by
dehydration (water molecule extraction) reaction as it  joins the amino group of
one  amino  acid  to  the  carboxyl  group  of  the  next  neighboring  amino  acid.  As
polypeptide  chains  fold  up  in  various  ways  and  stabilize  by  hydrogen  bonds,
protein secondary structure is the three dimensional form of the polypeptide. The
two most  common patterns  of  protein  secondary  structure  are  alpha-helix.  The
peptide backbone of the protein adopts a spiral (helix) form via the formation of
hydrogen bonds between close peptide bonds in the primary structure (Fig. 7.9).
Beta-pleated sheet,  in which regions of the polypeptide chain lie alongside one
another resulting in a pleated surface (Fig. 7.9). Proteins can also form hairpins
and omega loop shape, a non-regular protein structural motif consisting of a loop
of six or more amino acid residues and any amino acid sequences.  In addition,
proteins  can  have  a  random  coil  in  which  there  is  no  recognizable  organized
structure. A protein can have all of these shapes (several α-helix, β-pleated sheets,
hairpins,  and  random  coil)  in  the  same  molecule.  The  tertiary  structure  of  a
protein is the structure at which polypeptide chains become functional. It is the
complete  three-dimensional  shape  of  the  entire  protein.  In  the  quaternary
structure, several subunits of a protein interact and stabilize the overall structure
(Fig. 7.9)

Fig. (7.9).  Protein structures.
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7.4.2.5. Protein and Amino Acid Modifications

Many proteins are secreted hormones and contain signal peptides that need to be
removed  as  part  of  the  post-translational  modifications  (PTMs).  Most  of  the
newly  synthesized  proteins  lose  their  initial  amino-terminal  methionine  in  a
process called N-terminal methionine excision [39]. In addition, various proteins
are  associated  and  covalently  bound  to  carbohydrates  and  lipids.  Others  are
associated with vitamins, metal ions (metalloproteins), or heme prosthetic group
(hemoproteins). Other PTMs occur, such as N-α-acetylation with a transfer of an
acetyl moiety

from acetyl-CoA to the α-amine of the N-terminal amino acid of a nascent chain.
Protein  fatty-acylation  is  known  as  N-myristoylation,  involves  the  irreversible
transfer  of  a  myristate  moiety  from  myristoyl-CoA  to  the  α-amino  group  of
glycine of the target protein. Precursor proteins also undergo maturation and pre
peptide  cleavage  at  the  N-  or  C-terminal  signal  peptide  (mitochondrial-  or
peroxisome-  terminal  signal  peptide)  for  selective  sorting  to  target  subcellular
compartments.  As mentioned above, proteins can covalently link to sugars in a
process  known  by  glycosylation  [40].  Protein  phosphorylation,  the  most
widespread PTMs and the most extensively studied, plays a key role in protein
activity, subcellular localization, and signaling cascades via the action of protein
kinases that transfer a phosphate from ATP to the protein [41, 42]. Proteins can
also undergo oxidation (carbonylation, sulfhydryl oxidation, etc.), ubiquitination,
SUMOylation, disulphide bonding, and lipidation [43 - 46].

7.4.2.6. Amino Acid Metabolism

In terms of energy sources, amino acids are different from other macronutrients in
that  they contain nitrogen element.  Thus,  the removal or transfer of nitrogen is
necessary  for  the  utilization  of  amino  acids  as  an  energy  source  as  well  as  the
creation  of  nonessential  amino  acids  and  other  molecules.  The  amino  group  (-
NH3)  of  amino  acids  can  be  removed  or  transferred  via  deamination  or
transamination,  respectively.

7.4.2.6.1. Transamination

Transamination  reaction,  via  amino  transferase  enzyme,  is  the  transfer  of  an
amine  group  from an  amino  acid  to  α-keto  acid  (amino  acid  without  an  amine
group),  thus  forming  a  new  amino  acid  and  an  α-keto  acid.  Pyruvate  and  α-
ketoglutarate and the two α-keto acids used most in transamination reactions (Fig.
7.10).
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Fig.  (7.10).  Transamination  reaction.  a)  General  reaction,  b)  alanine  transamination,  and  c)  glutamate
transamination.

7.4.2.6.2. Deamination

Deamination  reaction,  which  is  catalyzed  by  deaminases,  removes  the  amino
group  from  amino  acids  to  form  ammonia  (Fig.  7.11).  For  example,  oxidative
deamination of glutamate by glutamate dehydrogenase produces α-ketoglutarate
and free ammonia. Ammonia is quite toxic to animal tissues, and it is converted
into a nontoxic compound before export from extrahepatic tissues

into  the  blood.  In  many  tissues,  ammonia  is  enzymatically  combined  with
glutamate to yield glutamine by the action of glutamine synthetase, and glutamine
(nontoxic, neutral compound) can readily pass through the cell membrane and is
carried in the blood to the liver. In the liver, glutaminase converts glutamine to
glutamate  and  ammonia  (Fig.  7.11).  Glutamine  is  a  major  transport  form  of
ammonia.

7.4.2.6.3. Fate of Amino Acid Degradation

Once  nitrogen  is  removed  from amino  acids,  the  rest  carbon  skeletal  of  amino
acids are degraded to yield pyruvate, acetyl-CoA, Krebs cycle intermediates, and
the ketone body acetoacetate (Fig. 7.12). The amino acids whose carbon skeletons
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from pyruvate or Krebs cycle intermediates are known as glucogenic amino acids
because  they  can  be  used  to  produce  glucose  in  the  liver  via  gluconeogenesis
pathway (see chapter 8, section 8.3.2.8). The amino acids whose carbon skeletons
become acetyl-CoA and acetoacetate are known as ketogenic amino acids because
they  can  form  ketone  bodies.  Few  amino  acids  (tryptophan,  phenylalanine,
threonine,  tyrosine,  and  isoleucine)  are  both  glucogenic  and  ketogenic.

Fig. (7.11).  Deamination reaction.

Fig.  (7.12).  Amino  acid  catabolism.  Fate  of  glucogenic,  ketogenic,  and  both  glucogenic  and  ketogenic
amino acids in the production of ketone bodies and Krebs cycle intermediates.
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7.4.2.6.4. The Alanine-Glucose Cycle

As for glutamine, alanine plays a crucial role in transporting an amino group to
the  liver  in  a  nontoxic  form by the  glucose-alanine  cycle.  For  example,  during
intensive  exercise,  skeletal  muscle  produces  not  only  ammonia  from  protein
breakdown but also a large amount of pyruvate from glycolysis (see chapter 8,
section 8.3.2.1). These two products must reach the liver, where ammonia needs
to  be  converted  into  urea  for  excretion,  and  pyruvate  needs  to  be  reused  into
glucose and returned to the muscle providing the necessary energy for contraction
and  function.  For  this  end,  animals  use  the  alanine-glucose  cycle  to  move  the
carbon atom of pyruvate and excess ammonia from muscle to liver (Fig. 7.13).
The  muscle  alanine  passes  into  the  circulation  and  travels  to  the  liver.  In
hepatocyte  cytosol,  alanine  aminotransferase  transfers  the  amino  group  from
alanine  to  α-ketoglutarate,  yielding  pyruvate  and  glutamate.  Glutamate  can
undergo  transamination  with  oxaloacetate  to  form  aspartate  (nitrogen  donor  in
urea  synthesis),  or  enter  the  mitochondria  to  produce  α-ketoglutarate  and
ammonia  for  the  urea  cycle.

Fig. (7.13). The alanine-glucose cycle. It is also known as Cahill cycle, is a series of reactions in which the
muscle alanine passes into the circulation and travels to the liver where pyruvate and glutamate are produced.
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7.4.2.6.5. The Urea Cycle

The urea cycle consists of five reactions that convert ammonia, carbon dioxide,
and the α-amino nitrogen of aspartate into urea. Two of the reactions occur within
the mitochondria, and the rest of the reactions occur in the cytoplasm (Fig. 7.14).
Carbon  dioxide  in  the  mitochondria  is  phosphorylated  through  ATP  and
condensed  to  ammonia.  Catalyzed  by  carbamoyl  phosphate  synthase,  CO2  and
NH4

+  form  the  cabamoyl  phosphate.  Carbamoyl  phosphate  is  condensed  with
ornithine in the mitochondria via ornithine transcarbamoylase to form citrulline.
Citrulline enters the cytoplasm and condenses with aspartate via arginosuccinate
synthetase  to  form  arginosuccinate,  which  is  subsequently  split  by
argininosuccinase  into  fumarate  and  arginine.  Arginine  is  then  hydrolyzed  by
arginase to produce urea and ornithine. In chickens (Gallus gallus), little urea is
synthesized due to the absence of carbamyl phosphate synthetase and the N-acetyl
glutamate synthase [47].

Fig. (7.14). The urea cycle. Carbon dioxide and NH+4 are condensed by carbamoyl phosphate synthase, to
form the carbamoyl phosphate. Carbamoyl phosphate is condensed with ornithine in the mitochondria via
ornithine transcarbamoylase to form citrulline. Citrulline enters the cytoplasm and condenses with aspartate
via arginosuccinate synthetase to form arginosuccinate, which is subsequently split by argininosuccinase into
fumarate and arginine. Arginine is then hydrolyzed by arginase by arginase to produce urea and ornithine.
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7.5. Protein Degradation and Turnover

Proteome integrity  is  maintained  by  cellular  mechanism networks  that  monitor
folding, concentration, cellular localization, and interactions of proteins from their
synthesis  through  their  degradation.  The  two  main  mechanisms  involved  in
protein degradation are ubiquitin-proteasome system and autophagy machinery.

7.5.1. The Ubiquitin-proteasome System

The  ubiquitin-proteasome  (UPS)  system  is  the  primary  selective  proteolytic
system in eukaryotes [48]. The degradation of proteins by the UPS is initiated by
the  sequential  conjugation  of  ubiquitin,  a  conserved  polypeptide  of  76  amino
acids, to the substrate protein via three enzymes [49] (Fig. 7.15). The ubiquitine
activating  enzyme  E1  activates  the  carboxyl-terminal  glycine  residue  of  the
ubiquitin in an ATP-dependent manner. The activated ubiquitin is next transferred
to  a  cysteine  site  of  the  ubiquitin-conjugating  enzyme  E2.  Next,  the  ubiquitin
ligase E3 enzyme links the ubiquitin from the E2 enzyme to a lysine residue of the
target protein [50]. There are several E2 and E3 enzymes that recognize one or
various  specific  protein  motifs  [49].  After  ubiquitination,  the  polyubiquitylated
protein  is  recognized  (at  least  four  lysine  48-linked  ubiquitins  are  the  primary
signal for degradation) and degraded by the proteasome.

Fig.  (7.15).  Ubiquitin-proteasome  system.  Protein  degradation  by  UPS  starts  with  the  conjugation  of
ubiquitin to the target substrate protein through E1, E2, and E3. The polyubiquitylated protein is recognized
and degraded by the proteasome where the active proteasome is formed by the interaction of the core particle
20S (containing the proteolytic active site) and the regulatory particle.
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The proteasome is formed by the assembly of several subunits. The proteasome
core  particle  20S  exhibits  a  barrel-like  structure  in  which  the  28  subunits  are
assembled into four seven-membered rings. The two outer rings are composed of
seven  α-subunits  (α1-  to  α7-subunit),  and  the  two inner  rings  are  composed  of
seven β-subunits (β1- to β7-subunits). b-rings contain the proteolytic active sites:
b1, b2 and b5 present caspase-like, trypsin-like and chymotrypsin-like activities,
respectively [51]. Oxidized proteins are degraded by proteasome 20S, however,
20S  particles  are  considered  to  be  inactive  and  unable  to  degrade  other
polyubiquitylated proteins [52]. The particle 20S assembles with 19S (26S single
capped  or  30S  double  capped)  regulatory  protein,  which  recognizes  the
polyubiquitylated  substrate,  removes  the  ubiquitin  moieties  and  unfolds  the
substrate to translocate it into the 20S proteolytic chamber. The core particle can
be  activated  by  other  regulatory  particles  such  as  PA28  (also  known  as  11S)
complex or the Blm10/PA200 [49].

7.5.2. The Autophagy Machinery

As described in chapter 3, autophagy starts with the formation of the phagophore,
a double membrane that can be either newly synthesized or can be originated from
the  ER,  mitochondria  or  plasma  membrane.  The  phagophore  is  formed  by  the
complex  of  ULK,  Atg13  and  FIP200  [53].  To  promote  the  expansion  of  the
phagophore, PI3K Vps34 complex—Vps15, Vps34, ATG14, Beclin-1, UVRAG,
Rubicon—produces  phosphatydilinositol-3-phosphate,  which  is  crucial  for  the
formation of the autophagosome [54]. The cytoplasmic fraction is then engulfed
into the phagophore. The membrane then elongates until its edges fuse and give
rise to the autophagosomes. Conjugation of LC3 to phosphatidylethanolamine, a
process known as LC3 lipidation induces phagophore maturation. LC3 lipidation
can occur  either  via  assembly  through the  Atg12-Atg5-Atg16L complex or  via
processing of the newly synthesized LC3 through Atg4 to the cytosolic LC3 form
(LC3I), and subsequently to the membrane-binding form (LC3II). These reactions
are catalyzed through Atg7 and Atg3 in a ubiquitin-like reaction. LC3II-positive
autophagosomes are trafficked to the lysosomes through the microtubule network
in a dynein-dependent manner [55].

CONCLUSION

The macronutrients proteins play critical roles in maintaining cellular homeostasis
and providing energy. In addition to cellular architectural support, proteins (amino
acids)  are  involved in  metabolic  reactions,  cellular  signaling,  and several  other
cellular  processes.  Their  synthesis  and  degradation  are  closely  regulated  by
physiological  and  pathophysiological  conditions,  including  feeding,  fasting,
physical  activities,  aging,  and  disease.
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NOTES
1  Parietal  cells,  also  known  as  oxyntic  cells  are  epithelial  cells  located  in  the
gastric gland in the lining of the fundus and cardia regions of the stomach.

2 Chief cells, also known as zymogenic or peptic cells are stomach cells releasing
pepsinogen and chymosin.

3  EMS  is  a  rare  disorder  associated  with  build  up  of  eosinophils  and  causes
inflammation  in  different  parts  of  the  body  including  muscle,  skin,  and  lungs.

4  Transcription  is  the  process  by  which  the  information  in  a  strand  of  DNA  is
copied into a new molecule of mRNA
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CHAPTER 8

Carbohydrate Metabolism

Abstract:  Carbohydrate  metabolism  starts  with  the  ingestion  of  food,  breakdown
(digestion),  and  absorption  of  monosaccharides  by  the  intestinal  enterocytes.  The
absorbed  monosaccharides  are  involved  in  many  cellular  processes.  They  are
transferred to cells for aerobic and anaerobic respiration via glycolysis, citric acid cycle
and pentose phosphate pathway to be used in the starvation state. In the normal state,
the skeletal muscle and liver cells store monosaccharides in the form of glycogen. The
extra  glucose  is  converted  to  triglycerides  via  lipogenesis  and  is  stored  in  the  lipid
droplets  of  adipocytes.  The  present  chapter  describes  in  details  carbohydrate
metabolism  and  its  cellular  processes.

Keywords:  Absorption,  Carbohydrates,  Digestion,  Cellular  respiration,
Gluconeogenesis,  Glycogenolysis,  Glycogenesis,  Glycolysis,  Transport.

INTRODUCTION

Although the body can generate  glucose from amino acids  (as  described in  the
previous  chapter,  gluconeogenesis),  there  is  an  average  requirement  of
carbohydrates per day to maintain normal blood glucose levels necessary for the
brain- and red blood cell metabolisms, and to avoid the development of ketosis1.
Also,  athletes  may  derive  a  large  portion  of  their  total  energy  needs  from
carbohydrates  to  optimize  performance  and  recovery.  In  addition,  most  dietary
fibers  are  classified  as  carbohydrates  and  they  play  key  roles  in  digestion  and
health. This chapter will describe carbohydrate types, digestion, absorption, and
metabolisms.

8.1. Types and Characteristics of Carbohydrates

Carbohydrates  were  identified  as  sweet  urine  in  the  sixth  century  BCE  by  the
Indian  physician  Sushruta  [1].  The  word  “starch”  dates  from  the  late  fourteen
century as stercan, stiercan, or starkjan in Anglo-Saxon Kingdom of Mercia, West
Saxon, and German, respectively. The ancient names for sugar, such as sukkar in
Arabic, sacchari  in Greek, and  saccharum  in Latin, derived from India where the
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technology  of  making  table  sugar  was  developed  and  exported.  The  word
carbohydrates (French “hydrate de carbone”) literally means carbon with water as
the ratio of carbon to water is one to one. In 1838, Jean Baptiste Dumas coined
the  term  glucose  (Greek  gleukos  or  sweet  wine)  for  the  sugar  obtained  from
honey, starch, and grapes. In 1855, Claude Bernard isolated and coined the term
glycogen  for  starch-like  substance  stored  in  the  mammalian  liver  [2].  In  1857,
William Miller  coined the name sucrose,  and in 1866 Friedrich August  Kekule
proposed  the  term  dextrose  (from  Latin  dexter  means  right)  for  dextrorotatory
glucose  because,  in  an  aqueous  solution  of  glucose,  the  plane  of  linearity
polarized light is turned to the right. Between 1880-1890, The German chemist
Emil  Fischer,  who  received  the  1902  Nobel  Prize  in  Chemistry,  defined  the
structure  and  the  chemical  make  up  of  glucose.

Although  hundreds  of  different  carbohydrates  exist  in  nature,  in  this  chapter,  I
group  them  in  the  most  simple  way,  namely  in  sugars  (monosaccharides  and
disaccharides),  oligosaccharides,  and  polysaccharides  (Fig.  8.1).

Fig. (8.1).  Classification of carbohydrates.

8.1.1. Monosaccharides

Based on carbon numbers, trioses, tetroses, pentoses, and hexoses are important in
human nutrition. Particularly, glucose, galactose, and fructose are the six-carbon
hexoses and the most common monosaccharides used in the human diet. Glucose
is the principal carbohydrate found in human circulation (blood). When looking at
the monosaccharide as a straight chain, the position of the hydroxyl group on the
asymmetric  carbon  farthest  away  from  the  carbonyl  group  (C=O)  is  used  to
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determine the D and L isomer series. If the OH group is on the right side, thus, the
monosaccharide is a D-isomer (Fig. 8.2). If the OH group is on the left side, then
the monosaccharide is an L-isomer. The D isomers are the naturally predominant
forms and the isomerase racemase enzyme interconverts between the two isomers
[3].

Fig. (8.2).  Carbohydrate D- and L-isomers.

Based on the groups they contain, monosaccharides can be aldose or ketose. An
aldose  is  defined  as  a  monosaccharide  whose  carbon  skeleton  has  an  aldehyde
group,  such  as  glucose,  ribose,  and  galactose.  A  ketose,  however,  is  a
monosaccharide whose carbon skeleton has a ketone group,  including fructose,
erythrulose, and ribulose.

8.1.2. Di- and Polysaccharides

Disaccharides  are  composed  of  two  covalently  linked  monosaccharides.  For
instance, sucrose (fructose + glucose), lactose (glucose + galactose), and maltose
(glucose + glucose), are the three most common disaccharides. Lactose, or milk
sugar, is derived from animals however, sucrose and maltose are found in plants.

Oligosaccharides  (stachyose,  verbascose,  raffinose)  are  composed  of  3  to  10
monosaccharide  units  linked  by  glycosidic  bonds  between  the  OH  groups  of
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adjacent monomeric units. The fate of oligosaccharides is quite different in that
they are fermented by colon bacteria. Polysaccharides are composed of a chain of
repeating  monosaccharide  units.  In  linear  chains,  the  covalent  bonds  are  found
between carbons 1 and 4, however, in the branched chains, the bonds are between
carbons 1 and 6 (example of glycogen).

8.2. Digestion and Absorption of Carbohydrates

Carbohydrate,  in  the  form  of  refined  sugary  products,  consumption  increased
steadily  during  the  last  few  decades.  The  dietary  reference  intake  (DRI)  for
carbohydrate energy has been set at 130 grams per day for all people older than
one year. This amount is expected to provide 520 calories of energy necessary for
the normal function of glucose-dependent tissues such as the brain and red blood
cells.

The  final  goal  of  carbohydrate  digestion  is  to  liberate  monosaccharides  from
disaccharides,  oligosaccharides,  and polysaccharides  and provide the  necessary
energy for the organism. The digestion of carbohydrates starts with the salivary
amylase in the mouth (Fig. 8.3). Approximately up to 30-40% of the digestion of
complex carbohydrates can take place before the food reaches the small intestine.
Next,  the  contents  are  mixed  with  the  highly  acidic  gastric  juice  where  the
amylase activity is inhibited (optimal pH for amylase is 6.6 - 6.8). In the small
intestine, carbohydrate digestion picks up, with most the monosaccharides being
absorbed  in  the  small  intestine.  Pancreatic  juice  enters  the  lumen  via  the
hepatopancreatic sphincter and neutralizes the gastric acid via its high bicarbonate
concentration. Pancreatic acinar cells secrete α-amylase that hydrolyses the α1-4
glycosidic  linkages  of  di-  and  polysaccharides.  For  instance,  dietary  starch  is
hydrolyzed  to  maltose,  maltotriose,  α-dextrins,  and  glucose.  In  the  intestinal
lumen, the remainder of carbohydrates are digested by disaccharidases (maltase,
lactase, sucrase) which are associated with the microvilli plasma membrane, and
the  final  digested  monosaccharides  are  ready  to  be  absorbed  [4].  Table  8.1
summarizes  the  digestion  of  some  dietary  carbohydrates  and  the  brush  border
membranes enzymes involved in the final digestion step.

The simple monosaccharides (D-isomers but not L-isomers) are transported via
specific transport proteins. Glucose and galactose are taken up by the Na+-coupled
secondary  active  transport  symporter  known  as  Na+-glucose  transporter  1
(SGLT1)  [5].  Glucose  can  also  reach  the  circulation  via  a  facilitated  diffusion
transporter, glucose transporter 2 (GLUT2), from a high concentration inside the
cell  to  a  low  concentration  outside  the  cell  [6].  GLUT5  transports  fructose.
GLUTs are integral membrane transport proteins folded into 12 transmembrane-
spanning α-helixes that form a central aqueous channel for the movement of the
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monosaccharides  across  the  lipid  bilayer  [6].  The  basolateral  Na+,  K+-ATPase
creates,  in coordination with SGLT1, an Na+  gradient to bring hexoses into the
enterocytes. As the bloodstream is adjacent to the intestinal epithelial cells,  the
simple sugar (glucose, galactose, fructose) exit the cells via GLUT2 without the
use of cellular energy (Fig. 8.4).

Fig. (8.3). Carbohydrate digestion. The digestion begins with the salivary amylase in the mouth and then
picks up in the intestine, where the pancreatic amylase hydrolyses the α1-4 glycosidic linkages of di- and
polysaccharides. The remainder of carbohydrates is digested in the lumen by disaccharidase enzymes.

Table 8.1. Carbohydrate source and digestive enzymes.

Carbohydrates Sources Glycosidic Bonds Enzymes Products

Fructose
Glucose

Amylopectin
Amylose
Sucrose

Trehalose
Lactose

Fruit and honey
Fruit, honey, grapes
Potatoes, rice, bread

Rice, corn, bread
Table sugar
Mushrooms

Milk and milk
products

None
None

α-1,4 & 1,6
α-1,4
α-1,2
α-1,1
β-1,4

None
None

β-glucoamylase,
isomaltase

β-glucoamylase
Sucrase

Trehalase
Lactase

Fructose
Glucose
Glucose
Glucose

Glucose,fructose
Glucose

Glucose,galactose

#f8.4
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Fig.  (8.4).  Absorption  of  simple  sugars.  Disaccharides  are  digested  by  brush  border  disaccharidases
(maltase,  sucrose,  and  lactase).  Glucose  and  galactose  bind  to  SGLT1  also  binds  sodium  and  enter
enterocytes. Fructose enters via GLUT5. Na+ and SGLT1 create a Na+ and glucose gradients that coordinates
with Na+K+ ATPase and allow sugars to exit the basolateral side and enter the circulation via GLUT2. GLUT,
glucose transporter; SGLT, sodium (Na+)-glucose transporter.

8.3. Carbohydrate Metabolisms

8.3.1. Carbohydrate Uptake

All cells, particularly the brain, red cells, and muscle, can use glucose for energy
purposes. Therefore, circulating glucose needs to reach these cells and cross the
plasma membrane (see chapter 2 for cell components). Blood glucose increases
after  the  meal  and  decreases  with  fasting.  Several  hormones  regulate  blood
glucose  levels,  with  the  most  significant  and  the  most  studied  being  insulin,
glucagon, epinephrine, and cortisol. The plasma glucose levels of humans under
normal  condition  is  approximately  100  mg/dL,  however  in  overweight
individuals,  mild hyperglycemia is  ~108 mg/dL,  intermediate  hyperglycemia is
~126 mg/dL and high hyperglycemia is over 155 mg/dL [7]. Incident diabetes is
assessed  at  the  earliest  clinic  visit  at  which  the  individual  exhibited  a  blood
glucose  level  of  more  than  126  mg/dL  or  reported  a  diagnosis  of  diabetes.
Chickens (Gallus gallus domesticus) are naturally hyperglycemic with an average
blood glucose level of approximately 300 mg/dL. Nutritionists use glycemic index
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for  food,  which  represents  the  relative  rise  in  plasma  glucose  two  hours  after
consuming that food [8]. This is determined in comparison with a standard food
(glucose and white bread). For instance, if a given food raises blood glucose level
to 50% of the rise caused by the standard (glucose), then the glycemic index of
that food is 50. Glycemic index is categorized as low (55 or less), medium (56-
69), and high (70 or more). Another index, called a glycemic load, was also used,
Glycemic  load  is  determined  as  follows:  GL  =  glycemic  index  x  digestible
carbohydrate in a serving/100. Table 8.2 reports some food glycemic index and
load published by Atkinson and co-workers [9].

Table 8.2. Carbohydrate source and glycemic index and load.

Carbohydrate Source Glycemic Index Glycemic Load

Cereal
Apple juice

Apples
Bananas

Beets
Cantaloupe

Carrot
Couscous

Grapes
Green peas
Macaroni

Pears
White rice
Spaghetti

Table sugar

42
40
38
52
64
65
47
65
46
48
47
38
64
42
68

8
11
6
12
5
4
3
23
8
3
23
4
23
20
7

During a fed state and after a meal, blood glucose levels rise, enter the pancreatic
β-cells  (75% are  β  cells)  through GLUT on the plasma membrane,  and rapidly
stimulate insulin secretion. It has long been considered that there are distinct pools
of insulin granules in the β-cells, known as readily releasable pools and reserve
pools [10].

An increase in glucose levels triggers rapid insulin exocytosis from the pools by
the KATP- and Ca2+-dependent mechanisms (Fig. 8.5). Insulin helps glucose uptake
by target cells. Under the fasting state, when the blood glucose drops (low than 80
mg/dL),  glucagon  is  secreted  from  pancreatic  islet  α-cells  (20%  are  α-cells).
Glucagon circulates  unbound in  the  plasma,  binds  its  receptor  on  the  liver  cell
membrane, and induces glucose secretion. The secretion of insulin and glucagon
is  controlled  in  a  reciprocal  manner  by  blood  glucose  levels.  5% of  pancreatic
cells  are  δ-cells  that  produce  somatostatin,  which  inhibits  both  insulin  and
glucagon  secretion.

#t8.2
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Fig. (8.5). Effects of glucose concentrations on insulin and glucagon secretion. a)  insulin and glucose
secretion after meals, b) Interaction between glucose, insulin, and glucagon during fed and fasting states, c)
and d)  mechanisms of  glucose  action on insulin  (fed state)  and glucagon (fasting state).  ATP,  adenosine
triphosphate; GLUT, glucose transporter; RP, reserve pools; RRP, readily releasable pools; VDCC, voltage-
dependent calcium channel.

8.3.1.1. Role and Function of Insulin

As described above, during the fed state, insulin is secreted and activates anabolic2

pathways, such as the storage of glycogen and fat. Insulin is secreted in a biphasic
manner.  The initial  burst  reflects the release of preformed secretory vesicles;  it
lasts 5-15 minutes. The second more gradual and sustained secretion (30 min) is
due to the release of newly synthesized insulin molecules. Other factors such as
an increase in plasma amino acids and the feed forward signaling by glucagon like
peptides  from  the  small  intestine  lead  to  secretion  of  insulin.  The  circulating
insulin  targets  insulin-dependent  tissues  such  as  the  liver,  skeletal  muscle,  and
adipose tissues, regulating glucose uptake and stimulating fuel storage (glycogen
and fat).

Insulin promotes the lowering of blood glucose levels by various means.  In fat
tissue and skeletal muscle, insulin increases the number of GLUTs and induces
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their  translocation  at  the  plasma  membrane.  These  active  GLUTs  enhance  the
uptake of glucose into the muscle and fat cells (Fig. 8.6). Circulating insulin binds
and activates  its  receptor,  which  in  turn  stimulates  a  complex  PI3K–dependent
signal  transduction  network  involving  insulin  receptor  substrate  (IRS-1)  and
Akt/protein  kinase  B  and  its  substrates—the  negative  regulators  AS160  (Akt
substrate of 160 kD) and TBC1D1—which regulate Rab8A and Rab14 GTPases
involved in muscle cell  membrane trafficking [11,  12].  Rab-GTPase–activating
proteins AS160 and TBC1D1 inhibit  GLUT4 translocation and glucose uptake.
Activation of Akt/PKB mediates phosphorylation and inactivation of AS160 and
TBC1D1, resulting in the loss of their inhibitory effects on Rab GTPases, thereby
allowing GLUT4 translocation and glucose uptake (Fig. 8.6).

Fig. (8.6). Role and function of insulin in glucose uptake. The schematic representation summarizes the
major  signaling  pathways  and  cascades  of  insulin  involved  in  insulin-stimulated  glucose  uptake  via  the
activation and translocation of the facilitative GLUT. Akt, protein kinase B; AS160, Akt substrate of 160
kDa; IRS1, insulin receptor substrate 1; PDK1, pyruvate dehydrogenase kinase 1; Rab, ras-related protein;
TBC1D1, Tre-2/Bub2/cdc16 1 domain family member 1.

Insulin  also  facilitates  the  assembly  of  Rip11/Rab,  exocyst  complexes,  and
soluble  NSF  attachment  protein  receptor  (SNARE),  resulting  in  docking  and
fusion  of  GLUT4-laden  vesicles  with  the  plasma  membrane  [12].

In liver tissue, insulin increases glucose uptake via activation and translocation of
GLUT2.  Once  glucose  enters  hepatocytes,  it  is  quickly  phosphorylated  by
glucokinase,  thus  maintaining  a  concentration  gradient  that  further  favors  the
influx  of  free  glucose  from  the  circulation.  Table  8.3  summarizes  the
characteristics  of  the  14  GLUT  family  members.

#f8.6
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Table 8.3. Facilitative GLUT transporter family.

Gene Name Protein Name Substrate Tissue Distribution

SLC2A1 GLUT1 Glucose, galactose, mannose,
glucosamine Erythrocytes, brain, BBB

SLC2A2 GLUT2 Glucose, galactose, fructose,
mannose, glucosamine Liver, pancreas, intestine, kidney, brain

SLC2A3 GLUT3 Glucose, galactose, mannose,
xylose Brain,, testes

SLC2A4 GLUT4 Glucose, glucosamine Adipose tissue, skeletal and cardiac muscle

SLC2A5 GLUT5 Fructose Liver, small intestine, kidney

SLC2A6 GLUT6 Glucose Brain, spleen, leucocytes

SLC2A7 GLUT7 Glucose Small intestine, colon, testis, prostate

SLC2A8 GLUT8 Glucose, galactose Testis, brain, adrenal gland, spleen, adipose
tissue, lung

SLC2A9 GLUT9 Glucose Kidney, liver, small intestine, placenta, lung

SLC2A10 GLUT10 Glucose, galactose Heart, lung, brain, liver, skeletal muscle,
pancreas, placenta, kidney

SLC2A11 GLUT11 Glucose Heart, muscle

SLC2A12 GLUT12 Glucose Heart, prostate, skeletal muscle, placenta

SLC2A13 GLUT13 Myo-inositol Brain, adipose tissue

SLC2A14 GLUT14 - Testis

8.3.1.2. Role and Function of Glucagon

As  described  above,  an  increase  in  blood  glucose  levels  inhibits  glucagon
secretion,  leading  to  a  fall  in  plasma  glucagon  concentrations  [13  -  15].  A
decrease  in  plasma  glucose  levels,  however,  induces  glucagon  secretion  [16].
Glucagon has profound effects on glucose, amino acid, and fatty acid metabolism
that  enable  survival  in  conditions  such  as  metabolic  stress  and  starvation.
Metabolic  actions  of  glucagon  take  place  predominantly  in  the  liver  [17,  18].
Opposed to insulin, glucagon prevents glucose accretion as hepatic glycogen and
increases hepatic glucose production during fasting, exercise, and hypoglycemia.
Specifically,  glucagon promotes  the  hepatic  conversion  of  glycogen  to  glucose
(glycogenolysis,  see  section  8.3.2.7),  stimulate  de  novo  synthesis  of  glucose
(gluconeogenesis,  see  section  8.3.2.8),  and  inhibits  glucose  breakdown
(glycolysis, see section 8.3.2.1) and glycogen formation (glycogenesis, see section
8.3.2.6) [19]. Glucagon binds to its receptor, a G protein-coupled receptor, located
in the plasma membrane of cells.



218   Nutritional Biochemistry: From the Classroom to the Research Bench Sami Dridi

The  conformation  change  in  the  receptor  activates  G proteins,  a  heterotrimeric
protein with α, β, and γ subunits. When the G protein interacts with the receptor, it
undergoes  a  conformational  change  that  results  in  the  replacement  of  the  GDP
molecule that was bound to the α subunit with a GTP molecule. This substitution
results in the release of the α subunit  from the β and γ subunits (Fig. 8.7).  The
alpha  subunit  specifically  activates  the  adenylate  cyclase,  the  first  enzyme and
step in the downstream cascade. Adenylate cyclase manufactures cAMP, which in
turn activates protein kinase A (PKA), leading to phosphorylation and activation
of  phosphorylase  kinase  (PPK)  and  glycogen  phosphorylase  to  breakdown
glycogen  to  glucose.

Fig. (8.7). Role and function of glucagon on hepatic carbohydrate metabolism. Glucagon binds to its cell
membrane receptor and activates G proteins, a heterotrimeric protein with α, β, and γ subunits. When the G
protein interacts with the receptor, it undergoes a conformational change that results in the replacement of the
GDP molecule that was bound to the α subunit with a GTP molecule. The release of the active α subunit
activates AC, which in turn activates PKA via cAMP. PKA phosphorylates PPK and activates the glycogen
phosphorylase, resulting glycogen breakdown. AC, adenylate cyclase; ATP, adenosine triphosphate; cAMP,
cyclic  adenosine  monophosphate;  GDP,  guanosine  diphosphate;  GTP,  guanosine  triphosphate;  GPCR,  G
protein coupled receptor; PKA, protein kinase A; PPK, phosphorylase kinase; PYG, glycogen phosphorylase.

8.3.1.3. Role and Function of Epinephrine

Epinephrine  (adrenaline),  released  from  nerve  endings  and  the  adrenal  gland,
stimulates glucose production during exercise [20]. As for glucagon, epinephrine
binds to its receptor on the cell membrane and activates cAMP-PKA pathway and
its downstream cascades, leading to phosphorylation and activation of glycogen
phosphorylase and breakdown of glycogen to glucose to be used in the glycolysis
process and provide the necessary energy.

#f8.7
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8.3.2. Fate of Intracellular Glucose and Major Metabolic Pathways

The final destination of carbohydrates is to provide the necessary energy for the
cell. Although most cells use more than one fuel source, red blood cells are the
only  true  obligate  glucose  users.  Under  normal  conditions,  the  brain  derives
nearly all of its necessary energy from glucose. However, the brain can adapt to
use more ketone bodies during starvation to spare blood glucose for other tissues.

8.3.2.1. Glycolysis

Glycolysis  is  a  series  of  ten  reactions  that  convert  one  six-carbon  glucose
molecule to two three-carbon pyruvate molecules, ATP, NADH, and water. The
process takes place in the cytosol of the cell. The pathway of glycolysis and its
associated  enzymes  are  shown  in  Fig.  (8.8).  The  summarized  key  steps  in  the
pathway are:

Fig. (8.8).  Glycolysis and glycolytic enzymes.
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Step 1: A phosphate group is added to glucose in the cell cytoplasm by the action
of  enzyme hexokinase  (in  all  tissues)  and  glucokinase  (in  hepatocytes).  In  this
step,  a  phosphate  group is  transferred  from ATP to  glucose,  forming glucose--
-phosphate.

Step  2:  The  enzyme  phosphoglucomutase  isomerizes  glucose-6-phosphate  into
fructose-6-phosphate.

Step 3: The enzyme phosphofructokinase transfers a phosphate group from ATP
to fructose-6-phosphate and converts it into fructose 1,6-bisphosphate.

Step  4:  The  enzyme  aldolase  converts  fructose  1,6-bisphosphate  into
glyceraldehyde 3-phosphate and dihydroxyacetone phosphate, which are isomers
of each other.

Step  5:  The  enzyme  triose-phosphate  isomerase  converts  dihydroxyacetone
phosphate  into  glyceraldehyde  3-phosphate,  which  is  the  substrate  in  the
successive  step  of  glycolysis.

Step 6: This step contains two reactions:

- The enzyme glyceraldehyde 3-phosphate dehydrogenase transfers one hydrogen
molecule from glyceraldehyde phosphate to nicotinamide adenine dinucleotide to
form NADH + H+.

- The enzyme glyceraldehyde 3-phosphate dehydrogenase adds a phosphate to the
oxidized glyceraldehyde phosphate to form 1,3-bisphosphoglycerate.

Step  7:  The  enzyme  phosphoglycerokinase  transfers  a  phosphate  from  1,3-
bisphosphoglycerate  to  ADP  to  form  ATP  and  two  molecules  of
phosphoglycerate.

Step 8: The phosphate of both the phosphoglycerate molecules is relocated from
the third to the second carbon to yield two molecules of 2-phosphoglycerate by
the action of phosphoglyceromutase enzyme.

Step 9: The enzyme enolase removes a water molecule from 2-phosphoglycerate
to form phosphoenolpyruvate.

Step 10: A phosphate from phosphoenolpyruvate is transferred to ADP to form
pyruvate and ATP by the action of pyruvate kinase. Two molecules of pyruvate
and ATP are obtained as the end products.
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The final reaction (reactants and end products):

. The pyruvate
will enter the Krebs cycle and the NADHs will go to the mitochondrial electron
transport chain (ETC).

8.3.2.2. Fate of Pyruvate

Depending on the nutritional state, metabolic condition, and cell type, pyruvate
can enter  the  mitochondria  and be  converted  to  Acetyl-CoA or  oxaloacetate  or
converted  to  alanine  or  lactate  in  the  cytosol.  The  conversion  of  pyruvate  to
acetyl-CoA undergoes a three-step process: 1) A carboxyl group is removed from
pyruvate, releasing a molecule of carbon dioxide into the surrounding medium,
and  two-carbon  hydroxyethyl  group  are  formed  and  bound  to  the  pyruvate
dehydrogenase enzyme. 2) The hydroxyethyl group is oxidized to an acetyl group,
forming  an  NADH  from  NAD+.  The  NADH  will  be  used  by  the  ETC.  3)  The
enzyme-bound  acetyl  group  is  transferred  to  CoA,  producing  a  molecule  of
acetyl-CoA,  which  will  be  used  in  the  Krebs  cycle  (Fig.  8.9).

Fig. (8.9). Pyruvate metabolism and Krebs cycle. The Krebs cycle is also known as citric acid cycle or
tricarboxylic acid cycle.
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The Krebs cycle (discovered by Hans Adolf Krebs, the winner of the Nobel Prize
of  physiology  or  Medicine  in  1953),  also  known  as  a  citric  acid  cycle  or
tricarboxylic  acid  cycle  (TCA),  occurs  in  the  mitochondrial  matrix  where  the
acetate of acetyl-CoA undergoes stepwise oxidation to carbon dioxide and water
in  a  cyclic  pathway.  Eight  key  sequential  reactions  occur,  whereby  the  final
reaction produces the reactant for the first reaction that forms citric acid (Fig. 8.9).
The  citrate  synthase  enzyme  catalyzes  the  condensation  of  oxaloacetate  and
acetyl-CoA to form citric acid. The aconitase enzyme catalyzes the conversion of
citric  acid  to  isocitrate,  which  is  converted  to  α-ketoglutarate  by  the  isocitrate
dehydrogenase enzyme. The enzyme α-ketoglutarate dehydrogenase converts α-
ketoglutarate  to  succinyl-CoA.  During  these  two  oxidative  reactions,  NAD+  is
reduced  to  NADH  and  two  CO2  molecules  are  produced  (Fig.  8.9).  Next,
succinyl-CoA is converted to succinate via the action of succinyl-coA synthetase,
where energy (ATP) is liberated by the cleavage of the high-energy thioester bond
of  succinyl-CoA.  Succinate  is  then  converted  to  fumarate  by  succinate
dehydrogenase  and  here,  FAD  is  reduced  to  FADH2.  The  enzyme  fumarase
catalyzes  the  conversion  of  fumarate  to  malate,  which  is  then  converted  to
oxaloacetate  by  malate  dehydrogenase,  and  here  NAD+  is  reduced  to  NADH.
During the TCA cycle,  there are four oxidizing reactions,  with three producing
NADH from NAD+ and one producing FADH2 from FAD. A grand total of 2 ATP
are  produced  by  glycolysis  and  2  ATP  by  Krebs  cycle.  The  rest  of  ATP  are
produced  in  the  ETC  (see  section  8.3.2.4).

8.3.2.3. Transfer of Cytosolic NADH into the Mitochondria

The inner membrane of the mitochondria is impermeable to NAD, and thus the
cytosolic NADH produced from glycolysis cannot enter the mitochondria for re-
oxidation and needs shuttles. 1) The malate-aspartate shuttle, which involves the
reduction of oxaloacetate to malate in the cytosol. Malate enters the mitochondria
and is reduced back to oxaloacetate to reduce NAD+ to NADH. Because it cannot
cross the mitochondrial inner membrane, oxaloacetate undergoes a transamination
by aspartate transaminase to produce aspartate in the presence of glutamate acting
as  an  amino  donor,  which  leads  to  the  production  of  α-ketoglutarate.
Mitochondrial  aspartate  leaves  the  mitochondria  to  the  cytosol  in  exchange for
entering glutamate. In the cytosol, aspartate is reverse transaminated by aspartate
transaminase  to  produce  oxaloacetate  and  then  malate  (Fig.  8.10).  2)  The
glycerophosphate  shuttle,  which  involves  the  reduction  of  dihydroxyacetone
phosphate to glycerol 3-phosphate and oxidation of NADH to NAD+. The glycerol
3-phosphate enters the mitochondria, where it is converted to dihydroxyacetone
phosphate  by  glycerol  3-phosphate  dehydrogenase  and  reduction  of  FAD  to
FADH2  (Fig.  8.10).  Dihydroxyacetone  phosphate  and  glycerol  3-phosphate  are
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transported  in  the  mitochondria  in  the  opposite  direction  by  an  antiporter.  The
glycerophosphate  shuttle  is  important  in  the  muscle  where  there  is  a  high
glycolysis rate; however, the malate-aspartate shuttle is important in the liver. The
malate-aspartate  shuttle  is  sensitive  to  the  NADH/NAD+  ratio  in  both
compartments (cytosol and mitochondria), and cannot function if this ratio in the
mitochondria is higher than that in the cytosol. The glycerophosphate shuttle uses
the FADH2/FAD and thus, it can operate independently of the NADH/NAD+ ratio.

Fig.  (8.10).  The  aspartate-malate  and  glycerophosphate  shuttles.  FAD,  Flavin  adenine  dinucleotide;
FADH2,  dihydroflavine-adenine  dinucleotide;  NAD+,  nicotinamide  adenine  dinucleotide;  NADH,
Nicotinamide  adenine  dinucleotide  hydrate.

8.3.2.4. Mitochondrial Electron Transport Chain

The  ETC,  including  the  transmembrane  protein  complexes  I-IV  and  the  freely
mobile electron transporters ubiquinone and cytochrome, is a series of enzymes
and coenzymes in the crista membrane [21, 22]. There are two ETC pathways for
electron  transport:  complex  I/III/IV  using  NADH  as  substrate  and  complex
II/III/IV  using  succinic  acid  as  substrate.

The  respiratory  complex  I,  also  known  as  NADH-ubiquinone  oxidoreductase,
transfers  electrons  from  matrix  NADH  to  ubiquinone  [23].  This  complex  is
composed  of  14  core  subunits  and  45  identified  proteins  that  participate  in  the
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formation of the core subunits [24]. The N2 cluster is the final electron accepting
iron-sulfur cluster that delivers electrons to the ubiquinone binding site, which is
located  at  the  junction  of  the  membrane  arm  and  matrix  arm  and  in  which
ubiquinone (C0Q) is  reduced to  ubiquinol  (QH2).  This  transfer  of  electrons  (2)
from NADH to CoQ in complex I induce the pumping of four protons from the
matrix into the intermembrane space [25, 26]. The complex II, also known as the
succinate dehydrogenase, which is also a component of the Krebs cycle, serves as
an  association  between  metabolism  and  cellular  respiration  of  oxidative
phosphorylation  (OXPHOS)  [27].  The  complex  II  consists  of  4  subunits,  two
containing the CoQ binding site and two containing the succinate binding site. Via
FeS  clusters,  complex  II  donates  the  electrons  from  succinate  to  CoQ.  After
receiving electrons, FAD is reduced to FADH2. The complex III, also known as
cytochrome bc1 complex or CoQ-cytochrome c reductase, transfers the electrons
carried  by  QH2  to  cytochrome  c.  It  is  a  dimer  containing  11  subunits  per
monomer, and the electron transfer process is accomplished by the Q-cycle [28]
and two protons are released into the mitochondrial intermembrane space from the
matrix.  The  complex  IV,  also  known  as  the  cytochrome  c  oxidase,  transfers
electrons from cytochrome c to terminal electron acceptor O2 to produce H2O. It
consists of 13 subunits containing four redox-active metal centers, CuA, heme a,
heme a3,  and CuB  [29].  This  leads  to  the  reduction  of  O2  to  H2O, transfer  of  4
electrons,  and 8 protons are removed from the matrix,  of  which half  is  used to
form the 2 water molecules, and the other half is pumped into the intermembrane
space (Fig. 8.11). The final complex, complex V also known as the F1/F0 ATP
synthase, which consists of two functional domains, F0 and F1. F0 is located in
the inner mitochondrial membrane and contains several subunits. However, F1 is
located  in  the  mitochondrial  matrix  and  contains  several  soluble  subunits.  To
generate one H2O molecule,  the ETC transfers 2 electrons at  a  time to oxygen,
which is  accompanied by the pumping from the matrix into the intermembrane
space of 4 H+ (via complex I), 4 H+ (complex III), and 2 H+ (complex IV) or 0, 4,
and 2 H+via complex II, complex III, and complex IV. During their passage via
F0,  the  protons  create  an  electrochemical  gradient  causing  conformational
changes  of  F1/F0  ATP  synthase,  resulting  in  ADP  phosphorylation  and  ATP
production. In total, 34 ATP are formed by ETC from one molecule of oxygen. In
conclusion,  one  molecule  of  oxygen  produces  (36-38  ATP)  as  follows:  2  ATP
from glycolysis, 2 ATP via Krebs cycle, and 34 ATP via ETC. It is worth noting
that  the  transport  of  2  NADH  produced  by  glycolysis  from  the  cytosol  to  the
mitochondria requires 2 ATP, thus the true grant total is 36 ATP per one glucose
molecule.
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Fig. (8.11). Schematic representation of mitochondrial ETC. Electrons derived from oxidizable substrates
are  passed  through  complex  I/III/IV  or  complex  II/III/IV  in  an  exergonic  process  that  drives  the  proton
pumping into the mitochondrial intermembrane space. The energy of the proton gradient drives the synthesis
of ATP from ADP via F1F0 ATP synthase.

8.3.2.5. Anaerobic Glycolysis

Under  the  condition  of  intense  exercises,  such  as  sprinting,  the  rate  of  oxygen
transport into the muscle is not enough to allow the re-oxidation of all the NADH
generated  from  the  glycolysis  process.  To  maintain  the  oxidation  of  glucose,
pyruvate  is  converted  to  lactate,  and  NADH is  oxidized  to  NAD+.  This  is  also
critical for erythrocytes, which lack mitochondria, to re-oxidize NADH. Muscle
and erythrocyte lactate is transported to the liver, where it is converted to pyruvate
by  lactate  dehydrogenase  (Cori  cycle  or  lactic  acid  cycle  discovered  by  Carl
Ferdinand  and  Gerty  Cori,  who  won  the  1947  Nobel  prize  in  Physiology  or
Medicine) (Fig. 8.12), and the pyruvate is used in the gluconeogenesis process to
produce glucose.

8.3.2.6. Glycogenesis

During  feed  restriction  or  during  the  submaximal  exercise  of  high  intensity,
glycogen  is  the  preferred  and  primary  source  of  energy.  Glycogen  is  a  highly
ramified polymer of glucose found and stored primarily in the cells of the liver
and skeletal muscle. In the liver, glycogen represents 5-6% of the organ’s fresh
weight (100-200 g for a 1.5 kg liver). In muscle, glycogen can make up 1-2% of
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the  muscle  mass  (~400g  for  70  kg-adult).  Small  amounts  of  glycogen  are  also
found in the kidney, red blood cells [30], white blood cells [31], glia and brain
[32].  The  uterus  also  stores  glycogen  during  pregnancy  to  nourish  the  embryo
[33].  Originally,  Claude  Bernard  communicated  to  the  Société  de  Biology  in
Paris,  on March 21,  1857,  a  description of  glycogen (sugar-forming substance)
isolation from liver  tissues.  Later  on,  Sanson A.  found that  muscle  tissues also
contain glycogen. In 1858, Kekuke established the empirical formula of glycogen.

Fig. (8.12). The Cori cycle or glucose-lactate cycle. Glucose is converted to lactate in muscle by anaerobic
glycolysis. Circulating lactate reaches the liver and is converted to pyruvate by lactate dehydrogenase, and
pyruvate enters the gluconeogenesis to produce glucose. LDH, lactate dehydrogenase.

Glycogen is a highly ramified and branched polymer consisting of linear chains of
glucose residues with further chains branching off every 8 to 12 glucoses or so.
Glucoses  are  linked  together  linearly  by  α(1→4)  glycosidic  bonds  from  one
glucose to the next (Fig. 8.13). Branches are linked to the chains from which they
are branching off  by α(1→6) glycosidic bonds between the first  glucose of  the
new branch and glucose on the stem chain [34] (Fig. 8.13). Glycogen synthesis or
glycogenesis is a multi-step process that begins with the conversion of glucose to
glucose-6-phosphate  (G6P)  via  muscle  hexokinase  or  hepatic  glucokinase.  G6P
subsequently  converts  to  glucose-1-phosphate  (G1P)  via  phosphoglucomutase.
G1P  is  converted  to  UDP  glucose  via  glucose-1-phosphate  uridyltransferase,
which requires UTP as an additional substrate and release of pyrophosphate (PPi)
[35]. Glycogenin synthesizes the initial primer for glycogen synthase by attaching
a  UDP-glucose  molecule  at  its  one  carbon  position  to  a  hydroxyl  group  on  a
tyrosine residue [36] (Fig. 8.13), which causes UDP to exit. Glycogen synthase
creates an α-1,4 glycosidic bond between UDP-glucose and the growing glycogen
strand [37]. After the linear chain grows (8-12 glucose molecules), the glycogen
branching enzyme, which contains two catalytic activities (transferase and α-1,6
glycosidase) begins to add branches [38].
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Fig.  (8.13).  Schematic  representation of  glycogenesis.  For  glycogen synthesis  to  proceed,  the  first  few
glucose residues are attached to a protein known as glycogenin. Glycogenin catalyzes its own glycosylation,
attaching carbon 1 of a UDP-glucose to a tyrosine residue (Y194) on the enzyme. This reaction is carried out
by one subunit adding the glucose to the other subunit. Following the addition of the first glucose residue,
each glycogenin subunit will then add a further 6-17 glucose residue in an intra-subunit reaction via α-1,4
glycosidic bonds. The attached glucose then serves as the primer required by glycogen synthase to attach
additional  glucose  molecules.  The  glycogen  branching  enzyme,  also  known  as  the  amylo-(1,4  to  1,6)-
transglucosidase transfers a terminal fragment of 6-7 glucose residues (from a polymer at least 11 glucose
residues long) to an internal glucose residue at the C-6 hydroxyl position. GK, glucokinase; GBE, glycogen
branched enzyme;  GS,  glycogen synthase;  HK,  hexokinase;  PGM, phosphoglucomutase;  UGP,  glucose--
-phosphate uridyltransferase.

Glycogen is synthesized during the fed state, and it is regulated by a myriad of
hormones  and  factors,  with  the  most  known  and  studied  being  insulin  and
glucagon,  which  promote  anabolism  and  catabolism3,  respectively  [39].  As
described previously, insulin activates protein phosphatase 1 (PP1) and PKB. PP1
dephosphorylates  glycogen  synthase  b  and  converts  it  to  the  active  glycogen
synthase  a.  PKB  maintains  the  active  glycogen  synthase  a  by  inactivating
glycogen  synthase  kinase  3  (GSK3)  [40].  In  the  glucagon-mediated  pathway,
PKA phosphorylates  PP1  and  induces  glycogen  breakdown  by  preventing  PP1
from activating glycogen synthase b to glycogen synthase a. PKA also activates
glycogen phosphorylase kinase and glycogen phosphorylase, which catalyzes the
sequential phosphorolysis of glycogen to release G1P [41]. More recently, leptin
has been shown to mimic the effect of insulin on glucose transport and glycogen
synthesis through PI3K activity [42, 43], janus kinase (JAK) and insulin receptor
substrate 2 (IRS2) [44].



228   Nutritional Biochemistry: From the Classroom to the Research Bench Sami Dridi

8.3.2.7. Glycogenolysis

Glycogen degradation or breakdown (glycogenolysis) is catalyzed by the active
enzyme  glycogen  phosphorylase  a  and  the  debranching  enzyme  (Fig.  8.14).
Glycogen  is  cleaved  from  the  non-reducing  ends  of  the  chain  by  the  enzyme
glycogen  phosphorylase,  in  the  presence  of  phosphate  (Pi)  and  pyridoxal
phosphate  (a  cofactor  derived  from  vitamin  B6),  to  produce  monomers  of
glucose-1-phosphate,  which  is  then  converted  to  glucose-6-phosphate  by
phosphoglucomutase [45] (Fig. 8.14). As the glycogen phosphorylase is unable to
cleave  α-1,4  bonds  close  to  the  junction  point,  a  special  debranching  enzyme,
which contains two catalytic properties: a transferase and an α-1,6 glucosidase, is
needed to transfer the three distal glucose molecules to a proximal longer chain
and hydrolysis of the α-1,6 glycosidic bond, respectively. The hydrolysis of the α-
1,6  glycosidic  bond  yields  a  glucose  unit  instead  of  G1P.  The  ratio  of  G1P  to
glucose  generated  from  glycogenolysis  is  10:1.  G1P  produced  from
glycogenolysis is converted to G6P by phosphoglucomutase. The G6P monomers
produced have three possible fates: 1) G6P can continue on the glycolysis pathway
and  be  used  as  fuel.  2)  G6P  can  enter  the  pentose  phosphate  pathway  via  the
enzyme  glucose-6-phosphate  dehydrogenase  to  produce  NADPH  and  5-carbon
sugars. In the liver and kidney, G6P can be dephosphorylated back to glucose by
the enzyme glucose 6-phosphatase. This is the final step in the gluconeogenesis
pathway. It is important to mention that skeletal muscle does not express glucose-
6-phosphatase, and thus uses its glycogen reserve for itself and not as glucose for
other tissues [46].

Fig. (8.14). Schematic representation of glycogenolysis in muscle and liver. The breakdown of hepatic
glycogen  produces  glucose  which  circulates  and  is  used  by  other  tissues.  The  degradation  of  muscle
glycogen, however, is used in glycolysis and energy production for the muscle.G1P, glucose 1-phosphate;
G6P, glucose 6-phosphate; TCA, tricarboxylic acid cycle.

#f8.14
#f8.14


Carbohydrate Metabolism Nutritional Biochemistry: From the Classroom to the Research Bench   229

8.3.2.8. Gluconeogenesis

Gluconeogenesis, de novo synthesis of glucose, is a multistep metabolic process
to  generate  glucose  from  non-carbohydrate  source,  mainly  from  pyruvate  or
related  three-carbon  compound  lactate  and  glutamine.  It  is  effectively  the
glycolysis  in  reverse  (Fig.  8.15).  It  has  four  irreversible  steps  catalyzed  by  the
enzymes:  pyruvate  carboxylase  (PC),  phosphoenolpyruvate  carboxykinase,
fructose  1,6-bisphosphatase  (FBP),  and  glucose  6-phosphatase.  The  role  of  the
gluconeogenesis process is to maintain blood glucose when glycogen stores are
depleted and supply the brain and red blood cells that primarily use glucose for
energy. It occurs primarily in liver, and to less extent in kidney, enterocytes, and
brain,  and  not  in  the  muscle,  which  lacks  G6P.  The  liver  does  not  use
gluconeogenesis  for  its  energy  but  uses  β-oxidation  to  supply  the  necessary
energy  for  glucose  de  novo  synthesis.  Amino  acids,  except  leucine  and  lysine,
lactate (produced in anaerobic glycolysis), glycerol-3-phosphate (produced in fat
catabolism), and propionyl-CoA (produced in odd-carbone fatty acid catabolism)
are all substrates for gluconeogenesis.

8.3.2.9. The Pentose Phosphate Pathway

The pentose phosphate pathway (PPP), also known as the hexose monophosphate
shunt or pentose phosphate shunt, is an alternative pathway for the conversion of
glucose-6-phosphate to fructose-6-phosphate and glyceraldehyde 3-phosphate [47,
48]. Unlike glycolysis and glucose aerobic oxidation, the PPP does not provide
ATP as energy, but it supplies NADPH and ribose 5-phosphate. NADPH is the
reducing power required for the synthesis of sterols, fatty acids, nucleotides, and
non-essential  amino  acids  [49].  NADPH  is  also  involved  in  glutathione
metabolism and cellular antioxidant defense, as well as reactive oxygen species
metabolism [50].  The ribose 5-phosphate  is  the building block for  nucleic  acid
synthesis.

The PPP is subdivided, by a series of enzymes, into two biochemical branches,
known  as  the  oxidative  and  non-oxidative  branches,  all  of  which  occur  in  the
cytosol  (Fig.  8.16).  Glucose-6-phosphate  dehydrogenase  is  the  rate-limiting
enzyme  of  the  oxidative  PPP,  determining  the  flux  of  G6P  directed  into  the
pathway.

#f8.15
#f8.16


230   Nutritional Biochemistry: From the Classroom to the Research Bench Sami Dridi

Fig.  (8.15).  Schematic  representation  of  gluconeogenesis.  Gluconeogenesis  is  a  de  novo  synthesis  of
glucose from non-carbohydrate source. It is effectively the glycolysis in reverse, with four irreversible steps
catalyzed  by  the  enzymes:  pyruvate  carboxylase,  phosphoenolpyruvate  carboxykinase,  fructose  1,6-
bisphosphatase,  and  glucose  6-phosphatase  (circled  by  the  red  line).  PEPCK,  phosphoenolpyruvate
carboxykinase.
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Fig. (8.16). Schematic representation of the pentose phosphate pathway. The PPP, also known as hexose
phosphate shunt, branches after the first step of glycolysis and goes back to F6P and G3P in the glycolytic
and gluconeogenic pathway. 6PGD, 6-phosphogluconate dehydrogenase; 6PGL, 6-phosphogluconolactonase;
F6P,  fructose  6-phosphate;  F1,6BP,  fructose  1,6-biphosphate;  G3P,  glyceraldehyde  3-phosphate;  GK,
glucokinase;  G6PD,  glucose  6-phosphate  dehydrogenase;  HK,  hexokinase;  RPE,  ribulose  5-phosphate
epimerase;  RPI,  Ribose  5-phosphate  isomerase;  TAL,  Taldo  (transaldolase);  TKT,  transketolase.

It catalyzes the conversion of G6P to 6-phosphogluconolactone, accompanied by
NADPH  production.  6-phosphogluconolactone  is  then  hydrolyzed  by  6-
phosphogluconolactonase to produce 6-phosphogluconate, which is converted to
ribulose  5-phosphate  with  NAPDH  generation  by  6-phosphogluconate
dehydrogenase. Several other enzymes, such as malic enzyme 1 (ME1) are also
involved in the synthesis of cytosol NADPH. For the non-oxidative branch, ribose
5-phosphate  isomerase  and  ribulose  5-phosphate  epimerase  catalyze  reversible
reactions converting ribulose 5-phosphate to ribose 5-phosphate and xylulose 5-
phosphate,  respectively.  TKT catalyzes the conversion of  xylulose 5-phosphate
and  ribose  5-phosphate  to  glyceraldehyde  3-phosphate  and  sedoheptulose  7-
phosphate,  as  well  as  the  conversion  of  xylulose  5-phosphate  and  erythrose  4-
phosphate  to  glyceraldehyde  3-phosphate  and  fructose-6-phosphate.  The
transaldolase reversibly converts glyceraldehyde 3-phosphate and sedoheptulose
7-phosphate  to  erythrose  4-phosphate  and  fructose  6-phosphate.  The  non-
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oxidative branch not only replenishes metabolites of the oxidative branch by the
reversible reactions but also regulates the flux of glycolysis or gluconeogenesis by
providing fructose-6-phosphate and glyceraldehyde 3-phosphate.

CONCLUSION

Understanding the biochemistry of carbohydrates and the regulation of energetic
molecules like glucose is a critical step to comprehending the pathophysiology of
metabolic disorders.  The regulation and retour of glucose is  a complex process
that  involves many interconnected biochemical pathways.  The objective of this
chapter is to provide and summarize the current knowledge about carbohydrate
metabolism  and  to  facilitate  the  understanding  of  the  underlying  biochemical
pathways.

NOTES
1 Ketosis is a metabolic state characterized by high levels of ketone bodies in the
blood or urine.

2 Anabolic pathways are metabolic pathways that construct (synthesis) molecules
from smaller units.

3 Catabolism is the breakdown of complex molecules to form simpler ones.
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CHAPTER 9

Lipid Metabolism

Abstract:  Lipids  have  many functional  roles  such  as  bilayer  of  the  cell  membrane,
regulatory agents  in  cell  growth,  adhesion,  and the biosynthesis  of  other  molecules.
Lipid metabolism starts with the ingestion of food, digestion and absorption. In higher
organisms,  fat  metabolism  is  under  the  control  of  a  complex  and  highly  integrated
system and pathways. The present chapter aims to provide current knowledge about
lipid metabolism and its cellular processes.

Keywords: Cholesterol, Fatty acids, Lipid metabolism, Lipoproteins, Lipolysis,
Oxidation, Synthesis, Ketogenesis.

INTRODUCTION

Generally,  lipids  are  defined  as  insoluble  substances  in  water  but  soluble  in
organic solvents (acetone, chloroform, ether). There are different types of lipids,
including  fatty  acids,  triglycerides  (also  known  as  triacylglycerols),
phospholipids, and cholesterols (esters). In the body, the lipids are obtained from
diets (30% or more of the total energy consumed, see please chapter 1 for the diet
composition) or de novo  synthesized. During fed state and for an average body
weight  adult  male,  fats  are  stored  as  triglycerides  as  much  as  90,000-100,000
Kcal.  During  fasting,  fats  are  oxidized  to  produce  ATP  and,  therefore,  are
considered  the  main  source  of  energy  during  starvation.  Some  lipids,  such  as
steroids (steroid hormones) serve as chemical messengers and signaling pathways
between cells. Phospholipids are components of cell membranes, which function
to  separate  individual  cells  from  their  environments.  In  this  chapter,  I  will
describe the general properties and classes of lipids, discuss their digestion and
absorption, and finish the chapter with the fat metabolism during synthesis and
degradation and their underlying molecular mechanisms.

9.1. Classification of Lipids

Lipids can be classified as saponifiable and nonsaponifiable lipids. Saponifiable
lipids are made up of long chain carboxylic (fatty) acids connected to an alcoholic
functional group via the ester linkage, which   can   undergo   saponification   and
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hydrolysis  in  the  presence of  base,  acid,  or  enzymes (Fig.  9.1a).  Triglycerides,
phospholipids, waxes, and sphingolipids are saponifiable lipids. Nonsaponifiable
lipids, such as cholesterol and prostaglandine, can be degraded via hydrolysis into
smaller  molecules.  Further,  these lipids can be divided into polar  and nonpolar
lipids.  Polar  lipids  are  amphiphilic  lipids  with  a  hydrophilic  head  and  a
hydrophobic  tail  and  are  often  associated  with  membrane  structure,  such  as
glycerophospholipids  [1].  Nonpolar  lipids  have  no  charged  area  and  are
hydrophobic,  such as  triglycerides.  Specifically,  lipids  can also be divided into
simple and complex lipids. Simple lipids, such as waxes, contain esters of fatty
acids  with  higher  molecular  weight  monohydric  alcohols.  Complex  lipids,
however, contain not only fatty acid and alcohol but also additional groups. For
instance,  phospholipids  contain  in  addition  to  fatty  acids  and  alcohol,  a
phosphoric  acid  residue.  Glycolipids,  such  as  glycosphingolipids,  contain  fatty
acids, sphingosine, and carbohydrate. Among the precursors and derived lipids,
we found fatty acids, glycerol, steroids, alcohols, fatty aldehydes, ketone bodies,
hydrocarbons, vitamins (absorbed in lipid micelles such as vitamin A, D, E, and
k).

Fig. (9.1). Structure of saturated and unsaturated fatty acids and their nomenclatures. a) saponification
reaction, b) butyric acid, c) oleic acid, d) linoleic acid, and 2) Delta and omega system nomenclatures.
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9.1.1. Fatty Acids

Fatty acids are organic (carboxylic) acids, usually with a polar carboxyl end and
nonpolar methyl end, and the two ends are separated by a hydrocarbon region of
varying lengths. The chain length is determined by the total number of carbons.
For instance, acetic acid has only two carbons and hence it  is the shortest fatty
acid. Arachidic acid, on the other hand, has 20 carbons, and it is one of the longest
fatty acids.  Based on the length of the hydrocarbon region,  fatty acids are sub-
classified into short-chain (2-4 carbons), medium-chain (6-12 carbons), and long-
chain (14-26 carbons) (Table 9.1). Beyond length, fatty acids can contain double
bonds between carbon-carbon molecules and are sub-classified to saturated fatty
acid  (SFA,  no  carbon-carbon  double  bond,  such  as  butyric  acid  (Fig.  9.1b).
Monounsaturated  fatty  acids  (MUFAs)  contain  a  single  carbon-carbon  double
bond, such as oleic acid (Fig. 9.1c). Polyunsaturated fatty acids (PUFA) contain
more than one carbon-carbon double bond, such as linoleic acid (Fig. 9.1d).

Table 9.1. Fatty acid classification and nomenclature.

Fatty Acids C Atoms Double Bonds ω System

Saturated

Acetic acid 2 0 C2:0

Butyric acid 4 0 C4:0

Caproic acid 6 0 C6:0

Caprylic acid 8 0 C8:0

Capric acid 10 0 C10:0

Lauric acid 12 0 C12:0

Myristic acid 14 0 C14:0

Palmitic acid 16 0 C16:0

Stearic acid 18 0 C18:0

Arachidic acid 20 0 C20:0

Behenic acid 22 0 C22:0

Lignoceric acid 24 0 C24:0

Monounsaturated

Palmitoleic acid 16 1 C16:1 ω7

Oleic acid 18 1 C18:1 ω9

Cetoleic acid 22 1 C22:1 ω11

Nervonic acid 24 1 C24:1 ω9

Polyunsaturated
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Linoleic acid 18 2 C18:2 ω6

α-Linolenic acid 18 3 C18:3 ω3

γ-Linolenic acid 18 3 C18:3 ω6

Arachdonic acid 20 4 C20:4 ω6

Eicosapentaenoic acid 20 5 C20:5 ω3

Docosatetraenoic acid 22 4 C22:4 ω6

Docosapentaenoic acid 22 5 C22:5 ω3

Docosahexaenoic acid 22 6 C22:6 ω3

For the nomenclature, the position of double bonds can be accomplished by using
the delta (∆) system, which consists of counting the carbon number in the chain
from the  carboxyl  (alpha)  end.  For  example,  linoleic  acid  contains  18  carbons,
with 2 carbon-carbon bonds at  position 9 and 12,  thus it  is  18:2∆9,12.  Using the
omega (the last letter of the Greek alphabet) system, which consists of counting
the  carbon number  from the  methyl  end,  the  nomenclature  of  linoleic  acid,  for
example, is 18:2 ω-6 or sometimes the n letter is used for substitution (18:2 n-6)
(Fig. 9.1e).

Unsaturated  fats  can  be  either  in  the  cis  or  trans  configuration.  In  the  cis
configuration, the chains of carbon atoms are on the same side of the double bond,
and hydrogens are present in the same plane, resulting in a kink that prevents the
fatty acids from packing tightly. In the trans arrangement, however, the hydrogen
atoms are on two different planes (Fig. 9.2). For example, oleic acid can have two
configurations: cis, called oleic acid, and trans, called elaidic acid [2].

Fig. (9.2).  Cis vs. trans arrangement of linoleic acid.

(Table 1) cont.....
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9.1.2. Essential Fatty Acids

Essential  fatty  acids  are  fatty  acids  required  for  biological  processes  but  not
synthesized by the body, and therefore have to be supplemented through ingestion
via the diet and are nutritionally very important. Humans do not have ∆-12 and ∆-
15  desaturases,  and  thus  18  C-ω3 and  18  C-ω6 PUFA are  dietary  essential  for
humans. Alpha-linoleic acid (ALA, 18:2 ω-6) and linolenic acid (18:3 ω-3) are the
two PUFAs fall  into  this  category.  Research  indicates  that  these  essential  fatty
acids reduce the risk of sudden death from heart attacks, reduce triglycerides in
the  blood,  lower  blood  pressure,  and  prevent  thrombosis  by  inhibiting  blood
clotting.  They also  reduce  inflammation and may help  reduce  the  risk  of  some
cancers in animals [3 - 7].

The  other  long-chain  PUFA,  including  arachidonic  acid  (AA,  C20:4  ω-6),
eicosapentaenoic acid (EPA, C20:5 ω-3), and docosahexaenoic acid (DHA, C22:6
ω-3) can be generated from available linoleic and linolenic acids by a series of
elongation and desaturations (Fig. 9.3).

Fig. (9.3). PUFA synthetic pathways. α -linolenic acid (ALA; 18:3ω-3) and linoleic acid (LA; 18:2 ω-6) are
essential PUFA obtained from the diet and are substrates for elongase and desaturases for the synthesis of
long chain, more unsaturated PUFA eicosapentaenoic acid (EPA; 20:5 ω-3), docosahexaenoic acid (DHA;
22:6  ω-3),  and  arachidonic  acid  (AA;  20:4  ω-6).  Relevant  intermediates  in  these  pathways  include  SDA
(stearidonic  acid),  ETA  (eicosatetraenoic  acid),  DPA  (docosapentaenoic  acid),  GLA  (γ  -linolenic  acid),
DGLA (dihomo- γ -linolenic acid),  and ADA (adrenic acid).  These pathways employ the same enzymes,
however, they are not interconvertible in mammals (ω-6 PUFA cannot be converted into ω-3 PUFA and vice
versa). The products of ω-6 PUFA tend to exert inflammatory effects, while the products of ω-3 PUFA tend
to be anti-inflammatory.
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9.1.3. Triglycerides

Triglycerides, also known as triacylglycerols, are esters derived from glycerol and
three fatty acids (Fig. 9.4). They are the major form of fat in both food and the
body. There are also monoacylglycerol and diacylglycerol where the glycerol is
attached  to  one  or  two  fatty  acids,  respectively.  If  the  fatty  acids  are  more
saturated,  thus  the  triglycerides  are  likely  to  be  solid  at  room  temperature.
However, triglycerides with more unsaturated fatty acids or short chain-fatty acids
are likely to be liquid.

Fig. (9.4). Structure of triglyceride, phospholipids, and cholesterol. The R in each fatty acid molecule
represents the long carbon chain, and it may or may not be the same.

9.1.4. Phospholipids

Phospholipids contain phosphatidic acid, which is composed of glycerol, two fatty
acids,  and  a  phosphate  (PO4)  group  (Fig.  9.4).  The  alpha  carbon  is  usually
esterified  to  a  saturated  fatty  acid,  and  the  beta  carbon  is  esterified  to  an
unsaturated  fatty  acid.  Several  phospholipids,  including  phosphatidylcholine,
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phosphatidylethanolamine,  phosphatidylserine,  and  phosphatidylinositol,  are  of
nutritional and physiologic relevance. For instance, phosphatidylinositol acts as a
source of inositol triphosphate and diacylglycerol in the membrane produced as
intracellular  second  messengers  in  response  to  neurotransmitters.  Another
example  is  phosphatidylcholines,  which  are  synthesized  in  the  endoplasmic
reticulum,  where  they  have  essential  functions,  including  the  provision  of
membranes  required  for  protein  synthesis  and  export,  cholesterol  homeostasis,
and triacylglycerol storage and secretion [8].

9.1.5. Cholesterols and Steroids

Cholesterol,  from  the  Greek  word  “chole-bile;  stereos-solid,  and  ol-alcohol”,
cholest-5-en-3β-ol) is by far the most abundant member of a family of polycyclic
compounds  known  as  sterol.  Cholesterol  was  first  recognized  in  1769  as  a
component of gallstones, while the French lipid chemist Michel Eugène Chevreul
isolated it  from animal fats in 1815. The structure of cholesterol (Fig. 9.4) was
defined  in  the  20th  century  by  the  German  Chemist  Heinrich  Wieland,  who
received  the  Nobel  Prize  in  Chemistry  in  1927.  Cholesterol  is  a  ubiquitous
component of all  animal tissues where much of it  is  located in the membranes.
The  highest  proportion  of  unesterified  cholesterol  is  in  the  plasma  membrane
(roughly 30-50% of the lipid in the membrane or 60-80% of the cholesterol in the
cell), while mitochondria and the endoplasmic reticulum have much less (~5%),
and the Golgi contains an intermediate amount. Cholesterol is also enriched in the
brain and early and recycling endosomes [9]. Animals in general synthesize a high
proportion of their cholesterol requirement, but they can also ingest and absorb
appreciable amounts from foods (200-500 mg/day). Cholesterol is a precursor for
steroid  hormones  such  as  estrogens  (17-β-estradiol),  androgens,  cortisol,
aldosterone,  as  well  as  vitamin  D  and  bile  salts  [10  -  13].

9.2. Digestion and Absorption of Lipids

The digestion of dietary lipids begins in the mouth. Chewing mechanically breaks
food into smaller particles and mixes them with saliva. A lipase, lingual lipase, is
secreted  by  the  tongue  starts  the  enzymatic  digestion  cleaving  individual  fatty
acids  from the  glycerol  backbone  [14],  but  this  digestion  is  only  marginal.  Fat
hydrolysis continues in the stomach, where a gastric lipase is secreted and results
in  the  liberation  of  free  fatty  acids  and  two  monoacylglycerols.  Most  of  the
dietary lipids are clustered in the stomach to form a coarse emulsion of chyme1,
which then enters the duodenum, the first section of the small intestine (Fig. 9.5).
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Fig. (9.5).  Schematic representation of lipid digestion.

This, in turn, triggers the release of bile, which is produced in the liver and stored
in  the  gallbladder  and  facilitates  the  emulsification2  process.  Bile  contains  bile
salts, which have hydrophobic and hydrophilic sides. The bile salts’ hydrophilic
side can interface with water, while the hydrophobic side interfaces with lipids,
thereby  emulsifying  large  lipid  globules  into  small  lipid  globules.  As
emulsification  proceeds,  the  pancreatic  lipase  hydrolyses  the  lipids  and  further
enhances  the  emulsification  process  and  the  formation  of  micelles3.  The
pancreatic lipase is  under the control of CCK, which also regulates gallbladder
relaxation and bile release. An additional enzyme, the pancreatic colipase, acts on
the micelle surface and hydrolyzes triglycerides. As a result of lipase activities,
monoglycerides,  fatty  acids,  and  glycerol  are  released  into  the  aqueous
environment  of  the  intestinal  lumen and are  continually  solubilized  by  the  bile
salts.  Cholesterol  and  phospholipids  are  digested  by  cholesterol  esterase  and
phospholipases,  respectively  [15].

The end products of digested lipids (free fatty acids and monoacylglycerols from
triglycerides, free fatty acids and lysophospholipids from phospholipids, and free
fatty acids and free cholesterols from cholesterol esters) enter in contact with the
surface of the microvilli. Enterocytes use diffusion and protein-mediated transport
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mechanisms to take up monoacylglycerols and free fatty acids [16]. The diffusion
transport occurs when the concentration of free fatty acids in the lumen exceeds
that inside the epithelial cells. When the extracellular concentrations of free fatty
acids  are  lower,  the  protein-mediated  transport  mechanism  is  activated  and
becomes  dominant  (Fig.  9.6).  Several  proteins,  including  fatty  acid  transport
proteins (FATPs) and the cluster of differentiation (CD36), have been shown to be
involved in this process [17]. Once they enter the epithelial cell, free fatty acids
are further transported to various organelles for further processing by fatty acid-
binding proteins (FABPs) [18].

Fig. (9.6). Schematic representation of intestinal lipid absorption. Dietary lipids are emulsified with bile
salts  and  digested  with  pancreatic  lipases,  generating  free  fatty  acids,  monoacylglycerols,  and  free
cholesterols.  These  products  enter  the  enterocyte  by  various  mechanisms  (diffusion  of  protein-mediated
transport)  and  reach  the  reticulum  endoplasmic,  where  they  are  used  to  synthesize  triacylglycerols,
phospholipids, and cholesterols esters. Next, these lipids are assembled in chylomicrons using apoB48 and
they are either stored in the cytosol as lipid droplets or secreted via cis Golgi into the lymph system. CD36, a
cluster of differentiation 36; ER, endoplasmic reticulum; FA, fatty acid; MAG, monoacylglycerol.
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Monoacylglycerols are transported to the endoplasmic reticulum where they are
esterified  with  free  fatty  acids  by  monoacylglycerol  acyltransferases  to  form
diacylglycerols, which in turn are converted to triacylglycerides by diacylglycerol
acyltransferases  [19].  Diacylglycerols  can  also  be  associated  with  choline  and
ethanolamine  to  produce  phospholipids  through  choline  transferases  and
ethanolamine transferases. Endoplasmic reticulum cholesterols are esterified by
membrane-bound acyl-CoA/cholesterol acyltransferase to form cholesteryl esters
and glycerolipids.

The synthesized lipids in the enterocyte endoplasmic reticulum have two fates: 1)
they  can  become part  of  cytosolic  lipid  droplets,  which  contain  a  core  (neutral
triglycerides and cholesterol esters), surrounded by phospholipid monolayers [17,
20 - 22]. During the energy depletion and fasting period, the enterocyte cytosol
lipid  droplets  are  hydrolyzed,  and  the  free  fatty  acids  enter  the  endoplasmic
reticulum to re-synthetize triglycerides for subsequent secretion with lipoproteins.
2) The enterocyte endoplasmic reticulum lipids can be secreted. First, lipids are
packaged  into  large  spherical  triacylglycerol-rich  lipoproteins,  called
chylomicrons (from the Greek word, chylos-juice and micron-small particle). The
chylomicron  core  is  rich  in  triacylglycerol  (85-92%)  and  cholesterol  esters  (1-
3%). The chylomicron surface is covered with phospholipid monolayer (6-125)
and  is  surrounded  by  a  large  nonexchangeable  protein,  apolipoprotein  B48
(Apob48), and several exchangeable proteins such as apoAI, apoAIV, and apoCs.
The  apoB48-containing  lipoproteins  are  synthesized  in  the  intestine  [23  -  25].
Chylomicron assembly begins with the translation of apoB48, which is folded into
a structural configuration that is receptive to accepting more lipids and results in
the  formation  of  high-density  lipoprotein  (HDL),  followed  by  a  large  bolus  of
lipids to produce larger lipoproteins [26]. Chylomicron particles are transported
by pre-chylomicron transport vesicles (PCTVs) and fuse with the cis-Golgi via the
coat  protein  complex  II-interacting  proteins  [27  -  29].  Chylomicrons  undergo
further  modification  in  cis-Golgi,  such  as  glycosylation  of  apoB48,  and  then
released from the basolateral membrane into the lacteals, where they join lymph
to become chyle. The lymphatic vessels carry the chyle to the venous return of the
systemic circulation. Chylomicrons bypass the hepatic portal system and supply
tissues with fat absorbed from the diet.

9.3. Lipoprotein Metabolism

Lipoproteins are primarily produced in the enterocytes and hepatocytes. The core
of  a  typical  lipoprotein  is  composed  of  cholesterol  esters  and  triglycerides  and
may  be  some  diacylglycerols  and  monoacylglycerols.  The  main  types  of
lipoproteins  are  chylomicrons  (previous  section),  very  low-density  lipoprotein
(VLDL), low-density lipoprotein (LDL), and high-density lipoprotein (HDL).
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9.3.1. VLDL Metabolism

VLDLs are produced in the liver, where triglycerides and cholesterol esters are
transferred  in  the  endoplasmic  reticulum to  newly  synthesized  ApoB-100 [30].
The rate of hepatic VLDL synthesis depends on the availability of triglycerides.
The  microsomal  triglyceride  transfer  protein  (MTP)  is  required  for  the  early
transfer  of  lipid  to  apoB-100,  but  not  for  the  additional  lipid  transfer.  Secreted
VLDL transports endogenously produced triglycerides and cholesterols as well as
that derived from chylomicrons to peripheral tissues such as adipose tissue and
muscle [30]. The hydrolysis of VLDL (triglycerides) by lipoprotein lipase on the
muscle and adipose tissue releases fatty acids that are uptaken by target tissues
and generates intermediate-density lipoprotein (IDL) or VLDL remnants, which
are  enriched  in  cholesterol  esters.  LDL  particles  can  be  removed  from  the
circulation by the liver via binding of Apo E to LDL and LDL receptor (Fig. 9.7),
and the remnants IDL are hydrolyzed by hepatic lipase leading to a decrease in
circulating triglycerides levels and exchangeable apolipoproteins are transferred
from IDL to other lipoproteins resulting in LDL formation.

Fig. (9.7). Schematic representation of intestinal lipid absorption. Dietary lipids are emulsified with bile
salts  and  are  hydrolyzed  by  different  pancreatic  lipases  resulting  in  the  generation  of  free  fatty  acids,
monoacylglycerols, and free cholesterol. The digested lipids are taken up by the enterocytes via different
transporters  and  reach  the  endoplasmic  reticulum  where  they  are  used  to  synthesize  phospholipids,
triacylglycerols,  and cholesterol  esters.  Next,  these lipids are assembled into chylomicron particles  using
apoB48 and have two fates: 1) they are stored in the cytosol as lipid droplets or 2) secreted in the lymph. ER,
endoplasmic  reticulum;  FA,  fatty  acids,  LPL,  lipoprotein  lipase;  MAG,  monoacylglycerol;  PCTV,  pre-
chylomicron transport vesicles.
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9.3.2. LDL Metabolism

Plasma levels of LDL depends on the number of hepatic LDL receptor and LDL
production rate. Approximately 70% of circulating LDL is cleared via hepatocyte
LDL receptor mediated endocytosis, with the remainder taken up by extrahepatic
tissues.  The  hepatic  LDL  receptor  is  also  regulated  by  the  hepatic  cholesterol
levels, which are under the control of sterol regulatory element binding protein 2
(SREBP2). In fact, SREBP2 is transported from the endoplasmic reticulum to the
Golgi,  where  proteases  cleave  the  SREBP2  into  active  SREBP2,  which
translocate  in  the  nucleus  and  induce  LDL  receptor  expression  and
hydroxymethylglutaryl-coenzyme  A  (HMG-CoA)  reductase,  the  rate  limiting
enzyme in cholesterol synthesis. Additionally, liver X receptor (LXR) activates
the E3 ubiquitin ligase that mediates the ubiquitination and degradation of LDL
receptor [31, 32] (Fig. 9.7).

9.3.3. HDL Metabolism

ApoA-I is synthesized and secreted from the liver and intestine, and assembled
with cholesterol esters and phospholipids to form HDL via ATP-binding cassette
transporter  1  (ABCA1),  also  known  as  cholesterol  efflux  regulatory  protein
(CERP).  Free  cholesterol  and  phospholipids  can  be  obtained  from  the  liver,
intestine  and  other  peripheral  tissues,  as  well  as  from  VLDL  hydrolysis  and
chylomicrons.  For  esterification,  lecithin-cholesterol  acyltransferase-like  1
(LCAT1)  catalyzes  the  transfer  of  fatty  acid  from  phospholipids  to  free
cholesterol, forming cholesterol esters that constitute the core of HDL. This core
cholesterol  ester  can  be  transferred  to  ApoB  in  exchange  for  triglycerides  via
cholesterol ester transfer protein (CEPT), resulting in triglyceride-rich HDL. This
HDL  can  be  hydrolyzed  by  hepatic  lipase,  resulting  in  the  formation  of  small
HDL. The circulating HDL binds to the HDL receptor scavenger receptor class B
type I (SR-BI) on the liver surface, which allow the cholesterol from HDL to be
transported into the liver without internalization of HDL particles [33].

9.3.4. Cholesterol Metabolism and Reverse Cholesterol Transport

Peripheral  cells  accumulate  cholesterols  via  the  uptake  of  lipoproteins  and  de
novo cholesterol biosynthesis, which involves a highly complex series of different
enzymatic reactions. More than 30 enzymatic reactions are involved, defined in
large  measure  by  the  Polish  scientist  Konrad  Bloch  and  the  German  scientist
Feodor Lynen, who received the Nobel Prize in Physiology and Medicine in 1964.
As  depicted  in  (Fig.  9.8),  cholesterol  biosynthesis  starts  with  the  synthesis  of
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mevalonic acid from acetyl-CoA and acetoacetyl-CoA, derivatives of acetate, by
3-hydroxy-3-methyl-glutaryl(HMG)-CoA synthase and HMG-CoA reductase. In
the next step of the synthesis,  mevalonic acid is phosphorylated by mevalonate
kinase to form the 5-monophosphate ester, followed by further phosphorylation to
yield an unstable

Fig. (9.8). Schematic representation of cholesterol biosynthesis. HMG, 3-hydroxy-3-methylglutaryl.

pyrophosphate,  which  is  rapidly  decarboxylated  to  produce  5-isopentenyl
pyrophosphoric acid, the universal isoprene unit. An isomerase converts part of
the  latter  to  3,3-dimethylallyl  pyrophosphoric  acid.  Next,  5-isopentenyl
pyrophosphate  and  3,3-dimethylallyl  pyrophosphate  condense  with  the
elimination of pyrophosphoric acid to form the monoterpenoid derivative geranyl
pyrophosphate.  This  reacts  further  with  another  molecule  of  5-isopentenyl
pyrophosphate  to  produce  the  sesquiterpene  derivative  (C15)  farnesyl
pyrophosphate,  two  molecules  of  which  are  condensed  to  yield  presqualene
pyrophosphate.  This  is  reduced,  next,  by  NADPH  and  produces  squalene  by
squalene  synthase.  In  the  next  step,  squalene  is  oxidized  by  a  squalene
monooxygenase  to  squalene  2,3-epoxide,  a  key control  point  in  the  cholesterol
synthesis pathway. Oxygen atom is introduced in squalene to form the hydroxyl
group  in  cholesterol.  The  squalene  epoxide  lanosterol-cyclase  catalyzes  the
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epoxide cyclization resulting in the formation of lanosterol. This reaction occurs
in the reticulum endoplasmic in the presence of NADPH, FAD, and O2. Several
reactions of demethylations, desaturations, isomerizations, and reductions convert
lanosterol to cholesterol.

Most  of  the  cells,  except  the  liver,  do  not  have  a  mechanism  to  degrade
cholesterol.  Cells  that  synthesize  steroid  hormones  can  convert  cholesterol  to
estrogen,  androgen,  etc.  Only  the  liver  possesses  the  enzymes  to  degrade
significant amounts of cholesterol and form oxysterol and bile acid. Cholesterols
are transferred back from peripheral tissues in lipoprotein complexes to the liver
for catabolism.

9.4. Fatty Acid Synthesis

The liver, and to a lesser degree, the adipose tissue, is the main site for de novo
fatty acid synthesis4, although some other tissues such as the kidney, mammary
gland, lungs, and the brain have the ability to synthesize fatty acids.  Fatty acid
synthesis occurs in the cytosol. In fed state and abundant intracellular energy, the
fatty acid synthesis starts with the carboxylation of acetyl-CoA to malonyl CoA
via acetyl-CoA carboxylase (ACC) [34, 35], which is an irreversible reaction and
the committed step in the fatty acid synthesis. ACCs are large and homodimeric
multienzymes  that  exist  in  two  isoforms:  the  metabolic,  cytosolic  ACC1  or
ACCα, and mitochondrial-associated ACC2 (ACCβ) [36, 37]. This reaction needs
biotin and the hydrolysis of ATP molecule. The enzyme system that catalyzes the
synthesis of saturated long-chain fatty acids from acetyl CoA, malonyl CoA and
NADPH  is  called  fatty  acid  synthase  (FAS)  [38  -  40].  Mammalian  fatty  acid
synthase  is  a  dimer  of  identical  260-kD subunits.  As  shown in  (Fig.  9.9),  each
chain  is  folded  into  three  domains  joined  by  flexible  regions,  and  all  seven
different  catalytic  sites  are  present  on  a  single  polypeptide  chain:

- Domain 1, the substrate entry and condensation unit, contains acetyl transferase,
malonyl transferase, and β-ketoacyl synthase (condensing enzyme).

-  Domain  2,  the  reduction  unit,  contains  the  acyl  carrier  protein,  β-ketoacyl
reductase,  dehydratase,  and  enoyl  reductase.

- Domain 3, the palmitate release unit, contains the thioesterase.
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Fig. (9.9). Schematic representation of fatty acid synthase.a) Structure and domains of fatty acid synthase
dimer. B) Fatty acid synthase system and its associated reactions (condensation, reduction, dehydration, and
reduction) for palmitate synthesis. AT, acetyl transferase; CE, condensing enzyme; MT, malonyl transferase.

In the fatty acid synthase system, the acetyl group of acetyl CoA is transferred
first to a serine residue in the active site of acetyl transferase and then to the sulfur
atom of  a  cysteine  residue  in  the  active  site  of  the  condensing  enzyme on  one
chain  of  the  dimeric  enzyme.  Similarly,  the  malonyl  group  is  transferred  from
malonyl CoA first to a serine residue in the active site of malonyl transferase and
then  to  the  sulfur  atom  of  the  phosphopantetheinyl  group  of  the  acyl  carrier
protein  on  the  other  chain  in  the  dimer.  Domain  1  of  each  chain  of  this  dimer
interacts with domains 2 and 3 of the other chain [41]. Next, the elongation starts
with the joining of the acetyl unit on the condensing enzyme to a two-carbon part
of the malonyl unit  on the acyl  carrier  protein,  resulting in the formation of an
acetoacetyl-S-phosphopantetheinyl  unit  and  the  release  of  the  CO2  molecule.
Further, the acetoacetyl group is delivered to three active sites in domain 2 of the
opposite  chain to reduce it  to  a  butyryl  unit  (Fig.  9.9),  which is  a  saturated C4
unit. Butyril migrates from the phosphopantetheinyl sulfur atom on acyl carrier
protein to the cysteine sulfur atom on the condensing enzyme, where it attaches to
two-carbon part of the malonyl unit on the acyl carrier protein to form six-carbon
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unit. This latter undergoes a reduction reaction. Fatty acid synthase performs five
more rounds of condensation and reduction to produce a palmitoyl (C16) chain on
the  condensing  enzyme.  Palmitoyl  is  then  hydrolyzed  to  palmitate  through  the
thioesterase  on  domain  3  of  the  opposite  chain.  The  reaction  of  palmitate
synthesis by FAS requires 8 molecules of acetyl-CoA, 14 NADPH, and 7 ATPs
and occurs  in  the  cytosol,  however  acetyl-CoA is  formed from pyruvate  in  the
mitochondria (see chapter 8, section 6.3.2.1). As mitochondria are not permeable
to acetyl-CoA, citrate is formed in the mitochondrial matrix by the condensation
of acetyl-CoA with oxaloacetate. When its mitochondrial concentration is high,
citrate is transported to the cytosol and cleaved by ATP citrate lyase (ACLY) to
form  acetyl-CoA  and  oxaloacetate  (Fig.  9.10).  Similarly,  mitochondria  are
impermeable to oxaloacetate,  thus cytosol oxaloacetate is  reduced to malate by
malate dehydrogenase and NADH. Next, malate is decarboxylated by the malic
enzyme  to  form  pyruvate,  which  is  able  to  enter  the  mitochondria,  where  it
produces oxaloacetate via pyruvate carboxylase.  For the 8 molecules of acetyl-
CoA needed, there is a transfer of 8 molecules of mitochondrial NADPH to the
cytosol.  The  rest  of  six  NADPH  required  are  originated  from  the  pentose
phosphate  pathway  (see  chapter  8,  section  8.3.2.9).

Fig. (9.10). Schematic representation of hepatic lipogenesis. After the consumption of carbohydrates, a
portion of the circulating glucose is taken by hepatocytes through GLUT2, and then through glycolysis in the
cytosol, glucose is converted to pyruvate, which is transported into mitochondria for further oxidation in the
Kreb’s cycle. Citrate, an intermediate of the Kreb’s cycle, is exported into cytosol and used as a substrate for
de novo lipogenesis. ACc1, acetyl-CoA carboxylase; ACLY, ATP citrate lyase; FAS, fatty acid synthase;
ME, malic enzyme; SCD, stearoyl-CoA desaturase.
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The synthesized fatty acid can undergo elongation and/or desaturation. Elongation
can  occurs  in  the  endoplasmic  reticulum  or  in  the  mitochondria.  Desaturation
occurs in the endoplasmic reticulum. The elongation reaction is catalyzed by fatty
acid elongase and it is similar to fatty acid synthesis, in which the source of the
two-carbon unit is malonyl-CoA and the reducing power is provided by NADPH.
Double bonds may be added via desaturating enzymes, such as Δ-5 desaturase, Δ-
6  desaturase,  and  Δ-9  desaturase,  in  the  endoplasmic  reticulum.  For  instance,
stearic acid (C18:0) is  desaturated by Δ-9 desaturase to form oleic acid (C18:1
ω9). As described is section 9.1.2, human lacks the enzyme to desaturate beyond
the  ninth  carbon  of  fatty  acids,  and  therefore  linoleic,  and  linolenic  acids  are
dietary essentials.

9.5. Fatty Acid Degradation (Lipolysis)

White  adipose  tissue  triglyceride  is  the  major  energy  reserve  in  eukaryotes.
During times of energy depletion, white adipose tissue undergoes a great rate of
lipolysis, which can be defined as the hydrolysis of triglycerides to generate fatty
acids (FAs) and glycerol  that  are released into the vasculature for  use by other
organs  as  energy  substrates.  Lipolysis  proceeds  in  an  orderly  and  regulated
manner. First triglycerides are hydrolyzed by several lipases, including hormone-
sensitive  lipase  [42,  43],  adipose  triglyceride  lipase  (or  desnutrin)  [44,  45],
triacylglycerol  hydrolases  (TGH),  also  known  as  carboxylesterases  [46,  47],
adiponutrin  [48],  GS2  and  GS2-like  lipases  [49].  The  second  step  of  lipolysis
involves  the  hydrolysis  of  diacylglycerols  to  yield  monoacylglycerols  and  a
nonesterified fatty acid. This reaction occurs at a rate 10- to 30-folds higher than
the  hydrolysis  of  triglycerides,  which  is  the  initiating  and  rate-limiting  step  in
lipolysis [50]. To date, Hormone-sensitive lipase is the only diacylglycerol lipase
identified in adipocytes so far.  Studies in rodent  models deficient  in HSL have
confirmed the importance of HSL for the breakdown of diacylglycerols [51]. The
last  step  in  the  lipolysis  process  is  the  hydrolysis  of  monoacylglycerols.  The
monoacylglycerol lipase (MGL) is a 33 kDa hydrolase discovered in 1975 [52].
MGL hydrolyzes the 1 and 2-ester bonds of monoacylglycerol at equal rates [53].

Several  other  hormones  were  found  to  play  key  roles  in  lipid  hydrolysis.  For
instance, perilipin A and B isoforms are lipid droplet-associated proteins [54], and
much  evidence  supports  a  complex  role  for  them  in  regulating  both  basal  and
stimulated lipolysis [55 - 58]. As maximal rates of lipolysis require the removal of
fatty  acids  from  the  adipocyte  in  order  to  prevent  accumulation  of  reaction
products and feedback inhibition of lipases, cytosolic lipid-binding proteins, such
as  FABP,  ALBP,  and  aP2,  play  crucial  roles  in  lipolysis  [59].  Cohen  and
colleagues have shown a key role for caveolin-1 in the modulation of lipolysis and
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lipid droplet  formation [60].  Recently,  several  other proteins were shown to be
involved  in  lipolysis,  such  as  Comparative  Gene  Identification  58  (CGI-58),
AQP7, and lipotransin. CGI-58 has been found to be the cause of the Chanarin-
Dorfman syndrome (CDS),  a rare autosomal recessive disease characterized by
excessive  accumulation  of  triacylglycerols  in  many  organs  [61,  62].  Rodents
deficient in aquaporin 7 have impaired glycerol release in response to fasting and
develop  age-associated  obesity  caused  by  an  induction  of  glycerol  kinase  and
increased  storage  of  triacylglycerols  [63].  Lipotransin  is  an  HSL-interacting
protein  that  functions  as  a  docking  protein  mediating  the  hormonally  induced
translocation of HSL from the cytoplasm to the lipid droplet [64].

9.6. Fatty Acid Oxidation

As described in previous chapters,  fatty acids are important nutrients,  and their
storage  as  triglycerides  in  adipose  tissue  allows  humans  to  tolerate  extended
periods  of  starvation  or  fasting  and  other  metabolically  challenging  conditions
such as  f  illness  and  exercise.  The  major  pathway for  the  degradation  of  long-
chain fatty acids is mitochondrial fatty acid β-oxidation, which was discovered by
the German chemist Georg Franz Knoop in 1905. Fatty acid oxidation, composed
of  approximately  of  20  different  proteins,  not  only  fuels  the  Krebs  cycle  and
oxidative  phosphorylation,  but  also  stimulates  hepatic  synthesis  of  the  ketone
bodies. The uptake of fatty acids by the cells is mediated by simple diffusion as
well  as  by  specific  proteins  such  as  CD36  and  plasma  membrane  fatty  acid
binding protein (FABPpm, also known as GOT2). Once in the cytosol, fatty acids
are converted to acyl-CoA esters by acyl-CoA synthetases, and then they can be
directed  into  beta  oxidation  or  lipid  synthesis  [65].  As  the  mitochondria
membrane is impermeable to acyl-CoA, the carnitine shuttle is needed for import
into the mitochondria.  The carnitine palmitoyltransferase 1 (CPT1),  an integral
outer-mitochondrial-membrane  protein,  catalyzes  the  transesterification  of  the
acyl-CoA  to  acylcarnitine  [66].  Acylcarnitines  is  then  transported  into  the
mitochondria by carnitine acylcarnitine translocase (CACT) in exchange for free
carnitine  molecule  [67].  Inside  the  mitochondria,  the  peripheral  inner-
mitochondrial-membrane protein CPT2 reconverts the acylcarnitine into an acyl-
CoA (Fig. 9.11). Most carnitine is of dietary origin and is transported across the
plasma  membrane  by  the  organic  cation  transporter  OCTN2  (SLC22A5)  [68].
Next,  acyl-CoA  enters  the  mitochondrial  β-oxidation,  which  consists  of  four
enzymatic cyclic process. The cycle begins with dehydrogenation of the acyl-CoA
to trans-2-enoyl-CoA by an acyl-CoA dehydrogenase.  This  step is  followed by
hydration  catalyzed  by  an  enoyl-CoA  hydratase,  generating  (S)-3-hydroxyac-
l-CoA,  which  is  subsequently  dehydrogenated  to  3-ketoacyl-CoA in  a  reaction
performed by (S)-3-hydroxyacyl-CoA dehydrogenase. In the last step, a thiolase
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cleaves the 3-ketoacyl-CoA into a two-carbon chain–shortened acetyl-CoA and
acyl-CoA (Fig. 9.11), which will be further used in Krebs cycle and ketogenesis,
respectively.  During  these  cycles,  FAD  and  NAD  are  reduced  to  FADH2  and
NADH, respectively, which are used in the respiratory chain.

Fig. (9.11). Schematic representation of mitochondrial fatty acid β-oxidation. Fatty acids enter the cell by
diffusion or via CD36 and FATP. In the cytosol, Fatty acids are converted to acylcarnitine by CPT1, which is
translocated into the mitochondria via carnitine acylcarnitine translocase. In the mitochondria, acylcarnitine is
converted  back  to  acyl-CoA  by  CPT2.  Mitochondrial  acyl-CoA  undergoes  β-oxidation,  which  involves
several enzymatic reactions, to generate n-2 acyl-CoA and acetyl-CoA. CD36, a cluster of differentiation 36;
CPT,  carnitine  palmitoyltransferase;  FAD,  Flavin  adenine  dinucleotide;  FADH2,  reduced  Flavin  adenine
dinucleotide; FATP, fatty acid transport protein; LCEH, long-chain enoyl-CoA hydratase; LCHAD, long-
chain  (S)-3-hydroxyacyl-CoA  dehydrogenase;  LCKAT,  long-chain  3-ketoacyl-CoA  thiolase;  MCAD,
medium-chain  acyl-CoA  dehydrogenase;  MCKAT,  medium-chain  3-ketoacyl-CoA  thiolase;  NAD,
nicotinamide adenine dinucleotide; NADH, reduced nicotinamide adenine dinucleotide; SCHAD, short-chain
(S)-3-hydroxyacyl-CoA dehydrogenase; VLCAD, very long chain acyl-CoA dehydrogenase.

9.7. Ketogenesis and Ketone Body Metabolism

Ketone  bodies  are  a  vital  alternative  metabolic  fuel  source  during  intracellular
energy depletion [69]. In humans, ketone body metabolism has been leveraged to
fuel the brain during episodic periods of nutrient deprivation. As described above,
mammalian ketogenesis occurs predominantly in the liver mitochondria from β-
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oxidation-derived  acetyl-CoA,  and  the  ketone  bodies  are  transported  to
extrahepatic  tissues  for  terminal  oxidation  [70].  Blood  total  ketone  body
concentration is approximately 100–250 µM in healthy adult humans, rises to ~1
mM after prolonged exercise or 24h of fasting, and can accumulate to as high as
20 mM in pathological states like diabetic ketoacidosis [71, 72]. Interestingly, the
human liver produces approximately 300g of ketone bodies per day [73].

Ketogenesis  starts  when  the  mitochondrial  β-oxidation-derived  acetyl-CoA
exceeds citrate synthase activity and/or oxaloacetate availability for condensation
to form citrate. Hence, it is classically viewed as a spillover pathway. Acetyl-CoA
is  condensed  with  acetoacetyl-CoA  via  the  mitochondrial  isoform  3-
hydroxymethylglutaryl-CoA  synthase  (HMGCS2)  to  produce
hydroxymethylglutaryl-CoA (HMG-CoA),  which in turn is  cleaved into acetyl-
CoA  and  acetoacetate  through  HMG-CoA  lyase  (HMGCL)  (Fig.  9.12).
Acetoacetate  is  reduced  to  D-β-hydroxybutyrate  (D-βOHB)  by
phosphatidylcholine-dependent mitochondrial d-βOHB dehydrogenase (BDH1) in
a  NAD+/NADH-coupled  reaction  [74].  Acetoacetate  can  also  be  spontaneously
converted to acetone through a non-enzymatic decarboxylation.

Although  the  mechanisms  by  which  acetoacetate  and  beta-hydroxybutyrate  are
transported across the mitochondrial inner membrane are not well defined, these
ketone bodies are secreted from the hepatic cells via monocarboxylate transporters
(MCT1/2), also known as solute carrier 16A family members 1 and 7 [75]. Once
reach extrahepatic tissues, ketone bodies can be:

Catabolized in the mitochondria to produce acetyl-CoA that can be used in the1.
Krebs cycle. For instance, D-βOHB is converted back to acetoacetate, which is
activated  to  acetoacetyl-CoA  through  the  exchange  of  a  CoA-moiety  from
succinyl-CoA in a reaction catalyzed by the CoA transferase, succinyl-CoA:-
-oxoacid-CoA transferase (SCOT, encoded by OXCT1 gene). Acetoacetyl-CoA
is then converted to acetyl-CoA, via mitochondrial thiolases (ACAA2, ACAT1,
HADHA, or HADHB), which enter Krebs cycle.
Used  in  the  lipogenesis  or  sterol  synthesis  pathways.  In  fact,  cytosolic2.
acetoacetyl-CoA can  be  either  directed  by  cytosolic  HMGCS1 toward  sterol
biosynthesis, or cleaved by the cytoplasmic thiolases (ACAAs) to acetyl-CoA,
which is carboxylated to malonyl-CoA via acetyl-coA carboxylase. Malonyl-
CoA enters the de novo lipogenesis pathway.
Excreted in the urine3.

Acetoacetate  and  beta-hydroxybutyrate  are  the  two  ketone  bodies  used  by  the
body for energy, and they are avidly oxidized in heart, brain, and skeletal muscle
[76].
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Fig.  (9.12).  Schematic  representation  of  mitochondrial  ketogenesis.  Ketogenesis  within  hepatic
mitochondria is the primary source of circulating ketone bodies. Acetyl-CoA is condensed with acetoacetyl-
CoA via 3-hydroxymethylglutaryl-CoA synthase to produce hydroxymethylglutaryl-CoA, which in turn is
cleaved  into  acetyl-CoA  and  acetoacetate  through  HMG-CoA  lyase.  Acetoacetate  is  reduced  to  D--
-hydroxybutyrate  (βOHB)  by  phosphatidylcholine-dependent  mitochondrial  d-βOHB  dehydrogenase
(BDH1). βOHB is released through MCT1/2 and transported to extrahepatic tissues, where it is converted to
acetoacetate, acetoacetyl-coA, and acetyl-coA via BDH1, SCOT, and thiolases, respectively. Acetyl-CoA can
be used in the Krebs cycle to generate ATP.

CONCLUSION

Lipid metabolism involves the synthesis and the degradation of fat to satisfy the
metabolic  needs  of  the  cell.  These  lipids  play  critical  structural  and  functional
roles.  They  are  in  the  constant  dynamic  between  oxidation  and  storage.
Dysregulation of this equilibrium alters the cellular homeostasis and can lead to
metabolic disorders.

NOTES
1 Chyme is semi-fluid pulp formed in the stomach made of partly digested food
and the secretions of the GI tract.
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2 Emulsification is a process in which large lipid globules are broken down into
several small lipid globules

3 Micelles are spherical form of lipids in aqueous solutions.

4  Lipogenesis  is  the  metabolic  formation  of  fat  (conversion  of  acetyl-CoA  to
triglycerides:  de  novo  fatty  acid  synthesis).
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CHAPTER 10

Summary

We all need food and water! Eating and drinking are paramount to maintaining
life  via  the  provision  of  the  necessary  energy.  For  that  end,  consumed
macronutrients  undergo  biochemical  processes  (metabolism)  that  include  more
than  8,700  reactions  and  16,000  metabolites  (http://www.genome.jp/kegg
/pathway.html).  In  this  first  edition  of  Nutritional  Biochemistry:  from  the
classroom to the Research Bench,  I  tried to  keep the textbook current  with the
most  recent  scientific  advances,  and  at  the  same  time,  maintain  a  clear  and
readable style. As biochemical nutrition is an integrative science that encompasses
knowledge,  concepts,  and  methodology  related  to  the  chemical  properties  of
macronutrients  and  their  metabolic  pathways  and  physiological  functions,  this
book  contains  several  chapters  describing  the  body  and  the  cell,  defining
macronutrients  and  food  composition,  and  outlining  the  recent  mechanisms
involved  in  food  and  water  intake,  and  their  central  and  peripheral  metabolic
pathways.  The  whole  objective  of  the  book  is  summarized  in  Fig.  (10.1).  The
target audience for this book is undergraduate and graduate students in the human
and  animal  sciences,  nutrition,  dietetics,  food  sciences,  veterinary  and  human
medicine. Illustrating with figures, tables, and structural diagrams, my objective is
to  provide  students  and  readers  with  sufficient  biochemistry  and  pathways  to
understand the science of nutrition. I hope that this book is a great resource with
great educational outcomes in value-added terms that help students to understand
the  intricacies  of  biochemical  nutrition,  grasp  though  concepts,  and  gain  the
necessary background to pursue higher-level nutrition classes, or simply acquire
the  necessary  tool  to  design,  conduct,  interpret  and/or  discuss  a  biochemical
nutrition experiment. I hope that you find the book useful and you enjoy reading
it, however, if you have any comments for improvement, please do contact me,
and I will make sure to include them in the next edition.

http://www.genome.jp/kegg/pathway.html
http://www.genome.jp/kegg/pathway.html
#f10.1
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Fig. (10.1). Schematic illustration and summary of the book’s objectives. The “Nutritional Biochemistry:
From the classroom to the Research Bench” Book provides current knowledge related to energy homeostasis
and integrates relevant principles in nutrition, physiology, biochemistry, and molecular signaling pathways
that regulate water and food intake as well as their metabolism.
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