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Preface

In the world of the twenty-first century, we are surrounded by a large number of chemicals in
various forms, starting from those in industrial, commercial, and agricultural uses to those
for domestic and personal uses. These chemicals have an impact on different living organ-
isms in the environment, including humans. Studies have confirmed that these effects are
mostly hazardous in the case of unintended exposure at a significant level of concentration
[1]. There is evidence that species from different biomes of the biosphere, like aquatic,
terrestrial, and aerial in different trophic levels, are affected due to uncontrolled production,
usage, and disposal of chemicals used in our day-to-day life, apart from those used in bulk
quantities in chemical industries. The increasing environmental pollution caused by old and
new chemicals has led to an ever-growing concern about the potential effects that they may
have on the environment and also their direct or indirect effects on human health. Accord-
ing to the Organization for Economic Co-operation and Development (OECD), contami-
nants of emerging concern (CECs) are “a vast array of contaminants that have only recently
appeared in water, or that are of recent concern because they have been detected at
concentrations significantly higher than expected, or their risk to human and environmental
health may not be fully understood” [2]. CECs include pharmaceuticals, industrial and
household chemicals, personal care products, pesticides, plasticizers, flame retardants, sur-
factants, manufactured nanomaterials, microplastics, their transformation products, etc. [2].
The most common concern with most of the CECs is their endocrine-disrupting effects.
Apart from this, CECs may show genotoxicity, cytotoxicity, carcinogenicity, antibiotic
resistance, etc., depending on the use category [3]. The effects of CECs on human and
ecosystem health are largely unknown, and relatively little is known about the ways they
travel, transform, or degrade in the environment. The number of CECs is continuously
evolving as new chemical compounds are produced, and improvements in chemical analysis
increase our understanding of the effects of current and past contaminants on human and
environmental health. In spite of the hazardous effects of perilous chemicals, pharmaceu-
ticals, cosmetics, biocides, pesticides, dyes, solvents, and other pollutants on the ecosystem,
relatively few of these have been subjected to sufficient experimental evaluation for their
hazardous environmental properties. The experimental determination of environmental
parameters (e.g., soil sorption, bioconcentration, biodegradation and biotransformation,
toxic effects) of commercial chemicals is a costly and time-consuming process. Also, there
exist an incredibly large number of environmental endpoints for which it is difficult or even
impossible to gather experimental data for a large number of chemicals due to available
limited resources. This results in data gaps to a significant extent, which draw the attention
of different regulatory bodies like OECD (Organization for Economic Co-operation and
Development), ECVAM (European Centre for the Validation of Alternative Methods),
ECHA (European Chemical Agency), FDA (Food and Drug Administration), EPA (Envi-
ronmental Protection Agency), etc. These aspects are also relevant to different regulations,
for example, REACH (Registration, Evaluation and Authorization and Restriction of Che-
micals) and CLP (Classification, Labelling and Packaging) regulations in the EU and Toxic
Substances Control Act (TSCA) in the US [4–9]. Specific regulations exist in the EU for
specific families of products, such as fertilizers (EU Fertiliser Regulation, to be adopted),
biocides (EU Biocidal Products Regulation, 2012), explosives (EU Regulations on
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Explosives, 2013), drug precursors (EU Regulation on Drug Precursors, 2004), cosmetics
(EU Regulations on Cosmetics Products, 2009), etc. The regulatory bodies recognize the
use of in silico models as a supplement or even as a replacement for experimental testing. It is
necessary to develop quantitative models that will accurately and readily predict the envi-
ronmental behavior of large sets of chemicals. A chemistry approach to predictive toxicology
relies on quantitative structure–activity relationship (QSAR) modeling to predict biological
activity from chemical structure [10]. Such approaches have proven capabilities when
applied to well-defined toxicity end points or regions of chemical space. These also support
the “3Rs” (replacement, refinement, and reduction of animals in research) principles of
Russell and Burch [11]. Most importantly, these models might help in designing “greener”
alternatives replacing the original toxic chemicals. It is also possible to study the effects of
possible degradation products and metabolites using QSAR approaches.

QSARs are essentially statistical models derived from the correlation of the response
being modeled with quantitative chemical structure information presented in the form of
descriptors. There are a plethora of descriptors currently available due to the availability of
several descriptor computing software tools. In ecotoxicological QSARs, usually 0D–3D
descriptors are applied, although the usage of higher dimensional QSAR is still possible in
appropriate cases. Curation of the data set is very important before the development of any
QSAR model. In view of the large number of descriptors available, it is important to use
appropriate feature selection and learning algorithms to derive models that are statistically
meaningful and not overfitted. Recent literature has also described the application of
different machine learning methods in modeling different ecologically important endpoints.
Ecotoxicological QSAR models for regulatory purposes should be developed based on
OECD five-point principles [12]. Such models should be validated using stringent meth-
odologies, including external validation ensuring the reliability of predictions for unseen
compounds. These models might be either regression based, giving quantitatively precise
predictions of the response, or classification based, giving qualitative gradation of endpoints
that might be helpful in the initial screening process. One might be choosing classical QSAR
methodologies for more interpretable and simple models with a clear mechanistic interpre-
tation, while others might be more inclined to using various machine learning algorithms
such as deep neural nets, support vector machine, random forest, etc., focusing more on the
quality of predictions instead of interpretability. Both of these two types of QSARs are
equally important and useful, and the choice between them depends on the problem to be
solved. The concept of applicability domain is of paramount importance for the prediction
of a new compound from a previously developed QSAR model. Apart from QSARs, read-
across based on a similarity principle has also recently emerged as a useful tool in ecotoxico-
logical modeling.

This current volume of Ecotoxicological QSARs presents the background of the applica-
tion of QSARs in the predictive toxicology field in a regulatory context and covers the
protocols for descriptor computation, data curation, feature selection, machine learning
algorithms, validation of models, applicability domain assessment, confidence estimation for
predictions, and so on. The book also presents diverse case studies for ecotoxicological
QSARs applied to different chemical classes, including industrial chemicals, solvents, pollu-
tants, pharmaceuticals, personal care products, biocides, agrochemicals, nanomaterials, etc.
Compilations of different databases relevant to ecotoxicological QSARs are presented.
There are a total of 32 chapters in the 4 parts of this book.

The first part presents an introduction to ecotoxicological risk assessment andmodeling.
The first chapter in this part, authored by Garcı́a-Fernández, gives an overview of different
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EU laws and regulations in the context of ecotoxicological risk assessment. The second
chapter, authored by Aher, Khan, and Roy, briefly introduces the concept of quantitative
structure–activity relationships (QSARs) as useful tools in predictive ecotoxicology. The
third chapter, authored byNantasenamat, provides general guidelines and best practices for
constructing reproducible QSAR models. The fourth chapter of Part I, contributed by
Garcı́a-Fernández, Espin, G�omez-Ramı́rez, Martı́nez-L�opez, and Navas, discusses the
advantages and disadvantages on the use of potential sentinel species for biomonitoring
purposes.

The second part of the book deals with the methods and protocols of ecotoxicological
QSARs. The first chapter of this part has been contributed by Ambure and Cordeiro. This
chapter focuses on several data curation tools that are used before QSAR model develop-
ment, paying special attention to those that can be used to semi-automate the curation
process. The next chapter, contributed by Gini and Zanoli, presents different machine
learning and deep learning methods that are used in ecotoxicological QSAR modeling.
Chapter 7, contributed by Barros, Sousa, Scotti, and Scotti, reviews different machine
learning and classical QSAR methods applied in computational ecotoxicology. Concu and
Cordeiro have contributed Chapter 8 on the relevance of the feature selection algorithms
while developing nonlinear QSARs.Moura and Cordeiro have coauthored Chapter 9, which
discusses the methodologies and fundamentals of classical and perturbation-based QSAR
models within the environmental risk assessment framework. Rasulev has authored
Chapter 10, in which the recent advances in the development and application of
3D-QSAR and protein–ligand docking approaches in the studies of nanostructured materi-
als, such as fullerenes and carbon nanotubes, have been outlined. Tondo, Montaruli, Man-
giatordi, and Nicolotti have presented computational methods and open-source
computational tools for the evaluation of the ecotoxicological effects of pharmaceutical
impurities. In Chapter 12, Svensson and Norinder discuss a type of confidence predictor
called conformal prediction, which can be used to generate predictions with a guaranteed
error rate. Tugcu, Önlü, Aydın, and Saçan discuss the application of read-across in regu-
latory toxicology in Chapter 13. Pedrazzani and colleagues present in the last chapter of this
part a methodological protocol for the experimental assessment of environmental
footprints.

The third part deals with literature reviews of ecotoxicological QSARs and case studies.
The first chapter of this part, authored by Ebbrell, Cronin, Ellison, Firman, and Madden,
develops predictive approaches for acute and chronic toxicity in fish, Daphnia, and algae
utilizing baseline toxicity models. In the second chapter of this part, Khan, Sanderson, and
Roy review information related to the impact and occurrence of personal care products and
biocides, as well as their persistence, environmental fate, risk assessment, and risk manage-
ment, with a special emphasis given on in silico tools such as QSAR, which can be employed
in predicting the ecotoxicity of personal care products and biocides mainly to aquatic
species. Chapter 17, contributed by G�omez-Ganau, Marzo, Gozalbes, and Benfenati, pre-
sents some computational models for the estimation of ecotoxicity of biocides in micro-
organisms and fish developed in the context of the EU LIFE+ project titled COMBASE. In
Chapter 18, Funar-Timofei and Ilia review QSAR/QSPR reports in the estimation of dye
ecotoxicity. Khan, Kar, and Roy have illustrated the basic concepts of mixture toxicity
assessment and reviewed QSAR reports on the ecotoxicity of mixtures in Chapter 19. In
the following chapter,Ojha, Mandal, and Roy have reviewed QSPR modeling of adsorption
of pollutants by carbon nanotubes. Chapter 21, contributed by Bora, Crisan, Borota, Funar-
Timofei, and Ilia, presents successful QSAR models for the ecotoxicological data of
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organophosphorus and neonicotinoid pesticides. Nendza, Ahlers, and Schwartz have
presented a case study, in the next chapter, on QSAR and read-across for thiochemicals.
In Chapter 23, Chang, Chang, Wu, Chang, and Liu have reviewed in silico ecotoxicological
modeling of pesticide metabolites and mixtures. Furuhama has presented in Chapter 24 a
case study of read-across and QSAR for green algae growth inhibition toxicity data.
Chapter 25, contributed by Hamadache, Benkortbi, Amrane, and Hanini, presents a
literature review of ecotoxicological QSAR modeling of pesticides, ionic liquids, pharma-
ceuticals, and other pollutants. Speck-Planche presents in Chapter 26 a case study of the
development of a multiscale QSAR model that is able to assess the ecotoxicity of the
pesticides by considering different measures of ecotoxic effects, many bioindicator species,
several different assay guidelines, and the multiple times during which the bioindicator
species have been exposed to pesticides. Jana, Pal, Sural, and Chattaraj have presented in
Chapter 27 a case study of the development of quantitative structure-toxicity models using
hydrophobicity and electrophilicity. The last chapter of this part, contributed by Sanderson
and colleagues, presents a survey of environmental toxicity (Q)SARs for polymers as an
emerging class of materials in regulatory frameworks, with a focus on challenges and
possibilities regarding cationic polymers.

The last part of the book deals with software tools and databases. The first chapter of the
part, contributed by Ghosh, Kar, and Leszczynski, deals with ecotoxicity databases for QSAR
modeling. The next chapter, contributed by Benfenati and Lombardo, discusses VEGAHUB
for ecotoxicological QSAR modeling. In the third chapter of this part, Varsou, Tsoumanis,
Afantitis, and Melagraki present and discuss the Enalos Cloud Platform and model devel-
opment and validation using three web services hosted in the Enalos Cloud. The last chapter
of the book, authored byMauri, presents alvaDescriptor, a software to calculate and analyze
molecular descriptors and fingerprints for QSAR modeling.

This collection of 32 chapters presents the current status and recent developments in
ecotoxicological QSARmodeling, especially in the context of different EU regulations. This
book will certainly update readers in the field with current practices and introduce to them
new developments and hence should be very useful for researchers in academia, industries,
and regulatory bodies.

Kolkata, West Bengal, India Kunal Roy
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GIORGIO BERTANZA • DICATAM – Department of Civil Engineering, Architecture, Land,

Environment and Mathematics, University of Brescia, Brescia, Italy
ALINA BORA • “Coriolan Dragulescu” Institute of Chemistry, Timisoara, Romania
ANA BOROTA • “Coriolan Dragulescu” Institute of Chemistry, Timisoara, Romania
ANNA M. BRUN HANSEN • Aarhus University, Department of Environmental Science,

Roskilde, Denmark
CHIA MING CHANG • Environmental Molecular and Electromagnetic Physics (EMEP)

Laboratory, Department of Soil and Environmental Sciences, National Chung Hsing
University, Taichung, Taiwan

CHIUNG-WEN CHANG • Food and Drug Administration, Ministry of Health and Welfare,
Taipei, Taiwan

LEN CHANG • Environmental Molecular and Electromagnetic Physics (EMEP) Laboratory,
Department of Soil and Environmental Sciences, National Chung Hsing University,
Taichung, Taiwan

PRATIM KUMAR CHATTARAJ • Department of Chemistry and Center for Theoretical Studies,
Indian Institute of Technology Kharagpur, Kharagpur, India; Department of Chemistry,
Indian Institute of Technology Bombay, Mumbai, India

RICCARDO CONCU • Department of Chemistry and Biochemistry, Faculty of Science,
University of Porto, Porto, Portugal

KRISTIN CONNORS • The Procter and Gamble Company, Mason, OH, USA
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Studi di Bari “Aldo Moro”, Bari, Italy
ULF NORINDER • Department of Computer and Systems Sciences, Stockholm University,

Kista, Sweden
PROBIR KUMAR OJHA • Drug Theoretics and Cheminformatics Laboratory, Department of

Pharmaceutical Technology, Jadavpur University, Kolkata, India
RANITA PAL • Department of Chemistry and Center for Theoretical Studies, Indian Institute

of Technology Kharagpur, Kharagpur, India
ROBERTA PEDRAZZANI • DIMI – Department of Mechanical and Industrial Engineering,

University of Brescia, Brescia, Italy; MISTRAL c/o DSCS – University of Brescia, Brescia,
Italy

Contributors xix



BAKHTIYOR RASULEV • Department of Coatings and Polymeric Materials, North Dakota
State University, Fargo, ND, USA

KUNAL ROY • Drug Theoretics and Cheminformatics Laboratory, Department of
Pharmaceutical Technology, Jadavpur University, Kolkata, India
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Chapter 1

Ecotoxicological Risk Assessment in the Context
of Different EU Regulations

Antonio Juan Garcı́a-Fernández

Abstract

For an appropriate environmental risk assessment, it is necessary to perform a set of ecotoxicological tests in
the different environmental compartments. The number and type of ecotoxicological assays that must be
performed to introduce a substance, mixture, or product into the market will depend on the properties and
characteristics of the chemical itself, its persistence, bioaccumulation, toxicity, and ecotoxicity. In addition,
the intended use also determines the type and number of tests to be performed. During the last decades, the
European Union has approved many regulations and directives on chemicals, such as those under REACH
Regulation, Biocidal Products, Plant Protection Products, Human and Veterinary medicines, Nanoforms,
etc. All of them are subjected to rigorous legislative and regulatory frameworks to ensure human health and
the environment and, in some circumstances also, animal health.
In addition to these laws focused on the chemicals, there are other crosscutting laws, like the Water

Framework Directive (2000/60/EC), Directive 2010/63/EU on the protection of animals used for
scientific purposes, or Directive 2004/10/EC on good laboratory practice, which are continuously
mentioned in the directives and regulations on chemicals.
Finally, the European Union is currently working to implement a strategy for a nontoxic environment,

paying special attention to promoting innovation and the development of sustainable substitutes including
nonchemical solutions.

Key words Ecotoxicology, EU laws, EU environment policy, REACH Regulation, CLP Regulation,
Biocidal Products Regulation, Plant Protection Products Regulation, Pharmaceuticals, Nanoforms,
Water Framework Directive

1 Introduction to the European Union

The European Union (EU) is composed of 28 Member States
(sorted by acceptance year into the EU): Belgium, France, Ger-
many, Italy, Luxembourg, and the Netherlands in 1958; Denmark,
Ireland, and the United Kingdom in 1973; Greece in 1981; Por-
tugal and Spain in 1986; Austria, Finland, and Sweden in 1995;
Cyprus, Czech Republic, Estonia, Hungary, Latvia, Lithuania,
Malta, Poland, Slovakia, and Slovenia in 2004; Bulgaria and Roma-
nia in 2007; and the last, Croatia in 2013. At the moment, five
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other countries are in the process of integrating EU legislation into
national law, Albania, Montenegro, North Macedonia, Serbia, and
Turkey; and two countries (Kosovo and Bosnia and Herzegovina)
are being considered as potential candidates but do not yet fulfil the
requirements for EU membership [1].

Four EU institutions have responsibilities in the proposal,
development, and final adoption of any legislation under the Treaty
of Rome although the EU is considered to be a single institutional
body. These four EU institutions are the European Parliament, the
European Council, the Council of the EU, and the European
Commission [2]. The first EU institution, the European Parlia-
ment, is the EU’s law-making body, and its members are represen-
tatives (directly elected, by the EU voters every 5 years) with
legislative, budgetary, and supervisory responsibilities. The second
one, the European Council, representing the highest level of polit-
ical cooperation between EU countries, sets the EU’s broad prio-
rities and the general political direction. The third one, the Council
of the EU, is the institution where the respective governments
defend their own country’s national interests, adopting EU laws
and coordinating EU policies. In this Council, the government
ministers from each EU country discuss, amend, and adopt the
laws. This institution is considered, together with the European
Parliament, the main decision-making body of the EU. The last
one, the European Commission, is the EU’s politically independent
executive arm, and it is responsible for drawing up proposals for
new European legislation, and it also implements the decisions of
the European Parliament and the Council of the EU [2]. It is
composed of 28 Commissioners (one from each EU country).
The European Commission is organized into 53 departments
known as Directorates-General (DGs), each responsible for a spe-
cific policy area, one of them being the DG for Environment.

1.1 European Union

Law

In the EU, there are two types of law: primary and secondary. The
primary law includes all EU treaties which constitute the legal basis
of all the Union’s binding acts, and therefore they are the starting
point for all EU laws. On the other hand, the rest of the legislative
acts that come from the principles and objectives of the treaties are
considered as “secondary law.” Regulations, directives, decisions,
recommendations, and opinions constitute the secondary law [3].

The EU treaties set out EU objectives, rules for EU institu-
tions, how decisions are made, and the relationship between the
EU and its member countries. Every action taken by the EU is
founded on treaties [4] which are binding agreements between all
EU member countries, so that is why they have to be amended
every time a new country is accepted as a member state. In addition,
they are amended when it is necessary to make the EU more
transparent and efficient and especially when new areas of coopera-
tion must be introduced and regulated. In 2016, every one of the
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treaties currently in force was published in the following consoli-
dated versions [5]: the Treaty on European Union (TEU), the
Treaty on the Functioning of the European Union (TFEU), the
Treaty establishing the European Atomic Energy Community, and
the Charter of Fundamental Rights of the EU (Table 1). TEU and
TFEU consolidated versions were published together with the

Table 1
Main treaties and other specific treaties in force in the European Union

Treaty in force and year Consolidated version Previous

Treaty on the European Union
(TEU) (2016)

OJ C 202, 7.6.2016
http://data.europa.eu/eli/
treaty/teu_2016/oj

2010, 2008, 2006, 2002, 1997,
1992

Treaty on the Functioning of the
European Union (TFEU) (2016)

OJ C 202, 7.6.2016
http://data.europa.eu/eli/
treaty/tfeu_2016/oj

2012, 2010, 2008

Treaty establishing the European
Atomic Energy Community (2016)

OJ C 203, 7.6.2016
http://data.europa.eu/eli/
treaty/euratom_2016/oj

2012, 2010, 1957

Charter of Fundamental Rights of the
EU (2016)

OJ C 202, 7.6.2016,
p. 391–407

http://data.europa.eu/eli/
treaty/char_2016/oj

2012, 2010, 2007

Treaty establishing the European
Community (2006)

OJ C 321E, 29.12.2006 2002, 1997, 1992, 1957

Treaty establishing the European
Economic Community (1957)

http://data.europa.eu/eli/
treaty/teec/sign

Not in English. Only in French,
German, Italian, and Dutch

Specific treaties and year Published in

Treaty of Lisbon (2007) OJ C 306, 17-12.2007, 1-271
http://data.europa.eu/eli/treaty/lis/sign

Treaty establishing a Constitution for
Europe (2004)

OJ C 310, 16.12.2004
http://data.europa.eu/eli/treaty/tcons_2004/oj

Treaty of Nice (2001) OJ C 80, 10.3.2001, 1-87
http://data.europa.eu/eli/treaty/nice/sign

Schengen Convention (1985) OJ L 239, 22.9.2000

Treaty of Amsterdam (1997) OJ C 340, 10.11.1997, 173-306
http://data.europa.eu/eli/treaty/tec_1997/oj

Agreement of the European
Economic Area (1992)

OJ L 1, 3.1.1994

Treaty of Greenland (1984) OJ L 29, 1.2.1985, 1-7
http://data.europa.eu/eli/treaty/tgreenl/sign

Merger Treaty (1965) OJ 152, 13.7.1967, 2–17
http://data.europa.eu/eli/treaty/fusion/sign
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annexes and protocols thereto, as they result from the amendments
introduced by the Treaty of Lisbon, which was signed on
13 December 2007 in Lisbon and which entered into force on
1 December 2009.

1.2 Legislative and

Nonlegislative Acts in

the EU

The EU is based on the rule of law, and the European Commission
is the only institution empowered to initiate legislation. Legislative
acts in EU are adopted following one of the legislative procedures
set out in the EU treaties: ordinary or special [3]. The EU’s
standard decision-making procedures follow what is known as ordi-
nary legislative procedure (formerly known as codecision) which
gives the same weight to the European Parliament and the Council
of the European Union on some areas like economic governance,
consumer production, energy, or environment, among others; that
is why both institutions, the Parliament and the Council, adopt
jointly the majority of the European laws [6]. The other type of
procedure, special legislative procedure, is followed only in certain
cases. The most usual case is when the EU Council is the sole
legislator and the EU Parliament is consulted in regard to a legisla-
tive proposal or is required to give its consent. Sometimes, but
rarely, the Parliament alone adopts legal acts but always after con-
sulting the Council. Following these legislative procedures, the EU
adopts the main binding legislative acts: Regulations, Directives,
and Decisions; and two minor acts: Delegated and Implementing
acts (Table 2).

Nonlegislative acts (Recommendation and Opinion) do not
follow the standardized legislative procedures, so they are adopted
by the EU institutions according to their specific rules, and they are
not binding acts. The first one, Recommendation, allows the insti-
tutions to make their views known and to suggest a line of action
without imposing any legal obligation on those to whom it is
addressed. The second one, Opinion, allows the institutions to
make a statement, without imposing any legal obligation on those
to whom it is addressed [3].

1.3 EU Policies on

Environment

One of the EU priorities is to ensure that chemicals are safe for
human health and the environment and simultaneously keep EU
industry competitive internationally. That is why Chemicals is the
name of one of the policies closely linked to EU Environment Area.
Apart from Chemicals, other environment-related policies are con-
sidered in the EU: Circular economy, Marine and coastal environ-
ment, Clean air, Noise pollution, Soil quality, Urban environment,
Waste and recycling, Water resources, and Endocrine disruptors. In
the EU webpage, one can read on Environment Policy: “EU envi-
ronmental policies and legislation aim to enable EU citizens to live
well, within the planet’s ecological limits. These are centred on an
innovative, circular economy, where biodiversity is protected, val-
ued and restored and environment-related health risks are
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minimised—enhancing our society’s resilience, and decoupling
growth from resource use” [7].

The EU considers that chemicals participate in an essential
manner in our daily lives, but sometimes, under certain circum-
stances and conditions, they can provoke severely deleterious
effects on our health and/or on the environment. The EU is
aware that there has been an increase in health problems due,
partially, to the use of chemicals. Similarly, the environment is
suffering from the consequences of the increased chemical presence
not only where they are generated but also in the most remote
places, recognizing that chemicals are everywhere [8]. In this sense,
the EU has a comprehensive chemical legislation, spearheaded by
REACH Regulation [9] (Registration, Evaluation, Authorisation
and Restriction of Chemicals) and CLP Regulation [10] (Classifi-
cation, Labeling and Packaging of chemical substances and mix-
tures). These legislative documents are complemented with
legislation on specific groups of chemicals, such as pesticides, bio-
cides, pharmaceuticals, etc. In addition, nowadays, endocrine dis-
ruption is a concern in the European Union, so the European
Commission is focusing its interest on those chemicals able to
interfere with the hormone system [8].

Table 2
Types of legislative acts in the European Union

Binding legislative acts

Legislative acts Adopted by a legislative procedure (ordinary or special legislative procedure), Article
289 Treaty on the Functioning of the European Union

Regulation Legal act that has general application. It is binding in its entirety and directly applicable
in all Member States. EU countries as soon as they enter into force, without needing
to be transposed into national law

Directive Legislative binding act that sets out a goal that all EU countries must achieve. It leaves,
however, to the national authorities the choice of form and methods. Transposition
into national law must take place by the deadline set in the directive but generally is
within 2 years

Decision Legislative binding and directly applicable act in its entirety on those to whom it is
addressed (e.g., one, several, or all Member States or an individual company)

Other binding legislative acts

Delegated acts They are acts legally binding that enable the Commission to supplement or amend
nonessential parts of EU legislative acts. If Parliament and Council have no
objections, it enters into force

Implementing
acts

They are legally binding acts that enable the Commission (under supervision of
committees consisting of EU countries’ representatives) to set conditions that ensure
that EU laws are applied uniformly
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2 EU Laws Related to Ecotoxicology Risk Assessment

2.1 REACH

Regulation (EC) 1907/

2006

Regulation (EC) 1907/2006 of the European Parliament and the
Council, commonly known as REACH (Registration, Evaluation,
Authorisation and Restriction of Chemicals), was published in
December 2006, coming into force on 1 June 2007 [9]. The
adoption of this Regulation was probably one of the most relevant
legislative acts on chemicals in the world, with a priority on ensur-
ing a high level of protection of human health and the environ-
ment. This regulation also considers it a priority to avoid or reduce
the number of tests on live animals for hazard assessment of che-
micals. These aims should be compatible with the free movement of
substances and products containing them, as well as enhancing
competitiveness and innovation. REACH Regulation is based on
the principle that the responsibility for the identification and man-
agement of risks from substances and products lies with manufac-
turers, importers, and downstream users. According to this,
industry should act with the highest level of responsibility to ensure
the safety of human health as well as the environment, and always in
accordance with the precautionary principle. Another important
aim of this new system is to ensure that substances of high concern
must be replaced by other less dangerous substances or technolo-
gies where viable alternatives are available.

REACH Regulation foresees that the assessment of the chemi-
cal safety of a substance should include not only hazard assessments
on human health and the environment but also assessments of
persistent, bioaccumulative, toxic (PBT), and very persistent and
very bioaccumulative (vPvB) substances. Focusing attention on
environmental hazards, its objective is not only to determine the
classification and labeling of a substance but also to set out the
threshold level of the substance below which effects on the envi-
ronment are not expected to occur. This level is known as Predicted
No-Effect Concentration (PNEC). As a first step, the assessment
must evaluate all available information on potential effects on the
aquatic (including sediment), terrestrial, and atmospheric compart-
ments, microbiological activity of sewage treatment systems, and
also potential effects via food chain accumulation. The information
on these effects will be included in the Chemical Safety Report
(Table 3); and its evaluation will comprise the hazard identification
and the establishment of the quantitative dose-response or
concentration-effect relationships. All information used to assess
the effects on the environment or on a particular environment shall
be briefly presented together with any other relevant information.
With respect to identification of the PNEC, it must be established
for each environmental sphere.

The chemical safety assessment must be reported for all sub-
stances subject to registration according to REACH in annual
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quantities of 10 tonnes or more per registrant. If, as a result of these
assessments cited above, the registrant concludes that the substance
can be considered as persistent, bioaccumulative, and toxic (PBT)
or very persistent and very bioaccumulative (vPvB) or it must be
classified as dangerous according to Directive 67/548/EEC
(repealed by Regulation EC 1272/2008 [10]), the chemical safety
assessment must be implemented with additional information on
exposure estimation, exposure assessment in the possible exposure
scenarios, and the risk characterization in all possible scenarios,
addressing all identified uses by the registrant.

The volume of manufacture or importation of a substance is
related to the potential for exposure to human beings, other living
beings, and environment to the substances; that is why the infor-
mation on substances that is required by REACH Regulation
depends on the volumes of importation or manufacture of each
substance. In this sense, Article 12 details the type of information

Table 3
Chemical safety report under REACH Regulation

Chemical safety report (REACH Regulation)

Part A

Summary of risk management measures

Declaration that risk management measures are implemented

Declaration that risk management measures are communicated

Part B

Identity of the substance and physical and chemical properties

Manufacture and uses

Classification and labeling

Environmental fate properties

Human health hazard assessment

Human health hazard assessment of physicochemical properties

Environmental hazard assessment

Aquatic compartment (including sediment)

Terrestrial compartment

Atmospheric compartment

Microbiological activity on sewage treatment systems

Persistent, bioaccumulative, and toxic (PBT) and vPvB assessment

Exposure assessment (scenario 1, scenario 2, . . ., overall exposure)

Risk characterization (scenario 1, scenario 2, . . ., overall exposure)
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to be submitted depending on tonnage. Concretely, it is specified
that the technical dossier shall include all physicochemical, toxico-
logical, and ecotoxicological information that could be relevant and
available to the registrant of the product or substance. REACH
Regulation sets out four ranges of tonnages (1–10, 10–100,
100–1000, and more than 1000 tonnes) of substances manufac-
tured or imported to require the corresponding information (see
Annexes VII-X, REACH Regulation) (Table 4). All ecotoxicologi-
cal and toxicological tests and analyses required by REACH must
be carried out in compliance with the principles of good laboratory
practice.

In REACH, Annex XI describes the general rules for adapta-
tion of the standard testing regime set out in the previous Annexes
VII to X (information required according to tonnage). This annex
includes some circumstances that could introduce adaptations to
the standard testing regime (Table 5).

REACH dedicates an article to “Review” its effectiveness in
achieving these aims, based on the experience in its application.
Some of the reviews in Article 138 are as follows:

l To evaluate the necessity to extend the obligation to do a chem-
ical safety assessment with the pertinent chemical safety report to
substances not covered by this obligation at the time REACH
Regulation entered into force (i.e., substances manufactured or
imported in quantities below 10 tonnes). The deadline is 1 June
2019 for all substances, with the exception of the substances
considered carcinogenic, mutagenic, or toxic for reproduction
substances, whose review shall be carried out by 1 June 2014.
The review takes into consideration all relevant factors including
those with regard to costs of drawing up the chemical safety
reports, distribution of costs, and benefits for human health and
the environment.

l On the experience acquired with the application of REACH, the
requirements for registration of substances manufactured or
imported in quantities between 1 and 10 tons per manufacturer
or importer could be reviewed. The Commission may modify
these requirements taking into consideration the latest develop-
ments, especially in alternative methods and procedures and
(quantitative) structure-activity relationships (Q)SAR.

l To promote the use of alternative methods of non-animal testing
and the application of the 3R principles in animal testing
(replacement, reduction, and refinement), the requirements to
evaluate reproductive toxicity (Subheading 8.7) of Annex VIII
(more than 1 tonne) will be reviewed before 1 June 2019.

With the entry into force of REACH Regulation, Directive
91/155/ECC was automatically repealed, but other laws were
also repealed, with effects 1 or more years later, such as Directives
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Table 4
Standard ecotoxicological information required for substances manufactured or imported in
accordance to the tonnage (information extracted from REACH Annex VII to X)

REACH

> 1 

TONNES

REACH

> 10 

TONNES

REACH

> 100 

TONNES

REACH

> 1000 

TONNES

9.1. Aquatic toxicity

9.2. Degradation

9.3. Fate and behaviour in the environment

9.4. Effects on terrestrial organisms

9.5.1. Long-term toxicity to sediment organisms

9.6.1. Long-term or reproductive toxicity to birds



Table 5
General rules for adaptation of the standard testing regime set out in annexes VII to X (information
extracted from REACH Annex XI)

1. Testing does not appear scienti�ically necessary

1.1. Use of existing data
•

•

•

1.2. Weight of evidence.

•

•

1.3. Qualitative or Quantitative structure-activity relationship. 

•

•

•

•
1.4. Results obtained from in vitro methods

•

•

•

1.5. Grouping of substances and read-across approach.

•

•

•

2. Testing is technically not possible

3. Substance-tailored exposure-driven testing
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93/105/EC and 2000/21/EC and Regulations EEC/793/93
and EC/1488/94 (effect 1 June 2008), Directive 93/769/EEC
(effect 1 August 2008), and Directive 76/769/EEC (effect
1 June 2009).

Shortly after the entry into force of the REACH Regulation,
Regulation (EC) 440/2008 was approved, which includes a list of
23 test methods for ecotoxicity assessment to be applied for the
purposes of REACH Regulation [11]. Ten of the tests included in
this list are performed using live animals, both vertebrates (fish) and
invertebrates, and are the following: three acute toxicity tests for
fish, Daphnia sp., and algae, respectively, two more tests using fish
for bioconcentration and for growth of juveniles, a short-term
toxicity test on fish embryos, a toxicity test using earthworms,
two acute tests on honeybees, and a reproduction test using Daph-
nia magna. The remaining 13 tests do not use animals: a test for
determination of ready biodegradability, three tests to evaluate
degradation (two for biochemical and chemical oxygen demands,
and a test for abiotic degradation measuring hydrolysis as a function
of pH), four tests to evaluate biodegradation (Zahn-Wellens test,
Modified SCAS test and two tests using activated sludges), a
method for evaluation of adsorption/desorption, two tests using
soil microorganisms (nitrogen and carbon transformation tests),
and finally, two tests for aerobic and anaerobic transformation in
soil and in aquatic sediment systems.

2.2 Nanoforms in

Amended REACH

Regulation (EU) 2018/

1881

Recently the Commission Regulation (EU) 2018/1881 has
amended REACH Regulation regarding Annexes I, III, VI, VII,
VIII, IX, X, XI, and XII to address nanoforms of substances
[12]. On the basis of the Commission Recommendation of
18 October 2011 on the definition of nanomaterial, a nanoform
is a form of a natural or manufactured substance containing parti-
cles, in an unbound state or as an aggregate or as an agglomerate and
where, for 50% or more of the particles in the number size distribution,
one or more external dimensions is in the size range 1–100 nm,
including also by derogation fullerenes, graphene flakes and single
wall carbon nanotubes with one or more external dimensions below
1 nm.

From a risk assessment point of view, the Commission consid-
ers that the exposure pattern and toxicological and ecotoxicological
profiles of the nanoforms, as well as their behavior in the environ-
ment, may be influenced by particle size, shape, and surface proper-
ties. That is why they require a specific risk assessment and therefore
an appropriate specific risk management. The Commission also
considers that the existing qualitative or quantitative structure-
activity relationship (QSAR) does not yet allow us to prioritize
specific substances, and thus the information on insolubility should
be used alternatively to evaluate the toxicological and ecotoxico-
logical issues.
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Regarding the aspects mentioned above, Annexes VII, VIII,
and IX of REACH Regulation [9] were modified by the inclusion
of the following text in the corresponding introductory text of each
annex: “Without prejudice to the information submitted for other
forms, any relevant physicochemical, toxicological and ecotoxico-
logical information shall include characterisation of the nanoform
tested and test conditions. A justification shall be provided where
QSARs are used or evidence is obtained by means other than
testing, as well as a description of the range of the characteristics/
properties of the nanoforms to which the evidence can be applied.”

On the other hand, nanoforms may be grouped in sets of
nanoforms when they have similar physicochemical properties and
toxicological and ecotoxicological characteristics or they follow
similar patterns as a result of having similar chemical structures
(REACH Regulation Annex I modified). In any case, a nanoform
must only correspond to a single group of nanoforms. This Regu-
lation also mentions that certain physicochemical properties like
water solubility or partition coefficient in octanol/water serve as a
data input to QSAR and other predictive models. In any case, any
adaptation must be appropriately justified from a scientific point
of view.

2.3 Biocidal

Products Regulation

(EU) 528/2012

Regulation EU 528/2012 (Biocidal Products Regulation—BPR)
defines biocide product as any substance or mixture in the form in
which it is supplied to the user, consisting of, containing or generating
one or more active substances, with the intention of destroying, deter-
ring, rendering harmless, preventing the action of, or otherwise exert-
ing a controlling effect on, any harmful organisms by any means other
than mere physical or mechanical action. The Regulation also
includes in this definition “any substance or mixture, generated
from substances or mixtures which do not themselves fall under
the first indent, to be used” with the same purposes cited
above [13].

The Biocides Regulation has been in force since 1 September
2013, repealing Directive 98/8/EC [14]. This Regulation has the
purpose to improve the functioning of the internal market of
biocidal products, guaranteeing a high level of protection of both
human and animal health and the environment. For that, all provi-
sions concerning the protection of human and animal health and
the environment are based on the precautionary principle, taking
special care of the protection of vulnerable groups.

In this Regulation, the active substance (substance that has an
action on or against harmful organisms) and the biocidal products
are treated separately. In regard to the active substances, the main
scope of this Regulation is the establishment at Union level of a list
of substances that may be contained in biocidal products. With
respect to biocidal products, this Regulation lays down rules for
authorization for the market and use.
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In accordance to the BPR Regulation, manufacturers and
importers must supply data on the substances, such as chemical
identity, annual volume manufactured or imported, concentration
of active substance in the biocidal product, and, when needed, any
information on potential risks of significant and relevant impurities
and non-active substances present in the product. In addition, they
must supply information on its residues of toxicological or environ-
mental significance. Regarding the assays submitted for approval of
an active substance as biocide, these must be done according to the
methods included in the Regulation (EC) 440/2008 [11] laying
down test methods pursuant to REACH Regulation. If validated
methods are not available, appropriated and internationally recog-
nized scientific methods could be used, but their appropriateness
must be adequately justified. In the case of nanomaterials, justifica-
tions on scientific appropriateness of the methods must be also
submitted. In the case of mixtures, when valid data on each of the
components are available and synergistic effects are not expected,
the mixture can be classified according to REACH [9] and CLP
[10] Regulations.

The general rules for the adaptation of the data requirements
(Table 5) according to REACH Regulation are also applied to
biocides (Annex IV Regulation EU 528/2012) [13].

2.4 Plant Protection

Products Regulation

(EC) 1107/2009

In October 2009, the European Parliament and the Council
approved Regulation (EC) 1107/2009 concerning the placing of
plant protection products (PPPs) on the market [15]. The purposes
of this Regulation are to state rules for the authorization of plant
protection products (PPP) and their commercial forms and to
improve the functioning of their internal market together with an
improvement of the agricultural production; and all of this should
go hand in hand with the highest level of protection of both human
and animal health and the environment.

This Regulation shall apply to both plant protection products
and active substances. The definition of PPP according to this
Regulation is any product supplied to the user, consisting of or con-
taining active substances, safeners or synergists, and intended for one
of the following uses: protecting plants, influencing the life processes of
plants, preserving plant products, destroying undesired plants, check-
ing or preventing undesired growth of plants.

For the approval of active substances, safeners, and synergists, a
specific procedure and criteria must be followed. In this sense, from
an ecotoxicological point of view, they will only be approved if
potential risks may be considered as acceptable under PPP Regula-
tion. The uncertainties of the available data, severity of the harmful
effects, and the group of organisms that is expected to suffer
adverse effects by the intended use must be taken into consider-
ation in the assessment. The substance will be approved if, depend-
ing on the basis of the assessment of internationally recognized test

EU Regulations in Ecotoxicological Risk Assessment 15



guidelines, there is no evidence of endocrine disruption on nontar-
get organisms.

Also, substances may be approved if assessment of effects on
honeybee larvae and honeybee behavior demonstrates that their
appropriate use is not able to provoke a hazardous exposure for
honeybees or no adverse effects on colony survival and develop-
ment are expected.

In this Regulation, the presence of residues of the PPPs, due to
applications consistent with good plant protection practice, shall
not have any adverse effects on human health (including vulnerable
groups), animal health, and the environment, considering known
cumulative and synergistic effects.

Certain active substances contained in PPPs may be considered
as low risk (Article 22) to human and animal health and the envi-
ronment. According to this Regulation, carcinogenic and muta-
genic active substances shall not be considered of low risk. It is the
same with substances considered toxic to reproduction, very toxic,
or sensitizing. In addition, it shall also not be considered of low risk
if its half-life in soil is more than 2 months, its bioconcentration
factor (BCF) is higher than 100, and it is suspected to be an
endocrine disruptor, neurotoxic or immunotoxic substance.

2.5 Pharmaceuticals

in the Environment: EU

Strategic Approach

More than 3000 active pharmaceutical compounds are being cur-
rently used in Europe, and the sales of human medicines have been
increasing over the past three decades. Recently, in March 2019,
the European Commission has communicated to the European
Parliament, the Council, and the European Economic and Social
Committee its position on pharmaceuticals in the environment,
entitled European Union Strategic Approach to Pharmaceuticals in
the Environment [16]. In this communication, the EU recognizes
that residues may enter into the environment during the produc-
tion, use, and disposal of pharmaceuticals, which explains their
detection in surface water and groundwater systems, soil, wildlife
tissues, and even drinking water. The concentrations of pharma-
ceuticals in different parts of the ecosystems will depend on certain
properties of the pharmaceutical itself, like chemical and metabolic
stability; but they will also depend on the nature and proximity of
the sources of release into the environment. Pharmaceuticals reach
the environment in different ways, such as effluents from wastewa-
ter treatment plants, animal manure, aquaculture, sewage sludge as
fertilizer, the pharmaceutical industry, veterinary treatments, etc. A
growing number and variety of pharmaceuticals are being detected
in the environment, such as antibiotics, anti-inflammatories, con-
traceptives, antidepressants, painkillers, hormones, or antiparasitics.
The European Commission recognizes that this is an emerging
problem, and well-documented evidence exists on the risks to the
environment, and, particularly, of great concern is the increase in
antimicrobial resistance in humans.
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It should be noted that the term pharmaceutical is applied to
any medical product, whether it be for human or veterinary use,
where the substances of main concern are the active pharmaceutical
ingredients, although their degradation products and relevant
metabolites must be also taken into account. Also, excipients and
the packaging material must be included. Although the EU recog-
nizes both the presence and effects of these substances on the
environment, it also recognizes that there is as yet no clear link
between pharmaceuticals in the environment and direct impacts on
human health. Of special concern are antimicrobials.

The Commission has selected the following four main objec-
tives of the strategic approach: (1) identify actions to be taken or
further investigated to address the potential risks from pharmaceu-
tical residues in the environment, with special attention to antimi-
crobial resistance; (2) encourage innovation and promote the
circular economy through recycling of water, sewage sludge, and
manure; (3) identify other knowledge gaps proposing possible
solutions; and (4) take special care so that proposals to address
the risks do not impede access to safe and effective pharmacological
treatments.

The European Commission Communication on the European
Union Strategic Approach to Pharmaceuticals in the Environment
set out the following six areas for action [16]:

1. Increase awareness and promote prudent use of pharmaceuti-
cals (including antimicrobials), including cooperation, among
others, with the World Health Organization.

2. Support the development of pharmaceuticals intrinsically less
harmful for the environment, and promote greener
manufacturing.

3. Improve environmental risk assessment and its review, mainly
collaborating with the European Medicines Agency (EMA)
and Member States and considering the findings of recent
REACH evaluations.

4. Reduce wastage and improve the management of waste, in
collaboration also with the EMA and Member States, improv-
ing urban wastewater treatment, improving the Codes of Good
Agricultural Practices, considering the next evaluation of the
Industrial Emissions Directive, etc.

5. Expand environmental monitoring to know more about the
concentrations of pharmaceuticals in the environment in order
to improve the ERAs and to give better coverage to certain
pharmaceuticals in all parts of the environment, for example,
cytotoxics, X-ray contrast media, antimicrobial-resistant
microorganisms, etc.

6. Fill other knowledge gaps, such as further research on ecotoxi-
city and environmental fate of those pharmaceuticals not yet
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subject to ERA, linkage between antimicrobial in the environ-
ment and development and spread of antimicrobial resistance,
possible effects on humans exposed chronically to low levels of
pharmaceuticals via the environment, and cost-effective meth-
ods for reducing the presence of pharmaceuticals in slurry,
manure, and sewage sludge.

2.5.1 Environmental Risk

Assessment of Medicinal

Products

As with other chemical substances, EU legislation on medicinal
products for human and veterinary uses has been elaborated on
the premise that they will be safe not only for human and animal
health, respectively, but also for the environment. In the particular
case of veterinary medical products, the assessment of ecotoxicity
required by the Directive 2001/82/EC [17] has changed to an
environmental risk assessment (ERA) in the new Regulation 2019/
6 [18] (repealing Directive 2001/82/EC) for all new applications
that require marketing authorization. Also, in this last Regulation,
the ERA for veterinary medicinal products will be different depend-
ing on whether the product contains or consists of genetically
modified organisms. Finally, this Regulation sets out a provision
for a review of rules for ERA by 28 January 2022.

In the case of medicinal products for human use, the assess-
ment of potential risks to the environment [19] is a stepwise,
phased procedure, consisting of two phases (Table 6). This guide-
line is applied to all human medicinal products excepting those
containing genetically modified organisms (GMOs) [20].

Phase I. Estimation of exposure. In this phase substances
should be screened for persistence, bioaccumulation, and toxicity
in accordance to the Test Guidelines of the European Chemical
Bureau [21] followed by calculation of Predicted Environmental
Concentration (PEC), which is only carried out in the aquatic
compartment.

Table 6
The phased approach in the environmental risk assessment (EMEA 2006)

Stage in
regulatory
evaluation

Stage in risk
assessment Objective Method

Test/data
requirement

Phase I Pre-
screening

Estimation of exposure Action limit Consumption data,
logKow

Phase II Tier A Screening Initial prediction of risk Risk
assessment

Base set aquatic
toxicology and fate

Phase II Tier B Extended Substance and compartment-
specific refinement and risk
assessment

Risk
assessment

Extended data set on
emission, fate, and
effects
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Phase II. It is conducted by evaluating PEC/PNEC ratio and is
divided into two parts, Tiers A and B. In Tier A (initial environ-
mental fate and effect analysis), information on physicochemical
properties of the substance, as well as the fate in the environment, is
obtained. In Phase II Tier A, seven types of study may be carried
out, all of them in the aquatic compartment. The recommended
protocols are adsorption/desorption test, ready biodegradability
test, aerobic and anaerobic transformation in aquatic sediment
systems, growth inhibition test on algae, Daphnia
sp. reproduction test, fish early-life stage toxicity test, and activated
sludge respiration inhibition test [22]. In addition, a groundwater
assessment will be performed. When needed the substance will be
assessed following procedures of the Phase II Tier B (extended
environmental fate and effects analysis). In Tier B, water sediment
effects, specific effects on aquatic microorganisms, and another five
tests in the terrestrial compartment will be performed. These five
tests are aerobic and anaerobic transformation in soil, nitrogen
transformation test on soil microorganisms, growth test on terres-
trial plants, acute toxicity test on earthworm, and reproduction test
on Collembola [22].

2.6 Classification,

Labeling, and

Packaging Regulation

(EC) 1272/2008

Since June 2015, Classification, Labeling and Packaging (CLP)
Regulation (EC) 1272/2008 [10] is the only law in force in the
European Union on classification and labeling of substances and
mixtures, being directly applicable to industrial sectors. Its main
objective is to ensure a high protection level for human health and
the environment, as well as free movement of substances, mixtures,
and products. Regulation amends REACH (EC) 1907/2006 [9]
and both the Dangerous Substances (67/548/EEC) and Prepara-
tions (1999/45/EC) Directives. This Directive determines how
substances and their mixtures must be classified and labeled accord-
ing to their human and environmental hazards. Manufacturers,
importers, or downstream users must assess all available informa-
tion related to hazardous properties of a substance or mixture; and
when no data are available, toxicological and ecotoxicological assays
must be carried out according to the OECD principles of good
laboratory practice (GLP) and the REACH Regulation or any
recognized methods validated. It must be noted that testing on
humans and nonhuman primates is prohibited, but in certain cases
assays using laboratory animals have to be performed; in which
case, all procedures must follow the legal requirements for the
protection of animal experimentation (Directive 2010/63/EU)
[23]. This Directive includes an explicit reference to the 3Rs prin-
ciple: replace, reduce, and refine. The replacement is to use alterna-
tive methods replacing the use of animals with non-animal
procedures or protocols. The aim of reduction is to obtain the
needed information with lower number of animals killed. Finally,
with refinement measures, it is possible to minimize the distress,
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suffering, or pain in animals used in experimentation, improving
their welfare. This type of alternative method includes chemical
properties, QSAR models and predictions, in vitro tests, and appli-
cation of new technologies such as proteomics or genomics. In this
sense, one of the ECHA priorities is to promote alternatives to
animal testing to assess risks to the environment and human health.

2.7 EU Water

Framework Directive

2000/60/EC

The Water Framework Directive (WFD) 2000/60/EC [24] is,
together with REACH Regulation [9], one of the most relevant
legislative acts of the European environmental policy for ecotox-
icologists. In accordance withWFD, the Commission shall submit a
list of priority pollutants selected from among those presenting a
significant risk to or via the aquatic environment as part of a
strategy against water contamination. This strategy should include
measures of control such as the progressive reduction and/or ces-
sation of discharges, emissions, and losses. In 2001, the Commis-
sion adopted the Decision 2455/2001/EC [25] establishing the
first list of priority substances, and 7 years later, the Environmental
Quality Standards Directive (EQSD) 2008/105/EC set the quality
standards as required in the WFD [26]. The priority list includes
33 substances or groups of substances showing a significant risk;
11 of them are considered as priority hazardous substances. This list
includes plant protection products, polyaromatic hydrocarbons
(PAH), existing chemicals, biocides, metals, polybrominated
diphenyl ethers (PBDE), etc. Regarding groundwater, the
European Parliament and the Council adopted measures to control
pollution of groundwater, promoting also a specific strategy (Direc-
tive 2006/118/EC) [27].

On the other hand, Directive 2013/39/EU [28], amending
Directive 2008/105/EC [26], considers that it is necessary to
collect high-quality monitoring data of substances together with
toxicological and ecotoxicological effects related to them to carry
out risk assessments able to justify appropriately their inclusion as
new priority substances. The Directive in force also considers that
there is a lack of routine monitoring data for many emerging
contaminants at the Union level, which could pose risks derived
from their potential toxicological and ecotoxicological effects.
Accordingly, Article 8b (Watch list) considers the preparation of a
new list of substances for which monitoring data at the Union level
is needed to support the priority list. This list will contain no more
than ten substances or groups of substances indicating complemen-
tary information about appropriate analytical methods, matrices to
be monitored, etc. Concretely, for pharmaceutical substances, Arti-
cle 8c requires the EC to implement a strategic approach to con-
tamination of water by the presence of pharmaceutical compounds,
including the environmental impacts of pharmaceuticals to be con-
sidered in the procedure for placing medical products on the mar-
ket. Finally, this article also requires the Commission to propose
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measures to reduce emissions, discharges, and losses of hazardous
medical products in aquatic ecosystems, balancing costs and effec-
tiveness and always under the premise of the safeguarding of public
health.

2.8 Crosscutting

Legislation in

Ecotoxicology Tests

In the sections dealing with REACH [9] and CLP [10] Regula-
tions, it has been mentioned the need to prioritize the selection of
methods and tests not using animals, thereby avoiding needless
animal sacrifices (replacement of animal tests). Together with the
replacement measures, the other 2R measures (reduction and
refinement) must be implemented. In addition to REACH [9]
and CLP [10] Regulations, all European regulations and directives
abovementioned, and any other European legislative act that
requires information on risks to human health and the environ-
ment, special attention is paid to the application of 3Rs principles
for animals used for experimentation. In accordance to these reg-
ulations, companies are responsible for providing information on
the hazards, risks, and safe use of chemical substances that they
manufacture or import. It is for these reasons that all toxicological
and ecotoxicological information required in each one of these
regulations or directives, independently of the type of active sub-
stance, mixture, product, or article, have to be performed comply-
ing with the requirements of protection of laboratory animals set
out in the Directive 2010/63/EU of the European Parliament and
the Council of 22 September 2010 on the protection of animals
used for scientific purposes [23].

According to Directive 2010/63/EU [23], the Member States
must ensure that a procedure is not carried out if there is a method
recognized under Union legislation, not entailing the use of live
animals. In addition, this Directive sets out four key criteria to
choose between procedures with live animals: (a) use the minimum
number of animals throughout the procedure; (b) involve animals
with the lowest capacity to experience pain, suffering, distress, or
lasting harm; and (c) cause the least pain, suffering, distress, or
lasting harm to the animals. In any case the chosen method must be
the most likely to provide satisfactory results. The Directive also
recommends replacing death as the end point of a procedure by
early and humane end points.

The European legislative acts (Regulations and Directives) also
pay special attention to the application of good laboratory practice
(GLP) in all ecotoxicological and toxicological assays, which are set
out in Directive 2004/10/EC of the European Parliament and of
the Council [29]. In spite of this, all Regulations on chemicals
include the possibility to comply with other international standards
recognized by the Commission.
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3 European Strategy for a Nontoxic Environment

In 2013, the European Parliament and the Council adopted the 7th
Environment Action Programme (7th EAP) to 2020 [30]—Living
well, within the limits of our Planet, mandating the European
Commission to implement and develop by 2018 a “Union strategy
for a non-toxic environment that is conducive to innovation and
the development of sustainable substitutes including non-chemical
solutions.” In mid-2017, the final report of this mandate was
published [31]. In it, the main gaps and deficits in the current
status in policies and legislation were identified, proposing the
need for a global framework additional to REACH Regulation
[9] for protection of human health and the environment (i.e.,
minimizing the exposure) from harm provoked by hazardous che-
micals. Some of these knowledge gaps and deficits are copied
literally in Table 7.

Following a detailed analysis of the weaknesses or deficiencies
identified, the report concluded that the efforts should be concen-
trated at improving the knowledge on chemicals; promoting

Table 7
Gaps and deficits identified in policies and legislation in the EU (DG Environment 2017)

Remaining gaps in knowledge on health and environment hazardous properties of chemical substances

Slow progress in identification of substances of very high concern (SVHC) and in substitution of
hazardous chemicals in industrial processes and products

Lack of information concerning chemicals in articles, including imported articles, and the resulting
exposure

Insufficient attention to hazardous chemicals in material flows important for a circular economy

Deficits in the framework for protection of children and other vulnerable groups, e.g., from chemicals in
products such as textiles, electronics, and other consumer products

The still insufficient management of a number of aspects related to exposure and toxicity (sometimes
termed “emerging issues”), such as combination effects; cumulative, low-dose, and long-term
exposure; endocrine disruptors; neurotoxicity; protection of children and vulnerable groups; and
chemicals in articles including in waste, material recycling, and the circular economy

Insufficient knowledge of the occurrence of chemical substances in the environment and technosphere,
as well as the societal costs of the resulting exposure

Insufficient means to address risks posed by chemicals on the basis of persistence alone

Lack of monitoring of environmental compartments concerning possible buildups of chemical
contamination and health and environmental risks thereof, in particular with respect to sources of
water intended for human consumption

Need for better incentives for development of new, nontoxic substances as well as nonchemical solutions

Need for more comprehensive compilation of monitoring data at EU level and establishment of an early
warning system
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measures of substitution, especially of very persistent compounds;
promoting innovation and development of nontoxic chemicals and
materials in products and articles; and reducing chemical exposures
as well as promoting circular economy. In addition, special atten-
tion should be paid to more efficiently protect vulnerable groups,
mainly children, along with the development of early warning
systems for detecting chemical threats to human health and the
environment. The report also proposed, in risk assessment and in
risk management, changing from the current chemical by chemical
to groupings of chemical approaches.

The study of the DG for Environment [31], finally, proposes a
type of hierarchy in chemical policy and management that may be
explained with an inverted pyramid with six steps, starting in the
upper level, with the principle of avoiding the production and use
of substances of concern, followed by elimination of all unessential
uses of substances of concern, including very persistent substances,
thus minimizing the chemical exposure. The following steps seek to
design non-/less-toxic chemicals and products, and, finally, the last
step is for remediation measures to mitigate risks from legacy
chemicals. This last phase includes technologies for decontamina-
tion of recycled materials, recovery of substances from wastes, and
destruction of the hazardous substances.

4 Overview

The free movement of all types of chemical substances and products
containing them, as well as enhancing competitiveness and innova-
tion in EU, should be compatible with the highest standards of
protection on the environment, animal health, and public health.
For that, all provisions concerning them are based on three main
sets of principles: precautionary, 3Rs in animal testing, and good
laboratory practice principles.

Looking further ahead, the EU is working on a strategy toward
a nontoxic environment that is conducive to innovation and the
development of sustainable substitutes including nonchemical
solutions.
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Chapter 2

A Brief Introduction to Quantitative Structure-Activity
Relationships as Useful Tools in Predictive Ecotoxicology

Rahul Balasaheb Aher, Kabiruddin Khan, and Kunal Roy

Abstract

This introductory chapter highlights the applications of quantitative structure-activity relationships
(QSARs) in the assessment of ecotoxicological risk posed by the chemicals used in our day-to-day life and
in the industries. A wide variety of chemicals (industrial substances/toxicants/pollutants) are emitted into
the environment from various sources. These chemicals may be pharmaceuticals, personal care products,
nanomaterials, plasticizers, flame retardants, endocrine disruptors, pesticides, persistent organic pollutants
(POPs), etc. The continuous emissions of chemicals into the environment and the resultant pollution
effects and potential exposure of living organisms and humans to these noxious substances may pose a risk
to the ecosystem and human health. The experimental determination of toxicities of these chemicals
involving different aquatic organisms and laboratory animals is a lengthy, time-consuming, and costly
process. In this scenario, QSAR is quite useful for the prediction of toxicities of these chemicals prior to
their use on a large scale. QSAR models could also be used further to predict the toxicity of any designed
chemicals and would thus be helpful for green chemical design.

Key words QSAR, Pollutants, Toxicants, Ecotoxicity, Aquatic organisms, Contaminants of emerging
concern (COEC), Data gap, Read-across

1 Introduction

The industrial chemicals have become an essential part of human
life due to their applications in different facets. The major domains
where these chemicals play a crucial role include health care, veteri-
nary medicine, agriculture, research, and day-to-day utilities. Expo-
nential rises in the demand of industrial chemicals have served as a
major source for contamination of the surroundings (air, water, and
land). The slow release of these chemical entities into the environ-
ment is attributed to their persistence, bioaccumulation, and toxic-
ity (PBT) behaviors [1]. However, the major concern arises when
these chemicals prove to have potential to behave like chronic
accumulator slowly leading to deformities of body organs or inter-
nal body functions in the living systems mainly due to hormonal
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imbalances. Substances like engineered nanoparticles are proved to
have carcinogenic effect in several organisms [2]. The progressive
accumulation of synthetic chemicals mainly in water bodies is
attributed to overexploitation, irrational use, and improper pre-
treatment by sewage treatment plants prior to release in river
bodies. Although the attentions paid to study ecotoxicity profile
of these contaminants have increased several folds in the recent
decades, we cannot manage experimental toxicity determinations
of all chemicals against a huge number of endpoints. However, one
can rely upon intelligent in silico tools which can be utilized in data
gap filling of large number of chemicals using a small number of
experimental data. The computational tools employed in ecotoxi-
city of environmental contaminants include quantitative structure-
activity relationship (QSAR), toxicophore modeling, and related
approaches [3]. This introductory book chapter focuses on QSAR
and its applications in ecotoxicological studies of environmental
pollutants. The QSAR approach has several merits as this can be
used in predicting responses of unknown and untested chemicals
utilizing a limited data, thus proving to be time- and cost-effective.
It also serves as a tool or medium to protect animal’s lives in the
laboratory thus being acceptable from the ethical point of view
[4]. Due to these encouraging features, QSAR is recommended
for risk assessment of chemicals by various regulatory agencies like
the US Environmental Protection Agency (US EPA); Agency for
Toxic Substances and Disease Registry (ATSDR); European Centre
for the Validation of Alternative Methods (ECVAM) of the
European Union; European Union Commission’s Scientific Com-
mittee on Toxicity, Ecotoxicity, and Environment (CSTEE);
etc. [5].

2 Definition and Constituents of QSAR

2.1 What Is QSAR? QSAR modeling is a statistical approach correlating the structural
information of chemicals (including pharmaceuticals, cosmetics,
agrochemicals, ionic liquids, nanomaterials, etc.) with endpoints/
response values (activity/property/toxicity) using chemometrical
techniques. The chemical information corresponds to the chemical
domain space, which is derived in terms of descriptors (indepen-
dent variables) using different software tools. The endpoint is the
dependent variable obtained from an experiment, which is modeled
using the following general equation:

Endpoint Activity=toxicity=propertyð Þ
¼ f chemical structureð Þ ð1Þ

Equation 1 can be used to determine the biological activity,
toxicity, property, etc. in a quantitative manner. Depending upon
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the type of endpoint modeled, the modeling technique may be
named as quantitative structure-activity relationship (QSAR),
quantitative structure-toxicity relationship (QSTR), quantitative
structure-property relationship (QSPR), etc. Sometimes, the activ-
ity or toxicity terms themselves may be used as additional descrip-
tors as in case of quantitative structure-activity-activity relationship
(QSAAR), quantitative structure toxicity-toxicity relationship
(QSTTR), etc. Here, the current chapter has been written by
considering only the QSAR/QSTR aspects of modeling.

The selection of data (chemical/biological) is one of the pri-
mary steps for the success of any cheminformatic study, including
QSAR. For the development of QSAR models, two different types
of data information are required, i.e., biological data (endpoints)
and chemical data in terms of molecular descriptors. The feature
selection method is then used to select appropriate number of
meaningful and informative descriptors before applying any mod-
eling algorithm for model development. The flowchart for the
development of QSAR/QSTR model is given in Fig. 1.

Fig. 1 Flowchart for development of a QSAR/QSTR model
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2.1.1 Biological Data The biological data are experimental endpoints, which may be
activity/toxicity values (IC50, EC50, LD50, etc.). The activity/tox-
icity values are obtained from the dose-response curve. The con-
centration values such as IC50, EC50, and LD50 are inhibitory,
effective, and lethal concentration which inhibit/effect/kill 50%
of the test population. The concentration values are expressed in a
molar unit and then converted to negative logarithmic scale, so that
a higher value in the positive scale represents higher activity and
vice versa. The following points are to be considered while selecting
any biological data for modeling:

1. As per Organisation for Economic Co-operation and Develop-
ment (OECD) guideline no. 1 [6], the QSAR model should
have a defined endpoint. There should be transparency in the
endpoint being predicted by the model. The compounds hav-
ing well-defined activity should only be taken for the model
development. Another important point is that the compounds
used for the model development must have same mode/mech-
anism of action.

2. The range of the endpoint values should be at least logarithmic
scale of 3–4 units. The conventional metrics of validation (R2,
Q2, r2pred) are response range-based parameters [7]; hence,
care should be taken that the data points are uniform and
there should not be any gaps.

3. All the compounds should be tested using same assay protocol
under same experimental conditions.

4. The dataset is to be properly curated prior to the use. One
should also be careful for considering the data points with
activity cliff information [8].

5. One should be careful while selecting/working with small
datasets. The issue of working with small data points is really
a big problem in QSARmodeling. The scarcity of data points is
due to unavailability of the experimental observation such
activities/toxicities or properties of nanomaterials [9].

2.1.2 Chemical Data/

Descriptors

The descriptors give information relevant to the chemical space,
which is considered during model development to find the correla-
tion between activity values and molecular descriptors. The follow-
ing points are to be considered while calculating or selecting the
descriptors:

1. All the chemical structures should be thoroughly checked and
curated to remove any possible error before calculation of
descriptors

2. 3D descriptors should be taken into consideration while con-
sidering the enantiomeric form of compounds. For 3D
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descriptors, conformational aspects and energy minimization
should be considered.

3. Compounds in racemic and salt forms should not be used for
descriptor calculation. Any salt form is to be converted to the
corresponding acidic or basic form prior to the calculation.

4. The descriptor pool is to be thinned or reduced by considering
the criteria of variance or correlation coefficient cutoff values to
remove constant and intercorrelated descriptors.

2.1.3 Molecular

Descriptors: Different

Types

According to Todeschini and Consonni [10], a chemical descriptor
is defined as “the final result of a logic and mathematical procedure
which transforms chemical information encoded within a symbolic
representation of a molecule into a useful number or the result of
some standardized experiment.” A key step in classical QSAR/
QSTR modeling is the encoding of a chemical compound into a
vector of numerical descriptors. Different descriptors used for the
QSAR study can be classified into 2D and 3D classes as shown in
Table 1.

Table 1
Description of 2D and 3D descriptors for the QSAR study

Dimension of
descriptors Class of the descriptors Representative examples

2D Topological Balaban index, kappa shape index, molecular connectivity
index, subgraph count, Chi indices, Wiener, Zagreb,
electrotopological

Structural Molecular weight, number of rotatable bonds, H-bond
acceptor, H-bond donor, chiral centers

Physicochemical
parameters

LogP, ALogP, ALogP98, AlogP_atypes, MolRef

Extended topochemical
atom (ETA) indices

First- and second-generation ETA indices

Constitutional indices Number of atoms, number of non-H atoms, number of
bonds, number of aromatic bonds, sum of atomic van der
Waals volumes (scaled on carbon atom), etc.

Functional indices Number of terminal primary C(sp3), number of total
secondary C(sp3), number of ring secondary C(sp3),
number of unsubstituted benzene C(sp2), number of
isocyanates (aliphatic), etc.

3D Electronic Dipole, highest occupied molecular orbital (HOMO),
lowest unoccupied molecular orbital (LUMO),
superdelocalizibility

Spatial Radius of gyration, Jurs descriptors, area, density, volume,
PMImag
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2.1.4 Division

of the Dataset

In order to ascertain the performance of a predictive model, the
whole dataset is to be divided into a training set and a test set based
on the chemical similarity. The training set is employed for devel-
oping the model (i.e., the equation), while the test set (not used
during model development) is used to judge the external predictiv-
ity of the model. Since the training set is employed for building the
model, usually a higher number of compounds are allotted to it as
compared to the test set. The total dataset is divided such that the
test set compounds lie within the chemical space of the training set,
i.e., the training set becomes representative of the test set. The
methods of the dataset division may involve (a) Euclidean distance
(diversity-based) [11], (b) Kennard-Stone [12], (c) k-means clus-
tering [13], (d) sorted response [14], etc.

2.1.5 Feature Selection Descriptor selection is one of the most important steps while
selecting the meaningful descriptors from a large pool of descriptor
set. One cannot use the entire descriptor pool for modeling, since it
is computationally expensive and time-consuming. For regression-
based modeling, methods like stepwise selection, genetic method,
factor analysis, etc. are to be used for selecting an appropriate
number of descriptors [15].

2.1.6 Modeling

Algorithms

and Chemometric Tools

Used in QSAR

As per the OECD guideline no. 2 [6], the model should be devel-
oped by using an unambiguous algorithm, i.e., there should be
transparency in the description of the modeling algorithm. This
includes the formalisms implemented during data pretreatment,
dataset division, selection of features, and model development.
The commonly employed linear modeling algorithms suggested
by the OECD include univariate linear regression (ULR), multiple
linear regression (MLR) [16], ordinary least squares (OLS), partial
least squares (PLS), principal component analysis (PCA) [17],
principal component regression (PCR), etc. The OECD guideline
also suggests performing a priori feature selection using mechanis-
tic basis or an evolutionary technique, e.g., genetic algorithm (GA),
as well as techniques such as principal component analysis (PCA) or
factor analysis (FA), etc. [15].

Different model building tools used in QSAR can simply be
grouped into three broad categories, namely, regression-based
approach, classification-based approach, and machine learning
[18]. The regression-based approach is applied when quantitative
(continuous) dependent (response) and independent (descriptors)
variable values are available (as seen in case of multiple linear
regression). The classification-based approach is for graded
response data where response is available in a Boolean form such
as active/inactive and positive/negative (as seen in linear discrimi-
nant analysis, logistic regression, and cluster analysis). The machine
learning approach does not follow explicit programmed instruc-
tions and thus constructs and develops its own learning based on
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data provided (as seen in case of artificial neural network, Bayesian
neural network, decision tree, and random forest protocol).

2.1.7 Checking Domain

of Applicability

of Developed Models

A QSAR model developed using a set of chemicals possesses a
specific theoretical space, and it is considered to provide reliable
predictive result within that domain [19]. Thus, the determination
of applicability domain of a model using the training set molecules
is necessary to check whether the prediction of test set molecules is
trustworthy or not (as per OECD guideline no. 3) [6]. The appli-
cability domain of a model depends on three major attributes,
(a) structural information, (b) physicochemical features, and
(c) response space. Because of the possible involvement of multiple
mechanistic basis in various regulatory endpoints, QSAR models
can be developed on specific chemical classes acting via same mech-
anism of action. Sometimes, a single general QSARmodel might be
unable to distinguish chemical classes and thereby might not pro-
vide definite estimate with respect to a specific chemical class. In
order to achieve global applicability, the OECD guideline suggests
the development of (a) multiple predictive models for the same
endpoint on different domain of applicability combined to give a
global estimation or (b) use of statistical method giving global
modeling attribute across multiple mechanism of actions with
respect to a same endpoint. By the suitable use of the domain of
application of available QSAR models, one can identify the data
gaps by comparing the domain of chemicals with respect to each
defined regulatory endpoint.

2.1.8 Validation of QSAR

Models

Once the model is developed, it is necessary to check whether the
model is statistically significant or not [20]. The fourth principle of
the proposed OECD guideline [6] emphasizes statistical validation
of models in terms of goodness-of-fit, robustness, and predictivity.
The predictive quality of a developed QSAR model can be statisti-
cally characterized by computing several quality parameters as well
as validation metrics. The aim of different parameters is to judge the
accuracy of prediction, i.e., determination of closeness between the
experimental and model derived predicted value. The model fitness
can be determined by computing metrics such as coefficient of
determination or correlation coefficient using the training set, i.e.,
the set used for model development. This parameter portrays the
extent of achieved correlation between the experimental and pre-
dicted response value, while robustness or stability can be deter-
mined by introducing a perturbation into the model, e.g., by
deletion of samples from the training set and redeveloping the
model. The external predictivity refers to the predictive quality
determined using test set chemicals which were not employed
during the model development. The internal validation metrics
included correlation coefficient (R2), adjusted R2 (Ra2), leave-
one-out (Q2), etc., whereas the external validation metrics included
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R2
pred, etc. Additional metrics such as r2m,Δr2m for the training, test

and overall sets [21], and mean absolute error (MAE)-based criteria
can also be used to check quality and performance of the developed
models [7].

2.1.9 Mechanistic

Interpretation of the QSAR

Model

The fifth OECD principle is associated with a “mechanistic inter-
pretation,” wherever such an interpretation can be made. Clearly, it
is not always feasible to provide a mechanistic interpretation of a
given QSAR model, and thus the principle suggests the modeler to
report if any such information is available facilitating the future
research on that endpoint. The specific information on the mecha-
nism of action of chemicals toward a process can guide the design
and development of desired analogues [22].

2.1.10 A Few Important

Issues in QSAR

There are several prerequisites for the preparation of experimental
data ready for QSAR/QSTR analysis [18]. Usually the concentra-
tions or doses required for a fixed response such as EC50, ED50,
IC50, or LD50 values are used as the response for activity- or
toxicity-based QSAR analyses. The concentration values should
be expressed in a molar unit and in a negative logarithmic scale so
that a higher value represents higher activity or toxicity. There
should be a good degree of freedom to ascertain statistical sound-
ness of a QSAR model. Therefore, the number of observations
based on which a model is developed should be considerably high
with respect to the number of descriptors (constraints) used in the
modeling. Although this aspect is less important for more robust
techniques, the use of sufficient number of training compounds
cannot be ignored even in case of machine learning techniques.
QSAR researchers frequently experience the problem of modeling
small datasets, as for several endpoints, sufficient number of experi-
mental observations might be unavailable. Multiple linear regres-
sion (MLR) is a commonly used method for activity- and toxicity-
based classical-type QSARs, while it presents several problems like
intercorrelation among descriptors, bias in descriptor selection due
to a fixed composition of the training set, inability to handle many
descriptors in the model, etc. This problem may be overcome by
using a more robust modeling technique like partial least squares
(PLS) [23], which converts the original set of descriptors into a
lower number of latent variables (LVs) which are functions of the
original descriptors. The dataset with a small number of data points
needs a special attention during modeling. A double cross-
validation technique [24, 25] may be of help in such cases. In this
approach, the validation is done in two loops: in the inner loop, the
training set is further divided into “n” calibration and validation
sets resulting in diverse compositions, which are further utilized for
model building and model selection, while the test set in the
external loop is exclusively used for the model assessment. In
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another approach, consensus predictions have been applied in sev-
eral studies as more reliable than individual model derived predic-
tions, as the former takes into account contribution of maximum
possible combination of important descriptors. This approach can
also afford greater chemical space coverage. Recently, an intelligent
consensus modeling method has been reported considering that a
single QSAR model may not be equally good for predictions for all
query compounds [26]. It is also important to evaluate the reliabil-
ity of predictions [27, 28] for untested compounds, which may not
be dependent solely on applicability domain.

Those readers who wish to learn in detail about the basics of
QSAR are encouraged to refer a relevant published literature [18]
as the current introductory chapter emphasizes more on applica-
tion of QSAR in ecotoxicity predictions.

2.2 Ecotoxicity

Predictions

Ecotoxicity deals with the ability of chemical, biological, or physical
stressors to have an adverse effect on the environment and the
organisms living in it, such as fish, wildlife, insects, plants, and
microorganisms. Such stressors might occur in the natural environ-
ment at densities, concentrations, or levels high enough to disrupt
the natural biochemistry, physiology, behavior, and interactions of
the living organisms that comprise the ecosystem (https://en.
wikipedia.org/wiki/Ecotoxicity). The various forms of environ-
mental toxicity include aquatic toxicity, developmental toxicity,
carcinogenicity and genotoxicity, and toxicity to human and envi-
ronment due to drugs, cosmetics, biological products, hazardous
chemicals [29], food, and agrochemicals [30–32]. All these forms
of toxicities will prove fatal to humans and every other form of life if
not controlled at the beginning stage.

The toxicity assessment of environmental pollutants or con-
taminants of emerging concern (CECs) is a daunting task that
involves multiple testing conditions and endpoints. The lack of
experimental data, and gaps in the existing data points, has created
an opportunity to the computational chemists to fill the missing
data points by performing the modeling studies.

3 Why QSAR in Ecotoxicity Predictions: Can It Really Reduce Animal
Experimentation?

The aroused concern of regulatory/monitoring bodies in imple-
mentation of QSAR in ecotoxicity of various environmental pollu-
tants is already discussed above. In addition, the idea of developing
alternative testing strategies (ATS) also known as intelligent testing
strategies (ITS) or risk assessment strategies (RAS) has become a
central point of extensive discussion in the last 5 years through
many scientific research projects. The common environmental
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pollutants include diethyl phthalate, bisphenol A (BPA), pharma-
ceuticals (climbazole), pesticides, cleaning products, laundry deter-
gents, fabric softeners, fragrance chemicals, oven cleaners,
disinfectants, phosphates, plasticizers, oil spills, etc. The accumula-
tions of these chemicals in the environmental bodies are enough to
disrupt the natural flora (plant life) and fauna (animals) of the
environment.

QSARs are the potential tools for predicting the properties or
toxicity of chemicals including their physicochemical attributes,
health effects, and ecotoxicity. QSAR models thus are used to
categorize chemicals in terms of their potentially hazardous nature.
The prediction of toxicity by QSAR does not require lengthy and
costly experiments involving the use of plants or animals. Hence,
the QSAR models can be utilized for the assessment of new and
existing chemicals in conformity with regulatory requirements
within the scope of Organisation for Economic Co-operation and
Development (OECD).

Researchers can use the developed QSAR models comprising
the information of known chemical substances/toxicants/pollu-
tants (training set compounds) to predict/classify the activity/
property/toxicity of new substance. The new substances may be
pesticides, solvents, pharmaceuticals, industrial chemicals, or class
of persistent organic pollutants (POPs). POPs are organic com-
pounds that are resistant to environmental degradation through
chemical, biological, and photolytic processes. Examples of some of
the POPs, which are present on the Stockholm Convention list, are
given in Table 2 (https://en.wikipedia.org/wiki/Persistent_
organic_pollutant). Because of their persistence, POPs bioaccumu-
late and have potential adverse impacts on human health and the
environment. The prior information of these types of compounds
that are predicted as hazardous earlier prior to their use will enable
the researchers either to skip the use of that new substance or find
some eco-friendly alternatives, which are safe and less hazardous.
Compounds predicted as POPs by the QSARmodels will be imme-
diately discarded, which will prevent the bioaccumulation, persis-
tence, and toxicity of these chemicals to the humans and aquatic
life. This is a cost-effective and efficient way to eliminate potentially
toxic substances and focus on those that appear not to be harmful.
This way we can avoid spending time on animal testing of the
substances which have been predicted to be harmful. Hence, the
QSAR models will remain a good alternative to animal testing
today and in future as well (http://sciencenordic.com/can-we-
avoid-animal-testing-entirely).

Moreover, the use of expert system for the toxicity screenings
of chemicals and pharmaceuticals further reduces the expenditure
and avoid the sacrifice of a large number of animals. The expert
systems are enriched with the broader information of structural and
activity regions in comparison with the local QSAR models. Thus,
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they have advantages over the use of traditional QSAR models in
toxicity prediction.

4 Ecotoxicological Data Sources, Expert Systems, and Freely Available QSAR Tools

The experimental data for the ecotoxicological modeling could be
collected from different scientific journals or web-based databases
depending upon the toxicity endpoints. Some of the publicly avail-
able databases which contain the information of toxicity data are
given in Table 3.

Expert systems are knowledge-based computer prediction sys-
tems available to predict the endpoints related to chemicals and
pharmaceutical toxicity. The expert system also provides structural
alerts to identify fragments mediating different toxicities. There is a
continuous need to enrich the existing expert systems with the
plethora information of local models and to develop new expert
systems in future for the ease of toxicity screenings of chemicals and
pharmaceuticals in less time. The different freely available and
commercial expert systems to predict the endpoints of chemicals
and pharmaceutical toxicity are given in Table 4.

A software tool is one of the major components of the study
required for performing different tasks involved in the QSAR mod-
eling. Different steps where the software is required are

Table 2
Name of POPs present on the Stockholm convention list

S. no. POPs S. no. POPs

1 Aldrin 12 Polychlorinated dibenzofurans

2 Chlordane 13 Chlordecone

3 Dieldrin 14 α-Hexachlorocyclohexane (α-HCH) and
β-hexachlorocyclohexane (β-HCH)

4 Endrin 15 Hexabromodiphenyl ether (hexaBDE) and
heptabromodiphenyl ether (heptaBDE)

5 Heptachlor 16 Lindane

6 Hexachlorobenzene (HCB) 17 Pentachlorobenzene (PeCB)

7 Mirex 18 Tetrabromodiphenyl ether

8 Toxaphene 19 Perfluorooctanesulfonic acid (PFOS)

9 Polychlorinated biphenyls (PCBs) 20 Endosulfans

10 Dichlorodiphenyltrichloroethane
(DDT)

21 Hexabromocyclododecane

11 Dioxins
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Table 3
Freely available databases containing information on the human, animal, and environmental toxicity

Types of toxicity S. no.
Name of
databases Websites

Pesticide-induced toxicity 1 EXTOXNET http://extoxnet.orst.edu/ghindex.html
2 NPIC http://npic.orst.edu/
3 PAN pesticide http://www.pesticideinfo.org/
4 ToxRefDB https://catalog.data.gov/dataset/toxcast-

toxrefdb

Aquatic toxicity 5 ECOTOX http://cfpub.epa.gov/ecotox/
6 ESIS https://old.datahub.io/dataset/esis
7 TEXTRATOX https://vetmed.tennessee.edu/Pages/

utcvm_home.aspx
8 TOXNET https://toxnet.nlm.nih.gov/
9 USGS https://www2.usgs.gov/science/cite-view.

php?cite¼1336
10 OECD HPV

database
https://hpvchemicals.oecd.org/ui/Default.
aspx

11 N-class database,
KemI

https://www.kemi.se/en/prio-start/before-
starting/contents-of-the-database/
substance-names-and-synonyms

12 Riskline, KemI http://www.inchem.org/pages/kemi.html

Carcinogenesis and
genotoxicity

13 Cal/EPA https://oehha.ca.gov/chemicals
14 CCRIS https://toxnet.nlm.nih.gov/cgi-bin/sis/

htmlgen?CCRIS
15 CPDB https://toxnet.nlm.nih.gov/cpdb/
16 GENE-TOX https://toxnet.nlm.nih.gov/cgi-bin/sis/

htmlgen?GENETOX
17 IARC

Monograph
http://monographs.iarc.fr/

18 ISSCAN http://alttox.org/resource-center/
databases/

19 LAZAR http://www.in-silico.de/
20 Oncology Tools https://www.accessdata.fda.gov/scripts/

cder/onctools/animalquery.cfm
21 RITA https://reni.item.fraunhofer.de/reni/

public/rita/

Developmental toxicity 22 BDSM https://kundoc.com/pdf-data-input-
module-for-birth-defects-systems-
manager-.html

23 DevTox https://www.devtox.org/index_en.php

(continued)

38 Rahul Balasaheb Aher et al.

http://extoxnet.orst.edu/ghindex.html
http://npic.orst.edu/
http://www.pesticideinfo.org/
https://catalog.data.gov/dataset/toxcast-toxrefdb
https://catalog.data.gov/dataset/toxcast-toxrefdb
http://cfpub.epa.gov/ecotox/
https://old.datahub.io/dataset/esis
https://vetmed.tennessee.edu/Pages/utcvm_home.aspx
https://vetmed.tennessee.edu/Pages/utcvm_home.aspx
https://toxnet.nlm.nih.gov/
https://www2.usgs.gov/science/cite-view.php?cite=1336
https://www2.usgs.gov/science/cite-view.php?cite=1336
https://www2.usgs.gov/science/cite-view.php?cite=1336
https://hpvchemicals.oecd.org/ui/Default.aspx
https://hpvchemicals.oecd.org/ui/Default.aspx
https://www.kemi.se/en/prio-start/before-starting/contents-of-the-database/substance-names-and-synonyms
https://www.kemi.se/en/prio-start/before-starting/contents-of-the-database/substance-names-and-synonyms
https://www.kemi.se/en/prio-start/before-starting/contents-of-the-database/substance-names-and-synonyms
http://www.inchem.org/pages/kemi.html
https://oehha.ca.gov/chemicals
https://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?CCRIS
https://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?CCRIS
https://toxnet.nlm.nih.gov/cpdb/
https://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?GENETOX
https://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?GENETOX
http://monographs.iarc.fr/
http://alttox.org/resource-center/databases/
http://alttox.org/resource-center/databases/
http://www.in-silico.de/
https://www.accessdata.fda.gov/scripts/cder/onctools/animalquery.cfm
https://www.accessdata.fda.gov/scripts/cder/onctools/animalquery.cfm
https://reni.item.fraunhofer.de/reni/public/rita/
https://reni.item.fraunhofer.de/reni/public/rita/
https://kundoc.com/pdf-data-input-module-for-birth-defects-systems-manager-.html
https://kundoc.com/pdf-data-input-module-for-birth-defects-systems-manager-.html
https://kundoc.com/pdf-data-input-module-for-birth-defects-systems-manager-.html
https://www.devtox.org/index_en.php


Table 3
(continued)

Types of toxicity S. no.
Name of
databases Websites

Industrial chemical-induced
toxicity to human and
environment

24 ACToR https://actor.epa.gov/actor/home.xhtml
25 CEBS https://tools.niehs.nih.gov/cebs3/views/

index.cfm?action¼main.dataReview&bin_
id¼2781

26 Danish (Q)SAR
Database

http://qsar.food.dtu.dk/

27 DSSTox https://www.epa.gov/chemical-research/
distributed-structure-searchable-toxicity-
dsstox-database

28 HERA https://www.heraproject.com/
RiskAssessment.cfm

29 Household
Products
Database

https://hpd.nlm.nih.gov/

30 IRIS https://www.epa.gov/iris
31 ITER https://toxnet.nlm.nih.gov/newtoxnet/iter.

htm
32 JECDB http://dra4.nihs.go.jp/mhlw_data/jsp/

SearchPageENG.jsp
33 JRC QSAR

Database
https://qsardb.jrc.ec.europa.eu/qmrf/

34 MRL https://www.atsdr.cdc.gov/mrls/index.html
35 NTP https://ntp.niehs.nih.gov/
36 RAIS https://rais.ornl.gov/
37 SCOGS https://www.fda.gov/food/

ingredientspackaginglabeling/gras/scogs/
default.htm

38 STITCH http://stitch.embl.de/
39 Toxtree http://toxtree.sourceforge.net/

Drug, biological products,
food, and agrochemical-
induced toxicity

40 AERS https://healthdata.gov/dataset/adverse-
event-reporting-system-aers

41 CEDI/ADI
Database

https://www.fda.gov/food/
ingredientspackaginglabeling/
packagingfcs/cedi/default.htm

42 CERES https://cfpub.epa.gov/si/si_public_record_
report.cfm?Lab¼NCCT&
dirEntryId¼231472

43 DITOP https://omictools.com/ditop-tool
44 Drugs@FDA https://www.fda.gov/Drugs/

InformationOnDrugs/ucm135821.htm
45 EAFUS https://www.fda.gov/food/

ingredientspackaginglabeling/
foodadditivesingredients/ucm115326.
htm

46 FDA Poisonous
Plant Database

https://www.accessdata.fda.gov/scripts/
plantox/index.cfm

47 MRTD http://mediformatica.com/index.php?
option¼com_content&view¼article&
id¼540&Itemid¼9
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Table 4
Freely available and commercial expert systems to predict endpoints related toxicity predictions

S. no. Expert system Manufacturer and website

1 ASTER
(ASsessment Tools for the Evaluation of
Risk)

https://cfpub.epa.gov/si/si_public_record_
Report.cfm?Lab¼NHEERL&
dirEntryID¼74887

2 CAESAR
(Computer Assisted Evaluation of industrial
chemical Substances According to
Regulations)

http://www.caesar-project.eu/

3 DEREK
(Deductive Estimation of Risk from Existing
Knowledge)

Lhasa Ltd.
https://www.lhasalimited.org/?cat¼2&sub_
cat¼64

4 ECOSAR
(Ecological Structure Activity Relationships)

https://www.epa.gov/tsca-screening-tools/
ecological-structure-activity-relationships-
ecosar-predictive-model

5 HazardExpert Pro CompuDrug Inc.
https://www.compudrug.com/

6 MCASE/ MC4PC http://www.multicase.com/products/

7 OASIS&TIMES http://oasis-lmc.org/products/software/times.
aspx

8 OECD (Q)SAR
Application Toolbox

http://www.oecd.org/env/ehs/risk-assessment/
oecdquantitativestructure-
activityrelationshipsprojectqsars.htm

9 ONCOLOGIC https://www.epa.gov/tsca-screening-tools/
oncologictm-computer-system-evaluate-
carcinogenic-potential-chemicals

10 OSIRIS
property explorer

Organic Chemistry Portal
http://www.organicchemistry.org/prog/peo/
tox.html

11 SARET
(Structure-Activity Relationships for E
nvironmental Toxicology)

https://www.tandfonline.com/doi/full/10.
1080/10590500802135578?src¼recsys

12 TERA
(Tools for Environmental Risk Assessment)

TERAbase is a part of expert system created by
Prof. S.M. Novikov and co-authors from the
A.N. Sysin Research Institute of Human
Ecology and Environmental Health of Russian
Academy of Medical Sciences

13 TerraQSTR– FHM http://www.terrabase-inc.com

14 TIMES-SS
Times MEtabolism Simulator platform

Marketed by LMC
University “As Zlatarov,” Bourgas, Bulgaria

15 TOPKAT
(TOxicity Prediction by C(K)omputer A
ssisted Technology)

Accelrys Inc.
http://www.3dsbiovia.com/products/topkat/
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normalization/standardization of data, data pretreatment and
curation, dataset division, model development and validation,
determining applicability domain, etc. A freely available software
tool enables any researchers to run, copy, and distribute the tool
anywhere in the scientific community. We have enlisted some of the
freely available QSAR software tools in Table 5.

5 Applications of QSAR in Ecotoxicological QSAR Studies

The application of QSAR modeling is increasing in the areas of
pharmaceuticals (drug design, predictive toxicology) [33], chemi-
cals (ionic liquids [34, 35], agrochemicals [31], persistent organic
pollutants (POPs), reaction optimization, etc.), nanotechnology
[36–38], material sciences, cosmetics [39], and food sciences and
also in regulatory field. Here, we have discussed in brief selectively
the application of QSAR modeling in toxicity prediction of ionic
liquids (ILs), nanomaterials, and contaminants of emerging con-
cern (CECs) [40]. Ionic liquids are being considered as green
replacements (“environmental friendly”) for industrial volatile
organic compounds. But still the solubility of ILs in water and a
number of literature documenting toxicity of ILs to aquatic organ-
isms highlight a real cause for concern. More and more

Table 5
Freely available software tools for QSAR modelling

S. no. Software Developer/institute Platform Website

1 ACD/ChemSketch ACD labs, Toronto, Ontario, Canada Windows https://www.acdlabs.
com/resources/
freeware/
chemsketch/

2 CORAL-QSAR/
QSPR

Istituto di Ricerche Farmacologiche
Mario Negri IRCCS, Milan, Italy

Windows http://www.insilico.
eu/coral/

3 DTC-lab tools DTC-lab, Department of
Pharmaceutical Technology,

Jadavpur University, Kolkata, India

Windows http://teqip.jdvu.ac.
in/QSAR_Tools/

4 QSARINS University of Insubria, Department of
Theoretical and Applied Sciences,
Italy

Windows http://www.qsar.it/

5 PaDEL-Descriptor Department of Pharmacy,
Pharmaceutical Data Exploration
Laboratory, National University of
Singapore

Windows http://www.
yapcwsoft.com/
dd/
padeldescriptor/

6 PBT profiler United States Environmental
Protection Agency

Windows http://www.
pbtprofiler.net/
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nanomaterials are expected to be used in consumer products. This
is expected to lead to an increased human exposure to nanomater-
ials in their daily lives. Therefore, the effect of nanomaterials pres-
ent in human environment is an area of increasing scientific interest.
Chemicals of emerging concern (also called “contaminants of
emerging concern” or “CECs”) can include nanoparticles, phar-
maceuticals, personal care products, estrogen-like compounds,
flame retardants, detergents, and some industrial chemicals with
potential significant impact on human health and aquatic life. These
three classes of chemicals are widely being used on a larger scale in
chemical industries, and continuous discharge of these chemicals
into the environment poses a major serious health risk to humans,
animals, and other forms of life.

5.1 QSAR Models

for Toxicity of Ionic

Liquids

The ionic liquids are gaining attention as future “green solvents”
within scientific and industrial community. They are designed to be
inflammable, nonvolatile, with lower vapor pressure, nontoxic, and
nonexplosive media with a high thermal stability. Due to lower
vapor pressure, they are not expected to accumulate in the atmo-
spheric environment. But, due to their high aqueous solubility, they
may contribute to the aquatic pollution or toxicity.

Despite having these desirable physicochemical properties,
ionic liquids must have been tested for their ecotoxicity before
commercialization. As more combination of ILs could be devel-
oped, the experimental toxicity prediction of every liquid is labori-
ous, costly, and time-consuming. This necessitates the development
of predictive models as an alternative to replace costly and laborious
manual toxicity measurements.

Numerous studies have reported the toxicity of diverse IL
subfamilies against different organisms including green algae, Vib-
rio fischeri (V. fischeri), gram-positive and gram-negative bacteria,
and fish. These studies suggest that the ionic liquids cannot be fully
considered as the greener class of chemicals, and it is important to
predict its toxicities to the environment prior to their production
and usage on the industrial scale [41]. We have discussed below
some of the recent applications of QSAR models in ecotoxicity
prediction of the ionic liquids.

A diverse set of 269 ILs containing 9 cationic cores and
44 types of anions were used to develop 3D-QSTR models. The
models were developed to make a correlation between the struc-
tural information of the ionic liquids (ILs) and their cytotoxicity
toward leukemia rat cell line IPC-81 using partial least squares
(PLS) and support vector regression (SVR) methods. Genetic algo-
rithm (GA) was used to select the best and interpretative subset of
variables for the predictive model building. These models can
reduce the amount of cellular testing necessary by predicting the
toxicological functions of the chemical structures [42].

A QSAR model in accordance with the OECD guidelines was
developed using a larger dataset of 305 ionic liquids and their
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ecotoxicity values based on the luminescence inhibition of V. fischeri
bacterium species. V. fischeri is a gram-negative, rod-shaped bacte-
rium and considered as an important member in the marine ecosys-
tem. It can be easily applied as a test organism for assessment of
toxicity of chemicals in the aquatic systems. The models were
developed using topological and quantum chemical descriptors.
The developed QSAR models using PLS method were validated
experimentally, by designing a low predicted toxicity ILs, subse-
quently synthesized and experimentally tested their toxicity against
V. fischeri. These models could be used to design and prepare new
ionic liquids with reduced toxicity profile [43].

Das et al. (2005) developed the interspecies quantitative
structure-toxicity-toxicity relationship (QSTTR) models of ionic
liquids which allow the extrapolation of data when the toxicity
data toward one organism are absent. They utilized the toxicity
data of ionic liquids toward three aquatic organisms, viz., a bacte-
rium (V. fischeri), a cladoceran (Daphnia magna), and a green alga
(S. vacuolatus). These models could be used to fill the data gaps and
aid future studies on assessment of hazard of ILs [44].

Imidazolium-based ionic liquids containing different functio-
nalized and unsaturated side chains were evaluated for cytotoxicity
toward the channel catfish ovary (CCO) cell line. The experimental
cytotoxicity data of 14 different imidazolium ionic liquids in CCO
cells, with EC50 values, were used to develop quantitative structure-
toxicity relationship (QSTR) models using regression- and
classification-based approaches. It was observed that the toxicity
of ILs toward CCO was chiefly related to the shape and hydropho-
bicity parameters of cations. These models could be utilized to
predict the environment risk assessment of new ILs before produc-
tion and application at the industrial scale [45].

Ghanem et al. 2016 developed linear and nonlinear QSAR
models using a diverse set of 110 ILs comprising a combination
of 49 cations and 29 anions along with their ecotoxicity data against
bioluminescent bacterium V. fischeri. The model was developed
using σ-profile descriptor and multiple regression method. The
selected descriptor set from the linear model was then used in
high multilayer perceptron (MLP) technique to develop the non-
linear model. These models can be used as the primary step for
screening and designing inherently safer ILs [41].

5.2 QSAR Models

for Nanomaterial

Toxicity (Nano-QSAR)

The use of nanoparticles such as metal oxide NPs, C60 NPs (fuller-
ene), etc. has grown exponentially during this decade due to their
extraordinary properties, covering a wide range of products in the
optoelectronics, pharmaceutical, medical, cosmetics and sunsc-
reens, solar batteries, space technology, environmental engineering,
self-cleaning windows, textile industries, and so on. However, the
risk to human health (cytotoxic, mutagenic or carcinogenic effects)
and environment for most of them is still not well established.
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Alternative routes for risk assessment based on in silico methods
avoid the highly expensive and time-consuming toxic evaluation of
nanoparticles (NPs) in the laboratory. Lack of sufficient data and
low adequacy of experimental protocols hinder comprehensive risk
assessment of nanoparticles (NPs). QSAR is one of the chemo-
metric methods which correlates the physicochemical properties
of nanomaterials with their cytotoxic, mutagenic, or carcinogenic
potential, and the developed mathematical models could be very
efficiently utilized to predict their toxicity in an efficient manner.
We have discussed below some of the recent applications of QSAR
models in toxicity prediction of the NPs.

“Quantitative conditions-property/activity relationships”
(QCPR/QCARs) models of fullerene C60 NPs were developed
using an experimental data of two endpoints. The endpoint-1 is the
bacterial reverse mutation test (Ames) that was conducted using
Salmonella typhimurium strains TA100; and the endpoint-2 is
mutagenic effect of fullerene for E. coli strain WP2. The regression
models were developed by means of optimal descriptors calculated
with the Monte Carlo method by using CORAL software. These
models could be utilized to predict the mutagenic potential of
fullerene nanoparticles under different conditions [46].

Multi-target quantitative structure-toxicity relationship
(mt-QSTR) models were developed for diverse metal oxide NPs
using a multiple (four different) toxicity endpoints based on the
experimental cytotoxicity data in E. coli (under dark-induced and
photoinduced conditions) and in human keratinocyte (HaCaT) cell
line following the OECD guidelines. The models were constructed
for an individual toxicity prediction, and an mt-QSTR model was
developed for simultaneous prediction of the multiple toxicity end-
points. These models would largely help to reduce the cost and
computational efforts in generating information on the toxicities of
new NPs for their safety evaluation [47].

Kar et al. (2014) developed the QSTR models using simple
periodic table-based descriptors (cost-effective) for prediction of
cytotoxicity of metal oxide NPs to bacteria E. coli. The cytotoxicity
data of 17 metal oxides to bacteria E. coli have been taken to
develop and validate the QSTR models. These simple descriptors
included metal electronegativity (χ), the charge of the metal cation
corresponding to a given oxide (χox), atomic number, and valence
electron number of the metal. The models were developed using
stepwise MLR and PLS methods, respectively. The simple descrip-
tors highlighted in this study and the developed models would be
utilized for future prediction of cytotoxicity of metal NPs with
probable mechanistic interpretation [9].

Nano-QSARmodels for metal oxide NPs were developed using
novel descriptors to predict the cytotoxicity of various NPs
[48]. The nano-specific theoretical descriptor was proposed by
integrating codes of certain physicochemical features into
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SMILES-based optimal descriptors to characterize the nanostruc-
ture information of NPs. The new descriptors were applied to
model metal oxide NP cytotoxicity to both E. coli bacteria and
HaCaT cells. These developed models would reliably predict the
cytotoxicity of novel NPs solely from the newly developed descrip-
tors and provide guidance for prioritizing the design and manufac-
ture of safer nanomaterials with desired properties.

5.3 QSAR Models

for Toxicity

of Contaminants

of Emerging Concern

(CECs)

The United States Geological Survey (USGS) defined the CECs as
“any synthetic or naturally occurring chemical or any microorgan-
ism that is not commonly monitored in the environment but has
the potential to enter the environment and cause known or sus-
pected adverse ecological and/or human health effects [49].” The
contaminants of emerging concern (CECs), including pharmaceu-
ticals and personal care products (PPCPs) [50], are increasingly
being detected at low levels in surface water, and there is concern
that these compounds may have an impact on aquatic life. Conven-
tional waste water and recycled water treatment are only partially
effective in their removal or for their degradation, so they are
discharged into the environment with treated waste water effluent,
recycled water, and waste water plant sludge [49].

PPCPs are the unique group of emerging environmental con-
taminants, which include numerous chemical classes with very
unique physiochemical properties and biological activities. Pharma-
ceuticals are used to treat a variety of human and animal diseases
depending on their pharmacological action. Personal care products
are commonly used in applications to improve the quality of daily
life and include cosmetics, shampoos, soaps, deodorants, sunsc-
reens, and toothpastes. There are many CECs and PPCPs that act
as so-called endocrine disruptors (EDCs) [51]. EDCs are com-
pounds that alter the normal functions of hormones resulting in a
variety of health effects. EDCs can alter hormone levels leading to
reproductive effects in aquatic organisms, and evaluating these
effects may require testing methodologies not typically available
along with endpoints not previously evaluated using current
guidelines.

The accumulation of PPCPs and EDCs in different compart-
ments of environments even in microlevel is raising a serious con-
cern to the human, aquatic, and other forms of life. It is necessary
to evaluate the potential impact of PPCPs and EDCs on the aquatic
life and have an approach for determining protective levels for
aquatic organisms (https://www.epa.gov/wqc/contaminants-
emerging-concern-including-pharmaceuticals-and-personal-care-
products). We have discussed here some of the recent application of
QSAR models in ecotoxicity prediction of the PPCPs and EDCs.

Khan et al. (2017) [39] developed the QSTR models for toxic-
ity of cosmetic ingredients on three different ecotoxicologically
relevant organisms, namely, Pseudokirchneriella subcapitata,
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D. magna, and Pimephales promelas, following the OECD guide-
lines. The dataset was collected from ECOTOX database and con-
sisted of variety of PCPs including soaps, creams, shampoo, body
lotion, sunscreen agent, and fragrances. The models were devel-
oped using partial least squares method. Predictions obtained by
the derived QSTR models and ECOSAR tools were used to com-
pare and rank the PCPs based on their average scaled aquatic
toxicity values. These models could be utilized for the design and
synthesis of safer cosmetics.

Three different QSTR models were developed by Gramatica
et al. (2016) [52] using a dataset of 534 PCPs showing ecotoxicity
against three aquatic tropic levels of organisms, i.e., algae
(P. subcapitata), Daphnia (D. magna), and fish (P. promelas).
These models were developed by the GA-OLS method and were
applied to prioritize the most toxic compounds among about
500 PCP ingredients without experimental data. The predicted
values obtained from these models are more similar to the available
experimental values, if compared with those obtained by the com-
monly used software ECOSAR. These models could be utilized for
the prediction of the acute aquatic toxicity of organic ingredients of
personal care products (PCPs) and to design the new PCP that
could be a possible “safer alternative” of a recognized hazardous
chemical.

A quantitative activity-activity relationship (QAAR) models
were developed by Sangion et al. (2016) [53], using the ecotoxico-
logical data of standard organisms internationally accepted in the
standard guidelines for the testing of chemicals (D. magna,
P. promelas, and Oncorhynchus mykiss). The interspecies models
were developed using the simple linear regression and multiple
linear regression methods. These models are helpful tools for the
prioritization of the most hazardous compounds. Also the pro-
posed invertebrate-fish interspecies models can reduce the more
complex experimental tests on upper trophic organisms and save
animal lives. The models could also be applied to help the REACH
requirement of a reduction of animal testing by gathering and
extrapolating information from tested to untested animals, as well
as from tested to untested chemicals through the integration of
testing and in silico approaches.

Khan et al. (2019) [5] developed QSTR models for pharma-
ceuticals using the ecotoxicological data of four different aquatic
species, namely, P. subcapitata, D. magna, O. mykiss, and
P. promelas [54]. Genetic algorithm (GA) was used for feature
selection followed by partial least squares regression technique
according to the OECD guidelines. A double cross-validation
methodology was employed for selecting the best models. The
obtained robust consensus models were utilized to predict the
toxicity of a large dataset of approximately 9300 drug-like mole-
cules in order to prioritize the existing drug-like substances in
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accordance to their acute predicted aquatic toxicities. These models
could be utilized to predict the acute toxicity of pharmaceuticals
before their usage on the industrial scale.

QSTRmodels for CECs were developed [55] using the toxicity
data of 75 CEC compounds to D. japonica, 47 compounds to
D. magna, and 19 compounds against P. promelas. The considered
CECs included ionic and nonionic surfactants, UV filters, hor-
mones and endocrine disrupting agents (EDCs), preservatives,
pharmaceuticals, and organophosphates. Besides the QSTR mod-
els, QSTTR models were also developed for the toxicity prediction
of CEC compounds through interspecies relationship for 47 CECs
between D. japonica and D. magna (daphnia) and for 19 com-
pounds between D. japonica and P. promelas (fish). These models
can be used in toxicity evaluation, screening and prioritization, and
development of risk management measures in a scientific and regu-
latory frame.

Khan et al. (2019) [56] developedQSTR and i-QSTTRmodels
using toxicity data of 144 endocrine disruptor chemicals (EDCs)
toward 14 different species falling in 4 different trophic levels. The
models were developed using genetic algorithm followed by PLS
regression method. These models can be employed in library
screening, in regulatory decisions, and in the design of safer alter-
natives in order to reduce environmental hazards caused by EDCs.

6 Read-Across (RA) as a Tool to Predict Missing Ecotoxicological Data

In recent years, with emergence of ITS, predicting missing ecotox-
icological data with read-across (RA) has become an attractive and
pragmatic alternative. The RA works on the principle based on the
structural similarity, i.e., following an assumption that similar struc-
tures should exhibit similar physicochemical, toxicological, and
ecotoxicological properties [2]. Conceptually, RA may act like
local QSAR models. The read-across model is derived from mole-
cules with similar nature in terms of structure or functions. In RA,
similarly grouped chemicals with a defined endpoint are used to
predict the same endpoint for other chemicals. The following four
schemes have been proposed in read-across data gap filling,
(1) one-to-one, one-to-many, many-to-one, and many-to-many.
As per the official OECD guidelines [6], read-across (quantitative)
can be conducted with either of the following concepts:

l Performing read-across using the endpoint value of a similar
chemical entity

l Applying a scale (mathematical) to the trend in experimental
data with two/more similar chemicals with respect to target
molecule
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l Processing response values from two/more source chemicals

l Taking the most conservative value among the source data if
sufficient data is available

Here, we have discussed in brief the application of RA in
toxicity prediction or data gap filling.

6.1 Application

of Read-Across

in Ecotoxicological

Data Gap Filling

The applications of RA in ecotoxicological data gap filling have been
restricted mainly to nanomaterials/nanoparticles so far. Gajewicz
et al. [2] proposed a novel quantitative read-across (Nano-QRA)
approach using a simple and effective algorithm to give reliable
predictions of the missing data against E. coli and human keratino-
cyte (HaCaT) cell line for untested metal oxide nanoparticles. Nel
et al. (2013) [57] and Cockburn et al. (2012) [58] demonstrated the
use of RA in ranking of nanomaterials based on their level of acute
concentration in rodents. Sellers et al. (2015) [59] employed RA for
data gap filling of silver and titanium dioxide nanoparticles mainly in
fish. The data gap filling of in vitro genotoxicity using RA approach
was demonstrated by Lamon et al. (2018) [60], whereas for bacteria,
algae, protozoa, and human keratinocyte cell, it was demonstrated by
Sizochenko et al. (2018) [61]. George and colleague [62] ranked
metal oxideNPs based on their hazard-causing potential in zebra fish
using read-across technique.

7 Overview and Conclusion

Computational modeling of ecotoxicity prediction of diverse
organic chemicals, environmental pollutants, and contaminants of
emerging concern is one of the crucial aspects of ecotoxicological
risk assessment. These chemical substances/toxicants/pollutants
may be ionic liquids, nanomaterials, personal care products, phar-
maceuticals, persistent organic pollutants, endocrine disruptors,
etc. The experimental determination of toxicities of all these che-
micals involves multiple testing protocols and costly laboratory
experiments requiring sacrifice of a large number of animals. There-
fore, standard indicator organisms accepted in the guidelines for
the testing of chemicals are used. Different organisms of varied
trophic levels differ in their susceptibility to specific chemicals,
most likely due to their differences in accessibility, metabolic rate,
excretion rate, genetic factors, dietary factors, and stress level of the
organism. According to the literature reports, ionic liquid toxicity
against V. fischeri, D. magna, and S. vacuolatus; nanomaterial tox-
icity against S. typhimurium and E. coli; cosmetic and pharmaceuti-
cal toxicities against P. subcapitata,D. magna, and P. promelas; and
contaminants of emerging concern toxicities against D. japonica,
D. magna, and P. promelas have been experimentally studied to
determine the toxicity of those chemicals to the ecosystem (mainly
aquatic).
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QSAR modeling could be used for the development of statisti-
cally significant, robust, and reliable models of diverse chemicals
and environmental pollutants, and these models would be used
efficiently to predict the toxicity of new chemicals which are
expected to become pollutants or toxicants after its use at the
present or in the future. The chemical domain of these models
could be made wider by incorporating the chemical information
from huge toxicity databases. The wider domain of the models may
enable the researcher to predict the toxicity of almost any class of
chemicals reliably. These models do not require lengthy, timely, and
costly experiments which involve the use of plants or animals.
Hence, the QSAR models can be utilized for the assessment of
new and existing chemicals in conformity with regulatory require-
ments within the scope of OECD. Finally, with the introduction of
read-across technique, one can evaluate the potential negative
impact of nanomaterials (and also other classes of toxicants) to
the human health and the surrounding without the necessity of
performing expensive and time-consuming experiments. The appli-
cations of QSAR and read-across in predictive toxicology are
depicted in Fig. 2.

The present chapter has reviewed the applications of QSAR in
predictive ecotoxicology as a tool to replace costly experimental
procedures. It also gives a bird’s-eye view of the basic methodology
implemented in QSAR such as data collection, descriptor calcula-
tion, modeling algorithms, model validation, and interpretation.
Representative examples of QSAR studies in ecotoxicity prediction
for different chemical classes such as pharmaceuticals, cosmetics,
CECs, and NPs have also been discussed. The chapter also lists the
important databases containing ecotoxicity data for various

Fig. 2 Application of QSAR/QSTTR/RA in ecotoxicity of environmental contaminants
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ecologically important endpoints alongwith available software tools
used for toxicity predictions. We have also listed important regu-
latory bodies which encourage the use of QSAR in early detection
of hazardous materials. Finally, the application of read-across as tool
to fill the data gap in species where experimental data availability is
limited has also been mentioned. The chapter highlights the need
for developing ample number of QSAR models in order to compu-
tationally derive missing ecotoxicity data for different chemical
classes against various endpoints. In summary, QSARs have the
ability to make fast and reliable predictions which are faster than
experimental methods, thus justifying their relevance in early risk
assessment of chemicals.
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Chapter 3

Best Practices for Constructing Reproducible QSAR Models

Chanin Nantasenamat

Abstract

Quantitative structure-activity/property relationship (QSAR/QSPR) has been instrumental in unraveling
the origins of the mechanism of action for biological activity of interest by means of mathematical
formulation as a function of the physicochemical description of chemical structures. Of the growing
number of QSAR models being published in the literature, it is estimated that the majority of these models
are not reproducible given the heterogeneity of the components of the QSARmodel setup (e.g., descriptor,
learning algorithm, learning parameters, open-source and commercial software, different software versions,
etc.) and the limited availability of the underlying raw data and analysis source codes used to construct these
models. This inherently poses a challenge for newcomers and practitioners in the field to reproduce or make
use of the published QSARmodels. However, this is expected to change in light of the growing momentum
for open data and data sharing that are being encouraged by funders, publishers, and journals as well as
driven by the nextageneration of researchers who embrace open science for pushing science forward. This
chapter examines these issues and provides general guidelines and best practices for constructing reproduc-
ible QSAR models.

Key words Quantitative structure-activity relationship, Quantitative structure-property relationship,
Structure-activity relationship, QSAR, QSPR, SAR, Research reproducibility, Reproducibility, Repro-
ducible, Jupyter, Python

1 Quantitative Structure-Activity Relationship

Quantitative structure-activity relationship (QSAR) is an exciting
field that harnesses past biological activity data to drive further
experimentations by enabling the prediction/design of biological
activity of new compounds, deducing the important molecular
features giving rise to good or poor biological activity, prioritizing
compounds from a large chemical library, etc. [1, 2]. QSAR has
successfully been demonstrated to be useful for modeling a wide
range of biological and chemical endpoints as summarized in
Table 1.

In almost 60 years since the coining of the QSAR term by
Hansch [4], the field has evolved from classical QSAR models
(i.e., consisting of a few compounds and described by simple
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descriptors) to complex machine learning-based QSAR models
(i.e., encompassing several hundred to thousands of descriptors as
modeled by nonlinear learning algorithms) [5]. The field of QSAR
has witnessed its ups and downs [6] and has become pillars for drug
discovery [7] and regulatory purposes [8].

2 Laboratory Notebooks: Past and Present

Historically, the documentation of experimental results had tradi-
tionally been kept within the confinement of paper-based note-
books whereby the scientific benefit of which is to allow
subsequent reproduction of the documented experiment, while
its legal use is to serve as a proof of inventorship [9].

The electronic laboratory notebooks have been introduced as a
digital alternative to the paper-based version but with augmented
capabilities such as search capability, integration with instrumenta-
tion [10], as well as collaborative writing and archiving of results
figures and tables. Scientists are increasingly adopting the use of
electronic laboratory notebooks in their research laboratories
owing to the inherent need to organize the growing volume of
biological data [11] with the benefit of being able to access these
documents via the Internet at any place and time.

With the rising awareness on research reproducibility, scientists
are increasingly sharing these notebooks publicly so as to support
the open science initiative and in doing so fosters the sharing of
associated raw data and analysis code that would have otherwise
remained within the confinements of laboratory computers or indi-
vidual researcher’s personal computer (i.e., known as dark data).

Table 1
Summary of target biological and chemical endpoints investigated by QSAR models

Endpoints Examples

Physical and chemical
properties

Boiling point, melting point, octanol-water partition coefficient, water
solubility, etc.

Environmental fate Biodegradation, bioconcentration, adsorption/desorption in soil, etc.

Ecotoxicity Acute toxicity to fish, short-term toxicity to Daphnia, toxicity to plants,
etc.

Human health Acute inhalation toxicity, skin irritation, mutagenicity, etc.

Toxicokinetics Blood-brain barrier penetration, skin penetration, metabolism, etc.

Drug discovery Enzyme inhibition, enzyme activation, pharmacokinetics, etc.

Aside from the drug discovery class, other endpoints are categorized according to the convention described by Piir et al. [3]
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3 Data Sharing

Publishers of research journals are encouraging or requiring that
researchers share the scripts and codes used to analyze the data as a
condition of publication. Failure to do so (i.e., owing to privacy or
safety) may require a written statement justifying the reason. A
notable example is the appointment of reproducibility editors for
overseeing the code and data sets submitted by authors to the
Applications and Case Studies (ACS) section of the Journal of the
American Statistical Association (JASA). In an editorial article by
the Editor-in-Chief of the Journal of Chemical Information and
Modeling, William L. Jorgensen formulated a set of guidelines for
submitting QSAR work to the journal. A key issue pertaining to
data sharing is highlighted in one of the recommendation as fol-
lows: All data and molecular structures used to carry out a QSAR/
QSPR study are to be reported in the paper and/or in its Supporting
Information, or be readily available, without infringements or
restrictions. Furthermore, publishers (Springer Nature [12]) and
journals (PeerJ, PLoS One [13], etc.) have established similar
requirements. Of particular note, Vasilevsky et al. [14] performed
an analysis of the pervasiveness and quality of data sharing policies
in the biomedical literature and found that 11.9% of journals
explicitly stated that data sharing was required as a condition of
publication.

The advantage of imposing data sharing as a condition for
publishing is that potential unintended errors (e.g., missing data,
mislabeling, corrupted files, etc.) may be identified prior to publi-
cation, which would consequently solve any future problems that
may hamper the reproducibility of subsequent works [15]. On the
other side of the coin, possible reasons that authors may be reluc-
tant to share the proprietary data is that it would reveal the confi-
dentiality of compounds. In addressing this issue, Gedeck et al.
[16] described an approach for facilitating data sharing and the
development of collaborative QSARmodels while not revealing the
structural information. Polanski et al. [17] reviewed the contribut-
ing factors for robust QSAR models, and of particular note is their
proposition that QSAR is highly data dependent and that the
underlying data may inherently produce noise that may arise from
many factors such as the molecular conformation, computed
descriptors, algorithms used, etc.

4 Data, Chemical Structure, Conformation, and Descriptors

As we have seen, the data availability is an important prerequisite for
model reproducibility. Aside from this is a series of additional
hurdles and challenges that may affect the reproducibility of the
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QSAR model. Inherently, QSAR models are reliant on the under-
lying chemical structures that may produce a myriad of possible
descriptors that may range anywhere from simple descriptors to
various other dimensions ranging from zero-dimensional to
six-dimensional descriptors [18–20] as summarized in Table 2.

The concept of structure-activity cliffs [21, 22] demonstrated
that even a minor change in the chemical structure (i.e., addition or
deletion of a methyl group or even the stereoisomeric placement of
functional groups may be a deciding factor whether the compound
can or cannot bind to the intended target protein) can give rise to
significant changes to the observed activity. Such induced-fit of
ligands to their target proteins may be affected by the structure-
activity cliff concept, but a question arises as to the importance of
conformation on other sets of compounds. The bioactive confor-
mations of compounds are known to be principal drivers of their
resulting biological activity, and thus several QSAR studies have
addressed this area.

A notable example is the work of Guimarães et al. [23] in which
they performed an investigation comparing 2D and 3D QSAR
models for a set of halogenated anesthetics. Surprisingly, their
results indicated that the 2D model provided comparable perfor-
mance to that of the 3D model, thereby suggesting that the 2D
descriptors were also robust in their particular investigation. Thus,
one can conclude that the influence of the molecular conformation
on the resulting QSAR model is system dependent and must there-
fore be subjected to careful investigation on a case-by-case basis.

Table 2
Summary of different dimensions of molecular descriptors

Dimensions Description

Zero-dimensional
(0D)

Molecules are directly described by the chemical formula pertaining to atom
counts, molecular weight, sum/average of molecular property, etc.

One-dimensional
(1D)

Molecules are characterized by substructural features that consider the presence/
absence of molecular fragments or functional groups

Two-dimensional
(2D)

Molecules are described by the presence and type of chemical bonds that are used to
connect atoms together

Three-dimensional
(3D)

Molecules are perceived as a geometrical object in space that are characterized by
the nature and connectivity of atoms together with the their spatial
representation

Four-dimensional
(4D)

Representation of the molecule-receptor interaction by means of molecular
interaction fields that is generated from grid-based mapping of probes in relation
to thousands of evenly spaced grid points

Higher dimensions These high dimensional models may be characterized by different induced-fit and
solvation models

Adapted from Grisoni et al. [20]
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Another interesting work by Pissurlenkar et al. [24] tackled the
traditional paradigm of QSAR that is the concept of one chemical,
one structure, one parameter value as proposed by the authors.
Their development of the so-called ensemble QSAR (eQSAR)
model takes into account descriptors generated from a set of
low-energy conformers instead of the traditional approach of
using only one low-energy conformer. The study for the first time
establishes the possibility of incorporating conformation flexibility
into QSAR models and thus opens up a new area for further
exploration of this important paradigm. Recently, Wicker and Coo-
per [25] proposed a new molecular descriptor nConf20 based on
chemical connectivity for capturing the conformational space of a
molecule. To facilitate usage by the scientific community, the
authors also provided the Python code and the accompanying
data set (i.e., containing both the calculate molecular descriptors
and the class label that can be used for QSAR model building) in
the Supporting Information of their article.

5 QSAR Model Building Process

The general procedures for constructing QSAR models are sum-
marized in chronological order in Table 5 and Fig. 1. A more
in-depth treatment on recommendations and best practices for
QSAR model development is described by excellent review articles
by Dearden et al. [26] and Tropsha et al. [27, 28]. The concepts
presented in Table 5 and the aforementioned articles on best prac-
tices of QSAR model development help to ensure that robust and

Fig. 1 Schematic representation of the QSAR modeling workflow
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accurate models are built. In addition to this, there are emerging
efforts in the QSAR literature that is targeted at the following
issues:

1. Determine the confidence level for predictions obtained from
QSAR models through the use of conformal predictions.

2. Assess the modelability of data sets so as to elucidate the
feasibility of obtaining robust models [29].

3. Constructing interpretable QSAR models that can be of prac-
tical use for biologists and medicinal chemists [18].

4. Ensuring the reproducibility of QSAR models such that other
research groups can make use of or extend published models.

In efforts to encourage the development of high-quality QSAR
models, the Organization for Economic Cooperation and Devel-
opment (OECD) had formulated a simple set of rules as outlined in
Table 3. Criteria 2 of the OECD principles stressed that robust
QSAR models should have unambiguous algorithm. At first glance,
one would assume that details on the components used in the
formulation of the QSAR model that are described in the Materials
and Methods section of research articles would be enough to allow
reproducibility of the model. As such information are descriptive in
nature and as detailed as it may be, one can assume that there may
potentially be some elements of ambiguity that may consequently
lead to slightly different outcomes (if not different results) from
that of the original model. Roy et al. [30] had pointed out in their
investigation that QSAR are highly dynamic models that can easily
be perturbed upon changes in the underlying algorithm for descrip-
tor calculation, software version, or software availability using the
Dragon software. Moreover, a summary of factors influencing the
reproducibility of QSAR models based on our lab’s own experience

Table 3
Summary of OECD principles for QSAR model building

No. OECD principles Description

1 Defined endpoint To ensure clarity in the endpoint being predicted as they may be derived
from different experimental methods or conditions

2 Unambiguous
algorithm

To ensure that underlying details of the model is transparent so as to
facilitate model reproducibility

3 Defined applicability
domain

To define the biological/chemical landscape in which the model can
reliably make predictions

4 Measures of model
performance

To evaluate the internal and external predictive ability of the model

5 Mechanistic
interpretation

To ensure that the model can be interpreted such that the underlying
mechanism of action of compounds is revealed
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is provided in Table 4 while the summary of procedures for QSAR
model building is provided in Table 5.

Piir et al. [3] performed a systematic review of the QSAR
literature consisting of 1533 articles pertaining to 79 biological
and chemical endpoints. Their results indicated that 42.5% of arti-
cles may be potentially reproducible (i.e., and thus complies with
the five OECD principles) given that interested readers invest the
necessary effort in retracing the protocol step-by-step using the
same software and version. Furthermore, it was suggested that of
the machine learning algorithm used in the QSAR literature, mul-
tiple linear regression seemed to be afforded the most reproducibil-
ity owing to its simplicity (i.e., inclusion of MLR equations in the
research article). In spite of this, it was found that only 51% were
technically complete, while the other majority were lacking signifi-
cant details for reproducibility. Moreover, the authors also provided
recommendations and best practices for QSAR reporting.

Early efforts by Spjuth et al. [34] had laid important founda-
tions for interoperable QSAR data sets via the use of a QSAR
markup language (QSAR-ML) in which the authors established
the markup language to house meta data information that defines
pertinent information about the QSAR data set consisting of

Table 4
Key factors influencing the reproducibility of QSAR models

No. Factors Description

1 Data set To achieve reproducibility of a QSAR model, the original data set should be
available. At a minimum, this entails the provision of the chemical
representation and bioactivity values. Other useful information may
include references to the original data source

2 Chemical
representation

Availability of chemical representation such as IUPAC name, SMILES
notation or other forms of identifier number

3 Descriptors The provision of computed descriptors would help to solve any potential
issues pertaining to accessibility to commercial software or software
updates that may alter descriptor calculation results

4 Model’s
parameters/
details

Name and version of software used for multivariate analysis; learning
parameters used in the formulation of the model; classical QSAR models
readily provide this from the MLR equations

5 Predicted endpoint
values

Availability of the experimental and calculated endpoint values enable readers
to compare their own reproduction of the model with that of the original
model’s results

6 Data splits Availability of precise details as to which compound belongs to which data
splits (e.g., internal, external, calibration, or validation sets) would facilitate
comparison with the user’s reproduction of models. Details on data split
ratios (80/20 split or 70/30 split) or whether undersampling or
oversampling were used
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Table 5
Summary of procedures for QSAR model building

No. Procedures Description

1 Data compilation The very essence of QSAR models lies in the compilation of the data
set. Potential data sources include the primary literature and
curated/semi-curated bioactivity databases

2 Select data subset for
investigation

An extension of the previous step is selecting a subset of from the
original data set for further investigation data

3 Data curation and
pre-processing

This is probably the most time-consuming phase of the entire model
building process as it entails cleaning the data (e.g., dealing with
missing data), normalizing variables (e.g., logarithmic
transformation), removal of salts/metals/duplicates, normalizing
chemical structures (e.g., selecting appropriate tautomers), etc.

4 Descriptor calculation An important component of the model building process is deciding
how to represent the molecular features and physicochemical
properties of the compounds of interest. A wide range of open-
source and commercial software are available. Decisions will have to
be made as to use a few interpretable features or to use a large set of
features that may or may not be interpretable

5 Feature selection Once descriptors are generated, the initial set of descriptors are
normally subjected to removal of low variance variables followed by
removal of collinear (redundant) variables. Again, there exists a large
collection of algorithms for reducing the features (e.g., stepwise
linear regression, genetic algorithm, particle swarms optimization,
etc.)

6 Data balancing A common problem for the development of classification models is
that the classes of active and inactive compounds are often
imbalanced where either classes may be significantly smaller or larger
than the other. Such imbalanced data set is not suitable for model
building, and the classes will have to be balanced via either
undersampling or oversampling as well as via more sophisticated
approaches such as the SMOTE algorithm

7 Data splitting Partitioning the data set into various subsets (e.g., training,
calibration, external validation, and cross-validation sets) is a
common practice for validating the model robustness whether it is
capable of reliable prediction on unseen data samples or for
optimizing and tuning the model parameters

8 Learning algorithm The highlight of the QSAR model building process is making use of
the aforementioned curated data for multivariate analysis so as to
correlate computed descriptors with the endpoint values of interest.
Learning algorithm can be either supervised or unsupervised (i.e.,
making use of or not making use of the endpoint variable in the
learning process), and the resulting model can be interpretable or
not interpretable (black-box models) [18]

9 Statistical measures of
model robustness

Model robustness and its reliability are traditionally assessed via various
metrics such as R2, Q2, RMSE, and Y-scrambling. In recent years,
conformal predictions [31–33] and other metrics have also been
introduced
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chemical structures, descriptors, endpoint, and meta data (e.g.,
authors, license, source reference, etc.). QSAR-ML is implemented
via a set of plug-ins in the Bioclipse software via simple to use
graphical tools [35]. Although useful, QSAR-ML considers only
the pre-modeling phases, which encompasses procedures 1–4,
while the modeling phases spanning procedures 5–9 were not
covered.

Further efforts in driving the reproducibility of QSAR models
forward were set forth by the works of Ruusmann et al. [36, 37] in
which they introduced the QSAR DataBank repository (QsarDB).
The QsarDB data format is conceptually similar to that of QSAR-
ML but extends it to also include model information. Particularly,
Predictive Model Markup Language (PMML) is an open standard
for encoding information pertaining to the machine learning
model, thereby allowing model sharing. The flexibility of PMML
permits it to act as an intermediary in encoding the essence of the
model from among the different machine learning softwares and
tools that are available (i.e., which is comparable to an interpreter
who can speak many languages). In their work, the authors propose
the use of the R language for carrying out the model building
procedures in the R programming environment followed by using
the author’s own R package rQsarDB [38] for data conversion from
CSV format to the QsarDB format as well as modifying the con-
tents of existing QsarDB archive directories from within the R
environment.

In regard to the pre-modeling phase, data compilation and
curation can be considered to be the most time-consuming proce-
dures in the QSAR model building process. Aside from the issue of
time consumption, the quality of the resulting model is dependent
on the quality of the curated data. Thus, the important concept in
computer science of garbage in, garbage out has become ever more
important in the context of QSAR model building as attested by
the important articles from Fourches et al. [39–41].

In later sections of this chapter, we describe the use of the
Jupyter notebook for performing all of the aforementioned proce-
dures encompassing the pre-processing, construction, validation,
and evaluation of the robustness of the QSAR model. Such cover-
age naturally facilitates reproducible construction of QSAR models
as the precise protocol, learning function, learning parameters, and
performance metrics are housed within the Jupyter notebook file. It
is increasingly becoming common practice for researchers to share
their Jupyter notebook along with accompanying data sets on
public repositories such as GitHub or Bitbucket as well as the
QsarDB.
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6 Interactive Notebooks

Electronic notebooks merely refer to the archiving of explanatory
text of what was done and how, while the associated data and
analysis code may or may not be provided with the notebooks.
There are now interactive notebooks that make it possible for the
code used to perform the data analysis to be shown alongside the
explanatory text and visualizations (e.g., images, plots, etc.). As a
result, this affords easy comprehension of the experimental results
and the underlying code while also facilitating reproducible
research.

A widely adopted interactive notebook that is used in the
scientific community is known as the Jupyter notebook (i.e., previ-
ously known as iPython notebook). The original iPython notebook
was created in 2001 by Fernando Perez and had since evolved to
the more general and powerful Jupyter notebook (http://www.
jupyter.org/) with support for more than 40 programming lan-
guages (e.g., Python, R, Javascript, Latex, etc.).

For the sake of data sharing, it is common practice to store the
Jupyter notebooks (i.e., used hereafter to also refer to the iPython
notebook) on GitHub (i.e., or other web repository such as Bit-
bucket). Such notebook files can then be rendered as static HTML
via the nbviewer (http://nbviewer.jupyter.org/). Moreover,
GitHub also makes it possible for Jupyter notebook files to render
directly on its repositories. Owing to the static nature of the ren-
dered notebook, the resulting HTML is consequently not interac-
tive and therefore not amenable to modifications. A first step
toward solving this limitation is made by the Freeman laboratory
at Janelia Research Campus in their development of binder (http://
mybinder.org/), a web service that converts Jupyter notebook files
hosted on GitHub to executable and interactive notebooks.
Recently, there is a web service known as the Code Ocean that not
only allows the sharing of the raw data and associated analysis codes
but also enables users the capability of running the analysis codes
(i.e., supports several open-source languages such as R and Python
as well as commercial languages such as MATLAB and Stata).

7 Tutorials on Using Jupyter Notebook for QSAR Modeling

7.1 Tutorial 1:

Installing Miniconda

Before we begin, let’s familiarize ourselves with Conda, which is a
package manager that we will be using to manage the installation of
packages in supported languages such as R and Python. The reason
for using this package manager is that it will simplify the installation
of packages by automatically taking care of installing the prerequi-
sites (dependencies) that are needed to run the package of interest.
Some packages that may be a challenge to install if performed
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manually (i.e., requiring the compilation of C++ code via the use of
additional libraries namely Boost) such as the rdkit can be easily
installed via a one-line command (shown below).

Conda comes in two versions: (1) Anaconda and (2) Mini-
conda. In this tutorial, we will be using the Miniconda version
owing to its requirement of less computer resources. To get started,
we will need to install Miniconda by following the steps below:

1. In a web browser, go to https://docs.conda.io/en/latest/
miniconda.html

2. Download the appropriate installer that matches your
operating system (Windows, Mac OS X or Linux) and bit
version (32-bit or 64-bit).

3. Once Miniconda is installed, try running the conda command
in a terminal window (i.e., also known as the command prompt
window). To a blank prompt that looks like the following:

$

Run the conda command as follows (press the Enter but-
ton after typing the command):

$ conda

If installation went successfully, the following output
should be displayed:

$ conda

usage: conda [-h] [-V] command ...

conda is a tool for managing and deploying applications, environments and packages.

Options:

positional arguments:

command

clean Remove unused packages and caches.

config Modify configuration values in .condarc. This is modeled

after the git config command. Writes to the user .condarc

file (/Users/chanin/.condarc) by default.

create Create a new conda environment from a list of specified

packages.

help Displays a list of available conda commands and their help

strings.

info Display information about current conda install.

install Installs a list of packages into a specified conda

environment.

list List linked packages in a conda environment.
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package Low-level conda package utility. (EXPERIMENTAL)

remove Remove a list of packages from a specified conda environment.

uninstall Alias for conda remove. See conda remove --help.

search Search for packages and display associated information. The

input is a MatchSpec, a query language for conda packages.

See examples below.

update Updates conda packages to the latest compatible version. This

command accepts a list of package names and updates them to

the latest versions that are compatible with all other

packages in the environment. Conda attempts to install the

newest versions of the requested packages. To accomplish

this, it may update some packages that are already installed,

or install additional packages. To prevent existing packages

from updating, use the --no-update-deps option. This may

force conda to install older versions of the requested

packages, and it does not prevent additional dependency

packages from being installed. If you wish to skip dependency

checking altogether, use the ‘--force’ option. This may

result in an environment with incompatible packages, so this

option must be used with great caution.

upgrade Alias for conda update. See conda update --help.

optional arguments:

-h, --help Show this help message and exit.

-V, --version Show the conda version number and exit.

conda commands available from other packages:

env

7.2 Tutorial 2:

Installing Packages in

Conda

As stated previously, conda supports the management of packages
of languages such as R and Python. Thus, in this tutorial we will
present examples for installing packages in both languages.

7.2.1 Installing Python

Packages

Installing Python packages is very simple, which can be performed
by typing the following command:

$ conda install package-name

where package-name refers to the Python package name. For
instance, if we would like to install the jupyter package, then
enter the following:

$ conda install jupyter

Then, it will ask to confirm that we would like to proceed
with the installation, which we will enter y as the answer and
press the Enter button.
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Proceed ([y]/n)?

Instead of manual confirmation for every package that we
would like to install, the confirmation process can be automated
by invoking the -y function as follows:

$ conda install jupyter -y

Now this time, the installation process will proceed without
manual confirmation, which becomes very convenient if installing
more than one package.

To check if the package has been successfully installed, use the
list function as follows:

$ conda list

$ conda list

# packages in environment at /Users/chanin/miniconda2:

#

# Name Version Build Channel

appnope 0.1.0 py27_0

asn1crypto 0.24.0 py27_0

backports 1.0 py27_0

backports.functools_lru_cache 1.5 py27_1

backports_abc 0.5 py27_0

beautifulsoup4 4.7.1 py27_1

blas 1.0 mkl

bleach 1.5.0 py27_0

boost 1.56.0 py27_3 rdkit

bzip2 1.0.6 3

ca-certificates 2019.1.23 0

cairo 1.14.8 0

certifi 2019.3.9 py27_0

cffi 1.9.1 py27_0

chardet 3.0.4 py27_1

chembl-webresource-client 0.8.51 pypi_0 pypi

chembl_webresource_client 0.9.31 py27_0 chembl

click 6.7 pypi_0 pypi

conda 4.6.14 py27_0

conda-env 2.6.0 1

configparser 3.5.0 py27_0

cryptography 2.6.1 py27ha12b0ac_0

cycler 0.10.0 py27_0

dash 0.17.5 pypi_0 pypi

dash-core-components 0.5.0 pypi_0 pypi

dash-html-components 0.6.1 pypi_0 pypi

dash-ly 0.17.3 pypi_0 pypi
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dash-renderer 0.7.3 pypi_0 pypi

decorator 4.0.11 py27_0

easydict 1.6 pypi_0 pypi

entrypoints 0.2.2 py27_1

enum34 1.1.6 py27_0

flask 0.12.2 pypi_0 pypi

flask-compress 1.4.0 pypi_0 pypi

flask-seasurf 0.2.2 pypi_0 pypi

fontconfig 2.12.1 3

freetype 2.5.5 2

functools32 3.2.3.2 py27_0

futures 3.2.0 py27_0

get_terminal_size 1.0.0 py27_0

gevent 1.1.2 pypi_0 pypi

gevent-openssl 1.2 py27_0 chembl

glew 1.13.0 0 mw

greenlet 0.4.12 pypi_0 pypi

grequests 0.2.0 pypi_0 pypi

html5lib 0.999 py27_0

icu 54.1 0

idna 2.8 py27_0

ipaddress 1.0.18 py27_0

ipykernel 4.5.2 py27_0

ipython 5.3.0 py27_0

ipython_genutils 0.2.0 py27_0

ipywidgets 6.0.0 py27_0

itsdangerous 0.24 pypi_0 pypi

jinja2 2.9.5 py27_0

jsonschema 2.5.1 py27_0

jupyter 1.0.0 py27_7

jupyter_client 5.0.0 py27_0

jupyter_console 5.1.0 py27_0

jupyter_core 4.3.0 py27_0

libiconv 1.14 0

libpng 1.6.27 0

libxml2 2.9.4 0

linecache2 1.0.0 py27_0

lxml 3.8.0 pypi_0 pypi

markupsafe 0.23 py27_2

matplotlib 2.0.0 np111py27_0

mistune 0.7.4 py27_0

mkl 2017.0.1 0

nbconvert 5.1.1 py27_0

nbformat 4.3.0 py27_0

nose 1.3.7 py27_1

notebook 4.4.1 py27_0

numpy 1.11.3 py27_0
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openbabel 2.4.1 py27_3 openbabel

openssl 1.1.1b h1de35cc_1

pandas 0.19.2 np111py27_1

pandocfilters 1.4.1 py27_0

path.py 10.1 py27_0

pathlib2 2.2.0 py27_0

pexpect 4.2.1 py27_0

pickleshare 0.7.4 py27_0

pip 18.1 pypi_0 pypi

pixman 0.34.0 0

pkgconfig 1.2.2 pypi_0 pypi

plip 1.3.4 pypi_0 pypi

plotly 2.0.10 pypi_0 pypi

pmw 2.0.1 py27_0 mw

prompt_toolkit 1.0.13 py27_0

ptyprocess 0.5.1 py27_0

pyasn1 0.1.9 py27_0

pycosat 0.6.3 py27h1de35cc_0

pycparser 2.17 py27_0

pygments 2.2.0 py27_0

pymol 1.8.0.0.r4144 py27_0 mw

pyopenssl 16.2.0 py27_0

pyparsing 2.1.4 py27_0

pyqt 5.6.0 py27_2

pysocks 1.6.8 py27_0

python 2.7.6 0

python-dateutil 2.6.0 py27_0

pytz 2017.2 py27_0

pyzmq 16.0.2 py27_0

qt 5.6.2 0

qtconsole 4.3.0 py27_0

rdkit 2016.09.4 np111py27_1 rdkit

readline 6.2 2

requests 2.5.3 pypi_0 pypi

requests-cache 0.4.13 pypi_0 pypi

ruamel_yaml 0.11.14 py27_1

scandir 1.5 py27_0

scikit-learn 0.18.1 np111py27_1

scipy 0.19.0 np111py27_0

seaborn 0.8.1 pypi_0 pypi

setuptools 41.0.1 py27_0

simplegeneric 0.8.1 py27_1

singledispatch 3.4.0.3 py27_0

sip 4.18 py27_0

six 1.10.0 py27_0

soupsieve 1.8 py27_0

sqlite 3.13.0 0

Best Practices for Constructing Reproducible QSAR Models 69



ssl_match_hostname 3.4.0.2 py27_1

subprocess32 3.2.7 py27_0

terminado 0.6 py27_0

testpath 0.3 py27_0

tk 8.5.18 0

tornado 4.4.2 py27_0

traceback2 1.4.0 py27_0

traitlets 4.3.2 py27_0

unittest2 1.1.0 py27_0

unittest2six 0.0.0 py27_0 chembl

urllib3 1.20 pypi_0 pypi

wcwidth 0.1.7 py27_0

werkzeug 0.12.2 pypi_0 pypi

wheel 0.29.0 py27_0

widgetsnbextension 2.0.0 py27_0

yaml 0.1.6 0

zlib 1.2.8 3

A quick inspection of the first column indicated that the jupyter
package was indeed installed.

7.2.2 Installing Multiple

Python Packages at Once

Furthermore, we can also install multiple packages at once as
follows:

$ conda install jupyter scipy numpy matplotlib scikit-learn

7.2.3 Installing Python

Packages from Channels

If the package that we want to install is not available in the default
conda repository, then we may need to install these packages from
channels (i.e., third-party package repositories other than that
provided by Anaconda.org containing the package of interest).

For example, let’s say that we would like to install the rdkit
package, then we will call the following commands:

$ conda install -c rdkit rdkit

where -c rdkit represents the rdkit channel for which we
subsequently call upon the rdkit package for installation.
Now that the packages are in place, we are ready to proceed to the
next step in running the Jupyter notebooks.

7.3 Tutorial 3:

Running the Jupyter

Notebook

To launch the Jupyter notebook, open up a terminal window and
enter the following commands:

$ jupyter notebook

If everything went well, the terminal should display the follow-
ing message, and a new Internet browser window will automatically
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appear (as shown in Fig. 2) where the Internet browser will be
directed to the URL http://localhost:8888/tree/.

[I 11:16:10.203 NotebookApp] Serving notebooks from local

directory: /Users/chanin

[I 11:16:10.203 NotebookApp] 0 active kernels

[I 11:16:10.203 NotebookApp] The Jupyter Notebook is running

Fig. 2 Screenshot of the default page of Jupyter showing the hard disk content

Fig. 3 Screenshot of a newly created Jupyter notebook

Best Practices for Constructing Reproducible QSAR Models 71



Fig. 4 Screenshot of a Jupyter notebook from an rdkit tutorial by Greg Landrum [42] demonstrating how to
read and write molecules
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at: http://localhost:8888/

[I 11:16:10.203 NotebookApp] Use Control-C to stop this

server and shut down all kernels (twice to skip confirmation).

A newly created Jupyter notebook file will display an empty cell
box (Fig. 3) that can house either the code (i.e., both the input
code and their corresponding output) or their descriptive text
(in Markdown language). The combined use of code and descrip-
tive text in a Jupyter notebook is the hallmark of this platform as it
facilitates easy sharing and comprehension of the code’s input and
output results in an intuitive and rapid manner. An example of a
Jupyter notebook showing the step-by-step procedures of how to
read and write molecules using the rdkit package in Python is
shown in Fig. 4.

8 Conclusion

The field of QSAR has grown rapidly and has become a pillar of
drug discovery and for regulatory purposes owing to its robustness
in effectively predicting endpoints of interests as well as providing
pertinent insights for model interpretation. In spite of its useful-
ness, the literature is still predominated by QSAR models that may
not be reproducible. As such, this limiting factor hinders future
usage of QSAR models especially in situations where the molecular
descriptors may not be computed due to updates or changes to the
software or simply due to their unavailability. Similar situations may
apply if in the future, significant updates to operating systems may
render incompatibility issues with the descriptor or multivariate
software. In light of these challenges, interactive notebooks
together with exported environment file (i.e., containing informa-
tion on the modules and specific versions used at the time of code
runtime) make it possible to share the exact replica of the comput-
ing environment from the researcher’s own computer to their read-
er’s computer. Furthermore, the emergence of container
technologies such as Docker and Singularity (not discussed in this
chapter) paves further road in creating a suitable environment for
facilitating research reproducibility. It is anticipated that the next
generation of data-driven biologists would embrace such technol-
ogies as a gold standard or best practice for performing computer-
based research.
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Chapter 4

Wildlife Sentinels for Human and Environmental Health
Hazards in Ecotoxicological Risk Assessment

Antonio Juan Garcı́a-Fernández, Silvia Espı́n, Pilar Gómez-Ramı́rez,
Emma Martı́nez-López, and Isabel Navas

Abstract

Can animals reflect human and environmental health risks? This is a frequently asked question in the
research community. Sentinel species are organisms that can provide early warning signs of potential risks to
humans, so that preventive measures can be taken in time to avoid serious adverse health consequences. In
spite of the well-known cases of use of sentinel species, animals are continuously offering information that in
most cases is underestimated or incorrectly interpreted. Many species may be successfully used as sentinels
or monitors of environmental and health hazards; however, there is no ideal species for all types of scenarios
and conditions. For this reason, the advantages and disadvantages on the use of potential sentinel species
and the main characteristics they should gather to be effective sentinels are discussed. Although a wide
range of wildlife species are considered good candidates for biomonitoring purposes, bird species are
especially suitable as biomonitors of environmental quality and to estimate human health risks.
During the last two decades, the effects induced by endocrine-disrupting chemicals (EDCs) on hormone

action have been widely tested. Since the mid-twentieth century, it is well-known that humans and wildlife
species are simultaneously exposed to multiple chemicals from multiple sources with potential ability to
disrupt the endocrine system by different pathways and/or interfere with hormone actions. Moreover,
additive effects related to this chemical cocktail exposure could be expected, increasing the potential risks to
animal and human health. In addition, carcinogenic, immunotoxic, neurotoxic, behavioral, and other
chronic effects are observed in wildlife, which are closely linked to human diseases.

Key words Wildlife, Sentinel animals, Ecotoxicological risk, Free-living animals, Human health,
Environmental health, Biomonitoring, Endocrine disruption, Cancer, Immunotoxicity, Neurotoxicity,
Behavioral effects

1 Animals Can Reflect Human and Environmental Health Risk: Background

Sentinel species are organisms that can provide early warning signs
of potential risks to humans, so that preventive measures can be
taken in time to avoid serious adverse health consequences.

Industrial activities, chemical use, and pollution have been
linked to different contaminant-related diseases, but also to unspe-
cific alterations on both human and animal health. Some historical

Kunal Roy (ed.), Ecotoxicological QSARs, Methods in Pharmacology and Toxicology,
https://doi.org/10.1007/978-1-0716-0150-1_4, © Springer Science+Business Media, LLC, part of Springer Nature 2020
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events, especially those related to chronic exposure at sublethal
doses, were not recognized until human beings became affected.
Likely, the best-known case of animal usage as sentinels is the use of
canaries in coal mines. In the early twentieth century, the Bureau of
Mines (Department of the Interior, Washington CD), issued a
circular regarding the use of small birds in coal mines to detect
the presence of carbon monoxide (CO) in the air, due their higher
sensitivity to CO toxic effects compared to humans, cautioning that
the breathing equipment should be used wherever the birds
showed signs of distress [1]. Throughout the twentieth century,
several alerts and disasters have shown that an appropriate observa-
tion of animal species and populations could have minimized dele-
terious effects on humans and the environment. In the UK, at the
end of the nineteenth and in the middle of the twentieth century,
cows died due to smog, a cause of death in humans, especially in
persons with chronic respiratory problems and elderly people. Dur-
ing the second half of the twentieth century, the relationship
between exposure to organochlorine pesticides (i.e., DDT, DDE,
etc.) and eggshell thinning in endangered raptor species due to
endocrine disruption was widely reported, and later, endocrine
alterations were also evidenced in humans. Particular consideration
merits the neurological alterations observed incidentally in cats in
Minamata (South of Japan), while a neurological human epidemic
was being investigated in the population of the bay. The symptoms
appeared in cats and other wild species before than in humans, but
they were not appropriately interpreted regarding the potential
similar effects in humans. The final diagnosis was intoxication due
to the consumption of fish containing high levels of methylmer-
cury, a compound discharged by a chemical company into the bay.
This would probably be the best-known case of underappreciated
use of sentinel animals. In the same sense, Fox [2] suggested that
the prevalence, occurrence, and severity of health effects in wildlife
populations were being underestimated, because individuals
observed were only the survivors.

To be effective sentinel species, animals should present some
characteristics [3, 4]:

1. They should be sensitive to the pollutant of concern at levels
relevant for the risk assessment.

2. They should provide measurable and interpretable health
effects.

3. They must show the measured changes or effects before they
are produced in humans.

4. Their ecology and biology should be well known to adequately
interpret contaminant levels.

5. They should be able to be monitored and captured and tolerant
to handling and sampling in a cost-effective way.
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6. They should ideally share the habitat with other animal species
and humans, so they are exposed to the same pollutants and
other stressors.

Using sentinel wildlife species as indicators of human and envi-
ronmental health hazards provides several advantages [5]:

1. Sentinel animals normally present physiological mechanisms
similar to humans, sharing exposure/effect biomarkers, which
allows comparisons and interpretations of how responses in
animals reflect human health risks (e.g., acetylcholinesterase
inhibition due to organophosphorus pesticide exposure).

2. Effects on a wide range of systems (i.e., reproductive, behav-
ioral, carcinogenic, immune effects, etc.) can be readily
observed in animal populations in response to pollutant
exposure.

3. Some sentinel species are sensitive to environmental changes in
their habitat and can act as an early warning system of potential
risks before the effects are developed or found in human or in
other animal species.

4. Exposure conditions can be similar under some circumstances
(e.g., people living in the same habitat than some wildlife
species and feeding on similar food sources).

5. Practical and ethical issues make it easier to collect samples
from some sentinel animal species than from protected species
and humans.

However, there are also some disadvantages or barriers on the
use of sentinel species for evaluating human and environmental
health [5]:

1. Further information on the ecology and biology of some spe-
cies is needed.

2. Sampling methods and analytical techniques used in wildlife
sentinel species should be standardized, as well as the reports
and information provided.

3. A database compiling and organizing data on effects in differ-
ent sentinel species would be needed to facilitate the access to
the information and coordinate studies.

4. Exposure route for some sentinel species may be not relevant
for other animal species or humans.

5. A good understanding of the mechanism of toxicity for the
chemical of concern in both sentinel species and humans is
needed.

6. Extrapolation of wildlife data to humans may pose some diffi-
culties depending on the sentinel species, the exposure route,
the biomarker observed, and the dose-response relationship.
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7. Appropriate control sites are essential to know the background
levels of contaminants or effect biomarkers in sentinel
organisms.

8. Frequent and appropriate communication and coordination
between researchers and regulatory agencies should be
improved to incorporate nontraditional data on wildlife senti-
nels into the decision-making process.

9. The development of new approaches, standardization, valida-
tion, and coordination will imply additional costs.

When human data is available, it is usually preferable to data
coming from sentinel species or laboratory animals to evaluate risks
from pollutants. However, human data are rarely available due to
low sample size, confounding variables, or other reasons.

2 Biomonitoring Studies in Wildlife

A wide range of wildlife species could be used for biomonitoring
purposes, and many of them have been proposed to be particularly
valuable. Since there is a vast knowledge of many bird species, they
are especially suitable as biomonitors of environmental quality and
to estimate human health risks [6]. Other wildlife species have been
also successfully used as sentinels in specific geographical areas and
for some effects (e.g., marine mammals, polar bears) [7]. In order
to carry out a biomonitoring scheme using wildlife species, it is
crucial to know the specific objectives to be achieved within each
scheme. Collecting data about spatial and temporal trends of the
environmental contaminant exposure and their potential effects is
one of the most relevant objectives [8]. These trends are of special
concern regarding the exposure to endocrine disrupting chemicals
(EDCs), since, in most of the cases, the effects on the endocrine
system are critical in human and wildlife health risk assessment.
Therefore, biomonitoring studies are essential to compile informa-
tion on contaminant exposure trends in different scenarios and for
different risk groups. Wildlife biomonitoring studies provide valu-
able data that can be used in the risk assessment process for the
species and populations under study, but also for other species of
interest with similar feeding habits and for humans inhabiting the
same area. In addition, biomonitoring studies allow the detection
of spatiotemporal changes in contaminant exposure [8, 9], which
can be used to track if legislative measures prohibiting or restricting
the use of specific compounds or their emission are being success-
fully applied [10–13].
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2.1 Endocrine

Disruption:

Reproductive

and Development

Effects

In 2002, the WHO/IPCS defined “endocrine disruptor com-
pound” (EDC) as an exogenous substance or mixture that possesses
properties that might be expected to lead to endocrine disruption in
an intact organism, or its progeny, or (sub)populations [14]. More
recently, the Endocrine Society statement defined endocrine disrup-
tor as “an exogenous chemical, or mixture of chemicals, that can
interfere with any aspect of hormone action” [15], highlighting the
differences between endocrine function and hormone action. For its
part, the European Commission (EC) defined endocrine disruptors
as “chemicals, which under certain conditions can impact on the
hormonal system of humans and animals”. However, according to
Zoeller et al. [15], the definition assumed by the WHO/IPCS will
probably not change. The majority of chemical compounds consid-
ered as endocrine disruptors are man-made chemicals used in a huge
variety of processes, goods, and materials.

In the middle of the twentieth century, mimetic effects on
hormone action were related to chemical substances present in
foodstuffs for livestock. During the 1970s, certain chemicals were
found to be associated to cancer and reproductive effects in both
humans and wildlife species [16]. In regard to wildlife, the best-
known examples were the population decline of bald eagles
(Haliaeetus leucocephalus), double-crested cormorants (Phalacro-
corax auratus), and herring gulls (Larus argentatus) in the Great
Lakes, in the 1950s and 1960s (see [2]). In these three species, the
reproductive failures were associated with the exposure to dichlor-
odiphenyl aliphatic compounds, concretely with the pesticides
DDT and DDE. The exposure to these organochlorine pesticides
was also associated with effects such as eggshell thinning above
20%, embryo toxicity, and hatching failures. However, reproductive
effects were not the only adverse effects observed; an extensive
adult mortality was also described due to the neurotoxic effects
induced by these pesticides. Together with the reproductive impair-
ments, congenital malformations had also been detected in the last
30 years in fish-eating birds nesting on the Great Lakes.

In July 1991, Theo Colborn (1927–2014) organized at the
Wingspread Conference Center in Racine (Wisconsin, USA), a
conference whose main purpose was to integrate and evaluate
findings about the problem of endocrine disruptors in the environ-
ment. Colborn brought together experts in fields as diverse as
anthropology, comparative endocrinology, immunology, medicine,
law, psychiatry, ecology, histopathology, reproductive physiology,
toxicology, wildlife management, tumor biology, zoology, mam-
malogy, and psychoneuroendocrinology to share their knowledge
on endocrine disruption from their respective research disciplines.
A consensus statement was reached by participants entitled “Chem-
ically-induced alterations in sexual development: The Wildlife/
Human Connection”. A few years later, in December 1996, in
Weybridge (UK), the EC sponsored the first international meeting
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(The Weybridge Conference) entitled “European workshop on the
impact of endocrine disruptors on human health and wildlife.” The
conclusions were reflected in the well-known “Weybridge Report”.
At the beginning of the first decade of the twentieth century, Fox
[2] addressed the issue in his interesting review on wildlife as
sentinels of human health effects in the Great Lakes, paying special
focus on the alterations on endocrine function. Fifteen years after
the Weybridge Conference, in 2011, the EC reviewed the advance-
ment of scientific knowledge on EDCs and recorded their conclu-
sions in “The impacts of endocrine disrupters on wildlife, people
and their environments: Weybridge+15 (1996–2011) Report.”
This report established the priority future research lines: studies
on EDCs in humans and wildlife, mechanisms of action of EDCs,
exposure (analytical methods) and measurement of effects, devel-
opment of in vivo and in vitro test methods, and establishment of
monitoring programs. In this sense, clearly, wildlife should be used
as sentinels for human risks.

In the last two decades, effects induced by EDCs on hormone
action have been widely tested, and nowadays, close to 800 sub-
stances have been proven to cause endocrine alterations. In spite of
this, only a small fraction of the chemicals with potential endocrine
activity are currently known, which introduces significant uncer-
tainties about the real extent of the problem in both human and
wildlife populations [17].

Endocrine disruption is a special type of toxicity which, accord-
ing to Bergman et al. [17], must be taken into account in both
ecological and toxicological risk assessments. It should not be for-
gotten that mechanisms of action on hormone receptors respond to
mimetic or antagonistic effects, while, in occasions, they act directly
on proteins controlling hormone delivery to cell or tissue targets.

Humans and wildlife species are simultaneously exposed to
multiple chemicals with potential ability to both disrupt the endo-
crine system by different pathways and/or interfere with hormone
actions. In any case, additive effects could be expected, increasing
the potential risks to their health.

“Human and wildlife health depends on the ability to repro-
duce and develop normally which is not possible without a healthy
endocrine system” is the first of the key concerns included in the
report published by the United Nations Environment Programme
(UNEP/WHO) entitled “State of the Science of Endocrine Dis-
rupting Chemicals-2012” [17]. In the last decade, the role of the
EDC exposure to induce, promote, or increase the prevalence of
alterations on the endocrine function during critical periods of
childhood development and growth has been underestimated
[17]. The scientific studies in experimental animals, together with
an increasing number of studies on both wildlife biomonitoring
and human epidemiology, are allowing to achieve a better scientific
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understanding of the relationship between exposure to EDCs and
their effects on wildlife and human health.

The first studies on EDCs in wildlife were mainly focused on
female reproductive effects induced by the exposure to polychlori-
nated biphenyls (PCBs), DDT, dioxins, phthalates, etc., but also on
males (diethylstilbestrol (DES), bisphenol A-BPA) and on the sex
ratio described in wild fish and shellfish. In the early 1990s, a large
number of scientific papers on wild marine and terrestrial mammals,
fish, and birds connected reproductive impairments with exposure
to PCB congeners and other persistent compounds. A lot of infor-
mation on endocrine effects and hormone action has been related
to disorders in the thyroid function (PCBs, polybrominated diphe-
nyl ethers-PBDEs) and in the neurodevelopmental system (lead,
mercury, PCBs, etc.), inducing behavioral and cognitive alterations
during embryonic and postnatal periods. Moreover, other endo-
crine disorders have been described, including hormone-related
cancers in both female and male reproductive organs (PCBs, diox-
ins, some pesticides, cadmium, arsenic, etc.), immune dysfunction
(polycyclic aromatic hydrocarbons (PAH), PCBs, BPA, etc.), or
functional disorders in both adrenal glands and hypothalamic–pitu-
itary–adrenal axis (DDTs, PCBs). Other less studied effects include
alterations in bones affecting mineral density and increasing bone
fractures (persistent organic pollutants (POPs) in general) or meta-
bolic disorders such as obesity or diabetes (BPA, PCBs, dioxins,
arsenic, phthalates), which have been of concern mainly in human
health and rarely in wildlife. On the contrary, since the 1950s, many
studies of wildlife species have been focused on population declines
[17]. The hierarchical organization of ecotoxicology [18] allows us
a better understanding of the consequences of wildlife populations
declines on communities and ecosystems. However, the origin of
these declines usually finds their explanation at the lowest levels of
this hierarchical organization, where the chemicals interact with
biomolecules or subcellular and cellular fractions, starting a cascade
of molecular, biochemical, structural, or systemic effects upon
which the survival of the individuals and populations depends.
Frequently, wildlife population declines are the direct consequence
of reproductive failures, and in most cases, they have been related to
the exposure to EDCs. In the same way, thousands of studies have
been focused on the potential effects of EDCs on human health,
and most of them paid special attention on the association between
reproductive failures and the exposure to EDCs [19]. However,
they also inform that there are many other studies in which such
associations were not observed, so uncertainties about the effects of
background levels of EDCs on human reproduction must be taken
in account, especially in ecotoxicological risk assessments.
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2.2 Research

Challenges on EDCs

in Human and Wildlife

In spite of the increasing knowledge on EDCs and their effects on
human and wildlife health, nowadays there are still many gaps and
questions to resolve. Shug et al. [16] reviewed the top-priority areas
in the future research on EDCs. The response of organisms to
chemical mixtures exposure is one of the main questions requiring
answer. All living beings are exposed simultaneously to several
compounds or group of compounds, with or without known endo-
crine effect when they act individually, but little is known about the
potential effects due to the interaction among them and about the
synergistic or antagonistic response of the organisms exposed. This
issue is closely related to the similar or different mechanisms of
action of the EDCs present in the environment. In this connection,
Shug et al. [16] suggested that additional understanding on the
properties allowing a chemical to mimic hormone action and their
mechanisms of action is needed, especially, in regard to latent
effects. In addition, reports of nonmonotonic (e.g., U-shaped)
and low-dose effects and no threshold effects for EDCs continue
to be a challenge in chemical risk assessment [19, 20]. Other con-
cerns with relevant gaps of knowledge are the windows of suscepti-
bility. In accordance with Grandjean et al. [21], under certain
circumstances, organisms can be more sensitive to the toxicity of
chemicals. In this line, although much information is available
about the increased susceptibility to EDC effects during critical
periods as gestation, infancy, or puberty, there remains much to
learn about other potential susceptibility windows and how the
exposure to EDCs during these periods can induce health effects
on human and wildlife. Associated to it, much remains unknown
about development effects and how environmental factors can
influence phenotypes. In this sense, minimal attention has been
paid to cell-to-cell interactions, in spite of their crucial role to
determining the phenotypic changes observed during fetal expo-
sure to EDCs [16]. Other gaps needed to be covered are related to
the potential health effects of EDCs that have not been studied in
detail yet, for example, the relationships between EDCs and the
effects in cardiovascular system, nervous system, obesity, metabolic
syndrome, diabetes, bone development, etc. [22]. Also, there are
substantial gaps of knowledge related with exposure scenarios and
biomonitoring of EDCs. In this sense, much more needs to be
known about the persistence of EDCs in organisms’ bodies (human
and wildlife) and especially on the exposure in different geographic
locations and across socioeconomic and ethnic status, etc. To
achieve these aims, it is necessary to improve the methods for
identifying EDCs. Schug et al. [16] suggested to improve the
detection of chemicals and metabolites in the urine, cord blood,
and other tissues of animals with known EDC-associated abnorm-
alities, such as reduced anogenital distance. However, although it is
necessary to improve our knowledge on the presence of EDCs in
living organisms, it is as important—if not more—to find predictive
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biomarkers able to relate the exposure to EDCs with health effects
in a shorter period of time than for epidemiological studies
[23]. Last but not the least, translation of animal research to
human is, from the beginning of the research on EDCs, one of
the most outstanding challenges. Comparable kinetics and
mechanisms of action have been described in human and wildlife,
but it is necessary to better understand how to translate the effects
observed in animal models and especially in wildlife to human
exposure to EDCs. Therefore, in accordance with Shug et al.
[16], new studies are needed to improve the translation of results
obtained with laboratory animals and wildlife to benefit humans.

2.3 Carcinogenic

Effects

Animal populations inhabiting different environments and exposed
to different stressors may be used as natural “experiments” to study
the impact of pollutants on cancer in wildlife and identify potential
risks to humans. However, little attention has been given to carci-
nogenic effects on wild animals.

Some xenobiotics have a direct role in cancer development,
inducing somatic mutations and disrupting oncogenes (e.g.,
RAS) or tumor suppressor genes (e.g., TP53). In addition, certain
compounds may induce oxidative stress and oxidative damage,
inflammation processes, telomere shortening, and epigenetic
effects as DNA methylation that may influence cancer develop-
ment. Along with this, contaminants such as organochlorines and
dioxins are also immunosuppressive and may increase the suscepti-
bility of animals to oncogenic pathogens. Therefore, it is possible
that pollutants operate not only as mutagens but by several
mechanisms ending up in cancer development.

Different cancer types have been described in wildlife species
associated to contaminant exposure. Some examples are gastroin-
testinal adenocarcinomas in beluga whale (Delphinapterus leucas)
related to PAH exposure, lymphoma in bottlenose dolphin (Tur-
siops truncatus) associated with PCBs, hepatic and biliary neoplasia
in white suckers (Catostomus commersonii) related to EDCs, and
neoplasm (predominantly a poorly differentiated carcinoma of uro-
genital origin) in California sea lions (Zalophus californianus) asso-
ciated with PCBs and other organochlorines. In this sense,
exposure to PAHs, organochlorines, and, in general, to EDCs has
been associated with the development of similar tumors in
humans [24].

Although evidences of cancer have been reported in mammals
and several fish species, they are not frequently found in wild birds,
with neoplasms only observed in 9 of ca. 18,000 free-living avian
species examined at the US National Wildlife Health Center from
1975 to 1981, probably related to genetic or viral etiology
[25]. Animals generally have a shorter life span in the wild due to
food or nutrient restrictions, diseases, predation, adverse weather
conditions, and other parameters of stress affecting survival. In
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general, the risk of cancer development increases with age. Thus, all
the potential factors affecting life expectancies in free-living animals
could lead to lower cancer incidence in wild animals compared to
their captivity counterparts. In addition, cancer rates could be
expected to be higher in some species of marine mammals and
fish that, because of their longevity, are exposed to and affected
by xenobiotics for longer time periods.

The case of the beluga whales in St. Lawrence Estuary, Quebec
(Canada), is particularly relevant considering the unusually high
occurrence of malignant neoplasms [26]. From 1983 to 2012,
39 malignant neoplasms were diagnosed in 35 belugas, causing
the death of 31 mature adults (>19 years old) [26]. The median
age of cancer diagnosis was 48 years, and the most frequently
observed neoplasm was adenocarcinoma of the gastrointestinal
mucosa (11 cases), followed by mammary carcinoma (8 cases).
Different issues related to changes in local aluminum production
in the area, the consequent decrease of PAH concentrations in the
environment, and the decrease of cancer occurrence in this popula-
tion in the following years support a possible link between exposure
to industrial PAHs and cancer in belugas from this study [26]. In
addition, most of the cancers had a gastrointestinal origin, which
has been linked with belugas habit to feed on invertebrates living in
sediments and accumulating PAHs. This association is also sup-
ported by the hepatic neoplastic lesions found in fish exposed to
PAHs in the same area [27, 28]. Interestingly, associations between
occupational exposure to PAHs and cancer (lung, bladder, laryn-
geal, and stomach) in workers of the aluminum plants located in the
beluga habitat have been documented [29–31]. Therefore, these
findings linking contaminant exposure to cancer in wild animal
species and humans are of particular interest.

Carcinogenic effects due to pollutant exposure in wildlife are
understudied and rarely described, and further research in a long-
term basis and with large sample sizes is needed to better under-
stand the dose and type of xenobiotics at which wildlife species are
exposed and the associated cancer incidence across free-living spe-
cies. In spite of the link reported between contaminant exposure
and cancer in some wild animals, it is difficult to prove the etiologic
role of pollutants in carcinogenesis in wildlife studies, and in many
cases the cancer development may be multifactorial. Since some
carcinogen compounds are known to cause specific gene mutation
patterns, the study of these mutations in tumors of wild animal
species and humans in future studies may support the role of
specific xenobiotics in carcinogenesis.

2.4 Behavioral

and Neurotoxic Effects

Neurotoxicity-related diseases are a significant percentage of those
affecting human health. Environmental contaminants can influence
in behaviors, learning, and other cognitive abilities using various
mechanisms. Persistent organic pollutants (POPs, including some
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pesticides), heavy metals, and pharmaceuticals classified as neuro-
toxicants are in the environment together with thousands of com-
pounds with unknown neurotoxic potential to different species and
life stages. It is thought that 30% of all products which are com-
mercialized can have neurotoxic potential. Some of these chemicals
may affect early ages of human and wildlife, increasing the incidence
of neurodevelopmental disorders and affecting the life quality of
future population. It is important to take into account that the
exposure in early life stages to neurotoxic compounds may impact
in adult phenotype, so exposure during pre- or postnatal period has
been linked with impairment of human and animal behavior fol-
lowedwith neurodegenerative diseases in adults [32, 33].Neverthe-
less, knowledge about the neurotoxic potential of pollutants in
ecosystems is scarce. According to Legradi et al. [34], there is a
clear lack of developmental neurotoxicity assessment studies. Addi-
tionally, a 2009 report indicated that little more than 100 com-
pounds had been checked for potential human developmental
neurotoxicity [35].

Although most of this scarce information concerning neuro-
toxic effects of environmental pollutants comes from studies in
laboratory animals or in vitro techniques, the use of wild animals
in neurotoxicity studies can reflect the real exposure, which occurs
in an environment of genetic diversity, with different stressors and
with all interactions that occur in the reality. Wildlife, such as bald
eagles, pigeons, mink, and polar bears, can be used as sentinel
species due to their susceptibility to bioaccumulate neurotoxicants
from the local environment [2]. Thus, for decades, the Arctic
Monitoring and Assessment Programme and related programs
have monitored the health of Arctic wildlife and humans, spatial
and temporal trends, and human exposure using ringed seals and
polar bears as key monitoring species [36]. Studies on brain tissue
of polar bears corroborated or presumed that several POPs
detected in them are neurotoxicants in humans and experimental
animals (see [36]).

The behavioral effects of pollutants are particularly difficult to
observe in field studies. However, a retrospective analysis carried
out in the late 1990s already gave evidence that a big proportion of
dead birds found in the field would have suffered sublethal neuro-
toxic effects by cyclodienes. These compounds could have pro-
duced behavioral disturbances, which could have caused the
decline of these species [37]. In epidemiological studies, the expo-
sure to organochlorine compounds (OCs, widely used for agricul-
tural in the last century) in pregnant mothers produced a
deterioration of neurodevelopment and postnatal neuropsycholog-
ical faults, such as diminished motor functions, bare cognitive
development, lack of attention and alteration of activity, and
autism, and also an augmented risk of serious chronic illnesses.
Besides, an increasing evidence indicated that OCs exposure is
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connected to increased risk of several neurodegenerative disorders
including dementia, Alzheimer’s disease and others [38]. In studies
carried out in the Great Lakes, St. Lawrence Basin, behavior and
neurobehavioral development changes were similar among minks,
herring gulls, and other wildlife species and infants born from
mothers feeding on fish from the area. This similarity has been
found in the distribution pattern of pesticides in blood samples of
raptors and humans and egg and human milk samples [12, 39,
40]. On the other hand, many studies have shown that sublethal
doses of organophosphorus compounds can cause behavioral
effects in birds, and these effects have been often related to cholin-
esterase inhibition.

Besides, some studies have evaluated the relationships among
toxicant exposure, mainly to heavy metals and pesticides, and
alterations in several neurochemical biomarkers such as monoamine
oxidase, cholinesterase, muscarinic acetylcholine receptor, and
dopamine-2 in both wildlife and human studies at a population
level. These changes in biomarkers can be used in the early stages of
neurotoxicity in all species (human and wildlife). In this sense,
Stamler et al. [41] show that the neurotoxicity biomarkers afore-
mentioned can be detected in wild mink and human samples, in
good storage conditions, and can be used as early biomarkers.
These changes in neurochemical biomarkers that precede other
behavioral changes are fundamental for the survival of species.

2.5 Immune Effects The relation between xenobiotics and detrimental effects on the
immune system has been known even since ancient Egypt, when
workers exposed to asbestos suffered lung diseases [42]. However,
from a historical point of view, the field of “immunotoxicology” is
considered quite recent as the term was firstly coined in the 1970s
[42] and laboratory studies that relate toxic compounds to immune
effects were not formally established until the late 1980s [43]. The
reason to include these experimental assays for risk assessment was
the consideration of effects in the immune system as a mode of
action and not a side effect of the substances, mainly because the
concentrations that cause immune disruption are much lower than
those related to other toxicological endpoints such as
mortality [42].

Toxic compounds can alter immune system at different levels in
complex ways, which complicates the assessment of
immunotoxicity [44].

1. Immunotoxicity should be distinguished between direct (inter-
action between the chemical and the immune cells) and indi-
rect (due to a systemic stress response to the chemical).

2. The effects of xenobiotics may not be evidenced in the resting
immune system, but the response to pathogens may be
compromised.
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3. The response of the immune system may be either increased
(causing autoimmune diseases or allergies) or decreased
(increasing the risk for infections and diseases), so the interpre-
tation of the toxicant-induced immunomodulation is
complicated.

4. The potential targets and effects at immune system are diverse,
from molecular to cellular and organ level (i.e., immune cell
proliferation, differentiation and survival, functioning of the
immune organs and cells). In addition, the immune system
network is highly sophisticated, with varied signal transduction
pathways, multiple cellular components, and a diversity of
mediators and receptors for communication and activation.

5. Alterations may be either transient or persistent, as they may be
evidenced both in the mature immune system as well as in the
developing immune system.

In addition, the assessment of risks for immunotoxic contami-
nants in wildlife is complicated due to the lack of dose-response
data [45]. However, the impacts of environmental contaminants in
the immune system of these species are currently acknowledged and
of increasing concern. Some of the most relevant examples include
global decline of populations, such as amphibian species, due to
parasite infections that seem to be favored by toxicant-induced
immunosuppression [46]. In the case of marine mammals, OCs
such as PCBs have been related to wildlife diseases such as the
distemper virus outbreak in harbor porpoises [47]. In a recently
published overview, Desforges et al. [45] combined field and labo-
ratory data to establish effect threshold levels for immune suppres-
sion in polar bears and several pinniped and cetacean species. The
assessment of contaminant exposure in these species can be consid-
ered a useful tool for risk assessment as they are considered to be the
most exposed to high levels of pollutants of all wildlife [45]. Birds
have also been often affected by immunotoxic compounds. In fact,
one of the first studies in immunotoxicology was about the relation
of increased susceptibility to hepatitis virus in youngmallards (Anas
platyrhynchos) exposed to PCBs [48]. Further studies in different
bird species have evidenced immune alterations due to different
contaminant types, mainly metals and OCs [49].

Abundant literature describes the relation of immunotoxicity
with perfluorinated compounds (PFCs), another relevant group of
contaminants quite frequent nowadays in human and wildlife.
Some of these effects include decreased spleen and thymus weights
and cellularity, reduced specific antibody production, reduced sur-
vival after influenza infection, and altered cytokine production. It
should be remarked that these effects have been evidenced in
experimental animals at doses within or just above the range for
highly exposed humans and wildlife [50].
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Other compounds that are involved in the alteration of the
immune system are the 4-alkylphenol ethoxylates (APEOs), a
group of surfactants included in many cleaning formulations and
used as industrial process aids. Monitoring studies have found
APEO metabolites in many environmentally relevant matrices
including human tissues. Generally, related immunotoxic effects
(i.e., increase in IgE and antigen-specific IgG and aggravation of
atopic dermatitis-like skin lesions and asthma in mice) were found
at higher concentrations than those found in the environment,
although recent studies have shown that 4-tert-octylphenol
(OP) is able to cause an immune response in human macrophage-
like THP-1 cell [51].

As mentioned above, the immune system may be affected
indirectly, and here is where the endocrine system may play an
important role. The endocrine system facilitates interorgan com-
munication by steroid and protein hormones. Organs of the
immune system are also regulated by hormones. Therefore, any
disruption affecting these hormones or their receptors may conse-
quently alter the immune response of the individuals. Briefly,
in vivo corticosteroids, androgens, progesterone, and adrenocorti-
cotrophic hormone (ACTH) suppress the specific immune
responses, whereas prolactin, growth hormone, insulin, and thy-
roid hormones enhance it [52].

2.6 Other Chronic

Effects

Other adverse effects than those described previously (cancer,
immunodepression or immunotoxicity, neurotoxicity, behavior
alterations, or endocrine disruption, including reproductive and
developmental effects) have never been widely described. In most
cases, other chronic effects often go unnoticed. However, it is
sometimes possible to find in animals effects rarely studied asso-
ciated to chemical exposure in humans. This is the case of a study on
dogs living in Mexico City, which presented histologic images of
neuronal inflammation and an increased amount of messenger
ribonucleic acid (RNAm) from two inflammatory genes in the
brains. Similar findings could be related to lower scores on psycho-
metric tests in children living in a similar air-polluted
environment [53].

In susceptible species, certain pollutants are able to inhibit
specific enzymes involved in the hemosynthesis, provoking the
accumulation of porphyrins, such as uroporphyrin and other highly
carboxylated porphyrins [2]. Metabolic disorders have been
described as consequence of the chronic dietary exposure to pollu-
tants. In this regard physiological synthetic or degradative processes
could suffer severe alterations as consequence of this type of expo-
sure. Several piscivorous and carnivorous bird species showed glu-
cose intolerance due to lack of glucokinase, which is responsible for
hepatic clearance of glucose. Similarly, adult individuals of herring
gulls inhabiting in the Great Lakes showed a mild hyperglycemia
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(not related to body condition or stress) compared to the birds
from the control areas [2]. This author also described a wasting
process with loss of muscle mass in chicks of terns from the Great
Lakes associated to exposure to PCBs. Wasting, characterized by
loss of body mass, had been related to the exposure to TCDD [54].

3 Overview

It is well known that humans and wildlife species are simultaneously
exposed to low doses of chemical mixtures potentially able to
interfere with hormone activities, disrupt the endocrine system,
impair the immune system, or induce cancer or other chronic
effects.

Although wildlife species are continuously offering information
about environmental and health risks, their use as sentinels has been
frequently underestimated or incorrectly interpreted. Comparable
kinetics and mechanisms of action have been described in human
and wildlife, but a better understanding on how to extrapolate the
effects observed in animal models and wildlife to humans is still
needed.

The scientific community must still assess a number of factors:
How are organisms, species, or populations responding to low-
dose exposure to chemical mixtures? How do different develop-
ment periods, environments, or social factors affect chemical-
related effects? Are we trained to obtain appropriately all findings
that experimental, wildlife biomonitoring and human epidemiol-
ogy studies offer us in each of the possible scenarios of chemical
exposure? And finally, are we properly skilled to interpret them
adequately under an integrative wildlife-human approach?
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Ramı́rez P, Calvo JF, Martı́nez JE, Garcı́a-Fer-
nández AJ (2012) DDT residues in breeding
population of booted eagle (Aquila pennata)
associated with agricultural land practices. In:
Jokanovic M (ed) The impact of pesticides.
AcademyPublish.org, Cheyenne, pp 321–338.
ISBN; 978-0-9835850-9-1

13. Valverde I, Espı́n S, Navas I, Marı́a-Mojica P,
Gil JM, Garcı́a-Fernández AJ (2019) Lead
exposure in common shelduck (Tadorna
tadorna): tracking the success of the Pb shot
ban for hunting in Spanish wetlands. Regul
Toxicol Pharmacol 106:147–151

14. Damstra T, Barlow S, Bergman A, Kavlock RJ,
van der Kraak G (eds) (2002) Global assess-
ment of the state-of-the-science of endocrine
disruptors. World Health Organization,
Geneva

15. Zoeller RT, Bergman Å, Becher G,
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Chapter 5

Importance of Data Curation in QSAR Studies Especially
While Modeling Large-Size Datasets

Pravin Ambure and M. Natália Dias Soeiro Cordeiro

Abstract

A huge amount of chemical and biological data that is available in several online databases can now be easily
retrieved and studied by many researchers (including QSAR modelers) to extract meaningful information.
Everyone is naturally aware, however, of the errors in chemical structures and biological data that are
possibly present in the retrieved data from these online databases. Implications of those might be severe,
particularly for QSAR modelers since developing models using such erroneous data will certainly lead to
false or non-predictive models. Proper curation of the retrieved chemical and biological data is therefore
crucial and mandatory prior to any QSAR modeling. For large datasets, manual data curation becomes
highly impossible, nevertheless. This chapter reviews and discusses the several data curation tools normally
applied for such endeavors, paying special attention to those that can be used to semiautomate the curation
process, like resorting to a workflow by employing the freely available KNIME software.

Key words Data curation, Online databases, Structural errors, Duplicate analysis, Activity cliffs,
Curation tools, QSAR

1 Introduction

Recent advances in computational power, storage capacity, and
efficient algorithms/tools have resulted in easier handling of
extraordinary amounts of data. Nowadays, a huge amount of data
is being collected, analyzed, stored, retrieved, and/or utilized daily.
Researchers from across the world are now giving efforts on
extracting useful information from the dozens of available online
databases (public or commercial) to gain new or improved insights
in their own field of interest. Similarly, quantitative structure-
activity relationship (QSAR) specialists or modelers are also taking
the advantage of the enormous relevant data that is available for
modeling biological activity (QSAR), physicochemical properties
(QSPR), toxicity (QSTR), and so forth. The models then built are
highly desired in several research fields, such as drug design, toxicity
assessment of chemicals, probing material properties, etc. Though
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one might consider that most of the data present in the online
databases are accurate, it is also true that a substantial fraction of
these data – reaching up to 10% – may be not accurate [1]. This
amount of error is significant enough to seriously affect the reliabil-
ity of QSAR models developed upon them. However, QSAR mod-
eling should not be limited by the quality of the available data, as it
is still possible to perform a proper curation of data to avoid the
development of misleading/non-predictive models or put forward
false hypotheses [2]. This chapter aims firstly at understanding the
need and the importance of data curation. Then, the key steps
involved in data curation of large-size datasets that are employed
for QSAR modeling will be discussed. Finally, the recent advances
in the development of freely available automated or semiautomated
tools for performing curation of large datasets used in QSAR,
QSPR, QSTR, etc. studies will be reviewed and discussed.

2 Importance of Data Curation in QSAR Studies

One can comprehend the importance of data curation only after
realizing the existence of errors in the available online databases.
Such errors can be observed in the chemical structures or biological
activity/toxicity data or in any relevant information that is provided
by the online databases. Also, users of these available online data-
bases should be aware that they might find differences in the
chemical structure representation of compounds whenever retriev-
ing those from different databases [3]. It is also important to
understand how such errors get incorporated into the databases
since even database’ service providers never want to provide data
with errors. Let us then look at the most common ways how these
errors might end up in databases, namely:

1. Scientific literature: For a chemical database, one of the primary
sources for collecting the chemical structural information are
scientific publications, where unfortunately most of the chemi-
cal structures are available in the image format. Thus, for
depositing these chemical structures in the database, the struc-
tures are redrawn and then stored in a proper structure readable
format, or often an image-to-structure converting software is
employed. Inevitably, there is a high possibility of introducing
structural errors due to human errors or sometimes due to
software limitations. Another means of propagating structural
errors from the literature might be that the published chemical
structures are frequently drawn in relevance to the context of
the publication. For instance, in a paper reporting molecular
docking study, an acidic or a basic molecule might be drawn as a
negatively or positively charged molecule as this is the relevant
form for binding to the protein. In another instance, a review
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article presenting the biological activity information for a series
of relevant compounds may accidentally show the parent struc-
ture of a molecule even though the activity is shown by its salt
form [3].

2. Chemical file format system: All chemical databases use a text-
based chemical file format system, like molfile in V2000 format,
so that chemoinformatic software tools can easily read, inter-
pret, and store single or multiple chemical structures in a plain
text format. However, the mostly used molfile V2000 also has
some shortcomings [3]. For instance, it cannot represent com-
pounds that have two stereocenters and are a mixture of two
enantiomers but do not contain any of the diastereoisomers,
just like drug milnacipran – a mixture of the 1R,2S and 1S,2R
enantiomers. Another issue with the V2000 molfile version is
that there is no way for properly representing dative or coordi-
nate bonds. Such shortcoming may lead to an incomplete and
thus incorrect structural representation of chemicals stored in
the databases.

3. Units: A major cause of errors pertaining to biological activity
or toxicity values is due to miscalculations occurring during the
units’ conversions or due to typos/errors seen in the published
literature from where the data is collected [2]. For example, the
incorrect substitution of “μM” (micromolar) with “mM” (mil-
limolar) is often detected.

4. Normalization of chemical structures: Each database service
provider has its own set of rules for standardizing or normal-
izing the chemical structures, for instance, the way nitro groups
and sulfoxides are normalized or how the tautomers are cano-
nicalized and whether the compounds are “merged” at a parent
level, etc. This also results in different chemical representations
of the same compound appearing in different databases [3].

5. Interlinked databases: As some databases collect the informa-
tion from other databases and are in some way interlinked,
there remains a huge possibility of transferring the errors that
are present in the parent database. For example, the PubChem
database [4] collects data from around 668 sources including
ChEMBL [5], BindingDB [6], and ChEBI [7]. Further,
ChEMBL contains data from PubChem, ZINC [8] comprises
data from ChEMBL, and ChemSpider [9] is a chemical struc-
ture database that holds information of 71 million chemicals
gathered from about 259 other data sources.

There can be many more possible ways of inclusion of uninten-
tional errors in the online databases. Several investigators or users
of such databases have already noticed that there are indeed numer-
ous errors present, and they have pointed out that fact in various
publications [1, 3, 10–14, 15] highlighting the severity and
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amount of errors present in the online databases including some
well-known databases. Therefore, it is highly risky to employ the
chemical structures or biological data from the online databases at
their face value since, as already mentioned, the models set up based
on those can be completely flawed. Another issue is that there are
no absolute standard guidelines on how to assemble and integrate
data from different primary or secondary sources, as it appears that
each database service provider follows its own unverified approach
(es) for gathering and storing the data. There is thus an urgent need
for the database service providers along with the scientific commu-
nity to work together and ascertain guidelines for best practices to
reduce the number of avoidable errors.

Moreover, several studies have also been carried out to evaluate
the impact of data curation on the development of QSAR models.
For instance, Young et al. [10] developed QSAR models using
chemical structures from a database: (1) with an error rate of 3.4%
(not curated) and (2) all correct structures (curated). The authors
found that even slight errors in the chemical structures, such as
misplacing a Cl atom or swapping hydroxy and methoxy functional
groups on a multiple rings’ structure, resulted in significant differ-
ences in the prediction quality for those chemicals. In another
recent study, Mansouri et al. [16] developed also QSAR models
using logP data before and after curation. The validation statistics
obtained clearly showed better performance of the model trained
with the curated data over that trained with the original
non-curated dataset. Comparison of the derived QSAR models
(non-curated vs. curated) was shown in terms of r2

(0.59 vs. 0.70) and RMSEP (1.13 vs. 0.96) statistics on the test
sets as well as on the basis of the number of test set chemicals that
were found outside of the applicability domains (98 vs. 46).

3 Key Steps Involved in Data Curation for QSAR/QSTR/QSPR Studies

Prior to initiating a QSAR study, one should always be concerned
with the quality of at least two categories of data, namely, (1) the
chemical structures and (2) the biological data, which are employed
for QSAR modeling. The workflow demonstrating the steps
involved in the chemical and biological curation is shown in
Figs. 1 and 2, respectively. Here we will discuss the basic curation
steps that should be always performed for datasets used in QSAR
modeling. Note that wherever possible, we will also refer to a
special tool for such purpose, that is, the free nodes available in
KNIME workflow platform [17], that can be used to implement
the respective curation step. An illustration of a KNIME workflow
used for data curation is shown in Fig. 3.
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1. Data retrieval: Data retrieval becomes the first step in data
curation, particularly when the data is extracted from a data-
base. Usually, when one downloads a set of chemical structures
from any database, this is done in the form of a structural data
format (SDF) file. Such SDF file mainly contains some basic
structural information such as the molecule name, count of
atoms and bonds, 2D or 3D coordinates of each atom present
in the molecule, the connectivity, bond types, stereotypes, etc.
for each chemical present in it. Along with the requisite struc-
tural information, it may also include various properties like
unique chemical ID allotted by the databases, molecular

Fig. 1 A workflow illustrating the key steps involved in the chemical data curation

Fig. 2 A workflow illustrating the key steps involved in the biological data curation subsequent to chemical
curation
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weight, the biological property (IC50/EC50/Ki), charges,
SMILES notation, etc. For the curation of chemical structures,
the structural information provided in the SDF file is enough to
identify and remove the erroneous chemical structures, but for
the curation of the biological data, one needs both the struc-
tural information and the biological data under study. Thus,
the molecules with incomplete structural or biological data
information such as any missing atom name or coordinates or
requisite biological data should be discarded. This can be easily
done in the KNIME workflow platform using the “SDF
Reader” node which helps in reading the input SDF file apart
from removing the chemical structures with incomplete struc-
tural information. This node also provides the option to retain
or remove the other relevant properties that are already present
in the input SDF file. Finally, reading and storing all the man-
datory information correctly is the first step of data curation.
Also, whenever possible, it is always better to retrieve the data
from multiple databases and compare the accuracy of structural
and biological information therein.

2. Chemical curation: The next step is to perform the identifica-
tion and correction of the structural errors for a set of chemi-
cals. Note that the following chemical curation steps are
particularly recommended for QSAR studies.

(a) Inorganics or organometallics: One should be aware that
several chemoinformatic software cannot handle the inor-
ganic or even organometallic chemicals, for instance, most
of the software tools used for calculating molecular
descriptors can only handle organic chemicals. Thus, the

Fig. 3 An illustration of a KNIME workflow employed for performing the chemical data curation
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inorganics or organometallic compounds in the datasets
may end up with incorrect descriptor values. Thus, it is
recommended either to remove all the inorganic and
organometallic chemicals before the descriptors are calcu-
lated or to use some dedicated software such as CORAL
[18, 19] that may handle such compounds. To remove
inorganics and organometallics, one may employ the
“Element Filter” node available in KNIME platform.

(b) Mixtures: It is advised to remove mixtures prior to the
descriptor calculation since the treatment of a mixture is
not an easy task unless the active component is known
[20]. To remove the mixtures, one may use the “Connec-
tivity” node available in KNIME. However, in studies
focusing on QSAR modeling of mixtures, one can resort
to software such as ISIDA [21] to calculate suitable
descriptors for those.

(c) Removal of salts: Like inorganics or organometallic com-
pounds, salts are usually mishandled by the descriptor-
calculating software, which might result in errors in the
values of the descriptors. If essential, salts can be identified
and removed using the “RDKit Salt Stripper” node that is
available in KNIME. However, the recent version of the
well-known commercial software Dragon 7.0 allows the
calculation of descriptors for a disconnected structure
such as salts, like ionic liquids.

(d) Normalization or standardization of chemical structures:
Normalization or standardization means to transform the
chemical structures into customized, canonical represen-
tations, which is important as there is a possibility of
representing the same functional group (such as nitro
groups) using different structural patterns. The different
representations of the same chemical structure may create
issues such as being unable to identify duplicates based on
the values of the molecular descriptors, because the calcu-
lated descriptor values for these distinct representations of
the same functional group could be significantly different.
One may use the “RDKit Structure Normalizer” node
available in KNIME or the “Standardizer” facility avail-
able in “JChem” of the ChemAxon software [22] (free for
academic organizations) for standardizing the chemical
structures. Further, the “Structure Checker” tool also
provided by ChemAxon (https://chemaxon.com/) can
be used also to identify and correct several structural
problems such as invalid bond lengths, overlapping
bonds or atoms, molecule charges, incorrect chiral flags,
invalid valences, etc.
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3. Biological curation: Biological curation is performed to con-
firm the accuracy of the extracted experimental data from the
online database. If possible, the biological data for the com-
pounds present in the dataset should always be retrieved from
multiple databases, and the experimental activity/toxicity
values should be compared at this stage. The experimental
values are more reliable when found same in most of the
databases. In the next step, two important analyses, namely,
duplicate analysis and activity cliff analysis, should be per-
formed to finally create a ready-to-use dataset for QSAR mod-
eling. Note that both these analyses require the structural as
well as the biological information, and it not only assists one to
remove the redundant or problematic compounds but also
helps to examine further possible errors particularly in the
experimental data.

(a) Duplicate analysis: Identification of duplicates is a crucial
and challenging task, especially for large datasets, where
manual visual inspection is not possible. Particularly, the
unique identification number that is provided by the data-
bases should not be used for duplicates’ identification, as
there can be errors or redundancies present in the unique
itself identification of numbers. The duplicates can be
efficiently identified by carrying out similarity searches
using distance metrics such as the Tanimoto index, Euclid-
ean distance, etc. These distance metrics are usually com-
puted using fingerprints (a requisite for the Tanimoto
index) and/or molecular descriptor values. However, sim-
ple identification of duplicates based on the structural
similarity index is not the desirable final achievement,
since their associated experimental data (i.e., the biological
activity or toxicity values under study) should also be
properly analyzed before randomly deleting the extra
identical compound(s). Thus, for a given pair of duplicate
structures, if their experimental properties are identical,
then one of the compounds can be selected randomly and
then deleted. But, if their experimental properties are
numerically different, then one should always consider
the following scenarios.

l If the experimental values are nearly similar, then one of
the compounds (duplicates) can be kept with the arith-
metic average of the experimental values.

l If the experimental values are significantly different,
then it means that either or both the experimental
values are incorrect. In that case, such duplicates should
be always removed, unless one can confirm the correct
experimental value from the primary sources. Another
option is to keep these compounds in a query set (i.e., a
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set not used in the QSAR model development in any
way) so that one might check the predicted value for
these compounds using the developed model, which
might help in rectifying the error.

l One more case might be observed [23] when both the
experimental values are found significantly different but
are in fact correct. The reason is that one of the previous
curation steps has modified the original compounds to
create such duplicates. For instance, the two identified
duplicate compounds might correspond to two differ-
ent salts of the same compound, and the error is intro-
duced when the counterion was removed during the
step concerning the neutralization of salts. The experi-
mental properties can be significantly different if they
are directly influenced by the counterion. In those
cases, the safer suggestion is to remove such salts for
QSAR modeling [23].

The duplicate analysis can be performed using KNIME
employing any structural similarity index such as the “3D
D-Similarity” node (molecular shape similarity measure) or
using software like the HTS Navigator [24] or the OCHEM
[25]. However, as far as our knowledge goes, there is no
software tool for performing the detailed duplicate experimen-
tal value joint analysis as discussed above, and thus the analysis
part must be performed manually.

(b) Activity cliff analysis: Activity cliffs are the regions where
large changes in activity are observed for relatively small
changes in the chemical structure [26]. Thus, compounds
that may show activity cliffs are having high structural
similarity but a large difference in their biological property
values. Such compounds are difficult to understand or
interpret using QSAR modeling, which is based on the
chemical similarity principle. To identify and verify activity
cliffs especially in the large datasets, one can perform a
matched molecular pair (MMP) analysis [26]. MMP is
simply defined as a pair of molecules that differ in only a
minor single point change. With this respect, single point
changes in the molecule pairs are termed a molecular
transformation. For finding activity cliffs, the transforma-
tion is considered significant, if it leads to a drastic change
in the biological property value with minor single point
change. The MMP analysis can be easily performed in
KNIME using the “Automated Matched Pairs” node.

Though it is not always advisable to remove activity cliff
compounds due to their importance [26], at least some of
them are explainable using specific descriptors or 3D descrip-
tors that can highlight the minor difference in the structure
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which is responsible for a large difference in the activity
[27]. However, the modeler should finally decide whether to
keep or discard such compounds.

4 Recent Advances in Data Curation Tools

Manual data curation is comparatively easy when one is dealing
with small datasets (i.e., less than 50 compounds), but it becomes
more and more difficult as the dataset size progresses. For very
large datasets involving thousands of compounds, manual data
curation becomes almost impossible. Thus, it is highly essential to
develop efficient tools to automate the data curation process with
least manual intervention. Recently, many reported studies have
been focused on developing such tools mainly through the freely
available KNIME workflow to perform the data curation. Here, we
will discuss some of the representative studies along with the web-
site links (if available) where one may download the dedicated data
curation tools.

In 2010, a detailed workflow revealing the important steps
required to curate a chemical dataset for QSAR modeling was
published by Fourches et al. [20]. Though previous publications
have raised the curation issue and suggested some solutions, the
authors provided a detailed and systematic workflow to perform
chemical curation. Later on, the same research group published
another work [27] describing both the chemical and biological
curation process. Both such articles are highly informative for
QSAR modelers, and at least some of the data curation tools
proposed by the authors included KNIME workflows.

In another study, Mansouri et al. [16] have developed a semi-
automated KNIME workflow solely to curate and correct errors in
the structure and identity of chemicals. The workflow was then
tested using the physicochemical properties and environmental
fate datasets available in the PHYSPROP database. In that study,
the workflow first collects structure-identity pairs using four chem-
ical identifiers, including chemical name, CASRNs, SMILES, and
MolBlock, which are then employed to identify and rectify pro-
blems such as errors and mismatches in chemical structure formats,
identifiers, duplicates, and several structural validation issues
including hypervalency and incorrect stereochemistry. The curated
datasets and the developed KNIME workflow in this study are
available for download at ftp://newftp.epa.gov/COMPTOX/Sus
tainable_Chemistry_Data/Chemistry_Dashboard/.

Kim et al. [28] also developed a KNIME workflow to curate
and prepare high-throughput screening data for QSAR modeling
purposes. This workflow loads chemical structures in SMILES or
SDF format, keeps only organic molecules, and then standardizes
the structural representation using InChI tautomerism and
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additional SMARTS transformation. The output files comprise the
structurally curated structures, rejected structures, and the struc-
tures with warnings. The workflow can be downloaded as a zip file
at https://github.com/zhu-lab.

Kausar and Falcao [29] developed a fully automated QSAR
modeling framework using KNIME workflow, which includes
almost all requisite modeling tasks starting from data curation to
QSAR model building and validation. The data curation part of the
workflow facilitates retrieval of data directly from databases such as
ChEMBL, removal of irrelevant data by selecting only the bioactiv-
ity type of interest, filtering out missing data, identifying duplicates,
and dealing with several forms of the same molecule (including salt
groups). The developed framework was tested on datasets with
30 different problems. This workflow is available at https://
github.com/Saminakausar/Automated-framework-for-QSAR-
model-building.

Ambure et al. [30] have developed semiautomated KNIME
workflows to perform both chemical and biological curation.
Here, the workflow dedicated to chemical curation loads the data
in SDF format, keeps organic molecules (only), removes mixtures
and salts, optimizes the geometry, and finally carries out the nor-
malization of the chemical structures to the screened set of chemi-
cals. The workflow dedicated to biological curation performs
duplicate analysis using molecular shape similarity measure and
activity cliff analysis using MMPs. Ambure et al. [30] discussed in
detail how these analyses were performed with some task needing
manual involvement. Five datasets curated using these workflows
were then used to develop multiple QSAR models and further
employed to identify multi-target directed ligands against Alzhei-
mer’s disease. These workflows are free to download at https://
sites.google.com/site/dtclabdc/.

Finally, Gadaleta et al. [23] have designed and implemented a
semiautomated workflow integrating structural data retrieval from
several web-based databases, automated comparison of these data,
chemical structure cleaning, and selection and standardization of
data into a consistent, ready-to-use format that can be employed for
modeling. This workflow integrates almost all the vital tasks for
data curation, and the output files comprise not only the informa-
tion about the structures that are retained or rejected but some
helpful additional information such as reliability (high or medium),
possible warnings, removed counterion information for salts, struc-
tures that need manual checking, etc. The respective KNIMEwork-
flow is freely available at https://github.com/DGadaleta88/data_
curation_workflow.
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5 Prospects

From the discussion, it is clear that data curation has already
become and will remain as an important part of QSAR modeling.
Thus, all the datasets extracted from the online databases and/or
published literature must be curated prior to using it for QSAR
modeling. Identifying the true relationship between the structural
features and the response (activity/toxicity) under study is only
expected if the dataset is curated, while the non-curated dataset
might always result in a false relationship. Though many service
providers of databases like ChEMBL [15] have already taken initia-
tives to provide curated data, however, it is still sensible for users to
always confirm the accuracy of extracted data. The freely available
and shared data curation tools especially KNIME workflows will
surely help to further improve the automatic data curation efforts in
the near future.
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Chapter 6

Machine Learning and Deep Learning Methods
in Ecotoxicological QSAR Modeling

Giuseppina Gini and Francesco Zanoli

Abstract

Today the registered chemical structures are about 28millions, while experimental toxicity data are available
for a few hundred thousands of them. Defining properties and effects for all the available chemicals is a huge
task due to the cost of the experimentation and to legislative restrictions. Therefore, prediction is the only
available solution, but it poses many challenges in terms of accuracy and interpretability. Predictive
toxicology systems use statistics as well as methods based on machine learning (ML). While ML has been
widely used in the pharmaceutical domain, its use in ecotoxicology is more limited. After reviewing the
experiences in quantitative structure-activity relationships (QSARs) for modeling CMR (carcinogenic,
mutagenic, reproductive) toxicity and PBT (persistent, bioaccumulative, and toxic) chemicals, we look at
the advancements of technology in ML. Recently, the investigation of the neural basis for many cognitive
functions has provided the tools to create new systems that can think, solve problems, find patterns, and
recognize images and texts; these new methods are named deep learning (DL). We modified the most
successful DL architecture, implemented Toxception as a tool to generate QSAR models, and tested it in a
real case, on a dataset of about 20,000 molecules tested for mutagenicity with the Ames test. The results
obtained challenge the current state of the art. In addition, Toxception does not use any chemistry
knowledge besides the 2D structures derived from SMILES. We conclude examining advantages, open
challenges, and drawbacks of building QSARs with DL.

Key words Machine learning, Neural networks, Deep learning, Mutagenicity, Ames test

1 Introduction

In 2009, the paper “The Toxicity Data Landscape for Chemicals”
[1] reported 28 million chemicals discovered. Only three millions
were tested on animals and humans, and about one million had
some toxic assay summary. To fill the data gap, successive studies on
other compounds are using predictions or simulations. It is under-
standable that with those numbers, finding an accurate and opti-
mized model is a big challenge. Moreover, the data heterogeneity is
very high, and this reduces, even more, the reachable precision. It
must also be considered that knowledge about the functioning of
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the organisms is still insufficient with respect to the complexity of
the systems.

Chemoinformatics has appeared as an alternative way to physi-
cal models (quantum chemistry or molecular dynamics simulation).
Chemoinformatics started by considering the chemical structures
as graphs. One of the simplest representations of a molecular graph
is the adjacency matrix that supports the computation of many
topological descriptors. Other chemical descriptors that account
for electrical and physical properties are also extracted from
chemical structures. 1D and 2D descriptors are the most used in
chemoinformatics. 3D descriptors require 3D coordinate represen-
tations and are sensitive to structural variations, since they usually
are built from the most common optimized 3D structure and
cannot account for the other less common structures of the same
chemical. Four-dimensional chemical descriptors are necessary to
simultaneously consider multiple structural conformations. Chem-
ical fingerprints are vectors of large dimension that represent in
each position 0 or 1 if a substructure of a given list is present or not.

Chemical similarity is another fundamental technique in che-
moinformatics. Its objective is to group the compounds with struc-
tures and bioactivity similar to each other, according to the
principle that similar compounds have similar activity. This assump-
tion is not always true, and the concept of activity cliffs has been
introduced to explain when minor modifications of functional
groups cause a dramatic change in the activity.

QSARs are typically used to develop models that are specific to
a single defined endpoint, for which usually an in vivo or in vitro
test is available. As implicit in the name, such models use only the
chemical structure of the molecule to create an association with the
biological endpoint. Moreover, in the development of new drugs,
such models can be used to flag compounds that are likely to cause
adverse effects.

We have to mention also the methods used to create SAR
models, which are based on the individuation of toxicity-conferring
molecular fragments, that are small parts of a molecule that can be
associated with toxicity effect following statistical methods. The
main problem with such a method is the consistency of the struc-
tural alerts (SA) provided. Frequently the fragments used are too
small to be unambiguously linked to the chemicals. Moreover, the
set of rules to search inside the input dataset must be decided, and
these rules are usually linked to the specific database, therefore, not
transferable to other dataset [2].

The use of QSAR and SAR models within regulatory bodies,
however, is in an initial phase and still under active development
[3]. The safety assessment of the huge quantities of chemicals in
daily use has been of concern at least in the last decades, together
with the release of specific registration regulations. For environ-
mental QSARs the main problems are the availability of good
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quality toxicity data, ideally obtained from certified laboratories,
and about valid toxicological endpoints. A number of regulatory
authorities are considering the utility of QSAR in toxicity predic-
tion for tasks as prioritization, classification and labeling, and chem-
ical assessment. While QSARs are of common use in the
pharmaceutical industry, as they are apt to screen large amount of
data, they encounter acceptability problems in the environmental
risk assessment, where studies are often interested in a few sub-
stances and in understanding how they interact with the physical
and biological agents in the environment. Moreover, for the envi-
ronmental protection, there is more interest in the chronic toxici-
ties than in the acute toxicities, which are a big concern in drug
design.

Roughly there are two main streams for making models: data
modeling stream and algorithmic modeling. Data modeling is the
stream commonly developed by statisticians: from the data analysis,
they postulate the kind of relation between data and response and
use mathematical tools to derive the model. Initial QSAR studies
used simple linear or multi-linear regressions with a small number
of descriptors (features in the modeling terminology). Those mod-
els were apt to model small series of similar compounds.

Algorithmic modeling has been developed more recently, start-
ing in the mid-1980s when powerful new algorithms for fitting data
became available. They are generally named machine learning
(ML) methods. To create QSARs from a large series of compounds
in a wider chemical space, those more effective methods are needed
[4]. Algorithmic methods include decision trees, production rules,
neural networks (NN), genetic algorithms, support vector machine
(SVM), random forest (RF), and naı̈ve Bayes just to name the main
families. This field is in rapid evolution and is boosted by the
introduction of massively parallel hardware. ML uses pattern rec-
ognition to find the mathematical relationship between experimen-
tal observations and biological or chemical properties. ML
techniques are usually more efficient and more feasible than physi-
cal models and can scale up to big data. Many good reviews have
recently appeared on the topic, as [5], which reviews the main ML
methods adopted in QSAR, and [6], who also discusses ML meth-
ods for feature selection.

A literature analysis of QSAR in the years 2009–2015 appeared
recently [7]. It observed that the number of QSAR papers using
standard regression tools was decreasing, while more papers used
ML methods, especially RF and naı̈ve Bayes. The reasons may be
the transformation of QSAR studies into routine work done using
the available tools or some saturation of models for available data.
In conclusion, we may expect that the progress in ML methods can
help QSAR to enter in the productivity cycle in drug design. The
same could be true for ecotoxicology.
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ML methods can be broadly divided in supervised and unsu-
pervised. Most of the QSAR applications use supervised learning,
where data used for learning are labeled (i.e., they contain both the
chemical structure and the property under investigation). The
property values can be real values, as in the case of dose-response,
or integer labels, as in the case of active/not active.

The most adopted supervised ML methods are so far neural
networks (NN), support vector machine (SVM), random forest
(RF), k-nearest neighbor (KNN), and naı̈ve Bayes (NB). The
most common unsupervised techniques that are aimed at discover-
ing the unknown pattern from unlabeled data are hierarchical and
non-hierarchical clustering and k-means clustering.

Many-layer NNs have been recently introduced to learn highly
complex functions. Those networks contain a large number of
hidden layers; adding more layers requires a full new way of build-
ing the net, as conceptualized by deep neural networks (DNN).
DNNs are now being used to learn directly useful features from
data, without the need of computing features. Convolutional neu-
ral networks (CNNs) as well as recurrent neural networks (RNN)
have been successful in recognizing images and text, respectively,
and are now being used in chemoinformatics, especially in drug
discovery [8]. Today the needed computer power is easily available
from systems as GPU-accelerated computers, for instance powered
by NVIDIA.1

In the rest of this chapter, we will shortly introduce the envi-
ronmental properties successfully investigated with ML methods.
To go further in the new directions of ML, we will look at the basic
deep NN architecture that has gained attention due to its capability
to understand images, and we will show how to use it to create a
QSAR model.

Usually ML methods are applied to QSAR in a pattern match-
ing style, so using a selected set of descriptors. Descriptors are
indeed some specific or local views of the molecular structure.
Why not to use the structure itself, i.e., the chemical graph, and
nothing else? The reason for building again another QSARmodel is
that we want to explore how the basic hypothesis of QSAR, i.e.,
“similar molecules have similar properties” can be challenged by
just using the structure and nothing else, in particular no measures
of similarity. We will apply those concepts in the construction of
Toxception, a new deep learning model of the Ames mutagenicity
test. An important point of Toxception with respect to the previous
use of NNs is that it is able to auto generate the relevant descriptors.

Of course modeling is only one aspect of QSAR, since making
the model robust, understandable, and acceptable is another big
task, as we will see in the final discussion.

1 https://www.nvidia.com/en-us/data-center/dgx-1/
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2 Machine Learning in QSAR for Environmental Protection

Initial QSAR models used statistical methods and parametric mod-
els to model a property on a family of compounds with similar
chemical characteristics. With new studies on different chemical
classes, some nonparametric techniques, as the ones taken from
ML, were considered.

ML has the task of learning a function that minimizes an error.
Minimization means optimization: learning can be seen as an opti-
mization problem. The mathematical formula for optimization is
simple one, but its computation can be really hard since we cannot
accept trying all the possible combinations of parameters setting.
The goal forML is so to optimize the performance of a model given
an objective function and the training data.

In particular scientists have used traditional AI methods such as
decision trees and NN and then adopted new emerging pattern
recognition methods as SVM and RF, which allow for classifying
anything based on its features. All those methods have a common
characteristic: they make an optimization. Moreover, in the crea-
tion process, they require the interaction with a human expert in
order to select the features (chemical descriptors) on which to base
the whole process. In fact, all of the methods just cited are
extremely powerful if they are applied to a consistent set of features.

Other methods derived from data mining are instead able to
autonomously mine data and find patterns. Those methods are at
the basis of systems that extract substructures from the chemical
structures; after the substructures are created, an optimization
method is called to make a correlation among some of them and
the target. This line of research originated from the work of [9],
which developed a way to learn rules of rodent carcinogenicity; it
used an inductive learning program to work on the data about
short-term assays of mutagenic and cancerogenic toxicity together
with maximum tolerated dose. This work improved the prediction
of nongenotoxic chemicals. Extracting rules from data is the way of
operating SARpy, a tool publicly available in VEGAhub,2 which
works both to find fragments correlated to toxic and nontoxic
substances; the rules are then used to make a SAR model.
CORAL, another tool in VEGAhub, uses an optimization method
to find the best combination of small pieces of the molecules in the
training dataset, so providing a QSAR model and an indication
about the fragments more strongly related to the toxic effect.

Another common method used in ML is ensembling. Ensem-
bling means combining different models together. An ensemble is
an algorithm trained with the results of a number of models, which
is then used to make predictions. Empirically, ensembles tend to

2 https://www.vegahub.eu/download/

Machine Learning and Deep Learning Methods in Ecotoxicological QSAR Modeling 115

https://www.vegahub.eu/download/


give better results when there is significant diversity among the
models used to build them. This conclusion is further highlighted
by the fact that models of close similarity tend to have similar
prediction errors that cannot be corrected. Model diversity can be
achieved using a number of strategies, for example, using different
datasets to train individual classifiers or using different training
parameters for different classifiers. Alternatively, entirely different
types of classifiers, such as linear regression, decision trees, and
SVM, can be combined to enhance model diversity.

The initial examples of ensembles were based on bagging and
boosting techniques. Using the bagging technique, a number of
training data subsets are randomly drawn, with replacement, from
the training data. Each subset is used to train a different classifier of
the same type; the classifiers are then combined using majority vote.
A variant of bagging is RF, which merges simple decision trees
constructed with different parameters. The boosting technique
uses a pool of classifiers that are sequentially trained on subsets of
data, each time including data misclassified by the previous classi-
fiers. The classifiers are then combined using majority vote.

Another way of improving models is to create hybrid systems,
i.e., systems that use different knowledge representation methods.
Compared with the approaches previously described, where
pre-existing models are integrated, in this case, the integration of
different models is planned upfront. In this context, NN with fuzzy
systems and NN with symbolic rules have been the most used. The
rationale of this choice is that any technique may have limitations;
however, these can be overcome through integration with comple-
mentary methods. For instance, considering the pros and cons of
the most common systems, we can obtain better explanation ability
by using rules, or tolerance to noise by using NN, or learning ability
by using RF.

The pharmaceutical industry is making a large use of computa-
tional methods, including QSAR, in various stages of the develop-
ment of candidate new drugs. From large numbers (even millions)
of potential candidates, it is necessary to extract the best ones, i.e.,
the most active for the disease under study and the less toxic. The
use of QSAR in other industrial areas is less advanced, due to lack of
available data and to different needs. As reported in [10], regulators
take decisions on the basis of scientific evidence. This evidence,
initially given by experimental tests on the chemicals, is more and
more substituted by evidence given from in-silico toxicological
studies. Problems about introducing QSAR methods for the envi-
ronmental protection have been presented in [11]. Since then the
Environmental Protection Agency (EPA) in US played a pioneering
role in developing and applying QSAR [3].

Today many regulations define rules for registering and using
chemical substances assessing, at least, two properties: CMR (car-
cinogenic, mutagenic and reprotoxic) and PBT (persistent,
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bioaccumulative and toxic) characterizations. CMR products are
supposed to be of high concern for humans. PBT chemicals are
substances that are not easily degraded, accumulate in different
organisms, and exhibit an acute or chronic toxicity. vPvB substances
are defined as substances that are very persistent and very bioaccu-
mulative. They are supposed to have long-term adverse impacts on
the environment.

The role played by ML methods in developing models useful
for PBT and CMR assessment is relevant. We just review some of
those models that applied ML methods.

2.1 CMR Assessment CMRs chemicals are chronically toxic and have very serious impacts
on health. The CMR assessment is necessary for industrial chemi-
cals as well as for other uses. For instance, the European Cosmetics
regulation defines that substances classified as CMR are banned in
cosmetic products. Mutagenicity, cancerogenicity, and reproduc-
tive toxicity are usually taken as binary values, i.e., active or
non-active. The potency of toxicity (expressed as a dose) is however
considered at least for cancerogenicity in the well-known dataset
built by L. Gold and coworkers, and available from the Carcino-
genic potency project.3

2.1.1 ML Methods

in QSAR

for Cancerogenicity

MLmethods effectively used to predict carcinogenicity include NN
and RF. The earliest models were the result of the Predictive
toxicology challenge, which ran in 2000–2001 [12], and was
aimed at predicting the cancerogenicity of a set of molecules.

In 1999, [13] described a successful method based on back-
propagation NN to predict the carcinogenicity potency of aromatic
compounds. Data were taken from the before mentioned Gold
dataset. The NN system was integrated with a rule based system
to obtain the IARC classification [14]. This was an early example of
applying the methods of ensembling in QSAR.

Ensemble models have been proposed also in [15], which devel-
oped a set of neural QSAR models for the prediction of the carcino-
genicity TD50 index. It used a self-organizing feature map algorithm
to select subsets of molecular descriptors, then trained an ensemble
of predictive fuzzy ARTMAP networks. Results show that the diver-
sity introduced by the predictors trained using different subsets of
descriptors produces better generalization than single models.

A quite large population of chemicals has been used in [16],
with data about rat toxicity extracted from the Gold dataset and
used to train a counterpropagation NN. The best model uses eight
MDL descriptors. For the test set, it obtained accuracy equal to
73%, sensitivity 75%, and specificity 69%. This result is quite inter-
esting and balanced, so it has been further studied and interpreted,

3 https://toxnet.nlm.nih.gov/cpdb/

Machine Learning and Deep Learning Methods in Ecotoxicological QSAR Modeling 117

https://toxnet.nlm.nih.gov/cpdb/


considering that its results are also compatible with the structural
alerts so far identified.

Extracting the SAs from the dataset and using them to create a
classifier have been proposed in [17]. The method of extraction is
provided in SARpy [2], and its advantage is that the QSAR inter-
pretation is straightforward, since the relevant substructures are
immediately available. The model uses a large number of SAs, as
the idea of SARpy is to privilege large SAs instead of finding their
maximum common substructures.

In a recent study [18], the carcinogenicity of polycyclic aro-
matic hydrocarbons (PAHs) is modeled by using RF. The used
dataset contains 91 PAHs, and several molecular descriptors were
computed. Different models were developed using partial least
squares (PLS), ANN, and RF. The best model, with highest classi-
fication accuracy and modeling time, was the RF model. This
finding is compatible with the fact that RF is very apt to work on
small datasets.

A novel use of QSAR linked to text mining has been proposed
in [19]. In this study QSAR data are combined with literature
profiles of carcinogenic modes of action automatically generated
by a text-mining tool. Using these two methods, individually and
combined, the authors evaluated 96 rat carcinogens of the hema-
topoietic system, liver, lung, and skin. They found that skin and
lung rat carcinogens were mainly mutagenic, while the carcinogens
affecting the hematopoietic system and the liver were often
non-mutagens. The automatic analysis of texts showed how differ-
ent endpoints as mutagenicity, immunosuppression, and hormonal
receptor-mediated effects were found in connection with some of
the carcinogens, so allowing identifying more detailed information
on biological mechanisms and the relation with chemical
structures.

2.1.2 ML Methods

in QSAR for Mutagenicity

Mutagenicity has been often approached through SAR systems,
based on a number of substructure search. Since many mutagenic-
ity data for the Ames test are available, most of the models predict
the results of the Ames test.

The CAESAR mutagenicity model [20] within the VEGAhub
is a hybrid model, composed of a SVMmodel and a rule system. In
order to increase the sensitivity, the rule model is applied to sub-
stances that have been predicted to be negative (non-mutagenic) by
SVM; the rules are a subset of the rules available in ToxTree.4 If the
output of the second step predicts mutagenicity, the software stops.
In contrast, if the output of the second step predicts
non-mutagenicity, a third model is applied based on another set
of rules to obtain additional assessment.

4 ToxTree: http://toxtree.sourceforge.net/
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The SARpy mutagenicity model [2] in VEGA instead uses a
data mining approach to automatically extract SAs from a dataset
containing the SMILES of the molecules and their Ames test
results. An optimal number of alerts is then kept to create a SAR
program. Those rules, integrated with many more SAs extracted
from specific datasets, are displayed to the expert in a graphical
interface where it is possible to examine the similar compounds
[21]. The use of SMILES as the only description of the molecular
structure proved to be useful also in optimization techniques, as in
[22], which found better results with SMILES than molecular
graphs in modeling mutagenicity of aromatic amines.

KNN is another popular strategy in mutagenicity. Lazar [23] is
a generic tool developed to create QSAR from any dataset using
information on the neighbor compounds. It has been applied to
various endpoints, including mutagenicity.

RF also has been applied to mutagenicity, by [24]. NN have
been used in a number of models for non-congeneric compounds.
Among them let us cite the work [25], which used 2D and 3D
descriptors to develop a NN model for genotoxicity.

2.1.3 ML Methods

in QSAR for Reproductive

Toxicity

Reproductive toxicity indicates an endpoint much more complex in
the definition, which has been addressed quite recently. Reproduc-
tive toxicity indicates the adverse effects induced by chemicals on
fertility and developmental toxicity in the offspring.

Few experimental data are available, and the construction of
QSAR just at the beginning. As reported in [26] there are many
problems in applying QSAR to reproductive toxicology since there
is a variety of endpoints associated to reproductive toxicology and a
lack of data to make models. Models about ADME relating to
reproductive toxicity and to endocrine disruption are more devel-
oped than global models, using a large family of chemical com-
pounds, for reproductive endpoints. Initial models were based on
expert systems technology, incorporating expert knowledge, and
are sometimes part of commercial systems.

Among the first freely available models is the TEST-VEGA
model [27]. It applies RF and has been chosen after developing
other models with different methods; it is today available both in
VEGA and in TEST.5

2.2 PBT Assessment The term PBT, introduced in Japan’s Chemical Substances Control
Law in 1973, was later adopted by regulations in several countries
including European Union (REACH regulation), the USA, and
Canada. Under REACH, the PBT/vPvB assessment is an impor-
tant part of the chemical safety assessment that must be conducted
for the registration dossiers, alongside with the CMR assessment.

5 https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test
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2.2.1 ML Methods

in QSAR for Persistence

The authors of [28] discussed methods based on artificial intelli-
gence for the prediction of chemical biodegradability; in particular,
they considered regression, expert systems, and ML models. They
proposed an inductive logic model, which is expressed as a set of
rules, that can be compared to the concept of SAs already seen in
other SAR systems.

Another reported model for ready biodegradability [29] is
based on SARpy to extract rules for the prediction of ready biode-
gradable, non-ready biodegradable, and possibly biodegradable.

2.2.2 ML Methods

in QSAR

for Bioaccumulation

Bioconcentration factor (BCF) describes the behavior of a chemical
in terms of its likelihood of concentrating in organisms in the
environment.

Miller and coworkers [30] have published a review of methods
used in bioconcentration factor. They extensively compared linear
and ML models for the prediction of bioconcentration in fish
Cyprinus carpio. An optimized multilayer perceptron with
14 descriptors was selected for further testing on invertebrates,
with good results.

The BCF CAESAR model, available in VEGA, is a hybrid
system integrating two models built with SVM [31].

Making use of models that directly use SA is a quite popular
method that addressed the need of explaining the results of the
QSAR. It is much more explicative that the interpretation of the
molecular descriptors that are in general selected from huge num-
bers. Using SARpy, the SAs for BCF have been extracted by
[32]. Indeed the use of SAs as rules has been proposed in a stand-
alone system [33], which shows in a graphical interface the similar
molecules and the relevant rules to help the expert in the toxicity
assessment of BCF.

2.2.3 ML Methods

in QSAR for Toxicity

Environmental toxicity according to the different legislation
requires the analysis of acute and/or chronic toxicity for water
and terrestrial animals and plants. A very large number of endpoints
can be relevant to assess toxicity. Of great concern is aquatic toxic-
ity, for which fish, alga, and daphnia are the most common organ-
isms addressed. For terrestrial toxicity rats, bees, and birds are the
most common targets used. Among the many developed models,
we can make a distinction between models for generic industrial
chemicals and models for pesticides.

Some models for pesticides using ML methods have been
developed in the DEMETRA project and are described in
[34]. Endpoints include acute toxicity toward fish, birds, and bees.

Fish toxicity is one of the most studied endpoints for QSAR.
Many ML methods have been developed for industrial chemicals
due to the large dataset of test data available from EPA on the
fathead minnow fish. A model making use of this dataset for train-
ing, and using trout toxicity data as an external test set, is presented
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in [35]. It uses SARpy to extract the SAs that characterize a classifi-
cation in three toxicity classes. Using the same dataset, other mod-
els used ML methods. One of them [36] is an NN ensemble, and
another [37] used adaptive fuzzy partitioning.

A model about Daphnia toxicity [38] uses Monte Carlo opti-
mization as offered in the before mentioned CORAL system.

Of great interest for terrestrial toxicology are endpoints in rat
and birds.

Median lethal death, LD50, is an indicator of acute oral toxicity
(AOT). There is a recent interest in MLmethods to predict LD50, a
value of high interest in both pharmaceutical and industrial chemi-
cals assessment. In recent years, [39] developed three models for
AOT using a convolutional NN that outperformed previously
reported models. Moreover the authors performed automatic fea-
ture learning, to map activation values into fragment space and
derive AOT-related chemical substructures.

For regulatory purposes, [40] developed QSARs using deep
learning as part of the Predictive Models for Acute Oral Systemic
Toxicity project hosted by the ICCVAM Acute Toxicity Work-
group. The networks on fingerprint descriptors [41] demonstrated
a way to combine multiple models with a neuro-fuzzy system to
greatly improve the prediction and the interpretability of results for
avian toxicity LD50. Mazzatorta and coworkers [42] have explored
SVM methods to build QSAR for oral bird toxicity using genetic
algorithms for reducing the number of descriptors. They con-
ducted a study on 116 pesticides for avian oral toxicity. The analysis
of the descriptors indicates the prominent role of the interaction of
pesticides with macromolecules and/or proteins in the mechanism
of action. On a similar dataset, [43] developed an ensemble QSAR
combining together more QSARs; they used also an extension of
the ROC curve method to show the initial and combined models.

3 The New Methods of Deep Learning

In the following sections, we show the steps to construct a QSAR
model using the recently developed methods of deep NN (DNN);
we adapt an architecture used for image recognition and called
Inception [44] and take inspiration from the Chemception network
[45] developed in the chemical domain. It is necessary to explain
the principles of those neural architectures before presenting our
model.

3.1 From Neural

Networks to Deep

Learning

NN are a biologically inspired programming paradigm, firstly
described by [46], which enables a computer to learn from data.
They can also be described as a mathematical function that maps a
given input to the desired output. NN is not an algorithm but can
be considered a framework to process complex input data. The
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same network can be applied to many different tasks depending on
the dataset it has been trained with. A NN is a collection of
connected units, called nodes, that are divided in three categories,
input layers, hidden layers, and output layers, as shown in Fig. 1.
Each node is connected to the successive with a link. Each link has a
weight wi that is a real number that is multiplied for the output of
each node, and it is passed to the next adjacent one. A bias can be
added to the sum of these weights to facilitate the network’s
training.

The neurons are fully connected in a hierarchical order. The
breakthrough for NN can be considered the introduction of the
backpropagation algorithm [47], a method to train multilayer net-
works in a feasible and efficient way. This algorithm allows calculat-
ing the gradient of the loss function with respect to the weights in
the NN. The weights updates can be done via stochastic gradient
descent using Eq. 1:

wij t þ 1ð Þ ¼ wij tð Þ þ η δC=δwij

� �þ ξ tð Þ ð1Þ
where η is the learning rate, C is the loss function, and ξ(t) is a
stochastic term.
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Fig. 1 A neural network with weights, bias, and two fully connected hidden
layers. The input x goes into the first inner layer; the output of each hidden layer
is sent to all the second layer neurons
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The choice of the loss and the activation functions depends on
the problem analyzed. The most used are mean square error (MSE)
and cross entropy (xentropy).

The activation function is used to get the output from a neuron.
The most used activation function is the sigmoid function that exists
between 0 and 1 and is especially useful for models that predict the
probability as an output. Moreover the function is differentiable (it is
possible to find the slope at any two points) and monotonic. The
softmax function is instead used for multiclass classification.

The sigmoid function can cause a neural network to get stuck at
the training time. In fact it squishes a large input space into a small
input space between 0 and1; a large change in the input causes a small
change in the output.Hence, the derivative becomes small, making it
difficult for the backpropagation algorithm to converge; this is called
the vanishing gradient problem. In 2011, the ReLU (rectified linear
unit) activation function was proposed to solve it [48].

ReLU is a half-rectified function (Eq. 2) that returns its argu-
ment x whenever it is greater than 0 and returns 0 otherwise. Its
first derivative is 1 for x > 0, so its value is never too small:

f xð Þ ¼ max 0, xð Þ ð2Þ
This function allowed the birth of deep learning, a new

machine learning method that gave rise to DNN. In the 1990s of
the last century, data scientists and computational toxicologists
used NN in different ways, especially to predict toxicity of sub-
stances and to make feature selection [49]. Indeed in computa-
tional toxicology, the main interesting aspect about NNs is that,
opposite to the parametric methods, they do not require any user
expertise or any a priori knowledge to analyze and discover pat-
terns. Their main drawback is, however, the difficulty in creating
the architecture; the number of layers and of neurons for each layer
is determined in a heuristic way and with trials. Moreover, early
NNs were prone to over fitting, so their training required care.

The resurging interest on NNs is due to the new amounts of
data. Since the 1990s, new technologies have been developed and
widely applied to produce large amounts of chemical and biological
data; in particular high-throughput screening (HTS) and high-
content screening (HCS) provide information on the biological
activity of thousands of compounds.

DNNs have seen tremendous development in the last decade
due to their application to image analysis and object recognition.
The main idea is to train the computer by showing different exam-
ples of the same object, in order to make the machine understand
and recognize the object based on the images features. This prob-
lem is called Large-Scale Visual Recognition Challenge (LSVRC);
every year, the ImageNet contest,6 i.e., a challenge on the big

6 http://image-net.org/challenges/LSVRC/

Machine Learning and Deep Learning Methods in Ecotoxicological QSAR Modeling 123

http://image-net.org/challenges/LSVRC/


dataset ImageNet, declares the winner network that proved to have
the best accuracy and the smallest error. Error reduction has been
impressive, going from 16% in 2012 to 3.5% in 2015; this error is
lower than the human error, which is about 5%.

Recognizing objects from images is the same as recognizing a
molecule as toxic or not. In chemistry, DNN have gained popular-
ity after recent achievements that include DNN-based models win-
ning the Merck Kaggle challenge7 for activity prediction in 2012
and the NIHTox21 challenge for toxicity prediction in 2014.What
is common in those networks is that they are deep, i.e., they have
many hidden layers, and that the neurons in the net are not fully
connected.

The most powerful model to solve LSVRC is the convolutional
neural network (CNN). The most active actors of this field are
Google, Microsoft, and Facebook, which today define the current
state of the art. CNNs [50] typically adopt a standard structure with
stacked convolutional layers, followed by one or more fully
connected layers. CNNs use many of the same ideas as the NNs,
such as backpropagation, gradient descent, regularization, nonlin-
ear activation functions, and so on.

3.2 Convolutionary

NN

NNs have an important theoretical advantage over other methods:
the universality theorem states that a NN with at least one hidden
layer can approximate any continuous or discontinuous function.
Moreover, adding layers in the net increases the number of para-
meters to fit and so allows to better approximate complex
functions.

Why adding fully connected layers in NN without considering
the properties of the data representation? The architecture of the
network should take into account the spatial structure of images.
For instance, why treat pixels that are far apart and close together?
So, instead of starting with a generic NN multilayer architecture,
we take advantage of the spatial structure. For images it is accepted
that the neighborhood rather than the pixel carries the geometrical
interpretation; using this principle, Convolutional NN (CNN) adds
trainable filters and neighboring local pooling operations in an
alternate sequence.

DNNs contain simple nonlinear processing units, each trans-
forming the representation at one level (starting from the input
image) into a representation at a higher level. In practice, the
network works as a representation learning method, learning from
low to high level features, without the need of computing and
selecting the relevant features (chemical descriptors in our case).

The first CNN was developed in 1995 to classify handwritten
digits [51]. The basic CNN, as in Fig. 2, is composed of

7 https://www.kaggle.com/c/MerckActivity
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convolutional layers (Conv), rectified linear units (ReLU), pooling
layer (Pool), and fully connected layers (FC). The operations are
performed for M and K number of times as indicated.

3.2.1 Convolutional

Layer

We connect the pixels of the input image to a layer of hidden
neurons. But we won’t connect every input pixel to every hidden
neuron: we only make connections in small, localized regions of the
input image. Each neuron in the first hidden layer is connected to a
small region of the input neurons, for example, a 5 � 5 region,
corresponding to 25 input pixels. Each connection learns a weight,
and there is a common bias for the region. We slide this 5 � 5
window across the entire input image, each time acting on a differ-
ent neuron in the hidden layer. The sliding can be done one pixel at
a time or using a different number of pixels; this number is called
stride length. We use the same weights and bias for each of the
hidden neurons, so reducing the number of parameters of a con-
volutional network, which is at least one order of magnitude less
than the number of parameters of the fully connected layer. A Conv
layer is composed of several feature maps (with different weight
vectors), so that multiple features can be extracted at each location.

Each Conv layer is followed by the pooling layer, which per-
forms local averaging and subsampling, so reducing the resolution
of the feature map. The activation layer ReLU is used to control the
effect of the squashing nonlinearity. This triad of modules can be
repeated in a sequence to increase the number of feature maps and
to decrease the spatial resolution. The FC layer is used then to find
the correlation between the label and the features contained in the
feature maps.

A single step of convolution multiplies and sums the pixel
values of an image with the values of a filter. This filter can be of
shape N∗N. Next step, the filter is shifted to a different position,
and the convolutional step is repeated until all pixels are processed
at least once. In Fig. 3, there is an example of applying it to a pixel,
with N ¼ 3.

The resulting matrix eventually detects edges, or transitions
between dark and light colors, and eventually more complex
forms. The more filters are applied, the more details the CNN is
able of recognizing. Moreover, the inclusion of the ReLU aims to

Conv ReLU Pool

FC ReLU FC

M

K

Fig. 2 A basic CNN network
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apply an element-wise activation function, such as sigmoid, to the
output of the activation produced by the previous layer. This non-
linear function is necessary for the network to be able to represent
nonlinear relationships between neurons.

3.2.2 Pooling Layer Pool takes as parameter the dimension of the output mask. The
most used are max pooling and average pooling; max pooling
selects the maximum value of all selected squares to make feature
detection more robust. Average pooling uses instead the average of
all values. Neither of this two pooling methods requires parameters,
so backpropagation also does not need to learn anything. Max
pooling is generally preferred. Max pooling is a way for the network
to ask whether a given feature is found anywhere in a region of the
image. It then throws away the exact position, since once a feature
has been found, only its rough location relative to other features is
important. The advantage is that there are fewer pooled features; so

Fig. 3 (a) A step in the convolution process with a filter 3 � 3. (b) An example of
the max pooling operation with a filter of size 2
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later layers will require fewer parameters. Figure 3 on the right
shows an example of max pooling when a filter ¼ 2 is used.

3.2.3 Fully Connected

Layer

The final layer in the CNN network is a FC layer; this layer connects
every neuron from the max-pooled layer to every one of the output
neurons, as in regular feed forward NNs. Their activations can
hence be computed with a matrix multiplication followed by a
bias offset. It is also suggested by [52] that ReLU may be used
between these layers to improve performance.

A distinguishing feature of CNNs is that many neurons share
the same filter, so reducingmemory needs, because a single bias and
a single vector of weights are used. This leads to the deep architec-
ture called Inception [44] that allows the net to be computationally
feasible.

3.3 Inception

Network

The first Inception network, the GoogleNet [53], introduced the
concept of inception, which means to apply three different filters on
the image: 1 � 1, 3 � 3, and 5 � 5. Then, with the Microsoft
network ResNet [54], the networks started going wider, with
different modules in parallel, instead of going deeper, so reducing
the computation time using GPU.

Inspired by a neuroscience model of the primate visual cortex
[55], the Inception network uses a series of filters of different sizes
to handle multiple scales. Moreover, this network includes the
concept of Network-in-Network by [56] in order to increase the
representation power; additional 1 � 1 convolutional layers are
added as dimension reduction modules, allowing increasing both
the depth and the width of the networks without a significant
performance penalty. The main drawbacks are that computational
resources and the number of parameters also increase, which make
the network more prone to over fitting. A fundamental way of
solving both issues is to introduce sparsity, replacing the fully
connected layers by sparse ones, even inside the convolutions, so
mimicking biological systems. This is done by building subgroups
of convolutional blocks that form the units of the next layer and are
connected to the units in the previous layer. We assume that each
unit from an earlier layer corresponds to some region of the input
image. These “Inception modules” are stacked on top of each
other. As higher layers capture features of higher abstraction, their
spatial concentration decreases. The “Inception module with
dimensionality reduction” in Fig. 4 includes 1 � 1 convolutions
that are used to compute reductions before the expensive 3� 3 and
5� 5 convolutions. The first Inception network was a combination
of these blocks with an occasional max-pooling layer with stride
two, leading to 22 deep layers.

According to [52], it is wise to balance width and depth of the
network. This is obtained through factorization, i.e., decomposing
larger filter sizes into more layers of filters: 5 � 5 convolutions are
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replaced by two layers of 3 � 3 convolution. Asymmetric convolu-
tions, e.g., n � 1, are used to push even further the factorization
process. For example, a 3 � 1 convolution followed by a 1 � 3
convolution is equivalent to sliding a two-layer network as in a
3 � 3 convolution.

The factorization in Fig. 5 represents Inception-v3 [52], which
has 42 layers.

Fig. 4 Inception module with dimensionality reduction

Fig. 5 Inception modules where each 5� 5 convolution is replaced by two 3� 3
convolutions. The 3 � 3 convolutions are then further decomposed in 1� 3 and
3 � 1 convolutions
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3.3.1 Residual Network Let us consider H(x) as an underlying mapping to be fit by a few
stacked layers, with x denotes the inputs to the first of these layers.
Since multiple nonlinear layers can asymptotically approximate any
complicated function, then they can asymptotically approximate
the residual functions, i.e.,H(x)� x. So we explicitly let these layers
to approximate a residual function F(x): ¼ H(x) � x. The original
function thus becomes F(x) + x. In this reformulation, if identity
mappings are optimal, the solvers may simply drive the weights of
the multiple nonlinear layers toward zero to approach identity
mappings.

ResNet [54] used this concept named residual learning; each
building block is considered with residual learning, and it is
expressed as in Eq. 3:

y ¼ F x,W ið Þ þ x ð3Þ
where x is the input of the vector of the layers considered; y is the
output of the vector of the layers considered; and F(x, Wi) repre-
sents the residual mapping to be learned.

The ResNet network contains the residual connection as in
Fig. 6, has lower complexity, and is 152-layer depth.

In conclusion, the final inception network [44] combines resid-
ual network [54] and inception with factorization [52]. Also, the
stem block is introduced to replace all the linear layers of the
precedent networks. The main advantage with respect to older
CNN is that training time is highly reduced.

4 Dataset Construction and Preprocessing

The property of interest we explored for building (Q)SAR DNN is
mutagenicity. Mutagenicity refers to a chemical or physical agent’s
capacity to cause mutations, i.e., genetic alterations. Agents that
damage DNA causing lesions that result in cell death or mutations
are genotoxins. All mutagens are genotoxic, but not all genotoxins
are mutagens.

4.1 Ames Test

for Mutagenicity

and Its Models

The most adopted test for mutagenicity is the Ames test [57]. It
uses bacteria Salmonella typhimurium and rat liver, and it is exe-
cuted in a test tube. Different bacterial strains are sensitive to
different types of mutations; so more than one strain should be
used. This test has some limitations as Salmonella typhimurium is a
prokaryote; therefore it is not a perfect model for humans, and rat
liver is used to mimic the human metabolic conditions. Moreover,
the reproducibility of this test is around 85% as reported by
[58]. This implies that the accuracy of any computational model
cannot reach 100% of accuracy. For instance, chemicals that contain
the nitrate moiety sometimes are positive for Ames when they are
indeed safe.
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We decided to model the Ames test for various reasons. The
first is that this test is necessary for the registration of any chemical
in different regulations and in the screening process. Moreover the
cost the AMES test is quite high, making the model of interest in all
the situations that require prioritization. The third and crucial fact
that influenced our choice is the number of data available in litera-
ture and in databases. Of course, the choice of the Ames also
implies some drawbacks. The most important is the different stan-
dardization of the available data, which requires data preprocessing.

Many (Q)SAR models for predicting the Ames test are in the
literature and in use. In a recent study [59], whose results are

Fig. 6 The building block for residual learning

Table 1
Results of models tested on an external test set of about 2000 chemicals as reported in [59]

TESTl CAESAR ISS SARpy KNN SAm Aim AZAMES

True positives 110 208 187 182 163 178 126 116

False negatives 197 110 131 136 155 140 189 196

False positives 377 683 592 678 635 377 395 178

True negatives 1673 1426 1517 1431 1474 1732 1689 1925

Total predictions 2357 2427 2427 2427 2427 2427 2399 2415

Coverage 0.97 1.00 1.00 1.00 1.00 1.00 0.99 1.00

Positive pred. value 0.23 0.23 0.24 0.21 0.20 0.32 0.24 0.39

Negative pred. value 0.89 0.93 0.92 0.91 0.90 0.93 0.90 0.91

Balanced accuracy 0.59 0.67 0.65 0.63 0.61 0.69 0.61 0.64

Accuracy 0.76 0.67 0.70 0.66 0.67 0.79 0.76 0.85

Sensitivity 0.36 0.65 0.59 0.57 0.51 0.56 0.40 0.37

Specificity 0.82 0.68 0.72 0.68 0.70 0.82 0.81 0.92

Matthews correlation
coefficient

0.14 0.23 0.22 0.18 0.15 0.31 0.17 0.29
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reported in Table 1, many models based on various techniques were
considered, in particular: the US-EPAT.E.S.T. [60]; four models in
VEGAhub, namely, CAESAR [20], SARpy [2], ISS implementing
Toxtree [61], and KNN [62]; two models by Nestlé [63]; and one
model from SweTox [64]. The results reported in Table 1 are on an
external test set extracted from a confidential dataset of 18,338
compounds.

4.2 SMILES

and Chemical Graphs

Simplified molecular-input line-entry system (SMILES) is a specifi-
cation in the form of a line notation for describing the structure of
chemicals using short ASCII strings. This specification was first
described in [65]. It allows to pass from a 2D representation of a
chemical into a simple string and to do the inverse process from the
string to the image.

Typically multiple SMILESs can be written in different ways for
a single molecule, since there exist different algorithms to encode
the structure into a string. The algorithm used for our data is
canonicalization algorithm, and the SMILES derived from are
called canonical SMILES. In terms of procedure, the algorithm is
graph based: the string is obtained by printing the symbol nodes
encountered in a depth-first tree traversal of a chemical graph. The
chemical graph is first trimmed to remove hydrogen atoms, and
cycles are broken to turn it into a spanning tree. Where cycles have
been broken, numeric suffix labels are included to indicate the
connected nodes. Parentheses are used to indicate points of branch-
ing on the tree.

The resultant SMILES string depends on some choices: the
bonds chosen to break cycles, the starting atom used for the depth-
first traversal, and the order in which branches are listed. To analyze
a dataset, it is necessary that all the SMILES strings be obtained in a
consistent way; in our case the SMILES taken from different
libraries are all normalized using the SMILES generation algorithm
of VEGA [66].

4.3 Images

Generated from Smiles

Two modules compose the function realized by RDKit8 to convert
a SMILES string to a two-dimensional drawing: a SMILES parser
to convert the SMILES back to its parent spanning tree and a
SMILES drawer to convert this spanning tree to a
two-dimensional structure drawing.

l The parser module generates a tree from the input SMILES, in
which each atom is encoded by a node object in a linked tree data
structure. The topology of the parse tree is identical to the
spanning tree used to generate the SMILES string. In practice,
the parser uses a simple context-free grammar. In addition the
parser can identify the location of an erroneous symbol.

8Rdkit. URL https://bit.ly/2OYLjj9
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l The SMILES drawer module converts the parse tree obtained
from the SMILES to a 2D-structure drawing. The module
positions acyclic atoms, atoms in fused rings, and atoms in Spiros
based on Euclidean and molecular geometry according to the
VSEPR model. The placement of bridged ring systems with
n-rings �2 is treated as a two-dimensional graph embedding
problem, solved using graph theoretic distances. The algorithm
sets up a virtual dynamic system, where weighted topological
distances between all vertices are modeled as springs. The spring
introduces repulsive electrical forces between no connected ver-
tices to keep them apart. The drawer, at the end of the process,
saves the image to a PNG or SVG file.

4.4 The Dataset As we said, the execution of the Ames test is quite expensive so the
results are often proprietary. In order to collect a sufficient number
of chemicals tested, we researched in the literature and on the web.
We had to distinguish between trustworthy sources and suspicious
sources. We defined a trusted source as “a source that is published
from certified authorities or that has been used in computational
model approved by the regulators.”

The main trusted source is created by National Institute of
Health Sciences, Japan (DGM/NIHS) as part of their Ames/
QSAR International Challenge Project [67]. It contains around
12 thousand compounds, pharmaceutical or industrial products.
Between the trusted sources, we also included two databases cre-
ated by the National Cancer Institute (NCI): GeneTox and CCRIS.
We also used data from the VEGAhub that merges most of the cited
database.

We also used as suspicious source CGX [68]. This source con-
tains various Ames tests for each chemical and defines as positive to
AMES test a chemical where more than three tests result positive.
However, we wanted to keep a more cautious definition of muta-
genic chemicals, so we defined positive to Ames test the chemical if
just one of the tests resulted positive. We also found a list of really
cited sources as the ones provided by [59].

All these different sources contain pharmaceuticals, pesticides,
and industrial products. We paid a particular attention in the selec-
tion of the SMILES. In particular, excluding the trusted sources,
for every result found, we compared it with the trusted databases in
order to find duplicates, and we eliminated all the incoherent
tuples. Moreover, we kept the database source during the whole
preprocessing phase in order to eliminate at each step the dupli-
cated derived from a dataset that was not marked as trusted. Unfor-
tunately, it was not possible to collect also the full specifications of
the conducted tests, since the different sources do not always report
the standards applied.
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Another important information we would like to have is the use
of each compound, since there are different regulations for the
toxicity test depending on the final usage the chemical. Unfortu-
nately, in the used databases, there is no such information.

5 Toxception and Its Results for Mutagenicity

Toxception is based on Inception and on ideas proposed by Goh
[45] who developed Chemception, a deep model about Tox21
database and HIV virus. The main differences between Goh’s and
our network are the absence of a priori chemical knowledge and the
elimination of image transformations.

To adapt the inception network to our problem, we reduced
the size of the input image from 299 � 299 � 3 to 80 � 80 � 3
changing also the number of nodes. Differently from Chemception
we did not use data augmentation, and we passed the images to the
network exactly as they exit from the generation function. In fact
both the chemical knowledge passed to the network and the image
preprocessing done in Chemception have not improved the perfor-
mance of the model.

An abstract bottom-up scheme of the Inception-Toxception
network is in Fig. 7; the input image goes to hidden convolutional
layers and, after pooling, to the output layer. A dropout layer is
added to prevent the net from overfitting [69]. Dropout means
that, at each training stage, individual nodes are either dropped out
of the network with probability 1 – p or kept with probability p, so
that a reduced network is left; incoming and outgoing edges to a
dropped-out node are also removed. This regularization reduces
over-fitting by adding a penalty to the loss function. However, it
also increases the number of iterations required to converge. A
detailed view of the inner organization is in Fig. 8. Globally the
net has 650,881 parameters to optimize.

5.1 Learning

and Optimization

in Toxception

The optimization algorithms help to minimize the error function E
(x) which is a mathematical function dependent on the model
internal learnable parameters. The different optimization algo-
rithms are called optimizers; in this work we used stochastic gradi-
ent descent algorithms.

RMSProp (root mean square propagation) adapts the learning
rate for each of the parameters on the average first moment, while
the Adam algorithm [70] uses the average of the second moments
of the gradients. It has three parameters that can be optimized:
learning rate, exponential decay rate for the first moment estimates,
and exponential decay rate for the second-moment estimates (this
value should be close to 1.0).

We trained many times the network with Adam and a combina-
tion of RMSProp for half of the training epochs and SDG
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(Stochastic gradient descent) for the rest. The parameters used are
reported in Table 2.

Toxception is a big network, and this implies a high number of
hyper parameters to manage and optimize. Testing all the possible
combinations is impossible. We constructed a decision tree with the

Fig. 7 Architecture of Toxception (based on Inception ResNet-v2)
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Fig. 8 The blocks of the network in Fig. 7. (a). Stem Block; (b). ResNet1A; (c). ResNet1B; (d). ResNet 1C; (e).
Reduction A; (f). Reduction B. Layers (n colored boxes) have a ReLU activation layer after the specified
convolution layer, with a stride of 1, and same padding unless otherwise noted. Each block has N convolu-
tional filters for each layer, and the variations are indicated as multiples of N
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Fig. 8 (continued)
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most important parameters that could affect accuracy and compu-
tation resources; a tool for this task is provided in Talos,9 which
allows the user to set the parameters to change and run all the
possible permutations of them.

We decided to leave unchanged the convolution layers in each
block, taking as a variable only the number of neurons in the first
layer. We tested different dropout values (0.4, 0.2, 0.1, 0) to check
how to prevent over-fitting without affecting the performances. In
order to reduce the complexity of the network, we decided to
reduce the stem block, and we tested the different solutions to
analyze if the stem block was needed. Finally, we tested different
epochs and early stopping technique.

5.2 Results

of Toxception

We applied Toxception to the dataset already described, trans-
formed into images with resolution 80 � 80 pixels. We used a
randomly selected 20% of the data collected as the validation set.
In addition, we used as metrics in order to optimize the network
the loss on the validation set and the accuracy on the validation set.
Even though accuracy does not prove the consistency of the model,
in image classification it is considered a good metric to evaluate the
model. Moreover, we use sensitivity and specificity on the validation
set. In order to discover the potentiality of our model, we tested
both MSE and xentropy loss functions.

Also, we analyzed the probability distribution given by the
network without rounding to 0 or 1 the final values. It is the best
practice to analyze these values in order to avoid the phenomenon
of false results, which happens when the classification results are
correct, but the outcome of the network is actually too weak.
Moreover, this allows extracting the probability for a particular
compound to belong to a tox or no-tox class.

Table 2
Parameters and optimization algorithms used

Optimizer Parameter Value

RMSProp Initial lr e�3

RMSProp Rho 0.9

RMSProp Epsilon e�8

RMSProp Decay 0

SDG Initial lr e�3

SDG Momentum 0.9

SDG Gamma e�8

9 Talos. URL https://bit.ly/2yL9gQJ
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Using Talos, we ran multiple times the network on the training
set applying the cross-validation method. In Tables 3 and 4, we
report the best results. In particular, Table 3 reports results in terms
of MSE, and Table 4 reports results with xentropy. This is the
legenda:

l Tox_Basic indicates the Toxception network without stem
block.

l Tox includes also the stem block.

l The subscript next to each name indicates as follows: _A, the
network has been trained using RMSProp optimizer for
100 epochs and then re-trained with the SDG; _B, the Adam
optimizer has been used or the number of epochs indicated in
the tables.

l Neurons indicate the number of neurons in the first Inception
block; the values of the others are not cited as they are strictly
related to that one.

Figure 9 reports the learning curves for accuracy and loss using
MSE without the stem block and using the Adam optimizer.

We start all the training with a learning rate of 1e�3
, and we

apply the early stopping technique. Looking at the tables, there are

Table 3
Optimization results using MSE as loss function

Architecture Parameters

Metrics

Acc Loss Val Acc Val Loss Val Spec Val Sens

Tox-basicA1 Epochs 200 0.99 0.01 0.81 0.16 0.59 0.84
Optimizer Adam
Neurons 16

Tox-basicB1 Epochs 200 0.99 0.01 0.80 0.15 0.62 0.87
Optimizer RMS
Neurons 16

ToxA1 Epochs 200 0.85 0.12 0.79 0.17 0.67 0.87
Optimizer Adam
Neurons 32
Epochs 200 0.96 0.37 0.79 0.18 0.63 0.89
Optimizer Adam
Neurons 16

ToxB1 Epochs 200 0.82 0.14 0.77 0.18 0.38 0.93
Optimizer RMS
Neurons 32
Epochs 200 0.95 0.04 0.79 0.17 0.65 0.87
Optimizer RMS
Neurons 16
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different aspects to point out. First of all, it is clear the effect of the
Stem on the network. In fact, in all the simulations, the usage of the
stem block limits the learning. It can be explained by the simplicity
of the data passed into Toxception. As already said, the images are
composed by a lot of white space; this implies that the division of
the input into small features can considerably increase the resources

Table 4
Optimization results using xentropy as loss function

Architecture Parameters

Metrics

Acc Loss Val Acc Val Loss Vol Spec Vol Sens

Tox-basicA Epochs 200 0.99 0.02 0.80 0.17 0.62 0.88
Optimizer Adam
Neurons 16

Tox-basicB Epochs 200 0.84 0.13 0.77 0.17 0.42 0.79
Optimizer RMS
Neurons 16

ToxA Epochs 200 0.96 0.09 0.78 0.38 – –
Optimizer Adam
Neurons 16

ToxB Epochs 200 0.83 0.14 0.76 0.18 0.39 0.92
Optimizer RMS
Neurons 16
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Fig. 9 In (a) accuracy, in (b) loss function learning curves using MSE and the Adam optimizer, without the stem
block. We can observe how the accuracy and the loss function follow the normal training pattern with the
increase of the epochs. All the metrics reported here are calculated on the validation set
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needed from the network to converge. Observing Tox_B_1 and
Tox_B_2, it is visible how increasing the training epochs allows the
network to converge and to minimize the loss function. However,
the results achieved by these networks in terms of accuracy are not
so better than basic networks.

The second interesting point is about sensitivity and specificity.
A low value of the sensitivity implies a high number of false nega-
tives. The implications of a high number of false negatives are
obvious. As we can see in the tables, this number in Toxception is
small as the sensitivity is more than 85%. However, the values of
specificity, in all the combinations, are not really high. It is due to
precautionary choices we have made during data collection and
data preprocessing. As already reported while collecting the data,
we decided to include all the Ames test results in the literature but,
in order to create a safe model, we considered as mutagenic all the
compounds that appeared more than once with opposite results.

The third aspect is the comparison between RMSProp and
Adam Optimizer. As we can see in Tables 3 and 4, the Adam
optimizer seems to perform better than the RMS. That could be
due to the particular learning rate schedule we implemented in
RMS; we split the training epochs into two, and we trained the
network for half using RMS and for another half using SDG.

With respect to Chemception, our model performs well with-
out receiving any basic knowledge of chemistry. Our method also
can adopt different loss functions, while Chemception gives low
results if trained with crossentropy.

Another parameter that needs to be considered is the compu-
tation time needed to execute the training and the prediction.
Toxception takes around 130 milliseconds per step, and each
epoch is composed of 600 steps. This makes the time spent by the
networks for the training process around 4 hours. The prediction
instead is fast as we do not need to calculate the weight of each
neuron. To evaluate the whole dataset, the net takes around 5 min;
this means around 12 milliseconds per compound.

In order to better analyze the results, we run some other
training for the most interesting networks. In particular, we report
below some results of three main configurations:

l Tox_basic_A with Adam optimizer and MSE loss function, in
Fig. 10

l Tox_basic_B with RMS optimizer and MSE loss function, in
Fig. 11

l Tox with stem block and RMS optimizer andMSE loss function,
in Fig. 12

The black line reported in all the graphs is the smoothed
function obtained from the blue curve.

There are a few remarkable facts to comment. The first is that in
all the configurations, the metrics tend to converge pretty fast.
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Another interesting information is that precision, sensitivity, and
specificity reach fast their asymptotic value.

As we wanted to compare the best models with and without the
stem block, we report in Fig. 12 the results obtained using theMSE
loss function, the RMS optimizer, and the stem module just after
the input. Indeed we can see that our initial hypothesis, that the
stem block adds only complexity, is validated, as the learning curves
in Fig. 12 are more unstable than in Fig. 11. We attribute this to the
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Fig. 10 In (a) MCC, in (b) sensitivity, and in (c) specificity of Tox_basic_A using MSE and the Adam optimizer.
We can see how the sensitivity decreases in favor of the specificity. These two metrics are well summarized
by the MCC. The precision instead stays stable after a few dozens of epochs. All the metrics reported here are
calculated on the validation set
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presence of the stem block, which introduces more sparse features
to the convolutions layers.

In conclusion, as the results with Adams and RMS are very
similar but RMS requires more computation, we take as the best
network the one with the characteristics as in Table 5. Table 6
contains the parameters used.
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Fig. 11 MCC for regression of Tox_basic_B (without the stem block and using
the RMS optimizer). All the metrics reported here are calculated on the
validation set
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All the metrics reported here are calculated on the validation set
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6 Discussion

If we compare the results of our model with available models, as the
ones reported in Table 1, we can observe that our results are not
worse than their ones. So it is worth discussing Toxception accord-
ing to its added value in terms of interpretability, uncertainty char-
acterization, and knowledge acquired.

6.1 Interpretation

and Knowledge

Extraction

In order to extract knowledge from our model, we can observe that
the final layer of the network gives a correlation matrix that we need
to translate it into a human readable format. We indeed add an
overlay layer to the picture of the investigated molecule so to
visually indicate which part is taken by the net as important in
giving the result. Figure 13 shows some examples of visualization
results. We can see from the images that the network identifies a
part of the chemicals as the important substructure that helped to
classify the compound.

Other possible interpretation ways are to check the result of the
network against the set of knownmutagenicity SAs. In this case, the
coincidence of the found area of interest with a known SA can
improve the confidence in the model. In the reverse case, the
absence of coincidence does not imply that the model is wrong.

6.2 Uncertainty

Evaluation

About the interpretability of the results, we may observe that using
the real value provided in output by the network is an indication
about the uncertainty of the prediction. It cannot be interpreted as

Table 5
Results of Toxception on the test set

Epochs Optimizer Neurons Batch size Dropout Learning rate

200 Adam 16 32 0.2 0.001

Table 6
Parameters used

Accuracy MCC Specificity Sensitivity MCC

0.80 0.53 0.62 0.87 0.53

Fig. 13 In (a) MCC, in (b) sensitivity, and in (c) specificity of Tox_basic_A using MSE
and the Adam optimizer. Examples of substructures of interest found by the network
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a potency of the mutagen substance, since no doses have been used
in training; however values in the middle of the interval have the
highest uncertainty.

A deeper analysis of the network can also improve the uncer-
tainty value. As demonstrated by [71], the dropout technique is a
way to represent the model uncertainty in terms of Bayesian theory.
The direct application of the Bayes formula is prohibitive due to the
cost of computing all the conditional probabilities, but deep
learning offers almost the same advantages, since dropout in NN
is equivalent to the Bayesian approximation of the Gaussian process
model. Dropout indeed is used in Toxception, and a possible post-
processing can be added to show it.

6.3 Comparison

with the State

of the Art

In the before-mentioned paper [59], about 18 thousand molecules
were predicted using 10 QSAR/SAR models from the literature.
Two hundred molecules were wrongly predicted (resulting in
either false positive or false negative) by all the 10 models. We
predict these 200 compounds with our model, and we obtain an
accuracy of 0.62 and 0.1 FP. The accuracy value is low. The causes
can be various. First of all, some of the tested chemicals may be
outside the applicability domain. It could also mean that the Ames
tests must be repeated on these compounds, as the test results may
be wrongly reported. However, the false negatives are few. This is
coherent with the fact that in our dataset we preferred positive
values when the experimental values disagree.

6.4 Pros and Cons

of Toxception

In developing Toxception, we made a strong choice: avoid adding
any external knowledge besides the SMILES and the value of the
Ames test. This choice has advantages and drawbacks. The advan-
tages are obvious, since the steps of feature computation and
reduction are not needed, and no fingerprints with a priori choice
of substructures are generated. The knowledge we extract from the
network is completely new and not biased by a priori choices.
Comparing Chemception and Toxception, indeed we can see that
the introduction of some chemical properties to the network only
negligibly improves the final result; instead it increases the compu-
tation burden.

The drawbacks are also obvious, since we need to extract the
knowledge from the network. Another possible drawback is that
the training of the network requires hours and dedicated hardware,
so it cannot be done on the fly when data are available.

We can conclude this discussion with interesting theoretical
results about the concept of models and learnability.

A family of models can be derived from the same dataset, and
many of them can be valid models. Is there something to be
considered as “the best possible model”? The question is raised
by Wolpert’s “no free-lunch” (NFL) theorems [72]. In practice it
means that “for any two learning algorithms A and B, there are just
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as many situations in which algorithm A is superior to algorithm B
as vice versa. So if we know that learning algorithm A is superior to
B averaged over some set of targets F, then the NFL theorems tell
us that B must be superior to A if one averages over all targets not in
F.”

That something can be learned is again difficult to prove. What
is learnable by a machine should be mathematically defined. As [73]
discuss, learnability can be undecidable. It means that any mathe-
matical formulation of what can be learned by any system cannot be
demonstrated neither true nor false.

Of course those results do not have practical consequences, but
they underline how difficult it is to give formal definitions and
descriptions of models, even in case they are constructed with ML.

7 Conclusions

ML methods are already in use in various aspects of QSAR model-
ing. After reviewing important achievements in CMR and PBT
assessment, we address the quite new research area of using deep
learning methods to build QSARS.

We modified the most successful architecture, Inception, to
build a model called Toxception, trained on data of the Ames test.

To reach this target, we built a dataset of about 22 thousand
chemicals with their Ames test results. This dataset was extracted
from different sources and curated to become the training and test
sets of Toxception.

Toxception is a CNN network with 140 layers and over 1 thou-
sand parameters. The introduction of the attention layer allows to
analyze the important part of the images in the output. The per-
formances of this model are around 80% of accuracy, which is
almost the current state-of-the-art results. Moreover its sensitivity
and specificity are quite high and balanced.

Toxception extended the ideas adopted in Chemception by
eliminating the need of using any molecular descriptor. While the
results are never worse than the results of available QSAR models
for mutagenicity present in the literature, the main advantage of
Toxception is that the model does not depend on a priori knowl-
edge, and the crucial part of computing and selecting molecular
descriptors is not needed. Moreover, it must be considered that
most of the literature QSARs have a smaller applicability domain,
since they are based on about 6000 data. Another advantage of
Toxception is that it is also a regression model, where the output is
in (0, 1) and can give a measure of the uncertainty. In practice this
avoids the main problem whit SA-based systems, which cannot
classify a molecule as negative just when it does not contain a
known SA.
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Toxception is not ready for use by the regulatory bodies since
we need to dedicate more research to fully define applicability
domain and confidence values for the DNN models.

Further work is needed also to apply it to new endpoints.
A possible improvement may derive from using images at higher
resolution sizes, to see whether it can lead to a better prediction.
About extending to other endpoints, we could think about con-
structing a large sparse matrix with all the available toxicity data of
the 22 thousand molecules and check how the use of similar prop-
erties can improve the prediction of any property. Actually, the code
proposed already contains the structure to predict other endpoints
and is available from the authors.
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Chapter 7

Use of Machine Learning and Classical QSAR Methods
in Computational Ecotoxicology

Renata P. C. Barros, Natália F. Sousa, Luciana Scotti, and Marcus T. Scotti

Abstract

In recent years, there has been an increase in concern about environmental pollution and human health,
especially in the areas of manufacturing, storage, distribution, and release of hazardous substances after use.
Several researchers have been dedicating studies to develop methods to identify and assess the toxicity of
chemicals. Quantitative structure-activity relationship (QSAR) modeling has evolved a lot in recent years
and also developed in the area of ecotoxicology. In the course of this evolution, there was the application of
machine learning techniques in QSAR studies. The use of ML algorithms is a great approach for assessing
toxicity to generate predictive models involving QSAR. Several studies are being conducted not only
comparing ML techniques but applying them to generate potentially predictive models and excellent
performances.

Key words Ecotoxicology, Machine learning, Quantitative structure-activity relationship (QSAR)

1 Ecotoxicology

The term ecotoxicology was introduced by Truhalt in 1969 and
derives from the words ecology (a discipline that studies the rela-
tionships between living things and the environment) and toxicol-
ogy (describes the adverse effects of a given substance on a given
organism and seeks to establish the mechanism of toxic action in it).
Its introduction reflects a growing concern about the effect of
environmental chemical compounds on species, in addition to
man [1].

Ecotoxicology describes the relationship between the chemical
pollutants, the environment in which they are released, and the
organisms that live there [2]. Thus, ecotoxicology is a tool to
analyze the exposure of various xenobionts to the environment in
which they were inserted and the adverse effects of exogenous
pollutants on the environment and aquatic organisms.

Many authors elucidate the emergence of toxicology, defend-
ing the hypothesis that it was born in the beginnings of mankind,
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thus anticipating written history about the use of poisons and
animals and plants for the purpose of assisting in hunting and
fishing and with poisoning in war activities [3, 4].

According to Buikema and Voshel (1993) [5], there are reports
that Aristotle (384–322 BC) submitted freshwater fish to seawater
to gauge and identify the reactions that occurred. The first known
aquatic organism’s toxicity test was conducted around the year
1816 with aquatic insects [5, 6].

The first ecotoxicology book was published in 1977, defining it
as the science that aims to study the modalities of contamination of
the environment by natural or synthetic pollutants produced by
human activities, their mechanisms of action, and their effects on
the set of living beings that inhabit the biosphere [7]. In this way,
ecotoxicology was born as an environmental monitoring tool,
based mainly on the response of individual organisms to chemical
stressors. Therefore, it is a science with its own study objective,
which consists of the phenomenon of environmental intoxication in
all its nuances and consequences, with the purpose of preventing
certain intoxications or knowing how to stop it, reverse it, and
remedy it with an appropriate method [8].

1.1 Ecotoxicological

Tests

Ecotoxicological tests measure the effects of different concentra-
tions of a sample on individuals of a given species. The EC50 effect
concentration or lethal concentration LC50 corresponds to the
concentration of the sample responsible for the effect in 50% of
the organisms tested. These tests may be acute or chronic depend-
ing on their duration and observed effect. In the case of acute tests,
the evaluated effect is related to mortality, immobilization, or
growth inhibition rates, and the lower the value, the higher the
toxicity of the sample, which often leads to erroneous interpreta-
tions of the results obtained. Thus, UT (toxic unit) corresponding
to (1/EC50 � 100) can be used for expression of the results [8].

Ecotoxicological tests may be performed using aquatic or ter-
restrial organisms depending on the type of study to be performed.
These studies can be elaborated at the level of the individual, the
population, the community, and even the ecosystem and in some
cases may last for several years (IAP) [9].

Toxicity tests are classified into two main groups [10]:

l Acute toxicity tests

l Chronic toxicity tests

1.1.1 Acute Toxicity

Tests

Acute toxicity tests assess a rapid and rapid response of aquatic
organisms to a stimulus which generally manifests in a range of
0–96 hours [11]. Usually, the observed effect is the lethality or
other manifestation of the organism that precedes it, such as the
state of immobility in invertebrates. These tests are designed to
determine the mean lethal concentration (LC50) or mean effective
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concentration (EC50), i.e., the concentration of the toxic agent
causing mortality or immobility, respectively, to 50% of the test
organisms after a given time of exposure [7].

1.1.2 Chronic Toxicity

Tests

Chronic toxicity tests are directly dependent on the results of the
acute toxicity tests because sublingual concentrations are calculated
from the LC50. Compared with the acute tests, these are more
sensitive to the expected dilution in environmental samples and
evaluate the action of the pollutants whose effect is translated by
the response to a stimulus that continues for a long time, usually
during a period that goes from 1/10 of the cycle vital to the whole
life of the organism [11]. In general, however, these effects are
sublethal and observed in situations where the concentrations of
the toxic agent to which they are exposed to the organism allow
their survival, but affect one or more of their biological functions,
interfering, for example, with reproduction, egg development, and
growth [7].

According to Chasin and Azevedo (2003) [8], chronic intoxi-
cation can occur for two reasons:

1. By xenobiotic accumulation in the body, which occurs when
the amount of foreign agent eliminated is less than the amount
absorbed. The concentration of the toxic agent in the body
progressively increases until sufficient levels are obtained to
generate adverse effects.

2. By adding the effects caused by repeated exposures, without
the toxic compound accumulating in the organism.

Ecotoxicological tests are carried out with indicator organisms
which, due to their small ecological tolerance to certain chemical
substances, present some alteration, be it physiological, morpho-
logical, or behavioral when exposed to certain pollutants. Expo-
sures are made in different concentrations of chemical substances
and compounds, effluent samples, or raw water, for a certain period
of time. The tests present a range of standards and standardized
procedures that must be followed for responses to be considered
valid [12].

1.2 Indicators

1.2.1 Soil Organisms

The organisms that compose the soil biota play important roles in
the development and stability of the ecosystem as a whole. They are
involved in soil formation and structuring processes, in the decom-
position of organic matter, in regulation of microbial activity, and
consequently in nutrient cycling. The best known organisms are
Oligochaeta, Enchytraeidae, and Collembola [13].

1.2.2 Water Organisms The toxicity tests involving algae species usually fit into the profile
of the chronic tests, where the population increase of the organism
exposed to different doses of the contaminant during a certain
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number of days is evaluated, comparing to the performance in a
control sample. The best known aquatic organisms are Daphnia
and algae [14].

2 Standardization of Ecotoxicological Tests

The standardization of toxicity testing is based on the publications
of the regulatory bodies, which consists of the Organisation for
Economic Co-operation andDevelopment (OECD)Guidelines. In
Brazil, there is also the adoption of the protocols of the Brazilian
Association of Technical Standards and State Environmental Com-
panies, such as CETESB—Environmental Company of the State of
São Paulo [7].

2.1 Data Sets

2.1.1 OCHEM: Online

Chemical Database

The Online Chemical Database (OCHEM) is a platform that has
2,858,801 records for 636 properties, collected from 13,098
sources (Fig. 1). The existing collection consists of chemical and
biological data, exposed to the scientific community by program
users [15].

Sushko et al. (2011) [16] characterize this tool as an online
environment that allows the search and execution of a quantitative
structure-activity relationship (QSAR)/quantitative structure-
property relationship (QSPR) cycle semiautomatically. The plat-
form includes two main systems, namely, (1) the database of prop-
erties measured experimentally and (2) the modeling structure.

Structure of the Database The databases contain biological and physicochemical properties of
the molecules (it being possible to specify the experimental condi-
tions for obtaining). Experimental measurements cover the infor-
mation related to the experiment, and especially to the result of
this, being numerical or qualitative, depending on the measured
property [17].

For the storage of data in OCHEM, it is necessary to specify the
data source, which may refer to publications in scientific journals
and book chapters, as well as the complete work, but the source of
achievement is mandatorily required. PubMed accesses link binding
and ISBN insertion [18].

The addition of data in OCHEM can be performed manually,
manually and individually, as well as by batch. The entry by the
manual record corresponds to the insertion of experimental data
separately. The second way is the batch upload feature that allows
you to upload large amounts of Excel data, Comma-Separated
Values (CSV), or Structure Data File (SDF). In addition, molecules
can be drawn and imported in MOL 2 format or in the form of
SMILES codes (canonical representations of the chemical structure
of the molecule). After the introduction, the data are reviewed to

154 Renata P. C. Barros et al.



verify the occurrence of duplicates as well as errors. At the end of
the data check in the Upload process, the data can be saved and
registered in the OCHEM database. The user can thus access
them [19].

Structure of the Modeling

Process

The database is strongly integrated with the modeling framework;
the data can be flexibly filtered and used for the training of predic-
tive computational models. The OCHEM modeling framework
supports all typical QSAR/QSPRmodeling steps: data preparation,
molecular descriptor calculation and filtering, application of
machine learning methods (classification and regression), model
analysis, modeling domain evaluation applicability, and finally
using the model to predict target properties for new molecules. It
is important to note that OCHEM allows the combination of data
with different units of measurements, different conditions of
experiments, and even different properties and activities. The com-
plexity of the modeling process is hidden behind a convenient and
well-documented user interface. Templates can be published on the
Web and used publicly by others [16].

Regarding the training set, the OCHEM system allows the user
to combine heterogeneous data reported in different units of mea-
sure into a single set of units. An example of this application refers
to the work performed by Oprisiu and collaborators (2013)
[20]. In their work, the authors performed the modeling of proper-
ties of nonadditive mixtures with the online environment
OCHEM. It was realized the combination of data and the use of
special descriptors, realizing that the modeling of mixtures requires
an automatic calculation of the precision, use of a wide spectrum of
learning of algorithms of machine learning and descriptors, and
storage, publication, and application of models.

Fig. 1 Representation of the OCHEM platform
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2.1.2 ECETOC: European

Centre for Ecotoxicology

and Toxicology

of Chemicals (Fig. 2)

Since 1978, ECETOC, an industry-funded scientific and nonprofit
think tank, has been working to improve the quality and reliability
of the chemical risk assessment with scientific support. Topics
covered include ecosystem services and risk assessment of chemi-
cals, nanotechnology, epigenetics, and interpolation. Publications
consist of technical and detailed reports, manuscripts, and
publications [21].

The European Centre for Ecotoxicology and Toxicology of
Chemicals (ECETOC) has risk assessment tools, which are respon-
sible for calculating the risk of exposure to chemicals by workers,
consumers, and the environment. It has been identified by the
European Commission Regulation on Registration, Evaluation,
Authorisation and Restriction of Chemicals (REACH) as the pre-
ferred approach for the assessment of consumer and worker health
risks [22, 23].

Bahhatarai et al. (2016) [24] evaluated the TOPKAT, Toxtree,
and Derek Nexus methods for in silico models developed for ocular
irritation and to develop a framework to improve the prediction of
severe irritation. In this work, the authors used databases contain-
ing 1644 and 123 compounds belonging to the ECETOC. ECE-
TOC has published data on 132 compounds in rabbit toxicity
studies involving two phases. This research emphasizes the need
for in silico models to address chemical reactivity and filtering based
on the physicochemical characteristics of compounds as well as
clustering based on compound mechanisms, which could also
address the problem of the lack of predictive power of these tools.
Even existing in silico models may be able to implement such filters
for better categorization of irritation potential [24].

Fig. 2 ECETOC. (From ECETOC—http://www.ecetoc.org/pt/ [21])
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2.1.3 MOA: The Toxic

Mode of Action

The toxic mode of action (MOA) is recognized as a major determi-
nant of chemical toxicity and is an alternative to chemical class
predictive toxicity modeling. However, MOA classification has
never been standardized in ecotoxicology, and a comprehensive
comparison of tools and classification approaches has never been
reported [25].

MOAtox is composed of a database of MOA designations for
1208 chemicals, including metals, organometallics, pesticides, and
other organic compounds. The categorization scheme was based
on earlier work that determined chemical modes of acute toxic
action in fish and covered six broad and specific MOAs. The result-
ing data set used a combination of high confidence MOA assign-
ments, including biological responses in acute toxicity tests,
22 pesticide classification schemes [e.g., Insecticide Resistance
Action Committee (IRAC)], predictions QSAR (e.g., ASTER),
and weight of evidence of professional judgment incorporating an
assessment of the chemical structure (e.g., analog structure, group
presence/functional group) and available information on MOA,
mechanism of action and toxicity pathways. Chemicals with an
uncertain attribution of specific MOAs andMOAs for invertebrates
were excluded. Specific MOAs were developed as subcategories of
the broad MOAs, based on the known chemical structure or mech-
anism of action [26, 27].

2.1.4 ECHA: European

Chemicals Agency

The European Chemicals Agency (ECHA) is the driving force
between regulatory authorities in the implementation of innovative
European Union legislation on chemicals for the benefit of human
health and the environment, as well as for innovation and competi-
tiveness. ECHA brings to its electronic address the latest published
legislation, public consultation materials on regulatory procedures,
and information on chemicals imported and marketed in Europe
(Fig. 3). The main risk information contained in ECHA’s portals is
collected on account of the REACH processes, which is set out
below [27].

2.1.5 REACH:

Registration, Evaluation,

Authorization

and Restriction

of Chemicals

REACH aims to improve the protection of human health and the
environment through the best and earliest identification of the
intrinsic properties of chemical substances (Fig. 4). This is done
by the four REACH processes, namely, the registration, evaluation,
authorization, and restriction of chemicals. REACH also aims to
improve the innovation and competitiveness of the EU chemical
industry. The REACH Regulation places the responsibility on the
industry to manage the risks of chemicals and to provide safety
information about the substances. Manufacturers and importers
are required to collect information on the properties of their chem-
ical substances, which will allow their safe handling, and to record
the information in a central database of the ECHA in Helsinki. The
agency is at the heart of the REACH system: it manages the
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databases required to operate the system, coordinates the in-depth
evaluation of suspect chemicals, and is building a public database in
which consumers and practitioners can find risk information. The
Regulation also requires the phasing out of the most dangerous
chemicals (referred to as “substances of very high concern”) when
appropriate alternatives are identified [28].

Fig. 3 ECHA. (From ECHA—https://echa.europa.eu/home [27])

Fig. 4 REACH. (From REACH—http://ec.europa.eu/environment/chemicals/reach/reach_en.htm [28])
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2.1.6 ECOSAR:

Ecological Structure-

Activity Relationships

Predictive Model

The ecological structure-activity relationships predictive model
(ECOSAR) is a computerized predictive system that estimates
aquatic toxicity. The program estimates the acute (short-term)
chemical toxicity and chronic (long-term or delayed) toxicity to
aquatic organisms, such as fish, aquatic invertebrates, and aquatic
plants, using computerized structure-activity relationships (SARs).
Key features of the program include grouping structurally similar
organic chemicals with available experimental effect levels that
correlate with physicochemical properties to predict the toxicity
of new or untested industrial chemicals, programming a classifica-
tion scheme to identify the most representative class for new or
untested chemicals, and continuous updating of aquatic QSARs
based on experimental studies collected or sent from public and
confidential sources [29].

The ECOSAR program is available for download under the
version: ECOSAR V2.0.

2.1.7 OECD: The

Organisation for Economic

Co-operation

and Development (Fig. 5)

This is an international organization of 36 countries that accept the
principles of representative democracy and the market economy,
which seeks to provide a platform for comparing economic policies,
solving common problems, and coordinating domestic and inter-
national countries. Most OECD members are composed of econo-
mies with high GDP per capita and Human Development Index
and are considered developed countries [30].

From the point of view of ecotoxicology, the OECD presents
publications that are a reference in this field. TheOECDGuidelines
are a unique tool to assess the potential effects of chemicals on
human health and the environment. Accepted internationally as
standard methods for safety testing, the Guidelines are used by
industry, academia, and government professionals involved in the
testing and evaluation of chemicals (industrial chemicals, pesticides,
cosmetics, etc.) [31]. These Guidelines are regularly updated with
the assistance of hundreds of national experts fromOECDmember
countries. Currently, the OECD Guidelines are distributed as
follows:

l Section 1: Physical Chemical Properties

l Section 2: Effects on Biotic Systems (Software for TG 223)

l Section 3: Environmental Fate and Behavior (Software for TG
305 and TG 318)

l Section 4: Health Effects (Software for TG 455, TG 432, and
TG 425)

l Section 5: Other Test Guidelines

The OECD Guidelines were used as a dataset in the studies by
Das et al. (2013) [32] for the development of models for rodent
toxicity and their interspecific correlation with aquatic toxicity of
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Fig. 5 OECD. (From OECD—http://www.oecd.org/about/ [30])

Fig. 6 eChemPortal. (From eChemPortal [33])
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pharmaceuticals. In this work, the authors sought acute toxicity
data using OECD toxicity test guidelines and were reported in
mg/kg (rodent) and mg/L (algae and fish), which were trans-
formed into their corresponding molar concentration and finally
converted to their logarithmic negative values (�logLD50 or
pLD50 and –logLC50 or pLC50) for the development of the
QSAR models. The authors state that more work is needed to
demonstrate robust mechanistic interpolated models between
rodents and aquatic species [31, 32].

The OECD Guidelines provide a portal for the provision of
chemical information; this is called the eChemPortal (Fig. 6).

This platform provides free public access to information on
chemical properties, with reference to physicochemical properties,
ecotoxicity, fate and environmental behavior, and toxicity, allowing
the simultaneous search of reports and datasets by name and num-
ber of chemicals, by chemical properties, and by the classification of
the Globally Harmonized System of Classification and Labeling of
Chemicals (GHS). Direct links to the collection of information on
chemical risks and risks prepared for government chemical pro-
grams at the national, regional, and international levels are
obtained. The classification results according to the national/
regional or national hazard classification schemes (GHS) are
provided when available. In addition, eChemPortal also provides
information on exposure and use of chemicals [33].

2.1.8 US EPA: US

Environmental Protection

Agency

The US Environmental Protection Agency (EPA) is a federal
agency of the US government charged with protecting human
health and the environment: air, water, and land (Fig. 7). The
EPA began operating on December 2, 1970, when it was instituted
by President Richard Nixon. It is headed by an administrator,
appointed by the president [34].

The EPA presents a database called ECOTOX, which corre-
sponds to a comprehensive, publicly available knowledge base that
provides unique chemical environmental toxicity data on aquatic
life, terrestrial plants, and wildlife that features 11,695 registered
chemical compounds, 12,713 species, and 48,464 references [35]
(Fig. 8).

3 Machine Learning

Nowadays, there are several in silico tools that integrate the pro-
cesses of discoveries and help in several studies performing various
types of functions [36, 37]. Machine learning methods and tech-
niques (ML) is a subfield of computer science that has evolved a lot
in recent years and emerged from the study of pattern recognition
and the theory of computational learning in artificial intelligence,
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involving areas such as computational statistics and mathematics
[38, 39].

One of the first definitions of ML, made by Arthur Samuel
(1959) [37, 39], says that ML is the field of study that gives the
computer the ability to learn without being explicitly programmed.
Another definition made by Mitchell (1997) defines it as the area of
study that is performed with mathematical and computational
properties of algorithms (code) that can learn meaningful and
complex patterns from a given set of input samples and a set of

Fig. 7 U.S. EPA. (From U.S. EPA—https://www.epa.gov/aboutepa [34])

Fig. 8 ECOTOX. (From ECOTOX (https://cfpub.epa.gov/ecotox/ [35])
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labels to predict correctly the label or response of new examples
[36, 40–42]. In short, ML investigates and explores the study and
development of algorithms capable of learning from its errors and
generating predictions about data, constructing models from sam-
ple input to generate predictions [38, 43–46].

Since the early 1990s, ML has become quite popular, and with
the development of computer technology in the last decade, ML
techniques have been applied in several areas such as in the field of
computer science, social network analysis, data mining, facial recog-
nition, drug discovery, biology, and ecology [40, 46–52].

ML techniques can be classified into three common types:
supervised, unsupervised, and reinforcement learning. In super-
vised learning, a desired input and output sample files are presented
to the computer, where the goal is to learn a general rule that
includes the inputs and outputs. Because unsupervised learning
does not provide the computer with any output sample file, allow-
ing the algorithm to find a pattern in the input file alone, unsuper-
vised learning can be understood as being by itself an objective
(discover patterns in the data) or a way to reach an end. In rein-
forcement learning, the computer program will interact in a
dynamic environment whose purpose is to accomplish some task,
and to this end feedback will be provided as to awards and punish-
ments as one navigates through the problem space [53–55].

Another classification of ML is with respect to the desired
output in an ML system. There is the classification category
whose entries are divided into two or more classes, and the model
being produced is trained from data with previously known classes
to be able to respond correctly to data that were not in the data
training. A good classification model will be one that has a good
generalization, that is, it has the ability to respond correctly to the
examples contained in the training base but also to other examples
contained in a test basis. Classification models are obtained through
supervised learning [53, 56, 57]. Another type is regression mod-
els, which are also solved by supervised learning and the outputs are
continuous or discrete. In clustering, the input set is divided into
groups, but different from the classification category, the groups
here are not previously known, which makes clustering a character-
istic task of unsupervised learning [53, 55].

3.1 Machine

Learning and QSAR

The use of ML techniques in QSAR studies has been progressively
evolving in the last 60 years. To understand how ML and QSAR
studies are now closely related, we need to go back in history and
observe the emergence of QSAR studies.

The historical milestone of the QSAR studies was Hammett’s
equation in his classic work “Physical Organic Chemistry: Reac-
tions, Balances and Mechanisms,” published in 1940, in which
Hammett studied the ionization of meta- and para-substituted
benzoic acids in water at 25 �C and pioneered the linear relation-
ship between the logarithm of the ionization constant of the
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substituted benzoic acid and the logarithm of the ionization con-
stant of benzoic acid [58–61].

Through Hammett’s study, Hansch and co-workers became
interested in creating a mathematical model that correlates chemi-
cal structure with biological activity. His pioneering work published
in 1964 generated a mathematical equation, called the Hansch
equation, which demonstrated a correlation between the biological
activity of a chemical compound and its physicochemical properties
[58–64].

Since the establishment of the Hansch equation, many
researchers have carried out work proving and recognizing the
discovery of Hansch and collaborators, which led to the develop-
ment of quantitative in silico methods for modeling the structure-
activity relationship [58–62, 64–66].

The QSAR studies start with the representation of the chemical
structure, and it is fundamental to perform a good description of
these molecules, from which the molecular descriptors emerge,
defined as the final result of a logical and mathematical procedure
that transforms the chemical information codified within the sym-
bolic representation of a structure chemistry in numbers or the
result of some standardized experiment [67].

Initially, the QSAR models were limited to small series of con-
geners and simple regression methods. Over the years, QSAR has
undergone several transformations, varying from the dimensional-
ity of the molecular descriptors (1D to nD) and different methods
to establish a correlation between chemical structures and
biological property [68–72].

Many different approaches to building QSAR models have
been developed over time [64]. These models became primordial
and effective tools for computational prediction of the biological
activity of a biological compound, where in the construction of
these models there was the insertion of ML algorithms [64–66].

Today, QSAR studies have undergone more growth and diver-
sification and evolved into virtual screening (VS) modeling whose
task is to screen large databases, comprising thousands of mole-
cules, and find probabilities of the molecules to have activity against
a particular target and/or biological activity, using a wide variety of
ML techniques [58–75].

The VS classifies itself into two approaches: structure-based
techniques (SBVS) and techniques based on the ligand structure
(LBVS). For the SBVS approach, it is necessary to know about the
three-dimensional structure of the target protein, whereas the
LBVS approaches make use of the information of at least one
known ligand and its biological activity [76, 77].

In VS, ML techniques use information from the biological
activities of the molecules of the training set, both active and
inactive molecules, and have achieved great successes. In general
and simplified, ML techniques in VS use compound banks with
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their respective values of biological activity (be they active or inac-
tive) applying different algorithms and generating mathematical
models from the molecular descriptors capable of triaging banks
of molecules of the series test and select compounds most likely to
present the biological activity in question [77, 78].

There are several studies reporting that ML methods outper-
form other methodologies in QSAR studies, such as empirical
scoring methodology and knowledge-based functions of datasets
[75–79]. However, the ML methods do not have simple interpret-
ability, requiring a good knowledge from the researcher [75, 79].

3.2 ML Algorithms

Applied to QSAR

Several ML algorithms have already been considered useful for the
establishment of structure-biological activity relations, such as the
support vector machine (SVM), decision tree (DT), random forest
(RF), K-nearest neighbor (K-NN), naive Bayes (NB), neural net-
work (NN), and ensemble learning (EL), which will be briefly
explained below [80].

3.2.1 Support Vector

Machine (SVM)

The SVM is a very effective ML technique and has comparable and
sometimes superior results to those obtained by other ML algo-
rithms such as neural networks [81–83]. It is a supervised method
that uses associated algorithms that analyze data from both the
classification category and the regression category. Given a classifi-
cation data set, the SVM will construct a model that assigns new
examples to one category or another, making it a binary and non-
probabilistic linear classifier, but there are methods such as the Platt
scale that was developed to use SVM in a probabilistic classification
configuration [84, 85].

An SVMmodel will represent the examples of the training flock
in points in space so that the points of different categories are
separated by a clear gap that is as wide as possible. The new
examples will then be mapped in the same space and predicted to
belong to a category according to which side of the gap they fall
[84, 85].

In addition to linear classification, SVM can still perform a
nonlinear classification through the kernel trick, mapping implicitly
into high-resource spaces. And when the data are not labeled, the
SVM can still perform the unsupervised ML through the support
vectoring algorithm, created by Hava Siegelman and Vladimir Vap-
nik, which will apply support vector statistics, developed in the
SVM, to categorize unlabeled data, being one of the grouping
algorithms most widely used in several applications [83–85].

3.2.2 Decision Tree

and Random Forest

DT learning uses DTs that are a representation of a decision table,
in the form of a tree, for generating predictive models [86]. The
tree is constructed from the use of diagrams to map the various
possibilities and results of decisions of a particular item as well as the
probabilities of occurring [86, 87]. The result of each course is
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weighted by the associated probability, whose result will be
summed and the value of each course is then determined. The
course that provides the highest expected value will be the preferred
course. In a simpler way, DTs are diagrams that allow the represen-
tation and evaluation of problems involving sequential decisions,
highlighting the risks and results identified in each decision and
course taken [86–89].

When using DT learning, it is possible to use two types of data,
one in which the final variable is a discrete set of values called
classification trees and those in which the final variable is a set of
continuous values called regression trees [89–91].

The algorithms used in learning DTs generally work from top
to bottom, that is, they choose a variable in each step that best
divides the data set [86–89].

In RF learning, a large number of DTs are generated, and at the
end a vote for the most popular case will be held [77, 92]. In
general, the RF is classified that consists of a set of classifiers
structured in trees {h(x, k), k ¼ 1, ...}, where {k} are independently
identically distributed random vectors and each tree throws a unit
vote for the most popular class in the x entry [77, 92].

3.2.3 K-Nearest

Neighbor

K-NN is a type of ML based on an instance whose function is to
approximate locally, and all computation is postponed until classifi-
cation. This algorithm is one of the simplest of all ML algorithms
[93, 94]. Through pattern recognition, K-NN is a nonparametric
method used in both classification and regression data [93–95].

In classification data, the output is an association of classes, so
an object is classified by a plurality of votes of its neighbors, with the
object being assigned to the most common class among its nearest
k-neighbors, where k- is an integer value and positive. In regression
data, the output is the value of the property under analysis for the
object, where this value will be the average of the nearest k-neigh-
bors values [94, 95].

3.2.4 Naive Bayes The NB classifiers in ML are a simple family of probabilistic classi-
fiers based on Bayes’ theorem with a strong (naive) independence
between characteristics, created by Thomas Bayes (1701–1761)
[96, 97].

There is no single algorithm to train classifiers, but an algo-
rithm family based on a single principle. All NB classifiers assume
that the value of a new characteristic is independent of the value of
any other characteristic, given the class variable [97, 98].

It is a simple and fast classifier, which has a relatively higher
performance than other classifiers, and to use this classifier, only a
small number of test data are required to complete classifications
with good accuracy [96–98].
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3.2.5 Neural Networks NNs are computational models inspired by the central nervous
system (in the brain) and can perform ML as well as pattern
recognition [99]. The most important property of NN is the ability
to learn from its environment and thereby improve its performance.
The final learning occurs when the NN reaches a generalized solu-
tion to a class of problems [99–101].

NN can be both supervised and unsupervised. The NN usually
presents a system of interconnected artificial neurons that can
compute input values, always aiming to simulate the behavior of
biological neural networks [99–101].

The artificial neuron is composed of three basic elements: the
first is the set of {n} input connections characterized by weights, the
second is an adder to accumulate the input signals, and the third
element is an activation function that will limit the permissible
range of output signal amplitude at a fixed value [100, 101].

3.2.6 Ensemble Learning In ML, the EL methods use various learning algorithms to achieve
better predictive performance when compared with using just one
of any underlying learning algorithms [102–104].

EL is an algorithm of the supervised learning category, i.e., an
ensemble can be trained and used to make predictions. Empirically,
ensembles usually produce better results when there is a good
diversity among the models. Thus, many EL methods seek to
promote diversity among the models they combine [103–105]. It
has been proven that the use of a variety of ML algorithms is more
effective than using techniques that attempt to simulate models to
promote diversity, such as RF [105, 106].

3.3 Machine

Learning

and Ecotoxicology

In recent years, there has been an increase in concern about envi-
ronmental pollution and human health, especially in the areas of
manufacturing, storage, distribution, and release of hazardous sub-
stances after use, and it is therefore regulated and controlled at
various levels by different governments and regulatory agencies all
around the world [107, 108].

In this situation, one can apply QSAR models to predict toxic-
ity in an organism based on the physicochemical properties of the
chemical [109–112]. There are two basic objectives in
toxicological-based QSAR analysis, where the first objective is to
determine with greater precision the limits of variation in molecular
structure that can produce a specific toxicological effect. The sec-
ond goal is to define which structural changes will influence com-
pound potency [113].

When conducting QSAR studies, it is of utmost importance to
define the application limits, which should be considered which
types of molecules, thus delimiting the molecular domain, and the
range of descriptor values (the domain of the descriptor) that can
have predicted toxicity with confidence. Besides these, of course, it
has an adequate, significant, and robust statistical measure. Another
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factor of great importance is the validation of the model, in which
this validation needs to test the predictive capacity of the structure-
activity relationship, to explore the application limits of the model,
and to challenge the mechanistic hypotheses of the model [111–
113].

ML and classification algorithms today represent a powerful
way to extract relevant information from large data sets. But it is
necessary to be used with caution and the correct interpretation of
the results because the supervised training is prone to overfitting,
resulting in excellent classification success [114].

The use of ML algorithms is a great approach for assessing
toxicity to generate predictive models relating to QSAR. However,
even though QSAR modeling is a powerful technique, there are
two major problems faced by researchers, which are the domain of
applicability and the interpretability of the models, mainly due to
the use of hundreds of molecular descriptors [17].

The classical linear and multilinear models of QSAR, which use
multiple linear regression (MLR), for example, have been sup-
planted with the new ML modeling techniques, especially the
NNs, whose main advantage is their ability to process nonlinear
QSARs [115].

A study by Hansen et al. (2009) [116] used a set of Ames
mutagenicity data to compare the predictive performances of
three commercial tools with four implementations of ML, SVM,
RF, K-NN, and Gaussian processors. During their study, it was
revealed that the difference between the best business model and
the best ML approach using SVM is a sensitivity of only a few
percent, demonstrating the power of ML approaches [116].

Several studies have shown that NNs have several important
advantages over MLR, such as NN being able to cope more effi-
ciently with higher-order interactions between descriptors because
no proper model knowledge is required a priori because there is no
need to classify chemical substances and because NN can improve
predictive power by taking advantage of the information contained
in the descriptors, rather than relying only on some specific descrip-
tors, such as in the MLR [113, 117].

Samghani and Fatemi (2016) [118] analyzed the half-life of
58 herbicides using QSPR analysis using the SVM and MLR meth-
ods to map the traits and predict the half-life. The proposed models
could identify and provide information on what structural features
were related to the half-life of these compounds. However, the
result showed that the SVM model exhibits a more reliable predic-
tion and statistical performance than theMLRmodel, proving once
again the importance and applicability of ML in ecotoxicology
studies [118, 119].

Du et al. (2008) [120] used threeMLs, GA-MLR, least squares
SVM (LS-SVM), and PPR methods, to develop linear and nonlin-
ear QSARmodels to predict the fungicidal activity of 100 thiazoline
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derivatives against the blister caused by M. grisea. The linear and
nonlinear models obtained good prediction results, but the nonlin-
ear ones had the better predictive capacity, showing that the
LS-SVM and PPR methods can simulate the relation of the molec-
ular descriptors and fungicidal activities more accurately than the
GA-MLR. Then, Song et al. (2008) [121] used the same bank of
molecules as Du et al. (2008) [120] and developed MLR and NN
models to study the effects of substituents at the R1 site at three
sites (ortho, meta, and para) of aromatic rings and observed that
correlations between descriptors and activities were improved with
the NN method [119, 120].

Oprisiu and collaborators (2013) [20] developed a publicly
accessible system for storing binary mixes and developing models
to predict their nonadditive properties. Its main objective is to
contribute with publicly available tools for modeling and forecast-
ing chemical compounds. They used the same database modeled
with OCHEM by Oprisiu et al. (2012) [122] using the SVM ML
and showed that the performances of the developed models were
superior to those of Oprisiu et al. (2012) [122], demonstrating the
capacity and usefulness of the tool that they developed. In addition,
the results obtained by Oprisiu et al. (2012) [122] were based on a
consensus forecast of three models usingML of NN, SVM, and RF,
and the model developed by Oprisiu et al. (2013) [20] achieved
similar performance without having to build a consensus model
[20, 122].

Tekto et al. (2013) [123] developed and analyzed QSPR mod-
els to predict DMSO solubility of chemical compounds using vari-
ous data sets. The ML algorithms J48 (Java implementations in the
WEKA C4.5 DT), RF, and ASNN (Neural Network Associations)
provided greater precision than the other methods analyzed, such
as libSVM, K-NN, MLRA, FSMLR, and PLS. It was notorious that
simple classification algorithms such as J48 and RF obtained a
much higher accuracy than predictions when using the bagging
approach. From a practical point of view, the J48 and RF methods
were faster to calculate and required a smaller size to store the
models [123].

Several studies are being conducted not only comparing ML
techniques but applying them to generate potentially predictive
models and excellent performances. For example, Michielan et al.
applied single- and multiple-label classification tactics to a set of
580 CYP450 substrates. Models were generated with ML, SVM,
K-NN, and artificial neural network (ANN) algorithms. The per-
centage of correct predictions for all classes was over 80% for multi-
marker models and over 70% for single-label models when
evaluated in an external set [124, 125].
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4 Conclusion and Perspectives

In this work, we present an overview of ML methods applied to
ecotoxicity in QSAR studies, namely, artificial neural networks,
support vector machines, random forest, and decision tree,
among others.

The use of ML techniques in the evaluation of ecotoxicology
has increased considerably in recent decades, demonstrating the
need for such approaches in this area. The use of these techniques
has proved very useful, generating predictive models of excellent
performances.

New methods and new algorithms are being applied to QSAR
studies in the field of ecotoxicology, and improvements are being
made to existing methods. However, the difficulty of interpretabil-
ity is still a challenge and obstacle in the application of ML toQSAR
studies in ecotoxicology.

Glossary

ABNT Brazilian Association of Technical Standards
CETESB Environmental Company of the State of São Paulo
CSV Comma-Separated Values
DT Decision tree
ECETOC European Centre for Ecotoxicology and Toxicology of

Chemicals
ECHA European Chemicals Agency
ECOSAR Ecological structure-activity relationships predictive

model
EC50 Effect concentration 50%
EL Ensemble learning
EL50 Lethal concentration 50%
K-NN K-nearest neighbor
ML Machine learning
MLR Multiple linear regression
MOA The toxic mode of action
NN Neural networks
OCHEM Online Chemical Database
OECD The Organisation for Economic Co-operation and

Development
QSAR Quantitative structure-activity relationship
QSPR Quantitative structure-property relationship (QSPR)
REACH Regulation on Registration, Evaluation, Authorisation

and Restriction of Chemicals
RF Random forest
SARs Structure-activity relationships
SDF Structure Data File
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SVM Support vector machine
US EPA US Environmental Protection Agency
UT Toxicity unit
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ticos. Rev Bioética 23:409–118
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Chapter 8

On the Relevance of Feature Selection Algorithms While
Developing Non-linear QSARs

Riccardo Concu and M. Natália Dias Soeiro Cordeiro

Abstract

Quantitative structure-activity relationships (QSARs) are mathematical models aimed at finding a quanti-
tative relationship between a set of chemical compounds and a specific activity or endpoint, such as toxicity,
chemical or physical property, biological activity, and so on. In order to find out the correlation between the
chemicals and the selected endpoints, QSAR models use the so-called molecular descriptors (MDs) which
encode specific chemical information or features of the molecules. The early QSAR models were based on a
small set of MDs and a specific endpoint, and the correlation was usually a linear mathematical correlation.
However, nowadays, QSAR models are usually non-linear and made up by thousands of chemicals and
hundreds of MDs. In addition, novel QSAR models are also aimed at the prediction of different endpoints
with the same model, the so-called multi-target QSAR (MT-QSAR). Due to this, nowadays many QSARs
are usually developed using machine learning approaches which can model a dataset with different end-
points. Although these approaches have demonstrated to be able to solve MT-QSAR models, feature
selection (FS) in these cases is a challenging task and a main point in the QSAR field. Considering these
aspects, the main aim of this chapter is to analyze feature selection methods while developing non-linear
QSAR models.

Key words QSAR, Molecular descriptors, Feature selection, Neural networks, Filter methods, Wrap-
per methods, Machine learning, Linear models, Non-linear models

1 Introduction

In 1963 Hansch et al. [1] for the first time introduced the concept
of quantitative structure-activity relationship (QSAR) developing a
linear equation that was able to correlate chemical features of
molecules, the so-called molecular descriptors (MDs), to a specific
activity, also called an endpoint, like toxicity, drug activity, physical
properties, and so on. In that first work, the authors developed a
simple linear regression model with a small dataset composed by
35 compounds. Starting from that first model, thousands of differ-
ent QSAR models have been developed later, using hundreds of
diverse approaches. However, the main idea behind a QSAR model
is still the same: changes in molecular structure are reflected in
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proportional changes in the observed response or biological activ-
ity. Although at the very beginning, QSAR was basically used for
drug design and drug development, nowadays it has been applied
to a lot of different areas. In fact, the main QSAR concept has been
extended to other fields such as quantitative structure-toxicity rela-
tionship (QSTR) [2, 3], quantitative structure-property relation-
ship (QSPR) [4–6], and quantitative structure-nanomaterial
relationship (QNAR) [7, 8]. In doing so, all these different
approaches have been used to predict toxicity, property, etc. of
different chemicals, and because of this, QSAR modelling is widely
employed in academic, industry, and government institutions
around the world [9]. In addition, also government agencies are
supporting the implementation of QSAR tools and QSAR models
for regulatory purposes. The main advantages of these approaches
are that they are time and money saving. In fact, using these
techniques it is possible to predict a desired property or function
avoiding chemical and/or animal testing [10, 11].

Although there are thousands of QSAR models aimed at pre-
dicting very different activities, properties, etc., the general work-
flow is always the same. The first step is aimed at building up and
curating a dataset of compounds with their biological activity,
physical property, toxicity, etc. [12]. This task is usually achieved
by retrieving molecules from online databases such as ChEMBL
[13], PubChem [14], or ChemSpider [15]. It is also common that
medicinal chemists integrate these data with novel compounds to
validate the model and new drugs [16]. The second step is to
calculate the MDs, which are the independent variables in the
QSAR model. The MDs are the nucleus of QSAR modelling, and
thousands of them have been developed in order to codify very
different aspects and features of chemicals compounds. Regardless
the type of information they are encoding, MDs are numerical
representations of a specific feature of the compound. Hundreds
of software have been developed to calculate MDs, for instance,
Dragon [17], CORINA [18], CODESSA [19], etc. In any case,
there are mainly four different MD classes: 1D, which encodes the
molecular formula; 2D, which represents the structural formula;
3D, which codifies the three-dimensional structure of the com-
pound; and 4D, which are multidimensional MDs. Due to this,
feature selection (FS) is one of the most important and relevant
steps while developing a QSAR model, since the performances,
predictions, and reliability of the model are strictly correlated with
the MDs and the information they are encoding.

The third step is to develop the QSAR model using a linear or
non-linear approach able to correlate the MDs with the endpoint.
While at the very beginning, the QSAR models were usually based
on linear correlations, nowadays there is a general trend to employ
non-linear models based on different machine learning algorithms.
Linear models are completely reproducible, easier to interpret, and
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computationally less demanding and thus, in some cases, may be a
better choice. However, linear models may fail when inputs in the
dataset show high diversity and great complexity and when inde-
pendent variables have high correlation among each other. In these
cases, non-linear models are usually a better choice due to the fact
that they can model very complex datasets giving robust and reli-
able predictions. Several methods have been applied while develop-
ing QSARmodels; the selection of the proper non-linear technique
may have an influence on the final result of the QSAR model.
Mostly used non-linear methods are artificial neural networks
(ANN) [20–22], support vector machine [23–25], partial least
squares (PLS) [26–28], and multivariate adaptive regression splines
(MARS) [29, 30]. Even if these are powerful and reliable techni-
ques, they also have several drawbacks: usually they are not repro-
ducible, since they are based on semiempirical algorithms, are more
complex and more difficult to interpret, and may suffer from the
overfitting problem [31]. Finally, the models should be validated
using appropriate methodologies; this is usually done with diverse
techniques such as leave one out (LOO), cross-validation, leave
many out (LMO), etc. [32]. This general workflow is also described
in Fig. 1.

In any case, one of the key points while developing linear
and/or non-linear QSAR models is the FS. Although a lot of
substantial development of QSAR methods have been done, FS is
still a challenging process that is fraught with pitfalls. Since the
number of MDs that can be calculated and used in a model is
very huge, a proper FS method is essential to develop robust and
reliable QSAR models. Even though a QSAR model might be
developed using all the calculated MDs, this is usually not recom-
mended for several reasons. First of all, a QSAR model developed
with a large set of MDs is really complex, and a mechanistic inter-
pretation is almost impossible. Reduction of the number of MDs
reduces the noise in the model, improves the overall accuracy, and

Fig. 1 The FS process
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eliminates redundant or collinear variables which are encoding the
same information [9, 33]. Moreover, a small set of variables is also
one of the most important points to avoid overfitting. As a general
rule, the number ofMDs should be always less than the compounds
in the dataset [34, 35]. Topliss and Castello [36] developed a basic
rule that states the ratio between the number of training set com-
pounds and descriptors should be at least 5:1 when developing
linear correlations. This rule is not directly applicable for
non-linear models; however, there is a general consensus that this
ratio should be as higher as possible. In fact, models with high
number of features are usually keen to be overfitted and fail in the
validation or prediction of external compounds. Finally, a small set
of descriptors usually means that the model is also less computa-
tional demanding and easier to interpret.

2 Feature Selection

The main aim of each FS process is to identify the best subset of
features that best describes the dataset in use and improves the
performances of a learning algorithm. Nowadays, the identification
and elimination of irrelevant features is one of the biggest chal-
lenges in the machine learning field since databases and available
features are huge. Many authors provided various definitions for
FS; Dash and Liu [37] generalized these definitions as:

(a) Idealized: finds the minimally sized feature subset that is nec-
essary and sufficient to the target concept [38].

(b) Classical: selects a subset of M features from a set of
N features, M < N, such that the value of a criterion function
is optimized over all subsets of size M [39].

(c) Improving prediction accuracy: the aim of FS is to choose a
subset of features for improving prediction accuracy or
decreasing the size of the structure without significantly
decreasing prediction accuracy of the classifier built using
only the selected features [40].

(d) Approximating original class distribution: the goal of FS is to
select a small subset such that the resulting class distribution,
given only the values for the selected features, is as close as
possible to the original class distribution given all feature
values [40].

In addition, Dash and Liu [37] also standardized the two main
criteria while performing a FS:
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l The classification accuracy does not significantly decrease.

l The resulting class distribution, given only the values for the
selected features, is as close as possible to the original class
distribution, given all features.

In any case, from a general point of view, as reported by Dash
and Liu [41], each FS protocol should consist of four basic steps:

1. Generation: to generate the next subset for evaluation

2. Evaluation: to evaluate the candidate subset

3. Stopping: to select a criterion to decide when stopping

4. Validation: to validate the selected subset

This process is also reported in the Fig. 1.
The first step may start with three different scenarios: (1) with

all features, (2) with no features, and (3) with a random subset.
While in the first two cases the features are iteratively added/
removed during the process, in the case of the random subset,
features are randomly generated or added/removed during the
task. The second step, the evaluation of the generated subset, is
aimed at evaluating the previous subset with the latest one. If the
new subset performs better, then the previous is replaced; other-
wise the latest one is discarded. The stopping procedure is crucial
since without a rationale stopping criterion, this step may run
unnecessarily long. The stopping criterion is usually decided by
the researcher and should be based on the two previous steps. For
instance, one could consider the number of iterations or the num-
ber of features selected if the generation procedure is used to define
the stopping point. In the case of reliability on the validation
procedure, we may consider if the addition of features generates a
more performing subset. The validation procedure basically works
comparing the validity and results obtained with the new one in
comparison to the previous subset.

There are basically three different methods to efficiently per-
form the FS procedure. The first one is called filter method, which
is based on the reduction of the entire set of descriptors using
statistical measures to rank available features; then those achieving
scores below a predetermined threshold are automatically rejected.
Themain advantage of this method is that it is usually easy to design
and not computational demanding. The second one, called wrap-
per, is based on the employment of machine learning algorithms to
evaluate the accuracy performance of a large feature subset to find a
better correlation between compounds and features. These meth-
ods perform better than the filter method; however, they are usu-
ally computationally more expensive. Finally, hybrid methods are
approaches based on both filter and wrapper methods. Usually,
these methods firstly apply a filter method to reduce the dimension-
ality of the dataset and then a wrapper method.
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The main aim of this chapter is to analyze and discuss the most
relevant and reliable methods used to perform an efficient FS while
developing non-linear QSAR models.

3 Filter Methods

Filter methods are the simplest ones used to select features. These
approaches use the training data to select features without applying
any kind of algorithm or machine learning technique. There are
several filter methods such as consistency methods [42], informa-
tion methods [43], dependency methods [44], distance methods
[45], forward selection [46], backward elimination [47], and step-
wise selection [48].

3.1 Consistency

Methods

Consistency methods, also called consistency evaluation measures,
are methods heavily based on the robustness of the training dataset.
In addition, this method also uses the Min-Features bias in select-
ing a subset of features. In any case, this method basically evaluates
if the set of selected features is consistent or not. The output of this
procedure is a Boolean value. The FOCUS [49] method and its
improved version FOCUS2 [50] applies this selecting measure to
stop the procedure while evaluating the consistency of the selected
features.

Even if this procedure is simple allowing to achieve small sub-
sets, it has several drawbacks. This method can be applied only with
discrete features; if the subset consists of continuous features, this
should be first discretized. Otherwise other developments of
FOCUSmethods may be used, such as CFOCUS [51]. In addition,
this method has low noise tolerance since the selected subset may
turn inconsistent just shuffling only one feature. Finally, this
method is unable to build a subset by itself since it requires sup-
porting tools like the Min-Features bias. Some authors tried to
improve this method curtailing its drawbacks [52–54].

3.2 Information

Methods

This method basically compares the information gained by the new
feature with respect to the previous one. Based on this concept, Bell
and Wang [55] developed an algorithm in order to perform a
feature subset selection (FSS). They then evaluated the algorithm
using 23 public datasets, improving the prediction accuracy of
16 and losing accuracy on only 1 dataset using non-linear algo-
rithms. Other authors applied this method such as Cardie [56]
which developed a so-called hybrid approach that outperforms
both the decision tree and case-based approaches and two case-
based systems that incorporate expert knowledge into their case
retrieval algorithms.
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3.3 Dependency

Methods

Dependency methods evaluate how the value of one variable could
be predicted using the value of another variable. In this case, the
method selects the feature with the high correlation with the target
class selected. Peng et al. [57] developed the minimal-redundancy-
maximal-relevance criterion (mRMR) for the first-order incremen-
tal FS that was subsequently combined with a wrapper method. In
order to evaluate their approach, the authors compared four differ-
ent public datasets (handwritten digits, arrhythmia, NCI cancer cell
lines, and lymphoma tissues) [58–61] and three different classifiers
(naive Bayes, support vector machine, and LDA). This approach led
the authors to obtain good results with an initial set of features
relatively large. In addition, the accuracy of the classifiers was also
improved.

Claypo et al. [62] proposed a method which adopts the mutual
information to determine significant features from probability
between feature and class using a class dependency and feature
dissimilarity (CDFD). In addition, the authors also consider the
dissimilarity between features based on Euclidean distances in order
to consider the differences between features. The authors tested
their approach on five datasets [63] using multilayer perceptron
(MLP) neural network, decision tree, radial basis function (RBF)
neural network, and probabilistic neural network (PNN); in addi-
tion, the approach was tested also against Fisher-Markov feature
selector (MRF) and genetic algorithm (GA) FS methods
[64, 65]. The results reported by the authors show that the
CDFD algorithm can produce the lower classification errors in
many classifiers.

3.4 Distance

Methods

Distance methods are a huge class of FS methods. From a general
point of view, they uses conventional distances (e.g., Euclidean
distance) to measure the similarity between two samples. One of
the most used distance methods is the Bhattacharyya distance
[66, 67], which basically measures the similarity of two probability
distributions. Piramuthu evaluated and compared several inter-class
as well as probabilistic distance-based FS methods as to their effec-
tiveness in preprocessing input data for inducing decision trees
[45]. After evaluating these methods on five real-world datasets,
they concluded that the non-linear measure is one of the choices in
most cases since the reduction of the features was effective without
loss of performances. Other authors also developed robust FS
method using Bhattacharyya distance [68, 69].

3.5 Forward

Selection

Forward selection is a method widely used for FS. This procedure is
a specific type of stepwise regression which begins with an empty
variable subset and adds in features one by one at each step. The
feature selected is the one which allows the best improvement in the
model. This procedure continues until no more features able to
improve the model are found. The main drawback of this method is
that it tends toward overfitting, due to which, it is important to
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have a strictly stopping criteria. In addition, when a variable is
added, it cannot be excluded later, even if that variable might be
redundant or is not improving the performance the model due to
other features that are added. In any case, this method has been
used by many authors for feature selection [70].

3.6 Backward

Elimination

This method works in an opposite way compared with the forward
selection. In fact, it starts including all the features and starts
eliminating one by one at each step evaluating the contribution of
the feature to the improvement of the model. This model is not
widely used since it may produce overfitted models. In any case, an
interesting approach has been developed by Akhlaghi while inves-
tigating A series of 1-[2-hydroxyethoxy-methyl]-6-(phenylthio)
thymine] (HEPT) derivatives, as non-nucleoside reverse transcrip-
tase inhibitors (NNRTIs) [71]. Thorough this approach, the
authors were able to identify 11 relevant descriptors from a large
set in order to develop an RBF neural network which presents an
overall accuracy of 90%.

3.7 Stepwise

Selection

This method is probably the most used one for FS in the QSAR
area. This is a hybrid method based on both the forward and
backward algorithms. The main advantage of this method is that a
variable which enters in the model can be then deleted if it is found
to be irrelevant. In fact, the process starts adding the variable with
the highest correlation with the selected endpoint. At each step, the
variable with the highest correlation is added until no more vari-
ables with significance are found among the whole set of features.
In addition, in each step, all the features included are analyzed, and
if a variable previously added is found insignificant, it is deleted
from the set of features. The significance criteria used for the
forward selection and backward elimination are 0.25 and 0.1,
respectively. Based on this criterion, the predictors are selected or
eliminated from the analysis. In any case, this method as well as the
forward and backward are prone to entrapment in local minima
which means that a set of features that cannot be improved in the
next step may be found. Shanableh and Assaleh used a stepwise
approach to reduce dimensionality [72]. In order to test their
approach, two application scenarios were used to test the proposed
solution, namely, image-based hand recognition and video-based
recognition of isolated sign language gestures. Other authors used
this approach to efficiently reduce the number of features while
developing non-linear models [7].

4 Wrapper Methods

Wrapper methods are based on greedy search algorithms as they
evaluate all possible combinations of the features and select the
combination that produces the best result for a specific machine
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learning algorithm. They usually perform better than filter meth-
ods, although the computational cost is usually higher and thus also
the time needed to check all the feature combinations is longer
[73]. In addition, wrapper algorithms usually do not suffer from
overfitting since typically a cross-validation procedure is applied in
order to avoid the problem [74].

In this section, we will review the most relevant wrapper meth-
ods used to select the best feature subset in order to develop
non-linear QSAR models. There are a huge number of algorithms
and approaches that have been developed; here we will review only
the most relevant and used in the QSAR field.

4.1 Evolutionary

Algorithms

Evolutionary algorithms (EA) are metaheuristic optimization algo-
rithms used for selection features and based on the biological
evolution. This means that fitter features will survive and replicate,
while unfit features will be discarded, like genes in the evolutionary
selection. This class includes genetic algorithm (GA), genetic pro-
gramming (GP), evolutionary programming (EP), and other
related approaches [75–78]. These algorithms are widely used for
FS in very different fields [79–83]. Due to this, also in the QSAR
field, EA are widely used since they are considered one of the best
methods for FS [84–86].

From a general point of view, all the evolutionary algorithms
are developed using four steps: initialization, selection, genetic
operators, and termination. The procedure starts generating an
initial population which are likely solutions for the problem. This
first generation is usually randomly created; however, in some cases
some prior requirements may be used. The second step is focused
on evaluating the generated population according to a fitness func-
tion. This function evaluates the fitness of each individual in that
population and usually selects only the top two. Once the two top
members are selected, then the genetic operators (GO) may be
applied. The GO step is performed thorough three different
steps: reproduction, crossover, and mutation. Using the two top
members that we may consider as “parents,” two new are created
crossing the features of the parents; this procedure represents the
reproduction and crossover. Subsequently, a mutation is performed
randomly changing some part of the feature previously generated.
Finally, the termination step may occur. There are two cases in
which this usually occurs: either if the procedure has reached a
defined runtime or it has reached some threshold of performance.
There is also a variation of the classical EA which is called multi-
objective evolutionary algorithms (MOA) [87]. These algorithms
are useful while solving problems with multiple fitness functions
which require a set of optimal solutions points. The set of optimal
solutions is called the Pareto frontier.

In any case, many authors have used EA to select best features
while developing non-linear QSAR models. Ozdemir et al. [88]
applied a novel GA to select the most relevant features among an
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initial set of 160. The algorithm was able to select 40 features with
low intercorrelation and high correlation with the endpoint. A
QSARmodel was developed using feedforwardANN; the sensitivity
of the model was higher with only 40 features.

Another interesting application of the application of GA to FS
was presented by Bahmani et al. [89]. In this case, the authors
developed a back-propagation ANN (BP-ANN) for modelling the
retention time of 57 morphine and its derivatives. In this case, the
GA was able to select only 3 descriptors among the 200 calculated.

Mizera et al. developed an innovative quantitative structure-
retention relationship (QSRR) for analysis of triptans, selective
serotonin 5-HT1 receptor agonists used for the treatment of
acute headache [90]. Also in this case, the GA was able to select
the most relevant features in order to develop ANN robust model
substantially reducing the initial number of descriptors. Other
relevant works of combining GA with ANN could be found here
[91–95].

4.2 Ant Colony

Optimization (ACO)

Ant colony optimization (ACO) algorithm is a probabilistic tech-
nique for solving computational problems which can be reduced to
finding good paths through graphs. Even though this algorithm is
based on a natural phenomenon, in fact it mimics the behavior of an
ant colony while looking for the shortest path between nest and
food sources. When ants travel, they deposit pheromone, this
means that as more ants travel thorough a route richer in phero-
mone that will be the primary route. In addition, pheromone tends
to decay during time, and as more ants use a specific route to food
source, the trail becomes richer in pheromone concentration, and
as a final result, ants will follow the final route. On the other hand,
routes less used will lose their pheromone concentration due to
evaporation, and ants will not follow this route. This algorithm was
firstly introduced by Dorigo et al. [96], and a general workflow for
solving a problem using an ACO approach was proposed by Mullen
et al. [97]. In any case, at each iteration, every ant constructs a
solution to the problem by moving on a graph. Each edge of the
graph represents the possible steps the ant can make; in addition,
two kinds of information that can guide ant movements are
assigned to each edge:

1. Heuristic information, which measures the heuristic preference
of moving from a node a to a node b, of traveling the edge aab.
It is denoted by ηab. This information is preserved during all the
process.

2. Artificial pheromone deposition, which measures the “learned
desirability” of the movement and mimics the real pheromone
that natural ants deposit. This information is modified at each
iteration depending on how many ants move through each
edge. It is denoted by τab.
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Considering the above general scheme, ACO algorithm
is usually defined as folow:

1. Represent the problem by a defined graph where ants can move
and so find a solution.

2. Define the meaning of the pheromone trails.

3. Define the heuristic preference for the ant while constructing a
solution.

4. Select an appropriate ACO algorithm and apply to solve the
problem.

5. Tune the parameter of the ACO algorithm.

An interesting application of ACO to FS in non-linear regres-
sion methods was presented by Goodarzi et al. [98]. In this case,
the authors first calculate 1457 MDs using the Dragon package.
Only 16 descriptors from the total pool were independently
selected by suitable selection methods including GA, successive
projections algorithm (SPA), and fuzzy rough set ACO. Finally,
they tested the set of selected features using MLR, artificial neural
network (ANN), and support vector machine (SVM).

4.3 Sensitivity

Analysis

Sensitivity analysis (SA) generally refers to the assessment of the
importance of features in the respective models. In short, given a
fitted model with certain model parameters for each predictor, what
would be the effect from varying the parameters of the model (for
each variable) on the overall model fit? Therefore, the predictors
can be sorted by their importance or relevance for the specific
neural net, and thus, the features with less importance can be
eliminated. This approach has been adopted by several authors
and has the great advantage of checking the relevance of the fea-
tures directly for the model.

Bing et al. developed a SVM model to discriminate 32 phe-
nethyl-amines between antagonists and agonists and predict the
activities of these compounds [99].

Embrechts et al. developed a new sensitivity analysis approach
for FS using multiple ensemble neural networks and then applied it
to in silico drug design with QSAR. Using this innovative
approach, the authors were able to reduce the initial set of
160 descriptors to 35 improving the accuracy of the resulting
neural network [100].

Another relevant approach was developed by Kurita et al.
[101]. In this case, the authors built a QSAR model based on
SVM to predict carcinogenicity. They also developed a new SA
method which improves the overall accuracy of the model obtained
with a correlation coefficient and F-score-based FS.

4.4 Particle Swarm

Optimization

The particle swarm optimization (PSO) is another swarm intelli-
gence algorithm based on the simulating the natural behavior of
bird flocking. The main idea of this algorithm is that particle
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swarms could explore the search space through a population of
particles, which adapt by returning to previously successful regions.
The particles have random position in the variable space; the move-
ment of the particles is stochastic, and it is also influenced by the
particles’ and peers’ memories. Each particle keeps track of its
coordinates in the problem space, which are associated with the
best solution (fitness) it has achieved so far. At the end of each
iteration, PSO will change the velocity of each particle and update
the best solution. This procedure was presented in 1995 by Ken-
nedy and Erberhart [102] and has been successfully applied as FS
method in non-linear QSAR.

In this sense, Agrafiotis and Cedeño checked the efficiency of
this method on three different datasets developing feedforward
neural networks [103]. The results reported by authors demon-
strate better selectivity against other approaches identifying better
and more diverse set of features.

On the basis of this approach, Wang et al. developed an inter-
esting binary PSO (BPSO) combined with a back-propagation
ANN. The authors tested this approach on four different
datasets [104].

4.5 Other Methods Xue et al. developed a FS method called recursive feature elimina-
tion (RFE) based on SVM. At each step, a SVM is trained, and the
worst variable is identified by the absolute weight of the feature in
the model and subsequently eliminated [105]. A total of 22 MDs
was selected from an initial pool of 159, reducing thus the noise and
the dimensionality of the model.

Another relevant approach was presented by Soto et al.
[106]. The authors described a two-phase methodology for FS
that could be applied to both linear and non-linear QSAR. The
first step is based on a multi-objective evolutionary technique
which allows several advantages compared to mono-objective
methods. The second step complements the first one and was
developed to refine and improve the confidence in the chosen
subsets of features.

5 Conclusion

FS is an essential and fundamental step while developing non-linear
QSAR since the number of descriptors that actually can be calcu-
lated and included in a model is huge. In fact, software like Dragon,
CODESSA, PaDEL-Descriptor, etc. can calculate thousands of
MDs. While great improvements have been achieved developing
new MDs and MDs computing software, QSAR algorithms, and
dataset curation, FS is still a challenging task, and no great improve-
ments have been achieved. FS is needed for some very important
reasons. First, it is essential to reduce the number of features in a
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model in order to avoid overfitting. Second, in order to perform a
mechanistic interpretation of the model, it is essential to have a
small set of features. Third, reducing the number of features avoids
collinearity between variables and reduces the noise of the model.
Fourth, a model with a small set of MDs is usual more robust and
stable and is of higher quality. Finally, if a model is built with a huge
number of MDs, it is fairly impossible to know what we are
modelling.

There are a lot of FS methods and algorithms, and there is no
consensus about which method is better and should be preferred.
This is due to the fact that each dataset is different with respect to
number, type of MDs, biological activity, and so on. Filter methods
are usually faster and less computational expensive and time con-
suming. On the other hand, wrapper methods are usually more
robust but time and computational expensive. In this sense, a good
approach may be first applying a filter method and then a wrapper
algorithm. In any case, a proper FS method should be always
applied while developing a non-linear QSAR model.
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31. Scior T, Medina-Franco JL, Do QT,
Martinez-Mayorga K, Yunes Rojas JA, Ber-
nard P (2009) How to recognize and work-
around pitfalls in QSAR studies: a critical
review. Curr Med Chem 16(32):4297–4313

32. Gramatica P (2013) On the development and
validation of QSAR models. Methods Mol
Biol 930:499–526

33. Basak SC, Natarajan R, Mills D, Hawkins
DM, Kraker JJ (2006) Quantitative
structure-activity relationship modeling of
juvenile hormone mimetic compounds for
Culex pipiens larvae, with a discussion of
descriptor-thinning methods. J Chem Inf
Model 46(1):65–77

34. Khan PM, Roy K (2018) Current approaches
for choosing feature selection and learning
algorithms in quantitative structure-activity
relationships (QSAR). Expert Opin Drug
Dis 13(12):1075–1089

35. Tetko IV, Sushko I, Pandey AK, Zhu H,
Tropsha A, Papa E et al (2008) Critical assess-
ment of QSAR models of environmental tox-
icity against Tetrahymena pyriformis: focusing
on applicability domain and overfitting by var-
iable selection. J Chem Inf Model 48
(9):1733–1746

36. Topliss JG (1972) Utilization of operational
schemes for analog synthesis in drug design. J
Med Chem 15(10):1006–1011

37. Dash M, Liu H (1997) Feature selection for
classification. Intell Data Anal 1(1):131–156

38. Kira K, Rendell LA (1992) The feature selec-
tion problem: traditional methods and a new
algorithm. Proceedings of the tenth national
conference on artificial intelligence, San Jose,
1867155, AAAI Press, pp 129–134

39. Narendra PM, Fukunaga K (1977) A branch
and bound algorithm for feature subset selec-
tion. IEEE Trans Comput 26(9):917–922

40. Koller D, Sahami M (1996) Toward optimal
feature selection. Proceedings of the thir-
teenth international conference on machine
learning, Bari, 3091731, Morgan Kaufmann
Publishers Inc., pp 284–292

41. Dash M, Liu H (2003) Consistency-based
search in feature selection. Artif Intell 151
(1):155–176

42. Arauzo-Azofra A, Benitez JM, Castro JL
(2008) Consistency measures for feature
selection. J Intell Inf Syst 30(3):273–292

43. Jun BH, Kim CS, Song H, Kim J (1997) A
new criterion in selection and discretization of
attributes for the generation of decision trees.
IEEE Trans Pattern Anal Mach Intell 19
(12):1371–1375

44. Chandrashekar G, Sahin F (2014) A survey on
feature selection methods. Comp Electr Eng
40(1):16–28

45. Piramuthu S (2004) Evaluating feature selec-
tion methods for learning in data mining
applications. Eur J Oper Res 156(2):483–494

46. Whitley DC, Ford MG, Livingstone DJ
(2000) Unsupervised forward selection: a
method for eliminating redundant variables.
J Chem Inf Comput Sci 40(5):1160–1168

47. Sutter JM, Kalivas JH (1993) Comparison of
forward selection, backward elimination, and
generalized simulated annealing for variable
selection. Microchem J 47(1):60–66

48. Livingstone DJ, Salt DW (2005) Variable
selection—Spoilt for choice? Reviews in
Computational Chemistry. In: Lipkowitz
KB, Larter R, Cundari TR (eds) John Wiley
& Sons, Inc., chap.4, vol 21, pp. 287–348

49. Almuallim H, Dietterich TG (1991) Learning
with many irrelevant features. Proceedings of
the ninth National conference on Artificial
intelligence, vol 2, Anaheim, 1865761,
AAAI Press, pp 547–552

50. Almuallim H, Dietterich TG (1994) Learning
Boolean concepts in the presence of many
irrelevant features. Artif Intell 69(1):279–305

51. Arauzo A, Benı́tez JM, Castro JL (eds)
C-FOCUS: a continuous extension of
FOCUS2003. Springer, London

52. Tay FEH, Lixiang S (2002) A modified Chi2
algorithm for discretization. IEEE Trans
Knowl Data Eng 14(3):666–670

53. Boros E, Hammer PL, Ibaraki T, Kogan A,
Mayoraz E, Muchnik I (2000) An implemen-
tation of logical analysis of data. IEEE Trans
Knowl Data Eng 12(2):292–306
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Chapter 9

Got to Write a Classic: Classical and Perturbation-Based
QSAR Methods, Machine Learning, and the Monitoring
of Nanoparticle Ecotoxicity

Ana S. Moura and M. Natália D. S. Cordeiro

Abstract

Machine learning has become a central feature in the development or refinement of in silico methodologies
and techniques. Quantitative structure-activity relationship (QSAR) models are no exception. In fact, one
can consider there is a renaissance of QSAR techniques and respective reliability as there is a greater synergy
between the two of them. Further, this new wave ofQSAR +machine learning (ML) techniques allows new
avenues in several fields of application, namely, when regarding cytotoxicity and/or ecotoxicity monitoring
of nanoparticles (NPs). The latter is of major importance, as the challenges brought by environment
management and the increasing concern it has on the food chain are met with expensive and overall slow
experimental answers. Within this context, and alongside classical QSAR + machine learning techniques,
recent QSAR perturbation-based models join methods with ML as well. The QSAR perturbation models
feature the possibility of simultaneous modeling multi bio-targets versus NPs in different experimental
conditions, thus offering practical solutions to classical QSAR +ML limitations. The use of in silico models
could be the most feasible answer to the present and future scenarios of mandatory ecotoxicity monitoriza-
tion for nanotechnology by-products. This chapter approaches the methodologies and fundamentals of
classical and perturbation-based QSAR models within the environmental risk assessment framework, as
scaffold to develop novel in silico techniques.

Key words QSAR, QSTR, Machine learning, Ecotoxicity, Environmental monitorization, Nanopar-
ticles, Hybrid in silico models

1 Introduction

Quantitative structure-activity relationship (QSAR) models, what-
ever their classification might be, are rooted on the concept pre-
sented by Crum and Fraser relating the chemical structure of a
compound and its chemical activity [1, 2]. This assumption of
synergetic relation between chemical structure and biochemical
consequential properties has now been established after more
than a hundred years of research, namely, with the publication, by
Corwin Hansch, of a free-energy model which correlated
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psychochemical properties and biological activities, enabling the
postulate of QSARmethodology as a sound research technique [3].

As computational capacity and specific software packages were
developed, QSAR models gained popularity among researchers.
However, a trend in fewer QSAR-related publications led to a
published analysis, which concluded that this slight decrease of
published QSAR studies could be related with the present matured
classical QSAR techniques [4]. Further, the authors suggested the
decreasing trend would be reverted as machine learning methods
entered a synergetic mode with QSAR models, thus reaching a
higher plateau in drug design productivity, for example.

Machine learning (ML) refers to the algorithms and statistical
methodologies that allow computer systems to emulate, to put it in
simple terms, the human process of adjustment to a task [5]. One of
the consequences is the higher autonomy in the process, as the
foundation of machine learning rests on inference and pattern
recognition rather than explicit instructions regarding a particular
task. This upgrades QSAR models as the predictions can attain a
refinement and degree of accuracy as well as correlation of excel-
lence level, while decreasing the time period of accomplishing
the task.

Focusing on the ecotoxicity context, alongside with QSAR
models, one also considers quantitative structure-toxicity models
(QSTR). The environmental concerns are an essential feature, on
survival lining in many occasions, and within that scope, the nano-
particles (NPs) appear as an increasingly focal point. Recent years
have witnessed the emergence of nanotechnology as one of the
most promising scientific fields, with applications in areas such as
electronics, catalysis, magnetism, optics, photonics, and biomedi-
cine [6–19]. Albeit such interesting scenario, the fact remains NPs
are not entirely monitored regarding toxic effects on human and
biosystems, including aqueous environment. The plethora of high
expensive laboratory assays, as well as a holistic approach to the
development of an efficient monitor, prompted the quest to
research the possibility of in silico models providing a plateau for
initial monitorization that could be effective, reliable, and swift
while being economically competitive.

Why initial? Because in silico models live in close synergy with
experimental techniques, through either input data or external
validation, and are sustained and complemented by the laboratory
validation, models, and methods. As such, the presented techniques
never lose sight of the physical reality and comprise validation not as
exterior to the protocols but as integrant of the methodologies.

The present chapter is divided in the following subsections:
Subheading 2, which summarizes the interfaces for input and out-
put data of the in silico models; Subheading 3, comprising three
subsections (the first, a brief introduction to machine learning
methods; the second, detailing the protocol of classical QSAR +ML
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techniques; and the last, exploring the fundamentals of QSAR per-
turbation-based + MLmodels); and a final section for the concluding
remarks, Subheading 4.

2 Materials

Materials regarding in silico techniques fall heavily on the “descrip-
tor” class. This is the situation for classical QSARs and most QSAR-
based models. The following subsections address descriptors within
in silico modeling and ecotoxicity context.

2.1 Input Data:

Collecting

and Calculating

The notion of a descriptor is the cornerstone of input data in this
type of models. A descriptor is a property, such as molar volume, or
a particular aspect, such as coating agent, encoded in such a manner
as to permit the original chemical information to be used in in silico
techniques [20, 21]. Descriptors can be collected through available
experimental data from literature; public sources, such as the Che-
micool Periodic Table source tool; or commercial and noncommer-
cial software for calculating molecular descriptors for QSAR
models, such as the ADMET Predictor [22, 23].

However, it is pertinent to introduce and summarize several of
the chemical information, apart from the chemical composition,
which might be of interest when developing an in silico model
within nanoparticle environmental risk assessment, namely, NP
ecotoxicity monitoring. Industrial nanoparticles with reckoning
ecotoxic effects can be classified into six categories, as it follows:
fullerenes, such as nanocones; metal nanoparticles, as elemental
silver, oxides and/or binary compounds, as when including car-
bides; complex compounds of two or more elements, such as alloys;
quantum dots; and organic polymers, such as polystyrene [24]. The
mobility factor of a NP is also important, as a NP with unstable
suspension will follow the natural tendency to aggregate, leading to
massive deposition and the formation of much larger particles
[25, 26]. To avoid agglomeration context, the manufacturer may
use coating agents on the surface of the NPs, which leads to
superficial changes, eventually impacting the ecotoxicity of the
NP [27]. Furthermore, other important factors might affect the
NP superficial properties and therefore its potential toxicity, such as
pH changes [28].

Finally, in the context ofQSAR +MLmodels, a very recent work
exploring the possibility of generating universal nanodescriptors is
noteworthy [29]. Aiming at establishing a new methodology to
develop universal nanodescriptors, the authors used the Pauling
electronegativity as empirical information on the definition of the
descriptor characters and the Delaunay tessellation approach in the
simulation of the nanostructures [30]. This latter decomposes the
nanostructure by a given set of points, which in turn decompose the
nanosurface into tetrahedrons, with the atoms located in the
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vertices. The selection of atoms for a tetrahedron is not fortuitous,
as they are selected in such a manner that their circumscribing
sphere is absent of any other atoms. After generating the nanode-
scriptors, a validation stage ensued, through quantitative nanos-
tructure activity relationship (QNAR) models developed by the
new nanodescriptors sets, each set representing different properties
versus biological activities.

2.2 Protocols

for Developing

Universal

Nanodescriptors

The protocols for the novel technique for development of universal
nanodescriptors comprise three stages, illustrated by Fig. 1
[29]. The details of the protocols will follow this phase categoriza-
tion as well.

1. Data compilation stage

(a) Curation of data for the new datasets from original data
sources and/or data repositories, in such a manner that
each dataset should model a specific bioactivity/physico-
chemical property data, as NP-enzyme binding affinities,
developed through intrinsic fluorescence intensities versus
NP presence or absence, or log P values, as examples

(b) Constitution of the new modeling datasets, with appro-
priate number of NPs

2. Nanostructure quantification

(a) Virtual nanodescriptor construction

Fig. 1 Scheme for developing universal nanodescriptors
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(i) Each NP from the new dataset must be virtual repre-
sented by a corresponding virtual NP (vNP) through
specific software packages, as the GNPrep program,
which assemble the NP atoms as a sphere core based
on the particle size information for each vNP, follow-
ing with random placement of associated surface
ligands (with ligand density information) on the core
surface trough NP-surface bond attachment [31].

(ii) Save the vNP as Protein Data Bank (PDB) files for
all NPs.

(iii) Generation of 100 vNPs for each NP in all datasets to
prevent potential instability of the calculation of the
descriptor due to the operation on the item 2.(a).(ii).

(b) Nanodescriptor generation

(i) Categorical classification of the vNPs according to
atomic element (e.g., C for carbon or H for halogens).

(ii) Identification of four nearest neighboring atoms,
through Delaunay tessellation, which can form a vNP
structure tetrahedron (e.g., cutoff distance, excluding
a tetrahedron when the distance between two atoms is
higher than such value, can be employed).

(iii) Tetrahedrons of identical compositions are counted as
similar descriptor, and the value of each nanodescrip-
tor for each vNP is established as the summation of the
electronegativity values of all atoms at the vertices of
the tetrahedron multiplied by its occurrences in
the vNP.

(iv) As a measure to assure descriptor value consistency
obtained for each NP, each nanodescriptor value is
the average of the results for the 100 vNPs constructed
in item 2.(a).(iii), followed by normalization, which
ranges from 0 to 1.

3. QSAR-based model to test nanodescriptors

(a) Development of QSAR or QSAR-based models, accord-
ing to usual protocols, taking into consideration the type
of bioactivity and physicochemical properties at the foun-
dation of the nanodescriptors

(b) Refinement of the QSAR or QSAR-based models through
machine learning techniques, such as random forest

3 Methods

When selecting the methods to include regarding protocols of
QSAR-based + ML models, two major categories were felt as
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pertinent. One consists the recent developments of classical QSARs
joining forces with machine learning tools, which refine the predic-
tive power of the in silico techniques. The second, very recent and
promising, consists QSAR perturbation-based + ML models, which
not only refine the predictive capacity of the QSAR technique but
propose a solution to the one-to-one usual limitation of QSAR
models, i.e., one bio-target versus one chemical compound,
through an interesting mathematical approach.

This section is divided in three subsections, Subheading 3.1,
which briefly introduces the concepts of the most common
machine learning techniques; Subheading 3.2, approaching the
first major category mentioned above; and Subheading 3.3, where
themulti bio-target in different experimental conditionQSAR+ML
approach is detailed.

3.1 Machine

Learning Tools

One of the most quoted phrases when addressing the subject of
machine learning is the operational definition of these techniques,
“A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P if its
performance at tasks in T, as measured by P, improves with experi-
ence E,” i.e., a machine learning technique is able to adjust itself to
better performance through interaction with the data [5]. Within
the QSAR-based model contexts, machine learning tools are usu-
ally employed as foundation for regression or classification mathe-
matical models, being the most common of these machine learning
tools artificial neural networks (ANN), deep neural networks
(DNN), or others [32, 33] (Table 1).

3.2 Classical

QSAR + ML Models

As mentioned in the Introduction, the quantified decrease of QSAR
publications might be overcome as novel approaches to QSAR are
made by employing ML [4]. In fact, just in the last 2 years, inter-
esting results on the context of environmental risk assessment and
prediction of ecotoxicity have been published [34–36].

A published work in 2017 approached the investigation regard-
ing risk assessment of ionic liquids, which can potentially present a
danger to the environment, namely, aquatic organisms such as
green algae, Vibrio fischeri, and fish, through such a hybrid in silico
methodology ofQSAR +MLmodel [34, 37–44]. Interestingly, the
σ-profile descriptors were the focus of the ML techniques. These
descriptors translated the structural information of the studied
ionic liquids into numerical variables, using their anionic and cat-
ionic σ-profile as source data. Previously, the ions present in the
ionic liquids had already been structurally optimized through the
principles of density functional theory (DFT). It was the optimized
geometry file of every single ion that was transformed in the
σ-profile function, as the latter represents a surface composition
function. Five of such descriptors were used for developing a linear
model, while the k-fold cross validation method explored the

200 Ana S. Moura and M. Natália D. S. Cordeiro



performance and stability of the model. Further, the selected
descriptors were then used to develop a nonlinear model, through
the resourcing to multilayer perceptron (MLP), which further
enhanced the accuracy of the model. The choice befell on three-
layered feed-forward networks with back-propagation training
function, using the Neural Network Toolbox of MATLAB. As the
weights controlling the back connections modulate the output of
the neuron before transmitting information to the following layer,
they were optimized to enable a more accurate prediction. This
calculation process was executed through activation and transfer
functions in the hidden and output layers. The five employed
descriptors permitted the MLR-based model to present a correla-
tion coefficient of 0.906 regarding the toxicity-structure relation-
ship, while the model also indicated, in concurrence with
experimental evidence, that the increase of ionic liquid toxicity is
proportionally related with the length of the alkyl chain [34].

Table 1
Summary of the concepts of the most common machine learning tools

Machine learning tool Concept

Multiple linear regression
(MLR)

Models linear relationship between independent, or explanatory, variables to
predict the outcome of a response variable

Partial least squares
(PLS)

Extension of MLR, determines the regression coefficients from the several
independent variables and the intercept of explanatory and response data

Linear discriminant
analysis (LDA)

Reduces dimensionality through removal of redundant and depending
features, i.e., transforms higher-dimensional space features into lower-
dimensional space features

Support vector machines
(SVM)

Discriminative classifier technique which separates labeled training data or
supervised data, outputting a separating hyperplane to establish new
categories

Artificial neural networks
(ANN)

Computational model inspired by the biological neural network structure
and functioning, which are changed as information (input and output)
flows through the network

Deep neural networks
(DPN)

A multilayered ANN

Genetic algorithms (GA) Search algorithm with capacity to adapt, exploiting information to focus the
search on the subregion of better performance from the initial search space

Random forest (RF) Generates decision trees, with great visual simplicity, and searches for the best
feature among a random subset of features

Bayesian modeling (BM) Also designated belief networks, is a segmentation technique which makes
decision on how to interpret probabilistic evidence in two classes,
supporting a hypothesis or rejecting it, with optimal solutions presenting
the highest expected utility
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In 2018, a published investigation regarding the development
of a model for predicting aquatic toxicity opted for a QSAR + ML
model where the chosen ML technique was the classification wrap-
per feature elimination approach, which is a support vector
machine pairwise recursive feature extraction (RFE) method
[35]. The authors employed such strategy to find the most relevant
pairs of molecular feature within that context while intending to
derive from them chemical frontiers between the chemical proper-
ties of toxic and nontoxic organic chemicals, in order to provide a
framework for the design of less toxic chemicals. The descriptors
were constructed taking into consideration 36 physicochemical
properties, such as hydrogen bond acceptors or solvent accessible
surface area. Furthermore, they also took into consideration previ-
ous published calculations for the highest occupied molecular
orbital HOMO and the lowest unoccupied molecular orbital
LUMO by semiempirical AM1 methodologies. To validate the
model, the choice befell on the fivefold cross validation, which
was employed in the feature selection, in the model parameter
optimization, and in establishing the hyperplanes from the support
vector classification. To validate the model, the chosen methods
were external validation with new data as validation sets and testing
versus a different machine learning technique, a decision tree
model. The authors concluded that, within the aquatic environ-
ment context, nontoxic chemicals presented aqueous solubility
QPlogS >1 and a LUMO >1 or QPLogo.w > 1 and ΔLUMO-
HOMO, i.e., the energetic difference between LUMO and
HOMO, greater than 9, and such values could be used as thresh-
olds for assessing aqueous ecotoxicity of chemical compounds.

A work published in 2018 proposed a solution to the repetitive
nature of the QSAR/QSPR life cycle nature, by approaching as
answer the automation of several of the typical in silico technique
stages [36]. As such, they presented a workflow where tasks, such
data curation, data set characteristic evaluation, variable selection,
and validation, were fully automated, testing the workflow versus
30 different problems. At its most optimal, the methodology
removed a percentage between 62 and 99 of redundant data and
almost less of a fifth of prediction error. For feature selection, the
authors implemented a random forest (RF) voting procedure where
each importance score of the variables is calculated by several
available importance’s measures, in a hybrid approach that allows
these measures to be input data for any machine learning algorithm
in stepwise predictive model development.

3.3 QSAR/QSTR

Perturbation Theory

Models and Machine

Learning

Within the search to develop in silico models able to present robust
results for NP risk assessment in ecosystems, the question for over-
coming the economic and celerity impairments of experimental
techniques is not the solo objective to be met. In fact, the reason
for the mentioned economic and time-consuming disadvantages of
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experimental techniques, with an already established role in asses-
sing the toxicity of NPs, is positively correlated with the impressive
amount of experimental assays necessary to cover the reasonable
spectrum of biological behaviors [45].

Notwithstanding, this diversity of bioindicators and NP char-
acteristics is also a challenge for in silico models. Classical QSAR/
QSTR models base their prediction in a one-to-one strategy, i.e.,
assessing the toxicity of the NPs against a single bioindicator.
Further, the main descriptors tend to be chemical composition
and size, while other important properties and factors are not
integrated in the techniques.

Therefore, the need for a model that could comprise such
complexity in a unified manner has prompted researchers to include
perturbation theory in QSAR/QSTR techniques [46–50]. Pertur-
bation theory is a designation for general mathematical methods
concerned in determining a quasi-solution for any problem which is
mathematically challenged when it comes to determine the exact
solution. The quasi-solution, obtained by adding small terms to the
original problem and constructing a formal power series, desig-
nated perturbation series, which includes the exact solution and
the deviation terms due to the approximation. Such a strategy also
allows the interface of the problem with numerical methods and
algorithms to be far more feasible [51].

In the following subsections, the several aspects of how such a
strategy approaches the challenges of risk assessment of NPs in
ecosystems are discussed and explored.

3.3.1 Mathematics

Sustaining QSAR

Perturbation Models

When attempting to develop a QSAR perturbation model, there are
two main aspects to consider, the first being the classical QSAR
principle of one-to-one biological effect versus reference chemical
should be replaced by the new QSAR perturbation paradigm of
including more than one chemical as reference, while the second
focuses on descriptor sensitivity, i.e., generating new descriptor
dynamics regarding the chemical compositions of NPs and the
experimental conditions [47–50].

As the experimental conditions vary, an ontological form pre-
senting dependence of several experimental factors should be devel-
oped, avoiding the static nature of classical one-to-one QSAR
principles. The ontological form, cj, represents a unique experimen-
tal condition sensitive to the variability of the conditions where NPs
interface bioindicators. The unique ontological experimental con-
dition departs from experimental assays of NPs for toxicity against
an array of biological entities, such as bacteria, algae, fish, and
others, comprising the measures of toxicity (me) against the bioin-
dicator (bt), i.e., me vs. bt; the nanoparticle shape labels, (ns),
measured under specific conditions (dm), i.e., (ns vs. dm); and the
assay times during which the biological entities were interfacing the
NPs (ta) [47–50]. The ontological experimental condition is thus
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defined as cj¼> (me, bt, ns, dm, ta). Summary of the parameters and
corresponding concepts for constructing the unique ontological
experimental condition is presented on Table 2. It should also be
referred that the quantitative values and curtailing proportions, i.e.,
if one uses 1 out 5 measures of toxic effects against 1 of
50 biological targets when considering me vs. bt, for example, are
gathered from published experimental data for NPs/cases.

Once cj is defined, another function needs to be defined and
assembled. Discriminating teach of the NPs/cases into two classes,
or groups, designated “positive” and “negative,” an experimental
condition regarding the toxic effect of a given nanoparticle, NPi,
can be constructed from the ontological unique experimental con-
dition and its value allocated to the value one if the situation
corresponded to a nontoxic situation and minus one otherwise.
This new function, Toxi(cj), thus makes a correspondence of high
toxicity, i.e., low values of measures of ecotoxicity—as “toxic”
nanoparticles need small concentrations to inhibit or cause

Table 2
Parameters for constructing unique ontological experimental condition cj under which an NP is tested

Parameter Concept Interface

me Measures of toxicitya me vs. bt
bt Biological targets

ns Shape labels ns vs. dm
dm Measurement conditions

ta Assay timesb

aPossible toxicity measures: EC50, IC50, LC50, TC50, etc.
bAssay times during which the biological targets have been exposed to NPs

Table 3
Measure of toxicity with mandatory cutoff values in QSAR perturbation models

Measure of ecotoxic
effect (units) Concept

IC50 (μM) Concentration of the nanoparticle that inhibits the root elongation of the
living system (plant) at 50%

EC50 (μM) Effective concentration of the nanoparticle that inhibits at 50% the growth of
the living system

CC50 (μM) Cytotoxic concentration of the nanoparticle leading to 50% reduction in cell
viability assays

TC50 (μM) Concentration that causes toxic effects in 50% of the living system

LC50 (μM) Lethal concentration that causes mortality in 50% of the living system
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mortality to living organisms—to the ecotoxic group, or class,
“negative” [Toxi(cj) ¼ �1], and low toxicity, i.e., high values of
measures of ecotoxicity, to the non-ecotoxic class, “positive” [Tox-

i(cj)¼ 1]. This new function belongs to a categorical variable, based
on the ontological experimental condition of published data, and
therefore, to effect the categorization, the measures of biological
effects need to be assigned to all the cases taking into account cutoff
values of ecotoxicity regarding me. These values are rigorously
established after analysis of the published data. Summary of the
diverse measures of biological effects are presented on Table 3.

After defining an ontological unique experimental condition,
cj, which takes into account several experimental variables from
experimental data published in toxicity assays research, and a cate-
gorical variable, Toxi(cj), dependent on those very published results
to discriminate NPi/cases in toxic and nontoxic, the concern
should be the sensitivity of the QSAR perturbation model to the
changes in both the NPs and distinct sets at the basis of the
quantification of cj.

To assure such thing, one starts by choosing a small integer
number of molecular descriptors, between three and five, for exam-
ple, which can be obtained through standard physicochemical
properties, such as molar volume, or available experimental data,
as the NP size. In the eventuality of the NP being formed by more
than one element, the physicochemical properties should be nor-
malized, i.e., for each physicochemical property, the normalized
physicochemical properties are the division quotient of the sum of
the properties of all atoms forming the molecule by the total
number of atoms.

After reaching this stage, new descriptors must be generated by
applying the moving average approach (MAA) in order to create a
new set of descriptors, which incorporate both the molecular struc-
ture and the ontological unique experimental condition, cj, there-
fore being able to discriminate the ecotoxicological effect of a given
NP as the different elements composing cj are varied [52–
56]. Defining Di as the original descriptor/property, Di(cj)aver as
the same experimental condition cj calculated as the average of all
Di values for NPs/cases in a subset of nj NPs/cases considered as
non-ecotoxic cases as defined above for the categorical variable in
the same element of ontological cj, then the following equation
indicates how the moving average approach descriptor, ΔDi(cj), is
generated:

ΔDi c j
� � ¼ ΔDi �Di c j

� �
aver

ð1Þ
Notwithstanding the reasoning followed in developing this

new descriptor function, it must be adverted, it does not include
the descriptor regarding coating agents, sc, as coating agents have
their own chemical structures. Thus, a new function is developed to
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emulate the characteristics of coating agents when they are present,
or absent, on NPs. If one considers PP to represent a given physi-
cochemical property, such as hydrophobicity, NMU as the number
of molecular units of a coating agent, and μk(PP) as the spectral
moment of order k from the bond adjacency matrix and
Gμk(PP) represents the descriptor of the coating agent structure,
a general spectral moment of order k of the bond adjacency matrix,
with null Gμk(PP) for uncoated NPs, then the relation between
these variables can be described as in Eq. 2.

Gμk PPð Þ ¼ μk PPð Þ � NMUð Þ1=2 ð2Þ
After enabling the sensitivity of the model to the varying spe-

cifics of a context, i.e., the particulars of an ecosystem and the
pharmacological identity of an NP, the second aspect to be consid-
ered is how the model may overcome the classical limitation of a
QSAR/QSTR technique of one-to-one structure, or chemical
composition, versus toxicological magnitude. Aiming at being
able to incorporate a multireference of chemicals versus toxicologi-
cal magnitude, thus adding the complexity of NPs and their inner
synergetic consequences, the perturbation series is constructed
[46–50]. Considering the combination of the data set original
cases as case-case pairs, one can define one of the cases as the
reference state, ref, and the other as the new or output case, new,
which represents the prediction. With this concept, not only a new
prediction can be made out of the total of the other cases, but also it
can participate as a reference state in the model. Interfacing this
concept with Eqs. 1 and 2, new equations, Eqs. 3 and 4, indicating
the differences between the NPs cases can be defined, and their
output allows the identification of possible deviations, or perturba-
tions, within the pairs, as the differences are dependent on their
chemical composition and the ontological unique experimental
condition.

ΔDDi c j
� � ¼ DDi c j

� �
new

�DDi c j
� �

ref
ð3Þ

ΔDGμk PPð Þ ¼ Gμk PPð Þnew � Gμk PPð Þref ð4Þ
In Eqs. 3 and 4, the terms ΔDGμk(PP) stand for the moving

average descriptor between the new and reference state coating
agent structure descriptors, Gμk(PP)new and Gμk(PP)ref, respec-
tively, while DDi(cj)new and DDi(cj)ref are similar in definition to
the terms of Eq. 1 but now with adjusted symbology to represent
the new and reference case. With all these elements, it is now
possible to define the categorical variable, Toxi(cj), as a general
expression able to predict ecotoxicity of a given NP under an
array of experimental conditions, with one NP always used as
reference, or initial, state and the other as the new, or output,
case, which is the prediction, as follows:
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Toxi c j
� �

new
¼ f Toxi c j

� �
ref
,ΔDDi c j

� �
,ΔDGμk PPð Þ� � ð5Þ

As Eq. 5 clearly illustrates, the toxicity of a given NP in the new
state of the categorical variable Toxi(cj) depends on the toxicity of
the same NP on the reference state of the categorical variable
Toxi(cj) and on the perturbation terms ΔDDi(cj) and ΔDGμk(PP),
which are sensitive to the variations of chemical characteristics and
coating agents of the NPs.

Further, the Toxi(cj)new and Toxi(cj)ref also have a categorical
variable nature, with similar meaning to the original definition of
Toxi(cj). Finally, as the new function f is a nonlinear function,
machine learning presents itself as the most suited methodology
to determine it. The particulars of such determination are described
on the following subsection.

3.3.2 Protocols for QSAR

Perturbation + ML Models

The protocols for QSAR/QSTR perturbation model development
and implementation, described in this subsection, are illustrated on
Fig. 2.

1. Selection of data regarding the nanoparticles. It comprises
usual an input set of initial data gathered from both the litera-
ture and the experimental results (vide section Subheading 2).
In this phase, the initial descriptors regarding the NPs are
chosen, being common examples the molar volume, V; the
electronegativity, E; the polarizability, P; and the size of the
NP, L, or coating agent types.

2. Selection of experimental conditions to construct the ontolog-
ical unique experimental function, cj. This comprises, as
described on the previous subsection, different measures of
toxicity, such as IC50; the presence of coating agents; endpoint,
i.e., type of bio-target and complexity of the bio-target; and
assay exposure time.

3. Construction of the ontological unique experimental condi-
tion, cj, from the selected experimental conditions (vide Sub-
section 3.3.1).

4. Clustering of the original NPs in two classes, toxic and non-
toxic, through the Tox(cj) categorical variable (vide Subsection
3.3.1).

5. Calculation of descriptors such as spectral moments of adja-
cency matrix and the categorical function Gμk(PP) regarding
the coating agents of the NPs (vide Subsection 3.3.1).

6. Determination of the new set of descriptors by applying the
moving average approach (MAA), according to Eq. 1.

7. Calculation of the descriptors ΔDDi(cj) and ΔDGμk(PP) as
perturbation terms to be used on the general expression of
the QSAR/QSTR model as depicted on Eq. 5.
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8. Determine which machine learning (ML) methodology is ade-
quate for the chosen scenario of dataset. For example, if the
choice should be artificial neurons network (ANN) as the
proper nonlinear analysis method, several different ANN archi-
tectures and topologies, such as linear neural network (LNN),
radial basis function (RBF), multilayer perceptron (MLP), or
probabilistic neural network (PNN), must be assessed as to
prevent underfitting and/or overfitting problems.

9. Conducting a sensitivity analysis, if possible, aiming to identify
through the chosen ML method which are the most significant
descriptors to be included in the QSAR/QSTR perturbation
model.

10. Resorting to the adequate machine learning methodology
in order to determine the parameters of the function
f [Toxi(cj)ref, ΔDDi(cj), ΔDGμk(PP)].

11. Dividing the QSAR/QSTR perturbation model based on ML
into two sets, a training set, for model development and indi-
cating statistical quality, and a test set, for internal validation
and predictive power.

Fig. 2 Scheme for developing QSAR perturbation-based models
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Table 4
Descriptors produced by QSAR perturbation model

Descriptor Type Concept

Toxi(cj)ref Dummy classifier Describes the toxic effect of the NP used in the
reference state

DDV(me) Perturbation term Indicates the change of the molar volume
between the NPs used in the new and
reference states, being dependent on the
measures of the toxic effects

DDL(me) Perturbation term Accounts for the variation of the size between
the NPs used in the new and reference
states, being dependent on the measures of
the toxic effects

DDμ1(ATO)
bt

Perturbation term Describes the difference of the spectral
moment of order 1 (weighted by the atomic
weight) between the NPs used in the new
and reference states, being dependent on the
bio-target

DD
μ3(POL)
ns

Perturbation term Characterizes the change of the spectral
moment of order 3 (weighted by the
polarizability) between the NPs used in the
new and reference states, being dependent
on the shapes of the NP

DDE(dm) Perturbation term Accounts for the variation of the
electronegativity between the NPs used in
the new and reference states, being
dependent on the conditions under which
the sizes of the NPs were measured

DDμ3(VAN)
ta

Perturbation term Describes the difference of the spectral
moment of order 3 (weighted by the atomic
van der Waals radius) between the NPs used
in the new and reference states, being
dependent on the exposure times

DDμ2(ATO)
ta

Perturbation term Characterizes the change of the spectral
moment of order 2 (weighted by the atomic
weight) between the NPs used in the new
and reference states, being dependent on the
exposure times

DGμ2(Hyd)
sc

Perturbation general spectral moment of
order 2 (weighted by the
hydrophobicity) term

Accounts for the difference between the
chemical structures of the coating agents
used in the new and reference states

DGμ5(PSA)
sc

Perturbation general spectral moment of
order 5 (weighted by the polar surface
area) term

Characterizes the difference between the
chemical structures of the coating agents
used in the new and reference states
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12. Confirmation of the predictive power of the QSAR/QSTR
perturbation model through blind external validation, i.e.,
new external data.

3.3.3 QSAR Perturbation

Models and Ecotoxicity

Assessment

Recent results regarding risk assessment in ecosystems resorting to
QSAR perturbation + ML models have displayed excellent capacity
of the in silico technique to model toxicological profiles of NPs in
multi-experimental conditions [50]. The model presented ten
descriptors, displayed on Table 4, obtained after deriving the origi-
nal and MAA descriptors from an ANN analysis.

These descriptors were calculated resourcing to the data analy-
sis method ANN and, in particular, employing the specific module
for ANN designated Intelligent Problem Solver in the STATIS-
TICA® package [57]. As mentioned on Subsection 3.3.2, there
was a preliminary phase where the most adequate ANN architecture
was investigated. When considering neural networks, there are
three layers, the hidden, input, and output layers, and the number
of neurons on the hidden layer should be between the number of
neurons of the other two layers. However, that is not always the
situation, as the degree of complexity of the problem at hand, or
number of training sets, is not taken into account for this empirical
rule. In fact, the only seemingly assumption to be made is that the
number of neurons on the hidden layer should be as low as possible.

In the published work, the best model was found to present an
ANN profile of multilayer perceptron (MLP) 10:10-44-1:1. The
explanation for the expression 10:10-44-1:1 is that 10 descriptor
variables (10:10-44-1:1) generated 10 neurons on the first layer
(10:10-44-1:1); the second, and hidden, layer had 44 neurons
(10:10-44-1:1); and the output layer had only 1 neuron (10:10-
44-1:1), which predicted the response variable, Toxi(cj)new (10:10-
44-1:1). The MLP topology was found through careful analysis of
50 ANN runs.

To further guarantee the correct selection of descriptors, sensi-
tivity test through model misclassification rates or sum of square
residuals was made by the ANN module. Within internal correla-
tion, several statistical indices were computed, namely, the overall
percentage of correct classification, i.e., model accuracy; the per-
centage of correct classification for nontoxic and toxic cases, i.e.,
the sensitivity (SENS) and specificity (SPEC), respectively; the
Matthews correlation coefficient (MCC); and the areas under the
receiver operating characteristic (ROC) [58, 59]. The validation
yielded for a number of 54,371 NP/NP cases, a computational
accuracy circa 97%, while the minimum percentage for correct
classification with new external data was as follows: for several
sizes of silver-based NPs versus RAW 264.7 mouse cells, and
CC50 as measure of toxicity, values higher than 85%; for nickel
ferrite NPs versus A549 human cells, and CC50 as measure of
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toxicity, values higher than 95%; for iron(II) oxide NPs versus
D. rerio (zebrafish) and LC50 as measure of toxicity, values higher
than 95%; for silver-based NPs, of 34 nm, versus microalgae, and
EC50 as measure of toxicity, values higher than 91%; and, finally, for
platinum-based NPs, of 51 nm, and EC50 as measure of toxicity,
values higher than 72%.

4 Conclusions

The recent years have presented challenges to the established clas-
sical QSAR model and techniques. As the in silico method reached
a plateau of maturity, also it faced the challenge of its limitations.
Several paths for overcoming this state of affairs are presented and
reviewed in this chapter, alongside with the protocols of selected
aspects of these novel techniques. One path consist on the conjoin-
ing forces between the QSAR models with machine learning meth-
ods, especially on the steps regarding descriptor construction and
selection or validation of the model. The other consist in facing the
classical limitation of QSAR models of one-to-one approach with
new mathematical techniques and establishing QSAR-based mod-
els able to predict multiconditions versus multi bio-targets.
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Chapter 10

Ecotoxicological QSAR Modeling of Nanomaterials: Methods
in 3D-QSARs and Combined Docking Studies for Carbon
Nanostructures

Bakhtiyor Rasulev

Abstract

One of the main approaches in cheminformatics, so-called a quantitative structure-activity relationship
(QSAR) approach, nowadays plays an important role in lead structure optimization, as well as in prediction
of various physicochemical properties, biological activity, and environmental toxicology. One of the recent
developments in QSAR approaches for nanostructures is a three-dimensional QSAR. For the last two
decades, 3D-QSAR has already been successfully applied to various datasets, especially of enzyme and
receptor ligands. The application of 3D-QSAR for nanostructured materials is still at early stage. Often,
3D-QSAR studies are going together with protein-ligand docking studies, and this combination works
synergistically, improving the accuracy of prediction. Carbon nanostructures, such as fullerenes, and carbon
nanotubes are nanomaterials with specific properties that make them useful in pharmacological applica-
tions. In this methodological review, we outline recent advances in development and application of
3D-QSAR and protein-ligand docking approaches in the studies of nanostructured materials, such as
fullerenes and carbon nanotubes.

Key words 3D-QSAR, Carbon nanostructure, Nanomaterials, Docking, Toxicity, Biological activity

1 Introduction

One of the main approaches in cheminformatics, so-called quanti-
tative structure-activity relationship (QSAR), is described in a num-
ber of publications [1–3]. QSAR methods allow cheminformatics
scientists to find correlations and mathematical models for conge-
neric series of compounds and to predict such properties as affinities
of ligands to their binding sites, rate constants, inhibition con-
stants, toxicological effect, electronic properties, steric properties,
and so on, based on structural features [1–9]. For example, QSAR
approaches have been used for many types of biological activities
to describe correlations for series of drugs and drug candidates
[2, 10–12].
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In case of available crystallographic data on proteins, QSAR
models can be developed with the use of the additional information
from three-dimensional (3D) structures of these proteins. Such
information as interaction with drug candidates can be revealed
by applying protein-ligand docking data. However, if there is no
data on 3D structure of protein, then the QSAR approach can be
applied, and structure-activity models may be developed based on
three-dimensional features of investigated molecules [13–18]. The
latter approach is named as 3D-QSAR [19–22]. Lately, several
other multidimensional approaches were developed, such as
4D-QSAR and others; however, these methods are just extension
of a QSAR approach, by considering only a few conformations
(including orientations, tautomers, stereoisomers, or protonation
states) per molecule and number of concentrations (dosages) per
compound [23]. Often, by the term “3D-QSAR,” computational
chemists usually assume a QSAR analysis that considers a 3D struc-
ture of the compound in a minimal energy conformation, where
QSAR model is built based on various 3D fields generated [2, 3]. A
first approach of 3D-QSAR was developed by Cramer in 1983,
which was the predecessor of 3D approaches called dynamic
lattice-oriented molecular modeling system (DYLOMMS) that
involves the use of principal component analysis (PCA) to extract
vectors from the molecular interaction fields, which are then corre-
lated with biological activities [19]. The same authors later
improved this approach, and by combining the two existing tech-
niques, GRID and PLS, they developed a powerful 3D-QSAR
methodology, so-called a Comparative Molecular Field Analysis
(CoMFA) [21, 22]. Right after that, CoMFA has become a proto-
type of 3D-QSAR methods [24–26]. Later, a powerful CoMFA
approach was implemented in the Sybyl software [27] from
Tripos Inc.

It is worth to note that a great and fruitful approach in phar-
macological properties prediction is a combination of molecular
docking and 3D-QSAR pharmacophore methods [16–18, 28].
Nowadays, molecular docking and 3D-QSAR are two important
and powerful approaches in drug discovery process, which are
heavily utilized in pharmaceutical companies. Thus, virtual screen-
ing using 3D-QSAR approaches followed by docking has become
one of the reputable combinations of methods for drug discovery
enhancing the efficiency in lead optimization [29, 30]. The main
advantage of this combined approach is to focus on specific key
interactions in protein-ligand binding to improve drug candidates
and ameliorate the selection of active compounds. Thus, it is opti-
mal to use both these methods synergistically in drug design
[31–34].

A number of QSAR studies and methods’ developments were
published covering 3D-QSAR methodology. However, not much
attention was given to application of 3D-QSAR and protein-ligand
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docking approaches to nanostructured materials. In this review, we
briefly list and explain 3D-QSAR-related methods and then discuss
recent developments and applications of these 3D-QSARs in the
assessment of the properties of biologically active carbon nanos-
tructures. As can be seen from Fig. 1, the number of publications
related to 3D-QSAR approach increases, starting from very few
publications in the beginning of the 1990s to about 226 publica-
tions per year in 2018, with a peak in 2013 (280 publications). It
confirms the increasing importance of 3D-QSAR and successful
application in drug design.

Another plot (Fig. 2) shows a number of papers that cover
nanoparticles/nanostructures’ QSAR/QSPR-related papers per
year, for a period of 2003–2018. It can be seen that the number
of QSAR studies for nanoparticles/nanomaterials increases dramat-
ically for the last 5–6 years. This confirms one more time the
importance of this area of research.

2 Methods for 3D-QSAR: Overview

In this section will be given a detailed information on the methods
and a list of 3D-QSAR methods developed. Each of these methods
was developed within the last three decades. Only short description
is given, to show only an essence of the method, while details can be
found in the references cited.

One of the first methods which then called as a 3D-QSAR
method is Comparative Molecular Field Analysis method. Compar-
ative Molecular Field Analysis (CoMFA) is the method which
correlates the field values of the structure with biological activities.
Generally, CoMFA generates an equation correlating the biological

Fig. 1 A plot representing the number of papers that cover 3D-QSAR-related
papers per year (keyword—“3D-QSAR”), for a period of 1990–2018. (Source—
Scopus)
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activity with the contribution of interaction energy fields at every
grid point [21]. This method was developed in the 1988 and still
can be called as one of the most popular 3D-QSAR methods.

The second one, comparative molecular similarity indices anal-
ysis (CoMSIA) method, is another popular method, where the
molecular similarity indices are calculated from steric and electro-
static alignment (SEAL) similarity fields and applied as descriptors
to encode steric, electrostatic, hydrophobic, and hydrogen bonding
properties [4]. CoMSIA is a development of CoMFA method and
also gets very popular in drug design.

The next method was designed as an alternative to the original
CoMFA approach and known as GRID. It is actually a force field
which calculates the interaction energy fields in molecular-field
analysis, and it determines the energetically favorable binding sites
on molecules of known structure. This method is similar to
CoMFA to some extent, and it computes explicit non-bonded
(or non-covalent) interactions between a molecule of known 3D
structure and a probe (i.e., a chemical group with certain user-
defined properties). The probe is located at the sample positions
on a lattice throughout and around the macromolecule. Thus, the
method offers two distinct advantages—one of them is the use of a
6–4 potential function for calculation of the interaction energies,
which is smoother than the 6–12 form of the Lennard-Jones type in
CoMFA, and another advantage is the availability of different types
of probes [35]. Moreover, the program, in addition to computing
the regular steric and electrostatic potentials, also calculates the
hydrogen bonding potential using a hydrogen bond donor and
acceptor, as well as the hydrophobic potential using a “DRY

Fig. 2 A plot representing the number of papers that cover nanoparticles/
nanostructures QSAR/QSPR-related papers per year (keywords—“QSAR,”
“QSPR,” “nanomaterials,” “nanoparticles,” “nanostructures”), for a period of
2003–2018. (Source—Scopus)
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probe.” In the next versions, a water probe was included to calcu-
late hydrophobic interactions [24, 36].

Another interesting method is MSA—molecular shape analysis
(MSA), which is a ligand-based 3D-QSARmethod that attempts to
merge conformational analysis with the classical Hansch approach.
MSA deals with the quantitative characterization, representation,
and manipulation of molecular shape in the construction of a
QSAR model [37].

One more method that based on grid technique is HASL—
inverse grid-based approach that represents the shapes of the mole-
cules inside an active site as a collection of grid points [38]. The
methodology of this approach begins with the intermediate con-
version of the Cartesian coordinates (x, y, z) for superposed set of
molecules to a 3D grid consisting of the regularly spaced points that
are (1) arranged orthogonally to each other, (2) separated by a
certain distance termed as the resolution (which determines the
number of grid points representing a molecule), and (3) all sprawl
within the van der Waals radii of the atoms in the molecules. Here,
the resulting set of points is referred to as the molecular lattice
which represents the receptor active site map (like in CoMFA).
Importantly, the overall lattice dimensions are dependent on the
size of the molecules and the resolution chosen.

Another interesting method is GERM, which is an abbreviation
of Genetically Evolved Receptor Model. GERM is a method for
3D-QSAR, which can also be used for constructing 3D models of
protein-binding sites in the absence of a crystallographically estab-
lished or homology-modeled structure of the receptor [39]. Similar
to many 3D-QSAR datasets, the primary requirement for GERM is
a structure-activity set for which a sensible alignment of realistic
conformers has been determined. The implemented methodology
is the following: it encloses the superimposed set of molecules in a
shell of atoms (analogous to the first layer of atoms in the active
site) and allocates these atoms with explicit atom types (aliphatic H,
polar H, etc. to match the types of atoms found in the investigated
proteins).

The next method is GRIND; it uses grid-independent descrip-
tors (GRIND), which encodes the spatial distribution of the molec-
ular interaction fields (MIF) of the studied compounds [40]. In
another development of GRIND methods, the anchor-GRIND
method [41], to compare the MIF distribution of different com-
pounds, the user defines a single common position in the structure
of all the compounds in the series, so-called anchor point. Impor-
tantly, the anchor point does not provide enough geometrical
constraints to align the compounds studied. However, it is used
by the method as a common reference point, making it possible to
describe the geometry of the MIF fields in a more precise way than
GRIND does. Thus, the anchor point can be easily assigned in
datasets having some chemical substituents that are well known as
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being crucial for the activity. In the anchor-GRIND approach, the
R groups are described with two blocks of variables: the anchor-
MIF and the MIF-MIF blocks. The first one describes the geomet-
rical distribution of the R MIF relative to the anchor point, while
the second one describes the geometrical distribution of the MIF
within each R group. The described blocks are obtained by con-
ducting the following steps: (1) every R group is considered as
attached to the scaffold, (2) the anchor point is set automatically
on an atom of the scaffold, (3) a set of MIFs are calculated with the
program GRID [35], and (4), as a final step, the blocks of descrip-
tors are computed from the anchor point and the filtered MIF.
Thus, authors also incorporated a molecular shape into the GRIND
descriptors [42].

The next interesting 3D-QSAR technique is CoMMA, Com-
parative Molecular Moment Analysis, which is one of the unique
alignment-independent 3D-QSAR methods that involves the com-
putation of molecular similarity descriptors (like in CoMSIA),
based on the spatial moments of molecular mass (i.e., shape) and
charge distributions up to second-order as well as related
quantities [43].

Ortiz et al. [44] in 1995 developed a technique called COM-
BINE—Comparative Binding Energy Analysis—which was devel-
oped to make the use of the structural data from ligand-protein
complexes, within a 3D-QSAR methodology. The authors devel-
oped this method based on the hypothesis where free energy of
binding can be correlated with a subset of energy components
calculated from the structures of receptors and ligands in bound
and unbound forms.

The next method, Comparative Molecular Surface Analysis
(CoMSA), is a non-grid 3D-QSAR method that utilizes the molec-
ular surface to define the regions of the compounds which are
required to be compared using the mean electrostatic potentials
(MEPs) [45, 46]. In general, the methodology proceeds by sub-
jecting the molecules in the dataset to geometry optimization and
assigning them with partial atomic charges.

Another interesting 3D-QSAR technique is CoRIA, Compara-
tive Residue Interaction Analysis, which utilizes descriptors that
describe the thermodynamic events involved in ligand binding, to
explore both the qualitative and the quantitative features of the
ligand-receptor recognition process. In general, the CoRIA meth-
odology is the following: initially it calculates the non-bonded (van
der Waals and coulombic) interaction energies between the ligand
and the individual active site residues of the receptor that are
involved in interaction with the ligand [47, 48]. Then, by employ-
ing the genetic algorithm-supported PLS technique (GA-PLS),
these energies are then correlated with the biological activities of
molecules, together with other physiochemical variables describing
the thermodynamics of binding, such as molar refractivity, surface
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area, lipophilicity, molecular volume, polar surface area, strain
energy, etc.

Robinson with co-authors [49] in 1999 developed the Self-
OrganizingMolecular-Field Analysis (SOMFA) as a similar method
to 3D-QSAR, where they implemented a technique in which initi-
ally the mean activity of training set is subtracted from the activity
of each molecule to get their mean-centered activity values. The
steps in the methodology are the following:

1. A 3D grid around the molecules with values at the grid points
signifying the shape or electrostatic potential is generated.

2. The shape or electrostatic potential value at every grid point for
each molecule is multiplied by its mean-centered activity

3. The grid values for each molecule are summed up to give the
master grids for each property.

4. Finally the so-called SOMFAproperty,i descriptors from the mas-
ter grid values are calculated and correlated with the
log-transformed molecular activities [49].

The next method, 3D-HoVAIFA, is based on three-
dimensional holographic vector of atomic interaction field analysis
[50]. The holographic vector for 3D-QSAR methods was devel-
oped initially by Zhou et al. in 2007 [50]. In general, the method
proceeds from two spatial invariants, namely, atom relative distance
and atomic properties on the bases of three common non-bonded
(electrostatic, van der Waals, and hydrophobic) interactions that are
directly associated with bioactivities. Thus, 3D-HoVAIFA method
derives multidimensional vectors to represent molecular steric
structural characteristics.

One of the relatively new 3D-QSAR methods, kNN-MFA, was
developed and reported in 2006 by Ajmani and co-authors
[51]. kNN-MFA is an abbreviation of k-Nearest Neighbor
Molecular-Field Analysis. In general, kNN-MFA adopts a
k-nearest neighbor principle for generating relationships of molec-
ular fields with the experimentally reported activity. The method
utilizes an active analogue principle that lies at the foundation of
medicinal chemistry. As a 3D-QSAR method, kNN-MFA requires
suitable alignment of a given set of molecules. This step is followed
by generation of a common rectangular grid around the molecules.
In addition, the steric and electrostatic interaction energies are
computed at the lattice points of the grid using a methyl probe of
charge +1. Finally, the obtained interaction energy values are con-
sidered for relationship generation and utilized as descriptors to
decide nearness between molecules.

The next method, a recently introduced continuous molecular-
field approach, is CMF [52]. This is a novel approach that involves
encapsulating continuous molecular fields into specially con-
structed kernels. The method is based on the application of
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continuous functions for the description of molecular fields instead
of finite sets of molecular descriptors (such as interaction energies
computed at grid nodes) commonly used for this purpose. The
feasibility of using molecular-field kernels in combination with the
support vector regression (SVR) machine learning method to build
3D-QSAR models has been demonstrated by the same authors
earlier [53]. Another important method is PHASE, a flexible sys-
tem (engine) [54] for common pharmacophore identification and
assessment, 3D-QSAR model development, and 3D database crea-
tion and searching (within Schrodinger Suite, Schrodinger, LLC).
It includes some subprograms, for example, LigPrep, which
attaches hydrogens, converts 2D structures to 3D, generates
stereoisomers, and neutralizes charged structures or determines
the most probable ionization state at a user-defined pH. It also
includes MacroModel conformational search engine to generate a
series of 3D structures that sample the thermally accessible confor-
mational states. For purposes of 3D modeling and pharmacophore
model development, each ligand structure is represented by a set of
points in 3D space, which coincide with various chemical features
that may facilitate non-covalent binding between the ligand and its
target receptor. PHASE provides six built-in types of pharmaco-
phore features: hydrogen bond acceptor (A), hydrogen bond
donor (D), hydrophobic (H), negative ionizable (N), positive ion-
izable (P), and aromatic ring (R). In addition, users may define up
to three custom feature types (x, y, z) to account for characteristics
that do not fit clearly into any of the six built-in categories. To
construct a 3D-QSAR model, a rectangular grid is defined to
encompass the space occupied by the aligned training set mole-
cules. This grid divides space into uniformly sized cubes, typically
1 Å on each side, which are occupied by the atoms or pharmaco-
phore sites that define each molecule.

The latest developed 3D-QSAR method is APF, which was
developed in 2008 by Totrov [55] introduced atomic property
fields (APF) for 3D-QSAR analysis. The APF concept is introduced
as a continuous, multicomponent 3D potential that reflects prefer-
ences for various atomic properties at each point in space. In
addition, the approach is extended to multiple flexible ligand align-
ments using an iterative procedure, Self-Consistent Atomic Prop-
erty Fields by Optimization (SCAPFOld). Thus, the application of
atomic property fields and SCAPFOld for virtual ligand screening
and 3D-QSAR is tested on published benchmarks. Interestingly,
the new method is shown to perform competitively in comparison
to the current state-of-the-art methods (CoMFA and CoMSIA).
There are studies with comparative analysis of these two methods,
PHASE and Catalyst (HypoGen) [56]. Importantly, in 2007 Evans
and co-authors [57] provided a comparative study of PHASE and
Catalyst methods for their performance in determining 3D-QSARs
and concluded that the performance of PHASE is better than or
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equal to that of Catalyst HypoGen, with the datasets and para-
meters used. The authors found that within PHASE, the atom-
based grid QSAR model generally performed better than the
pharmacophore-based grid, and by using overlays from Catalyst
to the built PHASE grid QSAR models, they found evidence that
better performance of PHASE on these datasets was due to the use
of the grid technique.

Next will be discussed an application of 3D-QSAR methods to
study carbon nanostructures, fullerenes, and carbon nanotubes.

3 3D-QSARs and Combined Docking Studies of Carbon Nanostructured Materials

Nanomaterials are getting increasing attention due to their peculiar
properties and wide application in various industries, including
medicine and pharmaceuticals. At the same time, theoretical mod-
eling of physicochemical and biological activity of these species is
still at the initial step. While the prediction of properties and
activities of “classical” substances is well-developed with the use
of QSAR and 3D-QSAR methods, the application of QSAR for the
nanomaterials is a very new and complicated task, since “nonclassi-
cal” structure of nanomaterials is not easy to investigate. Here, will
be shown a few very first applications of the 3D-QSAR and docking
methods for carbon nanostructured materials, which can be useful
in predicting various properties and activities of these materials.

Since carbon nanostructures are chemical systems that mainly
consist of carbon atoms, the methods of QSAR and molecular
docking can be still applicable in this case. In this regard, one of
the first 3D-QSAR studies for nanostructured materials was
provided by Durdagi and co-authors [58], where the authors
have investigated novel fullerene analogues as potential HIV PR
inhibitors. It was the first work where authors analyzed nanostruc-
tured compounds by combination of 3D-QSAR and protein-ligand
docking. In addition, the authors conducted molecular dynamics
(MD) simulations of ligand-free and the inhibitor bound HIV-1
PR systems to provide a proper input structure of HIV-1 PR for
further docking simulations. Thus, authors developed five different
combinations of 3D-QSAR/CoMSIA models based on stereoelec-
tronic fields, which were obtained from the set of biologically
evaluated and computationally designed fullerene derivatives
(training ¼ 43, test ¼ 6 compounds). The best 3D-QSAR/
CoMSIA model yielded a cross-validated r2 value of 0.739 and a
non-cross-validated r2 value of 0.993. In conclusions, the authors
stated that the derived model indicated the importance of steric
(42.6%), electrostatic (12.7%), H-bond donor (16.7%), and
H-bond acceptor (28.0%) contributions (Fig. 3). Moreover, the
derived contour plots together with applied de novo drug design
were then used as pilot models for proposing novel analogues with
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enhanced binding affinities. Interestingly, the investigated nanos-
tructured compounds have triggered the interest of medicinal che-
mists to look for novel fullerene-type HIV-1 PR inhibitors
possessing higher bioactivity. Later this year, the authors published
a second study for the same type of fullerene-based
nanomaterials [59].

Next, the same group published later another study based on
fullerene derivatives, functionalized by amino acids [60]. The
authors used in silico screening approach in order to propose
potent fullerene analogues as anti-HIV drugs. As a result, two of
the most promising derivatives showing significant binding scores
were subjected to biological studies that confirmed the efficacy of

Fig. 3 (i) CoMSIA steric/electrostatic contour maps of template compound 23 (template compound has best
binding affinity in the training set, left on the figure) and compound 36 (has worst binding affinity in the training
set, right on the figure). Sterically favored areas are shown in green color (contribution level of 80%). Sterically
unfavored areas are shown in yellow color (contribution level of 20%). Positive potential favored areas are
shown in blue color (contribution level of 80%). Positive potential unfavored areas are shown in red color
(contribution level of 20%). (ii) CoMSIA H-bond donor/H-bond acceptor contour maps of compounds 23 and 36
(on the left and right of the figure, correspondingly). The individual contributions from the H-bond donor and
H-bond acceptor favored and disfavored levels are fixed at 80% and 20%, respectively. The contours for
H-bond donor favored fields have been shown in cyan color, while its disfavored fields have been shown in
purple color. H-bond acceptor favored fields have been shown in orange color, while its disfavored fields have
been shown in white color. (Reproduced with Permission from Durdagi et al. [58]. Copyright, Elsevier)
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the new compounds. The results showed that using combined
computational approach, new leads can be discovered possessing
higher bioactivity. The authors used docking approach together
with MD simulations to get the best hits during the virtual
screening.

Later, in 2011, the same group conducted one more study to
design better anti-HIV fullerene-based inhibitors [61]. In this
study, authors employed a protein-ligand docking technique, two
3D-QSAR models, MD simulations, and the Molecular Mechanics
Poisson-Boltzmann Surface Area (MM-PBSA) calculations. The
authors investigated (1) hydrogen bonding (H-bond) interactions
between specific fullerene derivatives and the protease; (2) the
regions of HIV-1 PR that play a significant role in binding; (3) pro-
tease changes upon binding; and (4) various contributions to the
binding-free energy, in order to identify the most significant of
them. To build 3D-QSAR models, the CoMFA and CoMSIA
methods were applied, with results that showed good correlation
coefficients, for both methods, r2 ¼ 0.842 and 0.928, respectively.
In conclusion, the authors stated that the computed binding free
energies are in satisfactory agreement with the experimental results.

Another group published in 2013 a study that conducted a
comprehensive investigation of fullerene analogues by combined
computational approach including quantum chemical, molecular
docking, and 3D descriptor-based QSAR [17]. In this work, the
authors stated that the protein-ligand docking studies and
structure-activity QSAR models have been able both to predict
binding affinities for the set of fullerene-C60 derivatives and to
assist in finding mechanisms of functionalized fullerene interactions
with human immunodeficiency virus type 1 aspartic protease,
HIV-1 PR. The authors concluded that protein-ligand docking
revealed several important molecular fragments that are responsible
for the interaction with HIV-1 PR (Fig. 4). In parallel, the authors
utilized a density functional theory (DFT) to identify optimal
geometries and predict physicochemical parameters of 49 fullerene
derivatives. In this study, a five-variable genetic algorithm-multiple
linear regression (GA-MLR)-based model has been developed,
which showed a good predictive ability, with correlation coefficient
r2train ¼ 0.882 for training set and r2test ¼ 0.738 for the test.

In 2010, Calvaresi and Zerbetto [62] published an interesting
study where the authors investigated a pristine fullerene binding
with a set of proteins, to find potentially toxic ones and potentially
highly selective “drug-like” ones. In this study, the authors inves-
tigated about 20 proteins that are known to modify their activity
upon interaction with C60. It is worth to note that for C60-protein
system investigations, the authors applied a relatively new docking
software—PatchDock [63] which can handle such large ligand
systems as fullerenes and utilize an algorithm that appraises quanti-
tatively the interaction of C60 and the surface of each protein. The
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authors claim that the redundancy of the set allowed them to
establish the predictive power of the approach that finds explicitly
the most probable site where C60 docks on each protein. Interest-
ingly, about 80% of the known fullerene-binding proteins fall in the
top 10% of scorers. The authors identified the sites of docking and
discussed them in view of the existing experimental data available
for protein-C60 interactions. Moreover, the authors identified new
proteins that can interact with C60 and discussed for possible
future applications as drug targets and fullerene derivative biocon-
jugate materials.

Later, the same authors, Calvaresi and Zerbetto [64], pub-
lished another study, where they investigated a larger dataset, i.e.,
binding of fullerene C60 with 1099 proteins. In this study, the
authors one more time confirmed that hydrophobic pockets of
certain proteins can accommodate a carbon cage either in full or
in part. In this regard, since the identification of proteins that are
able to discriminate between different cages is still an open issue,
they were interested in investigating a significantly larger library
than in the previous paper [62]. Importantly, in this work, the
prediction of candidates is achieved with an inverse docking proce-
dure, which is able to accurately account for (1) van der Waals
interactions between the cage and the protein surface, (2) desolva-
tion free energy, (3) shape complementarity, and (4) minimization
of the number of steric clashes through conformational variations.
The authors divided a set of 1099 protein structures into four
categories that either select C60 or C70 (p-C60 or p-C70) and
either accommodate the cages in the same pocket or in different
pockets. In overall, the authors were able to confirm the agreement
of obtained computational results with the experiment, where the

Fig. 4 The binding site interactions. H-bonds formed by the ligand 42 in the
binding site (Glide). (Reproduced with Permission from reference Ahmed et al.
[17]. Copyright, Royal Society of Chemistry)
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KcsA potassium channel is predicted to have one of the best per-
formances for both cages.

Next, in a relatively recent work done by Ghasemi and
co-authors [65], the authors used two molecular interaction field
(MIF)-based descriptors, VolSurf and GRIND, as alignment-
independent three-dimensional quantitative structure-activity rela-
tionship (3D-QSAR) approaches to predict C60 solubility in a
diverse set of 132 organic solvents. The authors applied a GRIND
methodology with fractional factorial design and then applied a
PLS analysis, which yielded a highly descriptive and predictive
model. Moreover, the authors applied a genetic algorithm
(GA) and successive projection algorithm (SPA) to feature selection
and extract more informative VolSurf descriptors. In addition, a
support vector machine (SVM) was used to develop a model, where
SPA-SVM-based VolSurf descriptors showed an excellent perfor-
mance in predicting the C60 solubility for fullerene. The authors
conducted a validation, reliability, and robustness analysis of the
obtained models, as well as evaluation of the prediction ability of
external test sets, by applying leave-one-out and progressive scram-
bling approach. Thus, the results of this study confirmed that
hydrophobic interactions besides steric effects are main factors
influencing solubility of C60 in different organic solvents.

In another study, Rofouei and co-authors [66] used an align-
ment free, 3D-QSAR approach to investigate a dispersibility of
single-walled carbon nanotubes (SWNTs) in a diverse set of organic
solvents. In this work, again the GRINDmethodology was applied,
where the descriptors are derived from GRIDmolecular interaction
fields, MIFs. In this comprehensive study, the authors applied
different variable selection procedures including fractional factorial
design (FFD), stepwise multiple linear regression (SW-MLR), suc-
cessive projection algorithm (SPA), genetic algorithm (GA), and
enhanced replacement method (ERM), to extract the more infor-
mative factors from exported GRIND descriptors and generate a
predictive model. The PLS method was applied for model develop-
ment, where ERM-PLS-based GRIND descriptors showed an
excellent performance in predicting SWNT dispersibility values.
The authors stated that the obtained ERM-PLS model satisfied a
set of rigorous validation criteria and performed well in the predic-
tion of an external test set. The authors also stated that from the
GRIND variables involved in ERM-PLS model, it is possible to
identify some key molecular features/fragments and their position
in a solvent structure, which are responsible for a SWNT dispersi-
bility. In overall, the obtained results in this study confirmed the
importance of hydrophobic interactions, size, and steric hindrance
of hydrophobic part of solvent molecule. Moreover, the authors
stated that the effect of presence of a hydrogen bond donor or polar
group in a structure of solvent molecule with a large size couldn’t
be neglected.
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In the recent paper, Esposito and co-authors [67] published a
QSAR study, where authors studied decorated carbon nanotubes
(CNTs) to predict toxicity using 4D fingerprints. Thus, the authors
proposed detailed mechanisms of action that relate to nanotoxicity,
for a series of functionalized CNT complexes based on previously
reported QSAR models. Moreover, the authors proposed possible
mechanisms of nanotoxicity for six endpoints (bovine serum albu-
min, carbonic anhydrase, chymotrypsin, hemoglobin along with
cell viability, and nitrogen oxide production) based on optimized
QSAR models. The molecular features relevant to each of the
endpoint specific mechanisms of action for investigated decorated
CNTs are discussed in the paper. The following responsible factors
were revealed by the authors—either the decorator attached to the
nanotube is directly responsible for the expression of certain activ-
ity, irrespective of the decorator’s 3D geometry and independent of
the CNT or those decorators having structures that place the
functional groups of the decorators as far as possible from the
CNT’s surface most strongly influence the biological activity.

In the next study, a combined docking and comprehensive
DFT analysis was conducted by Saikia and co-authors [68]. The
authors conducted a modeling study to analyze the interaction of
carbon nanomaterials with biomolecular systems, where the DFT
calculations on the interaction of pyrazinamide (PZA) drug with
functionalized single-wall CNT (f-SWCNT) were made. The anal-
ysis is based on CNT properties mainly as a function of nanotube
chirality and length, followed by docking simulation of f-SWCNT
with pncA protein. The authors stated that the functionalization of
pristine SWCNT that facilitates in enhancing the reactivity of the
nanotube and formation of such type of nanotube-drug conjugate
is thermodynamically feasible. The conducted docking studies pre-
dicted the plausible binding mechanism and suggested that PZA
loaded f-SWCNT facilitates in the target-specific binding of PZA
within the protein, following a lock-and-key mechanism. In this
study, the authors pointed out that no major structural deforma-
tion in the protein was observed after binding with CNT and the
interaction between ligand and receptor is mainly hydrophobic in
nature. In overall, the authors anticipate that these findings may
provide new routes toward the drug delivery mechanism by CNTs
with long-term practical implications in tuberculosis chemotherapy.

In another study, Turabekova et al. [69] published a compre-
hensive study of CNT and pristine fullerene interactions with Toll-
like receptors (TLRs), where the latter are responsible for immune
response, i.e., researchers investigated the immunotoxicity of full-
erenes and CNTs. The authors performed a cytokine expression
experimental analysis and conducted a comprehensive computa-
tional protein-ligand investigation, where the authors showed
that CNTs and fullerenes can bind to certain TLRs. The authors
suggested a hypothetical model providing the potential mechanistic
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explanation for immune and inflammatory responses observed
upon exposure to carbon-nanostructured materials. Using compu-
tational approaches, the authors performed a theoretical study to
analyze CNT and C60 fullerene interactions with the available
X-ray structures of TLR homo- and heterodimer extracellular
domains. The computational investigation was based on the fact
that both CNT and C60 are similar to the known TLR ligands and
in cells they induce a secretion of certain inflammatory protein
mediators, such as interleukins and chemokines. Signal proteins
are observed within inflammation downstream processes resulting
from the ligand molecule-dependent inhibition or activation of
TLR-induced signal transduction. Thus, the computational studies
have shown that the internal hydrophobic pockets of some TLRs
might be capable of binding small-sized carbon nanostructures,
SWCNTs, and C60. The obtained high binding scores and minor
structural alterations induced in TLR ectodomains upon binding
C60 and CNTs further supported the proposed hypothesis (Fig. 5).
The proposed hypothesis is confirmed by the conducted experi-
mental study indicating that CNTs and fullerenes induce an exces-
sive expression of such cytokines as IL-8 and MCP1.

Interestingly, Mozolewska and co-authors in a follow-up study
have confirmed this kind of interactions of CNTand C60 with TLR
[70]. In this study, the authors made an attempt to determine if the
CNTs could interfere with the innate immune system by interacting
with TLRs. For this purpose, authors used the following TLR
structures, obtained from the RCSB Protein Data Bank, TLR2
(3A7C), TLR4/MD (3FXI), TLR5 (3V47), and TLR3 (2A0Z),
and the complexes of TLR1/TLR2 (2Z7X) and TLR2/TLR6
(3A79). In result, based on steered molecular dynamics (SMD)
simulations, the authors showed that certain size CNTs interact
very strongly with the binding pockets of some receptors (e.g.,
TLR2), which results in their binding to these sites without sub-
stantial use of the external force.

4 Notes and Concluding Remarks

In this review paper, we have discussed various 3D-QSAR methods
and their applications with and without a combination with
protein-ligand docking studies, to investigate and support a design
of carbon nanostructured materials. Despite of large size of carbon
nanomaterials, 3D-QSAR and protein-ligand docking have con-
firmed the feasibility of these methods to investigate carbon-
nanostructured materials and importance of combination of these
methods in further assessment of interaction of CNTs and full-
erenes with biological molecules. Thus, the development of tech-
niques for 3D-QSAR methodology is continuing, giving scientists
better accuracy in predictions. We believe that 3D-QSAR methods,
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and especially their combination with protein-ligand docking anal-
ysis, soon will be able to model various large nanomaterials which
can help scientists to investigate important biological and physico-
chemical properties of them.
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Chapter 11

Early Prediction of Ecotoxicological Side Effects
of Pharmaceutical Impurities Based on Open-Source
Non-testing Approaches
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Abstract

Despite the increasing efforts to limit waste and avoid environmental contaminants, a large number of
compounds using in the pharmaceutical field may have an ecotoxicological impact. Nevertheless, a com-
plete overview of all possible ecotoxicological effects of pharmaceuticals is missing: that is especially true for
chemical impurities. The lacking information regarding environmental behavior of impurities could be
faced by computational techniques: the ability to predict the unknown toxicity of a compound can reduce
uncertainties regarding possible negative effects on the environment of pharmaceutical impurities. In the
current scenario, non-testing methods may answer to the requirement of assessing the ecotoxicological
impact of chemicals in a more affordable way. For this purpose, in the first part of the review, definition and
classification of chemical impurities are proposed, while in the second part, a description of four open-
source computational tools (T.E.S.T., VEGA, LAZAR, and QSAR Toolbox) is provided after a brief survey
of the computational methods. The paper also shows the advantages of combining individual test methods
in order to increase confidence in the predictive results.

Key words Impurities, QSAR Toolbox, Ecotoxicity, LAZAR, VEGA, T.E.S.T., Non-testing
approaches, QSAR models

1 Introduction

The current era is characterized by the continuous improvements
not only for cares but also for wellness with an increasing request of
new pharmaceuticals. The invention of new medicines and the
improvement of existing drugs constitute a never-ending process
for pharmaceutical industry whose business is always addressed
toward new generation of safe drugs. The drug manufacturing is
a multistep sophisticated process starting from the synthesis of
active pharmaceutical ingredients (APIs) until the final packaging
of the finished product. Each manufacturing step entails the use of
several chemical substances for obtaining the final medicinal drug.
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Among different commercial sectors, the pharmaceutical industry
is regarded as the most wasteful, having the highest E factors, which
are measures of the amount of waste produced compared to the
yield of useful material obtained [1, 2]. Despite the increasing
efforts to limit waste and avoid pollution (air and water) and
accidents, by applying the concept of “green chemistry,” a large
number of compounds using in the pharmaceutical field may spread
through the environmental media. Such contaminants are not only
the APIs and their metabolites released in the environment after
their excretion from humans or animals via urine or feces but also
unwanted residues of APIs and other chemical entities (i.e., phar-
maceutical impurities) developed during drug manufacturing.

Despite the high quality and purity standard of the raw materi-
als used for preparation, a drug substance typically contains a range
of low-level impurities, for example, arising as residues of starting
materials, reagents, and intermediates or as side products generated
by the synthetic processes or degradation reactions. Residues of
pharmaceuticals at trace quantities are widespread in aquatic sys-
tems [3]. Therefore, the potential impact of pharmaceutical resi-
dues has recently become a worrying environmental concern, due
to growing and, sometimes uncontrolled, of human, veterinary,
and agriculture pharmaceuticals [4].

In recent years, many scientific research programs have been
oriented to monitoring pharmaceuticals in various aqueous matri-
ces (i.e., water and/or wastewater), as several studies [5–7] demon-
strated. Nowadays, there is a public concern that the cascade of
unforeseeable effects may be responsible for spread in the environ-
ment even in trace concentrations [8–11]. In this respect, the
persistence of medicinal products against degradation is another
issue: drugs and their manufacturing process-related substances
(i.e., chemical impurities) could remain in the environment for a
long time, and their presence is considered dangerous in both low
and high concentrations [12, 13].

Pharmaceuticals and chemical impurities of drug development
process may have potential toxic effects virtually at any level of the
biological hierarchy, i.e., cells, organs, organisms, population, and
ecosystems. There is thus the need to set an environmentally
friendly development of novel and cost-effective industrial
approaches. The green chemistry approach was developed to meet
this expectation. However, a full understanding of the toxicological
effects of pharmaceuticals on the environment is still far from being
reached. This gap of information is particularly relevant for those
unwanted organic compounds arising from industrial drug devel-
opment process that are the pharmaceutical impurities. Despite
current analytical methodologies make possible to reveal and
reduce impurities of pharmaceutical industrial processes, it is very
difficult to assess the toxicological impact of the impurities included
in the API. The need of making early predictions of the
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ecotoxicological side effects of pharmaceutical impurities has pro-
moted the development of non-testing computational methods
which are cheaper and ethically acceptable compared to in vitro
and in vivo experimental approaches. Non-testing methods not
only answer to the economic pressure to reduce the huge cost of
pharmaceutical industry but also to the regulatory purposes of the
3R principle (replacement, reduction, and refinement) [14] aimed
at safeguarding animal welfare. In this context, computational
methods have been largely employed for the early identification
and assessment of human health risks associated with the exposure
to pharmaceutical impurities resulting from drug preparation. In
particular, a key aspect is the prediction of genotoxic risk of drug
impurities.

2 Impurity Definition

Pharmaceutical industry produces drug substances which can be
extracted from natural products or chemically prepared. In this
diversified scenario, there is a precept that drug manufacturers
must follow that the final product should be as pure as possible
since purity is an essential factor for ensuring drug quality. In this
respect, raw materials, manufacturing method, crystallization, and
purification process are of utmost importance. However, the com-
plexity of drug development and manufacturing process and the
high number of components required to prepare pharmaceutical
products make the definition of “pharmaceutical impurity” diffi-
cult. To the best of our knowledge, the simplest definition of
pharmaceutical impurity stands from drug definition. Substantially,
a drug is composed of a drug substance—which is the only chemical
component accountable for the therapeutic effect—and of one or
more excipient(s), i.e., the inactive constituent(s), which are nor-
mally important for a satisfying pharmacokinetics. Therefore, an
impurity is defined as any component present in the drug product
that is neither an active substance nor an excipient [15]. The pres-
ence of pharmaceutical impurities, even in very small amounts, may
influence the efficacy and safety of the medicinal products [15]:
they are unwanted chemicals that could be derived from APIs or
that could be developed during drug formulation. APIs invariably
contain impurities: the latter may be residues of starting materials
and intermediates used in the manufacturing process, as well as
products of degradation of chemicals. It must be remarked that
any extraneous material present in the drug substance has to be
considered an impurity even if it has totally inert properties. Most
APIs are produced by organic chemical synthesis, and many com-
ponents can be generated during such a process. Those compo-
nents remaining in the final API are considered as impurities.
Under this aspect, considering the quality control checks
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conducted by each industry in order to detect the quality profile of
pharmaceutical impurities, the latter could be defined in a manner
that is depending from the adopted analytical method used for their
identification. In this respect, an identified impurity could be
defined depending on the availability of structural information
based on quantitative or qualitative analytical values.

3 Classification of Impurities

Most pharmaceutical products are manufactured either by applying
a total synthesis approach or by modifying a naturally occurring
product. In both cases, a wide range of reactive reagents is used.
Therefore, it is natural that low levels of such reagents or side
products are present in the final API or drug product as impurities.
Such impurities may have unwanted toxicities, including genotoxi-
city and carcinogenicity. The risk for patient’s health caused by the
presence of small molecules as impurities in APIs has become an
increasing concern of pharmaceutical companies, regulatory autho-
rities, patients, and doctors alike. According to FDA/ICH guide-
lines, three attributes define the drug quality of a pharmaceutical
product: identity, strength, and purity. If identity is of greater
importance in the preliminary phases of pharmaceutical analysis
and strength safeguards the maximum efficacy of a drug, purity is
the only crucial attribute assuring the maximum safety of drug
therapy. This is the reason why regulatory agencies pay attention
to listing and catalogue all various types of impurities in several
categories, characterizing them in all ecotoxicological and
non-ecotoxicological aspects, in order to guarantee that these can-
not contribute to the side effect profile of the drugs. There are
many ways to classify pharmaceutical impurities associated with
APIs. For regulatory purpose, in 1994, ICH guidelines [15] dis-
tinguished pharmaceutical impurities in three big branches that are
reported in Fig. 1. While several impurities, such as heavy metals,
can be avoided or held in reduced levels by using particular
manufacturing technique, trace presence of some pharmaceutical
impurities, like residual solvents above all, could be inescapable.
Regardless, it is an undeniable fact that both controlled process-
related impurities and uncontrolled process-related impurities
could reach the pharmaceutical wastewater and present an environ-
mental concern. Bearing in mind that traces of residual solvents
occasionally can be surveyed during the manufacture of drug pro-
ducts (since residual solvents also arise in excipients) and that some
solvents are known to be toxic, careful attention must be addressed
for minimizing risks of detecting pharmaceutical impurities in was-
tewaters and in the environment. In fact, it is worth annotating that
a separate, specific guideline for residual solvents is available
[15]. Residual solvents are divided into three classes depending
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on the possible risk to human health. Moreover, the pharmaceutical
companies themselves move to a more ecological-sustainable
manufacturing process just through the construction and adoption
of solvent selection guides, which address chemists to the selection
of the more sustainable solvents [16].

4 Legislation of Impurities

Identification, quantification, and control of impurities in the drug
substances and drug products are an important part of drug devel-
opment, mostly in terms of regulatory assessment: even if there is a
lack of a consolidated (united, affiliated) legal system, several docu-
ments outline concepts and principles for the regimentation of
pharmaceutical impurities (listed in Table 1). Moreover, for medic-
inal products, only in the 1990s, regulatory agencies have issued
detailed guidelines for possible unwanted effects on the environ-
ment of pharmaceuticals [17].

The US Food and Drug Administration (FDA or US-FDA),
the agency of the United States Department of Health and Human
Services, responsible for supervising the safety of foods, dietary
supplements, and drugs, issued three guidance—named
ANDAs—for industry about impurities, separating ones limited
to drug substances produced by chemical synthesis and ones
reserved to drug products that are manufactured from drug sub-
stances. However, USP recognizes that other impurities may come
from a variety of situations, such as a change in processing or

Fig. 1 Classification of pharmaceutical impurities according to ICH guidelines
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extraneous sources, so that many USP monographs contain tests
for specific impurities, recommending that all impurities including
the monograph-specified impurities should not exceed 2.0% [18].

5 Non-testing Predictive Models

Many pharmaceutical R&D programs focus on optimization of
lead compounds in terms of potency and selectivity with respect
to the biological targets and on the safety of all chemicals involved
in the actual manufacturing process of the drug product. The safety
must be guaranteed by a drug manufacturer through toxicological
assessments and by following GMPs. All the chemicals used during
manufacturing must undertake toxicological evaluations, according
to the “primum non nocere” (which stands for “first to do no
harm”) principle. Such paradigm embraces human health but is
also of primary importance for drug process-related impurities
released in environment as pharmaceutical waste. Most of the tra-
ditional methods to determine the toxicological safety of chemicals
rely predominantly on experimental work often involving the use of
animals. Being this approach too demanding in terms of time and
costs, it would be impossible to experimentally assess the hazards
and risks for every single pharmaceutical used in R&D programs.
One solution to this problem is to establish the lowest threshold
level of contaminants (i.e., impurities) above which the impurity
can be tolerated, as contemplated by ICH guidelines. Provided that
impurities can never be completely removed, purification

Table 1
Principal guidelines for regulation of pharmaceutical impurities

Guideline Document title

ICH guideline QIA(R) Stability Testing of New Drug Substances and Products

ICH guideline Q3A(R) Impurities in Drug Substances

ICH guideline Q3B Impurities in Drug Products

ICH guideline Q3C Impurities: Residual Solvents

ICH guideline Q6A Specifications: Test Procedures and Acceptance Criteria for
New Drug Substances and New Drug Products: Chemical Substances

ICH guidelines Q3A(R2) Impurities in New Drug Substances

ICH guidelines Q3B(R2) Impurities in New Drug Products

ICH guidelines Q3D(R1) Guideline for Elemental Impurities

FDA guidelines NDAs: Impurities in Drug Substances

FDA guidelines ANDAs: Impurities in Drug Products
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techniques (HPLC-MS, TLC) [19] are useful to detect their
amount at harmless levels. Such policies are pursued to assess the
genotoxic potential of pharmaceutical impurities. However, eco-
toxicological evaluation concerning environmental impact of
chemical impurities released from pharmaceutical wastes is still
lacking. A more all-embracing solution is represented by a prioriti-
zation approach useful to identify those compounds that are likely
to pose high ecotoxicological risk and, therefore, need further
attention. This alternative involves the use of computer-aided
methods in order to clarify how drugs, and chemicals in general,
may adversely affect functions of the organisms. Broadly speaking,
the term in silico toxicology refers to the application of computer
technologies to predict toxicological activity of a substance making
use of existing data and mathematical models. The increasing num-
ber of data analysis tools allows the predictions of toxicity based on
a query chemical. As a new emerging scientific discipline, toxicoin-
formatics exploits bioinformatic methods and computer-based ana-
lyses with the goal of unveiling the relationships between a chemical
structure and a toxicological endpoint. The underlying and inti-
mate concept of computational toxicology is that it is possible to
retrieve and analyze existing and relevant data of many toxic (and
nontoxic) chemicals and to relate the structure of compounds to
their fate. Such relationships, in turn, can be employed for making
predictions of the toxicity of untested compounds. In other words,
the purpose of in silico toxicology is to make predictions regarding
the fate and effects of chemicals starting from what is known about
the similar structures. Among the many advantages of in silico
techniques (cost-effectiveness, time-saving, and reduction in ani-
mal use), the most noteworthy benefit lies in its full complementary
to the standard testing approaches (i.e., in vitro and in vivo testing)
[20]. This synergy has been also claimed in the regulatory context
[21, 22].

6 Classification of Predictive Models

In the field of predictive toxicology, several in silico approaches
have been developed considering the scientific and economical
driving forces in recent years (including governments, academia,
and industry), which promote the use of in silico methods in
toxicology as alternative of in vivo methodologies. In their huge
number, in silico tools vary in complexity and performance. Fig-
ure 2 highlights the three major categories of in silico toxicology
techniques. Depending on the adopted computational tool, and
above all on the toxic effect to be investigated, toxicological pre-
dictions may be globally subdivided into binary predictions (like
those for mutagenic potential which is expressed by a “yes/muta-
genic” or “no/not mutagenic”) and into continuous predictions
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(like those for quantitatively predicting the toxic dose or potency,
such as TD50). The three approaches (QSAR, read-across, and
expert systems) belong to the wider group of the so-called non--
testing methods, the use of which is nowadays strongly promoted.
Non-testing methods are substantially based on the similarity prin-
ciple, i.e., the hypothesis that similar compounds should have
similar biological activities. Before a concise overview of the main
characteristic of such computational techniques and a characteriza-
tion of the main open-source software substantial for computa-
tional toxicology, it should be emphasized that the central points
on which software lies—irrespective of their typology and charac-
teristic—are databases and molecular descriptors. The former is
essential for gathering and storing biological data that contain
information on chemicals and their toxicity that are later used for
building a prediction model. The latter encodes the chemical infor-
mation contained in a molecule in order to reduce chemical and
biological complexity into an expression useful for the computa-
tional prediction. For an in-depth definition about molecular
descriptors, the reader is referred to the work of Todeschini
et al. [23].

6.1 QSAR The term Quantitative Structure-Activity Relationship (QSAR)
stands for models that predict toxicity and fate of a chemical on
the basis of its physicochemical properties. These statistical models
return structure-activity predictions based on the belief that the
biological activity of a chemical is substantially related to its struc-
ture. For instance, QSAR properties such as oil/water partition

Fig. 2 Principal commonly used in silico toxicology techniques
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coefficient, water solubility, or volatility can quantitatively explain
the toxicological potential of a chemical [24–26]. In other words, a
QSAR model is a mathematical function ( f ) that calculates the
toxicity (T) of a chemical based on its physicochemical properties
(P).

T ¼ f Pð Þ
These structure-related physicochemical properties are the

molecular descriptors that can be calculated through many algo-
rithms. The first step to predict toxicity of a chemical through this
approach is building a QSAR model. Initially, information about a
toxicological endpoint is collected for a specific group of chemicals
(training set). Later, an investigation to establish which chemical
property is responsible for toxicity is carried out. This step can be
computer-based (generation and calculation of molecular descrip-
tors), or it can be determined experimentally. After choosing
descriptors that can properly describe the training set and relate
chemical structure to toxicity of interest, several types of algorithms
are used to generate QSARmodels. In particular, depending on the
type of the used algorithm, QSAR models are distinguished into
linear and nonlinear models. Successively, the QSAR model is
validated externally by a set of compounds with experimentally
measured properties that were not used to build the model (exter-
nal set). Once validated, the QSAR model is considered useful for
making predictions for untested chemicals. Since they are devel-
oped from a set of compounds, it is important to say that QSARs
are local models, which means that the prediction is accepted only
when the test compound is similar enough to the training set
compounds. If this condition is satisfied, the untested compound
is considered within the applicability domain of the QSAR model,
i.e., the chemical space within which a QSAR model can be applied
to make reliable predictions. Just to mention a few, QSAR models
are used for the ecotoxicological prediction of the bioconcentration
factor (BCF) [27–29].

6.2 Expert Systems An expert system has been defined as “any formal system, not
necessarily computer-based, which enables a user to obtain rational
predictions about the toxicity of chemicals. All expert systems for
the prediction of toxicity are built upon experimental data repre-
senting one or more toxic manifestations of chemicals in biological
systems (the database), and/or rules derived from such data (the
rulebase)” [30]. An example of an expert rule might be: IF a
compound contains aniline AND metabolic activation is present,
THEN the compound is genotoxic, or ELSE non-genotoxic. As a
result, these models provide a binary prediction: either the mole-
cule has a toxic fragment—and the compound is predicted as
toxic—or it does not have a toxic fragment, and in this case, the
compound is predicted as nontoxic. It is evident that expert rules
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are based on information from the collective experiences of experts
working within the field. Having gathered a list of toxicological
data and chemical structures that have been linked by cause-and-
effect relationships, toxicologists create rules based on this infor-
mation. The most known activity rules are the Ashby-Tennant rules
[31]. Since expert systems operate with human knowledge stored
in the form of rules [32], it is crucial the availability of sufficient
data to develop the predictive model. As expert systems are rule-
based models, one concept strongly related to this computational
approach is that of structural alerts (SAs) [33, 34] because predic-
tions made by this methodology for specific toxicological effects or
mechanisms of toxicity take advantages from these rules. SAs
(or toxicophores) are defined as molecular substructures that can
activate the toxicological effect or mechanism. The concept of SAs
follows the same logic flow scheme before mentioned (IF, THEN),
and in this way, the prediction of an expert system is built based on a
binary classification: when a test compound triggers a structural
alert, a positive prediction is generally made; otherwise, a negative
prediction may be generated. It is clear that SAs do not attribute to
the prediction a mechanism-based rationale of toxicity, but it has
the benefit of assigning the toxicity to a compound from knowl-
edge of its chemical structure alone. Toxicology assessment based
on the presence or absence of SAs is recommended by the FDA
guideline, for instance, in the case of evaluation of the potential
genotoxicity and carcinogenicity of impurities which acts via a non-
threshold-related mode of action [35]. Pharmaceutical impurities
that require control at low levels can be readily identified based on
observation of SAs. This is however considered an initial screen
because impurities with an identified alert can be prioritized for
in vitro mutation assay (Ames test). The same filter can be applied
for the assessment of ecotoxicological endpoints.

6.3 Read-Across A concept closely related to the SAs is that of chemical category.
This is the cornerstone of read-across method. In fact, the intimate
rationale of read-across is that it is possible to make a prediction
about a query compound (named the “target compound,” TC)
using toxicological data from one or more analogues (named the
“source compound(s)”, SCs) provided that they share the same
structural feature and the same toxicological pathways (i.e., toxic
mechanisms). The group of chemicals formed by the TC and the
SCs with these shared properties is named chemical category. Once
grouped, read-across can then be applied to arrive at a toxicity
prediction of the TC just making usage of experimental data of
the SCs. This step is properly called “data gap filling,” and it avoids
the experimental studies of the TC based on the evidence that a
structurally or toxicologically meaningful relationship between TC
and SCs exists. When considering read-across, the similarity
between TC and SCs for having a well-founded prediction is not
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limited only to the structural resemblance [36] assessed, for
instance, by Tanimoto index [37]. Actually, within a chemical
category, a chemical is similar to another one by considering also
reactivity, toxicokinetics, mechanism/mode of action, physico-
chemical properties, and metabolic profile [38–40]. Read-across is
formally the simplest method for data gap filling based on the
chemical grouping approach. It goes without saying that the chance
of making a reliable prediction depends on the available number of
SCs used and, above all, on the available number of toxicological-
associated data. From this perspective, grouping approaches can be
split into analogue and category approaches. When read-across is
performed using a very limited number of substances (usually 2),
the term analogue approach is used; otherwise, the term category
approach refers to a more consistent chemical category with three
or more SCs. It must be underlined that also an analogue approach
can attribute robustness to read-across when there are high- quality
experimental data. For instance, when there is only one SC with
data for the specific endpoint of interest, then the read-across may
simply be a substitution with the same information if toxicological
data of SC are of high quality and complete. In general terms, data
gap filling can predict both categorical and continuous endpoints.
In this respect and depending upon the mathematical formalism
employed, read-across is typically utilized with categorical end-
points, while trend analysis is the method to be applied when
dealing with continuous endpoints. The toxicological prediction
of chemicals via read-across assessment has been strongly promoted
by OECD [41] and ECHA [42] by providing guidelines on the
process of performing a valid read-across. This approach, in fact,
turns out to be one of the first choices among in silico toxicological
assessment for regulatory purposes. Beyond the above-quoted
computational methods, also machine-learning techniques are
widespread for the prediction of toxicity. The reader is referred to
[43–46] for a detailed study. In certain cases, other in silico
approaches—typically used in drug discovery programs—are
applied for toxicological purposes. Examples include the use of
structure-based approaches such as molecular docking (e.g., estro-
gen receptor-ligand docking) [33, 47–50]. Irrespective of the
choice of the in silico approaches to employ, several assessments
of key computational aspects and specific issues must be taken into
account. Two of these relevant issues, argued later in this review,
encompass the data quality of the source compounds used for
making prediction and a statistical analysis of the prediction
model(s), from which confidence in the predictions depends.
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7 T.E.S.T.

Toxicity Estimation Software (T.E.S.T.) is a freely available software
tool that has been developed by US EPA. T.E.S.T. allows to esti-
mate toxicity values using multiple advanced QSAR methodolo-
gies, listed in Fig. 3: the particularity of T.E.S.T. is that before
building the QSAR model from a training set in a classic way, a
procedure of hierarchical clustering [51] anticipates this step;
hence, each one of six QSAR methodologies is based on a cluster
of the training set (clustering methods), so giving the advantage of
increasing accuracy to the prediction when they are combined—as
it occurs in the consensus method. When the consensus method is
selected for the prediction, an average of the predicted toxicities of
the other QSAR methods is used for the estimation of toxicity,
while for each method, the uncertainty in the overall prediction is
always calculated. In addition to toxicological endpoints,
T.E.S.T. gives the opportunity to estimate also physicochemical
properties, as shown in Fig. 3. The ecotoxicological endpoint
implemented in T.E.S.T. is the Daphnia magna LC50 endpoint
which is model built from a data set obtained by a refined ECO-
TOX aquatic toxicity database [52]. The software gives also the
opportunity to calculate the bioconcentration factor (BCF) using a
dataset of chemicals taken from various filtered databases [53–
55]. It should be pointed out that the software gives back a predic-
tion report only if the query compound is into the AD of the
selected model.

Fig. 3 List of toxicological endpoints, QSAR methodologies, and physicochemical properties implemented in
the T.E.S.T. software
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8 VEGA Platform

The VEGA platform is a free-available software that arises from an
EC-funded project called CAESAR [56]. Besides inheriting the
works of CAESAR project, the platform implements also models
derived from other sources, such as ISS (Istituto Superiore di
Sanità) and US EPA (US Environmental Protection Agency). The
VEGA platform encases different series of QSAR models suitable
for regulatory purposes: these, listed in Fig. 4, are able to earn
biological, environmental, and physicochemical properties from

Fig. 4 List of toxicological endpoints, QSAR methodologies, physicochemical properties, environmental QSAR
models, and physicochemical QSAR models implemented in the VEGA software
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the structure of the query compound. Juxtaposed to other plat-
forms, the robustness of VEGAmostly relies in the completeness of
detailed information included in the format of the predictive dos-
sier, structured in order to apply for regulatory purposes. This can
be attractive for stakeholders who must submit information about
the safety of the chemical substances before marketing, as the
REACH regulation requires [57, 58]. The comparison and statisti-
cal analysis between commercial and freely available software con-
ducted by Golbamaki et al. [59] revealed that for the prediction of
acute toxicity in Daphnia magna, the performance of VEGA and
T.E.S.T. in making predictions is parallel to those of the commercial
software despite the improvement of the QSARs is however
recommended.

9 LAZAR

LAZAR (Lazy Structure-Activity Relationships) is a freely available
tool that uses a lazy machine-learning technique for the prediction
of several toxicological endpoints. The lazy machine-learning tech-
nique is a specific technique whose main characteristic is the no
need of continuously updating the predictive model. LAZAR
resembles a read-across procedure and combines it with a QSAR
model. On one side, it utilizes a local QSAR model using only
similar compounds of the query from the training set. Based on
statistical criteria, LAZAR derives its prediction specifically for a
query structure using a modified k-nearest neighbor (k-NN) algo-
rithm. The advantage of LAZAR is that it provides an easy to
interpret and complete prediction report, with a detailed prediction
result on the top and an intelligible list of similar compounds with
relative experimental activity on the bottom. Another advantage of
LAZAR is its possibility to predict more (eco)toxicological end-
points together, embracing both those regarding human health
effect and those regarding environmental fate. The toxicological
endpoint incorporated in LAZAR is listed in Table 2. About the
ecotoxicological evaluation of a substance, LAZAR gives the
opportunity of predicting the acute toxicity both in Daphnia
magna and fathead minnow.

10 QSAR Toolbox

QSAR Toolbox, developed by the Laboratory of Mathematical
Chemistry (LMC, Burgas University, Bulgaria), is a free-available
software arising from a project developed under the guide of the
Organisation for Economic Co-operation and Development
(OECD, Paris) in collaboration with the European Chemicals
Agency (ECHA, Helsinki). QSAR Toolbox (referred to hereafter
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as Toolbox, TB) is used by governments, chemical industry, and
other stakeholders in filling gaps in (eco)toxicity data needed for
assessing the hazards of chemicals by the mean of read-across. In
terms of existing tools to assist current read-across approaches for
regulatory purposes, TB (current version 4.3) is perhaps the most
widely used. The TB workflow follows the grouping concept. The
latter term indicates the operation of grouping chemical into chem-
ical categories in order to predict (eco)toxicity of the target chemi-
cal. To reach this aim, TB follows a workflow schematized in six
steps that are all included in the GUI as six modules. The software
identifies the relevant structural characteristics and potential mech-
anism or mode of action of a target chemical. Subsequently, it finds
other chemicals that have the same structural characteristics and/or
mechanism or mode of action, and finally, it uses the existing
experimental data of the similar chemicals to fill the data gap by
read-across and to predict the toxicological potential of query
chemicals. The six modules of the TB software application are
below described.

10.1 Input Module In the input module, the user specifies the target chemical that will
be the object of the prediction. For this procedure, the software
gives the possibility to specify the identity of the target chemical by
several options, such as:

l Specify target chemical by entering the chemical name.

l Specify target chemical by entering the registry number (CAS
number).

Table 2
(Eco)toxicological endpoints available in LAZAR

(Eco)toxicological endpoints Species

Acute toxicity Daphnia magna

Acute toxicity Fathead minnow

Blood-brain barrier penetration Human

Carcinogenicity Rat

Carcinogenicity Rodents

Carcinogenicity Mouse

Carcinogenicity (TD50) Mouse

Carcinogenicity (TD50) Rat

Lowest observed adverse effect level (LOAEL) Rat

Maximum recommended daily dose Human

Mutagenicity Salmonella typhimurium
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l Specify target chemical by drawing the molecule.

l Specify target chemical by entering the SMILES.

l Specify target chemical by selecting it from a list, a database, an
inventory, or a file).

Such opportunities, already, underline the regulatory purpose
for which the software was developed: in fact, the CAS number is
often used by regulatory agencies, in addition to the chemical
names. However, for the correct workflow of TB, it is very impor-
tant that not so much the chemical name but the chemical structure
is appropriate for the target chemical; for the prediction, precise
structural information is needed. In some cases, indeed, there is
discrepancy in regulatory inventories because not always structural
information is provided; it is not rare that the same structure may
be associated with several CAS numbers. Supposing that the user
has entered the target chemical by submitting the SMILES, the
quality of substance identification, based on this two-dimensional
connectivity, may be affected by several factors (such as the trouble
of a good representation of salts by SMILES). To face this obstacle,
the software provides information on the quality of the structure
generated. In fact, if the target chemical is listed in the chemical
inventories/databases implemented in the TB and if different CAS
numbers are associated with it, TB analyzes all possible combina-
tions between the SMILES entered and the different CAS numbers
discovered in the databases. These combinations are called
CAS-SMILES relations, which qualitatively rate the chemical struc-
tures identified by the software (starting from the SMILES nota-
tion). The chemical structures supplied with their CAS-SMILES
relations are to be chosen by the user in the input module. The
rating of the chemical structure is based on the quality of the data
sources (i.e., databases or inventories) in which TB has found the
target chemical. Figure 5 shows the CAS-SMILES relations that are
presented by the software and that will have to be selected by the
user. At this regard, TB is mostly a user-dependent predictive tool.
From the choice of the chemical category to the method of data gap
filling, the prediction within QSAR Toolbox is user-dependent, in
such a manner that the predictive result may be affected by the level
of experience in the (eco)toxicology field and software knowledge
of the user. This aspect involves that the quality and reliability of the
results of the read-across rely on the knowledge, experience, and
skills of the user, giving a certain degree of uncertainty to predic-
tion. Such matter was handled with the standardized and auto-
mated workflows, new features available from version 4.0 of
TB. The standardized and automated workflows [60] assist the
user with the prediction of TB. At the moment, such features are
available for two (eco)toxicological endpoints (aquatic toxicity and
skin sensitization). The standardized and automated workflows
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provide the opportunity to pass directly from input module to the
data gap-filling module with few (standardized) or none (auto-
mated) user intervention. Eventually the user can enter only one
structure for the subsequent workflow and a group of chemicals
from specialized databases implemented in the software or from a
user list/inventory.

10.2 Profiling

Module

After entering the target chemical in the input module, TB collects
as many information as possible about the substance in the profiling
module: this is a mandatory step to properly find similar source
chemicals related to a given query. The “profiling module” identi-
fies the main characteristics of the target chemical. In other words,
they consist of chemical or biological properties of the target
chemical that the software calculates starting from the chemical
structure. It should be noted that the results of the profiling are
not intended directly for a toxicological prediction. The outcome
of the profiling module represents a rule-based addressing for the
building of the chemical category. Profilers are effectively rulebases
of SARs, and each profiler consists of a system of rules that serve as
criteria in the “category definition” module. These sets of rules are
predefined categories, established on chemical substructures (the
toxicity alerts), developed by recognized institutions or organiza-
tions. According to the underlying data from which they were
developed, profilers are globally divided into:

l Chemical profilers, which describe general chemical properties
of the molecule

Fig. 5 QSAR Toolbox’s establishment of correlation between CAS number and SMILES notation based on the
quality of data sources with which the chemical is affiliated
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l Mechanistic profilers, which are related to specific modes of
action or molecular initiating event responsible for a toxicologi-
cal effect

l Endpoint specific profilers, which collect structural alerts that
have been shown to be associated with specific toxicological
endpoints

Table 3 lists the profilers implemented in QSAR TB and high-
lights the most relevant ones for ecotoxicological evaluation. The
importance of the outcomes of the profilers relies in its guidance for
the user to the subsequent steps of the workflow, in particular for
category definition. The outcomes, indeed, help the user to cor-
rectly choose the chemical category to which the target chemical
will belong. Stated otherwise, the outcome of this module also
determines the most appropriate way to search for analogues.

10.3 Data Module In the data module, the user can retrieve experimental data from
different databases that are available in the toolbox. Based on the
assumption that TB stores several databases donated from organi-
zations, the information collected within this module should be
checked by the user aiming at verifying the quality of data. Like in
the profiling module, the latest version of the TB (starting from
v4.0) facilitates the user’s decision by highlighting databases with
three different colors (green, orange, and white).

In accordance with the type of information provided, databases
in TB are collected and showed to the user by grouping them in
four sections, listed in Table 4.

l Physical-chemical properties

l Environmental fate and transport

l Ecotoxicological information

l Human health hazards

Together with the database, TB provides a list of inventories in
which, however, no experimental data are reachable. The aim of this
module is twofold. On one side, it collects all available information
for the target chemical from the databases selected by the user; on
the other side, databases from which source chemicals—that fur-
ther form the chemical category—will be picked up are here
selected. In fact, the same databases here chosen will be the ones
from which the software will search the source chemicals in the
“category definition” module. Once the databases are selected, the
user has the possibility to collect all available experimental data for
the target chemical or to retrieve only the experimental data
concerning the endpoint of interest.

10.4 Category

Definition Module

The “category definition” module is the most important step in TB
workflow, because in this section, the user groups substances into
chemical categories. It is a crucial step since it will affect the final
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Table 3
Profiling schemes implemented in the “profiling module” of QSAR Toolbox. Relevant profilers for
ecotoxicological endpoints are reported in italic

Predefined
profilers

General mechanistic
profilers

Endpoint-specific
profilers Empirical profilers

Toxicological
profilers

Database
affiliation

Biodegradation
probability
(Biowin 1)

Acute aquatic toxicity
classification by
Verhaar

Chemical elements Repeated dose
(HESS)

Inventory
affiliation

Biodegradation
probability
(Biowin 2)

Acute aquatic toxicity
MOA by OASIS

Groups of elements

OECD HPV
Chemicals
categories

Biodegradation
probability
(Biowin 5)

Aquatic toxicity
classification by
ECOSAR

Lipinski Rule OASIS

Substance
type

Biodegradation
probability
(Biowin 6)

Bioaccumulation—
metabolism alerts

Organic functional
groups

US EPA new
chemical
categories

Biodegradation
probability
(Biowin 7)

Bioaccumulation—
metabolism half-lives

Organic functional
groups (nested)

DNA binding by
OECD

Biodegradation
fragments (Iowan
MITI)

Organic functional
groups (US EPA)

Estrogen receptor
binding

DNA alerts for AMES,
MN, and CA by
OASIS

Organic functional
groups, Norbert
Haider (checkmol)

Primary Biodeg
(Biowin 3)

DPRA cysteine peptide
depletion

Tautomers unstable

Protein binding by
OASIS

DPRA lysine peptide
depletion

Protein binding by
OECD

Keratinocyte gene
expression

Ultimate Biodeg Eye irritation/
corrosion Exclusion
rules by BfR

Ultimate Biodeg
(Biowin 4)

Eye irritation/
corrosion Inclusion
rules by BfR

DNA binding by
OASIS

Carcinogenicity
(genotox and
nongenotox) alerts
by ISS

Hydrolysis half-life
(Ka, pH 7)

In vitro mutagenicity
(Ames test) alerts by
ISS

(continued)
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result of the prediction. The building of chemical category in this
module is user-dependent, so there is no a universal approach, but
the user chooses the most appropriate principal chemical category
according to the profiler outcomes. It must be noted, indeed, that
profilers and chemical categories are the same: the rationale is that
when a chemical category (i.e., a profiler)—which has depicted a
toxic alert within the target chemical in the profiling module—is
chosen, the software will search analogues having the same struc-
tural alert (without prejudicing the picked grouping options).
Considering the complexity of the operation (which is case-by-
case different), TB has adopted a color coding system as new
functionality from version 4.0 and later. When the endpoint of
interest is selected in the data matrix, the most suitable profilers

Table 3
(continued)

Predefined
profilers

General mechanistic
profilers

Endpoint-specific
profilers Empirical profilers

Toxicological
profilers

Hydrolysis half-life
(Ka, pH 8)

In vivo mutagenicity
(micronucleus) alerts
by ISS

Hydrolysis half-life
(Kb, pH7)

Oncologic primary
classification

Hydrolysis half-life
(Kb, pH 8)

Skin irritation/
corrosion Exclusion
rules by BfR

Hydrolysis half-life
(pH ¼ 6.5–7.4)

Skin irritation/
corrosion Inclusion
rules by BfR

Ionization at pH ¼ 1

Ionization at pH ¼ 4

Ionization at
pH ¼ 7.4

Ionization at pH ¼ 9

Protein binding
potency

Toxic hazard
classification by
Cramer (original)

Toxic hazard
classification by
Cramer (with
extension)
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Table 4
Databases implemented in the “data module” of QSAR Toolbox. Relevant databases for
ecotoxicological endpoints are reported in italic

Databases

Physical-
chemical
properties

Environmental fate and
transport

Ecotoxicological
information Human health hazards

Chemical
reactivity
COLIPA

Bioaccumulation Canada Aquatic ECETOC Acute oral toxicity

ECHA CHEM Bioaccumulation Fish CEFIC
LRI

Aquatic Japan
MoE

Bacterial mutagenicity ISSTY

Experimental pKa Bioconcentration NITE Aquatic OASIS Biocides and plant protection
ISSBIOC

GSH
Experimental
RC50

Biodegradation in soil OASIS ECHA CHEM Carcinogenic Potency
Database (CPDB)

Phys-Chem
EPISUITE

Biodegradation NITE Ecotox Carcinogenicity and
mutagenicity ISSCAN

Biota-sediment Accumulation
Factor US-EPA

Food Tox Hazard
EFSA

Cell transformation assay
ISSCTA

ECHA CHEM Dendritic cells COLIPA

ECOTOX Developmental and
reproductive toxicity
(DART)

Hydrolysis rate constant
OASIS

Developmental toxicity
database (CAESAR)

kM database environment
Canada

Developmental toxicity ILSI

Phys-Chem EPISUITE ECHA CHEM

REACH Bioaccumulation
database (normalized)

ECOTOX

Eye irritation ECETOC

Food Tox Hazard EFSA

GARD Skin sensitization

Genotoxicity and
carcinogenicity ECVAM

Genotoxicity OASIS

Genotoxicity pesticides EFSA

Human half-life

(continued)
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Table 4
(continued)

Databases

Physical-
chemical
properties

Environmental fate and
transport

Ecotoxicological
information Human health hazards

Keratinocyte gene expression
Givaudan

Keratinocyte gene expression
LuSens

Micronucleus ISSMIC

Micronucleus OASIS

MUNRO non-cancer EFSA

REACH skin sensitization
database (normalized)

Receptor-mediated effects

RepDose Tox Fraunhofer
ITEM

Repeated dose toxicity HESS

Rodent inhalation toxicity
Database

Skin irritation

Skin sensitization

Skin sensitization ECETOC

ToxCast DB

Toxicity Japan MHLN

Toxicity to Reproduction
(ER)

ToxRefDB US EPA

Transgenic rodent database

Yeast estrogen assay database

ZEBET database

Inventories

Canada DSL

COSING

DSSTOX

ECHA PR

(continued)
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for the target endpoint that will be used for grouping chemicals are
suggested by the software by highlighting them with three different
colors:

l Green (suitable): the category is appropriate for the endpoint of
interest.

l Orange (plausible): the category is somehow related to the
endpoint of interest.

l White (unclassified): the category is not related to the endpoint
of interest.

Given the user-dependent building of the chemical category, it
is important that a consistent and reproducible approach is applied.
To achieve this, several recommended approaches are suggested
[41, 61] in order to reach a meaningful chemical category that
will furnish a consistent predictive result. The most important
recommendation is the subcategorization of the chemical category.
Initially, in fact, a category is built in a stepwise manner, with no
restricted conditions. Generally, as a good starting point, two wide
groups of chemical profilers (US EPA new chemical categories and
the organic functional groups) can be adopted. This will allow an
initial collection of a large amount of non-endpoint-specific similar
compounds and the construction of the so-called primary category.
With the term sub-categorization, it is meant the electronic process
of consecutive narrowing down and refinement of the retrieved
analogues. First of all, a preliminary exclusion of compounds hav-
ing additional functionalities/structural alerts different from those
of the target chemical is possible. After the elimination of first
analogues, a subsequent refinement by applying mechanistic and

Table 4
(continued)

Databases

Physical-
chemical
properties

Environmental fate and
transport

Ecotoxicological
information Human health hazards

EINECS

HPVC OECD

METI Japan

NICNAS

REACH ECB

TSCA

US HPV Challenge Program
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endpoint-specific profilers is advised. It will consent to form the
so-called secondary category, which is a more robust and consistent
group of chemicals. The process of recommended subcategoriza-
tion steps is illustrated in Fig. 6. It is noteworthy that the subcate-
gorization process is also available in the “data gap-filling” module,
so the user carries out this operation both in this module and later
on. For the sake of clarity, performing the subcategorization in the
“data gap-filling” module gives the chance to graphically visualize
step-by-step the chemicals removed, in order to monitor step-by-
step how the prediction improves/worsens with subcategorization.
In connection with this last point, not always the subcategorization
is necessary, for the reason that a first broad category might be
sufficient to read-across. When the user has selected the principal
chemical category and filters of subcategorization have been
applied, analogues of the query (i.e., the source chemicals) are
searched in the previously selected databases, and experimental
data are automatically retrieved and added into the data matrix.

10.5 Data Gap-Filling

Module

The “data gap-filling” module, among the software workflow, is the
step that gives back the result of the prediction in TB. In fact, based
on the experimental results of the members of the chemical cate-
gory, it is possible to “fill the gap” of the sole chemical for which
test results are not available (i.e., the target chemical). Three
approaches of data gap filling are given to the user: Fig. 7 shows

Fig. 6 General scheme of subcategorizations of chemical categories required for a more accurate QSAR
Toolbox’s (eco)toxicological prediction
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the different data gap-filling methods. When prediction is made by
applying read-across or trend analysis, the graphical user interface
of TB returns a plot in which the appropriate descriptor of the
category members (Kow by default) is stored in the x-axis and the
endpoint object of the in silico evaluation is stored in the y-axis.
Moreover, the prediction result is fulfilled with all statistical para-
meters (as, for instance, confidence interval correlation, regression
analysis, and so on). A relevant operation that is included in this
module is the data transformation, which is the operation of con-
verting all experimental data in one reference unit/scale. This is
included in TB for two principal reasons. First, certain values,
rather than others, are statistically more appropriate (i.e., logarith-
mic scales for regression models) [62]. Second, this is made because
experimental data in different databases could be reported with
different units (since a toxic endpoint can be measured by different
units).

10.6 Report Module Once the prediction is accepted in the “data gap module,” the
software produces in the “report module” a report file of the
predictive result in a semiautomatically way. It means that many
fields in the reports are automatically filled by TB with a predefined
template, while there are other manually editable fields that the user
should complete to justify the procedure. The standard formats of
the reports can be divided into three types:

l The Chemical Category Reporting Format (CCRF)

l The Toolbox Prediction Reporting Format (TPRF)

l The Toolbox Model Reporting Format (TMRF)

For the completeness of information providing the TB reports
(applicability domain, information about the group members, and
so on), the prediction reports are promptly employable for

Fig. 7 The three principal data gap-filling methods available in the “data gap module” of QSAR Toolbox
software. Conditions under which the methods are to be used are also reported
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regulatory submissions. This is also due to the standard format with
which the document of prediction is made, a characteristic that
makes TB reports suitable for regulatory purposes.

11 Key Factors for a Reliable In Silico Prediction

Of utmost importance in the regulatory context, prediction via
computational tools needs several assessments and considerations.
Reliability is used to support any hazard assessment, and it must be
an essential feature of any experimental study and/or in silico
analysis. In this regard, it is worth mentioning the reliability score
(RS) or Klimisch score, introduced by Klimisch and co-authors
[63]. Ranging from 1 to 4, the Klimisch score attributes to a
toxicological study several degrees of reliability (a Klimisch score
of 1 means that the study is reliable without restriction because it
has been generated according to generally valid and/or interna-
tionally accepted testing guidelines; otherwise, a Klimisch score of
4 represents the worst case since the conducted study does not give
sufficient experimental details). Even if this kind of classification of
testing data does not directly concern computational tools, they
could be conceptually translated into in silico predictions, being a
measure of assessment about their reliability. In fact, a prediction
carried with the use of experimental data having a good RS could be
considered of good reliability. The Klimisch score can be found as a
standard field within the IUCLID database: the latter is implemen-
ted in the TB software. Apart from the Klimisch score, another
important issue for a model validation (in special case of toxicologi-
cal assessment through QSAR and read-across) is the reliability of
prediction which is assessed on the basis of the applicability domain
(AD) representing the physicochemical, structural, or biological
space, within which all chemicals of the TS are enclosed. The AD
of a model is very useful to define boundaries, whereby the
obtained predicted values can be trusted with confidence [64]. It
goes without saying that a QSAR is considered valid if it has a
defined AD. In other words, the reliability of a prediction—both
using QSAR models and read-across—increases if the compound
for which a computer-aided toxicological evaluation is needed falls
within the AD of the model.

12 Problem of False Negatives (FNs)

The quality of predictions is assessed by considering some statistic
parameters. Among them, the most popular are the sensitivity and
specificity.
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sensitivity SEð Þ ¼ TP
TPþ FN

∙100

specificity SPð Þ ¼ TN
TNþ FP

∙100

In these expressions—taking, for example, a categorization of
compounds into toxic and not toxic by means of in silico tools—
TP, TN, FP, and FN stand for true positives, true negatives, false
positives, and false negatives, respectively, whereas:

l TP are chemicals predicted as toxic and that really act as toxic
compound during in vitro/in vivo experiments.

l TN are chemicals predicted as not toxic and that really act as not
toxic compound during in vitro/in vivo experiments.

l FP are chemicals predicted as toxic and that really act as not toxic
compound during in vitro/in vivo experiments.

l FN are chemicals predicted as not toxic and that really act as
toxic compound during in vitro/in vivo experiments.

Sensitivity and specificity represent the statistical measures indi-
cating the goodness of fit of an in silico model [65]. Having said
that, the major concern about all predictive computational models,
especially if their relevance in regulatory toxicology is recognized, is
the need to minimize the number of FNs [25, 26, 66, 67].

For example, if a rule-based expert system (such as Derek®,
COMPACT®, or ToxAlert®) is used for a toxicological prediction,
the risk in which one could incur is that the number of FNs may be
large because of incomplete list of SAs and rules [68].

Looking at this matter, computational modelers should pay
attention to prevent the number of FNs that are hazardous mole-
cules misclassified in the first instance as safe. This may be seen as
the most severe challenge within in silico world, mainly for two
interrelated reasons. First, biological entities—being nonlinear sys-
tems—show a chaotic behavior that cannot be fully represented in a
binary way; second, biological systems are algorithmically incom-
pressible, meaning that they cannot be properly modeled by a single
algorithm.

13 Limits of Predictive Models

In the last years, scientific world—including academic, industrial,
and regulatory fields—has turned to a new direction through a
changing mind from the recourse of only in vitro and in vivo
methods to anincreasingly consolidated use of in silico alternatives:
the focus is to find new testing strategies that attain the goal of
protecting human health and the environment from toxic effects.
Despite the significant advancements, the use of in silico tools is still
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taken cautiously. There might be several reasons why a single pre-
dictive approach becomes unusable, for instance:

l The forced passage from the complexity of a living system to the
“simplicity” of a computer simulation that cannot always portray
the biological reality in an exhaustive manner

l The restricted applicability domain of training data sets as intrin-
sic limit of in silico models

l The availability of complete and curated databases and of high-
quality bioassay data

l The availability of well-established free-of-charge computer-
aided tools

For briefness, in this review, only two aspects are taken into
consideration: the issue of data sharing and that of commercial
software packages. Furthermore, a way to face the problems is
proposed.

14 Open-Source Computational Tools

“Open data” represents the philosophy and practice requiring that
certain data are freely available without restrictions from copyright
or patents. The term “open source” is used to denote software
whose source code is published and made available and which
grants the rights to copy, modify, and redistribute the source code
without fees. A wide variety of both publicly available and commer-
cial computational tools has been developed in years, and nowa-
days, open-source software are widely used in both academic and
commercial environments. Such tools include methods for data
management and data mining, descriptor generation, molecular
similarity analysis, and hazard assessment. Despite the different
open-source solutions proposed, which extended from simple
stand-alone and web applications to full-defined tools, there is
still the need to develop a range of open-source software, in partic-
ular of those which could be fitting in the regulatory process.
A wide variety of publicly available and commercial computational
tools has been developed that are suitable for the development and
application of QSARs. Due to the limited availability of freely
accessible in silico software, there is a need to develop a plethora
of open-source tools, which should be employed in the regulatory
process. A quick-fix strategic approach tailored to this purpose is
represented by the QSAR Application Toolbox and the VEGA
platform introduced in this review.
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15 Data Sharing

One important component of modern scientific work is the collec-
tion, analysis, and sharing of data. Unquestionably, within in silico
predictive toxicology, a starting point to build predictive models is
given by a collection of adequate in vivo/in vitro assays [69, 70] as
well as chemical data (like molecular structure and physicochemical
properties). It is undeniable a fact that for the in silico toxicological
assessment, the availability of curated data is the basis to build a
predictive model along with ensuring accuracy and completeness of
prediction. In this sense, data sharing is always a growing issue.
Indeed, given also the recent trends in academic research [71],
demands for data-sharing systems are becoming widespread.
Many efforts have been made for building high-quality databases
publicly available, such as the Structure-Activity Relationships
Database Project Committee [72] and the IUCLID database sys-
tem [73]: the latter is also implemented in TB software. Table 5
shows some of publicly available databases befitting for computer-
aided toxicological assessment. However, despite significant prog-
ress in recent years with respect to the promotion of publicly
available toxicity data, much high-quality toxicity information con-
tinues to be locked away within organizations. The availability of
high-quality toxicity data is of important concern for ensuring the
reliability of computational predictive tools. Anyway, also contem-
plating that data sharing is anything but a simple process [74, 75],
many data remain largely inaccessible, also due to confidentiality
restrictions. The problem of data sharing could be also a critical
issue for the toxicological assessment of a chemical. For example,
the weight of evidence (WOE) approach [76–78] makes use of
existing data; if suitable data exist for a compound—and they are
enough for an exhaustive toxicological evaluation—there should be
no requirement to initiate a new test or make a new prediction.

Table 5
Freely available databases useful for (eco)toxicological assessment

Name Link Ref.

Comparative Toxicogenomics
Database (CTD)

http://ctdbase.org/ [89]

ChemSpider http://www.chemspider.com/ [90]

ChEMBL https://www.ebi.ac.uk/chembl/ [91]

Distributed Structure-Searchable
Toxicity Database (DSSTox)

https://www.epa.gov/chemical-research/distributed-
structure-searchable-toxicity-dsstox-database

[92]
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16 Consensus Predictions

Using a computational tool for making a toxicological prediction,
independent in silico models may be selected. They may be differ-
ent for the predictive method or for the data used. Currently, there
are no perfect in silico alternatives as full replacement of all testing
method is employable for the assessment of a specific hazard. In
regulatory context, in fact, computer-aided approach is intended
mainly to prioritize substances to be tested for the hazard charac-
terization [79]. The consensus approach is intended as the strategy
of combining multiple individual models in order to improve the
single final prediction [80–82]. A consensus prediction can be
helpful even when different predictive models reach an ambiguous
conclusion [83, 84] (as in the case of predictions outside the AD) in
order to aid the assessment of the chemical toxicity within an
integrated testing strategy. To cite just an example, in the evalua-
tion of carcinogenic potential, Lewis et al. [85] verified that the
combined use of two software (COMPACT and HazardExpert,
both expert systems) reaches the 100% of correct predictions,
while alone, the software get the 71% and 57%, respectively. Con-
sensus positive or negative results can be considered high confi-
dence predictions. Moreover, consensus approach can reduce the
appeal to an additional human expert evaluation. This consider-
ation is also highlighted in the ICH guidelines [86] for the safety of
impurities which classify them just in view of consensus approach.
According to the guidelines, in fact, the range spaces from Class
5 impurities (i.e., non-mutagenic impurities) (if the consensus
negative prediction is resulted) to Class 1 impurities (i.e., known
mutagenic impurities) (if a consensus positive prediction is
resulted) [86, 87]. On the other hand, compounds predicted
with a lack of consensus would demand an in-depth evaluation
using human expert knowledge [88].

17 Conclusion

In the last years, chemicals have been widely detected at trace levels
in various aquatic environments. Because they might be biologically
active compounds, designed to interact with specific pathways/
processes in target humans and other animals, concerns have been
raised over the potential side effects of these substances in the
environment. This consideration is meaningful also for impurities
arising from pharmaceutical manufacturing process and in particu-
lar for some environmental-problematic solvents. Despite the sig-
nificant advances of several techniques for the quality and safety
monitoring of impurities, new methods can be explored to identify
a possible toxicological potential of pharmaceutical impurities. The

264 Anna Rita Tondo et al.



field of in silico toxicology has been in a continuous development,
and it represents a key strategy to reduce the long timelines and
spiraling cost since they are able to reliably estimate toxicity of
chemicals. The use of an implementation and integration of differ-
ent computational methods within a consensus approach can
improve prediction and be applied for regulatory purposes. This
review briefly surveys different free-available in silico methods that
in the future can replace battery of in vitro and in vivo toxicity tests,
and they can be seen as an alternative approach to protect ecosys-
tems from the threat posed by the presence of chemicals in the
environment.

Dedication

To the memory of Michele Montaruli, exceptionally gifted PhD
student who has always devoted his life to serving others. To you,
Michele, our huge embrace.
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(2016) Occurrence and seasonal variations of
25 pharmaceutical residues in wastewater and
drinking water treatment plants. Environ
Monit Assess 188. https://doi.org/10.1007/
s10661-016-5637-0

6. Ying G-G, Zhao J-L, Zhou L-J, Liu S (2013)
Fate and occurrence of pharmaceuticals in the
aquatic environment (surface water and sedi-
ment). In: Comprehensive Analytical Chemis-
try. Elsevier, pp 453–557
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Chapter 12

Conformal Prediction for Ecotoxicology and Implications
for Regulatory Decision-Making

Fredrik Svensson and Ulf Norinder

Abstract

Computational methods can be valuable tools for safety prediction of chemicals and have potential to play a
role in the regulatory decision-making if the results are transparent and reliable. In this chapter, we discuss a
type of confidence predictor called conformal prediction that can be used to generate predictions with a
guaranteed error rate. We describe the underlying theory in an informal fashion and exemplify the method
on a dataset of chronic toxicity of compounds to Daphnia magna and Pseudokirchneriella subcapitata.

Key words QSAR, Confidence, Uncertainty, Conformal prediction

1 Introduction

Today’s society produces a myriad of different chemicals for all
kinds of purposes. The sheer number of chemicals on the market
and under development makes the safety testing of each and every
one of these an insurmountable task [1]. Computational methods
on the other hand can handle a high number of chemical com-
pounds in a short period of time and are often used to prioritize
compounds for further testing. This way the chemicals that are
most likely to cause harm can be tested and regulated, but it still
leaves a large corpus of chemicals without sufficient data for action.
However, if sufficient confidence can be put into a prediction of a
compound’s safety, the prediction itself might be used as a basis for
decision-making and safety regulations. Associating predictions
with well-defined uncertainties also facilitates the communication
of risks.

The use of computational methods for regulatory purposes has
been discussed previously [2, 3], and the consensus is that these
methods will have to be scientifically sound, ideally mechanistically
based, not overly complex, and associated with a clear domain of
applicability and measure of its predictive power on compounds
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that were not used in the training of the model [4]. Attempts have
also been made to standardize the requirements on predictive
models, and OECD has published a guideline entitled “Guidance
Document on the Validation of (Q)SAR Models” [5].

Clearly, a key concept for the acceptance of predictive models
for regulatory purposes is the quantification of the uncertainty
associated with the model. The definition of a model’s reliability
is closely associated with the models applicability domain (AD), i.e.,
the domain where the model can be used to make reliable predic-
tions [6]. In general terms this can be illustrated by a model trained
for predicting the safety of a certain class of chemical not necessarily
being predictive for another. Although a very useful concept, the
precise definition of a model’s AD can be difficult and has been the
subject of much debate. How similar is similar enough to be within
the space where the model can be trusted to make reliable
predictions?

Hanser and co-workers [7] introduce a useful way to reason
about a model’s AD by dividing it into three different sub-domains:
applicability, reliability, and decidability. These can be used to
answer the three questions “Is my model applicable for this
case?”, “Is my prediction reliable enough?”, and “Can I base my
decision on the prediction?”. They also highlight important con-
siderations when evaluating a predictive model, and these include
the descriptor ranges seen by the model, the density of information
and label distribution, and model consensus.

Reliability predictions and AD assessments tend to focus on the
positive label, i.e., toxic label in this work. However, it is equally
important to consider the reliability of the negative compounds,
i.e., nontoxic compounds in this work, in order to derive meaning-
ful negative predictions—something that is paramount in safety-
related applications. It is therefore important to make and evaluate
also negative predictions [8].

Other methods to estimate the reliability of computational
models [9] that are not directly linked to the AD include Bayesian
models [10] such as Gaussian processes [11], the comparison of
experimental and predictive distributions [12], reliability-density
neighborhoods [13], and confidence predictors [14].

In this chapter we will focus on a confidence predictor frame-
work called conformal prediction. Conformal predictors address
several of the important considerations for model reliability. Most
importantly they allow the user to set the required confidence level,
something that will also intrinsically determine many aspects of the
AD. Especially the second domain defined by Hanser et al., reliabil-
ity, is intrinsically handled by a conformal predictor as the error rate
is guaranteed to reflect the set confidence level. Using Mondrian
conformal predictors, the error rate is guaranteed for each class that
is being considered, allowing confidence in both toxic and nontoxic
predictions.
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Confidence predictors output prediction regions rather than
single labels for each compound. The details of conformal predic-
tion are described in detail in the next section, but the main
principle is that every new prediction is compared to the results of
a calibration set to determine the predicted labels. A conformal
predictor will always produce predictions with a guaranteed error
rate as long as data is exchangeable. A conformal predictor is said to
be valid if the error rate of the predictions does not exceed the set
confidence level, i.e., at the 80% confidence level, the predictor is
valid if the error rate is equal to or below 20%.

Being a flexible framework means that any model can be con-
verted to a conformal predictor as long as the model gives a mea-
sure that can be used to rank the predictions. This is true both for
classification and regression models. Examples in the literature
include conformal predictors based on random forest (RF) [15],
support vector machines [16], deep neural networks [17], and
more [18].

We believe that for many safety outcomes, there is now suffi-
cient data that with the use of conformal prediction, meaningful
models with clear associated confidence can be derived. These
should fulfil the criteria necessary to be useful both for the users
and for regulatory purposes.

In the next section, we will discuss the principle behind a
conformal predictor and following that demonstrate the applica-
tion of a conformal predictor on a dataset from Ding et al. [19] on
the chronic toxicity of compounds to Daphnia magna and Pseudo-
kirchneriella subcapitata.

2 The Workings of a Conformal Predictor

Conformal prediction was introduced by Vovk and Gammerman
[14] and is proven to always generate valid models as long as the
data is exchangeable. In this section we will look at the principles
for how this is achieved and focus on providing an informal expla-
nation of the principle. The type of conformal predictor considered
in this chapter is called an inductive conformal predictor [20].

The output from a conformal predictor is a prediction range
that will encompass the correct value in at least the fraction of
predictions corresponding to the confidence level (at a confidence
level of 80%, 80% of the predictions will include the correct label).
For a binary prediction problem, a compound can be associated
with any of four different outcomes, either of the two classes, both
classes, or no classes. In a regression setting, a conformal regressor
will output a range of values for each compound.

If the set of labels predicted for a compound includes the
correct label, that prediction is counted as being valid. In addition
to the validity, we also define efficiency as the number of single-label

Conformal Prediction 273



predictions. Thus, we would like for our conformal predictor to be
as efficient as possible while maintaining validity.

In order to assign the set of predicted labels, the outcome of
the predictor for a particular compound is compared with the
predictor outcomes on a set of compounds with known labels called
the calibration set. The comparison is done using a conformity or
nonconformity score (α) that is used to rank the predicted com-
pounds as well as the calibration set. In this investigation we use the
probabilities from the RF ensemble as the conformity score (α).
The relative position of a compound being predicted within the
calibration compounds is then used to assign a p-value to the
compound. If the p-value exceeds the significance level (defined as
1—confidence level), the considered label is assigned to the com-
pound. In Fig. 1, and in the description below, we provide an
illustrative example of how labels are assigned to new compounds
given two sets of calibration compounds—one set for each of the
two classes (toxic and nontoxic).

The α-values in each calibration set are sorted in ascending
order. For example, a prediction from the RF ensemble, containing
100 decision trees, for a new test compound results in probabilities
(α-values) of 0.8 and 0.2 for the toxic and nontoxic class, respec-
tively. The first value (0.8) is then compared to the corresponding
calibration set (toxic compounds) containing eight compounds
with the values 0.14, 0.31, 0.36, 0.53, 0.71, 0.77, 0.85, and
0.90. The value of 0.8 will be positioned in between 0.77 and
0.85 with six compounds with lower probabilities out of now
nine compounds (the original eight and the new test compound).
The p-value is then be calculated as 6/9 � 0.67. If we are using a
confidence level of 75%, the corresponding significance would be
0.25 (1–0.75), and since 0.67> 0.25, we would assign a toxic class
label to the test compound. These second value (0.2) is then
compared to the corresponding calibration set of nontoxic com-
pounds (ten compounds with the values 0.18, 0.33, 0.53, 0.58,
0.6, 0.69, 0.72, 0.78, 0.86, and 0.93). In this case the new value
will be positioned in between 0.18 and 0.33, and the p-value would
be calculated as 1/11 � 0.09. Since 0.09 < 0.25, we cannot assign
the nontoxic label, and the test compound is predicted to be toxic.
A second new test compound with predicted probabilities of 0.33
and 0.67 (toxic and nontoxic) would in a similar manner have p-
values of 2/9� 0.22< 0.25 and 5/11� 0.45> 0.25, respectively,
and be assigned only a nontoxic label and predicted as nontoxic. A
third new test compound with predicted probabilities of 0.44 and
0.56 (toxic and nontoxic) would have p-values of
4/9 � 0.44 > 0.25 and 3/11 � 0.27 > 0.25, respectively, and be
assigned both a toxic and a nontoxic label and predicted as belong-
ing to the both class. A compound can also have both p-values below
0.25 and not be assigned a class label at all thus belonging to the
empty class. Compounds belonging to this class are too dissimilar to
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all calibration set compounds and consider to be outside the appli-
cability domain of the model where reliable predictions can be
expected.

The procedure described above using separate calibration sets
for each class is called class-conditional or Mondrian conformal
prediction and ensures that the predictions are valid for each class
independently. Mondrian conformal predictors are also an excellent
way to handle imbalanced data, something that is often encoun-
tered when predicting safety endpoints since safe compounds are
typically more prevalent. This is normally problematic for many
machine learning algorithms and has to be address in model build-
ing [21]. For a Mondrian conformal predictor, the individual class
consideration will automatically set a cutoff for the decision bound-
ary that will balance the results [22]. This has been shown to work
well in practice also for very highly imbalanced datasets (in the
range of 1:1000) [15, 23].

Conformal prediction, as mentioned above, requires a confor-
mity (sometimes referred to as nonconformity) measure which is, in
many aspects, similar to a similarity (non-similarity) measure com-
monly used in QSAR modelling. In principle any such measure can
be selected, but the more appropriate (effective) the conformity
measure is in producing meaningful outputs for calculation of CP
p-values, the more efficient predictions will result. In the examples
presented in this chapter, the class probability from the RF classifier
was chosen as conformity score. Studies have shown that the

Fig. 1 P-value estimation in Mondrian conformal prediction. The α-values (in this
case RF probability) are used to derive a conformal p-value that determines the
class labels
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efficiency of conformal predictors can be strongly influenced by the
way the conformity score is calculated [18, 24, 25].

Since conformal prediction compared to more standard
machine learning techniques require the additional partitioning of
the available data into both proper training set, used to train the
underlying algorithm, and calibration set, methods have been
developed that still can make maximal use of the available data
through the training of multiple predictors using different splits.
This can be done through the random resampling of the calibration
test, called aggregated conformal prediction [26], or through the
division of data in severalfold where one is left out for calibration in
each iteration, called cross-conformal prediction [27, 28].

A schematic of the conformal prediction procedure using
aggregated conformal prediction is shown in Fig. 2. For a more
in-depth example of the conformal prediction algorithm, please
refer to Norinder et al. [29]

3 Example of a Conformal Predictor Applied to the Prediction of Chronic Toxicity
to Daphnia magna and Pseudokirchneriella subcapitata

To exemplify the application of a conformal predictor, we use
datasets fromDing et al. [19] on the chronic toxicity of compounds
to Daphnia magna and Pseudokirchneriella subcapitata. An over-
view of the two datasets is shown in Table 1.

For the predictions we used an aggregated conformal predictor
based on 100 aggregates, using 70% of the training data as proper
training set and 30% as calibration set in each loop. The p-values
were derived using the median value from the aggregations. The
underlying model was a RF [31] based on 100 trees. All calcula-
tions were performed using Python, scikit-learn, and the noncon-
formist package.

Compound structures were standardization using the IMI
eTOX project standardizer [32] in combination with the MolVS
standardizer [33] for tautomer standardization. Compounds were
represented using RDKit [34] physiochemical and structural
descriptors as well as Morgan fingerprints (radius 4, hashed to
1024 bits). Data was split into 50 pairs of random training set
(80%) and test set (20%). We present the overall predictions from
the 50 test sets. Median CP p-values for each compound in each test
set (50) were treated as a unique prediction.

The resulting validities from the models are shown in Figs. 3, 4,
5, and 6. Gratifyingly, the observed validities in general correspond
closely to the set confidence levels. However, they are often slightly
higher than the defined confidence level of the predictions, some-
thing that is often observed for aggregated conformal
predictors [35].
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In the case of P. subcapitata (Fig. 5) when the models were
trained using the Morgan fingerprints as input, the observed valid-
ities are often well above the set confidence level. This is often an
indication that the model is having difficulties to differentiate
between the two labels for these compounds and is generating a
high level of both (toxic and nontoxic label) predictions.

Ding et al. report the performance of the P. subcapitatamodels
as MCC values for the training set and validation set of 0.683 and
0.511, and AUC values for the training set and validation set equal
to 0.910 and 0.810. For the models on D. magna, they report
MCC values for the training set and validation set of 0.772 and
0.603 and AUC values for the training set and validation set of
0.950 and 0.800. Using only the single-label predictions at the 80%
confidence level, our RDKit descriptor-based models achieve a

Fig. 2 Schematic representation of the aggregated conformal procedure. The practical implementation of
conformal prediction is relatively straight forward, requiring only small modifications to existing prediction
setups while maintaining the original model as a basis for the predictions. Conformal prediction is also readily
available in the scikit-learn [30] compatible Python package nonconformist. (https://github.com/donlnz/
nonconformist)

Table 1
The number of total and toxic compounds in the respective datasets

Dataset # Compounds # Toxic

Daphnia magna 403 237

Pseudokirchneriella subcapitata 551 272
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MCC for the training set and test set of 0.53 and 0.50, respectively,
for P. subcapitata and 0.59 and 0.62, respectively, for D. magna,
very similar to the results from Ding et al.

In line with the reported results by Ding et al., the outcomes
for P. subcapitata were more challenging to predict and the effi-
ciency of the models at high confidence levels were quite low. The
close correspondence of the results illustrates an important point—
a conformal predictor cannot be expected to increase the quality of
the predictions as this is dependent on the underlying model.
Instead, it is the utility of the predictions that is enhanced by the
conformal process by assigning a well-defined confidence to the
result.

Figure 7 shows how the efficiency is influenced by the confi-
dence level of the predictor. Setting a high confidence level in many
cases will increase the proportion of dual label (both class) predic-
tions since the threshold for class inclusion becomes lower. This
follows the intuitive logic that as the predictor is required to give
more confident answers, fewer such single-label answers can be
obtained given the same (constant) underlying model (predictor).
The additional information provided by conformal prediction
offers a new way of evaluating predictive models. Based on the
efficacy, the user can weigh the desired confidence against the
possible outputs at that level. For example, if 80% confidence is
needed for the application at hand but models generated at that
confidence level generate a very low efficacy, this shows that there is
not sufficient information in the model to meet the set criteria. This
might then be addressed by changing the underlying algorithms
and data representations or, more likely, by the collection of addi-
tional or higher-quality data.

Applying conformal prediction to these dataset improves the
utility of the predictions in several ways. Primarily, as is clear from
the results presented above, the models do deliver a validity that
corresponds to the set confidence level, thus greatly enhancing the
usefulness of the models for decision-making as the expected error
rate is clearly defined. Furthermore, the both and empty prediction
generated by the models contain important information on what
actions could be taken to improve the model. Acquiring experi-
mental data for compounds with both labels will improve the
definition of the decision boundary between the two classes,
while data on the no label (empty class) compounds might increase
the coverage of chemical space.

Another benefit is that using the validity and efficiency of the
models, it is readily apparent that the fingerprint-based models for
P. subcapitata are not suitable for deployment as they generate very
inefficient models. This is a clear indication that in this representa-
tion, there is not sufficient information available in the data to
distinguish the two classes with the desired confidence.
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4 Discussion

Despite being a useful method in many situations, there are certain
limitations associated with conformal predictors. One obvious lim-
itation, especially for smaller datasets, is the additional need for a
calibration set [36]. The exception to this need for a separate
calibration set is the RF algorithm where the out-of-bag com-
pounds can be used as calibration set [25]. However, for most
other algorithms employed for model building, this means that a
certain percentage (20–30%) of the training set is set aside and
cannot be used for building the model. Additionally, the need for
a calibration set evokes questions on how should this calibration set
be selected. Since the method operates under the exchangeability
criteria, a random (stratified) selection of the calibration set that
mirrors the training set seems to be a good and workable choice.
Also, to cover descriptor space effectively, several randomly selected
pairs of calibration and proper training sets can be used for predict-
ing the outcome of the test set compounds. This latter approach is
called aggregated conformal prediction and has been shown to
perform well adding robustness to the outcome and especially for
the minority class [26]. This is the approach used in this
investigation.

As discussed briefly in the application section, the properties of
a conformal prediction output can give additional information to
the user. For example, perhaps the efficiency of the model, at the
confidence level set by the user as needed for the decision at hand, is
very low. The user can then examine the predictions to see how
many compounds have been predicted as belonging to the both or
to the empty class. If many compounds have been assign to the both
class, this means that the present model (classifier) cannot distin-
guish between classes, but the compounds are within the applica-
bility domain of the model, and that the compound description, at
present, lacks sufficient information. Thus, in order to improve the
efficiency of the model new information needs to be incorporated
into the compound description. If many compounds have been
assigned to the empty (no) class, this means that the present
model (classifier) cannot assign a class and that these compounds,
in model space, are too dissimilar (out-of-domain) to the com-
pounds in the calibration set. In this case (some of) these com-
pounds should be tested and the model updated in order to expand
the applicability domain of the model in order to increase efficiency
for new predictions.

When dealing with prediction uncertainty in general, it is
important to also understand the variations in the data that is
used for model training and what the expected variation—and
thus maximum performance of the prediction is likely to be [37].
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We would also like to underline that although the usefulness of
the predictions in many ways is enhanced by conformal prediction,
in order to be meaningful, it still requires good-quality models
trained on appropriate data [38, 39].

5 Conclusions and Outlook

Conformal prediction is a well-defined mathematical framework
that generates predictions with defined confidence, as such confor-
mal prediction is especially suitable for predictions in the area of
safety where confidence is paramount. In contrast to many other
techniques for confidence estimation, conformal prediction
removes much of the ambiguity surrounding the definition of
AD. The robust definition of conformal predictors and the relative
ease of interpreting the confidence make them an ideal tool for
enhancing the utility of predictions also in a regulatory setting.

In this chapter we have demonstrated how conformal predic-
tion can enhance the utility of toxicity predictions by exemplifying
the principles on two relevant datasets.

In our opinion, the low barrier to implement conformal pre-
diction in combination with its clear utility for the field merits more
people to consider this approach when developing predictive mod-
els for safety outcomes. A unified and robust confidence measure
would be of great value for the field in general, and we envision that
conformal prediction could be an important step toward
achieving this.
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Chapter 13

Read-Across for Regulatory Ecotoxicology

Gulcin Tugcu, Serli Önlü, Ahmet Aydin, and Melek Türker Saçan

Abstract

Given the magnitude of chemicals that require ecotoxicity assessments for regulatory purposes, read-across
allows for the filling in certain data requirements, such as endpoint estimation, screening and prioritization,
and hazard identification, provided that they are justified and documented. In this chapter, we present a
recompilation of recognized regulations and guidelines, as well as software and tools, used in grouping and
read-across for ecotoxicology-related endpoints. Additionally, an exemplary read-across study for the
bioconcentration factor prediction is included.

Key words Read-across, Ecotoxicology, Regulatory, Data gaps, REACH Regulation, Alternative
methods, Similarity, Chemical analogue, Chemical category
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1 Introduction

The environment is being continuously exposed to an immense
amount of chemicals. At present, there are over 149 million unique
chemical substances according to the Chemical Abstracts Service
(CAS) Registry. Interestingly, only around 389,000 substances are
inventoried globally under different regulatory frameworks, such as
the high production volume (HPV) chemicals [1]. Notably, despite
the plethora of the HPV chemicals, basic toxicity data remains as a
requirement [2]. Furthermore, there is a constant regulatory gap
due to the emergence of new chemicals. In this manner, regulation
of chemicals, such as environmental hazard and risk assessment, is
of utmost importance.

The European Union (EU) Regulation concerning the Regis-
tration, Evaluation, Authorisation and Restriction of Chemicals
(REACH) [3] is one of the regulatory frameworks meant to ensure
the protection of human health and the environment. The REACH
Regulation requires industry to provide information on chemical
substances regarding their intrinsic properties, manufacture, uses,
exposures, possible hazards, and hazard management. Likewise, the
industry is obliged to register chemical substances produced or
imported in volumes of minimum 1 ton per year. Besides the
protection of human health and the environment, the REACH
Regulation also pioneers the global chemical management; several
regional REACH adaptations, such as Korea [4], Turkey [5], and
the United Kingdom [6] counterparts, have been coming into
force worldwide.

The information on intrinsic properties of substances required
by the REACH Regulation can be addressed by alternative data
generation methods, such as grouping of substances and read-
across [3]. Moreover, in order to avoid animal testing, it is a legal
requirement to gather all the available information on intrinsic
properties, such as physicochemical and various ecotoxicological
properties, including the information derived by read-across.

1.1 Read-Across Read-across is a non-testing strategy based on the fundamental
principle that similar chemicals have similar chemical behaviors.
Principally, read-across can be used for both qualitative and quanti-
tative assessments of different physicochemical properties and vari-
ous ecotoxicity endpoints. Read-across can be based on
interpolation or extrapolation. There are two read-across
approaches: (1) chemical analogue (analogue approach) and
(2) chemical category (category approach). Chemical analogue
approach can be considered for a limited chemical category,
where trends in properties are not apparent [7], usually consisting
of two chemicals: one source and one target chemical. In the usual
practice, the endpoint information for a substance (source
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chemical) is used to predict, i.e., “read-across,” the same endpoint
information for another substance (target chemical), which is “sim-
ilar” enough to the source chemical. The “similarity” is usually
structural; however, it can be based on “similar” biological beha-
viors at the molecular level, such as mode/mechanism of action
(MOA). Among the options to identify structural analogues, Tani-
moto coefficient (also known as Jaccard similarity) is the most
commonly used one. Tanimoto coefficient is an index of the simi-
larity between two chemical structures represented as two vectors
and is based on the topological descriptions of atoms and connect-
ing bonds [8].

On the other hand, a chemical category is a group of chemicals
with physicochemical, toxicological, and ecotoxicological proper-
ties that are likely to be similar or follow a regular pattern. The
trend in a category of chemicals is often the presence, absence, or
modulation of a particular effect for all members of the category,
based on the presumption of a common MOA or adverse outcome
pathway (AOP) [7, 9]. The similarities may be based on (1) a
common functional group; (2) common constituents or chemical
classes; (3) common precursors and/or the likelihood of common
breakdown products via physical and biological processes, resulting
in structural similarity; and (4) an incremental and constant change
in the property across the category [10]. In order to identify if a
query chemical structurally falls in a category or not (applicability
domain of a category), the boundary conditions, such as the range
of molecular weight, the logarithm of the octanol/water partition
coefficient (log Kow or log P) values, water solubility, etc., should
be defined.

1.2 Regulatory

Read-Across,

Documentation,

and Guidance

The use of read-across is encouraged for specific regulatory data
requirements, such as endpoint prediction, screening and prioriti-
zation, and ecotoxicity assessment. For instance, the REACH Reg-
ulation sets out the legislative framework for the use of grouping of
substances and read-across for data gap filling as follows:

Application of the group concept requires that physico-chemical properties,
human health effects and environmental effects or environmental fate may
be predicted from data for reference substance(s) within the group by
interpolation to other substances in the group (read-across approach).

Indeed, an analysis of the ecotoxicity data of 2887 substances
submitted for REACH purposes indicated that for 10–15% of these
substances, ecotoxicity values were derived based on read-across
(10.8% for fish, 11.2% for aquatic invertebrates, and 14.6% for algae
and aquatic plants) [11]. However, the entire process of read-across
assessment including a rationale for analogue or category approach,
expert judgment, and well-documented justification is required for
regulatory acceptance. Transparency, reproducibility, data quality,
and certainty are key for read-across in regulatory setting.
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According to a recent report summarizing the current state of
regulatory use of read-across in the EU, the United States, and
Japan [12], despite some challenges, there have been significant
efforts across the globe toward the standardization and good read-
across practice [13]. Similarly, remarkable efforts have been made
by various organizations for the development of most applicable
regulatory and technical guidance, such as the Organisation for
Economic Co-operation and Development (OECD) [9, 14],
European Chemicals Agency (ECHA) [15–17], and European
Centre for Ecotoxicology and Toxicology of Chemicals (ECE-
TOC) [18]. Patlewicz et al. [19] surveyed the efforts for the
read-across development as well as its scientific justification and
documentation. This report provided a pivotal commentary per-
spective and a comprehensive review of the existing literature. They
proposed a harmonized hybrid framework to help reconcile the
common guiding principles and steps of the read-across process
which should be helpful in expanding the scope and decision con-
text of the existing frameworks.

1.3 Use

of Read-Across

for Industrial

and Regulatory

Purposes: A Literature

Review

The read-across approach allows prediction for a specific endpoint
of a chemical using experimental data available from reasonably
similar compounds. Read-across is anticipated to be an important
alternative for animal testing under the REACH Regulation [19].

Furthermore, the most frequently used Integrated Approaches
to Testing and Assessment (IATA) is read-across. IATA comprises
science-based approaches for chemical hazard characterization.
IATA can include a combination of methods and can be informed
by integrating results from one or many methodological
approaches [e.g., (Q)SAR, read-across, in chemico, in vitro,
in vivo]. The IATA Case Studies Project enabled the OECD to
make a more reflective and dynamic analysis of the application of
read-across for toxicological data gap filling [9, 20, 21].

As such, read-across can be applied for the prediction of any
(eco)toxicological endpoint. The endpoint-specific modeling tox-
icity is usually related to human health endpoints, such as repeated-
dose toxicity, skin sensitization, etc. There is a plenty of published
reports in this field. However, read-across studies on environmental
endpoints are scarce. A selection of the read-across efforts pub-
lished in the literature is provided in the following paragraphs.

Wu et al. [22] described a framework that identifies potential
analogues which can be used by a toxicologist for consideration in
read-across. Their approach involves categorizing potential analo-
gues based on various chemical and metabolic considerations, as
well as modes of toxicity for categorizing potential analogues to
their suitability, while explicitly detailing assumptions inherent in
any read-across of toxicological data. Their result provided a frame-
work to apply chemical, biochemical, and toxicological principles in
a systematic manner to identify and evaluate factors that can
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introduce uncertainty into structure-activity relationship (SAR)
assessments while maximizing the appropriate use of all
available data.

Vink et al. [23] illustrated some important aspects of applying
toxicological read-across in human health risk assessment with a
case study. They combined read-across as non-testing strategy with
a tiered exposure assessment for the risk characterization of
1-methoxypropan-2-ol (PGME) as a representative for phase-in
substances to be registered under REACH. PGME is currently
used as a component of coatings and cleaners [24]. They selected
three chemicals with an acceptable toxicological dataset (1) 2-pro-
panol,1-ethoxy-(PGEE), (2) 2-propanol,1-propoxy (PGPE), and
(3) propylene glycol n-butyl ether (PnB) which shared a similarity
to PGME of at least 50%. PGEE was found to be the most related
to PGME, based on both structure and physicochemical properties.
Therefore, Vink et al. [23] used PGEE as the source chemical for
read-across. They also used toxicological data available for PGPE
and PnB to strengthen the outcome of the read-across. They
provided data, which were comparable with experimental data
available for target substance PGME, resulting in a realistic starting
point for both qualitative and quantitative risk assessment.

Schüürmann et al. [25] used quantitative read-across for pre-
dicting the acute fish toxicity of organic compounds employing
atom-centered fragments (ACFs) for evaluating chemical similarity.

Cronin et al. [26] provided information on chemical grouping,
categories, and read-across to predict toxicity. Madden [27]
provided information on data useful for category formation and
read-across. Additionally, Cronin evaluated the categories and read-
across for toxicity prediction allowing for regulatory acceptance
[28] and expressed the state-of-the-art and future directions of
category formation and read-across for toxicity prediction [29].

Rand-Weaver et al. [30] critically reviewed the evidence for
read-across and found that few studies include plasma concentra-
tions and MOA-based effects and highlighted the absence of docu-
mented evidence. They also attracted attention to a need for large-
scale studies to generate robust data for testing the read-across
hypothesis and to develop predictive models, the only feasible
approach for protecting the environment.

Low et al. [31] represented a novel hybrid read-across method
that is both predictive and interpretable by combining the simplic-
ity and transparency of read-across methods with the benefits
afforded by more sophisticated techniques such as ensemble mod-
eling and instance-based learning while incorporating diverse data
streams. They classified different types of endpoints (hepatotoxic-
ity, hepatocarcinogenicity, mutagenicity, and acute lethality) using
several biological data types (gene expression profiling and cytotox-
icity screening).
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Rorije et al. [32] provided read-across case studies for the
estimation of the aquatic toxicity of five different fragrance sub-
stances and proposed a pragmatic approach for expressing uncer-
tainty in read-across estimates. The estimated aquatic toxicity and
their uncertainties are used to estimate freshwater compartment
Predicted No Effect Concentrations (PNECs), which is directly
used in risk characterization. The results of the musk fragrance
read-across cases (musk xylene, musk ketone, and galaxolide)
were compared to experimentally derived PNEC values.

Oomen et al. [33] used grouping and read-across approaches
for risk assessment of nanomaterials. They proposed that these
approaches facilitate for better use of available information on
nanomaterials and are flexible enough to allow future adaptations
related to scientific developments.

Schultz et al. [34] proposed a strategy for structuring and
reporting a read-across prediction of toxicity and suggested a work-
flow for reporting a read-across prediction.

Benfenati et al. [35] integrated QSAR and read-across for
environmental assessment addressing two main questions:
(1) How do they solve the issue of the subjectivity in the evaluation
of data and results, which may be particularly critical for read-
across, but may have a role also for the QSAR assessment?
(2) How do they take advantage of the results of both approaches
to support each other? They developed a freely available program
called ToxRead (www.toxgate.eu), which integrated with the out-
put of QSAR, within a weight-of-evidence strategy, using the
assessment of bioconcentration factors of chemicals.

Stanton and Kruszewski [36] quantified the benefits of using
read-across and in silico techniques to fulfill hazard data require-
ments for chemical categories. They presented the actual benefits
resulting from avoided testing through the use of read-across and in
silico tools. They evaluated that the use of 100,000–150,000 test
animals and the expenditures of $50,000,000–$70,000,000 were
avoided when 261 noted substances are considered.

Zhu et al. [37] used omics data to establish biological similar-
ity: Examples were given for in vitro stem cell models and short-
term in vivo repeated-dose studies in rats used to support read-
across and category formation. These preliminary biological data-
driven read-across studies provided some new read-across
approaches that can be used for chemical safety assessment.

Schultz et al. [38] used the category approach to read-across to
predict repeated-dose toxicity for a variety of derivatives of 2-alkyl-
1-alkanols as a case study. Specifically, the no-observed-adverse-
effect levels (NOAELs) of 2-ethyl-1-hexanol and 2-propyl-1-hep-
tanol, the source substances, can be read across with confidence to
untested 2-alkyl-1-alkanols in the C5–C13 category based on the
lowest-observed-adverse-effect level (LOAEL) of low systemic tox-
icity. These branched alcohols have metabolic pathways that have
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significance to repeated-dose toxic potency. The chemical category
is limited to the readily bioavailable analogues. Their findings
revealed that the 90-day rat oral repeated-dose NOAEL values for
the two source substances can be read across to fill the data gaps of
the untested analogues in this category with uncertainty deemed
equivalent to results from a TG 408 assessment.

Gajewicz [39] developed predictive read-across models based
on real-life nanotoxicity data. The main practical difference of their
algorithm compared to existing read-across approaches is the fact
that it avoids the limitations associated with using only one descrip-
tor or a maximum of two descriptors as indicated in the case of
recently published nano-quantitative read-across algorithms. Gaje-
wicz et al. [39] addressed the bottleneck for regulation of nano-
materials and proposed a quantitative read-across (Nano-QRA)
algorithm for cases when only limited data is available. The pro-
posed Nano-QRA approach is a simple and effective algorithm for
filling data gaps in quantitative manner and provides an efficient
tool to support the risk assessment of nanomaterials. Research
priorities relevant to development of updating of nano-relevant
regulations and guidelines covering read-across was reported by
the EU NanoSafety Cluster [40].

Patlewicz et al. [41] reviewed in silico tools for grouping with a
focus on the challenges involved in read-across development and its
scientific justification and documentation.

Floris and Olla [42] summarized molecular similarity in
computational toxicology within the context of the read-across
approach. This book chapter reports an implementation of chemi-
cal similarity and the analysis of multiple combinations of binary
fingerprints and similarity metrics in the context of the read-across
technique. Their approach has been implemented in two open-
source software tools for computational toxicology (CAESAR
and VEGA).

Mellor et al. [8] considered various molecular fingerprints and
similarity measures to be used to calculate molecular similarity.
They investigated the value and concordance of the Tanimoto
similarity values calculated using six widely used fingerprints within
six toxicological datasets. Their results suggested that for read-
across, generic fingerprint-derived similarities are likely to be most
predictive after chemicals are placed into categories (or groups) and
then similarity is calculated within those categories; ideally, the
specific similarity measure should be appropriate to the chemistry
and endpoint considered.

The focal step of acquiring acceptance of a read-across predic-
tion is to identify and assess the uncertainties associated with
it. Schultz et al. [43] assessed uncertainty in read-across: They
identified and summarized the main sources of uncertainty that
potentially impact the acceptance of a read-across argument. They
also proposed a series of questions to evaluate toxicity predictions
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based on knowledge gained from case studies, in order to progress
further in this area.

Lombardo et al. [44] presented and discussed the recently
published guideline from the European Food Safety Authority
(EFSA) for integrating and weighting evidence for scientific assess-
ment. They reported the criteria and application on the use of
non-testing methods (NTM) within a weight-of-evidence strategy.
They stated that NTM are a valuable resource for risk assessment of
chemical substances and can be particularly useful when the infor-
mation provided by different sources was integrated. Hence, this
integration increases the confidence in the final result. They
assessed bioconcentration factor (BCF) prediction using in silico
models and demonstrated the suitability and effectiveness of in
silico methods for risk assessment with this example and proposed
a practical guide to end users to perform similar analyses on likely
hazardous chemicals.

1.4 Available

Software and Tools

Used

in Ecotoxicity-Related

Read-Across

Predictions

With the encouragement of the regulatory bodies, many computa-
tional tools have been developed for safety assessment in the last
decades. Some of the prominent software and tools used in similar-
ity and data search, grouping, metabolism prediction, and read-
across predictions for the ecotoxicological endpoints and environ-
mental fate properties are summarized below. These tools accept
extensively used chemical identifiers such as chemicals’ name, CAS
registry number, EC number, and simplified molecular-input line-
entry specification (SMILES) notation. Additionally, a structure
drawing editor option may be available. Structural similarity, mech-
anism similarity, and structural alerts can be used to group chemi-
cals into categories. Structural alerts may also be used as supporting
tool for hazard and risk assessment [45]. Some of the QSAR
methods, such as k-nearest neighbor (KNN) and hierarchical clus-
tering, could be regarded as read-across prediction methods, since
they group chemicals according to their structural similarities
obtained from structural and/or physicochemical property descrip-
tors and structural alerts [35].

OECD QSAR Toolbox (v. 4.3) [46] has been developed by
LMC and supported by governments and industry. This stand-
alone software performs profiling based on the identification of
relevant structural features and potential mechanisms of a query
chemical, grouping chemicals based on the structural and/or
mechanistical features, and filling data gaps making use of available
experimental data obtained from various databases. QSAR Toolbox
supports making predictions and leaves the decision to the user.

US EPA TEST (v. 4.2.1) [47] performs mutagenicity and BCF
endpoint predictions. The software includes four methods for BCF
prediction, hierarchical clustering, single model, group contribu-
tion, and nearest neighbor, in addition to a consensus model. The
dataset used in the BCF model consists of 676 chemicals compiled
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from different sources [48]. Single model and group contribution
method employ linear regression method. The others basically
cluster the training set chemicals.

BCF/BAF (bioaccumulation factor) and biodegradation pre-
diction models are available under EPISuite™ [49] of EPA.
BCFBAF™, formerly called BCFWIN™, estimates fish BCF
using two different methods. The first one is the regression-based
model employing log P. The second one is the Arnot-Gobas
method, which calculates BCF from mechanistic first principles.
BCFBAF also incorporates prediction of apparent metabolism
half-life in fish and estimates BCF and BAF for three trophic levels.
Seven linear and nonlinear BIOWIN models estimate the probabil-
ity of rapid aerobic and anaerobic biodegradation of organic com-
pound in the presence of mixed populations of environmental
microorganisms.

VEGA (v. 1.1.4) application has been developed by Istituto di
Ricerche Farmacologiche Mario Negri (Laboratory of Environ-
mental Chemistry and Toxicology) and KODE (www.vega-
qsar.eu). Various human and environmental toxicological end-
points and physicochemical properties are predicted by VEGA
software. Among the ecotoxicological endpoints, fish andDaphnia
magna LC50 and bee acute toxicity models are available. A toxicity
classification for the query chemical based on the predicted LC50

value can be made. Environmental endpoints include ready biode-
gradability model (IRFMN); kM/half-life model (Arnot/EPI-
Suite); persistency models in sediment, soil, and water (IRFMN);
and three BCFmodels (CAESAR,Meylan, and KNN/read-across).
Prediction of the endpoint for the query chemical and the most
similar structures available in the dataset with their experimental
and predicted values are reported at the end of the modeling
process. The overall reliability of each model is graded by applica-
bility domain index (ADI) and reported.

ToxRead (v. 0.11) is another software developed by Istituto di
Ricerche Farmacologiche Mario Negri, Politecnico di Milano, and
KODE (http://www.toxread.eu/). The software assists users in
making reproducible read-across evaluations as well as showing
the similar chemicals, structural alerts, and relevant features in
common between the chemicals. Data within the software are
from VEGA platform. There are 860 experimental BCF values
and log P values that are derived from KOWWIN model of EPI-
Suite™ [35]. In the initial stage of the prediction, the number of
chemicals similar to the target chemical is asked. Then, the most
similar chemicals, in a number chosen by the user, are selected from
the database based on the log P values.

Toxtree (v. 3.1) has been developed by Ideaconsult Ltd.
[50]. The software implements several classification schemes using
chemical structures, metabolic pathways, and descriptors calculated
from chemical structures for predicting various endpoints.
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Classifying the chemicals according to Cramer rules and extended
Cramer rules and identifying structural alerts for various endpoints
are available within this stand-alone software. For an ecotoxicologi-
cal endpoint, START Biodegradability model makes estimations
using a decision tree. At the end of the process, the query chemical
is allocated into one of the three classes: Class 1 (easily biodegrad-
able), Class 2 (persistent chemical), and Class 3 (unknown
biodegradability).

Danish (Q)SAR Database [51], developed by the National
Food Institute, Technical University of Denmark, has been in use
since 2004. A collection of over 200 QSAR models from free and
commercial sources for various physicochemical and environmental
endpoints is available along with training data on the website.
Substructure and similarity search as well as searching by model
endpoint can be performed. Not ready biodegradability models of
three commercial software and environmentally related endpoint
models of EPISuite™ are available.

Toxmatch (v. 1.07) is also developed by Ideaconsult Ltd. The
open-source and freely available software performs similarity evalu-
ation of two chemicals. Highly similar chemicals can be used in
source chemical selection and category formation to support the
application of read-across. Three descriptors, which are relevant for
BCF, are considered for similarity assessment. Then, the similarity
metric Euclidean distance, calculated from effective diameter, max-
imum diameter, and log P, is used as the predictor. The dataset of
experimental BCF values is the one used in the EPISuite’s BCFBAF
model. Read-across for BCF can be performed based on this data-
set. The software allows the users to categorize the dataset into
groups, such as a set of different ranges for a BCF value.

ChemIDplus (https://chem.nlm.nih.gov/chemidplus/) web-
site managed by the National Institutes of Health (NIH) contains
over 300,000 chemical structure records integrated with other
TOXNET records. A search is available in various options, such as
searching for similar compounds within a lower limit of similarity or
for substructures.

ToxDelta [52] uses MCS (maximum common substructure)
concept in a different manner. While the similarity of two com-
pounds is compared and the MCS of two chemicals is found, the
molecular fragments which are not in common are also listed.
These fragments are categorized as active and inactive fragments
and employed in, for example, the toxicity assessment.

CBRA software [31] evaluates the in vivo activity of chemicals
using the chemical-biological read-across approach. The software
employs calculated structural descriptors and experimentally
measured in vitro bioactivity profiles as input. At the end of the
process, it generates radial plots representing chemical and
biological neighbors of the query chemical.
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BioTransformer software consists of five modules, called
“transformers,” predicting small molecule metabolism in mammals
as well as in the soil and aquatic microbiota in the environmental
compartments [53]. Chemicals having commonmetabolites can be
used in read-across applications of RAAF scenarios 1, 3, or 5, where
metabolites of the analogues are considered.

Analog Identification Methodology (AIM) (v1.01) tool (SRC,
Inc., North Syracuse, NY) has been developed by SRC, Inc. for US
EPA, in cooperation with EPA’s Risk Assessment Division. The
software searches for analogues of the query chemical based on its
chemical structure. At the end of the analysis, a list of potential
analogues and corresponding toxicity data sources for the analo-
gues is provided.

2 Case Study

Stepwise procedures for both analogue and category approaches are
reported in the OECD guidance document [9]. These recom-
mended approaches have common steps such as (1) inspecting
the chemical for the possible chemical category/class, (2) identify-
ing possible analogues, (3) gathering data for each chemical,
(4) evaluating the data for adequacy, (5) constructing a data matrix,
and (6) documentation. Here, we present a case study to predict
BCF adopting analogue approach.

BCF is an important property describing fate and behavior of
chemicals in the environment. The information on BCF can be
used in PBT (persistent, bioaccumulative, and toxic) and vPvB
(very persistent and very bioaccumulative) assessments, hazard
classification, and chemical safety assessment, as well as in deciding
whether long-term ecotoxicity testing might be necessary. Water
solubility and log P are the key parameters estimating this property.
Therefore, similar solubility and log P along with structural similar-
ity are important in the read-across prediction of BCF.

Vinclozolin (3-(3,5-dichlorophenyl)-5-ethenyl-5-methyl-1,3-
oxazolidine-2,4-dione) (Fig. 1) is a widely used fungicide with
androgen receptor antagonism [54]. It is included in the OECD’s
list of HPV chemicals. However, its experimental BCF value is not
available in the literature.

As a first attempt of estimation of its BCF, “seven most similar
options” were selected in ToxRead for potential source chemicals.
Two of these analogue chemicals had estimated log P values, and
their predictions were excluded from the list. These chemicals with
their experimental BCF and corresponding log P values are given in
Table 1. Given the fact that BCF values are highly correlated with
log P, the analogues with close log P values to that of vinclozolin
could be chosen as source chemicals. Propanil, iprodione, and
linuron have log P values between 3 and 3.2 and experimental
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BCF values between 1.29 and 2.05. Average log BCF of these three
chemicals is 1.73.

US EPA TEST program was employed for the BCF prediction
of the target chemical, vinclozolin. Four different predictions from

Fig. 1 2D structure of vinclozolin

Table 1
Potential source chemicals obtained from the software used

Name SMILES Structure
Exp.
Log P

Exp.
BCF

Chlorpropham CC(C)OC(¼O)NC1¼CC(¼CC¼C1)Cl Cl

O

ON
H 3.51 2.16a

Propanil CCC(¼O)NC1¼CC(¼C(C¼C1)Cl)Cl Cl

Cl

O

N
H

3.07 2.05a

Iprodione CC(C)NC(¼O)N1CC(¼O)N(C1¼O)
C2¼CC(¼CC(¼C2)Cl)Cl

Cl

Cl

O

O

O
N

N

HN

3.00 1.85a

Linuron CN(C(¼O)NC1¼CC(¼C(C¼C1)Cl)
Cl)OC

Cl

Cl

O
O

N N

H
3.20 1.29a

Diuron CN(C)C(¼O)NC1¼CC(¼C(C¼C1)Cl)
Cl

Cl

Cl O

N
H

N

2.68 0.74a

Oxadiazon CC(C)OC1¼C(C¼C(C(¼C1)N2C
(¼O)OC(¼N2)C(C)(C)C)Cl)Cl

Cl Cl

O
O

O
N

N

4.80 1.89b

Experimental values: aToxRead bUS EPA TEST
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available models (hierarchical clustering, 1.47; single model, 2.16;
group contribution, 1.63; and FDA, 2.04) and a consensus predic-
tion value (1.83) were obtained. The only chemical in the database
with structural similarity greater than 50% (0.56) was oxadiazon.
Close values of the predicted and experimental values (1.92 and
1.89, respectively) for oxadiazon support the reliability of the
model.

Three models of VEGA software were used for the log BCF
prediction. The same chemicals appeared in these models as poten-
tial source chemicals. However, their similarity metrics are differ-
ent. CAESAR and Meylan models resulted in ADIs of 0.85 and
predictions of 1.37 and 1.71, respectively. Although KNN/read-
across prediction appears to show low reliability with ADI of 0.70,
all predictions, varying from 1.37 to 1.71, are in agreement indi-
cating vinclozolin is non-bioaccumulative. Carbonyl residue alert
was found in all chemicals under study in CAESAR model. This
alert is found for a large number of non-bioaccumulative chemicals,
even when log P value is very high. Presence of>C¼O polar group
increases hydrophilicity, providing lower values of BCF.

Table 2
Physicochemical propertiesa of the potential analogues for vinclozolin

Name CAS
Log
P pKa

Water
solubility

MW g/
mol

Melting
point
(�C)

Boiling
point
(�C)

Vapor
pressure (Pa,
25 �C)

Vinclozolin
(Target
chemical)

50471-
44-8

3.10 No ionizable
atom
found

2.6 mg/L
(20 �C)

286.12 187.73 446.77 1.21E�005

Chlorpropham 101-
21-3

3.51 12.89 89 mg/L
(25 �C)

213.67 64.92 283.19 0.453

Propanil 709-
98-8

3.07 13.90 152 mg/
L
(25 �C)

218.08 130.95 354.93 0.00376

Iprodione 36734-
19-7

3.00 13.94 13.9 mg/
L
(25 �C)

330.17 233.57 544.90 2.01E�008

Linuron 330-
55-2

3.20 11.94 75 mg/L
(25 �C)

249.10 137.23 365.91 0.00162

Diuron 330-
54-1

2.68 13.18 42 mg/L
(25 �C)

233.10 126.39 353.86 0.00062

Oxadiazon 19666-
30-9

4.80 No ionizable
atom
found

0.7 mg/L
(24 �C)

345.23 178.65 431.28 4.5E�005

aPhysicochemical properties are from EPISuite™; pKa predictions are made using MarvinSketch (v. 17.29.0) (Che-

mAxon, 2017)
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The analogue chemicals assessed by the software packages have
similarities to the target chemical ranging between 0.56 and 0.84.
The target and the source chemicals have similar physicochemical
properties (Table 2), leading to similar environmental behavior.
Additionally, close pKa values indicate that the analogue chemicals
are not expected to hydrolyze. The experimental values within the
prediction software packages are adequate, and the predictions
obtained are also in agreement. Apparently, estimated log BCF of
vinclozolin is less than 3.3 based on the available information from
BCF calculations, and this chemical could be categorized as not
bioaccumulative [55].

3 Conclusions/Future Prospects

Toxicity assessment of chemicals to human and the environment is
required for regulatory reasons. Justified and well-documented
read-across enables to provide information on endpoint estimation,
screening and prioritization, and risk characterization. In this chap-
ter, we presented the regulatory read-across, documentation, and
guidance together with the use of read-across for industrial and
regulatory purposes. We also summarized free software packages
and websites to be used for read-across. As a case study, we
provided bioconcentration factor (BCF), an important property
describing fate and behavior of chemicals in the environment,
information from read-across by employing analogue approach.
Given the popularity and continuous efforts toward the develop-
ment, justification, and documentation, the future seems to be
promising for grouping, category formation, and read-across.
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Abstract

The ecotoxicological tools reveal to be profitably employable within the assessment of the so-called
environmental footprint, which is commonly based on the results of a chemical monitoring. Due to the
heterogeneity of biological endpoints and the possibility to explore several exposure frames, as well as to
consider higher levels of organization (from cells to organisms and mesocosms), the definition of a protocol
is desirable.

Key words Activated sludge, Baseline toxicity, Bioassays, Endocrine disruption, Environmental foot-
print, Genetic toxicity, Protocol, Modes of action, Multi-tiered approach, Wastewater

1 Introduction

Wastewaters are complex mixtures, in which a multitude of pollu-
tants, emitted from different anthropogenic sources, is concen-
trated. Conventional wastewater treatment plants (WWTPs)
guarantee, in some cases, only a partial removal of these pollutants
[1]; on the other hand, raw and treated wastewaters may reach the
surface waters through sewer overflows and WWTP effluents,
respectively. Therefore, in order to define the optimal system for
wastewater management (collection and transport systems, over-
flow regulating devices, treatment technologies), a deeper investi-
gation of the impact of sewage (raw and treated) on the ecosystem
is required [2].

For this purpose, two different approaches may be adopted: the
life cycle approach, based on chemical input data, which quantify
the impacts on each environmental compartment (including toxic-
ity toward freshwater ecosystem), and procedures based only on
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biological assays and ecotoxicological tools. The latter represents
the basic tool, from which the following approaches set in: the
Biological Assays and Diseases (BAD) [3, 4], the Whole Effluent
Toxicity (WET) [5–7], the Direct Toxicity Assessment (DTA) [8],
and the Whole Effluent Toxicity [9, 10, 11]. Each procedure is
characterized by intrinsic limitations. Our approach tries to com-
bine these methodologies with the aim of overcoming their short-
comings and lacks and integrating their strength points.

Indeed, the detection and quantification of all the substances
and their biotic and abiotic transformation products potentially
present in an environmental matrix cannot be a workable solution
[12–14]. The single components of the mixture might be unknown
or present at concentrations below the limits of detection
[15, 16]. Most of all, chemical analyses do not allow to predict
the impacts of a mixture on an organism or on the whole ecosys-
tem, due to possible additive/subtractive/synergistic/antagonistic
effects [17, 18]. Only biological assays enable to take into account
these complex interactions and quantify the overall impact of waste-
water as a whole [19].

The assessment of toxicity entails setting the boundaries of the
biological investigation, so as to eliminate the risk of haziness,
possibly arising from the results of the investigation. Actually, toxi-
cological tools should be chosen and employed with a careful
attention to the information they can provide; the definition of
the criteria underpinning both the selection of the biological assays
and the interpretation of the results for the environmental impact
assessment is still a matter of debate [20]. Furthermore, the results
of the bioassays cannot be directly used for the environmental
footprint assessment by means of standardized methodologies
based on life cycle assessment (LCA) criteria.

For these reasons, an integrated strategy based on the combi-
nation of chemical and biological analyses should be adopted for
better investigating the impact of effluents [21, 22]. This work
presents a protocol, which includes consecutive stages: from setting
criteria for sample collection and preparation to the definition of a
battery of multi-tiered tests, of the procedures of experimental data
elaboration, and, finally, to the assessment of the environmental
footprint and, consequently, the proposal of a role in the decision
processes (Fig. 1). In particular, this protocol was applied to three
real-scale WWTPs located in Northern Italy, receiving domestic
and industrial wastewaters and equipped with conventional and
innovative (Membrane Biological Reactor, MBR) treatment
technologies.
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2 Sampling

The acquisition of samples represents a crucial step in the evaluation
of the plant performance and hence of the characteristics of its
effluent. A first bond, which cannot be avoidable, is the observance
of sludge age and hydraulic retention time. A second bond lies in
the wide variability of (trace) pollutant content throughout a day
and a week: influent and effluent single grab samples are not repre-
sentative at all of the actual trends (see, inter alia, [23–25]). A third
bond relates to the need to consider a plant working in a steady
state (unless specific conditions have to be monitored, as in case of
the operation starting). Finally, significant wastewater changes
depending on seasonal activities (due, for instance, to industrial
processes and tourism flows) entail ad hoc monitoring campaigns.

Our protocol requires identifying a minimum set of sampling
points: the influent, after the mechanical pre-treatments, the final
effluent, and the excess sludge. It was applied on conventional
activated sludge treatment plants and membrane bioreactor plants.

Samples are always taken over a 2-week period, by means of a
refrigerated auto-sampler, equipped with Teflon pipes and dark
glass containers. In our case, daily aliquots of each 24-hour com-
posite flow-proportional samples were mixed (either raw or pro-
cessed, as described in paragraph 3), in order to obtain a cumulative
sample, representative for the whole period. Thus, we overcome
the constraints inherent to the continuous variability of flow rate
and quality of the target streams.

Fig. 1 Scheme of the protocol for assessing the environmental footprint by means of ecotoxicological tools:
from the choice of bioassays to the participation at decision processes
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3 Sample Preparation

The first operation consists in separating liquid and solid phases
(filtration through glass fiber filters, to retain particles larger than
1.6 μm). Liquid samples were then acidified with H2SO4 until pH¼
4.0 and filtered (at a maximum flow rate of 10 mL/min) through
trifunctional silica tC18 cartridges (10 g Sep-Pak Plus C18 Envi-
ronmental Cartridges, Waters Chromatography), following a
slightly modified version of the US EPA 525.2 method [26]. The
cartridges were previously activated by adding ethyl acetate, ace-
tone, methanol, and distilled water (40mL each). Cartridge elution
was performed with ethyl acetate, acetone and methanol (40 mL
each). Eluates were then treated in a rotating vacuum evaporator
and submitted to drying under nitrogen gas at ambient tempera-
ture. Residues were dissolved in dimethyl sulfoxide, to obtain
approximately a 20,000-fold concentration. Solid phases retained
by filters, as well as excess sludge samples, were submitted to soxh-
let extraction for 6 h (solution of acetone/n-hexane 1:1), dehydra-
tion by anhydrous Na2SO4 addition, drying under gentle N2

stream at ambient temperature and dissolution in sterile DMSO.

4 Choice of Bioassays

As widely underlined in literature, the use of the ecotoxicological
tools requires a first clear definition of the goal, i.e., the question to
answer. While assessing the environmental impact of an effluent, it
is necessary to consider the standardized tests, which are commonly
provided for by national and international regulations. In this case,
one should carefully consider the results beyond the mere compli-
ance with set values and use them for a more complex overall
evaluation, as described in paragraph 6. Afterward, it should be
advisable to include both prokaryotes and eukaryotes, as well as
unicellular and multicellular, animal and vegetal organisms.
Another criterion might lead to include an assay for each trophic
level (producer, consumer, and decomposer) together with specific
tests aimed at assessing toxicity for humans. Finally, diverse modes
of actions should be investigated; in our protocol, we propose the
endocrine disruption (selected because of the wide literature about
wastewater estrogenic compounds, identified from the 1970s), the
genetic toxicity, and the carcinogenic activity (in order to apply the
models described in paragraphs 6 and 6.2, which include specifi-
cally the neoplastic diseases). The list might be increased by adding
the research of specific biomarkers (i.e., of the oxidative stress) and
the application of new tools for assessing the contribution of epige-
netic regulation to toxicity induction. Table 1 displays the tests
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included in the proposed protocol, together with the joined modes
of action and the phenomena/indicators measured.

Finally, it is worth noting the remarkable significance of “to
avoid/reduce behaviors” (also by performing laboratory activities),
which may adversely affect the organism welfare and the environ-
ment. Therefore, the choice of bioassays should be based also on
the 3Rs (Replacement, Reduction, and Refinement) and Green
Toxicology principles [27, 28].

5 Bioassays: Materials and Methods

5.1 Baseline Toxicity This section includes both standardized and non-standardized pro-
tocols. In any case, while choosing a technique, its repeatability,
reproducibility, sensitivity, and accuracy should be taken into
account. Even more important, before planning a toxicological

Table 1
List of the bioassays included in the proposed protocols: mode of toxic actions, definition, and
relative objects of measurement

Mode of
toxic action Bioassay Measured by

Baseline toxicity Algal growth
inhibition test

Determination of the growth inhibition
of the unicellular green alga
Raphidocelis subcapitata

Bioluminescence
inhibition test

Reduction of the natural bioluminescence
of marine bacteria Aliivibrio fischeri
(formerly Vibrio fischeri)

Acute toxicity of water flea Determination of mobility inhibition
of the freshwater cladoceran Daphnia magna

Neutral red uptake assay Detection of viable cells via the uptake
of the dye neutral red

MTT reduction assay Formation of formazan salts due to
mitochondrial enzymes

Endocrine
disruption

ERE-tk_Luc_MCF-7 Luciferase activity quantification
in human breast cancer cell line

YES/YAS Chromogenic substrate quantification
after incubation with recombinant
Saccharomyces cerevisiae

Genetic toxicity Ames test Point mutations in bacterium
Salmonella typhimurium

Allium cepa test Chromosomal mutation in root cells
Comet test DNA damage in human leukocytes

Carcinogenicity In vitro cell transformation
assay (CTA)

Number of malignant foci or transformed
colonies

Tumor promotion Gap junction–mediated intercellular
communication
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survey, one should select the tests leading to clear and exploitable
answers: the main risk, otherwise, is the collection of useless and
unaccountable data.

5.1.1 Algal Growth

Inhibition Test

The assay with unicellular green algae was performed according to
the ISO standard [29]. Its execution is invaluable, because it
involves photosynthetic organisms, and hence can capture possible
interferences and impairments to the related mechanisms. Raw
samples were submitted to this assay. EC10 and EC50 values were
calculated.

5.1.2 Bioluminescence

Inhibition Test

The assay with marine luminescent bacteria was performed accord-
ing to the ISO standard [30]. Its strength resides in the established
standardization, the execution rapidity, and the worldwide adop-
tion by governmental and nongovernmental organizations. Raw
samples were submitted to this assay. EC10 and EC50 values were
calculated.

5.1.3 Acute Toxicity

of Water Flea

The assay with Cladocera crustacean followed the ISO standard
[31]. As for the luminescent bacteria assay, this is widely prescribed
by international and national regulations, standardized and mar-
keted. Raw samples were submitted to this assay. EC10 and EC50

values were calculated.

5.1.4 Neutral Red

(NR) and MTT Assays

Basal cytotoxicity is often a prerequisite step for assessing toxic
substance activity and mode of action in order to extrapolate their
impact on human health. Moreover, determining the inhibitory
concentration 50 (IC50), for which 50% of cell population dies,
allows working within sublethal doses for assessing other biological
targets of substances.

Because substances can exhibit cytotropism, in our protocol,
cytotoxicity assays were performed on a human breast tumor cell
line (MCF-7) and on rat hepatic cell line (IAR203), being both the
cell types influenced in vivo by various xenobiotics. The evaluation
of cell viability is achieved through the NR and MTT tests, which
explore the keeping of a dye in their cytoplasm/lysosomes and their
metabolic activity, respectively (Fig. 2). In this case, both the
MCF-7 and IAR203 cell lines were seeded at the density of
20,000 cells/cm2 for both tests in 96-well plates. The effect of
the doses 0, 0.001, 0.002.5, 0.005, 0.01, 0.025, 0.05, 0.1, and
0.25 liters equivalent was evaluated in triplicate, after 24 and 48 h
of treatment.

MTTassay is based on the capability of metabolically active cells
to reduce actively the water-soluble salt [3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide] into a insoluble formazan
crystals [32]. This redox reaction depends on the mitochondrial
respiration, thus reflecting the cellular energy capacity and, at the
same time, indicating the cell viability (colorimetric technique).
However, one must consider that other internal enzymes can
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react and reduce the MTT dye. In our case, culture medium was
removed from the wells, replaced by a solution of MTT 0.2 mg/
mL in Hanks’/Hepes buffer, and incubated for 2 h at 37 �C (5%
CO2 atmosphere). The MTT solution was then eliminated, and an
isopropanol acid solution (0.4 M HCl in isopropanol) was added,
to solubilize formazan crystals. Staining intensity was quantified by
means of a SUNRISE spectrophotometric plate reader (Tecan,
Italy) at the wavelength of 620 nm.

The neutral red uptake assay is so far the most used cytotoxic
assay worldwide. It is based on the quantification of the 3-amino-7-
dimethyl-2-methylphenazine hydrochloride (Neutral Red Dye)
uptake by viable cells. They uptake actively the supravital dye that
mainly accumulates in lysosomes, where it remains charged thanks
to pH gradients and is consequently unable to exit. The absorbance
reading at 540 nm, after release of dye under acidic conditions,
reflects the cell membrane stability, hence the viability state [33]. In
our case, NR solution was prepared the day before by diluting
(1:80) in DMEM medium with 5% FBS and leaving it overnight
at 37 �C. After centrifuging twice at 1,250 � g for 10 min at room
temperature and cell exposure for 3 h at 37 �C (5% CO2 atmo-
sphere), fixation was performed by adding a solution of formol-
calcium for 1 min; finally, cells were lysed with acetic acid/ethanol.
Staining intensity was quantified, after 5 min of mixing, with a
microplate reader at the wavelength of 540 nm.

The sample extracts dissolved in sterile DMSO were used.

5.2 Endocrine

Disruption

Endocrine disruption can occur at different biological levels and
target a wide range of receptors, affecting the regulation cascade
processes. Literature has been recently focused on the quantifica-
tion of hormone-like substances in environmental matrices and
their possible effects on organisms and ecosystems. This protocol
proposes the study of the estrogenic and androgenic activity,
because the international regulations on water quality include
some pollutants of whose estrogenicity is proven (see, for instance,

Fig. 2 Detection of cell viability: neutral red (NR) and MTT assays
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the case of bisphenol A, β-estradiol, and nonylphenol within the
revision of the EU Drinking Water Directive [34]).

As for baseline toxicity, this protocol presents both standar-
dized and non-standardized assays.

In all cases, the sample extracts dissolved in sterile DMSO were
used.

5.2.1 YES/YAS The assay with the genetically modified yeast was performed
according to the ISO standard [35]: the employed organism was
a recombinant strain of Saccharomyces cerevisiae stably transfected
with the human estrogen receptor (hERα). In our case, we used the
commercially available microplate assay XenoScreen YES (Xenome-
trix®, Switzerland), which follows exactly the ISO procedure.
XenoScreen YAS (Xenometrix®, Switzerland) utilizes a recombi-
nant strain of Saccharomyces cerevisiae stably transfected with the
human androgen receptor (hAR). Both agonistic and antagonistic
activities were evaluated.

5.2.2

ERE-tk_Luc_MCF-7

This peculiar cell line is of interest due to its estrogen sensitivity
linked with the expression of the receptor α (ERα); besides, cells
stably express the reporter gene luciferase under the control of the
ERE (Estrogen Responsive Elements) sequences. In such a way, in
presence of both the specific ER ligand (17β-estradiol) and
estrogen-like chemicals, the classical estrogen signaling pathways
are activated, and, after migration and dimerization of ERs, their
binding to ERE sequences induces an activation of the luciferase
reporter gene. The activity of luciferase is measured by quantifying
the bioluminescence by means of a microplate luminometer. More
in detail (Fig. 3), MCF-7 cells were seeded at 25,000 cells/cm2 in
24-well plates with DMEM HG medium containing 10% FBS, 1X
mix antibiotics-antimycotics. 24 h after seeding and culture
medium removal (washing with phenol red deprived Hanks’
buffer), cells were treated either with 17β-estradiol or with waste-
water samples. Treatment was performed in DMEM HG culture
medium (without phenol red that interferes with the endocrine-

Fig. 3 Endocrine disruption on human mammary cells
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disrupting activity quantification) with 10% charcoal stripped fetal
bovine serum and 1X mix antibiotics-antimycotics. 17β-Estradiol
was suspended in 100% ethanol, whereas wastewater extracts were
suspended in DMSO, as abovementioned. A standard curve was
performed with 17β-estradiol ranging from 1 fM to 10 nM. Before
lysing cells, their morphology and survival were observed by micro-
scopic observation. Fifty μL of PLB 1X (Promega, Italy) was added
to cell monolayers and let to act for 30 min in ice. A rubber
policeman was used to harvest lysed cells. After a second wash
with lysis buffer (PLB 1X), cell lysate was transferred into an
Eppendorf tube and centrifuged at 10,000 rpm for 10 min at
4 �C. Supernatants were transferred in a new tube and left in
room temperature for at least 30 min. 20 μL of cell lysate was
incubated with 100 μL of luciferin (Promega, Italy) before measur-
ing the relative luminescence. Media containing either DMSO or
ethanol were used as negative controls. Protein content was quan-
tified by the Bradford method (Biorad RC/DC assay, Biorad,
Italy). Results were expressed as relative luminescence unit
(RLU)/mg of proteins.

5.3 Genetic Toxicity A battery of short-term mutagenicity tests revealing different
genetic endpoints is proposed in order to detect possible phenom-
ena of mutagenicity/genotoxicity induced by the exposure to the
samples.

5.3.1 Ames Test The Salmonella/microsome (or bacterial reverse mutation) test
(Ames test) is the most widely validated mutagenicity test and is
included in the Standard Methods for Examination of Water and
Wastewater in 1998 as an official mutagenicity test for the aquatic
environment [36]. By means of this test, it is possible to detect
point mutations (base substitution and frameshift mutations) in
Salmonella typhimurium strains [37]. S. typhimurium TA100 and
TA98 strains were used to test concentrated wastewater in duplicate
at increasing doses, corresponding to 0.001, 0.05, 0.1, 0.25, 0.5,
1, and 2 liters equivalent. The Ames test was performed with and
without the metabolic activation (�S9), adding microsomal
enzymes of rat liver to detect direct and indirect mutagens. Plates
were incubated at 37 �C in darkness for 72 h; afterward revertant
colonies were counted. 2-Nitrofluorene (10 μg/plate) and sodium
azide (10 μg/plate) were used as positive controls for TA98 with-
out S9 and TA100 without S9, respectively, and 2-aminofluorene
(20 μg/plate) for both strains with S9. DMSO and distilled water
previously filtered through tC18 silica cartridges were tested as
negative controls. The results were considered positive in case two
consecutive doses or the highest nontoxic dose caused a response at
least twice that of the solvent control and at least two of these
consecutive doses showed a dose-response relationship [36]. The
results were expressed as mutagenicity ratio (MR), dividing the
revertants/plate by the spontaneous mutation rate. In case the
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response was positive, the results were also expressed as specific
mutagenic activity (net revertants/liter) calculated by linear regres-
sion analysis of the dose-response curve. The sample extracts dis-
solved in sterile DMSO were used.

5.3.2 Single Cell Gel

Electrophoresis Assay

(SCGE)/Comet Test

The single cell gel electrophoresis (SCGE) assay or comet test is a
simple method for measuring primary DNA damage in eukaryotic
cells, as single-strand breaks (SSB) and double-strand breaks
(DSB), excision repair sites, cross-links, and alkali-labile sites
(ALS). By applying an electrical field, DNA fragments migrate
toward the anode at a speed depending on its size and cause a
comet image (Fig. 4). The assay was performed in alkaline condi-
tions (pH > 13) using leukocytes from peripheral blood of a
non-smoker donor [38]. The organic extracts of wastewater sam-
ples dissolved in DMSO were kept in contact with the leukocytes
(1 h at 37 �C with 5% CO2) at increasing doses (0.001, 0.05, 0.1,
0.25, and 0.5 liters equivalent). Negative (DMSO) and positive
controls (2 mM of ethylmethane sulfonate, EMS) were submitted
to analyses. After incubation, about 5� 105 cells were suspended in

Fig. 4 Single cell gel electrophoresis assay (Comet test) damaged DNA generates the “tail” (Komet 5, Kinetic
Imaging Ltd)
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90 μL of 0.7% low melting agarose (LMA) and spread onto micro-
scope slides pre-coated with 1% normal melting agarose (NMA).
The cells were lysed overnight at 4 �C in a lysis solution (pH 10)
containing 8 mM Tris–HCl, 2.5 M NaCl, 100 mM Na2EDTA, 1%
triton X-100, and 10% DMSO. After that, the slides were placed for
40 min in a horizontal gel electrophoresis tank filled with cold
electrophoretic buffer (1 mM Na2EDTA and 300 mM NaOH,
pH > 13) to allow DNA unwinding. Electrophoresis was per-
formed in the same buffer for 40 min at 25 V (1 V/cm) and
300 mA. After electrophoresis, the slides were neutralized with
0.4 M Tris–HCl (pH 7.5), stained with ethidium bromide
(10 μg/mL) and analyzed using a fluorescence microscope (Olym-
pus CX 41RF) equipped with a BP 515–560 nm excitation filter
and an LP 580 nm barrier filter. The experiment was repeated
twice. Fifty randomly selected cells per slide (two slides per sample)
were analyzed. The extent of DNA migration was evaluated by
means of a “visual score,” based on visual classification of DNA
damage, and the comet parameter “tail intensity” (percentage of
DNA migrated in the tail) was used as the measure of DNA dam-
age, measured by an automatic imaging system (Komet 5, Kinetic
Imaging Ltd). The results of Comet test were expressed as the
mean � standard deviation, and statistical significance was evalu-
ated with one-way ANOVA followed by Dunnett’s multiple com-
parison test (comparing each exposure concentration to the
negative control). The sample extracts dissolved in sterile DMSO
were used.

5.3.3 Allium cepa Test Two genotoxicity tests were carried out on raw samples using
Allium cepa to detect chromosome aberrations (namely, bridges,
buds, rings, polar slips, sticky, laggard, polyploidized and
condensed nuclei, fragments, c-mitosis, and multipolar ana-
phases and metaphases, binucleated cells) and micronuclei
[39, 40].

In a preliminary toxicity assay, 12 equal-sized young bulbs of
onion (Φ �2.5 cm) were exposed for 76 h in darkness to undiluted
and diluted water (1:2, 1:10, 1:20, 1:100, 1:200, and 1:100 dilu-
tion), replacing the sample solution every day. Root length was
used to calculate the EC50 value and to identify the concentration
for the execution of Allium cepa genotoxicity assays, being the
highest correspondent to the EC50 value identified (the concentra-
tion causing a 50% reduction in root growth). Other macroscopic
parameters (turgescence, consistency, color, and root tip shape
change) were used as toxicity indexes [41], as displayed in
Table 2, where plant roots growth inhibition test is included in
the evaluation of freshwater ecotoxicity.

Chromosome aberrations (CA) and micronuclei (MN) tests
were performed using six equal-sized young bulbs per sample;
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after 72 h of pre-germination in saline solution (Rank solution), the
bulbs were exposed to samples for 24 h [42]. Afterward, the roots
were fixed in acetic acid and ethanol (1:3) for 24 h and lastly stored
in 70% ethanol for the chromosome aberrations (CA) test [40]. In
the micronuclei (MN) test, the bulbs, after exposure, were dipped
in Rank solution for 44 h of recovery time (to cover two rounds of
mitosis), fixed in acetic acid and ethanol (1:3) for 24 h, and lastly
stored in 70% ethanol [39]. Rank saline solution (24 h exposure)
and maleic hydrazide (10�2 M, 6-h exposure) were used as negative
and positive controls, respectively. Five roots for each sample were
considered for microscopic analysis, after Feulgen staining [39, 40]:
1000 cells/slide (5000 cells/sample) were scored for mitotic index
(as a measure of cell division, hence sample toxicity), 200 in mitosis
cells/slide (1000 cells/sample) for chromosomal aberrations, and
2000 in interphase cells/slide (10,000 cells/sample) for micronu-
clei frequency. Chi square test was performed for mitotic index and
chromosomal aberration data analyses; the analysis of variance and
Dunnett’s multiple comparison test were performed to analyze the
micronuclei frequency.

5.4 Carcinogenic

Activity

Chemically induced carcinogenesis is assumed the result of multi-
step events that can be recapitulated in initiation, promotion,
transformation, and progression phases. Initiation is represented
by multiple mutations and DNA damage events, commonly involv-
ing genes controlling key growth pathways; the promotion stage
results in various epigenetic changes that enhance the growth of
initiated cells. This cellular amplification progresses along the car-
cinogenesis process evolving in the progression step, in which the
genetic instability results in the further and irreversible loss of
growth control, gain in invasiveness, and metastatic properties.
The complexity of carcinogenesis process is still discussed for trying
to explain the spatiotemporal succession of deleterious events and
the more specific classification of chemicals, their mode, and mech-
anism of action [43–46]. Plenty of in vitro tests have been proposed
to assess mutagenic and carcinogenic properties of chemicals.
Although the extrapolation to human risk assessment is difficult,
they can provide major indications for further global evaluations of
chemical/mixture toxicity.

5.4.1 Tumor Promotion A test aimed at identifying chemicals/mixtures acting either by
non-genotoxic carcinogenic induction (without DNA mutation)
or by processes known to be important in carcinogenesis (down-/
up-regulation of cell homeostasis: increased inflammation or cell
proliferation, inhibition of cell differentiation, and death) is the
in vitro study of the inhibition of gap junction intercellular com-
munication (GJIC) [47, 48]. The predictivity of this test is about
70% [48]. To evaluate the intercellular communication mediated by
gap junctions (GJIC), the scrape loading technique was used in
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subconfluent/confluent cells grown in monolayer [49] (Fig. 5).
However, because samples are often scarce, we tried to miniaturize
the method. Therefore, cells were into 24-wells on 12 mm round
coverslips. Cell seeding density needs to be optimized for each cell
type. Once a homogeneous cell monolayer was obtained, it was
injured with a scalpel in the presence of the low molecular weight
fluorescent dye, lucifer yellow CH (457.2 Dalton), which was
incorporated by damaged cells all along the cut. The fluorescent
tracer trapped inside the cytoplasm can spread to other adjacent
cells only if they communicate via gap junction channels. In order
to verify that GJIC are effectively responsible for the dye transfer,
another dye (rhodamine dextran) was used, in concomitance, as the
negative control; since its molecular weight is about 10,000 Dal-
ton, thus it cannot pass throughout GJ channels (only molecules
with a molecular weight lower than 1000 Dalton can pass
through). As an example, we worked with a liver-derived cell line
(the IAR203 cells). Cells were seeded at a density of 100,000/cm2

onto 24-well plates. After 24 h, the cells were treated for 6 h and
then washed twice with PBS containing calcium and magnesium
ions; finally, as abovementioned, cell monolayer was cut with in a
lucifer yellow solution (0.5% in PBS). Cells were incubated for
7 min at 37 �C (5% CO2 atmosphere; 97% relative humidity).

Seed cells to obtain a confluent monolayer

Treat cells 24 h after seeding

Injure cell monolayer with a scalpel in the presence of Lucifer Yellow CH

Let to pass dye across gap junctional channel for 7 min at 37°C

Fix cells

Observe with fluorescence microscope

Take microphotographies

Evaluate GJIC inhibition

Treated cellsUntreated cells

Fig. 5 Tumor promotion potential: gap junction intercellular communication (GJIC) derived from [49]
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After washing twice with PBS and 5 min of fixation with formalde-
hyde at 4%, cells were washed again with PBS. The coverslips were
mounted and rapidly observed under fluorescence microscopy.
Images were acquired combining the microscope with the cellSens
imaging software, to quantify the effect of substances/mixtures on
the intercellular communication mediated by gap junctions. The
sample extracts dissolved in sterile DMSO were used.

5.4.2 Cell Transformation

Assays (CTA)

The cell transformation assays are in vitro tests mimicking some key
stages of the in vivo carcinogenesis process and represent the most
advanced in vitro tests for the prediction of human carcinogenicity
induced by chemicals/mixtures [50]. The process of chemical-
induced cell transformation in suitable cell models leads to pheno-
typic features, typical of tumorigenic cells. The in vitro transformed
cells acquire the ability to induce tumors in susceptible animals, as a
demonstration of their malignant potential [51].

Chemical carcinogens can be classified as either genotoxic or
non-genotoxic, based on their mode of action. Genotoxic com-
pounds (or their metabolites) are able to initiate the cells to carci-
nogenesis through a direct interaction with DNA, leading to
structural and/or numerical chromosomal damages. Recommen-
dations suggest the use of test batteries for genotoxicity evaluation
before analyzing the carcinogenic potential. On the other hand,
non-genotoxic carcinogens act via indirect or epigenetic mechan-
isms, at least initially, causing modifications to DNA structures and
alterations of gene expression and signal transduction.

Thus, non-genotoxic carcinogens are compounds which
exhibit negative results in genotoxicity tests but have the potential
to induce cell transformation by means of a non-genotoxic mecha-
nism. This suggests the importance of an integrated approach to
the evaluation of the biological activity of environmental com-
pounds/matrices.

Among the cell lines suggested by the Detailed Review Paper
on Cell Transformation Assays [51], we selected the C3H10T1/
2 clone 8 (C3H from here on) mouse embryonic fibroblasts
(ATCC, CCL 226 lot. n. 58078542). These cells have a high
sensitivity to carcinogenic compounds and a low spontaneous
transformation rate. The expression of the neoplastic phenotype is
visualized by means of transformed foci of high cell density and
typical morphology. The foci of transformed cells are recognized
under a microscope and classified by standard morphological fea-
tures: multilayered growth, deep basophilic staining, random cell
orientation at the edge of the focus, and invasiveness on the sur-
rounding monolayer of normal cells. The morphological features of
transformed cells of foci reflect the metabolic changes, genetic
instability, altered growth control, and acquisition of immortaliza-
tion, typical of the carcinogenesis process. Three types of foci are
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described: type I are not considered to be fully transformed as they
do not produce tumors when injected into susceptible animal hosts,
while type II and III are fully transformed and have undergone the
malignant transformation.

The CTA is divided into two phases, according to the experi-
mental protocol shown in Figs. 6 and 7. A preliminary cytotoxicity
assay was performed with the aim of identifying a dose-response
and of selecting non-cytotoxic concentrations of the chemical/
matrix analyzed (Fig. 6). On day 0, cells were seeded (200 cells/
dish, 5 dishes/sample) onto 100 mm diameter dishes. 24 h after
seeding, complete control medium (Basal Medium Eagle contain-
ing 10% heat-inactivated fetal bovine serum, 1% glutamine, 0.5%
HEPES 2 M, and 25 μg/mL gentamicin) was replaced with fresh
medium (controls), with medium containing different dilutions of
wastewaters or with medium containing all positive controls (e.g.,
4 μg/m 3-methylcholantrene). After 24 h of treatment, all the
media were replaced with fresh control medium, and cells were
allowed to grow. Seven to ten days after seeding, all the samples
were fixed with methanol and stained with 10% Giemsa in distilled
water. After removing the excess of staining solution by washing
with distilled water, the samples were air-dried and ready for count-
ing of the colonies under a stereomicroscope. Colonies are formed
by at least 50 cells.

Next to the selection of non-cytotoxic concentrations of test
chemical/matrix, the transformation assay was performed (Fig. 7).
C3H cells were seeded on day 0 at a density of 800 cells/dish
(100 mm diameter, 10 dishes/sample) and exposed 24 h after

Fig. 6 Cytotoxicity assay
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seeding to test compounds for additional 24 h. After treatment, the
cultures were fed weekly with complete medium until confluence
was reached (around 2 weeks); then the serum concentration was
reduced to 5% until the end of the assay. The transformation assay
lasted 6 weeks, during which the cells exposed to the test com-
pound(s)/matrix eventually underwent in vitro transformation,
visualized by colonies of transformed cells, the foci [52, 53]. After
6 weeks, the cells were fixed (methanol) and stained (10%Giemsa in
water), rinsed with water, and observed under a microscope for foci
scoring and classification. Foci of type II and III (fully transformed)
were scored and counted, and the number of transformed foci in
treated samples was compared to those of negative and positive
controls.

6 Elaboration Criteria of Experimental Results

Beyond their inherent meaning (such as the values of EC50, IC50,
etc.), the results of bioassays can be employed as input data for the
evaluation of the effects of a work, namely, a wastewater treatment
plant, on the human health and the ecosystem. Our protocol
proposes two ways: the first one, consisting in a standardized life
cycle-based assessment, and the second one, an experimental
approach, which correlates the emissions into different

Fig. 7 Cell transformation assay
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environmental matrices with the probability of occurrence of
human diseases. In the following, a brief description of the princi-
ples of both approaches is reported: the reader may refer to the
cited literature for details.

6.1 Determination

of Equivalent

Concentration for LCA

The Organisation Environmental Footprint (OEF) and Product
Environmental Footprint (PEF) protocols, described in the Rec-
ommendation 2013/179/EU [54], allow to quantify the possible
impact on 15 environmental footprint (EF) impact categories gen-
erated in all life cycle stages of organizations or products.

The results of bioassays cannot be directly used in the environ-
mental footprint assessment protocols based on LCA principles.
Nevertheless, an innovative procedure, for integrating the results of
bioassays in the OEF/PEF protocols, was recently proposed
[55, 56] and applied to evaluate the impacts on freshwater and
human toxicity (both cancer and non-cancer effects) of WWTP
effluents.

This procedure is based on the conversion of the results of
biological assays into equivalent concentrations of reference sub-
stances giving the same effects as those measured experimentally. In
practice, different concentrations of proper reference chemicals are
submitted, as described in [57], to the related bioassays for obtain-
ing dose-response curves. The equivalent concentration is identi-
fied as the one exerting the same toxicity as that measured on the
tested samples. Concentrations of reference substances, then, can
be used as input data of the LCA-based models for estimating the
contribution to different impact categories. Indeed, referring to the
target organism and the specific endpoint, bioassays can be asso-
ciated to impact categories, as shown in Table 2. When, for a given
impact category, more bioassays are available, according to a con-
servative approach, the highest effect can be selected as the one
representative of the impact of the analyzed sample.

Reference chemicals must be both sensitive for the specific
endpoints and included in the list provided by the International
Reference Life Cycle Data System (ILCD) for the related impact
category. The evaluation of the potential toxicity in the OEF/PEF
procedures is based on the characterization factors derived from the
USEtox model [58]. The USEtox characterization factors for
human toxicity (both carcinogenic and non-carcinogenic impacts)
and for freshwater ecosystem toxicity are classified as “indicative”
(or “interim”) when a high degree of uncertainty is still associated
in the fate, exposure, or effects of the substance in the different
environmental compartments, while they are labeled as “recom-
mended” when the model is considered fully appropriate. For this
reason, in the works cited above, the reference substances were
chosen among the list of chemicals, whose characterization factors,
for the selected impact categories, are recorded as
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“recommended,” thus minimizing the intrinsic uncertainty related
to the USEtox model.

6.2 Direct Use

of Results

of Bioassays Within

the BAD Approach

The BAD approach, extensively explained in [3, 4, 59], is a proce-
dure that allows quantifying the impacts and the benefits on human
health related to a WWTP, by considering the emissions into both
water and air. A direct approach is used for the evaluation of the
damage on human health due to air emissions; on the contrary, an
indirect approach is proposed for water emissions. The conversion
of both damages into an economic impact enables their
comparison.

Regarding the air, both the so-called indirect (due to energy
production) and direct emissions (N2O from nitrogen removal
processes and CH4 leakage from biogas storage) are converted
into an external cost, using values (expressed in €/kgemitted pollutant)
available in the literature [60, 61].

As for water emissions, first, bioassays able to highlight poten-
tial effects on human health must be selected, according to the list
in Table 2. From the results of each bioassay, performed on influent
and effluent samples, a percent reduction (if any) of the effect
exerted toward a specific endpoint is calculated. The next step is
the calculation of the corresponding reduction of the burden of
diseases, associated to the performed bioassays, and the consequent

Table 2
Bioassays used in the environmental footprint assessment by means of OEF/PEF protocols and BAD
approach

Bioassay OEF/PEF impact categories BAD approach

Algal growth inhibition test FET �
Acute toxicity of water flea FET �
Bioluminescence inhibition test FET �
Plant root growth inhibition test (A. cepa) FET �
Neutral red uptake assay HT-NC �
MTT reduction assay HT-NC �
ERE-tk_Luc_MCF-7 HT-NC �
YES/YAS HT-NC �
Ames test HT-C (?) �
Allium cepa test FET �
Comet test HT-C �
In vitro cell transformation assay HT-C �
Tumor promotion HT-C �
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reduction of DALY (Disability Adjusted Life Year), which can be
finally converted into an economic value through the gross domes-
tic product of a country. For the application of this procedure, the
World Health Organization database can be referred to ref. 62.

7 The Final Step: Facing the Decision Processes

Assessing the impact of effluents on ecosystem through a well-
defined protocol is crucial to ensure that this important aspect
plays an appropriate role in the context of decision processes
concerning the design of new WWTPs or the update of existing
ones. These processes typically involve a multiplicity of players
(ranging from technical experts to political bodies and the general
public) and, due to their complexity, belong to the field of Multi-
Attribute Decision Making (MADM). In MADM problems the
evaluation of each alternative involves multiple attributes, also
called criteria, which may have different importance and may be
not directly comparable due to their different nature (quantitative
or qualitative) and non-reconcilable units of measurement. In par-
ticular, in addition to environmental aspects, the following main
classes of criteria play a role in the assessment of a technological
solution: technical, economical, administrative/normative, and
sociocultural.

To properly manage this complexity and avoid the risk of over-
simplifications and/or unbalanced evaluations, the adoption of
suitable decision support systems providing a formal support to
the assessment and overall aggregation of the abovementioned
criteria is appropriate [63–65]. This in turn requires that the assess-
ment of each criterion is carried out in a clear, accountable, and
reproducible manner. Criteria failing to meet these requirements
might risk playing a diminished role in the decision process, even in
spite of their intrinsic importance, in favor of criteria whose assess-
ment is traditionally regarded as more consolidated and reliable,
e.g., economical evaluations. By defining a protocol for assessing
the environmental footprint by means of ecotoxicological tools, we
aim also at providing a contribution to reduce this risk and to
ensure a proper consideration of these important assessments in
the context of the overall decision processes.
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(2011) Integration of GC-MSD and ER-Ca-
lux® assay into a single protocol for determin-
ing steroid estrogens in environmental samples.
Sci Total Environ 409:5069–5075. https://
doi.org/10.1016/j.scitotenv.2011.08.020

15. Arlos MJ, Parker WJ, Bicudo JR, Law P,
Marjan P, Andrews SA, Servos MR (2018)
Multi-year prediction of estrogenicity in
municipal wastewater effluents. Sci Total Envi-
ron 610–611:1103–1112. https://doi.org/
10.1016/j.scitotenv.2017.08.171

16. Caldwell DJ, Mastrocco F, Anderson PD,
L€ange R, Sumpter JP (2012) Predicted-no-
effect concentrations for the steroid estrogens
estrone, 17β-estradiol, estriol, and 17-
α-ethinylestradiol. Environ Toxicol Chem
31:1396–1406. https://doi.org/10.1002/
etc.1825

17. Escher BI, Aı̈t-Aı̈ssa S, Behnisch PA, Brack W,
Brion F, Brouwer A, Buchinger S, Crawford
SE, Du Pasquier D, Hamers T, Hettwer K,
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SvanströmM, Heimersson S (2017) A compar-
ison between two full-scale MBR and CAS
municipal wastewater treatment plants:
techno-economic-environmental assessment.
Environ Sci Pollut Res 24:17383. https://doi.
org/10.1007/s11356-017-9409-3

64. Bertanza G, Canato M, Laera G (2018)
Towards energy self-sufficiency and integral
material recovery in waste water treatment
plants: assessment of upgrading options. J
Clean Prod 170:1206. https://doi.org/10.
1016/j.jclepro.2017.09.228

65. Bertanza G, Baroni P, Canato M (2016) Rank-
ing sewage sludge management strategies by
means of decision support systems: a case
study. Resour Conserv Recycl 110:1. https://
doi.org/10.1016/j.resconrec.2016.03.011

Ecotoxicology and Environmental Footprint Assessment 327

https://doi.org/10.1016/j.tiv.2016.07.006
https://doi.org/10.1016/j.tiv.2016.07.006
https://doi.org/10.3000/19770677.L_2013.124.eng
https://doi.org/10.3000/19770677.L_2013.124.eng
https://doi.org/10.1016/j.ecoenv.2017.09.031
https://doi.org/10.1016/j.ecoenv.2017.09.031
https://doi.org/10.1007/s11367-008-0038-4
https://doi.org/10.1007/s11367-008-0038-4
https://doi.org/10.1016/j.chemosphere.2015.11.054
https://doi.org/10.1016/j.chemosphere.2015.11.054
https://doi.org/10.2800/23502
https://doi.org/10.1021/es800456m
https://doi.org/10.1021/es800456m
https://doi.org/10.1007/s11356-017-9409-3
https://doi.org/10.1007/s11356-017-9409-3
https://doi.org/10.1016/j.jclepro.2017.09.228
https://doi.org/10.1016/j.jclepro.2017.09.228
https://doi.org/10.1016/j.resconrec.2016.03.011
https://doi.org/10.1016/j.resconrec.2016.03.011


Part III

Case Studies and Literature Reports



Chapter 15

Development of Baseline Quantitative Structure-Activity
Relationships (QSARs) for the Effects of Active
Pharmaceutical Ingredients (APIs) to Aquatic Species

David J. Ebbrell, Mark T. D. Cronin, Claire M. Ellison, James W. Firman,
and Judith C. Madden

Abstract

The aim of this work was to develop predictive approaches for acute and chronic toxicity in fish, Daphnia,
and algae utilizing baseline toxicity models. Currently available public active pharmaceutical ingredient
(API) ecotoxicity data were compared to published baseline toxicity QSARs and classification schemes for
industrial chemicals. The results showed that methods of assessing ecotoxicity for industrial chemicals are
not adequate for the assessment of APIs. To develop equivalent prediction methods for APIs, acute baseline
toxicity QSARs for APIs based on hydrophobicity (as log P) were constructed, and the lower limits of
toxicity for the public API data were compared with published industrial baseline toxicity QSARs for fish,
Daphnia, and algae. These baseline toxicity QSARs were subsequently compared to the available acute
toxicity data from the iPiE database. Since 75% of APIs are ionizable, baseline toxicity QSARs were also
constructed using logD at pH 7.0. For chronic toxicity baselines, uncensored NOEC and LOEC data from
the iPiE database were plotted using either log P or log D at pH 7.0. An alternative methodology was used
to develop chronic baseline toxicity QSARs which consisted of iteratively refining the line of best fit until
approximately 90% of the values were above the baseline toxicity QSARs. These chronic baseline toxicity
QSARs could subsequently be used to identify groups which exhibit toxicity in excess of the baseline (i.e.,
greater than 10� the hydrophobicity-predicted toxicity).

Key words NOEC, LOEC, QSAR, Environmental Risk Assessment, Aquatic toxicity, Baseline toxic-
ity, Excess toxicity

1 Environmental Risk Assessment for Active Pharmaceutical Ingredients

Since 2006, within the European Union (EU), an Environmental
Risk Assessment (ERA)must accompany applications for marketing
authorization of active pharmaceutical ingredients (APIs) [1]. The
standard tests used to assess chronic and acute ecotoxicological
effects of APIs are presented in Table 1 [2–6]. These tests relate
to three trophic levels (fish, Daphnia, and algae) and aim to give a
broad assessment of the most relevant environmental adverse

Kunal Roy (ed.), Ecotoxicological QSARs, Methods in Pharmacology and Toxicology,
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effects (hence these three species were selected for model develop-
ment within this study). Ecotoxicological data are used to calculate
a Predicted No Effect Concentration (PNEC) for the most suscep-
tible species [1]. The PNEC can be calculated using data from acute
or chronic assessments; however chronic data are preferred as they
are more representative of exposure scenario for wildlife. In most
instances using available acute data, rather than commissioning
chronic testing, is pragmatic as the acute assessments provide a
conservative estimation of the PNEC (when appropriate correction
factors are used). Vestel et al. [7] found that 85% of PNECs calcu-
lated using acute data were more protective than the corresponding
chronic PNEC. However, problems arise when the mechanism of
action that causes the lethality measured in acute assays differs to
the mechanism of the sublethal effects observed in chronic test
systems [8]. Thus acute data are only a suitable surrogate when
the mechanism of action remains the same [9].

For many APIs, particularly those approved prior to 2006, the
standard tests indicated in Table 1 have not been performed, and
hence there is little understanding of their potential impact on
environmental species. Many computational models, such as Quan-
titative Structure-Activity Relationships (QSARs), have been pub-
lished and used to assess the environmental impacts of industrial
compounds (e.g., [10–13]). The use of such models can help
prioritize the APIs for which there are little or no ecotoxicity
data. Creation of these models was made possible because of the
quantity and quality of publicly available data for industrial com-
pounds, especially for acute endpoints. Unfortunately, fewer data
for APIs are available publically [14]; therefore only a small number
of published models are available for these compounds
[15, 16]. Although acute and chronic effects for industrial chemi-
cals are well established, applying the same approach to APIs may

Table 1
Standard tests used to assess adverse effects of APIs on environmental species

Test guideline Organism Type Endpoint(s)

OECD 201 Algae sp. Acute and chronic Inhibition of growth (EC50),
NOEC, LOEC

OECD 202 Daphnia sp. Acute Immobilization (EC50)

OECD 203 Fish Acute Lethality (LC50)

OECD 210 Fish (early life stage) Chronic Growth, survival, hatching
(NOEC, LOEC)

OECD 211 Daphnia magna Chronic Reproduction, growth, immobilization
(NOEC, LOEC)
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be problematic due to specific differences between APIs and indus-
trial chemicals. For example, unlike many industrial chemicals, APIs
are structurally complex and often contain multiple functional
groups and are designed to be biologically active. Another impor-
tant difference is in their potential for ionization. Approximately
75% of APIs contain an ionizable functionality, including single
acidic or basic groups, or more complex multiprotic chemicals
and zwitterions. One consequence of this is that although the
logarithm of the octanol/water partition coefficient (log P also
denoted as log Kow, indicating the relative distribution of neutral
species) is considered to be an appropriate descriptor for the distri-
bution of industrial compounds, for ionizable APIs alternative
descriptors may be required. The logarithm of the distribution
coefficient (log D) which considers the relative distribution of
both ionized and unionized species and liposome/water partition
coefficient (a system more representative of biological membranes)
have both been proposed. The greater quantity and quality of
models developed to predict the ecotoxicity of industrial com-
pounds are in part due to the amount of data available. For
instance, toxicity values for industrial chemicals were generated in
one, or a small number of, laboratory(ies) carried out using consis-
tent methodology. Typically, the industrial data used are those
generated by the Center for Lake Superior Environmental Studies
at the University of Wisconsin, USA, which were summarized by
Russom et al. [12]. In contrast, publically available data for APIs are
limited with toxicity values being measured in multiple laboratories
resulting in much greater variability.

In addition to the quality of the data used, development of
QSARs for industrial compounds has also been assisted by the
relative ease with which the main mechanisms of action of acute
aquatic toxicity can be modelled. The majority of compounds cause
toxicity through non-specific disruption of biological membranes
as they diffuse into the organism; a mechanism known as narcosis.
This mechanism of action is dependent on a compound’s ability to
move out of the aqueous environment and into or through the cell
membranes. Hence it can be modelled using hydrophobic descrip-
tors alone, the most common being log P. Sanderson and Thomsen
[17] showed a good correlation existed between log P and acute
toxicity of APIs, suggesting narcosis as the most likely primary
mechanism of toxicity for these compounds. It has been argued
that descriptors more able to account for potential speciation of
APIs (e.g., the liposome/water partition coefficient) allow for bet-
ter models to be built [18–21]. The use of liposome/water parti-
tioning or log P has enabled acute toxicity values to be predicted for
a large number of APIs. For example, Escher et al. [18] predicted
toxicity values for approximately 90% of the APIs found in waste-
water indicating the majority elicited acute toxicity effects via
narcosis.
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The other mechanisms of acute aquatic toxicity were summar-
ized by Verhaar et al. [22] and also extended by Russom et al. [12]
and Thomas et al. [23]. In addition to two mechanisms for narcosis
(polar and non-polar), reactive and specifically acting mechanisms
were also identified. The domain of each mechanism was defined by
Verhaar et al. using simple 2D molecular substructures. When used
in a decision tree approach, the Verhaar scheme can be used to
classify compounds into one of the four classes: class 1, baseline
toxicity and non-polar narcotics; class 2, polar narcotics; class
3, reactive compounds; and class 4, compounds acting via a specific,
receptor-mediated mechanism. The simplicity of the scheme makes
it amenable to encoding into software used in toxicity prediction;
one example of which is Toxtree (more details are available via the
website http://toxtree.sourceforge.net). The scheme was built
using a training set containing a range of environmental pollutants
with acute lethality concentrations in fish and has been shown to
have good predictive capabilities in assigning mechanisms of action
for other industrial compounds [24–26]. These assigned mechan-
isms enable local modelling of adverse effects that can be more
reliable and easier to rationalize in a regulatory submission. How-
ever, the scheme does not yet sufficiently cover the structural
domain of APIs, and in a recent study, 78% of APIs were found to
be out of the domain for the classification scheme [7]. One reason
for this may be that there are relatively few defined structures
associated with allocation to class 4, whereas class 4 ideally should
capture all specific receptor-mediated mechanisms, (i.e., interaction
with (1) protein receptors, (2) enzymes, (3) ion channels, or
(4) transporters [27]). Many APIs are designed to elicit activity
via such interactions [18]. However, it has also been shown that the
majority of APIs elicit acute lethality via a narcotic mechanism;
therefore expansion of the structural domains of classes 1 and
2 may also improve the applicability of this scheme to APIs.
Expanding Verhaar class 4 to cover all the specific mechanisms of
APIs is challenging not only because there are a large number of
mechanisms to consider but also because the number of com-
pounds acting via any one specific mechanism is relatively small,
leading to the development of less reliable local models. Another
approach for identifying compounds that do not elicit toxicity via
narcosis, and hence exhibit acute toxicity in excess of the baseline
toxicity QSAR, is the use of toxic ratios (TRs) [21, 28, 29]. Toxic
ratios are calculated from the difference between the adverse effect
concentration predicted using a baseline toxicity QSAR and the
measured concentration. Compounds exhibiting high TRs are
likely to act via reactive or specific mechanisms (the latter being
more probable for APIs). However, the use of TRs is dependent on
the availability of reliable baseline toxicity QSARs (narcosis) for
APIs. Thus, the aims of this work were to assess how measured
acute aquatic toxicity data for APIs compare with values predicted
using existing baseline toxicity QSARs (developed using data for
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industrial compounds) and to derive more robust baseline toxicity
QSARs, specific to APIs, that may be useful in identifying those
exhibiting excess toxicity.

2 Data Collation

The data used throughout this study were collected and extracted
from the database developed as part of the Intelligence-led Assess-
ment of Pharmaceuticals in the Environment (iPiE) project. The
database for this project was populated by contributions of data
from industrial partners of the project. These data were generated
by adhering to the relevant OECD test guidelines for acute and
chronic ecotoxicity endpoints for fish, Daphnia, and algae (see
Table 1). Initial work focused on publicly available data; data
from the iPiE project were also used once they became available.
Four primary data sources were used to collate publicly available
acute and chronic aquatic toxicity data for APIs. These were the
Mistrapharma database (www.mistrapharma.se) and publications
by Sanderson and Thomsen [30], Vestel et al. [7], and Brausch
et al. [31]. These contained structural identifiers (name, CAS, and
SMILES) and toxicity data collated from over 150 original sources.
The toxicity data related to lethality (LC50), effect (EC50), no
observed effect concentration (NOEC) and lowest observed effect
concentration (LOEC) for fish, algae, and invertebrates. The spe-
cific species tested were noted in the majority of cases (70% of
records), but for others only the generic taxonomic group was
provided (e.g., “fish”, Daphnia). A second API dataset was
obtained from the iPiE database.

The data were combined into a single dataset and standardized
by performing the following:

1. Removal of compounds which were not APIs (e.g., excipients
and intermediates)

2. Removal of salts forms of APIs

3. Retrieval of molecular weights from Chemspider (www.
chemspider.com) to enable the toxicity concentrations
reported to be converted into mM units

4. Removal of records associated with censored toxicity values
(i.e., recorded as > or <) or data otherwise unsuitable for
modelling (e.g., ambiguous or missing units of measurement)

Initially, investigations focused on developing baseline toxicity
QSARs for acute toxicity in three species (fish,Daphnia, and algae).
Thus, NOEC, LOEC, and effect concentrations relating to any-
thing other than lethality (or immobility in Daphnia) were
removed from analysis of the acute data. The compiled datasets
will henceforth be referred to as the “public API dataset” and the
“iPiE API dataset.”
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A dataset of acute toxicity values for industrial compounds was
also compiled. This was to enable a comparison to be made
between the baselines toxicity QSARs generated for the two differ-
ent chemical classes (i.e., APIs versus industrial compounds). This
also enabled a comparison of the chemical space occupied by the
two broad classes of compounds to be made and an assessment of
whether the behavior of APIs differs when compared to industrial
compounds. The dataset of acute toxicity values for industrial
compounds, as reported by Russom et al. [12], was used for this
purpose. These data comprised LC50 values for the fish species
Pimephales promelas (fathead minnow) along with chemical names
and generic modes of action (i.e., narcosis, reactive toxicity, etc.).
These data will henceforth be referred to as the “industrial dataset.”

3 Results

3.1 Data Analysis An analysis into the variability of the publicly available acute toxicity
data was performed wherein both the median toxicity and the range
of values (for APIs with more than one measured toxicity value)
were examined. Figure 1 shows the results of the investigation into
the variability of the publicly available data. Note that for some
APIs, reported toxicity values span 3 orders of magnitude or more
(see APIs ethinylestradiol and 17 β-estradiol in Fig. 1). Highly
variable data lead to lower quality models being developed [32].

To enable a comparison of the chemical space of APIs and
industrial compounds, ecotoxicity data relevant to both groups
were collated from the literature. The sources for the public API
data were publications by Brausch et al. [31], Sanderson and
Thomsen [30] and Vestel et al. [7], and also the Mistrapharma
database. The source of the industrial data was the publication by
Russom et al. [12]. The collation criteria are fully described within
Sect. 2. For comparative purposes, a summary of the collated data is
presented in Tables 2 and 3 (for public APIs and industrial chemi-
cals, respectively).

The plot of toxicity against hydrophobicity for fish from both
the industrial and public API datasets is shown in Fig. 2. The APIs
have a narrow range of both toxicity concentrations and log
P values that generally fit well within that of the industrial com-
pounds. However, the APIs do not show the same distinctive
baseline toxicity QSAR that the industrial compounds do for the
correlation of log (1/LC50) with log P. This could in part be due to
the more significant experimental variability in the collated data
(multiple sources of experimental data with different fish species) or
mechanisms other than narcosis dominating the observed acute
toxicity mechanisms of APIs.
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Fig. 1 The variability in public acute toxicity values in fish (blue circles indicate individual recorded values for
each chemical; median values are indicated by black squares)

Table 2
Summary of the acute ecotoxicity data collated for public APIs

Endpoints

Fish LC50 Daphnia EC50 or LC50
a Algae EC50 or LC50

Number of compounds 152 234 166

Number of toxicity data points 272 644 388

Toxicity (log 1/LC50 or EC50)
(mM) range

�1.27 — 4.34 �3.03 — 6.51 �2.59 — 5.71

Calculated log P range �4.41 — 9.1 �9.36 — 9.1 �4.84 — 9.1

aIn Daphnia assays immobilization can accurately be described as an EC50 but may be reported as an LC50; likewise for

algae, the effect of growth inhibition may be reported as an LC50

Table 3
Summary of the fish acute ecotoxicity data collated for industrial chemicals

Fish LC50

Number of compounds 408

Number of toxicity data points 408

Toxicity (log 1/LC50) range �2.96 — 6.38

Calculated log P range �1.75 — 7.43
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3.2 Classification

of Compounds Using

the Verhaar Scheme

and Comparison

of the Chemical Space

of Industrial

Compounds

Versus APIs

For the purposes of comparing the chemical space of industrial
compounds to APIs, fish toxicity data selected from the “public
API” dataset and the “industrial dataset” were used. To provide a
basis for comparison, both the API and industrial datasets were
analyzed using the Verhaar scheme as implemented in Toxtree
version 2.6.13, supplemented by the use of the post-processing
filters published by Ellison et al. [24], to classify the compounds
according to putative mechanism/mode of action (reported in
Table 4). This was done not only to enable a comparison between
distribution of APIs and industrial compounds within each class but
also to replicate the results of Vestel et al. [7] who showed that the
majority of APIs are outside the domain of the scheme. The com-
pounds were classified into one of the four Verhaar classes as
described in Sect. 1, or into class 5. The chemical spaces were
compared by plotting the inverse of the acute toxicity values (log
(1/LC50 or EC50) in mM concentrations) against hydrophobicity
for all Verhaar classes. Hydrophobicity was represented by log
P and was calculated using the ACD/Labs software, developed by
Advanced Chemistry Development, Inc. [33]. The majority of
APIs are out of the domain of the Verhaar scheme with 70% of
the API dataset being classified as class 5 (out of domain), in
agreement with the findings of Vestel et al. [7]. Conversely, 69%
of the industrial compounds were classified into classes 1–4. This
finding is, however, to be expected since information from indus-
trial compounds was used to develop the structural rules of the
Verhaar scheme. This suggests that the distinctive structural

Fig. 2 Relationship between fish acute lethality data for APIs (unionized APIs at pH 7.0 are in bold orange
circles, and ionized APIs at pH 7.0 are empty orange circles) and industrial compounds (blue circles) and log P
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moieties and chemical space of APIs were not covered by the
training data and therefore the majority of APIs are outside of the
domain of the Verhaar scheme.

Analysis by class of the APIs classified into Verhaar classes 1–5
(Fig. 3) reveals that most of the compounds which were assigned to
classes 1, 3, and 4 did not show any significant differences in terms
of the range of the toxicity and relationship to log P as compared to
the industrial compounds. The plot for class 1 indicates that a
baseline toxicity QSAR may be discernible for APIs acting via
narcosis; however, few APIs fall into this category. For the APIs in
class 5, there was no discernible relationship with log P, and unlike
the industrial compounds, it is more difficult to determine a signifi-
cant baseline toxicity QSAR. It is clear that the Verhaar scheme
needs to be expanded not only to cover the domain of APIs but also
for the industrial compounds. These improvements could be
achieved in two ways: extension of the structural characteristics of
the narcosis domains (classes 1 and 2) to accommodate a larger
proportion of the industrial compounds currently in class 5 and the
expansion of the domain of class 4 to include more specifically
acting APIs. However, before it is possible to classify compounds
as either baseline or excess toxicants, it is imperative that represen-
tative baseline toxicity QSARs are developed for the toxicity
observed for APIs. The collation of publicly available ecotoxicity
data for APIs has resulted in the generation of a reasonably sized
dataset, which can be used for modelling. However, while there are
a reasonable number of publicly available ecotoxicity data for APIs,
the variability within these data is significant.

Table 4
Number of compounds classified into each of the Verhaar classifications following the
implementation of the Verhaar (modified) scheme in Toxtree and the Ellison et al. [24] extension rules

Verhaar class

Number of
industrial
compounds in
class

Proportion of
industrial
compounds
in class

Number of
APIs in
class

Proportion of
APIs in class

1: Non-polar narcotics 110 0.27 7 0.06

2: Polar narcotics 50 0.12 8 0.06

3: Reactive compounds 89 0.22 17 0.13

4: Specifically acting
compounds

33 0.08 6 0.05

5: Out of domain 126 0.31 89 0.70
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4 Discussion

4.1 Development

of Baseline Toxicity

QSARs Relevant

to APIs

The next stage of the analysis involved developing baseline toxicity
QSARs, relevant to APIs, using fish, algae, and Daphnia data. The
baseline toxicity QSARs were constructed by comparing the lower
limits of toxicity for the public API data with published baselines
for each species. The published baseline toxicity QSARs had been
developed using industrial data, the details for which are provided
in Table 5; the models were converted to represent log
(1/LC50 or EC50) in mM concentrations where necessary. From
this analysis upper and lower limits (cutoff points) for the correla-
tion of toxicity with log Pwere empirically derived. The experimen-
tal reliability of log P values greater than 5.5 is questionable because
of issues with poor solubility; the lower limits represent the con-
centration at which the minimum level toxicity is observed. The
relationship between log P and acute toxicity between the observed
cutoff points was then determined through visual comparison of
the public API data with the industrial models. This resulted in
linear log P-based models being produced which were applicable

Fig. 3 Relationship between fish acute lethality data for APIs (unionized APIs at pH 7.0 are in bold orange
circles, and ionized APIs at pH 7.0 are empty orange circles) and industrial compounds (blue) and log P for
compounds classified to each of the five Verhaar classes
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between two defined cutoff points for log P values (this method
was only applied for the development of acute baseline toxicity
QSARs).

Previous work on building baseline toxicity QSARs has
focussed on collating data for a range of compounds likely to
cause toxicity through non-polar narcosis (e.g., aliphatic alcohols)
and adding data from other chemical classes (that act via the same
mechanism), until a robust model is created using a significant
number of compounds. This approach is problematic for APIs as
their structures are more complicated than simple industrial com-
pounds. Therefore, it is difficult to classify them as potential non-
polar narcotics based on their structure. Even classification
approaches such as the Verhaar scheme fail in this task because of
the structural differences between APIs and simpler industrial com-
pounds. As such, a more pragmatic approach was required to build
API relevant baseline toxicity QSARs. To this end, QSARs of
published industrial baseline toxicity QSARs were plotted along
with API data to examine how the two datasets compared
(Figs. 4, 5, and 6). By visual inspection it was then possible to
overlay a baseline toxicity QSARs that was in keeping with other
models and then to describe this line using a linear equation.

For all species, existing baseline toxicity QSARs fit within the
lower segment of toxicity values but do not describe the lower limit
of the observed toxicities. This is possibly due to the inherent
differences between industrial chemicals and APIs (e.g., the major-
ity of APIs may be ionized at pH 7). For this reason the manually
fitted models described in Fig. 7 are a better description of the true
lower limit of the observed toxicity. In addition, the lower plateau
created by an absolute minimum observable toxicity and the high
solubility cutoff are clearly visible. The precise descriptions of the
models shown in Fig. 7 are described in Table 6.

The models shown in Fig. 7 are distinct from those developed
previously for industrial chemicals not only in the approach used to

Table 5
Published baseline toxicity QSARs constructed using industrial compounds

Taxonomic group Model ID Model Reference

Fish F1 Log (1/LC50) (mM) ¼ 0.94 log P — 1.83 Austin et al. [13]

F2
a Log (1/LC50) (mM) ¼ 0.87 log P — 1.87 Könemann [11]

Algae A1 Log (1/EC50) (mM) ¼ 0.97 log P — 1.95 Hsieh et al. [34]

A2 Log (1/EC50) (mM) ¼ 0.90 log P — 1.40 Tsai and Chen [35]

Daphnia D1
a Log (1/EC50) (mM) ¼ 0.82 log P + 1.58 Zhang et al. [36]

D2 Log (1/EC50) (mM) ¼ 0.79 log P — 1.24 ECOSAR

aThese models have been altered in the report to represent log(1/LC50 or EC50) in mM concentrations
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build them but also as to which structures can be classified as
exhibiting toxicity through non-polar narcosis. Industrial com-
pounds are often put into the category of “baseline toxicant”
based on the presence or absence of explicit structural features.
Unfortunately, it is not as easy to structurally classify APIs as they
often contain a variety of functional moieties. Therefore different
methods are required to identify compounds where the observed
toxicity can be explained and modelled through the phenomenon
of non-polar narcosis.

Fig. 5 Comparison of acute API toxicity to Daphnia with published baseline
toxicity QSARs (D1 (upper line); D2 (lower line) as described in Table 2

Fig. 4 Comparison of acute API toxicity to fish with published baseline toxicity
QSARs (F1-F2 described in Table 2)

342 David J. Ebbrell et al.



The models presented herein are intended to represent the
minimum observed ecotoxicity of APIs. Thus they can provide an
initial indication of the lowest concentration of concern. This may,
or may not, reflect the observed experimental outcomes for any

Fig. 7 Acute baseline toxicity QSARs derived herein for (a) fish (b) Daphnia, and (c) algae

Fig. 6 Comparison of acute API toxicity to algae with published baseline toxicity
QSARs (A1(lower line); A2 (upper line) described in Table 2)

Table 6
Summary of the acute ecotoxicity data collated available APIs from the iPiE project

Endpoints

Fish LC50 Daphnia EC50 or LC50
a Algae EC50 or LC50

Number of compounds 37 55 79

Number of toxicity data points 70 79 91

Toxicity (log 1/LC50 or EC50) range 0.20 – 4.80 �0.83 — 5.32 �0.17 — 5.22

Calculated log P range �5.41 — 6.28 �9.04 — 8.98 �4.78 — 5.85

aIn Daphnia assays immobilization can accurately be described as an EC50 but may be reported as an LC50; likewise for

algae, the effect of growth inhibition may be reported as an LC50
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particular compound but does provide a starting point. The mini-
mum level of toxicity for APIs appears to be less than that of the
widely modelled industrial compounds, which raises the interesting
question of why the industrial baseline toxicity QSARs do not
represent the absolute minimum level of toxicity. However, the
baseline toxicity QSARs developed here do allow for the identifica-
tion of groups that exhibit toxicity in excess of the baseline toxicity
QSARs. Further analysis is required to model the patterns observed
between a chemical’s structural properties and distance of the
observed toxicity from the baseline toxicity QSARs.

Initially models for acute toxicity were built using the public
data that were available from the outset of the project. When data
from the iPiE project became available, these were used to validate
the models developed previously using the public data. Comparing
the data extracted from toxicological studies within the iPiE project
with the three baseline toxicity QSARs developed using the publicly
available data shows that the acute toxicity of the chemicals from
the iPiE dataset falls within a similar range to the public data
(Figs. 8, 9, and 10 for fish, Daphnia, and algae, respectively). The
acute data within the iPiE dataset are summarized in Table 6.

Given that 75% of APIs are ionizable, it is possible that log
D may be more suitable to model lipophilicity. With this in mind,
acute baseline toxicity QSARs using log D were established adopt-
ing an identical method used for the log P baseline toxicity QSARs.
Acute baseline toxicity QSARs are shown in Figs. 11, 12, and 13 for
all three species (for fish, Daphnia, and algae, respectively). All

Fig. 8 Baseline toxicity QSAR for fish acute toxicity versus log P showing the distribution of publicly available
data and data from the iPiE project

344 David J. Ebbrell et al.



models for log D are shown in Table 12. Overall the log P and log
D baseline toxicity QSARs are quite similar. However, the point at
which toxicity increases linearly typically occurs at 1.0 log unit for
the log D baseline toxicity QSARs in comparison to 2.0 log units
for the log P baseline toxicity QSARs (compare Tables 11 and 12).

Fig. 9 Baseline toxicity QSAR for Daphnia acute toxicity versus log P showing the distribution of publicly
available data and data from the iPiE project

Fig. 10 Baseline toxicity QSAR for acute algal toxicity versus log P showing the distribution of publicly available
data and data from the iPiE project
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Although there have been numerous studies that have success-
fully derived acute baseline toxicity QSARs, the number of studies
focusing on the development of chronic baseline toxicity QSARs is
limited. In our approach we adopted an alternative methodology to
that used for the development of the acute baseline toxicity QSARs
in order to develop chronic baseline toxicity QSARs using iPiE
data. The analysis was carried out using the NOEC and LOEC

Fig. 11 Baseline toxicity QSAR for fish acute toxicity versus log D with public API and iPiE API data

Fig. 12 Baseline toxicity QSAR for Daphnia acute toxicity versus log D with public API and iPiE API data
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values collated using analogous criteria to the collation of the acute
toxicity values (refer to Sect. 2). The chronic data available via the
iPiE project are summarized in Table 7.

Before developing chronic baseline toxicity QSARs, the iPiE
NOEC data were analyzed to assess their usability. NOEC values
were determined from a range of test concentrations, and the
NOEC is equal to highest test concentration where there was no
statistically significant effect on the recorded observation. How-
ever, in some cases this was equal to the reported maximum test
concentration. This tells us little about the true chronic toxicity of
the API as the concentration which represents the highest concen-
tration where toxicity does not occur can lie anywhere beyond this
point. By looking at the study designs, it was possible to identify
which of the reported NOEC values were identical to the maximum
test concentration for that study. This was 50% of the values for fish,
30% of the values for Daphnia, and 25% of the values for algae
(Figs. 14, 15, and 16 for fish, Daphnia, and algae against log D at
pH 7.0, respectively, with all values shown in Table 8). It is worth
noting that some of the reported NOEC values were greater than
the maximum tested concentration or were not equal to any of the
reported test concentration (29 values for fish, 10 forDaphnia, and
35 for algae; these values were removed from the analysis). Inter-
estingly, most of the values where the NOEC was equal to the
maximum test concentration lie within the lower toxicity range
where the baseline toxicity QSAR would likely fit. As such using
these values would have a significant effect on the nature of the
baseline toxicity QSARs for minimum toxicity, and therefore these

Fig. 13 Baseline toxicity QSAR for algae acute toxicity versus log D with public API and iPiE API data
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Table 7
Summary of the chronic ecotoxicity data collated for APIs within the iPiE project

Endpoints

Fish Daphnia Algae

NOEC LOEC NOEC LOEC NOEC LOEC

Number of compounds 102 59 103 76 132 55

Number of toxicity data points 335 131 257 143 317 104

Fig. 14 Analysis of reported fish NOEC values compared to tested concentration ranges against log D at pH 7.0

Fig. 15 Analysis of reported Daphnia NOEC values compared to tested concentration ranges against log D at
pH 7.0
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values were removed from all subsequent analyses. It was possible
to carry out this analysis on the iPiE data due to the plethora of
information that came with the toxicity values. However, carrying
out a similar analysis on the available public data may prove more
challenging as not all of the same information is available. As such
the chronic toxicity baseline toxicity QSARs were developed using
iPiE data alone.

The remaining NOEC values were used to developed chronic
NOEC baseline toxicity QSARs using log P and log D at pH 7.0.
These baseline toxicity QSARs were developed using an alternative
method to the acute baseline toxicity QSARs. The following
method was adopted to ensure that the baseline toxicity QSARs
represented the minimum level of toxicity for APIs using a less
subjective approach (see Fig. 17):

Fig. 16 Analysis of reported algae NOEC values compared to tested concentration ranges against log D at
pH 7.0

Table 8
Relationship between reported NOEC values and test concentration ranges for all three species

Fish Daphnia Algae

Number of
values

Number
of APIs

Number of
values

Number
of APIs

Number of
values

Number
of APIs

Number of
NOECs ¼ maximum test
concentration

167 55 77 36 79 39

Number of NOECs <
maximum test
concentration

139 59 170 79 203 91
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1. A line of best fit was developed for the data.

2. All values that fall above the line of best fit were removed.

3. Steps 1 and 2 were repeated until approximately 90% of the
data were above the baseline toxicity QSARs; this was the third
iteration for all species (see Table 9).

The resulting NOEC baseline toxicity QSAR using log P can be
found in Fig. 18 and Table 11, and the log D baseline toxicity

Fig. 17 The steps used to develop the chronic baseline toxicity QSARs for fish NOEC values, the values used to
generate the lines are shown in dark blue, and values omitted at each iteration are shown as light blue (steps
described in the text)

Table 9
The percentage of values which were above the developed line for each iteration

Species (% of values above the baseline)

Fish Daphnia Algae

log P log D log P log D log P log D

Iteration 1 45 44 42 42 47 44

Iteration 2 74 74 72 75 73 74

Iteration 3 88 90 86 88 85 85
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Fig. 18 Chronic NOEC baseline toxicity QSARs developed for (a) fish, (b) Daphnia, and (c) algae using log P

Table 11
Derived acute and chronic baseline toxicity QSARs showing the correlation of toxicity with log P for
fish, Daphnia, and algae as depicted in Figs. 8, 9, 10, 18, and 20

Fish

Acute toxicity If Log P <2 then log(1/LC50)mM ¼ �0.4;
If 2 < Log P <5.5 then log(1/LC50)mM ¼ 0.45 log P — 1.3

Chronic toxicity (NOEC) Log 1/NOEC (mM) ¼ 0.47 log P + 0.81

Chronic toxicity (LOEC) Log 1/LOEC (mM) ¼ 0.48 log P + 0.45

Daphnia

Acute toxicity If log P <2 then log(1/EC50)mM ¼ �0.6;
If 2 < log P <5.5 then log(1/EC50)mM ¼ 0.6 log P — 1.8

Chronic toxicity (NOEC) Log 1/NOEC (mM) ¼ 0.35 log P + 0.93

Chronic toxicity (LOEC) Log 1/LOEC (mM) ¼ 0.34 log P + 0.43

Algae

Acute toxicity If logP <2 then log(1/EC50)mM ¼ �0.5;
If 2 < logP <5.5 then log(1/EC50)mM ¼ 0.60 log P — 1.7

Chronic toxicity (NOEC) Log 1/NOEC (mM) ¼ 0.47 log P + 0.81

Chronic toxicity (LOEC) Log 1/LOEC (mM) ¼ 0.12 log P + 0.56

Table 10
The number of original LOEC values for each species and the number of additional LOEC values
generated from the analysis

Species

Fish Daphnia Algae

Number of original LOEC valuesa 107 119 77

Number of additional LOEC valuesa 15 25 54

aNote these values may not match up with the number of NOECs for each species for the reasons discussed in the text
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QSARs can be found in Fig. 19 and Table 12. The NOEC toxicity
values for fish and Daphnia are more influenced by log P and log
D than in algae. Additionally, in comparison to the acute toxicity
data, the range of log P and log D for the remaining compounds is
smaller resulting in a smaller range of applicability for the chronic
baseline toxicity QSARs.

In terms of toxicity, the use of NOEC baseline toxicity QSARs
may be trivial as this is a baseline of no toxicity and therefore
provides limited information about the concentration at which
the chronic toxicity of an API occurs for that specific endpoint
effect. One potential solution to this is to develop baseline toxicity

Fig. 19 Chronic NOEC baseline toxicity QSARs developed for (a) fish, (b) Daphnia, and (c) algae using log D at
pH 7.0

Table 12
Derived acute and chronic toxicity models against log D for fish, algae, and Daphnia as depicted in
Figs. 11, 12, 13, 19, and 21

Fish

Acute toxicity If log D < 1 then log(1/LC50)mM ¼ � 0.5;
If 1 < log D < 5.5 then log(1/LC50)mM ¼ 0.7 log D — 1.2

Chronic toxicity (NOEC) Log 1/NOEC (mM) ¼ 0.46 log D + 1.40

Chronic toxicity (LOEC) Log 1/LOEC (mM) ¼ 0.52 log D + 0.77

Daphnia

Acute toxicity If log D < 1 then log(1/EC50)mM ¼ �0.3;
If 1 < log D < 5.5 then log(1/EC50)mM ¼ 0.55 log D — 0.85

Chronic toxicity (NOEC) Log 1/NOEC (mM) ¼ 0.41 log D + 0.93

Chronic toxicity (LOEC) Log 1/LOEC (mM) ¼ 0.35 log D + 0.75

Algae

Acute toxicity If log D < 1 then log(1/LC50)mM ¼ 0.1;
If 1 < log D < 5.5 then log(1/EC50)mM ¼ 0.45 log D — 0.35

Chronic toxicity (NOEC) Log 1/NOEC (mM) ¼ 0.13 log D + 1.1

Chronic toxicity (LOEC) Log 1/LOEC (mM) ¼ 0.17 log D + 0.67
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QSARs based on the LOEC observation for an API. However,
compared to the available NOEC data from the iPiE database, the
number of available LOEC values is substantially lower. In addition
to identifying the number of usable NOECs within the data set, it
was possible to infer some additional LOEC values based on the
reported NOEC value and test concentration ranges. This was
achieved by taking the next test concentration up from the reported
NOEC value as, in theory, the test concentration that is one incre-
ment higher than the reported NOEC should be the concentration
that elicited the endpoint effect of interest (and thus should be the
LOEC for that chemical and endpoint effect). The number of
additional LOEC values generated is reported in Table 10. It was
not possible to infer an additional LOEC for all NOEC values as
some of the reported NOEC values did not match up to any of the
reported concentration ranges, or the reported concentration units
were inconsistent or incomprehensible. Baseline toxicity QSARs
were developed using the total number of LOEC values for all
three species using the same method for the NOEC baseline toxic-
ity QSARs (Figs. 20 and 21 for baseline toxicity QSARs using log
P and log D, respectively). The equations for all the chronic and
LOEC baseline toxicity QSARs using log P and log D are summar-
ized in Tables 11 and 12, respectively.

Fig. 20 Chronic LOEC baseline toxicity QSARs developed for (a) fish, (b) Daphnia, and (c) algae using log
P (refer to Table 11 for model details)

Fig. 21 Chronic LOEC baseline toxicity QSARs developed for (a) fish, (b) Daphnia, and (c) algae using log D at
pH 7.0 (refer to Table 12 for model details)
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5 Conclusions

Acute and chronic baseline toxicity QSARs for APIs have been
developed based on public data and data from the iPiE project.
The models developed here (see Tables 11 and 12) are to be
integrated into the iPiE system software iPiEsys. Publicly available
data for APIs are highly variable due to tests being performed using
different species and in different laboratories. This makes the devel-
opment of high quality, robust QSAR models challenging. How-
ever, the work described herein has demonstrated that it is possible
to extract the lowest level of observed toxicity from the data and
thus empirically derive baseline toxicity QSARs for the minimum
levels of acute and chronic toxicity. Issues with data quality and
usability were identified for chronic toxicity such as the use of
NOEC values that are equal to the maximum test concentration
in the study designs. While it was possible to identify specific groups
of APIs likely to show toxicity above the baseline toxicity QSARs
and those predicted to show a baseline level of toxicity, more work
is required to successfully categorize all APIs.
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Chapter 16

Ecotoxicological QSARs of Personal Care Products
and Biocides

Kabiruddin Khan, Hans Sanderson, and Kunal Roy

Abstract

The personal care products (PCPs) constitute various nonmedical products intended only for the applica-
tion on the body surface and are not used to treat internal body problems like infections, etc. With a
continuous change in culture and lifestyle in the society, the consumption of PCPs has increased several
fold. In contrast, biocides are any chemical substances administered individually or in mixture with the
intention of “destroying, deterring, rendering harmless, preventing the action of, or otherwise exerting a
controlling effect on, any harmful organism by any means other than mere physical or mechanical action.”
The exponential rises in domestic application of PCPs and biocides have rendered them to be potential
causes of environmental pollution. Their continuous detection in river bodies mainly due to improper
treatment and uncontrolled release via sewage treatment plants has proven to be a leading cause of harm to
ecological species. Some of them have been proved to have potential to become contaminants of emerging
concern (CEC). Insufficient ecotoxicological data of PCPs for their environmental behavior and ecotoxicity
have rendered Scientific Committee on Consumer Safety (SCCS) administered by the Directorate-General
for Health and Consumer Protection of the European Commission to release guidelines pertaining to safer
use and risk associated with it. On the other hand, Biocidal Products Regulation (BPR) EU 528/2012 was
enacted to improve functioning of the biocide market and to ensure a high level of protection of human and
animal health and the environment. In silico tools such as quantitative structure-activity relationship
(QSAR) and read-across can be employed using existing information to rapidly identify the potentially
most toxic and hazardous toxic PCPs/biocides and prioritize the most environmentally hazardous ones.
QSAR is widely used to obtain predictions of known/untested or not yet synthesized chemicals in order to
prioritize them as various toxic classes of potential hazard causing ingredients. The present chapter enlists
the information related to impact and occurrence of PCPs/biocides along with their persistence, environ-
mental fate, risk assessment, and risk management. Additionally, a special emphasis is given on in silico tools
such as QSAR which can be employed in prediction of environmental fate of personal care products and
biocides mainly related to the ecotoxicity to aquatic species. Finally, a detailed report is prepared on
endpoints, ecotoxicity databases, and expert systems frequently used for ecotoxicity predictions of personal
care products and biocides with the aim to justify the development and implementation of in silico tools in
early risk assessment and reduction of animal experimentation.

Key words Biocides, Ecotoxicity, CEC, In silico, PCPs, QSAR, Risk assessment, Risk management,
Waste management
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1 Introduction

1.1 Personal Care

Products

Personal care products (PCPs) constitute a broad class of chemicals
including perfumes, detergents, disinfectants, sunscreen, deodor-
ants, soaps and sprays, etc. A great concern has been raised by the
ecotoxicologists with the detection of higher PCP concentration in
surface water, soil, and flowing water bodies. The major source of
their accumulation could be attributed to human use, sewage treat-
ment plants, and direct discharge into canals/river from industries,
etc. Though the effects of these ingredients are yet to be found in
detail, several reports of persistence and bioaccumulation to suffi-
cient extent have been reported. The bioaccumulation characteris-
tics of molecules render them acute, sublethal, or in many cases
chronic effects on living organisms. The reported range of accumu-
lation varies according to the nature of the body of the organism.
Higher concentrations of these substances have been reported from
sea water, sewage, and wastewater treatment plants, whereas in
groundwater and drinking water, the reported concentrations
were less. The reported concentrations of PCPs in surface water
range from μg/L to 0.01 ng/L. Sufficient amounts of synthetic
musk are reported from sewage treatment plants, thus making them
a potential candidate for “biopersistance.” Another major constit-
uent of PCPs having potential to behave like strong persistent,
bioaccumulative and toxic (PBT) candidates [1] include UV filters
and stabilizers. These are reported in mussels, fishes, crustaceans,
and dolphins with the concentration range of no less than 0.001
ng/L. The major reason for concern related to PCP toxicity is
attributed to their bioaccumulative and endocrine disrupting
nature [2]. A number of PCPs behave like endocrine disruptors
which include phthalates (butyl benzyl phthalate, di-(2-ethylhexyl)
phthalate), alkyl phenols (octyl and nonylphenol), parabens
(methyl, ethyl, propyl, and butyl), dioxins and furans, bisphenols,
polychlorinated biphenyls, etc. Polycyclic musks and UV filters are
proved to have higher potential for bioaccumulation mainly due to
their lipophilic nature, thus making them potential candidate for
PBT-like substances. There are reports on adverse effect on repro-
duction of benthic organisms caused by UV filters. Synthetic musks
have been shown to bioaccumulate mainly in aquatic organisms like
mussels, fish, and mammals. Synthetic fragrances like tonalide and
galaxolide are reported in water bodies and are found to induce
oxidative and genetic damage in zebra fish. The endocrine disrup-
tion properties have been reported by UV filters, parabens, and
polycyclic musks. Another major contaminant reported is triclosan,
said to cause disturbance in metabolic pathways of P. subcapitata. It
is also found that algal species is most sensitive toward triclosan and
other disinfectants.
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1.2 Biocides Biocides are used either as a single compound or in a mixture “with
the intention of destroying, deterring, rendering harmless, prevent-
ing the action of, or otherwise exerting a controlling effect on, any
harmful organism by any means other than mere physical or
mechanical action” (BPR, Regulation (EU) 528/2012) [3]. The
BPR regulation ((EU) 528/2012)) [3] regulates the biocidal pro-
ducts in Europe. The regulation works with the intention of
improving the functioning of the biocidal market, to keep a check
on adverse effects of biocides on human and animal health along
with the environmental effects; thus, it necessitates to get approval
for a new product before being implemented for use. The pivotal
requirement for biocide registrations includes safety, efficacy and
toxicity, analytical procedures for detection and identification, and
control of metabolites along with degradation products with
emphasis to ecotoxicological studies. As per regulation, the pro-
ducts of biocides are divided into four categories which are further
subdivided into 22 product types (the Annex V of the regulation).
Group 1 contains disinfectants and algaecides (may or may not be
used on humans directly), veterinary products, food or feed area,
etc. Group 2 mainly consists of preservatives employed in product
storage, wood decay, leather/rubber and preservatives for poly-
meric materials, etc. The 3rd group contains products like avicides,
rodenticides, vermicides, and molluscicides, which are used to con-
trol invertebrates; insecticides, acaricides, and piscicides used to
control arthropods; and finally attractants and repellants for
controlling various other vertebrates. The last group consists of
antifouling products along with taxidermist fluids and embalming
agents. The major concern arising due to widespread use of bio-
cides includes its increased demand, propensity with which they
accumulate and contaminate environment, and ability to cause
cancer and structural diversity with reference to functional group
present in it [4, 5].

The gradual rise in the use of PCPs and biocides is expected to
intensify many folds (expected to garner $429.8 billion by 2022
[6, 7]). Such increase in consumption of PCPs and biocides would
propel scientists for early risk assessment using a huge number of
experimental data, extensive time, huge cost, and extensive animal
testing for in vivo testing. Unfortunately, the available data on such
compounds are very much limited. Currently available data is lim-
ited to certain species along with specific environmental conditions.
In silico tools mainly quantitative structure–activity/toxicity rela-
tionship (QSAR/QSTR) can help in filling the data gap effectively.
In QSAR, a small amount of experimental data can be employed to
get predictions for a large dataset without having any experimental
response values provided they fall within the domain of the model.
Such models have been widely employed in hazard assessment of
various organic groups of chemicals like PCPs, pharmaceuticals,
biocides, endocrine disruptor chemicals and agrochemicals, etc.
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[8–12]. The use of QSAR in early risk assessment is recommended
by various regulatory agencies like European Centre for the Valida-
tion of Alternative Methods (ECVAM), United States Environ-
mental Protection Agency (US EPA), the Agency for Toxic
Substances and Disease Registry (ATSDR) and the European
Union Commission’s Scientific Committee on Toxicity, Ecotoxi-
city, and Environment (CSTEE), etc. [10]. Nearly 535 PCPs were
screened and prioritized by Gramatica et al. (2016) [13] based on
their acute predicted response. Similar ranking of nearly 600 cos-
metics employing QSAR technique was achieved by Khan et al.
(2017) [14]. In recent years, a number of easily available online
expert software have been developed for toxicity predictions of
organic chemicals such as ECOSAR [15, 16]. Very limited number
of QSAR studies have been performed with these categories of
chemicals so far, and still a large number of compounds need to
be prioritized based on their acute predicted responses. There is a
need to pay a special attention from the ecotoxicity point of view on
PCPs and biocides due to their increased consumption and accu-
mulation in the environment. There is a significant lack of knowl-
edge about the environmental fate of a huge number of PCPs/
biocides and their metabolites. This necessitates the development
of QSAR models to study ecotoxicological behavior, mainly envi-
ronmental fate, persistence, and toxicity of PCPs and biocides.

2 A General Overview of PCPs and Biocides

2.1 Types

of Different PCP

and Biocidal

Formulations

PCPs and biocides have become indispensible parts of our day-to-
day life mainly in urban population. Since PCPs are down-the-drain
use products, they are released into the environment; the detected
quantities are found mainly in sewage and effluent treatment plants
and in sludge. Adverse effects from cosmetic formulations have
become a significant concern in the European Union (EU). The
EU has assigned poison centers with the intentions to receive
information related to compositions of hazardous mixtures present
in cosmetics [17]. Some of the hazardous components reported
include detergents, paints, adhesive, etc. The center helps in iden-
tification of probable cause of poisoning reported by the respective
European country, consulted physician, professional users, and
consumers. The inventory of cosmetic ingredient database gives
the repository of formulations used in/as cosmetic formulation
along with probable adverse effects in case of improper utilization
[18]. As per the data published on the ECHA website (European
Chemical Agency), the poison center receives 600,000 calls per
annum which makes it about 1700 calls per day. Most of these
cases are of accidental exposure mainly involving children, whereas
fatalities due to poising are approximated at 400 per year. Similarly,
BPR Regulation (EU) 528/2012 [3] keeps controls on biocidal
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product in the European Union to ensure safety of humans, ani-
mals, articles, or materials in the context of biocidal toxicity. The
European Chemicals Agency is again responsible for assessing haz-
ard profile of new biocidal products under application for approval.
Both PCPs and biocides (in many cases) are available in multicom-
ponent mixtures. The chemical constituents get transformed as
they pass from one compartment to another in the surrounding
and eventually metabolized by the microflora. The chemical com-
ponents present in PCPs and biocides constitute a very diverse
chemical range thus putting a major challenge in ecotoxicological
evaluation and risk assessment. The Organisation for Economic
Co-operation and Development (OECD), US EPA, and Interna-
tional Organization for Standardization (ISO) provide standard
protocols or tests following which the active chemicals or their
metabolites can be evaluated for their acute toxicity mainly in
algae, zooplankton, fish, and other invertebrates. The list of various
formulations of the biocide/PCP category and their reported toxi-
cities will be discussed here.

l PCPs (cosmetics): The list of ingredients employed in cosmetic
formulations is very large, such as anti-dandruff (helps control
dandruff), detangling agents (reduce or eliminate hair intertwin-
ing and help combing), depilatory (removes unwanted body
hair), anticaking (allows free flow of solid particles and thus
avoids agglomeration), anticorrosive (prevents corrosion), bind-
ing (provides cohesion), emulsifying (promotes the formation of
intimate mixtures of nonmiscible liquids), bulking agents
(reduce bulk density), chelating (reacts and forms complexes
with metal ions could affect the stability and appearance of
cosmetics), denaturant (renders cosmetics unpalatable, mostly
ethyl alcohol containing products), anti-seborrheic (controls
sebum production), buffering agent (stabilizes the pH), anti-
static (reduces static electricity), film forming (produces a con-
tinuous film on the skin, hair, or nails), foaming agents (trap
numerous small bubbles of air or other gas), foam booster
(improves the quality of the foam produced by a system by
increasing volume, texture, and stability), gel former, hair con-
ditioner (leaves the hair easy to comb and makes them shiny,
glossy, etc.), hair dyeing (colors hair), hair fixing (permits physi-
cal control of hairstyle), hair waving (sets hair in the style
required), humectant (holds and retains the moisture), kerato-
lytic (helps eliminate the dead cells of the stratum corneum),
masking (reduces or inhibits the basic odor/taste of the prod-
uct), moisturizing (increases the water content of the skin), nail
conditioner, opacifying agent (reduces transparency or translu-
cency of cosmetics), oral care (provides cosmetic effects to the
oral cavity like cleansing, deodorizing, protecting), oxidizing
agent (changes the chemical nature of another substance by
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adding oxygen or removing hydrogen thus changing the chemi-
cal nature), pearlescent (imparts a nacreous appearance), UV
absorber (protects the cosmetic product from the effects of
UV light), UV filter (filters certain UV rays in order to protect
the skin or the hair from harmful effects of these rays), and
viscosity agents (increase or decrease the viscosity of
cosmetics) [18].

Among the cosmetics, the most toxic products identified are
dehydroacetate (a preservative) [14], surface active agents (such as
quaternary ammonium compounds like benzyldimethyldodecy-
lammonium chloride, decyltrimethylammonium bromide, didecyl-
dimethylammonium chloride, hexadecyltrimethylammonium
chloride, etc.) [19], UV filters (like Fluorescent Brightener 367)
[13], polycyclic musks (like Musk 36A) [13], UV sun screeners
(like UV-320) [13], synthetic musks (like Musk xylene and musk
ketone) [20], synthetic fragrances (like galaxolide and tonalide)
[13], parabens and phthalates, etc. [13, 17, 20, 21].

l Biocides: The biocidal products approved for use include insecti-
cides, acaricides and products to control other arthropods,
repellents and attractants, piscicides, fiber leather rubber and
polymerized materials preservatives, slimicides, preservatives
for products during storage, working or cutting fluid preserva-
tives, wood preservatives, disinfectants and algaecides not
intended for direct application to humans or animals, preserva-
tives for liquid, construction material preservatives, veterinary
hygiene, film preservatives, food and feed area, human hygiene,
antifouling products, embalming and taxidermist fluids, roden-
ticides, and avicides, etc. [3].

The most toxic biocidal products reported include antifouling
(Irgarol, tributyltins (TBTs), etc.) [3, 22]; anticorrosive agents
(quaternary ammonium, phosphonium salts, isothiazoline, and
heavy metal salts) [3]; film preservatives (Diuron, 2-octyl-2H-iso-
thiazol-3-one (OIT), etc.); several insecticides (like Triflumuron
and Phenothrin), acaricides (like D-Tetramethrin, Triflumuron),
and piscicides (Rotenone); etc. [3].

2.2 Source

of Release into

the Environment

The understanding of toxicity to the environment caused by PCPs
and biocides is incomplete without identifying the source and
extent of release. Some of the most common sources will be dis-
cussed here.

l Domestic disposal: The household discharge contributes to a
greater extent to ecotoxicity of PCPs, since PCPs as the final
product are intended to be used for enhancement of personal
appeal. Many of the cosmetic products used regularly are dis-
posed in the surroundings; the major problem lies in absence of
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any proper regulation for the disposal of cosmetic products.
Since they are considered to be safe enough, they are generally
dumped in the garbage with no regulation. In contrary, biocides
are dealt with more caution while releasing in the environment.
However, still many developing countries lack the regulation for
the proper and safe release of biocides into the environment. The
lack of regulations on disposal renders a continuous accumula-
tion in landfills via dust bins or toilets thus resulting in terrestrial
ecosystem potential risk [23].

l Discharge through industries: Industrial discharge accounts to a
greater extent for ecotoxicity of PCPs and biocides; there is a
significant amount of disposal at each stage of the manufacturing
mainly in process quality control. Though the good
manufacturing practices (GMP) are to be followed in
manufacturing, a good number of cases have been reported for
its violation mainly from the developing countries like India and
China. Concentrations up to ng/L of UV stabilizers have been
reported from the Kaveri, Vellar, and Thamirabarani rivers of
Tamil Nadu, India [24]. The major source of river contamina-
tion in India is attributed mainly to direct industrial discharge
from units situated in close proximity of the river [25]. Biocides
are mainly used in food industry as disinfectants in the United
Kingdom and are responsible for resistance developed against
the bacterial species they are targeted [26].

l Discharge through hospitals: Though the release of PCPs through
hospitals in the developing countries is limited, still it accounts
for a large quantity since the discharge is continuous. Biocides,
mainly disinfectants and antifouling agents, are widely used in
hospitals and health-care facilities to control the microbial
growth, wherein unspent or expired products are exposed to
the environment on the daily basis, thus accumulating in sur-
rounding [27, 28].

l Competition for development of better products: The competition
among industries to provide more effective cosmetics has
increased manifold with the progress of modern science. The
sale of products mainly relies on product appeal, whereas pro-
ducts which fail to appeal customers end up into environment by
the time of their expiry. Some of the good examples include
competition in the market to deliver a better shampoo or oil
brand. Not only the release of the products, this competition has
also created a rift to manufacture more and more such products
leading to an exponential rise in accumulation of such chemi-
cals in the environment.

l Other sources of release: Other sources of release include products
used on animals, plant, and inanimate objects with the intention
to decontaminate them or for appeal purposes.
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2.3 Risk

Assessments of PCPs

and Biocides

The authorization of any novel cosmetics and biocides needs to
undergo several regulatory procedures and protocol in order to get
approval for domestic or for commercial application for a limited
period of time.

l PCPs: In the European Union, “Notes of Guidance for Testing
of Cosmetic Ingredients and Their Safety Evaluation by the
SCCS (Scientific Committee on Consumer Safety)”contains rel-
evant information on the different aspects of testing and safety
evaluation of cosmetic substances [29]. The guidance is
designed to provide assistance to public authorities and to the
cosmetic industry in order to improve harmonized compliance
with the current cosmetic EU legislation. In 2009 legislative
recast, the cosmetic Directive 76/768/EEC [30] was trans-
formed into a regulation, and since 11 July 2013 onward, this
Regulation (2009/1223/EC) was fully applicable. This legisla-
tion prohibits the marketing of finished products containing
ingredients or combinations of ingredients that have been sub-
ject to animal testing after 2013, thus supporting the progress
made with regard to the development and validation of alterna-
tive methods [31]. The safety evaluation or risk assessment goes
through two different channels; the final product is examined by
the commission as well as the industry for the consumer protec-
tion following strict written safety evaluation procedures. The
risk assessment procedure is subdivided in the following four
parts:
– Human health hazard assessment: It is carried out in order to

identify toxicological properties of the substance or its poten-
tial to damage human health. It is based on results of in vivo
tests, in vitro tests, clinical studies, case reports, epidemiolog-
ical studies, etc.

– Dose-response assessment: Here, the relationship between the
exposure and the toxic response is evaluated. The concentra-
tions such as no adverse effects observed (NOAEL), lowest
dose at which an adverse effect is observed (LOAEL), and
dose without any effect observed (NOEL) play a crucial role
in dose-response assessment.

– Exposure assessment: Here, the amount and frequency of
human exposure are determined (specific groups at potential
risk, e.g., pregnant women, children, etc.).

– Risk characterization: Margin of exposure (MoE) is mostly
calculated for oral toxicity studies and in some cases from a
dermal toxicity study. Equation 1 is used for the oral toxicity
study.

MoE ¼ NOAELsys=SED ð1Þ
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where NOAELsys is the dose descriptor for the systemic exposure
and SED represents the Systemic Exposure Dose.

l Biocides: An approval is necessary for the new active constituents
before authorization of a biocidal product can be granted. The
active substances are first assessed by an evaluating Member
State competent authority, and the results of these evaluations
are forwarded to the ECHA’s Biocidal Products Committee,
which prepares an opinion within 270 days. The opinion serves
as the basis for the decision on approval which is adopted by the
European Commission. The approval of an active substance is
granted for a defined number of years, not exceeding 10 years
and is renewable. It also includes exclusion and substitution
criteria for evaluation of active constituents. The products
meeting the exclusion criteria will eventually not be approved
for the use. The exclusion criteria include a variety of substances
such as carcinogens; mutagens and reprotoxic substances; endo-
crine disruptors; persistent, bioaccumulative, and toxic (PBT)
substances; and very persistent and very bioaccumulative (vPvB)
substances. Possible derogations are foreseen for the products
needed on the grounds of public health or of public interest
when no alternatives are available. However, for the derogatory
products, the approval is only granted for 5 years. The other
group includes active substances which need substitution owing
to their toxicological features directly affecting public health or
the environment with an objective to replace or phase out with
more suitable alternatives over time. The intrinsic hazardous
properties in combination with the use will be considered as a
candidate for substitution only if the active substances have at
least one quality of exclusion criteria. Some of the adverse prop-
erties of molecules making it a potential candidate for substitu-
tion include respiratory sensitization, higher toxicity threshold
than already approved product for same use, a potent PBT
substance, high-risk chemical for humans as well as environ-
ment, and product having significant amount of non-active iso-
mers or impurities.

2.4 Risk

Management of PCPs

and Biocides

Since there is a lack of protocol on disposal of these products
(mainly in the developing countries), risk management becomes
the sole criterion to put a limit on the release of PCPs/biocides into
the environment. The international community defines risk man-
agement as “the process of identifying, evaluating, selecting, and
implementing actions to reduce risk to human health and to eco-
systems.” The goal of risk management is “scientifically sound,
cost-effective, integrated actions that reduce or prevent risks while
taking into account social, cultural, ethical, political, and legal
considerations” [32–34]. Here, we will discuss some approaches
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which can help reduce release of PCPs and biocides in the
environment.

l Market Surveillance

For the ease of management of adverse effects, the European
countries have set up the Platform of EuropeanMarket Surveillance
Authorities for Cosmetics (PEMSAC) in order to ensure a coherent
approach to consumer product issues [29, 30, 35]. The PEMSAC
members meet twice a year to discuss about the market surveillance
analytical methods. The PEMSAC aims to facilitate following
operations:

1. Coordinating activities

2. Exchanging information

3. Developing and implementing joint projects

4. Exchanging expertise and best practices in cosmetics market
surveillance

On the other hand, for biocides, the European Chemical
Agency (ECHA) under the Committee for Risk Assessment
(RAC) has setup market surveillance program in order to check
for the compliance of laid rules, and it is undertaken as part of
member state existing monitoring programs.

l Awareness and Training

One of the major crucial steps in controlling the effects of
PCPs/biocides toward the environment is by making people
aware about the consequences of exposure and providing them
with sufficient training in order to fight with consequences or to
avoid them [36]. The knowledge about disposal of various pro-
ducts included in PCPs/biocides is the first step in the way of
reducing the input of those hazards into the ecosystem. This
knowledge can be made available to users, stakeholders, and com-
munity by awareness programs or by notifying on the product
labels. The industry needs to be very much responsible and alert
as they are the major sources of potential hazards of these products,
and most of the ingredients (or APIs) are released into the environ-
ment without adequate waste treatment. Additionally, each raw
material in the process of product development should have a safety
data sheet (MSDS) intended to provide employees and emergency
personnel with information on processes for handling such pro-
ducts safely; the information could include physical data, toxicity
and health first aid, hazards, storage, reactivity, protective equip-
ment, disposal, and spill-handling procedures. The related people
who are involved in risk management should possess information
mainly about the product flows from sources of industries, house-
holds, and retail shops.
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3 Application of QSAR in Ecotoxicological Analysis

So far we have discussed about the products, release, regulatory
requirements, and risk assessment of PCPs and biocides. Here, we
will discuss about the already developed successful QSAR models
for ecotoxicity of PCPs and biocides. QSAR works on the principle
of correlating structural features (theoretical descriptors) with the
studied response (toxicity or activity). In the current chapter, we
have tried to explore the all possible modeling work done on
ecotoxicity of PCPs and biocides. To achieve this, a list of all
publications (to our knowledge) related to ecotoxicity of PCPs
and biocides was obtained through SCOPUS search engine
[37]. The obtained papers were thoroughly analyzed in order to
obtain the following points, namely, (1) source of data collection,
(2) method employed, (3) software used, (4) and objective of the
study. By following this approach, we have been able to report a
number of data sources of cosmetics and biocides including data-
bases, literature, etc. We have also encountered a list of various
software tools which are used in QSAR modeling which will be
discussed below.

3.1 Application

of QSAR in Ecotoxicity

of PCPs

The screened papers were segregated into two separate groups: the
first group contains the QSAR models developed employing a
mixture of different products (e.g., a mixture of two or more
different types of PCPs/biocides called as the global approach),
while the second group consists of papers dealing with selective
class of QSAR models developed by taking one particular class of
chemicals like group of surfactants (local QSAR approach).

l Global QSAR Models on PCPs

1. Papa et al. [38] developed five QSTR models by using 1105
heterogeneous organic compounds including pharmaceuti-
cals and personal care products for the half-life predictions
in humans. Two-dimensional descriptors generated from
PaDEL-descriptor software were employed in model devel-
opment, whereas the models were validated using metrics
like R2, Q2 (LOO/LMO) for internal validation, while the
test set was evaluated using the Q2

F1 metric [39]. Addition-
ally, to investigate the stability of the models in prediction or
error of prediction, the residual mean squared errors
(RMSE) were also calculated. The developed models were
applied to predict the potential in vivo half-life of nearly
1300 PCPs within the applicability domain of the model.
The results obtained in this work were utilized to assess PBT
nature of the chemicals and to hypothesize chemicals of
highest concern [38]. The modeling study was performed
using QSARINS software.
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2. Gramatica et al. (2018) [40] in an article demonstrated the
use of combining principal component analysis (PCA) with
predictive toxicological approach in order to provide an
insight into screening, ranking, and predicting PBT nature
of PCPs along with pharmaceuticals. The data were col-
lected from literatures, whereas PCA along with PBT
model implemented in QSARINS were used for screening
and ranking of employed dataset.

3. The cytotoxicity of personal care products along with phar-
maceuticals on the rainbow trout (O. mykiss) species and on
RTL-W1 liver cell line was analyzed using 2D QSAR
approach [41]. The models were developed using genetic
algorithm followed by ordinary least squares approach, and
the descriptors were calculated from SPARTAN [42] and
Dragon software [43]. The model validation was achieved
by R2, Q2, and R2

ext; additionally, Golbraikh and Tropsha
criteria were checked in order to supplement the finding of
the results. The data for QSAR modeling were collected
from the literature, and model development was achieved
using QSARINS software [44].

4. Gramatica and colleagues [13] developed highly robust
models to predict acute toxicity of PCPs in three key organ-
isms, namely, algae, crustacean, and fish. The models were
developed following the strict OECD principles for the
validation of QSARs. The models were developed based
on ordinary least squares approach, while the descriptors
were implemented through PaDEL-Descriptor software.
The QSAR models were applied to predict acute toxicity
for over 500 PCPs without experimental data; a trend of
acute aquatic toxicity was highlighted by PCA allowing the
ranking of inherently more toxic compounds, using a multi-
criteria decision making approach for prioritization pur-
poses. Finally, a QSAR model for the prediction of this
aquatic toxicity index (ATI) was proposed to be applicable
for the a priori chemical design of non-environmentally
hazardous PCPs. The model predicted toxicity was com-
pared with the ECOSAR [15] tool for the error analysis.
Following the in silico QSAR approach, a total of 66 chemi-
cals related to PCP ingredients (mainly UV filters and
phthalates) were selected for inclusion into the final priority
list for further more definitive evaluation, focusing on their
necessary experimental tests. In this way, cost, time, and
animal sacrifice can be reduced. The dataset was collected
mainly from the ECOTOX database (available at https://
cfpub.epa.gov/ecotox/), and some compounds were taken
from other literature. The process of model development,
ranking, and prioritization was accomplished using the
QSARINS tool [44].
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5. A collection of 534 heterogeneous personal care products
was screened for their PBT properties by applying different
tools, namely, the Insubria PBT Index, QSAR model
included in the QSARINS software, and the US-EPA PBT
Profiler by Cassani and Gramatica 2015 [45]. Finally, a
priority list of the potentially most hazardous PCPs was
proposed as identified by the QSAR model. This study also
showed that the PBT Index could be a valid tool to evaluate
more environmentally sustainable chemicals immediately
from the molecular structures, thus avoiding unnecessary
synthesis and expensive tests.

6. de Garcia and colleagues [46] classified a mixture of PCPs
and pharmaceuticals based on their ecotoxicity values
obtained by bioluminescence and respirometry assays
along with predictions obtained by US EPA ecological
structure–activity relationship (ECOSAR). The data classifi-
cation was achieved by Globally Harmonized System of
Classification and Labelling of Chemicals. Finally, as per
the European Medicines Agency, the real risk of impact of
these compounds in wastewater treatment plants (WWTPs)
and in the aquatic environment was predicted. The global
order of the species’ sensitivity to the PPCPs considered was
as follows:A. fischeri> algae> crustaceans> fish> biomass
of WWTP. The compound used in this study was procured
from Sigma-Aldrich and Fluka Chemicals (with purity
�95%).

7. Toropova and Toropov 2018 [47] demonstrated the appli-
cation of CORAL software in ecotoxicological analysis of
organic pollutants containing personal care products
employing the QSAR technique. The index of ideality of
correlation (IIC) was suggested as a criterion of predictive
potential of QSAR. The data implemented in this work were
taken from literature.

8. An extensive scaling and prioritization study on a large
dataset of 15,145 organic pollutants (containing PCPs and
other ingredients) was performed by Edwin John Matthews
in 2019 [48]. For the in silico predictions of chemical
disposition (CD) (intestinal absorption, membrane perme-
ability, distribution, sequestration, toxicokinetics para-
meters) and chemical toxicity (CT) (genetic,
carcinogenicity, developmental, teratology), Percepta [49]
and ADMET Predictor [30] software employing QSAR
models were used. The results of the study demonstrated
that chemicals with different purposes and colorants with
different chemical classes had markedly different profiles of
toxicological activities. The methodology was proposed to
be capable of evaluating smaller sets of chemicals on a
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routine basis to identify and detect potential CD and CT
signals (or emerging chemical hazards) in food and cosmetic
ingredients. The data implemented in this work were taken
from several database like CenterWatch [50], Drugs@FDA
[51], Good Scents Company database [52], CFSAN The-
saurus [53], FDA EAFUS List [54], Health Canada [55],
European Food Safety Authority (EFSA) [56], GRAS
Notice Inventory [57], Fragrance Products Information
Network (FPINVA) [58], Environmental Protection
Agency (EPA) [59], Registry of Toxic Effects of Chemical
Substances (RTECS) database [30], FPIN_LP: Common
Fragrance Chemicals in Laundry Products and Cleaners
[60], GIVAUDAN and IFF: fragrance manufactures [61],
International Cosmetic Ingredient Dictionary (ICID) and
Handbooks [62], permanent and semipermanent hair dyes
Internet database [63], CERES [64], Color of Art Pigment
Database [65], ink dye stuff database [66], and Internet
stains database [67].

9. Monika Batke and colleagues [68] categorized a large data-
base with complex endpoints of toxicity using the read-
across technique. The conceptual approach of read-across
technique works on the principle of structural similarity with
shared mechanism of action. They combined two databases
on repeated dose toxicity, RepDose database [69], and
ELINCS database [70] to form a common database for
the identification of categories. For categorization of che-
micals, the predictive clustering tree (PCT) approach [68]
was adopted based on structural and on toxicological infor-
mation to detect groups of chemicals with similar toxic
profiles and pathways/mechanisms of toxicity. The read-
cross was implemented to fill the data gaps, as many of the
structures in the two databases lack experimental toxicity.
Finally, they proposed improvements for a follow-up
approach, such as incorporation of metabolic information
and more detailed mechanistic information. The clustering
was performed with a clustering tool provided as a free web
service (accessible at http://mlc-reach.informatik.uni-
mainz.de) [71].

10. An extensive in silico analysis of potential chemical-induced
eye injury through irritation and corrosion caused by indus-
trial, household, and cosmetic ingredient chemicals was
performed by Verma and Matthews 2015 [72] by artificial
neural network (ANN) c-QSAR (classification QSAR)
approach [72]. They developed 21ANN c-QSAR models
to predict eye irritation using the ADMET Predictor™
program [72] using a diverse data set of 2928 chemicals.
The developed models could be used to fill the data gaps for
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the safety assessment of cosmetic ingredient chemicals. The
data for modeling was collected from literatures and several
databases like material safety data sheets (MSDSs),
FDA-approved drugs for ophthalmology (available at
www.medilexicon.com/drugs-list/eyes.php),
FDA-approved cosmetic colors in the eye area (available at
www.fda.gov/forindustry/coloradditives/
coloradditiveinventories/ucm115641.htm), Household
Products Database (available at http://hpd.nlm.nih.gov),
Hazardous Substances Data Bank (available at http://
toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB), and
pharmaceutical drugs [73] from the Elsevier PharmaPen-
dium database containing the preclinical, clinical, and post-
marketed eye irritant adverse effects (available at www.
pharmapendium.com).

11. Hisaki et al. (2015) [74] reported models for prediction of
maximum no observed effect level (NOEL) for repeated-
dose, developmental, and reproductive toxicities using
421 chemicals for repeated-dose toxicity, 315 for reproduc-
tive toxicity, and 156 for developmental toxicity collected
from Japan Existing Chemical Database (JECDB) [74]. The
artificial neural networks (ANN) were constructed to pre-
dict NOEL values, while descriptors were selected based on
molecular orbital (MO) calculations. Model validations
were achieved using root mean square (RMS) errors after
tenfold cross-validation (0.529 for repeated dose, 0.508 for
reproductive, and 0.558 for developmental toxicity). Com-
mercially available TOPKAT software [75] was implemen-
ted in this work [74].

12. A group of 558 cosmetic ingredients randomly selected
were analyzed for their mutagenicity, carcinogenicity, devel-
opmental toxicity, and skin sensitization by Plosnik et al.
(2015) [76]. For the said analysis, models embedded in the
CAESAR programs were utilized. The investigated data set
was compiled from Inventory CosIng database (available at
http://ec.europa.eu/consumers/cosmetics/cosing/). The
CAESAR program provides experimental values for some
of the compounds, whereas the rest of them were predicted
correctly. For mutagenicity, the experimental data were
known for 66 compounds, while for 6 of them, the predic-
tions were wrong. For other three properties, only the
limited number of experimental data was reported; how-
ever, the predictions were correct [76].

13. An extensive QSAR analysis on 596 cosmetics was carried
out by Khan and Roy in 2017 [14] in order to prioritize the
molecules of concern. They developed validated partial least
squares QSAR models for three distinct species, namely,
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P. subcapitata, P. promelas, and D. magna, following strin-
gent OECD protocols for QSAR validation (a defined end-
point, unambiguous algorithm, sufficient statistics to
indicate goodness of fit and predictivity, AD analysis, and
mechanistic interpretation). The data for modeling was
obtained from the ECOTOX database and published litera-
tures, and the validation of the models was done using
stringent validation criteria [77]. The study suggested a
linear positive correlation of logP, size, and presence of
sulfur with cosmetic toxicity against the studied endpoints.
They have also compared their results with those of ECO-
SAR, an online expert for toxicity prediction. Finally, they
have prioritized molecules of concern following a scaling
technique as described in Eq. 2.

Y scaled ¼ Y predicted � Y obs min

� �
= Y obs max � Y obs minð Þ ð2Þ

l Local QSAR Models on PCPs
– Surfactants

1. Surfactants, one of the major ingredients of various cos-
metic products, are believed to possess several stabilizing
factors for the final formulation. Nica and colleagues
[19] analyzed five surfactants of quaternary ammonium
compounds (QACs) category, namely, benzyldimethyl-
dodecylammonium chloride, decyltrimethylammonium
bromide, didecyldimethylammonium chloride, hexade-
cyltrimethylammonium chloride, and tetradecyltri-
methylammonium bromide. They have successfully
demonstrated the mode of action of these surfactants
either alone or in a mixture form on A. Fischeri through
the application of the QSAR models. They have also
found out that only hexadecyltrimethyl ammonium chlo-
ride behaved as a polar narcotic, with a low reactivity
toward the bacterial cell membrane. All the statistical
analyses and the Ix (100∗I%) values, with the related
confidence intervals at 95%, were obtained using R®

software [78, 79].

– UV filters

1. Jentzsch et al. [80] performed an in silico prediction to
study transformation of ethylhexyl methoxycinnamate
(EHMC) (a class of UV filters) and its environmental fate
along with transformation products (TPs). Several
software packages were used in that study like CASE
Ultra V.1.5.2.0, MetaPC V.1.8.1 (both MultiCASE Inc.)
[81]; the combined statistical and rule-based OASIS
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Catalogic software V.5.11.6 TB from the Laboratory of
Mathematical Chemistry, University Burgas, Bulgaria [5];
and the statistical QSAR Leadscope software (Version
3.2.6–1) [80]. Additional study was also performed to
check for biodegradability of EHMCand their transforma-
tion products. The performed methodology was proved
helpful in identifying potent TPs, and the application of
multiple model prediction in getting good results was
justified.

2. The toxicological effects of benzophenone (BP)-type UV
filters on D. magna were determined by Liu et al. [82]
using comparative molecular field analysis (CoMFA) and
density functional theory (DFT). The major focus of this
study was to understand the underlying mechanism of
toxicity. Additionally, sensitivity of benzophenone
against Daphnia magna and Dugesia japonica was stud-
ied employing interspecies correlation technique
(QSTTR) [83]. The results demonstrated that the mech-
anism underlying the toxicity of BPs to P. phosphoreum is
primarily related to their electronic properties, and the
mechanism of toxicity to D. magna is hydrophobicity. It
was also found that D. magna was more sensitive than
P. phosphoreum to most of the BPs, with the exceptions of
the polyhydric BPs [82].

– Fragrances

1. Papa et al. [84] proposed predictive MLR-QSAR models
developed from fragrance data (79 compounds) against
three toxicological endpoints, namely, oral LD50, inhibi-
tion of NADH-oxidase (EC50), and the effect on mito-
chondrial membrane potential (EC50) in mouse.
Theoretical molecular descriptors were calculated by
using DRAGON software [43], and the best QSARmod-
els were developed according to the principles defined by
the Organization for Economic Co-operation and Devel-
opment. The predictions obtained for all of the 79 com-
pounds for these two endpoints have almost 80%
correlation, which means that the same chemicals induce
both inhibition of mitochondrial NADH-oxidase and
depolarization of mitochondrial membrane. The actual
fragrance dataset consisted of 39 compounds collected
from the literature, while other fragrance materials of
interest, such as nitro-musks, macrocyclic musks, as well
as other terpenes and cinnamic acid derivatives, were
included for predictive purposes in the study to give a
total of 79 compounds [84].
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– Preservatives

1. The dehydroacetic acid (DHA), a widely used preserva-
tive, was analyzed for its potential toxicities caused by its
by-product using in silico QSAR approach following the
bioassay conducted in vitro on A. fischeri. The result of
the study stated that personal care products containing
DHA must be protected from direct sunlight to prevent
photodegradation [85]. The predicted toxicity values of
by-products on A. fischeri were obtained from Toxicity
Estimation Software Tool (TEST) [85].

2. A report on the development of physiologically based
pharmacokinetic (PBPK) models for parabens mainly
for methyl-, propyl-, and butylparaben on male and
female Sprague-Dawley rats was reported [86]. The
QSAR model was coupled with quantitative in vitro to
in vivo extrapolation (IVIVE) study for hydrolysis in
portals of entry including the intestine, skin, as well as
liver. The finding of the models provided a very good
agreement with the published time-course data in the
blood and urine from controlled dosing studies in rat
and human and demonstrates the potential value of
quantitative IVIVE in expanding the use of human bio-
monitoring data in safety assessment.

– Antioxidants

1. The degradation products of α-tocopherol due to
UV-visible rays in a cosmetic emulsion were predicted
using Toxicity Estimation Software Tool (TEST) devel-
oped by the US Environmental Protection Agency. Tox-
icity evaluations were based on the physical characteristics
of a chemical structure (molecular descriptors) [87].

– Skin sensitizers

1. A quantitative in silico QSAR model for predicting skin
sensitization was reported using k-nearest neighbors
approach with an in-house dataset of 1096 murine local
lymph node (LLNA) studies [88]. The model predicts
the Globally Harmonized System of Classification and
Labelling of Chemicals skin sensitization category of
compounds well, predicting 64% of chemicals in an exter-
nal test set within the correct category. Of the remaining
chemicals in the dataset, 25% were overpredicted, and
11% were underpredicted. Derek Nexus 5.0.2, an expert
knowledge-based system for toxicity predictions (Lhasa),
was used to make an in silico assessment of the skin
sensitizing potential of the chemicals in the internal and
external validation datasets.
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3.2 Application

of QSAR in Ecotoxicity

of Biocides

The number of literatures showing application of QSAR in analyz-
ing biocide toxicity is limited till date; very few people have tried to
implement QSAR in ecotoxicity of biocides. In recent years, an
increased attention is paid in studying environmental impact of
biocides because of their cidal nature against living organisms.

l Global QSAR models on biocides

1. The very first comprehensive and promising application of
QSAR on biocides is demonstrated by Khan et al. (2019)
[89]. They had compiled biocide toxicity data on Daphnia
and fish from various databases such as the OECD QSAR
Toolbox v. 4.2 (available at www.qsartoolbox.org), Pesticide
Properties Database (PPDB) database (available at https://
sitem.herts.ac.uk/aeru/ppdb/), Office of Pesticide Pro-
grams (OPP) Pesticides Ecotoxicity Database (available at
http://www.ipmcenters.org/ecotox/)), European Food
Safety Authority (EFSA) (http://www.efsa.europa.eu/)
database, ECOTOX (available at https://cfpub.epa.gov/
ecotox/) database, and the AMBIT (available at http://
cefic-lri.org/toolbox/ambit/) database. They proposed
robust QSAR models for biocides employing 133 data for
immobilization on Daphnia and 88 data for mortality
against fish following strict OECD (Organization for Eco-
nomic Cooperation and Development) guidelines for
QSAR validation. The findings of the paper stressed on
linear dependency of toxicity of biocide on lipophilicity
while an inverse dependence on polarity. The results of
QSAR study also suggest that presence of nitrogen atoms
increases fish toxicity and presence of sulfur/phosphate/
thiophosphate moiety enhances Daphnia toxicity [89].

2. Rauert et al. (2014) [90] demonstrated the use of QSAR
and read-across coupled with different regulatory criteria for
PBT chemicals in the process of PBT/vPvB identification
and substitution by alternatives. The results of the study
show that the different mandatory measures imposed by
the various regulations along with performed methodology
should be considered together on harmonized PBT/vPvB
identification in order to ensure that the truly problematic
substances are identified.

3. Scholz et al. [91] attempted to prove the importance of
alternative integrated testing strategies (ITSs) in early risk
assessment of plant protection products, pharmaceuticals,
biocides, feed additives, and effluents which can provide the
operational means to combine the different promising alter-
native methods in a powerful and predictive approach that
allows significant reduction of animal testing suitable from
the ethical point of view.
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4. The toxicity of biocides was estimated using a correlation
statistic using QSAR approach [92], and the biocides were
classified in different categories. The result of the study
focuses on the importance of methinic group in controlling
biocidal activity and concludes that QSAR can be used in the
modulation of biocidal toxicity using simple molecular
indices or descriptors.

5. The physiological modes of action of six biocides were
analyzed based on predictive QSAR approach by Neu-
woehner et al. (2008) [93]. The observed pattern of inhi-
bition of reproduction and cell volume growth along with
cell division were found to be closely related to the physio-
logical modes of action of reference chemicals with well-
known modes of toxic action in synchronous green algae.
The proposed scheme of the paper can be used for initial
screening and priority setting of biocides.

6. An ecotoxicological analysis of 26 dithiocarbamates (DCs)
and related compounds on guppies (Poecilia reticulata),
water fleas (Daphnia magna), green algae (Chlorella pyr-
enoidosa), and bacteria (Photobacterium phosphoreum) was
performed by Van Leeuwen et al. [94]. The variations in
toxicity of biocides were found to be directly correlated
with n-octanol/water partition coefficient (nearly 100%
explained variation) as explained by results of QSAR. In
conclusion, DCs were classified as broad-spectrum bio-
cides having cytotoxic properties against studied species.

l Local QSAR models on biocides
– Antifouling agents

1. A set of 71 tributyltins (TBT) as antifouling compounds
was analyzed for their PBT behavior using QSAR predic-
tion programs such as BIOWIN™ (a biodegradation
probability program), KOWWIN™ (log octanol-water
partition coefficient calculation program) [95], and
ECOSAR™ (Ecological Structure Activity Relationship
Program) [15] by Cui et al. (2014) [22]. Their method
highlights the importance of freely available toxicity pre-
diction tools as mentioned above for the estimation of
biodegradation of toxic compounds. A rapidly biode-
gradable chemical is said to be a suitable candidate for
the antifouling agent as this can mitigate predicted eco-
logical effects of compounds. They found out that 31 out
of 71 compounds were rapidly biodegradable hence
suited as a safe alternative for antifouling agent. Among
the different class of chemicals taken into consideration,
natural products were relatively more biodegradable
when compared to synthetic one. The study suggests
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low molecular weight (<400) natural product, and their
analogues yield “green” antifoulants.

– Antimicrobial agents

1. The environmental fate and effect of 2,8-dichlorodibenzo-p-
dioxin and photodegradation of triclosan (TCS), i.e.,
2-hydroxy-8-chlorodibenzodioxin, was studied by Yuval et al.
(2017) [96]. The QSAR results hinted at the
non-biodegradable nature of studied compounds along with
their transformation products, thus making them potential
chemicals for environmental pollutants.

4 Prioritized Molecule Among PCPs and Biocides Using QSAR Approach

Finally, we list here a prioritized list of PCPs and biocides having
potential to behave as potent environmental pollutants estimated
using only QSAR and other computational (mainly predicting)
approaches without involvement of experimental procedures.
Tables 1 and 2 list the proposed molecules, uses along with the
references from where they have been taken.

5 Conclusion

In conclusion, the current chapter highlights what we know about
PCP and biocide- derived environmental toxicity and potential risk
reported in the literature for various environmental compartments.
The continuous report of accumulation of these chemicals causes
concern among policy makers. Another major reason for concern
related to PCPs and biocides is attributed to their explicit mode of
action which differentiates them from other organic chemicals. We
already saw above how extensively the demand of cosmetics and
biocides is increasing due to modernization and globalization of
the developed and developing countries (see Fig. 1) [6, 7]. The
cosmetic market is considered to be booming because of its beau-
tifying products such as lipstick, eye shadows/liners/highlighters,
mascara, foundation cream, and concealer along with some medi-
cally beneficial products such as anti-dandruff agents, anti-hair fall
agents, etc. In contrast, biocides find their application in cosmetics,
medicines, household products, food products, domestic pest con-
trol, disinfectants, and industrial care products.

The environmental concern starts when these contaminants
enter into different compartments of environment such as soil
water and sediments either in an original form or in the form of
metabolites thus affecting natural flora and fauna. Looking at the
complexity of bioassay of these chemicals (mainly due to cost of
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Table 1
List of PCPs prioritized/reported employing QSAR and other in silico models

No. Name Use Reference

1 2-(20-Hydroxy-30,50-di-tert-butylphenyl)benzotriazole UV filter/sunscreen [38]

2 2,4-Di-tert-butyl-6-(5-chloro-2Hbenzotriazol-2-yl)phenol UV filter/sunscreen [38]

3 Benzyl dimethyl dodecyl ammonium chloride Surface active agents [19]

4 Didecyl dimethyl ammonium chloride Surface active agents [19]

5 Tetradecyl trimethyl ammonium bromide Surface active agents [19]

6 Triclocarban Antimicrobial agent [13]

7 Fluorescent brightener 367 UV filter [13]

8 Phenethyl Cinnamate Fragrance [13]

9 Diethylamino hydroxybenzoyl hexyl benzoate UV filter [13]

10 OCTRIZOLE UV filter [45]

11 2,4-Ditert-butyl-6-(5-chlorobenzotriazol-2-yl)phenol UV filter [45]

12 2-(Benzotriazol-2-yl)-4,6-bis(2-methylbutan-2-yl)phenol UV filter [45]

13 2-(Benzotriazol-2-yl)-6-butan-2-yl-4-tert-butylphenol UV filter [45]

14 2-(Benzotriazol-2-yl)-4,6-ditert-butylphenol UV filter [45]

15 Benzyl acetate Fragrances [84]

16 Cinnamyl acetate Fragrances [84]

17 γ-Methyl ionone Fragrances [84]

18 Hexyl salicylate Fragrances [84]

19 Linalool Musk [84]

20 Musk ketone Fragrances [84]

21 Phenethyl cinnamate Fragrances [84]

22 α-Amylcinnamyl alcohol Fragrances [84]

23 Celestolide, crysolide (ADBI) Musk [84]

24 DIMER-1 Antimicrobial agent [85]

25 DIMER-2 Antimicrobial agent [85]

26 PP2 Antimicrobial agent [85]

27 α-Tocopherol PP1-6 Antioxidant [87]

28 α-Tocopherol PP2 Antioxidant [87]

29 α-Tocopherol PP3-2 Antioxidant [87]

30 α-Tocopherol PP4-6 Antioxidant [87]

31 α-Tocopherol PP4-10 Antioxidant [87]

(continued)
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experiments, time, and extensive labor involvement), the chemical
laboratories fail to meet demands in detecting the ever-rising con-
centration of these emerging contaminants in the environment [8–
12]. Looking at the scarcity of ecotoxicological data, the scientific
researchers have come up with alternative methods of toxicity
detection, and in silico methods such as QSAR are one of them.
Using QSAR, one can utilize the available toxicity data of selected
compounds in order to predict toxicity of untested or not yet
synthesized chemicals in order to evaluate the risk of hazards
posed by any chemical contaminants in general and PCPs and
biocides in specific. In the last few decades, computational model-
ing of ecotoxicity predictions of diverse chemicals including PCPs
and biocides has become a crucial step of ecotoxicological risk
assessment. The experimental limitations such as cost, time, and
animal sacrifice are believed to have been curbed to a greater extent
using computational predictive approaches such as QSAR. The

Table 1
(continued)

No. Name Use Reference

32 2-Methyl-2-phenyloxirane Cosmetic ingredients [76]

33 Ethyl benzene Cosmetic ingredients [76]

34 (1S,2R)-2-Amino-1-phenylpropan-1-ol Cosmetic ingredients [76]

35 Ethyl 1-methyl-4-phenylpiperidine-4-carboxylate Cosmetic ingredients [76]

36 Triclocarban Antimicrobial [13, 14]

37 Bis(2-ethylhexyl) benzene-1,2-dicarboxylate Phthalate [13, 14]

38 2-[4-(1,3-Benzoxazol-2-yl)naphthalen-1-yl]-1,3-enzoxazole UV filter [13, 14]

39 (Bis(methylcyclohexyl) phthalate) Phthalate [13, 14]

40 Dicyclohexyl benzene-1,2-dicarboxylate Phthalate [13, 14]

41 3,7-Dimethylocta-1,6-dien-3-yl (E)-3-phenylprop-2-enoate Fragrance [13, 14]

42 2-O-(2-Ethylhexyl) 1-O-hexyl benzene-1,2-dicarboxylate Phthalate [13, 14]

43 2-(2H-Benzothiazol-2-Yl)-6-(Dodecyl)-4-Methylphenol UV filter [13, 14]

44 2-Ethylhexyl (E)-3-(4-methoxyphenyl)prop-2-enoate UV filter [13, 14]

45 Hexyl 2-[4-(diethylamino)-2-hydroxybenzoyl]benzoate UV filter [13, 14]

46 1-O-Butyl 2-O-(2-ethylhexyl) benzene-1,2-dicarboxylate Phthalate [13, 14]

47 Bis(5-methylhexyl) benzene-1,2-dicarboxylate Phthalate [13, 14]

48 2-(Benzotriazol-2-yl)-4,6-bis(2-methylbutan-2-yl)phenol UV filter [13, 14]

49 Di hexyl benzene-1,2-dicarboxylate Phthalate [13, 14]

50 2-(Benzotriazol-2-yl)-4-(2,4,4-trimethylpentan-2-yl)phenol UV filter [13, 14]
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Table 2
List of toxic biocides prioritized/reported employing QSAR and other in silico models

No. Name Use Reference

1 Chlorothalonil Antifouling products [22]

2 Dichlofluanid Antifouling products [22]

3 Irgarol 1051 Antifouling products [22]

4 TCMS pyridine Antifouling products [22]

5 TCMTB Antifouling products [22]

6 Diuron Antifouling products [22]

7 DCOIT Antifouling products [22]

8 Zinc pyrithione Antifouling products [22]

9 Copper pyrithione Antifouling products [22]

10 Zineb Antifouling products [22]

11 2,4-Di-tert-butyl-6-(dimorpholinomethyl)phenol Antimicrobials [92]

12 4,40-((4-Isopropylphenyl)methylene)dimorpholine Antimicrobials [92]

13 4,40-(Naphthalen-1-ylmethylene)dimorpholine Antimicrobials [92]

14 4,40-(Pyren-1-ylmethylene)dimorpholine Antimicrobials [92]

15 3-Nitroaniline Wood preservative [93]

16 Irgarol® 1051 Antifouling products [93]

17 Triclosan Antimicrobials [96]

18 Acrolein Slimicides [89]

19 Rotenone Piscicides [89]

20 Flufenoxuron Wood preservatives [89]

21 Cyhalothrin Insecticides/acaricides [89]

22 Deltamethrin Insecticides/acaricides [89]

23 Cypermethrin Insecticides/acaricides [89]

24 Acrinathrin Insecticides [89]

25 Malathion Insecticides/acaricides [89]

26 Chlorpyrifos Insecticides/acaricides [89]

27 Difethialone Rodenticides [89]

28 Hexaflumuron Insecticides/acaricides [89]

29 Fenbutatin oxide Acaricide/miticide [89]

30 Medetomidine Antifouling products [89]
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described encouraging features of QSAR have made it compulsory
in early risk assessment of environmental contaminants by various
regulatory bodies such as ECVAM, US EPA, ATSDR, and CSTEE.
Now, it is being used to predict the toxicity of new chemicals which
are expected to become pollutants or toxicants after its use at
present or in the future provided they withstand acceptability cri-
teria as laid down and accepted by international community. The
developed models on PCPs and biocides should be robust, statisti-
cally sound, and reliable [97] and should consist of diverse chemical
datasets (large applicability domain) in order to have its application
in ecotoxicity of various species.

The present chapter highlights the constituents, route, source,
hazards, and potential risks associated with the exposure of PCPs
and biocides to the environment. We have also seen the regulatory
requirements or protocols as laid down by various regulatory bod-
ies implemented in risk assessment of PCPs and biocides. The roles
of the government authorities and different regulated policies
regarding identification of risk of these products have also been
discussed. Lastly, the chapter gives a detailed analysis of already
applied QSAR models in ecotoxicological study of PCPs and bio-
cides mainly focusing on the source of data collection, type of
descriptor used, methodology used, and software employed
which were among the few highlights. A list of chemicals of ele-
vated concern to the environment obtained solely by QSAR and
other predictive methods is presented at the end of the book
chapter to depict some of their merits above experimental proce-
dures. Looking at the number of models available on PCPs and
biocides, it seems to be higher for PCPs compared to biocides, but
the numbers are in general limited compared to other classes of
industrial chemicals. Although it is definite that experimental
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approaches can never be completely substituted with computa-
tional approaches, these approaches can be integrated with each
other for better understanding. Thus, we can conclude that the
need to develop more number of QSAR models is not only desir-
able but also confirms its nonpareil role in ecotoxicity prediction of
PCPs and biocides.
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Chapter 17

Computational Approaches to Evaluate Ecotoxicity
of Biocides: Cases from the Project COMBASE

Sergi Gómez-Ganau, Marco Marzo, Rafael Gozalbes, and Emilio Benfenati

Abstract

The evaluation of the ecotoxicological profile of chemicals is of high relevance when a substance can have an
impact on the environment, such as the case of biocides. Due to the high number of animal tests conducted
each year for regulatory purposes and the ethical considerations that this entails, the requirement of
alternative methods by companies and regulatory agencies is increasing. Within these, in silico tools are
useful to minimize time, costs, and resources, and they can be applied as alternatives to traditional
laboratory assays.
In this chapter, we present some computational models developed in the context of the EU LIFE+

project entitled “Computational tool for the assessment and substitution of biocidal active substances of
ecotoxicological concern (COMBASE)” (http://www.life-combase.com). The main objective of the proj-
ect was the development of a tool based on computational toxicology, integrating predictive models of the
toxic effects associated with biocidal substances at different trophic levels. Here, different quantitative
structure-activity relationship (QSAR) models for the estimation of ecotoxicity of biocides in microorgan-
isms and fish are presented. First, an integrated model to predict the respiratory inhibition in activated
sludge was developed, by combining sequentially a qualitative and a quantitative QSAR model. Previously
to the development of the model, a set of 94 chemicals with known EC50 values was selected to this study,
based on their “biocide-like” structural features. Second, a model to predict LC50 on rainbow trout was
developed on a dataset made by collection data from OpenFoodTox database of the European Food Safety
Authority (EFSA) and Pesticide Ecotoxicity Database of Office of Pesticide Programs (OPP) (https://
ecotox.ipmcenters.org/).
Both models showed good performances and robustness and have been integrated in the VEGA last

release (version 1.1.5; https://www.vegahub.eu/) as well as the specific COMBASE tool (http://webtool.
life-combase.com).

Key words Biocides, QSAR, Biocidal Products Regulation (BPR), Activated sludge, Rainbow trout,
VEGA, COMBASE

1 Introduction

Biocidal products such as disinfectants, wood preservatives, roden-
ticides, antifouling products, etc. are systematically used in our daily
lives and in industry. During the last years, their concentration in
the aquatic environments such as wastewater effluents, sludge, or
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even drinking water has been rising due to their uncontrolled use
and the inefficient wastewater treatment [1]. Increasing attention is
being paid to the concerns related to the environmental occurrence
and possible harmful impact of biocides which are becoming now a
widely and well-recognized class of emerging environmental
pollutants [1].

The authorization process and the placement of biocides on
market are regulated by the Biocidal Products Regulation (BPR)
528/2012 [2]. Different tests for human toxicity, environmental
safety, and control of residues and degradation products must be
performed for biocidal products, including the risk assessment for
the aquatic effects of biocides in different compartments and
aquatic species [3].

The market of biocides in Europe is in expansion, and in silico
methods have acquired a relevant role at the regulatory level in
order to reduce time and costs of traditional laboratory assays.
These computational approaches are increasingly being used for
toxicity assessment and reduction of the need of in vitro or in vivo
test. There are many situations where in silico methods have a key
role in the hazard assessment of chemicals such as weight of evi-
dence, assessment of degradation products and impurities in phar-
maceutical products or plant protection products, or metabolite
analysis [4].

The development of QSAR models represents one of the most
widely used strategies within in silico methods. QSARs involve the
construction of mathematical models derived from training sets of
molecules with well-known chemical structures and biological/
toxicological properties. The chemical structures of series of com-
pounds are related by means of mathematical algorithms with
physicochemical properties or biological/toxicological activities
[5]. In the recent years, different QSAR models have been devel-
oped for predicting parameters for regulatory purposes [6]. The
main reason for this increasing interest on QSARs is their accep-
tance at the regulatory level by different international instances,
such as the European Chemicals Agency (ECHA; mainly regarding
REACH norm), the European Food Safety Authority (EFSA), or
the Food and Drug Administration (FDA) [6, 7]. QSAR models
are validated by these organisms when they are developed following
the standardized “Setubal rules” [8], and several well-known che-
moinformatic programs such as VEGA [https://www.vegahub.eu/
] include models completely acceptable and usable for regulatory
processes.

The use of non-animal alternative test methods has also been
foreseen in the Biocidal Products Regulation, Regulation
(EU) 528/2012. The widespread use of non-testing methods
would help SMEs in identifying, among others, the so-called meta-
bolites of ecotoxicological concern while facilitating the registering
of biocidal active substances within the BPR and reducing animal
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testing. In this context, the EU LIFE + project entitled “Compu-
tational tool for the assessment and substitution of biocidal active
substances of ecotoxicological concern (COMBASE)” has the
objective to promote the sustainable use of biocidal active sub-
stances from a life cycle perspective. To this end, an online informa-
tion system based on the combination of evidence-based decision
support systems (EBDSS) and proven computational toxicology
modeling approaches has been implemented.

The COMBASE project has been conducted by six partners
from Spain and Italy: Istituto di Ricerche Farmacologiche Mario
Negri (IRFMN; www.marionegri.it); INKOA Sistemas S.L. (www.
inkoa.com); Instituto Tecnológico del Embalaje, Transporte y
Logı́stica (ITENE; www.itene.com); Xenobiotics S.L. (https://
xenobiotics.es); Instituto Nacional de Investigación y Tecnologı́a
Agraria y Alimentaria (INIA; www.inia.es); and ProtoQSAR
S.L. (https://protoqsar.com). In this chapter we present the
computational models developed to predict the ecotoxicity in
aquatic environment at two trophic levels, microorganisms and fish.

2 Materials and Methods

2.1 Activated Sludge

QSAR Models

2.1.1 Organism

to Assess and Endpoint

to Evaluate

The acute toxicity assay activated sludge, according to the OECD
official Guideline 209 on “Activated sludge, Respiration Inhibition
Test” [9], describes a method to determine the effects of a sub-
stance on microorganisms from activated sludge (largely bacteria)
by measuring their respiration rate (carbon and/or ammonium
oxidation) under defined conditions and in the presence of differ-
ent concentrations of the test substance. With this test, it is possible
to perform a rapid screening to assess the effects of chemicals on the
microorganisms of the activated sludge.

Samples of activated sludge with test substance and without
(blank controls) are incubated with synthetic sewage and the respi-
ration rates are measured in an enclosed cell containing an oxygen
electrode after a contact time of 3 h. The sensitivity of each batch of
activated sludge is also tested with a suitable reference substance
(i.e., 3,5-dichlorophenol). The test is typically used to determine
the ECx (e.g., EC50) of the test substance and/or the
non-observed effect concentration (NOEC).

2.1.2 Data Collection

and Definition of a Biocide-

Like Space

A COMBASE dataset has been built within the frame of the
COMBASE project by collecting available information of existing
biocides, both considering active substances and their metabolites.
This database was implemented compiling toxicity data for biocide
substances in organisms of the freshwater/marine and sewage
treatment plant compartments. Several official and scientific data-
bases were consulted, such as the Open Chemistry Database
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(PubChem; https://pubchem.ncbi.nlm.nih.gov/), the ECOTOX-
icology knowledgebase (ECOTOX; https://cfpub.epa.gov/
ecotox/), the Pesticide Properties Database (PPDB; https://
sitem.herts.ac.uk/aeru/ppdb/), the TOXicology Data NETwork
(TOXNET; https://toxnet.nlm.nih.gov/), or the Pesticide Action
Network (PAN; http://www.pesticideinfo.org/). Data from

Table 1
Physicochemical and structural features considered to differentiate biocides with respect to a set of
standard chemicals

Physical properties Molecular weight
Total charge (sum of formal charges)
Number of reactive groups

Atom counts Number of atoms (including implicit atoms)
Number of carbon atoms
Number of hydrogen atoms (including implicit hydrogens)
Number of heteroatoms
Ratio between the number of carbon atoms and heteroatoms
Number of heavy atoms
Number of aromatic atoms
Number of nitrogen atoms
Number of oxygen atoms
Number of hydrogen bond acceptors (number of nitrogen plus

oxygen atoms)
Number of hydrogen bond donors (number of OH and NH

atoms)
Number of fluorine atoms
Number of chlorine atoms
Number of bromine atoms
Number of iodine atoms
Number of halide atoms
Number of phosphorous atoms
Number of sulfur atoms
Number of P and S
Number of chiral centers
Absence of atoms different from C, O, N, S, P, F, Cl, Br, I, Li,

Na, K, Mg, Ca

Bond counts Number of bonds (including implicit hydrogens)
Number of single bonds (including implicit hydrogens)
Number of double bonds
Number of triple bonds
Number of bonds between heavy atoms
Number of rotatable single bonds
Number of rigid bonds
Number of aromatic bonds
Number of rings
Absence of –(CH2)6CH3 chains

Adjacency and distance matrix
descriptors

Diameter
Radius
Petitjean descriptor
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196 biocidal substances and 206 environmental metabolites were
collected, and substances were categorized for their toxicity into
four groups, considering values of L(E)C50, according to EU Reg-
ulation (EC) No. 1272/2008. All of this information was made
available for QSAR building purposes, but in the particular case of
activated sludge, respiratory inhibition test, experimental EC50

data after 3 h was only found for a very reduced number of chemi-
cals, insufficient to build reliable QSARs.

Other datasets available within the OECD QSAR Toolbox
v. 4.2. (www.qsartoolbox.org) were considered as potentially useful
for our objective. Fifty-seven databases containing 84, 291 chemi-
cals with almost 2.5 million measured data points with information
for environmental fate and transport, physical chemical properties,
ecotoxicology, and human health hazards are implemented in
QSAR Toolbox 4.3. The most significant for constructing the
model were ECOTOX, Aquatic ECETOC, and Aquatic Japan
MOE, but information from other datasets was also used. Never-
theless, we wanted to develop computational models specifically
tailored for biocides, and those databases include any kind of che-
micals. In consequence, it was decided to previously define a “bio-
cide-like” chemical space composed of chemicals with a common
set of structural features. Once these features were selected, their
application to this global dataset could provide us a dataset that,
even if not composed exclusively of biocides, is composed in some
way of compounds with potential biocide activity.

With the aim of identifying a set of common biocide-like
relevant features, a comparison of physical/structural parameters
(Table 1) and cutoff values was carried out between the Physprop
database (https://www.srcinc.com), a generalist set of around 6500
chemicals, and a biocide-specific dataset (the COMBASE dataset;
http://www.life-combase.com). The Physprop dataset contains
chemical structures, names, and physical properties for generic
chemical compounds. On the other side, the COMBASE dataset
has been built within the frame of the COMBASE project by
collecting available information of the existing biocides, both con-
sidering active substances and their metabolites.

Biocide-like filters were defined as those features able to maxi-
mize the difference between a biocide-like compound and a generic
chemical for both datasets. The different parameters (Table 1) to
characterize the structures from both databases were calculated
using different software: CDK [10], FAF-Drugs4 [11], and
PaDEL descriptor [12].

One single dataset was built by merging all the information.
The quality of the experimental data of this dataset was curated
following a standard procedure [13]: compounds with a chemical
structure not clearly defined were deleted, as well as inorganic
compounds, metal complexes, salts containing organic polyatomic
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counterions, mixtures, and substances of unknown or variable
composition (UVCB). Also, duplicates and tautomers were
checked. A further check of duplicates was done using the best
tautomer to ensure that only one compound was present in the
final dataset.

In case of multiple and different experimental values for the
same compound, the variability was evaluated using the threshold
established by the European Commission [14] as the ratio between
the maximum value and the minimum experimental value (x/y) as
follows:

(a) If x/y was <3, the geometric mean of the experimental data
was kept.

(b) If x/y was >3, the compound was removed from the dataset.

In the remaining cases with different experimental values, the
geometric mean was considered as the experimental value asso-
ciated to the compound. After curation of the dataset, the
biocide-like filters described in Subheading 2.1.1 were applied to
the dataset, and finally 94 biocide-like compounds were selected to
develop the models.

2.1.3 Development

of the Model

An integrated model to predict the respiratory inhibition in acti-
vated sludge was arranged cascading a qualitative QSAR model and
a quantitative QSAR model.

Qualitative QSAR Model

for Activated Sludge

Starting from the dataset composed of 94 biocide-like chemical
compounds, a binary model (toxic/nontoxic) was developed. A
compound was considered toxic when the EC50 for activated
sludge respiratory inhibition test was <100 mg/L. Molecular
descriptors were calculated by an in-house software module in
which they are implemented as described by Todeschini et al.
[15]. Constant variables, near-constant variables, and 0.95 pair-
correlated variables were deleted. Once the variables were calcu-
lated, STATISTICA software [16] was used to carry out the model
building. The whole dataset was randomly split into a training set
(64%) and a validation set (36%), and the boosted tree method [16]
was used for the classification model development. The algorithm
for boosted trees evolved from the application of boosting methods
to regression trees. The general idea is to compute a sequence of
(very) simple trees, where each successive tree is built for the
prediction residuals of the preceding tree. Thus, at each step of
the boosting (boosting tree algorithm), a simple (best) partitioning
of the data is determined, and the deviations of the observed values
from the respective means (residuals for each partition) are com-
puted. The next three-node tree is then fitted to those residuals, to
find another partition that will further reduce the residual (error)
variance for the data, given the preceding sequence of trees.
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It can be shown that such “additive weighted expansions” of
trees can eventually produce an excellent fit of the predicted values
to the observed values, even if the specific nature of the relation-
ships between the predictor variables and the dependent variable of
interest is very complex (nonlinear in nature). Hence, the method
of gradient boosting—fitting a weighted additive expansion of
simple trees—represents a very general and powerful machine
learning algorithm [16]. The variables in the model were selected
using a sensitivity analysis. Sensitivity analysis in data mining and
statistical model building/fitting generally refers to the assessment
of the importance of predictors in the respective (fitted) models. In
short, given a fitted model with certain model parameters for each
predictor, what the effect would be of varying the parameters of the
model (for each variable) on the overall model fit is studied. In
Statistica Data Miner, sensitivity analysis is available via several
options; the particular statistics and measures that are reported
depend on the statistical or data mining method for which the
sensitivity analysis is requested. In all CART (classification and
regression tree) and boosted tree models, sensitivity and predictor
importance is computed from the average importance of each
predictor at each split point (split node) in the final tree model.

Quantitative QSAR Model Once the qualitative model was developed, a quantitative model
was developed using the compounds for which a precise value of
EC50 was known (all of them belonging to the group of “toxic”
chemicals with EC50 < 100 mg/L). Once the variables were calcu-
lated, the EC50 was converted to LogEC50, and STATISTICA
software [16] was used to develop the model. The whole dataset
was used to perform a multiple linear regression (MLR). The vari-
ables in the model were selected by using a forward stepwise
analysis. In STATISTICA, the forward stepwise method employs
a combination of the procedures used in the forward entry and
backward removal methods. At step 1 the procedures for forward
entry are performed. At any subsequent step where two or more
effects have been selected for entry into the model, forward entry is
performed if possible, and/or backward removal is performed if
possible, until neither procedure can be performed. Stepping is also
terminated if the maximum number of steps is reached.

When the model was developed, a leave-one-out cross valida-
tion (LOOCV) was carried out. Leave-one-out cross validation is a
special case of k-fold cross validation with k ¼ n, the number of
observations. LOOCV consists of splitting the dataset randomly
into n partitions. For each n-th iteration, n�1 partitions are used as
the training set and the left-out sample is used as the test set. When
the dataset is small, leave-one-out cross validation is appealing as
the size of the training set is maximized [17].
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2.2 Rainbow Trout

QSAR Model

2.2.1 Data Collection

A model to predict LC50 on rainbow trout was developed from a
dataset made by collection data from OpenFoodTox database [18]
of the European Food Safety Authority (EFSA) and Pesticide Eco-
toxicity Database of the US EPA Office of Pesticides Programs
(OPP) (https://ecotox.ipmcenters.org/). Two hundred and four
values were collected from OpenFoodTox database and 521 from
Pesticide Ecotoxicity Database. Filters to select data from the data-
bases are the following:

l Substance type is pesticide or biocide.

l Species is rainbow trout.

l Fish age is less than 3 days.

l The guideline followed is OECD 203 [19].

l Active ingredient purity must be >80%.

l Exposure time is 96 h.

l Endpoint is LC50.

l No qualifier is accepted.

l All measured units were converted in mg/L.

For compounds with multiple data, congruence of experimen-
tal data was evaluated; if the ratio between the highest and lowest
value was greater than 3, the compound was discarded. For com-
pounds with congruent multiple data, the geometric mean was
calculated. After data collection, the dataset is composed of
393 compounds.

The model was developed using graphical program KNIME
[20]. KNIME is a free JAVA program. The model was developed
using descriptors calculated with the commercial software Dragon
7.0 [21] integrated in KNIME that permits to calculate over 5000
chemical descriptors.

2.2.2 Data Cleaning Before developing a model, a data cleaning process was applied:
2 compounds were discarded because they were inorganics; 8 com-
pounds were discarded because they were composed of a large
number of carbons compared with the other dataset compounds,
thus they were discarded after a box plot analysis based on the
number of carbons in the molecule, and they were found as out-
liers; 7 compounds were discarded because in the PCA analysis
made on 3481 Dragon descriptors, they were found as outliers;
47 compounds were discarded because the experimental value
results were outliers in a box plot analysis.

2.2.3 Features Selection After the data cleaning process, the final dataset was composed of
329 compounds. The final dataset was split in a training set (TS), a
calibration set (CS), and a validation set (VS) (Fig. 1). VS corre-
sponds to the 20% of the dataset, and the remaining compounds
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were split in TS and CS with ratio 80/20%. Therefore, TS is
composed of 212 compounds, CS 52 compounds, and VS 65 com-
pounds. TS is used to develop the model, CS is used to select the
best parameters to select descriptor and model parameters, and VS
is used after model development to see the performance of the
model on external data.

With Dragon, 2641 descriptors were calculated on the
329 compounds. All descriptors were normalized with “z score”
methods. For descriptor selection, low variance filter was used to
filter the descriptor that has variability lower than 0.1 (2591
descriptors collected). Then, high correlation filter was applied to
filter descriptors that were correlated more than 0.6. After descrip-
tor selection the model was developed using 335 descriptors.

2.2.4 Model Optimization The model developed with tree ensemble (TE) statistic method has
the following parameters: 9 levels, node size of 1, and 500 trees.

2.2.5 Applicability

Domain

Tree ensemble methods provide a confidence value; therefore, to
increase the performance of the models, the confidence value was
used to improve the applicability domain criteria; thus, only pre-
dictions with a confidence higher than or equal to 0.65 were taken
into account. To select these parameters, many confidence thresh-
olds were tested on CS, and only results with a coverage higher than
0.6 were taken into account.

3 Results

3.1 Biocide-Like

Chemical Space

Different cutoff values for the physicochemical and structural para-
meters listed in Table 1 were applied to both databases trying to
identify a set of common biocide properties. Table 2 lists the
properties and cutoff values selected and the number and percent-
age of compounds for both datasets that did not meet the filter
criteria.

3.2 Qualitative QSAR

Model for Activated

Sludge

A qualitative QSARmodel was developed starting from 94 biocide-
like compounds by using boosted tree analysis and 8 descriptors
selected by sensitivity analysis. The dataset was distributed in a
training set (60 compounds) and validation set (34 compounds).
The descriptors selected by the best model are shown in Table 3,
and the statistics obtained with this model are presented in Fig. 2.

3.3 Quantitative

QSAR Model

for Activated Sludge

By using the 35 biocide-like compounds considered toxic
(EC50 < 100 mg/L) in the dataset, a quantitative QSAR model
was developed by using the whole set and aMLR analysis (Table 4).
The equation obtained for the quantitative model was:
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LogEC50 ¼ 2:28þ 0:05 MinHBint2� 0:00017 ATSC7v

þ 0:005 VE3 DzZþ 12:16 AATSC4e

�0:13 BCUTp� 1 l

Figure 3 shows visually the adjustment between predicted and
experimental values, and Table 5 includes the statistical parameters
of the MLR equation.

Furthermore, a leave-one-out cross validation and a fivefold
cross validation were carried out. The statistics for the analysis
were a Q2 loo of 0.69 and a Q2 5fold-CV of 0.69.

3.4 Rainbow Trout

QSAR Model

The model performances are shown in Table 6.
The performance of the model without confidence value is

good; TS has R2 of 0.96 because TE must overfit the TS in order
to have a good performance (Fig. 4), while CS and VS have com-
parable performance (R2 0.41 and 0.42; see Figs. 5 and 6, respec-
tively). The performance of the model using the confidence value

Fig. 1 Box plot of the LC50 distribution in the three sets: TS (training set), CS (calibration set), and VS (validation
set)

Table 2
Features and cutoff values maximizing the differences between biocides and generic chemicals

Biocide-like filter Biocide dataset Generic organic chemical dataset

Sum of P and S � 2 2 (0.78%) 135 (2.03%)

Number of heteroatoms �1 2 (0.78%) 263 (3.95%)

Number of rigid bonds �1 14 (5.45%) 1831 (27.53%)

Number of P � 0 1 (0.39%) 275 (4.13%)

Number of Cl � 3 0 (0.00%) 262 (3.94%)

Total 19 (7.39%) 2766 (42.47%)
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threshold is increased. TS has R2 of 0.99 with a coverage of 0.17
which is normal because the model already overfits. The perfor-
mance of CS increases at R2 0.55 on 62% of compounds (Fig. 7),
and R2 VS is 0.51 on 77% of compounds (Fig. 8), so the model
prediction associated with the confidence value gives a good pre-
diction for the LC50 endpoint.

Table 3
Descriptors selected by the binary QSAR model

MaxHother Maximum atom-type H E-state: H on aaCH, dCH2, or dsCH

MinwHBa Minimum E-states for weak hydrogen bond acceptors

ETA_BetaP_ns_d A measure of lone electrons entering into resonance relative to molecular size

Gats3c Geary autocorrelation—lag 3/weighted by charges

MinsCH3 Minimum atom-type E-state: -CH3

ATSC4p Centered Broto-Moreau autocorrelation—lag 4/weighted by polarizabilities

SpMax1_Bhm Largest absolute eigenvalue of burden modified matrix—n 1/weighted by relative
mass

GATS1i Geary autocorrelation—lag 1/weighted by first ionization potential

Fig. 2 Confusion matrix obtained with the binary QSAR model
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4 Discussion

The need for alternative methods in regulatory toxicology is stron-
ger than ever, considering the legal requirements imposed by dif-
ferent international regulations (e.g., EU-REACH). The
application of QSARs in this domain is experiencing an increasing
interest worldwide, and in fact the use of such methods is stimu-
lated by the mentioned regulations [6].

Biocidal products are commonly used to protect human beings
and the environment against harmful organisms such as pests or
bacteria. Nevertheless, biocides and their metabolites or

Table 4
Descriptors selected by the MLR-QSAR model

MinHBint Minimum E-state descriptors of strength for potential hydrogen bonds of path length 2

ATSC7v Centered Broto-Moreau autocorrelation—lag 7/weighted by van der Waals volumes

VE3_DzZ Logarithmic coefficient sum of the last eigenvector from Barysz matrix/weighted by atomic
number

AATSC4e Average centered Broto-Moreau autocorrelation—lag 4/weighted by Sanderson
electronegativities

BCUTp-
1l

nhigh lowest polarizability weighted BCUTS

Fig. 3 Graphical representation of the adjustment between predicted and
experimental values obtained by MLR
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transformation products can also have undesirable adverse effects.
In the EU, the commercialization and use of biocidal products
depend on the Regulation (EU) No. 528/2012 (commonly

Table 5
Statistics obtained with the MLR-QSAR model

Quantitative model Log EC50

p 0.000001

F 13.96

MS residual 0.03

Df 29

Df model 5

SS residual 0.92

MS 0.44

SS model 2.23

R2 0.71

Fig. 4 Scatter plot of the TS prediction. Experimental value on x-axis and
prediction on y-axis
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known as the Biocidal Products Regulation (BPR)). The purpose of
BPR is to harmonize the rules on the supply and use of biocidal
products while ensuring a high level of protection of people and the
environment. BPR establishes that biocidal products must be
authorized before they can be made available on the market and

Table 6
Tree ensemble performance to predict LC50 in rainbow trout

TS CS VS

R2 0.96 0.41 0.42

Coverage 1 1 1

TS C CS C VS C

R2 0.99 0.55 0.51

Coverage 0.17 0.62 0.77

TS training set, CS calibration set, VS validation set

C means that the confidence value was taken into account

Fig. 5 Scatter plot of the CS prediction. Experimental value on x-axis and
prediction on y-axis
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used. Although BPR does not completely forbid animal testing, it
tries to minimize it as much as possible, for example, by compiling
companies to share data on tests on vertebrate animals and by
expressly forbidding duplicating such tests. The use of alternative
methods is also specifically foreseen in BPR, with special reference
to computational methods such as QSARs.

In this context, the project COMBASE represents an opportu-
nity to the increasing use of computational approaches. The models
developed for the prediction of aquatic ecotoxicity are made avail-
able for free both by the well-known VEGA software and by the
specific COMBASE tool, which is more focused on companies
concerned by the BPR regulation.

First, an integrated model to predict the respiratory inhibition
in activated sludge was developed, by combining sequentially a
qualitative and a quantitative QSAR model. A set of 94 chemicals
with known EC50 values was selected to this study, based on their
“biocide-like” structural features. Thirty-five of them were consid-
ered as toxic (EC50 < 100 mg/L), and the other 59 were consid-
ered as nontoxic. The set of compounds was randomly distributed
in a training set (60 structures) and a validation set (34 structures),
and boosted tree analysis was performed yielding an accuracy of

Fig. 6 Scatter plot of the VS prediction. Experimental value on x-axis and
prediction on y-axis
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adjustment between experimental and predicted EC50 of 85% and
80% on the training and test sets, respectively. Consequently, a
multiple linear regression (MLR) was carried out using the 35 com-
pounds for which a precise EC50 value was known. Statistics for the
model reached a R2 of 0.71, a Q2 loo of 0.69, and a Q2 5fold-CV of
0.69. From a statistical point of view, probably the worst result
observed was the percentage of compounds considered as false
positives (i.e., chemicals predicted as toxic that were in fact non-
toxic): 5 compounds from 15 (33.33%) in the validation set
(Fig. 2). Nevertheless, it is important to consider that in this case,
the result would follow the “precautionary principle.”

Second, a model to predict LC50 on rainbow trout was devel-
oped on a dataset made by collection data from OpenFoodTox
database [15] of the European Food Safety Authority (EFSA) and
Pesticide Ecotoxicity Database of Office of Pesticides Programs
(OPP) (https://ecotox.ipmcenters.org/). From these two data-
bases, a dataset of 393 compounds with LC50 values was extracted.
The set of compounds was split into a training set (212) to develop
the model, a calibration set (52) to select the best features and to set
the best parameter model, and a validation set (65) to validate the
model. TS and CS were used to perform the feature selection using

Fig. 7 Scatter plot of the CS prediction. Experimental value on x-axis and only
prediction in the applicability domain on y-axis
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low variance filter and high correlation filter methods. The set of
features selected was used to develop the tree ensemble methods.
The model prediction with confidence value gave satisfactory
results; in fact in CS and TS, the R2 was relatively 0.55 on the
62% of the set (applying the tool to select predictions based on
higher confidence) and 0.51 on the 77% of the set.

Those statistics confirmed the robustness of both models (acti-
vated sludge and acute toxicity in fish) and their efficiency to
estimate aquatic ecotoxicity. Both models are available for free in
VEGA, including detailed reports and applicability domain coeffi-
cients, as well as in a simplest tool (COMBASE) more adapted to
companies concerned by the BPR regulation and without specific
personnel with experience or knowledge on chemoinformatics.
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5. Gómez-Ganau S, De Julián-Ortiz JV, Gozalbes
R (2018) Recent advances in computational
approaches for designing potential anti-alzhei-
mer’s agents. Springer Book “Computational
modeling of drugs against Alzheimer’s dis-
ease”. Chapter 2, Pages 25–59 (Series: Neuro-
methods, Kunal Roy (ed.), Vol. 132, ISBN
978-1-4939-7404-7)

6. Gozalbes R, de Julián Ortiz JV (2018) Appli-
cations of chemoinformatics in predictive toxi-
cology for regulatory purposes, especially in
the context of the EU REACH legislation. Int
J Quantitat Struct-Prop Relat 3(1):1–24

7. Valerio LG Jr (2011) In silico toxicology mod-
els and databases as FDA critical path initiative
toolkits. Hum Genomics 5(3):200–207.
https://doi.org/10.1186/1479-7364-5-3-
200

8. The Organisation for Economic Co-operation
and Development (OECD) (2007) Guidance
document on the validation of (Quantitative)
Structure-Activity Relationships [(Q)SAR]
models. OECD Environment Health and
Safety Publications. Retrieved from www.
oecd.org/ehs/

9. Organization for Economic Cooperation and
Development, Activated Sludge, Respiration
Inhibition Test, OECD Chemicals
Programme, Ecotoxicological Testing (1981)

10. Willighagen EL, Mayfield JW et al (2017) The
Chemistry Development Kit (CDK) v2.0:
atom typing, depiction, molecular formulas,
and substructure searching. J Cheminform 9
(1):33

11. Lagorce D, Sperandio O, Galons H, Miteva
MA, Villoutreix BO (2008) FAF-Drugs2: free
ADME/tox filtering tool to assist drug discov-
ery and chemical biology projects. BMC Bioin-
formatics 9:396

12. Yap CW (2011) PaDEL-descriptor: an open
source software to calculate molecular

descriptors and fingerprints. J Comput Chem
32(7):1466–1474

13. Cherkasov A, Muratov EN et al (2014 Jun 26)
QSAR modeling: where have you been? Where
are you going to? J Med Chem 57
(12):4977–5010

14. SANCO/10597/2003 –rev. 10.1 (2012)

15. Todeschini R, Consonni V (2009) Molecular
descriptors for chemoinformatics. Wiley-VCH
Verlag GmbH & Co. KGaA

16. StatSoft, Inc. (2007) STATISTICA (data anal-
ysis software system), version 8.0. http://www.
statsoft.com

17. Cheng H, Garrick DJ, Fernando RL (2017)
Efficient strategies for leave-one-out cross vali-
dation for genomic best linear unbiased predic-
tion. J Anim Sci Biotechnol 8:38. https://doi.
org/10.1186/s40104-017-0164-6. eCollec-
tion 2017. PubMed PMID: 28469846;
PubMed Central PMCID: PMC5414316

18. Dorne JL et al (2017) EFSA (European Food
Safety Authority), 2017. OpenFoodTox:
EFSA’s open source toxicological database on
chemical hazards in food and feed. EFSA J 15
(1):e15011. [3 pp.]. https://doi.org/10.
2903/j.efsa.2017.e15011

19. OECD 203. OECD (1992) Test no. 203: fish,
acute toxicity test, OECD guidelines for the
testing of chemicals, section 2. OECD Publish-
ing, Paris. https://doi.org/10.1787/
9789264069961-en

20. Berthold MR, Cebron N, Dill F, Gabriel TR,
Kötter T, Meinl T, Ohl P, Sieb C, Thiel K,
Wiswedel B (2007) KNIME: The Konstanz
information miner. In: Preisach C,
Burkhardt H, Schmidt-Thieme L, Decker R
(eds.) Data Analysis, Machine Learning and
Applications – Proceedings of the 31st Annual
Conference of the Gesellschaft für Klassifika-
tion e.V (GfKL 2007), Studies in Classification,
Data Analysis, and Knowledge Organization,
Berlin, Germany, pp 319–326

21. Kode (2016) Kode srl, Dragon (software for
molecular descriptor calculation) version 7.0.4.
2016, software available at: https://chm.kode-
solutions.net
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Chapter 18

QSAR Modeling of Dye Ecotoxicity

Simona Funar-Timofei and Gheorghe Ilia

Abstract

Dyes have a long history, beginning in ancient times, when natural plant and insect sources were used to
create them. Although they are important components in our daily lives, various synthetic dyes have been
found to be toxic to human, animal, and plant health, and to the environment. The complexity and costs of
the experimental methods used to study dye toxicity and to treat dyeing wastewaters have guided research-
ers to study theoretical alternative (nonanimal) approaches, which are less expensive. Quantitative struc-
ture–activity/property relationship (QSAR/QSPR) techniques can be used for complementary knowledge
of in vivo effects in both animals and humans, and for avoiding expensive experimental effluent treatment
processes. In this chapter, QSAR/QSPR methods employed in the estimation of dye ecotoxicity are
presented. QSAR models reported in the literature for acute toxicity, allergenicity, mutagenicity, carcino-
genicity, degradation products, animal and plant toxicity, abiotic degradation and decoloration, bioelimina-
tion and bioreduction, and adsorption removal of dyes are analyzed and discussed. QSAR/QSPR
techniques combined with virtual screening approaches constitute a powerful tool in the design of dyes
with improved ecotoxicological properties.

Key words Dyes, Ecotoxicity, QSAR, QSPR, Toxicity, Allergenicity, Mutagenicity, Carcinogenicity,
Ecology, Biodegradation

1 Introduction

Dyes have been known of for a long period of time, and they play an
important part in our daily lives. They are substances that impart
color to the substrate by temporarily destroying any crystal struc-
ture of the colored substance. Dyes adhere to surfaces by physical
adsorption, by mechanical retention, by covalent bond formation,
or as complexes with salts or metals. Until the middle of the
nineteenth century, natural plants and insects were the sources
used for obtaining dyes, but then there was a rapid turn to synthetic
manufacturing processes [1]. In 1856, Perkin obtained the first
synthetic dye of technical significance, called mauveine. Along
with his father and brother, he founded the first factory to produce
synthetic dyes. This was the start of the dye and pigment industry.
Fuchsine was synthesized in 1856, and production began in 1859.

Kunal Roy (ed.), Ecotoxicological QSARs, Methods in Pharmacology and Toxicology,
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In 1862, Griess discovered and created diazo compounds and azo
dye chemistry. Alizarin, an anthraquinone dye, was synthesized in
1868, the first sulfur dye in 1873, and indigo in 1878 [2].

Dyes can be classified by chemical composition or by applica-
tion. On the basis of their chemical composition, dyes can be
divided into azo, nitroso, nitro, diarylmethane, triarylmethane,
anthraquinoid, xanthene, cyanine, acridine, quinone-imine, thia-
zole, and phthalocyanine dyes. On the basis of their application,
dyes can be divided into acid, basic, reactive, direct, disperse, vat,
mordant, azoic, and sulfur dyes. However, there is no systematic
nomenclature for dyes. To resolve this problem, the Society of
Dyers and Colourists and the American Association of Textile
Chemists and Colorists have created a Color Index in which each
dye has an individual Color Index number [3–6].

Nowadays, there is growing awareness of the damage caused to
the environment by the use of dyes and chemicals, some of them
being toxic or even carcinogenic. The textile industry is one of the
most polluting industries because it requires chemicals. More than
20,000 different substances are used in the textile industry. A finite
resource (e.g., water) is used at every step of textile processing,
during which it is saturated with chemical additives. The process
pollutes the environment by the heat of the effluent, its increased
pH, and its content of dyes, defoamers, bleaches, detergents, opti-
cal brighteners, equalizers, and many other potentially harmful
chemicals [7].

Azo dyes, which constitute a significant proportion of textile
dyes and part of the dyes used for coloring, are discharged into the
environment. Therefore, there is a need for development of non-
genotoxic dyes and investment in research to find treatments for
the water that is discharged [8]. Discharge of most azo dyes into
the environment is undesirable because of their breakdown pro-
ducts (e.g., benzidine), which are toxic to aquatic life and muta-
genic in humans [9].

The toxicity of azo dyes is well known. Some azo dyes can
induce splenic sarcomas, bladder cancer, and hepatocarcinoma, or
can cause a chromosomal aberration in mammalian cells. Malachite
green has an effect on the immune and reproductive systems, and is
a potential genotoxic and carcinogenic agent. CI Disperse Blue has
been shown to cause frameshift mutation and base pair substitution
in Salmonella. The genotoxic and cytotoxic effects of this dye on
human cells have also been studied [10]. Azo dyes raise potential
environmental concerns, considering their toxic, mutagenic, and
carcinogenic effects [11, 12]. As the discharge of azo dyes into
water bodies presents human and ecological risks, a few synthetic
dyes have been tested to evaluate their potential toxicity. The results
have shown that these dyes have toxic effects on a variety of organ-
isms such as aquatic animals [13].
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Dyes have high stability to light or temperature and are usually
resistant to environmental degradation. This is the reason why they
persist for a long time when they are discharged into the environ-
ment [14]. Toxicity of dyes is due to the direct action of the original
compound or its intermediate metabolites such as naphthalene,
benzidine, and other aromatic amines. Those compounds are
by-products of cleavage of the azo bond by microorganisms and
have been reported to be cytotoxic, genotoxic, carcinogenic, and
mutagenic, increasing the incidence of bladder cancer. These
by-products can be more dangerous than the dyes themselves,
even at low concentrations [15, 16].

To minimize environmental damage and protect users and
consumers against the toxicological impact of dyestuffs, the Eco-
logical and Toxicological Association of the Dyestuffs
Manufacturing Industry (ETAD) was set up in 1974. ETAD
showed that from a total of approximately 4000 tested dyes, more
than 90% showed median lethal dose (LD50) values above 2 �
103 mg/kg, the most toxic being the groups of basic and direct
diazo dyes [17, 18].

The quantitative structure–activity relationship (QSAR) is one
of the major computational tools employed in environmental
sciences. QSAR theoretical models relate a quantitative measure
of a chemical structure to its physical property or biological activity,
and are based on the principle that structurally similar chemicals are
likely to have similar physicochemical and biological properties.
QSARs correlate the activity of compounds with physicochemical
properties and/or structural descriptors, and they can reduce or
even replace the need for animal testing. These methods are espe-
cially applicable to acute ecotoxicity, but the greatest challenge is to
predict chronic effects [19]. With respect to dyes, researchers and
industrialists have focused their attention on the special properties
of the different type of dyes. The most important properties are
color, brightness, solubility, affinity, fastness, absorption maxima,
mutagenicity, the diffusion constant, lipophilicity, bioelimination,
and antimalarial activity. These characteristics can be assessed exper-
imentally, using methods that require reagents and complex equip-
ment, and are time consuming. The complexity of the experimental
methods has guided researchers to investigate the relationships
between the structure and properties or activities of dyes, using
theoretical methods. These methods are accurate but are question-
able for large molecules such as dyes. Quantitative structure–activ-
ity/property relationship (QSAR/QSPR) approaches can
overcome these drawbacks because they can be extended to larger
molecules included in large data sets, with quite good accuracy.
These methods have been applied in pharmaceutical chemistry,
environmental chemistry, and toxicology, to improve biological
activities and physicochemical properties. Several QSAR studies of
dye adsorption by cellulose fiber have been reported [20–31]. In
this chapter, we present QSAR models described in the literature
for the modeling of dye ecotoxicity.
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2 A Short Introduction to QSAR Methodology

Since the beginning of the QSAR field in 1962 [32], thousands of
QSAR and QSPR works have been reported, using a large range of
end points and approaches [33]. Several published papers and
books have presented guidelines on accurate approaches to the
QSAR/QSPR process [19, 34–39]. QSAR modeling is based on
the fundamental statement that the structure of a molecule (i.e., its
geometric, steric, and electronic properties) contains the character-
istics responsible for its physical, chemical, and biological properties
[40]. By employing QSAR models, the biological activity of a new
or untested chemical can be deduced from the molecular structure
of “similar” compounds whose activities (properties) have already
been experimentally assessed.

Toxicity-based QSAR models require effective knowledge of
chemistry, toxicology, and statistics [41]. Knowledge of the toxico-
logical and chemical information on which the QSAR model is
based is essential for accurate prediction of toxicity and the quality
of a QSAR model. Usually, three components are required for the
creation of a new QSAR model [40]: (1) experimental biological
activity or property data determined for a group of chemicals (i.e.,
the training set); (2) molecular structure and/or property data (i.e.,
the structural descriptors) for this group of chemicals; and (3) sta-
tistical approaches to find and validate the relationship between
these two sets. Each method has advantages, disadvantages, and
practical constraints [41].

The ideal QSAR model should (1) consider an adequate num-
ber of training molecules for sufficient structural diversity; (2) have
large limits (of several orders of magnitude) of the dependent
variable values in the case of regression models and an satisfactory
distribution of molecules in each class for pattern recognition mod-
els; (3) be applicable for obtaining reliable predictions of new
untested chemicals (thus, there is a need for validation and applica-
bility domain tools); and (4) if possible, allow mechanistic informa-
tion on the modeled end point to be obtained [40]. The
mechanistic approach is essential for descriptive QSAR modeling
but is less important for predictive QSAR modeling, which uses the
statistical technique. The core of QSAR modeling lies in the statis-
tical methods that are applied to relate the response (the dependent
variable) to the molecular descriptors (the independent variables).
A molecular descriptor is usually encoded into a useful number
generated from a standardized experiment or a mathematical pro-
cedure. The central part of QSAR modeling resides in the statistical
methods that are applied to relate the response to the molecular
descriptors.

Several methods are used to derive mathematical models that
relate the modeled end point to the chemical structure [36, 40]:
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(1) supervised learning approaches such as multiple linear regres-
sion (MLR), discriminant analysis (DA; including linear DA, qua-
dratic DA, and regularized DA), partial least squares (PLS), soft
independent modeling of class analogy (SIMCA), factor analysis,
canonical correlation analysis, principal component regression
(PCR), classification and regression trees (CART), neural net-
works, adaptive least squares, genetic programming, and logistic
regression; and (2) unsupervised learning approaches such as prin-
cipal component analysis, cluster analysis, nonlinear mapping, k-
nearest neighbors (KNN), correspondence analysis, Kohonen
mapping, and self-linear learning machine organizing mapping
(SOM).

The most common approaches used as multivariate methods
for regression analysis applied in QSAR modeling are MLR, PCR,
and PLS [40].

Pattern recognition methods such as DA, factor analysis, and
cluster analysis can be used to complete or replace regression analy-
sis in the development of QSARs for several toxic responses (e.g.,
nonpolar narcosis, polar narcosis, and uncoupling of oxidative
phosphorylation) [42]. For each grouping identified by a pattern
recognition technique, one can use multiple regression analysis to
develop quantitative predictions of toxicity. This approach takes
advantage of the best features of multiple regression analysis (e.g.,
generation of quantitative predictions and easy interpretation of the
model) and reduces the effects of its limitations (e.g., overfitting
caused by trying to have one model fit a large, complex data set). It
also reduces some of the subjectivity inherent in assigning a sub-
stance to a particular class or group.

Lately, nonlinear models using neural networks, genetic algo-
rithms, or hybrids of these two approaches have been used to
develop more generalized QSAR models [42]. These generalized
models are capable of handling a broad range of chemical structures
and properties, functional groups, and modes of toxic action.

The most important value of a QSAR or QSPR is its predictiv-
ity—that is, how well it is able to predict end point values of
compounds that are not used to develop the correlation (i.e., that
are not in the training set) [33]. Two main methods are used to
determine predictivity: internal cross-validation and external vali-
dation with a test set of compounds. It is generally accepted now
that only QSARs and QSPRs that have been suitably externally
validated can be considered reliable for both scientific and regu-
latory purposes [43].

Some guidelines for estimation of the validity of QSARs for
regulatory purposes were proposed in 2002, as the “Setúbal prin-
ciples”, at an international workshop in Setúbal, Portugal
[33, 37]. Two years later, in 2004, they were modified by the
Organisation for Economic Co-operation and Development
(OECD) Work Program on QSARs as the OECD Principles for
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the Validation, for Regulatory Purposes, of (Quantitative) Structure-
�Activity Relationships Models [44, 45]. The corresponding
OECD guidelines for a valid QSAR/QSPR model are as follows:
“To facilitate the consideration of a (Q)SAR model for regulatory
purposes, it should be associated with the following information:
(1) a defined endpoint; (2) an unambiguous algorithm; (3) a
defined domain of applicability; (4) appropriate measures of good-
ness-of-fit, robustness and predictivity; (5) a mechanistic interpre-
tation, if possible” [46].

The applicability domain is a theoretical region in the physico-
chemical space (the response and chemical structure space) for
which a QSARmodel should make predictions with given reliability
[40]. This region is defined by the nature of the chemicals in the
training set and can be characterized in various ways [47]. Not even
a robust, significant, and validated QSARmodel can be expected to
reliably predict the modeled property for the entire universe of
chemicals. In fact, only predictions for new chemicals falling within
the model domain can be considered reliable, such as those for
training chemicals and not extrapolations of the model.

QSAR models find broad applications for assessing potential
impacts of chemicals, materials, and nanomaterials on human
health and ecological systems [37]. For regulatory identification
of potential health hazards, screening, and prioritization, predictive
QSAR models of in vivo effects in both animals and humans are of
great interest, implying specialized regulatory tools and databases,
for model development and validation. Within the European
Union (EU), the New Chemicals Policy of the European Commis-
sion (Registration, Evaluation, and Authorization and Restriction
of Chemicals (REACH)) has proposed a new system for managing
chemical information in a single regulatory framework.

In the field of toxicology, QSAR methods typically use toxicity
end points from in vitro cell cultures or in vivo animal test systems,
for which the mechanism of action is less well understood
[37]. Other significant challenges are related to the chemical
knowledge used for model building (i.e., the training set) and the
chemical space to which models will be applied (i.e., the prediction
space) and for what aim (mechanism elucidation, screening, priori-
tization, safety assessment, etc.).

In toxicity QSAR modeling, several conditions are needed for
successful modeling [37]: (1) there are similar structures in the
training set, considering a single target-mediated mechanism;
(2) the toxicity dependent variable to be modeled is either non-
target-specific or related to chemical reactivity principles; (3) the
toxicity end point is connected to a well-definedmolecular target or
phenotype; and (4) toxicity data are available for a satisfactorily
large number of diverse chemicals.

Despite the great promise of computational toxicology
approaches, there continue to be areas of chemistry and chemical
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risk assessment in which relevant test compounds are unavailable
(such as in the early phases of chemical design or premanufacture
review) or quantitative high-throughput screening test results are
unattainable with current technologies (e.g., volatiles, reactives,
insolubles, and metabolites) [37]. QSAR methods are being pro-
gressively more used in screening, testing prioritization, pollution
prevention initiatives, green chemistry, hazard identification, and
risk assessment.

To minimize the possible problems that might arise in QSAR
model development and validation, several conditions need to be
fulfilled [48]. The toxicological end points must be diverse, be
reliable, be of high quality, and reflect well-defined and continuous
data. The compound structural descriptors should be of high qual-
ity and reproducible. Whenever possible, a mechanistic interpreta-
tion of the QSAR would be an advantage. The statistical procedures
that are used should be as accurate as possible and suitable for the
end point being modeled, to allow for development of models that
are as easily interpretable as possible. Validation of the developed
QSAR model is important only within the descriptor space and the
applicability domain.

3 Application of QSAR Models to Dye Ecotoxicity

3.1 QSAR Models for

Dye Toxicity

3.1.1 QSAR Models for

Acute Dye Toxicity

Acute toxicity refers to effects that take place within a short period
of time after short-term exposure—for example, a single oral
administration [49]. Generally, dyes have low acute oral toxicity.
It has been noted that more than 80% of dyes have an LD50 (rat,
oral) value greater than 5000mg/kg. Only 15 dyes (fewer than 1%)
have LD50 (rat, oral) values less than 250 mg/kg.

In a quantitative structure–toxicity relationship (QSTR) study
of dye acute toxicity, the mouse intraperitoneal LD50 values were
related to the dye structural calculated parameters, using the PLS
approach [50]. Twenty-eight dyes were modeled using molecular
mechanics calculations and 821 zero-dimensional (0D),
one-dimensional (1D), and two-dimensional (2D) descriptors
were computed from the optimized structures, using Dragon soft-
ware. An acceptable three-component PLS model with predictive
power (checked according to the criteria proposed by Alexander
et al. [43]) was obtained:R2X(Cum)¼ 0.559,R2Y(cum)¼ 0.912,
Q2(Cum) ¼ 0.514). Five compounds were included in the test set.
The dye toxicity values were increased by structural parameters,
including the number of aliphatic secondary carbon atoms, the
number of nonaromatic carbon atoms, the number of aliphatic
tertiary carbon atoms, the number of positively charged nitrogen
atoms, and the number of tertiary aromatic amines. The favorable
features for lower toxicity were the increased numbers of secondary
aromatic amines, number of donor atoms for hydrogen bonds and
of the hydroxyl groups in the dye molecule, and dye hydrophilicity.
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3.1.2 SAR Models for

Dye Sensitization

Skin sensitization, also known as contact sensitivity or allergic
contact dermatitis, is a T-lymphocyte-mediated delayed hypersen-
sitivity reaction [51]. Certain textile (disperse, azo, and anthraqui-
none) dyes can cause contact dermatitis (e.g., “panty hose
syndrome,” which is associated with the wearing of close-fitting
athletic and fashion wear, such as velvet leggings). Oxidative hair
dyes (especially those containing arylamines, e.g., p-phenylenedia-
mine) have also been found to cause allergic skin reactions [51–54].

Cluster analysis was used in a QSAR model to identify the
sensitization strength (expressed by experimental local lymph
node assay data) of hair dyes, by means of their chemical structures
[55]. Simplified molecular-input line-entry system (SMILES) nota-
tion was used to remove the duplicate structures. A cluster analysis
was performed for grouping the dyes according to their chemical
similarity, based on topological substructural molecular design
(TOPS-MODE) descriptors [56]. The algorithm of k-means,
with 10 clusters, was applied. Each cluster contained other “simi-
lar” chemicals. The TOPS-MODE QSAR model was used to esti-
mate the likely sensitization potency in one of three bands:
(1) strong/moderate sensitizers, (2) weak sensitizers, and
(3) extremely weak sensitizers or nonsensitizers. Most (75%) of
the 229 identified hair dyes were predicted to be strong/moderate
sensitizers, 22% of the hair dyes were predicted to be weak sensiti-
zers, and 3% were predicted to be extremely weak sensitizers or
nonsensitizers. Eight of the most commonly used hair dyes were
predicted to be strong/moderate sensitizers, including p-phenyle-
nediamine, which is the most commonly used hair dye allergy
marker in patch testing. These results are useful to improve the
diagnostic work-up of hair dye allergy cases.

As part of the process of designing new hair dyes with desired
properties, Williams et al. [57] performed a cheminformatics study
to determine the skin sensitization potential of these compounds.
Several physicochemical descriptors were computed for these com-
pounds, using the KNIME Analytics platform [58]. The hierarchi-
cal clustering approach was then applied to obtain the chemical
similarity of the studied compounds included in a created Hair Dye
Substance Database [59]. A QSAR model was created using ran-
dom forest and 2D descriptors computed for all of the chemical
structures of the training set compounds (440 for the murine local
lymph node assay used for the in vivo test for skin sensitization).
The prediction performances of this model were sensitivity¼ 87.4%
and specificity ¼ 48.0%. The calculations using this model were
conducted as an individual and consistent KNIME work flow. The
Pred-Skin application was applied to each of the potential hair dyes
for skin sensitization potential (human) predictions [60]. Most of
them (269 hair dyes) were predicted to be sensitizers (and of these,
109 have been banned from use in hair dye products in the EU),
74 were considered to be sensitizers or to have some type of
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sensitization potential, and 27 were not accepted as sensitizers; the
sensitization potential of the remaining 12 substances was not
reported. In the development of the QSAR model, the following
steps were considered: (1) data curation/preparation/analysis
(selection of compounds and descriptors), (2) model building,
and (3) model validation/selection. A fivefold external cross-
validation procedure was used. The best models were identified
and selected according to acceptable threshold values of the correct
classification rate (CCR, computed as the average of the sensitivity
and specificity of the model) for the internal test sets (called an out-
of-bag set in the random forest; vide infra). Then selected models
were applied to the external set compounds to predict their experi-
mental properties. In addition, 1000 rounds of Y-randomization
were performed for each data set to ensure that the high accuracy of
the models built with real data was not due to chance correlations.

3.1.3 QSAR Models for

Dye Mutagenicity

Mutagenic dyes, which are very stable in the aquatic environment,
have been found in several rivers [61]. Most carcinogens act
through mutagenic mechanisms [62]. Azo dye carcinogenicity
implies an intact azo linkage. In contrast, most mutagenicity studies
involve azoreduction as a condition for activity. Most benzidine-
based dyes are nonmutagenic unless some form of external activa-
tion system is used [63]. A few dyes (e.g., Direct Blue 15 (which is
mutagenic for TA1538) and Direct Brown 31 (which is mutagenic
for TA98)) have been reported to be mutagenic without exogenous
activation. Under oxidative conditions, bacterial metabolism alone
cannot generate mutagenic metabolites for the majority of these
dyes. Many of these dyes become mutagenic through conversion
via mammalian metabolism and can produce mutagenic metabo-
lites after metabolism in a reductive and oxidative system.

Sushko et al. [64] used a QSAR model to predict the mutage-
nicity of dyes, using a training set of 4361 compounds, tested
against the Ames mutagenicity test [57]. The same procedure
described in Subheading 3.1.2 was used. The resulting models
were selected on the basis of their prediction performances (sensi-
tivity 79.5% and specificity 80.5%) and identified 30–60% of com-
pounds with an accuracy of prediction similar to the interlaboratory
accuracy of 90% in the Ames test.

A QSAR model for the mutagenic activity in the S. typhimur-
ium TA98 bacterial strain with S9 activation of 43 aminoazoben-
zene dyes was studied using MLR and an artificial neural network
(ANN) [65]. Geometric, electrostatic, quantum chemical, and
hydrophobic descriptors were derived using the CODESSA soft-
ware. The models were selected on the basis of the highest value of
the squared regression coefficient and contained noncollinear
descriptors, as determined by the pair correlation matrix. A five-
descriptor MLR model was built, taking into account 85% of the
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variation in the mutagenic activity. A better three-descriptor ANN
model had a better result and accounted for over 90% of the
variation in mutagenic activity. It was concluded that the ANN
models predicted fewer false positives than the MLR models. For
the same set of dyes, the comparative molecular field analysis
(CoMFA) approach was used [66], with the most bioactive com-
pound, as a template. Better statistical results were obtained in the
CoMFA model including only the steric field. An electronegative
and bulky group at the benzene ring and a small group attached to
the aniline ring were considered to be favorable to reduce the
mutagenic activity.

In another QSAR study on the same set of 43 dyes included in
Garg et al. [65], three approaches were employed to study mutage-
nicity: the hologram quantitative structure–toxicity relationship
(HQSTR), CoMFA, and comparative molecular similarity index
analysis (CoMSIA) [67]. Similar results were obtained by these
three methods. Fragment and donor–acceptor descriptors were
included in the HQSTR model (a bulky group on the acceptor
ring and a small group on the donor ring were found to be respon-
sible for the mutagenicity decrease). In CoMFA and CoMSIA,
steric effects (by bulky moieties on the acceptor ring and small
groups ortho-attached to the terminal amine function) and electro-
static effects (by negative groups) were important in modeling the
mutagenicity.

The computer automated structure evaluation (CASE) meth-
odology was used to study the mutagenicity of phenylazoanilines
[68] and l-amino-2-naphthol derived azo dyes [69]. In this
approach, the descriptors were selected automatically from a
learning set composed of active and inactive molecules. The struc-
tural descriptors were activating (biophore) or inactivating (bio-
phobe) single and continuous fragments. Once the training set was
assimilated, CASE could be queried regarding the predicted activity
of molecules of unknown activity. Thus, entry of an unknown
chemical would result in the generation of all possible fragments
ranging from 2 to 12 atoms accompanied by their hydrogens, and
these would be compared with the previously identified biophores
and biophobes. On the basis of the presence and/or absence of
these descriptors, CASE predicted activity or lack thereof. In addi-
tion, CASE also used the descriptors to perform a multivariate
regression analysis (QSAR) in which the activity was related to the
biophores and biophobes (fragments having �90% probability of
being associated with mutagenicity were considered). Each of the
biophores and biophobes was characterized by a likelihood of being
associated with mutagenicity (which was derived from their distri-
bution among mutagenic, marginally mutagenic, and nonmuta-
genic molecules in the database), with a confidence level. They
were used to predict the probability of mutagenicity and
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nonmutagenicity. It was found that the activity of the dye molecules
was dependent upon an intact moiety that spanned the azo linkage;
i.e., the azo bond must remain intact for mutagenicity. The study
also addressed the effect of sulfonation on the activity of these azo
dyes. It was revealed that sulfonation only at certain sites resulted in
loss of mutagenicity.

MLR was used in a QSAR study of mutagenic activity in the
TA98 + S9 system of 74 aminoazo dyes [70]. The dye structures
were modeled using the semiempirical AM1 Hamiltonian. Struc-
tural (constitutional, topological, geometric, electrostatic, quan-
tum chemical, and thermodynamic) parameters derived from the
optimized structures were related to the mutagenic activity, using
MLR and fuzzy logic with ANNs. In the last approach, the algo-
rithm that was employed generated feed-forward network architec-
ture for a given data set, and after generating fuzzy entropies at each
node of the network, it switched to fuzzy decision making based on
those entropies. Nodes and hidden layers were added as needed
until the learning task was accomplished; in this study, the architec-
ture was restricted to a single hidden layer. An MLR model includ-
ing eight descriptors was chosen as the best model, with a
regression correlation coefficient of 0.73. Better statistical results
were obtained by the nonlinear model, with a correlation coeffi-
cient of 0.95 and a cross-validated correlation coefficient of 0.94.

Fuzzy logic methodology, combined with an ANN with a
single hidden layer, was employed to learn and differentiate
between mutagenic/carcinogenic and nonmutagenic/noncarcino-
genic dyes [71]. Twenty-two azo dyes were optimized using the
density functional theory (DFT) approach performed at the
BP/DN∗∗ computational level. Several descriptors (including
topological parameters) were calculated for these dyes. The set of
dyes was split into 80% training and 20% test sets. The model
generalization ability was checked using a fivefold cross-validation
procedure. An algorithm for the creation and manipulation of
fuzzy membership functions, which had previously been learned
by a neural network from the data set under consideration, was
designed and implemented. In this research, membership functions
were used to calculate fuzzy entropies for measuring uncertainty
and information. An 11-descriptor ANN model was found to
describe the mutagenic activity of the dyes.

Two classification strategies using knowledge-based methods
(the fragment-based model, which simply considers structural
matching of rules sets addressing toxicity; and the joined mecha-
nistic model, an expert system that takes into account a broad range
of factors) and docking simulations were used to predict the muta-
genicity of 354 azo dyes [72]. A training set of 321 compounds and
a test set of 33 azo dyes were used. The classification models were
evaluated using Cooper’s parameters. The Matthews correlation
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coefficient was also used for the quality of binary classification. The
X-ray azoreductase structure cocrystallized with the azo dye Acid
Red 88 was used for the docking calculations. It was concluded that
the integration of multiple strategies and a weight-of-evidence
approach might overcome the limitations inherent in single
models.

3.1.4 QSAR Models for

Dye Carcinogenicity

Azo dyes represent an important proportion of textile dyes and are
known to be responsible for carcinogenicity (e.g., causing bladder
cancer in humans; splenic sarcomas, hepatocarcinoma, and nuclear
anomalies in experimental animals; and a chromosomal aberration
in mammalian cells) [9]. The carcinogenicity of 44 organic color-
ants and benzidine-based dyes was evaluated by the International
Agency for Research on Cancer (IARC) in a series of monographs
[49]. Azo dyes are considered to be carcinogens if a carcinogenic
aromatic amine is formed by reductive cleavage of one or more azo
groups. It was found that 150 commercial azo dyes are susceptible
to forming aromatic amines recognized to be animal carcinogens,
of which 15 are considered to be relevant to the colorants industry.

Thirty-five azo dyes were examined as possible human carcino-
gens [73]. Azo dyes that were sulfonated on both sides of the azo
bonds were considered to be noncarcinogenic in any species. Those
that were half sulfonated and half nonsulfonated were sometimes
carcinogenic in at least one test species. The inclusion of free
alkylated or acetylated amine in the azo structures conferred the
carcinogenicity property. In addition, all benzidine-containing and
3,30-disubstituted benzidine-containing azo dyes were carcino-
genic in at least one test species [74]. About 2000 azo dyes have
been synthesized so far, and, of those, more than 500 are based on
carcinogenic amines and more than 250 azo dyes are benzidine
constituted [1].

Hair dyes, which contain one or several “primary intermedi-
ates” (e.g., p-phenylenediamines, p-aminophenols) and “couplers”
(e.g., m-aminophenols, m-hydroxyphenols) are considered to be
responsible for bladder cancer in humans because of the connection
to aromatic amines [75].

Three publicly available QSAR models (OpenTox/Lazar, Tox-
tree, and OECD Toolbox) were tested and compared with respect
to the carcinogenic potential of a set of color additives [76]. In this
study, a data set of 44 color additives, which included approxi-
mately equal numbers of carcinogens and noncarcinogens, was
employed. The carcinogenicity of these compounds was predicted
with a reasonable degree of sensitivity (0.67–0.82). The highest
degree of specificity (1.00) was obtained by the OpenTox/Lazar
model. The other models overpredicted the carcinogenic potential
of the compounds (Toxtree and OECD Toolbox gave specificity
values of 0.47 and 0.25, respectively). By comparison, the bacterial
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reverse mutation assay (Ames test) had sensitivity of 0.8 and speci-
ficity of 1.0 for predicting the carcinogenicity of compounds in this
data set.

In a structure–activity relationship study, the photodynamic
efficiency and the phototoxicity (expressed as the median inhibitory
concentration (IC50) in human epithelial type 2 (HEp-2) cells)
against a carcinoma cell line of four xanthene dyes was related to
structural dye features [77] in order to find photosensitizers for use
in photodynamic therapy. The dye structures were optimized using
DFT with use of B3LYP/6-31+G(d) as a basis set, followed by
vibrational frequency analysis. The water medium was simulated
using the integral equation formulation of the polarizable contin-
uum model. Several reactivity parameters (the highest occupied
molecular orbital (HOMO) and lowest occupied molecular orbital
(LUMO) energies, the HOMO–LUMO energy gap, chemical
hardness, electronic chemical potential, electrophilicity, area, vol-
ume, and dipole moment) were calculated for these optimized
structures. In addition, the partition coefficient (log P) values
were determined spectrophotometrically, using the method of Poo-
ler and Valenzeno [78], as a measure of the hydrophobic character
of the dyes. It was concluded that Rose Bengal dye showed higher
phototoxicity. Although the other dyes were less effective in killing
cells under illumination, they had much lower intrinsic dark
cytotoxicity.

Linear DA was used to test the carcinogenicity of 185 dyes by
selecting and weighting important parameters [79]. The resulted
discriminant score was related to substructural and other para-
meters with a positive/negative contribution to carcinogenicity,
using the MLR approach. In addition, 42 dye structural parameters
were calculated: 38 dichotomous and four connectivity indices.
The parameters with positive coefficients were considered to be
responsible for carcinogenicity, and those with a negative coeffi-
cient were considered to reduce it. The variables were ranked from
the most to the least important with respect to their power to
distinguish carcinogens from noncarcinogens, and then a resubsti-
tution method for validation was applied. The compounds were
classified as indeterminates when the probability of carcinogenicity
was between P ¼ 0.3 and P ¼ 0.7; i.e., probabilities too close to
chance (0.5) did not distinguish between positivity and negativity.
These equations were considered to be useful for the prediction of
the carcinogenic potential of untested compounds, rather than for
the elucidation of mechanisms of carcinogenesis, with some
limitations.

3.1.5 QSAR Models for

Dye Metabolites (Aromatic

Amines)

The toxicity of a dye is caused especially by its degradation products
[15], obtained by the azo linkage breakdown by an enzyme (azor-
eductase) present in various microorganisms and in all tested
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mammals, including humans [1]. Many of the resulted aromatic
amines (e.g., benzidine) show a very high level of acute and chronic
toxicity, and carcinogenicity [74, 80]. They can cause cancer of the
genitourinary tract, pancreas, liver, gallbladder, bile duct, lung,
large intestine, stomach, lymphopoiesis, and renal cells, as well as
non-Hodgkin’s lymphoma. They have been proved to be more
dangerous than the parent compound [81]. For solvent-soluble
dyes with nonpolar substituents, a solubilizing mechanism must
occur in the organism before further degradation and
excretion [82].

Computational models—which were directed on the stability
of the nitrenium ion, anion formation energy, and hydrophobi-
city—and expert rule-based models were employed in a study of
the mutagenicity of aromatic amines released from the cleavage
products of 470 azo dyes used in clothing textiles [83]. At the
first step, a modified in silico method was applied to predict Ames
activities of primary aromatic amines by calculating the stability of
the metabolically intermediate nitrenium ions [84]. A subset of
primary aromatic amines was selected that (1) contained no electric
charge in the formula, (2) had a molecular weight below 500 Da,
(3) had no more than one stereo center, (4) had fewer than
10 rotatable bonds, (5) had only one aromatic amine functionality,
and (6) did not contain aromatic nitro groups as they could exhibit
Ames toxicity because of their nitro moiety. The cleavage products
were downloaded as SMILES structures, salt-stripped, and neutra-
lized, except those with a fixed formal charge (e.g., quaternary
ammonium). In particular, carboxylic acids and basic nitrogen
were drawn in their neutral forms. The most abundant protomer
was selected on the basis of the primary aromatic amine structure.
No reassessment of the major protomer form was performed on the
nitrenium ions. The three-dimensional (3D) geometry of the struc-
tures was optimized using the MMFF94s force field, and the lowest
energy conformation of the primary aromatic amine was used in
further quantum mechanics calculations. The modeled cleavage
products were allocated to one of the following priorities: priority 1
(P1) were potential mutagens to test with the highest priority,
priority 2 (P2) were other potential mutagens to test, priority 3
(P3) were substances for which Ames test results could be found in
a database or substances for which the prediction was borderline,
priority 4 (P4) were substances that were predicted to be nonmuta-
gens, and priority 5 (P5) were substances for which quantum
mechanics calculation failed. Cleavage products were clustered
according to the substituents found on the aryl ring in order to
select substances that were representative of the structural diversity.
Substances in the P1 group were selected from structures for which
the ArNH+ formation energy (ΔΔEArNH+) was lower than –15
kcal/mol, and that did not contain sulfonic acid, sulfonamide,

418 Simona Funar-Timofei and Gheorghe Ilia



sulfonic ester, or 2-aminophenols. Substances with ArNH� forma-
tion energy relative to PhNH2 (ΔΔEArNH�) of <0 kcal/mol were
chosen as being assigned Ames positive. On the basis of the result of
this analysis and other criteria, the aromatic amines were assigned to
different priority groups. Forty different aromatic amines were
identified as potentially mutagenic, primarily in the Ames test,
and these are probably released as cleavage products from approxi-
mately 180 parent azo dyes. From the 18 substances assigned to
priority groups P1 or P2, only four substances (22%) were found to
be mutagenic in the Ames screening test.

MLR and ANN QSAR models for the mutagenic activity
TA98 þ S9 system of 181 aromatic amine derivatives (having at
least one amino group) were studied [85]. These compounds were
energy optimized at the AM1 computational level. Geometric,
electrostatic, quantum chemical, and hydrophobic descriptors
were calculated and correlated with mutagenic activity, using
MLR and fuzzy logic integrated with ANN approaches. In the
last method, the architecture was restricted to a single hidden
layer. The generalizability of the models was checked using a jack-
knife cross-validation procedure. An MLR model with five descrip-
tors resulted, with a squared regression coefficient of 0.66, and the
ANN models, which included 10 descriptors, had a correlation
coefficient of 0.91.

In a review, Chung et al. presented QSAR models for monocy-
clic aromatic amine mutagenicity [86]. They concluded that among
the calculated structural parameters of these compounds included
in the QSAR models, the lowest unoccupied molecular orbital
energy (ELUMO), highest occupied molecular orbital energy
(EHOMO), and hydrophobicity were important in influencing the
mutagenic activity.

The experimental mutagenic potencies of 95 aromatic amines
toward a Salmonella typhimurium TA98 + S9 microsomal assay were
studied by an MLR approach, using the Chebyshev polynomial
expansion of the most significant descriptors and back-propagation
neural networks [87]. Constitutional, topological, electrostatic, geo-
metric, quantum chemical (derived from AM1 Hamiltonian calcula-
tions), and thermodynamic descriptors were calculated for these
structures. MLR models in which the mutagenic activity was related
to these descriptors were obtained using a forward descriptor selec-
tion. Then additional descriptors derived from nonlinear transforma-
tions obtained as the first five terms in the Chebyshev polynomial
expansion were employed. The MLR models obtained in this way
did not improve the model results. Hydrogen bonding, charge
distribution, bond energy, and molecular conformations influenced
the amine mutagenicity. The best six-parameter MLR model had
worse statistical results than the nonlinear back-propagation neural
networks model, which included six descriptors.
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3.1.6 QSAR Models for

Dye Toxicity to Animals and

Plants

The complex formed by conjugation between malachite green dye
and a lysozyme model protein was studied using computational
methods (computer-aided molecular modeling) and experimental
methods (steady-state and time-resolved fluorescence, and circular
dichroism) [88].

Malachite green is a triphenylmethane dye that is broadly used
in many industrial and aquacultural processes, and is associated with
environmental and human health problems. The malachite green
structure was modeled using the Tripos force field with Gasteiger–
Hückel charges, with a gradient of 0.005 kcal mol�1. The lyso-
zyme–malachite green complexation was studied using docking
calculations by the Surflex docking program, based on the crystal
structure of lysozyme, which was downloaded from the Brookha-
ven Protein Data Bank (entry codes 6LYZ, resolution 2.0�A;
http://www.rcsb.org/pdb). It was concluded that the principal
forces in the lysozyme–malachite green complex were hydrophobic
and π–π interactions, and that the polypeptide chain of lysozyme
was partially destabilized upon complexation with malachite green.
This information was considered to enhance the understanding of
the toxicological action of malachite green in the human body.

Nelms et al. [89] studied the influence of hair dyes on mito-
chondrial dysfunction, using an in silico profiler. This study was
based on oral repeat dose toxicity (no observed adverse effect level
(NOAEL)) data for 94 hair dye chemicals, which were studied
using a similarity analysis. Four categories of hair dyes were identi-
fied on the basis of key structural fragments, which were further
used to develop a mechanistic hypothesis for the molecular initiat-
ing event for each category. Four structural alerts resulted, being
related to the ability of aromatic chemicals to disrupt mitochondrial
function because of their free radical chemistry, which assigned
56 of the 94 chemicals in the data set to a mechanism-based
chemical category. This approach offered points of view for a key
molecular initiating event that might be responsible for initiating an
adverse outcome pathway paradigm, leading to chronic toxicity.

Decision rule QSAR models were developed to study the
uptake of dyes into living cells and organisms [90]. Some of these
models allow the prediction of which dyes are likely to enter cells
and which dyes will be excluded. QSAR methods were employed in
the study of dye intracellular accumulation, redistribution, loss
from the cell, and metabolic modification. In these methods for
each dye, numerical experimental and calculated structural para-
meters (e.g., the electric charge, acid dissociation constant (pKa),
solubility, conjugated bond number for the size of the aromatic
system, ionic weight for ionic size, and log P for hydrophilicity/
lipophilicity) were considered. Correlations between dye structural
parameters and site(s) of their localization in a given cell structure
were looked for. The mapping between a region in the parameter
space representing a particular combination of physicochemical
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properties and an uptake event or an intracellular location site was
applied to derive a decision rule QSARmodel for one mechanism of
uptake, or for one mechanism of localization in a particular cell
structure. The validity of suchmodels was checked by exposing cells
to previously unevaluated dyes that did (or did not) fall within the
region of parameter space correlating with the uptake process or
intracellular structure concerned. The prediction of the live cell
staining by the dyes was checked using microscopic observations.
The precise locations of the limiting boundaries in parameter space
that corresponded to the uptake into particular organelles were
explored in a similar way. Several ways of dye entry into living
cells can be mentioned. For instance, passive diffusion through
the plasma membrane is considered to be the simplest mode of
dye entry, in which no cell physiological factors need to be consid-
ered. This process occurs when a dye can dissolve into the relatively
fluid lipid bilayer but does not bind tightly either to lipid or protein
membrane components. On the basis of this information, entry by
passive diffusion can occur when a dye molecule falls into the
following region of parameter space: 8 > log P > 0, amphiphilicity
index (AI) < 8, head group hydrophilicity (HGH) > �4, head
group size (HGS) < 400, conjugated bond number (CBN) < 40.
An electric charge does not prevent passage through the plasma
membrane. Ionized substituents do influence entry owing to their
effects on the overall hydrophilic/hydrophobic character and on
the amphiphilicity of dyes. Dyes that do not interact with cells are
unlikely to be toxic, and interactions typically involve dye uptake of
one kind or another. The potential hazards of dyes and of com-
pounds metabolically derived from dyes can be determined by
predicting the uptake, using QSAR models. Several dyes have
been used to study their interactions with cells. The obtained
QSAR models were quite limited to predict if the dyes exhibited
“uptake” or “nonuptake” by a particular mechanism, or were
“localized in” or “not localized in” a particular organelle. These
predictions were therefore simplifications, to be regarded as indica-
tive rather than regulatory. They had the advantage that they could
use any set of dyes with localization data, even if the mechanism of
the localization process was not known. Dyes that do not interact
with cells are unlikely to be toxic, and interactions typically imply
dye uptake of one kind or another. Consequently, QSAR models
for predicting uptake can be used to provide an assessment of the
potential hazards of dyes, and indeed of compounds metabolically
derived from dyes. As already noted, though, many dyes do enter
cells and so are potentially risky. Although the localization QSAR
models say nothing directly concerning toxicity, the particular sites
of dye localization within a cell may favor or limit subsequent toxic
events.
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The growth-inhibitory effect of 30 synthetic dyes on 22 strains
of Gram-negative bacteria was studied by QSARmodels [91]. Prin-
cipal component analysis, a nonlinear mapping technique, and
stepwise linear regression (for relating the dye strength (potency)
and dye selectivity of the biological activity and their physicochemi-
cal parameter) were used. Stepwise regression analysis showed sig-
nificant linear relationships between the strength (potency) and
selectivity of the biological activity of dyes. The authors concluded
that synthetic dyes showed marked biological activity toward both
Gram-negative and Gram-positive bacteria. The strength and selec-
tivity of the effect depended equally on the character of the test
organisms and the chemical structure of the dyes. It was concluded
that the strength of the effect depended on the type of dyes
(anthracene, azobenzene, or trityl derivatives), and the hydropho-
bicity of dyes exerted a significant impact on the strength and
selectivity of the biological effect.

3.2 QSAR Models for

Dye Ecology

Not all of a dye is fixed on the fabric during the dyeing processes; a
fraction of it remains unfixed to the fabric and is washed out
[15, 92]. Approximately 10–15% of dyes are released into the
environment during the dyeing process, making the effluent highly
colored and aesthetically unpleasant [10]. These effluents are rich in
dyes and chemicals, some of which are nonbiodegradable and
carcinogenic, and pose a major threat to health and the
environment.

Unutilized dyes and their metabolites produced during the
production process need to be treated before discharge into the
environment [93]. Several primary, secondary, and tertiary treat-
ment processes such as flocculation, trickling filters, and electrodi-
alysis have been used to treat these effluents [92]. However, these
treatments have not been found to be effective against the removal
of all dyes and chemicals used. The effluents contain not only a high
concentration of dyes used in the industry but also the chemicals
used at the various processing stages.

3.2.1 QSAR Models for

Aquatic Toxicity of Dyes

The aquatic toxicity of 42 commercial dyes was analyzed using an
in silico approach and ecological bioassays [14]. The chemical
similarity (quantified by a similarity index) of these dyes was deter-
mined using istSimilarity v.1.0.5 software [94]. The list of the three
most similar compounds for each dye was obtained. Dyes from the
same chemical class were found to be generally similar. No correla-
tion was found among dyes with the same color. Acute and short-
term data were obtained for the water fleaDaphnia magna and the
microalga Raphidocelis subcapitata, according to their relative
guidelines. In both cases, the assays were able to identify structures
with potential ecotoxicity, but the algae were found to be more
sensitive to dye toxicity, particularly if the effects on the biomass
were considered.
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Six QSAR modeling packages: Ecological Structure Activity
Relationships (ECOSAR), Toxicity Prediction by Komputer
Assisted Technology (TOPKAT), a probabilistic neural network
(PNN), a computational neural network (CNN), the QSAR com-
ponents of the Assessment Tools for the Evaluation of Risk
(ASTER) system, and the Optimized Approach Based on Structural
Indices Set (OASIS) system were compared for their ability to
predict the toxic effects of several substances on biota, especially
aquatic biota [42]. A data set of neutral organics, phenols, dinitro
phenols, vinyl and allyl halides, esters, phosphate esters, aromatic
amines, acrylates, hydrazines, imides, and others were used in the
QSAR models to predict the 96-h median lethal concentration
(LC50) values in fathead minnows. For each QSAR modeling pack-
age, a linear regression analysis of the log of the measured toxicity
versus the log of the predicted toxicity was performed. To derive a
single measure of model performance, the packages were ranked
(1 for the best performer, 6 for the worst performer) against each of
seven performance statistics: the number of chemicals for which
predictions were generated (except for comparisons where n¼max
or n ¼ max � 1 for all packages), mean absolute residual, mean
squared residual, percentage of substances with differences between
predicted and measured toxicity greater than a factor of 10, correla-
tion coefficient, intercept, and slope. The mean overall rank was
then calculated for each QSAR package. The best possible scores for
the statistics used for the calculated mean rank would be 0 for the
mean absolute residual and mean squared residual (no differences
between predicted and measured toxicity values), 0 for the percent-
age of substances of substances with differences between predicted
and measured toxicity greater than a factor of 10, 1 for the correla-
tion coefficient, 0 for the intercept, and 1 for the slope (a perfect
linear relationship between the log measured and log predicted
toxicity would have an intercept of 0 and a slope of 1). The highest
rank for the number of chemicals was given to the package that was
able to generate predictions for the largest number of substances
under consideration. The last statistic was not an indicator of model
performance (in the statistical sense) but was indicative of model
utility to users. PNN had the best overall model performance.
TOPKAT had excellent model performances for substances within
its optimum prediction space. Unfortunately, only 37% of the sub-
stances in the testing data set fell within the TOPKAT optimum
prediction space, thus limiting its utility in programs that must
screen large numbers of chemicals. No recommendations can be
made from this analysis regarding the choice of a QSAR model for
predictions of chronic toxicity or end points other than mortality.

The photoinduced acute toxicity of a series of anthraquinone
dyes towardD.magnawas studied using the time-dependent density
functional theory (TD-DFT) approach [95]. The energy gap
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between ELUMO and EHOMO was used to evaluate the photoinduced
toxicity. After energy optimization, using the semiempirical PM3
Hamiltonian in MOPAC 2000 software, the optimized structures
of the neutral molecules, radical anions, and radical cations of the
anthraquinone dyes were optimized using single point and excited
energy calculations at the B3LYP/6-31G(d,p) level of theory, with
the Gaussian 03 program. The stationary points were checked using
frequency calculations. The excited energies were calculated using
TD-DFT. The solvent effects were taken into consideration by
employing the self-consistent reaction field method with the integral
equation of the polarized continuum model (water was used as the
solvent). The energy gap between LUMO andHOMOwas found to
indicate the relative photoinduced toxicity of the dyes. TD-DFT
calculations revealed that singlet oxygen and the superoxide anion
could be generated through direct energy transfer or autoionization
of the excited state of the dyes.

Newsome et al. [96] analyzed the aquatic toxicity of 200 dyes,
using QSAR approaches. No QSAR correlations were found
between the aquatic toxicity and their physicochemical properties
in the case of charged (anionic, cationic, and amphoteric) dyes, for
which the nearest analog SAR method was considered to be useful.
They concluded that for neutral dyes, QSARs for other chemical
classes, such as phenols and anilines, would be helpful to predict
their aquatic toxicity. In addition, neutral dyes with molecular
weights higher than 1000 daltons or a minimum cross-sectional
diameter greater than 10A and with three or more acid groups in
their structures would have reduced toxicity to fish and daphnids.
Dinitro, phenols, and anthraquinones were considered to be toxic
functional groups.

QSTR models were proposed for 206 phenols to model their
toxicity against the ciliated protozoan Tetrahymena pyriformis
[97]. MLR combined with a genetic algorithm and classification
and regression tree modeling approach was used. The classification
and regression tree models gave better results than the MLR mod-
els, with respect to the phenol toxicity mechanism of action and
prediction.

The MLR approach was employed to study the influence of
96-h toxicity tests on Chlorella vulgaris algae for 67 phenols and
aniline derivatives that can be used in environmental risk assessment
[98]. Low-toxic-effect concentrations—the no-observed-effect
concentration (NOEC) and the inhibitory concentration that
resulted in 20% cell death (IC20)—were predicted using the MLR
models. Satisfactory statistical results of the models with predictive
power were obtained. Prediction of the IC20 was found to be more
convenient than prediction of the NOEC, because the reported
NOEC values were dependent on the concentrations tested. No
mode of action of these compounds could be explained by this
approach.
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3.2.2 Environmental Fate

and Exposure to Dyes

Most of the aromatic polycyclic hydrocarbons released into the
environment are exposed to processes such as volatilization, chemical
oxidation, bioaccumulation, and adsorption on soil particles [99].
The most important way in which they are eliminated is presently
considered to be microbial transformation and degradation.

Several physical, chemical, and biological approaches (e.g.,
adsorption, coagulation–flocculation, reverse osmosis, oxidation,
photodegradation, membrane filtration, and microbial degradation)
can be applied for dye removal from wastewater [100]. Biological
environmentally friendly methods are becoming increasingly capable
and cost-effective in comparison with physicochemical dye removal
approaches, which are expensive and have limited adaptability
because of the waste products that are generated.

Biodegradation of dyes is an important topic, which can solve
the problem of groundwater contamination with organic dyes
released into the environment [101]. Lignolytic fungi or bacteria
are microorganisms that can transform azo dyes into noncolored
products or mineralize them. During the biodegradation process,
the azo bond of the dyes is reduced by several bacteria (Bacillus
subtilis, Pseudomonas stutzeri, Streptomyces (in aerobic conditions)
or Bacteroides, Eubacterium, or Clostridium (in anaerobic condi-
tions), and colorless amines are formed.

QSAR Models for Abiotic

Degradation and

Decoloration of Dyes

Photocatalysis can be used for dye color removal, mineralization,
and toxicity reduction [102]. The efficiency of this method can be
verified by measuring the toxicity (using a Lactuca sativa L. test) of
the dye solution before and after photocatalysis. The apparent color
removal rates obtained with the natural dye solution were first
simply correlated with 2D calculated dye descriptors. These
descriptors do not take into account the actual state of the dye
molecule in the wastewater (hydrolyzed molecules, the presence of
additives), which can modify the molecular structure. Full mineral-
ization (or transformation into harmless by-products) is the last
goal of degradation. It was concluded that some dye structural
descriptors could be correlated with the apparent color removal
rates at pH ranged between 5.8 and 6.9.

Four ecological water quality parameters—the molar absorp-
tion coefficients, photodegradation parameter quantum yields, bio-
degradability (expressed by the ratio between the 5-day
biochemical oxygen demand (BOD5) and the chemical oxygen
demand (COD)) and the toxicity to Vibrio fischeri of samples
prior to photodegradation and upon achievement of 95% decolori-
zation—were employed in a QSAR study of the photodegradation
of nine reactive triazine dyes [103]. The dye structures were mod-
eled using the quantum chemical Austin model 1 (AM1) and
modified neglect of diatomic overlap (MNDO) approaches. Quan-
tum chemical dye structural descriptors and other parameters were
calculated from these structures and used for correlation with the
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ecological water quality parameters, using the variable-selection
genetic algorithm combined with MLR methods. One- and
two-variable MLR equations resulted. It was concluded that the
initial toxicity of triazine dyes depends mostly on the polarizability
and aromaticity of the particular dye molecule, while the toxicity of
the dye solutions upon achieving 95% decolorization, when formed
degradation by-products dominate, depends on the atomic masses,
and the aromaticity of the parent dye molecules most probably
influences the degradation pathway.

The MLR method was used in the study of decoloration and
mineralization of 28 anionic water-soluble azo dyes under visible
irradiation [104]. Heterogeneous photo-Fenton dye degradation
was carried out using heterogeneous Fenton catalysts, based on
amidoximated polyacrylonitrile fiber Fe complexes. Twenty-two
dyes were included in the training set and six dyes in the test set.
The dye decoloration percentage and the dye total organic carbon
removal values were correlated with several dye structural descrip-
tors: NN¼N (the number of azo linkages), and NAR (the number
of aromatic rings), MW/S (the molecular weight divided by the
number of sulfonate groups) and inorganic/organic value (I/O
value; inorganic character divided by organic character). The
descriptors MW/S and NN¼N were found to be the most impor-
tant determining factors for dye degradation and mineralization.
The increase in the values of these last two descriptors decreased the
degradation percentage of total organic carbon (TOC) removal.
Variation in the Fe content of the catalyst and the addition of
sodium chloride did not influence the QSPR model equations.

A QSPR study of the discoloration rate of eight dyes degraded
by a Mo–Zn–Al–O catalyst was performed using the PLS approach
[105]. The dye structures were energy optimized by the DFT
method at the B3LYP/6-31G(d,p) level. Twenty-six structural
descriptors were derived from the minimum energy conformers
and were related to the dye discoloration rate in catalytic wet air
oxidation conditions. Two-component PLS models were obtained
with good statistical results. It was concluded that three descrip-
tors—the absolute hardness (η), the dipole moment (μ), and the
most negative atomic net charges of the molecule (q�)—influenced
the discoloration rate of dyes by the Mo–Zn–Al–O catalyst.

Thirty-three organic compounds with diverse structures and
applications were studied using QSAR models for the degradation
of organic pollutants derived by an ozonation process under acidic
conditions [106]. The removal ratio and kinetics (reaction rate
constants) of these compounds (which also included dyes) were
investigated using an ozonation process. These compounds were
modeled using the DFT approach at the B3LYP/6-311G level.
Several quantum chemical descriptors were calculated from the
optimized structures. The compound reaction rate constants
derived from the ozone degradation were correlated with these
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descriptors, using a stepwise MLR approach. A test set of five
compounds was used for external validation, and several criteria
for internal and external validation were tested. Models with
acceptable statistical results were obtained.

The dye decoloration process in a solution of four dyes was
studied experimentally followed by theoretical modeling using a
neural network approach [107]. The decoloration process was
assessed by an ultraviolet hydrogen peroxide (UV/H2O2) process,
from which the absorbance was estimated in each dye, as the
maximum absorbance wavelength. A feed-forward neural network
model was developed, based on hybrid variables, such as calculated
structural dye parameters (e.g., the number of azo bonds and
sulfonate groups) and process operational variables (such as tem-
perature, initial pH, hydrogen peroxide volume, reactor operation
time, and dye concentration). The relative importance of each input
neuron in the output neuron was evaluated using the Garson
method, which is based on the partition of the neural weights of
the hidden and output layers of the neural network. The dye
absorbance was considered to be an output variable. The Pearson
correlation coefficient values were higher than 0.96 for the train-
ing, validation, and test sets, confirming good statistical results of
the neural network models.

Degradation by oxidation of four acid dyes was studied using
DFT calculations with use of the Coulomb-attenuating method
(CAM)–B3LYP functional combined with the 6-31++G(d,p)
basis set and the integral equation formalism–polarizable contin-
uum model (IEF–PCM) solvation model in the presence of a water
solvent [108]. The dye molecules were optimized and quantum
chemical descriptors such as the local Fukui indices (calculated from
radical attacks), hardness, dipole moment, and Gibbs solvation free
enthalpy were calculated. Then the time-dependent functional den-
sity method TD–DFT approach was applied to determine the max-
imal wavelengths, the oscillator strengths, extinction coefficients,
the energies of the excitations and the dipole moments of excita-
tions. It was concluded that higher values of the maximal wave-
lengths, Fukui indices, and extinction coefficients decreased the
molecular stability but increased the reactivity produced by radical
attacks. Dye structures with low hardness values (low molecular
stability), high wavelength values, and high oscillator strength
values were the most susceptible to radical attacks.

QSAR Models for

Bioelimination and

Bioreduction of Dyes

The aerobic biodegradability of 25 sulfonated azo dyes was studied
using DA [109]. The experimental biodegradability data contained
four kinds of oxidation rates, including the following enzymes:
horseradish peroxidase, peroxidase from Streptomyces chromofuscus,
and two crude enzyme preparations from Phanerochaete chrysospor-
ium (Mn peroxidase and ligninase). These data were treated as the
category data, using the principal component approach. Therefore,
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an indicator variable was calculated, with a value of 1 for dyes with
fast biodegradation and 0 for dyes that are degraded slowly. The set
of dyes was divided into two classes: eight dyes that were rapidly
biodegradable and 17 dyes that were not rapidly biodegradable.
This indicator variable was used as the dependent variable and was
related using the MLR approach to other indicator variables, which
expressed the biodegradability contribution of the substituents
attached to a parent dye structure. Thus, several indicator variables
were calculated from the dye structures, taking into account the
presence/absence of functional groups, atoms, or fragments
attached to a parent dye structure considered to express the biode-
gradability contribution of these dyes. In addition to this linear
group contribution, an additional interaction model, accounting
for the possible interactions between the substituent groups on the
benzene ring, was developed, using the MLR approach. In this last
model, the dependent variable was related to other indicator vari-
ables accounting for the interactions between the dye substituent
groups. Linear group contribution models with interaction and
noninteraction were obtained, respectively, using stepwise regres-
sion analysis. Two indicator variables in the interaction model and
six descriptors in the noninteraction model were found to be sig-
nificant for the substituent interaction. It was concluded that the
most important structural moieties in controlling biodegradation
were the interactions between the hydroxyl group in the para
position relative to the azo linkage and its neighboring one- or
two-electron-donating substituents of the methyl and/or methoxy
group. Also, the sole contribution of the hydroxyl group in the para
position was not important and could be omitted in the model.

Two QSAR models, for the fish bioconcentration factor and
the octanol/water partition coefficient, were obtained for several
compounds (including dyes) of environmental and toxicological
interest, which were taken from diverse chemical classes
[110]. Structural descriptors were calculated and were related to
the aforementioned two dependent variables, using the MLR
approach, combined with a genetic algorithm for variable selection.
A training set of 290 compounds and a test set of 315 compounds
were used in the model development of the bioconcentration fac-
tor. The compound polarizability, H-bonding, and chemical
dimension were found to be important for the logarithm of the
bioconcentration factor modeling. For the modeling of compound
hydrophobicity (expressed as the logarithm of the octanol/water
partition coefficient), 87 compounds (from which 31 were
included in the test set) were used. All models were statistically
validated internally (by cross-validation and bootstrap) and exter-
nally (by a priori splitting of the available data by a Kohonen map
ANN in the training and prediction sets). The applicability domain
was verified by the leverage method.
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Quantitative structure–biodegradability relationships (QSBRs)
were modeled for the biodegradability of 20 acid dyestuffs to
find mechanistic explanations, using linear regression calculations
[111]. The dye structures were modeled using the PM3 Hamilto-
nian, and quantum chemical descriptors (EHOMO, ELUMO, and the
excited state energy (EES)) and other descriptors were calculated.
The dye biodegradability (obtained from a facultative aerobic pro-
cess) was correlated with the calculated dye descriptors, using one-
and two-descriptor linear regression models. The best equation
included the molecular weight and EHOMO, as descriptors, which
were explained as nucleophilic reactivity and a molecular property.

A quantitative structure–property relationship study of the
bioelimination of 103 anionic, water-soluble dyes was performed
using theMLR approach [112]. The dye molecules were optimized
using molecular mechanics (MM+) calculations (using the
Fletcher–Reeves algorithm), and several dye descriptors were
derived. The MLR results indicated that the dye bioelimination
would be increased by larger molecular size/ionic charge ratios,
containing many primary aromatic amines and unsulfonated naph-
thalene nuclei. The same effect was obtained with a small number
of aliphatic alcohol groups.

In a bioremediation study, in silico docking calculations were
performed for the study of degradation by laccase and azoreductase
of Aeromonas hydrophila and Lysinibacillus sphaericus of six azo,
anthraquinone, and phthalocyanine dyes (Reactive Red F3B,
Remazol Red RGB, Joyfix Red RB, Joyfix Yellow MR, Remazol
Blue RGB and Turquoise CL-5B) [113]. The color removal was
determined using ultraviolet–visible light (UV-Vis) analysis and the
biodegradation of these dyes, using A. hydrophila SK, was studied
by gas chromatography–mass spectrometry (GC-MS) analysis; the
BOD and COD removal efficiency was evaluated too. The dyes
were docked to the binding sites of the oxidative enzyme laccase
and the reductive enzyme azoreductase of A. hydrophila and
L. sphaericus bacteria, using the FlexX docking approach. The dock-
ing results were analyzed on the basis of parameters such as stability,
catalytic action, and selectivity for enzyme–dye interactions. The
docking score of the enzyme–dye interaction was associated with
the decolorization percentage. It was concluded that amino acids in
the enzymes interacted with several dyes. Several types of dye–
enzyme interactions were discussed.

A combined experimental and theoretical study of dye decolor-
ization, using A. hydrophila SK16 and L. sphaericus SK13, was
performed for five azo dyes [114]. Homology models were gener-
ated for laccase and azoreductase enzymes. The dye percentage
decolorization was experimentally obtained by UV-Vis spectros-
copy, high-performance liquid chromatography, Fourier transform
infrared spectroscopy, and GC-MS. The final model was built using
a target sequence alignment file, as well as the sequence of the
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template along with its atomic coordinate file. The binding mode,
molecular interaction with active site residues, and binding energy
scores were investigated in the docking studies. The docking inter-
actions and the amino acids at the binding site of the proteins
interacting with the dyes were observed. The electrostatic interac-
tions, hydrogen bonding, and hydrophobic interactions favored
the bond formation between the amino acid residues of the
enzymes and dyes. Experimental and theoretical results were com-
pared. The docking score imitated the model of the in vitro decol-
orization percentage.

QSAR Models for

Adsorption Removal of

Dyes

A structure–activity relationship model for triarylmethane dye tra-
cers was proposed [115]. Dyes are useful to measure groundwater
flow velocity and to identify flow directions, hydraulic connections,
and the pattern of water movement. The minimal sorption to soil
materials was considered to be an optimal tracer feature. Using a
sandy soil, the sorption properties of four dyes were determined
experimentally, using the Langmuir isotherm. The resulted maxi-
mum adsorption capacity of the medium and the Langmuir coeffi-
cients were used as dependent variables. Several descriptors
(including molecular connectivity indices) were calculated for
these dyes and were correlated with the dependent variables,
using a simple linear stepwise regression approach. An optimal
triarylmethane water tracer was considered to include 4–6 SO3

groups. It was concluded that the Langmuir coefficient values
were dominated by the molecular size, branching pattern, and
positions of substituents. The maximum adsorption might be
more related to the interactions between the molecules and the
soil medium surfaces than to the size or the shape of the dye
molecules.

The mechanism of adsorption of 22 dyes onto activated carbon
cloths was studied using the MLR approach [116]. The experimen-
tal initial kinetic coefficient (which is related to the initial adsorp-
tion rate weighted by the operating conditions) was related to the
connectivity indices calculated for the dye molecules. It was con-
cluded that the dye size may be the major structural feature influ-
encing the adsorption rate. The saturation capacity (which is the
mean of the steady-state adsorption capacities forming the plateau
derived from dye rectangular adsorption isotherms) was chosen as
the absorbability parameter and was correlated with the molecular
connectivity indices. The adsorption capacities were influenced by
structural details of the molecules.

The adsorption onto granulated activated carbon of 33 anthra-
quinone and azo dyes was studied experimentally and theoretically
[117]. The dye molecules were optimized using the PM3Hamilto-
nian, and several descriptors were further calculated. The maximum
adsorption capacity of the adsorbent obtained from the experimen-
tal Langmuir isotherm was used as the dependent variable in the
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QSPR models. The semiempirical PM3 method was used for dye
structure optimization, and several descriptors were calculated
from the minimum energy structures. The dye set was divided
randomly into a training set including 25 dyes and a test set with
eight dyes. MLR, support vector regression, and back-propagation
neural network (using network architecture with three inputs, one
hidden layer with three neurons, and one output) methods were
used in the QSPR calculations. The neural network results were
superior to the MLR results. In the MLR models, the descriptors
were selected using a genetic algorithm. The MLR and support
vector machine results were similar. The three-descriptor linear and
nonlinear models were capable of accounting for more than 70% of
the variation in the maximum adsorption capacity of the adsorbent.

4 Conclusions

The textile industry is one of the most polluting industries. Dyeing
wastewaters contain nonbiodegradable dyes and substances, which
can pose serious threats to the environment and to human, animal,
and plant health. The complexity of the experimental methods used
to resolve these problems has guided researchers to perform theo-
retical studies, which are less expensive and alternative (nonanimal)
methods. In addition, several synthetic dyes used in daily life have
been found to be toxic to human beings and to the environment.
Quantitative structure–activity/property relationship (QSAR/
QSPR) approaches are useful theoretical tools for avoiding expen-
sive experimental effluent treatment processes and animal toxicity
tests. Many supervised and unsupervised learning approaches, as
well as virtual screening methods, have been reported in the litera-
ture on QSAR/QSPR studies of dye ecotoxicity. Safer dyes with
improved properties that make them less toxic to human beings,
animals, and the environment can be designed using ligand-based
methods combined with structure-based methods.
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Chapter 19

Ecotoxicological QSARs of Mixtures

Pathan Mohsin Khan, Supratik Kar, and Kunal Roy

Abstract

In this era of advanced industrialization, all the living beings and environment are exposed to multicompo-
nent mixtures of different classes of chemicals such as organics, pesticides, heavy metals, and pharmaceu-
ticals which may cause direct or indirect hazards to humans, wildlife, aquatic systems, and ecosystems. The
regulatory authorities have mostly relied on the single chemical risk assessment, instead of considering the
impact of complex chemical mixtures. It is also well known that toxicity data for the individual components
is available for a fraction of all existing chemicals in environment. The condition is much worse as there is
minimal toxicity data for complex multicomponent chemical mixtures, and the nature of toxicity of a
mixture (synergism and/or antagonism) will be entirely different from the toxicity of the single chemicals.
A number of regulatory authorities have proposed several methodologies and guidance for the evaluation of
hazardous effects of multicomponent chemical mixtures. However, a standard, significant, and reliable
approach for evaluation of toxicity of chemical mixtures and their management across diverse monitoring
sectors is lacking. In the present chapter, we have illustrated the basic concepts of mixture toxicity
assessment, such as concentration addition, independent action, and interaction (synergism and/or antag-
onism), as well as focused on the computational approaches, such as quantitative structure-activity rela-
tionship (QSAR), which is already proven as an efficient alternative method for toxicity prediction of
chemicals by regulatory authorities for decision making. Subsequently, we have also provided a brief detail
on several ongoing research projects in the European Union (EU), funded by the current European
Research and Innovation Programme Horizon 2020 or the Seventh Framework Programme for mixture
toxicity prediction. The present chapter also explains the importance of evaluation of chemical mixture
toxicity and essential steps in basic QSAR modelling in the context of mixtures. Additionally, we have
reported the successful application of QSAR in the prediction of mixture toxicity of different classes of
chemicals such as pharmaceuticals, pesticides, metals, and organic industrial chemicals.

Key words Component-based approach, EuroMix, Human risk assessment (HRA), EUToxRisk,
Generalized concentration addition (GCA) models, Interactions, Mixture toxicity assessment, QSAR
of mixtures

1 Introduction

The entire world of living organisms is continuously being exposed
to a huge number of chemicals and different combinations of them,
i.e., mixtures in ever-changing dose/concentration, for different
periods via food or feed, drinking water, polluted air, consumer

Kunal Roy (ed.), Ecotoxicological QSARs, Methods in Pharmacology and Toxicology,
https://doi.org/10.1007/978-1-0716-0150-1_19, © Springer Science+Business Media, LLC, part of Springer Nature 2020
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products, material, and goods. The possible combinations of chem-
ical mixtures are increasing exponentially due to the release of a
massive amount of chemical wastes into the environment via
advanced industrialization and overuse or misuse and improper
discharge of pharmaceuticals, agrochemicals, and metals in the
form of metal oxide nanomaterials, etc. The occurrence of chemical
mixtures in the environment without documentation about their
individual component identity, concentration, and dangerous
effects on humans, as well as wildlife and aquatic life, makes it
neither realistic nor beneficial to investigate each possible combina-
tion of the mixtures. However, existing regulations for human risk
assessment (HRA) of chemicals predominantly consider the expo-
sure and evaluation of toxicity of individual compounds, instead of
focusing on the chemical mixtures. Focus on the risk assessment of
exposure of chemical mixtures is given in rare cases, only if exposure
to chemical mixtures is considered in a statutory framework. The
ERA is frequently restricted to chemicals falling within the frame-
work which often neglects co-exposure to chemicals that are
enclosed by different sections of the legislation [1].

In the last decade, the European Commission (EC) reported
the joint response of chemicals, i.e., mixtures [2]. The EC had
stated significant concerns about the existing limitations for risk
assessment of individual compounds and proposed advanced ways
to make sure that hazardous effects associated with chemical mix-
tures are appropriately understood and examined. It stated that the
EU laws fixed stringent limits for the quantity of specific chemicals
permissible in food, water, air, and industrial products; however,
the probable hazard responses of all these chemicals in a mixture are
rarely assessed. Several regulatory authorities are in place to regu-
late the risk assessment of single as well as mixture of chemicals such
as the US Environmental Protection Agency (US-EPA) [3], the
Agency for Toxic Substances and Disease Registry (ATSDR) [4],
the World Health Organization (WHO) [5], the nonfood Com-
mittees of the European Commission, and the European Food
Safety Authority (EFSA) [6], Plant Protection Products (PPPs)
(Regulation No 1107/2009, 283/2013 and 284/2013), and bio-
cidal product regulation (Regulation No 528/2012), Water
Framework Directive (Directive 2006/60/EC), all of which have
made substantial progress toward establishing a practical frame-
work which will be suitable for risk assessment of multiple compo-
nent mixtures [7]. Although multiple approaches for risk
assessment of the chemical mixture are continuously designed and
applied by the researchers and regulators in particular cases, till now
there are no general, reliable, accurately validated integrated meth-
ods across the different regulatory authorities. The most widely
accepted framework for the mixture risk assessment was developed
in a WHO/IPCS (International Programme on Chemical Safety)
workshop [5]. This framework explained a standard method for the
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estimation of hazardous effects of chemical mixtures, and it can be
altered according to the requirements of users. However, its appli-
cation is mostly hampered by huge data gaps on exposure as well as
hazard effect information of chemicals. Interestingly, there are
several EU research projects currently going on to fulfill the data
gaps, to develop newer chemometric tools, and to design novel
in vitro risk assessment methods in order to prioritize the mixture
of concern. These researches are mainly funded by the present
European Research and Innovation Programme Horizon 2020 or
the Seventh Framework Programme.

Table 1 gives a short overview of the currently ongoing EU
research projects on toxicity prediction of chemical mixtures [8].

Yang et al. [14] stated that “there is no such object as a single
chemical exposure.” Therefore, most of the environmental pollu-
tants commonly exist as mixtures, and the response of individual
chemical components in a mixture may not resemble that examined
from data of pure individual compounds. Interactions of different
components among each other in a mixture can result in complex
and significant modifications in the superficial characteristics of its
pure component. The components of a mixture may act either
increased (synergistic) or decreased (antagonistic) response in com-
parison with ideal (additive) behavior. Majority of chemicals occur-
ring in the environment are at dose/concentrations far beneath
than their individual median effective concentration 50% (EC50),
and sometimes it may be lower than their individual no observed
effect concentration (NOEC), but they can still produce a harmful
effect to the human and other living species spanning over different
compartment of environment due to co-contamination with other
chemicals in the mixture. The significance of the combined effect of
co-contaminants has long been acknowledged by the regulating
authorities [15], and there are several commonly used approaches
to cover risk assessment of chemical mixtures [16–18]. The most
widely used experimental approaches for the risk assessment of
mixtures are based on the principal mechanisms of action, i.e.,
concentration addition (CA) and independent action
(IA) method. The research area of risk assessment of the combined
effect of mixtures is not new; rather a series of reviews were pub-
lished to deal with diverse aspects of the combined effect of mixture
pharmacodynamics [19], aquatic toxicology [20, 21], phytophar-
macology [22], carcinogenicity [23], and environmental toxicol-
ogy [24].

In this chapter, we have focused on the basic principles of
mixture toxicity assessment and the essential steps in basic QSAR
modelling as well as the application of QSAR in the prediction of
mixture toxicity of pharmaceuticals, pesticides, metals, and organic
chemicals.
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2 Why Is the Assessment of the Toxicity of Chemical Mixtures Important?

Ecotoxicity assessment of individual chemical component is a myth
as majority of chemicals in the environment are present in a com-
plex mixture, which on exposure results in greater hazardous effects
on living systems and ecosystem than the individual components.
Hence, the estimation of single component toxicity against a par-
ticular organism and environmental compartments may not illus-
trate the real toxicity data in real-life scenario [25]. However, the
estimation of toxicity of a chemical mixture is a much more com-
posite problem than the estimation of individual chemical compo-
nents, because the components in the mixture may affect the
interaction pattern of each other which results in the significant
changes in the final response output of each component. Each
component of a chemical mixture may act by several modes such
as additive action of biological endpoints or may act by an increas-
ing response (synergistic) or by reducing (antagonistic) effects.
Another major issue while modelling the toxicity of a chemical
mixture is the experimental data of the existing components and
their concentration in a particular mixture. In majority of the cases,
it reveals that the concentration of individual components is far
below than its median effective concentration 50% (EC50), or even
below of its individual, no observed effect concentration (NOEC),
but still they can result in hazardous effects on human and the
environment by interaction mechanism with other individual com-
ponents present in the chemical mixture. Thus, the determination
of toxicity of major components may not demonstrate the actual
toxicity value of the final chemical mixture [26–29].

3 General Principles of the Mixture Toxicity Assessment

The toxicity from exposure to chemical mixtures can be assessed
based on the two well-known and widely used fundamental
approaches such as (1) whole-mixture approach and (2) compo-
nent-based approach (as shown in Fig. 1) [8].

3.1 Whole-Mixture

Approach

The whole-mixture effects can be determined by direct testing of
the complete mixture itself, but it can also be estimated from data
obtained from the mixture of similar chemical composition (the
presence of similar individual components in same quantities). In
this approach, a quantitative mixture-toxicity relationship can be
directly assessed by employing the available experimental toxicity
data of the whole mixture. The whole-mixture analysis can be
achieved for intentional mixtures, such as direct exposure of the
workers to pesticide formulations, as well as for indirect exposure of
unintentional mixtures, for example, mixtures of organic chemicals
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in river water, streams, etc. This method permits consideration of
any unidentified chemicals present in the mixtures and any type of
interactions among mixture components [30].

The major hurdle in the application of the whole-mixture
approach is that the mixture is comprised of a large number of
individual chemicals at different concentration ratio, and it is not
practically feasible to perform the ecotoxicological analysis of each
and every possible combination of chemicals in the whole mixture.
Till date, the majority of analysis work published based on employ-
ing the whole-mixture approach has been mainly focused on envi-
ronmental, dietary, or consumer product mixtures, while the whole
sources in real life are much larger and more complex.

3.2 Component-

Based Approach

The component-based approach depends on the effect of the indi-
vidual components of the mixture to predict the joint outcome of
the mixture. The selection of a suitable mathematical approach for
the prediction of mixture toxicity primarily depends on whether the
individual components of a mixture act by a similar mode of action
or independent mode of action [31]. The ideal usage of
component-based approach is mainly dependent on obtained infor-
mation such as (1) information about the architecture of the mix-
ture and the mechanism of action of each individual components of
the mixture and (2) on the knowledge of different functional
groups present in the chemical structure responsible for a similar
or different activity or mechanism of action. All this type of infor-
mation can be obtained from chemical structures and structure-
activity relationships analysis (either qualitative or quantitative),
toxicophore identification, structural alerts, and toxicological
responses or effects [7].

The component-based approach for the prediction of ecotoxi-
city of chemical mixtures can further be categorized into three well-
known and widely used fundamental concepts of actions [32], such
as:

1. Similar action (dose/concentration addition)

2. Independent action

3. Interactions

4. Generalized concentration addition (GCA) models

3.2.1 General Overview The effect of the complex mixtures of similarly acting individual
chemicals can be determined based on the sum of the dose or
concentration of individual components in the mixture, but in
case of a complex mixture of independently acting chemicals,
their toxicity effect can be evaluated based on the probability of
response obtained from each individual chemicals or sum of their
biological responses (addition). These concepts (independent
action and dose/concentration addition) are based on the
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hypothesis that individual chemical compounds in a complex mix-
ture do not affect each other’s toxicity, i.e., they do not interfere in
the binding of each other with the biological target site, or they can
act on the different targets, or they do not interact with each other
at the biological target site. These types of chemical compounds can
produce similar biological responses by a shared or analogous
mechanism of action, or they act individually and may have dissimi-
lar response endpoints and target organs. Both ideas have been
proposed as default methods in regulatory risk assessment of chem-
ical mixtures. However, it is rarely found that the chemical mixtures
are composed of only similarly acting or only independently acting
chemicals [7, 33, 34].

3.2.2 Similar Action

(Dose/Concentration

Addition)

The German pharmacologist Loewe in 1926 [35, 36] proposed the
concept of concentration addition for the first time. The similar
action or similar joint action is observed if each chemical compo-
nent of the mixture acts on the same target site and possesses the
same mode of action but exerts different biological response. The
concept of concentration addition for a mixture of “n” number of
individual components can be expressed mathematically as follows
[37]:

Ceff ¼
X

Ci=ECið Þ ð1Þ
Here, Ceff is the overall effective concentration of a mixture

which can be estimated by the sum of all the effective concentration
of the compounds, Ci stands for the actual concentration of com-
pound “i,” and ECi stands for the concentration of the compound
“i” at which the mortality is observed in 50% of the studied animals.
Each fraction of Ci/ECi termed as a “toxic unit,” provides infor-
mation about the concentration or dose of an individual compo-
nent in the mixture scaled for its relative potency [38]. If the
summation of the toxic units equals 1 at a mixture concentration
or dose which elicit the ECi effect, then the mixture performs as per

Fig. 1 Fundamental principles for toxicity assessment of chemical mixtures

444 Pathan Mohsin Khan et al.



the concentration addition (CA) concepts. Under such situations,
each component of a complex mixture can be replaced by any other
chemical component without altering the final toxicity of the mix-
ture, as long as the summation of the toxic unit is constant. Such
kind of alteration of the component usually retain the final response
intake due to binding of compounds on the same biological target
sites, i.e., individual components which have a similar mechanism of
action and which are neither intercorrelated based on the physico-
chemical property level nor with their toxicokinetic and toxicody-
namic levels [39, 40].

3.2.3 Independent Action

(IA)

This kind of effect is observed when chemicals act independently on
different target sites such as molecular receptors, cells, and tissue of
an exposed organism or with a probably different mode of action
and do not influence the biological activity of each other [41–
43]. As per these concepts, it is assumed that there are no physico-
chemical as well as biological interactions among the components
of the mixture and they do not influence or interfere with each
other’s uptake, distribution, and metabolism. The independent
action of a binary mixture can be estimated by the joint probability
of statistically independent events by using the following equations:

E Cmixð Þ ¼ 1� 1� E C1ð Þð Þ 1� E C2ð Þð Þ . . . . . . 1� E Cið Þð �½ ð2Þ
or

E Cmixð Þ ¼ 1�∏n
i¼1 1� E Cið Þð Þ ð3Þ

Here, E(Cmix) stands for the combined effect of the mixture,
and E(Ci) is the effect of each single mixture component (i) present
at the concentration (ci). Effects are stated as parts of a maximum
possible effect (0% � E � 100%) [32]. As per the above-stated
equations, any chemical which exhibits E(Ci) equal to zero does
not contribute to the joint effect of the mixture. Accordingly,
binary mixtures of independently acting chemical compounds
pose no health concern, as long as the doses/concentrations of
every single component of the mixture remain below their individ-
ual zero-effect levels (concentrations).

Estimation of the IA of the expected mixture effects requires
the knowledge of individual component effects, which can be
obtained from experimental data studied on the traditional ecotox-
icological response endpoints (e.g., mortality, growth, reproduc-
tion), that each individual compound would show toxic effect if
applied singly at a similar concentration at which it exists in the
mixture. This analysis typically requires the concentration-response
curves of all individual toxicants present in the mixture. On the
other hand, the IA-predicted effect of a complex mixture E(Cmix) is
always greater than the effect of individual constituent in the mix-
ture, E(Ci). This suggests that with an increasing number of
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individual compounds in a mixture, lower outcomes have to be
defined for each individual component in order to predict a con-
vincing mixture effect. For example, suppose two individual com-
pounds result in an individual effect of 29.3% at defined
concentrations, their joint effect will be 50%. Conversely, if ten
individual compounds are present in the mixture with 6.7% indi-
vidual effects, they will produce the combined mixture effect of
50%. Therefore, large amounts of consistent ecotoxicological data
which cover the region of low effects are required for the applica-
tion of IA to multicomponent mixtures. Requisite number and
helpful data are unavailable, and most importantly extensive exper-
imental efforts are required for generating them. Therefore, the
application of IA for the prediction of the common toxicities of
multicomponent mixtures has so far been primarily limited to
experimental mixture studies in which the necessary data were
explicitly recorded. However, it should be noted that Posthuma
and colleagues [44–48] reported the mixture toxicity assessment
approach based on species sensitivity distributions (SSDs), which
permits to compute the IA-expected species sensitivity distribution
employing standard EC50 and/or NOEC values, assuming that
data for a sufficient number of taxa is at hand for each mixture
component [49].

3.2.4 Interactions

(Synergism

and Antagonism)

Interactions explain the combined response of two or more indi-
vidual chemicals of the mixture, which is either stronger (synergis-
tic, potentiating, supra-additive) or weaker (antagonistic,
inhibitive, subadditive, infra-additive) than the sum effects which
can be estimated by dose/concentration addition or response addi-
tion. The interaction among chemicals includes all forms of com-
bined effect other than the above-specified additive concept.
Interactions might be as per the condition such as the relative
intensity of dose/concentration of each component, the route(s),
exposure duration and timing (including the biological persistence
of the mixture components), and the biological target(s) site [32].

3.2.5 Generalized

Concentration Addition

(GCA) Models

The CA and IA are the most widely used approaches, but they are
ineffective in some cases such as modelling of chemicals which have
high potency but low efficacy. To overcome such problems,
Howard and Webster have reported the generalized concentration
addition (GCA) model [50]. The GCA acts based on the aggregate
effect of a mixture by means of the efficacy and potency of the
mixture’s each chemical constituents. The simple way to explain the
GCA model is illustrated in the following equation [28, 51]:

E ¼ max effect levelA A½ �=EC50A=þ max effect levelB B½ �=EC50B þ . . . :

1þ A½ �
EC50A

þ B½ �
EC50B

þ . . .

ð4Þ
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Here, E denotes the effect of the chemical mixture at a particu-
lar concentration, whereas “max effect level A” is the maximal effect
level of compound A, [A] is the concentration of A in the mixture
at an explicit mixture concentration, and EC50A is the EC50 value of
A and similar for chemical B, etc.

3.2.6 Realistic

Confirmation

on the Performance of CA

and IA in Ecotoxicological

Assessments of Chemical

Mixtures

Globally several studies have been performed using the CA and IA
approaches to predict the mixture toxicities, and the results were
compared with the experimental toxicity in order to decide which
concept is more suitable and predictive one. The evidence on the
toxicity prediction of a large number of chemical mixtures such as
heavy metals, endocrine disrupters, pharmaceuticals, agrochem-
icals, narcotics, and industrial organic chemicals using both con-
cepts have been compiled, reviewed, and briefly illustrated.

(a) Most of the reported experimental studies are applications of
CA approach, whereas IA has been applied only in a limited
number of investigated mixture studies. Even the comparison
studies for the predictive performance of both approaches
have been reported only in a small fraction of the literature.

(b) As per the reported studies, the CA approach generally has
high prediction power and is considered as the first and pro-
tective approach [52], while IA is only used to predict toxi-
cities of virtually identical mixtures [53–55].

(c) Majority of published toxicity assessment studies have been
performed on a particular species of freshwater organisms,
while chemical mixture toxicity studies on marine and terres-
trial species as well as on a higher organism are still rare.

(d) Based on the majority of reported investigations, the mixture
modelling studies have only focused on the binary or tertiary
mixtures [38, 52, 56–59]. Experimental analysis of more than
two components or multicomponent chemical mixtures is
inadequate. Moreover, chemical mixtures with known compo-
sition and concentration ratios do not imitate any real envi-
ronmental condition, but these are developed with the
purpose of investigating the theoretical mixture toxicity. For
example, chemical mixtures of only similarly acting chemicals
(e.g., ref. 60), and just dissimilarly acting chemicals (e.g., refs.
42, 43), and compounds which belong to the same class or of
the same purpose (e.g., refs. 54, 59, 61) were used in different
studies.

(e) According to Belden et al. [56], for 88% of the selected
pesticide mixtures, the prediction quality employing the CA
hypothesis falls within a factor of 2 from the observed mixture
toxicity, independent of the similar or dissimilar mode of
action of the mixture components. It is also evident from the
analysis by Cedergreen et al. [55] that there is a significant
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deviation in predictions employing the CA approach (around
6% of the examined 158 data points). Although a good source
of information on metal mixture toxicity was reported by
Norwood and his co-worker [57], the majority of reported
studies in the area of metal mixture toxicity would not provide
enough knowledge or clear picture to determine the number
of deviations between the observed and predicted mixture
toxicity. The investigation of metal mixtures is further compli-
cated because it is based on the fact that a number of metals are
vital elements and every organism has a well-established active
system for metal uptake, internal storage, and sequestration.
Additionally, most of the metal interactions may happen at the
level of bioavailability and absorption.

(f) As we know that the chemical mixtures present in the environ-
ment may not be made up of only similar or dissimilarly acting
chemical components, the major problem is how to apply the
existing approaches for mixture prediction, and it has gained a
lot of attention among the scientific community.

It should be noted that advanced CA- and IA-based methods
have been put forward, based on SSDs [44, 62, 63], employing
mechanistic modelling based on the dynamic energy budget (DEB)
theory [64] or using tissue-residue approaches [65]. Despite their
interesting characteristics, these approaches are presently not
appropriate in several situations, particularly considering the expo-
sure of industrial organic chemicals. In such cases, mostly the
toxicity data of essential individual components of mixture for the
requisite array of diverse species and taxa are not available (in the
case of SSD approaches), and the knowledge on the relation
between aqueous and internal body concentrations is not at hand
(which is a prerequisite for the tissue-residue approach). Addition-
ally, the accessible biological data (toxicokinetics and toxicody-
namics) is also insufficient (in the situation of mechanistic models
and tissue-residue strategies) [49].

4 Significance of Chemometric Approaches for Toxicity Assessment of Complex
Chemical Mixtures

An enormous number of novel single chemicals are continuously
being introduced and/or released, while several thousands already
exist in the ecosystem with a lack of sufficient toxicity data against
different living organisms and environment. However, the condi-
tion is even worse for the complex mixture toxicity data. The
experimental toxicity evaluation of single as well as mixtures using
animal models is time-consuming and costly, while the toxicity
prediction employing computational approaches is relatively quick
and easy. The in silico approaches predict the toxicity using several
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learning algorithms (like multiple linear regression, partial least
squares, artificial neural network, etc.) and computational expert
systems [66]. Although it is essential to note that in silico
approaches are not a complete alternative for in vivo and in vitro
toxicity tests, these approaches can be used to complement experi-
ments by reducing the number of animal testing, reduction in cost
and time for toxicity assessment, and to predict the hazardous
effects of novel chemicals prior to their development. Additionally,
the advancement in the computer hardware and continuous devel-
opment of novel learning algorithms lead to the use of computa-
tional approaches in diverse fields including the prediction of
toxicity of chemical mixtures. The prime goals of computational
methods (Fig. 2) used to predict the toxicity of chemical mixtures
are the following [28]:

1. The intelligent application of computational approaches has
reduced the number of animals sacrificed in the toxicity
assessment.

2. Chemometric models using the existing chemical mixtures may
be used to predict the toxicity of the untested or novel altered
composition of chemical mixture against particular species or
compartments if they fall within the applicability domain
(AD) of the chemometric model.

3. Computational models are helpful for risk profiling of hazard-
ous materials by the regulatory agencies.

4. The computational methods are significant and reliable tools to
determine the magnitude of risk as well as help to plan how to
reduce it.

5. Without any doubt, the computational tools are time and cost
effective in comparison to the in vitro and in vivo toxicity
experiments.

6. Helpful to fill the data gaps in ecotoxicity of chemical mixtures
as a large portion of chemical mixtures have no toxicity data
at all.

5 Quantitative Structure-Activity Relationship (QSAR) Modelling of Ecotoxicity
of Mixtures

The quantitative structure-activity relationship (QSAR) approach is
the most widely used chemometric technique that correlates the
biological endpoints (property/activity/toxicity) of a molecule
with its structural attributes [21, 22]. A conventional QSAR
model is developed from the information obtained from a series
of individual compounds (in the form of descriptors) and its
response endpoint, while in case of QSAR modelling of mixtures,
the descriptor information is obtained from two or more
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components of the mixture [67]. Therefore, in the broad sense, a
significant difference between the single molecule QSAR and
QSAR of mixtures is related to the calculation of numerical descrip-
tors and interpretation of the results, while the rest of modelling
steps remain the same in both cases. Here, we have summarized the
best practices of QSARmodelling which might be reasonably useful
in modelling both individual compounds and mixtures [68].

In general, a QSAR model is developed by using one or more
statistical tools to find out a reliable, robust, and significant corre-
lation between the numerical features (descriptors) obtained from
either a single compound or a mixture for a defined endpoint such
as toxicity, biological activity, property, etc. [69–71]. As per the
OECD (Organisation for Economic Co-operation and Develop-
ment) guidelines, to develop a valid and acceptable model for
regulatory assessment of chemical safety, one has to follow the
five OECD principles, which are illustrated as (1) a defined end-
point; (2) an ambiguous algorithm; (3) a defined domain of appli-
cability; (4) appropriate measures of goodness of fit, robustness,
and predictivity; and (5) a mechanistic interpretation, if possible
[72]. Any QSAR training exercises, including those for the mix-
tures, are executed in the consecutive steps starting from the data
collection and data preparation, calculation of molecular descrip-
tors, descriptor pooling or descriptor selection, model building
(learning algorithms), validation of generated models based on
the internal and external parameters, and finally the model exploi-
tation (model interpretation). The performance and acceptability
of QSARmodels depend on how accurately each successive step has
performed. Several commonmistakes in the steps mentioned above
result in the unacceptable QSAR models, and thus these should be
avoided during QSAR model development as explained in several
reviews [73–76]. Figure 3 depicts the schematic overview of QSAR
modelling and its validation steps specific to mixtures.

Based on chemometric modelling algorithms, the QSAR mod-
els can be broadly classified into three categories: (1) regression-
based QSAR approaches, (2) classification-based QSAR
approaches, and (3) machine learning approaches [77, 78]. The
regression-based QSAR approach includes multiple linear regres-
sion (MLR), principle component regression analysis (PCR), par-
tial least squares (PLS), ridge regression, and genetic function
approximation (GFA); classification-based QSAR approach
includes linear discriminant analysis (LDA), and the machine
learning approach includes artificial neural networks (ANN),
Bayesian-regularized neural networks, support vector machine
regression (SVM), decision tree, random forest (RF), naı̈ve Bayes-
ian classifier, and k-nearest neighbor method (k-NN). The QSAR
model has been used to detect the essential chemical structural
characteristics responsible for toxicity/activity/property to explore
the possible mechanism behind the toxicity/activity/property of a
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particular class of chemicals against a particular species. The follow-
ing steps are very important for the generation of reliable/signifi-
cant QSAR model of mixtures.

5.1 Data Collection

and Data Preparation

The accuracy of the generated QSAR models is governed by the
correctness of the input dataset. While preparing the dataset for
QSAR modelling, care must be taken regarding the accuracy of the
chemical structures and experimental response. The researcher
should also be cautious about the use of data collected from several
sources, because if the experimental protocols and conditions are
different, then the data should not be clubbed into a single set. The
collected data must be carefully checked to remove duplicates, salts,

Fig. 2 Importance of computational approaches for a mixture’s toxicity prediction
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etc. The best practices for data preparation before the modelling
process have been described by Fourches et al. [75, 79, 80]. Unfor-
tunately, in case of mixture dataset collection, the bigger problem is
the quality of data obtained for QSAR modelling which is not
clearly discussed in most of the reported studies [67].

5.2 Calculation

of Molecular

Descriptors

The prepared chemical structures are used to estimate the indepen-
dent variables (descriptors) employing different software tools such
as Padel-Descriptor [81], Dragon [82], SiMRS, and Alvadesc [83],
etc. Descriptors are numerical quantities obtained from structures
of single compounds in a quite straightforward process using soft-
ware tools, and one can directly use the calculated descriptors as
independent variables for QSAR modelling. However, the compu-
tation of descriptors for mixtures is very challenging. One way to
calculate descriptors for mixtures is to estimate the values of vari-
ables from individual components, and then the obtained descrip-
tor values from individual components are multiplied by their
percentage ratio present in the mixture and finally added together
to get the final descriptor value for mixtures. This is most com-
monly known as weighted descriptors approach and quite fre-
quently used by researchers for mixture modelling [84, 85].

Descriptors of individual compound M: DM
1 , DM

2 ,. . . ., DM :
n

Fig. 3 A complete schematic overview of the development of a QSAR model
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Descriptors of individual compound N: DN
1 , DN

2 ,. . . ., DN
n

If compounds M and N are mixed in X/Y ratio, then ith

descriptor value of mixture M and N is estimated using the follow-
ing equation:

MNð Þmix ¼ DM
i �X þDN

i � Y ð5Þ
where DM

i is ith variable of individual compound M, DN
i is ith

variable of individual compound N, and X + Y is percentage ratio
of each component in the mixture which is equal to 1% or 100%.
Any error in the calculation of descriptors leads to an error in the
final results. There are several categories of reported studies based
on the type of descriptors used for modelling such as (1) descriptors
based on the partition coefficient for mixtures, (2) integral (whole-
molecule) additive descriptors (weighted sum of descriptors of
individual components), (3) integral nonadditive descriptors of
mixtures (mixture components are taken into account differently
from the additive scheme), (4) fragment nonadditive descriptors
(structural parts of different mixture components are simulta-
neously taken into account in the same descriptor), and (5) miscel-
laneous descriptors for QSAR modelling of mixtures [67].

5.3 Descriptor

Selection

Descriptor selection is one of the most crucial steps in QSARmodel
development as it selects meaningful descriptors from a large pool
of descriptor set. One cannot use the entire descriptor pool for
modelling since it is computationally expensive and time-
consuming. The principal aim of feature selection methods is the
removal of redundant, noisy, or irrelevant descriptors while devel-
oping the QSAR models; in this way, the dimensionality of the
input variable is reduced without loss of vital information. There
are several methods available for descriptor selection such as step-
wise forward selection (FS) and backward elimination (BE), genetic
algorithm (GA), all possible subset selection and factor analysis, etc.
For detailed information on several approaches of feature selection,
please refer to a recently published review article by Khan and Roy
[86]. The same feature selection methods as used for QSAR mod-
elling of individual compounds can be used for QSAR modelling of
mixtures.

5.4 Modelling

Algorithms and Model

Validation

QSAR is a statistical approach which quantitatively correlates the
dependent variable (response endpoint) with a number of indepen-
dent variables (descriptors). There are several modelling approaches
such as PLS (partial least squares), MLR (multiple linear regres-
sion), principal component regression analysis, ridge regression,
artificial neural network, etc. For detailed information on various
methods of the model building, one can see the relevant literature
[86]. The selection of appropriate modelling algorithm (linear
and/or nonlinear) may affect the quality of the final predictions.
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Finally, the validation of the developed models can be performed by
considering several internal and external validation metrics, estima-
tion of AD, and Y-randomization as per the OECD guidelines. The
complete details of diverse validation parameters are available else-
where [68, 87].

6 Application of QSAR in Ecotoxicity Prediction of Pharmaceutical Mixtures

Pharmaceuticals are continuously produced in large volumes and
widely used as the therapeutic agents in human and veterinary
medicines. Due to their extensive usage and heavy consumption,
the occurrence of pharmaceuticals as a single component or as a
mixture in the aquatic environment is of emerging concern
[88]. Pharmaceuticals are frequently found in the form of complex
mixtures (similar mode of action, synergistic form, additive from,
etc.); hence different organisms in the environment are mostly
exposed to the mixture of pharmaceuticals.

There are several studies which reported the presence of most
toxic and concerning classes of pharmaceuticals such as antibiotics,
antibacterial, analgesics, cardiovascular drugs, antidepressants, and
antipsychotics as a single component and in a complex mixture in
the environment. We have discussed below some of the recent
applications of QSAR models in ecotoxicity prediction of the phar-
maceutical mixture.

Białk-Bielińska et al. [89] reported the mixture toxicity of most
widely used six antimicrobial sulfonamides (SAs) and their two
degradation products using both experimental and in silico (con-
centration addition approach) study (Fig. 4). They have utilized the
toxicity data of sulfonamides toward two most sensitive organisms,
viz., limnic green algae (Scenedesmus vacuolatus) and duck (Lemna
minor). As per described studied, first they have evaluated individ-
ual toxicity of two transformation products (TPs) of SAs (sulfanilic
acid (SNA) and sulfanilamide (SN)), and afterward, the authors
have assessed the mixture toxicity of SAs among themselves (mix-
ture 1) and with its TPs (mixture 2). The individual toxicity study
of two TPs revealed that the observed EC50 values for SN were
25.83 (21.69–29.94) mg/L and 5.09 (4.37–5.93) mg/L to
S. vacuolatus and L. minor, respectively, while SNA has no observed
toxicity against both studied organisms even at higher concentra-
tion range (up to 100 mg/L). On the other hand, the mixture
toxicity evaluation suggests that both mixtures (mixture 1 and 2)
show an effect less than the additive effect based upon their
observed and predicted toxicity toward S. vacuolatus and L. minor.

The differences among chronic (24-hr exposure) and acute
(15-min exposure) mixture toxicity were assessed employing the
in silico approaches (docking-based receptor library of antibiotics
and the receptor library-based QSAR model) by Zou et al.
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[90]. They evaluated the toxicity of individual eight antibiotics,
trimethoprim, and their binary mixture against V. fischeri. Subse-
quently, the authors developed the receptor library-based QSAR
model using the individual chemical-receptors binding energy and
the observed binding concentration of the individual compound
(as shown in Eq. 6):

Log EC50ð Þ ¼ f 1 EA�receptor
binding � CaP

Ci

� �

þ f 2 E
b�receptor
binding � CbP

Ci

� �
ð6Þ

where Ca and Cb are the observed concentrations of the individual
compounds A and B in chemical mixtures, ∑Ci the moral concen-
trations of the total chemicals in the mixture, and EA�receptor

binding the
binding interaction of component A of chemical mixture. The
study revealed that the risk quotients of antibiotic mixtures are
only based on chronic mixture toxicity instead of other toxicity
data like individual compound acute toxicity, acute chemical mix-
ture toxicity, and individual compound chronic toxicity. In another
similar study, Zou et al. [91] have reported the differences between
the chronic (24 h) and acute (15 min) mixture toxicity of sulfona-
mides and their potentiators on the Photobacterium phosphoreum
(Fig. 5). To model the toxicity, the authors calculated the toxic unit
and ECM

50 response endpoint used to describe the acute and
chronic toxicity of binary mixture by employing the following
Eqs. 7 and 8, respectively:

TU ¼ Ca

EC50a
þ Cb

EC50b
ð7Þ

ECM
50 ¼ Ca þ Cb

C

EC50a
þ Cb

EC50b

ð8Þ

whereCa andCb are the observed concentrations of the component
“a” and “b” in mixtures at median inhibition and EC50a and EC50b

are the observed effective concentrations of the components “a”
and “b.” Simultaneously, they have estimated that binding energy
of chemical-receptors interaction using docking study and devel-
oped QSAR models for toxicity prediction of single as well as
mixture of SAs using Eq. 6. From single compound toxicity, it
was found that the pKa played an essential role in the toxic effect
of SAs because it helps the SAs to transport into the cell. Based on
the obtained results, the authors have redeveloped QSAR models
considering pKa as one of the essential features which may improve
the quality of prediction (Eq. 9):

Ecotoxicological QSARs of Mixtures 455



Log EC50ð Þ ¼ f 1 � pKa þ f 2 E
A�receptor
binding � CaP

Ci

� �

þ f 3 Eb�receptor
binding � CbP

Ci

� �
ð9Þ

As per the QSAR analysis, it is revealed that the mechanism of
acute and chronic mixture toxicity was based on the two points
dissimilarity, i.e., (1) then receptor binding site of SAs is Luc
(luciferase) in case of acute toxicity of mixture, while in case of
chronic toxicity of mixture, it was Dhps (dihydrofolate reductase),
and (2) variation in the actual concentration of binding between
two different cases such as acute and chronic mixture toxicity. The
study also suggested that the mixture of SAs may act antagonisti-
cally initially (acute mixture toxicity) while in chronic condition
mixture act via the synergistic mechanism.

Long et al. [92] investigated the difference between the joint
effect of sulfonamides and different antibiotics. They have
employed the toxicity data of individual as well as a mixture of
sulfonamides and several antibiotics toward the E. coli. As per the
developed QSAR models, they have suggested that the difference
of joint response between sulfonamides and various antibiotics was
predominantly because of two aspects: (1) the target site (proteins,
cell, tissue) of single chemicals and (2) the capability of antibiotics
to interact with their target receptors, namely, the effective com-
bined concentration. They have also introduced the concept of
“effective concentration” for assessment of the mechanism of
binary mixture toxicity more efficiently.

Wang et al. [93] assessed the combined toxicity of the eight
quorum sensing inhibitors (QSIs) with three different classes of

Fig. 4 Schematic overview of single chemical as well as mixture toxicity assessment of SA and its TPs using
experimental and in silico approach

456 Pathan Mohsin Khan et al.



predominantly used antibiotics, such as β-lactams, sulfonamides
(SAs), and tetracyclines on E. coli (Table 2). The QSAR models
for prediction of the combined toxicity were developed by employ-
ing the interaction energies of binding of receptor-ligand complex.
The analysis showed that the SAs and QSIs exhibit either additive
or combined antagonistic response in the mixture toxicity test,
although β-lactams and tetracyclines (TCs) displayed only antago-
nistic response with the QSIs. The QSARmodels proposed that the
QSIs in the mixtures showed more binding interaction with the
target receptors than the antibiotics. In another study, Wang et al.
[94] have reported the mixture toxicity of three different categories
of most widely used antibiotics, i.e., sulfonamides (SAs), SA poten-
tiators (SAPs), and TCs toward the three organisms, viz., E. coli,
V. fischeri, and B. subtilis. The developed QSAR analysis proposed
that the defined concentration ratio of each single component in a
mixture might differ a lot from the designed concentration ratio;
moreover, the TCs in the ternary mixtures changed the toxic ratio

Fig. 5 Schematic representation of single chemical as well as mixture toxicity assessment of SAs (sulfona-
mides) and its potentiators (trimethoprim) (TRM)) using QSAR method
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of SAs and SAPs, which leads to the fluctuation in combined
response of the ternary mixtures on different organism of study.

Cleuvers [95] reported the ecotoxicity of the nonsteroidal anti-
inflammatory drugs (NSAIDs) such as diclofenac, ibuprofen,
naproxen, and acetylsalicylic acid (ASA) (Table 2) against Daphnia
and algae. The authors first evaluated the experimental single mol-
ecule toxicity against the target organism and subsequently
employed the two reported QSAR models (Eqs. 10 and 11)
[96, 97] to determine the mechanism of action of studied
chemicals:

LogEC5o molL�1
� � ¼ �0:95 logKOW � 1:32 ð10Þ

and

LogEC5o molL�1
� � ¼ �1:00 logKOW � 1:23 ð11Þ

The QSAR analysis revealed that all compounds act by nonpo-
lar narcosis suggesting that the increase in the n-octanol/water
partitioning coefficient (logKow) of the compounds will result in
the increase of toxicity. On the other hand, they have also suggested
that the combined toxicity of each component of the mixture can
be precisely predicted by employing the concept of concentration
addition. Escher et al. [98] reported the relative ecotoxicological
risk assessment of beta-blockers as well as their metabolites employ-
ing a mode-of-action-based test battery and a QSAR method. The
analysis shows that the beta-blockers followed the concept of con-
centration addition for mixture toxicity prediction. There are
numerous other studies which reported the investigation of eco-
toxicity of a pharmaceutical mixture [99–101]. Villa et al. [102]
have reported the acute toxicity of antibacterial (triclocarban, tri-
closan, and methyl triclosan) compounds and their mixtures against
the V. fischeri. The authors have estimated the individual chemical
toxicity using an experimental approach, and the concentration-
response data of every individual studied compound were fitted to
Weibull function:

E ¼ f α, β, cð Þ ¼ 1� exp � exp αþ β∗ log 10 cð Þ� �� � ð12Þ
Here, E stands for the concentration-inhibition ratio of an

individual pesticide, while total concentration-inhibition ratio of a
mixture, c, denotes the observed concentration of the pesticide,
and α and β are the parameters to be computed by employing a
nonlinear least squares (NLLS) technique. Afterward, they have
used previously reported QSAR models to predict the nature of
compounds, i.e., narcotics or polar narcotics against V. fischeri. The
proposed QSAR model is completely based on the octanol/water
partition coefficient. The QSAR model revealed that the triclosan
and triclocarban (Table 2) act as polar narcotic compounds toward
V. fischeri, whereas methyl triclosan acts as a narcotic. The mixture
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toxicity of antibacterials was determined experimentally as well as
predicted by using the most common approaches (CA and IA), and
the results suggest that the observed mixture toxicity of antibacter-
ial had no significant differences from those predicted by both CA
and IA models.

Table 2
List of some of the most commonly observed pharmaceuticals as single components and/or in a
complex mixture in the environment

Triclosan Triclocarbon Sulfadimidine Sulfamethoxazole

Diclofenac Ibuprofen Sulfadimethoxine Sulfapyridine

Naproxen Acetylsalicylic acid Sulfanilic acid Sulfanilamide

Sulfathiazole Sulfamerazine Chlortetracycline Penicillin V

Trimethoprim Ormetoprim Norfloxacin Ciprofloxacin
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7 Application of QSAR in Ecotoxicity Prediction of Mixtures of Agrochemicals

Agrochemicals (pesticides, insecticides, herbicides, and fertilizers)
differ from the pharmaceuticals and other organic chemicals
because they are intentionally designed or developed to elicit the
toxic effect on one or more target organisms or pests. Although
they are used for protection and enhancement of the yield of the
crop, their toxicological effects are not limited to the targets for
which they are applied. They will spread into the ecosystem via
several physical ways and adversely affect other species such as
human being, aquatic species, and wild animals. Humans belong
to higher species than the target species for agrochemicals, so it is
expected that they are unaffected by exposure of the least amount
of these compounds [103]. However, a high dose of agrochemicals
are toxic to humans and sometimes responsible for acute poison-
ings, but the exposure of agrochemicals in the mixtures even in low
doses might show toxic actions [104, 105]. It is not surprising to
discover a mixture of numerous agrochemicals in the surface water
in agricultural areas [105, 106]. Liu et al. [107] have developed the
dose-addition (DA) model to predict the joint ecotoxicity of the
chemical mixture of herbicides which are coexisting with insecti-
cides. They have selected five herbicides (simetryn, prometon,
bromacil, Velpar, and diquat) and one organophosphate herbicide
(dichlorvos) for toxicity assessment against the Vibrio qinghaiensis,
employing the microplate toxicity test methodology. The dose-
response data were fitted to a number of nonlinear functions and
found that the dose-response curve of all the six pesticides was
efficiently defined by the function known as Weibull function
(Eq. 12). The generated Weibull models of the mixtures are signifi-
cant and reliable with a statistical R-value of higher than 0.99 and
an RMSE of lower than 0.020. The primary objective of the pub-
lished report was to simplify whether the DA model can estimate
the risk of the mixture which is composed of herbicides and insec-
ticides with the likely different modes of actions but with the similar
toxicity endpoints. The study suggests the DA model can signifi-
cantly predict the combined toxicity of mixture. Gutowski et al.
[108] investigated the toxicological hazards of S-metolachlor, its
commercial product Mercantor Gold, and their photoproducts
employing the two different approaches such as a water-sediment
test and QSAR approach. They have applied three different QSAR
models for ecotoxicity prediction of SM (S-metolachlor) and
bio-TPs (biotransformation product). The applied QSAR revealed
that the observed bio-TPs might be highly toxic than its parent
compounds. Thus, it is highly recommended that toxicity of parent
as well as its bio-TPs should be further evaluated and care should be
taken for a detailed risk assessment of the chemical.
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8 Application of QSAR in Ecotoxicity Prediction of Heavy Metals and Their Mixtures

Heavy metals are the most prevalent contaminants of major con-
cern because they are nondegradable, and thus, they persist in the
environment for a longer time [109]. Although they are naturally
occurring elements, the majority of atmospheric pollutions occur
due to several activities of humans such as mining and smelting
processes, advanced industrial manufacturing, and heavy usage of
metals for agriculture purpose [110]. The release of metals into the
environment ultimately results in the harmful effects on humans,
animals, and other biotic organisms on exposure.

Metal contaminants are hardly found alone in the environment
[111]; cadmium, zinc, cobalt, and nickel are most commonly used
in several industrial applications/processes, and thus they are often
found as a mixture. It is more essential to determine their combined
effect instead of considering a single element for risk assessment.
The experimental toxicity of metals was determined by considering
the several microbial parameters such as growth rate, biomass
determination, inhibition of bioluminescence, and enzyme activity.
The toxicity assessment of metal mixtures is done mostly based on
bacterial bioluminescence. However, the QSAR approach is also
employed for the toxicity assessment of metal mixtures. For exam-
ple, Li et al. [112] have reported single as well as joint toxicity of
cadmium (Cd) and nine substituted phenol against the
P. phosphoreum (Fig. 6). Initially, the authors performed experimen-
tal toxicity assessment of individual substituted phenol and Cd
which suggested that the individual chemical toxicity occurs due
to different substituted groups on phenols (OH>NH2>-
CH3O>NO2) along with the position of the substituted group
(para>ortho>metra). Further, they carried out joint toxicity of
Cd and substituted phenols employing the toxic unit and additive
index as response endpoint. The final QSAR model was obtained
using stepwise linear regression method by considering the joint
toxicity as response endpoint and descriptors estimated from sub-
stituted phenols using several computational programs such as
ClogP, MOPAC-PM3, CS Chem3D Ultra, Micro QSAR, and
Molecular Modeling Pro. The models are comprised two descrip-
tors which are the logarithm of n-octanol/water partition coeffi-
cient (logP) reflecting the lipophilicity of compounds and the heat
of formation (ΔHf) contributing toward the stability of molecules
with statistical quality of R2 0.855, 0.878 and 0.780 at low,
medium, and high concentration of cadmium, respectively. They
concluded that the substituted phenols show similar combined
effects at different concentrations of Cd.

Similarly, Su et al. [113] have reported the individual as well as
combined toxicity of copper and 11 nitroaromatic compounds
against the P. phosphoreum (Fig. 7). First, they have experimentally
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determined the joint toxicity of a binary mixture of every single
nitroaromatic compound and Cu, followed by calculated molecular
descriptors using several computational tools, and built a QSAR
model to predict the combined toxicity of a binary mixture of each
individual nitroaromatic compound and Cu. The reported QSAR
models obtained employing the stepwise linear regression method
comprised of two different descriptors with statistical quality of R2

0.828, 0.727, and 0.732 at low, medium, and high concentration
of Cu, respectively. The QSAR analysis showed that the toxicity of
nitroaromatic compounds at low concentration of Cu increases
when Connolly solvent-excluded volume (CSEV) of nitroaromatic
compounds decreases, while it increases when the dipolarity/polar-
izability (S) increases. In contrast, the toxicity is directly propor-
tional to the Connolly accessible area (CAA) at medium and high
Cu concentrations, i.e., increment in CAA value of compounds
leads to higher toxicity. In simple word, at low concentration of
Cu, the binary joint effects of Cu and nitroaromatic chemicals are a
simple addition. On the other hand at medium and high concen-
tration, the joint effect of Cu and nitroaromatics are antagonistic.

9 Application of QSAR in Ecotoxicity Prediction of Organic Chemical Mixtures

All the living organisms are exposed to several types of organic
chemicals for a different period of time. Over time, the organic
compounds have been released or have continued to be formed
naturally, for example, the release of organic substances by fires and
volcanoes in the environment [114]. After the evolution, and
mainly from the last two centuries, due to the high rate of the
industrial revolution, there has been an exponential increase in
the number of organic chemicals in the environment [114]. The
harmful effect of individual compounds on different organisms has
been well explored, but toxicity assessment of a mixture of the
organic chemical is still lacking. Numerous QSAR studies have
reported the toxicity of diverse class of organic chemical mixtures
such as aromatic amine and phenol mixtures [115], mixture of
halogenated benzenes [116], combined effect of phenols and cad-
mium [112], mixture toxicity of alkanols [117], combined effect of
nitrile and aldehydes [118], joint response of cyanogenic pollutants
and aldehydes [119], collective toxic response of substituted phe-
nols [120], combined response of nitrobenzene [121], mixture
toxic effect of alkoxyethanol [122], poisonous effect of nitroaro-
matic and copper [113], mixture effect of chlorinated anilines and
cadmium [123], toxicity of polynuclear aromatic hydrocarbon mix-
ture [124], alkylphenols [125], perfluorinated carboxylic acid mix-
tures [126] perfluoroalkyl substance mixture [127], and mixture of
halogenated chemicals [128] against different organisms including
green algae, Vibrio fischeri, gram-positive and gram-negative
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bacteria, Dicrateria zhanjiangensis, Raphidocelis subcapitata,
amphibian (Rana japonica, amphibian fibroblast cell line), fish
(zebrafish), etc. We have discussed below a few examples of the
recent applications of QSARmodels in ecotoxicity prediction of the
organic chemical mixtures.

Lu et al. [115] have investigated the acute toxicity of 11 aro-
matic amines, 4 substituted phenols, and their 32 mixtures toward
the river bacteria in natural waters and calculated the mixture
toxicity index as response endpoint to describe the toxic effect
using the following equations:

MTI ¼ 1� log M= log N ð13Þ
M ¼ ΣTU i ¼ ΣCi=IC50i ð14Þ

Here, Ci is the observed concentration of a single molecule
existing in a mixture, IC50i is the median inhibition concentration
of an individual component, and N is the number of individual
components in the mixture. Subsequently, they have developed a
QSAR model for mixture toxicity prediction using the dataset of
32 compounds with a squared correlation of R2 ¼ 0.834, compris-
ing two molecular descriptors, namely, n-octanol/water partition
coefficient (log P) and the energy of the lowest unoccupied

Fig. 6 Schematic workflow of single chemical as well as joint toxicity assessment of substituted phenols at
different concentration of Cd (cadmium) using QSAR models
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molecular orbital (ELUMO) calculated using different software
tools. They have also suggested that the developed model can be
used successfully to predict the toxicity of any kind of mixtures such
as binary, tertiary, or quaternary mixtures [115].

A QSAR model for prediction of combined toxicity of haloge-
nated benzenes against D. zhanjiangensis was reported by Zeng
et al. [116]. The QSAR model was obtained using a dataset of
49 compounds based on the simple octanol-water partition coeffi-
cient (Kowmix) descriptor with significant correlation coefficient
(R2 ¼ 0.879) and least standard error (SE ¼ 0.124). The Kowmix

descriptor values were estimated using the following equation:

Kowmix ¼ w
v
�

Pn
i¼1

water,i
Q

1þ w
VKDiPn

i¼1Q
0
water,i �

Pn
i¼1

Q 0
water,i

1þ w
VKDi

ð15Þ

Fig. 7 Schematic workflow of combined toxicity assessment of binary mixture of nitroaromatics and Cu at
different concentration of Cu using QSAR models
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where KDi represents the partition coefficient of single component
“i,” W stands for a total volume of solution, V denotes the volume
of the only organic phase, Q 0

water,i is the initial concentration of
component “i” in the aqueous phase, and “n” is the total number
of individual compounds present in the chemical mixture. The
value of W/V is 6.8 � 105. They have concluded that the mixture
toxicity primarily depends upon the partition coefficient of the
mixture of halogenated benzenes which are considered as nonpolar
narcotic chemicals, and it is known that the nonpolar narcotic
chemicals affect the organism only by interaction with lipids of
biomembranes [116].

Wang et al. [117] have reported the mixture toxicity of alkanols
which are also narcotic compounds. They have measured the acute
toxicity of 15 highly hydrophobic alkanols against P. phosphoreum
by performing slight adjustment in octanol-water partition coeffi-
cient descriptors by considering the influence of volume effect and
named it as equivalent octanol-water partition coefficient. Finally,
the QSAR model of mixture toxicity was generated by employing
the equivalent mixture octanol-water partition coefficient (log-
Kow). The QSAR model was developed using the simple linear
regression technique with the statistical value of R2

adj¼ 0.779. As
per mechanistic interpretation, the alkanols with higher lipophili-
city can easily transport inside the cell via cell membrane (lipid
bilayer) and produce a toxic effect to the target organism. It is
also found that the alkanol toxicity increases with the increasing
carbon chain length from methanol to dodecanol, and then the
toxicity starts to fall down from tridecanol. This is because alkanol
chemicals become too bulky for transport through the channel of
biomembrane to inside the cell, which may result in decrease toxic-
ity of alkanol. The authors concluded that developed linear model
could be useful to predict mixture toxicity of new or untested
mixture by using an equivalent mixture octanol-water partition
coefficient.

Hoover et al. [127] have reported in vitro as well as in silico
modelling approaches for toxicity estimation of the individual as
well as a mixture of perfluoroalkyl substances using the amphibian
fibroblast cell line. First, they have evaluated the cytotoxicity of
PFAS as individual as well as in binary mixtures to amphibian
fibroblast cell line. Second, the data obtained from in vitro studies
were employed for in silico study, i.e., QSAR modelling of the
individual as well as a chemical mixture. Among all the reported
models, the best model comprised of the only single descriptor
with a significant variance of 94% in training set and 90% predictive
variance. Finally, the best model was used for prediction of 24 indi-
vidual and 1380 binary mixtures [127]. As per the reported inves-
tigation, they have concluded that the combined effect of two very
common PFAS (perfluorohexane sulfonate (PFHxS) and perfluor-
ohexanoic acid (PFHxA)) was potentially higher than additive
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effects, while shorter-chain PFAS may not lead to as many hazard-
ous effects. Finally, they have suggested that the best QSAR model
comprised vital structural features of the studied chemicals and
might be useful as a query tool for toxicity prediction of novel
and untested PEAS (individual as well as mixtures).

Kar et al. [128] have reported the QSAR models for toxicity
prediction of halogenated chemicals (endocrine-disrupting pollu-
tants) against zebrafish (Danio rerio) embryos using a dataset of
nine compounds comprised of five single and four tertiary mixtures
(Fig. 8). Four statistically significant QSAR models comprising of
single descriptors were generated using GA-MLR technique for
four different sets of division. The molecular descriptors for chemi-
cal mixture were calculated by using weighted descriptors approach
as mentioned in Subheading 5.2. The final models were used for
toxicity prediction of an external set of binary and tertiary mixtures
[128]. The study revealed that the developed models for toxicity
prediction of the halogenated chemical mixture were based on the
concentration addition concept which signifies that similar MOA
among all the studied compounds. They have also identified that
compared to bromine, chlorine- and fluorine-based PFAS shows
higher toxicity for the studied halogenated chemicals. The devel-
oped models served as a better tool for understanding the essential
feature of studied chemicals and were used to predict the toxicity of
new set of mixtures as well as single halogenated compounds.

Lin et al. [119] have developed a combined QSTR (quantita-
tive structure-toxicity relationship) model using a dataset of
40 binary mixtures containing an aldehyde and a cyanogenic toxi-
cant against the P. phosphoreum. The study revealed that the dataset
was composed of mixtures of different observed effects (additive,
synergistic, or antagonistic) from each other and the difference in
the observed effect was based on the chemical-chemical interaction
(formation of carbanion intermediate) between the cyanogenic
toxicant and aldehydes. Further, chemical-chemical interaction
analysis revealed that two essential features of single compound
primarily contribute toward the combined effect of mixture. A
QSAR model was developed by considering these two important
features (Hammett constant used the charge of the carbon atom in
the -CHO of aldehydes and C∗ is the charge of the carbon atom in
the carbon chain of cyanogenic toxicants) with a correlation of
R2 ¼ 0.868 and standard error (SE) 0.232. The external set of
eight additional similar mixtures was used to determine the predic-
tion quality of the built model, and it was found that the model
significantly predicted toxicity with a correlation ofR2¼ 0.888 and
SE ¼ 0.223 [119].
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10 Future Perspective

The regulatory requirements and awareness for toxicity assessment
of mixtures among several regulatory frameworks are scarce, even
though several chemical compounds are subject to the provisions of
more than one regulatory framework. At present, all the regulatory
authorities, as well as toxicologists, have understood the impor-
tance and necessity of mixture toxicity evaluation instead of focus-
ing on single chemical risk assessment. The ATSDR developed a
strict direction for chemical mixtures which is equally similar to that
in the US EPA guidance, although the ATSDR offers more weight-
ing on physiologically based pharmacokinetic (PBPK) and pharma-
codynamic (PBPD) modelling. Agencies like the National Institute
of Environmental Health Sciences (NIEHS), National Toxicology
Program (NTP), and National Institute for Occupational Safety
and Health (NIOSH) initiated efforts to illustrate exposures, gen-
erate biomarkers, and assess environmentally relevant
mixtures [129].

To improve the risk assessment of mixtures, there is a primary
need for the design or development of novel databases with the
toxicity information obtained from diverse experimental protocols
using different species model at different time exposure. This tox-
icity information of mixtures might be useful for generation of
computational models followed by expert systems. These types of
expert systems might be helpful for mixtures risk assessment or, at
the very least, for the estimation of dose-dependent interactive
effects. In the present time, the databases cover only a small fraction
of toxicity information of chemical mixture. Thus, a large number
of efforts need to be employed to prepare an improved database in
collaboration with an experimental and computational modeler.

Based on the present and future scenario of the mixture toxicity
assessment study, we have illustrated a few points for future efforts:

(a) The no-observed-adverse-effect level (NOAEL) dose should
be considered for mixture risk assessment.

(b) Till now there is no harmonized or universal approach for
mixture risk assessment, and one needs to design or develop
novel architecture for mixture toxicity assessment or modify
old framework based on the type of mixture with an objective
to solve the complex mixture issue because the traditional
animal-based mixture risk assessment modelling practices are
insufficient for such a complicated issue.

(c) Combined efforts between experimental toxicologists and
computational scientist are essential to resolve most of the
problems and challenges associated with chemical mixture
toxicity.
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11 Conclusion

The risk assessment of chemical mixtures to the human and envi-
ronmental has been of the major concern of toxicologist because
the majority of chemicals in the environment exist in the form of a
mixture. However, till now, the regulatory authorities and the
majority of researchers have focused mainly on the risk assessment
through toxicity investigation of individual chemicals, but the fact
is that maximum chemicals exist as mixtures, generally at very low

Fig. 8 Schematic diagram of mixture toxicity assessment of halogenated chemicals using QSAR approach
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levels or far below median effective concentration 50% (EC50),
while they can exhibit hazardous effects on human and environ-
ment by interaction mechanism with other individual components
present in the chemical mixture. Therefore, the risk assessment may
be misleading in such cases. The identification of each chemical
present in the mixture as well as their percentage ratio is crucial
before performing any toxicity quantification. It is also a well-
known fact that the determination of the effects of different com-
positions of individual components in the mixture is quite a chal-
lenging task; therefore, the availability of mixture toxicity data is
really scarce. In the present time, it is essential to determine the
toxicity impact of chemical mixtures on the human and environ-
mental health, and the chemometric QSAR tools are the alternative
methods to assist in bridging the data gaps. In the current chapter,
we have discussed different concepts of mixture toxicity modelling
such as concentration addition, independent action, and interac-
tion (synergism and antagonism), provided a short discussion on
the ongoing projects in the EU for mixture risk assessment, and
discussed the importance of the chemometric approach, i.e., QSAR
in mixture toxicity prediction. We have also given an overview of
essential steps involved in QSARmodelling, as well as cited success-
ful applications of QSAR in toxicity assessment of different classes
of chemical mixtures such as pharmaceuticals, pesticides, heavy
metals, and organic chemical mixtures (Fig. 9). In our opinion,
the precise information about the composition of a mixture with

Fig. 9 Application of QSAR in the prediction of diverse classes of chemical mixtures
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each individual component concentration and their mechanism of
action to produce the toxicity is essential to develop the computa-
tional models for mixture toxicity assessment. Another main point
to remember is that the mathematical models must be built by
taking the physicochemical parameters related to the mechanism
of action of chemicals into consideration, so that the model could
be used for predictions for untested or unknown compounds/
mixtures with a similar composition.
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Martı́n-Betancor K, Rosal R, Fernández-
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Chapter 20

QSPR Modeling of Adsorption of Pollutants by Carbon
Nanotubes (CNTs)

Probir Kumar Ojha, Dipika Mandal, and Kunal Roy

Abstract

Harmful effects produced by hazardous chemicals/pollutants toward the environment have been a serious
issue of concern since the past. Therefore, a cherished goal of chemists lies in applying novel methods to
control the harmful effects of hazardous chemicals/pollutants toward the environment. There are several
traditional techniques which are widely used to make the environment free from all types of toxic/
hazardous contaminants. Among these processes, adsorption is widely used as an efficient technique to
remove various toxic contaminants from the environment due to its low-cost process and because it is easy
to perform. Nanotechnology has introduced a new generation of adsorbents like carbon nanotubes
(CNTs), which have drawn a widespread interest due to their outstanding ability for the removal of various
inorganic and organic pollutants from the environment. CNTs have been widely investigated as alternative
adsorbents for the pollution management due to their high surface area and high adsorption affinity toward
the organic contaminants, and that they can be modified (functionalized) in different ways to enhance their
selectivity toward specific target pollutants. Estimation of adsorption property of environmental pollutants
like organic materials, heavy metal ions, radioactive elements, etc. is necessary for both single-walled carbon
nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). However, considering a sufficient
number of such chemicals synthesized in factories and industries, it will be very impracticable to carry out an
exhaustive testing of chemical hazard. To investigate the toxic property of hazardous chemicals using
nanoparticles like CNTs is time-consuming, and it needs animal experimentation. According to Registra-
tion, Evaluation, Authorisation and Restriction of Chemicals (REACH), use of laboratory animals is
causing ethical, scientific, and logistical problems that would be incompatible with the time-schedule
envisaged for testing. In this perspective, the non-animal methods like quantitative structure-activity
relationships (QSARs) could be used in a tiered approach to provide a rapid and scientifically justified
basis to evaluate the adsorption property of different hazardous organic chemicals onto the CNTs. The
QSAR modeling investigates the chemical features or structural properties of organic chemicals which are
essential for adsorption of hazardous chemicals onto CNTs. The present chapter reviews the information
regarding source of hazardous chemicals which are toxic to the environment, risk assessment and manage-
ment of toxic chemicals, basic information of CNTs, and mechanism of adsorption of organic chemicals
into the CNTs. Finally, an overview about the necessity of in silico methods like QSPR modeling for
prediction of adsorption property of toxic chemicals as well as successfully reportedQSPRmodels regarding
adsorption of hazardous chemicals onto both SWCNTs and MWCNTs are discussed.
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1 Introduction

Pollutants are the substances, which when introduced into the
environment, affect adversely to the human health and ecosystem.
Pollutants are produced from various sources like burning of fossil
fuels, wastes from incineration, exhausts from automobiles, agricul-
tural processes, and industrial sectors. Some pollutants are biode-
gradable and cannot persist in the environment for long time. But,
most of the pollutants are resistant to environmental degradation
processes (biological, chemical, and photolytic) and bioaccumulate
in the food chain and affect environment as well as human health.
One of the major sources of pollutants are industrial effluents, and it
is a challenging job for the environmentalists and industries for
proper disposal of the by-products. Polycyclic aromatic hydrocar-
bons (PAHs) like naphthalene, phenanthrene, p-nitrophenol, etc. are
very common pollutants, and they have carcinogenic, mutagenic,
and toxic properties [1, 2]. These hydrophobic materials are pro-
duced from combustion of coal and oil, exhaust frommotor vehicles,
and effluents from petrochemical plants [3–5]. By normal physico-
chemical methods such as coagulation, flocculation, sedimentation,
filtration, and osmosis process, they cannot be easily removed from
the environment. Chlorobenzenes (1,2,4,5-tetrachlorobenzene,
1,2,4-trichlorobenzene, 1,2-dichlorobenzene, chlorobenzene) are
mainly used as solvents, degreasing agents, and chemical intermedi-
ates. They cause necrosis, restlessness, tremors, and muscle spasms
on little exposure and cause numbness, cyanosis, and hyperesthesia in
humans on long-term contact. Among the perfluorinated com-
pounds, perfluorooctanesulfonates (PFOS) are the most common,
and they have been utilized as surfactants, fire retardants, paints,
adhesives, waxes, and polishes [6]. PFOS are also important con-
taminants due to their high concentration, global distribution, envi-
ronmental persistence, and bioaccumulation. These are highly
soluble in ground water and causing water pollution. By conven-
tional water purification methods, these compounds cannot be
removed easily because of their stability. Dialkyl phthalate esters
(DPEs) are most commonly used as plasticizers in polyvinyl chloride,
polyvinyl acetates, cellulosics, and polyurethanes and as nonplastici-
zers in products like lubricating oils, automobile parts, paints, glues,
insect repellents, photographic films, perfumes, and food packaging
materials (paperboard and cardboard). They have been observed
worldwide in food, water and soil, marine ecosystems, affecting
human, or other living organisms. They enter the environment
during production processes or by leaching from plastic products
after disposal and interfere with human hormone-regulated physio-
logical processes [7]. Chlorophenols are generally used for the pro-
duction of pesticides, dyes, and biocides. Chlorophenols are most
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priority environmental pollutants proposed by the US Environmen-
tal Protection Agency (US EPA), [8] because they are highly carci-
nogenic and toxic in nature [9]. Chlorophenols are also produced
during water disinfection with chlorine, which make unpleasant taste
and odor of drinking water at very low concentration (less than
0.1 mg/L) [10, 11]. Heavy metals like arsenic, cadmium, chro-
mium, mercury, zinc, copper, and lead are the common contami-
nants in waste water in the recent years. The major sources of these
metals are modern chemical industries such as metal plating facilities,
battery manufacturing, fertilizer, mining, paper and pesticides, met-
allurgical, fossil fuel, tannery, and production of different plastics
such as polyvinyl chloride, etc. The exposure of these metals causes
high blood pressure, speech disorders, fatigue, sleep disabilities,
aggressive behavior, poor concentration, irritability, mood swings,
depression, increased allergic reactions, autoimmune diseases, vascu-
lar occlusion, and memory loss in human [12]. Pharmaceuticals are
one of the most important products with undeniable benefits to
human health and lifestyle. Unfortunately, since 1970, due to over-
use of these products together with their inappropriate disposal,
surplus residues of active pharmaceutical ingredients (APIs) have
been found in different compartments of environment
[13, 14]. Among the pharmaceuticals classes, antibiotics are widely
used in healthcare systems which are poorly metabolized after intake;
about 25–75% may leave the bodies in an unaffected form after
ingestion [15]. In 30 states in 139 rivers of the USA, under nation-
wide survey of “emerging pollutants,” biologically active com-
pounds of diverse therapeutic classes were detected by the US
Geological Survey (USGS) [16]. Hence, it is essential to remove
pharmaceuticals like antibiotics, contrast medium, and other con-
taminants from the environment. Tetracycline antibiotics are mostly
used as veterinary therapeutics and growth promoters for animals.
After usage by farming industry, tetracyclines are excreted as unmod-
ified parent compounds through feces and urine. Only a small por-
tion of them is metabolized. Large amount of antibiotics like
sulfamethoxazole and lincomycin and contrast medium (iopromide)
come from effluents of hospitals or radiological clinics to the envi-
ronment. These pollutants are detected in water and wastewaters.
Tetracyclines are commonly noticed in surface water, groundwater,
and water which have toxic effect [17]. Therefore, it is essential to
remove antibiotics as well as pharmaceuticals and contrast medium
to get purified water [18, 19]. Personal care products (PCPs) are
generally used to improve the quality of daily life [20]. The use of
these PCPs has been increasing from last few years, and these are
present in high concentration in the aquatic environment (e.g.,
water, sediments, and biota) which causes harmful effect to the
aquatic organisms. Among other classes of chemicals, dyes are one
of the most severe environmental pollutants produced by the textile,
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dyeing, printing, ink, and related industries. Dyes are the substances
which provide color and mostly used in the textile, pharmaceutical,
food, cosmetics, plastics, photographic, and paper industries.
Around 800,000 tons of dyes are produced per year worldwide,
and out of these, 10–15% of dyes are lost during the dyeing and
finishing processes in textile industry. This industry utilizes above
800 chemicals for various processes. During the dyeing processes,
the unfixed portion of dyes is washed out, and it remains present in
the textile effluents. Thus, the textile and finishing industry presents
a large amount of pollution to the environment. Most of the chemi-
cals are harmful and affect adversely to the human health directly or
indirectly [21–23]. Dyes not only affect aesthetic merit but also
reduce light penetration and photosynthesis. These are also carcino-
genic and toxic to the environment and human health [24]. Again,
from last two decades, the use of various herbicides has been
increased in plant agriculture in controlling bacterial diseases. Studies
have suggested that the use of these pesticides is increasing day by
day; 2.5 million ton pesticides are used in a year worldwide [25–
27]. Generally, organic food involves no residue of synthetic fertili-
zers, chemical pesticides, genetically modified organisms (GMOs),
hormones, and antibiotics [28]. In 2016, the European Food Safety
Authority (EFSA) reported that the most detected residues like
copper, spinosad (a natural toxin), and bromide ion in organic
food are of low concern [29]. However, both conventional and
organic foods may contain banned pesticides like hexachloroben-
zene, dichlorodiphenyltrichloroethane (DDT), lindane, and dieldrin
[30]. Hence, organic foods could contain the same amount or even
more of various environmental pollutants, like polychlorinated
dibenzo-p-dioxins, polychlorinated dibenzofurans (PCDD/Fs),
polychlorinated biphenyls (PCBs), PAHs, and heavy metals, than
conventional food [31].

The US EPA has set maximum contamination levels (MCLs)
and maximum contamination level goals (MCLG) for each pollut-
ant, with no ill effects on health. In the literature, there are large
numbers of pollutants reported, but adsorption data of only around
70,000 pollutants are available, because determination of experi-
mental data of huge number of pollutants is a lengthy, laborious,
and expensive process [32]. In the recent years, nanomaterials have
gained priority for pollution management, because they contain
high surface area, high adsorption affinity toward organic and
inorganic pollutants, and they can be modified in various ways to
enhance their selectivity toward specific pollutants [33]. Many
researchers have special attention to CNTs due to their large spe-
cific surface area, small size, inertness toward chemicals, hollow and
layered structures, and strong interaction between CNTs and pol-
lutant molecules [34]. CNTs were first discovered by Sumio Iijima
in 1991 [35]. CNTs are formed by rolling up of graphene sheets
into (concentric) cylinder with nanosize diameter. Generally, their
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length is few micrometers. CNTs, as a new kind of adsorbents, have
been proven to be of very potential for removal of many types of
pollutants like small molecules [36–38], heavy metal ions [39–41],
radionuclides [42, 43], and organic chemicals [44, 45]. Several
functional groups such as hydroxyl, carboxyl, amine, and ligands
can be introduced on the surface of the CNTs for functionalization
to make them selective and specific for certain pollutants.

The risk assessment of hazardous organic chemicals requires a
huge number of experimental data resulting in high costs, time
consumption, and animal testing for in vivo testing. Unfortunately,
the number of available experimental data is very few. In this regard,
quantitative structure-activity/property/toxicity relationship
(QSAR/QSPR/QSTR) approach may be a suitable alternative to
predict the probable hazards from their chemical structure infor-
mation [46]. Thus, to fill the data gaps, government and nongov-
ernment regulatory authorities suggest the use of in silico methods
for prediction of the physicochemical properties, toxicological
activity, distribution, fate, etc. of organic chemicals along with
their effects on environment and living systems much before they
enter into the market for usage. Thus, usage of QSAR as one of the
nonexperimental methods is noteworthy in order to minimize
animal usage, time, and cost involvement in toxicity prediction of
organic chemicals [47, 48]. In the recent years, QSAR/QSPR
modeling has been observed to be useful for modeling response
of novel chemicals like ionic liquids, nanoparticles, CNTs, etc., thus
increasing the area of applications manifolds. QSPR modeling has
also been found to be beneficial in agricultural sciences, in nano-
toxicology, and in treating environmental pollution. The pollutants
discharged into the water bodies from the industries could be
modeled against the CNTs (carbon nanotubes) to determine the
features which could be essential for uptake by the CNTs. QSPR
modeling of organic chemicals/pollutants using adsorption prop-
erties by CNTs can be of great importance for environmental
scientists to understand the structural or physicochemical proper-
ties which are the key features for adsorption of organic chemicals
onto CNTs; thus this knowledge can be applied for pollution-free
environment.

2 Sources of Pollutants and their Effects

l Industrial effluents: These are the major sources of generation of
pollutants. Industrial pollutants are formed during production
and synthesis of plastics, dyes, polymers, pharmaceuticals, deter-
gents, pesticides, disinfectants, fertilizers, etc. Many literatures
[7, 12, 29] suggested that these substances are highly toxic to
the animals and plants. Even at very low concentrations, pheno-
lic compounds cause genotoxicity and mutagenicity and reduce
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photosynthesis, respiration, and various enzymatic reactions.
According to European Commission and the US Environmental
Protection Agency (US EPA), phenols and their derivatives are
named as hazardous pollutants and are listed as hazardous
materials [49].

l Pharmaceuticals: Pharmaceuticals and personal care products
(PPCPs) including antibiotics, analgesics, steroids, antidepres-
sants, antipyretics, stimulants, antimicrobials, disinfectants, fra-
grances, cosmetics, and many other chemicals are used to
improve human health and lifestyle. After administration, some
amount of drugs is metabolized. The unmetabolized active
substances are excreted through urine (generally 55–80% of
the total administered dose) and partially in feces, thus entering
into the environment. Concentration levels of ng/L to mg/L of
pharmaceutical wastes have been identified in surface water and
groundwater in Asian countries [50]. These pharmaceutical
wastes, with continuous accumulation, may cause serious
adverse effects on human beings [51].

l Hospital effluent: Hospitals and their effluents are important
sources of environmental pollution. Various micro-
contaminants are obtained from diagnostic, laboratory, and
research activities and also from medicine excretion by patients.
These include active drugs and their metabolites, chemicals,
heavy metals, disinfectants and sterilizants, specific detergents
for endoscopes and other instruments, radioactive markers, and
iodinated contrast media. Hospital effluents are resulting from
their improper removal by conventional systems and detected in
hospital waste water which causes toxic effects to the human
health [52].

l Agricultural waste: Farmers are regularly utilizing fertilizers in
their fields which provide necessary nutrients as a form of nitro-
gen and phosphorus for growing the crops and fruits. The excess
nitrogen and phosphorus are drained out to the groundwater
resulting in eutrophication of water bodies and degradation of
ecosystem. Farmers also use different pesticides to protect the
crops from pests. These pesticides are harmful for the environ-
ment and living organisms due to their hazardous nature. These
pesticides, when released to the environment, may be degraded
either by microorganisms or chemical processes. The trans-
formed products may be more toxic than the parent com-
pounds, and consequently these substances may cause a greater
risk to the environment. So, their use does involve potential risks
to the human health and the environment.

l Household waste: The amount of household wastes is increasing
gradually due to increasing the world’s population. Americans
produce 71 million tons of paper garbage, 31 million tons of
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solid waste, 14 million tons of plastic waste, and 20 million tons
of other materials like rubber, textiles, leather, wood, and inor-
ganic wastes. Many of these are recycled and reused. Proper
recycling is necessary to protect the environment and human
health. But, due to incomplete combustion of household waste,
various pollutants such as polychlorinated dibenzo-p-dioxins,
dibenzofurans, biphenyls, chlorobenzene, chlorophenols, and
polycyclic aromatic hydrocarbons are formed. These com-
pounds are highly toxic and produce carcinogenic effects and
are retained in the environment for longer time [53].

The pollutants obtained from different sources are illustrated in
Fig. 1.

3 Risk Assessment of Environmental Pollutants

Risk assessment is a process to determine the concentration, occur-
rence, and level of exposure of the pollutants to the environment
and human health [54]. The main objective of the environmental
risk assessment (ERA) is risk mitigation and risk management. The
stages of doing an environmental risk assessment are discussed
below:

l Hazard Identification: It is the first step of risk assessment which
identifies the sources and occurrence of environmental hazards
and describes whether a compound is able to cause adverse
health outcomes at any level of exposure of environmental pol-
lutants. This comprises discussion of any toxicological and epi-
demiological information [55]. Though many of the research

Fig. 1 Sources of pollutants with some examples
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scientists very much trust on in vivo data, but due to massive
deficiency of appropriate data for majority of hazardous chemi-
cals, greater effort should be offered on the proficient use of
in vitro analysis, in silico analysis, and computational technique
in system biology [56].

l Dose-Response Assessment: This can be defined as the “estimation
of the relationship between dose, or level of exposure to a substance,
and the incidence and severity of an effect”[57]. The dose-
response relationship is determined from epidemiological and
toxicological data.

l Exposure Assessment: Exposure assessment is defined as the mea-
surement of the magnitude, frequency, and extent of exposure of
the hazardous material to the specified target group in the
environment. It detects the source of pollutants, their pathways,
and their outdoor exposure to the environment and biomoni-
toring under numerous exposure scenarios [58]. Environmental
exposure to a pollutant may be direct, where pollutants enter
into the environment after emission from the industry, or indi-
rect, in which pollutants are coming from drinking water or food
chain.

l Risk Characterization: It is the last step of risk assessment which
describes the nature, likelihood, and magnitude of adverse
effects after gathering toxicological and exposure information.
It is qualitative and sometime quantitative measurement of pos-
sibility of adverse effects of environmental pollutants at specified
exposure conditions. This process depends on the results of the
previous steps, i.e., environmental hazard and environmental
exposure assessment [59].

4 Risk Management of Environmental Pollutants

Environmental risk management is defined as the method of iden-
tification, evaluation, selection, and implementation actions to
decrease the risk to human health and to the ecosystems. The
process of risk management occurred by environmental pollutants
need to be well-adjusted and should be balanced with cost benefit
and practicality to implement. The policies and environmental
strategies that manage the endogenous and exogenous environ-
mental risks are explained below:

l Waste Prevention and Management: Waste from various sources
including water and energy must be reduced or removed at the
source or by practices such as modifying production, mainte-
nance and facility processes, or replacing, preserving, recycling,
and reusing materials [60].
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l Hazardous Substance Management: Risk management process
can be controlled by identifying and managing the hazardous
chemicals and other substances present into the environment. It
is necessary to practice safe handling, movement, storage, use,
recycling or reuse, and disposal of the hazardous
substances [60].

l Greenhouse Gas (GHG) Management: It is essential to record
and maintain the greenhouse gas emissions at the facility and
corporate level. Carbon oxides production at greenhouse can be
reduced by taking initiatives and practices such as use of renew-
able energy/alternative fuels, filters, freight consolidation, driver
efficiency, reduce fuel consumption, etc.

l Relationship with Suppliers and Customers: It is one of the most
important steps for risk management of pollutants. There is a
need to audit and monitor suppliers, and there should be a good
relationship between suppliers and customers in order to
encourage and consciousness about environmental pollution,
cooperation with suppliers to meet environmental
objectives [61].

l Compliance: The environmental management system is planned
according to environmental safety and health regulations.

5 Carbon Nanotubes (CNTs)

5.1 Types of Carbon

Nanotubes

Based on the number of concentrically rolled-up graphene layers,
carbon nanotubes are classified into two main categories as follows:

5.1.1 Single-Walled

CNTs (SWCNTs)

SWCNTs are composed of cylindrical shape single sheet of gra-
phene with a diameter from 0.4 to 2.5 nm [62]. Depending on the
chiral indices (n1, n2), these nanotubes have two designs such as
armchair and zigzag [63] (as shown in Fig. 2). This design depends
on the method of wrapping of the graphene sheets into a cylinder.
For example, rolling of a sheet of paper from its corner can form
one design, and rolling of the sheet from its edge can form another
design. The pair of indices (n1, n2) are called chiral vector. The
chiral indices n1 and n2 are equal for armchair CNTs, whereas the
chiral indices are zero for zigzag CNTs. The electrical properties of
SWCNTs depend on their structural design. The armchair nano-
tubes are always metallic, while zigzag nanotubes are either metallic
or semiconductor [64]. When n1–n2 ¼ 3i, where i is a nonzero
integer, then the nanotube is called metallic (highly conducting);
otherwise the nanotube is semiconducting in nature. SWCNTs
have distinctive mechanical, electrical, and thermal properties but
possess low solubility as well as poor dispersibility in aqueous and
other common organic solvents [65]. They have hydrophobic sur-
face and show high polarizability along with van der Waals
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interactions; thus they are forming aggregates with each other and
with other biological and chemical substances in water
[66, 67]. Chen et al. reported that SWCNTs have superior adsorp-
tion property than MWCNTs because of the molecular sieving
effect. Due to this effect, larger molecules could not enter into
the innermost layers of the MWNTs [33, 68]. Chen et al. [69] also
observed that SWCNTs have higher adsorption capacity for per-
fluorooctanesulfonates than MWCNTs, which is due to larger spe-
cific surface area (SSA) and smaller diameter of SWCNTs
[70, 71]. The molecular structures of SWCNTs are given in Fig. 3a.

5.1.2 Multi-walled CNTs

(MWCNTs)

The first discovered CNTs were multi-walled carbon nanotubes
(MWCNTs). MWCNTs (Fig. 3b) contain two or more numbers
of concentric layers of graphene with different diameters of up to
100 nm. These nanotubes may be few nanometers to a few micro-
meters long [62]. MWCNTs have two structural models like
Russian Doll model and Parchment model. In the Russian Doll
model, the graphene sheets are rolled as concentric cylinders (the
inner tube has small diameter as the outer nanotubes). On the
other hand, in the Parchment model, a single graphene sheet is
wrapped around itself several times, resembling a rolled paper. The
Russian Doll structure is observed more commonly [72] than the
Parchment model. The interlayer distance in MWCNTs is close to
the distance between graphene layers in graphite, approximately
3.4 Å. In MWCNTs, the outer layers protect the inner layer from
any chemical interactions with outside materials. These nanotubes
have higher tensile strength and cheaper than single-walled
nanotubes.

Fig. 2 Chiral structure of SWCNTs. Here, Ck and T are the two vectors, a1 and a2
are the two basis vectors, n1 and n2 are integers (also called indexes which
determines the chiral angle)
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5.2 Application

of CNTs

Nowadays, nanotechnology is one of the most attractive and devel-
oping fields which offers many advantages. After discovery in 1991
by Iijima [35], CNTs are growing quickly, and many researchers
have given much effort for elucidation of their novel properties and
novel applications in different fields. Due to their unique properties
and mechanical strength, CNTs are useful in various areas which are
discussed below:

5.2.1 Structural Due to amazing structural properties of CNTs, they can be appli-
cable for [73]:

l Textiles: CNTs are useful for production of waterproof and tear-
resistant fabrics.

Fig. 3 Molecular structure of CNTs. (a) SWCNT; (b) MWCNT
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l Body armor: CNTs are used to prepare combat jackets. These
jackets are bullets proof and comfortable in any season.

l Concrete: CNTs can enhance the tensile strength of concrete and
reduce the proliferation of halt crack.

l Polyethylene: CNT fibers can be used as polyethylene. This type
of polyethylene can enhance 30% of elastic modulus of the
polymers.

l Sports equipment: CNTs are used for production of golf balls,
golf clubs, stronger and lighter tennis rackets, bicycle parts, and
baseball bats.

5.2.2 Electromagnetic CNTs can be used for manufacturing of electrical conductors,
semiconductors, and insulators:

l Buckypaper: CNT sheets are 250 times stronger and 10 times
lighter than steel. They can be used as heat sink for chipboards,
backlight for LCD screens, or Faraday cage to protect electrical
devices/airplanes [74].

l Light bulb filament: CNTs are used as substitute of tungsten
filaments in incandescent lamps [75].

l Magnets: MWCNTs coated with magnetite can produce a strong
magnetic field [75].

l Solar cells: CNTs can exchange indium tin oxide (ITO) in several
solar cells, and light can pass through the graphene layers which
generate photocurrent [76].

l Electromagnetic antenna: CNTs can also be used as an antenna
for radio and other electromagnetic devices because of their
durability, lightweight, and conductive properties [75].

5.2.3 Electroacoustic CNTs are applicable in the field of electroacoustic as:

l Loudspeaker: CNTs also find their applications in loudspeakers
manufacturing. Such a loudspeaker is able to produce sound
having frequency similar to the sound of lightning producing
thunder.

5.2.4 Chemical CNTs have remarkable applications in the chemical field as follows:

l Air pollution filter: CNTs provide more adsorption capacity and
large specific surface area; therefore, they are used for filtration
of air. When polluted air moves toward the CNTs, the conduc-
tance will alter, and this is helpful for detecting and filtering the
polluted air [77]. CNTmembranes can successfully filter carbon
dioxide from emissions of different factories and industries.
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l Water filter: In the recent years, CNTs are used for purification
of drinking water. Tangled CNT sheets serve mechanically and
electrochemically in strong arrangement with controlled nano-
scale porosity. The thin tubes resist the large particles and allow
the smaller one to pass through CNTs. These nanotubes have
been used for removal of electrochemically oxidized organic
contaminants [78], bacteria, and viruses [79]. Portable filters
containing CNT meshes are used for purification of contami-
nated drinking water. Membranes attached with the open ends
of the CNTs improve flow properties for both gases and
liquids [80].

l Chemical nanowires: CNTs are also used for the production of
nanowires using gold, zinc oxide, gallium arsenide, etc. The
gold-based CNT nanowires can specifically detect hydrogen
sulfide (H2S), and zinc oxide (ZnO)-based CNT nanowires
can be used for light-emitting devices and harvesters of vibra-
tional energy [77].

l Sensors: Sensors are recently used in different fields as detecting
devices such as detection of temperature, air pressure, chemical
gases (carbon monoxide, ammonia), molecular pressure, strain,
etc. CNTs are attached to increase the efficiency of biosensors
and molecular sensors. The working principle of these sensors is
generally dependent on the generation of current/voltage. The
electric current is generated by the flow of free charged carrier
induced on any material. The major advantages of CNTs are the
small size of the nanotubes sensing element as well as little
amount of material required for a response. At first, Wong
et al. [81] revealed that it is possible to sense functional chemical
groups connected onto the ends of CNTs by using chemical
force microscopy techniques, and Collins et al. [82] reported

Fig. 4 Applications of CNTs on various fields
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that SWCNTs are very sensitive to air and vacuum conditions,
and they also suggested that MWNTs can be used as efficient
sensors for NH3, H2O, CO2, and CO.

Applications of CNTs on different fields are depicted in Fig. 4.

5.3 Role of CNTs

as a Nanomaterial

in Pollution

Management

Development of agricultural production and fast industrialization
make the water resources contaminated with heavy metals. The
quality of water is a major concern worldwide because of wastewa-
ter discharge from various sources like domestic, industrial, or
agricultural. The existence of heavy metals in water resources is a
serious issue for both environment and ecosystem. There are several
traditional techniques like reverse osmosis, chemical precipitation,
filtration, ion exchange, coagulation, and adsorption which are
widely used to make the water as well as environment free from
all types of toxic contaminants [83]. Among all of these traditional
processes, adsorption is widely used as an efficient technique to
remove various toxic contaminants from both water and environ-
ment due to its low-cost process which is also easy to perform. In
this perspective, CNTs are one of the most efficient and widely
studied adsorbents due to their high surface area with light mass
density, ease of synthesis, and interactions with toxic environmental
contaminants [84, 85]. The contaminants mainly found in waste-
water are heavy metal ions which are non-biodegradable, highly
toxic, and carcinogenic causing accumulative poisoning, cancer,
and damaging nervous system. CNTs show a wider adsorption
affinity for heavy metals as well as various types of environmental
pollutants including organic materials and radioactive
elements [77].

5.4 Mechanism

of Adsorption of CNTs

Adsorption is the process where atoms, molecules, or ions from a
substance like gas, liquid, or dissolved solid adhere to a surface of
the adsorbent. Pollutants get adhered to the surface of graphene
layers of CNTs through adsorption. The adsorption of various
materials by carbon nanotubes takes place due to van der Waals
forces, electrostatic interactions, π-π electron donor-acceptor inter-
action, hydrogen bonding, ion exchange, electrophobic interac-
tion, and mesopore filling. There are several properties which
make the CNTs capable of adsorbing many pollutants; for example,
(1) the total CNTs surface area is high (100–300 m2/g) which
enhance the adsorption capacity, (2) the pore volume of fibrous
material is high for easy accessibility, and (3) their surface charge
offers a control to select a specific pollutant. Long and Yang [86]
reported that adsorption of dioxin on carbon nanotubes could be
due to π-π stacking between the two benzene rings of dioxin and
the graphite sheets of carbon nanotubes. Ji et al. [17] proposed that
a strong interaction between tetracycline and MWCNTs could be
caused by van der Waals forces and π-π electron donor-acceptor
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interaction between MWCNTs and tetracycline. On the other
hand, MWCNTs act as the electron donor and conjugated enone
structures of tetracycline as the electron acceptor and cation-π
bonding between the protonated amino group and the graphene
π-electrons also occurred. Pan and Xing [87] suggested that
adsorption of 17α-ethinyl estradiol and bisphenol A on CNTs
occur by π-π electron donor-acceptor and hydrogen bonding
interactions.

CNTs have four possible sites for adsorption of different pollu-
tants such as (1) open-ended hollow interiors of nanotubes,
(2) interstitial pore spaces between the tube bundles, (3) groves
present at the boundary of nanotube bundles, and (4) external
surface of the outermost CNTs (Fig. 5) [88, 89]. In the interior
space of CNTs, the adsorption of pollutants is difficult, because the
caps of the individual tubes are generally closed, and if the tubes
have open ends, the smaller diameter of the tubes cannot adsorb
larger-sized pollutants. Interstitial pore spaces between the tube
bundles of CNTs are the good adsorption sites for low-molecular-
weight adsorbates (e.g., metal ions) [90]. The grove edges of
nanotube bundles and the external surface are the superior adsorp-
tion sites for most of the pollutants. Various functional groups can
be introduced on the surface of the CNTs for functionalization to
increase their colloidal stability and chemical reactivity which make
them selective and specific for certain pollutants. The most of the
organic and inorganic pollutants are adsorbed at the external sur-
face of the functionalized CNTs [91].

Fig. 5 Major adsorption sites of CNTs in bundle. IS inner site, IC interstitial
channel, PG peripheral groove, ES external surface
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6 Role of Predictive QSPR Models on the Adsorption of CNTs

CNTs are associated with considerable adsorption affinity. Assess-
ment of adsorption property of environmental pollutants (organic
materials, heavy metal ions, and radioactive elements) is necessary
for both SWCNTs and MWCNTs. However, considering a large
number of such chemicals (pesticides, herbicides, fungicides, etc.)
synthesized in factories and industries, it will be impracticable to
perform an exhaustive testing. Thus, alternative strategies using
limited experimental data can be of much use. In this regard, the
non-testing methods, i.e., QSPRs could be used in a tiered
approach to provide a rapid and scientifically justified basis to
evaluate the adsorption property of different hazardous organic
chemicals onto CNTs. The predictive QSPR modeling paradigm
investigates the chemical features of the hazardous organic chemi-
cals responsible for their high adsorption toward CNTs. Apart from
that, QSPR modeling provides an understanding of the important
structural requirements or essential molecular properties and the
requisite features of molecules that are important to increase or
decrease the adsorption of organic contaminants. QSPR models
also provide an important guidance for the chemists to increase the
efficient application of CNTs which may be useful for reducing the
environmental pollution. QSPR models are also supported in the
REACH legislation [92]. A few studies have reported predictive
QSPR models on adsorptive property of organic chemicals toward
CNTs. Modeling physicochemical properties enables design and
development of purpose-specific efficient analogues and allows
the user to capture specific information on the adsorption coeffi-
cient. However, considering the scope of this book chapter, we
would like to present an account on some of the representative
published QSPR models on adsorption of chemicals onto CNTs.

6.1 Successful QSPR

Modeling

of Adsorption

of Pollutants by

SWCNTs

Wang et al. [93] developed two predictive QSPR models with
multiple linear regression (MLR) and support vector machine
(SVM) algorithms using the adsorption data (logK values) of
61 organic pollutants onto SWCNTs employing theoretical molec-
ular descriptors. They validated the models extensively using differ-
ent validation parameters like determination coefficient (R2), root
mean square error for the training set and validation set (RMSEt

and RMSEv), leave-one-out cross-validated correlation coefficient
(Q2

LOO), and external explained variance (Q2
v) to evaluate the

goodness of fit, robustness, and predictive ability. The nonlinear
SVM model was developed using the same dataset and molecular
structural descriptors as used in the MLR model. The authors also
checked the applicability domain of the models using Williams plot
(the plot of standardized residuals (d∗) versus leverage values(h))
and claimed that based on the molecular structures of the

492 Probir Kumar Ojha et al.



compounds in the training set, the applicability domain for the
developed models covers diverse compounds with functional
groups including >C¼C<, -C�C-, -C6H5, >C¼O, -COOH, -C
(O)O-, -OH, -O-, -F, -Cl, -Br, -NH2, -NH-, >N-,>N-N<, -NO2,
>N-C(O)-NH2, >N-C(O)-NH-, -S-, and -S(O)(O)-. Based on
the model results, the authors suggested that (1) cyclic compounds
having substituents could be well adsorbed by SWNTs, (2) hydro-
phobic compounds prefer to interact with SWNTs than with water,
(3) compounds with higher α values ((100�molecular polarizabil-
ity)/volume) tend to have stronger dispersion interactions and
dipole-induced dipole forces with SWNTs, and (4) fluorine, oxy-
gen, and chlorine atom were influential toward the adsorption of
organic pollutants by SWCNTs. The authors also depicted that the
electrostatic interactions between hydrogen atoms and π electrons
in SWCNTs as well as the hydrogen bonding interactions between
hydrogen atoms and oxygen atoms of water also affected the logK
values. The authors also claimed that molecular dipole moment (μ)
encoding the dipole-dipole interactions had the slightest effect on
the logK values among all the theoretical molecular descriptors.
Finally, they concluded that the adsorption for organic pollutants
onto SWCNTs was influenced by the van der Waals, hydrophobic,
electrostatic, and hydrogen bonding interactions. Among these
interactions, the van der Waals and hydrophobic interactions con-
tributed most to the adsorption of organic pollutants onto
SWCNTs.

Recently, Ghosh et al. [94] reported partial least squares (PLS)
regression-based QSPR modeling for adsorption of 40 hazardous
synthetic organic chemicals (SOCs) by SWCNTs to identify the
significant structural features essential for effective adsorption in
SWCNTs, the adsorption behavior of diverse SOCs onto SWCNTs,
and to give a deep insight to understand the mechanisms and
factors behind the adsorption of hazardous SOCs onto
SWCNTs/functionalized SWCNTs. Prior to development of the
final models, the authors had applied a variable selection strategy to
reduce the noise in the input. The authors validated the models
extensively using different validation parameters. Based on the
statistical quality, the authors claimed that the models were statisti-
cally significant. The authors also checked the consensus predictiv-
ity of the developed PLS models using “Intelligent consensus
predictor” tool [95] to find out whether the quality of the test set
prediction could be enhanced through “Intelligent” selection of
models. They found that the consensus predictivity of the models
were better than the individual models (Q2

F1 ¼ 0.938,
Q2

F2¼ 0.937). From the insights obtained from the PLS
regression-based QSPR models, the authors claimed that the haz-
ardous SOCs might get adsorbed onto the SWCNTs through
hydrophobic interaction as well as hydrogen bonding interactions
and electrostatic interaction to the functionally modified SWCNTs.
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According to the analysis, the authors interpreted that hydrophobic
surface of the molecules, molecular shape and degree of branching,
presence of two carbon atoms at topological distance 4, number of
H atom attached with α-C atom, and presence of carbon and
oxygen atom at the topological distance 6 could enhance the
adsorption of hazardous SOCs to the SWCNTs, while number of
tertiary aliphatic amine and presence of carbon and sulfur at topo-
logical distance 7 might be detrimental for the adsorption of haz-
ardous SOCs to the SWCNTs. The adsorption mechanisms
reported by Ghosh et al. of contributing descriptors are depicted
in Fig. 6. The authors also suggested that among all the modeled
descriptors, MLOGP2 had the strongest impact on the adsorption
of hazardous SOCs onto SWCNTs. Finally, the authors claimed
that the developed models might provide knowledge to scientists to
boost the efficient application of SWCNTs as adsorbents, which
might be useful for the management of pollution free environment.

Lata and Vikas [96] reported QSPR models for the adsorption
coefficient of 40 aromatic organic compounds by SWCNTs using
quantum-mechanical descriptors to identify the key structural

Fig. 6 Model descriptors with their probable interactions patterns onto the SWCNTs as proposed by Ghosh
et al. [94]
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information at the electronic level which could be important for the
adsorption of aromatic organic chemicals by SWCNTs. The authors
examined the real predictivity of the existing linear solvation energy
relationship (LSER) models for the adsorption prediction of OCs
by SWCNTs and compared them with the developed quantum-
mechanical models by using state-of-the-art statistical procedures.
For this purpose, they employed an external set compound which
was not used for the model development purposes. Based on the
insights obtained from the models, they found that the mean
polarizability was the key structural information among all, which
affect most for the adsorption of OCs by SWCNTs. This contribu-
tion of polarizability was due to the interactions between electrons
of parallel spin. The authors also proposed that results obtained
from the models developed from the mixture of quantum-
mechanical descriptors and solvatochromic descriptors were found
to be better than the models developed from individual descriptors.
Finally, the authors used the proposed models to predict the
adsorption efficiency of nucleobases, steroid hormones, and selec-
tive agrochemicals like insecticides, herbicides, pesticides, and
endocrine disrupting chemicals. They claimed that based on the
model predictions, Guanine and Progesterone should be strongly
adsorbed by the SWCNTs. The authors finally proposed that the
models could be used to predict the nanotoxicity associated with
the adsorption of biomolecules and other environmental pollutants
by SWCNTs. These authors [96] developed the LSER models
based on the algorithm of Abraham and coworkers [97, 98] as
follows:

log Kd ¼ rR þ pP þ aA þ bB þ vV þ c ð1Þ
where Kd is the adsorbent-water distribution coefficient (in L/g),
while A, B, V, P, and R are solvatochromic descriptors of adsorbate
(solute) molecules representing their interaction with adsorbent
and solvent [99, 100]. The parameter, R (in cm3 mol�1/10),
stands for the excess molar refractivity relative to a compound of
the same molar volume. Another parameter, P, signifies dipolarity
or polarizability; the parameter, A, depicts effective hydrogen bond
donating ability (the acidity); and B represents the effective hydro-
gen bond accepting ability (the basicity) of the adsorbate. The
parameter V in (cm3 mol�1)/100 is the characteristic McGowan
volume that is known to generalize the dispersion interactions
[101]. In equation, r, p, a, b, and v are the regression coefficients,
and c is the regression constant.

Liu et al. [102] reported a QSARmodel and DFT simulation of
25 benzene derivatives to explore the adsorption characteristics and
to see the key interactions pattern to SWCNTs. To illustrate the
preferential molecule–SWCNTs conformations, the authors built
an armchair SWCNT (3, 3) with a diameter of 4.07 Å, a length of
12.30 Å along the tube axis, and added terminating hydrogen
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atoms to both ends of the SWCNs using Materials Studio (http://
accelrys.com/products/materialsstudio/). They designed 6 to
10 interaction modes to explore the potential interaction configu-
ration for each molecule–SWCNT system in the gas phase. All
geometries were completely optimized in all internal degrees of
freedom using DFT at the M062X/6-31G(d) levels of theory.
They performed DFT simulations to optimize the structural,
dynamic, and energetic aspects of the molecule–SWCNT com-
plexes and to determine the adsorption mechanisms. The authors
developed a QSAR model containing 8 descriptors by stepwise
regression method using 79 three-dimensional SurVolSha (surface
area, volume and shape) descriptors. Based on the statistical results,
they claimed that the model had favorable predictive capability and
could be utilized to predict the molecule–SWCNT adsorption.
From the insights obtained from the model, they reported that
π-π stacking was dominating the adsorption of benzene derivatives
onto the SWCNTs, whereas the substituents played a secondary
effect on the adsorption process. They also investigated from the
final optimized molecule–SWCNT configurations that the parallel
modes have higher occurrence probabilities than the perpendicular
modes. From this observation, they concluded that the parallel
modes are more stable than the perpendicular modes for the same
molecule–SWCNT system. Thus, face-to-face π-π packing domi-
nated the adsorption interaction of the aromatic molecules-
SWCNTs compared to face-to-side π-π packing. From the ben-
zene–SWCNT simulation results, they suggested that benzene pre-
ferred to interact with the SWCNTs by a bridge configuration with
a relatively low energy. Finally, they suggested that one could
modify the functional group of the derivatives to acquire expected
adsorption on the SWCNTs and could carry out non-covalent
functionalization of CNTs which could be utilized for the organic
compounds from the environment.

6.2 Successful QSPR

Modeling

of Adsorption

of Pollutants by

MWCNTs

Roy et al. [68] have recently reported predictive QSPR models for
adsorption of diverse organic pollutants by MWCNTs using two
different datasets containing 59 and 69 organic pollutants with
multiple end points to explore the key structural features essential
for adsorption to multi-walled CNTs employing only easily com-
putable 2D descriptors. The first dataset contained defined adsorp-
tion affinity properties (k1) of 59 diverse organic pollutants by
MWCNTs, and the second dataset contained adsorption affinity
of 69 organic pollutants related to specific surface area (kSA) of
MWCNTs. They have converted all the end point values into
logarithmic scale for the modeling purpose. The authors have
employed a variable selection approach prior to development of
the final models to reduce the noise in the input. The models were
extensively validated (both internal and external) using different
stringent statistical validation parameters like R2, adjusted
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determination coefficient (Ra
2), variance ratio (F), standard error of

estimate (s), and leave-one-out cross-validated correlation coeffi-
cient (Q2

LOO); external predictivity parameters like R2
pred, Q

2
F2,

and concordance correlation coefficient (CCC); and rm
2 para-

meters like rm
2
(LOO) and Δrm2 for internal validation and rm

2
(test)

and Δrm2
(test) for external validation, mean absolute error (MAE)

criteria for both external and internal validation tests. The authors
have also tried to explore whether the quality of predictions of test
set compounds can be enhanced through an “intelligent” selection
of multiple MLR models using the “Intelligent consensus predic-
tor” tool. Based on both internal and external validation para-
meters, the authors suggested that the statistical results of the
reported models showed good predictivity (Dataset 1:
R2 ¼ 0.893–0.920, Q2

(LOO) ¼ 0.863–0.895,
Q2

F1 ¼ 0.887–0.919; Dataset 2: R2 ¼ 0.793–0.845,
Q2

(LOO) ¼ 0.743–0.811, Q2
F1 ¼ 0.783–0.890). The authors

claimed that the consensus predictivity for the test set compounds
showed better results than those from the individual MLR models
based on not only the MAE-based criteria but also the other
external validation metrics they used (Dataset1, Q2

F1 ¼ 0.935,
Q2

F2 ¼ 0.935, MAE(95%) ¼ Good; Dataset2, Q2
F1 ¼ 0.887,

Q2
F2 ¼ 0.879, MAE(95%) ¼ Good.). From the information

obtained from the developed models, the authors suggested that
higher number of aromatic rings, high unsaturation or electron
richness of molecules, polar groups substituted in aromatic ring,
presence of oxygen and nitrogen atoms, size of the molecules, and
hydrophobic surface of the molecules could enhance the adsorp-
tion of the organic pollutants to the CNTs, while presence of C-O
group, aliphatic primary alcohol, and presence of chlorine atoms
might retard the adsorption of organic pollutants. From these
observations, the authors concluded that the organic pollutants
might get adsorbed on to the CNTs through hydrogen bonding,
π-π stacking, hydrophobic, and electrostatic interactions. Finally,
the authors claimed that the reported models might be helpful in
the process of removal of the harmful and toxic contaminants/
disposals of the by-products from the various industries by increas-
ing the adsorption of pollutants, hence making a pollution free
environment.

Lata and Vikas [103] reported the role of quantum-mechanical
descriptors in the concentration-dependent adsorption of
64 diverse aromatic compounds by MWCNTs using QSPR model-
ing. They used a dataset containing aromatic organic compounds
comprising drugs, herbicides, pesticides, cosmetic constituents,
dyes, and so forth, at five different adsorbate equilibrium concen-
trations (Ce) such as 10�1, 10�2, 10�3, 10�4, and 10�5 of the
adsorbate (in mg/L). The authors developed three types of models
using quantum-mechanical descriptors, solvatochromic descriptors
(poly-parameter linear-solvation-energy relationships (pp-LSERs)
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models), and mixed types of descriptors (using both quantum-
mechanical descriptors and solvatochromic descriptors) and com-
pared the results among them. Different strategies were employed
to develop the models like single parametric models, multiple
parametric models, etc. They validated the models both internally
and externally. Based on the results, the authors claimed that the
models developed from the mixture of descriptors performed bet-
ter than the individual type of descriptors. Based on the perfor-
mance of the models, the authors claimed that the most influencing
descriptor for the adsorption of aromatic organic compounds by
MWCNTs were mean polarizability but that arising from the
quantum-mechanical exchange interactions between electrons of
the same spin. Finally, the models developed from the combination
of the quantum-mechanical descriptors and pp-LSER’s descriptors
were used to predict the adsorption of nucleobases and steroid
hormones.

Ahmadi and Akbari [104] explored predictive QSPR models of
the surface area normalized adsorption coefficients of 69 aromatic
organic compounds on MWCNTs using the Monte Carlo method.
The descriptors were calculated with the simplified molecular-input
line-entry system (SMILES) and hydrogen-suppressed molecular
graphs (HSGs). The authors developed the models using the
CORAL (CORrelation and Logic) software [105]. The authors
divided the whole dataset randomly into three sets, namely, train-
ing, calibration, and validation sets (balance of correlations
method). They also used an invisible training set which were used
for the confirmation of good correlation coefficients for com-
pounds that are not involved in the training set. The calibration
set was used for the optimization of the Monte Carlo search.
Finally, the validation set was used to predict the properties of the
aromatic organic compounds which were not used for the develop-
ment of the models. For the division of the dataset, the authors
maintained the ratio of 35% training, 35% invisible training, 15%
calibration, and 15% validation. The authors claimed that the
results obtained from three random splits were robust, very simple,
predictable and reliable for the training, invisible training, calibra-
tion, and validation sets. Finally, they proposed that the reported
QSPR model could be used for the prediction of the adsorption
coefficient of numerous aromatic compounds on MWCNTs.

Paszkiewicz et al. [106] reported principal component analysis
(PCA) to explore the similarities between the studied polycyclic
aromatic hydrocarbons (PAHs) based on quantum-mechanical
(QM) descriptors calculated using the second-order Møller-Plesset
(MP2) perturbational method and 6–311++G(d,p) basis set and
constitutional descriptors. The authors claimed that the first two
principal components explained 77% (PC1) and 11% (PC2), respec-
tively, of the total variance in the data. Based on the PCA score plot,
the authors found a high correlation between PC1 and ring count
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defining descriptors like nCIC (number of rings) which represented
the size of the PAHs. The authors observed that the key descriptors
like Rbrid (ringbridge count), nCIR (number of circuits), RCI
(ring fusion density), nAT (total number of atoms), and nC (total
number of carbon atoms) are also closely related to the size of the
particles. Thus, they claimed that the features related to the size of
the PAHs were important to regulate the adsorptive property of
PAHs to the MWCNTs. They also observed that the cumulative
electronegativity, polarizability of the atoms, and the energy gap
between HOMO and LUMO orbitals (GAP ¼ ELUMO–EHOMO)
were also important. The energy gap between HOMO and LUMO
orbitals (GAP ¼ ELUMO�EHOMO) was an important indicator of
kinetic stability. On the other hand, PC2 was mostly related to the
number of hydrogen atoms. Further, to understand the adsorbing
characteristics of PAHs to the CNTs, they performed a theoretical
investigation on the interaction mechanisms between PAH mole-
cules and MWCNTs using the PM6 method.

Wang et al. [107] reported quantitative nanostructure-
property relationship (QNPR) modeling of adsorption coefficients
data (represented by logK1 and logKSA) of diverse organic com-
pounds (two datasets: one containing 59 organic compounds with
adsorption coefficient data (logK1) and another containing
69 organic compounds with adsorption coefficient data related to
specific surface area (logKSA)) for multi-walled CNTs (MWCNTs).
They developed QNPR models using norm index descriptors to
predict the adsorption affinity of OCs to MWNTs. In their work,
after energy minimization of all compounds at the STO-3G level,
they calculated norm index descriptors based on a series of distance
matrix including step matrix DM1, adjacent matrix DM2, and
Euclidean distance matrix DM3. Acceptable statistical results
corresponding to measures of fitness, robustness, and predictivity
were reported for the developed models (squared correction
coefficient for the training set and the test set of 0.9500 and
0.9792 for logK1 and 0.9258 and 0.9770 for logKSA, respec-
tively). The authors also checked the domain of applicability of
the models using the plot of standardized residuals versus leverage
values and claimed that all the compounds were present within
acceptable domain. Furthermore, the authors also performed
Y-randomization analysis for seven times and reported that all the
seven random models showed lower R2 and Q2(LOOCV) values
than the actual models. They also claimed that among different
norm index metrics, property metrics along with some atomic
properties played an important role for the adsorption of OCs by
MWNTs. After mechanistic interpretation of the developed mod-
els, they concluded that the OCs get adsorbed to the MWCNTs
through different physicochemical interactions such as hydropho-
bic, π-π interaction, hydrogen bonding, and electrostatic interac-
tions. The authors claimed that norm index descriptors were
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suitable for adsorption of OCs; thus, the interpretation of descrip-
tors based on atomic contribution of the molecule was compara-
tively easier. The authors suggested that the widespread and
prospective applications of norm index descriptors in future in the
field of nanotechnology might be possible.

A quantitative structure-property relationship (QSPR) model
was reported by Heidari and Fatemi [108] based on adsorption
coefficient of 40 different small aromatic organic chemicals to
MWCNTs using CORAL software. The authors claimed that
CORAL software tool was used for the first time for the develop-
ment of QSPR models of adsorption coefficients of chemicals on
CNTs. The authors developed twomodels by using hydrogen-filled
graph-based descriptors (for model 1) and hybrid descriptors (for
model 2) which were the combination of SMILES and hydrogen-
filled graph-based (HFG) descriptors. They used a newer technique
which involves three-dimensional response surfaces of all subsets to
optimize the Monte Carlo parameters of models. For model devel-
opment, the whole dataset was divided into sub-training (developer
of the model), validation (avoider of overtraining), and test
(an estimator of predictability) sets. The results portrayed accept-
ability of both models. Based on the statistical results, the authors
claimed that HFG descriptor-based model was better than the
hybrid-based descriptor model. The authors also suggested that
CORAL software tool could be very much useful in future for the
modeling of adsorption coefficients on nanoparticles. The authors
also reported that descriptors generated by CORAL software tool
were important and easy to interpret.

Wang et al. [109] reported a computational study on the
interaction of functionalized MWCNTs and bisphenol AF (BPAF)
to find out different kind of non-covalent interactions. Fluores-
cence spectra technique was applied to evaluate binding mechanism
between carboxylic MWCNTs and BPAF. The authors also per-
formed an experimental process to evaluate adsorption of BPAF
onto carboxylic MWCNTs. At first, they used theoretical data to
recognize the interaction between MWCNTs-COOH with BPAF
at the molecular level. The electronic transition of BPAF was calcu-
lated with the help of density functional theory. From the molecular
modeling, the authors concluded that two types of binding modes
can exist between MWCNTs-COOH and BPAF: one was insert-
binding mode and another was surface-binding mode. The binding
ability of the insert-binding mode was claimed to be stronger than
the surface-binding mode. Secondly, from the fluorescence experi-
mental data, the authors reported that the interaction between
MWCNTs-COOH and BPAF happened because of several
non-covalent binding forces like hydrophobic, π-π stacking, and
hydrogen bonding. From the experimental data, they also con-
firmed that adsorption equilibrium followed pseudo-second-order
model and could be obtained within 5 min; hence, MWCNTs-
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COOH shows good adsorption toward BPAF. Finally, the authors
concluded that all the experimental and theoretical results could be
useful for designing a new process to remove endocrine-disrupting
chemicals from water.

Toropova et al. [110] performed a QSPRs study on adsorption
(logK1) of 59 organic contaminants by MWCNTs using CORAL
software package to develop predictive QSPR models which was
based on the Monte Carlo technique. In this work, they divided the
dataset randomly into the sub-training, calibration, test, and vali-
dation sets. Using those distributions together with the distribu-
tion from the work of Apul et al. [111], five various QSPR models
for the logK1 were built. The authors divided the dataset into
training and test sets in the form of different splits, i.e., Split1,
Split2, Split3, and Split4. Among them, they claimed that Split4
was interpreted as a “successful split,” in other words, a “successful
random event,” from the point of view of the user of the CORAL
software. The Monte Carlo optimization generated four molecular
features (SAk, NOSP, BOND) such as (1) the features, which have
only positive values of the correlation weights, could be classified as
promoters of logK1 increase; (1) the features, which had only
negative values of the correlation weights, could be classified as
promoters of logK1 decrease; (3) the features, which had both
positive and negative correlation weights for different runs of the
Monte Carlo optimization, could be classified as features with
unclear role; and, finally, (4) the features which were blocked
according to the used threshold. After the mechanistic interpreta-
tion of the models, the authors claimed that the presence of aroma-
ticity, absence of double and triple bonds, presence of nitrogen, and
presence of the branching should be classified as stable promoters
of the logK1 increase, whereas the presence of single cycle (“1”)
and the presence of oxygen should be classified as stable promoters
of logK1 decrease.

QSPR models were reported by Rahimi-Nasrabadi et al. [112]
to predict the adsorption of 59 aromatic organic compounds by
MWCNTs. They performed linear and nonlinear QSPR models by
employing K1 as the dependent variable. The values of the dataset
were transformed into logarithmic scale, and the relationship
between logK1 and molecular descriptors was examined. The
training set, test set, and validation set consist of 43, 5, and 11 com-
pounds, respectively. The authors used HyperChem program (ver.
7) for the calculation of descriptors. Along with it, Austin Model1
(AM1) was used as the semiempirical method to optimize the
molecular geometry. Dragon descriptors [113] and four Abraham
descriptors were also added to the pool of descriptors in order to
study the possible nonlinear relationship between logK1 and the
mentioned descriptors. In order to choose the most significant
descriptors among the molecular descriptors, they performed
numerous stepwise MLR models and nonlinear multilayered
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perceptron neural network (MLP-NN) models. They selected five
descriptors by using self-organizing map for model development
purposes. The authors employed both linear and nonlinear techni-
ques to connect the structure of the studied chemicals with their
adsorption descriptor (K1) using stepwise multiple linear regres-
sion (MLR) techniques. Both the models (linear and nonlinear
models) showed statistically good results and were validated well
internally and externally. Based on the results, they suggested that
MLP-NN model was better than the MLR one. From this, the
author proposed that the relationship between the structures of the
organic compounds and their adsorption on MWCNTs was non-
linear. Based on the applicability domain (leverage approach), they
found that there was no high leverage compound in the training,
test, and validation sets. After mechanistic interpretation of the
models, the authors suggested that molar volume and hydrogen
bond accepting ability, molecular mass and size, amount of branch-
ing, and three-dimensional structure were the essential features to
characterize and control the adsorption of the organic compounds
by MWCNTs.

Hassanzadeh et al. [114] reported QSPR modeling of adsorp-
tion of diverse organic chemicals by MWCNTs for two datasets
consisting of 40 and 69 compounds with multiple end points. The
end points of both the dataset were taken in the logarithm scale.
They reported QSPR models for dataset 1 containing 40 diverse
organic pollutants with defined adsorption affinity properties (k1)
for MWCNTs using solvatochromic descriptors as independent
variables, whereas dataset 2 contained adsorption affinity of
69 organic pollutants related to specific surface area (KSA) for
MWCNTs, and here 3D molecular descriptors were used as inde-
pendent variables. The authors found that 39 compounds from
dataset 2 were common with dataset 1. The authors developed
nonlinear models using a combination of radial basis function
neural network (RBFN) and genetic algorithm (GA) called as
whole space GA-RBFN (wsGA-RBFN) which was introduced for
better description of QSPR models. The authors validated the
models both internally and externally using various stringent statis-
tical parameters. Based on the statistical results, the authors claimed
that the approach called whole space GA-RBFN (wsGA-RBFN)
was significant to predict adsorption coefficient (logK1) of dataset
1 and logKSA for dataset 2 as compared to GA-RBFN and MLR
models. The authors also claimed that it is not required to keep
the row of independent variables as centers for RBFN as mentioned
by other authors, any point in the whole space of independent
matrix could be used as the center. After comparison of the results
of the developed models using solvatochromic descriptors and
physicochemical descriptors, the authors concluded that the results
obtained from the solvatochromic descriptors were better than the
physicochemical descriptors.
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6.3 Successful QSPR

Modeling

of Adsorption

of Pollutants by Both

SWCNTs and MWCNTs

Ersan et al. [115] applied linear solvation energy relationship
(LSER) technique to develop predictive models using adsorption
isotherm data of both aromatic and aliphatic organic compounds
(OCs) by graphene and graphene oxide (GO). They further com-
pared the results with those of single-walled carbon nanotubes
(SWCNTs) and multi-walled carbon nanotubes (MWCNTs).
They used a database of 38 OCs (28 aromatic and 10 aliphatic)
for graphene and 69OCs (59 aromatic and 10 aliphatic) for GO for
development of LSER models. The authors developed the model
using a single-point adsorption descriptor (Kd) values (L/g) for
each OC at specific levels of chemical saturation of 10�4, 10�3, and
10�2 which was denoted as logKd,0.0001, logKd,0.001, and
logKd,0.01. The solvatochromic parameters used to develop the
models were hydrogen bond donating capability (acidity) (denoted
by A), hydrogen bond accepting capability (basicity) (denoted by
B), McGowan’s molecular volume (denoted by V), polarizability
and dipolarity term (denoted by P), and excess molar refractivity
(denoted by R). The authors found that the r2 value of LSER
models increased with decreasing equilibrium concentration
(logKd) of aromatic OCs for GO, while the changes were minor
for graphene. They investigated the impact of molecular weight for
adsorption of aromatic OCs in graphene sheet and carbon nano-
tubes. The authors observed that the higher r2 values of LSER
models were obtained in case of graphene sheet with wider molec-
ular weight range (up to 950 g/mol) of OCs, while in case of
CNTs, higher r2 values were observed with the models developed
from lower range of molecular weight (<200 g/mol). They also
found that the linearity of LSER models for GO gradually
decreased with an increase in molecular weight above 400 g/mol,
and they suggested that this was due to complex intermolecular
interactions of OCs with polar GO surfaces. These complex inter-
molecular interactions of OCs with polar GO surfaces were due to
the presence of oxygen containing functional groups. From the
LSER models, they observed that McGowan’s molecular volume
(denoted by V) and hydrogen bond accepting capability (basicity)
(denoted by B) terms were the most influential descriptors in the
LSER equations for adsorption of aromatic and aliphatic OCs by
graphene and GO. Based on the regression coefficient of the LSER
model, they also claimed that hydrogen bond donating capability
(acidity) (denoted by A) and hydrogen bond accepting capability
(basicity) (denoted by B) properties contributed negatively, while
McGowan’s molecular volume (denoted by V) property contribu-
ted positively for the adsorption of all tested OCs and aliphatics by
graphene, GO, and SWCNTs. On the other hand, in case of the
GNS model, polarizability and dipolarity term (denoted by P) and
excess molar refractivity (denoted by R) did not show a clear trend
when compared to CNTs as reported by the authors.
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Wang et al. [116] successfully developed 3D QSPR models for
the adsorption coefficient of 39 aromatic organic chemicals onto
MWCNTs using three learning approaches, namely, MLR, artificial
neural network (ANN), and support vector machine (SVM) to
investigate the essential physicochemical properties which were
important for the adsorption of organic compounds to MWCNTs.
The authors also compared the results obtained from the models
constructed by using three different approaches. Based on the
statistical results, the authors found that the nonlinear SVM and
ANN models were far better than the MLR model. From the
insights obtained from the models, the authors suggested that
number of nitrogen and oxygen atoms (#NandO), octanol/water
partition coefficient (logKow), and number of atoms in rings of a
ring molecule (#ringatoms) contributed positively toward the
adsorption of OCs to MWCNTs, while dipole moment of the
molecule and estimated number of hydrogen bonds that would
be accepted by the solute from water molecule in an aqueous
solution (accptHB) had the detrimental effects toward the adsorp-
tion of OCs to MWCNTs.

6.4 Successful QSPR

Modeling

of Adsorption of Heavy

Metal Ions by MWCNTs

Salahinejad and Zolfonoun [117] reported Quantitative Ion
Character-Activity Relationship (QICAR) model using the maxi-
mum adsorption capacity (qmax) of 25 heavy metal ions on
MWCNTs to find out the important property/properties which
could remove the heavy metals and to understand the probable
adsorption mechanism of heavy metals on MWCNTs. Prior to the
development of final models, the authors employed variable selec-
tion strategies to select the best subset of independent variables
using three methods, namely, genetic algorithms
(GA) (an optimization method and heuristic search technique
based on natural evolution and selection), enhanced replacement
method (ERM) (an optimal desired number of descriptors is
selected based on searching the pool of descriptors which produce
a linear model with minimize standard deviation(s)), and successive
projection algorithm (SPA) (a forward selection method which uses
a robust recursive algorithm to minimize variable collinearities
problems). The final model was developed by using the PLS regres-
sion technique. They validated the models both internally and
externally using different validation parameters. Based on the
model results, the authors claimed that the models were robust.
From the insights obtained from the QICAR models, the authors
concluded that for the adsorption of heavy metal ions on
MWCNTs, electronegativity, ionic radius, and atomic number of
the heavy metal ions were the important parameters.
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6.5 Molecular

Docking of Organic

Compound to CNTs

To investigate the mechanism behind the adsorption of fenuron to
CNTs, Ali et al. [118] reported a molecular docking study using
AutoDock 4.2 software. From the docking study, the authors
suggested that fenuron might get adsorbed on to the CNTs
through π-σ, π-π stacked, π-π T-shaped, and π-alkyl types of hydro-
phobic interactions. They also reported that the binding energy and
binding affinity between fenuron and CNTs were 6.5 kcal mol�1

and 5.85 � 104 M�1, respectively.

6.6 Overview In overview, as evident from the reported in silico models reviewed
above (Subheading 6), the pollutants get adsorbed to the CNTs
through different physicochemical forces like van der Waals forces,
electrostatic interactions, π-π stacking, electron donor-acceptor
interaction, hydrogen bonding, ion exchange, and hydrophobic
interactions.

7 Conclusion

In general, this chapter deals with an overview of hazardous che-
micals and their effects on environment and the strategy of removal
of those chemicals from the environment using the adsorption
property of CNTs. Apart from these, we have also tried to highlight
the necessity of in silico models for removal of pollutants from the
environment as well as discussed the reported QSPRmodels for the
adsorption data of hazardous chemicals onto different types of
CNTs like SWCNTs and MWCNTs. A sufficient number of che-
micals belonging to different categories like pesticides, herbicides,
fungicides, organic materials, heavy metal ions, radioactive ele-
ments, etc. are synthesized routinely in factories and industries.
The environmental concern starts when these contaminants enter
into different compartments of environment and make them pol-
luted. The laboratory testing of these wide varieties of pollutants is
impracticable because it is time-consuming and due to cost,
involvement of animals, and involvement of large number of
labor. As discussed previously that adsorption is widely used as an
efficient technique to remove various toxic contaminants from the
environment due to its low-cost process and easy execution. Differ-
ent types of CNTs have introduced a new generation of adsorbents
which have drawn a widespread interest due to their outstanding
ability for the removal of various inorganic and organic pollutants
from the environment. In this regard, researchers have come up
with an alternative method like QSPR for prediction of adsorption
property of organic pollutants by CNTs. Using QSPR, one can
utilize the available adsorption data of pollutants onto CNTs in
order to predict the same for untested or not yet synthesized
chemicals. Insufficient adsorption data related to a definite class of
chemicals has slowed down the computational approaches to some
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extent. A limited number of adsorption data on CNTs are available
to make meaningful QSPR models. Therefore, it is the time to
develop properly documented databases for environmentalists.
The government and nongovernment authorities should carefully
handle the risk assessment andmanagement of hazardous chemicals
with proper regulation to make the pollution free environment. It is
obvious that in silico models cannot substitute the experimental
approaches, but combination of both these approaches can give us
the better understanding and quantification of adsorption property
of pollutants or hazardous chemicals by CNTs.
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Chapter 21

Ecotoxicological QSAR Modeling of Organophosphorus
and Neonicotinoid Pesticides

Alina Bora, Luminita Crisan, Ana Borota, Simona Funar-Timofei,
and Gheorghe Ilia

Abstract

Organophosphorus and neonicotinoid pesticides are important agrochemicals used worldwide. The begin-
ning of the quantitative structure-activity/toxicity relationship (QSAR/QSTR) field, after the 1960s, is
related to the study of the organophosphorus pesticide activity. QSARs have been recognized as an
important research direction in the field of medicinal, analytical chemistry, toxicology, pharmaceutical,
and environmental chemistry. The main aim of QSAR/QSTR models is to find reliable relationships
between the biological activity/toxicity and the experimental or theoretical compound molecular descrip-
tors, to design new structures with improved target properties and safety profile. In this chapter, successful
QSAR models are presented for the ecotoxicological data of organophosphorus and neonicotinoid pesti-
cides. In particular, QSAR models for organophosphorus aquatic and terrestrial organism ecotoxicity; for
the neonicotinoid toxicity against the honeybees, Musca domestica L., American cockroach, and aphids
(Aphis craccivora and Myzus persicae); and for the inhibition ability of acetylcholinesterase and other
enzymes by organophosphorus pesticides are presented. The literature data indicate a large variety of
QSAR approaches employed in these published studies. In case of organophosphorus pesticides, many
available ecotoxicity data for human beings and animals were employed in the computational studies. For
the neonicotinoid pesticides a limited number of QSAR models were reported, especially due to the lack of
the degradability and aquatic organism toxicity data. The ligand-based combined with structure-based
approaches remain a powerful tool in the design of new environment-friendly and less toxic organophos-
phorus and neonicotinoid pesticides.

Key words QSAR, QSTR, Toxicity, Organophosphorus, Neonicotinoid, Environment, Acetylcholin-
esterase, Agrochemical, Ecology, Bioconcentration factor

1 Introduction

Computational chemistry is a very rapid and inexpensive choice
prior to experimental tests used in order to avoid synthesizing
excessive chemical compounds. The research of computational
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chemistry through QSAR (quantitative structure-activity relation-
ship) can rationally predict the biological activity/toxicity of
untested analogue compounds, reducing significantly the experi-
mental laboratory costs and very important being friendly and safe
for the environment. An in silico QSAR evaluation can allow
understanding of a potential relationship between the chemical
structure and its activity/toxicity. QSAR techniques have evolved
since the 1960s, after the published paper of Corwin Hansch, the
founder of modern QSAR, presenting the correlation between
biological activity and chemical structure [1].

The general QSAR equation has the formula:

Biological activity ¼ function parameters=molecular descriptorsð Þ
þ error

ð1Þ
The parameters used in the QSAR equation are lipophilic,

electronic, steric, polarizability, and various other calculated
descriptors derived from the chemical structure of compounds.

In agrochemistry, various QSAR techniques were successfully
applied in the pesticide development, since the 1960s [2]. In dif-
ferent QSAR studies, organophosphorus (OP) pesticides have
received special attention. In agricultural chemistry, the different
QSAR techniques are generally based on toxicity prediction. This
way, the risk of the OP compounds to human health and the
environment may be assessed. OP pesticides can be soaked up by
skin absorption, ingestion, and/or inhalation and can cause dys-
functions of the nervous, renal, immune, endocrine, reproductive,
cardiovascular and respiratory systems. Most of the observed toxi-
cological effects of the organophosphorus pesticides are related to
the inhibition of acetylcholinesterase (AChE) [3].

In modern society, chemical pesticides are extensively used for
controlling pests. Annually, approximately six million tons of pes-
ticides are used in agriculture, but a very small percentage attain the
target, whereas the large percentage expands to nontarget species,
inducing toxicological effect concerning environmental and health
[4–6]. As a result of using pesticides, the population is vulnerable to
them; small quantities are detected in fruits, vegetables, fish, cer-
eals, tea, honey, milk, etc. The evaluation of toxicological and
ecotoxicological of pesticides risks was traditionally accomplished
by laboratory experiments. These experiments on animals are
expensive and raise a major ethical problem. Nowadays, the scien-
tific community and legislation authorities propose alternative
methods for experimental techniques. Computational chemistry
tries to comprise all areas from chemoinformatics tomolecular mod-
eling, and it seems to be used on a larger scale as a predictive tool to
guide experimentalists in the synthesis of new compounds and in
the investigation of complex physicochemical processes.
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2 Organophosphorus Pesticides: An Overview

Pesticides include large-scale organic and inorganic chemicals used
against weeds, insects, fungi, rodents, etc. Organophosphorus
(OP) compounds are a class of pesticides subjected to integrated
risk assessment, which share exposure characteristics for different
species [7], and are among the most commonly used chemicals in
agriculture around the world. The OP pesticides have relatively low
persistency and high efficiency, being broadly used in the world
(around 140 OPs are or were used as practical pesticides). Several
biological effects have been attributed to the organophosphorus
compounds [8]. Most OP pesticides were used as insecticides, but
they were employed as plant growth regulators, acaricides, anthel-
mintics, nematocides, chemosterilants, and rodenticides as well.
Small changes in the chemical structures of OP agrochemicals
modified considerably the toxicity from species to species. There-
fore, compounds having similar chemical structures were frequently
used for different tasks. An important development in the agricul-
tural practice and scientific knowledge on the structure-activity
relationship of organophosphorus insecticides were reached by
the invention of parathion, by Schrader in 1944. Despite its highly
toxic effects to mammals and insects, many less toxic insecticides
have been developed by small structural modifications, like
chlorthion, fenthion, and fenitrothion.

OPs inhibit progressively the AChE enzyme through phos-
phorylation of the active site serine, by covalently binding it to
the hydroxyl group of serine, then the compound is split and the
AChE is phosphorylated. The general chemical structure of the
class of OP pesticides is shown in Fig. 1 [9–11], where the R1
and R2 substituents are the side groups of OPs, and usually they
can be hydrogen atoms, alkyl, aryl, etc. The R3 substituent repre-
sents the leaving group (e.g., cyano, halogens, alkyl, alkylthio, or
aryl groups). This leaving group is replaced through nucleophilic
substitution, by the oxygen atom of serine in the AChE active site.
The active form of OP compounds has the oxygen atom linked to
the phosphorus atom (P¼O). The OP compounds, which repre-
sents the majority of novel OP pesticides, have the sulfur atom
linked to the phosphorus atom (P¼S). In this case, the thiono
group must be metabolized to an oxono group and then can be
bound to the AChE active site [10, 12]. The process of dephos-
phorylation is very slow [13], such that the neurotransmission of
the acetylcholine receptors is hindered resulting in the symptoms of
poisoning. Sometimes, the resulted organophosphorus group
could be involved in a dealkylation reaction, which causes the
occurrence of the non-reactivable AChE form (so-called aged
enzyme) [14].
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The irreversible AChE inhibition with OP pesticides leads to
acute toxicity [15]. The acute toxicity is, according to the IUPAC
Gold Book [16], the “ability of a substance to cause adverse effects
within a short time of dosing or exposure.” The lethal dose (LD50)
that causes the death of 50% of the test group is generally used to
measure of the acute toxicity of chemicals.

3 The Transition from Organophosphates to Neonicotinoids

To sum up the pre-neonicotinoids era, the pesticides have been in a
continuous evolution starting from the inorganic classes to the
organochlorines, which eventually evolved into organophosphates,
carbamates, and synthetic pyrethroids. Each class of pesticides has
positively contributed to the increase of insecticidal properties and
selectivity and reduced their persistence in ecosystems. Despite the
positive contributions, some drawbacks have, also, been found
regarding the nontarget species toxicity, the human health risks,
and the evolved resistance of pests to the harmful substances. In
order to overcome these disadvantages, a new class of pesticide-like
compounds with improved insecticide profile was required. These
new pesticides should have a different mode of action than the
previous generations of pesticides, high insecticidal potential, low
toxicity for nontarget species, and no harmful effect on the envi-
ronment. The synthetic neonicotinoid class was designed to meet
these requirements [17].

4 Neonicotinoid Pesticides: An Overview

Neonicotinoids or neonics are the most widely used insecticides
introduced to the global market with a major impact in the

Fig. 1 General chemical structure of OP pesticides
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economy and the ecosystem of any country [18–20]. They are
registered in more than 120 countries accounting over 26% of the
global insecticide market [21, 22]. Since their first appearance in
the mid-1990s, they have become the most successful class of
chemical insecticides, having large-scale applications ranging from
plant protection (e.g., crops, vegetables, fruits), consumer/profes-
sional/veterinary products, animal health, and biocides to inverte-
brate pests (e.g., insects such as aphids, whiteflies, nematodes,
parasites) control [22, 23]. Due to their systemic nature, neonico-
tinoids are rapidly absorbed through the leaves or roots of the
developing plant and subsequently transported through its tissues.
This property confers them many advantages in pest control. Plant
protection and controlling the action of pests are very important
clues in order to improve the quality and quantity of the
products [24].

Neonicotinoids, which are structurally similar to nicotine, act
as nicotinic acetylcholine receptor (nAChR) agonists in the central
brain of insects, causing excitation at low concentration, followed
by paralysis and death at higher concentrations of compound
[25, 26].

A number of research papers discussed the high preference of
neonics for binding to insect nAChRs rather than those of verte-
brates, so they are classified as being more toxic to insects [27, 28].

The neonicotinoid family contains three generations of neoni-
cotinoids, such as (1) imidacloprid, acetamiprid, thiacloprid, and
nitenpyram; (2) thiamethoxam and clothianidin; and (3) dinote-
furan, which are marketed under different trade names (Fig. 2).
Imidacloprid (IMI), the first commercial neonicotinoid, is the
world’s largest selling insecticide with certified uses for more than
140 crops. In the early twenty-first century, the sulfoxaflor, a
fourth-generation neonicotinoid, has been licensed for use or
under consideration for licensing in several worldwide countries
including China, the USA, Canada, Mexico, Argentina, and
Australia [29]. As one of the largest pesticide markets, China
plays a significant role in the development and commercialization
of the new neonicotinoids. In this light, throughout the years of
2005 to 2013, new and promising generation of neonicotinoid-like
insecticides, namely, guadipyr, huanyanglyn, paichongding, cyclox-
aprid, and imidaclothiz, were synthesized and tested by the
researcher groups in China [30, 31]. The development of the
second, third, and fourth generation of the neonicotinoids illus-
trates the extent to which structural modifications at the well-
known IMI core impact the neonicotinoid compound activity,
chemical properties, and its potential uses [32, 33]. All commercial
neonicotinoid compounds possess in their chemical structures an
aromatic heterocycle (e.g., pyridine), a flexible linkage, a hydrohe-
terocycle or guanidine/amidine fragment, and an electron-
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withdrawing unit such as nitro (–NO2) or cyano (–CN). These
features contribute directly to their potency and selectivity.

5 QSAR Models for the Ecotoxicology of Organophosphorus and Neonicotinoid
Pesticides

5.1 QSAR Models for

Organophosphorus

Aquatic and Terrestrial

Organisms Ecotoxicity

In the modern society, chemical pesticides are extensively used for
controlling pests. Annually, approximatively, six million tons of
pesticides are used in agriculture, but a very small percentage attain
the target, whereas the large percentage expands to nontarget
species, inducing toxicological effect concerning environmental
and health [4, 5]. As a result of using pesticides, the population is
vulnerable to them, small quantities are detected in fruits, vegeta-
bles, fish, cereals, tea, honey, milk, etc. The evaluation of toxico-
logical and ecotoxicological risks of pesticides was traditionally
accomplished by laboratory experiments. These experiments on
animals are expensive and raise a major ethical problem. Nowadays,
the scientific community and legislation authorities propose alter-
native methods for experimental techniques. Computational chem-
istry tries to comprise all areas from chemoinformatics to molecular
modeling, and it seems to be used on a larger scale as a predictive

Fig. 2 Commercial and new designed neonicotinoid insecticides
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tool to guide experimentalists in the synthesis of new compounds
and in the investigation of complex physicochemical processes.

MLR and PLS methods were employed by Verhaar et al. [34],
in order to model the bioconcentration factor (logBCF), the
uptake rate constant from water (log kl), the elimination rate con-
stant to water (log k2) measured in guppy (Poecilia reticulata), and
the biotransformation, expressed by the rate constants in either
NADPH- or GSH-enriched rainbow trout liver homogenates for
the 12 organophosphorothionates. Additionally the dissociation
constant for the reversible binding of substrate to AChE (log
KD); the phosphorylation constant for the irreversible phosphory-
lation of AChE by the (reversibly) bound substrate (log k2

’); the
overall inhibition of AChE by substrate, expressed as a bimolecular
reaction rate constant (log ki); and the acute aquatic median lethal
concentration (logLC50) toward the guppy were modeled too. The
quantum-chemical descriptors were used to designate the reactive
components of the aquatic toxicity of organophosphorothionates
and were calculated using the AM1 semiempirical Hamiltonian
inside the MOPAC program. The results hint that those com-
pounds with an intermediate hydrophobicity, which usually is
quantified by the logarithm of the respective octanol/water parti-
tion coefficient (log KOW), the charge density difference between
the central phosphorus atom, the oxygen leaving group, and a large
absolute hardness or the nucleophilic delocalizability on the central
phosphorus atom of the organophosphorothionates, should dis-
play enhanced toxicity. By investigating the scores and loading plots
of the latent variables, significant information can be extracted from
the PLS model, which is a better way to choose a set of relevant
descriptors than traditional MLR.

11 O,O-Dimethyl O-phenyl phosphorothionates with substi-
tuents at the 2-, 4-, and 5-positions of the phenyl ring, having fish
toxicity, expressed as the 14-d acute fish toxicity to the guppy (log
LC50) and the alkylation rate constant toward
4-nitrobenzylpyridine (log kNBP), were involved into linear
two-parameter quantitative structure-activity relationship (QSAR)
models [35]. Quantum-chemical descriptors such as the electro-
negativity (EN), the energies of the highest occupied molecular
orbital (EHOMO), the energies of the lowest unoccupied molecular
orbital (ELUMO), the absolute hardness (η), the nucleophilic delo-
calizability (DN(r)), and the electrophilic delocalizability (DE(r))
were calculated. Additionally, the calculated pKa values [36] of
the protonated leaving groups, the hydrophobicity, which was
calculated as log Kow, according to Leo’s scheme [37] and the
approximate effective diameters (Deff) [38] were used to develop
a QSAR model. The log Kow, Deff, and pKa parameters were
selected in order to model the partitioning and reactivity, respec-
tively, of the selected phosphorothionates.
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The genetic partial least squares (G/PLS) technique was
applied by Drew et al. [39] in order to predict ecotoxicity data of
20 organophosphorus insecticides. The activity data for these OP
compounds were determined in the form of 14-day LC50 toxicity
values against Guppy (Poecilia reticulata). The molecular descrip-
tors were calculated using the CERIUS2 [40] and TSAR [41]
software tools, and the electronic parameters were calculated
using the Gaussian 94 [42] program, which resulted from ab initio
quantum mechanics calculations using the 6-311G∗ basis set.
Drew et al. [39] highlighted that their resulted equation, which
was derived from G/PLS analysis, is trustful for predicting the
activity of organophosphates having similar structure and unknown
activity.

Yan et al. [43] used the multivariate linear regression analysis to
predict the lethal toxicity (LC50 values) to fish (Cyprinus carpio),
for 43 OP compounds. These OP compounds are divided into six
subclasses: phosphate, phenylphosphonothioate, phosphorodithio-
ate, phosphorothioate, phosphorothiolothionate, and phosphoro-
diamidate. The experimental LC50 (48 h) toxicity data of the 43OP
compounds, taken from the paper of Li [44], were utilized as the
dependent variables, and 1381 molecular descriptors were used as
Dragon independent variable in a stepwise variable selection tech-
nique. The statistical parameters for the prediction of lethal toxicity
values were (1) for OP compounds having low toxicity,R ¼ 0.942,
R2

adj ¼ 0.862, and SEE ¼ 2.899, and (2) for the OP compounds
having high toxicity, R ¼ 0.977, R2

adj ¼ 0.937, and SEE ¼ 0.143.
The results suggested that hydrophobicity, steric, and electronic
features play an important role in predicting the toxicity of OP
compounds to fish.

Classification techniques (linear discriminant analysis (LDA),
quadratic discriminant analysis (QDA), regularized discriminant
analysis (RDA), k-nearest neighbors classification (KNN), nearest
mean classifier (NMC), soft independent modeling of class analogy
(SIMCA), and classification and regression tree (CART)) were
performed by Mazzatorta P. et al. [45] for toxicity prediction.
Each model employed individual datasets, different descriptors
and algorithms, and specific toxicological endpoints. For a set of
235 agrochemical compounds, the toxicity was expressed as LC50

values, which corresponds to the water concentration which kills
50% of the aquatic animals (trout and daphnia) and the LD50

values, which represent the lethal dose for 50% of the test animals,
for rat and birds. Fifty-seven OP compounds having toxicity end-
points for trout, 59 OP compounds having toxicological endpoints
for rat, 49 OP compounds having toxicological endpoints for
daphnia, 37 OP compounds having toxicological endpoints for
quail, and 28 OP compounds having toxicological endpoints for
duck were studied. It was noticed that among the most widely used
descriptors for the toxicity prediction, the hydrophobicity and the
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HOMO and LUMO energy descriptors were repeatedly selected.
Mainly, the descriptors that were related to the hydrophobicity are
important, because they indicate how the molecule can pass
through the cell membrane.

A set of 38 OP compounds was used by Guo et al. to develop a
QSAR model for the prediction of the LD50 values, on male rats,
exposed orally [46]. The authors took into account the precursor
metabolic effects and the primary AChE inhibition, suggesting the
ADME effects, ligand binding, and the phosphorylation process.
To correctly predict the acute toxicity of the OP compounds, the
ADME and thermochemical analysis have been combined with the
COMFA approach. The statistical results have considerably
increased from 0.49 to 0.9 (R2 values), when the CoMFA term
(representing the calculated affinity score from the molecular inter-
action field) was included, besides the energy of the parent OP
compound, the energy of the metabolite compound, the negative
accessible surface area of the metabolite compound, the energy of
the Ser203-OP compound, the energy of the aged Ser203-OP, the
energy of the aging leaving group, and the energy of the phosphor-
ylation leaving group. Using only the CoMFA terms, the correla-
tion between the predicted AChE-binding affinity and the
experimental LD50 gave the 0.892 value for R2 and only 0.571
value for Q2. The slightly predictivity of the COMFA model has
been improved to the 0.82 value for Q2, when the ADME effects
and subsequent covalent binding processes have been taken into
account.

Successful regression equations were obtained by Garcı́a-
Domenech et al. [47], between topological descriptors and the
acute intraperitoneal (LD50-i.p.) and oral (LD50-oral) toxicities to
rat of a group of 39 organophosphorus pesticides. The importance
of Subgraph Randic’-Kier-Hall-like indices and topological charge
indices, for the toxicity prediction, was highlighted.

Can [48] proposed a QSTR model using the multiple linear
regression method, which allows simulating the acute oral toxicity
to rats of 27 organophosphate insecticides (20 OP compounds in
the training set and 7 OP compounds in the test set). Electronic,
hydrophobic, steric, polar, and geometric descriptors were used as
independent variables in order to predict the LD50 data to rat. The
final QSTR equation, having R2 ¼ 0.901, indicates a strong corre-
lation between the toxicity of the organophosphate insecticides and
their descriptors, e.g., molecular mass, polarizability, logP, and
molar refractivity. The positive contributions to the toxicity of the
organophosphate insecticides are related to the molar refractivity
and logP, while the molecular mass and polarizability have a nega-
tive influence. According to the Can’s model, the toxicity of insec-
ticides is getting higher if the logP values, molar refractivity are
increasing, and, the toxicity of insecticides is getting lower if com-
pounds have higher polarizability and molecular mass.
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35 OP analogues, having acute toxicity data (log LD50 values)
for the housefly (Musca nebulo L.), were selected by Zhao and Yu
[49]. The multi-block partial least squares (MBPLS) method were
applied to correlate the 24 h acute toxicities, assessed for the
housefly with the molecular interaction field (MIF) descriptors.
Very good statistical results: R2 ¼ 0.995 and Q2 ¼ 0.865 were
obtained. The hydrogen bond and hydrophobic effects of OP
compounds were selected to have a significant influence on the
insecticidal toxicity against the housefly. The QSAR model pre-
sented in this paper, based on the MIF descriptors may be useful
to interpret the mechanisms of ligand-receptor interactions.

2D-QSAR and 3D-QSAR calculations using the CoMFA
methodology were carried out by Niraj et al. [50] for the prediction
of the insecticidal activity against Musca domestica, for the same
series of 35OP pesticides [49]. A 2D-QSARmodel was built, based
on the stepwise method for variable selection, combined with the
multiple regression approach. The statistical results of the
2D-QSAR equation have been exceeded by the statistical results
of the 3D-QSAR equation obtained using the CoMFA approach, in
terms of the correlation coefficient value. The squared correlation
coefficient for the 2D-QSAR equation was of 0.7797, while for
CoMFA, the squared correlation coefficient value was of 0.958.
The 2D-QSAR model shows that the insecticidal activity (pLD50

values) of the 35 OP compounds is related to the physicochemical-
type descriptor and atom-type count descriptors. The total polar
surface area including phosphorus and sulfur atoms (polar surface
area including P and S), the most hydrophilic value on van der
Waals surface (SA average hydrophilicity), and delta alpha type A
(delta alpha A) descriptors, which are included in the Vlife MD
Suite, were observed to contribute positively to the activity, while
the H-acceptor count descriptor was revealed to contribute nega-
tively. The resulted CoMFA model reflects the major contribution
to the insecticidal activity of the electrostatic field of about 81.77%,
while the steric contribution was of 18.23%.

22 OP pesticides having toxicity data for Daphnia magna and
15OP pesticides having toxicity data for honeybees (Apis mellifera)
were the subjects of a QSTR study [51]. The statistical results
obtained from a stepwise multiple regression analysis were satisfac-
tory (R2 ¼ 0.895 and R2 ¼ 0.920, respectively), underlining the
role of lipophilicity for describing the toxicity toDaphnia,while for
honeybees the lipophilicity descriptor has been selected after volu-
metric and electronic characteristics.

Additionally, the QSAR modeling approach is a reliable
method to estimate the degradation processes of compounds,
under different environmental conditions. QSAR models help us
to determine the typical behavior of pesticides in the environment,
to replace the costly and time-consuming analytical procedures.
The degradation of OP compounds in water can arise by a variety
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of pathways. Tanji and Sullivan [52] obtained a linear model equa-
tion for estimating the rates of chemical hydrolysis of several OP
pesticides in natural river waters. The rates of hydrolysis of 11 OP
pesticides (phosphates, phosphorothioates, and phosphorothio-
lates) were evaluated with respect to first-order connectivity indices,
derived from the graph theory. These descriptors are some of the
most successful topological indices accessible in QSAR
methodologies.

Taking into account the environmental risk of the OP pesti-
cides, the study of their degradability is a major requirement. To
this end, the estimation of the metabolism of OP agrochemicals by
a chloroperoxidase enzymatic process was achieved by Lu et al. [53]
with the aid of QSAR models, by using the PLS analysis. The
enzymatic activity of chloroperoxidase onmetabolizing the selected
OPs, expressed as moles of OPs oxidized per second per mole of
chloroperoxidase, was used as a dependent variable. Two QSAR
models have been obtained based on chemical descriptors com-
puted on a small number of 9 OP pesticides, one with 18 and
another with 12 independent variables (including 10 quantum-
chemical descriptors). The last one is the optimal model, having a
correlation coefficient R of 0.918. The study concludes that chlor-
operoxidase may metabolize faster the OPs having high absolute
values of atomic charges on the sulfur and phosphorus atoms, while
OPs having higher polarity will be slowly metabolized.

5.2 QSAR Models of

Neonicotinoid

Terrestrial Organism

Ecotoxicity

The increased success of neonics is due to their (1) physicochemical
properties which offer many advantages over the traditional pesti-
cides such as pyrethroids, chlorinated hydrocarbons, organopho-
sphates, and carbamates, (2) high target specificity and efficiency,
(3) relatively low toxicity for nontarget organism and environment,
and (4) high versatility in applicationmethods [18, 22, 29, 54, 55] .
They have a favorable toxicological profile for birds, fish, and most
environmental organism. Despite their indisputable advantages,
the neonicotinoids along with many other factors were connected
to potential adverse ecological effects on bees and other beneficial
insects even with low levels of contact [19, 56–58]. These findings
have led to a critical need for the development of new control
strategies and new insecticide candidates with an improved toxicity
profile. A successful alternative solution to overcome the adverse
effects arising from exposure to hazardous agents, to carry out the
chemical risk assessment steps, and to minimize the demand of
animal tests is the use of computational in silico techniques such
as QSAR, pharmacophore modeling, molecular docking, etc. [59–
61]. To date, a large number of QSARs models which manage the
acute toxicity of pesticides have been developed [59–63], but a
limited number are devoted to neonicotinoids. Currently, a wide
variety of neonicotinoids are continuously synthesized and tested
against a broad array of insect species [63–67]. In this context, the
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toxicity prediction of neonicotinoids remains a source of interest in
QSAR modeling. Computational toxicity models have earned
broad acceptance for assessing the chemical toxicity of pesticide or
environmental safety as well as for designing new powerful and
greener candidates by minimizing the time and cost of the research.

5.2.1 QSAR Models of

Neonicotinoids with

Insecticidal Activity Against

Apis mellifera L.

Despite their widespread use around the world, the pesticides can
affect a range of species of ecological importance, such as honey-
bees (Apis mellifera L.). In this context, particular attention should
be paid to their protection, not only for their ecological importance
but also for their economic value, as honey producers and pollina-
tors. Moreover, the neonicotinoids were directly linked as poten-
tially harmful elements for both managed and wild bees
[68, 69]. Despite the importance of bees and the possible toxic
effect of neonicotinoids against them, only a few studies have
reported QSARs regarding this subject, most of them using a
various class of pesticides and organophosphorus derivatives
[51, 70–72] and only one for neonicotinoids [73].

Vighi et al. [51] developed a QSTR model for estimating the
acute toxicity of organophosphorus pesticides to Apis mellifera
(discussed in Subheading 5.1). Devillers et al. [70] proposed a
neural network-based QSAR model to estimate the toxicity of
pesticides to Apis mellifera. Toropov and Benfenati [71] predicted
the toxicity of pesticides in bees by a QSAR model using the
SMILES (simplifiedmolecular-input line-entry system) descriptors.
Singh et al. [72] developed global QSTR (quantitative structure-
toxicity relationship) models to predict both qualitative and quan-
titative the toxicity of 237 structurally diverse pesticides in
honeybees.

Zhao and Li [73] proposed a three-dimensional quantitative
structure-activity of neonicotinoid insecticides. First, a PLS analysis
was used to establish the relationship between the structures of
30 diverse neonicotinoids and their pLC50 biological activities
employing the leave-one-out method for cross-validation. Also,
CoMFA and CoMSIA methods were used to explain this relation-
ship. The electrostatic and steric fields were computed by the
CoMFA method, while the hydrophobic, the hydrogen bond
donor, and acceptor fields by CoMSIA method. The results indi-
cated that the CoMSIA analysis explained more intuitively the
structure-activity relationship of compounds than the CoMFA
analysis. The CoMFA and CoMSIA contour maps highlighted
that the introduction of bulky or electropositive groups at the
2-position of the chosen template (having the highest pLC50

value) could enhance the pLC50 values. In this context, the tem-
plate structure substituted at 1-, 2-, 4-, and 12-positions with eight
units (-OH, -COOH, -OCH3, -C2H2, -C2H4, NH2, -NO, and
-Br) was used to derive new 37 neonicotinoid analogues. The
pLC50 and the logarithm of the bioconcentration factor (the ratio
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of the concentration of a particular chemical in a living organism to
the chemical’s concentration in the surrounding water, expressed as
logBCF) values were predicted for 37 designed analogues in order
to evaluate the toxicity effects and their accumulative capacities in
the environment. The outcomes suggested that all new 37 deriva-
tives had higher toxicity than the experimental value of the template
compound (increased by 0.04–9.75% and 0.23–11.45% by the
CoMFA and CoMSIA models, respectively). The bioconcentration
factor (expressed as logBCF values) was modeled for the 37 new
compounds using the CoMSIA approach and the same template
compound. These results indicated that the logBCF values of
17 new analogues were higher than that of template compound
(increased by 0.87–85.29%). These enhanced bioconcentration
factor values indicate an easier accumulation of these 17 compounds
in various environments. By contrast, the other 20 analogues had
lower bioconcentration factor values than that of the template
compound (decreased by 0.38–147.88%), and therefore they
would not readily accumulate in the environment. Further, these
20 analogues and the template compound were subjected to molec-
ular docking analysis to study the bi-directional selective toxicity on
pests and bees resistance (potential chronic sublethal effects on
pollinating insects such as bees). As a result, 10 out of these
20 neonicotinoids showed bi-directional selective toxicity effects,
and 7 showed bi-directional selective resistance-inducing effects on
both bees and pests. From these ten derivatives, one compound was
designated as a new insecticide with potentially toxic effects on
pests and resistance-inducing effects on pests and bees. These
features will be useful for the design of new environmental friendly
neonicotinoid pesticides.

5.2.2 QSAR Models of

Neonicotinoids with

Insecticidal Activity Against

Musca domestica L. and

American Cockroach

A comprehensive literature survey showed that new classes of neo-
nicotinoids were developed by structural modification of the lead
compounds, imidacloprid. By chain-opening ring or by introdu-
cing or replacing different parts of the IMI scaffold with fragments
which resemble the natural neurotransmitter acetylcholine, more
closely than nicotine is expected to deliver highly effective neoni-
cotinoids. In order to evaluate the fragments replacement effects,
quantitative analyses of the structure-activity relationship of neoni-
cotinoids and analogous have been performed. The outcomes of
this quantitative analysis have provided useful information for fur-
ther structural modification and new insecticide development. Fur-
thermore, the structural changes of the marketed neonicotinoids
can be an effective strategy to combat resistance.

In this light, Nishimura et al. [74] analyzed quantitatively the
neuroblocking activity (expressed as the concentrations of each
compound required for the blocking, in terms of log(1/BC)) of
imidacloprid analogues with various substituents at the 5-position
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of the pyridine ring by employing physicochemical substituent
parameters. The multiple linear regression approach related the
neuroblocking activity to the calculated pesticide descriptors. The
QSAR outcomes indicate that the introduction of various substi-
tuents such as halogens, alkoxy groups, and alkyls at the 5-position
of the pyridine ring of imidacloprid diminished the neuroblocking
activity. The same effect was explained by the use of steric and
electronic parameters. Also, two nerve-binding activities of the
imidacloprid analogues were measured: the conduction blockage
in the excised central nerve cord of the American cockroach and the
radioligand [3H]IMI binding to the housefly head membrane. The
results showed that the higher the binding activity to the housefly
head membrane, the higher the blocking activity in the American
cockroach. It was assumed that the tested neonicotinoids initially
bind to the nAChR leading to blockage of the nervous system,
followed by the insect death.

To find the substantial information for the design of better
neuroblocking insecticides, 3D-QSAR approaches were performed
to evaluate the neuroblocking activity (log(1/BC)) of 16 imidaclo-
prid analogues substituted at the 5-position, using CoMFA and
CoMSIA methodologies [74]. The statistical results of CoMFA
(A5: Q2 ¼ 0.707, R2 ¼ 0.986) and CoMSIA (A3: Q2 ¼ 0.715,
R2 ¼ 0.961) models for neuroblocking activity exhibited good
prediction abilities. The contribution of steric, H-bond donor and
H-bond acceptor fields was 68.2%, 0.8%, and 31.0%, respectively.
This suggests that the steric and H-bond acceptor nature of a
compound is essential for high neuroblocking activity. The
CoMFA and CoMSIA contour plots analysis showed that the
introduction of sizable and alkoxy substituents was unfavorable
for activity. This observation is in accordance with the results of
Nishimura et al. [75]. The same contour plots indicated that
H-bond acceptor region located at nitrogen atom on the pyridine
ring and nitro group on the imidazolidine ring contribute positively
to activity.

A quantitative relationship between the neuroblocking activity
using the cockroach ganglion (log(1/BC) values) and the insecti-
cidal activity against American cockroaches (log(1/MLD) values;
MLD-the minimum lethal dose) of 23 neonicotinoid variants of the
key pharmacophore, constructed with the central ring conjugated
to an NCN, CHNO2, or NNO, was examined by Kagabu et al.
[76]. Analyzing the outcomes of their in silico studies, the authors
suggested that the neuroblocking potency is proportional to the
Mulliken charge on the nitro oxygen atom or cyano nitrogen atom.
Also, the variation of fragments at the pharmacophore structure of
neonicotinoids allowed insecticidal activity against American cock-
roaches at the nanomolar level in the presence of synergists. For
cyanoimino variants, the neuroblocking effect was observed at the

526 Alina Bora et al.



micromolar level. The equation for neuroblocking activity and the
insecticidal activity showed that both potencies are proportionally
related when other factors are the same. In a previous paper [77],
the group of Kagabu analyzed the relationship of the neuroblock-
ing potencies of variants of the central ring imidazolidine of
imidacloprid-related nitroimine and nitromethylene compounds
to the physicochemical parameters such as the Mulliken charge on
the nitro oxygen atom and the octanol-water partition coefficient,
logP. The quantitative equation indicated that the neuroblocking
activity was proportional with both physicochemical factors.

Okazawa and co-workers [78] predicted the binding mode (log
(1/Ki)) of imidacloprid and related compounds to housefly head
(Musca domestica L.) acetylcholine receptors using 3D-QSAR
approaches. The CoMFA maps facilitate insight into the binding
mode from the ligand side. These contour maps showed that the
area around the fifth and sixth positions on the pyridine ring should
be sterically and electrostatically permissible. The authors highlight
that for successful interaction with the nAChR receptor, a specific
chemical structure of the compounds and a specific conformation
of the nitroimino unit is required.

Suzuki et al. [79] modeled the relationship between the insec-
ticidal activities (expressed as pKi values) against the housefly,
Musca domestica, of 26 N3-substituted imidacloprid analogues
[80] and their binding activity toward the nAChR receptor using
the multiple linear regression (MLR) approach. In this regard,
2D-structural descriptors of the IMI analogues were correlated
with the pKi values to find out the key structural features that
influence the binding activity. The researchers found two significant
predictors in the best MLR models including the squared Ghose-
Crippen octanol-water partition coefficient and the number of
tautomers, which increased the binding activity. A detrimental
effect on activity was induced by higher values of the lopping
centric index descriptor. It can be concluded that the insecticidal
activity was a function of the lipophilic character of the compounds.

The Kiriyama group [81] examined quantitatively the relation-
ship between insecticidal (log(1/IC50)) and the binding activities
(log(1/EC50)) of dinotefuran and 23 related analogues tested
against housefly, Musca domestica L. The binding affinities were
measured using housefly head membrane preparation and two
radioligands [3H]imidacloprid and [125I]α-bungarotoxin. The
binding activity measured with [3H]imidacloprid shows a better
correlation with the insecticidal activity. Multiple linear regressions
between the binding activity (used as a dependent variable) and the
insecticidal activity (as the independent variable), together with
other parameters (e.g., hydrophobicity descriptor), indicate that
the higher the binding activity, the higher is the insecticidal activity.
These QSAR approaches support the key neonicotinoid
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pharmacophore and also clarify the overwhelming role of pharma-
cokinetic factors in the activity of neonicotinoids.

Li and co-workers [82] constructed a pharmacophore model
based on the 34 neonicotinoids having neuroblocking activity. The
best pharmacophore model, obtained by 3D-QSAR, consists of a
hydrogen bonding acceptor, a hydrogen bond donor, a hydropho-
bic aliphatic, and a hydrophobic aromatic center. One out of the
34 neonicotinoids showed the highest neuroblocking activity
(1 μmol/L) against the American cockroach species. Based on
this pharmacophore, a series of heterocyclic compounds was
designed and synthesized. It can be concluded that this pharmaco-
phore is a useful tool for the development of novel neuroblocking
insecticides targeting the nAChR receptor.

Analyzing the presented QSAR studies [74–82], it could be
pointed out that most of them have applied 3D-QSAR methods
and CoMFA analysis on a relatively small number (16 to 34) of
compounds to indicate the electrostatic potential, steric potential,
and permeability coefficient as significant parameters for the design
of new pesticides.

In this regard, a total of 78 imidacloprid-based derivatives
tested against Drosophila melanogaster nAChR (Dm-nAChR) and
Musca domestica nAChR (Md-nAChR) were analyzed using
3D-QSAR (CoMFA and CoMSIA) methods, in conjunction with
the homology modeling, molecular dynamic (MD) simulation, and
molecular docking [83]. In this study two optimal 3D-QSAR
models with reliable predictive abilities were developed, having
Q2 ¼ 0.64, R2pred ¼ 0.72 for Dm-nAChR, and Q2 ¼ 0.63,
R2pred ¼ 0.672, for Md-nAChR. The graphical analysis of the
3D-contour maps is highly consistent with the docking results.
The additional three methods were performed to better understand
the ligands—Dm-/Md-nAChR receptor interactions and to pro-
vide some key structural features (e.g., small, electropositive, and
hydrophobic substituents at the tetrahydroimidazole nitrogen vs
larger, electronegative, and polar groups at nitro region) for further
design of new potent inhibitors against the Dm-/Md-nAChR.

Nagaoka and co-workers [84] synthesized a number of
18 nitromethylene neonicotinoid derivatives possessing substitu-
ents that contain a sulfur atom, oxygen atom, or aromatic ring at
5-position on the imidazolidine ring. The ethylene moiety of the
imidazolidine ring is considered to be an important metabolic
position in the houseflyMusca domestica [85]. For these 18 deriva-
tives, the insecticidal activities against adult female houseflies and
the affinity for nAChR were evaluated by means of the CoMFA and
the Hansch-Fujita QSAR methods and the docking approach. The
insecticidal activity, expressed as ED50, was tested only for the
18 synthesized compounds. The statistical analysis of the CoMFA
model for the receptor affinities of 50 compounds (18 novel
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neonicotinoids and 32 compounds) reported by Nishiwaki et al.
[86] indicated a relative contribution of the steric and electrostatic
effects of 64% and 36%, respectively. The CoMFA contour maps
highlighted that the more positive electrostatic features of com-
pounds increase the activity. The relationship between the insecti-
cidal activity and the receptor affinity was quantitatively analyzed,
considering the number of sulfur and oxygen atoms, the hydro-
phobicity, and logP parameters, using the conventional Hansch-
Fujita method. The resulted equation indicated that higher recep-
tor affinity contributed positively to insecticidal activity, while
higher hydrophobicity and the introduction of heteroatoms
(S atom for this case) influenced negatively the insecticidal activity.
The receptor affinity of the alkylated derivative compared with the
receptor affinity of compounds possessing ether or thioether
groups suggested that changing the carbon atom to a sulfur atom
has no influence on the receptor affinity, while conversion to an
oxygen atom was unfavorable for the receptor affinity. Further-
more, a docking model of the housefly nAChR bound to nitro-
methylene analogues recommended that the ligand-binding region
becomes larger as the size of the substituent increases. This study
completes the list of factors which influence insecticidal activity,
besides the receptor affinity.

5.2.3 QSAR Models of

Neonicotinoids with

Insecticidal Activity Against

Aphids

Aphids are among the most destructive pests causing significant
economic damages and lower agriculture yields, either directly by
sucking saps from various aerial tissues causing withering and death
or indirectly or by transmitting several plant viruses. Blackman and
Eastop [87] estimated that only 100 out of 450 aphids species show
significant economic problems. From these 100 species, the
authors discussed in detail 14 aphids species (13 on Aphidinae
subfamily and 1 on Myzocallidinae subfamily), as being the most
serious agricultural pests. The control of aphid’s negative effects is
achieved almost exclusively by employing insecticides. Two out of
13 species, namely, Aphis craccivora (pea aphids) and Myzus persi-
cae, were intensively used to measure the insecticidal activity of
various neonicotinoids, and QSAR models were developed based
on this data. Additional QSARs developed on neonicotinoids
tested against the cabbage aphid (Brevicoryne brassicae), armyworm
(Pseudaletia separata Walker), and brown planthopper (Nilapar-
vata lugens) insect species and Tetranychus cinnabarinus (carmine
spider mite of Acari: Tetranychidae) were found in the literature.

In the light of the published theoretical studies for aphids, Tian
et al. [88] developed a QSAR model to predict the insecticidal
activity of ten novel nitromethylene neonicotinoids containing a
tetrahydropyridine ring with exo-ring ether modifications. The
22 new synthesized compounds were confirmed and analyzed by
means of 1H-NMR, high-resolution mass spectroscopy, elemental
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analysis, and IR methods. From the 22 nitromethylene derivatives,
only 10 exhibited good insecticidal activity (expressed as LC50)
against Aphis craccivora. It has been observed that the insecticidal
activity of the compounds was correlated with the nature of the
substituents introduced at the 5- and 7-positions of the tetrahy-
dropyridine ring as follows: the activity increases when the substi-
tuents are of short alkyl types such as H, methyl, ethyl, or propyl
and decreases as the groups expand. The bioactivities were quanti-
tatively analyzed using physicochemical parameters and mono- and
bi-parameter regression analysis. The QSAR results suggested that
the volumes of the substituents together with the hydrophobic and
electrostatic properties are essential requirements for the insecti-
cidal activity.

The Wang group [89] designed three novel series of
N3-substituted (with sulfonylamidino or sulfonyltriazolo frag-
ments) imidacloprid analogues, which were structurally character-
ized by NMR spectroscopy, mass spectrometry, elemental analysis,
and single-crystal X-ray diffraction analysis. Their insecticidal activ-
ities tested against Aphis craccivora were used to develop a
2D-QSAR model with six selected descriptors by employing a
genetic algorithm-multiple linear regression (GA-MLR) method.
The N3-substituted derivatives exhibited moderate to significant
insecticidal activities, with LC50 values ranging from 0.00895 to
0.49947 mmol/L, being comparable to that of the control, imida-
cloprid. Moreover, 1 out of 64 derivatives showed an approximately
fourfold higher activity than that of IMI, based on the LC50 value
of 0.00895 mmol/L. The QSAR outcomes showed that the size,
shape, and distribution of the substituents at the N3-position of
IMI were significant for activity. The docking study of titled ligands
into the active site of the acetylcholine-binding protein receptor
indicated that all compounds realized similar hydrophobic and van
der Waals interactions with Trp53, Met114, Trp143, Tyr185, and
Tyr192 residues. Moreover, the presence of stronger hydrogen
bond interactions between the nitro and sulfonyl group with the
residues of the binding site increases the insecticidal activity. The
analyzed results are useful to understand the ligand-receptor inter-
action mechanism of these analogues and to further optimize new
neonicotinoid scaffolds. The observation regarding the key role of
the size and nature of the substituents for the insecticidal activity of
the N3-substituted IMI derivatives was also supported by the
computational study of Bora et al. [90].

The influence of the ring size and the conversion of the bridge
from O to N atom of 37 novel seven-membered azabridged neo-
nicotinoids on the insecticidal activities, tested against Aphis crac-
civora, Pseudaletia separata Walker, and Nilaparvata lugens
species, were evaluated by Xu et al. [91]. The synthesized new
neonicotinoids were subjected to crystal structure development,
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insecticidal assay, molecular docking, and SAR analysis. A pH value
of 2–3 of the hydrolyzed succinaldehyde solution was a key condi-
tion to synthesize compounds with excellent yields. The insecticidal
assay measurements against all three pest species suggested that
with few exceptions, the title compounds exhibited high insecti-
cidal activities compared to that of imidacloprid and cycloxaprid,
used as controls, and of the eight-membered compounds. The
bioassay showed that introducing a seven-membered azabridge
unit contributes to a great improvement of the neonicotinoid
analogues activities and can be considered an excellent lead struc-
ture to develop new potential insecticides. The docking study and
the binding mode evaluations highlighted that the introduction of
a methyl unit at position 2 of the phenyl ring is also a key feature to
get high neonicotinoid insecticidal activity.

In the literature, it is mentioned that the problem of resistance
and cross-resistance for various species could be overcome by mod-
ifying the structure of the existing neonicotinoids. Having this
purpose in mind, the group of Yang [92] has modified the hydro-
heterocycle or guanidine/amidine, and electron-withdrawing seg-
ments of the existing neonicotinoid pharmacophore with
sulfonylamidine moiety to develop two new series of sulfonylami-
dine analogues. Their structures were subjected to chemical char-
acterization by 1H-NMR, 13C-RMN, and HR-RMS, crystal
structure development, insecticidal/acaricidal activities, andmolec-
ular docking study. The insecticidal and acaricidal activities
(expressed as mortality (%)) were measured against the Tetranychus
cinnabarinus and Brevicoryne brassicae species. The bioassay results
indicated excellent acaricidal and moderate insecticidal activity for
the titled compounds. The effect of different substituent group at
the sulfonylamidine level was investigated by structure-activity rela-
tionships (SARs). The SAR results underlay that insecticidal/acari-
cidal activity difference could be ascribed to the combination of the
substituent length, flexibility, and electronic characteristics. In
addition, the docking simulation of the representative compound,
which exhibited the highest acaricidal activity against Tetranychus
cinnabarinus (66.7% and 83.3% of mortality in vivo, at concentra-
tion of 0.5 g/L and 1 g/L, respectively), has demonstrated a good
placement into the nAChR binding site which is consistent with its
high activity. The docking simulation provided key features for the
structure-based design of new sulfonylamidine neonicotinoids.

Two papers of Funar and Bora [93, 94] have modeled the
insecticidal activity of two different neonicotinoid scaffolds, tested
against Aphis Craccivora, using the MLR approach. In the first
paper [93], the structures of 30 neonicotinoid insecticides, bearing
nitroconjugated double bond and five-membered heterocycles and,
also, nitromethylene compounds containing a tetrahydropyridine
ring with exo-ring ether modification were optimized at the PM7
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semiempirical level, and several descriptors were generated from the
minimum energy conformers. The correlation of the structural
descriptors with the insecticidal activities (pLC50 values) against
Aphis Craccivora leads to an MLR model with good statistical
results and predictive power. Structural features, such as the num-
ber of six-membered rings, the basic pKa capacity, and the number
of ring secondary C(sp3), are beneficial for insecticidal activity of
these neonicotinoids. In a second paper [94], the structures of
24 dihydropyrrole-fused and phenylazo neonicotinoid derivatives
were investigated using molecular mechanics calculations based on
the 94s variant of the Merck Molecular force field (MMFF94s) and
the conformational search abilities of the OMEGA software. As for
the previous study, the minimum energy conformers were used to
derive descriptors, which were further related to the insecticidal
activity (pLC50 values) against Aphis craccivora. The best derived
MLR model has presented robustness (R2 ¼ 0.880, Q2 ¼ 0.827)
and predictive power abilities. The MLR equation indicated three
descriptors, namely, Galvez topological charge index of order 2, the
leverage-weighted total index/weighted by atomic van der Waals
volumes, and R-autocorrelation of lag 3/weighted by atomic
masses, as favorable for high insecticidal activity. The developed
MLRmodel can be confidently used to design new neonicotinoids,
saving time and resources.

In a recently published paper of Bora and co-workers [95],
molecular docking in conjunction with QSAR approaches was
combined together in order to explore the common binding
mode of 42 neonicotinoid insecticides into the nAChR active site,
tested against Aphis craccivora (cowpea aphids), and to predict the
toxicity of untested chemicals. Based on the best conformation
selected bymolecular docking, a high number of molecular descrip-
tors have been computed and further employed to derive QSAR
models by linear (MLR and PLS (partial least squares)) and nonlin-
ear (artificial neural networks (ANN)) and support vector machine
(SVM) methods. Robust models with predictive power were gen-
erated for the titled neonicotinoids. The MLR/ANN/SVM/PLS
models indicated that the presence in the neonicotinoid structure
of more than five-membered rings, of the ¼ CHR and/or the
R�N, and of R¼N– fragments are favorable for the insecticidal
activity. The analysis of QSAR and docking outcomes allowed the
prediction of five novel insecticide compounds, which fulfill the
requirements of the model applicability domain, ligand efficiencies,
and binding orientations. In conclusion, these predictive models
can be applied to other similar untested chemicals, active against
Aphis craccivora, saving time, resources, and money as well as for
the chemical risk assessment.

A crucial role in the binding of neonicotinoids to nAChR
receptors was demonstrated to play the water-bridged hydrogen
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bonds. The water-bridged importance was, also, observed in many
other crystals structure of proteins such as HIV-1 protease, EGFR,
etc. [96, 97]. To better understand the influence of water bridges
on the insecticidal activity, Xia et al. [98] proposed an approach of
heterodimeric aggregation with water. To accomplish this goal,
QSAR and pharmacophore models were applied to a series of
19 neonicotinoid derivatives and their aggregates containing
water bridge. For comparison, the models were, also, realized for
compound monomers. The CoMSIA, pharmacophore, and linear
QSAR models clarified the significant role of water molecule of the
active site, while the CoMFA analysis was not considered as a good
choice to elucidate the contribution of water bridges to activity.
CoMSIA analysis, also, illustrated that increasing the hydrogen
bond donor ability of water bridge could be essential for activity.
All three aggregate-based models presented good statistical and
predictive abilities than the monomer models ones.

The same essential role of water-bridged hydrogen bonds in the
neonicotinoid-nAChR receptor recognition was emphasized in the
paper of Zhu and co-workers [99]. For this purpose, 24 neonicoti-
noid compounds, having 9 fragments (1H-1,2,3-triazole, CN,
COOMe, CONHNH2, CONHMe, NO2, NH2, NHCOMe, and
NHCSNH), which mimic the water bridges, were designed,
synthesized, bioassayed against Aphis craccivora, and modeled by
molecular docking. The compounds substituted with the cyano
fragment displayed good insecticidal activity, compared with other
fragment-substituted compounds, suggesting the cyano group as
being optimal for mimicking the water bridges. The docking out-
comes indicated that cyano fragments act only as H-bond donor,
while the water bridges operate as both donor and acceptor. The
other eighth fragments could operate as both donor and acceptor.
The reduced insecticidal activity of these fragments could be attrib-
uted to their length, compared with that of the cyano group. These
facts revealed that the water site could not be occupied by those
fragments, even by the cyano group. So, this affirmation illustrates
again the significant role of water-bridged hydrogen bonds in the
neonicotinoid—nAChR recognition.

The two new developed neonicotinoids, sulfoxaflor and
guadipyr, have proven to be very effective for the control of
sap-feeding pest insects including those resistant to other insecti-
cides. In this regard, the study of Loso et al. [100] presents a
detailed structure-activity relationship of the 3-pyridyl ring of sul-
foxaflor. The SAR study revealed the key role of the 3-pyridyl ring
and methyl substituent on the methylene bridge connecting the
pyridine and sulfoximine unit to obtain enhanced Myzus persicae
insecticidal activity. A QSAR model, using a genetic algorithm-
multiple linear regression approach, was developed to evaluate the
effect of pyridine ring substituents, of 18 sulfoximine derivatives
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including sulfoxaflor, on theMyzus persicae insecticidal activity. The
model equation indicates a strong correlation between SlogP (the
calculated log octanol/water partition coefficient) descriptor and
the insecticidal activity, expressed as log(LC50). The QSAR model
was highly predictive and explains the optimized pyridine substitu-
tion arrangement for sulfoxaflor.

Crisan et al. [101] proposed an approach to identify new
insecticides against Myzus persicae, starting from the newly
launched neonicotinoid, guadipyr. Thus, a series of 31 guadipyr
analogues, active against Myzus persicae, was investigated using
linear (MLR and PLS) and nonlinear (ANN and SVM) methods,
together with pharmacophore modeling. Robust MLR/PLS/
ANN/SVMmodels with predictive power were found for guadipyr
analogues by correlating the insecticidal activity (pLC50) with
molecular descriptors generated from the energy optimized struc-
ture. For all four model types, three descriptors such as the number
pyridine rings (including acceptor nitrogen atom), JGI7
(7-ordered mean topological charge), and R6p (R autocorrelation
of lag 6/weighted by atomic polarizabilities) are considered to be
significant to explain the insecticidal activity against Myzus persicae.
These three descriptors confirm the positive effect of molecule
geometry, size, and shape on the insecticidal activity. Based on the
QSARs and pharmacophore outcomes, four new insecticide inhi-
bitors were predicted, according to the model applicability domain
and the binding mode.

5.3 QSAR Models for

the Inhibition Ability of

Acetylcholinesterase

and Other Enzymes by

Organophosphorus

(OP) Pesticides

OPs induce the poisoning of a vast array of species, including
humans, especially through the action on the AChE enzyme, by
which a phosphorylation process undergoes [102, 103]. However,
this site of action of OPs has not been identified in plants and
microorganisms [7]. AChE inhibitors are classified into two cate-
gories: reversible and irreversible. While reversible inhibitors gen-
erally have therapeutic applications, the irreversible AChE
modulators (like the OP compounds) produce toxic effects
[104]. Thus, the toxicodynamics of OPs are seemingly irreversible
through the accumulation of acetylcholine and desensitization of
the cholinergic receptor, by overstimulating it [11], resulting in
damage to the peripheral and central nervous system [105].

There is a multitude of toxicological effects resulting from the
interaction of OP pesticides with human targets. It was observed
that OP compounds can produce the neurodegenerative disorder,
named organophosphate-induced delayed neuropathy (OPIDN),
by triggering the neuropathy target esterase (NTE) enzyme
[106, 107] when a suprathreshold dose exposure of the subject
occurs, with severe symptoms which may include weakness, sensory
loss, paralysis, and coma [108]. However, unlike AChE and cholin-
ergic toxicity, NTE inhibition produces neuropathy only if an aging
inhibitor is used [109]. Stallone and co-workers stressed in a study
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among farm residents that high concentration of OP pesticides can
produce severe depressive symptoms, which were correlated with
poisoning symptoms [110].

Not only high OP concentrations affect human health but also
chronic low-dose exposure leads to a number of health problems,
such as neurological disorders: Parkinson’s [111] and Alzheimer’s
diseases [112], cancers [113, 114], endocrine disruptors [115],
genotoxicity [116], respiratory complications [117], etc. Another
interesting study made by Bouchard et al. [118] shows the correla-
tion between the organophosphate exposure of a representative
sample of 1139 children in the USA exposed at common levels of
these pesticides and the attention-deficit/hyperactivity disorder
prevalence.

OP compounds inhibit AChE through a process which com-
prises two steps: the first one, represents the binding step, which is
described by the binding constant (Ka), and the second one, the
phosphorylation step, which is described by the phosphorylation
rate constant (Kp) [119]. TheKp/Ka ratio, named bimolecular rate
constant or inhibition constant (Ki), is one of the most significant
determinants of the toxicity of OP pesticides and therefore is fre-
quently used as dependent variable in QSAR models. Mastrantonio
et al. [119] developed QSARs using electronic, steric, hydropho-
bic, and conformational descriptors derived from 10 OP com-
pounds for predicting the inhibition kinetic values for Ka, Kp, and
Ki determined for the AChE activity of Wistar rat brain extracts.
The possible conclusions of this work are the following: the hydro-
phobic interactions play an interesting role, leading to the increase
of the Kp values, which are associated with a good capacity of
interaction between the ligand and the target molecules. The
same characteristic increases the Ka values, meaning the difficulty
to situate the ligand in the active site properly. It is important to
note that the binding affinity of the inhibitors was observed to be
determined by the conformational freedom of OPs, which for this
research appears to be sufficient for the quantification of kinetic
magnitudes.

The prediction of OP AChE inhibition for a dataset of eight
compounds, using in silico methods, consisting in pharmacophore
and 3D-QSAR modeling, using the Catalyst Program, was realized
by Yazal et al. [120]. This group found a very good correlation
coefficient R2 of 0.994 between the experimental and predicted
values of activity (IC50), for the best pharmacophore hypothesis,
consisting in one hydrogen bond acceptor site, two hydrophobic
sites, and one aromatic ring. The model shows information about
the structural and steric requirements of the compounds, in order
to inhibit the AChE enzyme, a feature which is correlated with their
neurotoxicity.
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A much bigger dataset of 278 OP AChE inhibitors and their
pentavalent organophosphate oxon human acetylcholinesterase
bimolecular rates has been involved in the generation of a consen-
sus QSAR model [121]. The consensus QSAR model was obtained
based on averages of predictions of individual models, using molec-
ular descriptors computed with CODESSA (topological, topo-
chemical, and geometric parameters) and AMPAC (electrostatic,
quanto-chemical, and thermodynamic descriptors) software. The
correlation between the experimental and predicted values for the
inhibitory bimolecular rates of the human AChE was good, and
also R2 correlations values for the training, internal, external, and
y-randomized tests were found to have reasonable values.

The same aforementioned series of OPs was then used by
Veselinović et al. [122] in the generation of QSAR models, using
the Monte Carlo method, with the bimolecular rate constants, as
activity, and 2D descriptors derived from SMILES codes, as inde-
pendent variables. The QSARs were obtained using two different
approaches: (1) the classic scheme of training, test, and validation
set and (2) the balance of correlation (sub-training, calibration,
test, and validation system). The statistical parameters resulted for
all the models were very good. The average values obtained for
three Monte Carlo runs in the classical approaches were between
0.871 and 0.926 for the coefficient of determination R2 and
between 0.863 and 0.921, for the cross-validated correlation coef-
ficient Q2. In the case of the correlation balance based QSARs, the
smallestR2 value was of 0.8471 for the validation set and 0.919 the
biggest value for the test set. The most significant Q2 value, of
0.914, was obtained for the test set.

Given that OPs are not selective pesticides, there are studies
that have highlighted, also, non-cholinergic pathways, like the
digestive enzymes, trypsin and alpha-chymotrypsin, which belong
to the serine protease family, being targeted by OP compounds
[123]. These receptors may not play a role in acute toxicity but are
significant in chronic low-level toxicity. However, trypsin was
found in a much higher concentration in the pancreas, compared
with AChE in blood, which by inhibition is likely to lead to acute
pancreatitis [124]. Ruark [125] in a master thesis study developed
integrated QSAR biologically based dose-response (BBDR) mod-
els, using the heuristic regression procedure, with the aim to predict
bimolecular rate constants of OP binding to trypsin and alpha-
chymotrypsin, respectively. The descriptors used for the models
were those which describe electrophilicity, lipophilicity, hydrogen
bonds, steric hindrance, connectivity, van der Waals interactions,
London dispersion, and electrostatic forces. The R2 value obtained
for global trypsin was of 0.94 and for global α-chymotrypsin of
0.92. These QSAR-BBDR models can be used in predicting the
toxicodynamics of OP pesticides with their aforementioned targets
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from different species, as well as for prediction of OP bimolecular
rate constants for different proteins of the serine proteases family.

6 Conclusions

In this work, an analysis of publications dedicated to the ecotoxico-
logical QSAR modeling of organophosphorus and neonicotinoid
pesticides is portrayed. To date, various QSAR techniques pub-
lished in the literature have generally as goal the prediction of
improved target properties and knowledge on the compound
mechanisms of action. By using computational chemistry facilities
time, human and financial resources can be saved. Organophospho-
rus and neonicotinoid agrochemicals have received special atten-
tion not only because of their pesticidal activity but also due to their
ecotoxicological properties. Classical Hansch and 3D QSAR (e.g.,
CoMFA, CoMSIA) methods, as well as several statistical
approaches, like multiple linear regression, partial least squares,
artificial neural networks, support vector machines, and classifica-
tion techniques were employed in the QSAR modeling studies of
organophosphorus and neonicotinoid pesticides. The QSAR mod-
els developed for these compounds are very promising theoretical
alternative (nonanimal) approaches in that they revealed high sig-
nificant predictive capabilities of less harmful and eco-friendly agro-
chemicals, which are less expensive. However, the applicability of
QSAR models and their implementation in practice remains a very
interesting subject and requires continuous improvement. Few
QSAR studies were reported for some neonicotinoid ecotoxicity
properties. Future research on the neonicotinoid degradability and
other animal and plant toxicities will ameliorate their environment-
friendly features. The combination of QSARs with virtual screening
approaches will bring useful information in the design of new
pesticides with improved mechanism of action and less ecotoxic
properties.
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Glossary

AChE Acetylcholinesterase
ADME Absorption, distribution, metabolism, excretion
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Analogue A chemical compound that differs from another com-
pound by one or more atoms. These compounds form a
congeneric series of the compound, which have similar
structures and similar physicochemical properties.

ANN Artificial neural networks
CART Classification and regression tree
CoMFA Comparative molecular field analysis
COMSIA Comparative molecular similarity index analysis
Descriptor A numeric representation of molecules based on their

chemical structures, e.g., steric descriptors, which are
related to shape or molecular size, hydrophobic descrip-
tors (usually quantified by logP—the partition coeffi-
cient between hydrophilic and hydrophobic phases),
and electronic descriptors such as atomic charge, etc.

EC50 Half maximal effective concentration
ED50 Effective dose (for inducing paralysis or death in 50% of

the tested population)
F Fischer test
IMI Imidacloprid
In silico An expression, which denotes, “performed on the com-

puter or via computer simulation.”
Ka The binding constant
Ki The inhibition constant or bimolecular rate constant
Kp The phosphorylation rate constant
KNN K-nearest neighbors classification
LC50 The median lethal concentration (the concentration of a

substance expected to induce death of 50% of the mem-
bers of a tested population)

LD50 The median lethal dose (the single dose necessary to kill
50% of the members of a tested population)

LDA Linear discriminant analysis
logBCF Logarithm of the bioconcentration factor
MLR Multiple linear regression
NMC Nearest mean classifier
nAChR Nicotinic acetylcholine receptor
OP Organophosphorus
p Significance level of regression
PLS Partial least squares
Q2 Cross-validation correlation coefficient
QDA Quadratic discriminant analysis
QSAR Quantitative structure-activity relationship
QSTR Quantitative structure-toxicity relationship
R2 The coefficient of correlation/determination
R2

adj The adjusted R2

RDA Regularized discriminant analysis
RMSE Root-mean-square error
SEE Standard error of the estimate
SIMCA Soft independent modeling of class analogy
SVM Support vector machine
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Chapter 22

QSARs and Read-Across for Thiochemicals: A Case Study
of Using Alternative Information for REACH Registrations

Monika Nendza, Jan Ahlers, and Dirk Schwartz

Abstract

A case study on acute aquatic toxicity of thiochemicals shows the possibilities and limitations of filling data
gaps with alternative information in accordance with the requirements of REACH. It is the objective of this
study to extract as much information as possible from available experimental studies with fish, daphnia, and
algae to estimate required data by QSARs and read-across.
Thiochemicals are considered to be toxic with an unspecific reactive mode of action (MoA) causing

so-called excess toxicity, i.e., the effects are much higher than estimated from log KOW-dependent baseline
QSARs. Differences in toxicity between groups of thiochemicals, for example, thioglycolates or mercapto-
propionates, are thought to be due to differences in reactivity of the respective sulfur moiety, i.e.,
toxicodynamic differences. Thiochemicals within each group are different with regard to partitioning
between biophases related to, e.g., increasing aliphatic chain length, i.e., toxicokinetic differences.
Due to the toxicodynamic and toxicokinetic differences, QSARs and read-across are limited to thio-

chemicals within the same group. Since the database per group of thiochemicals is too small to derive
scientifically valid QSARs, most of the 36 data gaps for 16 thiochemicals to be registered by 2018 were
closed by read-across. Testing strategies to fill remaining data gaps include tests with algae (six substances)
and daphnia (six substances). Only for two substances, experimental (limit) fish studies are recommended.
Overall, a substantial (>60%) reduction of tests by predictive in silico methods is possible.

Key words REACH, QSARs, Read-across, Category approaches, Acute aquatic toxicity, Unspecific
reactive mode of action (MoA), Excess toxicity, Integrated testing strategies (ITS), 3Rs

1 Acute Aquatic Toxicity of Thiochemicals for REACH Registrations

Substances produced in or imported into the EU at more than 1 t/
y have to be registered, and physicochemical, (eco)toxicological, as
well as exposure-relevant information have to be supplied [1–
3]. The minimal ecotoxicological information requirements for
chemicals to be registered by 2018 (1–100 t/y) are data on acute
toxicity to algae, daphnia, and fish (the latter only for substances
�10 t/y). Any available relevant additional information has to be
presented in order to achieve an optimal assessment of possible
hazards to men and the environment. The information is used for

Kunal Roy (ed.), Ecotoxicological QSARs, Methods in Pharmacology and Toxicology,
https://doi.org/10.1007/978-1-0716-0150-1_22, © Springer Science+Business Media, LLC, part of Springer Nature 2020
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classification and labelling according to the CLP regulation [4],
chemical safety assessment (CSA) including derivation of predicted
environmental concentration (PEC) and predicted no-effect con-
centration (PNEC), and evaluation of persistent, bioaccumulative,
and toxic/very persistent and very bioaccumulative (PBT/vPvB)
properties.

Among the main aims of REACH1 is the promotion of alterna-
tive methods for the assessment of hazards of substances avoiding
animal testing where possible. Alternative information may be
deviations from the standard test guidelines (e.g., limit tests), test
results obtained with nonstandard organisms, in vitro test data,
intra- or extrapolation from analogues (read-across), predictions
from (quantitative) structure-activity relationships (QSARs), and
extrapolations from acute to chronic data and vice versa [2, 5]. Alter-
native information is acceptable for REACH registrations, if it is
equivalent to the results that would be obtained by standard testing
and adequate to draw conclusions for classification and labelling,
PNEC derivation, and PBT/vPvB assessment. The equivalence and
adequacy have to be substantiated by a weight-of-evidence (WoE)
approach, making best use of all available data [5–7]. Integrated
testing strategies (ITS) can increase the efficiency of hazard and risk
assessment and at the same time reduce the use of animals by
targeted testing of chemicals [8, 9]. Lombardo et al. [10] presented
a comprehensive ITS approach for organizing and using existing
aquatic toxicity data to fulfill the requirements of REACH.

The aim of this case study on acute aquatic toxicity of thio-
chemicals is to close data gaps observed during the process of
REACH registrations. First, we want to use alternative information
and extract as much information as possible from available experi-
mental studies with fish, daphnia, and algae to estimate required
data by QSARs and read-across. The case study thiochemicals, a
group of relatively homogeneous substances with a limited number
of functional groups, are produced in amounts between 1 t/y and
more than 1000 t/y and are used as reducing agents (antioxidants)
in cosmetics, cleaners, and polymers; as (co)binders or hardeners in
coatings, adhesives, and sealants; and in optical applications (films,
lenses). Thiochemicals with production rates above 100 t/y are
already registered, and therefore a number of data on aquatic
toxicity are available for QSARs and read-across to fill data gaps
for the lower-tonnage thiochemicals.

Established ITS and WoE [5, 11] support a stepwise procedure
for obtaining as much information as possible from available
(experimental) data and to fill data gaps for analogues with alterna-
tive information in accordance with the requirements of REACH.
The main components of the approach are collection and

1REACH: EU regulation on registration, evaluation, authorization, and restriction of chemicals [1]
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evaluation of available information, identification of suitable in
silico methods, calculation of multiple predictions, and, finally,
overall assessment of the available information to conclude about
the (eco)toxicity of a substance. In the following sections, we will
outline the principal procedures and illustrate them with case study
examples, directed by relevant guidance documents on alternatives
to animal testing [2] and the Read-Across Assessment Framework
(RAAF) [3]. In those cases, where neither appropriate standard test
results nor equivalent and adequate alternative information could
be obtained, additional testing may become necessary.

2 Exploratory Data Analysis (EDA): Existing Information and Data Gaps

Predictive (eco)toxicology and ITS rely on careful collection of all
available information both in terms of the actual endpoint, for
example, acute fish toxicity, and any properties that may affect it,
for example, physicochemical properties, such as water solubility,
reactivity, and degradation as well as relevant metabolites [5]. Very
important is the confirmation of the same chemical structures
including type and amount of impurities [12]. Furthermore, fac-
tors such as the quality of the data, consistency of results, nature
and severity of effects, and relevance of the information will have an
influence on the weight given to the available evidence.

2.1 Test Substances

and Available Data

on Acute Aquatic

Toxicity

The case study is based on 36 thiochemicals representing 6 chemical
classes (Table 1) with quality-controlled information on octanol/
water partition coefficient (log KOW) (n ¼ 36), water solubility
(SW) (n¼ 35), biodegradability (OECD 301) (n¼ 36), acute algae
toxicity (OECD 201) (n ¼ 17), acute daphnia toxicity (OECD
202) (n ¼ 19), and acute fish toxicity (OECD 203) (n ¼ 22). The
available data have been published recently [13, 14].

The test data on aquatic toxicity have been evaluated according
to Klimisch et al. [15] based on study reports with plausibility
checks regarding the stability of the substances over the duration
of the experiments and comparing the toxic concentrations with
the water solubility of the substances. Only experimental data with
Klimisch code 1 (reliable without restrictions) or 2 (reliable with
restrictions) have been selected to provide a sufficiently valid basis
for the derivation of PNECs and for input (source) data for QSARs
and read-across. Experimental data with Klimisch code 3 (not reli-
able) have not been used. Some problems arise from the fact that a
number of thiochemicals are not sufficiently stable during the
course of the tests. In these cases the decrease in concentrations
had to be followed analytically, and the aquatic toxicity is estimated
based on geometric mean test concentrations.
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2.2 Toxicological

and Chemical

Grouping

of Thiochemicals

and Mode of Action

(MoA)

The toxicological grouping of the thiochemicals follows the chem-
ical grouping (Table 1) in terms of functional similarity [16–19]
leading to either common or different MoA.2 All the thiochemicals
are considered to be toxic due to the reactivity of the sulfur groups.
Interactions with biogenic structures result in reactive toxicity that
can significantly exceed so-called narcotic effects, i.e., the effects are
much higher than estimated from log KOW-dependent baseline
QSARs [19]. Differences in toxicity between the groups of thio-
chemicals are thought to be due to differences in reactivity of the
respective sulfur moiety, i.e., toxicodynamic differences. Within
each group, the thiochemicals are different with regard to partition-
ing between biophases related to hydrophobicity, i.e., toxicokinetic
differences. Comparisons of the experimental acute toxicities of
thiochemicals with log KOW-based baseline QSARs for algae [20],
daphnia [21, 22], and fish [23, 24] reveal excess toxicities of more
than one order of magnitude with distinct pattern for the different

Table 1
Chemical categories of the thiochemicals

Chemical category Characteristic fragments of thiochemical categories

Thioglycolates (n ¼ 10) O

O

SH

Mercaptopropionates (n ¼ 11) O

O

SH

Thiolactates (n ¼ 2) S OH

O

Thiodiglycolates (n ¼ 2) O

O O

O
S

Thiodipropionates (n ¼ 5) O

O O

OS

Mercaptanes (n ¼ 6) SH

2 The concept of functional similarity can support the MoA classification of chemicals by combining toxicological
knowledge (which toxicity pathways can happen in which species under which exposure conditions) with chemical
expertise (which parts of the chemical structures and physicochemical properties are involved in which interac-
tions) [16–19].
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groups of thiochemicals [13]. Figure 1 illustrates the reactive excess
toxicities of three groups of thiochemicals toward fish. Similar
results are obtained with algae and daphnia.

2.3 Physicochemical

Descriptors

of Thiochemicals

Parameterization of the thiochemicals is related to (1) the reactivity
of the substances due to the respective sulfur moiety (Table 1) and
(2) the hydrophobicity and size of the molecules expressed, for
example, in terms of molecular weight (MW), chain length (#C),
or log KOW. MW values were collected from ChemSpider [25]. #C
values were counted from SMILES. Multiple log KOW values were
calculated for the undissociated thiochemicals with EPISuite [26],
ACD/Labs and ChemAxon from ChemSpider [25], XlogP and
AlogP from TEST [27], and consensus, read-across and LSER
from ChemProp [28]. The mean of the results from the different
independent algorithms (consolidated log KOW) was calculated.

2.4 Data Gaps Among the substances to be registered under REACH in 2018
were seven thiochemicals with production rates between 1 and
10 t/y, i.e., information on acute toxicity to algae and daphnia
are required, and nine thiochemicals with production rates between
10 and 100 t/y, i.e., information on acute toxicity to algae, daph-
nia, and fish are necessary. Only for two substances, sufficient
experimental data were already available. Information on acute
fish toxicity existed for four substances, which had to be completed
with estimates for daphnia and algae. No experimental data were
available for ten substances, for four of them data gaps for acute
toxicity to algae and daphnia and for six of them additionally to fish
needed to be filled.
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Fig. 1 MoA-related excess toxicity to fish of three categories of thiochemicals:
thioglycolates (circles), mercaptopropionates (triangles), and mercaptans
(squares) relative to the baseline QSAR by Könemann [23]
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3 QSARs, Read-Across, and Testing Strategies for Acute Aquatic Toxicity
of Thiochemicals

QSARs and read-across can be used for predictions depending on
the amount of available data. Substantial numbers of similar sub-
stances with the same MoA are required to derive and validate
QSAR models for predictive purposes. Read-across is feasible with
at least one similar substance with the same MoA to extrapolate
toxic concentrations between compounds (analogue approach);
several similar substances allow for category approaches [3]. Since
none of the methods perform in a superior manner throughout, we
strongly recommend to obtain multiple independent predictions
with different methods and to deal with the variability and uncer-
tainty of estimated data by using consensus toxicity estimates [29].

3.1 QSARs QSAR models that fulfill the OECD criteria3 for scientific validity
of QSARs [30] are not available for thiochemicals from suitable
inventories (e.g., JRC QSAR Model Database [31], QSAR Data-
Bank repository [32]), software platforms (e.g., VEGAHUB [33],
ChemProp [28], Chemistry Dashboard [34]), and the literature
(e.g., [29]). Due to MoA considerations (see Subheading 2.2,
Fig. 1), joint QSAR modelling of all thiochemicals is not appropri-
ate, and the available database is too small to derive new statistically
valid QSAR models for different groups of thiochemicals. There-
fore, it was not possible to fill data gaps regarding the aquatic
toxicity of thiochemicals with QSAR predictions. Instead, read-
across had been used.

3.2 Read-Across Read-across predicts endpoint information for one substance (tar-
get substance) by using data from the same endpoint from (an)
other substance(s) (source substance(s)). Depending on the num-
ber of source substances, category and analogue approaches are
feasible. Category approaches use several substances that are likely
to be similar or follow a regular trend as a result of structural
similarity, i.e., a group (category) of substances [3]. If several
similar substances with the same MoA reveal a regular pattern
related to structural and physicochemical properties, trend analyses
offer differentiated predictions. If no robust and reliable trends are
evident, a worst-case prediction is possible among similar sub-
stances with alike (eco)toxicities. Analogue approaches use at least
one similar substance with the same MoA to extrapolate toxic
concentrations between compounds. Prerequisite is sufficient simi-
larity of the target substance and the source substance(s) with

3OECD criteria for the scientific validity of QSAR models [30]: (1) a defined endpoint; (2) an unambiguous
algorithm; (3) a defined domain of applicability; (4) appropriate measures of goodness of fit, robustness, and
predictivity; and (5) a mechanistic interpretation, if possible
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regard to chemical structure, physicochemical properties, reactivity,
(eco)toxicological MoA, toxicokinetics, metabolic fate, and degra-
dation pattern. The following stepwise procedures allow for cate-
gory and analogue approaches with some differentiation of specific
elements:

1. Exploratory data analysis:

(a) Confirm identity and chemical structure of the target
chemical.

(b) Collect suitable analogues (category members) with
sound experimental data for the respective endpoint, for
example, 96-h LC50 fish, from suitable databases, for
example, ECHA’s registered substances [35], OECD
Toolbox [36], ECOTOX Knowledgebase [37], eChem-
Portal [38], and the literature.

(c) Confirm similarity of source and target chemicals in terms
of chemical structures [12], physicochemical properties,
MoA, stability of active ingredients, (common) degrada-
tion products, etc. [5, 36, 39–42].

2. Read-across:

(a) If several analogues are available, look for trends based on
structural and physicochemical descriptors, for example,
logKOW, MW, and chain length. Often a graphical inspec-
tion of the relationships is very helpful.

(b) Perform predictions, for category approaches, based on
robust and reliable trends (is there a possible mechanistic
interpretation of the trend?). If no resilient trends are
evident, make a worst-case prediction. Predictions by ana-
logue approaches extrapolate the effect data from the
source to the target compound, preferably on a molar
basis (correction for different molecular weights).4 The
rationale is that there is mostly one predominant toxic
principle per molecule. The same numbers of sufficiently
similar molecules are likely to cause the same effects.
Extrapolations on a weight basis may include inactive
parts of the molecules to variant extents and, hence, intro-
duce unnecessary uncertainty into read-across.

(c) Describe the uncertainty of estimates by read-across
depending on the uncertainty of the experimental source
values and the chemical and toxicological similarity
between the source and target compounds. Determine
propagated error of estimates by category approaches
considering variability of experimental input data and
descriptors of source compounds. Uncertainty and

4Note that QSARs are always performed on a molar basis.
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variability of estimates may be visualized with a plot of the
trend including the target chemical together with the all
other category members.

(d) Document steps 1 and 2.

3. Consensus toxicity estimates:

(a) Determine consensus toxicity estimates based on the
information of all available (experimental and calculated)
sound and valid data for WoE, for example, using (geo-
metric) mean, median, or Bayesian networks [9, 29].

(b) Describe supporting/confounding evidence in terms of
structural (dis)similarity, applicability domain
(AD) considerations, common or different MoA, (same)
degradation products, metabolites, other effect data
(non-guideline studies, in vitro studies, studies with non-
standard organisms), so-called adverse outcome pathways
(AOP),5 etc.

The exploratory data analysis of the case study thiochemicals
used the available experimental data for several chemicals within the
same category, for example, thioglycolates or mercaptopropionates
(Table 1), to fill data gaps based on a trend related to MW, #C, or
log KOW. Exploratory data analyses indicated #C to be the best
descriptor within the categories, outperforming log KOW and MW
(Fig. 2). An explanation could be that log KOW and MW are
obscured by the different thiol functions, while the chain length
better captures the mechanistic differences within the categories.

Read-across using category and analogue approaches is per-
formed individually for each example, and uncertainties are
described accordingly. The following examples of read-across illus-
trate different degrees of success: Consensus toxicity estimates range
from robust and reliable predictions that are equivalent to guideline

Fig. 2 Trends in daphnia toxicity related to log KOW (a), #C (b), and MW (c) for three categories of
thiochemicals: thioglycolates (circles), mercaptopropionates (triangles), and mercaptans (squares)

5 https://aopwiki.org/
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study results and adequate for hazard assessment to highly uncer-
tain estimates that prompt ITS considerations about the best next
test with maximum information gain [43].

3.2.1 Thiolactic Acid

(TLA)

Exploratory data analysis reveals no experimental data for TLA
(Fig. 3) and information requirements for registration; thus, data
gaps exist regarding acute toxicities on algae, daphnia, and fish.
TLA belongs to the group of thiolactates. For one of the TLA salts,
ammonium thiolactate, experimental data for fish, daphnia, and
algae are available. Up to a concentration of 100 mg/L test sub-
stance (70 mg/L active ingredient), no effects could be observed.

Read-across from ammonium thiolactate to TLA is possible
since in both cases, the thiolactate ion is responsible for the toxic
effect. Correction for different molecular weights results in EC50

for algae >120 mg/L and EC50 for daphnia and fish >60 mg/L,
respectively.

Consensus toxicity estimates rely on calculated values for daphnia
and fish as basis for PNEC derivation as well as C&L. The WoE of
the read-across results for TLA is sufficient to refrain from animal
testing.

3.2.2 Glycol

Dimercaptoacetate (GDMA)

Exploratory data analysis reveals an experimental EC50 for fish
(4.8 mg/L) for GDMA (Fig. 4) and information requirements
for registration regarding acute toxicities on algae, daphnia, and
fish; thus, data gaps exist for algae and daphnia. GDMA belongs to
the group of thioglycolates, and #C ¼ 6 allows intrapolating trends
within this group.

SH

H3C

O

OH

TLA

Fig. 3 Chemical structure of thiolactic acid (TLA), CAS 79-42-5

O

O

O

O

HS

HS

GDMA

Fig. 4 Chemical structure of glycol dimercaptoacetate (GDMA), CAS 123-81-9
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Trend analyses on the basis of experimental data for analogues
in the range of 5–10 C atoms lead to the following estimates: EC50

(algae), 6.7 mg/L; EC50 (daphnia), 5.9 mg/L; and LC50 (fish),
13 mg/L. The estimated fish toxicity is in reasonable agreement
with the measured one. The estimations for algae and daphnia
toxicity are obtained by intrapolation and considered reliable.
Therefore, it was concluded that these data are sufficient for the
requirements of REACH.

Consensus toxicity estimates result in PNEC derivation as well as
classification and labelling (C&L) performed on the basis of the
experimental fish toxicity.

3.2.3 2-Ethylhexyl

3-Mercaptopropionate

(EHMP)

Exploratory data analysis reveals an experimental 48-h LC50 for fish
(0.63 mg/L) for EHMP (Fig. 5), but the value was not considered
sufficiently reliable as the test result is based on nominal concentra-
tions and the substance is relatively unstable. According to the
information requirements for registration, data on acute toxicity
with algae and daphnia have to be presented. EHMP belongs to the
group of mercaptopropionates, and #C ¼ 11 allows intrapolating
trends within this group.

Trend analyses are possible on the basis of experimental data for
analogues in the range of 4–11 #C. The estimates are obtained by
intrapolation for algae (EC50, 0.05 mg/L), daphnia (EC50,
0.38 mg/L), and fish (LC50, 0.11 mg/L) and, therefore, consid-
ered reliable.

Read-across of the fish acute toxicity from isooctyl
3-mercaptopropionate (iOMP), having different branching
(Fig. 5), results in LC50 ¼ 0.04 mg/L. The two estimates for fish
are in sufficient agreement, and the geometric mean (0.07mg/L) is
applied.

Consensus toxicity estimates rely on calculated values. Algae and
fish are most sensitive. The lowest EC50 (for algae) serves as the
basis for PNEC derivation as well as C&L. Due to remaining
uncertainties of the predictions, an algae test was proposed to verify
the results.

iOMPEHMP

H3C

O

O

O

O

HS

CH3 CH3 CH3

HS

Fig. 5 Chemical structures of 2-ethylhexyl 3-mercaptopropionate (EHMP), CAS
50448-95-8, and isooctyl 3-mercaptopropionate (iOMP), CAS 30374-01-7
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3.2.4 Thioglycerol (TG) Exploratory data analysis reveals no experimental data for TG
(Fig. 6) and information requirements for registration; thus, data
gaps exist regarding acute toxicities on algae, daphnia, and fish. TG
belongs to the group of mercaptans.

Read-across of EC50/LC50 from 2-mercaptoethanol (ME),
being a substructure of TG (Fig. 6), results in 26 mg/L for algae,
0.55 mg/L for daphnia, and 51 mg/L for fish. Extrapolations from
glyceryl monothioglycolate (GMT), sharing 2-hydroxy- and
1-thiol group (Fig. 6), give EC50/LC50 of 5.7 mg/L for algae
and daphnia and 19 mg/L for fish. Since the very limited database
and variable level of impurities do not allow to establish equivalent
reactivity of the thiol functions of the source and target substances,
the results of the read-across are not reliable.

Consensus toxicity estimates are not yet feasible. It is recom-
mended to obtain experimental data for algae and daphnia toxicity.
A comparison of the test results with the estimates will show
whether it is also necessary to conduct a fish test.

3.2.5 Lauryl/Stearyl

Thiodipropionate (E1218)

Exploratory data analysis reveals information requirements for reg-
istration regarding acute toxicities on algae, daphnia, and fish, but
no valid data are available. E1218 belongs to the group of thiodi-
propionates (Fig. 7). Given the low water solubility (<1 mg/L),
long-term toxicity data should be used for E1218.

Read-across from dilauryl thiodipropionate (E12) and distearyl
thiodipropionate (E18) is justified by the composition of E1218
(E12, 21–31%; E18, 18–28%; E1218, 35–57%). E18 long-term
studies with algae, daphnia, and fish conclude that no effects are
observed up to the limit of SW. In acute tests with E12, there were
also no effects in the range of SW, and long-term testing can be
waived.

Consensus toxicity estimates assume that E1218 behaves compa-
rably due to similar structure and similar physicochemical proper-
ties, i.e., no effects in the range of SW. Thus, tests for aquatic
toxicity required for registration can be covered by existing test
results from read-across source substances.

HO

O

O

HS

GMT

OHHO

HS
HS

OH
OH

TGME

Fig. 6 Chemical structures of 2-mercaptoethanol (ME), CAS 60-24-2;
thioglycerol (TG), CAS 96-27-5; and glyceryl monothioglycolate (GMT), CAS
30618-84-9
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3.3 Overall

Assessment

of the Available

Information

For the 16 thiochemicals of this case study, similar to the examples
presented in Subheading 3.2, all data gaps were considered, and it
was discussed whether the required information could be obtained
by read-across or if tests have to be performed. In each case it was
examined whether the number and quality of the information are
equivalent to the standard information required by REACH.

Among the 16 thiochemicals to be registered in 2018 were
14 substances with data gaps. For five substances the data gaps on
aquatic toxicity were closed by read-across. For the remaining nine
thiochemicals, testing strategies were developed in order to obtain
information that is sufficient to achieve a sound and reliable assess-
ment. Starting with 36 data gaps, only 14 tests (6 algae, 6 daphnia,
1 limit fish test, and 1 acute fish test) have been proposed. Thus, a
substantial (>60%) reduction of tests by predictive in silico meth-
ods is possible.

With new experimental data becoming available, iterative
improvements of the above-described extrapolations can be
achieved.

4 Implications of Data Quality

ITS use all available information for hazard assessment. In a WoE
approach, it has to be decided whether this information is equiva-
lent to the standard information or which additional tests are
required [5, 11]. This decision is not an easy task, as a number of
uncertainties have to be taken into account. It starts with the
question how well defined are the chemical structures including
type and amount of impurities [12] and how certain are the physi-
cochemical properties (e.g., SW, log KOW). Problematic are aquatic
toxicity tests at concentrations above water solubility. Especially for
thiochemicals, tests without analytical control have to be regarded

H3C

H3C

H3C

H3C

H3C

H3C O
O

O
O

O
O

E18E1218E12

O

O

SS

O
O

S

O
O

Fig. 7 Chemical structures of dilauryl thiodipropionate (E12), CAS 123-28-4; lauryl/stearyl thiodipropionate
(E1218), CAS 13103-52-1; and distearyl thiodipropionate (E18), CAS 693-36-7
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critically. Another issue is the stability of thiochemicals, which
differs considerably depending on duration and conditions of the
tests. Therefore all thiochemicals of our case study are more or less
“difficult substances” and had to be regarded very carefully before a
final conclusion could be drawn [44]. Some aspects of the wide
range of quality of information are represented by our examples.

4.1 Structural

and Functional

Similarity

In Subheadings 2.2 and 3, we discussed why the same MoA
between source and target compounds [16–19] is a prerequisite
for sound read-across. This requirement is fulfilled in case of our
examples TLA (identical active substructures of the molecule) and
GDMA (intrapolation of trends in the same group), and no further
tests are required. For TG, read-across was performed with two
source substances, which appear to be similar. However, GMT is a
thioglycolate with a different MoA and therefore unsuitable for
read-across.

Another problem arises if source and target compound have the
same MoA, but the target substance is outside the applicability
domain. In case of TMPMP6 (16 C atoms) and TEMPIC7 (18 C
atoms), extrapolations of a trend observed for mercaptopropio-
nates with #C range 4–11 are too uncertain. In this case tests are
necessary.

Moreover, extrapolations from acute to chronic data have to be
applied with care as quite often the MoAs leading to acute and
chronic toxicities are different [45]. An example are endocrine
disruptors like nonylphenol that are often unspecific toxicants at
the acute level but act very specifically on the long term [46]. This
issue, however, seems to be not relevant in case of thiochemicals.

4.2 Experimental

Difficulties

and Variability

of Source Data

A number of thiochemicals of our case study have a very low SW,
and thus toxicities obtained from nominal concentrations (often
above SW) cannot be used (e.g., EHMP). Moreover, many of these
compounds are rather unstable (e.g., EHMP, PETMA,8 TMPMP,6

TEMPIC,7 TG). In these cases further studies are required to
clarify whether the estimated toxicities arose from the compound
itself or from its decomposition products. As (probably) the source
substances are also unstable and in that case the toxicities have—
according to the guidelines—been estimated from the geometric
mean between the concentrations at the beginning and at the end
of the assay, an inherent error is propagated to the target
compound.

6TMPMP: Trimethylolpropane trimercaptopropionate, CAS 33007-83-9
7TEMPIC: Tris[2-(3-mercaptopropionyloxy)ethyl]isocyanurate, CAS 36196-44-8
8 PETMA: Pentaerythritol tetrakis(mercaptoacetate), CAS 10193-99-4
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4.3 ITS and WoE ITS are based on a large number of information of quite different
value, which have to be weighted appropriately. The more informa-
tion is available, the better are the estimates. For example, the valid
estimated toxicities for GDMA (and also GDMP9) are supported
by valid experimental ones, whereas for EHMP the non-valid
experimental value could not support the estimated ones, and an
algae test was recommended. However, not only validity of tests
and estimates influences the quality of the results but also the
variations of the individual data for the same regulatory endpoint.

4.4 Further Tests One important target of REACH is a reduction of vertebrate
testing. Therefore, in the consensus toxicity estimates of Subhead-
ing. 3.2, fish tests were only suggested, if it was quite clear that this
information is essential (e.g., TMPMP). In most cases, it was
proposed to first perform tests with algae and/or daphnia (e.g.,
TG). Based on the outcome of these tests and in accordance with all
other data, it has to be discussed if fish tests are still necessary or can
be waived or if limit tests (step-down approach) are sufficient (e.g.,
TEMPIC).
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Chapter 23

In Silico Ecotoxicological Modeling of Pesticide Metabolites
and Mixtures

Chia Ming Chang, Chiung-Wen Chang, Fang-Wei Wu, Len Chang,
and Tien-Cheng Liu

Abstract

Prior to registration, careful assessment of transformation products (TPs) that are more toxic than their
parent compounds is required, and EU regulations require greater use of non-animal test methods and risk
assessment strategies. Predicting the toxicity of transformation products and chemical mixtures is a major
challenge for modern toxicology. Since the metabolic processes of transformation products and toxic effects
of chemical mixtures involve complex mechanisms, it is essential to use in silico modeling methods to
consider different chemico-biological interactions of metabolic transformation and mixture toxicity. This
chapter reviews previous modeling methods used to study pesticide metabolites and mixtures.
Although various metabolites are emitted into the environment, there are few ways to interpret meta-

bolites by predicting their ecotoxicological potential, so their formation and environmental fate are largely
unknown. In vitro testing has limited coverage of metabolic processes present throughout the organism and
may not always predict in vivo results. For systematically assessing the metabolic activation of persistent
organic pollutants, researchers designed a comprehensive metabolic simulator to generate the metabolic
profile of the POPs. In order to analyze and evaluate parent compounds and transformation products in the
environment, data generation based on quantitative structure-activity relationship (QSAR) is becoming
more and more important. Besides these, a process-based multimedia multi-species model allows us to
quantitatively estimate the environmental exposure and fate of parent compounds and transformation
products.
Pollutants in the environment usually appear in a joint form, and the biological effects of the mixture are

different from the single separated components, so the risk assessment criteria for a single compound
cannot accurately infer the actual complex environmental assessment. The interaction between the com-
ponents of the mixture promotes significant changes in compositional characteristics and complications
leading to synergistic or antagonistic effects. The covalent bonding, ionic bonding, van der Waals force, and
hydrophilicity are important intermolecular forces that affect the interaction of chemical mixtures and are
associated with four types of descriptors. This relationship has been able to study the reaction mechanisms
of various environmental characteristics of organic pollutants.

Key words Pesticide, Transformation product, Chemical mixture, Ecotoxicity, Environmental fate,
In silico modeling
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1 Introduction: The Ecotoxicity of Transformation Products

Assessment of ecotoxicity data for parent compounds and transfor-
mation products (TP) based on chemical structure can be per-
formed at an early stage of the risk assessment process to identify
those chemical substances that require further testing
[1, 2]. According to the European Plant Protection Products Reg-
ulation 1107/2009, the risk of pesticide metabolites to animals and
the environment needs to be assessed prior to registration [3]. This
regulation requires more use of non-animal testing methods and
risk assessment strategies to minimize vertebrate testing. Since it is
impossible to evaluate the ecotoxicity of each transformation prod-
uct by experiment, Sinclair and Boxall used quantitative structure-
activity relationships (QSARs), read-across methods, and expert
systems to estimate the ecotoxicity of the transformation products
based on chemical structure [4]. In addition, previous literature
integrated prediction methods for biodegradation products, esti-
mation of physicochemical properties and degradation half-life,
persistence metrics, and joint persistence calculations to identify
transformation products that makes a significant contribution to
the joint persistence of the parent compounds [5].

Galassi et al. investigated the risks in detail based on the occur-
rence of metabolites of priority pesticides in surface water and
groundwater in Italy and estimated their persistence based on
field and ecotoxicity data [6]. An ecotoxicological endpoint, the
96-hour acute LC50 for rainbow trout, was used as the appropriate
database when developing QSAR [7]. Potentially persistent trans-
formation products were known in the freshwater ecotoxicity stud-
ies of 15 pesticides and perchloroethylene. It is important to
incorporate the potential effects of the transformation products
into the characteristic factor (CF) calculations [8].

Escher and co-workers assumed two scenarios for the phyto-
toxicity endpoints of β-blocker mixtures and their associated
human metabolites: metabolites lose their specific activity and act
as baseline toxicants, and metabolites exhibit the same identity as
the specific mode of action of their parent drug and used QSAR to
simulate its total toxicity potential [9]. They employed toxic ratio
(TR) to indicate whether a compound acts according to baseline
toxicity or a specific toxic mode of action [10]. The predicted
baseline effect concentration EC50baseline,i for a given compound
i, the ratio of i to the experimentally determined EC50experimental,i, is
the toxicity ratio TR. EC50baseline,i can be derived from QSAR for
baseline toxicity in the corresponding test system. Baseline QSAR
can be determined by 24-hour chlorophyll fluorescence. TRi < 10
corresponds to baseline toxicity, and TRi � 10 indicates a specific
mode of toxic effect [10]. Moreover, Escher and Fenner integrated
the study into a framework that emphasized the data from the
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parent compound to the read-across of the transformation product
to determine the priority of the contribution of transformation
products to overall environmental risk [11].

There are many possible explanations for transformation pro-
ducts that are more toxic than their parent compounds: The trans-
formation product has the same toxicity mechanism as the parent;
the transformation product is the active ingredient of the insecti-
cide; the bioconcentration factor of the transformation product is
greater than the parent; the product produced by the transforma-
tion pathway has a different and more effective mode of action than
the parent compound [1].

Characterization factors (CFs) are used in product life cycle
impact assessment (LCIA) to determine the impact of stressors on
humans and ecosystems. When degradation products are more
toxic, more durable, more mobile, or more bioaccumulative than
their parent compounds, it is important to include the effect of
these TPs on chemical characterization factors in LCIA. Through
this work, the durability, mobility, and toxicity of the transforma-
tion product are solved by its parent compound. Uncertainty anal-
ysis can be used to quantify the uncertainty of the characterization
factor, with and without transformation products [8, 12].

The environmental risk assessment of most human drugs is
based on parent drugs. However, most drugs are widely metabo-
lized by the body, and only a small fraction is released into the
wastewater stream through non-metabolic forms. Although various
metabolites are emitted into the environment, there are few ways to
interpret metabolites by predicting their ecotoxic potential, and
little is known about the ecotoxic potential of metabolite mixtures.
Metabolism is generally considered to make the parent compound
more hydrophilic and therefore less toxic [9, 13–15].

2 Integrated Software for Modeling Metabolites

The widely used ECOSAR software was developed by the US
Environmental Protection Agency (EPA), which was listed as a
useful non-test method by EFSA [16] and incorporated into the
OECD QSAR Toolbox. The method has been used in regulatory
authorities. Reuschenbach et al. evaluated the ECOSAR software
for QSAR prediction of chemical toxicity of aquatic organisms. The
ECOSAR predictions and experimentally derived toxicity data
cover the acute effects of growth inhibition on fish, Daphnia, and
algae [17]. To predict acute fish toxicity of pesticide metabolites,
Burden et al. used ECOSAR software for prediction of 150 meta-
bolites. The experimental fish LC50 values were obtained from the
Pesticide Properties Database (http://sitem.herts.ac.uk/aeru/
ppdb/en/atoz.htm) [2].
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UM-PPS has been used for computer-aided prediction of
microbial metabolites to detect multiple compounds in compli-
cated environmental samples. This is an effective procedure for
comprehensive screening of a large number of potential transfor-
mation products (TP) in environmental samples [18]. The advan-
tage of using UM-PPS [19] is that its transformation rules are
obtained from a collection of known microbial degradation path-
ways of approximately 1100 chemicals. (UM-BBD) [20]. A
computational prediction of possible microbial TP was performed,
predicting two generations of TP, allowing for aerobic and anaero-
bic transformation, demonstrating that UM-PPS is superior to
other similar tools, such as META [21] or CATABOL
[22]. Gutowski et al. used a different set of QSAR software to
predict the physicochemical properties and toxicity of
S-metolachlor (SM) and stable transformation products (TP).
The software used includes CASE Ultra V.1.5.0.1 (MultiCASE
Inc.) [23] and Leadscope software V.3.2.3-1, as well as a training
set for the 2012 SAR Genetox database provided by Leadscope
[24]. The SMILES code was used to input the TP structure of the
molecule [25]. Juan José Villaverde et al. recently discovered that
the clethodim photodegradation solution is more toxic to the
Vibrio fischeri than the parent compound, and QSAR analysis can
provide physicochemical properties, fate, and ecotoxicological end-
points of degradation products [26]. They used six QSAR model-
ing methods with T.E.S.T., namely, grading, FDA, single model,
group contribution, nearest neighbor, and consensus methods, in
order to have greater confidence in the predictions performed.
Kern et al. developed a systematic and efficient method for screen-
ing a large number of potential TPs in environmental water samples
to more fully understand the presence of TP in the environment.
The study used a fairly new high-resolution mass spectrometry
(HR-MS) analysis technique that overcomes the list of targets
that lack analytical reference standards, including the most compre-
hensive potential TP possible. They use the University of Minne-
sota pathway prediction system (UM-PPS), a rule-based system for
predicting microbial metabolites [18, 19].

Pesticides entering the water environment undergo different
hydrolysis, oxidation, biodegradation, or photolysis pathways,
which results in a higher pesticide TP concentration than the parent
compound. In the water treatment of ozone, the presence of
pesticide TP in drinking water may cause new problems [27–
30]. TP is usually formed in complex matrices. Because of its low
concentration, separation and purification are very difficult, so its
formation and environmental fate are largely unknown. In order to
analyze and evaluate TP in the environment, data generation based
on quantitative structure-activity relationships (QSAR) is becom-
ing more and more important [25, 31–33].
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3 Multimedia Multi-species Models

The time range of environmental exposure and the relative concen-
tration of the parent compound and its transformation products in
surface waters can be obtained from a process-based multimedia
multi-species model, enabling us to quantitatively estimate the
environmental fate of the transformation product [34]. Kern et al.
measured pesticides in a small river that discharged from the Swit-
zerland agricultural watershed, using dynamic multimedia multi-
species models for TP prioritization, and comparing predicted
relative surface water exposure potential with experimental data
[35]. Since the transformation products have different types of
environmental fate models, Fenner et al. have introduced multime-
dia multi-species models that are generally applicable to chemical
risk assessment and environmental resource quality
assessment [36].

Because the half-life of different amide pesticides depends on
the chemical class and experimental parameters, Latino et al. simul-
taneously encode the reaction and the corresponding half-life in
Eawag-Soil. Consider the initial transformation reaction to estab-
lish a meaningful quantitative-structural biotransformation rela-
tionship (QSBR) [37]. In the Eawag-Soil package, metadata
under experimental conditions (e.g., soil texture, soil moisture,
pH, etc.) are stored in the physical scene. Pathway information is
stored in a biotransformation reaction scheme in a physical path-
way. Compounds and reactions involved in a given pathway are
stored separately in the physical compound and reaction. The high
proportion of toxic metabolites of biocide and the scarcity of data
on these compounds suggest that further research into their effects
in the aquatic compartment is needed. Europe plans LIFE-
COMBASE to build computational tools to predict the acute
toxicity of biocide actives and their environmental degradation
products to aquatic organisms, including fish, invertebrates, algae,
and sewage treatment plant (STP) microorganisms [38]. Lienert
et al. evaluated each of the parent drugs and their metabolites as a
mixture of similar compounds to assess the potential hazards of
ecotoxicology, including metabolites formed in humans. In the
absence of literature data for physicochemical properties or effects,
baseline toxicity was estimated using a quantitative structure-
activity relationship (QSAR), and each parent drug and its meta-
bolites were treated as a mixture of similar compounds. Input data
from the literature (lipophilic, baseline effect concentration (EC50),
estimates of excretion scores) were used to mimic the toxic poten-
tial of the parent drug and metabolite (TP mixture). In addition,
the use of simple drug concentration predictions in Swiss wastewa-
ter produced a risk quotient (RQ mixture) [39].
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Biotransformation of microbial communities in environmental
systems is a very effective mechanism to reduce the persistence of
their environment, but it can also lead to the formation of poten-
tially dangerous transformation products [11, 40, 41]. Pathway
prediction systems typically rely on a dictionary of biotransforma-
tion rules that recognize complex functional groups and convert
them into product substructures [42–45]. These biotransforma-
tion rules are intended to reflect known microbial transformation
pathways of chemical contaminants. They are based primarily on
data collected from the Eawag biodegradation/biocatalytic data-
base (Eawag-BBD), formerly known as the University of Minnesota
biodegradation/biocatalysis database (UM-BBD) [46]. However,
most of the data for Eawag-BBD comes from studies of pure
microbial cultures or laboratory cultures with extended adaptation
periods.

For microbial communities in different environments, different
enzyme-catalyzed reactions may occur at very different rates. This
suggests that not only chemical structures but also specific environ-
mental conditions can be considered, which can greatly improve
biotransformation prediction. Latino et al. introduced enviPath to
the new database and path prediction system. enviPath provides a
database environment to facilitate annotation of biotransformation
half-life and pathway information and allows half-life and pathway
information to be supplemented by metadata for environmental
and/or experimental conditions of different agricultural soils,
aquatic sediments, and activated sludge, simulated transformation
pathway [37, 47, 48].

Lienert et al. proposed a screening tool for identifying drugs
with high environmental risks, including their human metabolites.
The tool uses drug data on human metabolism and excretion, drug
sales data, and physicochemical properties of parent drugs and
metabolites. For many cases where ecotoxicological data are lack-
ing, QSAR and lipophilicity can be used to estimate baseline
toxicity [39].

4 The Metabolic Pathway Software System MetaPath

To systematically assess the metabolic activation of parent POP
chemicals and metabolites for hazard identification, Mekenyan
et al. also designed an integrated metabolic simulator to generate
a metabolic profile for parent POP chemicals [49]. The toxic mode
of action (MOA) of the transformed product does not necessarily
exhibit the same MOA as the parent compound, and the correct
assignment of MOA is a weakness of any application of the QSAR
method [50].MetaTox software can be used to predict metabolites,
which are formed by nine types of reactions (aliphatic and aromatic
hydroxylation, N- and O-glucuronidation, N-, S- and C-oxidation,
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and N- and O-de Alkylation). The probability calculation for gen-
erating metabolites is based on the analysis of the “structure-bio-
transformation reaction” and “structural modified atom”
relationships using the Bayesian method. The parent compound
and each of the produced metabolites can then be used to predict
the value of acute rat toxicity (LD50) for intravenous administration
using the QSAR model [51]. In the study, GUSAR uses self-
consistent regression based on regularized least-squares method.
Quantitative neighborhoods of atoms and multilevel neighbor-
hoods of atoms descriptors are used to create the QSAR models.
GUSAR uses three methods (similarity, leverage, and accuracy
assessment) to estimate the applicability domain (AD) of the
QSAR model during the prediction of acute toxicity [52–
55]. Using the metabolic pathway software system MetaPath, the
differences in analytical methods for metabolites in each study and
the relative amounts of quantified metabolites can be identified to
compare metabolic maps between rat, goat, and fish (bluebird or
rainbow trout) species [56].

The assessment of metabolite structure in the early stages of
drug development can be performed in two different ways, predict-
ing metabolic sites and without preliminary prediction of metabolic
sites. The first approach focuses on different enzymes, and an
understanding of the mechanism of action of the enzyme as a result
of SOM prediction provides an assumption about the possible
structure of the metabolite. The second approach is primarily to
implement predictive metabolite structures in expert systems that
use biotransformation dictionaries to predict metabolites. Such a
system contains rules for converting a parent compound to its
metabolite [51, 57].

5 Prediction Models for the Human Toxicity of Transformation Products

Madden et al. used a series of computational tools to address the
major challenge of predicting toxicity after skin exposure, notifying
the prediction of skin metabolism by understanding the differences
in the enzymatic landscapes between skin and liver [58]. In describ-
ing the role of pesticides in breast milk, Agatonovic-Kustrin et al.
used sensitivity analysis to select descriptors and applied artificial
neural network modeling to correlate selected descriptors (inputs)
with M/P ratios (outputs) to develop predictive QSARs [59]. Xiao
et al. used QSAR to mimic the binding affinity of the metabolite
3,4,30,40-tetrachloroazobenzene (TCAB) to certain human recep-
tors. TCAB was found to have strong binding affinity for AhR in
EROD and micro EROD induction assays [60]. VirtualToxLab
predicts the toxic potential of chemicals by simulating and quanti-
fying their interaction with a range of proteins, using automated
multidimensional QSAR analysis to know that these proteins can
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cause adverse effects [61–63]. The model of VirtualToxLab comes
from the free open source www.Biograf.ch. Pinto et al. trained
18 high-throughput ER assays on approximately 1600 ToxCast
chemicals, covering different chemical structure categories, includ-
ing known reference ER ligands and various chemicals with known
estrogen-like activities. They used three QSAR models to predict
the ER agonist bioactivity of parent compounds and their metabo-
lites: the ER agonist model is available through the Online Chemi-
cal Database with Modeling Environment (OCHEM) Web
platform at (https://ochem.eu/home/show.do), an ER agonist
model developed by Lockheed Martin (LM), and the developed
ER model is available at (http://infochim.u-strasbg.fr/webserv/
VSEngine.html) [64, 65]. These ER QSARs estimate that most
known estrogen metabolites have stronger estrogenic activity than
their parent compounds [66]. Dekant et al. proposed a stratified
test strategy that does not or only partially retain the targeted
toxicity of active ingredients (AI) when the drinking water concen-
tration is >3.0 μg/L for the degradation product, the “non-rele-
vant metabolites” of AI. A detailed toxicity database for parent AI
and conclusions based on structure-activity relationships should be
included [67]. Further assessment of the relevance of metabolites
should include the collection of all available information about
“non-relevant metabolites,” the nature of the parent AI, and the
toxicological information of the structure-related compounds. This
information is integrated into hazard assessment methods by
QSAR analysis to predict biotransformation into potentially toxic
metabolites and as a “smart” and the foundation of targeted
approach to design toxicity testing [67, 68]. However, for repro-
ductive toxicity, only limited structural alert information (with
respect to certain receptors and/or enzyme binding/inhibition
properties) makes most QSAR models unreliable. Clark reviewed
how computer models predict bacterial mutagenicity in humans
and rats, human cytochrome P450 (CYP) metabolism, and
bioavailability [69].

Environmental chemicals induce adverse reactions by binding
to receptors and are thought to demonstrate valid QSARs for
receptors such as AhR, ER, and AR [60, 70]. Using QSAR, Vir-
tualToxLab was applied with a series of 16 proteins to mimic the
binding affinity of 3,4,30,40-tetrachloroazobenzene (TCAB) to
human receptors (www.biograf.ch) [60, 61].

In vitro testing has a limited coverage of metabolic processes
present throughout the organism and may not always predict
in vivo results, as these chemicals may be false negatives when tested
in assays without metabolic activity. Previous studies have devel-
oped QSARmodeling methods for predicting chemical metabolites
and estimating chemical interactions with ER. This computer sim-
ulation analysis has proven to be a fast and inexpensive method for
detecting environmental chemicals with estrogen metabolites,
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thereby reducing the potential for false negative results in HTS
analysis [66, 71–74].

Hydrolytic degradation products from the parent active ingre-
dient are not toxic or highly toxic (T, T+), carcinogenic, mutagenic
or reproductive toxicity, significantly reduced or inactive against
pest activity, known as “non-relevant metabolites.” A
toxicological-based risk assessment of the presence of
“non-relevant metabolites” is required without the use of large
numbers of animals. Toxicity testing is only required if the animal
exceeds the threshold caused by thresholds of toxicological concern
TTC and cannot assess the hazard based on other information [67].

6 Quantitative Structure-Activity Relationship Models for Transformation Products

The uncertain results of the training set indicate that there is an
inherent weakness in the molecular connectivity theory in the
complex reaction of OP insecticides [75]. Ortiz-Hernández et al.
proposed a mechanism for the hydrolysis of pesticides by Flavobac-
terium sp. at the bond between the phosphorus and the heteroatom
to produce phosphoric acid and three metabolites [76]. The
second-order rate constant k value for oxidative transformation of
various emerging organic micro-pollutants can be predicted using
the QSAR and group contribution methods developed by Lee and
von Gunten [77]. In this QSAR analysis, the descriptors Hammett
σ (σ, σ+ and σ�) and Taft σ∗ constants of the most common
substituents in physical organic chemistry are utilized, with a view
to the relative convenience and application [77, 78].

Due to widespread use, it is not uncommon for humans to be
poisoned by pesticides. Once organophosphorus pesticides enter
the body, they are metabolized by cytochrome P-450, producing
toxic metabolites that react with acetylcholinesterase. Previous lit-
erature proposed a new biooxidation mechanism of organophos-
phorus pesticides. Under this mechanism, any drug or procedure
that reacts with the phosphorus atom of the pesticide may help
prevent the gradual progression of pesticide metabolism and toxic-
ity [76, 79].

Oxidation processes are widely used in water treatment for
disinfection and oxidation purposes. QSAR (quantitative
structure-activity relationship) can be used to predict the reaction
k value of various oxidants and organic compounds to predict the
conversion efficiency of micro-contaminants during oxidized water
treatment. Especially when considering the huge number and large
structural diversity of synthetic organic compounds commonly
found in various water resources, QSAR-based prediction methods
are very useful as screening tools [77].

Lo Piparo et al. used rule-based toxicity predictions to compare
the empirical and theoretical results of three allelochemicals
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(DIMBOA, BOA, and MBOA) with their metabolites and found
that only degraded metabolites showed significant ecotoxic effects.
The generated QSAR model showed good internal prediction abil-
ity (Rcv

2 > 0.6) [80]. They describe the microenvironment around
the molecule based on the comparative molecular field analysis
(CoMFA) of Chem-X software. This technique measures the spatial
and electrostatic interaction energy between small probes at a series
of regular grid locations around a molecule, studying the magni-
tude and direction of interactions between electrons and three-
dimensional space [80, 81]. QSAR modeling of basic properties
supports the hypothesis that halogenated substituents (meta-Br;
meta-I; ortho-Cl) may hinder the degradation of three amides by
Variovorax sp. [82] However, it is not possible to infer from the
simple chemical reaction in solution that the cause of degradation
may be insufficient. To elaborate on this aspect, the electrostatic
potential model of the molecule was prepared in previous studies. It
has been found that the hindrance of enzymatic degradation may
be related to properties such as relative polarity and spatial proper-
ties in the molecular region away from the location where the actual
degradation occurs. When experimental toxicity data is difficult to
determine or not available at all, computer simulation methods are
based on theoretical knowledge gained in different scientific fields,
supplemented by the powerful computing power of modern com-
puters to derive models for predicting chemical properties [80].

In order to fully characterize the fate of bromoxynil and iodo-
benzonitrile in soil and groundwater environments, it is necessary
to study the mobility and persistence of degradation products.
Liquid chromatography-tandem mass spectrometry (LC-MS/
MS) has become a widely used method for the analysis of polar
organic compounds in a variety of matrices, which is ideal for the
analysis of iodobenzonitrile, bromoxynil, and possible transforma-
tion products [82–84].

7 Quantum-Chemical Modeling Methods for Transformation Products

Lewis proposed a broader concept of acid and base. An acid is
defined as a molecule, ion, or group of atoms that can accept
foreign electrons, also known as an electron acceptor. Typically,
Lewis acids are systems with unoccupied molecular orbitals. A
base is defined as a molecule, ion, or group of atoms that can
provide electrons, also known as an electron donor. The nature of
the acid-base reaction is that the electrons of the base enter the
unoccupied molecular orbitals of the acid. It can also be the molec-
ular orbital of an unoccupied acid that accepts the electrons of the
base to form a coordination bond.

It can be expressed as a general formula: A +: B! A: B wherein
A represents an acid and B represents a base. An important feature
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of the Lewis acid-base theory is that many aprotic compounds are
included in the acid range. The electrophile in the organic reaction
can be considered as a Lewis acid which is easy to add a nucleophile.
The nucleophile is a Lewis base.

According to the frontier molecular orbital (FMO) theory, the
formation of chemical bonds is mainly determined by the interac-
tion of the frontier molecular orbitals. The frontier molecular
orbital of the nucleophile is the highest occupied molecular orbital
(HOMO), the electrophilic frontier molecular orbital is the lowest
unoccupied molecular orbital (LUMO), and the acid-base reaction
is the interaction between HOMO and LUMO.

The use of standard quantum chemical methods allows for a
more detailed study of pesticides and their metabolites. Villaverde
et al. explored the potential of quantum chemistry in the toxicity
and environmental behavioral simulation of pesticides and their
by-products, including certain chemical reaction mechanisms and
their degradation pathways [85]. Duirk et al. used the QSARmodel
to predict the rate of hydrolysis rate under drinking water treatment
conditions (in the presence of chlorine-containing water) to deter-
mine the exposure risk of conversion products of OP pesticides in
drinking water [86]. Frontier molecular orbital theory has been
used to correlate oxidation rate coefficients with the highest occu-
pied molecular orbital energy (EHOMO) [87]. EHOMO is a good
molecular descriptor describing the oxidation of OP pesticides in
each subgroup, so the subgroup differences are quickly under-
stood. The phosphorothioate subgroup mainly contains ethyl and
phenyl esters. Due to the sulfur linkage and the methyl ester on the
tetrahedral phosphorus atom, the detected phosphorodithioate is
more susceptible to chlorine oxidation than the thiosulfate sub-
group, and the phosphorodithioate subgroup has a specificity than
the phosphorothioate subgroup. TP is more difficult to remove by
PAC adsorption and ozonation than its parent insecticide. Com-
pounds with relatively high energy level EHOMO can more easily
transfer electrons to the lowest unoccupied molecular orbital of
ozone, and thus the energy level of EHOMO is positively correlated
with removal by ozonation [88]. We can use density functional
theory (DFT) calculations to investigate the most stable conformer
of alloxydim herbicides, the factors controlling its stability, and the
mechanism of mutual transformation between the most relevant
conformers [89]. Density functional theory calculations can be
used as a preliminary strategy for estimating pesticide degradation
pathways and by-product formation. There are four structural fea-
tures with strong intramolecular hydrogen bonds. The stability of
the resulting fragment is controlled by the presence of intramolec-
ular hydrogen bonds. The high stability is compared to other
possible forms in the gas phase. The most stable species identified
may play an important role in the environment as a by-product of
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long-term existence throughout the degradation mechanism of the
herbicide.

Degradation products (DP) can exhibit very different physico-
chemical and toxicological properties from its parent compound,
and their behavior in the environment can vary widely. Sinclair and
Boxall used different computational methods to predict the aquatic
acute ecotoxicity of fish, daphnids, and algae from 485 DPs of
60 pesticides. This study shows that 30% DP is more toxic than
its parent compound. The transformation reaction usually results in
a smaller, more polar, and thus less hydrophobic molecule. Due to
the increase in water solubility, DP can be easily transported to
environmental water, and the presence of pesticide DP in the
aqueous medium causes deterioration of water quality [1, 26, 90,
91].

DP from alloxydim is more toxic than the parent active com-
pound. However, current experimental results usually provide only
a partial and very limited overview of the problem, so intermediates
are difficult to characterize, and the mechanism of degradation has
not been clearly defined. A proper understanding of alloxydim DP
is essential to prevent adverse effects from improper use of pesti-
cides. In this regard, computational studies of pesticides offer great
potential for identifying the most relevant stable DP and its physi-
cochemical properties. Villaverde et al. explored the degradation
process of alloxydim by DFT calculations. The main purpose is not
only to identify the structure and properties of the parent com-
pound but also to identify those DPs formed after the most unsta-
ble N-O bond cleavage and loss of oxime ether groups. These
computational simulations have minimized the animal testing per-
formed on pesticide toxicology risk assessments, overcoming the
challenges of modern legislation [89, 92].

All potential transformation pathways need to be addressed
when assessing potential pesticide exposures caused by drinking
water. Hydrolysis and chemical oxidation are the most relevant
pathways for organophosphorus (OP) pesticides under drinking
water treatment conditions. Some studies have shown that the
chlorine reactivity of different types of pesticides may vary greatly
due to changes in chemical structure [86, 93].

Neuwoehner et al. propose a method to promote and system-
atically assess the ecotoxicological risk of transformation products.
To gain a complete picture of how the transformation products
work, they used a QSAR and toxicity ratio (TR) analysis to perform
an action pattern analysis of the experimental data. They evaluated
the toxicity and mode of action relative to the parent compound
and used the mixture toxicity test as a diagnostic tool to support the
pattern analysis. The ultimate goal is to clarify whether the trans-
formation product has a similar potential risk to the parent
compound [94].
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8 Mixture Toxicity of Pesticides

With the advancement of science and technology, human beings
produce more and more kinds of chemical substances, so the envi-
ronment is filled with many different pollutants. When organisms
are exposed to a mixture of chemicals for a long time, their health is
bound to be seriously threatened. In general, the biological effects
and toxicity of a mixture differ from a single isolated component, so
the risk assessment criteria for a single compound cannot accurately
infer actual complex environmental assessments. Therefore, in
order to evaluate the toxic effects of mixed forms of compounds
on organisms, it is necessary to further study and establish a
method for effectively evaluating and predicting the toxicity of
mixtures to promote rapid health judgment and implementation
of laws and regulations for disaster prevention.

In agriculture, due to the increase in the world’s population, in
order to solve the problem of insufficient food, a large number of
pesticides and fertilizers are used to rapidly increase production. In
addition, farmers often mix a variety of pesticides to save time and
achieve better results, health hazards remain unclear. Therefore, the
joint toxicity study of pesticide mixtures is very necessary.

The octanol-water partition coefficient (KOW) is an effective
parameter and is commonly used to assess the toxicity of a single
organic chemical without observational data. The partition coeffi-
cient of the mixture can be used to develop a QSAR model to
predict mixture toxicity. However, only KOW of a single type of
chemical can be measured by UV spectrophotometer or HPLC,
and it is difficult to obtain a mixed-type KOW. Until 1995, Verhaar
et al. used the C18-containing Empore™ disk/water to investigate
the bioconcentration factor (BCF) of single and mixed-type che-
micals, achieving very high correlation between BCF and C18-con-
taining Empore™ disk/water partition coefficients [95].

The acute toxicity (EC50) of 36 substituted aromatic com-
pounds to Vibrio fischeri was predicted using a QSAR model con-
structed from an octanol/water partition coefficient. The model
used in the report of Verhaar et al. [95] was extended and used to
calculate the octanol/water partition coefficient of the chemical
mixture. The QSAR model is verified to be robust enough by the
leave-one-out method. Furthermore, by classifying these chemicals
as polar and nonpolar, the toxicity of the chemical mixture can be
more accurately predicted from the partition coefficient.

9 Concentration Addition (CA) and Independent Action (IA) Modeling

A review of QSAR studies for the toxicity of mixtures in the QSAR
method was published by Altenburger et al. [96]. Pollutants in the
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environment usually appear in mixed form, and a single compound
cannot predict the chemical action of the mixture. The interaction
between the components of the mixture promotes significant
changes in compositional characteristics and complications leading
to synergistic or antagonistic effects, as opposed to the ideal refer-
ence hypothesis, where an additive addition refers to concentration
addition (concentration addition, CA) and independent action
(IA). It is a well-known reference model for assessing joint activity,
and its mechanism of action can be confirmed by pharmacology.
Most studies have shown that the mixing of the compounds uses
only one anesthetic or a specific mode of action, and it is assumed
that CA can satisfactorily simulate this mixing. However, the inter-
action of different reactive compounds tends to produce a com-
bined effect that is less than CA. The molecular description
parameters calculated from the composition of the mixture can be
used as the characteristics of the mixture, and the toxicity of the
anesthetic mixture can be predicted from the molecular description
parameters.

A mixed toxicity prediction test was carried out on Q67 lumi-
nescent bacteria against six organophosphorus insecticides. Organ-
ophosphorus pesticides are present as a mixture of surface waters.
To determine the toxicity of the mixture in a multicomponent
space, a uniform design (UD) was used to design the mixture, as
changes in concentration can be studied from a small number of
experimental results. The two mixed toxicity prediction models
used in the study were concentration addition (CA) and indepen-
dent action (IA). The results showed no specific differences
observed between all CA-predicted and mixture toxicity. However,
the toxicity of the IA-predicted mixture is also very good, especially
in the low concentration fraction [97].

The basic idea of the concept of concentration addition (CA) is
that if chemicals with the same toxicity mechanism are mixed at the
same ratio, they can be considered to be the same chemical sub-
stance of the same biological target. The independent action
(IA) concept is based on the idea that the components in the
mixture assume their behavior different and the toxicity of each
component is not affected by the toxicity of other compounds
[98]. Neale et al. used experimental EC50 values for various che-
micals, only nonantibiotics, only antibiotics, and all chemicals to
prepare equivalent mixtures for 0.5 and 16 h. All ingredients con-
tribute the same to the effect of the mixture in the equivalent
mixture, listing the proportion of each chemical contained in the
mixture. The experimental results were compared with CA, IA, and
TSP mixture toxicity predictions [99]. Since it is not clear whether
chloroacetanilide has the same mode of action, Junghans et al.
elucidated the combined effects of various chloroacetanilide herbi-
cides with CA and IA, trying to understand whether it can be
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predicted by understanding the concentration-response relation-
ship of a single substance [100].

Deneer evaluated the usefulness of the concept of CA in terms
of the combined action of pesticides on aquatic organisms
[101]. When the concentration of the components of the mixture
is lower than their respective NOEC values, the concept of CA
provides a highly accurate prediction of the toxicity of the s-triazine
mixture and is uncorrelated to the level of effect considered and the
concentration of the components of the mixture. IA-based predic-
tions tend to underestimate the overall toxicity of the s-triazine
mixture [102].

In order to predict the toxicity of multicomponent mixtures
with the highest possible accuracy and to give reliable statistical
estimates of the low toxic effects of the individual mixture compo-
nents, CA is clearly not a universal solution. In the case where the
components are known to specifically interact with different molec-
ular target sites, IA has proven to be superior [103]. The algal joint
toxicity of the phenylurea mixture can be predicted by
CA. However, the concept of IA has proven to be equally effective,
both of which predict almost the same mixture toxicity [104].

The actual exposure scenarios in the field runoff water were
studied. The 25 pesticide mixtures showed good CA predictability
for the reproduction of freshwater algae Scenedesmus vacuolatus.
However, IA slightly underestimated the toxicity of the actual
mixture. The EC50 values for each prediction are only 1.3 times
different. In the so-called toxic units (TU), only a few components
dominate the mixed scenario [105]. The toxicity unit (TU)method
was used to test the synergistic relationship between atrazine and
various organophosphorus pesticides. The response model was not
always able to accurately predict the mixed toxicity of pesticides
with different modes of action [106].

10 Modeling Deviation

If the joint effects of chemicals in simple or complex mixtures are
inferred to deviate from CA and IA (or both), the presence of
chemical A alters the toxicity of compound B in the mixture,
which is the conceptual framework of chemical interactions. In
order to provide a basis to support and explain the underlying
mechanisms that lead to chemical interactions that affect the toxic-
ity of mixtures, Spurgeon et al. proposed a biology-based frame-
work. The framework combines (1) external exposure, including
speciation, binding, and transport; (2) toxicokinetics, including
absorption, distribution, metabolism, and excretion; and (3) toxic-
ity kinetics, including mutual interaction with receptor site effect.
In the case of mixtures, interactions can be classified as related to
processes caused by the above reasons. Once the nature and type of

In Silico Ecotoxicological Modeling of Pesticide Metabolites and Mixtures 575



potential interactions that may occur are determined, it is easier to
design the experimental method for studying the mechanism that
can lead to interactions [107]. To assess the deviation potential of
experimental toxicity predictions, the accuracy of the prediction
method was quantified by applying model deviation ratio (MDR)
to the CA and IA models. MDR is the ratio between observed and
predicted mixture toxicity. If the experimental value falls within half
or twice the predicted value (0.5 � MDR � 2), it is assumed that
the prediction method is met [98]. If the observed toxicity value of
the mixture falls within the 95% confidence interval for the
expected value of the CA or IA model, then the mixture is consid-
ered to be in accordance with the model. If the observed toxicity
value of the mixture exceeds the 95% confidence interval for the
expected value, the mixture may not conform to the additive model
(CA or IA model). However, models that are classified as antago-
nistic or synergistic must be avoided due to very small biologically
insignificant biases, and therefore the expected and observed toxic-
ity values are required to differ by at least 30%. The model deviation
ratio (MDR) method was used to quantitatively estimate the differ-
ence between predicted toxicity and measured toxicity. For the CA
model, MDR was derived by dividing the predicted toxicity value
(IC25) by the observed toxicity value. For the IA model, MDR is
obtained by dividing the observed effect by the predicted effect,
since concentration and toxicity are inversely proportional to the
response. For both models, an MDR value greater than 1.3 means
that the toxicity of the mixture is synergistic, while a value less than
0.7 is consistent with antagonism [108]. Di Nica et al. performed a
concentration assessment (CA) and a predictive assessment of the
independent effect (IA) model for the concentration-response
curves of different binary and multicomponent mixtures of QAC.
The consistency between the experimental and predicted ICx was
observed and confirmed by applying the model deviation ratio
(MDR) [98].

The measure of deviation from CA is the corrected toxicity
enhancement index cTEI, also known as the predictive quality
index or the relative model deviation ratio or effect residual rate
[109–111]. The ratio between CA prediction (EC50,CA) and exper-
imental EC50 is 2; the mixture produces a cTEI of �1 (if CA is
more effective than the experiment) and +1 (if the effectiveness of
CA is lower than the experiment) [112].

11 Computational Approach to the Toxicity Assessment

The ecological effects caused by pesticide mixtures are rarely con-
sidered in the regulatory process. However, precedents for mixtures
related to human health during the pesticide registration process
can be followed [113]. Measurement of the effects of exposure to
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sublethal concentrations of organophosphate diazido, malathion,
chlorpyrifos, and brain acetylcholinesterase inhibitors such as car-
baryl and carbofuran in juvenile coho salmon (Oncorhynchus
kisutch) were reported. It was assessed whether the chemicals in
the mixture act alone (resulting in additive AChE inhibition) or
whether the components interact to produce antagonistic or syner-
gistic toxicity [114]. LeBlanc and Wang used the data for the
website [Computational Approach to the Toxicity Assessment of
Mixtures (CATAM)] to analyze response additivity. It is assumed
that the observed effect is real, but it is not statistically significant
due to the low power of the experimental design [115]. Feron et al.
developed a hazard identification and risk assessment scheme for
complex mixtures and a consistent method for generating total
volatile organic compound values for indoor air. They used toxic
equivalent factors or alternative methods, as well as quantitative
structure-activity relationship analysis combined with lumping
analysis and physiological-based pharmacokinetic/pharmacody-
namic models to study complex mixtures [116]. Chèvre et al.
proposed a method for defining the risk quotient of a herbicide
mixture having a similar mode of action (RQm). This method has
the advantage of being easy to calculate and communicate and is
proposed as a substitute for the current limit of Switzerland herbi-
cides of 0.1 μg/L. From the concentration addition model, RQm

can be expressed as the sum of the measured environmental con-
centration and the WQC ratio of each herbicide. RQm should be
less than 1 to ensure acceptable risks to aquatic organisms
[117]. Competitive inhibition is often a concern at concentrations
above ambient exposure levels and is the most common type of
interaction in various types of mixtures. PBK modeling can play a
central role in predicting interactions in chemical mixture risk
assessment [118]. Boberg et al. suggest that chemicals for mixed
risk assessment should be grouped before we can better understand
the path of adverse outcomes. Grouping methods can be based on
integrated in vivo and in vitro data, read-across, and computational
methods such as QSAR models or integrated systems
biology [119].

12 Quantitative Structure-Activity Relationship (QSAR) Modeling

Baseline toxicity is the minimum toxicity caused by each com-
pound, that is, chemicals are inserted into the biological mem-
brane, disrupting structure and function [120]. The hydrophobic
descriptor commonly selected for baseline toxicity QSAR is the
octanol-water partition coefficient Kow, but the liposome-water
partition coefficient Klipw has been shown to be a better descriptor
because it allows the development of common QSAR for polar and
nonpolar baseline toxicants [121]. Since some of the chemicals
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studied were acids or bases added at pH 7, Klipw was replaced with a
liposome-water partitioning ratio of pH 7, Dlipw (pH 7) when
QSAR was applied [94]. Escher et al. developed a new QSAR
covering a large chemical space in which the iono-corrected lipo-
some-water partition ratio was used as the only descriptor for the
chemical-independent quantitative structure-activity model of the
Microtox assay. This baseline toxicity QSAR clearly includes major
water pollutants and ionizable chemicals. This baseline toxicity
QSAR can be used as a diagnostic tool to identify specific active
chemicals to obtain baseline toxicity equivalents for environmental
samples with unknown mixture compositions and to predict mix-
ture effects for mixtures of known composition [120]. Ghafourian
et al. compared the chemical space of their dataset with the skin
permeability datasets in previous literatures. Stepwise regression
analysis was used to develop the model. The predictability of the
model has been tested by a leave-many-out procedure. The pre-
dicted mean absolute error (MAE) was calculated as a measure of
model accuracy [122]. Toropova et al. used Monte Carlo techni-
ques to calculate the best descriptor based on SMILES. The uni-
variate correlation between the optimal descriptor and toxicity of
the binary mixture was analyzed to develop a predictive model with
satisfactory statistical quality [123].

Based on the comprehensive toxicity test results of benzene and
its derivatives to Vibrio fischeri by Lin and co-workers [124–126], a
QSAR model consisting of quantum-chemical parameters was
established to predict mixture toxicity [127]. The logarithm of
nuclear repulsion energy (log Enr) and HOMO-LUMO energy
difference (GAPh�l) were the significant descriptors. Furthermore,
the molar volume difference parameter (GAPVm) of the mixture
can increase the correlation between the structure and mixture
toxicity [127]. Chen et al. used molecular simulation techniques
to identify mode of inhibition. The pesticides have the same bind-
ing sites at the bottom of the luciferin pocket, and the combined
toxicity can be predicted by the concentration increase model. In
addition, there is a linear relationship between the binding free
energy of the mixture (ΔGmix) and the median effective concentra-
tion of the mixture (EC50) [128]. According to the information
from protein-chemical and protein-protein interaction networks,
Kim and co-workers trained machine learning models to classify
chemical mixtures and proposed a new method to predict synergis-
tic toxicity of binary mixtures against Vibrio fischeri [129].

In the study of Qin et al., a predictive QSAR model was
developed to predict the additive and nonadditive toxicity of binary
and multicomponent mixtures. The simple and accurate GA-MLR
model was effectively presented. Internal and external validation
was used to assess the predictive power of the QSAR model, which
has predictive power for high additive and nonadditive effects on
mixture toxicity. Furthermore, the proposed model provided a
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more accurate prediction of the antagonistic and synergistic toxicity
of the mixture compared to the CA and IA models. Therefore, the
QSAR model can be used to predict additive and nonadditive
toxicity of binary and multicomponent mixtures [130]. The toxic-
ity interaction of the mixture can be assessed by predicting the
results of CA (pEC50,CA) and IA (pEC50,IA) and the 95% CI of
EC50,Obs. the range of pEC50,CA or pEC50,IA values between the
upper and lower limits of 95% CI is a mixture exhibiting an additive
effect. Synergy and antagonism are considered to be nonadditive
effects. pEC50,CA or pEC50,IA less than the lower limit of 95% CI of
EC50,Obs indicates synergy, while pEC50,CA or pEC50,IA greater
than the upper limit of 95% CI of EC50,Obs indicates
antagonism [130].

The molecular descriptors (calculated using the Dragon 7.0
software) include constituent descriptors, topological descriptors,
connectivity indices, information indices, 2D autocorrelations, and
atom-centered fragments. The original molecular descriptors of
chemicals can be refined according to some principles
[131, 132]. For the feature selection, selecting the best variable
from the remaining descriptors can be obtained using the genetic
algorithm (GA) and combining a multiple linear regression (MLR)
model with several largest variables [133, 134]. The applicability
domain of QSAR model is defined by the leverage method of the
hat matrix. The method is based on the molecular descriptors of the
mixture [131, 135] and the identification of a mixture of standard
deviation residuals greater than 2.5 standard deviation units by
LOO cross-validation. Outliers in the QSAR model are defined as
h value greater than the warning level (h∗) and the LOO normal-
ized residual greater than 2.5, which are graphically depicted in the
Williams plot [130].

In the work of Sobati et al., the mixture descriptor was calcu-
lated using the molecular descriptors of the pure compounds con-
stituting the mixture and their mole fractions according to several
mixing rules. The authors used the enhanced replacement method
(ERM) as an effective tool for subset variable selection [136]. The
main statistical criteria in this study are the determination coeffi-
cient (R2), the mean absolute relative deviation (AARD), and the
root mean square deviation (RMSD). The main external statistical
verification methods are leave-one-out (LOO) and leave-n-out
(LNO) cross-validation technique, bootstrap technique,
y-randomization technique, and external validation. These techni-
ques have been briefly introduced in his article [136–139].

Gaudin et al. used a series of formulas to derive the mixture
descriptors used to develop the QSPR model of the mixture. They
considered the linear or nonlinear dependence of the flash point on
the concentration of each compound. The proposed best model
was a four-parameter model with a predicted average absolute error
of 10.3 �C [140].
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13 QSAR Modeling Based on Chemical Reactivity Theory

Here, we introduce the use of QSAR models based on chemical
reactivity theory (quantum four-element method), which can be
used to successfully predict the physicochemical properties and
toxicological endpoints of organic and inorganic compounds. In
practical applications, it provides a quick screening method for safe
chemical mixtures and a mechanistic interpretation of the toxicity
of chemical mixtures.

Chemical reactions are caused by potential molecular proper-
ties; therefore, some molecular parameters can be used as indicators
of chemical reactions. Important intermolecular forces include:
covalent bonding, ionic bonding, van der Waals force, and hydro-
philicity. These four forces are important variables that affect the
interaction of chemical mixtures and are associated with four types
of descriptors. This relationship has been able to study the reaction
mechanisms of various environmental characteristics of organic
pollutants. The quantum four-element model classifies electronic
attributes into four distinct properties (contact, non-contact,
deformable, and non-deformable) (Fig. 1) [141–146]. By combin-
ing two adjacent electronic properties, four major chemical bonds
or forces will be generated. The electrostatic interaction is a com-
bination of non-contact and non-deformable properties; a combi-
nation of deformable and contact properties form electron flow;
polarization is a combination of non-contact and deformable prop-
erties; non-deformable and contact electronic attributes form a
hydrophilic interaction. Therefore, according to the model para-
meters of the quantum four-element model, it can be known which
mechanism of action (electrostatic, electron flow, polarization,
hydrophilic interaction) causes a chemical reaction. In the quantum
four-element QSAR model, all descriptors are based on chemical
reactivity theory (Fig. 2), having specific physicochemical signifi-
cance and being independent of each other [147–149].

In a previous QSAR study of the present authors on mixture
toxicity of organic pollutants [143], four types of quantum four-
element mixture descriptors were used as initial parameter sets to
determine the appropriate QSAR model to evaluate the organic
compound mixture against Vibrio fischeri 15 min [124, 125, 127]
and the toxicity of Scenedesmus obliquus after 48 h of exposure
[150]. The 1/EC50M defining biological activity was the depen-
dent variable of the QSAR model. The combined toxic effects of
the mixture of organic compounds can be expressed by the mixture
descriptor, calculated as follows: D ¼ Σ xi Di, where Di is the value
of the selected descriptor and xi is the fractional concentration of
the mixture components. The descriptor value (D) is a measure of
the contribution of each component of the mixture to the overall
activity. The four types of mixture descriptors D were the
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independent variables: (1) charge acceptance and charge donation
chemical potential, (2) the maximum positive charge of hydrogen
atom and the maximum negative charge, (3) the maximum

Fig. 1 The correspondence between four types of quantum four-element reactivity indices and the Pearson’s
hard/soft definition [141–146]

Fig. 2 Conceptual density functional theory [147–149]
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nucleophilic and electrophilic condensed local softness, and (4) the
inverse of the apolar surface area. Multiple regression analysis was
performed using experimental measurements (1/EC50M) and mix-
ture descriptor D. The entire data set was divided into training sets
and test sets. In order to select the interpretation parameters, an
inverse elimination procedure is used to determine the basic para-
meters retained in the model.

The determination coefficient (R2) and the adjusted determi-
nation coefficient (R2

adj), leave-one-out cross-validated R2 (R2
CV),

standard deviation (SD), and ANOVA F-statistic (F) were used to
find the quality of the QSAR model. The results of MLR analysis
indicate that the maximum positive charge of hydrogen atom and
the inverse of the apolar surface area, representing electrostatic and
hydrophilic interactions, are the most important descriptors of the
mixture toxicity of benzene and its derivatives to Vibrio fischeri. It is
found that the electron acceptance chemical potential and the
maximum positive charge of hydrogen atom, representing electron
flow and electrostatic interaction, are the most important descrip-
tors of the joint toxicity of aromatic compounds to Scenedesmus
obliquus. This method provides a basis for explaining the interac-
tions that affect the toxicity of organic compound mixtures.

14 Conclusions

Transformation products are usually formed in complex matrices.
Because of their low concentration, separation and purification are
very difficult, and little is known about the ecotoxicological poten-
tial of parent compound and metabolite mixtures. In order to
minimize the test of vertebrates, in silico modeling has proven to
be a fast and inexpensive method. Data from the parent compounds
and the transformation products have been integrated to assess the
risk of the pesticide metabolite to the animal and the environment,
thereby prioritizing the contribution of the transformation product
to the overall environmental risk. The University of Minnesota
pathway prediction system (UM-PPS) is a rule-based system for
predicting microbial metabolites. For microbial communities in
different environments, different enzyme-catalyzed reactions can
occur at very different rates. This suggests that not only chemical
structures but also specific environmental conditions should be
considered, which can greatly improve biotransformation predic-
tion. To provide support and explain the underlying mechanisms
that lead to chemical interactions that then affect the toxicity of
mixtures, previous researchers have combined external exposure,
toxicokinetics, and toxicodynamics to propose a biology-based
framework. The use of quantum chemistry allows for a more
detailed study of pesticides and their metabolites, and it is possible
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to mimic the chemical reaction mechanisms of pesticides and their
transformation products and their degradation pathways.
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Identification of phototransformation pro-
ducts of thalidomide and mixture toxicity
assessment: an experimental and quantitative
structural activity relationships (QSAR)
approach. Water Res 49:11–22

32. Rastogi T, Leder C, Kümmerer K (2014)
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Designing green derivatives of β-blocker Met-
oprolol: a tiered approach for green and sus-
tainable pharmacy and chemistry.
Chemosphere 111:493–499

34. Gasser L, Fenner K, Scheringer M (2007)
Indicators for the exposure assessment of
transformation products of organic micropol-
lutants. Environ Sci Technol 41
(7):2445–2451

35. Kern S, Singer H, Hollender J, Schwarzen-
bach RP, Fenner K (2011) Assessing exposure
to transformation products of soil-applied
organic contaminants in surface water: com-
parison of model predictions and field data.
Environ Sci Technol 45(7):2833–2841

36. Fenner K, Schenker U, Scheringer M (2008)
Modelling environmental exposure to trans-
formation products of organic chemicals. In:
Boxall ABA (eds) Transformation products of
synthetic chemicals in the environment. The
handbook of environmental chemistry, vol 2P.
Springer, Berlin, Heidelberg

37. Latino DARS, Wicker J, Gütlein M,
Schmid E, Kramer S, Fenner K (2017)
Eawag-Soil in enviPath: a new resource for
exploring regulatory pesticide soil biodegra-
dation pathways and half-life data. Environ
Sci: Processes Impacts 19(3):449–464

38. Hernández-Moreno D, Blázquez M, Andreu-
Sánchez O, Bermejo-Nogales A, Fernández-
Cruz ML (2019) Acute hazard of biocides for
the aquatic environmental compartment from
a life-cycle perspective. Sci Total Environ
658:416–423
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Chapter 24

Combination of Read-Across and QSAR for Ecotoxicity
Prediction: A Case Study of Green Algae Growth Inhibition
Toxicity Data

Ayako Furuhama

Abstract

Effective prediction of the ecotoxicity of chemicals is important for environmental hazard and risk assess-
ment. A previously reported three-step strategy for predicting 72-h growth inhibition toxicity against the
green alga Pseudokirchneriella subcapitata has potential utility as a general framework for algal toxicity
prediction. This strategy, which combines read-across and quantitative structure–activity relationship
(QSAR), consists of a pre-screening process followed by three steps. At Step 1, an interspecies QSAR is
used to predict the toxicities of chemicals that satisfy a log D-based criterion. At Step 2, the toxicities of
nonpolar and polar narcotic chemicals (Class 1 and Class 2, respectively) are predicted with QSARs. At Step
3, read-across based on defined categories of chemicals is used for any remaining compounds. In this case
study, the generalizability of the three-step strategy was evaluated by applying it to a recently published data
set of 48-h growth inhibition toxicities against Pseudokirchneriella subcapitata. At the pre-screening stage,
new category definitions were required for each endpoint having different test conditions used to obtain the
data that were used to develop the strategy. Because the interspecies QSAR used at Step 1 requires 48-h
acute Daphnia magna toxicity (immobilization or mortality) as a descriptor, the fact that Daphnia magna
data were lacking or unreliable for some of the compounds in the data set limited the utility of the three-step
strategy. To circumvent this problem, read-across or local QSAR could be used instead of the interspecies
QSAR at Step 1. At Step 2, the QSAR for nonpolar narcotic chemicals developed for the three-step
strategy was applicable to the 48-h toxicity data set used in this case study; in contrast, the QSAR for polar
narcotics showed unreliable predictivity when tested on the 48-h toxicity data set. Therefore, the polar
narcotic QSAR was reconstructed so that it was applicable to the 48-h toxicity data. At Step 3, new
categories for read-across were introduced to deal with the 48-h toxicity data; specifically, the chemical
categories were classified into three types: Type A for toxic categories, Type B for categories applicable for
read-across, and Type C for categories that were difficult to classify for read-across.
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1 Introduction

The use of fish, daphnia, and algal toxicity data obtained by means
of standard ecotoxicity tests conducted according to test guidelines
(TGs) such as those developed by the Organisation for Economic
Co-operation and Development (OECD) [1–5], the International
Organization for Standardization (ISO), or the US Environmental
Protection Agency, combined with a scoring system to assess data
reliability [6], is a straightforward method for assessing the envi-
ronmental risks posed by chemicals. However, because adequate
ecotoxicity data are not available for all chemicals, prediction of
ecotoxicity is also important for risk assessment. Methods for rapid
ecotoxicity prediction are particularly desirable for the prioritiza-
tion and screening of chemicals for regulation. One practical strat-
egy for risk assessment is to develop and apply integrated
approaches to testing and assessment (IATA) [7]. As a part of
IATA, chemicals can be assessed on the basis of knowledge about
their modes or mechanisms of toxic action [8–12]. One of the
simplest effective ways to rapidly predict ecotoxicity is to use quan-
titative structure–activity relationship (QSAR) models when a
chemical falls into a category with a well-known mode of action.
Examples include the QSAR models in widely used predictive
systems, such as ECOSAR [13], which incorporate expert judg-
ments and/or follow known principles [14]. Another method is
the category approach, in which toxicity is predicted by means of
read-across on a case-by-case basis. In addition, combining read-
across and QSAR may be effective when implemented as a part of
IATA that use existing (eco)toxicity data.

In the case study described herein, a previously reported three-
step toxicity prediction strategy [15] that is based on algae growth
inhibition toxicities determined in accordance with OECD TG
201 [3] against Pseudokirchneriella subcapitata (also known as
Selenastrum capricornutum and Raphidocelis subcapitata) and
that combines read-across and QSAR is evaluated to assess its
applicability to a data set consisting of the 48-h Pseudokirchneriella
subcapitata toxicities of 309 chemicals [16].

The three-step strategy involves the following steps [15]:

l Pre-screening (referred to as preparation in ref. [15]): Does the
chemical contain certain specific structures? On the basis of
previous analyses [15, 17, 18], structural alerts are used to
identify outliers, such as pesticides, and chemicals with specific
(or unknown) modes or mechanisms of action, which are omit-
ted from the analyses used at Steps 1 and 2.

l Step 1: Does the chemical meet the criterion log P–log
DpH10 > 0? If the difference between the log of the octanol–
water partition coefficient (log P) and the log of the octanol–
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water distribution coefficient (logD) at pH 10 (logDpH10) for a
chemical is greater than zero, the chemical has the potential to
exist in ionized form and therefore meets the log D-based
criterion. Such chemicals can be expected to have similar toxicity
mechanisms (e.g., mechanisms related to membrane penetra-
tion) [17, 18] for both algae and daphnia, and therefore an
algae–daphnia interspecies QSAR can be used for algal toxicity
prediction. That is, for chemicals that meet this criterion, acute
Daphnia magna toxicity is likely to be a good descriptor for
predicting algal toxicity.

l Step 2: Does the chemical fall into Class 1 or Class 2? Chemicals
remaining after Step 1 are categorized as Class 1 (nonpolar
narcotic) or Class 2 (polar narcotic) according to the modified
Verhaar scheme [19–21], and their algal toxicities are estimated
by means of QSAR models.

l Step 3: Does the chemical fall into one of several defined cate-
gories? The chemicals omitted at the pre-screening stage and
chemicals remaining after Step 2 are subjected to a category
approach on the basis of expert judgments or empirical rules. At
this stage, if a chemical meets one of the defined categories in
existing algal toxicity data sets, its algal toxicity is estimated
quantitatively (by read-across) or qualitatively.

The main purpose of the three-step strategy is to predict algal
toxicities that can be used for rapid screening and prioritizing of
chemicals for further assessment. The QSAR models used in this
strategy express relationships between activity (ecotoxicity) and
physicochemical properties (either measured experimentally or cal-
culated from structural information); that is, the QSARs do not
involve read-across, even though (Q)SAR methods that do involve
both QSAR models and category approaches have been used in
regulatory contexts [14]. Interspecies correlations (i.e., interspecies
QSAR or quantitative activity–activity relationship) models
[22, 23] have also been used to predict the algal toxicities of
ionized chemicals under certain conditions [17, 18].

One purpose of the case study described herein was to deter-
mine how the test conditions used to measure algae growth inhibi-
tion toxicity influence the efficacy of the three-step strategy, the
predictivities of the models (e.g., interspecies QSARs) within it, and
read-across with the categories used in the strategy.

Note that the three-step strategy combines read-across and
QSAR, with categorization based on knowledges (Fig. 1). How-
ever, read-across and QSAR are not used simultaneously to predict
the algal toxicity. That is, the three-step strategy does not integrate
QSAR and read-across in the manner described by Benfenati et al.,
who assessed the bioconcentration factors of chemicals within a
weight-of-evidence framework [24].
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2 Data Preparation

In this case study, the three-step strategy was evaluated with data
reported by Kusk et al. [16], who recently determined 48-h 50%
effect concentrations (EC50 [mg/L]) for 425 organic chemicals
under identical conditions in growth inhibition tests against Pseu-
dokirchneriella subcapitata. Data for 309 of the 425 chemicals were
used in this study.

Most of the algal toxicity data used in the original work on the
three-step strategy were obtained by means of 72-h exposure tests
(except for some shorter-duration data obtained by means of OECD
TG 201) and are expressed as growth rates. Kusk et al. carried out
algae growth inhibition tests based on the procedures described in
the standard TGs, OECD TG 201 [3], and ISO 8692 [25] and used
average growth rate as the endpoint. However, these investigators
modified the test conditions described in ISO 8692 as follows: the
buffer capacity was higher, the initial biomass was low, and the test
duration was shorter (48 h rather than 72 h). Specifically, mini-scale
algae growth inhibition tests were conducted in closed glass vials
containing 4 ml of test medium and 17 ml of CO2-enriched head-
space. Instead of measuring the chemical concentration in the test
medium, Kusk et al. corrected the nominal EC50 value by using the
estimated phase distribution of the chemical: when the proportion of
a chemical in the water phase was estimated to be <90%, the EC50

was corrected by the proportion in the water phase. For example,
when 80% of a chemical was estimated to be in the water phase, the
corrected value was calculated as 0.8 � EC50 mg/L.

Fig. 1 Schematic of the algal toxicity prediction strategy using read-across and
QSAR. On the basis of substructures, modes or mechanisms of action,
physicochemical properties, and empirical rules, chemicals were categorized
as suitable for algal toxicity prediction by read-across or QSAR. This strategy did
not involve the integrational use of read-across and QSAR
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In this case study, the corrected EC50 values of Kusk et al. were
converted from units of milligrams per liter to units of millimoles
per liter (using the molecular weights of the chemicals available in
the supplementary data of ref. [16]) and then to the corresponding
common logarithmic values, log (1/EC50 [mM]). The modifica-
tions made by Kusk et al. to the standard test conditions—small,
closed test system, shorter test duration, and so on [16]—may have
influenced the measured algal toxicities. Even if the influence of the
measured algal toxicities of chemicals was minor compared with the
influence of differences between the tested algal species [26, 27],
the former might affect the efficacy of the three-step strategy.

The 309 chemicals used for this case study, along with their
algal log (1/48 h-EC50 [mM]) values, are listed in the online
resources (see Subheading 6 of this document). The data for
116 chemicals (425 minus 309) were excluded. Specifically, 36 che-
micals with EC50 values of >1000 mg/L were excluded. In addi-
tion, 80 chemicals for which an EC50 could not be established were
excluded; these were polyfluorinated compounds, compounds with
low water solubilities, and compounds for which the percentage of
the uncharged fraction in water was low. Note that although a
corrected EC50 for N-methyl-N,N-dioctyl-1-octanaminium chlo-
ride is listed in the supplemental data for ref. [16], this chemical was
also excluded from this case study because the percentage of the
uncharged fraction of this chemical in water was low.

3 Methods

The three-step strategy for predicting algal toxicities was developed
with algae growth inhibition toxicities determined by the Japanese
Ministry of the Environment in 2015 (http://www.env.go.jp/
chemi/sesaku/02e.pdf) in accordance with OECD TG 201 [3]. In
this case study, the three-step strategy was applied to the algal
toxicities determined by means of the modified protocol reported
by Kusk et al. [16]. The three-step strategy is a hierarchical one that
comprises an interspecies QSAR model, two QSAR models, and
read-across. Specifically, the strategy considers 48-h acute Daphnia
magna EC50 values (Step 1), mechanisms and modes of action
(Steps 2 and 3), and structural profiles (Step 3), as well as physico-
chemical properties for read-across or local QSAR.

For calculation of the physicochemical properties of the
309 selected chemicals, the structure of each chemical was expressed
as a SMILES string [28]. Minor components in the SMILES string,
such as the hydrogen chloride in amycin hydrochloride (also referred
to as tetracycline hydrochloride), were removed; the minor compo-
nent means [H]Cl in O¼C(N)C¼1C(¼O)[C@@]2(O)C(O)¼C3C
(¼O)c4c(O)cccc4[C@](O)(C)[C@H]3C[C@H]2[C@H](N(C)C)
C¼1O.[H]Cl. Salts were converted into their neutral forms, except
in the case of ammonium and pyridinium ions, which were defined
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by means of SMARTS notation [29] expressed as [#7v4+]. The
modified SMILES strings used for the physicochemical property
calculations are listed in Table I, which is available at https://doi.
org/10.6084/m9.figshare.8107646.v1.

For selection of chemicals at Step 1 and for quantitative analy-
sis at Steps 2 and 3, log P values were calculated by means of the
ACD/Labs software [30] using the Consensus LogP module and
are referred to hereafter as log P(1) values. The values of log DpH10

were calculated by means of the ACD/LogD software [31] using
the Consensus LogP and GALAS pKa modules. Additionally, the
following physicochemical properties were estimated by means of
the GALAS algorithm in the ACD/Labs software [30]: intrinsic
solubility (i.e., solubility of the neutral form, log S0 [mol/L]) in
water at 25 �C; and solubility in pure water along with the pH of
the resulting solution (log Sw [mol/L] with a defined pH).

For evaluation of the interspecies QSARmodel (Step 1) defined
in the original work on the three-step strategy, 48-h immobilization
toxicities (EC50 [mg/L]) or 50% lethal concentrations (LC50

[mg/L]) against Daphnia magna for the chemicals categorized at
Step 1 in this case study were collected from the QSAR Toolbox
(ver. 4.3) [32]. EC50 or LC50 values that exceeded the solubility limit
of the chemical in water and/or that were >100 mg/L were
excluded from the data set. If, for a given chemical, acute Daphnia
magna toxicity values determined bymeans of two or more than two
tests were available, the geometric mean of all the available values was
used. The test conditions under which the acute Daphnia magna
toxicity data used here were obtained were inconsistent; however, it
would be ideal to compare the results using data obtained by means
of a standard TG such as OECD TG 202 [4], which was used for
almost all the 48-h acute Daphnia magna EC50 values used in the
development of the three-step strategy [15].

In accordance with the three-step strategy, at Step 2 of this case
study, chemicals were categorized as Class 1 (nonpolar narcotic) or
Class 2 (polar narcotic) by means of the modified Verhaar scheme
[19–21] as implemented in the Toxtree software [33, 34]. Addition-
ally, in accordance with the original Verhaar scheme, chemicals for
which 0 < log P(1) < 6 and chemicals with ionic groups were
excluded from both Class 1 and Class 2. Values of the heat of
formation (HF), a quantum chemical descriptor previously used for
linear regression analyses [15], were calculated using the AM1Ham-
iltonian [35] by means of the MOPAC 7 program [36]. For these
HF calculations, the three-dimensional structure of each chemical
was defined according to the method used in ref. [15]. Another
descriptor used for the linear regression analyses at Step 2 was the
hydrophobicity parameter log P(1), as described in ref. [15].

In the original work on the three-step strategy, six structural
alerts (SA 1–SA 6) were applied during pre-screening: the SMARTS
notations for these alerts are [SH][#6][$([#6H3,#6H1]),$([#6]
([#6])([#6]))], c2c([OH1])[cH1]c([Nv3H2])[cH1]c2, [Nv3H2]
[CH2][CH2][Nv3H1,OH1], [OH1]C(¼O)[$([CH1]¼[CH2]),
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Table 1
Structural alerts and categories used at the pre-screening stage

Alert or category Example compounds

SA 1

Thiophenol

1-Decanethiol

SA 2

3-Aminophenol

SA 3

Triethylenetetramine

Ethanolamine

SA 4

Acrylic acid

Chloroacetic acid

SA 5
(includes hydroxybenzophenones
and antibiotics related to triclosan)

2-Hydroxybenzophenone

Triclosan

(continued)
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Table 1
(continued)

Alert or category Example compounds

SA 6

Anilazine

Chemicals in the Toxic
category in ref. [15]

(includes ammonium,
hydrazine, and oxime
compounds; see Table 5
of ref. 15)

Ethanaminium, 2-hydroxy-N,N,N-trimethyl-

1,5-Diphenylcarbazone

2-Butanone oxime

Parabens

Ethylparaben

Tetracycline antibiotics

Tetracycline

Pesticides Pesticides listed in The Pesticide Manual [37, 38]
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$([CH2]Cl)], c[O,C]cc[OH], and n, respectively. Typical com-
pounds containing these alerts are shown in Table 1. Chemicals
listed in The Pesticide Manual [37, 38] were placed in the Pesticides
category because such chemicals show specific modes or mechan-
isms of action. Chemicals with specific modes or mechanisms of
action must be considered as possible outliers. Additionally,
because the set of chemicals and the test conditions used by Kusk
et al. differed from those used to develop the three-step strategy,
additional structural alerts were designated by means of outlier
analysis during pre-screening, and different categories were used
at Step 3.

4 Results and Discussion

The proportions of chemicals categorized at Steps 1–3 are depicted
in Fig. 2. Most of the chemicals were categorized at Step 3, owing
to the additional structural alerts required for the algal toxicity data
set of Kusk et al. For example, the parabens (alkyl esters of p-
hydroxybenzoic acid), which are widely used as preservatives [39],
were categorized at Step 1 in the original work on the three-step
strategy, but in this case study, they were categorized at Step 3 for
the following reason. In accordance with OECD TG 201 [3], the
experimentally determined 72-h algal EC50 values for ethylparaben,
propylparaben, and butylparaben reported by Yamamoto et al. are
52, 36, and 9.5 mg/L, respectively [40, 41]. In contrast, the 48-h
algal EC50 values for these chemicals measured by Kusk et al. were
0.4, 0.17, and 0.099 mg/L, respectively. The two orders of mag-
nitude difference between the two sets of values is large enough to
suggest that it may be due to something other than, or in addition
to, the difference in test duration (such as the data analysis method
or some other specific test conditions). Therefore, in this case study,
these three chemicals were categorized at Step 3, having been
identified as outliers by means of the additional structural alerts
used at the pre-screening stage.

Fig. 2 Schematic showing the steps at which the 309 chemicals selected from
the algal toxicity data set of Kusk et al. [16] were dealt with
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4.1 Pre-screening The three-step strategy begins with a pre-screening process. When
the strategy was applied to the algal toxicity data set of Kusk et al.,
structural alerts SA 1–SA 6, the category Pesticides, and, as men-
tioned in Subheading 4, additional structural alerts were applied to
select outlier chemicals. The structural alerts and categories used
for pre-screening of the chemicals in the data set of Kusk et al. are
listed in Table 1, along with example compounds. The chemicals
categorized as outliers in the pre-screening process are listed in
Table VI, which is available at https://doi.org/10.6084/m9.
figshare.8107646.v1.

In the original work on the three-step strategy, chemicals with
ammonium, aromatic or aliphatic hydrazine, or oxime substructures
were categorized asToxic at Step 3 (see Table 5 of ref. 15), with a note
indicating that some of these chemicals would be ionized at pH 10.
Chemicals in this category should be eliminated at the pre-screening
stage so that they are not included among the Step 1 chemicals.

Chlortetracycline hydrochloride and tetracycline hydrochloride
(referred to as amycin hydrochloride) were categorized as tetracy-
cline antibiotics with specific modes of action. The 48-h algal EC50

values determined by Kusk et al. (0.11 and 0.35 mg/L, respec-
tively) were lower (indicating higher toxicity) than the 72-h algal
EC50 values (3.1 and 2.2 mg/L) determined in accordance with
ISO 8692 [25] by Halling-Sørensen [42]. In addition, Yang et al.
also measured lower toxicities for these two compounds: the con-
centrations that caused 50% growth inhibition (72 h) were 1.8 and
1.0 mg/L for chlortetracycline hydrochloride and tetracycline,
respectively [43]. Both of these antibiotics would be ionic at
pH 10, as indicated by their pKa values estimated by ACD/Labs
[30], and could be categorized at Step 1 initially. However, the
48-h Daphnia magna EC50 of chlortetracycline hydrochloride
[44], the 48-h Daphnia magna EC50 of chlortetracycline [45],
and the 48-h Daphnia magna no-observed-effect concentration
(an EC50 could not be determined for this compound) of tetracy-
cline [46] are reported to be 127.4, 225, and 340 mg/L, respec-
tively. Even though the tested compounds differed with regard to
the presence or absence of hydrochloride, the difference between
the 48-h algal EC50 and acute Daphnia magna EC50 values is
approximately 1000-fold, and therefore, the Step 1 interspecies
QSAR (discussed in the Sect. 4.2) could not be applied to these
compounds. Instead, structural information about the compounds
(i.e., their categorization as tetracycline antibiotics) was used to
identify them as outliers in the data set of Kusk et al.

In addition to chemicals in the Pesticides category, UV absor-
bers and antibiotics or biocides (see http://www.oecd.org/
chemicalsafety/pesticides-biocides/biocides.htm) may be candi-
dates for pre-screening owing to their specific modes or mechan-
isms of actions.
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4.2 Step 1:

Interspecies QSAR

Eighty-three of the chemicals remaining after pre-screening satis-
fied the logD-based criterion and were carried to Step 1. However,
measured 48-h acute Daphnia magna toxicities were available for
only 32 of the 83 chemicals (39%). The correlation between 48-h
algal toxicity and acute Daphnia magna toxicity for this test set of
32 chemicals took the form

log 1=48h‐algal EC50 mM½ �ð Þ ¼ 0:86da þ 0:25,

�0:43 � da � 4:94,

n ¼ 32, r2 ¼ 0:76, r2adj ¼ 0:75, q2LOO ¼ 0:73, s ¼ 0:69,RMSE ¼ 0:67,

ð1Þ
where da, n, r2, r2adj, q2LOO, s, and RMSE indicate the 48-h
measured acuteDaphnia magna log (1/E(L)C50 [mM]), the num-
ber of chemicals, the coefficient of determination, the coefficient of
determination adjusted for the number of degrees of freedom, the
leave-one-out cross-validated coefficient of determination, the
standard error, and the root-mean-square error, respectively.

The interspecies QSAR in the original work (Eq. 2 in Table 3 of
ref. 15) and the statistical values for the prediction, which were
estimated with the test set (i.e., the data used to construct Eq. 1),
were as follows:

log 1=72h‐algal EC50 mM½ �ð Þ ¼ 0:98da � 0:03,

�0:89 � da � 4:27,

n ¼ 103, r2 ¼ 0:81, r2adj ¼ 0:81, q2LOO ¼ 0:80, s ¼ 0:47,

ntest ¼ 32,Q 2
F1ð Þ ¼ 0:77,Q 2

F2ð Þ ¼ 0:74,RMSEP ¼ 0:70,

ð2Þ

where ntest is the number of chemicals used for calculating the
statistical values for the prediction (i.e., for external validation);
Q2

(F1) and Q2
(F2) correspond to the correlation between the

measured and predicted toxicities in the test set, as described
below; and RMSEP is the RMSE of prediction for the test set.
Algal toxicity data for two linear primary amines, hexadecylamine
and pentadecylamine, were used to derive Eq. 1 and to calculate the
statistical values for Eq. 2. However, the 48-h acute Daphnia
magna toxicities (da) for these two amines were 4.8 and 4.9,
respectively, which are outside the da range specified for Eq. 2.
When these amines were omitted from the calculation of the statis-
tical values for external validation (ntest ¼ 30), Q2

(F1), Q
2
(F2), and

RMSEP were 0.72, 0.69, and 0.70, respectively. These values indi-
cate that even though the da values for these two amines were
outside the descriptor domain for Eq. 2, inclusion of these com-
pounds seemed not to decrease the predictivity of the QSAR, as
indicated by comparison of the Q2

(F1) and Q2
(F2) values.

According to Roy et al. [47], models with Q2
(F1) or Q2

(F2)

values of >0.5 are regarded to have good predictivity, whereas
Golbraikh and Tropsha [48] specified the threshold of predictive
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models which is agreed to be 0.7 in the case of Q2
(F1) and Q2

(F2).
The calculation of Q2

(F1) involves the average of the measured
toxicities in the training data set (A), whereas the calculation of
Q2

(F2) involves the average of the measured toxicities in the test
data set (B): Q2

(F1) ¼ 1 � Σ(Xmi � Xpi)
2/Σ(Xmi � A)2 and

Q2
(F2) ¼ 1 � Σ(Xmi � Xpi)

2/Σ(Xmi � B)2, where Xmi and Xpi
indicate the measured and predicted toxicities, respectively, in the
test data set. These definitions and criteria (thresholds) for other
statistical values for external validation are available in the literature
[47, 48]. In this case study, Q2

(F1) and Q2
(F2) met the >0.7 crite-

rion (except that Q2
(F2) for ntest ¼ 30 was 0.69), confirming that

the interspecies QSARmodel was predictive. It might be possible to
improve the statistical values if uniform 48-h acuteDaphnia magna
toxicity values (da) were used—that is, if the data were generated at
one laboratory by using a single test protocol or by following a
harmonized protocol for Daphnia sp. acute immobilization tests,
such as OECD TG 202 [4].

Upon implementation of the interspecies QSAR at Step 1, two
problems became immediately apparent. First was the lack of
measured acute Daphnia magna toxicity data; for 61% of the
Step 1 chemicals in the data set of Kusk et al., no data were
available. If measured acute Daphnia magna toxicity data had
been available for all 83 chemicals at Step 1, additional outlier
chemicals that were unsuitable for the interspecies QSAR model
might have been proposed, as discussed in the section on
pre-screening (e.g., for the tetracycline antibiotics). Second, the
uncertainty of the measured acute Daphnia magna toxicity data
that were used for external validation in Eq. 2 remained. The model
predictivity evaluated by means of the criterion for Q2

(F1) or Q
2
(F2)

could not guarantee the data quality. For example, some of the
toxicity data were nominal concentrations; and others were
measured concentrations or were corrected by means of a defined
rule (e.g., Kusk et al. corrected the EC50 values for some of the
chemicals in their data set on the basis of the estimated concentra-
tion of the chemical in the water phase [16]; see Subheading 2).
These problems could be solved by using acute Daphnia magna
toxicity values estimated by QSAR instead of measured toxicity
values. However, because most of the QSAR models in ecotoxicity
prediction systems (e.g., ECOSAR [13] and KATE [49]) use log
P as a descriptor, the predicted values for the Step 1 chemicals that
satisfy the log P(1) � log DpH10 > 0 criterion might be less stable
than the predicted values for unionized chemicals. In addition, a
study comparing eight software packages for modeling acuteDaph-
nia magna toxicities suggested that the problems with the utility of
the models for toxicity prediction were due to the unreliability of
the toxicity data [50].

602 Ayako Furuhama



At Step 1, to overcome the lack of measured acute Daphnia
magna data and the unreliability of some of the available data,
subcategories were introduced so that read-across or local QSAR
could be performed by using the distribution coefficients or the
solubilities of the chemicals. For example, for the 31 Step 1 che-
micals categorized as primary aliphatic amines but not amides
(as indicated by the SMARTS notation [NX3H2;!$(NC¼O)]; see
Table II, which is available at https://doi.org/10.6084/m9.
figshare.8107646.v1, for a list of these amines), the correlation
between algal toxicity and log S0 took the form

logð1=48h‐algal EC50 ½mM�Þ ¼ �0:62 log S0 � 0:06,

� 7:46 � log S0 � 1:17,

n ¼ 31, r2 ¼ 0:80, r2adj ¼ 0:79, q2LOO ¼ 0:77, s ¼ 0:77,RMSE ¼ 0:75:

ð3Þ

The statistical parameters indicate that the category designated
“primary aliphatic amines ionized at pH 10” can be used for read-
across prediction of algal toxicity. Additionally, Eq. 3 was con-
structed with more than 30 data points, and it can be reliably
used as a local QSAR for a subcategory of chemicals in the data
set of Kusk et al. In another example, for Step 1 chemicals that were
categorized as anilines with carboxylic acid moieties (but were not
polyaromatic compounds such as naphthalene and anthracene and
did not have a methyl group attached to an aromatic ring; SMARTS
notation c[NX3H2] combined with [CX3](¼O)[OX2H1] and c
[C!H3])—that is, the chemicals with IDs 94, 95, and 213 in
Table II (available at https://doi.org/10.6084/m9.figshare.
8107646.v1)—the correlation between algal toxicity and log S0
was given by

log 1=48h‐algal EC50 mM½ �ð Þ ¼ �1:14 log S0 � 1:95,

�2:19 � log S0 � �0:96,

n ¼ 3, r2 ¼ 0:97, s ¼ 0:17:

ð4Þ

Equation 4 represents read-across constructed under very spe-
cific conditions; if anilines containing either a polyaromatic moiety
or a moiety with SMARTS notation c[CH3] were included, the fit
was poor (high r2 and low s); and if log Sw was used as a descriptor
instead of log S0, r

2 decreased to 0.36. These results are difficult to
explain but may be due to the unreliability or ambiguity of results
predicted by read-across, as discussed by Benfenati et al. [24].

4.3 Step 2: QSARs

for Nonpolar and Polar

Narcotic Chemicals

Thirty-seven (12%) of the 309 chemicals analyzed in this case study
were categorized as either nonpolar narcotic (Class 1, n ¼ 25) or
polar narcotic (Class 2, n ¼ 12) and were dealt with a Step 2.

For the Class 1 chemicals, the correlation between 48-h algal
toxicity and log P(1) and the multiple linear regression model
involving HF and log P(1) took the following forms:
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log 1=48h‐algal EC50 mM½ �ð Þ ¼ 0:71 log P 1ð Þ � 1:16,

0:72 � log P 1ð Þ � 5:85,

n ¼ 25, r2 ¼ 0:83, r2adj ¼ 0:83, q2LOO ¼ 0:80, s ¼ 0:51,RMSE ¼ 0:49;

ð5Þ

log 1=48h‐algal EC50 mM½ �ð Þ ¼ 0:68 log P 1ð Þ þ 0:002 HF� 1:02,

0:72 � log P 1ð Þ � 5:85, � 112:7 � HF � 78:3,

n ¼ 25, r2 ¼ 0:84, r2adj ¼ 0:82, q2LOO ¼ 0:80, s ¼ 0:51,RMSE ¼ 0:48:

ð6Þ

For the Class 2 chemicals, the correlation between 48-h algal
toxicity and log P(1) and the multiple linear regression model
involving HF and log P(1) were given by Eqs. 7 and 8, respectively:

log 1=48h‐algal EC50 mM½ �ð Þ ¼ 0:64 log P 1ð Þ � 0:38,

1:17 � log P 1ð Þ � 4:77,

n ¼ 12, r2 ¼ 0:78, r2adj ¼ 0:76, q2LOO ¼ 0:68, s ¼ 0:39,RMSE ¼ 0:36;

ð7Þ

logð1=48h‐algal EC50 ½mM�Þ ¼ 0:53 log Pð1Þ � 0:009 HF� 0:04,

1:17 � log Pð1Þ � 4:77, � 22:1 � HF � 37:8,

n ¼ 12, r2 ¼ 0:80, r2adj ¼ 0:76, q2LOO ¼ 0:68, s ¼ 0:40,RMSE ¼ 0:34:

ð8Þ

Notably, the introduction of the quantum mechanical descrip-
tor HF slightly decreased the correlations (r2adj) and increased the
standard errors (s) (compare Eq. 6 with Eq. 5 and Eq. 8 with
Eq. 7). For both Class 1 and Class 2 chemicals, log P(1) correlated
well with algal toxicity, and HF could be ignored or over-fitted.

The QSAR for the Class 1 chemicals in the original work on the
three-step strategy (Eq. 5 of Table 3 in ref. 15) and the statistical
values for the prediction, which were estimated by using the test set
(i.e., the Class 1 chemicals in the data set of Kusk et al.), were as
follows:

log 1=72h‐algal EC50 mM½ �ð Þ ¼ 0:95 log P 1ð Þ � 1:86,

1:72 � log P 1ð Þ � 5:85,

n ¼ 59, r2 ¼ 0:82, r2adj ¼ 0:82, q2LOO ¼ 0:81, s ¼ 0:35,

ntest ¼ 25,Q 2
F1ð Þ ¼ 0:79,Q 2

F2ð Þ ¼ 0:73,RMSEP ¼ 0:62:

ð9Þ

Note that Q2
(F1) and Q2

(F2) for Eq. 9 were >0.7; that is, they
satisfied the predictivity criterion specified above. The log P
(1) values for 6 of the 25 chemicals in the test set were outside
the descriptor range specified for Eq. 9 (1.72 � log P(1) � 5.85):
dichloromethane; 2-methyl-2-propanol; methanone,
dicyclopropyl-; trichloroethanol; 1-propene,3-ethoxy-; and
2-hexanone. When these six chemicals were omitted (ntest ¼ 19),
Q2

(F1), Q
2
(F2), and RMSEP were 0.75, 0.74, and 0.54, respectively.

These Q2
(F1) and Q2

(F2) values also satisfied the >0.7 predictivity
criterion. However, when only 1-propene,3-ethoxy- (log P
(1) ¼ 1.3) was omitted, the RMSEP decreased significantly; the
measured 48-h algal EC50 of this compound is reported to be
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6.7 mg/L, whereas the EC50 predicted by Eq. 9 was 363 mg/L.
The predictivity for Class 1 chemicals other than 1-propene,3-
ethoxy- was not reduced if the hydrophobicity range for Class
1 compounds (0 < log P(1) < 6) was used. Additionally, when
1-propene,3-ethoxy- was omitted from the test set, the resulting
QSAR took the form

log 1=48h‐algal EC50 mM½ �ð Þ ¼ 0:75 log P 1ð Þ � 1:35,

0:72 � log P 1ð Þ � 5:85,

n ¼ 24, r2 ¼ 0:89, r2adj ¼ 0:88, q2LOO ¼ 0:87, s ¼ 0:43,RMSE ¼ 0:41:

ð10Þ
The statistical values related to goodness of fit and robustness

for Eq. 10 were better than those for Eq. 5. Moreover, the coeffi-
cient for log P(1) for Eq. 10 was higher than that for Eq. 5, and the
intercept was lower; that is, the shape of Eq. 10 became more
similar to that of typical nonpolar narcotic QSAR models with a
log P descriptor: the hydrophobicity coefficients and the intercepts
of simple linear regression models generated with 48-h and 96-h
Pseudokirchneriella subcapitata toxicity data for nonpolar narcotic
chemicals are usually >0.9 and <�1.5, respectively [51–53]. A
typical example is the model developed by Fu et al. [54] for Pseu-
dokirchneriella subcapitata data, which uses a hydrophobicity
parameter (calculated log P from KOWWIN, log KOW, in the
EPI Suite [55] rather than Consensus LogP) and data for a variety
of endpoints, such as 48-h growth rate and yield and 72-h and 96-h
growth rates:

logð1=algal EC50 ½mM�Þ ¼ 0:940 log P � 1:85,

n ¼ 76, r2 ¼ 0:93, s ¼ 0:34,F ¼ 942,
ð11Þ

where F is Fisher’s criterion. The units of toxicity—log (1/algal
EC50 [M]), not log (1/EC50 [mM])—and the notation for hydro-
phobicity, log KOW, not log P, and other statistical values in the
original paper [54] were changed for comparison of Eqs. 9 and 11.
In Eq. 9, the hydrophobicity coefficient and the intercept are
almost identical to those in Eq. 9 (the equation for the Class
1 chemicals in the original work on the three-step strategy).
Because the reported nonpolar QSAR models (e.g., Eq. 11) were
stable, QSARs for predicting the Pseudokirchneriella subcapitata
toxicity of the Class 1 (nonpolar narcotic) chemicals could be
used to screen untested chemicals.

Similarly, the QSARmodels for Class 2 chemicals in the original
work on the three-step strategy (Eqs. 7 and 8 in Table 3 of ref. 15),
and the statistical values for the prediction, were as follows:
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logð1=72h‐algal EC50 ½mM�Þ ¼ 0:95 log Pð1Þ � 0:96,

1:17 � log Pð1Þ � 4:31,

n ¼ 29, r2 ¼ 0:71, r2adj ¼ 0:70, q2LOO ¼ 0:65, s ¼ 0:49,

ntest ¼ 12,Q 2
ðF1Þ ¼ 0:53,Q 2

ðF2Þ ¼ 0:47,RMSEP ¼ 0:56,

ð12Þ

logð1=72h‐algal EC50 ½mM�Þ ¼ 0:86 log Pð1Þ þ 0:016 HF� 1:03,

1:17 � log Pð1Þ � 4:31, � 52:58 < HF < 76:73,

n ¼ 29, r2 ¼ 0:86, r2adj ¼ 0:85, q2LOO ¼ 0:84, s ¼ 0:35,

ntest ¼ 12,Q 2
ðF1Þ ¼ 0:67,Q 2

ðF2Þ ¼ 0:63,RMSEP ¼ 0:47:

ð13Þ

The Q2
(F1) for Eq. 12 and the Q2

(F1) and Q2
(F2) values for

Eq. 13 satisfied the predictivity criterion specified by Roy et al.
[47] (>0.5) but not the criterion specified by Golbraikh and Trop-
sha (>0.7) [48]. The Q2

(F2) for Eq. 12 was <0.5, and the Q2
(F2)

and RMSEP values for Eq. 12 were smaller and larger than those
for Eq. 13, which indicates that for the Class 2 chemicals, the
predictivity of the simple linear regression model was poorer than
that of the multiple regression model. When a test set chemical with
a log P(1) value outside the range for Eqs. 12 and 13 (n-heptylani-
line, log P(1) ¼ 4.56) was omitted (ntest ¼ 11), Q2

(F1), Q
2
(F2), and

RMSEP for Eq. 12 were 0.50, 0.34, and 0.55, respectively; and the
corresponding values for Eq. 13 were 0.61, 0.47, and 0.49. These
values were worse than those for ntest ¼ 12. That is, the predictivity
of the model expressed by Eq. 12 with ntest ¼ 11 was poorer than
that with ntest ¼ 12. Additionally, the use of the quantum chemical
descriptor HF improved the goodness of fit and robustness of the
QSAR in the original work on the three-step strategy (Eq. 13
herein). In contrast, comparison of Eqs. 7 and 8 herein suggests
that HF can be ignored for the Class 2 QSAR model constructed
with the data set of Kusk et al. Fu et al. [54] also evaluated correla-
tions between algal toxicity and hydrophobicity using Pseudokirch-
neriella subcapitata toxicity data obtained at test durations of
48 and 72 h; differences in the test duration were found to affect
the correlation for polar narcotic chemicals but not for nonpolar
narcotic chemicals. Overall, the results described herein indicate
that the Class 2 QSAR models in the original work on the three-
step strategy (QSARmodels based on 72-h algal toxicity tests) were
not applicable to the 48-h algal toxicity data set of Kusk et al.

4.4 Step 3:

Categorizations

for Read-Across

Discrepancies between the 72-h algal toxicity data used in the
original work on the three-step strategy and the 48-h algal toxicity
data of Kusk et al. were revealed at the pre-screening stage and in
the QSAR models for the Class 2 chemicals at Step 2. Therefore,
for the 189 chemicals remaining at Step 3, new categories were
proposed for the data set of Kusk et al.; these new categories were
based in part on knowledge about the categories in the original
work and in part on correlations between toxicity and log P
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(1) (hydrophobicity) or water solubility, which are applicable for
read-across (or even for local QSARs).

Three types of new categories were introduced: Type A,
Type B, and Type C (Table 2). Chemicals in the Type A categories
have potentially high algal toxicity, and those in the Type B cate-
gories are chemicals for which a category approach with read-across
is applicable. Chemicals in the Type C categories are somewhat
toxic, but their toxicities could not be predicted by means of a
simple descriptor. If data for some similar chemicals making a
subcategory were available, read-across for chemicals in the Type
C categories was possible in some cases. However, for some of the
48-h algal toxicity data of Kusk et al., the use of read-across with a
simple descriptor or categories (without considering mechanisms
and modes of action) was questionable. Notably, the chemical
categories defined by the structural alerts in the section on
pre-screening might be useful for read-across. For example, in the
original work on the three-step strategy, chemicals having a thiol
group (SA 1) were assigned to a read-across category, and a strong
correlation was observed between their log (1/72-h algal EC50

[mM]) and log P(1) values (R2 ¼ 0.92, n ¼ 5; Eq. 10 in Table 3
of ref. 15). Additionally, Yamamoto et al. showed that for parabens,
there is a clear correlation between log (1/72-h algal EC50 [mM])
and log D at pH 7 (R2 ¼ 0.75, n ¼ 7; Fig. 2 in ref. [40]).

Among the outliers discussed in the section on pre-screening,
the parabens and the tetracycline antibiotics (Table 1) were poten-
tially highly toxic. Some of the chemicals categorized as Pesticides
showed low toxicity, but 60% of the pesticides had EC50 values of
<1 mg/L (“very toxic”), as indicated in the abstract of ref. [16]. In
this case study, parabens, tetracycline antibiotics, and pesticides
were designated as Type A.

The 48-h algal toxicities of the Type B chemicals can be used to
read-across under the structure-based categories described in
Table 2. For the Type B chemicals that would not be ionic at
pH 10, log P(1) was used as a descriptor. In contrast, because
some of the chemicals in the Combined chemicals Type B category
(e.g., ammonium compounds) would be partially or fully ionic at
pH 10, water solubility was introduced as a descriptor for those
compounds.

The simple linear regression model for compounds in the
Aliphatic chemicals Type B category took the form

logð1=48h‐algal EC50 ½mM�Þ ¼ 0:56 log Pð1Þ � 0:82,

1:17 � log Pð1Þ � 5:59,

n ¼ 14, r2 ¼ 0:72, r2adj ¼ 0:70, q2LOO ¼ 0:44, s ¼ 0:53,RMSE ¼ 0:49:

ð14Þ

The low robustness (q2LOO <0.5) arose from the high residual
between the predicted and measured values for N,N-diethyldode-
canamide. However, when this chemical was omitted, the statistical
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Table 2
List of Types A, B, and C categories for the 189 Step 3 chemicals from the 48-h algal toxicity data set
of Kusk et al.a

Type A (n ¼ 55): Identified as potentially highly toxic at the pre-screening stage

Parabens (n ¼ 3)

Tetracycline antibiotics (n ¼ 2)

Pesticides (n ¼ 50)

Notes: All the parabens and tetracycline antibiotics had EC50 values of <1.0 mg/L. Among the
50 pesticides, 30 had EC50 values of <1.0 mg/L. Four of the pesticides showed low toxicity (EC50

>50 mg/L and log (1/EC50 [mM]) <1): 2,20-oxybis[1-chloropropane] (a nematicide,
EC50 ¼ 221 mg/L); 1-propanone,1,1,1,3,3,3-hexachloro- (a herbicide, 99 mg/L); triclopyr
(a herbicide, 201 mg/L); and cyromazine (an insecticide, 47 mg/L)

Type B (n ¼ 81): Showed good correlation between toxicity and hydrophobicity (or solubility),
suitable for read-across

Aliphatic chemicals (n ¼ 14)

Anilines (n ¼ 14)

Aromatic chemicals (n ¼ 32)

Combined chemicals (n ¼ 21)

Notes:
Aliphatic chemicals included simple aliphatic aldehydes, aliphatic amides, aliphatic ketones, aliphatic
aldehydes, aliphatic sulfides, aliphatic esters, aliphatic vinyl ester, and aliphatic oxiranes. None of these
compounds had aromatic substructures or substructures that were included in other categories. Nine
chemicals had EC50 values of >50 mg/L, indicating that they were not highly toxic. Only
dodecanamide, N,N-diethyl- (log P(1) ¼ 5.59) had an EC50 of <1.0 mg/L

Anilines included compounds with aromatic primary amine substructures (indicated by SMARTS
notation c[Nv3Hv2]) but excluded anthraquinones. Some of these chemicals were very toxic (four
chemicals had EC50 values of <1.0 mg/L)

Aromatic chemicals included all aromatic compounds except those defined as Anilines or Combined
chemicals. Five of these chemicals had EC50 values of <1.0 mg/L

Combined chemicals included chemicals with SA 1, aliphatic and aromatic hydrazines, ammonium
compounds, compounds with bromine atoms directly attached to an aromatic ring (aromatic bromine,
as indicated by the SMARTS notation [cBr]), aromatic acetamides with aliphatic chloride,
anthraquinones, and aliphatic disulfides Eight of these chemicals had EC50 values of <1.0 mg/L
(indicating high toxicity), but six of the chemicals had EC50 values of >50 mg/L. There were three
chemicals with SA 1, and read-across might be possible for these chemicals

Type C (n ¼ 53): Categories that were difficult to classify for read-across

SA 6 (excluding pesticides) (n ¼ 23)

Other aliphatic chemicals (n ¼ 13)

Nitrogen-containing chemicals (n ¼ 17)

Notes:
Twenty-three chemicals had SA 6 but were not pesticides; only 3 of these 23 chemicals had EC50 values
of <1.0 mg/L

Other aliphatic chemicals consisted of chemicals with SA 3, aliphatic chlorides, aliphatic iodides, and
aliphatic vinyl ketones. Six of these chemicals were very toxic (EC50 <1.0 mg/L), but they did not fall
into well-defined categories

Nitrogen-containing chemicals consisted of aliphatic and aromatic isothiocyanates, aromatic nitriles
(with and without aromatic chloride), aliphatic and aromatic nitroso compounds, and nitrobenzenes.
Seven of these chemicals had EC50 values of <1.0 mg/L, and five had EC50 values of >50 mg/L

aEC50 indicates 50% effective concentration for 48-h algae growth inhibition toxicity against Pseudokirchneriella
subcapitata



values (including the correlation coefficient) deteriorated, and the
upper limit of the log P(1) range decreased from 5.59 to 4.07:

logð1=48h‐algal EC50 ½mM�Þ ¼ 0:34 log Pð1Þ � 0:45,

1:17 � log Pð1Þ � 4:07,

n ¼ 13, r2 ¼ 0:56, r2adj ¼ 0:52, q2LOO ¼ 0:53, s ¼ 0:37,RMSE ¼ 0:34:

ð15Þ

Equation 15 was not suitable as a model for quantitative pre-
diction. However, the Aliphatic chemicals category could be rede-
fined as a category consisting of chemicals with low toxicity
(EC50 � 7.0 mg/L) when the category was restricted to chemicals
for which log P(1) was <5.

The simple linear regression model for the Anilines Type B
category of chemicals was as follows:

log 1=48h‐algal EC50 mM½ �ð Þ ¼ 0:55 log P 1ð Þ þ 0:05,

0:13 � log P 1ð Þ � 7:29,

n ¼ 14, r2 ¼ 0:85, r2adj ¼ 0:83, q2LOO ¼ 0:77, s ¼ 0:47,RMSE ¼ 0:44:

ð16Þ

Both the robustness (q2LOO) and the goodness of fit (r2 and s)
for Eq. 16 were better than those for Eq. 15. This result indicates
that Anilines is a reliable category if applicability domains other
than log P(1) range are considered. The Anilines category is
defined simply as including anilines (aromatic primary amines)
other than anthraquinones and excluding chemicals that are ionic
at pH 10. Read-across (or even local QSAR) using the Anilines
category and Eq. 16 should be applied to a chemical if its substruc-
tures do not overlap those that define the Combined chemicals
category and if the chemical does not fall into one of the Type A
or Type C categories.

The simple linear regression model for compounds in the
Aromatic chemicals Type B category was given by

logð1=48h‐algal EC50 ½mM�Þ ¼ 0:92 log Pð1Þ � 1:30,

0:90 � log Pð1Þ � 6:32,

n ¼ 32, r2 ¼ 0:78, r2adj ¼ 0:77, q2LOO ¼ 0:74, s ¼ 0:59,RMSE ¼ 0:57:

ð17Þ

Compared with the nonpolar narcotic QSAR model (discussed
for the Class 1 chemicals at Step 2), Eq. 17 had a similar slope (~0.9)
and an intercept that was ~0.5 log unit higher. This comparison
indicates that aromatic compounds—other than those that have
certain specific structures (such as structures indicated by the
SMARTS notation c[Nv3H2], which fall into theAnilines category),
or that have specific modes or mechanisms of action (such as pesti-
cides)—would show algal toxicity ~0.5 log unit higher than the
trend for nonpolar narcotic chemicals in the data set of Kusk et al.

Finally, the simple linear regression for chemicals in the Com-
bined chemicals Type B category was given by
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logð1=48h‐algal EC50 ½mM�Þ ¼ �0:70 log S0 � 0:28,

� 6:32 � log S0 � 0:40,

n ¼ 21, r2 ¼ 0:75, r2adj ¼ 0:74, q2LOO ¼ 0:71, s ¼ 0:79,RMSE ¼ 0:75:

ð18Þ

The goodness of fit and robustness of Eq. 18 were not as high
as those for the Class 1 chemicals at Step 2 or for the chemicals in
the Anilines category. Nevertheless, for situations in which chemi-
cals have various functional groups and similar chemicals are not
easily defined, the Combined chemicals category can be used for
including and excluding chemicals when applying read-across to a
target chemical.

The general features of SA 6 (excluding pesticides), Other ali-
phatic chemicals, or Nitrogen-containing chemicals (Type C;
Table 2) categories were difficult to describe on the basis of a simple
descriptor such as hydrophobicity. In addition to compounds with
SA 6 (excluding pesticides), compounds categorized as Other ali-
phatic chemicals and Nitrogen-containing chemicals could be
described in terms of specific properties, e.g., protein binding,
and read-across could be used to predict their algal toxicity. Che-
micals in the Type C categories in this case study would have been
designated as Uncategorized in the original work on the three-step
strategy [15]. Generally, reactivity such as protein binding [56], the
presence of toxic substructures described in the literature [57], or
modes or mechanisms of toxic action [8–12] may be useful for
generating categories applicable for read-across.

5 Conclusions

This case study of an algal toxicity data set obtained by Kusk et al.
[16] revealed problems with generalizing a previously reported
three-step strategy [15] for predicting algae growth inhibition
toxicity. The lack of the measured acute Daphnia magna toxicity
data and the unreliability of some of the available data hindered
toxicity prediction by means of the interspecies QSAR used at Step
1 of the three-step strategy; alternative strategies such as read-
across could be used to circumvent this problem. At Step 2 in
this case study, new QSAR models were introduced for the data
set of Kusk et al. Unlike the case for Class 1 (nonpolar narcotic)
chemicals, in the case of the Class 2 (polar narcotic) chemicals,
model reevaluation was necessary if test conditions used to obtain
data for algal toxicity prediction differed from the conditions used
in standard TGs. At Step 3 of the case study, the categories used for
read-across were grouped into three types for application to the
data set of Kusk et al.

Although the combination of QSAR and read-across used in
the three-step strategy was effective for predicting algal toxicity,
whether or not previously developed QSARs (except that for
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nonpolar narcotic chemicals) and read-across categories depended
on whether the test conditions, such as test duration, deviated from
those in standard TGs.

6 Note: Information

Data used in this chapter are available at https://doi.org/10.
6084/m9.figshare.8107646.v1 in the Figshare database. Table I
lists the 309 chemicals (as named in ref. [16]) and the modified
SMILES strings used to calculate their physicochemical properties
(log P(1), log DpH10, log S0, and log Sw) with the ACD/Labs [30]
and ACD/LogD software [31]. Tables II, III, and IV list the log
(1/48-h algal EC50 [mM]) values, the physicochemical properties,
and other data for the chemicals dealt with at Steps 1, 2, and 3,
respectively.

The SMARTS notation examples used here are available at
http://www.daylight.com/dayhtml_tutorials/languages/smarts/
smarts_examples.html.
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QSAR Approaches and Ecotoxicological Risk Assessment
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Abstract

Hundreds of thousands of chemicals that can affect human health or the quality of aquatic and terrestrial
ecosystems are introduced directly or indirectly into the air, water, or soil. Therefore, the awareness of the
serious and harmful effects caused by these chemical compounds has revealed the absolute and compelling
need to resort to the evaluation of potential risks incurred as a result of exposure to these compounds. In the
aim to provide a high level of protection for human, animal, and environmental health, many regulatory
agencies have established strict legislation for both toxicological and ecotoxicological risk assessments of
existing and new chemical compounds. To limit the in vivo experiments which are a tedious and costly
practice and generate a large sacrifice of animals, the REACH regulation recommends the use of in silico
methods, such as quantitative structure–activity relationship (QSAR) models.

Key words Ecosystems, Pollutants, Ecotoxicity, QSAR models, Adverse effects

1 Introduction

As a result of human activity over many decades, hundreds of
thousands of chemicals that can affect human health or the quality
of aquatic and terrestrial ecosystems are introduced directly or
indirectly into the air, water or soil. In this regard, in recent dec-
ades, the number of research dedicated to pollution and the inci-
dence of ecotoxic chemical compounds (perfumes, cosmetics,
pharmaceuticals, ionic liquids, food and preservative colors, deter-
gents, varnishes, paints, nanoparticles, illicit drugs, surfactants,
plasticizers, pesticides, metals, solvents, etc.) on human health,
living species and ecosystems is constantly increasing [1–7]. These
chemical compounds used daily, in addition to contributing to the
well-being and comfort of the human being, are nevertheless
responsible for the decline in biodiversity [8] and the extinction
of certain species [9–11].

The serious nuisances caused by these chemical compounds
pose a serious threat to both humans and the ecosystem as a
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whole. Therefore, the awareness of the serious and harmful effects
of these chemicals has revealed the absolute and the compelling
need to resort to the evaluation of potential risks incurred as a result
of exposure to these compounds. In this regard, the interest in
assessing the risks inherent in their production, use and fate in the
environment has increased to such an extent that has become a
growing area of scientific research [12]. As a result, many regu-
latory agencies have established strict legislation for both toxico-
logical and ecotoxicological risk assessments of existing and new
chemical compounds in the aim to provide a high level of protec-
tion for human, animal, and environmental health [13, 14].

The experimental evaluation of the toxicological and ecotoxi-
cological risks of chemical substances takes place according to three
types of approaches: in vivo experiments on animals, in vitro experi-
ments using tissue culture cells, and in silico experiments refer to
the use of the computer tool. In vivo and in vitro tests often require
a high cost, relatively, a long time and a large number of laboratory
animals. In addition, tests on animals are now considered ethically
unacceptable by animal rights organizations. For all these reasons,
and taking into consideration the significant number of chemicals
entering the market daily, the need for fast, accurate and cost-
effective assessments is more than a requirement. Also, the current
trend is to use the computer tool (in silico approach) as a viable
alternative to the classical methods of animal experiments. In fact,
several organizations advocate and encourage the use of modeling
for risk assessment. These organizations include the United States
Environmental Protection Agency (US EPA), the REACH regula-
tion (Registration, Evaluation, Authorization and Restriction of
Chemicals) in Europe whose legislation came into effect in 2007,
the European Center for Validation of Alternative Methods
(ECVAM) of the European Union and the European Union Com-
mission Scientific Committee on Toxicity, Ecotoxicity, and Envi-
ronment (CSTEE).

The QSAR/QSPR (quantitative structure–activity relation-
ship/quantitative structure–property relationship) approach is
one of those many modeling methods that aim to assess the toxico-
logical and ecotoxicological risks of chemical substances. This is a
quantitative approach that aims to develop a QSAR/QSPR model
to link quantified structural characteristics into a set of molecular
descriptors or physicochemical properties of compounds such as
toxicity property. Combined with genetic algorithms and statistical
learning methods (e.g., artificial neural networks, support vector
machines), this approach has proved effective and promising. For
this, a large set of known structure and properties of interest of
compound determined experimentally is necessary to develop the
model. Once established, this model is subjected to several internal
and external validation tests to evaluate its robustness and its power
of prediction. For an effective mastery of the QSAR/QSPR tool,
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reference books dealing with fundamental concepts of QSAR mod-
eling and their basic concepts for applications in risk assessment are
currently available in the literature [15–17].

This chapter deals with two aspects: the first is devoted to the
generalized pollution of all environmental compartments and the
proven or suspected adverse effects of chemical substances. The
second aspect is devoted to the various QSAR/QSPR studies and
results inherent in modeling applied to toxicology and
ecotoxicology.

2 State of the Art on Pollution and Its Negative Impacts

Agricultural and industrial activities, waste disposal, oil spills, and
acid rain are all factors that produce thousands of pollutants (che-
micals and toxic gases, plastic waste, electronic waste, heavy metals,
paints, rubber, waste oil, batteries, etc.). They represent not only a
real threat that could pose serious health risks to all living systems
(humans, bird populations, mammals, fish, aquatic invertebrates,
and other species) but also contamination of all ecosystems (atmo-
sphere, hydrosphere, lithosphere, and biosphere) [18–27]. The
systematic review of the recently compiled scientific literature has
edified us on the extent and importance of the studies inherent to
this pollution (Fig. 1) and its environmental risk (Fig. 2). This part
of the chapter is an overview of the general pollution of the envi-
ronment and the harmful impacts of this pollution.

2.1 Ecosystem

Pollution

The terrestrial ecosystem is an essential component of our environ-
ment. In addition to being a source of production of the majority of
food for humans and animals, it is a source of raw materials and a
reservoir of genes and species that ensure biodiversity. According to
various studies around the world, it has been noticed that various
types of soils, including cultivated fields, vegetable fields, and forest
lands, are contaminated by a multitude of pollutants [28, 29]. For
example, soil contamination by heavy metals, pesticides, and vari-
ous sewage and other pollutants were the focus of the recent years.
Thus, several recent studies have highlighted this contamination in
the world, particularly in Italy [30, 31], Turkey [32, 33], Iran [34],
Macedonia [35], Mexico [36], Russia [37], Laos [38], China [39–
45], Kyrgyzstan [46], Saudi Arabia [47, 48], South Korea [49],
Spain [50], Algeria [51–54], India [55, 56], and Germany [57].

The aquatic ecosystem as a whole (groundwater, surface water,
and seawater) is a vital natural resource for humans, animals, plants,
and aquatic organisms. Unfortunately, this ecosystem is drowned
with all kinds of toxic pollutants such as chemicals, wastes, and
radioactive substances. Because of the dangerous risks of this kind
of pollution, it has become a source of major concern for the
scientific community, which is constantly reporting the degradation
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of the aquatic environment. Examples of heavy metal pollution are
reported by numerous authors [58–71]. In addition, other recent
works have been dedicated to water pollution by pesticides, espe-
cially in Ecuador [72], China [73, 74], Egypt [75], England [76],
Vietnam [77], Brazil [78], France [79], Europe and the USA [80],
Guadeloupe [81], Spain [82], and Greece [83]. The literature on
the pollution of aquatic systems by various sewage and other pollu-
tants is also abundant. Among the most recent studies, we can
mention the cases of water pollution in Tunisia [84], Sri Lanka
[73], Pakistan [85], Kenya [86], and Brazil [87]. The risk of
pollution by plastic microphones, ionic liquids, and pharmaceuti-
cals has also been widely reported [88–93].
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In addition to soil and water pollution, air pollution is also a
global and growing problem [94–97]. According to DuPont [98],
92% of the world’s population suffers from poor air quality, while in
sub-Saharan Africa nearly half a million people die each year
[99]. This pollution is the consequence of the presence of complex
mixture of gaseous components, as well as solid and liquid particles
suspended in the air. These pollutants include particles from the
combustion of coal, carbon monoxide, sulfur dioxide, nitrogen
dioxide, and heavy metals such as cadmium (Cd), lead (Pb), and
mercury (Hg) [100–102].

2.2 Adverse Effects

of Pollutants

In recent years, several studies have shown that ecosystem pollution
is a recognized causal factor in many diseases and adverse effects on
humans, animals, and plants for food [64]. According to Basu [96],
pollution is responsible for more deaths than smoking, hunger, and
natural disasters. In addition, the bibliographic review has edified us
on the proven or suspected effects of the different pollutants. It has
been reported that exposure to heavy metals has a significant impact
on the development of health problems such as cancer [95, 103,
104], cardiovascular diseases [105], Parkinson’s disease [106],
chronic kidney disease [107–109], hypertension, gastrointestinal
disorders [42, 110], bone degeneration, and lesions of the liver and
lungs [64, 111]. Moreover, the effects of certain metals on plant
processes such as the decline of seed germination and stunted root
growth have been reported [112].

The harmful effects of pesticides are also similar to those of
heavy metals. According to Yadav [22], about 200,000 people die
and about three million are poisoned every year by pesticides
around the world. Many studies have reported that exposure to
certain pesticides is linked to the risk of various diseases, including
Parkinson’s disease [113, 114], Alzheimer’s disease [115], congen-
ital anomalies [116], hormonal disorders, cancers [117, 118], dia-
betes, and obesity [119]. In addition, other studies have been
conducted on the impacts of pesticides on pollinators [10, 120,
121], birds [122], and aquatic organisms [123].

Due to their toxicity and their persistent and bioaccumulative
nature, dust and coal residues cause adverse effects such as hyper-
tension, headaches, irritability, abdominal pain, nerve damage,
skeletal problems, pulmonary, hepatic and renal problems, anemia,
intellectual impairments, fatal cardiac arrest, and
carcinogenesis [102].

3 Review of Literature on QSAR Ecotoxicity Modeling

As mentioned above, it is of utmost importance to evaluate the
toxicity of pollutants of all kinds. This assessment must be focused
jointly on the risks for humans but also on the undesirable
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implications of these pollutants for different species of the ecosys-
tem. On the other hand, as noted above, it is almost impossible to
test all these pollutants at the laboratory level. Also, among the
computer techniques used in ecotoxicology, QSAR methodologies
are an encouraging alternative in that they allow, from a limited
number of available data for compounds, to predict the toxicity of
several other compounds without resorting to animal testing, on
the sole condition that they fall within the same field of applicabil-
ity. In this part of the chapter, only those ecotoxicology QSAR
models that have been published in the last decade are considered.
These models are classified according to the nature of the
pollutants.

3.1 QSAR Models

for Ecotoxicity

Prediction

of Pesticides

Given their presence in all components of the environment, pesti-
cides are among the pollutants for which risk assessment is a
requirement and a top priority. Thus, a large number of QSAR
models have been developed for the purpose of predicting the
toxicity of pesticides to all living species in ecosystems. In this
bibliographic review, the most recent ones are quoted.

Can et al. [124] proposed a quantitative structure–toxicity
relationship (QSTR) model for estimating the acute oral toxicity
of herbicides to male rats. The LD50 (in mmol/kg) of 20 herbicides
from the formation set and 7 others reserved for external validation
were described using 4 descriptors (lipophilic character, polarity,
molecular geometry, and a quantum chemistry descriptor). The
development of the model to predict the toxicity of sulfonylurea
and phenylurea herbicides was performed using multiple linear
regressions. The statistical parameters of the model such as the
MSE and the coefficient R2 were, respectively, equal to 0.041 and
0.93. The authors estimated that lipophilic character, dipole
moment, molar refractivity, and molecular weight are effective
parameters that describe the toxicity of these substances. Also, any
new herbicide of this family must have the following characteristics
to be the least toxic possible: it should be highly polar and soluble
in water and have a low refractivity and also a low molar mass.

In another study, Hamadache et al. [114] have developed a
validated QSAR model to predict acute oral toxicity of 329 pesti-
cides to rats. This QSARmodel was based on 17 molecular descrip-
tors; it was shown to be robust, externally predictive and
characterized by a good applicability domain. The best results
were obtained with a 17/9/1 artificial neural network model
trained with the quasi-Newton back propagation (BFGS) algo-
rithm. The prediction accuracy for the external validation set was
estimated by the Q2

ext and the root mean square (RMS) error,
which were equal to 0.948 and 0.201, respectively. 98.6% of exter-
nal validation set was correctly predicted, and the model proved to
be superior to models previously published. A validated QSAR
model to predict contact acute toxicity (LD50) of 111 pesticides
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to bees was developed byHamadache et al. [10]. The QSARmodel
was assessed according to the OECD principles for the validation of
QSAR models. The calculated values for the internal and external
validation statistic parameters (Q2 and r2m) were greater than 0.85.
In addition to this validation, a mathematical equation derived
from the ANN model was used to predict the LD50 of 20 other
pesticides. A good correlation between predicted and experimental
values was found (R2 ¼ 0.97 and RMSE ¼ 0.14). As a result, this
equation could be a means of predicting the toxicity of new
pesticides.

In a study undertaken by Basant et al. [125], tree-based multi-
species QSAR models were constructed for predicting the avian
toxicity. A set of 4768 pesticides and a set of 9 descriptors derived
directly from the chemical structures and following the OECD
guidelines were used. The QSAR models (SDT, DTF, and DTB)
were externally validated using the toxicity data in four other test
species (mallard duck, ring-necked pheasant, Japanese quail, house
sparrow). The external predictive power of the QSAR models was
tested through rigorous validation deriving a wide series of statisti-
cal checks. The S36 and MW were the most influential descriptors
identified by DTF andDTBmodels. The DTF andDTB performed
better than the SDT model and yielded a correlation (R2) of 0.945
and 0.966 between the measured and predicted toxicity values in
test data array. The same authors [126] established local and global
QSTR and ISCQSAAR (interspecies correlation quantitative struc-
ture activity–activity relationship) models for predicting the toxi-
cities of 3767 pesticides in multiple aquatic test species using the
toxicity data in crustacean (Daphnia magna, Americamysis bahia,
Gammarus fasciatus, and Penaeus duorarum) and fish (Oncor-
hynchus mykiss and Lepomis macrochirus) species in accordance
with the OECD guidelines. Furthermore, the chemical applicability
domains of these QSTR/QSAAR models were determined using
the leverage and standardization approaches. The constructed
local, global, and interspecies QSAAR models yielded high correla-
tions (R2) of >0.941, >0.943, and >0.826, respectively, between
the measured and model predicted endpoint toxicity values in the
test data. The authors concluded that the developed QSTR/
QSAAR models are appropriate since they reliably predict the
aquatic toxicity of structurally diverse pesticides in multiple test
species and can be used for the screening and prioritization of
new pesticides.

Recently, by using nine molecular fingerprints to describe pes-
ticides, binary and ternary classification models were constructed
by Sun et al. [127] to predict aquatic toxicity of pesticides via six
machine learning methods, namely, naı̈ve Bayes (NB), artificial
neural network (ANN), k-nearest neighbor (kNN), classification
tree (CT), Random Forest (RF), and Support Vector Machine
(SVM). For the binary models, local models were obtained with
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829 pesticides on rainbow trout (RT) and 151 pesticides on Lepo-
mis (LP), and global models were constructed on the basis of 1258
diverse pesticides on RT, LP, and 278 other fish species. The 1258
pesticides were also used to build global ternary models. The best
local binary models were Maccs_ANN for RT and Maccs_SVM for
LP, which both exhibited an accuracy of 0.90. For global binary
models, the best one was Graph_SVM with an accuracy of 0.89.
Accuracy of the best global ternary model Graph_SVM was 0.81,
which was slightly lower than that of the best global binary model.
The authors suggested that this study provides a useful tool for an
early evaluation of pesticides aquatic toxicity in environmental risk
assessment. In the same year, Toropov [128] used optimal descrip-
tors to establish QSARmodels to predict acute toxicity of pesticides
toward rainbow trout. A heterogeneous set of pesticides (n ¼ 116)
was considered, taken from the EFSA’s Chemical Hazards Data-
base: OpenFoodTox. The statistical characteristics of these models
were the following: (1) for training set, correlation coefficient (R2)
was in the range 0.72–0.81, and root mean square error (RMSE)
ranges 0.54–1.25; and (2) for external (validation) set, the ranges
of values were 0.74–0.84 for R2 and 0.64–0.75 for RMSE.
Computational experiments have shown that that presence of chlo-
rine, fluorine, sulfurs, and aromatic fragments induce an increase of
the toxicity.

More recently, Qin et al. [129] developed a QSAR model for
the toxicities (half-effect concentration, EC50) of 45 binary and
multicomponent mixtures composed of 2 antibiotics and 4 pesti-
cides. The acute toxicities of single compound and mixtures toward
Aliivibrio fischeri were tested. A genetic algorithm was used to
obtain the optimized model with three theoretical descriptors.
Various internal and external validation techniques led to a coeffi-
cient of determination of 0.9366 and a root mean square error of
0.1345; the QSAR model predicted that 45 mixture toxicities
presented additive, synergistic, and antagonistic effects. Compared
with the traditional models, the QSAR model exhibited an advan-
tage in predicting mixture toxicity. Thus, the presented approach
may be able to fill the gaps in predicting nonadditive toxicities of
binary and multicomponent mixtures. More recently, QSAR mod-
els for Daphnia magna toxicities of different classes of agrochem-
icals (fungicides, herbicides, insecticides, and microbiocides)
individually as well as for the combined set with the application of
Organization for Economic Cooperation and Development
(OECD) recommended guidelines were suggested by Khan et al.
[130]. The models were generated employing only simple and
interpretable two-dimensional descriptors and subsequently strictly
validated using test set compounds. All the individual models of
different classes of agrochemicals as well as the global set of agro-
chemicals showed encouraging statistical quality and prediction
ability. The general observations suggest that the toxicity increases

622 Mabrouk Hamadache et al.



with lipophilicity and decreases with polarity. According to the
authors, the generated models should be applicable for data gap
filling for new or untested agrochemical compounds falling within
the applicability domain of the developed models. Note that other
recent QSAR models not detailed in this review are reported in the
literature [14, 131, 132].

3.2 QSAR Models

for Ecotoxicity

Prediction of Ionic

Liquids

Although they have interesting properties that meet industrial
requirements, ionic liquids are characterized by their toxic proper-
ties throughout the living ecosystem. In recent years, the use of
QSAR approaches for the prediction of the toxicity of these poten-
tial pollutants has been the subject of scientific publications.

Roy and Das [133] have developed predictive classification and
regression models correlating the structurally derived chemical
information of a group of 62 diverse ionic liquids (ILs) with their
toxicity toward Daphnia magna and their interpretation. They
have principally used the extended topochemical atom (ETA)
indices along with various topological non-ETA and thermody-
namic parameters as independent variables. The developed models
have been subjected to multiple validation strategies. According to
the results obtained, the lipophilicity, branching pattern, electro-
negativity, and chain length of the cationic substituents play a major
role in ecotoxicity of ionic liquids toward D. magna. The authors
concluded that this information can be successfully used to design
better ionic liquid analogues acquiring the qualities of a true
eco-friendly green chemical. In another study, Roy et al. [134]
have suggested statistical models for toxicity of a set of ionic liquids
(ILs) to Daphnia magna using computed lipophilicity, atom-type
fragment, quantum topological molecular similarity (QTMS), and
extended topochemical atom (ETA) descriptors. The models have
been developed and validated in accordance with the Organization
for Economic Cooperation and Development (OECD) guidelines
for quantitative structure–activity relationships (QSARs). The best
partial least squares (PLS) model outperforms the previously
reported multiple linear regression (MLR) model [143] in statisti-
cal quality and predictive ability (R2 ¼ 0.955, Q2 ¼ 0.917,
R2

pred ¼ 0.848). In addition to the importance of lipophilicity,
the best model clearly shows the importance of aromaticity in
ecotoxicity of ionic liquids towardD. magna. These results suggest
that ILs with less toxicity may be designed by avoiding aromaticity,
nitrogen atoms, and increasing branching in the cationic structure.

The quantitative structure–activity relationship (QSAR) mod-
els, including genetic function approximation (GFA) and least
squares support vector machine (LSSVM), were developed by Ma
et al. [135] for predicting the ecotoxicity of 69 ILs toward the
marine bacterium Vibrio fischeri. Five descriptors were selected by
GFA and used to develop the linear model. In order to capture the
nonlinear nature, the LSSVM model was also built for more

QSAR Approaches and Ecotoxicological Risk Assessment 623



accurately predicting the ecotoxicity. The GFA and LSSVMmodels
were performed for rigorous internal and external validation, fur-
ther verifying these models with excellent robustness and predictive
ability. From the used descriptors, the cation structure was the main
factor involved in the toxicity, which mainly depended on the size,
lipophilic, and 3D molecular structure of cations. Das et al. [136]
have developed predictive QSAR models using topological and
quantum chemical descriptors models for V. fischeri toxicity using
the largest available set of ionic liquids (n ¼ 305) with the experi-
mental toxicity data using Microtox®. The whole study has been
performed in consonance with the OECD guidelines in terms of
dataset selection, model development, applicability domain deter-
mination, model validation, and mechanistic interpretation of the
diagnosed chemical attributes. In order to experimentally validate
the models, a set of IL compounds with low predicted toxicity
values was designed and subsequently synthesized, and their toxic-
ity against V. fischeri was then experimentally tested. The authors
point out that it was the first attempt to perform both true external
validation and experimental validation of QSPR models for toxicity
of ionic liquids with regard to V. fischeri. In addition, the designed
ionic liquids were experimentally confirmed to be harmless or
practically harmless as defined in the acute toxicity determination
criteria by the European Commission.

Das et al. [137] have done a study to explore the chemical
attributes of diverse ionic liquids responsible for their cytotoxicity
in a rat leukemia cell line (IPC-81) by developing predictive classi-
fication as well as regression-based mathematical models. This
study using simple and interpretable descriptors derived from a
two-dimensional representation of the chemical structures along
with quantum topological molecular similarity indices meets the
guidelines of the Organization for Economic Cooperation and
Development (OECD) for QSAR modeling. The models were
subjected to rigorous validation tests proving their predictive
potential. After analyzing the results, the authors proposed that
the cytotoxicity of ILs could be reduced by making suitable struc-
tural changes including reduced cationic surfactant behavior by the
use of short-length side chains and decreased cationic lipophilicity,
and the employment of nonaromatic cations whenever possible
(considering the desired application), avoiding dialkylamino sub-
stituent at 4-position of the pyridinium nucleus, and using anions
of limited size. Recently, σ-profile descriptors were used byGhanem
et al. [138] to build linear and nonlinear QSAR models to predict
the ecotoxicities of a wide variety of 111 ionic liquids toward
bacterium Vibrio fischeri. Linear model was constructed using five
descriptors resulting in high accuracy prediction of 0.906.The
model performance and stability were ascertained using k-fold
cross-validation method. The MLR model clearly emphasized the
proportional relation between the length of the alkyl chain and the
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increase on the toxicity of ILs. The selected descriptors set from the
linear model were then used in multilayer perceptron (MLP) tech-
nique to develop the nonlinear model. The accuracy of this MLP
model was further enhanced achieving high correlation coefficient
of training, validation, and testing sets as high as 0.979 with a
highest mean square error of 0.157. The proposed QSAR models
can be used as a primary step for screening and designing inherently
safer ILs. Note that other recent QSAR models not detailed in this
review are reported in the literature [139, 140].

3.3 QSAR Models

for Ecotoxicity

Prediction

of Pharmaceuticals

Scientific reports on the development of QSAR models focused on
pharmaceutical products (especially from hospital effluents, waste-
water from pharmaceutical industries, household waste, and human
and animal excreta) due to their toxicity and adverse effects.

In 2010, Kar and Roy [141] have developed interspecies tox-
icity correlation between Daphnia magna (zooplankton) and fish
(species according to OECD guidelines) assessing the ecotoxico-
logical hazard potential of diverse 77 pharmaceuticals. Developed
models were also used to predict fish toxicities of 59 pharmaceuti-
cals (for which Daphnia toxicities are present) and Daphnia toxi-
cities of 30 pharmaceuticals (for which fish toxicities are present).
According to the authors, this study should allow a better and
comprehensive risk assessment of pharmaceuticals for which toxic-
ity data is missing for a particular endpoint. Das et al. [142] have
used a dataset of 194 compounds with reported rodent, fish, daph-
nia, and algae toxicity data to develop interspecies models using
molecular descriptors. Rigorous validation of all the developed
models was performed using multiple validation strategies. Accept-
able results were obtained in both cases of direct and interspecies
extrapolation quantitative structure–activity relationship models.

The environmental risk assessment of 26 pharmaceuticals and
personal care products (PPCPs) of relevant consumption and
occurrence in the aquatic environment in Spain was accomplished
by De Garcia et al. [143] based on the ecotoxicity values obtained
by bioluminescence and respirometry assays. The real risk of impact
of these compounds in wastewater treatment plants (WWTPs) and
in the aquatic environment was predicted. The experimental eco-
toxicity results showed that 65.4% of PPCPs under study were at
least harmful to aquatic organisms according to the GHS classifica-
tion based on two different ecotoxicity tests. Acetaminophen, cip-
rofloxacin, clarithromycin, clofibrate, ibuprofen, omeprazole,
triclosan, parabens, and 1, 4-benzoquinone showed some type of
risk for the aquatic environments. Sangion and Gramatica [144]
have developed predictive quantitative activity–activity relationship
(QAAR)models to investigate the relationship between toxicities in
different species. QAARmodels implemented by theoretical molec-
ular descriptors to improve the quality and predictivity of the
interspecies relationships were developed using QSARINS software
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and validated for their external predictivity. The authors concluded
that the models based on Daphnia toxicity values can help in
reducing more complex and expensive tests on fish, reducing also
the tested animals.

In another study, new externally validated QSAR models, spe-
cific to predict acute toxicity of a large set of more than 1000 active
pharmaceutical ingredients (APIs) in algae, Daphnia, and 2 species
of fish, were developed by Sangion and Gramatica [145]. The
models were based on theoretical molecular descriptors calculated
by free PaDEL-Descriptor software and selected by genetic algo-
rithm. The models are statistically robust, externally predictive
(CCCext range 85–95% and Q2

Fn range 70–90%) and characterized
by a wide structural applicability domain. The accuracy of the
models on training and different external sets was compared with
the accuracy of the commonly used ECOSAR software, and the
authors concluded that their models showed better performances.

In a very recent work, quantitative structure–activity relation-
ship (QSAR) models have been developed by Khan et al. [146] to
predict the toxicity of a large dataset of approximately 9300 drug-
like molecules of pharmaceuticals on 4 different aquatic species,
namely, Pseudokirchneriella subcapitata, Daphnia magna, Oncor-
hynchus mykiss, and Pimephales promelas, using genetic algorithm
(GA) for feature selection followed by partial least squares regres-
sion technique according to the Organization for Economic Coop-
eration and Development (OECD) guidelines. Only 2D
descriptors were used for capturing chemical information and
model building, whereas validation of the models was performed
by considering various stringent internal and external validation
metrics. The applicability domain study was performed in order
to set a pre-defined chemical zone of applicability for the obtained
QSAR models. In order to prove the robustness and the predict-
ability of the obtained models, an additional comparison was made
with ECOSAR, an online expert system for toxicity prediction of
organic pollutants. As suggested by Sangion and Gramatica
[144, 145], the authors confirmed the positive contribution of
hydrophobicity and the negative contribution of polar bonds such
a hydrogen bonds.

3.4 QSAR Models

for Ecotoxicity

Prediction of Other

Pollutants

Several reliable QSAR models for ecotoxicity prediction studies of
different pollutants such as solvents, organic and organometallic
compounds, and metals have been developed in recent years.

The methods based on decision tree boost (DTB) and decision
tree forest (DTF) were used by Singh et al. [147] to develop QSAR
models for algae (P. subcapitata) experimental ecotoxicity data of
chemicals. These models have been developed and validated on the
basis of OECD principles for QSAR acceptance and regulation;
they are characterized by high external predictivity and wide appli-
cability domain. The QSAR models were successfully applied to
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predict toxicities of wide groups of chemicals in other test species
including algae (S. obliquus), Daphnia, fish, and bacteria. The
DTB-QSAR models yielded an R2 of 0.793 for the test set
(P. subcapitata) and 0.575–0.672 for the other four external vali-
dation species, while the DTF-QSAR models yielded an R2 of
0.753 for the test set and 0.605–0.689 for the other four species.
To test the influence of structural parameters on ecotoxicity of a
series of 60 phosphonates, a QSAR model was performed by Pet-
rescu et al. [148]. The obtained models showed that the toxicity of
phosphonates was influenced by steric and molecular geometry
which cause inhibition of cholinesterase activity.

Levet et al. [149] suggested reliable QSAR models in order to
model both invertebrate and algae EC50 for organic solvents by
using multiple linear regression using the ordinary least squares
method. The chemically heterogeneous organic solvents
(n ¼ 122) were described by physicochemical descriptors and
quantum theoretical parameters. The four-parameter QSAR devel-
oped for invertebrate pEC50 prediction included LogP, surface
tension, dielectric constant, and the minimal atomic charge. A
two-parameter QSAR involving LogP and LUMO energy allowed
well-predicting algae pEC50 for all solvents other than amines. To
evaluate robustness and predictive performance of the QSARs
developed, several strategies were considered, and external valida-
tion techniques as required by the REACH regulation and accord-
ing to the OECD guidelines were performed. In view of the results
obtained, the authors deduced that these models constitute a major
tool for a reliable assessment of environmental risk related to
organic solvents. During the same year, Basant et al. [150] devel-
oped probabilistic neural network (PNN) and generalized regres-
sion neural network (GRNN) models, which were constructed
using neurotoxicity data of 47 structurally diverse organic solvents
in rats and mice following OECD guideline principles for model
development. The prediction and generalization abilities of these
models were evaluated. Several statistical validation tests were per-
formed which revealed a high predictivity for the qualitative and
quantitative models and rendered high statistical confidence. The
results of the applicability domain analysis using the leverage
method revealed a single compound (in mouse) as the response
outlier and thus confirmed the applicability of the constructed
QSTR models over a wide chemical space. For the authors, this
study is useful in cost and effort reduction toward the neurotoxicity
evaluation of new chemicals.

QSAR models of amine oxide (pure linear C8, C10, C12, C14,
and C16 amine oxide surfactants) toxicity were developed by
Belanger et al. [151] on alga (Desmodesmus subspicatus), an inver-
tebrate (Daphnia magna), and a fish (Danio rerio) using the appro-
priate array of OECD Test Guidelines. The R2 of these models
were in the range 0.920–0.980. Local and global QSAR models for
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predicting the mutagenic activity of various chemicals (aldehydes,
aliphatic amines, aromatic amines, benzylamines, hydrazines, ani-
lines, dinitrobenzenes, esters, imidazoles, neutral organics, phe-
nols, benzyl alcohols, vinyl allyl ethers, halides, ketones, and
alcohols) against Salmonella typhimurium (TA) bacterial strains
(TA98 and TA100) were suggested by Basant et al. [152]. Relevant
structural features that were responsible and influence the muta-
genic activity were identified. The applicability domains of the
developed models were defined. Accuracies greater than 96%, as
well as test set root mean square error (RMSE) and mean absolute
error (MAE) values emphasized the usefulness of the developed
models for predicting new compounds. According to the authors,
the developed models can be used as tools for screening new
chemicals for their mutagenicity assessment for regulatory purpose.
In the same year, Basant and Gupta [153] established a multi-
target QSTR (mt-QSTR) model using four different experimental
toxicity datasets of metal oxide nanoparticles (MeONPs) in E. coli
and HaCaT cells. The optimal validated model yielded high corre-
lation coefficients (R2 between 0.828 and 0.956) between the
experimental and simultaneously predicted endpoint toxicity values
in test arrays for all the four systems, revealing high predictivity. No
nanoparticles were X-outlier and out of the applicability domain of
mt-QSTR model. The analysis of the results obtained showed that
oxygen percent, LogS, and Mulliken’s electronegativity have direct
relationships with the accepted toxicity mechanisms in E. coli as well
as in HaCaT cells. In conclusion, the authors emphasized that the
proposed approach would not only help in reducing the efforts,
time, and computational costs but can also provide useful guidance
for a new design of oxide nanoparticles.

During this year, three studies caught our attention. De Morais
Silva et al. [154] developed a predictive model of ecotoxicity for
993 organic micropollutants (OMPs) identified in different sources
of water in Brazil to a freshwater crustacean (Daphnia magna) and
a fish (fathead minnow—Pimephales promelas), both commonly
used in acute toxicity studies of the investigated agents. Results
obtained for D. magna showed a lower prediction validation value,
however a higher accuracy regarding predicted values for 20OMPs.
According to these authors, the models developed in this study
could be used as virtual screening tools for the prediction of aquatic
toxicity of organic compounds against both organisms. Ha et al.
[155] have built a QSAR model and predicted the correlation
between the ecotoxicity value and the logKow value of eight kinds
of polycyclic aromatic hydrocarbons (PAHs: benzene, toluene,
naphthalene, 2-methylnaphthalene, fluorene, dibenzothiophene,
phenanthrene, pyrene). The root mean square error (RMSE) values
of Daphnia magna and Hyalella azteca were 6.0049 and 5.9980,
respectively, when the QSAR model was constructed using the
toxicity data for PAHs. The QSAR model was compared with the
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ECOSAR data to confirm its validity, showing a correlation with
the ECOSAR results. The R2 value of correlation between the
predicted and observed results was 0.9356. Therefore, the authors
estimated that the QSAR model developed in this study can accu-
rately provide data for predicting the toxicity of PAHs and may be
helpful for use in the toxicity prediction for other kinds of PAHs.

Six machine learning methods to develop highly predictive
local and global binary models using different species for saltwater
crustacean (Mysidae data for local model and Mysidae, Palaemoni-
dae, and Penaeidae data for global binary models) were developed
by Liu et al. [156] to predict aquatic toxicity of diverse organic
chemicals, including pesticides and industrial chemicals. After the
clustering of the toxic molecules in the training set, the number of
compounds in the training set was reduced to 192 for local models
and 261 for global models. Ten descriptors with higher scores were
used to develop local models, while 11 descriptors with higher
scores were used to develop the global models. The applicability
domains of the six better local models and the six better global
models were further analyzed. The AUC (area under the receiver
operating characteristic curve) values of the better local and global
models were around 0.8 and 0.9 for the test sets, respectively.
Several chemicals with selective toxicity on different species were
identified, and the relationship between chemical aquatic toxicity
and the molecular descriptors was explored. According to the
authors, the results of this study would be helpful to predict chemi-
cal aquatic toxicity. Note that other recent QSAR models not
detailed in this review are reported in the literature [157–162].

4 Conclusions

Following the analysis of the abundant literature, it is clear that all
components of the environment are polluted by different types of
chemical compounds. However, regardless of their benefits and
importance in almost all areas, these pollutants seriously affect not
only the ecosystem but also various living species because of their
toxic properties. In this respect, many researches around the world
point out the link between these compounds and the appearance of
harmful effects on humans, fauna, and flora. Therefore, one of the
most important tasks of the ecotoxicological risk assessment of
these products is the experimental evaluation of their toxicity.

On the one hand, this evaluation is a tedious and expensive
practice and generates a great sacrifice of animals. On the other
hand, given the considerable number (hundreds of thousands) of
chemicals, it is almost impossible to test all these pollutants at the
laboratory level. To overcome these imponderables and limit
in vivo experiments, the REACH regulation recommends the use
of in silico methods, such as quantitative QSAR models.
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A detailed analysis of the QSAR models devoted to ecotoxicol-
ogy modeling led us to divide them into two categories. The first
consists of models developed from a congeneric series of com-
pounds and proposed for a long time. These, though interesting,
suffer from a number of shortcomings. They are obtained from
limited datasets for structurally similar compounds and have been
validated only on the basis of one or two statistical parameters. The
second category includes QSAR models developed on the basis of
OECD principles and benefit from the development of the
computer tool.

From our point of view, the QSAR models developed over the
past decade are promising in that they are more efficient in predict-
ing the toxicity of various compounds. In addition, it is tried, at
best, through these models, to meet the challenge faced by model-
ing in ecotoxicology: the presence of a toxic compound in contact
with several species and the contact of a species with several toxic
products. Some of the relevant advances made by recent QSAR
models include the following:

1. The use of high-quality and increasingly large databases with
structurally different compounds.

2. Calculation of a range of descriptors and improvement of the
most relevant selection techniques.

3. Validation of the predictive performance of the models through
a large number of statistical parameters.

4. Identification of the applicability domain of the model.

5. The interspecies quantitative structure–toxicity–toxicity rela-
tionship (QSTTR) and the interspecies quantitative struc-
ture–toxicity relationship (i-QSTR) are useful to compensate
for the lack of toxicity data for some species.

In conclusion, the satisfaction of all the criteria listed above is
targeted at the development of predictive models capable of serving
as an alternative to animal experimentation but also to provide
useful indications for a design of chemical compounds that are
friendly to the environment.
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Alonzo E, Fallico R, Platania F, Di RM,
Valenti L, Sciacca S (2013) Monitoring of
heavy metals and trace elements in the air,
fruits and vegetables and soil in the province
of Catania (Italy). Ig Sanita Pubbl 69
(1):47–54
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Chapter 26

Multi-scale QSAR Approach for Simultaneous Modeling
of Ecotoxic Effects of Pesticides

Alejandro Speck-Planche

Abstract

Pesticides are chemical or biological agents, whose ultimate purpose is to eradicate pests, thus preventing
crop losses by protecting the plants from multiple diseases. Despite the importance of their use, pesticides
constitute a focus of serious concern because of their harmful effects on the environment. In silico
approaches have played a key role in diminishing time and financial resources when assessing the ecotoxicity
of the pesticides. While many models based on quantitative structure-activity relationships (QSARs) have
been reported to predict specific ecotoxicological endpoints, to date, there is no model capable of simulta-
neously predicting the ecotoxicological profiles of the pesticides under a wide spectrum of experimental
conditions. This book chapter introduces for the first time a multi-scale QSAR model able to assess the
ecotoxicity of the pesticides by considering different measures of ecotoxic effects, many bioindicator
species, several different assay guidelines, and the multiple times during which the bioindicator species
have been exposed to the pesticides. The multi-scale QSAR model correctly classified/predicted more than
75% of the data in both training and test sets. By interpreting different molecular descriptors in the models,
this work offers the first view regarding the physicochemical properties and structural features that are
common for the appearance of multiple ecotoxic effects in any chemical used as a pesticide. Finally, several
molecular fragments are suggested as substructural features that can positively contribute to the diminution
of the ecotoxic potential of pesticides.

Key words Artificial neural network, Ecotoxic, Fragment, Multi-scale, Pesticides, QSAR

1 Introduction

Pests are living organisms that are invasive or troublesome to plants
or animals, causing massive crop losses, and detrimental to humans,
livestock, and forestry. In this sense, with the advances of science
and technology, pesticides have been created to minimize such
pest-related damages that cause a negative impact on the economy.
Although they may also have a biological origin, pesticides are
referred to as substances or mixture of substances whose purpose

Kunal Roy (ed.), Ecotoxicological QSARs, Methods in Pharmacology and Toxicology,
https://doi.org/10.1007/978-1-0716-0150-1_26, © Springer Science+Business Media, LLC, part of Springer Nature 2020

Electronic supplementary material:The online version of this chapter (https://doi.org/10.1007/978-1-0716-
0150-1_26) contains supplementary material, which is available to authorized users.

639

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-0150-1_26&domain=pdf


is to prevent, repel, mitigate, or eradicate any pests [1]. Neverthe-
less, currently, serious concerns have emerged regarding the harm-
ful effects of the pesticides on the ecosystems [2, 3]. This situation
has its foundations in the high toxicity of the pesticides, which is
worsened by the indiscriminate use of these chemical products.
Consequently, assessing the ecotoxic potential of the pesticides
constitutes one of the prime goals in agricultural and environmental
sciences.

Nowadays, disciplines such as chemoinformatics have propelled
the application of computational approaches [4], where quantita-
tive structure-activity relationships (QSAR) have become an inte-
gral part of many scientific projects in areas including (but not
limited to) drug discovery [5], toxicology [6], nanotechnology
[7], and many others fields of research involving complex molecu-
lar, biological, and ecological systems [8–11]. In the context of
pesticide management, several seminal works reported in the last
5 years have been devoted to predicting the ecotoxicity of pesticides
[12–17]. Unfortunately, these QSAR models reported to date have
at least one of the following disadvantages. First, they have focused
on only one measure of ecotoxicity. Second, the studies have been
carried out against only one bioindicator species. Last, the QSAR
models have not been capable of giving a sufficiently clear interpre-
tation regarding the physicochemical properties and/or structural
features that are required to diminish the ecotoxic effects of pesti-
cides. It should be noted that each bioindicator species has a specific
sensitivity to each pesticide. The development of an advanced
QSAR model able to predict multiple ecotoxic effects against dif-
ferent bioindicators and under multiple experimental conditions
would provide deeper insights regarding the extent and intensity
of the toxic potential of the pesticides on the environment.

Recently, several research groups have emphasized the need to
develop multi-scale QSAR (ms-QSAR) models. Such models use
mathematical operators to characterize the deviations (perturba-
tions) of a query chemical with respect to the average (expected)
values of all the chemicals experimentally tested against the same
measure of the biological effect (activity, toxicity, pharmacokinetic
property, reaction yield, and others), and/or the same target
(microorganism, cell line, animal, etc.), and/or the same assay
protocol. In general, the multi-scale modeling philosophy and
related approaches have found successful applications in diverse
scientific fields of research such as organic chemistry [9, 18, 19],
materials science and nanotechnology [7, 20–26], neuroscience
[27–31], cancer research [32–38], immunology and immunotoxi-
city [39–41], and infectious diseases [42–48].

Taking into consideration all these ideas, this book chapter
reports the first ms-QSAR model focused on the simultaneous
prediction of multiple ecotoxic effects of pesticides under dissimilar
experimental conditions. The present study provides a fragment-
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based interpretation of the molecular descriptors in the ms-QSAR
model, allowing the extraction of key structural and physicochemi-
cal aspects that can positively contribute to the diminution of the
ecotoxicological profile of a pesticide.

2 Materials and Methods

2.1 Construction of

the Dataset and

Calculation of the

Molecular Descriptors

The procedure underpinning the development of the type of multi-
scale QSAR models presented in this work has been recently
explained in detail in the literature [49]. Initially, 568 unique pes-
ticides involving the three main groups (fungicides, insecticides,
and herbicides) were retrieved from the literature [50–53]. The
names of these pesticides were matched with their corresponding
ecotoxicity records present in the OPP Pesticide Ecotoxicity Data-
base [54]. It should be noted that the process of curation of this
database had a series of challenges. From one side, the OPP Pesti-
cide Ecotoxicity Database was focused not only on ecotoxicity data
derived from the active ingredients, but also a huge amount of the
data is based on formulations whose compositions are very com-
plex. On the other hand, most of the pesticides were tested more
than one time under the same experimental conditions (dupli-
cates). In addition, in most cases, pesticides were not reported
with the exact ecotoxicity values; instead, they were reported
above or below certain cutoffs. Finally, all the ecotoxicity values
reported in the aforementioned database were expressed in units of
mass per volume (or bodyweight). Bearing in mind all these factors,
all the data based on formulations were removed. For the case of
the duplicates, as it was not possible to average the ecotoxicity
endpoints for a defined pesticide, only the value indicating the
highest toxicity (the lowest ecotoxicity value) was chosen. All the
ecotoxicity endpoints were converted to values expressed in units of
amount of substance (mole) per volume (or bodyweight), which
guaranteed a correct comparison between the ecotoxic potential of
the pesticides tested under the same assay conditions.

The dataset used in this study contained 259 pesticides, which
were assayed by considering at least 1 out of 8 measures of ecotoxi-
city (me), against 1 out of 28 bioindicator species (bs), involving at
least 1 out of 8 assay guidelines (ag), where at least 1 out of
8 exposure times (ep) was reported. Notice that the combination
of the elements me, bs, ag, and ep defines a unique experimental
condition (cj), which can be viewed as an ontology with the form
cj! (me, bs, ag, ep). Most of the pesticides present in the dataset had
not been experimentally tested by considering all the possible
combinations of the aforementioned elements. At the end, the
dataset ended up containing 3610 statistical cases. It should be
emphasized that the dataset presented here is characterized by a
great dispersion of the data. In any case, the great success of the
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multi-scale QSAR models mentioned in the previous section is
based on their ability to handle dispersed and heterogeneous data.

Each statistical case present in the dataset was annotated as
non-ecotoxic [TEi(cj) ¼ 1] or ecotoxic [TEi(cj) ¼ �1], TEi(cj)
being a categorical variable that characterized the ecotoxic effect
of the ith case under a defined experimental condition cj. The
assignments of positive and negative cases according to the differ-
ent ecotoxic effects were realized by considering different cutoff
values that are depicted in Table 1. It should be highlighted that
these cutoffs comply with two aspects. From one side, the cutoff
values were selected to be as stringent as possible, enabling with
this, a more rigorous prediction of chemicals that may be used as
pesticides without posing threat to the environment. On the other
hand, the cutoff values were chosen in such a way that for each
measure of the ecotoxic effect reported in the dataset, they
prevented the excessive imbalance between the number of pesti-
cides annotated as non-ecotoxic and those assigned as ecotoxic.

The SMILES of the 3610 cases were stored in a∗.txt file. After
manually converting the ∗.txt file to ∗.smi, a subsequent conver-
sion from ∗.smi to ∗.sdf was made by the software OpenBabel

Table 1
Different cutoff values of the ecotoxic effects used in this study

Measure of ecotoxic
effect (me) Cutoffsa Concept

EC25 (mmol/ac)_TP �143.54 Concentration (expressed in millimole per acre) required to
cause a toxic effect in 25% of the terrestrial plants tested

EC50 (nM)_AP �916.25 Concentration (expressed in nanomolar) required to cause a
toxic effect in 50% of the aquatic plants tested

EC50 (nM)_C �10632.57 Concentration (expressed in nanomolar) required to cause a
toxic effect in 50% of the crustaceans tested

EC50 (nM)_M �3001.11 Concentration (expressed in nanomolar) required to cause a
toxic effect in 50% of the molluscs tested

LC50 (nM)_Av �10363739.85 Lethal concentration (expressed in nanomolar) required to kill
50% of the birds tested according a dietary toxicity assay

LC50 (nM)_C �1085.87 Lethal concentration (expressed in nanomolar) required to kill
50% of the crustaceans tested

LC50 (nM)_F �7149.9 Lethal concentration (expressed in nanomolar) required to kill
50% of the fishes tested

LD50 (μmol/kg)_Av �4147.49 Lethal dose (expressed in micromoles per kilograms of body
weight) required to kill 50% of the birds tested via an acute
oral toxicity assay

aValues from which a pesticide was annotated as non-ecotoxic chemical
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v2.4.1 [55]. The purpose of such conversion was to get informa-
tion regarding the 2D connectivity of the molecules, where the
option of removing hydrogen atoms was used. Following this, the
software QUBILs-MAS v1.0 [56] was employed for the calculation
of the molecular descriptors known as the total and local atom-
based quadratic indices from the stochastic adjacency matrix. These
topological indices have been widely reported in different research
areas related to medicinal chemistry and early drug discovery [57–
60]; they can be calculated in the following way:

TssAqk xð Þ ¼
Xn

i¼1

Xn

j¼1

kaij � xi � x j ð1Þ

In Eq. 1, TssAqk(x) represents the total stochastic quadratic
index of order k, which considers each atom i and its chemical
environment ( jth neighbors) at the topological distance d ¼ k.
Also, the symbol x defines the different atomic physicochemical
properties, namely, hydrophobicity (HYD), electronegativity (E),
atomic weight (AW), polar surface area (PSA), and polarizability
(POL). In addition, the element kaij is used to describe the presence
(or absence) of adjacency between any two atoms in a molecule.
The local counterparts [LssAqk(x)Z] of the total quadratic indices
can be calculated in a similar manner:

LssAqk xð ÞZ ¼
Xn

i¼1

Xn

j¼1

kaijZ � xi � x j ð2Þ

Here, all the symbols have the same meanings as in the case of
Eq. 1. The only difference is that Eq. 2 characterizes the presence of
specific fragments based on certain types of atoms (Z) such as
hydrogen bond donors, hydrogen bond acceptors, and different
types of carbon atoms, among others. In total, 252 molecular
descriptors were calculated by the software QUBILs-MAS v1.0.
For such purpose, some configurations were used [algebraic form,
quadratic; constrains, atom-based; matrix form, stochastic; maxi-
mum order, 6; cutoff, keep all; groups, total and local (hydrogen
bond donors, hydrogen bond acceptors, aliphatic carbons, aro-
matic carbons, halogens, carbons in methyl groups, and heteroa-
toms); properties, already mentioned in the previous paragraph;
aggregation, Manhattan distance].

Notice that the descriptors calculated in Eqs. 1 and 2 cannot
differentiate the chemical structure of a pesticide when this is
tested by varying any of the elements of the experimental condi-
tion cj. In this sense, several works have established that
Box-Jenkins operators can be used to solve this problem
[44, 61]. When applied to the QSAR philosophy based on
multi-scale modeling, the Box-Jenkins operators are used to gen-
erate new molecular descriptors able to consider both the
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chemical structure and a specific element of the experimental
condition cj, which were mentioned above:

avgQI c j
� � ¼ 1

n c j
� ��

Xn c jð Þ

a¼1

QIa ð3Þ

In Eq. 3, QIa is a general symbol that represents any total
(or local) stochastic atom-based quadratic index according to (see
Eqs. 1 and 2). As commented before, each experimental condition
cj depends on the elements me, bs, ag, and ep. Therefore, Eq. 3 is
applied to each of these elements. For instance, for the case of the
element bs, avgQI(cj) is the average value of any total quadratic
index calculated of all the pesticides annotated as positive, which
have been experimentally assayed against the same bioindicator
species. At the same time, for n(cj), the same rule is used; n(cj) is
the number of pesticides considered as positive while tested against
the bioindicator species. Similar deductions can be made from
Eq. 3 when this is applied to the other elements of cj. In the second
step, the following mathematical formalism is used:

DQIa c j
� � ¼ QIa � avgQI c j

� �

QIMX �QIMN

� �� p c j
� � ð4Þ

In Eq. 4, DQIa(cj) is a multi-scale descriptor, and it measures
how much a pesticide structurally deviates from a set of pesticides
annotated as positive and assayed by considering the same element
of the experimental condition cj (me, bs, ag, or ep). At the same time,
QIMX and QIMN are the maximum and minimum values of each
quadratic index calculated in this work, respectively. Last, p(cj)
reflects an a priori probability of finding a chemical tested under
certain assay condition:

p með Þl c½ � ¼ nT með Þ
NT lcð Þ ð5Þ

p bsð Þtm½ � ¼ nT bsð Þ
NT tmð Þ ð6Þ

p ag

� � ¼ nT ag

� �

NT
ð7Þ

p ep
� �

t c
� � ¼ nT ep

� �

NT tcð Þ ð8Þ

In Eqs. 5, 6, 7, and 8, the meanings of nT(me), nT(bs), nT(ag),
and nT(ep) have been already exemplified when Eq. 3 was explained
by using the symbol n(cj). In Eq. 5, p[(me)lc] is the a priori proba-
bility of a pesticide being assayed by considering a certain measure
of ecotoxic effect with respect to the total number of pesticides
assayed by using all the measures of ecotoxicity that exhibit the
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same degree of lethality [NT(lc)]. Thus,NT(lc) can be the sum of all
the pesticides tested by using all the measures of nonlethal ecotoxic
effects (e.g., the sum of all the EC25s and EC50s) or the same sum
but for the lethal counterparts (sum of all the LC50s and LD50s). In
Eq. 6, p[(bs)tm] is the a priori probability of a pesticide being
assayed against a specific bioindicator with respect to the total
number of pesticides tested against bioindicators that belong to
the same general class. Therefore, NT(tm) is the total number of
pesticides tested against all the terrestrial plants, or all the aquatic
plants, or all crustaceans, or all the aves (birds), and so forth. In
Eq. 7, p[ag] represents the a priori probability of a pesticide being
tested by using a specific assay guideline with respect to the total
number of pesticides NT. Last, In Eq. 8, p[(ep)tc] is the a priori
probability of a pesticide being assayed by considering a defined
exposure time with respect to the total number of pesticides tested
by considering all the exposure times that belong to the same
classification [NT(tc)] in terms of duration. In this study, the expo-
sure times have been divided into three labels: short (48–120 h),
medium (7–14 days), and large (21–28 days). So, NT(tc) refers to
the total number of pesticides assayed by considering any of these
time intervals. Taking into account all this information, it should be
emphasized that Eqs. 3, 4, 5, 6, 7, and 8 were derived from the
training set; in the end, the total amount of descriptors of the type
DQIa(cj) was 252 � 4 (four elements, me, bs, ag, and ep) ¼ 1008.

2.2 Development of

the ms-QSAR Model

The model was created by following different steps (Fig. 1). In this
sense, the dataset formed by the 3610 cases was randomly split into
two series: training and test sets. The training set was used to search
for the best model, and it was formed by 1500 cases assigned as
non-ecotoxic and 1220 annotated as ecotoxic, taking 2720
(75.35% of the dataset) compounds in the training set. The purpose
of the test set was to validate the model by assessing its predictive
power; this set was formed by 890 cases (24.65%), 492 annotated as
non-ecotoxic and 398 assigned as ecotoxic.

The software IMMAN was employed to select the molecular
descriptors with the highest discriminant power according to their
values of differential Shannon entropies [62]. When extracting the
most appropriate descriptors, the correlations between them were
analyzed. In this sense, the interval�0.7< PCC< 0.7 was used as a
cutoff to indicate the lack of correlation, with PCC being Pearson’s
correlation coefficient [63]. Then, the chosen descriptors were
used as inputs by the Intelligent Problem Solver of the artificial
neural networks’ (ANN) package of the program STATISTICA
v6.0 [64]; the purpose was to generate the best ms-QSAR-ANN
model. Here, a first run was performed to determine the most
appropriate ANN architectures; four different architectures were
considered, namely, linear neural networks (LNN), radial basis
function (RBF), and multilayer perceptron (MLP). Subsequent
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runs served to determine the optimum number of neurons by
analyzing the training and test errors, as well as the values of the
statistical indices known as sensitivity [Sn(%)], and specificity [Sp
(%)], accuracy [Ac(%)], and the Matthews correlation coefficient
(MCC) [65] in both training and test sets. In addition, these
statistical indices were also used to assess the internal quality (train-
ing set) and the predictive power (test set) of the ms-QSAR-ANN
model. Last, a sensitivity analysis was performed to rank the
descriptors previously selected by IMMAN according to their sig-
nificances in the ms-QSAR-ANN model.

3 Results and Discussion

3.1 The ms-QSAR-

ANN Model

After examining the different ANN architectures, the best ms-
QSAR-ANN model found in this work had the profile RBF 9:9-
525-1:1. From this, it can be inferred that the ms-QSAR-ANN
model reported here is based on a radial basis function that uses
9 molecular descriptors as input nodes (input layer), 525 neurons in
the hidden layer, and an output node (output layer) describing the

Fig. 1 Steps involved in the development of the ms-QSAR-ANN model
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response (predicted) variable of the ecotoxic effect [Pred_TEi(cj)].
The different molecular descriptors used to build the ms-QSAR-
ANN model are represented in Table 2. The file containing the
network of the model can be provided upon request to the author.

The ms-QSAR-ANNmodel exhibits good performance for the
classification/prediction of different ecotoxicity endpoints by con-
sidering multiple experimental conditions. In this sense, this model
correctly classified 2246 out of 2720 cases in the training set, which
is equivalent to an Ac(%) value of 82.57%. In the test set, 4650 out
of 890 cases were rightly predicted, with Ac(%) ¼ 76.4%. Such a

Table 2
Symbols and definitions of the molecular descriptors used to develop the ms-QSAR-ANN model

Descriptors Definition

D[TssAq2(HYD)]me Deviation of the total stochastic atom-based quadratic index of order 2, weighted
by the hydrophobicity. This descriptor depends on the chemical structure and
the measure of the ecotoxic effect

D[LssAq6(POL)C]me Deviation of the local stochastic atom-based quadratic index of order 6, weighted
by the polarizability, and focused on the aliphatic carbon atoms. This descriptor
depends on the chemical structure and the measure of the ecotoxic effect

D[LssAq5(PSA)D]me Deviation of the local stochastic atom-based quadratic index of order 5, weighted
by the polar surface area, and focused on the atoms able to act as hydrogen
bond donors. This descriptor depends on the chemical structure and the
measure of the ecotoxic effect

D[LssAq2(AW)G]me Deviation of the local stochastic atom-based quadratic index of order 2, weighted
by the atomic weight, and focused on the halogen atoms. This descriptor
depends on the chemical structure and the measure of the ecotoxic effect

D[LssAq5(PSA)D]bs Deviation of the local stochastic atom-based quadratic index of order 5, weighted
by the polar surface area, and focused on the atoms able to act as hydrogen
bond donors. This descriptor depends on the chemical structure and the
specific bioindicator used in the assay

D[LssAq5(POL)G]bs Deviation of the local stochastic atom-based quadratic index of order 5, weighted
by the polarizability, and focused on the halogen atoms. This descriptor
depends on the chemical structure and the specific bioindicator used in the
assay

D[LssAq0(PSA)A]ag Deviation of the local stochastic atom-based quadratic index of order 0, weighted
by the polar surface area, and focused on the atoms able to act as hydrogen
bond acceptors. This descriptor depends on the chemical structure and the
specific assay guideline

D[LssAq2(AW)X]ag Deviation of the local stochastic atom-based quadratic index of order 2, weighted
by the atomic weight, and focused on the heteroatoms. This descriptor
depends on the chemical structure and the specific assay guideline

D[LssAq5(HYD)C]ep Deviation of the local stochastic atom-based quadratic index of order 5, weighted
by the hydrophobicity, and focused on the aliphatic carbon atoms. This
descriptor depends on the chemical structure and the exposure time
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performance was also confirmed by the statistical indices Sn(%) and
Sp(%), which exhibited values higher than 75% in both training and
test sets (Table 3). In addition, the statistical indexMCC is equal to
0.65 and 0.524 for training and test sets, respectively. Observe that
MCC can take values from +1 (ideal performance) to �1 (the
poorest quality) with zero representing a random predictor. Con-
sidering that the MCC values obtained for the ms-QSAR-ANN
model are closer to +1, it can be concluded that there is a strong
correlation between the observed and predicted (categorical) values
of the variable TEi(cj), which characterizes the different ecotoxic
effects. All the chemical and biological data used to create the ms-
QSAR-ANN model are available in the Electronic Supplementary
Material 1 that accompanies this book chapter. The results of the
classifications/predictions are stored in Electronic Supplementary
Material 2.

It should be emphasized that the ms-QSAR-ANN model clas-
sifies/predicts different ecotoxic effects (me) by considering many
bioindicators (bs), diverse assay protocols (ag), and multiple expo-
sure times (ep). Although the values for the statistical indices Sn(%)
and Sp(%) indicate good internal quality and predictive power, they
offer information regarding the global performance of the model.
Considering this fact, the local counterparts of these indices were
calculated for the aforementioned elements of the experimental
condition, namely, [Sn(%)]me, [Sp(%)]me, [Sn(%)]bs, [Sp(%)]bs, [Sn
(%)]ag, [Sp(%)]ag, [Sn(%)]ep, and [Sp(%)]ep. All the values of these
local sensitivities and specificities are available in Electronic Supple-
mentary Material 3. In this sense, for the training set, [Sn(%)]me

and [Sp(%)]me were higher than 74%. For the test set, these local
statistical indices exhibited values higher than 70%, except for the

Table 3
Statistical indices used to assess the performance of the ms-QSAR-ANN model

Symbolsa Training set Test set

Nnon-ecotoxic 1500 492

CCnon-ecotoxic 1233 381

Sn(%) 82.20% 77.44%

Necotoxic 1220 398

CCecotoxic 1013 299

Sp(%) 83.03% 75.13

MCC 0.65 0.524

aNnon-ecotoxic number of pesticides annotated as non-ecotoxic, CCnon-ecotoxic pesticides correctly classified as non-ecotoxic,

Sn(%) sensitivity (percentage of pesticides correctly classified as non-ecotoxic), Necotoxic number of pesticides assigned as

ecotoxic, CCecotoxic pesticides correctly classified as ecotoxic, Sp(%) specificity (percentage of pesticides correctly classified
as ecotoxic), MCC Matthews correlation coefficient
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measures of ecotoxic effects EC50 (nM)_C with [Sn(%)]
me ¼ 57.69%, as well as EC50 (nM)_M and LC50 (nM)_F with
[Sp(%)]me equal to 58.82% and 68.89%, respectively. On the other
hand, the values of [Sn(%)]bs or [Sp(%)]bs (never both) inferior to
60% were reported in 1 out of 28 and 7 out of 28 bioindicators in
the training and test sets, respectively. The only exception was
Pimephales promelas (fathead minnow) whose [Sn(%)]bs and [Sp
(%)]bs values were in the interval 50–55%. For the other bioindica-
tors, [Sn(%)]bs and [Sp(%)]bs exhibited values in the interval
61–100%; particularly, 75% of all the bioindicators reported in
this study presented [Sn(%)]bs and [Sp(%)]bs values �60% in both
training and test sets.

Regarding the assay protocols, [Sn(%)]ag and [Sp(%)]ag yielded
values �74% in the training set, while in the test set, the values for
this statistical indices were above 70%, except for [Sn(%)]ag in the
assay 72-2 against crustaceans (57.14%) and [Sp(%)]ag in the assay
72-1 against fishes (66.67%). Last, for the case of the different
exposure times, [Sn(%)]ep and [Sp(%)]ep behaved in the interval
75–100% in both training and test sets. Once exception was expo-
sure time of 5 days whose [Sn(%)]ep and [Sp(%)]ep values were
around 65% in both training and test sets. The other two exceptions
occurred in the test set, where [Sn(%)]ep had a value of 58.62% for
the time 48 h and [Sp(%)]ep was equal to 68.31% for the exposure
time of 96 h. Altogether, the statistical analysis presented here
demonstrates that the ms-QSBER model developed in this work
has good quality and predictive power.

3.2 Applicability

Domain

Currently, most of the in silico models are used with the sole
purpose of filtering the chemical space by virtually screening large
and heterogeneous databases. Consequently, estimating the reli-
ability of the predictions performed by any model is an aspect of
paramount importance. In this sense, the applicability domain is a
well-established concept in predictive modeling; it focuses on
defining the regions of the chemical and/or chemico-biological
space that may be reliably predicted by a model. A series of applica-
bility domain approaches have been reported in the literature [66],
but until now, there is no consensus regarding the superiority of
one approach over the others.

The applicability domain assessed in this study was defined by
considering the descriptor space approach as reported in a recent
work [67]. This means that the applicability domain assessed here
was derived from the subset of pesticides correctly classified in the
training set. In this sense, for each molecular descriptor present in
the ms-QSAR-ANNmodel, the maximum andminimum values are
determined. Then, if for a defined descriptor, a compound had a
descriptor value falling beyond the boundaries established by the
maximum and minimum, a local score was generated, being equal
to zero, otherwise, the local score took the value of one. As
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mentioned above, the ms-QSAR-ANN model was constructed
from nine molecular descriptors. Therefore, nine local scores were
generated. The sum of the local scores should ideally yield a total
score equal to nine, which indicates that the chemical completely
falls within the applicability domain of the model. The results of the
applicability domain are represented in Electronic Supplementary
Material 4.

3.3 Interpretation of

the Molecular

Descriptors

Nowadays, as the predictive models are used to prioritize huge
amount of chemicals, the molecular descriptors are considered as
mere numerical tools that encode some structural information
(often believed to be unclear). As a result, the importance of
providing an insightful physicochemical and structural interpreta-
tion of a model by means of the molecular descriptors is usually
neglected and underestimated [49, 67]. The ms-QSAR-ANN
model developed in this work has an additional characteristic,
which is commonly considered detrimental to the interpretation;
this model is based on ANNs with the RBF architecture, and
therefore, it is nonlinear. Such a characteristic is the reason for
which the models based on ANNs or other machine learning
methods are treated as black boxes. Here, the molecular descriptors
will be interpreted according to an approach reported by Speck-
Planche and co-workers [67–69], which offers a solution to gather
information from the molecular descriptors in nonlinear models.
Such an approach considers three distinctive elements.

First, while interpreting the molecular descriptors, the
approach will rely on analyzing the sensitivity values (SV) of the
molecular descriptors; the SV reflects the relative importance of
each molecular descriptor in the model (Fig. 2). The larger the
SV of a molecular descriptor, the more influential that descriptor
will be.

Second, the approach focuses on the calculation of the class-
based mean values for each molecular descriptor present in the ms-
QSAR-ANN model (Table 4). In this sense, for the subset of
pesticides correctly classified in the training set, two mean values
were calculated for each descriptor: one for the pesticides annotated
as non-ecotoxic and the other for the pesticides assigned as eco-
toxic. Then, by comparing the two mean values for each molecular
descriptor, it is possible to estimate a tendency of variation, i.e.,
how the molecular descriptor should vary in order to diminish all
the ecotoxic effects.

Last, this approach suggested by Speck-Planche and
co-workers benefits from the fragment-based information
contained within each topological (graph-based) descriptor. Notice
that it is well-established that each graph-theoretical descriptor can
always be represented as a linear combination of the number of
times in which different molecular fragments (both connected and
disconnected) appear in a molecule [70]. Therefore, when
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interpreting each molecular (graph-based) descriptor present in the
ms-QSAR-ANN model, several molecular fragments will be men-
tioned as examples of substructures that can vary the value of each
descriptor, causing an improvement in the safety profiles of any
chemical intended to be used as a pesticide. Recently, this last step

Fig. 2 Relative influences of the molecular descriptors in the ms-QSAR-ANN model

Table 4
Tendency of variation of the different molecular descriptors in the ms-QSAR-ANN model by
considering the class-based means

Symbol Non-ecotoxic Ecotoxic Tendencya

D[TssAq2(HYD)]me �0.010 0.074 Decrease

D[LssAq6(POL)C]me �0.005 0.060 Decrease

D[LssAq5(PSA)D]me 0.018 �0.057 Increase

D[LssAq2(AW)G]me �0.010 0.074 Decrease

D[LssAq5(PSA)D]bs 0.018 �0.061 Increase

D[LssAq5(POL)G]bs �0.024 0.147 Decrease

D[LssAq0(PSA)A]ag 0.029 0.003 Increase

D[LssAq2(AW)X]ag �0.039 0.362 Decrease

D[LssAq5(HYD)C]ep 0.005 �0.008 Increase

aTendency, referred to the potential variation (increase or diminution) of a molecular descriptor in order to decrease the
ecotoxic effects
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has been suggested to help designing new chemicals with desired
properties [69, 71].

Before explaining the meanings of the quadratic indices in the
ms-QSAR-ANNmodel, it should be pointed out that they consider
the distribution of the different physicochemical properties at the
topological distance d ¼ k, with k being the order of the descriptor.
In addition, the term “topological distance” is used to refer to the
number of bonds (without considering bondmultiplicity) that exist
between any two atoms.

First, we have D[TssAq2(HYD)]me, which characterizes the
decrease of the joint hydrophobic contribution of any two atoms
placed at a topological distance equal to 2. This is the fourth most
significant in the ms-QSAR-ANN model. It should be pointed out
that the term “joint hydrophobic contribution” is referred to as the
multiplication of the hydrophobicity values of any two atoms. In
this sense, according to the approach reported by Ghose and Crip-
pen [72–74], each atom in the molecule is described by its neigh-
boring atoms. For instance, hydrogen and halogen atoms are
classified by the hybridization and oxidation states of the carbon
atom to which they are attached, and for hydrogen atoms, heteroa-
toms attached to a carbon atom in α position are further consid-
ered. At the same time, carbon atoms are classified by their
hybridization state and depending on whether their neighbors are
carbon or heteroatoms [72–74]. The Ghose-Crippen approach is
based on the use of an atomic hydrophobicity scale derived from
each atom type [72–75]. Heteroaromatic rings and mono-
halogenated benzenes can be beneficial to the diminution of D
[TssAq2(HYD)]me, therefore, decreasing the ecotoxic effect of a
chemical. On the other hand, non-substituted benzenes as well as
the aliphatic portions containing three or more carbon atoms can
enhance the harmful effect of the pesticides.

Continuing with the hydrophobic factors, we have the descrip-
tor D[LssAq5(HYD)C]ep, which indicates the increase of the joint
hydrophobic contribution of any two atoms placed at a topological
distance equal to 5. Here, one of the two atoms must be an aliphatic
carbon. Therefore, D[LssAq5(HYD)C]ep (the eighth most influen-
tial) focuses on the presence of large hydrophobic regions (cyclic
and acyclic) based on aliphatic carbons. Nevertheless, in terms of
hydrophobic contributions, it should be pointed out that if ali-
phatic atoms are placed at the topological distance of 5 with respect
to non-substituted aromatic carbons, this could increase D
[LssAq5(HYD)C]ep, diminishing the environmental impact of the
pesticides (Fig. 3).

In the ms-QSAR-ANN model, 4 out of 9 descriptors contain
information regarding the influence of steric factors. Interestingly,
these four descriptors see the size (of course in different ways) as a
structural aspect whose diminution can favor the safety profile of a
pesticide (Fig. 3). One of them is D[LssAq6(POL)C]me (the sixth
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most important), which based on the diminution of the polariz-
ability in those regions where any two atoms are placed at a topo-
logical distance equal to 6, one of these atoms being an aliphatic
carbon. Therefore, this means that in contrast to the information

Fig. 3 Suitable and unfavorable fragments generated according to the physicochemical and structural
interpretations of the molecular descriptors
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previously provided by D[LssAq5(HYD)C]ep, the descriptor D
[LssAq6(POL)C]me constrains the presence of aliphatic portions.
Thus, when present in a pesticide, the aliphatic carbons must appear
in the periphery of the molecules, and they should be separated at
the topological distance equal to 6 with respect to nitrogen and
oxygen atoms, particular those able to act as hydrogen bond
donors. Another descriptor is D[LssAq2(AW)G]me, which involves
the diminution of the number of halogens and/or the decrease of
the atomic weight in regions where any two atoms (one of them
being a halogen) are placed at a topological distance equal to
2. Consequently, fragments containing fluorine atoms (or not con-
taining halogens at all) can decrease the value of D[LssAq2(AW)G]
me (least influential descriptor). If chlorine, bromine, or iodine
atoms are present in a pesticide, it should appear in the periphery
of the molecules surrounded by only one carbon atom (if possible).
Similarly, at the structural level, the descriptor D[LssAq2(AW)X]ag
offers information regarding the diminution of the atomic weight
in the same regions as D[LssAq2(AW)G]me. However, D[LssA-
q2(AW)X]ag (the fifth most important) focuses on preventing the
presence of heavy heteroatoms such as sulfur and phosphorus. If
such a heavy heteroatom is present in a pesticide, it should be in the
periphery of a molecule connected to just one carbon atom
(if possible).

From sensitivity analysis reported in Fig. 2, it can be inferred
that D[LssAq5(POL)G]bs is the second most significant descriptor
in the ms-QSAR-ANN model, accounting for the diminution of
the polarizability in those regions where any two atoms (one of
them being a halogen) are placed at a topological distance equal to
5. Once again, regions containing fluorine atoms can diminish D
[LssAq5(POL)G]bs, positively contributing to the attenuation of the
ecotoxic impact of a pesticide. The regions where the halogens
(other than fluorine) are placed at the topological distance of
5 with respect to heavy atoms (sulfur or phosphorus) must be
avoided.

Finally, we have three molecular descriptors that include infor-
mation regarding the effect of the hydrophilicity of the pesticides.
In this sense, all of the three indicates the increase of the hydrophi-
licity as a factor that can diminish the ecotoxic effect of the pesti-
cides (Fig. 3). From one side, D[LssAq5(PSA)D]me and D
[LssAq5(PSA)D]bs describe the augmentation of the polar surface
area in regions where any two atoms acting as hydrogen bond
donors (or one hydrogen bond donor and one hydrogen bond
acceptor) are placed at the topological distance equal to 5. Conse-
quently, at the aforementioned topological distance, all the frag-
ments containing nitrogens belonging to primary or secondary
amines, non-substituted and N-substituted amides, alcohols, phe-
nols, and carboxylic acids favor the increment ofD[LssAq5(PSA)D]
me and D[LssAq5(PSA)D]bs, thus decreasing the negative
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environmental impact of the pesticides. Notice that at the structural
level, D[LssAq5(PSA)D]me and D[LssAq5(PSA)D]bs characterize
similar information. However, while D[LssAq5(PSA)D]me (having
the seventh-highest influence) depends on the measure of the
ecotoxic effects,D[LssAq5(PSA)D]bs focuses on the different bioin-
dicator species used in the assays. It should be highlighted that D
[LssAq5(PSA)D]bs is the most influential descriptor in the ms-
QSAR-ANNmodel. The information provided by the two previous
hydrophilicity-based descriptors is convergent with that present in
D[LssAq0(PSA)A]ag, which indicates the increase of the global
polar surface area of the molecule based on atoms able to act as
hydrogen bond acceptors. This descriptor is the third most signifi-
cant in the ms-QSAR-ANN model, and in addition to the func-
tional groups considered by D[LssAq5(PSA)D]me and D
[LssAq5(PSA)D]bs, the descriptor also includes tertiary amines, N,
N-substituted amides, ethers, and esters.

It should be emphasized that several fragments considered
contributing to improving the safety profiles could be present in
highly ecotoxic pesticides. The opposite is also valid; fragments
selected as negative could be present in pesticides with relatively
low ecotoxic impact. This demonstrates that the presence of a
specific fragment is not enough to assess a pesticide as ecotoxic or
non-ecotoxic. However, the intrinsic physicochemical properties of
the different fragments and the way in which they are connected to
other fragments will determine if the pesticide is ecotoxic or not.
Thus, the selection of fragments in Fig. 3 has been made on the
basis that if all the fragments could be appropriately connected,
those highlighted in purple color in the aforementioned figure
would better contribute to diminishing the ecotoxicity of a pesti-
cide because of their intrinsic physicochemical properties. All this
highlights the importance of interpreting the molecular
descriptors.

4 Conclusions

Assessing the ecotoxicity of pesticides constitutes a goal as well as a
challenge in environmental sciences. The QSAR models have
become pillars in the quest to establish rigorous guidelines for the
regulation of pesticides. Nowadays, the QSAR models and the
other computational tools should focus on predicting the ecotoxi-
city of the aforementioned chemicals by considering a wider variety
of experimental conditions. This can provide deeper insights
regarding the environmental impact of any pesticides. The ms-
QSAR-ANN develop here represents the first attempt to concur-
rently predict many multiple ecotoxic effects of pesticides by chang-
ing different factors such as the measures of ecotoxicity, the
number, diversity, and complexity of the bioindicator species, the
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assay protocols, and the exposure times. The interpretations of the
molecular descriptors have provided general guidelines regarding
the physicochemical and structural requirements that should be
considered for the simultaneous decrease of the different ecotoxic
effects of the pesticides. This work opens new horizons toward the
application of QSAR modeling in the field of pesticide control and
management.

Acknowledgments

Speck-Planche acknowledges the financial support provided by the
I.M. Sechenov First Moscow State Medical University under the
agreement № У-187.

References

1. Plimmer JR, Gammon DW, Ragsdale NN
(2003) Encyclopedia of agrochemicals. Hobo-
ken, Wiley

2. Monteiro HR, Pestana JLT, Novais SC,
Soares A, Lemos MFL (2019) Toxicity of the
insecticides spinosad and indoxacarb to the
non-target aquatic midge Chironomus ripar-
ius. Sci Total Environ 666:1283–1291

3. He J, He H, Yan Z, Gao F, Zheng X, Fan J,
Wang Y (2019) Comparative analysis of fresh-
water species sensitivity distributions and eco-
toxicity for priority pesticides: implications for
water quality criteria. Ecotoxicol Environ Saf
176:119–124

4. Bunin BA, Bajorath J, Siesel B, Morales G
(2007) Chemoinformatics: theory, practice
and products. Springer, Dordrecht

5. Oprea T (2005) Chemoinformatics in drug
discovery. Weinheim, Wiley-VCH Verlag
GmbH & Co. KGaA

6. Cruz-Monteagudo M, Ancede-Gallardo E,
Jorge M, Cordeiro MNDS (2013) Chemoin-
formatics profiling of ionic liquids – automatic
and chemically interpretable cytotoxicity
profiling, virtual screening, and cytotoxico-
phore identification. Toxicol Sci 136:548–565

7. Gonzalez-Durruthy M, Alberici LC, Curti C,
Naal Z, Atique-Sawazaki DT, Vazquez-Naya
JM, Gonzalez-Diaz H, Munteanu CR (2017)
Experimental-computational study of carbon
nanotube effects on mitochondrial respiration:
in silico nano-QSPR machine learning models
based on New Raman spectra transform with
Markov-Shannon entropy invariants. J Chem
Inf Model 57:1029–1044

8. Duardo-Sanchez A, Munteanu CR, Riera-
Fernandez P, Lopez-Diaz A, Pazos A,

Gonzalez-Diaz H (2013) Modeling complex
metabolic reactions, ecological systems, and
financial and legal networks with MIANN
models based onMarkov-Wiener node descrip-
tors. J Chem Inf Model 54:16–29

9. Gonzalez-Diaz H, Arrasate S, Gomez-
SanJuan A, Sotomayor N, Lete E, Besada-
Porto L, Ruso JM (2013) General theory for
multiple input-output perturbations in com-
plex molecular systems. 1. Linear QSPR elec-
tronegativity models in physical, organic, and
medicinal chemistry. Curr Top Med Chem
13:1713–1741

10. Gonzalez-Diaz H, Riera-Fernandez P, Pazos A,
Munteanu CR (2013) The Rucker-Markov
invariants of complex bio-systems: applications
in parasitology and neuroinformatics. Biosys-
tems 111:199–207

11. Gonzalez-Diaz H, Arrasate S, Juan AG,
Sotomayor N, Lete E, Speck-Planche A, Ruso
JM, Luan F, Cordeiro MNDS (2014) Matrix
trace operators: from spectral moments of
molecular graphs and complex networks to
perturbations in synthetic reactions, micelle
nanoparticles, and drug ADME processes.
Curr Drug Metab 15:470–488

12. He L, Xiao K, Zhou C, Li G, Yang H, Li Z,
Cheng J (2019) Insights into pesticide toxicity
against aquatic organism: QSTR models on
Daphnia Magna. Ecotoxicol Environ Saf
173:285–292

13. Toropov AA, Toropova AP, Marzo M, Dorne
JL, Georgiadis N, Benfenati E (2017) QSAR
models for predicting acute toxicity of pesti-
cides in rainbow trout using the CORAL soft-
ware and EFSA’s OpenFoodTox database.
Environ Toxicol Pharmacol 53:158–163

656 Alejandro Speck-Planche



14. Basant N, Gupta S, Singh KP (2016) Modeling
the toxicity of chemical pesticides in multiple
test species using local and global QSTR
approaches. Toxicol Res (Camb) 5:340–353

15. Basant N, Gupta S, Singh KP (2015) Predict-
ing aquatic toxicities of chemical pesticides in
multiple test species using nonlinear QSTR
modeling approaches. Chemosphere
139:246–255

16. Basant N, Gupta S, Singh KP (2015) Predict-
ing toxicities of diverse chemical pesticides in
multiple avian species using tree-based QSAR
approaches for regulatory purposes. J Chem
Inf Model 55:1337–1348

17. Hamadache M, Benkortbi O, Hanini S,
Amrane A, Khaouane L, Si Moussa C (2016)
A Quantitative Structure Activity Relationship
for acute oral toxicity of pesticides on rats:
validation, domain of application and predic-
tion. J Hazard Mater 303:28–40

18. Simon-Vidal L, Garcia-Calvo O, Oteo U,
Arrasate S, Lete E, Sotomayor N, Gonzalez-
Diaz H (2018) Perturbation-Theory and
Machine Learning (PTML) model for high-
throughput screening of parham reactions:
experimental and theoretical studies. J Chem
Inf Model 58:1384–1396

19. Aranzamendi E, Arrasate S, Sotomayor N,
Gonzalez-Diaz H, Lete E (2016) Chiral
bronsted acid-catalyzed enantioselective
alpha-amidoalkylation reactions: a Joint Exper-
imental and Predictive Study. ChemistryOpen
5:540–549

20. Blay V, Yokoi T, Gonzalez-Diaz H (2018) Per-
turbation theory-machine learning study of
zeolite materials desilication. J Chem Inf
Model 58:2414–2419

21. Gonzalez-Durruthy M, Werhli AV, Seus V,
Machado KS, Pazos A, Munteanu CR,
Gonzalez-Diaz H, Monserrat JM (2017)
Decrypting strong and weak single-walled car-
bon nanotubes interactions with mitochondrial
voltage-dependent anion channels using
molecular docking and perturbation theory.
Sci Rep 7:13271

22. Concu R, Kleandrova VV, Speck-Planche A,
Cordeiro M (2017) Probing the toxicity of
nanoparticles: a unified in silico machine
learning model based on perturbation theory.
Nanotoxicology 11:891–906

23. Speck-Planche A, Kleandrova VV, Luan F, Cor-
deiro MNDS (2015) Computational modeling
in nanomedicine: prediction of multiple anti-
bacterial profiles of nanoparticles using a quan-
titative structure-activity relationship
perturbation model. Nanomedicine (Lond)
10:193–204

24. Luan F, Kleandrova VV, Gonzalez-Diaz H,
Ruso JM, Melo A, Speck-Planche A, Cordeiro
MNDS (2014) Computer-aided nanotoxicol-
ogy: assessing cytotoxicity of nanoparticles
under diverse experimental conditions by
using a novel QSTR-perturbation approach.
Nanoscale 6:10623–10630

25. Kleandrova VV, Luan F, Gonzalez-Diaz H,
Ruso JM, Speck-Planche A, Cordeiro MNDS
(2014) Computational tool for risk assessment
of nanomaterials: novel QSTR-perturbation
model for simultaneous prediction of ecotoxi-
city and cytotoxicity of uncoated and coated
nanoparticles under multiple experimental
conditions. Environ Sci Technol
48:14686–14694

26. Kleandrova VV, Luan F, Gonzalez-Diaz H,
Ruso JM, Melo A, Speck-Planche A, Cordeiro
MNDS (2014) Computational ecotoxicology:
simultaneous prediction of ecotoxic effects of
nanoparticles under different experimental
conditions. Environ Int 73C:288–294

27. Ferreira da Costa J, Silva D, Caamano O, Brea
JM, Loza MI, Munteanu CR, Pazos A, Garcia-
Mera X, Gonzalez-Diaz H (2018) Perturba-
tion theory/machine learning model of
ChEMBL data for dopamine targets: docking,
synthesis, and assay of new l-prolyl-l-leucyl-gly-
cinamide peptidomimetics. ACS ChemNerosci
9:2572–2587

28. Abeijon P, Garcia-Mera X, Caamano O,
Yanez M, Lopez-Castro E, Romero-Duran FJ,
Gonzalez-Diaz H (2017) Multi-target mining
of Alzheimer disease proteome with Hansch’s
QSBR-perturbation theory and experimental-
theoretic study of new thiophene isosters of
rasagiline. Curr Drug Targets 18:511–521

29. Romero-Duran FJ, Alonso N, Yanez M,
Caamano O, Garcia-Mera X, Gonzalez-Diaz
H (2016) Brain-inspired cheminformatics of
drug-target brain interactome, synthesis, and
assay of TVP1022 derivatives. Neuropharma-
cology 103:270–278

30. Speck-Planche A, Luan F, Cordeiro MNDS
(2012) Role of ligand-based drug design meth-
odologies toward the discovery of new anti-
Alzheimer agents: futures perspectives in
Fragment-Based Ligand Design. Curr Med
Chem 19:1635–1645

31. Molina E, Sobarzo-Sanchez E, Speck-Planche-
A, Matos MJ, Uriarte E, Santana L, Yanez M,
Orallo F (2012) Monoamino oxidase a: an
interesting pharmacological target for the
development of multi-target QSAR. Mini Rev
Med Chem 12:947–958

32. Bediaga H, Arrasate S, Gonzalez-Diaz H
(2018) PTML combinatorial model of

Multi-Scale QSAR Approach for Simultaneous Modeling of Ecotoxic Effects. . . 657



ChEMBL compounds assays for multiple types
of cancer. ACS Comb Sci 20:621–632

33. Speck-Planche A, Kleandrova VV, Luan F, Cor-
deiro MNDS (2013) Unified multi-target
approach for the rational in silico design of
anti-bladder cancer agents. Anticancer Agents
Med Chem 13:791–800

34. Speck-Planche A, Kleandrova VV, Luan F, Cor-
deiro MNDS (2012) Chemoinformatics in
multi-target drug discovery for anti-cancer
therapy: in silico design of potent and versatile
anti-brain tumor agents. Anticancer Agents
Med Chem 12:678–685

35. Speck-Planche A, Kleandrova VV, Luan F, Cor-
deiro MNDS (2012) Chemoinformatics in
anti-cancer chemotherapy: multi-target QSAR
model for the in silico discovery of anti-breast
cancer agents. Eur J Pharm Sci 47:273–279

36. Speck-Planche A, Kleandrova VV, Luan F, Cor-
deiro MNDS (2012) Rational drug design for
anti-cancer chemotherapy: multi-target QSAR
models for the in silico discovery of anti-
colorectal cancer agents. Bioorg Med Chem
20:4848–4855

37. Speck-Planche A, Kleandrova VV, Luan F, Cor-
deiro MNDS (2011) Multi-target drug discov-
ery in anti-cancer therapy: fragment-based
approach toward the design of potent and ver-
satile anti-prostate cancer agents. Bioorg Med
Chem 19:6239–6244

38. Speck-Planche A, Kleandrova VV, Luan F, Cor-
deiro MNDS (2011) Fragment-based QSAR
model toward the selection of versatile anti-
sarcoma leads. Eur J Med Chem
46:5910–5916

39. Martinez-Arzate SG, Tenorio-Borroto E, Bar-
babosa Pliego A, Diaz-Albiter HM, Vazquez-
Chagoyan JC, Gonzalez-Diaz H (2017)
PTML model for proteome mining of B-cell
epitopes and theoretical-experimental study of
Bm86 protein sequences from Colima. Mexico
J Proteome Res 16:4093–4103

40. Tenorio-Borroto E, Ramirez FR, Speck-
Planche A, Cordeiro MNDS, Luan F,
Gonzalez-Diaz H (2014) QSPR and flow cyto-
metry analysis (QSPR-FCA): review and new
findings on parallel study of multiple interac-
tions of chemical compounds with immune
cellular and molecular targets. Curr Drug
Metab 15:414–428

41. Tenorio-Borroto E, Penuelas-Rivas CG,
Vasquez-Chagoyan JC, Castanedo N, Prado-
Prado FJ, Garcia-Mera X, Gonzalez-Diaz H
(2014) Model for high-throughput screening
of drug immunotoxicity – Study of the anti-
microbial G1 over peritoneal macrophages
using flow cytometry. Eur J Med Chem
72:206–220

42. Herrera-Ibata DM, Pazos A, Orbegozo-
Medina RA, Romero-Duran FJ, Gonzalez-
Diaz H (2015) Mapping chemical structure-
activity information of HAART-drug cocktails
over complex networks of AIDS epidemiology
and socioeconomic data of U.S. counties. Bio-
systems 132–133:20–34

43. Herrera-Ibata DM, Orbegozo-Medina RA,
Gonzalez-Diaz H (2015) Multiscale mapping
of AIDS in U.S. countries vs anti-HIV drugs
activity with complex networks and informa-
tion indices. Curr Bioinform 10:639–657

44. Gonzalez-Diaz H, Herrera-Ibata DM,
Duardo-Sanchez A, Munteanu CR,
Orbegozo-Medina RA, Pazos A (2014) ANN
multiscale model of anti-HIV drugs activity vs
AIDS prevalence in the US at county level
based on information indices of molecular
graphs and social networks. J Chem Inf
Model 54:744–755

45. Speck-Planche A, Cordeiro MNDS (2014)
Review of current chemoinformatic tools for
modeling important aspects of CYPs-mediated
drug metabolism. Integrating metabolism data
with other biological profiles to enhance drug
discovery. Curr Drug Metab 15:429–440

46. Speck-Planche A, Kleandrova VV, Cordeiro
MNDS (2013) New insights toward the dis-
covery of antibacterial agents: multi-tasking
QSBER model for the simultaneous prediction
of anti-tuberculosis activity and toxicological
profiles of drugs. Eur J Pharm Sci 48:812–818

47. Speck-Planche A, Cordeiro MNDS (2014)
Simultaneous virtual prediction of anti-
Escherichia coli activities and ADMET profiles:
a chemoinformatic complementary approach
for high-throughput screening. ACS Comb
Sci 16:78–84

48. Speck-Planche A, Kleandrova VV, Ruso JM,
Cordeiro MNDS (2016) First multitarget
chemo-bioinformatic model to enable the dis-
covery of antibacterial peptides against multi-
ple Gram-positive pathogens. J Chem Inf
Model 56:588–598

49. Speck-Planche A, Cordeiro MNDS (2017)
Speeding up early drug discovery in antiviral
research: a fragment-based in silico approach
for the design of virtual anti-hepatitis C leads.
ACS Comb Sci 19:501–512

50. Speck-Planche A, Cordeiro MNDS, Guilarte-
Montero L, Yera-Bueno R (2011) Current
computational approaches towards the rational
design of new insecticidal agents. Curr Com-
put Aided Drug Des 7:304–314

51. Speck-Planche A, Kleandrova VV, Luan F, Cor-
deiro MNDS (2012) Predicting multiple eco-
toxicological profiles in agrochemical

658 Alejandro Speck-Planche



fungicides: a multi-species chemoinformatic
approach. Ecotoxicol Environ Saf 80:308–313

52. Speck-Planche A, Kleandrova VV, Scotti MT
(2012) Fragment-based approach for the in
silico discovery of multi-target insecticides.
Chemom Intel Lab Syst 111:39–45

53. Perez Gonzalez M, Gonzalez Diaz H, Molina
Ruiz R, Cabrera MA, Ramos de Armas R
(2003) TOPS-MODE based QSARs derived
from heterogeneous series of compounds
Applications to the design of new herbicides. J
Chem Inf Comput Sci 43:1192–1199

54. EPA. OPP pesticide ecotoxicity database.
Access Date: 28 Feb 2019. Available from:
www.ipmcenters.org/ecotox/

55. O’Boyle NM, Banck M, James CA, Morley C,
Vandermeersch T, Hutchison GR (2011)
Open Babel: an open chemical toolbox. J Che-
minform 3:33

56. Valdes-Martini JR, Marrero-Ponce Y, Garcia-
Jacas CR, Martinez-Mayorga K, Barigye SJ,
Vaz d’Almeida YS, Pham-The H, Perez-
Gimenez F, Morell CA (2017) QuBiLS-MAS,
open source multi-platform software for atom-
and bond-based topological (2D) and chiral
(2.5D) algebraic molecular descriptors compu-
tations. J Cheminform 9:35

57. Medina Marrero R, Marrero-Ponce Y, Barigye
SJ, Echeverria Diaz Y, Acevedo-Barrios R,
Casanola-Martin GM, Garcia Bernal M,
Torrens F, Perez-Gimenez F (2015) QuBiLs-
MAS method in early drug discovery and ratio-
nal drug identification of antifungal agents.
SAR QSAR Environ Res 26:943–958

58. Marrero-Ponce Y, Siverio-Mota D, Galvez-
Llompart M, Recio MC, Giner RM, Garcia-
Domenech R, Torrens F, Aran VJ, Cordero-
Maldonado ML, Esguera CV, de Witte PA,
Crawford AD (2011) Discovery of novel anti-
inflammatory drug-like compounds by align-
ing in silico and in vivo screening: the nitroin-
dazolinone chemotype. Eur J Med Chem
46:5736–5753

59. Montero-Torres A, Garcia-Sanchez RN,
Marrero-Ponce Y, Machado-Tugores Y,
Nogal-Ruiz JJ, Martinez-Fernandez AR, Aran
VJ, Ochoa C, Meneses-Marcel A, Torrens F
(2006) Non-stochastic quadratic fingerprints
and LDA-based QSAR models in hit and lead
generation through virtual screening: theoreti-
cal and experimental assessment of a promising
method for the discovery of new antimalarial
compounds. Eur J Med Chem 41:483–493

60. Marrero-Ponce Y, Medina-Marrero R,
Torrens F, Martinez Y, Romero-Zaldivar V,
Castro EA (2005) Atom, atom-type, and total
nonstochastic and stochastic quadratic finger-
prints: a promising approach for modeling of

antibacterial activity. Bioorg Med Chem
13:2881–2899

61. Speck-Planche A, Cordeiro MNDS (2014)
Chemoinformatics for medicinal chemistry: in
silico model to enable the discovery of potent
and safer anti-cocci agents. Future Med Chem
6:2013–2028

62. Urias RW, Barigye SJ, Marrero-Ponce Y,
Garcia-Jacas CR, Valdes-Martini JR, Perez-
Gimenez F (2015) IMMAN: free software for
information theory-based chemometric analy-
sis. Mol Divers 19:305–319

63. Pearson K (1895) Notes on regression and
inheritance in the case of two parents. Proc R
Soc Lond 58:240–242

64. Statsoft-Team (2001) STATISTICA. Data
analysis software system. v6.0. Tulsa

65. Matthews BW (1975) Comparison of the pre-
dicted and observed secondary structure of T4
phage lysozyme. Biochim Biophys Acta
405:442–451

66. Sahigara F, Mansouri K, Ballabio D, Mauri A,
Consonni V, Todeschini R (2012) Comparison
of different approaches to define the applicabil-
ity domain of QSAR models. Molecules
17:4791–4810

67. Speck-Planche A (2018) Combining ensemble
learning with a fragment-based topological
approach to generate new molecular diversity
in drug discovery: in silico design of Hsp90
inhibitors. ACS Omega 3:14704–14716

68. Speck-Planche A, Kleandrova VV (2012)
QSAR and molecular docking techniques for
the discovery of potent monoamine oxidase B
inhibitors: computer-aided generation of new
rasagiline bioisosteres. Curr Top Med Chem
12:1734–1747

69. Speck-Planche A (2019) Multicellular target
QSAR model for simultaneous prediction and
design of anti-pancreatic cancer agents. ACS
Omega 4:3122–3132

70. Baskin II, Skvortsova MI, Stankevich IV,
Zefirov NS (1995) On the basis of invariants
of labeled molecular graphs. J Chem Inf Com-
put Sci 35:527–531

71. Speck-Planche A, Cordeiro MNDS (2017) De
novo computational design of compounds vir-
tually displaying potent antibacterial activity
and desirable in vitro ADMET profiles. Med
Chem Res 26:2345–2356

72. Ghose AK, Crippen GM (1986) Atomic physi-
cochemical parameters for three-dimensional
structure-directed quantitative structure-
activity relationships I. Partition coefficients as
a measure of hydrophobicity. J Comput Chem
7:565–577

Multi-Scale QSAR Approach for Simultaneous Modeling of Ecotoxic Effects. . . 659

http://www.ipmcenters.org/ecotox/


73. Ghose AK, Crippen GM (1987) Atomic physi-
cochemical parameters for three-dimensional-
structure-directed quantitative structure-
activity relationships. 2. Modeling dispersive
and hydrophobic interactions. J Chem Inf
Comput Sci 27:21–35

74. Ghose AK, Pritchett A, Crippen GM (1988)
Atomic physicochemical parameters for three
dimensional structure directed quantitative
structure-activity relationships III: modeling

hydrophobic interactions. J Comput Chem
9:80–90

75. Viswanadhan VN, Ghose AK, Revankar GR,
Robins RK (1989) Atomic physicochemical
parameters for three dimensional structure
directed quantitative structure-activity rela-
tionships. 4. Additional parameters for hydro-
phobic and dispersive interactions and their
application for an automated superposition of
certain naturally occurring nucleoside antibio-
tics. J Chem Inf Comput Sci 29:163–172

660 Alejandro Speck-Planche



Chapter 27

Quantitative Structure-Toxicity Relationship Models Based
on Hydrophobicity and Electrophilicity

Gourhari Jana, Ranita Pal, Shamik Sural, and Pratim Kumar Chattaraj

Abstract

In pharmaceutical research, particularly in the preclinical stages of drug discovery, quantitative structure-
activity relationship (QSAR) is being increasingly utilized to avoid costly experimentation and tedious
extraction of relevant information from big chemical databases. QSAR modelling is also used in modelling
environmental toxicity of chemicals. In the current study, toxicity (pLC50/pIGC50) to Pimephales promelas
and Tetrahymena pyriformis has been investigated by using electrophilicity index, its square and cubic terms.
Hydrophobicity is known as one of the important predictors, and accordingly it has also been employed to
improve the models. The widely used multiple linear regression (MLR) method has been implemented to
determine regression coefficients indicating the predictive power of the descriptors used.

Key words QSTR, Global electronic descriptor, Hydrophobicity, Multiple linear regression (MLR),
Pimephales promelas, Tetrahymena pyriformis

1 Introduction

Quantitative structure-activity relationship (QSAR) attempts to
correlate structural properties of a series of molecules to their
biological or ecotoxicological activities, creating models to be
used in evaluating activities of new compounds. Molecular proper-
ties such as electronic, hydrophobic, steric, etc. act as descriptors for
generating mathematical/computational models capable of pre-
dicting their activities with remarkable accuracy. Drug discovery,
evaluation of toxicity, etc. have become a lot easier and
environment-friendly over the years with the increasing develop-
ment in computational chemistry, quantum simulations, and statis-
tical techniques, since these have resulted in a drastic reduction in
animal testing and time-consuming experimental procedures. The
idea is to identify the factors or structural features responsible for a
certain biological activity and to successfully predict that activity
using computational and statistical techniques bypassing animal
experiments. The process of drug design through computational
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techniques begin with an understanding of molecular structures
and interactions with the subject, followed by geometrical and
energy calculations, and then relating the structural and chemical
features with the activity. The mathematical form of QSAR is
usually represented as follows:

Activity ¼ f physicochemical propertiesð Þ
i.e., in the linear form,

Activity ¼ a0 þ a1x1 þ a2x2 þ a3x3 þ . . .

where the descriptors denoted by xn either are experimentally
obtained or are computationally derived and the coefficients an
are calculated using various statistical methods.

Mapping molecular features and physicochemical properties to
biological activity began in the mid-nineteenth century. In 1863,
Cros [1] found out a correlation between the solubility of alcohol
in water and their toxic effects on mammals. Half a decade later,
Crum-Brown and Fraser [2] generalized Cros’ findings by expres-
sing the physiological action of a substance as a function of its
chemical composition. In the next few years, while Richardson
[3] discovered a relation between water solubility of ethers and
alcohols and their toxic activity, Mills [4] quite accurately predicted
the melting and boiling points in a homologous series using a
QSPR model. Later in 1893, Richet [5] put forward his discovery
stating that there exists an inverse relation between cytotoxicities of
simple organic compounds and their corresponding water solubi-
lities, following which Meyer [6] and Overton [7] independently
employed olive oil/water partition coefficients of a series of organic
molecules as descriptors to describe their narcotic effects. In the
1930s, the relations between rate constants or equilibrium con-
stants of reactions and molecular structures were of particular
interest among scientists which led to Hammett’s invention of the
electronic substituent (σ) and reaction (ρ) constants used for char-
acterization of different types of electronic effects on reaction
mechanisms [8, 9]. Ferguson’s thermodynamic approach toward
correlating the relative saturation of volatile compounds used in
vehicles to their depressant action [10]; Albert, Bell, and Robin’s
study [11–13] showing the significance of ionization of bases and
weak acids in bacteriostatic activity; and Taft’s separation of polar,
steric, and resonance effects and introduction of the first steric
parameter ES [14, 15] were some of the important contributions
toward the development of QSAR. Meanwhile, Hansch et al.
[16, 17] used Hammett’s sigma constant in combination with n-
octanol/water partition coefficient to construct QSAR models
which are now famously known as the linear Hansch equations.
This contribution of Hansch is considered to mark the beginning of
the modern QSAR.
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Quantum mechanics has come a long way in describing both
global and local reactivity indices within the scope of conceptual
density functional theory (CDFT) [18–25]. Electronic structure
principles such as hard-soft acid-base (HSAB) principle [26], maxi-
mum hardness principle (MHP) [27], minimum polarizability prin-
ciple (MPP) [28], minimum electrophilicity principle (MEP) [29–
31], and generalized philicity provide theoretical basis for the
reactivity descriptors. Molecular descriptors being the foremost
components of QSAR/QSPR/QSTR, in the prediction analysis,
are used to represent mathematical correlation models in terms of
quantitative numbers. These descriptors are also developed for
encoding significant chemical information in molecules. The pre-
diction quality depends mainly on the extraction of chemical fea-
tures rather than the statistics of modelling. From the very
beginning, a significant number of descriptors or variables have
been introduced to explore QSAR model analysis, which has
become of paramount interest in the growing field of research.
Various interesting aspects of electronic information, molecular
topology, and bonding interactions in different environments
have been addressed extensively in previous studies on structure-
activity/property/toxicity paradigm [32–37]. Quantum chemical
parameters like orbital energies (ELUMO or EHOMO), dipole
moment (D), polarizability (α), chemical hardness (η), chemical
softness (S), chemical potential (μ), electronegativity (χ), electro-
philicity index (ω), etc. have been efficiently acting as global reac-
tivity descriptors and atomic charges, Fukui function (FF), and
local philicity as local reactivity descriptors in many QSAR models.
In this chapter, we have focused on analyzing the predictive ability
of computationally obtained electrophilicity index in comparison to
the most commonly used n-octanol/water partition coefficient,
using simple MLR technique.

2 Theory

Rationalizing toxic effects of chemical compounds requires the
knowledge of the compound’s mechanism of action toward its
toxic effect, using which the toxicity of related compounds can be
predicted. Toxicological studies involve receptor-mediated and
non-receptor-mediated mechanisms among which the latter can
be further divided into covalent and non-covalent categories. Accu-
mulation of chemicals within cell membrane resulting in narcosis is
an important form of aqueous toxicity following non-covalent
mechanisms. While the narcotic action of nonpolar chemicals can
be described in terms of hydrophobicity parameter alone, effective
modelling of polar narcosis requires the inclusion of electronic
terms to account for the polarization effect of an electronegative
center in the molecule. In case of covalent mechanisms, a bond is
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formed between the drug and the protein (DNA), and modelling
this type of interaction cannot be done using hydrophobicity. This
is because toxicity of a compound via covalent mechanism requires
it to be electrophilic in nature, i.e., it must be susceptible to attack
from electron-rich amino acid side chains [38]. The covalent mech-
anism can be well described by the HSAB principle “Among poten-
tial partners of a given electronegativity, hard likes hard and soft
likes soft” [39]. Clearly, the reactivity of an electrophile-
nucleophile interaction goes parallelly with the extent of the com-
pound’s toxic response. Keeping this in mind, the assessment of
electronic state of a chemical becomes extremely useful when it
comes to prediction of its biological/ecotoxicological activities.

Conceptual density functional theory (CDFT) defines chemical
concepts like chemical hardness (η) [40, 41] and electronegativity
(χ) [42, 43] for a system consisting ofN-electrons. Electronegativ-
ity, in a way, quantifies the chemical reactivity of the system, and its
definition has undergone gradual modifications over time. Paul-
ing’s electronegativity scale [42, 44], Mulliken’s formulation
including ionization potential and electron affinity [45], Allred-
Rochow’s introduction of force into the electronegativity theory
[46], etc. have enriched the definition toward the various complex-
ities of the concept [47–54]. Parr et al. [53] finally established the
link between electronegativity and quantum chemistry by defining
electronegativity as the negative of the chemical potential (μ) within
the scope of DFT [18, 55, 56]. Combining this definition with that
provided by Iczkowski and Margrave [49] stating χ as the negative
of the variation in energy with that of the number of electrons, we
get the following equation:

χ ¼ �μ ¼ � ∂E
∂N

� �
v r

!ð Þ
ð1Þ

where E is the total energy and v r
!� �

is the external potential.
Chemical hardness (η) for anN-electron system is described by

Parr and Pearson [57] as the second-order derivative of energy with
respect to number of electrons (N), i.e., first derivative of the
chemical potential with respect to N (from Eq. 1):

η ¼ ∂2E

∂N 2

� �
v r

!ð Þ
¼ ∂μ

∂N

� �
v r

!ð Þ
ð2Þ

It is to be noted that earlier the definition of η had a factor of ½
in it to make it symmetrical to the definition of μ. However,
nowadays the convention without this factor is more commonly
used [58, 59]. This equation is in keeping with the HSAB principle.

Finite difference approximation leads to the formulation of μ
and η as [18]:
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μ ¼ � IPþ EAð Þ
2

ð3Þ

η ¼ IP� EA ð4Þ
where IP and EA are the vertical ionization potential and electron
affinity of the system calculated at constant external potential, i.e.,
at a fixed nuclear position. Now in order to bypass the time-
consuming and computationally costly procedure of calculating
EN, EN + 1, and EN � 1 for the evaluation of IP and EA, Koopmans’
theorem for closed-shell molecules is employed which defines IP
and EA as the negative of highest occupied (EHOMO) and lowest
unoccupied molecular orbital energies (ELUMO), respectively.
Hence μ and η become

μ ¼ ELUMO þ EHOMO

2
ð5Þ

η ¼ ELUMO � EHOMO ð6Þ
In the context of an earlier proposal by Maynard et al. [60],

Parr et al. [61] quantified electrophilicity index (ω) as the ground
state stabilization energy of atoms/molecules on acceptance of
electron(s) from a donor. The measure of ω, i.e., electrophilic
power, can be considered analogous to the electrostatic power in
classical physics which is formulated as:

Power ¼ V 2

R
ð7Þ

ω ¼ μ2

2η
¼ χ2

2η
ð8Þ

where V and R are potential and resistance, analogous to μ and η in
Eq. 8.

Electrophilicity index can be successfully used in developing
QSARmodels where the electronic environment of the compounds
being studied is more or less similar. The prediction of biological
activity [62] or toxicity [63] of several pollutants including poly-
chlorinated biphenyls and benzidine [64–67] has been successfully
displayed using the electrophilicity index. Now coming to hydro-
phobicity, its contribution depends on the type of receptor site and
mechanism of action. Very slight or no dependence on hydropho-
bic parameter is observed in case the receptor site is polar in nature
or the reaction occurs in an aqueous environment [68–73]. How-
ever, hydrophobicity becomes a very important descriptor when it
comes to the receptor site being nonpolar or the reactions occur-
ring in a lipid environment [74–77]. In QSAR studies, the loga-
rithm of the partition coefficient of the molecule in n-octanol and
water is usually used as a measure of its hydrophobicity.
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3 Method

3.1 Computational

Details

Geometries of all the compounds considered in this study are
optimized at a particular level of theory based on the type of
elements present in the compounds. For a single study, all the
compounds must be optimized at the same level to ensure compa-
rability. Frequency analysis is done at the same level to check the
absence of any imaginary frequency which would otherwise mean
that the optimized structures do not lie on the minima in their
respective potential energy surfaces. From the optimized geometry,
quantities like chemical potential (μ), hardness (η), and global
electrophilicity index (ω) are calculated following Koopmans’ the-
orem using Eqs. 5, 6, and 8.

We have used HF/6-311G∗ level of theory in Gaussian
03 package [78] for the study against Tetrahymena pyriformis and
B3LYP/6-31G(d) level in Gaussian 09 program package [79] for
the toxicity study against Pimephales promelas.

3.2 Regression

Analysis

The present chapter has been introduced to provide a clear over-
view of the computational methodologies such as the simplest and
the most commonly used multiple linear regression method (MLR)
to build QSAR models. The prediction performance has been
analyzed on the basis of regression coefficient (R2) and standard
deviation (SD). In this method, the relative importance of each
descriptor to the QSTR activity is indicated by the magnitudes of
descriptors and the sign coming along with it. In accordance with
the information of sign of the coefficients coming together with the
magnitude of molecular descriptors, we can suggest whether the
descriptors contribute negatively or positively to that specific
activity.

The regression analysis requires the division of the entire data-
set into two sets, namely, training and test sets. Construction of the
regression model is carried out by considering experimental toxicity
values (pLC50 or pIGC50) as the dependent variable and the com-
puted descriptors (in this case, ω, ω2 and ω3) as independent
variables for the training set. The developed model is then
employed to calculate the toxicity of compounds in the test set.
The correlation coefficient (denoted by R2) between these com-
puted toxicity values and their respective experimental values define
the efficiency of the model constructed. To remove any bias, a
threefold cross-validation study is performed by dividing the data-
set into three groups (sets A, B, and C) containing an equal number
of molecules, among which two are taken as training sets and the
other is taken as the test set. Simple QSAR model assumes a linear
relationship between the physiochemical properties of a set of
compounds (i.e., descriptors, denoted by xn) and a certain
biological or ecotoxicological activity (denoted by y).
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MLR, being one of the earliest conventional and most com-
monly used techniques for the construction of QSAR/QSPR/
QSTR models, is still used to date due to its some specific advan-
tages like easy interpretability and simplistic form over several other
approaches like partial least squares (PLS) analysis, principal com-
ponent regression (PCR), etc., which are more abstract and difficult
to interpret. However, the use of MLR technique is limited only to
linear QSAR models containing molecular descriptors that are
mathematically independent of one another. Thus, the efficiency
of the models constructed is subject to the accuracy of the assump-
tion that the relation between the activity and respective descriptors
is linear in nature.

In the present chapter, we have established a QSTR analysis by
constructing models proceeding with two different data sets
(1) toxicity (96-h LC50) of 15 benzene derivatives toward fathead
minnow (Pimephales promelas) [80] (see Table 1) and (2) toxicity
(pIGC50) of 169 aliphatic compounds encompassing different
groups like saturated alcohols, carboxylic acids, etc. [82] (see
Table 2). Considerations have been made to avoid any large-scale
computation or experiment by fetching all possible combinations of
hydrophobic (log P, {log P}2) and electronic (ω, ω2, ω3) parameters
to investigate their ability in predicting the toxicity.

3.2.1 Pimephales

promelas

QSTR analysis has been done by initially dividing the dataset
(15 molecules) into three equal sets (A, B, and C) containing five

Table 1
Data set for Pimephales promelas

Sl. No. Set division Compounds Experimental pLC50

1 Set A Hexachlorobenzene 6.38
2 1,2-Dichlorobenzene 4.40
3 Chlorobenzene 3.77
4 1,3-Dichlorobenzene 4.30
5 2-Xylene 3.48

6 Set B 1,2,4,5-Tetrachlorobenzene 5.85
7 1,4-Dichlorobenzene 4.56
8 4-Chlorotoluene 4.33
9 3-Xylene 3.82
10 Benzene 3.40

11 Set C 1,2,4-Trichlorobenzene 5.00
12 1,2,3-Trichlorobenzene 4.89
13 Bromobenzene 3.89
14 4-Xylene 4.21
15 Toluene 3.32

Experimental values are taken from ref. 81
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Table 2
Data set for Tetrahymena pyriformis

Sl. No. Compounds Experimental pIGC50

Saturated alcohols (N ¼ 32) Methyl alcohol �2.6656
Ethyl alcohol �1.9912
1-Propanol �1.7464
2-Propanol �1.8819
1-Butanol �1.4306
(+/�)-2-Butanol �1.5420
2-Methyl-1-propanol �1.3724
2-Pentanol �1.1596
3-Pentanol �1.2437
3-Methyl-2-butanol �0.9959
tert-Amyl alcohol �1.1729
2-Methyl-1-butanol �0.9528
3-Methyl-1-butanol �1.0359
2,2-Dimethyl-1-propanol �0.8702
2-Methyl-2-propanol �1.7911
1-Hexanol �0.3789
3,3-Dimethyl-1-butanol �0.7368
4-Methyl-1-pentanol �0.6372
1-Heptanol 0.1050
2,4-Dimethyl-3-pentanol �0.7052
1-Octanol 0.5827
2-Octanol 0.0011
3-Octanol 0.0309
1-Nonanol 0.8551
2-Nonanol 0.6183
3-Ethyl-2,2-dimethyl-3-pentanol �0.1691
1-Decanol 1.3354
(+/�)-4-Decanol 0.8499
3,7-Dimethyl-3-octanol 0.3404
1-Undecanol 1.9547
1-Dodecanol 2.1612
1-Tridecanol 2.4497

Carboxylic acids (N ¼ 28) Propionic acid �0.5123
Butyric acid �0.5720
Valeric acid �0.2674
Hexanoic acid �0.2083
Heptanoic acid �0.1126
Octanoic acid 0.0807
Nonanoic acid 0.3509
Decanoic acid 0.5063
Undecanoic acid 0.8983
Isobutyric acid �0.3334
Isovaleric acid �0.3415
Trimethylacetic acid �0.2543
3-Methylvaleric acid �0.2331
4-Methylvaleric acid �0.2724
2-Ethylbutyric acid �0.1523
2-Propylpentanoic acid 0.0258

(continued)
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Table 2
(continued)

Sl. No. Compounds Experimental pIGC50

2-Ethylhexanoic acid 0.0756
Succinic acid �0.9395
Glutaric acid �0.6387
Adipic acid �0.6060
Pimelic acid �0.5845
3,3-Dimethylglutaric acid �0.6643
Suberic acid �0.5116
Sebacic acid �0.2676
1,10-Decanedicarboxylic acid �0.0863
Crotonic acid �0.5448
trans-2-Pentenoic acid �0.2774
trans-2-Hexenoic acid �0.1279

Monoesters (N ¼ 31) Ethyl acetate �1.2968
Propyl acetate �1.2382
Isopropyl acetate �1.5900
Butyl acetate �0.4864
Amyl acetate 0.1625
Hexyl acetate �0.0087
Octyl acetate 1.0570
Decyl acetate 1.8794
Ethyl propionate �0.9450
Butyl propionate 0.1704
Isobutyl propionate �0.6935
Propyl propionate �0.8148
tert-Butyl propionate �0.4095
Ethyl butyrate �0.4903
Ethyl isobutyrate �1.2709
Ethyl valerate �0.3580
Propyl butyrate �0.4138
Butyl butyrate 0.5157
Propyl valerate 0.0094
Amyl propionate �0.0431
Ethyl hexanoate 0.0637
Methyl butyrate �1.2463
Methyl valerate �0.8448
Methyl hexanoate �0.5611
Methyl heptanoate 0.1039
Methyl octanoate 0.5358
Methyl nonanoate 1.0419
Methyl decanoate 1.3778
Methyl undecanoate 1.4248
Methyl formate �1.4982
tert-Butyl formate �1.3719

Diesters (N ¼ 20) Diethyl malonate �0.9975
Diethyl sebacate 1.3536
Diethyl suberate 0.7018
Diethyl succinate �0.8511
Dimethyl malonate �1.2869

(continued)
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Table 2
(continued)

Sl. No. Compounds Experimental pIGC50

Dibutyl adipate 0.7918
Dimethyl succinate �1.0573
Diethyl adipate �0.1265
Dimethyl brassylate 1.6536
Dimethyl sebacate 1.0106
Dimethyl suberate 0.2962
Diethyl pimelate 0.4069
Dibutyl suberate 1.6556
Diethyl butylmalonate 0.5566
Diethyl ethylmalonate �0.2422
Diethyl-3-oxopimelate �0.3778
Diethyl-4-oxopimelate �0.6378
Diethyl methylmalonate �0.5114
Diethyl propylmalonate 0.1341
Dibutyl succinate 0.5123

Ketones (N ¼ 15) Acetone �2.2036
2-Butanone �1.7457
2-Pentanone �1.2224
3-Pentanone �1.4561
4-Methyl-2-pentanone �1.2085
2-Heptanone �0.4872
5-Methyl-2-hexanone �0.6459
4-Heptanone �0.6690
2-Octanone �0.1455
2-Nonanone 0.6598
2-Decanone 0.5822
3-Decanone 0.6265
2-Undecanone 1.5346
2-Dodecanone 1.6696
7-Tridecanone 1.5214

Amino alcohols (N ¼ 18) 2-(Methylamino)ethanol �1.8202
4-Amino-1-butanol �0.9752
2-(Ethylamino)ethanol �1.6491
2-Propylaminoethanol �1.6842
DL-2-amino-1-pentanol �0.6718
3-Amino-2,2-dimethyl-1-propanol �0.9246
6-Amino-1-hexanol �0.9580
DL-2-amino-1-hexanol �0.5848
DL-2-amino-3-methyl-1-butanol �0.5852
2-Amino-3,3-dimethyl-butanol �0.7178
2-Amino-3-methyl-1-pentanol �0.6594
2-Amino-4-methyl-pentanol �0.6191
2-(Tert-butylamino)ethanol �1.6730
Diethanolamine �1.7941
1,3-Diamino-2-hydroxy-propane �1.4275
N-Methyldiethanol amine �1.8338
3-(Methylamino)-1,2-propanediol �1.5341
Triethanolamine �1.7488

(continued)
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molecules each. Out of these three sets, two were considered as the
training set, and the rest as test set (see Table 3).

Out of the studied four parameters, i.e., global electrophilicity
index (ω), its square term (ω2), hydrophobicity (log P), and (log
P)2, construction of models has been done by choosing one param-
eter at a time as input to bring out a comparative interpretation of
the results. The result of our investigation using single parameter-
based QSTR models on the training and the test set has been
tabulated (Tables 4 and 5), and the effectiveness of the correlation

Table 2
(continued)

Sl. No. Compounds Experimental pIGC50

Unsaturated alcohols (N ¼ 25) 2-Methyl-3-buten-2-ol �1.3889
4-Pentyn-1-ol �1.4204
2-Methyl-3-butyn-2-ol �1.3114
trans-3-Hexen-1-ol �0.7772
cis-3-Hexen-1-ol �0.8091
5-Hexyn-1-ol �1.2948
3-Methyl-1-pentyn-3-ol �1.3226
4-Hexen-1-ol �0.7540
5-Hexen-1-ol �0.8411
4-Pentyn-2-ol �1.6324
5-Hexyn-3-ol �1.4043
3-Heptyn-1-ol �0.3231
4-Heptyn-2-ol �0.6160
3-Octyn-1-ol 0.0170
3-Nonyn-1-ol 0.3401
2-Propen-1-ol �1.9178
2-Buten-1-ol �1.4719
(+/�)-3-Buten-2-ol �1.0529
cis-2-Buten-1,4-diol �2.1495
cis-2-Penten-1-ol �1.1052
3-Penten-2-ol �1.4010
trans-2-Hexen-1-ol �0.4718
1-Hexen-3-ol �0.8113
cis-2-Hexen-1-ol �0.7767
trans-2-Octen-1-ol 0.3654

Experimental values are taken from ref. 83

Table 3
Combinations of sets used in the training and test sets

Training set Test set

Case 1 Set A + set B Set C

Case 2 Set A + set C Set B

Case 3 Set B + set C Set A

Reprinted from Pal et al. [80] with permission
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has been judged in terms of coefficient of determination (R2). A
representative regression graph is provided as reference to highlight
the obtained result (see Fig. 1). It is quite transparent that easily
computable electronic descriptor ω2 and ω provide comparable
result with that obtained from the widely used lipophilic descrip-
tors, log P and (log P)2.

Table 4
Regression models on the training sets in case of Pimephales promelas using ω, ω2, log P, and (log
P)2 as descriptors

Sl. No. Regression equations R2 Rad
2 SD

1 Case 1 pLC50 ¼ 1.55332 + 1.3107∗ω 0.921 0.911 0.293
2 pLC50 ¼ 3.04853 + 0.26165∗ω2 0.926 0.917 0.283
3 pLC50 ¼ 1.17553 + 0.92114∗(log P) 0.929 0.921 0.276
4 pLC50 ¼ 2.88654 + 0.11495∗(log P)2 0.931 0.922 0.273

5 Case 2 pLC50 ¼ 1.77513 + 1.18538∗ω 0.870 0.854 0.343
6 pLC50 ¼ 3.08854 + 0.24448∗ω2 0.907 0.895 0.290
7 pLC50 ¼ 1.04942 + 0.93738∗(log P) 0.939 0.932 0.234
8 pLC50 ¼ 2.86562 + 0.11287∗(log P)2 0.926 0.917 0.258

9 Case 3 pLC50 ¼ 1.88129 + 1.1977∗ω 0.803 0.779 0.367
10 pLC50 ¼ 3.06405 + 0.2821∗ ω2 0.838 0.818 0.333
11 pLC50 ¼ 0.97142 + 0.98868∗(log P) 0.944 0.937 0.195
12 pLC50 ¼ 2.60524 + 0.14291∗(log P)2 0.960 0.955 0.164

Reprinted from Pal et al. [80] with permission

Table 5
R2 and SD values obtained from MLR analysis on the test sets of Pimephales promelas using ω, ω2,
log P, and (log P)2 as descriptors

Compounds

ω ω2 log P (log P)2

R2 SD R2 SD R2 SD R2 SD

Case 1 1,2,4-Trichlorobenzene 0.693 0.504 0.731 0.391 0.961 0.140 0.941 0.149
1,2,3-Trichlorobenzene
Bromobenzene
4-Xylene
Toluene

Case 2 1,2,4,5-Tetrachlorobenzene 0.916 0.261 0.926 0.221 0.950 0.226 0.976 0.132
1,4-Dichlorobenzene
4-Chlorotoluene
3-Xylene
Benzene

Case 3 Hexachlorobenzene 0.972 0.195 0.991 0.136 0.934 0.353 0.947 0.391
1,2-Dichlorobenzene
Chlorobenzene
1,3-Dichlorobenzene
2-Xylene
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Fig. 1 Plots of experimental versus calculated values of pLC50 for the test set with models constructed using
MLR. (a–d) Represent plots w.r.t. ω, ω2, log P, and (log P)2, respectively, for cases 1–3. (Reprinted from Pal
et al. [80] with permission)
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3.2.2 Tetrahymena

pyriformis

In order to develop linear prediction models, the investigation
toward Tetrahymena pyriformis (a freshwater protozoan) has been
performed by considering toxicity (pIGC50) of 169 aliphatic com-
pounds as dependent variable, whereas all possible combinations of
electronic descriptors (ω, ω2, ω3) and lipophilic descriptors {log P,
(log P)2} used as independent variables in the constructed models
[82]. Here the study includes two different approaches, (1) simple
MLR analysis on each of the seven group of compounds (without
dividing the complete set into training and test sets) and (2) by
diving each of the studied seven group of compounds (i.e.,
saturated alcohols, carboxylic acid, monoesters, diesters, ketones,
amino alcohols, and unsaturated alcohols) into three equal sets and
taking two of them as training set and the third as the test set
(Table 3). We have also found, among several available descriptors,
which combination(s) is/are efficient to provide a good correlation
coefficient (R2). The results for the complete set study have been
presented in Table 6 and that for the threefold cross-validation
study in Table 7.

The electronic factors used for constructing single- and
double-parameter QSARs provide satisfactory result for the set of
compounds with similar electronic environment. When they are
used along with hydrophobic descriptor, a substantial improvement
in estimation power has been achieved.

Table 6
R2 values obtained from MLR analysis on complete sets for Tetrahymena pyriformis using ω, ω2, ω3,
log P, (log P)2, and their combinations separately as descriptors

R2 values w.r.t.

ω ω2 ω3 log P
(log
P)2

ω,
log P

ω2,
log P

ω, (log
P)2

ω2, (log
P)2 ω, ω2

log P,
(log P)2

Saturated
alcohols

0.715 0.709 0.703 0.981 0.895 0.981 0.982 0.905 0.906 0.732 0.983

Carboxylic
acids

0.750 0.734 0.728 0.919 0.882 0.919 0.919 0.917 0.918 0.785 0.937

Monoesters 0.756 0.758 0.760 0.930 0.889 0.932 0.932 0.889 0.900 0.763 0.933

Diesters 0.739 0.733 0.725 0.910 0.814 0.958 0.957 0.911 0.912 0.748 0.912

Ketones 0.779 0.771 0.762 0.975 0.881 0.975 0.975 0.959 0.959 0.876 0.975

Amino
alcohols

0.748 0.746 0.743 0.340 0.156 0.879 0.878 0.857 0.853 0.748 0.387

Unsaturated
alcohols

0.301 0.296 0.288 0.868 0.790 0.868 0.868 0.790 0.799 0.302 0.890
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4 Conclusion

This chapter has focused mainly on the predictive ability of electro-
philicity in developing robust QSTR models. It also demonstrates a
comparative study between electrophilicity and the widely used
lipophilic parameter log P (n-octanol/water partition coefficient).
The choice of very simple and most commonmultiple linear regres-
sion (MLR) technique has been made to make the computation
relatively easier and to check its accuracy in a simple manner. In our
approach, an easily computable global parameter, electrophilicity
index (ω), and its square term (ω2) have been used as predictor
descriptors to generate structure-activity/property/toxicity mod-
els, and comparisons have been made for the confirmation of the
consistency check of the obtained results by employing hydropho-
bicity, i.e., log P and its square term (log P)2. The simple

Table 7
R2 values obtained from MLR analysis on the cross-validated sets for Tetrahymena pyriformis using
ω, ω2, ω3, log P, (log P)2, and their combinations separately as descriptors

R2 values w.r.t.

ω ω2 ω3 log P
(log
P)2

ω,
log P

ω2,
log P

ω,
(log
P)2

ω2,
(log
P)2 ω, ω2

log P,
(log
P)2

Saturated
alcohols

Case 1 0.794 0.790 0.785 0.975 0.843 0.973 0.973 0.851 0.852 0.902 0.976
Case 2 0.497 0.503 0.509 0.980 0.896 0.985 0.985 0.894 0.895 0.474 0.982
Case 3 0.808 0.808 0.807 0.988 0.936 0.989 0.990 0.935 0.935 0.806 0.988

Carboxylic
acids

Case 1 0.711 0.700 0.688 0.874 0.934 0.874 0.874 0.942 0.942 0.771 0.917
Case 2 0.792 0.776 0.759 0.948 0.918 0.940 0.940 0.946 0.946 0.865 0.959
Case 3 0.719 0.710 0.701 0.939 0.910 0.937 0.934 0.943 0.943 0.754 0.941

Monoesters Case 1 0.846 0.849 0.852 0.955 0.916 0.957 0.957 0.916 0.916 0.847 0.954
Case 2 0.829 0.834 0.838 0.940 0.877 0.933 0.933 0.877 0.877 0.816 0.928
Case 3 0.632 0.627 0.621 0.925 0.899 0.928 0.929 0.895 0.897 0.539 0.927

Diesters Case 1 0.546 0.539 0.534 0.961 0.856 0.944 0.863 0.878 0.883 0.569 0.978
Case 2 0.759 0.749 0.737 0.931 0.945 0.935 0.931 0.906 0.903 0.766 0.885
Case 3 0.870 0.853 0.836 0.866 0.786 0.952 0.954 0.937 0.939 0.947 0.880

Ketones Case 1 0.802 0.799 0.796 0.981 0.970 0.981 0.981 0.988 0.989 0.844 0.978
Case 2 0.773 0.769 0.765 0.981 0.977 0.979 0.979 0.971 0.972 0.825 0.976
Case 3 0.864 0.854 0.845 0.979 0.804 0.979 0.979 0.925 0.926 0.873 0.952

Amino
alcohols

Case 1 0.844 0.841 0.836 0.252 0.108 0.855 0.863 0.841 0.843 0.844 0.260
Case 2 0.873 0.871 0.867 0.294 0.205 0.888 0.879 0.875 0.866 0.871 0.368
Case 3 0.610 0.611 0.820 0.622 0.306 0.888 0.894 0.858 0.855 0.607 0.695

Unsaturated
alcohols

Case 1 0.620 0.617 0.612 0.813 0.829 0.813 0.813 0.833 0.834 0.015 0.842
Case 2 0.417 0.439 0.454 0.919 0.893 0.764 0.761 0.840 0.850 0.353 0.925
Case 3 0.171 0.194 0.217 0.876 0.922 0.793 0.791 0.776 0.779 0.130 0.909
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electrophilic parameters (ω, ω2) can be satisfactorily used as basic
descriptors toward toxicity prediction, upon which improvements
can be made by incorporating additional descriptors like log P, if
required. This study may help in extracting meaningful judgment
on structure-activity prediction models which can be used in more
practical applications by using the knowledge of data set division.
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Environmental Toxicity (Q)SARs for Polymers as an
Emerging Class of Materials in Regulatory Frameworks,
with a Focus on Challenges and Possibilities Regarding
Cationic Polymers
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Abstract

Polymers are highly diverse and understudied materials from an environmental toxicity point of view. For
the past decades, polymers have largely been out of scope regarding detailed safety assessment in most
regulatory programs as they are assumed to not possess relevant toxicological properties due to their size.
This regulatory exclusion is currently being reconsidered. This chapter discusses the available information
about selected cationic polymers and outlines (Q)SAR ((Quantitative) Structure-Activity Relationship)
approaches that could be used to develop new models to demonstrate potential aquatic toxicity of
polymers. The amount of publicly available, high-quality environmental toxicity data on industrial polymers
such as cationic polyquaterniums is extremely limited. Given the large size (dimension and molecular
weight) of the materials, typical hydrophobicity-driven toxicity is not expected. Relevant descriptors for
cationic polymers need to be identified. Molecular weight and charge density are well-known physical-
chemical attributes that are suspected to be correlated with aquatic toxicity, but there might be other
relevant descriptors as well.
We suggest models that predict polymer properties may be useful for estimating relevant properties

regarding toxicity. Moreover, novel fragment-based 2D and 3D hologram (Q)SAR (H(Q)SAR) may prove
relevant in determining these properties that can be used to derive hypotheses about toxic mechanisms and
guide experimental test designs. In a regulatory context, (Q)SARs have to be transparent and scientifically
robust which extends to fragment-based models that may be useful in categorizing polymers. The toxicity
of category members can then be experimentally explored, and read-across strategies developed within the
category.
The authors of this chapter are pursuing polymer (Q)SAR strategies in the coming years via generation of

novel experimental and computational data on polyquaterniums. We will also evaluate the potential for
fragment-based (Q)SARs for polymers in REACH.

Key words Polymers, Chemometric tools, Descriptors, Environmental toxicity, Cationic,
Polyquaterniums
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1 Introduction

Polymers are large macromolecules consisting of repeating mono-
mer units. Polymers are an exceptionally diverse group of com-
pounds and are used in a large range of applications. Polymers
may be described as linear, branched, or cross-linked. They may
exist as homopolymers and have one repeated monomer, or they
may be copolymers and contain two or more monomers combined
in random or ordered approaches. While many polymers in com-
merce are synthetic, there are also natural polymers or biopolymers
that are important building blocks of life, such as amino acids,
proteins, and cellulose. Many polymers are soluble and dispersible
in water. These are often used in consumer and personal care
products, pharmaceuticals, water treatment, and wood preserva-
tion. Novel uses and applications in biomedical and nano-industries
are expected to grow significantly in the coming years.

1.1 Current

Regulatory View

of Polymers

Historically, polymers have been subject to exemptions or reduced
regulatory requirements in countries practicing chemical legisla-
tion. The assumption was that the high molecular weight and
reduced reactivity of polymers in environmental compartments
were viewed as lower risk to human health and the environment
when compared to lower molecular weight substances. Most chem-
ical legislations have adopted 500 Da as the highest molecular
weight in scope, which is based on one component of Lipinski
rules of bioavailability whereby substances that are >500 Da are
considered less bioavailable. Since polymers are predominantly
represented by higher molecular weight componentry, it has long
been assumed that much of the polymer is not bioavailable and
inert in the environment and the focus of chemical registrations and
data needs has been more on lower molecular weight impurities
and unreacted monomers as well as additives (non-intentionally
added substances, NIAS, and intentionally added substances,
IAS). The focus of most regulatory programs is generally on new
polymers, not existing polymers already in commerce. However,
through K-REACH, Korea is the first country to require registra-
tion of current polymers, with all existing chemistries greater than
1 metric ton requiring registration by 2030. In addition, Environ-
ment Canada has polymers included in their Chemical Manage-
ment Program, and the agency recently published draft safety
assessments for the polyamines (December 2016).

For new polymers requiring registration, the criteria used by
many global regulatory agencies to identify “polymers of low con-
cern” include molecular weight and levels of monomers, in addi-
tion to the presence of specific structural features or functional
groups. The “polymers of low concern” concept is intended to
guide prioritization of polymer review by regulators. While this
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approach has been the practice of many global regulatory agencies,
polymers have been exempted from chemical registrations by the
European Chemicals Agency (ECHA).

Previous guidance from ECHA on polymer registration was
done with the view that polymers would eventually require regis-
tration. Below is an excerpt from Article 138 Section 2 [1]
(ECHA):

“The (European) Commission may present legislative proposals as soon as a
practicable and cost-efficient way of selecting polymers for registration on
the basis of sound technical and valid scientific criteria can be established,
and after publishing a report on the following:

(a) The risks posed by polymers in comparison with other substances;

(b) The need, if any, to register certain types of polymer, taking account of
competitiveness and innovation on the one hand and the protection of
human health and the environment on the other.”

In recent years, the simplified view of the potential risks asso-
ciated with polymers has received increased scrutiny, and with the
polymer exemption under REACH being revisited, the expected
outcome is starting approximately in the year 2023; polymers
identified as “polymers requiring registration” (PRR) will come
within the scope of REACH. This activity suggests the potential
reapplication of current REACH methods, such as categorization
and use of (Q)SAR, to characterize and estimate safety data and
even to support grouping and read-across approaches for these
materials. The use of (Q)SAR may be of special interest to regula-
tors due to the limited publicly available data for polymers. It is
likely many suppliers and downstream users of polymers have pri-
vately held data, but this information is often protected as confi-
dential business information (CBI) due to the competitive
environment of polymer innovation. Without unrestricted access
to environmental safety data on polymers, the need for (Q)SAR
development becomes more acute and relevant for polymer regis-
tration with the potential to use (Q)SAR to predict toxicity of
polymers in lieu of testing.

As mentioned above, the “polymers of low concern” approach
is based on the assumption that there is little toxicological concern
expected for polymers due to their decreased bioavailability as a
result of their significant molecular weight and their inability to
cross biological membranes. Many (Q)SAR models used to esti-
mate environmental fate and effects have not included large molec-
ular weight chemistries in their training set; therefore, (Q)SARs are
not intended to be useful predictors for large molecular weight and
complex polymers. Most (Q)SARs used to estimate toxicity are
based on log Kow as a surrogate for hydrophobicity/hydrophilicity
or contributions of certain functional groups or structural features.
Log Kow are generally estimated using fragment-based approaches,
leading to a gross overestimation for high molecular weight
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polymers. Furthermore, polymers are classic forms of UVCBs
(Chemical Substances of Unknown or Variable Composition,
Complex Reaction Products and Biological Materials) which are
difficult to devise (Q)SARs for as they are not discrete chemical
entities. There is, however, a somewhat historical (Q)SAR for
polymers in ECOSAR in the EPI Suite [2], which is also built
into the OECD (Q)SAR toolbox. These (Q)SARs were developed
using a set of data from polymers exclusively.

In the mid- to late 1990s, the USEPA conducted a review of
more than 10,000 polymeric substances notified to the USEPA [3]
for market access, and based on this exercise, a guidance document
was developed along with (Q)SAR domains for these materials.
Although this guidance received a modest update in the
mid-1990s [3], it remains the main reference point for the docu-
ment (USEPA) [4].

The ECOSAR models are, in essence, based on chemicals with
specific mechanisms of action causing excess toxicity (greater toxic-
ity than that predicted by baseline toxicity) and compounds with-
out a specific mechanism of action. There are a couple dozen
known mechanisms of toxicity (e.g., organophosphates and
others). However, the majority of compounds are nonspecific and
have what is known as a narcotic mechanism of action (typically
more than 75% of all chemicals) [5].

The narcotic mechanism of action, also known as baseline
toxicity, is based on the assumption of disruption of the cell mem-
brane integrity. This means that the critical cell membrane function

Fig. 1 Cell membrane (Colorbox)
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necessary to sustain homeostasis in the chemical environment of
the cell is impaired and the cell will die. The cell membrane (Fig. 1)
is shared among all forms of life on Earth and is therefore a very
good proxy for toxicity as the disruption of the cell membrane
integrity will affect all life.

The mechanism of cell membrane disruption has not been
entirely clarified, but it is usually characterized as a puncture or
shift in fluidity of the lipid bilayer protecting the cell so that the
functions needed to maintain homeostasis are impaired (e.g., efflux
pumps or ligands are closed or lost). Some compounds can pene-
trate the membrane via pumps and receptor ligands in the mem-
brane; these are typically the compounds with excess toxicity.
Hence, an experimental proxy for the cell membrane was needed,
and n-octanol/water partitioning coefficient was identified as a
good model for the partitioning of chemicals between water and
lipids such as the lipid bilayer. The log Kow expresses the ability of
the compound to disrupt the cell membrane, and, hence, the most
significant acute environmental toxicity descriptor was defined
[6]. Toxicity is derived from Greek with the original meaning
“poisons arrow” and is defined as a compound’s ability to penetrate
the cell membrane. The Paracelsus toxicity theorem that dose makes
the poison we have used in toxicology for the past centuries is
therefore enabled.

The aim of this chapter is to discuss the potential possibilities
and challenges with the development and use of environmental
toxicity (Q)SARs for polymers in a regulatory context for
REACH. With current knowledge and available computational
tools, we will explore how to build on the work by USEPA a
quarter of a century ago and develop novel (Q)SARs for relevant
polymers and used in anticipated REACH registrations. It is already
clear that chemical assessments in REACHwill not utilize (Q)SARs
directly to satisfy registration requirements for specific endpoints
(e.g., acute fish toxicity) but they may be exceptionally important in
the establishment of chemical categories or groupings thereby
lessening testing needs. The chapter will only take into consider-
ation (Q)SAR and read-across as tools for risk assessment of poly-
mers in a broad sense. Some details of the methodology involved in
(Q)SAR and read-across will be discussed in Subheading 2 below
after we have briefly reviewed the available data and provided a
couple of examples.

2 Materials and Methods

Polymers as a group contain a wide variety of materials with differ-
ing structural attributes, functionalization, and physical/chemical
properties. Polymers are composed of repeating monomer units,
and copolymers are made up of more than one species of monomer.
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2.1 Compounds:

Polymers—A Brief

Overview of Chemical

Diversity and Available

(Q)SARs

The copolymers are classified by how the units are arranged in the
chain. The major groups include alternating, random, and block
copolymers. Branched copolymers have a single main chain with
one or more polymer side chains that are grafted or have branching
that form other architectures. This complexity and diversity in
polymeric species and structure present a significant challenge for
their assessment and modeling. Polymers may contain structural
alerts and/or specific functionalized properties (e.g., in pharma-
ceuticals and biocides) and may require specific toxicity analysis.
Others may be completely toxicologically inert or have specific
features and uses that warrant further assessment. It therefore
makes sense to further define these materials.

According to USEPA definitions, compounds with a molecular
weight greater than 1000 Daltons are too large to pass through the
cellular membrane and are therefore unable to exert toxicity in a
traditional manner. However, these compounds could cause
mechanical effects (e.g., gill clogging) at high concentrations
(e.g., typically observed at >1000 mg/L). Mechanical effects
including binding to external and internal (e.g., gut) biological
surfaces which are not “toxicity” in the traditional sense but for
biological organisms may still be ecologically relevant. Polymer
safety assessments may include separate considerations for the poly-
mer, oligomers, and monomers depending on the polymer compo-
sition. USEPA [4] divides polymers into three categories based on
the average molecular weight (MWn) and the amount of low
molecular weight components (LMW):

Category 1: Polymers with low average molecular weight
(MWn <1000 Daltons). These can potentially be assessed as dis-
crete structures in EPI Suite, within the normal limitation of the
software, as long as the composition and structure of the polymer is
known [4, 6].

Category 2: Polymers with high average molecular weight
(MWn >1000 Daltons) and large LMW material composition
(�25% with MW<1000 Daltons; �10% with MW<500 Daltons).
The environmental toxicity of these polymers can be assessed;
however, oligomers may need separate assessment to account for
any increased toxicity due to their lower molecular weight [4].

Category 3: Polymers with high average molecular weight
(MWn >1000 Daltons) and minimal LMW material (<25% with
MW <1000 Daltons; <10% with MW <500 Daltons). These are
generally assessed solely as the polymer (USEPA) [4].

The aquatic toxicity of polymers is influenced by solubility.
Insoluble polymers are not expected to be toxic due to lack of
bioavailability. Typical acute aquatic toxicity values for these poly-
mers are >100 mg/L or > 10 mg/L for acute and chronic tests,
respectively. However, physical or mechanical effects may occur if
the insoluble polymer exists as a fine particle. Indeed, this is the case
for microplastic particles [7].
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Polymer charge (neutral, anionic, cationic, amphoteric) can
also modulate toxicity (Fig. 2). Nonionic polymers have very low
water solubility and are generally believed to be of low hazard
concern, unless they contain a significant amount of oligomer or
if the polymer is used as a surfactant or dispersant. Anionic poly-
mers are classified as poly(aromatic acids) or poly(aliphatic acids).
Poly(aromatic sulfonate and carboxylate) polymers have moderate
acute aquatic toxicities with fish, daphnids, and algae (LC50
1–100 mg/L). Poly(aliphatic acids) polymers have low toxicity to
fish and daphnids (LC50 >100 mg/L), whereas algae seem to be
more sensitive presumably due to chelating effects of nutrients.
Due to chelation potential of many of these polymers, the mitiga-
tion potential of hard water further complicates study interpreta-
tion and design. The toxicity of both cationic and amphoteric
polymers has been shown to increase with increasing cationic
charge density [4]. As cationic polymers are believed to pose the
greatest environmental hazard, the need for accurate aquatic acute
toxicity (Q)SAR predictions is the greatest for these compounds.
Other properties that may impact the toxicity of the pure polymer
include physical form, particle size distribution, swellability, disper-
sibility, and of course in addition to these the presence and poten-
tially weight fraction of reactive functional groups.

2.2 Cationic

Polymers

Although cationic polymers are not limited to quaternary ammo-
nium, phosphonium, and sulfonium functional groups, cationic
polymers with quaternary ammonium groups are used in personal
care and household cleaning products as conditioners or softeners
and as flocculants in drinking water treatment plants. Therefore,
there is a potential for the release into the aquatic environment.
Sound environmental risk assessment, with a focus on the aquatic
compartment, is of particular interest for cationic polymers, espe-
cially those with the quaternary ammonium functionality. At the
time of the Boethling and Nabholz publication on polymer risk
assessment, almost all of the cationic polymers reviewed contained a
N-functionality [3].

Fig. 2 Examples of cationic and anionic polymers
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Cationic polymers have a net positive charge at environmental
pH and therefore have the potential to be highly sorptive and
surface active. It has been suggested that cationic polymers will
sorb to biological surfaces which are net negative, and previous
studies have shown that cationic polymers have an impact on respi-
ratory processes and may disrupt oxygen transfer (e.g., gill mem-
branes of fish; Biesinger and Stokes) [8]. Total organic content
(TOC) and dissolved organic carbon (DOC) have been shown to
have a mitigating impact on the aquatic toxicity of cationic poly-
mers, presumably due to sorption, but most of these investigations
have been with highly charged polymers, and less mitigation may be
presumed for lower cationic charged compounds. Traditional tox-
icity studies are conducted in clean media (e.g., standard OECD
test media). The TOC and DOC levels in this media are not
representative of environmental concentrations, and, therefore,
the hazard values derived from these standardized studies may
overestimate the environmental hazard of cationic polymers. Miti-
gation factors, specific to cationic polymers charge density and
LMW composition, have been developed to adjust aquatic toxicity
values to reflect environmental TOC levels. Based on confidential
data from 53 cationic polymers, the USEPA described mitigation
factors ranging from 7 to 290 [2–4]. However, these studies were
conducted in the absence of analytical verification. Experimental
TOC and DOC values may be important parameters to include in
(Q)SAR modeling building exercises. These observations have
resulted in some test conduct considerations as reflected in the
OECD difficult test substance monograph (OECD) [9] and
USEPA [10]. Because cationic polymers interact with anionically
charged substances in general, we have observed toxicity mitigation
as a function of water hardness in our laboratories (P&G, unpub-
lished data). These are important, since toxicity often is linked to
the positively charged polymers [11, 12].

In addition to DOC/TOC levels, other parameters to be con-
sidered in developing (Q)SARs for cationic polymers are physical-
chemical properties that often serve as identity descriptors for the
polymer. The cationic charge is typically found on a nitrogen
group. For this reason, the % amine-nitrogen has been previously
used as a descriptor in aquatic toxicity (Q)SARs. To further elabo-
rate, from the historical work by Boethling and Nabholz [3], the
cationic charge density based on %amine-nitrogen is because almost
all the polymers submitted to the US TSCA office had their cationic
charge based on nitrogen. The polymer backbone may also influ-
ence the toxicity. Cationic polymer backbone types can be carbon-
based, silicon-based (e.g., Si-O), or natural (e.g., starch). The
importance of backbone type and environmental hazard is not
entirely clear. For fish, the toxicity silicon and carbon-based back-
bones are described using unique (Q)SAR equations. Natural poly-
mer backbones are assumed to have equal or slightly less acute
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toxicity than carbon backbone cationic polymers. However, daph-
nids have unique (Q)SAR equations for natural and carbon-based
backbones, with silicon backbones having equal or slightly less
acute toxicity than carbon-based backbones.

Fish and daphnid acute/chronic ratios range from 14 to
18, which suggest a narcotic mode of action [3]. The toxicity
ranged from 0.006 mg/L towards algae for a carbon-based back-
bone polymer with a 7.8% amine-nitrogen charge density quater-
nary amine and 38% MW <500 to more than 1000 mg/L for a
natural-based backbone with 0.07% amine-nitrogen charge density
quaternary amine and 0% MW <500) [3].
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Fig. 3 Acute fish toxicity of quaternary amine cationic polymers (carbon-based backbone) as a function of (a)
charge density (% amine-nitrogen) and (b) average molecular weight. Data obtained from Boethling and
Nabholz (1996) [3]
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It has been suggested by Boethling and Nabholz [3] that the
aquatic toxicity of cationic polymers is influenced by charge density,
molecular weight, and position of cation relative to the backbone.
Figure 3 depicts the relationship between acute fish toxicity and
(a) charge density (percent amine-nitrogen) or (b) average molec-
ular weight in carbon-based backbone quaternary cationic poly-
mers [3]. These plots hint towards increasing charge density
leading to an increase in toxicity, whereas an increasing molecular
weight corresponds with a decrease in toxicity—however much
work is needed to develop reliable (Q)SARs.

In recognition of the impact of charge density of the environ-
mental toxicity of cationic polymers, several regulatory agencies
(e.g., Canada) have established a functional group equivalent
weight (FGEW) cutoff of 5000 for the criteria of polymer of low
concern (PLC). This concept has also been supported by the
OECD review in 2009 of PLC criteria around the world. The
FGEW cutoff concept can be a valuable tool in the prioritization
of polymers to be selected for detailed regulatory reviews (e.g.,
REACH registration in EU).

2.3 Polyquaternium

Cationic Polymers: A

Complex Cationic

Polymer Category

There is very limited data available on a specific class of polyqua-
ternium that supports the observation that measured aquatic toxic-
ity is influenced by charge density.

Polyquaternium cationic polymers represent a class of particu-
lar interest of cationic polymers due to their widespread use and
releases to the aquatic environment. Polyquaterniums represent a
very wide diversity of structures, and as of early 2019, there were
approximately 40 registered active varieties with the Chemical
Abstracts Service. Polyquaterniums are available as homopolymers
or copolymers, and most are water soluble. Homopolymers vary in
MW typically from <100,000 to 500,000 Daltons. All polyquater-
nium polymers contain a monomer with a quaternary ammonium
functional group, such as diallyldimethylammonium chloride or
trimethylammonium chloride. There is a diversity in monomer
chemistries used as the copolymer for the quaternary ammonium
monomer. A few examples of nonionic or anionic copolymers
include vinylpyrrolidone, acrylic acid, polyvinyl alcohol, and acryl-
amide. Within each class of polyquaternium, the molecular weight
will vary depending on the number of repeat units. While charge
density remains constant for homopolymer polyquaterniums, the
range in charge density or degree of substitution is dependent on
the ratio of the monomers for copolymer polyquaterniums. The
selection of monomers and fine-tuning of monomer ratios are
necessary to give a range of physical-chemical properties and prod-
uct benefits for diverse applications.
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Polyquaternium-10 (PQ10) is a cationic cellulose polymer with
quaternary ammonium functionality, varying in charge density and
MW (Fig. 4). The diversity in charge density is driven by the ratio of
the monomer groups. A representative structure is illustrated in
Fig. 4.

Table 1 below provides the measured and published aquatic
toxicity of PQ10; the newest data is from 1991.

Fig. 4 Representative structure of polyquaternium-10

Table 1
Polyquaternium-10 aquatic effects data

Variant

Charge
density [13]
(meq/g) %N2

Avg MWa

[14] (kDa)

Viscosity
(as 2%
aq sol’n)
(mPa/s)2

96 h acute
fish EC50
(Gambusia
holbrooki)
[15] (mg/L)

72 h ECx
algae
(Chlorella
sp12) [17]
(mg/L)

UCARE JR125 High (0.9) 1.5–2.2 Low (250) 75–125 1.2 EC50 ¼ 0.04

UCARE JR30M High (1.0) 1.5–2.2 High (600) 30,000 1.5 EC10 ¼ 0.002
EC50 ¼ 0.05

UCARE JR400 High (1.2) 1.5–2.2 Low (400) 300–500 2.1 EC10 ¼ 0.013
EC50 ¼ 0.05

UCARE LK Low (0.3) 0.4–0.6 Low (~400)b 300–500 100 Not available

UCARE LR30M Low (0.4) 0.8–1.1 High (600) 30,000 66 Not available

UCARE LR400 Low (0.6) 0.8–1.1 Low (~400)b 300–500 64 Not available

aSupplier information
bEstimated based on viscosity information [13–17]
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Based on the limited data available on aquatic effects, it could
be proposed that charge density within a polymer class influences
aquatic effects on fish and algae, while MW does not appear to have
an impact. More information, from a well-structured toxicity inves-
tigation program, would be useful to determine the viability of the
hypothesis. This observed trend supports the rationale to develop
(Q)SAR to estimate aquatic effects when applicable. Since there is
very limited publicly available data, it is not well understood
whether a (Q)SAR developed for one polymer subclass could be
leveraged by another subclass with some common structural
features.

In a more recent example of research to understand whether
physical properties of polymers can be used to estimate aquatic
toxicity, Pereira et al. evaluated molecular weight, charge density,
and integrative intrinsic viscosity of several cationic polyacrylamides
to determine whether these structural features and variables could
be used to predict the environmental effects [18]. The studied
polyacrylamides were copolymers of acrylamide and acryloylox-
yethyltrimethyl ammonium chloride with a cationic monomer con-
tent between 40 and 50% (w/w). The test species included in this
study were bacteria, microalgae, macrophytes, and daphnids. While
correlations were found between physical properties of the cationic
polyacrylamides, the authors concluded that no clear ecotoxicity
patterns correlating to physical properties were observed. While the
observations may be valid for this particular group of polymers, the
historical data from Boethling and Nabholz and Cumming et al.
suggest there is a general relationship between certain structural
features, such as charge density, and observed aquatic toxicity for
cationic polymers, and in fact, (Q)SARs have been used for decades
to estimate toxicity of cationic polymers by the USEPA [3, 15].

It is clear from the above that there is a strong need to explore
(Q)SAR methodologies to describe the toxicity of polymers and
cationic polymers in particular. The regulatory development of (Q)
SARs for polymers has been advanced very little for the past dec-
ades, and publication of environmental toxicity data has also been
sparse in that period. We will therefore in Subheading 3 section
briefly describe possible options that may be applied in future
elucidation of environmental toxicity (Q)SAR methods for
polymers.

3 (Q)SAR Methods

Developing (Q)SARs based on curated PQ data is challenging as
the data availability, transparency, and quality for the training set are
limited and insufficient polymer descriptor information is available.
The same is the case in a greater degree for cationic polymers in
general [19]. And (Q)SARs are of course even more challenging for
polymers in general based as they are much more diverse and data
poor. Below is an outline of methods and approaches to consider.
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3.1 Chemometric

Tools

in Ecotoxicological

Evaluation of Polymers

In the recent decade, we have seen a notable rise in the use of
alternative strategies in testing methods, including computational
tools, for safety assessment of various organic/inorganic chemicals
[20–22]. The in silico tools have demonstrated their successful
application in detecting hazard potential of various chemicals
belonging to several subclasses such as pharmaceuticals [23], agro-
chemicals, nanoparticles, and personal care products [23–27]. For
emerging pollutants such as micro- and nano-sized particles [28]
and polymers, such models are available to much a lower extent.
There is a clear-cut deficit in the number of reports on application
of in silico tools in toxicity (especially ecotoxicity) assessment of
polymeric materials. The data scarcity on polymer ecotoxicity
whether in silico or in vitro is evident mainly from availability of
very few published studies in the literature. One possible reason is
the high degree of proprietary nature for polymers and concerns
with protecting confidential business information by disclosing
identity descriptors for polymers in the public domain. While
there are methods available that can estimate the effects of individ-
ual parent monomers [29, 30], the polymeric versions of the com-
pounds are often left unevaluated (due to highly extensive
computational requirement). Quantitative structure-activity/
property relationship ((Q)SAR/QSPR) and quantitative read-
across analysis (QRA) are widely accepted computational techni-
ques, which are believed to be the most successful [2] two
approaches that can be successfully implemented in identification
of potent environmental pollutants among polymeric compounds
(specifically, cationic polymers in view of their insufficient experi-
mental data) using a very small amount of experimental results. It is
also worth mentioning here that regardless of how statistically
robust or significant a (Q)SAR/read-across model may be, it
would be unavoidably associated with certain limitations
[6]. These limitations are model specific, such as that a single (Q)
SAR model may have its limited applicability owing to its restricted
chemical domain which can be tackled by using intelligent consen-
sus (Q)SAR approaches as proposed by Roy et al. [31]. Another
major challenge in predictive toxicology is to effectively evaluate
the reliability of obtained predictions of unknown/untested or not
even synthesized chemicals. This limitation was also addressed
recently with the introduction of prediction reliability indicator
tool as proposed by Roy et al. [32]. Several commercially available
tools for prediction of different endpoints for chemicals in general
include TOPKAT software [33], CAESAR [34], ECOSAR [2],
Toxicity Estimation Software Tool, etc.; however these tools gen-
erally do not include polymers in their training set which could be
considered an important limitation [35]; hence we explore in the
following sections alternative approaches.
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It is well known that the most robust environmental toxicity
tests are accompanied by confirmatory analytical verification of
exposure. Analytical exposure determinations in aquatic toxicity
tests are formally required, whenever feasible, under all typical
OECD test guidelines for acute and chronic aquatic toxicity. How-
ever, limitations are also known for confirmation of exposures when
polymers are tested. Indirect determinations can be useful in lim-
ited circumstances. These may include total organic carbon (sensi-
tive down to perhaps 2 mg/L) or other alternatives such as
measurement of an inorganic component such as silicon as was
done in the 1990s during the programs addressing environmental
safety of polydimethylsiloxane (PDMS) polymers [36]. (Q)SAR
developments may be somewhat hampered by the lack of specific
analytical verification of exposures until “high-end” analytical
methods can be made routine and broadly available.

3.2 (Q)SAR

Methodologies: Broad

Classifications

The toxicity of whole polymeric structures or the structures in a
monomeric form can be analyzed using (Q)SAR/QSPR methods,
which can be classified as follows:

Regression-Based (Q)SAR This technique can be implemented to
explore the quantitative correlation between toxicity of polymeric
materials with the corresponding structural features. Multiple linear
regression, partial least squares, and artificial neural networks are
some of the examples of regression-based approaches. The use of
regression approach for polymers is demonstrated in [37].
Classification-Based (Q)SAR For graded responses or where
there is a lack of absolute quantitative toxicity data of polymers,
classification-based techniques can be used to group the data into
Boolean classes such as toxic, nontoxic, or moderately toxic classes.
A classification-based technique like linear discriminant analysis
(LDA) is also helpful in big data analysis [38].

3.3 Protocols for (Q)

SAR Analysis

in Polymers

(Q)SAR follows well-established protocols for developing statisti-
cally acceptable models for prediction of activity/property/toxicity
chemical compounds [38, 39]. The Organization for Economic
Cooperation and Development (OECD) has recommended five
basic principles for (Q)SAR model development: (1) a defined
endpoint, (2) an unambiguous algorithm, (3) a defined domain
of applicability, (4) strict validation protocols, and (5) mechanistic
interpretation, if possible [26]. The details of any (Q)SAR work-
flow are discussed below.

Collection of reported/generated biological data: For a (Q)
SAR study involving polymeric compounds, the data collection
should follow the prescribed guidelines of OECD [38, 39] which
include uniform experimental conditions, uniform time of expo-
sure for the desired effect, experiment with a standard species,
analytical verification of the exposure concentrations, etc. The
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data curation should be done effectively to check for duplicates/
salts/ions, etc. Another important point in collecting homogenous
ecotoxicity data for polymers includes ideality in experimental water
conditions such as hardness, alkalinity organic carbon content
(TOC and DOC), etc. that may affect the observed toxicity. In
the case of algal testing and (Q)SARs, definition of specific anionic
and cation components of media may also be important.

Descriptor calculation: For the descriptor calculation, in most
of the cases, initially the monomeric or repeating unit is identified.
The flanks of monomers are capped with hydrogen atom in order to
satisfy the valence electron. Then the structure are subjected to
descriptor calculating software such as Dragon [40], SiRMS [41],
alvadesc [42], PaDEL-Descriptor [43], etc. to calculate molecular
descriptors.

Division of the dataset: In order to obtain useful models, the
collected data should be partitioned into training and test sets
following unbiased methods. Some of the widely followed dataset
division techniques include Kennard-Stone [44], Euclidean dis-
tance approach [45], k-medoids approach [46], and random sam-
pling. These tools for dataset division are available, for example, at
http://teqip.jdvu.ac.in/(Q)SAR_Tools/.

Feature selection: In feature selection, molecular descriptors
important for the response values are identified. Some of the fea-
ture selection techniques include stepwise selection, genetic algo-
rithm, double cross validation (DCV), and factor analysis [47]. The
problems of small datasets (as in the case of polymer toxicity data,
which is scarce) can be addressed to some extent using DCV. In
DCV, the training set is split into calibration and validation sets,
and these are utilized for model building andmodel selection, while
the test set is exclusively used for model assessment. This process
obviates the possibility of bias in descriptor selection. For ideal (Q)
SAR models, the intercorrelation among the descriptors should be
very less.

Modeling algorithms and chemometric tools used in (Q)SAR:
The most commonly employed linear modeling algorithms include
multiple linear regression (MLR) [48], univariate linear regression
(ULR), ordinary least squares (OLS), partial least squares (PLS),
principal component analysis (PCA) [27], principal component
regression (PCR), etc.

Model validation metrics and mechanistic interpretation:
Finally the developed model should be validated following interna-
tionally recognized guidelines. Some widely used validation metrics
for regression models include leave-one-out (LOO) cross-
validation R2 (Q2) and for training set evaluation and QF1

2, QF2
2,

QF3
2, and concordance correlation coefficient (CCC) for test set

evaluation. Some other stringent criteria for model validation
include (1) mean absolute error (MAE) criteria proposed by Roy
et al. [49] and (2) Golbraikh and Tropsha criteria for model
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validation [46]. A mechanistic interpretation of a developed model
is desired wherever possible. Figure 5 depicts the general outline of
polymer toxicity modeling.

4 Applications of (Q)SAR to Polymers: A Literature Review—Applications of (Q)SAR
in Ecotoxicity of Polymers

With the proprietary nature for many polymers, manufacturers and
downstream formulators have generated aquatic effects data for
stewardship reasons, but much of this data is privately held to
protect confidential business information (CBI). However, there
are some classes of polymers that have been studied with publicly
available publications demonstrating potential toxicity of polymers
with some aquatic species [19]. Several examples are presented
below as case studies of (Q)SAR development for diverse polymer
classes.

Acute algal toxicity: The very first and comprehensive (Q)SAR
study on toxicity of polymers was conducted by Nolte et al.
[19]. The data (N ¼ 43) for growth rate inhibition (EC50) of
algae were collected from the literature using Google Scholar and
Web of Science. However, since the data was limited, the authors
combined the data for two different times of exposure, i.e., 96-h
and 72-h reflective of primarily USEPA and OECD algal test
procedures, respectively. Three different models based on their
charge separation (cationic (N ¼ 9), anionic (N ¼ 16), and
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Fig. 5 Process involved in ecotoxicity study of polymers following in silico (Q)SAR and QRA approach
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nonionic (N ¼ 17) compounds) were developed using one theo-
retical descriptor following regression-based decision tree tech-
nique. More complex branched polymers, polymeric surfactants,
and non-nitrogen cationic polymers were omitted from the study.
The models predict that cellular adsorption, disruption of the cell
wall, and photosynthesis could be the possible mechanisms of
action for algal toxicity of cationic and nonionic polymers. The
findings of the (Q)SAR results combined with molecular dynamics
simulations proposed that nutrient depletion is likely the dominant
mode of toxicity. (Q)SAR relationships for green algae growth
inhibition, however with the low number of data for the generated
(Q)SAR, were not statistically robust and do not comply with the
quality criteria cited by Cherkasov et al. [6, 19].

4.1 Application of (Q)

SAR in Toxicity

Prediction of Polymers

(Peptides)

Antimicrobial peptide toxicity: Langham and colleagues [51]
developed (Q)SAR models to quantify and predict antimicrobial
peptide toxicity against human host cells (epithelial and red blood
cells) based on physicochemical properties like interaction energies
and radius of gyration which were in turn calculated frommolecular
dynamics simulations of the peptides in aqueous solvent. For model
the development 60 peptides with experimentally determined toxi-
cities were used. Langham and colleagues [51] proposed based on
the findings of molecular modeling study that physicochemical
properties of peptides and interactions in a solvent are responsible
for their toxicity against human cells in their native state. The
developed models were then employed in predicting several other
protegrin-like peptides. The (Q)SAR model could correctly rank
four out of five protegrin analogues newly synthesized and tested
for toxicity in laboratory.

Although quantitative structure-toxicity relationship modeling
reports involving polymers are scarce, there are several reports on
(Q)SAR/QSPR modeling of their biological activity and property
endpoints. We report here some of them to demonstrate that
similar tools may be applied to develop models to predict toxicity
of polymers.

4.2 Application of (Q)

SAR to Biomedical

Applications

of Polymers

Cellular response and protein absorption: Khan and Roy [52]
developed predictive (Q)SAR models for a cellular response (fetal
rate lung fibroblast proliferation) and protein adsorption (fibrino-
gen adsorption (FA)) on the surface of tyrosine-derived polymers
designed for the purpose of tissue engineering. These polymers
were synthesized using a combinatorial approach which in turn is
a decade long process used in tissue engineering applications; the
process is briefed in the source paper [52]. The model consists of
66 data for cellular response and 40 data for protein adsorption on
polymers. The models were developed using only selected 2D
descriptors having definite physicochemical meaning. To enhance
the biological domain of the model, multiple (Q)SAR models were
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developed and then subjected to consensus modeling as proposed
by Roy et al. [31]. The final consensus models were validated using
strict OECD guidelines and accepted internal and external metrics.

Cellular response: Semiempirical QSPR models were devel-
oped to predict the cellular response to the surfaces of polymers
designed for tissue engineering applications by Kholodovych and
colleagues [53]. The findings of the models were then compared
with experimental results which showed a high degree of accuracy
proving its significance for biomedical applications. Partial least
squares (PLS) regression technique was used for model develop-
ment using 62 polyarylates and structure-based molecular
descriptors.

Bioresponse modeling: Artificial neural networks (ANN) were
applied to model bioresponse to the surfaces of polymers collected
from combinatorial library [54]. For analysis, 22 structurally dis-
tinct polymers were modeled against human fibrinogen adsorption.
Additionally, the developed models were used to model rat lung
fibroblast and normal human fetal foreskin fibroblast proliferation
in the presence of 24 and 44 different polymers. The root mean
square was used for the error comparison with experimental
finding, and it was lower than experimental results thus proving
applicability of the developed models.

Protein adsorption: Smith et al. [55] proposed a surrogate
model for the prediction of protein adsorption onto the surfaces
of polymers designed for tissue engineering applications. The pro-
posed surrogate model combines machine learning, molecular
modeling, and an artificial neural network. The experimental errors
were estimated using Monte Carlo technique. The dataset consists
of 45 polymers with measurements of human fibrinogen adsorp-
tion. A total of 106 molecular descriptors were computed using the
Molecular Operating Environment (MOE) software. The surro-
gate model was developed in two stages: firstly the three descriptors
with highest correlation to the adsorption were identified, and then
these three descriptors were used as input for the second stage, i.e.,
for artificial neural network (ANN) to predict fibrinogen adsorp-
tion. Here, a Monte Carlo approach enabled a direct assessment of
the effect of the experimental uncertainty on the results. Only the
training set (nearly 50%) was employed for ANN using random
sampling followed by checking of experimental error using Monte
Carlo analysis. The accuracy of ANN was then compared with
experimental data for the remaining polymers (the validation set).
The Pearson correlation coefficient was used as validationmetric. In
conclusion, the surrogate model was proposed to get accurate and
unambiguous predictions of polymers to check for their range of
fibrinogen absorption, an essential requirement for assessing poly-
mers for regenerative tissue applications.
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4.3 Applications

of (Q)SAR in Property

Estimation of Polymers

In other areas of (Q)SAR development, there are a number of
publications that demonstrate that quantitative structure-property
relationship (QSPR) models can be developed to predict certain
physical properties of polymers. Though a number of studies in the
available literature exist on modeling of various properties of poly-
mers, we have reported here a few of the recent reports.

Refractive Index Khan et al. [56] proposed robust QSPR models
to predict refractive indices (RIs) of a set of 221 diverse organic
polymers employing simple 2D descriptors generated by using
monomeric unit. The final model consists of six theoretical descrip-
tors developed using partial least squares (PLS) regression tech-
nique. For feature selection, double cross-validation tool was used.
Use of consensus modeling for predictions frommultiple modeling
was also demonstrated. Finally, four small virtual libraries were
selected to predict their RIs values using obtained consensus
model.

Glass Transition Temperature The glass transition property of
206 diverse polymers was studied by Khan and Roy [37] using the
QSPR approach since it has a direct impact on polymer stability.
Five individual QSPRmodels were obtained using six 2Dmolecular
descriptors following partial least squares regression and DCV as
the feature selection tool. The models were extensively validated,
and Y-randomization (Y-scrambling) test was performed in order
to prove nonrandom and robust nature of the developed models.
At last, comparison with existing QSPR models was made to dem-
onstrate the effectiveness of the novel models.

5 Discussion of Future Avenues: Application of Fragment-Based (Q)SAR
and Read-Across in Ecotoxicity Predictions of Polymers

The area of (Q)SAR modeling for the evaluation of toxicity of
polymers has remained largely unexplored, which could be used
to motivate and inspire (Q)SAR modelers to contribute to this
dynamic and vastly underdeveloped field. A major notable point
here is many of the previous modeling studies [57, 58] on polymers
involve computation of quantum-chemical descriptors which can
be a time-consuming process. This problem can be solved effec-
tively by using only 2D descriptors having simple more definite
physicochemical meaning in order to avoid conformational analy-
sis, computational complexity of energy minimization, and align-
ment problems.

Apart from the classical methods of (Q)SAR model develop-
ment, one can also apply more novel and more appropriate meth-
ods as discussed below.

Fragment-based (Q)SAR: These use molecular substructures
expressed in fingerprints as descriptors in the developed models.
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Fragment (Q)SARs can be implemented in the ecotoxicological
modeling of polymers when studying a part of a molecule or specific
group in relation with the toxicity. A widely used group-based (Q)
SAR is H(Q)SAR (Hologram-(Q)SAR) [38, 39].

H(Q)SAR: This is a modern 2D FB-(Q)SAR (fragment-based)
technique which utilizes molecular substructures expressed in
binary pattern also termed as fingerprints in model development
as variables. The method does not involve calculation of any physi-
cochemical chemical descriptor or 3D structure generation. The
process follows three steps:

1. Fragment generation for each of the training set molecules

2. Representation of the fragments in the holograms

3. Finding correlation of the molecular holograms with the
corresponding activity data using training set compounds
employing the PLS technique

A number of parameters affect H(Q)SAR model generation
such as hologram length, fragment size, and distinction [38]. H
(Q)SAR encodes all possible fragments within the molecules along
with sub-fragments; thus it is helpful in understanding the frag-
ments responsible for the toxicity of polymers in reference species.
The other possible applications of H(Q)SAR in ecotoxicity of
polymers include exploring individual atomic contributions to the
toxicity with a visual display of active centers in the compounds.

Read-across: The read-across approach is a practice based on
the assumption that structurally similar compounds exhibit similar
physicochemical, environmental fate, toxicological, and ecotoxico-
logical properties. The process starts with the grouping of similar
objects (here, structures), and then the response value of one or
more chemicals can be used to predict the behavior of target
chemicals. Four different strategies for read-across have been pro-
posed so far, i.e., one-to-one, one-to-many, many-to-one, and
many-to-many. As per the OECD guidelines [58], the QRA pre-
diction can be performed in following one of the four ways:

1. Using similar chemicals for the endpoint to perform read-
across

2. Using a mathematical scale to check the trend in experimental
results using two or more similar chemicals (e.g., trend
analysis)

3. Taking an average of endpoint values of two or more source
chemicals

4. If sufficient data is available, using the most conservative value
from the source chemicals in the whole category

A read-across strategy can be used to estimate the toxicity for a
series of cationic or anionic polymers with acceptable levels of
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uncertainty. Considering that the toxicity data are available for a
limited number of polymers, read-across will be very helpful for
bridging data gaps. However, efforts are needed to define how
similar polymers should be grouped and what key physical-chemical
properties should be used in the grouping scheme. Data anchors at
the extremes of the biological attribute being used to develop the
read-across are important to define. Previous groupings by ECHA
or EPA may be too broad, and further work is needed to refine
based on the diversity of polymers within classes or subclasses. In
addition, it is possible that the grouping and read-across approach
may need to be customized depending on polymer class or even
route of exposure. The potential impact of polymers to human
health and the environment may be estimated through developing
(Q)SAR models and by enabling read-across to structural analo-
gues and avoiding or minimizing the need to conduct safety stud-
ies. This would bring benefits to time, resources, and avoiding
animal testing. (Q)SARs could also be leveraged in polymer inno-
vation and providing guidance on the design space.

6 Conclusions

It is clear from the above that regulatory programs are increasingly
starting to include polymers for environmental risk assessment,
chiefly in REACH, and that there has been a paucity for a couple
of decades in the development of aquatic toxicity (Q)SARs by the
USEPA [4] for polymers. There is hence a need to develop models
for this purpose. It is also clear that polymers are very diverse and
this diversity needs to be reflected in the model development and
domains [6]. It is also clear that key and necessary data that are
needed to do assessments or generate regression-based (Q)SARs
are currently largely missing [19] and the sparse available experi-
mental data lacks insight on experimental exposure. Moreover,
regression-based (Q)SARs still require identification of the most
determinant toxicity descriptors of the polymer. It is highly ques-
tionable if this is hydrophobicity since the mechanism of action is
either unknown or not narcotic since the molecules are too large to
exert the narcotic mechanism we normally associate with narcosis.
Cationic polymers are highlighted as an example in this chapter of a
class of polymers of high and down-the-drain use, more specifically
polyquaterniums. The toxicity of these materials is dependent upon
charge density, molecular weight, %amine-nitrogen, solubility, and
type of backbone. There may be other additional and currently
uninvestigated descriptors that govern the toxicity of these and
other cationic polymers. We have suggested a series of non-
regression-based (Q)SAR approaches that may be applied to eluci-
date the potential descriptors. Figure 5 outlines a process for devel-
oping (Q)SARs which when combined with the learnings from
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Cherkasov et al. [6] are important methods moving forward. Using
polymer properties may be useful for estimating fate, effects, and
even form in the environment. For example, the glass transition
temperature (Tg) [37] may be used to estimate form. If a polymer is
below Tg, then it has to be a solid. If it is above Tg, then it could be
a solid or liquid depending on the melting temperature of the
polymer, which would determine the bioavailability and toxicolog-
ical availability of the material. 3D comparative molecular field
analysis and other ANN or 2D H(Q)SAR may prove highly rele-
vant—but in a regulatory setting, the models have to be transparent
in which case the fragment-based models may initially be used to
identify critical toxicity and availability descriptors which can then
be used to cluster the polymers. The toxicity of these clusters can
then be experimentally explored and recorded and subsequently
develop read-across within these. The authors of this chapter are
pursuing this in the coming years via generation of novel experi-
mental and computational data on polyquaterniums, and we will
also evaluate the potential for fragment-based (Q)SARs for poly-
mers in REACH.
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Chapter 29

Ecotoxicity Databases for QSAR Modeling

Shinjita Ghosh, Supratik Kar, and Jerzy Leszczynski

Abstract

Industrial chemicals, pharmaceuticals along with illicit drugs (IDs), as well as day-to-day personal care
products (PCPs) are documented as contaminants of emerging concerns (CECs). They are environmental
pollutants due to their substantial detrimental impacts on the environment through their frequent pres-
ence, persistence, and peril to the species living in aquatic, terrestrial, and soil compartments as well as to
humans. Although the toxic effects and occurrence concentration of pharmaceuticals and chemicals have
been studied and reported for the last three decades, PCPs and IDs are quite neglected substances along
with the mixtures and transformation products (TPs) or metabolites of all CECs, in the context of their
ecotoxicological risk evaluation. Among various compartments, the effects of CECs are largely documented
for aquatic species where often very little information is available with regard to terrestrial and soil toxicity.
This deficiency of knowledge has led to greater effort to create new methods and approaches which would
measure their occurrence, metabolism, bioaccumulation, and biodegradability followed by the mechanism
of action (MOA) behind toxicity to individual living species and ecosystem. This information is very
important for risk assessment and risk management along with regulatory decision-making followed by
in silico or computational modeling for future ecotoxicity. Thus, the obtained information needs to be
documented under a system called “database” based on different categories including chemical class,
toxicity testing, test species, environmental compartment-specific, toxicity MOA specific as well as country.
Ecotoxicity has a number of open-access and commercial databases which are implemented for risk
profiling, regulatory decision-making followed by ecotoxicity prediction of new and untested substances
over the years. The present chapter deals with the most commonly used ecotoxicity databases followed by
their detailed information so that one can use these databases efficiently in experimental as well as
computational research.

Key words Database, Ecotoxicity, In silico, QSAR, Risk assessment, Risk management

1 Introduction

Micropollutants like industrial chemicals, pharmaceuticals and per-
sonal care products (PPCPs), agrochemicals, plastics, and polymers
have been widely detected in day-to-day life with the developed
state-of-the-art analytical methods [1]. The residues of these
micropollutants are recurrently reported in surface and groundwa-
ter, influent and effluents of both the sewage treatment plants
(STPs) and water treatment plants (WTPs), even in drinking
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water due to their universal uncontrollable consumption, low bio-
degradability, and inappropriate disposal [2, 3]. Continuous bioac-
cumulation and bioconcentration of these compounds lead to a
serious risk to each compartment of the environment as well as
living species. Although multiple studies assessed the existence in
terms of quantitative measures followed by toxicity evaluation, the
amount of data considering their existence is still limited. In this
perspective, computational or in silico models are helpful and
proven alternative over the years to fill the ecotoxicity data gaps
for new and/or untested chemicals [4].

The need of in silico techniques in predicting toxicological and
hazardous properties of chemicals is taking the central stage of
attention day by day among the scientific community, regulatory
bodies, and the public in general for decision-making frameworks
in safety assessments [5, 6]. In silico methods are capable of
providing information about the physicochemical properties of
organic chemicals, their environmental fate as well as their effects
on human health. Thus, a great demand for large quantities of early
information on toxicity, particularly at the designing stage, has
arisen. The quantitative structure-activity relationship (QSAR) is
one of the leading in silico methods increasingly being used for the
prediction of different ecotoxicity properties (endpoints) of organic
chemicals. Though a number of in vitro and high-throughput
methods have been developed to provide an experimental evalua-
tion of such properties, earliest possible identification of liability is
desired, including even prior to synthesis. Thus, in silico
approaches may be used for hypothetical compounds to guide
synthetic efforts. Moreover, QSAR modeling may be done quickly,
and a large number of compounds may be screened within a very
short period. Additionally, the QSAR model will complement the
3Rs principle (replacement, refinement, and reduction of animals in
research) minimizing animal testing. Around the world, extensive
research work on predictive toxicology using QSAR is going on
nowadays, and a great amount of applied research is still needed. It
is essential to follow fundamental guidelines implemented by the
Organization for Economic Co-operation and Development
(OECD) to develop an acceptable and predictive QSAR model
(http://www.oecd.org/dataoecd/33/37/37849783.pdf). One
of the fundamental requirements to develop a reliable and predic-
tive QSARmodel is a precise and good quality of experimental data.
Thus, generation and collection of experimental toxicity data for
different endpoints and species are very much important [7]. A
series of data for specific toxicity following similar or identical
protocols is considered as database. In the present chapter, we
have discussed the importance and application of major ecotoxicity
databases which are utilized over the years by regulatory authorities
and academicians. The future requirements for ideal ecotoxicity
databases are also introspected with examples. The present chapter
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is a rich source of information on ecotoxicity databases with their
detailed data information for the experts along with the beginners
who want to use these databases for QSAR modeling as well as
high-throughput screening (HTS) of ecotoxicity and risk profiling
of chemicals [8–10].

2 Ecotoxicity

The term ecotoxicity is used when the toxicity of a specific com-
pound is tested in several organisms together, and the term envi-
ronmental toxicity is related to hazards and risk associated with a
chemical to the ecosystem or environment. However, in most of
the literature, both terms are used interchangeably. In the present
manuscript, we will use the term ecotoxicity to signify both terms.
The ecotoxicity of a chemical can be defined in terms of the length
and frequency of its exposure to the ecosystem followed by their
hazardous effect or toxicity to the species living in the exposed
environment [11, 12]. Industrial organic synthetic chemicals, phar-
maceuticals, and personal care products are one of the CECs fre-
quently detected in diverse compartments of the environment and
are the leading substances responsible for ecotoxicity over the years.
Based on the length and observed effects of toxicity, ecotoxicity can
be categorized into two types, and they are [11]:

(a) Acute toxicity: It is defined as harmful or toxic effects due to
the exposure of a species/organism to a CEC hazard typically
over a span of not more than 15 days. For the environmental
toxicity assessment, the studied acute toxicity to fish, Daph-
nia, and algae are 96 h LC50 in mg/l, 48 h EC50 in mg/l, and
72–96 h EC50 in mg/l, respectively.

(b) Chronic toxicity: It is defined as harmful effects due to the
long-term exposure (�15 days to years) of a species/organism
to the CEC hazard expressed as no observed effect concentra-
tion (NOEC) that is the concentration in water which below
an unacceptable effect is unlikely to be observed. The study
results of chronic toxicity for fish and algae are 28 days NOEC
in mg/l and 21 days NOEC in mg/l, respectively.

Microorganism, phytoplankton, plants, amphipods, fish, and
insects present in different compartments are directly or indirectly
related to acute to chronic effects. Considering the whole cycle,
higher class living systems including human are also affected enor-
mously due to these ecotoxicities. The ecosystem is divided into
many environmental compartments. Thus, ecotoxicity of CECs can
be classified based on the toxicity occurrence to specific compart-
ments. The major ones are the following:
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(a) Aquatic toxicity: The term aquatic itself suggests toxicity
related to the aquatic environment. Aquatic toxicity can be
in different forms like the surface, ground, drinking water,
river, and ocean pollution [13–16]. The aquatic toxicity hap-
pens due to either specific toxic interactions or nonspecific
mechanisms like necrosis. Most commonly considered reason
for chemical toxicity to aquatic species is necrosis (either non-
polar or polar) which affects the perturbation of cellular func-
tions. The aquatic toxicity is typically tested on organism’s
representative of the three trophic levels, i.e., plants (algae),
invertebrates (crustaceans), and vertebrates (fish). Acute and
chronic aquatic toxicity data are vital for evaluating the envi-
ronmental hazard categorization of a chemical under the
Globally Harmonized System of Classification and Labelling
of Chemicals (GHS). The commonly used species and testing
guidelines [17] for aquatic toxicity are portrayed in Table 1.

(b) Terrestrial toxicity: Terrestrial toxicity can be defined as the
effects of a chemical to terrestrial organisms and plants
[18]. In most of the cases, agrochemicals go through their
risk assessment for terrestrial toxicity before approval to the
market which is significant as a protective measure to the
ecosystem. But, PPCPs and most industrial chemicals are not
subjected to ecotoxicity testing. Species considered under
terrestrial toxicity testing comprise soil microorganisms,
earthworms, birds, plants, and bees. The commonly used
species and testing guidelines [17] for terrestrial toxicity are
portrayed in Table 2. In a broader perspective, soil and sedi-
ment pollution, sewage sludge, as well as air pollution fall
under terrestrial ecotoxicity.

The fate of CECs and their transformation into transformed
products (TPs) or metabolites [19] are directly or indirectly related
to some form of hazards and toxicity. The most common ones are
bioaccumulation, bioconcentration, and biodegradability of CECs.

Table 1
Species-specific OECD testing guidelines for aquatic toxicity

Species Test guidelines as per OECD

Fish Acute Toxicity Test (OECD TG 203), Early-life Stage Toxicity Test (OECD 210),
Short-term Toxicity Test on Embryo and Sac-Fry Stages (OECD TG 212), Juvenile
Growth Test (OECD TG 215)

Daphnia Acute Immobilisation Test (OECD TG 202), Daphnia magna Reproduction Test
(OECD TG 211)

Algae Growth Inhibition Test (OECD TG 201)
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(a) Bioaccumulation: It occurs in organisms or specific species
when the rate of uptake of a chemical surpasses the rate of
elimination by all possible routes (food, air, soil/sediment,
and water) of exposure [20]. With the bioaccumulation, a
chemical can persist in the living and/or ecosystem for a
long time and can exert its hazardous effect on the environ-
ment. Therefore, bioaccumulation is a phenomenon which
should be curtailed when designing eco-friendly chemicals.

(b) Bioconcentration: It is a procedure leading to a higher concen-
tration of a chemical in an organism than in environmental
media to which it is exposed [21]. Bioconcentration can be
described as a subset of bioaccumulation and refers to the
uptake and concentration of chemicals from water into aquatic
organisms. Thus, the bioconcentration factor (BCF) is the
ratio between the concentration of the chemical in biota and
the concentration in water at steady state. The BCF can be
computed by the ratio of the first-order uptake and elimina-
tion rate constants, a method that does not require equilib-
rium conditions.

(c) Biodegradability: To decrease the toxic effect of a chemical, it
needs to be eliminated from the environment as quickly as
possible. Thus, increased biodegradability maintaining the
required effect of the chemical is integral to chemical design
[22]. Chemicals which struggle biodegradation endure to
exert toxic effects on the environment, and ones that are
bioaccumulate are of even greater worry because their levels

Table 2
Species-specific OECD testing guidelines for terrestrial toxicity

Species Test guidelines as per OECD

Earthworm Acute Toxicity Tests (OECD 207), Enchytraeid Reproduction Test (OECD
220), Earthworm Reproduction Test (OECD 222)

Plants Vegetative Vigour Test (OECD 227), Seedling Emergence and Seedling Growth
Test (OECD 208)

Pollinators Honeybees Acute Oral Toxicity Test (OECD 213), Honeybees, Acute Contact
Toxicity Test (OECD 214), Honey Bee (Apis Mellifera) Larval Toxicity Test,
Single Exposure (OECD 237)

Soil Microorganism Nitrogen Transformation Test (OECD 216), Carbon Transformation Test
(OECD 217)

Terrestrial
vertebrates

Avian Acute Oral Toxicity Test (OECD 223), Avian Dietary Toxicity Test
(OECD 205), OECD 206 Avian Reproduction Test

Other nontarget
arthropods

Predatory mite reproduction test in soil (OECD 226), Determination of
Developmental Toxicity of a Test Chemical to Dipteran Dung Flies (OECD
228), Collembolan Reproduction Test in Soil (OECD 232)
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may be attained in organisms that seem safe on the basis of a
single daily exposure, but because the actual dose efficiently
accumulates over time, the result may be unexpected toxic
effects. Chemicals that are easily biodegraded are eliminated
from the environment rapidly.

3 Role of the QSAR Model in Ecotoxicity Evaluation

A quantitative structure-activity relationship (QSAR)model defines
a biological response/toxicity or property as a mathematical func-
tion of the molecular structure [23]. In the case of ecotoxicity
modeling, environmental toxicity responses are employed to
develop in silico models for assessing the risk and exposure of
chemicals and PPCPs to the environment [5, 6, 24]. The principle
objectives and significance of QSAR/QSTR analysis are [25]:

l Prediction of new analogues of the compound with lesser toxic-
ity in respect to living system as well as the environment.

l Better understanding and exploration of the MOA for toxicity.

l Optimization of the lead compound with decreased toxicity.

l Reduction of wet laboratory experimentation and sacrifice of a
large number of animals.

l Reduction of the cost, time, and manpower requirement by
developing more effective compounds using a scientifically less
exhaustive approach.

l The expert systems will also provide structural alerts to identify
fragments mediating different toxicities.

l To combine a scientific and pragmatic approach to guide policy
directions.

l To identify pollution prevention measures.

l To identify scientific data gaps.

Over the years, for the prediction of diverse toxicity endpoints,
QSAR models have been developed as one of the alternative
approaches for time-consuming and animal-dependent experi-
ments. Zhao et al. [26] constructed QSAR models for predicting
bioconcentration factor of 473 heterogeneous chemicals employ-
ing multiple linear regression (MLR), radial basis function neural
network (RBFNN), and support vector machine (SVM) tools.
QSAR models were developed by Xia et al. [27] for toxicity predic-
tion of 91 aliphatic and aromatic chemicals using the linear
(HM) and the nonlinear method radial basis function neural net-
works (RBFNN). A QSTR model was developed by Jalali-Heravi
and Kyani [28] for a series of 268 substituted benzene derivatives
using mechanistically interpretable descriptors employing
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shuffling-adaptive neuro-fuzzy inference system (Shuffling-ANFIS)
to select the important factors affecting the toxicity of substituted
benzenes to T. pyriformis. First interspecies QSAR (i-QSAR) mod-
els were developed by Kar and Roy [29] to correlate the ecotoxicity
of structurally diverse 77 pharmaceuticals to Daphnia magna and
fish. Acute toxicity of 55 PPCPs toward the Dugesia japonica was
modeled with the QSAR by Önlü and Saçan [30]. Khan et al. [31]
developed ecotoxicological multiple QSAR models employing
260 pharmaceuticals on 3 trophic level species Daphnia magna
(209), Scenedesmus subspicatus (134), and Brachydanio rerio (192)
using the PLS approach and 2D descriptors for modeling. Sangion
and Gramatica [32] developed QSARmodels for 1267 pharmaceu-
ticals collected from the ECOTOX database to predict acute toxic-
ity toward four species P. subcapitata, D. magna, O. mykiss, and
P. promelas spanning over three aquatic trophic levels. The endo-
crine disruption of perfluoroalkyl substances (PFASs) was modeled
by classification and regression-based QSAR models followed by
docking studies to interpret the significant structural features
accountable for toxicity profiles by Kar et al. [33]. Kar et al. [34]
reported statistically robust QSAR models employing single and
mixture halogenated chemicals employing weighted descriptors
approach for predicting developmental toxicity on Danio rerio
embryos.

4 Toxicity and Ecotoxicity Databases

Assessment of potential aquatic toxicity, terrestrial toxicity, and fate
and transformation of chemicals and PPCPs along with their bioac-
cumulation, bioconcentration, and biodegradation from com-
pound’s chemical structure information is extremely useful, and it
defines collective goal of various academicians, industries, and gov-
ernment regulatory authorities. Although multiple techniques and
criteria for toxicity and risk assessment are used, there is a necessity
for reliable and open access to existing ecotoxicity data linked with
chemical structure information. The databases are one of the start-
ing points for computational or in silico modeling (e.g., QSAR,
machine learning, HTS). Most commonly used ecotoxicity data-
bases developed over the years are presented as a word cloud in
Fig. 1.

4.1 Aggregated

Computational

Toxicology Online

Resource (ACToR)

A publicly accessible database of industrial chemicals, pesticides,
and drinking water contaminants is maintained by United States
Environmental Protection Agency (US EPA) National Center for
Computational Toxicology [35]. The database contains chemical
structure and physicochemical information and offers in vitro and
in vivo toxicology data for over 500,000 environmental chemicals.
The ACToR is also a web applications warehouse for EPA’s
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computational toxicology information which provides chemical
exposure, HTS, virtual tissues data, and sustainable chemistry
which can be employed to explore and visualize multifaceted
computational toxicology data. In ACToR, chemicals are system-
atized into three classes: substance (a substance is the article that
was tested and provides a link to assay and other test data), com-
pound (a compound holds chemical structure information), and
generic chemical (a generic chemical aggregates a chemical struc-
ture plus all the corresponding substances. The common link is that
all substances share the same CAS registry number). A brief statistic
of the ACToR database resources is illustrated in Table 3.

Web Accessibility: https://actor.epa.gov/actor/home.xhtml

Fig. 1 Major ecotoxicity databases

Table 3
Summary statistics

Group Total

Assays 506,534

Assay components 1,030,334

Assay results 44,420,380

Data collections 2701

Substances 3,221,191

Compounds 893,280

Generic chemicals 559,802

Generic chemicals with structure 456,918
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4.2 Birth Defects

Systems Manager

(BDSM)

The BDSM database, developed by the University of Louisville,
deals with developmental toxicity [36]. The dataset comprises
232 microarrays of RNA samples by single or dual microarray plat-
forms, human or mouse sequence information, and cDNA or
oligonucleotide-based probes. The database is an open access and
can be integrated with bioinformatics tools and materials to
advance the stride of discovery in birth defects. Primary outcomes
recognize system-level properties in the embryonic transcriptome
as it responded to numerous developmental-teratological stimuli.

Web Accessibility: http://systemsanalysis.louisville.edu/

4.3 Carcinogenic

Potency Database

(CPDB)

The CPDB developed by the University of California, Berkeley, and
the Lawrence Berkeley National Laboratory analyzes animal cancer
tests used in support of cancer risk assessments for human [37]. It
includes 6540 chronic, long-term animal cancer tests on 1547
chemicals from the literature as well as from the National Cancer
Institute (NCI) and the National Toxicology Program (NTP). The
carcinogenic potency is described in form of TD50 which can be
described as the daily dose rate in mg/kg/bodyweight/day for life
to induce tumors in half of the test animals that would have
remained tumor-free at zero dose. The TD50 is an important
standardized quantitative measure which can be employed for
interpretation of diverse issues in carcinogenesis. The website is
completely searchable by all required options and includes InChI
codes, SMILES, and structures for all compounds. A collection of
CPDB outcomes organized by target organ illustrates all chemicals
that induce tumors in each of 35 target organs.

Web Accessibility: http://potency.berkeley.edu/

4.4 Chemical

Carcinogenesis

Research Information

System (CCRIS)

Chemical carcinogenesis research information system (CCRIS), a
government organization, formed by the National Cancer Institute
(NCI) of the United States consists of mutagenicity, carcinogenic-
ity, tumor inhibition, and tumor promotion test results for over
8000 chemicals [38]. Data are collected from current awareness
tools, NCI reports, journals, books, etc. CCRIS offers information
from the years 1985–2011. The only loophole of this database is no
longer updated.

Web Accessibility: http://toxnet.nlm.nih.gov/cgi-bin/sis/
htmlgen?CCRIS

4.5 Danish (Q)SAR

Database

The Danish (Q)SAR database (Fig. 2) is developed by the Technical
University of Denmark with support from the Danish Environmen-
tal Protection Agency, National Food Institute, the Nordic Council
of Ministers, and the European Chemicals Agency. This is a source
for more than 200 QSARs from connected to physicochemical
properties, environmental fate, ecotoxicity, and ADMET. Around
600,000 chemicals can be searched based on individual profile and
chemical similarity [39].

Web Accessibility: http://qsar.food.dtu.dk/
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4.6 Developmental

and Reproductive

Toxicology Database

(DART)

The DART covers teratology and reproductive and developmental
toxicology of more than 400,000 journal references published since
1950 [40]. It’s one the TOXNET database funded by the United
States National Library of Medicine (NLM), the US EPA, the
National Institute of Environmental Health Sciences, and the
National Center for Toxicological Research of the Food and
Drug Administration.

Web Accessibility: https://toxnet.nlm.nih.gov/newtoxnet/
dart.htm

4.7 Developmental

Toxicity (DevTox)

The DevTox database (Fig. 3) is planned to deliver a significant
resource in the field of developmental toxicology for various strains
of common laboratory animals. It represents the inclusive resources
of images of developmental abnormalities. The DevTox Project was
introduced by the German Federal Ministry of Food, Federal Min-
istry of the Environment, Nature Conservation and Nuclear Safety
(BMU), and Agriculture and Consumer Protection (BMELV)
under the sponsorships of the International Programme on Chem-
ical Safety (IPCS) [41].

Three major parts which are accessible on this site of the project
are the following:

l DevTox Background (supplementary information on the
project)

Fig. 2 Screenshot of Danish (Q)SAR database
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l DevTox Nomenclature (contains nomenclature for develop-
mental toxicology following the revised International Federa-
tion of Teratology Societies (IFTS) terminology with more than
2500 images for skeletal, external, maternal-fetal, and soft tissue
anomalies)

l DevTox Data (experimental data on developmental toxicity in
rabbits and rats in diverse laboratories in various strains of com-
mon laboratory animals)

The DevTox has three aims:

l To harmonize the nomenclature employed to define develop-
mental variances in laboratory animals

l To support in the visual recognition of developmental anomalies
with the aid of photographs

l To offer a historical control database of developmental effects in
laboratory animals

Web Accessibility: http://www.devtox.org

4.8 Distributed

Structure-Searchable

Toxicity Database

(DSSTox)

The DSSTox database prepared by the National Center for
Computational Toxicology, US EPA, offers downloadable,
structure-searchable, standardized chemical structure files
connected with chemical toxicity data of environmental relevance
[42]. One of the significant features of this database is a precise
mapping of bioassay and physicochemical properties data related

Fig. 3 Screenshot of DevTox
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with chemicals to their corresponding chemical structures. It also
incorporates cheminformatics workflows with the chemical infra-
structure for EPA’s Safer Chemicals Research, including the Tox21
and ToxCast high-throughput toxicology efforts. Thus, this data-
base promotes the implication of formalized and structure-
annotated toxicity models, serving to interface these results with
QSAR modelers.

Web Accessibility: http://www.epa.gov/ncct/dsstox/index.
html

4.9 ECOTOXicology

Knowledgebase

(ECOTOX)

The ECOTOX (Fig. 4) consists of toxicity data for terrestrial
plants, aquatic life, and wildlife of chemicals. ECOTOXwas formed
and is maintained by the US EPA’s National Health and Environ-
mental Effects Research Laboratory’s (NHEERL’s)
Mid-Continent Ecology Division (MED) [43]. Three independent
databases named AQUIRE, TERRETOX, and PHYTOTOX were
integrated to form ECOTOX which derived toxicity data mostly
from the peer-reviewed articles. The database considered the fol-
lowing requirements and inclusions:

l Single chemicals relevant to environmental exposure are
included.

Fig. 4 Screenshot of ECOTOX
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l Verifiable Chemical Abstract Services (CAS) number of
chemical.

l Ecologically relevant species are considered only.

l Priority species are wild. Also, laboratory species and terrestrial
domestic are employed to fill data gaps when required.

l Biological effect on live, whole organisms needs to be
considered.

l Adverse effects are priority for inclusion.

l Concurrent environmental chemical concentration/dose
reported as concentration, dose, or application rate.

l Sediment studies must have a water concentration reported to
be included.

l Duration reports an associated concurrent with a biological
effect.

Data not satisfying the following requirements are left out from
the ECOTOX database:

l Mixtures

l Air pollution (CO2, ozone)

l Human, monkey, bacteria, viral, and yeast under species
conditions

l Inhalation studies route, sediment only concentration, lead
shot, log values under concentration/dose criteria

l Reviews, full-text foreign language, abstract-only format under
publication search

Web Accessibility: http://cfpub.epa.gov/ecotox/

4.10 European

Chemical Substances

Information System

(ESIS)

The ESIS database includes classifications and labellings of chemicals
or groups of chemicals according to the criteria inDirective 67/548/
EEC for one or more endpoints. The ESIS is an IT system which
illustrates information on chemicals related to the following [44]:

l Persistent, bioaccumulative, and toxic (PBT) and very persistent
and very bioaccumulative (vPvB) data

l European Inventory of Existing Commercial Chemical Sub-
stances (EINECS) O.J.C 146A, 15.6.1990

l European List of Notified Chemical Substances (ELINCS) in
support of Directive 92/32/EEC, the 7th amendment to
Directive 67/548/EEC

l No-Longer Polymers (NLP)

l Biocidal Products Directive (BPD) active substances listed in
Annex I or IA of Directive 98/8/EC or listed in the so-called
list of non-inclusions
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l Classification and Labelling (C&L), substances or preparations
in accordance with Directive 67/548/EEC (substances) and
1999/45/EC (preparations)

l Export and Import of Dangerous Chemicals listed in Annex I of
Regulation (EEC) No 304/2003

l High Production Volume Chemicals (HPVCs) and Low Pro-
duction Volume Chemicals (LPVCs), including EU Producers/
Importers lists

l Priority lists, risk assessment process, and tracking system in
relation to Council Regulation (EEC) 793/93 also known as
Existing Substances Regulation (ESR)

l IUCLID Chemical Data Sheets, IUCLID Export Files, OECD-
IUCLID Export Files, and EUSES Export Files

Data available in zipped XLS format which include following
information of chemicals:

l Index No

l Chemical names

l Notes related to substances

l EC No

l CAS No

l Classification

l Labelling

l Concentration limits

l Notes related to preparations

Web Accessibility: https://old.datahub.io/dataset/esis

4.11 Extension

TOXicology NETwork

(EXTOXNET)

The EXTOXNET (Fig. 5) is a cooperative effort of Oregon State
University, University of California-Davis, Cornell University,
Michigan State University, and the University of Idaho. The first
edition was published in 1989 and funded by the United States
Department of Agriculture (USDA) and the USEPA [45]. The
second edition was made conceivable through a grant from the
National Agricultural Pesticide Impact Assessment Program
(NAPIAP), a program of the United States Department of

Fig. 5 Screenshot of EXTOXNET
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Agriculture. The EXTOXNET primary files are maintained and
archived at the Oregon State University. This database is mostly
related to pesticide toxicology. Pesticide Information Profiles
(PIPs) and Toxicology Information Briefs (TIBs) provide a sum-
mary of each pesticide’s toxic effects and their probable actions in
the environment.

The database contains the following information for each
pesticide:

l Toxicological effects

Acute toxicity, chronic toxicity, reproductive toxicity, tera-
togenic effects, mutagenic effects, carcinogenic effects, organ
toxicity, fate in human and animal

l Ecological effects

Effects on birds, effects on aquatic species, effects on other
animals (nontarget species)

l Environmental fate

Breakdown of chemical in soil and groundwater, breakdown
of chemical in surface water, breakdown of chemical in
vegetation

l Physical properties

Appearance, stability, CAS number, molecular weight, water
solubility, solubility in other solvents, melting point, vapor pres-
sure, partition coefficient (octanol/water), adsorption
coefficient

l Exposure Guidelines
ADI, HA, RfD, PEL/TLV

Web Accessibility: http://extoxnet.orst.edu/ghindex.html

4.12 eTox A drug safety database developed in collaboration among 13 phar-
maceutical industries, 11 academic institutions, and 6 small- and
medium-sized enterprises (SMEs) comprises of toxicology data.
The eTOX project (Fig. 6) was approved as one of the first Innova-
tive Medicines Initiative (IMI) projects which started in 2010 and
successfully ended in 2016 [46]. Along with toxicological data
within the pharmaceutical industry, it created a series of predictive
models to support toxicity prediction for the future. The eTOX
contains 1947 compounds and 8047 study design records from
6971 reports along with 265,502 substances and 1,088,007
records from public sources like DrugMatrix, ChEMBL, and
Open TG-GATES. A platform called eTOXsys integrated both
data and models which is a powerful system to access the eTOX
data and the predictive models. Five versions of the eTOXsys were
launched, and the final version is 2016.3 Vitic release which con-
tains 200 predictive models and the Human Outcomes Module.
The Human Outcomes Module was designed to advance
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translational research from preclinical to clinical research. Multiple
open-access prediction tools were prepared for the scientific com-
munity under the name of Auto tools. The significant ones are
eTOXsys, Human Outcomes Module, eTOXlab, LiMTox, etc.

Web Accessibility: www.etoxproject.eu/

4.13 Fraunhofer

RepDose

The RepDose (repeated dose toxicity) database (Fig. 7) contains
around 3100 studies on subacute to chronic toxicity for diverse
routes of administration (oral or inhalation exposure) for about
930 chemicals carried out in mice, rats, and dogs [47]. The data-
base is important for the investigation of the relationship between
chemical functional groups and target organs in repeated dose
studies. This publicly accessible database considered only predomi-
nantly peer-reviewed studies with the following sources: German
MAK-Documentations, EU RAR, EHC, HPV-chemicals, Reports
from German BG Chemie, and NTP reports. The database has
been established by Fraunhofer ITEM with support from Cefic
LRI to analyze and improve chemical risk assessment strategies.
Nowadays the data of RepDose is circulated commercially through
association with MN-AM (Molecular Networks—Altamira). Indi-
vidual chemicals are characterized by 1–15 studies. However, the
majority of them have undergone one to four studies (Table 4). L
(N)OEL values (lowest (no) observed effects level) are given for
each effect and each study.

Web Accessibility: http://www.fraunhofer-repdose.de/

Fig. 6 Screenshot of the eTOX database
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4.14 Genetic

Alterations in Cancer

(GAC)

GAC is a publicly available database that quantifies specific muta-
tions found in cancers induced by environmental chemicals created
by National Institute of Environmental Health Sciences (NIEHS)
and US National Institutes of Health (NIH) [48]. The GAC
web-based capable of evaluating data attained from peer-reviewed
literature of genetic changes in tumors connected with exposure to
physical, chemical, or biological agents, as well as natural tumors
along with gene mutation data. The NIEHS mainly emphasizes on
environmental reasons for cancer which helps in prevention strate-
gies by recognizing adjustable risk factors and genetic factors that
are involved in tumor development. Outcomes from human and
rodent studies are incorporated and are systematized by strain,

Fig. 7 Screenshot of Fraunhofer RepDose database

Table 4
Data quality parameter employed in RepDose database

Reliability Description

A Following OECD guidelines or comparable quality

B Some deficits, but related for the evaluation

C Quality cannot be assessed due to insufficient information

D Special design for a certain endpoint
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species, tumor type and origin, target organ, and agent. Data
mining features employed to inquiry the database integrate and
summarize data from all experiments. The search tactics were
applied to the peer-reviewed articles that encountered three critical
conditions: (1) explanation of the tumor(s) and sign of which ones
were connected with acquaintance to a specific agent and which
were unprompted; (2) molecular investigation of the tumor sample
for genetic modifications; and (3) recognition of the affected gene
(s) and explanation of the gene change(s).

Web Accessibility: http://www.niehs.nih.gov/research/res
ources/databases/gac/index.cfm

4.15 Genetic Activity

Profile (GAP)

The GAP has been developed to offer a matrix of data on the
quantitative genotoxicity results of around 500 chemicals to sup-
port hazard classification of human carcinogens [49]. The complete
procedure for the generation and assessment of GAPs has been
settled in partnership with the International Agency for Research
on Cancer (IARC) Monograph and US EPA. The database offers
the overview of doses and test results data for individual chemicals
followed by which either the highest ineffective dose (HID) or
lowest effective dose (LED) is documented. The GAPs comprise
of beneficial data for the generation of weight-of-evidence hazard
ranking schemes and information of the likely genetic activity of
multifaceted environmental mixtures.

Web Accessibility: http://www.ils-inc.com/services/informa
tion-sciences

4.16 Gene-Tox The GENE-TOX, a TOXNET database, delivers mutagenicity test
data from peer-reviewed scientific literature for more than 3000
chemicals from the US EPA [50]. The GENE-TOX was established
to choose genetic toxicology assay data for evaluation, which review
and recommend appropriate testing protocols. The database covers
entries on chemicals and their likely negative effects on DNA. Users
can search by compound and CAS. It covers the data from year
1991 to 1998, and it is no longer updated.

Web Accessibility: http://toxnet.nlm.nih.gov/cgi-bin/sis/
htmlgen?GENETOX

4.17 Human and

Environmental Risk

Assessment (HERA)

The HERA is a volunteer industry risk assessment program on
ingredients of household cleaning products (Fig. 8). It is an exclu-
sive European partnership established in 1999 in Brussels, Bel-
gium, between the chemical industry (Cefic) who provides the
raw ingredients and the makers of household cleaning products
(A.I.S.E.) [51]. Water-soluble linear polycarboxylates are major
key ingredients used in dishwashing detergents, laundry deter-
gents, hard surface cleaning formulations, and industrial and insti-
tutional cleaning processes and a variety of technical applications.
Major polycarboxylates comprise two different types of polymer
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families which can be differentiated based on their physicochemical
properties and technical applications. In the HERA report, homo-
polymers of acrylic acid (P-AA) are described in Part I, and copo-
lymers of acrylic/maleic acid (P-AA/MA) are described in Part II.
This database is planned to support a risk-based method to chemi-
cals legislation in the European Union and might aid as a pilot plan
for the evaluation of safety data on the components used in these
products in an active and translucent way.

Web Accessibility: http://www.heraproject.com/
RiskAssessment.cfm

4.18 Hazard

Evaluation Support

System (HESS)

Attached Database

(HESS DB)

The repeated dose toxicity (RDT) is a significant endpoint in the
risk assessment of hazardous chemicals. Due to the complexity of
the endpoints connected with an entire body assessment, the devel-
opment of the mechanistically interpretable structure-activity
model is a challenging task. The structural alerts, read-across, and
category approach built on mechanism evidence are effective tactics
for data gap filling of RDT. Utilizing experimental RDT informa-
tion, a toxicological category library is developed for 500 chemicals
along with mechanistic information of the toxic effects of those
chemicals on diverse organs. Here, 33 categories were well-defined
for 14 kinds of toxicity, such as hemolytic anemia, hepatotoxicity,
etc. This library was then incorporated in an integrated computa-
tional platform named HESS to offer mechanistically realistic pre-
dictions of RDT values for new and/or untested chemicals
[52]. There is another attached database known as HESS DB
(Fig. 9) which contains information from two databases. The first
one is a toxicity knowledge database comprising data on RDT and
toxicity mechanisms. The second one is a metabolism knowledge
database containing rat metabolism maps and information on
absorption, distribution, metabolism, and excretion (ADME) in
humans and rats. The databases and platform are maintained by

Fig. 8 Screenshot of HERA database
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the National Institute of Technology and Evaluation, Japan. For
prediction purpose, the HESS is compatible with the OECDQSAR
Toolbox.

Web Accessibility: https://www.nite.go.jp/en/chem/qsar/
hess-e.html

4.19 Hazardous

Substances Data Bank

(HSDB)

The HSDB is a comprehensive toxicology database under TOX-
NET, which contains toxicity records for about 5600 potentially
hazardous chemicals (As of November 2014) [53]. It includes
evidence on industrial hygiene, human exposure, environmental
fate, emergency handling procedures, regulatory requirements,
nanomaterials, and related areas. All data are summarized from
government and regulatory documents, books, and peer-reviewed
research articles. It can be accessed freely, and users can check the
information by providing a chemical name, CAS registry number.
Mixtures, radioactive materials, animal toxins, oil dispersants, and
crude oil are included under the HSDB database.

Web Accessibility: https://toxnet.nlm.nih.gov/cgi-bin/sis/
htmlgen?HSDB

4.20 International

Agency for Research

on Cancer (IARC)

Monograph

The IARC is established by the World Health Organization
(WHO) which classifies environmental factors which can upsurge
the risk of human cancer. The monograph includes chemicals (phe-
nobarbital), mixtures (air pollution), physical agents
(UV radiation), occupational exposures (asbestos industry),
biological agents (hepatitis B virus), as well as lifestyle factors
(smoking) [54]. The complete principles, actions, and scientific
process that direct the assessments are defined in the Preamble to
the IARCMonographs (Fig. 10). Around 400 substances are iden-
tified as carcinogenic, probably carcinogenic, or possibly carcino-
genic to humans from the study results of more than 1000 agents
since 1971. It majorly identifies environmental factors which are
carcinogenic to humans. The reports can help as scientific support
for the national health agencies to avert exposure to latent

Fig. 9 Screenshot of HESS database
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carcinogens. The IARC Monographs are supported with funds
from the US National Cancer Institute, European Commission
Directorate-General for Employment, Social Affairs and Inclusion,
and US National Institute of Environmental Health Sciences. At
the present moment, IARC Monographs have 123 volumes where
agents are classified into 4 major groups based on carcinogenic
effects of chemicals (see Table 5).

Web Accessibility: http://monographs.iarc.fr/

4.21 Integrated Risk

Information System

(IRIS)

The IRIS was created under the National Center for Environmental
Assessment (NCEA), US EPA in 1985 to make available a database
related to human health effects due to chemicals existing in the
environment [55]. The database comprises data on 540 environ-
mental chemicals and their possible hazardous effects on human. It
is located in the Office of Research and Development (ORD) to
make certain that IRIS can build up independent toxicity informa-
tion to set national standards and clean up hazardous sites. The
IRIS (Fig. 11) assessment covers a single chemical, group of che-
micals, and complex mixture of chemicals.

Fig. 10 Screenshot of IARC Monograph

Table 5
Classification of compounds in IARC monograph

Group Classification Number of agents

Group 1 Carcinogenic to humans 120

Group 2A Probably carcinogenic to humans 82

Group 2B Possibly carcinogenic to humans 311

Group 3 Not classifiable as to its carcinogenicity to humans 500

Group 4 The agent is probably not carcinogenic to humans –
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The IRIS database provides the following toxicity assessment
values for health effects resulting from chronic exposure to
chemicals:

l Reference dose (RfD)

l Reference concentration (RfC)

l Cancer descriptors characterize the chemical as:

(i) Carcinogenic to humans

(ii) Likely to be carcinogenic to humans

(iii) Suggestive evidence of carcinogenic potential

(iv) Inadequate information to assess carcinogenic potential

(v) Not likely to be carcinogenic to humans

l Inhalation unit risk (IUR)

l Oral slope factor (OSF)

The risk assessment is a four-step practice as mentioned by the
National Research Council (NRC) in 1983:

l Identification of hazard associated with exposure to a chemical.

l Dose-response assessment which illustrates the relationship
between each probable health hazard and chemical exposure in
a quantitative manner, followed by an account for high to a low
dose, animal to human, route to route, and other differences.

Fig. 11 Screenshot of IRIS
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l Exposure assessment which identifies human exposure pathways
and approximates the quantity of human exposure under diverse
exposure.

l Risk characterization combines their exposure assessment with
the hazard data and toxicity values from IRIS to illustrate pro-
spective public health risks followed by risk management.

The IRIS follows below-mentioned steps for developing
human health assessments:

l Step 1- Draft Development

l Step 2- Agency Review

l Step 3- Interagency Science Consultation

l Step 4- Public Comment and External Peer Review

l Step 5- Revise Assessment

l Step 6- Final Agency Review/Interagency Science Discussion

l Step 7- Final Assessment

Web Accessibility: https://www.epa.gov/iris

4.22 International

Toxicity Estimates for

Risk (ITER)

ITER is developed by TERA (Toxicity Excellence for Risk Assess-
ment), and it consists of human health risk values and cancer
classifications for over 680 chemicals of environmental concern
[56]. It represents the key risk information from a series of organi-
zations throughout the world in a side-by-side format explaining
the variances in risk data evaluated by multiple organizations, and it
has a direct access to individual organization’s website and source
documents for comprehensive information (Table 6). ITER
(Fig. 12) is one of those organizations which includes risk assess-
ment data from an independent organization whose risk values have
undertaken autonomous peer review. It includes four groups of risk
data: (1) cancer oral, (2) cancer inhalation, (3) noncancer inhala-
tion, and (4) noncancer oral.

Web Accessibility: http://www.tera.org/iter/

4.23 Japan Existing

Chemical Database

(JECDB)

The JECDB is a toxicity database (Fig. 13) consisting of informa-
tion related to hazard assessment and toxicity test reports of envi-
ronmental and industrial chemicals maintained by the Japanese
Ministry of Health, Labour and Welfare. The data are reviewed
and obtained by scientists from the National Institute of Health
Sciences and other institutes [57]. Toxicity data for single-dose
toxicity test, a 28-day repeat dose toxicity test, a developmental/
reproductive toxicity test, and mutagenicity tests are included for
each chemical existing in the database. Reports comprise of the
chemical’s nomenclature and summarized data from the studies.
Search operation can be performed by name, by CAS registry
number, and by toxicity test.

Web Accessibility: http://dra4.nihs.go.jp/mhlw_data/jsp/
SearchPageENG.jsp

Ecotoxicity Databases for QSAR Modeling 731

https://www.epa.gov/iris
http://www.tera.org/iter/
http://dra4.nihs.go.jp/mhlw_data/jsp/SearchPageENG.jsp
http://dra4.nihs.go.jp/mhlw_data/jsp/SearchPageENG.jsp


4.24 Leadscope Leadscope is a commercial database (Fig. 14) of the National
Institute for Occupational Safety and Health (NIOSH) Registry
of Toxic Effects on Chemical Substances (RTECS) consisting of
400,000 acute, sub-chronic, genotoxicity, carcinogenicity, and
reproductive toxicity data for around 180,150 chemicals. Every
year, the updated database adds about 2000 new chemicals
[58]. The RTECS database is improved by adapting the distributed
ASCII data file into a XML format identified as ToXML (http://
www.toxml.org). Further, the obtained XML data is then uploaded
into Leadscope’s structure-searchable cheminformatics system
which is available under Leadscope’s data mining application or
web services. A summary of the available toxicity information and
endpoints ready for use in 2015 edition is outlined in Table 7.

Characteristics of the database:

l The toxicity data include:

– The US Food and Drug Administration (US FDA) priority-
based assessment of food additives (PAFA) database

Table 6
Type of organization and their data in ITER

Organization
Risk values and cancer
classifications Website

Agency for Toxic Substances and
Disease Registry (ATSDR)
–Toxicological Profiles

Chronic minimal risk levels http://www.atsdr.cdc.gov/
toxpro2.html

Health Canada –Priority
Substances Assessment Reports

Tolerable daily intakes, tolerable
concentrations, cancer potencies,
and classifications

http://www.hc-sc.gc.ca/
ewh-semt/pubs/
contaminants/index_e.
html

IARC Monographs Cancer classifications http://monographs.iarc.fr/

NSF International—Oral Risk
Assessment Documents

Oral reference doses and cancer
classifications

http://www.nsf.org

National Institute of Public Health
and the Environment (RIVM),
the Netherlands—Maximum
Permissible Risk Level Reports

Maximum permissible risk levels
with tolerable daily intakes,
tolerable concentrations in air,
cancer risk estimates

http://www.rivm.nl/
bibliotheek/rapporten/
711701025.pdf

US EPA IRIS Reference doses and concentrations,
cancer risk estimates and
classifications

http://www.epa.gov/iris/
index.html

“ITER PR” or “IPRV” Column—
Government and private parties
whose risk values have
undergone independent peer
review

Various values and information,
depending on the source and
chemical

http://www.tera.org/iter/
about.htm
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– The RTECS database

– NTP Chronic Database

– DSSTox Carcinogenicity Potency Database (CPDB)

– Acute and sub-chronic hepatotoxicity, genetic toxicity, carci-
nogenicity, and reproductive and irritation toxicity with mul-
tiple dose studies

Fig. 12 Screenshot of TERA

Fig. 13 Screenshot of JECDB
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l Chemical structure search option is present based on precise
match, substructure, and similarity.

l Data mining is possible based on toxic effect, type of study,
species, dosage, sex, duration, and route of exposure.

Web Accessibility: http://www.leadscope.com/toxicity_
databases/

4.25 MDL The MDL toxicity database is a commercially structure-searchable
bioactivity database consisting of around 151,310 toxic chemicals
from in vitro and in vivo studies. This database also includes data
from the RTECS database by NIOSH [59]. It covers toxicity data
from the year 1902 to till date from over 2950 literature and
conference sources and is updated quarterly. This is an Oracle-
based system reachable through MDL ISIS/Host covering muta-
genicity, reproductive toxicity, carcinogenicity, eye irritation, skin
toxicity, and multiple dose effects. The database comprises 65%
compounds connected to drugs and drug-related substance, and
remaining ones are industrial and petrochemicals, agrochemicals,
flavors and fragrances, plant and animal extracts, organometallics,
inorganic compounds, etc. Interestingly, MDL toxicity database
can be employed concurrently with the MDL ISIS Toxicity Finder,
the MDLMetabolite Database, and the MDLMetabolite Browser.

Web Accessibility: http://www.iop.vast.ac.vn/theor/
conferences/smp/1st/kaminuma/ChemDraw/toxicity.html

Fig. 14 Screenshot of Leadscope
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4.26 National

Toxicology Program

(NTP)

The NTP is an interagency program (Fig. 15) under the US
Department of Health and Human Services to asses and identify
the hazardous substances of public health concern by generating
and using the modern toxicology and molecular biology studies
[60]. The program conducts a number of studies enlisted in
Table 8.

Web Accessibility: http://ntp.niehs.nih.gov/

4.27 Organization for

Economic Cooperation

and Development

(OECD)

The OECD eChemPortal (Fig. 16) has access to information on
physicochemical properties, environmental fate, and toxicity for a
huge number of environmental chemicals [61]. The OECD is
helping countries and industries in harmonizing toxicity testing
guidelines for the testing of chemicals and good laboratory practice
(GLP) to maintain the reliability and quality of test data to take

Table 7
Toxicity information and endpoint types under Leadscope database based
on 2015 edition

Toxicity study type Study count Structure count

Acute 279,237 154,702

Irritation 8017 4880

Multiple dose 52,730 13,953

RTECS mutation 46,385 13,343

Reproductive 26,558 6851

Tumorigenic 10,517 3724

Totals 423,444 180,145

Endpoint type Structure count

Acute LC50 3618

Acute LD50 177,082

Irritation LOAEL—open test 607

Irritation LOAEL—standard draize 5979

Multiple dose TCLo 2240

Multiple dose TDLo 19,075

Multiple dose LOAEL—rat 141

Reproductive TCLo 296

Reproductive TDLo 10,151

Tumorigenic TDLo 4781

Tumorigenic TD 1062

Total 225,032
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advantage from the OECD agreement on Mutual Acceptance of
Data (MAD) and avoid duplicative testing. The OECD eChem-
Portal is initiated in the year 2004 to provide toxicity information
on chemical substances, in response to the request by the World
Summit on Sustainable Development to improve the availability of
hazard data of chemicals. The eChemPortal is also an outcome of
the Strategic Approach to International Chemicals Management
(SAICM). The current version of eChemPortal was made available
on 12 June 2015. Countries like the United States, Japan, and
Canada, the European Chemicals Agency, the European Commis-
sion, the Business and Industry Advisory Committee, the Interna-
tional Council of Chemical Industry Associations, the World
Health Organization’s International Programme on Chemical
Safety, UNEPChemicals, and Environmental NGO’s are associated
with the OECD Secretariat to develop this project. The foremost
purposes of eChemPortal are:

1. To enable fast and effectual use of this information

2. To make this information on prevailing chemicals openly avail-
able and free of charge

3. To permit the efficient exchange of this information

Fig. 15 Screenshot of NTP database
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Table 8
Toxicity study under NTP

Type Description Toxicity test

Toxicology and
carcinogenicity

To address the gap in knowledge
concerning the toxicity of substances

To evaluate dose-response relationships
between exposed and unexposed
organisms

To determine if a substance elicits toxic
effects and/or causes cancer

There are two categories of toxicology/
carcinogenicity studies:
Short-term toxicity (14-day and
13-week)
Long-term carcinogenicity (2-year)
Species: rats, mice

Alternative
toxicity
models

NTP implements a variation of testing
strategies to obtain data about possibly
hazardous environmental and
occupational substances followed by
information to regulatory bodies

The purpose is the 3Rs approach Systems
include:
Computer-based predictive toxicology
models
In vitro cell- and tissue-based systems
Transcriptomic profiling
Microphysiological systems (“organs-
on-a-chip”)
Fish embryo models

Chemical
disposition

Chemical disposition studies are done to
evaluate what occurs to a chemical in an
organism after that organism is exposed
by measuring the absorption,
distribution, metabolism, and excretion
(ADME) of a chemical or substance

Studies are designed to determine the
effect on each of these parameters of
(1) species, (2) sex and age of animals,
(3) dose level and frequency of dosing
(e.g., single vs. repeated), and
(4) route of exposure

Toxicokinetic
(TK)

TK studies follow the change in
concentration of parent substances
and/or metabolite(s) with time in
blood/plasma or other tissues of
interest.

TK studies are designed to determine the
effect of species, sex, and age of
animals, dose level and frequency of
dosing, and route of exposure on TK
parameters and include an intravenous
administration to determine the
bioavailability following dosing via the
route of interest

Developmental
and
reproductive
toxicity

The prenatal developmental toxicity study
is undertaken to recognize substances
that may pose a risk to the developing
fetus if pregnant women are exposed.
Regulatory agencies use the results of
well-conducted animal studies to help
set human exposure guidelines. The
experimental protocols are outlined by
EPA Health Effects Test Guidelines
OPPTS 870.3700 and ICH S5(R2)

Embryo-fetal developmental study,
teratology study, or segment II study
and testing regimes for evaluating the
potentially toxic effects of exposure to
environmental and occupational
substances on the reproductive system

Genetic
toxicology

Testing methods to evaluate the potential
substances to damage DNA. These
studies involve both in vivo (laboratory
animals, human subjects) and in vitro
(cells in culture) testing

Study: mutagenicity and cytogenetics
Species: In vivo (rats, mice), Salmonella
typhimurium, Escherichia coli

(continued)
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Databases currently participating in eChemPortal are the following:
l ACToR: US EPA Aggregated Computational Toxicology

Resource

l AGRITOX: Base de données sur les substances actives
phytopharmaceutiques

l APVMA-CR: The Australian Pesticides and Veterinary Medi-
cines Authority database

l CCR: Canadian Categorization Results

l CESAR: Canada’s Existing Substances Assessment Repository

Table 8
(continued)

Type Description Toxicity test

Immunotoxicity NTP evaluates the potentially toxic effects
of exposure to substances on the
immune system which include:
Food additives
Natural products such as mycotoxins
Pharmaceutical, agrochemicals,
chemical, or consumer product
industries

Immunotoxicity tests are designed to
evaluate immune function and
hypersensitivity. These tests are carried
out using rodent models, cultured
mammalian cells, and other in vitro
methods

Neurotoxicity Test to identify environmental chemicals
which are responsible for
neurodevelopmental (e.g., autism
spectrum disorders) and
neurodegenerative (e.g., Parkinson’s,
Alzheimer’s) disorders. NTP has
developed the Developmental
NeuroToxicity Data Integration and
Visualization Enabling Resource
(DNT-DIVER) tool to help compare
and visualize results across assays

In vivo neurotoxicity testing in rodents is
conducted including the assessment of
multiple components following
developmental or adult exposures.
Primary neurotoxicity assessments
include:
Clinical observations
Developmental landmarks
Motor activity
Startle response
Learning and memory
Neurohistopathology

Toxicogenomics Included testing program are microarrays,
next-generation sequencing (NGS),
proteomics, and metabolomics.
Considered biological samples may be
from animals or from cell culture
studies. Study proposals are reviewed by
the Toxicogenomics Faculty at NTP

Five-day rodent toxicogenomic studies
are performed in rodents.
Toxicogenomics investigates how the
genome responds to environmental
chemicals which can change the
expression of genes, proteins, and
metabolites in living cells.
Determining genome-wide changes in
affected tissues is beneficial for finding
markers of toxicity or disease and for
understanding how genetic variation
among individuals can influence
sensitivity to a substance
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l Combined Exposures: Collection of case studies on risk assess-
ments of combined exposures to multiple chemicals

l ECHA C&L inventory: Public Classification and Labelling
(C&L) Inventory according to the European Union
(EU) CLP Regulation (EC) No 1272/2008

l ECHA CHEM: European Chemicals Agency’s Dissemination
portal with information on chemical substances registered
under REACH

l EFSA Open Food Tox: Chemical Hazards Database of the
European Food Safety Authority

l EnviChem: Data Bank of Environmental Properties of
Chemicals

l EPA HHBP: EPA Human Health Benchmarks for Pesticides

l EPA OPPALB: EPA Office of Pesticide Programs’ Aquatic Life
Benchmarks

l GDL: Gefahrstoffdatenbank der L€ander (Germany)

l GHS-J: GHS Classification Results by the Japanese Government

l GSBL: Joint substance data pool of the German Federal Gov-
ernment and the German Federal States

l HPVIS: High Production Volume Information System

l HSDB: Hazardous Substances Data Bank

l HSNO CCID: New Zealand Hazardous Substances and New
Organisms Chemical Classification Information Database

l IGS: IGS-Public Informationssystem für gef€ahrliche Stoffe
(Germany)

Fig. 16 Screenshot of OECD database
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l INCHEM: Chemical Safety Information from Intergovernmen-
tal Organizations

l INERIS-PSC: INERIS-Portail Substances Chimiques

l IPCHEM: Information Platform for Chemical Monitoring

l J-CHECK: Japan CHEmicals Collaborative Knowledge
database

l JECDB: Japan Existing Chemical Data Base

l NICNAS IMAP: Australia’s National Industrial Chemicals
Notification and Assessment Scheme’s (NICNAS) Inventory
Multi-tiered Assessment and Prioritisation (IMAP) framework

l NICNAS Other: NICNAS assessments of existing chemicals
other than Priority Existing Chemical assessments

l NICNAS PEC: NICNAS Priority Existing Chemical (PEC)
Assessment Reports

l OECD HPV: OECD Existing Chemicals Database

l OECD SIDS IUCLID: OECD Existing Chemicals Screening
Information Data Sets (SIDS) Database

l SIDS UNEP: OECD Initial Assessment Reports for HPV Che-
micals including SIDS as maintained by United Nations Envi-
ronment Programme (UNEP) Chemicals

l SPIN: Substances in Preparations In the Nordic countries

l UK CCRMP Outputs: UK Coordinated Chemicals Risk Man-
agement Programme Publications

l US EPA IRIS: The United States Environmental Protection
Agency Integrated Risk Information System

l US EPA SRS: United States Environmental Protection Agency
Substance Registry Services

Web Accessibility: http://www.oecd.org/chemicalsafety/risk-
assessment/
echemportalglobalportaltoinformationonchemicalsubstances.htm

4.28 Optimized

Strategies for Risk

Assessment of

Industrial Chemicals

Through Integration of

Non-test and Test

Information (OSIRIS)

The OSIRIS database (Fig. 17) compiled aquatic toxicity data
along with mutagenicity, carcinogenicity, and repeat dose toxicity
data [62]. The database is a form of the report developed from a
workshop under OSIRIS funded with the EU Commission within
the Sixth Framework Programme held in Liverpool, UK. It deals
with the potential of mode of action (MoA) information derived
from non-testing and screening methodologies to support the risk
hazard assessment. The aim of the OSIRIS project was to construct
integrated testing strategies (ITS) suitable for the implication in the
REACH system which would permit a substantial intensification in
the use of non-testing information for decision-making of regulator
authorities followed by minimizing animal testing. The ITS had
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been connected to a decision theory framework with alternate
strategies like in vitro analysis, in vivo information on analogues,
chemical and biological read-across, classification and regression-
based QSAR models, and exposure-based waiving followed by
thresholds of toxicological concern. OSIRIS accounts for more
intelligent and compound-tailored approach rather than going for
wide-ranging typical testing approaches.

The OSIRIS projects are organized in the five interlinked
research pillars, and they are the following:

l Chemical domain

l Biological domain

l Exposure

l Integration strategies and tools

l Case studies

The major research of OSIRIS is directed to the following ITS:

l Skin sensitization

l Repeated dose toxicity

l Mutagenicity and carcinogenicity

l Bioconcentration factor

l Aquatic toxicity

Web Accessibility: www.osiris.ufz.de

4.29 Risk

Assessment

Information System

(RAIS)

The RAIS, a web-based system (Fig. 18), deals with chemical-
specific toxicity values useful in providing information for risk
assessment [63]. Using structure-searchable and executable
options, the RAIS provides necessary tools which can be tactfully
employed to meet site-specific requirements. RAIS comprises of a
series of chemical tools for the prediction of chemical toxicity and

Fig. 17 Screenshot of OSIRIS database
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parameters as well as seven tutorials which are designed to help the
user in understanding and utilizing available RAIS tools to the risk
assessment. The RAIS consists of seven modules under it, and they
are the following:

l Module 1: Introduction and Content Map

l Module 2: Problem Identification

l Module 3: Designing Conceptual Site Models

l Module 4: Select COPCs

l Module 5: Toxicity Assessment

l Module 6: Risk Calculation

l Module 7: Documentation

The RAIS tutorial will assist in:

l Generating a fundamental site model

l Selection and categorization of probable toxic chemical of
concern,

l Screening measures of toxicity

l Risk/hazards calculation species wise and environmental com-
partment wise

l Pull out information for a toxicity/risk assessment from all
obtained toxicity data

l Documentation of the risk assessment report and management
protocols

The RAIS is maintained by the US Department of Energy
(DOE), Office of Environmental Management, and Oak Ridge
Operations (ORO) Office through a contract between Bechtel
Jacobs Company LLC and the University of Tennessee.

Web Accessibility: http://rais.ornl.gov/

The RiskIE is an open-access database (Fig. 19) which contains
statements about an assortment of human health risks assessment

Fig. 18 Screenshot of RAIS database
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4.30 Risk

Information Exchange

(RiskIE)

projects like white papers, training module, and risk documents for
both chemicals and non-chemicals [56]. RiskIE was formed in
2007 by TERA to notify about in-progress human health risk
assessment work which tracks around 4000 risk assessment projects
monitored by 35 organizations on behalf of 13 countries. RiskIE is
available along with ITER under TERA project. The RiskIE deli-
vers risk evaluators vital tools for straightforwardly categorizing and
associating available risk data, for allocation in advancement assess-
ments, and for enhancing interaction among risk assessment groups
to lessening duplication of effort and to harmonize risk assessment
procedures across organizations. RiskIE can also serve to bridge the
communication gap among industry, government, environmental
stakeholders, and academic (see Table 9).

Web Accessibility: https://www.tera.org/Alliance%20for%
20Risk/RiskIE.htm

4.31 Registry of

Industrial Toxicology

Animal-Data (RITA)

The RITA (Fig. 20) represents a unique international cooperation
between pharmaceutical and chemical industries and a nonprofit
organization maintained by the Fraunhofer Institute for Toxicol-
ogy and Experimental Medicine (ITEM) Hannover for comparing
and interpreting rodent carcinogenicity studies and tumor data
[64]. In 2006 The Societies of Toxicologic Pathology from
North America (STP), Japan (JSTP), and Europe (ESTP/BSTP)
united in a common effort to review the terms and principles for a
standard nomenclature of lesions in rodents and the International
Harmonization of Nomenclature and Diagnostic Criteria for
Lesions in Rats and Mice (INHAND) initiative. In this perspective,
the RITA is helping scientifically and providing the tools for the
online review collection of manuscripts and images. The RITA is
gathering the data of control animals employed on rodent carcino-
genicity studies from diverse laboratories in a constant manner. The
accessibility of harmonized data from those studies in an inclusive
database helps for the decisive interpretation of data. Most impor-
tantly, the cross-organizational review helps in optimizing the stan-
dards for robustness, reliability, and quality of the data. RITA is
helping the standardization for the conduct and histopathological
assessment of carcinogenicity studies (Table 10) which are mainly

Fig. 19 Screenshot of RiskIE database
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Table 9
Organizations and projects included in RiskIE

Organization Projects

Advisory Committee on Existing Chemicals
(BUA) associated with the German Chemical
Society

Health and environmental hazard assessment,
Testing for health effects

American Conference of Industrial Hygienists
(ACGIH)

Biological Exposure Indices (BEI), Identification of
threshold limit value (TLV)

American Industrial Hygiene Association (AIHA) Workplace Environmental Exposure Limit (WEEL),
Emergency Response Planning Guideline (ERPG)

ATSDR Assessment of minimal risk level (MRL) and
toxicological profile (TP) of environmental
hazards

California Environmental Protection Agency
(CalEPA)

Chemical risk assessments, Public Health Goals
(PHGs), Toxic Air Contaminants

Department of the Environment (UK):
Environmental Hazard Assessment

Comprehensive health and environmental hazard
estimation which employs a combination of
inclusive exposure and effects data to reach
conclusions about safety data of chemicals

Environment Canada Canadian Soil Quality Guidelines, Canadian Water
Quality Guidelines

European Union (EU)—European Chemicals
Bureau (ECB)

Online European Risk Assessment Tracking System
(ORATS), Occupational Exposure Limit (OEL)

Health Canada Priority Substances List Assessment Reports, Risk
Reduction Activities, Domestic Substance List
(DSL) chemical assessments

International Programme for Chemical Safety
(IPCS)

Concise International Chemical Assessment
Documents (CICADS): Health and
environmental hazard evaluation

Ministry of Health, Labour and Welfare (Japan) Short-term testing for health effects, Long-term
testing for health effects, Report of occupational
health research

National Environmental Research Institute
(Denmark)

Monitoring of environmental levels of chemicals or
effects, including development

National Industrial Chemicals Notification and
Assessment Scheme (Australia)

Initial health and/or environmental hazard
evaluation which use a combination of data
regarding toxic effects and limited exposure to
reach an initial hazard assessment about a specific
chemical

Organization for Economic Co-operation and
Development (OECD)

SIDS project for OECD High Production Volume
(HPV) chemicals, Initial health and/or
environmental hazard evaluation which use a
combination of data regarding toxic effects and
limited exposure to reach an initial hazard
assessment about a specific chemical

(continued)
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requested by regulatory authorities for the human risk assessment
of pharmaceuticals or chemicals.

Web Accessibility: https://reni.item.fraunhofer.de/reni/pub
lic/rita/

4.32 Toxicology

Testing in the 21st

Century (Tox21)

The Tox21 is a collaboration program (Fig. 21) among different
federal agencies of the United States like US EPA, NTP, NIEHS,
US FDA, and National Center for Advancing Translational
Sciences (NCATS) formed in the year 2008 [65]. Tox21 focused
on creating methods to swiftly and efficiently assess the toxicity of

Table 9
(continued)

Organization Projects

Occupational Safety and Health Administration
(OSHA)

Permissible Exposure Limit (PEL)

US EPA Acute Exposure Guideline Limits (AEGLs),
Toxicological reviews, Pesticide Reregistration
(REDs and TREDs), IRIS cancer and noncancer
risk values, IRIS Acute Exposure Duration, IRIS
cancer effects, IRIS noncancer effects, IRIS
chronic and less than lifetime exposure durations
(CLLED)

Fig. 20 Screenshot of RITA database

Table 10
Current status of RITA (up to February 2019) [website reference]

Subject Hamsters Mice Rats

Number of studies 5 123 191

Number of animals 500 10,882 19,773

Number of primary tumors 909 9719 30,395

Number of pre-neoplastic lesions 1636 5674 34,436

Total number of cases (including metastases) 2921 39,674 74,635
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chemicals, pharmaceuticals, agrochemicals, food additives, and so
on in the twenty-first century. The multi-collaborative research
team has created and validated in vitro cell-based assays employing
quantitative high-throughput screening. The Tox21 is currently
screening over 10,000 chemicals and screened more than 70 assays.
The aims of Tox21 are:

1. Classify mechanisms of chemically induced biological activity

2. Prioritize chemicals for more wide-ranging testing

3. Generate more pertinent and predictive models of in vivo toxi-
cological responses

Tox21 data is publicly available through the EPA’s Computa-
tional Toxicology Dashboard, the National Library of Medicine’s
PubChem, and NTP’s Chemical Effects in Biological Systems.
Detailed assay annotations, protocols, and performance statistics
are publicly available on the EPA’s Computational Toxicology
website (www.epa.gov/comptox) and the NIH tripod website
(https://tripod.nih.gov/tox21).

Web Accessibility: http://www.epa.gov/ncct/Tox21/

4.33 ToxCast The ToxCast is a research program (Fig. 22) introduced within US
EPA to advance the capability to predict toxicity data through
bioactivity profiling (physical-chemical properties, biochemical
properties based on throughput assays (HTS), genomic and meta-
bolomic analyses of cells, cell-based phenotypic assays, and pre-
dicted biological responses from existing QSAR models),
characterizing toxicity pathways followed by prioritizing chemicals
for screening and testing to assist EPA programs for risk

Fig. 21 Screenshot of Tox21 database
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management and regulation of CECs related to environment
[66]. The data are generated with the collaboration of EPA, NTP,
and the National Institutes of Health Chemical Genomics Center.
At the present time, ToxCast has already evaluated over 2000
chemicals within over 700 HTS including 300 signalling pathways
(Table 11).

Major goals of ToxCast are the following:

Fig. 22 Screenshot of the ToxCast database

Table 11
List of available ToxCast HTS assay

Biochemical assays

Protein families GPCR, NR, kinase, phosphatase, protease, other enzymes, ion channel,
transporter

Assay formats Co-activator recruitment, radioligand binding, enzyme activity

Cellular assays

Primary cells Human endothelial cells, human monocytes, human keratinocytes, human
fibroblasts, human proximal tubule kidney cells, human small airway
epithelial cells, rat hepatocytes, mouse embryonic stem cells (Sid Hunter)

Cell lines HepG2 human hepatoblastoma, A549 human lung carcinoma, HEK
293 human embryonic kidney

Biotransformation
competent cells

Primary human hepatocytes, primary rat hepatocytes

Assay formats Cytotoxicity, reporter gene, gene expression, biomarker production, high-
content imaging for cellular phenotype
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l Identify toxicity pathways

l Obtain HTS assays for pathways

l Screen a large chemical library

l Initially link HTS results to adverse effects—toxicity signatures

l Ultimately identify points of departure fromHTS data—toxicity
pathways

The most recent ToxCast data is available in the invitroDBv3.1
database (https://epa.figshare.com/articles/ToxCast_Database_
invitroDB_/6062623/2).

Web Accessibility: https://www.epa.gov/chemical-research/
toxcast-dashboard

4.34 TOXMAP TOXMAP combines an interactive and searchable US maps
(Fig. 23) of EPA Toxics Release Inventory (TRI) and Superfund
data. The TOXMAP overlays the US Census demographic data,
income figures from the US Department of Commerce, and health
data from the NCI SEER program [67]. The current version
provides improved usability on mobile devices compared to previ-
ous versions.

The new TOXMAP has multiple updated datasets, and they
are:

l NCI SEER cancer and disease mortality data (2011–2015)

l Canadian National Pollutant Release Inventory (NPRI) data
(2016)

l Coal power plant data from the EPA Clean Air Markets Program
(2017)

l US commercial nuclear power plants (2017)

Web Accessibility: https://toxmap.nlm.nih.gov/toxmap/

4.35 Toxicology Data

Network (TOXNET)

The TOXNET represents a group of databases (see Fig. 24 and
Table 12) under US National Library of Medicine of NIH that
offers information related to chemicals and drug, environmental
health, occupational safety, risk assessment and regulations, and
toxicology. It is an open-access database and can be used by acade-
micians, industries, as well as regulatory agencies [68].

Specialty databases under TOXNET can be accessed from
http://sis.nlm.nih.gov/enviro.html:

l Dietary Supplement Label Database: Ingredients in supple-
ments sold in the United States

l Pillbox: Rapid pill identification

l Drug Information Portal: Gateway to current and accurate drug
information

Web Accessibility: http://toxnet.nlm.nih.gov/
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4.36 Toxicity

Reference Database

(ToxRefDB)

The ToxRefDB captures information of in vivo toxicity study
results including acute, (sub-)chronic, developmental, and repro-
ductive endpoints for 474 chemicals [69]. The database offers
complete study design, dosing, and observed treatment-related
effects using standardized data. It enables connections with other
public databases like ACToR and ToxCast databases which also
provides detailed chemical toxicity data, public hazard, exposure,

Fig. 23 Screenshot of TOXMAP database

Fig. 24 Screenshot of TOXNET database
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and risk resources. It consists of over 30 years and $2 billion of
animal testing results.

Web Accessibility: http://www.epa.gov/comptox/toxrefdb/

4.37 Toxic

Substances Control

Act Test Submissions

(TSCATS)

The TSCATS is an online database of chemical testing results
related to adverse effects of chemicals on health and ecological
systems formed by the US Department of Commerce National
Technical Information Service Alexandria, Virginia. The collection
currently exceeds 29,000 titles of studies that are submitted to the
US EPA by the US industry under several sections of the Toxic
Substances Control Act (TSCA) [70]. The present version of the
database is identified as TSCATS 2.0.

Web Accessibility: https://catalog.data.gov/dataset/toxic-
substances-control-act-test-submissions-2-0-tscats-2-0/resource/
fbe133b5-d0bd-4c2c-a290-fd4deec4a5b9

4.38 US FDA

Chemical Evaluation

and Risk Estimation

System (CERES)

The US FDA CERES is a centralized data storage and management
system (Fig. 25) that offers support in decision-making of pre- and
post-market safety assessment for food-related ingredients and
food contact substances [71]. The CERES is formed to address
the technical challenges in food ingredient evaluation processes in
the Office of Food Additive Safety (OFAS) by consolidating all data
into one place and designed to be a knowledgebase of chemicals

Table 12
The major databases under TOXNET

Database name Topics covered

ChemIDplus Chemical names, formulas, structures

CCRIS Carcinogenicity, mutagenicity

CPDB Cancer testing

GENE-TOX Mutagenicity test data

IRIS Human health risk assessment

ITER Risk information

TOXLINE Toxicology journal literature

DART Reproductive toxicology journal literature

Haz-Map Occupational health

Household Products Database Products used in and around the home

HSDB Health effects, toxicity, regulations

LactMed Drugs and breastfeeding

TRI Environmental releases of chemicals

TOXMAP Interactive US maps of chemical releases
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regulated by the Center for Food Safety and Applied Nutrition
(CFSAN). CERES is equipped with cheminformatics capabilities
like:

l Predictive models (through collaborations with Altamira LLC
and Molecular Networks GmbH)

l Cleft palate

l Bacterial reverse mutagenicity

l In vitro chromosome aberration

l In vivo micronucleus

l Mouse and rat tumor

l Skin sensitization hazard and potency

l Chemical structure similarity calculation

Web Accessibility: https://www.accessdata.fda.gov/scripts/
fdatrack/view/track_project.cfm?program¼cfsan&id¼CFSAN-
OFAS-Chemical-Evaluation-and-Risk-Estimation-System

4.39 VITIC VITIC, a chemical structure-searchable database (Fig. 26), con-
tains information about toxicological endpoints including mutage-
nicity, carcinogenicity, and hepatotoxicity from high-quality peer-
reviewed sources. VITIC is capable of supporting the skin sensiti-
zation assessment of chemicals without animal testing. VITIC is
developed by Lhasa Limited [72]. It contains updated and exten-
sive coverage of chemical class and 430,000 toxicity data records for
over 20,500 structures. The offered data help submissions to reg-
ulators required under ICHM7. Few of the major characteristics of
the database are listed below:

l Assessment of the possible toxicity of new as well as existing
chemicals through the implication of large chemical libraries.

Fig. 25 Screenshot of USFDA CERES database
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l Decision-making regarding toxicity profile and approval of
industrial chemicals considering ecotoxicity hazards when a
complete experimental profile of the compound is absent.

l To save time, money and animal sacrifice to carry out toxicity
experiments for a large number of chemicals.

l Sharing of toxicity data and knowledge.

l Modification of chemical structure by considering significant
structural fragment or template responsible for toxicity employ-
ing in silico approaches and experimental knowledge.

Web Accessibility: http://www.lhasalimited.org/products/
vitic-nexus.htm

4.40 WikiPharma The WikiPharma, an open-access database (Fig. 27), covers eco-
toxicity data for human pharmaceuticals available on the Swedish
market. The database is updated continuously over a period to help
researchers, industries, risk assessors, and regulators authorities
worldwide [73]. The WikiPharma database is developed within
the Swedish research program MistraPharma (www.mistrapharma.
se) that carries basic data for around 831 active pharmaceutical
ingredients (APIs) representing 35 different therapeutic classes.
The effect data have been evaluated and counted in for

Fig. 26 Screenshot of Vitic database

Fig. 27 Screenshot of WikiPharma database
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116 pharmaceuticals, and ecotoxicity test data have been extracted
from 156 different sources. The MistraPharma functioned to clas-
sify human pharmaceuticals which are possible hazards to aquatic
ecosystems and addressed the antibiotic resistance risk promotion
in the environment along with the risk management strategies and
wastewater treatment technologies. The operation of this research
program occurred in the time frame of 2008–2015.

Web Accessibility: www.wikipharma.org

5 Application of Ecotoxicity Databases

Ecotoxicity databases consist of experimental data on toxic effects
of a series of chemicals to diverse species living in the different
environmental compartments. The most common application and
importance of these databases are the following [8–10, 74, 75]:

l Qualitative and/or quantitative toxicity data along with experi-
mental protocols, test species, and toxicity endpoints.

l The ecotoxicity databases are majorly employed for computa-
tional modeling purpose, for the future prediction of toxicity of
new and/or untested chemicals.

l Although adverse drug reactions (ADRs) are mainly checked for
drug discovery and market approval, in the present situation,
many industries follow ecotoxicity protocol of new drug entity
considering USEPA and REACH recommendations.

l Databases are frequently utilized for toxicity screening, ERA and
ERM, safety evaluation, and regulatory decision-making along
with the preparation of regulatory guidelines.

l Implementation of 3Rs principles for the reduction, replace-
ment, and refinement of animal usage in experimental toxicity
testing computational modeling is very much important, and a
good database is the fundamental resource for acceptable and
predictive model generation.

l Toxicity data gaps filling is another important role of the eco-
toxicity database along with extrapolation of toxicity data
employing interspecies experimental data available from inter-
species computational models like i-QSAR or QTTR (quantita-
tive toxicity-toxicity relationship).

6 Future Avenues and Conclusion

The available databases are the rich sources of information related
to experimental protocols, assay techniques, and employed species
for ecotoxicity testing. An access to comprehensive databases is
significant for RA and RM, regulatory decision-making followed
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by future toxicity prediction of new and untested chemicals
employing the present data exist in a database. A process from the
approval to rejection of a compound is highly dependent on a
specific database. Thus, the importance of ecotoxicity databases is
indispensable. Considering the present aspect, the existing data-
bases need to be updated for future perspectives as many of them
are lacking some fundamental aspects of ecotoxicity assessment as
well as a good modeling source.

(a) The ecotoxicity databases need to include experimental toxic-
ity data of mixtures. As the majority of chemicals are identified
as a mixture in the environment, thus to evaluate the hazards
and risk associated with specific chemicals, one needs to addi-
tionally consider the mixture effect [76].

(b) Most of the time, risk assessment is evaluated for the parent
chemical, while a chemical undergoes multiple transforma-
tions into metabolites or TPs in diverse environmental com-
partments. In some cases, the metabolites are more toxic than
the parent compound (e.g., prodrug concept). Therefore,
complete life cycle and fate of specific chemical need to be
studied along with toxicity testing of a parent as well as its
major metabolites. The complete toxicity data need to be
included in the databases for getting the complete scenario
of toxicity for any chemical [77].

(c) For the much faster and efficient prediction of ecotoxicity of
new and/or untested chemicals, knowledge-based expert sys-
tems (KBES) need to be tied up with specific databases so that
they can be competently employed for HTS. Additionally,
databases for specific ecotoxicity need to be included in artifi-
cial intelligence techniques and machine learning tools for
detailed and wide-ranging toxicity assessments.

Abovementioned implementation in future databases is neces-
sary to make the scenario most competitive and predictive one in
terms of risk profiling and toxicity prediction of any new chemicals
in no time and economic way. We hope that the current chapter will
be useful in evaluating existing databases and developing new ones
that would be more efficient in holistic approach to toxicity of
chemicals and their risk toward environment and leaving species.
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Glossary

CEC Contaminants of emerging concerns
HTS High-throughput screening
ID Illicit drug
MLR Multiple linear regression
MOA Mechanism of action
NCI National Cancer Institute
NOEC No observed effect concentration
NTP National Toxicology Program
OECD Organization for Economic Co-operation and

Development
PCP Personal care product
QSAR Quantitative structure-activity relationship
RBFNN Radial basis function neural networks
STP Sewage treatment plant
SVM Support vector machine
TP Transformation product
USEPA United States Environmental Protection Agency
WTP Water treatment plants
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Schüürmann G, Mangelsdorf I, Escher SE
(2013) The OSIRIS Weight of Evidence
approach: ITS for the endpoints repeated-
dose toxicity (RepDose ITS). Regul Toxicol
Pharmacol 67:157–169

48. Jackson MA, Lea I, Rashid A, Peddada SD,
Dunnick JK (2006) Genetic alterations in can-
cer knowledge system: analysis of gene muta-
tions in mouse and human liver and lung
tumors. Toxicol Sci 90:400–418

49. Waters M, Stack H, Jackson M. Genetic Activ-
ity Profile (GAP) data base.
U.S. Environmental Protection Agency,
Washington, DC, EPA/600/D-91/049
(NTIS PB91177014)

50. Cimino MC, Auletta AE (1993) Availability of
the GENE-TOX database on the National
Library of Medicine TOXNET system. Mutat
Res 297:97–99

51. HERA, Methodology document, 2002

52. Sakuratani Y, Zhang HQ, Nishikawa S,
Yamazaki K, Yamada T, Yamada J, Gerova K,
Chankov G, Mekenyan O, Hayashi M (2013)
Hazard Evaluation Support System (HESS) for
predicting repeated dose toxicity using toxico-
logical categories. SAR QSAR Environ Res 24
(5):351–363

53. Fonger GC (1995) Hazardous substances data
bank (HSDB) as a source of environmental fate
information on chemicals. Toxicology
103:137–145

54. Pearce N, Blair A, Vineis P et al (2015) IARC
monographs: 40 years of evaluating carcino-
genic hazards to humans. Environ Health Per-
spect 123:507–514

55. Dourson ML (2018) Let the IRIS Bloom:
regrowing the integrated risk information sys-
tem (IRIS) of the U.S. Environmental Protec-
tion Agency. Regul Toxicol Pharmacol 97:
A4–A5

56. Wullenweber A, Kroner O, Kohrman M,
Maier A, Dourson M, Rak A, Wexler P, Toml-
janovic C (2008) Resources for global risk
assessment: the International Toxicity Esti-
mates for Risk (ITER) and Risk Information
Exchange (RiskIE) databases. Toxicol Appl
Pharmacol 233:45–53

57. Matsumoto M, Kobayashi K, Takahashi M,
Hirata-Koizumi M, Ono A, Hirose A (2015)
Summary information of human health hazard
assessment of existing chemical substances (I).
Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho
Hokoku 133:42–47

58. Roberts G, Myatt GJ, Johnson WP, Cross KP,
Blower PE Jr (2000) LeadScope: software for
exploring large sets of screening data. J Chem
Inf Comput Sci 40:1302–1314

59. Registry of Toxic Effects of Chemical Sub-
stances (RTECS) database produced by the
National Institute of Occupational Safety and
Health (NIOSH)

60. Ring M, Eskofier BM (2015) Data mining in
the U.S. National Toxicology Program (NTP)
database reveals a potential bias regarding liver
tumors in rodents irrespective of the test agent.
PLoS One 10:e0116488

61. Austin T, Denoyelle M, Chaudry A,
Stradling S, Eadsforth C (2015) European
Chemicals Agency dossier submissions as an
experimental data source: refinement of a fish
toxicity model for predicting acute LC50
values. Environ Toxicol Chem 34:369–378

Ecotoxicity Databases for QSAR Modeling 757

http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?CCRIS
http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?CCRIS
https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100UUBD.txt%20
https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100UUBD.txt%20
https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100UUBD.txt%20
https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100UUBD.txt%20
http://extoxnet.orst.edu/index.htm
http://extoxnet.orst.edu/index.htm


62. Vonk JA, Benigni R, Hewitt M, Nendza M,
Segner H, van de Meent D, Cronin MT
(2009) The use of mechanisms and modes of
toxic action in integrated testing strategies: the
report and recommendations of a workshop
held as part of the European Union OSIRIS
Integrated Project. Altern Lab Anim
37:557–571
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Chapter 30

VEGAHUB for Ecotoxicological QSAR Modeling

Emilio Benfenati and Anna Lombardo

Abstract

VEGAHUB is a freely available platform, which offers tens of QSAR models for many endpoints of
environmental and ecotoxicological interest. In the last years, other tools have been added, for read across
and prioritization. These tools can be used in an integrated way.
An interesting feature of VEGAHUB is the possibility to evaluate the reliability of the assessment, in

particular for the QSAR models and for the software for prioritization.

Key words In silico models, QSAR, Read across, Prioritization, Screening, VEGAHUB

1 Introduction

There are several quantitative structure-activity relationships
(QSAR) models, which have been developed in the last decades.
We can group them within three families, regarding their availabil-
ity: (1) commercial models, (2) free models available within the
Internet, and (3) models published within journals but not easily
available. VEGAHUB [1] belongs to the family of models imple-
mented and made freely available through the Web. We did this
choice in order to better disseminate the results of the activities on
in silico models coordinated by the Istituto di Ricerche Farmaco-
logiche Mario Negri IRCCS (IRFMN), Milano, Italy.

In order to increase the use and application of the models for
the assessment of the effects of chemical substances, VEGAHUB
provides the results of the in silico models within a report. This
report lists a number of issues useful to evaluate the reliability of the
results, the reasons of possible uncertainty, and features, useful for
reasoning on the factors involved in the ecotoxicological property
of interest. All these elements have been introduced to reduce the
barriers on the use of the in silico models, which may be unfamiliar
to novel users.

VEGAHUB offers tools for the assessment of individual sub-
stances and for large sets of chemicals as well. Of course, the level of
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details is different in these two cases, since the needs are different
for these different applications. In case of the assessment of indi-
vidual substances, the VEGAHUB tools provide more details, while
in case of screening of large sets of compounds, the user is typically
interested in a system to filter the substances, to obtain subsets of
chemical to be more carefully evaluated, for instance, the most
toxic ones.

In order to increase the confidence and the reliability of the
results, it is common that for the same endpoint, more than one
model is available. This provides multiple lines of evidence and thus
facilitates the decision on the property of interest. Indeed, the
concordance between multiple values increases the confidence on
the assessment; in case of conflicting results, this may be used to
identify possible reasons for uncertainty, and thus, this will help the
user in the final assessment.

The evolution of the VEGAHUB tools followed the contribu-
tions of a quite numerous series of projects where IRFMN was
active. However, VEGAHUB benefits from contributions from
many institutes, and the models it contains have been made avail-
able through the work done by many groups, as acknowledged at
the VEGAHUB web site [1].

One of the first projects that contributed to the models present
in VEGAHUB is DEMETRA. A book [2] describes in full details
the results of this project. Within DEMETRA, five QSAR models
for plant protection products (PPPs) have been developed:

l Rainbow trout

l Water flea

l Quail (both oral and dietary exposure)

l Honey bee

All the institutes and the PPPs companies of the consortium of
the DEMETRA project worked to develop and check the models.

Of course, the PPPs need experimental data to be registered,
but the main reason to develop these models was to apply them to
related compounds, such as impurities, degradation products,
metabolites, etc. There may be many of these substances for each
parental PPP, and this requires a lot of work to generate the
ecotoxicological data. Thus, the use of QSAR model may be of
interest to generate data on substances related to the parental PPP.

Within the original proposal, we proposed not only to develop
the QSAR models but also to make them freely available with a
software system on the Internet. The reviewers of the proposal
refused this hypothesis, because there were already programs to
calculate the descriptors and it was judged not necessary to provide
an easy way to get the predicted value. Thus, the funded DEME-
TRA project did not cover the implementation of the final models
in an easy way. In our experience, in order to promote the use of the
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QSAR models, it is much better to offer a single system. The use of
multiple (usually complex) tools to calculate the molecular descrip-
tors and then insert them into the algorithms at the basis of the
models represents a barrier to the broad use of the models. Thus,
even if DEMETRA was successful to generate models, its models
were not widely used, and this shows the correctness of the strategy
of VEGAHUB. Later on, we implemented one of the DEMETRA
models into VEGA.

It is interesting to notice that, even if DEMETRA models have
been published in 2007, they are still quite advanced in their
strategy, because they use the concept of hybrid models. In partic-
ular, each final model is based on more than one QSAR models,
which are combined into the hybrid model. The combination is not
through simple algebraic methods, but the output of the individual
initial QSAR models is used as input for the final hybrid model [2].

What is important to know on the point of view of the user is
that these models are dedicated to PPPs. The models are based on
training sets that contain only PPPs. Thus, it may be expected that
the models are “trained” to evaluate more difficult situations, like
PPPs, which have chemical structures more complex than the typi-
cal “industrial” chemicals, and usually they show higher ecotoxico-
logical values. Consequently, these models may be good for PPPs,
probably for many biocides, but may overestimate the toxicity of
simpler substances.

The project CAESAR [3] is an evolution of DEMETRA, since
CAESAR made available the QSAR models requiring as input the
structure of the chemical; the program calculates automatically the
descriptors and uses them within the different QSAR models. This
greatly facilitates the use of the models, and indeed CAESAR
models have been and are still used. All the CAESAR models are
now available within VEGAHUB.

In order to further disseminate the results and use of the
models, we also decided to have the description of the models
published in open-access articles. Thus, the papers [4–9] describing
in full details the models are also publicly available at the CAESAR
web site [3].

CAESAR was on purpose dedicated to industrial chemical, and
within this project, five models have been developed:

l Mutagenicity (Ames test)

l Carcinogenicity

l Developmental toxicity

l Skin sensitization

l Bioconcentration factor (BCF)

Thus, compared to DEMETRA, we developed here more
models for toxicological properties, plus one for environmental
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properties. Since these models have been developed for regulatory
purposes, we gave particular attention to have conservative results.
Therefore, in particular for certain endpoints where the number of
chemical in the training set was small, like in the case of skin
sensitization, the user may have quite a number of false positives.
This issue is reduced in the case of larger collections of values, like
mutagenicity with Ames test, where many thousands of values were
available.

Compared to DEMETRA, the training sets refer to “indus-
trial” chemicals; thus these models may not be suitable for PPPs.

CAESAR also did a large improvement compared to DEME-
TRA, since it introduced the tool for the assessment of the reliabil-
ity of the results, through an evaluation of the applicability domain.
We will explain it in details later on. Anyhow, the use of the
applicability domain tools should help informing the user that a
certain model may be not adequate for a certain chemical.

It is important to know that in all cases, for the DEMETRA and
CAESAR projects, and also for the following ones, we dedicated
high attention to curate the values of the training sets, and for both
projects, this activity required about 1 year. In particular, we
checked the chemical orthography. In addition, we compared the
experimental data from multiple sources, and in case of multiple
values, we kept the substance only if the range of values was within a
certain threshold. This also contributed to improve the quality of
the results in prediction. This is also very useful when the user
wants to use the software for read across, as we will describe later,
since the quality of the experimental values is higher than in other
cases.

As for DEMETRA, CAESAR took advantage of the work of the
many partners in the consortium. Furthermore, we also collabo-
rated with institutes out of the consortium. For instance, we built
the model on developmental toxicity [4] with the US EPA, which
implemented the model in the platform TEST [10].

Later on, a number of projects offered the opportunity to
further evaluate the five models of CEASAR and to develop many
others. We extended the perspective, to better address read across,
and successively screening and prioritization. This prompted us to
establish a new platform, VEGAHUB, which merges all these
modeling activities.

A series of other projects funded by the EC supported VEGA-
HUB. These projects derive from projects funded by the
Directorate-General (DG) for Research, DG Environment of the
EC, and the European Food Safety Authority (EFSA). In addition,
we acknowledge financial support from national authorities, such as
the Italian Ministero della Sanità and Ministero dell’Ambiente
e della Tutela del Territorio e del Mare, the German Umweltbun-
desamt (UBA), and the German Federal Ministry for the Environ-
ment, Nature Conservation, and Nuclear Safety.
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Within the different projects, we collaborated and often pub-
lished with governmental agencies of many countries, in Europe
and abroad, such as Portugal, France, the UK, Belgium, Austria,
Germany, Italy, Denmark, the USA, Japan, and Canada. This is to
document our attention to the regulatory applications and the
possible use within legislative uses.

Furthermore, we thank the collaborations with industrial part-
ners within the EC projects and the joint activities with research and
academic groups. These last groups helped a lot in the development
of the models. Today VEGAHUB is in a certain way a community
of groups willing to share and make available their models. The
common interest is to reduce the (eco)toxicological impact of
chemical substances. Finally, we also implemented some previously
existing models, which are present within US EPA platforms, like
EPI Suite [11], or from the Toxtree platform [12] of the Joint
Research Center of the EC. We also acknowledge these valuable
contributions.

We mention below some of the projects that contributed to
VEGAHUB.

ANTARES [13] addressed a number of existing QSAR models
relevant for REACH, to identify which ones could be used at the
beginning of REACH. Later one, other projects addressed
REACH, in different years, covering different aspects: CALEIDOS
[14], LIFE PROSIL [15] LIFE VERMEER [16], and LIFE CON-
CERT REACH [17]. The DG Environment funded ANTARES
and the other projects. CALEIDOS checked the results of QSAR
models compared with the experimental values of the substances
registered in the first phase of REACH. Some difficulties appeared
for the prediction of fish and daphnia acute toxicity. This prompted
the development of more models, and this is one of the reasons
why, now, there are several new models in VEGAHUB developed
for aquatic toxicity. Within CALEIDOS, we developed and imple-
mented the software specific for read across called ToxRead [18].

VERMEER wants to integrate VEGAHUB with models for
exposure included in MERLIN-Expo; it also generated some new
models, and, since it is ongoing, it will be addressed in the future
development Subheading 4.2 below.

CONCERT REACH started very recently and will be men-
tioned below for the future development.

The German UBA and the German Federal Ministry for the
Environment, Nature Conservation, and Nuclear Safety funded
three projects: PROMETHEUS, JANUS, and toDIVINE. The
first two are related to screening and prioritization of chemicals
based on the persistence, bioaccumulation, and toxicity (PBT)
properties. In addition, JANUS includes other properties: carcino-
genicity, mutagenicity, and reprotoxicity (CMR) and endocrine
disruptors. The last one is on the integrated use of read across
and QSAR models and is still ongoing; thus, it will be addressed
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below for the future development. The first two refers to the
possibility to identify certain groups of chemicals that deserve
higher attention, or conversely, which may be less risky. Within
these projects, we developed tools to integrate the results of differ-
ent models, not only addressing the same property but also multi-
ple properties. Indeed, the prioritization requires merging
considerations related to different aspects, such as in the case of
the screening for PBT. In this case, VEGAHUB offers the possibil-
ity to run multiple models, covering different properties, in order
to get the information of interest for PBT.

2 The Different Tools Available Within VEGAHUB

VEGAHUB provides different kinds of tools:

l QSAR models for specific endpoints

l A tool for the applicability domain measurement

l The read across system within VEGA

l The ToxRead tool for read across

l A system to integrate results from read across and QSAR models

l The tool for prioritization and screening

l A number of research tools for modeling, read across, etc.

2.1 The VEGA QSAR

Models

The most classical tools are the QSAR models. In VEGA there are
tens of different models, for many endpoints. These models are
grouped within four families: models for physicochemical, environ-
mental, ecotoxicological, and toxicological properties. Figure 1
shows some of the available models for the ecotoxicological
endpoints.

It is common to find different models for the same endpoint.
These models are based on different algorithms and approaches;
thus they can offer orthogonal perspectives, which should be used
within a weight-of-evidence strategy. EFSA in 2017 published a
guidance document on weight of evidence [19]. Within this guid-
ance, EFSA also made an example using VEGA and ToxRead. The
strategy is to evaluate the relevance, reliability, and concordance of
the different lines of evidence. Thus, it is quite useful to have
multiple lines of evidence, and in the particular case, multiple in
silico models. We also observe that not only EFSA but also ECHA
and other authorities recommend using more than one model. This
increases the confidence in the results.

However, the user should be aware of the difference that may
occur between the different models. We already mentioned that
VEGA offers models for PPPs or for industrial chemicals, for
instance. Thus, the user should choose the model accordingly.
Another example is that there are different models for fish acute
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toxicity. They may be based on data related to different fish species;
thus the results of a model based on experimental values obtained
with rainbow trout may not be applicable to estimate the toxicity
toward fathead minnow and vice versa.

In case of ecotoxicological properties, VEGA has models cov-
ering acute and chronic toxicity, for different trophic levels: fish,
daphnia, and algae. There is also one model for honey bee.

The user should know that there are both models providing
continuous values and other models that are classifiers. Both can be
useful, and support each other, within a weight-of-evidence
approach, as we said.

For the QSAR models, the user may introduce one single
compound or collections of structures in batch. The most common
way to enter the structures for VEGA is the simplified molecular-
input line-entry system (SMILES) format, in order to facilitate the
user. VEGA automatically checks if there are errors in the format
and provides a warning. Furthermore, VEGA automatically stan-
dardizes the SMILES, in order to get more reproducible results. In
this way, VEGA processes the same group always with the same
format.

Fig. 1 The VEGA selection page, the ecotoxicological models
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2.2 The Tool

for Applicability

Domain

In addition and integrated with the models for specific endpoints,
VEGA automatically runs a tool to measure the applicability
domain (AD). The results are provided as a quantitative value,
with a score ranging from 1 to 0. If the value is high, the reliability
is good. The threshold depends on the endpoint, because the
different endpoints have different levels of uncertainty, mainly
related to the experimental uncertainty and variability. Further-
more, if the number of substances in the training set is small, this
also affects the overall reliability of the model.

The tool for AD is composed of several components, and the
results of these components are then integrated to provide a single
value, called Global AD Index (ADI). This ADI serves to evaluate
the reliability of the results in prediction. The tool notifies which
are the factors that deserve more attention in case there are issues.

The ADI components, some of them general other endpoint-
specific, are:

l Similar molecules with known experimental values. It evaluates
the presence of similar compounds in the training and test sets
and allows the user to verify the performance in prediction
through several aspects as explained below. The higher this
parameter is, the higher the reliability of the prediction is. The
availability of similar compounds means that the model “knows”
the behavior of these similar compounds, and therefore it is
more probable that its prediction is correct not only for them
but also for the target. However, the absence of similar com-
pounds in the training/test set does not automatically means
that the prediction is wrong. The meaning is that the user has to
consider other lines of evidence (for instance, the results from
other in silico models or for physicochemical parameters) to
increase the confidence on the results. The similarity is not an
absolute value of the substance. The similarity is always a com-
parison between two objects, and the result depends on which
parameters are used for the comparison. There is no single way
to measure the similarity between two chemicals. Multiple com-
ponents compose the algorithm we use within VEGA, in order
to balance different factors. We optimized it on four million
compounds. In order to improve the dissemination and trans-
parency, we published it in the open literature [20]. The algo-
rithm for similarity works only on the chemical similarity, and it
is the same for all models. We always recommend the user to
visually evaluate the “similar” chemicals. In general, a similarity
lower than 0.7 indicates a substance that is not similar. Another
important point is how many similar compounds are present.
VEGA calculates this parameter considering three or two most
similar substances, depending on the model.

l Accuracy of prediction for similar molecules. It evaluates the
agreement between the experimental and the predicted values
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for the similar compounds. This strategy can be the best com-
promise to evaluate if the model is working for the chemical of
interest. Of course, we assume that the experimental compound
is unknown; thus we can only refer to something close to this
substance. For this reason, we use the similar compounds to
check if the specific VEGA model works for the target com-
pound. The higher this parameter is, the higher the reliability of
the prediction is. For the models that provide quantitative
values, there is a further factor measured with the ADI tool,
which is the maximum error in prediction among similar mole-
cules. This indicates the largest error in prediction among the
two or three (depending on the model) similar compounds. A
large error reduces the ADI value; therefore in this case, the
higher this parameter is, the lower the reliability of the
prediction is.

l Concordance for similar molecules. It represents the concor-
dance between the experimental values of the most similar com-
pounds and the predicted value of the target compound. This
parameter is different from the previous one. The previous one
relates to the QSAR perspective: it accounts for the correctness
of the predictions. The concordance factor relates to the read
across perspective: it does not evaluate if the prediction is correct
or not, but it evaluates if the related compounds have the same
level of toxicity foreseen for the target one. This is close to the
read across scheme. In case of conflicting value, the ADI is
reduced. Therefore, the higher this parameter is, the higher
the reliability of the prediction is.

l Model’s descriptors range check. It verifies if the descriptors and
the molecular weight of the target compound are within the
range of the values of the chemicals of the training set. If the
target is outside of this range, it means that the prediction could
not be reliable; therefore the ADI is reduced. In this case, the
output for this parameter is qualitative; true means that the
target is in the model’s descriptors range.

l Atom-centered fragments similarity check. VEGA verifies that
there are fragments present in the target compound that are rare
or not present at all in the training set. Since this may introduce
uncertainty, an output of 1 means that no rare fragment is
present.

Beyond the ADI components, VEGA also provides other pieces
of information, depending on the property; for instance, for the
bioconcentration factor (BCF), it verifies the logP values.

All these factors are expressed as quantitative values except the
model’s descriptors range check and are used to calculate the ADI
score, which summarizes all these contributions. The strategy is to
get a quantitative value, to keep into account of multiple factors,
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and to evaluate more than one similar compound, weighting their
contributions to the ADI based on their relative similarity. The
most similar compounds will contribute more to the ADI value.

The ADI includes the evaluation of several parameters related
from one side to the algorithm and the descriptors and to the other
side to the structural similarity.

Thus, the VEGA tool is quite a complex one, compared to
other programs, which typically only apply a series of statistical
tools based on the structural information and associated descrip-
tors; conversely, VEGA refers to the three conceptual components
of any QSAR model: the property value, the chemical information,
and the algorithm. Thus, for instance, the concordance and the
accuracy of the predictions are pieces of information where the
property value is also used and not only the chemical information.

For each chemical, in the summary page, there is a circle
indicating the level of the effect, for instance, toxicity, with a color
code indicating this (e.g., red toxic, orange moderately toxic, green
not toxic). Then, there are up to three stars that represent the
reliability of the prediction, which refers to the ADI score (i.e.,
one star out of AD, two stars could be out of AD, three stars in
AD). This intuitively and immediately summarizes which is the
prediction and if it may be reliable or not. A textual description
reports the main issues, if identified, in the prediction.

The page with the ADI also reports symbols that declare if a
certain parameter is correct or if there are levels of concern. The
user should take particular attention evaluating the factors that are
indicated as critical. The presence of critical aspects does not auto-
matically mean that the prediction is wrong. The user may overrule
these warning elements, but this should be done based on a solid
argumentation. Indeed, the report of VEGA is intended for the
user. The user should use it to prepare her/his report and address in
particular the critical issues. The user takes the final decision.

At the VEGAHUB web site, there is the explanation of the
ADI, how to use it, and some examples. Furthermore, for each
model VEGA provides guidelines, describing how the ADI is cal-
culated, which varies for each model. In addition, for each model,
there are the chemicals used for the training and test sets, with their
property values. In some cases, there is also the QSAR model
reporting format (QMRF) of the model.

2.3 The Use of VEGA

for Read Across

Within VEGA, we provide a tool for read across, since VEGA shows
the six most similar compounds. Thus, this information can be
immediately used for all the endpoints as in VEGA. The read across
can be done based on the similarity, as calculated by VEGA, based
on the experimental values provided, and on the structural alerts/
fragments which may be provided depending on the model. Thus,
the read across can be done based on different features. With some
models, for instance BCF, the software also provides a plot with the
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experimental values of the three most similar compounds and the
log Kow values. This can be also used for read across. In this case,
the user does not need to look at the predicted values for the target,
and the process is quite simple.

2.4 ToxRead ToxRead further improved the way to evaluate chemicals within a
read across perspective. Indeed, using VEGA to perform a read
across, in case of multiple models for the same endpoint, the user
should run all the models and perform the read across with each
one. It means that in case of four models, the user should perform
the read across four times. In addition, since the datasets used for
each model may be different, the user may have different results.
One of the advantages of the use of ToxRead is that all the dataset
available are merged together. A second advantage is that the user
can choose the number of similar compounds to consider. ToxRead
provides the N most similar compounds as in VEGA, using exactly
the same algorithm to calculate similarity. The user can decide the
number of similar compounds (usually four or five are enough),
which may be even tens of compounds. Figure 2 shows an example
for BCF.

Another advantage of ToxRead is that it searches for rules/
fragments/reasons of effects. Depending on the endpoint, there
are structural alerts (in particular if the endpoint is defined as a

Fig. 2 A ToxRead example, the BCF (the number of similar compounds selected is 3). The molecule showed is
the target selected
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classifier: toxic or not) or also rules associated with a threshold in
case of continuous values. In this way, the user can visualize which
are the features associated with the effect, both increasing and
decreasing the value, present in the molecule.

ToxRead shows the N most similar compounds, as chosen by
the user, linked with arrows to the specific rule. The central circle
represents the target compound. The other circles represent the
similar chemicals, with different sizes depending on the similarity
value (the higher the similarity is, the bigger the circle is). The color
of the circles depends on the property value: red for toxic, green for
not toxic, and yellow in between (the legend is reported in upper-
left figure). Clicking on the circle, a window appears with the
structure of the substance and the experimental values.

Triangles represent the rules used by ToxRead in case of struc-
tural alerts (i.e., toxic or not toxic), whereas rectangles represent
the rules in case of continuous parameters (e.g., the molecule has a
log Kow value associated with a certain property value). Clicking on
the rules, the user can visualize the statistics related to the rules and
the 100 chemicals most similar to the target compound that con-
tain that rule.

In this way, the user has a scheme that on the same page shows
all the most similar compounds, all the reasons for effect/lack of
effect, and the most similar compounds that share a certain rule.
This organized representation provides a standardized way to pro-
cess the information for read across. It has been shown that Tox-
Read gives reproducible results in read across, while this is not
always the case for other tools for read across [21].

2.5 ToxWeight The user is typically interested in the assessment of the property
value of the chemical substance, and for this purpose, he/she uses
QSAR and/or read across. The ideal situation is when all these
elements are combined within the same strategy. EFSA, in their
guidance on weight of evidence, described this [19]. ToxWeight
(available in the VEGAHUB web site) is a first example of a pro-
gram going in that direction. ToxWeight so far is working only for
mutagenicity (Ames test). In the future, more endpoints will be
added. In practice, when the user runs the new version of ToxRead,
the results of the VEGA models are also presented through Tox-
Weight. It means that the user, through one single program, gets
the results from the read across assessment, and from the five VEGA
models on mutagenicity (four individual model and one which
integrates the results of these four models), and then the system
provides the overall assessment. All this is possible with one click,
automatically.

2.6 PROMETHUES

and JANUS

The German UBA and the German Federal Ministry for the Envi-
ronment, Nature Conservation, and Nuclear Safety funded two
software for prioritization and screening: PROMETHEUS and
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JANUS. At the VEGAHUB web site, it is possible to download the
tool, the extended report of PROMETHEUS, and a short sum-
mary from Chemical Watch [22]. A scientific paper also summar-
ized the project [23].

The strategy beyond both projects is to integrate a series of
models and experimental data, in order to get an overall assessment
regarding PBT (with PROMETHEUS) and additionally informa-
tion on carcinogenicity, mutagenicity, and reprotoxicity (CMR)
and effects as endocrine disruption (in the case of JANUS).
JANUS is an evolution of PROMETHEUS, adding more proper-
ties, in particular for human toxicology. Thus, the overall assess-
ment is done not on one single property value but on a large list of
different endpoints, and the results are then integrated. The defini-
tions for PBT and CMR are according to the European regulation.
Thus, a chemical is PBT if it is at the same time persistent, bioaccu-
mulative, and toxic. If it is not active for one of these properties, it is
not PBT. Conversely, a chemical is persistent if it is persistent in at
least one of the following compartment: water, sediment, or soil. As
for the persistence, a chemical is classified as CMR if can be classi-
fied in at least one of the three categories (C, M, or R).

The thresholds applicable to define PBT and CMR are those
according to the European legislation.

PBT and CMR are classifications of the substances. However, in
order to prioritize the substances in a list, and rank them in a
progressive order, we need continuous value. Thus, we used the
continuous value for the toxicity properties, which are given as
LD50 or LC50 (the dose or concentration that kills 50% of the
animals). Thus for the ecotoxicological properties, which are
addressed in the present chapter, the task is easy. More difficult is
the situation for CMR. We will not address CMR here. Briefly, we
used the potency value in this case.

In case of experimental values, the software uses them and gives
a higher reliability, compared to the predicted values. In case of
multiple values, the reliability is higher if there is consistency
between the values. The software applies a series of checks: for
instance, it keeps into account water solubility in case of aquatic
toxicity, checking if the toxic value occurs at concentration higher
than the water solubility.

The uncertainty of the assessment is provided, and it comes
from the nature of the value (predicted or experimental), on the
consistency between multiple values, and on the ADI in case of
predicted values.

The software evaluates not only effects of the parental com-
pound, but in addition it generates degradation products that may
be produced into the environment. Then, the tool processes and
prioritizes these degradation products.

Overall within JANUS there are 48 different QSAR models,
running together, generating one single overall priority score.
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However, the user can see the individual results for each property
and the uncertainty associated with each value.

2.7 Research Tools

for Modeling

VEGAHUB offers a series of tools, which can be used to develop
other models, based on available list of chemicals, for any property
of interest.

One example is SARpy [24]. This software has been developed
by Politecnico di Milano and serves to build up classifier models,
starting from lists of chemicals, simply using their SMILES struc-
tures. It progressively cuts the bonds generating fragments from
each molecule. The prevalence of active/inactive substances with a
certain fragment is used to build up collections of rules. SARpy has
been used for several endpoints, for instance, ready biodegradabil-
ity [25] and persistence [26].

An interesting advantage of this software is that it is quite easy,
it can be used internally (for instance, by industries), and the model
can be made public, without disclosing proprietary information on
the chemical structures and toxicological data used to build up the
model. Indeed, the model generated a series of structural alerts,
which can be disclosed.

It is also interesting to notice that SARpy generates rules both
for activity and lack of activity, which is different from the case of
other expert systems which contain only rules associated with the
adverse effect. In case of continuous values, the user can choose the
threshold used to define toxicity. Different thresholds can be
defined, and thus SARpy is not only a binary classifier.

QSARpy is an evolution of SARpy dedicated to continuous
endpoints [27]. It breaks the molecules as SARpy into fragments,
and then, for each fragment, it compares each couple of molecules
of the training set that shares the same structure but different
fragments. The fragment becomes a modulator assotiating to it a
value (either positive or negative). In prediction, QSARpy com-
pares the target molecule with the molecules of the training set. If it
finds a similar molecule that is different only for one or few mod-
ulators (the target can be a superstructure, a substructure, or an
intersection of the similar molecule), the predicted value is
obtained combining the activity/property value of the similar and
the value associated with each modulator. The list of modulators
may be analyzed to verify the existence of a mechanistic explanation
as for the rules extracted with SARpy.

CORAL is another useful software, which is available as a
general tool to build up models based on the lists of chemicals
available internally [28], and it has been also used to develop many
QSARmodels of ecotoxicological properties and others of environ-
mental relevance [29–38].
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3 Examples of Use of the VEGA Platform

We produced the following examples using with the VEGA version
1.1.5-b22. In this section, we describe the output of the models,
the interpretation of the results of each model, and the overall
assessment of the molecule.

3.1 Example 1:

Glycolic Acid, Fish

Acute Toxicity

VEGA has several models for fish acute toxicity. It is enough to
enter the SMILES of the substance and choose the models of
interest. This chemical is the hydroxyl derivative of acetic acid.
Thus, it is a quite simple substance, quite polar. Its SMILES is C
(C(¼O)O)O. Figure 3 shows the target molecule and the three
most similar chemicals of each model we used.

The first model we comment is Fish Acute (LC50) Toxicity
classification (SarPy/IRFMN) 1.0.2 (named SARpy). This model,
as we said, is a classifier. In this case, the threshold is 100 mg/l,
which is the value of the limit test. Thus, the meaning of the result is
that the chemical is not toxic, if predicted above 100. However, the
output of the SARpy model can be more granular, and it also
provides predictions given as between 10 and 100 mg/l, or
between 1 and 10 mg/l, or less than 1 mg/l. The software provides
a number of similar compounds, and the overall assessment done
on these compounds is quite reassuring that the prediction may be
correct. Indeed, the ADI is quite high (0.898), and all the

Fig. 3 The first example, the glycolic acid. The figure shows the target molecule and the three most similar
compounds of each model used in the example
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individual components of the ADI are correct, without any warning
message. Anyhow, the user should manually verify all the values and
have a look at the structures. The user, looking at the results on the
similar compounds, should try to make considerations in the frame-
work of a read across assessment. This is a second line of evidence,
to be combined with the QSAR prediction. Read across regards the
experimental data, the results based on the studies on similar com-
pounds. VEGA helps in the selections of the similar compounds,
but the user should also refer to background knowledge in the field.
The most similar structure found by the system for this model is the
propionic acid. It is not toxic (toxicity higher than 100 mg/l).
Thus, this finding confirms the prediction done by the model.
Propionic acid has a longer chain, compared to the target com-
pound, and it is expected to be less polar. Thus, its toxicity should
be higher. This is an advantage, because we have a similar com-
pound that is expected to be more toxic. It is always preferable to
identify which may be worse situations, to be used as boundaries.

The second most similar compound is 2,20-dihydroxydiethyl
ether. It is not toxic (>100 mg/l), but compared to the previous
chemical, it may be less useful. Indeed, the acidic group is missing,
and there is the ether moiety. The third similar compound is even
less similar, with similarity value lower than 0.8. Thus, from this
first model, we have the prediction, the read across (in particular on
the first compound), and some reasoning about solubility that may
contribute overall to come to the conclusion that the toxicity is not
high, probably >100 mg/l.

The second model is the Fish Acute (LC50) Toxicity model
(KNN/read across) 1.0.0 (named read across) model. It is based
on the most similar compounds. In this case, the model contains the
target compound in the training set. Thus, the system provides
immediately the experimental value, which is reported 77.73 mg/l.
This value may appear conflicting with the previous one, from the
SARpy model. SARpy gave a predictive value, which may be ques-
tioned based on this experimental value, which is lower. However,
one important consideration is the experimental value of propionic
acid, which was also with the toxicity value >100 mg/l. Another
important consideration is that the value 77.73 is not so different
from the value >100, even though these two belong to two toxicity
classes. Indeed, in the literature it is possible to find fish acute toxicity
values >100 for the target compound, as from the ECHA web site,
for instance. We have always to keep in mind the experimental
uncertainty and variability, and the difference between 78 and
>100mg/l is not so high. In the case that the VEGAmodel contains
the experimental value, the ADI assessment refers to this, since this
value should be used. Thus, we will not comment further the results
from this model.

The third model is the Fish Acute (LC50) Toxicity model
(NIC) 1.0.0 (named NIC) model, based on neural networks. In
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this case, we also find the experimental value, and the predicted one
is very close: 77.27 mg/l.

The fourth model is the Fish Acute (LC50) Toxicity model
(IRFMN) 1.0.0 (named IRFMN) model, which again reports the
experimental value as before, and the prediction is 55.4 mg/l.

The fifth model is the Fish Acute (LC50) Toxicity model
(IRFMN/COMBASE) 1.0.0 (named COMBASE) model, with
the experimental value as before, and the prediction is
247.44 mg/l.

The sixth model is the Fathead Minnow LC50 96 h (EPA)
1.0.7 (named US EPA) model. In this case, the system does not
provide experimental value for the target compound (it is not
contained in the training set of this model), and the prediction is
1614.88 mg/l. This value is surely different from all the others we
have seen. In this case, the reliability of the prediction, as reported
by VEGA, is low: only one star. The system reports a series of
warnings. The ADI is 0.7, and the main issues indicated by the
system refer to the accuracy of the predictions, the concordance for
similar chemicals, and a large error in prediction observed in at least
one case. The other components are not critical, and in particular,
there are similar compounds. In this case, it is important to analyze
the similar compounds manually and check what the system says.
Indeed, the software makes predictions with an error of one log
unit, for chemicals that are quite similar, like the acetic acid. Also for
the other similar compounds, the errors in prediction are quite
large. It means that the model is not so reliable for this kind of
compounds. We may consider if the error is always in the same
direction: over- or underpredictions. In this case, we observe that
EPA model makes errors in different directions depending if the
chemical is an acid or not. Thus, in principle we may consider this
and apply an offset. Another point that should be considered is the
fish species modeled. In the models we examined before, there is no
specific fish species, whereas in the last case, the model refers to the
fathead minnow. This species is not as sensitive as others (e.g.,
rainbow trout); therefore, a higher LC50 value is plausible.

The seventh model is the Fathead Minnow LC50 model
(KNN/IRFMN) 1.1.0 one (named KNN/IRFMN). In this case,
the predicted value is very high: 5422.77 mg/l, and there are two
stars of reliability. Still some issues occurs. The ADI is 0.85. The
main issue is about the concordance. Indeed, the predicted value is
quite far from the experimental values of some similar substances.
Here we can see which is the greater risk associated with the KNN
models, in general. KNN models are based on the similarity of the
substances, which are used to generate the prediction. In our case,
the second most similar chemical is the 2-hydroxypropanol, with a
similarity of 0.817 and an LC50 of more than 10 g/l. Thus, this
chemical, which has two hydroxyl groups, is much less toxic than
the other substances that we have seen so far, containing an acidic
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moiety. The user should be aware of these critical issues, notified by
VEGA. In particular, in the case of the KNN model, the concor-
dance of the most similar substances becomes a critical aspect,
because it immediately indicates that the property values of the
similar compounds are not homogeneous; consequently, the reli-
ability of this prediction is very low. The fact that the toxicity value
of glycolic acid is similar to the toxicity value of the
2-hydroxypropanol is not realistic, on the basis of the evidence
that other analogues of the target compound with the acidic moiety
have toxicity values in the range of about 100 mg/l, and thus
100 times more toxic. Also in this case, the model refers to the
fathead minnow species; therefore the considerations done previ-
ously are still valid.

The results of the last model, the Guppy LC50 model
(KNN/IRFMN) 1.1.0 (named guppy), are also very different
from those initially seen: indeed the toxicity is more than 60 g/l.
The guppy model is also a KNN model. If we look at the most
similar substance, used to feed the model, we can see they are all
alcohols. This represents a bias that has been discussed above.
Indeed, the ADI of this model is quite low: 0.511. For this
model, however, the critical issues are the accuracy of the predic-
tions, the maximum error in the prediction, and the presence of one
or more rare fragment. This last point, in particular, refers to the
fact that the substance has the hydroxyl-acid moiety, which is
unknown to the model, and this is a serious limitation. In addition,
this model refers to a specific fish species, which could be less
sensitive than others (e.g., rainbow trout).

What we have done in the discussion of the above results
follows the indications of the EFSA guidance on weight of evidence
that we already introduced [19]. In particular, we gathered the
different lines of evidence, which in our case are the different
models. This is also in agreement with other authorities, like
ECHA, which recommend using more than one QSAR model.
Once we have identified the lines of evidence, all the models for
fish acute toxicity, the associated experimental values, and the ele-
ments for reasoning, we have to evaluate each line of evidence
individually. This is what we have done. The assessment should
evaluate if the result is reliable. As we have seen, in this discussion,
we used the predicted values, the experimental values, the data of
the similar compounds (to be used for read across), and elements of
reasoning, which derive from basic chemical knowledge, such as
functional groups and expected polarity. Sometimes, in VEGA, the
values of the similar compounds are given in log unit and in mmol/l,
but to get the value in mg/l, if one does not want to do the
conversion manually, it is sufficient to copy and paste the SMILES
of the similar compound and run VEGA. At this point, VEGA will
recognize that this substance is in the training set and thus will
provide the experimental value, in mg/l.
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Once the user has discussed the individual lines of evidence, the
following step is to get an overall assessment, integrating the
results, which have been characterized in their reliability.

In our example, we have a larger set of models that provide an
experimental value of 77.73 mg/l (several models gave the same
value, probably with the same original source). The classification
model, in AD, predicted it as non toxic (>100 mg/l), whereas the
three models on specific species gave values higher than 1 g/l, but
they are not reliable (based on similar chemicals which are not
relevant for our case, as we already discussed). We also have to
remember that the regulation accepts experiments done on differ-
ent fish species, and this variability increases the range of the
expected values.

As a conclusion, we can accept that the toxicity value is about
100 mg/l, with good reliability, and the compound should be
considered moderately toxic.

3.2 Example 2:

2-(4-Terbutylbenzyl)

Propionaldehyde, Fish

Acute Toxicity

The SMILES of this chemical is O¼CC(C)Cc1ccc(cc1)C(C)(C)C.
Figure 4 shows the target molecule and the three most similar
chemicals of each model we used.

The SARpy model says that the toxicity is in the range
1–10 mg/l. Its ADI value is high, 0.933. There are several similar
chemicals with the same range of toxicity, and one of them is an
aldehyde. Overall, there are not major critical issues. The model

Fig. 4 The second example, the 2-(4-tert-butylbenzyl)propionaldehyde. The figure shows the target molecule
and the three most similar compounds of each model used in the example
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finds a structural alert (SA) associated with compounds with a
toxicity between 1 and 10, the para-xylene. VEGA shows the
three most similar compounds that share the same alert. In this
case, the two most similar compounds have in common also other
SAs. Only the third has one different SA, the ortho-xylene, but this
SA is not used in the estimation because it indicates a lower toxicity
(the classification is based on the worst case).

The KNN/read across model says 0.77 mg/l, which is lower
than the previous result. The KNN models, as we said, reflect the
toxicity values of the similar compounds. We observe that the
similar compounds are phenols, which are a moiety not present in
the target compound. Furthermore, there is an error in prediction
quite high. This model should be considered less reliable than the
previous one.

The NIC model predicts the toxicity at 1.77, with a very high
reliability. Also in this case, the most similar compounds are phe-
nols, but the situation is less critical than in the case of the KNN
model, because the NIC model uses descriptors to make the
predictions.

The IRFMN model gives a prediction in practice identical to
what is seen for the NIC model; indeed the prediction is 1.78.
However, in this case VEGA identifies a possible issue, related to
the concordance values between one similar substance and the
target compound. However, since the most similar substances are
phenols with toxicity values that are also lower than 1, this issue
should not be considered critical; it is sufficient to consider that
these similar compounds may not be useful for the read across
evaluation. Indeed, for this model, and for most of the previous
ones, we have seen that the similar compounds are mainly phenols,
and this is not very useful for the read across perspective.

The COMBASE model predicts the toxicity at 2.64 mg/l.
There are some issues reported by VEGA, which indicates the
ADI value ¼ 0.392, thus quite low. The COMBASE model has
been developed on a training set of biocides. This may have impli-
cations: the substances in the training set may be more toxic than
the general, average population of the typical substance, which are
assumed to be industrial chemicals. However, this fact does not
seem to affect the prediction in this case, since the toxicity value is
very close to the values seen for the previous models. The other
major implication is that the training set is relatively small. This is
probably the main reason for the low ADI value. Indeed, VEGA
reports that there are not very similar compounds, and this is due to
the smaller training set. Furthermore, the concordance is not high.
Indeed, for instance, there is a similar compound with the toxicity
value ¼ 26 mg/l, thus ten times more the predicted value for the
target compound. Furthermore, there are also one or more rare
fragments present in the molecule. Again, these critical issues reflect
the quite limited training set of the COMBASE model.
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The US EPA model gives a prediction of 0.789, which is
somehow lower than the values we have seen so far. The reliability
is not high. This is mainly due to the concordance with similar
substances, and there is also a large error in prediction for a similar
compound.

The KNN/IRFMNmodel predicts the toxicity at 11.26. As we
already commented, the KNN is reliable provided that the sub-
stances are quite homogeneous and related to the target com-
pound. In this case, for instance, we notice that there is a similar
compound, which is an aldehyde, with a toxicity value of about
6.6 mg/l. This substance, within a scheme for read across, may be
useful. Thus, this model provides a kind of agreement with the
previous models, in particular if we refer to the read across perspec-
tive, more than the QSAR prediction. We have also to remind that
this model refers to a specific fish species, which could be less
sensitive than the other species.

The Guppy model predicts 4.63 mg/l. There are critical issues
reported by the model, in particular for rare fragments, and a large
error in one case in prediction of a similar compound. This may be
due to the small dataset used to build this model. We have also to
remind that this model refers to a specific fish species, which could
be less sensitive than the other species.

Overall, the results are quite consistent. In this example, we
adopted a strategy somehow different from what we did for the first
example. In the first example, we tried to analyze the different lines
of evidence independently and then to integrate the results. An
alternative approach starts from a model, and step by step, the user
critically compares the results and sees how the new evidences may
modify what has been established previously. The disadvantage is
that in this case, there may be a bias, represented by the past
evaluation of the previous results. However, it is reasonable to
think that also in the other cases, it may happen that what has
been already found may influence the successive results, since mul-
tiple concordant results will reinforce the confidence on a certain
value. Thus, in all cases it is important to analyze critically all the
novel elements. An advantage of the present approach is that we can
immediately use the different findings already found to evaluate the
individual results, and thus, for instance, we may refer to similar
compounds found in a different model.

In this case, the overall toxicity seems to be a few mg/l;
therefore, the compound should be considered toxic.

4 The Future Tools

VEGAHUB is a living platform, which continuously adds new
models and tools, also thanks to a growing network of collabora-
tions. We will describe below some important improvements that
are planned within some projects.
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4.1 The toDIVINE

Project

The major improvements that are anticipated above are related to a
new strategy for read across and weight of evidence, which better
combines the read across with the results of the QSAR models. So
far, we have discussed already how VEGA can be used also for read
across. However, there are two limitations to the current approach:
(1) the similarity is processed only on a structural point of view, and
(2) certain features, like log Kow, etc., which we used in our
discussion, rely on the expert’s knowledge and thus are not used
by the system.

The project toDIVINE, funded by the German UBA, wants to
address this need to better integrate read across with QSAR, but
using a deeper approach for read across. There are three partners
within the toDIVINE project, which is coordinated by the
IRFMN.

toDIVINE is using multiple features to identify substances that
can be used for similarity. Beyond the structural similarity, as pro-
cessed within VEGA, we will also use the physicochemical proper-
ties, the toxicological information, the pharmacokinetic
information, and the information about degradation products
that may be generated into the environment.

Of course, these properties and information are strictly asso-
ciated with the endpoints of interest. toDIVINE is addressing fish,
daphnia, and algae (both acute and chronic toxicity), persistence,
bioaccumulation, and endocrine disruption.

Within toDIVINE, we decided to use parameters that can be
calculated if the experimental value is not available to be able to
process all chemicals of interest. For the physicochemical para-
meters, we will use log Kow, water solubility, Henry’s constant,
and molecular weight.

For the toxicological information, we will use the mode of
action and a series of structural alerts specific for each endpoint.
There are, indeed, some programs able to estimate the mode of
action, for instance, for fish toxicity (as in TEST [10]), or for
endocrine disruption, which is also available in VEGA. Unfortu-
nately, this cannot be applied to all endpoints. For this reason, a
series of fragments, which can be associated to the property value,
will be also used, and these can be easily obtained with SARpy [24].

The pharmacokinetic information, which are also applicable to
certain endpoints only, will be obtained from the kM for fish
metabolism. It has been obtained from the EPISuite system
[11]. Finally, we will also refer to the environmental biodegrada-
tion, because the overall critical impact into the environment may
be due not to the parental compound but to the degradation
product(s). The way to process the degradation products is done
within the JANUS project.

Obviously, compared to the approach as in VEGA, this is a
much more complex scheme, which also involves a series of phe-
nomena which are usually addressed only in an implicit way with
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the current approach or that are not addressed at all. There are
some main advantages, which are (1) a larger number of similar
compounds to be used for similarity, and thus it is easier to identify
the relevant one—in principle it is possible to miss some relevant
similar chemicals for read across, if we simply refer to the chemical
structure; (2) a deeper evaluation of the similarity process, consid-
ering a number of features which are surely relevant to compare two
substances; and (3) it is easier to reason about the causes of simila-
rities and dissimilarities, since they are explicit.

We will summarize separately the results from the read across
process and form the QSAR models into two values. Then, we will
integrate these values to get the overall property value for the target
compound. In all these processes, we will consider the reliability of
the values, to weight the different contributions along the process
and to report the uncertainty associated.

4.2 The

LIFE VERMEER Project

LIFE VERMEER is a project funded by the EC and includes several
partners in Europe, involving different stakeholders. The IRFMN
coordinates the project.

The two main objectives of LIFE VERMEER are (1) to inte-
grate the VEGA platform with the MERLIN-Expo platform and
(2) to develop a software program to substitute risky substances.

MERLIN-Expo [39] is a platform developed within a previous
EC project, to predict exposure. It addresses both environmental
exposure and human internal exposure. There are multiple scenar-
ios within MERLIN-Expo. The major advantage of the interaction
of VEGA and MERLIN-Expo is that in this way, the user will have
the possibility to get an overall prediction of the risk assessment
using a unique software, LIFE SPHERA. This is a major improve-
ment compared to any other existing tool.

Furthermore, within LIFE VERMEER, the aim is to develop a
tool, named ToxEraser, to replace risky substances. Once identified
as risky, based on the results of LIFE SPHERA, it will be possible to
identify the reasons for the concern. We will base this assessment on
an evolution of the ToxRead software. Indeed, ToxRead already has
some important features: the possibility to identify reasons for the
concern, and the knowledge on the neutral, or even counteracting
factors that may reduce the adverse effect. Of course, currently
within ToxRead this is limited to very few endpoints. Within
LIFE VERMEER, we will fully exploit and extend this approach
to all the relevant endpoints.

In order to integrate VEGA and MERLIN-Expo, we are devel-
oping a number of new models that will be available also within
VEGA. We are working in particular on the endpoints useful to
address the environmental fate and behavior, such as models for the
Henry’s law constant, partitioning between octanol and air, and
octanol and carbon in soil.
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A number of case studies will provide a sound basis to put in
practice the outcomes of LIFE VERMEER. For instance, there will
be case studies regarding (1) the human toxicological scenario, like
the food contact materials, (2) both human and environmental
scenarios, like the personal care products, and (3) case studies
more directly related to the environmental scenarios, like green
solvents, biocides, and dispersants (to be used in case of oil pollu-
tion). These case studies will surely address environmental impact,
but the human toxicological aspects will be also covered. Indeed,
the occupational risk is always present.

The challenge is to integrate the environmental with the
human toxicological issues. In the future, these aspects have to be
covered simultaneously. For instance, the persistence is very impor-
tant also for the human toxicological endpoints, because if a sub-
stance is persistent, it will reach the population at a certain time.
There are unfortunately several examples teaching us about this fact
(e.g., the DDT).

The focus on the substitution makes this project particularly
relevant for the European REACH regulation. Indeed, after the
first phase, related to the registration of the substances present in
the European market, now the new challenge related to REACH is
the substitution of the substances of higher concern.

For this purpose, the new ToxEraser software will be particu-
larly useful, assisting the industry to better adapt the lists of sub-
stances that can better meet the new safety requirements. In the
past, industry was exploring new substances mainly through labo-
ratory experiments. The information about the possible concern for
certain toxicological and ecotoxicological effects was not available,
and thus this issue was addressed in a later step, when a lot of efforts
and work were already spent. The use of in silico tools, as in the case
of the planned ToxEraser software, will be very beneficial for indus-
tries. Indeed, the industry will have available tool able to screen a
large series of chemicals, before their preparation and synthesis.

4.3 The LIFE

CONCERT REACH

Project

The LIFE CONCERT REACH project started very recently, at the
end of 2018. It follows a series of other LIFE projects addressing
REACH: ANTARES, CALEIDOS, LIFE PROSIL, and
LIFE VERMEER. The IRFMN coordinates the consortium of
the project.

The main difference about LIFE CONCERT REACH and the
previous LIFE projects is that finally the data on the registered
substance became available. As we have seen previously, a number
of models have been developed, based on historical collections of
data, about a number of common endpoints, such as mutagenicity,
fish toxicity, etc. However, while the speed of the improvements
about the hardware and the software allowed in the last decades to
introduce better and more efficient models, taking advantage of
cheap and fast computers, and of a high number of molecular
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descriptors and algorithm, the progress in the availability of experi-
mental data is in general very slow, in particular, for data derived
from in vivo experiments (in the case of in vitro data, the Tox21 and
ToxCast initiatives are producing a large number of data). Thus, the
REACH legislation is beneficial also regarding this important issue:
to make data available. No data, no market was the motto. The
unprecedented availability of data from the registrations represents
a unique mine of data. As always, we have to be aware that the
quality of the data is not homogeneous, and pruning will be neces-
sary. Nevertheless, REACH offers, also to QSAR developer, a new
perspective, starting from the data available within REACH.

We have to distinguish between the use of data to build up a
QSAR models and for read across. In order to use data for read
across, the user needs a letter of access, since the data are proprie-
tary. Typically, the access requires a payment. Furthermore, it is not
sufficient to have the value, for instance, the experimental aquatic
toxicity value; for read across the registrant needs the full documen-
tation with all the details about the experiment, and this is not
available.

Conversely, to build up QSAR models, it is sufficient to have
the list of values (better if with details on the test performed) and
chemical structures. Thus, based on the REACH registration, now
a vast amount of new data is available, for a larger set of endpoints.
The LIFE CONCERTREACHwants to exploit these data in order
to build up new models for endpoints that currently do not have
models.

Furthermore, this project aims to establish a network between
three of the most advanced and used systems for modeling: VEGA,
the Danish QSAR database, and AMBIT. These systems will remain
as independent platforms, but we will identify synergies, and we will
address together the new models. We will direct and inform the
user about the peculiar features of each of the three systems.

4.4 The OptiTox

Project

EFSA funded the OptiTox project, which started at the end of
2018 and will last 4 years. The IRFMN coordinates the consortium
of the project.

The OptiTox project wants to continue the work on the Open-
FoodTox database of EFSA [40]. OpenFoodTox contains data on
many thousands of substances of interest for EFSA, related to plant
protection products, food contact materials, veterinary pharmaceu-
ticals, contaminants, etc. The data regards tens of different taxa and
contains data on mixtures. Thus, this is a quite large and rich
database, with lot of details.

Compared to other databases, such as REACH, containing
data provided by external sources, this database refers to the docu-
ments produced by the different units within EFSA, and thus the
value refers to a curation process which is quite valuable.
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Furthermore, starting from these data, we will develop new
QSAR models within OptiTox, and we will make them available
within VEGA.

Another interesting characteristic is that OptiTox will also
exploit the data on the toxicokinetics available within EFSA. This
will improve the predictive capability of the predictive models.

The issue of the toxicokinetics is also present within other
projects we mentioned, like toDIVINE and LIFE VERMEER.
Surely, it will become more and more important to have a deeper
use of the available pieces of information. However, this will also
require new efforts to cope with a more general evaluation of the
risk assessment scheme and will require a new perspective on a
regulatory point of view. Indeed, the toxicokinetics will bring a
better evaluation about the internal dose and the behavior of the
substance inside the body, either the human body or the animal
one. However, the regulation currently refers only to the external
dose, and does not identify any threshold/value for the internal
dose. Thus, this aspect is fundamental on a scientific point of view,
and is surely relevant for read across to identify commonalities
between different substances, but in the case of QSAR will require
more work, jointly done together with authorities.

4.5 Endocrine

Disruption

Certain properties, like endocrine disruption, surely affect both the
human population and the wild species. For this reason, we are
extending the number of models able to address this phenomenon,
and there will be several new models within VEGA in the near
future. We will do it within a series of projects, like toDI-
VINE, LIFE VERMEER, and others not mentioned here, because
of its relevance to human toxicology. These new models often
derive from international collaboration, like the collaboration
with the US EPA on the prediction of estrogen and androgen
activity, within the CERAPP [41] and COMPARA [42] initiatives,
respectively. In these projects, newmodels have been developed, for
these two endpoints. We contributed with new models to be
implemented within VEGA.

Another example of the collaborations related to endocrine
disruption is with Prof. Kunal Roy, Jadavpur University, Kolkata,
India. These joined studies allowed to address endocrine disruptors
potentially affecting a number of species.

Furthermore, we established another collaboration with Prof.
Wei Shi, Nanjing University, China. Her group developed a num-
ber of models for many nuclear receptors using SARpy, and we will
implement these models within VEGA soon.
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5 Conclusions

We introduced the platform VEGAHUB and its development. The
main interest for VEGAHUB is to make models available and useful
to better assess the chemical properties. This should improve the
possibility to identify and thus avoid possible concern associated
with the chemical structures.

During the years, thanks to a number of projects, mostly
funded by the European Commission, VEGAHUB extended its
targets and addressed not only QSAR but also read across, weight
of evidence, exposure, and other targets which are under develop-
ment. Offering more and more tools, VEGAHUBwants to provide
a larger basis, not only to the prediction but also to the understand-
ing and reasoning about the causes of the adverse effects. This is
useful to increase the confidence of the overall assessment and to
reduce the uncertainty.

VEGAHUB is not the only system offering predictions and
models. The user should be aware of the limitations that still exist
using VEGAHUB models, and that he/she can try other models.

We showed how VEGAHUB should be used to extract at the
best all the different lines of evidence. The final decision is up to the
expert. However, it would be a pity not to exploit all the data given
by VEGAHUB, which is not only the predicted value but also a
series of other elements, such as the similar chemicals and the rules
for reasoning.

VEGAHUB is committed to improve the predictions and the
way to inform the user about factors associated with the effect. This
goes through a deeper integration of multiple tools, which today
have to be run separately. Having multiple tools within the same
platform will facilitate exploiting the results, establishing links
between the different results.

Integration is a key word for the future improvements within
VEGAHUB. Some examples are the integration between read
across and QSAR, the integration between hazard and exposure,
the integration between multiple properties, and the inclusion of
toxicokinetics and toxicodynamic.

Eventually, VEGAHUB will be not only a prognostic and
diagnostic system but also a therapeutic one, able to put remedies
to the risky substance and identify safer, greener, candidates for
substitution.
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Chapter 31

Enalos Cloud Platform: Nanoinformatics
and Cheminformatics Tools

Dimitra-Danai Varsou, Andreas Tsoumanis, Antreas Afantitis,
and Georgia Melagraki

Abstract

In this chapter, we present and discuss Enalos Cloud Platform designed and developed by NovaMechanics
Ltd., as an easy-to-use portal to address a variety of challenges arising in the fields of cheminformatics and
nanoinformatics. Enalos Cloud Platform also hosts predictive models as web services that can contribute to
different aspects of material design and development, drug discovery, virtual screening of chemical sub-
stances, nanosafety, and the development of safe-by-design (nano)materials. All models included are
developed and validated according to the OECD principles. The web services’ interface is carefully designed
with the aim of being simple and user-friendly, to allow also users with no informatics background to easily
use the models and benefit from the produced predictions and results. At the end of the chapter, we aspire
that readers will perceive the functionalities and the efficiency of the available web services and how these
could be integrated in drug discovery or material design projects.

Key words Cheminformatics, Nanoinformatics, Enalos Cloud Platform, Predictive models, Virtual
screening, Safe-by-design

1 Introduction

Drug discovery and (nano)material risk assessment need to be
accelerated to pace with the vast number of compounds that can
be developed and the newmaterials and structures that are included
in everyday consumer products. Especially in the field of drug
design, high-throughput screening techniques (HTS) produce sig-
nificant amount of information that cannot be processed manually
[1, 2]. At the same time, the ability to translate, with the aid of a
computational software, the structural features into molecular
descriptors that can be treated mathematically enables scientists to
correlate the structure of molecules to their specific properties and
thus to understand the mechanisms that control their biological
behavior [3, 4].

Kunal Roy (ed.), Ecotoxicological QSARs, Methods in Pharmacology and Toxicology,
https://doi.org/10.1007/978-1-0716-0150-1_31, © Springer Science+Business Media, LLC, part of Springer Nature 2020

789

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-0150-1_31&domain=pdf


The abundance of both experimental and calculated data actu-
ated the field of cheminformatics that combines various computa-
tional strategies and deals with large datasets, to relate the structural
characteristics of chemical compounds to their properties
[5]. Quantitative structure-activity relationship (QSAR) models
were developed especially to meet the needs of novel drug design;
virtual screening studies can be performed using the developed
predictive models in order to prioritize candidate compounds for
experimental toxicity assessment [6–8]. In this way, experimental
labor-intensive processes can be reduced, as well as resources and
time constraints may be avoided, and the development of novel
therapies for the treatment of various diseases can be accelerated.

The know-how acquired during the past decades in the field of
chemoinformatics can be applied in the emerging field of nanoin-
formatics, where similar to the risk assessment of chemical com-
pounds, scientists are focused on the risk assessment of novel
nanostructures that are produced and used in a wide range of
industrial applications and consumer products [9, 10]. However,
even after several years of advancing computational methods dedi-
cated to assess the behavior of engineered nanomaterials (ENMs),
the scarcity of experimental evaluation and property quantification
impedes the development of robust models for the estimation of
possible risks of ENMs for human health and the
environment [11].

Due to the lack of sufficient experimental data and due to the
ethics impediments considering the use of laboratory animals, the
nanosafety community developed alternative in silico techniques
for toxicity estimation of ENMs [12]. Read-across non-testing
strategies for small ENM dataset hazard estimation were intro-
duced recently by the European Chemicals Agency (ECHA) and
are also supported by the Organisation for Economic Co-operation
and Development (OECD) [13, 14]. These strategies include the
organization of similar ENMs into groups and the toxicity
(or query property estimation) within the group.

Beyond the development of a predictive model to solve
emerging problems within the field of cheminformatics and
nanoinformatics, it is equally important to disseminate the model
produced to all interested parties, including academia, industry,
and regulators, through a user-friendly environment that allows
reliable predictions in minimum steps required and without the
need of special computational skills [15–19].

In this chapter, Enalos Cloud Platform (http://enaloscloud.
novamechanics.com/) is introduced, as an online toxicity and drug
discovery platform that is publicly available for any interested user.
Enalos Cloud Platform hosts a series of predictive models released
as web services that aim to address the needs of acquiring fast and
accurate predictions of the toxicity and properties of novel com-
pounds and ENMs, reducing at the same time the cost and the time
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spent in experimental procedures [18]. The integrated models are
built on reliable open-source software, including KNIME Platform,
WEKA, ImageJ, R, etc., as well as proprietary software (Enalos+
nodes) [20–24]. In this chapter, three web services hosted in
Enalos Cloud Platform are presented; both the modeling develop-
ment and the corresponding web service offered are discussed.

The web services presented address different problems span-
ning from reliable toxicity prediction for small molecules, cell asso-
ciation prediction for nanomaterials based on corona fingerprints,
and a safe-by-design tool for carbon nanotubes (CNTs).

2 MouseTox

Toxicity assessment of the novel compounds is a very important
step in the design of novel drugs as it is crucial to filter out toxic
compound as early as possible within the drug discovery process.
Especially when a large pool of compounds is available, resources
and time can be spared by using computational tools that could
indicate the most appropriate candidate compounds for the devel-
opment of a specific drug. In this direction, the MouseTox quanti-
tative structure-toxicity relationship (QSTR) model was integrated
within Enalos Cloud Platform (http://enaloscloud.novamechanics.
com/EnalosWebApps/MouseTox/), as an online tool that can be
used for the estimation of the cytotoxicity of chemical compounds
to NIH/3T3 (mouse embryonic fibroblast) cells [15].

The initial model was developed in the KNIME Platform using
a dataset of 5416 compounds used in the toxicity assessment of
potential drugs for the Chagas disease treatment [25, 26]. Each
compound was labeled as “active” or “inactive” depending on the
presence or the absence of cytotoxic effects to NIH/3T3 cells. For
each compound, a set of molecular descriptors was calculated using
Mold2 software incorporated in KNIME through Enalos+ nodes
[22, 27]. In this way, the structural characteristics of the com-
pounds were encoded into numerical values that could be used
during modeling. The dataset was divided into training and test
sets, and variable selection was performed in the training set in
order to filter out noisy descriptors to the endpoint. Random forest
modeling methodology was selected as the modeling methodology,
given that it produced the most reliable predictions when applied to
the external test set [28]. The QSTR model was fully validated
before its public release via Enalos Cloud Platform (internal, vali-
dation, external validation, Y-randomization test), and the reported
accuracy on the test set was up to 0.83 [15]. The web service is a
ready-to-use application with the purpose to facilitate decision-
making, as part of a safe-by-design framework for novel drugs.
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2.1 Initiating

the Analysis

In a virtual screening framework for the assessment of the cytotoxic
effects of a range of novel compounds, users can initiate a predic-
tion within the MouseTox web service (Fig. 1) by uploading the
query structures to acquire toxicity predictions in minimum time
required.

Different options are available in order to submit a structure for
prediction that are briefly described below:

Compound Sketcher: Users can design the chemical compound of
interest (one structure at a time) using the provided chemical sketcher.
The tool offers a variety of specific atoms, bonds, or substructures that
can facilitate the design of the query compound.

SMILES: The query compounds can be uploaded using their SMILES
notation. In case that the SMILES notation is not initially known, the
aforementioned chemical sketcher gives the users the opportunity to
draw the molecular structure and then copy the structure as SMILES
within the corresponding field. This facilitates the generation of sev-
eral structures, by allowing a multitude of modifications to be visua-
lized and performed using the sketcher, so that a prediction for the
whole set of produced structures is obtained.

SDF File: Users can select and import an SDF file with several
structures that can be easily extracted from PubChem database or
other repositories. This type of file contains molecular structure records,
used as a standard exchange format for chemical information.

After uploading one or several query compounds, toxicity pre-
dictions are produced by clicking on the Execute button, which can
be found under the fields for data input.

Fig. 1 MouseTox environment in Enalos Cloud Platform. At the left-handed side, the molecular drawing tool is
found. At the top right-handed side, the SMILES input form can be seen followed by the option of importing an
SDF file
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2.2 Produced Results For each set of submitted compounds, the results include the
predicted cytotoxicity effect (“active”/“inactive”) to NIH/3T3
cells and an indication of whether this prediction could be consid-
ered reliable based on the domain of applicability of the model
(Fig. 2). Two options are available: the “reliable” option which
indicates a prediction within the domain of applicability limits of
the model and the “unreliable” option which is a warning for a
prediction out of the model’s domain of applicability.

By clicking on the Download files button, the table with the
results can be downloaded in CSV and HTML formats.

3 A Safe-by-Design Tool for Functionalized Nanomaterials

Enalos Cloud Platform has recently incorporated the concept of
read-across supported by both OECD and ECHA [29]. This con-
cept is founded on the empirical knowledge that similar materials
may exhibit similar behavior; therefore, the assessment of the prop-
erties of non-tested ENMs can be achieved using data within a
group of similar tested ENMs [30, 31]. The k-nearest neighbors
(kNN) algorithm belongs to the read-across approaches as through
the training-testing procedures, small groups of k similar ENMs are

Fig. 2 MouseTox-generated output page. The first column of the result table contains the compound’s
identification, the second column contains the prediction of each submitted compound, and the third column
contains the reliability of each prediction based on the model’s domain of applicability. This table can also be
downloaded in CSV and HTML format by clicking on the corresponding button
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formed, and the prediction for each query ENM is performed
within the corresponding group [32, 33].

A read-across-based tool integrated in the Enalos Cloud Plat-
form is a safe-by-design workflow correlating molecular descriptors
of the decorating molecules of functionalized multi-walled carbon
nanotubes (MWCNTs) to their biological activity (protein binding
of carbonic anhydrase) and toxicity (http://enaloscloud.
novamechanics.com/EnalosWebApps/CNT/) [16]. The work-
flow was developed in the open-source KNIME including the
Enalos+ nodes, using a dataset of 83 surface-modified MWCNTs
[34]. Considering that all MWCNTs had an identical core, the
assumption that the differences in their biological effects and tox-
icity were mostly due to the decorating molecules of their surface
was made [35–37]. The chemical structure information of the
ligands was quantified by calculating the necessary molecular
descriptors using Mold2 software [27]. For each of the two end-
points, the variables that were the most critical for modeling pur-
poses were selected, and the kNN method was employed with an
optimal value of k ¼ 3 for the CA-binding model and k ¼ 7 for the
toxicity model. The developed workflow was fully validated accord-
ing to the OECD standards before it was released online via the
Enalos Cloud Platform. A double-cross validation scheme was
applied, and the reported predictive accuracy for the blank-external
sets was over 0.8 for both models [16, 38]. The web service is a
user-friendly application whose purpose is to facilitate decision-
making, as part of a safe-by-design framework for novel MWCNTs.

3.1 Initiating

the Analysis

For both CA-binding and toxicity profile estimation of a query-
decorated MWCNT, users must provide through the platform one
or several structures of compounds being considered as potential
decorating molecules (Fig. 3) similar to MouseTox web service.
After the structure input, descriptors are automatically calculated,
and predictions are produced without any requirement of addi-
tional metadata.

Different options are available in order to submit a structure for
prediction that are briefly described below:

Compound Sketcher: Users can submit a potential decorator to the
platform by drawing the molecular structure of interest using the
provided chemical sketcher. The functionality enables the users to
construct the decorating molecule using different tools that provide
specific atoms, bonds, or substructures.

SMILES: Users can provide a list of the potential decorators using
their SMILES notation.

SDF File: Users can upload the potential decorators as a list of
structures in an SDF file that can be extracted from PubChem
database or other repositories.

794 Dimitra-Danai Varsou et al.

http://enaloscloud.novamechanics.com/EnalosWebApps/CNT/
http://enaloscloud.novamechanics.com/EnalosWebApps/CNT/


By clicking on the Execute button, which corresponds each
time to the used field for data input, predictions are performed
and are displayed in a new page.

3.2 Produced Results For each set of submitted decorating molecules, the results include
the predicted CA-binding class (“binder”/“non-binder”) to the
MWCNTs and the toxicity class (“toxic”/“nontoxic”) of the
resultant-decorated MWCNTs and an indication of whether this
prediction could be considered reliable based on the domain of
applicability of the models (Fig. 4).

Fig. 3 Enalos Nanoinformatics Cloud Platform’s user-friendly interface for MWCNT biological and toxicity
assessment. At the left-handed side, the molecular drawing tool is found. At the top right-handed side, the
SMILES input form can be seen followed by the option of importing an SDF file

Fig. 4 Generated output page. The first column of the results table contains the toxicity prediction for each
submitted ligand, and the second column contains the reliability of each prediction based on the model’s
domain of applicability. Similarly, the third and the fourth columns contain the CA-binding activity prediction
and its reliability, respectively. This table can also be downloaded in CSV and HTML format by clicking on the
corresponding button
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By clicking on the Download files button, the table can be
downloaded, and in the downloaded files, the interested users can
observe the neighbors of the training set used for the prediction of
each one of the input compounds.

4 Protein Corona Fingerprints Tool for the Virtual Screening of Gold Nanoparticle
Cellular Association

The composition of the protein corona that is formed in the surface
of nanoparticles (NPs) that interact with biological media can be a
source of valuable information concerning the biological mechan-
isms that are activated when the NPs are exposed to biological
fluids, as well as the future interaction of the NPs with cells and
organisms [39, 40]. As the so-called protein corona fingerprints
contain more relevant information to biological endpoints than
other NP physicochemical descriptors, they have already been
used in the model development for the prediction of the interaction
between cells and NPs [19, 41, 42]. In this section, a kNN model
developed for the virtual screening of gold NP cellular association,
which has also been included in Enalos Cloud Platform (http://
enalos.insilicotox.com/NanoProteinCorona/), will be presented.

The initial model was developed using a validated dataset of
105 chemically diverse gold NPs with different surface coatings.
For each NP, various physicochemical and biological descriptors
were available (in total 805 parameters), as well as a cell association
index (normalized log2 values) measured when the gold NPs were
incubated with A549 human lung epithelial carcinoma cells
[41]. The initial dataset was filtered and randomly divided for
validation purposes into training and test sets. The training set
was used for variable selection and modeling purposes, and the
test set was used in order to measure the robustness of the pro-
duced model. The kNNmodeling strategy with an optimal value of
k ¼ 6 was used in order to correlate the selected variables to the
cellular association. The proposed model was fully validated
(reported external R2 ¼ 0.832), and the domain of applicability
limits was also calculated [19].

4.1 Initiating

the Analysis

For the virtual screening of the query gold NPs, users must provide
the three physicochemical descriptors measured in serum
(Z-average hydrodynamic diameter, zeta potential (mV), localized
surface plasmon resonance index) and ten protein spectral counts
(UNIPROT IDs: P01024, P02766, P08697, P19823, Q13103,
Q9UK55, P02788, P02775, P14625, Q96KN2) as determined
from the adsorbed corona from the human serum, and predictions
of their cellular association will be produced in just a few clicks.
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Two different options are available in order to submit a gold
NP for prediction that are briefly described below:

Online Form: Users can fill the provided form in the top of the
interface (Fig. 5), by typing the corresponding numerical values for
the necessary descriptors and protein spectral counts. The form can be
used for up to 20 entries.

CSV File: In case that a large dataset of gold NPs (more than 20) is
available for virtual screening, users are encouraged to provide the
necessary information by uploading a CSV file containing this infor-
mation.

By clicking on the Submit button, which corresponds each time
to the used field for data input, predictions are performed and are
displayed in a new page.

4.2 Produced Results For each one of the submitted gold NPs, the results include the
predicted log2 of the cellular association (in mL/μg (Mg)) and an
indication of whether this prediction could be considered reliable
based on the domain of applicability of the model (Fig. 6).

Fig. 5 Enalos Cloud Platform protein corona model interface. At the top of the page the online form where the
descriptor values can be filled in is presented, followed by the option of importing a CSV file
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5 Conclusions

Current needs in both drug and material design render the devel-
opment of robust and reliable in silico models inevitable. Models
and tools developed can greatly underpin the efforts for assessing
the risk of chemical compounds and ENMs, reducing the time and
resources spent in experimental activities. However, while several
predictive models have been built for assessing the biological activ-
ity and toxic side effects of small molecules and ENMs, these
remain unexploited by the wider community as the developed
predictive models have not been properly disseminated. All models
developed should be integrated within a simple and user-friendly
environment to reach all interested users and facilitate decision-
making.

Enalos Cloud Platform addresses exactly this need for a user-
friendly interface that can produce in few steps toxicity predictions
and property calculations for chemical structures or ENMs. All web
services presented (MouseTox, corona model, andMWCNTs’ safe-
by-design tool) are some of the tools and models offered as web
services through Enalos Cloud Platform. Predictions are performed
shortly after data input and are accompanied always by an indica-
tion of their reliability based on the results of the fully validated
models running in the background. The produced results can be
downloaded for further analysis and exploration contributing in
this way, among others, in the understanding of activity mechan-
isms and read-across similarities.

Fig. 6 Generated output page. The first column contains the IDs of the gold NPs, the second column contains
the predicted normalized log2 cell association value, and the third column contains the reliability of each
prediction based on the model’s domain of applicability. This table can also be downloaded in CSV format
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Chapter 32

alvaDesc: A Tool to Calculate and Analyze Molecular
Descriptors and Fingerprints

Andrea Mauri

Abstract

In this chapter we will present alvaDesc, a software to calculate and analyze molecular descriptors and
fingerprints.
Molecular descriptors and fingerprints play an essential role in quantitative structure-activity relationships

(QSAR) as they are the mathematical representation of chemicals and they serve as the input for the data
analysis methods used to build QSAR models.
The increasing number of newly proposed molecular descriptors and fingerprints and generally the

attention paid by the scientific community to the development of novel methodologies to represent
chemical structures are evidences of the relevance of these representations in the prediction of chemical
properties.
Despite the complexity of dealing with a high number of variables, different types of molecular descrip-

tors and fingerprints can highlight specific traits of molecular structures. These aspects, together with the
increased availability of chemical data and methods for data analysis, are some of the challenges that
researchers face in the development of QSAR models.

Key words Molecular descriptors, Molecular fingerprints, MACCS keys, Data analysis, Principal
component analysis, Correlation analysis, Variable reduction, Software

1 Introduction

In silico methodologies, including quantitative structure-activity
relationships (QSARs), have become essential in the analysis of
chemicals. Every day new chemicals are synthesized, isolated, mar-
keted, and even just imagined and drawn. New chemicals are con-
stantly added to the CAS REGISTRY database (www.cas.org), and
the number of chemical structures and chemical properties stored
in online databases (like ChemSpider (www.chemspider.com),
PubChem [1, 2], ChEMBL [3, 4], and ZINC database [5])
increases constantly.

This huge number of chemicals made the evaluation of experi-
mental properties (physicochemical and ecotoxicological) an unfea-
sible task. Fortunately, the research on in silico molecule
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representation, as well as the improvement in the methodology for
data analysis and model building, provides researchers with the
tools needed to implement QSAR models that can be used as an
alternative to expensive experimental procedures.

Another incentive for the use of QSAR models is the introduc-
tion of regulations on the registration, evaluation, authorization,
and restriction of chemicals. As an example, REACH in Europe [6]
promotes the use of QSAR methodologies to predict unavailable
experimental data.

Indeed, QSAR has been fruitfully applied to predict diverse
chemical properties. QSAR models have been proposed for the
determination of ecotoxicological properties of Daphnia magna
[7–9], fish, and algae [10–12], as well as for chemical prioritization
[13]. In a recent paper, QSAR has been applied to model toxicity
data of endocrine disruptor chemicals (EDCs) on 14 different
species [14].

The large amount of available data is essential, but once the
data has been collected and curated, it is necessary to transform the
structural information included in the chemical files to number
values that can be used as the input for model building [15].

Those numbers, which are the results of mathematical manipu-
lation of chemical structures, are the molecular descriptors and
fingerprints. Even if a molecular fingerprint is not a simple value,
in any case, it is a mathematical representation of a chemical struc-
ture [16, 17].

Many libraries, toolkits, and software are available for the cal-
culation of molecular descriptors, among them Mordred [18],
Padel-Descriptor [19], CDK [20, 21], RDKit [22], and Dragon
[23]. Even if all these tools provide different functionalities and a
variable number of molecular descriptors and fingerprints, all of
them have the final goal of providing as many numerical represen-
tations of chemicals as possible.

The alvaDesc software [24] is one of the most recent tools for
the calculation of molecular descriptors and fingerprints; it cur-
rently includes 5471 descriptors, 5305 of them are divided in
30 logical blocks (Table 1).

Together with the calculation of molecular descriptors, alva-
Desc carries out the calculation of three different molecular
fingerprints:

l MACCS166 fingerprint [25]

l Extended-connectivity fingerprints [26]

l Path fingerprints

Extended-connectivity fingerprints and path fingerprints can
be tuned, not only with respect to the fingerprint size, fragment
type, and dimensions, but even by defining atom and bond
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parameters considered during fragment identifications (e.g., atom-
type, aromaticity, the number of attached hydrogens, connectivity).

One of the most relevant features of alvaDesc is its capability to
handle both full-connected and non-full-connected molecular
structures, e.g., salts, mixtures, ionic liquids, and metal complexes.
All the molecular descriptor calculation algorithms have been stud-
ied in order to provide different theoretical approaches for the
calculation of molecular descriptors on such structures.

In addition to the calculation of descriptors and fingerprints,
alvaDesc provides different tools to carry out a first exploration of
chemical datasets:

l Molecule structure verification using PubChem services [2]

l Molecule structure visualization, charting, and filtering

l Principal component analysis (PCA) and correlation analysis

Due to its capability of calculating large numbers of molecular
descriptors, alvaDesc provides variable reduction tools, including
the fast V-WSP (variable reduction method adapted from space-
filling designs) [27].

The software is available for all the three major operative sys-
tems (macOS, Linux, and Windows), and it is a multithreaded
application that is provided both with a graphical and a command

Table 1
alvaDesc descriptor logical blocks with the number of descriptors included in each block

Constitutional indices 48 RDF descriptors 210

Ring descriptors 32 3D-MoRSE descriptors 224

Topological indices 79 WHIM descriptors 114

Walk and path counts 46 GETAWAY descriptors 273

Connectivity indices 37 Randić molecular profiles 41

Information indices 50 Functional group counts 154

2D matrix-based descriptors 607 Atom-centered fragments 115

2D autocorrelations 213 Atom-type E-state indices 172

Burden eigenvalues 96 Pharmacophore descriptors 165

P_VSA-like descriptors 55 2D atom pairs 1596

ETA indices 38 3D atom pairs 36

Edge adjacency indices 324 Charge descriptors 15

Geometrical descriptors 38 Molecular properties 20

3D matrix-based descriptors 99 Drug-like indices 28

3D autocorrelations 80 CATS 3D descriptors 300
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line interface. Its command line interface can be easily integrated
with KNIME [28] using the alvaDesc KNIME Plugin.

Additionally, an online version of alvaDesc is available as a
service in the Online Chemical Modeling Environment
(OCHEM) [29].

2 Molecular Structure Curation and Standardization

A molecule, or even a single fragment, can be represented in
different ways; e.g., aromatic rings can be represented either in
aromatic (i.e., conjugated bonds) or in Kekulé form (i.e., bond
configuration double-single-double). Since the representation can
be different, molecular descriptor values can be affected even if the
chemical information is identical. Additionally, chemical structures,
both retrieved from chemistry publications or from public and
commercial databases, are not immune from errors [30, 31].

Molecular descriptors and fingerprints calculation is based on
the assumption that the molecular structure on which the mathe-
matical algorithms are applied to is correct, making molecular
structure curation and standardization a fundamental step [15].

Since not all tools automatically standardize the molecules, it is
the researcher’s responsibility to verify it and eventually to carry out
this step prior to the calculation of molecular descriptors and
fingerprints.

In order to represent a molecule in the same way, indepen-
dently from the original representation, alvaDesc performs its own
standardization procedure which includes the nitro-group standar-
dization, the addition of the implicit hydrogens, and the aromatic-
ity detection. This standardization is performed to get the same
internal molecular representation, and therefore the same descrip-
tor values independently from the original representation, i.e., the
same molecule represented in a Kekulé or aromatic form will be
internally represented as the same molecule.

3 Molecular Descriptors

Molecular descriptors are the results of the application of mathe-
matical functions on a well-defined representation of the chemical
graph [17]. During the last decades, thousands of molecular
descriptors have been proposed in literature [16] highlighting the
interest of the scientific community in this field.

The increasing number of available molecular descriptors
required the definition of few basic rules that molecular descriptors
should comply with [32, 33]:
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1. Be invariant to atom labelling and numbering

2. Be invariant to the molecule roto-translation

3. Be defined by an unambiguous algorithm

4. Have a well-defined applicability on molecular structures

These rules must be accomplished in order to define a molecu-
lar descriptor, but they do not guarantee that a molecular descriptor
is useful to describe a defined property.

Molecular descriptors can be grouped in multiple ways; one of
the most common is considering the information collected from
the chemical structures from 0- to 3-dimensional descriptors.

The alvaDesc software calculates a variety of 0-dimensional,
1-dimensional, 2-dimensional, and 3-dimensional descriptors:

l 0-dimensional are those molecular descriptors obtained by a
molecule representation that does not consider any information
about the atom connections, e.g., molecular weight and atom-
type counts.

l 1-dimensional descriptors consider a part and not the whole
topology of the chemical structure, e.g., functional group
counts, atom-centered fragments, and structural keys.

l 2-dimensional descriptors derive from the 2D representation of
a chemical structure as a graph; they include the information
about atomic composition and connectivity of atoms in the
molecule, e.g., autocorrelation descriptors and topological
indices.

l 3-dimensional descriptors are calculated using the 3D represen-
tation of the molecular graph, considering not only the connec-
tion between atoms but even their position in the 3-dimensional
space, e.g., WHIMs (Weighted Holistic Invariant Molecular
descriptors) [34], GETAWAYs (Geometry, Topology, and
Atom-Weights AssemblY descriptors) [35].

Most of the 0-dimensional descriptors, such as sum and average
of atomic properties, atom counters, and the cyclomatic number
(r), also known as circuit rank, are grouped in alvaDesc in the
“Constitutional indices” block.

The generic formula for the sum of atomic properties is the
following:

Sw ¼
XVj j

i¼0

wi

where |V| is the number of atoms included in the molecular struc-
ture and wi the considered atomic property. Molecular weight is a
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specific case of molecular descriptors as sum of atomic properties,
where wi is the atomic mass.

The cyclomatic number is defined as:

r ¼ Ej j � Vj j þD

where |E| is the number of bonds, |V| the number of atoms, and
D is the number of disconnected fragments in the molecular struc-
ture. The cyclomatic number r is the minimum number of edges to
be removed from amolecular graph in order to remove all its cycles,
making it into a forest, i.e., an acyclic graph. The cyclomatic num-
ber provides a basic description of ring systems since its value is the
cardinality of the Smallest Set of Smallest Rings (SSSR).

Within the 2-dimensional group, there is a plethora of molecu-
lar descriptors, but basically, all of them are calculated considering a
molecule as a topological graph. The molecular graph can be repre-
sented in different ways; typically a matrix is used. The adjacency
matrix is the simplest matrix representation of a molecular graph,
but also other matrices can be used to represent a graph in order to
extract different information. These matrices are the starting point
to derive molecular descriptors.

One of the most common topological descriptors is the Wiener
index (W). The Wiener index was originally correlated with the
boiling point of alkane molecules; it is a topological index defined as
the half-sum of the lengths of the shortest paths between all pairs of
vertices in the H-depleted chemical graph [36]:

W ¼ 1
2
∙
XjV j

i¼1

XjV j

j¼1

dij

where |V| is the number of atoms and dij is the topological distance
between i-th and j-th atoms.

Analogously Harary [37] and Randić connectivity indices
[38, 39] can be calculated as a generalization of the Wiener index
formula, where the Harary index is calculated on the reciprocal
distance matrix and the Randić connectivity index can be calculated
from the χ matrix.

Topological indices, like the Wiener, Harary, and Randić con-
nectivity index, can be derived applying mathematical operators to
graph-theoretical matrices. Another approach for the definition of a
topological index is the application of mathematical functions to
local vertex invariants (LOVIs), where local vertex invariants are
those numerical quantities of graph vertices that characterize spe-
cific properties of the molecule atoms [17].

Additional examples of 2-dimensional descriptors are the auto-
correlation descriptors, like Moreau-Broto [40, 41] and Moran
[42] autocorrelation descriptors. Autocorrelation descriptors can
be defined using the following general formula:
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D1 L;α,λ,kð Þ ¼ α ∙
XA

i¼1

XA

j¼1

Li ∙L j

� �λ
ij
∙ δ dij ;k
� �

where L is a generic local vertex invariant; α and λ are a scaling and a
power parameter, respectively; and δ(dij;k) is a Kronecker delta
function equal to one for pairs of substructure centers at topologi-
cal distance dij ¼ k and zero otherwise; A is the number of sub-
structure centers that typically are the molecule atoms.

The Moreau-Broto autocorrelation descriptors (ATS) can be
derived from the general equation D1 simply setting α ¼ 1/2 and
λ ¼ 1:

ATSk ¼ 1
2
∙
XVj j

i¼1

XVj j

j¼1

wi ∙w j ∙ δ dij ;k
� �

Analogously, Moran autocorrelation descriptors (MATS) can
be calculated using the following formula, derived from D1
equation:

MATSk ¼
1
Δk

∙
PVj j

i¼1

PVj j

j¼1

wi � wð Þ ∙ w j � w
� �

∙ δ dij ;k
� �

1
Vj j

PVj j

i¼1

wi � wð Þ2

where |V| is the set of vertices, wi and wj are any atomic property, w
is the property mean considering the whole molecule, and Δk is the
sum of the Kronecker deltas, that is, the number of atom pairs at
distance equal to k. The δ(dij;k) is the Kronecker delta as previously
defined.

Atom-type autocorrelation (ATAC) descriptors are another
case of autocorrelation descriptors. Conversely to Moreau-Broto
and Moran descriptors, atom-type autocorrelation descriptors are
discrete descriptors counting the occurrences of atom pairs at a
predefined topological distance k.

Even the formula for the calculation of atom-type autocorrela-
tion descriptors can be derived from the general equationD1 as the
following:

ATACk u, vð Þ ¼ 1
2
∙
XVj j

i¼1

XVj j

j¼1

δ i;uð Þ ∙ δ j ;vð Þ ∙ δ dij ;k
� �

where u and v represent two different atom-types; δ(i;u), δ( j;v),
and δ(dij;k) are three Kronecker delta functions equal to one if atom
i is of type u and atom j is of type v; and the topological distance dij
is equal to k and zero otherwise.

Atom-type autocorrelation descriptors can highlight different
information simply by changing the atom-type
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definition. An atom-type can be defined with the atom symbol
(e.g., C, N, O...) or with one or more atomic properties or consid-
ering an atom-type as an atom-centered fragment (e.g., -COOH,
-NH3, -NO2...).

Well-known atom-type autocorrelation descriptors are the
CATS 2D (Chemically Advanced Template Search) descriptors
[43, 44]. Atom-type definition for the calculation of CATS 2D
descriptors is based on the concept of “potential pharmacophore
points” (PPP), where a PPP is a generalized atom-type defined
considering the atom as belonging to one of the following
categories:

1. Hydrogen-bond donor (D)

2. Hydrogen-bond acceptor (A)

3. Positive (P)

4. Negative (N)

5. Lipophilic (L)

Any atom of the molecule can be assigned to none, one, or two
atom-types, resulting in 15 possible atom pairs (DD, DA, DP, DN,
DL, AA, AP, AN, AL, PP, PN, PL, NN, NL, LL). CATS 2D are
calculated on varying the topological distance from 0 to 9 obtaining
a vector of 150 frequencies.

CATS 2D descriptors, as well as atom pair descriptors, are
alignment-free and can be used for fast calculation of similarity
even on large databases.

The last considered groups of molecular descriptors are those
derived by using the 3-dimensional information of the molecular
graph.

An example of a 3-dimensional descriptor is the 3D Wiener
index (3DWH) which is a topographic index calculated by analogy
with the Wiener index from the geometrical distance matrix as:

3DWH ¼ 1
2
∙
XVj j

i¼1

XVj j

j¼1

rij

where rij is the Euclidean distance between atoms i and j.
Two more examples of 3-dimensional descriptors are the well-

known GETAWAYs (Geometry, Topology, and Atom-Weights
AssemblY descriptors) [35] andWHIMs (WeightedHolistic Invari-
ant Molecular descriptors) [34].

GETAWAY descriptors encode information about the role of
each atom determining the whole molecule shape and evaluate the
interactions among atoms with respect to their geometrical posi-
tion. One of the matrices used for the calculation of GETAWAY
descriptors is the molecular influence matrixH, which is symmetric
matrix, defined as:
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H ¼ M� MT �M
� ��1 �MT

where M is the molecular matrix of the centered Cartesian coordi-
nates (x, y, z) for a defined conformation. The fact that the Carte-
sian coordinates are centered grants that GETWAWAY descriptors
are independent from any alignment.

The GETAWAY descriptors, instead of providing a whole
description of the molecular structure, have been developed in
order to exploit local information based on the different contribu-
tions of atoms.

Conversely to GETAWAY descriptors, WHIM descriptors have
been proposed in order to collect holistic information about the
spatial distribution of molecule atoms, such as information on
3-dimensional molecular size, shape, symmetry, and atomic prop-
erty distribution. WHIM descriptors are based on the calculation of
eigenvalues and eigenvectors of a weighted covariance matrix of the
centered Cartesian atomic coordinates. The WHIM descriptors do
not consider the connections among atoms but only their position
in the 3-dimensional space.

Moreover alvaDesc provides the calculation of several model-
based physicochemical properties such as molar refractivity, topo-
logical polar surface area (TPSA) [45, 46], molecular volume esti-
mations, two LogP models (Moriguchi [47] and Ghose-Chippen
[48] octanol-water partition coefficient), and a significant list of
drug-like and lead-like alerts including the well-known Lipinski
alert index [49].

3.1 Molecular

Descriptor Analysis

and Interpretation

Molecular descriptors are not always easy to interpret. The majority
of the descriptors present in literature have not been proposed in
order to identify a specific chemical or physicochemical feature,
such as the molecular weight or the presence of a well-defined
chemical structure, but they are typically a mathematical manipula-
tion of different representations of the chemical graph
[16, 17]. Therefore, the resulting descriptors include chemical
structure information, such as atom connections, bond orders,
branching, and the aromaticity, but cannot necessarily be directly
correlated to a chemical or toxicological aspect.

Due to the described complexity, a helpful approach in inter-
preting molecular descriptors is to study the molecular descriptor
behavior within the considered chemical dataset.

The most used technique for the analysis of molecular descrip-
tor values is the principal component analysis (PCA) [50] that can
help in the identification of relationships among descriptors and to
identify outliers or clusters of similar molecules. Together with
principal component analysis, other tools can be used to evaluate
relationships among chemicals within a dataset, including the well-
known multidimensional scaling [51], and recently a new tech-
nique called t-SNE [52] has been proposed. While principal
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component analysis focuses on keeping the low-dimensional repre-
sentation of dissimilar data points far apart, t-SNE tries to keep the
low-dimensional representation of very similar data points close
together (Fig. 1).

In order to evaluate the molecular descriptors behavior within a
defined dataset, in a paper studying the laboratory-based fish bio-
magnification factor (BMF) of organic chemicals, Grisoni et al.
[11] proposed an ordinary least squares (OLS) model.

The proposed OLS model uses seven descriptors: MlogP2,
X0Av, X1Per, SaaaC, VE1_B(m), B02[N-O], and B03[N-Cl].

MlogP2 is the squared logarithm of the octanol-water partition-
ing coefficient (logKOW), as predicted by the Moriguchi model
[47]; B02[N-O] and B03[N-Cl] are atom pair descriptors [53]
where B02[N-O] is equal to 1 if there is at least 1 pair of N and
O atoms separated by 2 bonds and 0 otherwise; and similarly B03
[N-Cl] is equal to 1 if there is at least 1 pair N-Cl separated by
3 bonds and 0 otherwise.

SaaaC is a little more complex since it is an atom-type electro-
topological state (E-state) index [54, 55] calculated as the sum of
the E-states for all the carbon atoms in the molecule having three
aromatic bonds. It is related to the molecular reactivity of such
atom-types; SaaaC increases with the number of carbon atoms
with three aromatic bonds as well as it increases with their reactivity.

All these three descriptors are quite easily interpretable but
what about X0Av, X1Per, and VE1_B(m)?

Fig. 1 Principal component analysis performed on BMF dataset [11] using MlogP2, X0Av, X1Per, SaaaC,
VE1_B(m), B02[N-O], and B03[N-Cl] descriptors. Filtered molecules (red on score plot) have the highest B02
[N-O] and B03[N-Cl] values
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X0Av [56] is the average valence connectivity index of order
0, X1Per [57] is a perturbation connectivity index, and VE1_B(m)
is a 2D matrix-based descriptor [17] obtained from the Burden
[58] matrix weighted by mass (B(m)).

These three descriptors cannot easily be related to a chemical or
toxicological feature, but while analyzing the dataset, the authors
made some considerations.

They analyzed the behavior of X0Av finding a relation among
descriptor values, number of atoms with many valence electrons,
and the number of aromatic and unsaturated bonds.

Similarly, X1Per variability has been associated with the molec-
ular shape and with the presence of heteroatoms and multiple
bonds.

Finally, VE1_B(m) variability has been associated with the
molecular size and shape and with the presence of heavy heteroa-
toms and multiple bonds.

3.2 Variable

Reduction

Thousands of molecular descriptors have been proposed in litera-
ture over the last few decades [16], and software implementing the
calculation of molecular descriptors usually includes a number of
molecular descriptors varying from hundreds to thousands of
values for a single molecule.

Due to the huge amount of descriptors, the reduction of their
number is necessary before proceeding with further steps to build a
QSAR model (Figs. 2 and 3).

The alvaDesc software provides different unsupervised variable
reduction methods that can be applied to decrease the number of
molecular descriptors. Descriptors with constant or missing values
can be removed in order to reduce the number of considered
variables. Additionally, variable reduction can be performed defin-
ing a threshold of the correlation among the considered descrip-
tors. Methods based on correlation, besides reducing the number
of descriptors, can be used to decrease the redundancy and multi-
collinearity of the data. One method for unsupervised variable
reduction, available in alvaDesc, is the so-called V-WSP [27] algo-
rithm. This algorithm is based on the analysis of the correlation
matrix and is a modification of the WSP algorithm for design of
experiments (DOE) [59].

4 Structural Keys and Molecular Fingerprints

Molecular fingerprints can be of two types, structural keys and
hashed molecular fingerprints.

Molecular fingerprints describe a molecule considering differ-
ent local aspects of its structure; specifically, structural keys identify
the presence or absence of a defined list of structural features, while
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hashed fingerprints describe the molecule identifying all possible
fragments.

Molecular fingerprints can be used to identify common sub-
structures and were originally proposed for fast database searching,
but this characteristic has been exploited even for building QSAR
models, specifically those based on local similarity as in the kNN
approach [8, 60].

4.1 Structural Keys Structural keys are defined as a set of structural features (e.g., atom-
centered fragments, functional groups, pharmacophoric atom-
types) that have been prepared in order to discriminate among
molecules and eventually to highlight chemical properties of a
molecule.

The alvaDesc software includes different structural keys, most
of them are included in the molecular descriptor blocks, like

Fig. 2 alvaDesc correlation map performed on 2194 descriptors

Fig. 3 alvaDesc correlation map performed on 574 descriptors remaining after the application of V-WSP
algorithm for variable reduction. Correlation threshold has been set to 0.9
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functional group counts, atom-centered fragments, and the CATS
2D descriptors belonging to the pharmacophore descriptors block.

Additionally, alvaDesc provides the calculation of the MACCS
166 fingerprint [25]. The MACCS 166 fingerprint is a fixed-size
boolean vector reflecting the presence/absence of a set of 166 well-
defined molecular features.

4.2 Hashed Chemical

Fingerprints

Hashed chemical fingerprints do not have a predefined list of
structural features to be found but explore the molecular structure
storing all possible identified substructures following a set of rules.
Since the number of substructures identifiable in a molecule set is
not predefined, a hashing function is used to reduce a variable-size
boolean vector to a fixed-size one.

Hashing function is deterministic; this means that, under a
predefined set of rules, a specific fragment will always be associated
to a defined set of bits in the fingerprint.

Hashing function has the advantage to transform an indefinite
set of structural features to a fixed-length vector but introduce the
so-called bit collision; this means that two different fragments may
share one or more bits among their bit sets.

A key feature of hashed fingerprint is the so-called darkness.
Darkness of a fingerprint represents the percentage of bits set to
one. The average darkness of a dataset is a relevant property since
high values of darkness will lead to higher chances of false-positive
matches, while low values of darkness is an indicator that the
fingerprint size could be lowered.

Hashed fingerprints do not allow reversible-decoding, which
means that it is not possible to recreate the original substructure
starting from a fingerprint.

Nevertheless, fingerprints encode an almost exhaustive set of
patterns with respect to structural keys, resulting in a more detailed
description of a molecular structure in almost all situations.

Two hashed fingerprint types are included in alvaDesc:

l Extended-connectivity fingerprints (ECFP) [26]

l Path fingerprints (PFP)

Both extended-connectivity fingerprints (ECFP) and path fin-
gerprints (PFP) calculation can be customized using a set of
parameters:

l Fingerprint size

l Number of bits per pattern

l Minimum fragment length

l Maximum fragment length

l Fragment occurrences
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Fingerprint size is the length of the boolean vector which
affects the darkness. Increasing the size lowers the darkness and
reduces the chance of false-positive matches, which leads to the
need for more space to store the fingerprints.

The number of bits per pattern is the number of bits used to
encode a substructure. (e.g., using 2 bits per pattern each substruc-
ture will be hashed to 2 bits in the fingerprints). Increasing the
number of bits per pattern reduces the chance of different fragment
collision of the same bits and increases the darkness.

Minimum fragment length is the smallest size of the detected
substructures.

Maximum fragment length is the biggest size of the detected
substructures, and it affects the darkness. Increasing the maximum
fragment length leads to more substructures identified and
encoded in the fingerprint.

If fragment occurrences parameter is taken into account, the
fingerprint generation process stores multiple pattern occurrences;
otherwise it encodes only the presence/absence of molecular
substructures.

In addition to the general fingerprint parameters, atom-type
identification can be customized considering the following atom
parameters:

l Atom-type

l Aromaticity

l Attached hydrogens

l Connectivity (total)

l Total bond order

l Connectivity (no H)

l Charge

l Ring memberships in SSSR

l Smallest ring size in SSSR

l Bond order

l Atom-type

The selected atom parameters affect the fragments identified
during hashed fingerprint calculation; e.g., if atom-type parameter
is selected, the substructure is identified encoding atoms consider-
ing their atomic number. This means that if two substructures are
composed of atoms with different atomic numbers, then the two
substructures will be bound to different bits of the fingerprint. If
atom-type parameter is not selected, atoms are not differentiated
based on their atomic number, and all atoms are considered as
belonging to the same atom-type.

The identified fragments can be exported from alvaDesc as
SMARTS strings (SMARTS is a line notation developed by
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Daylight Chemical Information Systems for representing molecular
substructures).

5 Dealing with Disconnected Structures

QSAR has been widely used for the evaluation of physicochemical
and ecotoxicological properties of full-connected organic mole-
cules. Recently QSAR has been applied to evaluate molecular prop-
erties of non-full-connected molecular structures, such as salts,
mixtures, ionic liquids, and metal complexes. QSAR has been
used for the prediction of nonadditive physicochemical properties
like density, bubble temperature, and azeotropic behavior [61] and
for the evaluation of toxicological properties of ionic liquids [62–
64].

Available data on non-full-connected structures is a valuable
help for the development of QSARmodels, and it is associated with
the development of methods to correctly represent those types of
molecules with molecular descriptors and fingerprints [65, 66].

With respect to non-full-connected structures, molecular
descriptors can be grouped in two [17].

The first group includes all the descriptors with a mathematical
definition which can be applied to non-full-connected structures
preserving their chemical meaning. Molecular weight and cyclo-
matic number are examples of molecular descriptors that have
algorithms and meaning that are preserved on disconnected struc-
tures. In the same way functional groups, atom-centered frag-
ments, fingerprints, and structural keys are additive descriptors,
and their interpretation is identical for full-connected and non-
full-connected structures.

The second group collects those descriptors that have a defini-
tion and meaning that cannot be directly extended to non-full-
connected structures. In this case, a deeper analysis of molecular
descriptor algorithm should be carried out; alternatively a linear
combination of the calculated values can be applied to every full-
connected constituent of the compound [65].

Many software tools cannot calculate molecular descriptors on
non-full-connected structures, while alvaDesc provides six different
theoretical approaches for the calculation of molecular descriptors
on such structures:

l Standard

l Maximum descriptor value

l Minimum descriptor value

l Average descriptor value

l Sum of descriptor values

l Retain the biggest fragment
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Standard approach has been defined considering the mathe-
matical definition of all the implemented algorithms for descriptor
calculation. Every algorithm has been checked and eventually mod-
ified in order to be applicable not only to full-connected structures
but even to structures composed of more than one disjoint
substructures.

This approach has been implemented in order to provide as
more information as possible when considering a disconnected
structure since it considers all the disjoint substructures together
as a unique entity. Conversely maximum descriptor value, mini-
mum descriptor value, and retain the biggest fragment approaches
consider only one of the disjoint substructures included in the
whole molecule. Average descriptor value and sum of descriptor
values approaches consider every disjoint substructure as an isolated
molecule, then the results obtained on the isolated substructures
are merged using the average or sum approach.

Maximum descriptor value approach considers every disjoint
substructure as a single molecule. Molecular descriptors are calcu-
lated on all disjoint substructures separately; the maximum value
obtained on all disjoint substructures is retained.

MD ¼ max xð Þ
where x is the array including all the disjoint structures in the
original molecule.

Minimum descriptor value approach considers every disjoint
substructure as a single molecule. Molecular descriptors are calcu-
lated on all disjoint substructures separately; the minimum value
obtained on all disjoint substructures is retained.

MD ¼ min xð Þ
where x is the array including all the disjoint structures in the
original molecule.

Average descriptor value approach considers every disjoint
substructure as a single molecule. Molecular descriptors are calcu-
lated on all disjoint substructures separately; the average of the
obtained values is retained.

MD ¼
P

ixi
xj j

where |x| is the cardinality of the vector x (i.e., the number of
disjoint substructures in the original molecule) and xi is the descrip-
tor value of the i-th substructure.

Sum of descriptor values approach considers every disjoint
substructure as a single molecule. Molecular descriptors are calcu-
lated on all disjoint substructures separately; the sum of the
obtained values is retained.
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MD ¼
X

i
xi

where xi is the descriptor value of the i-th substructure.
Finally, using retain the biggest fragment approach means that

the molecular descriptors are calculated only for the biggest fully
connected structure included in the original molecule. The biggest
fragment is defined as the biggest fully connected structure with the
highest number of non-hydrogen atoms. In case of equivalency, the
structure with the highest molecular weight is retained.

6 Conclusions

The evaluation of ecotoxicological properties using in silico tech-
niques has become increasingly important over the last few decades.
The opportunity to evaluate the toxicological properties of chemi-
cals avoiding animal testing, together with the possibility to signifi-
cantly reduce the costs needed to evaluate even a single
physicochemical property, has made QSAR an indispensable
technique.

QSAR models can be defined using different representations of
molecules; the most commonly used ones have been described in
this chapter. Molecular descriptors, structural keys, and hashed
fingerprints represent different approaches to codify chemical
structures in a mathematical way.

While structural keys can easily be interpreted due to the fact
that they identify a well-defined list of chemical fragments, their
application can be limited if considered in isolation, since they
provide a limited representation of a chemical structure. Con-
versely, hashed molecular fingerprints have been proposed to
describe the whole chemical structure and can be successfully
used for QSAR analysis.

Furthermore, as discussed in this chapter, molecular descriptors
variability is as wide as the number of possible combinations of
structure representations, atom/bond weighting schemes, and
mathematical functions. Nevertheless, despite their complexity,
molecular descriptors are playing a fundamental role in chemical
representation and in QSAR, not only for the prediction of ecotox-
icological properties but generally as a tool to analyze
chemical data.
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