

Praise for Foundations of Software and
System Performance Engineering

“If this book had only been available to the contractors building
healthcare.gov, and they read and followed the lifecycle performance
processes, there would not have been the enormous problems apparent
in that health care application. In my 40-plus years of experience in
building leading-edge software and hardware products, poor perfor-
mance is the single most frequent cause of the failure or cancellation of
a new, software-intensive project. Performance requirements are often
neglected or poorly formulated during the planning and requirements
phases of a project. Consequently, the software architecture and the
resulting delivered system are unable to meet performance needs. This
book provides the reader with the techniques and skills necessary to
implement performance engineering at the beginning of a project and
manage those requirements throughout the lifecycle of the product.
I cannot recommend this book highly enough.”

— Don Shafer, CSDP, Technical Fellow, Athens Group, LLC

“Well written and packed with useful examples, Foundations of Software
and System Performance Engineering provides a thorough presentation of
this crucial topic. Drawing upon decades of professional experience,
Dr. Bondi shows how the principles of performance engineering can be
applied in many different fields and disciplines.”

— Matthew Scarpino, author of Programming the Cell Processor
and OpenCL in Action

This page intentionally left blank

Foundations of
Software and System
Performance
Engineering

This page intentionally left blank

Foundations of
Software and System
Performance
Engineering

Process, Performance Modeling,
Requirements, Testing,
Scalability, and Practice

André B. Bondi

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the pub-
lisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Bondi, André B., author.
   Foundations of software and system performance engineering : process, performance
modeling, requirements, testing, scalability, and practice / André B. Bondi.
        pages  cm
   Includes bibliographical references and index.
   ISBN 978-0-321-83382-2 (pbk. : alk. paper)
1. Computer systems—Evaluation. 2. Computer systems—Reliability. 3. Computer
software—Validation. 4. Computer architecture—Evaluation. 5. System engineering.
I. Title.
   QA76.9.E94B66 2015
   005.1’4—dc23
	 2014020070

Copyright © 2015 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohib-
ited reproduction, storage in a retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, request forms and the appropriate contacts within the Pearson
Education Global Rights & Permissions Department, please visit www.pearsoned.com/
permissions/.

ISBN-13: 978-0-321-83382-2
ISBN-10: 0-321-83382-1

2  16

Executive Editor
Bernard Goodwin

Senior Development Editor
Chris Zahn

Managing Editor
John Fuller

Senior Project Editor
Kesel Wilson

Copy Editor
Barbara Wood

Indexer
Jack Lewis

Proofreader
Andrea Fox

Editorial Assistant
Michelle Housley

Cover Designer
Alan Clements

Compositor
LaurelTech

In memory of my father, Henry S. Bondi,
who liked eclectic solutions to problems,

and of my violin teacher, Fritz Rikko,
who taught me how to analyze and debug.

À tous qui ont attendu.

This page intentionally left blank

ix

Contents

Preface	 xxiii

Acknowledgments	 xxix

About the Author	 xxxi

Chapter 1 � Why Performance Engineering?
Why Performance Engineers?� 1

1.1   Overview� 1
1.2  � The Role of Performance Requirements

in Performance Engineering� 4
1.3  � Examples of Issues Addressed by

Performance Engineering Methods� 5
1.4  � Business and Process Aspects of

Performance Engineering� 6
1.5  � Disciplines and Techniques Used in Performance

Engineering� 8
1.6   Performance Modeling, Measurement, and Testing� 10
1.7   Roles and Activities of a Performance Engineer� 11
1.8  � Interactions and Dependencies between

Performance Engineering and Other Activities� 13
1.9   A Road Map through the Book� 15
1.10  Summary� 17

Chapter 2  Performance Metrics� 19

2.1   General� 19
2.2   Examples of Performance Metrics� 23
2.3   Useful Properties of Performance Metrics� 24
2.4   Performance Metrics in Different Domains� 26

x Contents

  2.4.1  Conveyor in a Warehouse	 27
  2.4.2  Fire Alarm Control Panel	 28
  2.4.3  Train Signaling and Departure Boards	 29
  2.4.4  Telephony	 30
  2.4.5 � An Information Processing Example:

Order Entry and Customer Relationship
Management� 30

2.5   Examples of Explicit and Implicit Metrics	 32
2.6   Time Scale Granularity of Metrics	 32
2.7  � Performance Metrics for Systems with Transient,

Bounded Loads	 33
2.8   Summary	 35
2.9   Exercises	 35

Chapter 3  Basic Performance Analysis	 37

3.1   How Performance Models Inform Us about Systems	 37
3.2   Queues in Computer Systems and in Daily Life	 38
3.3   Causes of Queueing	 39
3.4   Characterizing the Performance of a Queue	 42
3.5   Basic Performance Laws: Utilization Law, Little’s Law	 45

  3.5.1  Utilization Law	 45
  3.5.2  Little’s Law	 47

3.6   A Single-Server Queue	 49
3.7  � Networks of Queues: Introduction and

Elementary Performance Properties	� 52
  3.7.1 � System Features Described by Simple

Queueing Networks	� 53
  3.7.2 � Quantifying Device Loadings and Flow

through a Computer System� 54
  3.7.3  Upper Bounds on System Throughput	 56
  3.7.4  Lower Bounds on System Response Times	 58

3.8   Open and Closed Queueing Network Models	 58
  3.8.1 � Simple Single-Class Open Queueing

Network Models	� 59

Contents xi

  3.8.2 � Simple Single-Class Closed
Queueing Network Model� 60

  3.8.3 � Performance Measures and Queueing
Network Representation: A Qualitative View� 62

3.9  � Bottleneck Analysis for Single-Class
Closed Queueing Networks� 63
3.9.1 � Asymptotic Bounds on Throughput and

Response Time� 63
3.9.2 � The Impact of Asynchronous Activity

on Performance Bounds� 66
3.10 � Regularity Conditions for Computationally

Tractable Queueing Network Models� 68
3.11 � Mean Value Analysis of Single-Class

Closed Queueing Network Models� 69
3.12  Multiple-Class Queueing Networks� 71
3.13  Finite Pool Sizes, Lost Calls, and Other Lost Work� 75
3.14  Using Models for Performance Prediction� 77
3.15 � Limitations and Applicability of Simple

Queueing Network Models� 78
3.16 � Linkage between Performance Models, Performance

Requirements, and Performance Test Results� 79
3.17 � Applications of Basic Performance Laws to

Capacity Planning and Performance Testing� 80
3.18  Summary� 80
3.19  Exercises� 81

Chapter 4  Workload Identification and Characterization� 85

4.1  � Workload Identification� 85
4.2  � Reference Workloads for a System in Different

Environments� 87
4.3  � Time-Varying Behavior� 89
4.4  � Mapping Application Domains to Computer System

Workloads� 91
4.4.1 � Example: An Online Securities Trading System

for Account Holders� 91

Contentsxii

4.4.2 � Example: An Airport Conveyor System� 92
4.4.3 � Example: A Fire Alarm System� 94

4.5 � Numerical Specification of the Workloads� 95
4.5.1 � Example: An Online Securities Trading

System for Account Holders� 96
4.5.2 � Example: An Airport Conveyor System� 97
4.5.3 � Example: A Fire Alarm System� 98

4.6 � Numerical Illustrations� 99
4.6.1 � Numerical Data for an Online Securities

Trading System� 100
4.6.2 � Numerical Data for an Airport

Conveyor System� 101
4.6.3 � Numerical Data for the Fire Alarm System� 102

4.7 � Summary� 103
4.8 � Exercises� 103

Chapter 5 � From Workloads to Business Aspects
of Performance Requirements	 105

5.1 � Overview� 105
5.2 � Performance Requirements and Product Management� 106

5.2.1 � Sizing for Different Market Segments: Linking
Workloads to Performance Requirements� 107

5.2.2 � Performance Requirements to Meet Market,
Engineering, and Regulatory Needs� 108

5.2.3 � Performance Requirements to Support
Revenue Streams� 110

5.3 � Performance Requirements and the
Software Lifecycle� 111

5.4 � Performance Requirements and the
Mitigation of Business Risk� 112

5.5 � Commercial Considerations and
Performance Requirements� 114
5.5.1 � Performance Requirements, Customer

Expectations, and Contracts� 114
5.5.2 � System Performance and the Relationship

between Buyer and Supplier� 114

Contents xiii

5.5.3  � Confidentiality� 115
5.5.4  � Performance Requirements and the

Outsourcing of Software Development� 116
5.5.5  � Performance Requirements and the

Outsourcing of Computing Services� 116
5.6 � Guidelines for Specifying Performance

Requirements� 116
5.6.1  � Performance Requirements and

Functional Requirements� 117
5.6.2  � Unambiguousness� 117
5.6.3  � Measurability� 118
5.6.4  � Verifiability� 119
5.6.5  � Completeness� 119
5.6.6  � Correctness� 120
5.6.7  � Mathematical Consistency� 120
5.6.8  � Testability� 120
5.6.9  � Traceability� 121
5.6.10 � Granularity and Time Scale� 122

5.7 � Summary� 122
5.8 � Exercises� 123

Chapter 6 � Qualitative and Quantitative
Types of Performance Requirements	 125

6.1 � Qualitative Attributes Related to System
Performance� 126

6.2 � The Concept of Sustainable Load� 127
6.3 � Formulation of Response Time Requirements� 128
6.4 � Formulation of Throughput Requirements� 130
6.5 � Derived and Implicit Performance Requirements� 131

6.5.1  � Derived Performance Requirements� 132
6.5.2  � Implicit Requirements� 132

6.6 � Performance Requirements Related to Transaction
Failure Rates, Lost Calls, and Lost Packets� 134

6.7 � Performance Requirements Concerning Peak
and Transient Loads� 135

Contentsxiv

6.8  � Summary� 136
6.9   Exercises� 137

Chapter 7 � Eliciting, Writing, and Managing
Performance Requirements	 139

7.1  � Elicitation and Gathering of Performance
Requirements� 140

7.2  � Ensuring That Performance Requirements
Are Enforceable� 143

7.3  � Common Patterns and Antipatterns for
Performance Requirements� 144
7.3.1 � Response Time Pattern and Antipattern� 144
7.3.2 � “… All the Time/… of the Time” Antipattern� 145
7.3.3 � Resource Utilization Antipattern� 146
7.3.4 � Number of Users to Be Supported Pattern/

Antipattern� 146
7.3.5 � Pool Size Requirement Pattern� 147
7.3.6 � Scalability Antipattern� 147

7.4  � The Need for Mathematically Consistent
Requirements: Ensuring That Requirements
Conform to Basic Performance Laws� 148

7.5  � Expressing Performance Requirements in
Terms of Parameters with Unknown Values� 149

7.6  � Avoidance of Circular Dependencies� 149
7.7  � External Performance Requirements and Their

Implications for the Performance Requirements
of Subsystems� 150

7.8  � Structuring Performance Requirements Documents� 150
7.9  � Layout of a Performance Requirement� 153
7.10 � Managing Performance Requirements:

Responsibilities of the Performance
Requirements Owner� 155

7.11 � Performance Requirements Pitfall: Transition
from a Legacy System to a New System� 156

7.12 � Formulating Performance Requirements to
Facilitate Performance Testing� 158

Contents xv

7.13 � Storage and Reporting of Performance
Requirements� 160

7.14 � Summary� 161

Chapter 8 � System Measurement
Techniques and Instrumentation� 163

8.1  � General� 163
8.2  � Distinguishing between Measurement and Testing� 167
8.3  � Validate, Validate, Validate; Scrutinize,

Scrutinize, Scrutinize� 168
8.4  � Resource Usage Measurements� 168

8.4.1 � Measuring Processor Usage� 169
8.4.2 � Processor Utilization by Individual Processes� 171
8.4.3 � Disk Utilization� 173
8.4.4 � Bandwidth Utilization� 174
8.4.5 � Queue Lengths� 175

8.5  � Utilizations and the Averaging Time Window� 175
8.6  � Measurement of Multicore or Multiprocessor

Systems� 177
8.7  � Measuring Memory-Related Activity� 180

8.7.1 � Memory Occupancy� 181
8.7.2 � Paging Activity� 181

8.8  � Measurement in Production versus Measurement
for Performance Testing and Scalability� 181

8.9  � Measuring Systems with One Host and
with Multiple Hosts� 183
8.9.1 � Clock Synchronization of Multiple Hosts� 184
8.9.2 � Gathering Measurements from Multiple Hosts� 184

8.10 � Measurements from within the Application� 186
8.11 � Measurements in Middleware� 187
8.12 � Measurements of Commercial Databases� 188
8.13 � Response Time Measurements� 189
8.14 � Code Profiling� 190
8.15 � Validation of Measurements Using Basic

Properties of Performance Metrics� 191

Contentsxvi

8.16 � Measurement Procedures and Data Organization� 192
8.17 � Organization of Performance Data, Data

Reduction, and Presentation� 195
8.18 � Interpreting Measurements in a

Virtualized Environment� 195
8.19 � Summary� 196
8.20 � Exercises� 196

Chapter 9  Performance Testing	 199

9.1  � Overview of Performance Testing� 199
9.2  � Special Challenges� 202
9.3  � Performance Test Planning and Performance Models� 203
9.4  � A Wrong Way to Evaluate Achievable

System Throughput� 208
9.5  � Provocative Performance Testing� 209
9.6  � Preparing a Performance Test� 210

9.6.1 � Understanding the System� 211
9.6.2 � Pilot Testing, Playtime, and Performance

Test Automation� 213
9.6.3 � Test Equipment and Test Software

Must Be Tested, Too� 213
9.6.4 � Deployment of Load Drivers� 214
9.6.5 � Problems with Testing Financial

Systems� 216
9.7  � Lab Discipline in Performance Testing� 217
9.8  � Performance Testing Challenges Posed by

Systems with Multiple Hosts� 218
9.9  � Performance Testing Scripts and Checklists� 219
9.10 � Best Practices for Documenting Test Plans and

Test Results� 220
9.11 � Linking the Performance Test Plan to

Performance Requirements� 222
9.12 � The Role of Performance Tests in Detecting

and Debugging Concurrency Issues� 223
9.13 � Planning Tests for System Stability� 225

Contents xvii

9.14 � Prospective Testing When Requirements
Are Unspecified� 226

9.15 � Structuring the Test Environment to Reflect
the Scalability of the Architecture� 228

9.16 � Data Collection� 229
9.17 � Data Reduction and Presentation� 230
9.18 � Interpreting the Test Results� 231

9.18.1 � Preliminaries� 231
9.18.2 � Example: Services Use Cases� 231
9.18.3 � Example: Transaction System with

High Failure Rate� 235
9.18.4 � Example: A System with Computationally

Intense Transactions� 237
9.18.5 � Example: System Exhibiting Memory Leak

and Deadlocks� 241
9.19 � Automating Performance Tests and the

Analysis of the Outputs� 244
9.20 � Summary� 246
9.21 � Exercises� 246

Chapter 10 � System Understanding,
Model Choice, and Validation	 251

10.1 � Overview� 252
10.2 � Phases of a Modeling Study� 254
10.3 � Example: A Conveyor System� 256
10.4 � Example: Modeling Asynchronous I/O� 260
10.5 � Systems with Load-Dependent or Time-Varying

Behavior� 266
10.5.1 � Paged Virtual Memory Systems That Thrash� 266
10.5.2 �� Applications with Increasing

Processing Time per Unit of Work� 267
10.5.3 �� Scheduled Movement of Load,

Periodic Loads, and Critical Peaks� 267
10.6 � Summary� 268
10.7 � Exercises� 270

Contentsxviii

Chapter 11  Scalability and Performance	 273

11.1   What Is Scalability?� 273
11.2   Scaling Methods� 275

  11.2.1  Scaling Up and Scaling Out� 276
  11.2.2  Vertical Scaling and Horizontal Scaling� 276

11.3   Types of Scalability� 277
  11.3.1  Load Scalability� 277
  11.3.2  Space Scalability� 279
  11.3.3  Space-Time Scalability� 280
  11.3.4  Structural Scalability� 281
  11.3.5 � Scalability over Long Distances and

under Network Congestion� 281
11.4   Interactions between Types of Scalability� 282
11.5  � Qualitative Analysis of Load

Scalability and Examples� 283
  11.5.1 � Serial Execution of Disjoint

Transactions and the Inability to
Exploit Parallel Resources� 283

  11.5.2  Busy Waiting on Locks� 286
  11.5.3  Coarse Granularity Locking� 287
  11.5.4  Ethernet and Token Ring: A Comparison� 287
  11.5.5  Museum Checkrooms� 289

11.6  � Scalability Limitations in a
Development Environment� 292

11.7   Improving Load Scalability� 293
11.8   Some Mathematical Analyses� 295

  11.8.1 � Comparison of Semaphores and Locks
for Implementing Mutual Exclusion� 296

  11.8.2  Museum Checkroom� 298
11.9   Avoiding Scalability Pitfalls� 299
11.10  Performance Testing and Scalability� 302
11.11  Summary� 303
11.12  Exercises� 304

Contents xix

Chapter 12  Performance Engineering Pitfalls	 307

12.1  � Overview� 308
12.2  � Pitfalls in Priority Scheduling� 308
12.3  � Transient CPU Saturation Is Not Always

a Bad Thing� 312
12.4  � Diminishing Returns with Multiprocessors or

Multiple Cores� 314
12.5  � Garbage Collection Can Degrade Performance� 315
12.6  � Virtual Machines: Panacea or Complication?� 315
12.7  � Measurement Pitfall: Delayed Time Stamping and

Monitoring in Real-Time Systems� 317
12.8  � Pitfalls in Performance Measurement� 318
12.9  � Eliminating a Bottleneck Could Unmask a

New One� 319
12.10 � Pitfalls in Performance Requirements Engineering� 321
12.11 � Organizational Pitfalls in Performance Engineering� 321
12.12 � Summary� 322
12.13 � Exercises� 323

Chapter 13  Agile Processes and Performance Engineering	 325

13.1  � Overview� 325
13.2  � Performance Engineering under an Agile

Development Process� 327
13.2.1 �� Performance Requirements Engineering

Considerations in an Agile Environment� 328
13.2.2 �� Preparation and Alignment of Performance

Testing with Sprints� 329
13.2.3 �� Agile Interpretation and Application of

Performance Test Results� 330
13.2.4 �� Communicating Performance Test Results

in an Agile Environment� 331
13.3  � Agile Methods in the Implementation and

Execution of Performance Tests� 332
13.3.1 �� Identification and Planning of Performance

Tests and Instrumentation� 332

Contentsxx

13.3.2 �� Using Scrum When Implementing
Performance Tests and Purpose-Built
Instrumentation� 333

13.3.3 �� Peculiar or Irregular Performance
Test Results and Incorrect Functionality
May Go Together� 334

13.4 � The Value of Playtime in an Agile Performance
Testing Process� 334

13.5 � Summary� 336
13.6 � Exercises� 336

Chapter 14 � Working with Stakeholders to Learn, Influence,
and Tell the Performance Engineering Story	 339

14.1 � Determining What Aspect of Performance
Matters to Whom� 340

14.2 � Where Does the Performance Story Begin?� 341
14.3 � Identification of Performance Concerns,

Drivers, and Stakeholders� 344
14.4  Influencing the Performance Story� 345

14.4.1 �� Using Performance Engineering
Concerns to Affect the Architecture and
Choice of Technology� 345

14.4.2 � Understanding the Impact of
Existing Architectures and Prior
Decisions on System Performance� 346

14.4.3 �� Explaining Performance Concerns and
Sharing and Developing the Performance
Story with Different Stakeholders� 347

14.5 � Reporting on Performance Status to
Different Stakeholders� 353

14.6 � Examples� 354
14.7 � The Role of a Capacity Management Engineer� 355
14.8 � Example: Explaining the Role of

Measurement Intervals When Interpreting
Measurements� 356

Contents xxi

14.9  � Ensuring Ownership of Performance Concerns
and Explanations by Diverse Stakeholders� 360

14.10 � Negotiating Choices for Design Changes and
Recommendations for System Improvement
among Stakeholders� 360

14.11 � Summary� 362
14.12 � Exercises� 363

Chapter 15  Where to Learn More	 367

15.1   Overview	 367
15.2   Conferences and Journals	 369
15.3   Texts on Performance Analysis	 370
15.4   Queueing Theory	 372
15.5   Discrete Event Simulation	 372
15.6  � Performance Evaluation of Specific

Types of Systems� 373
15.7   Statistical Methods	 374
15.8   Performance Tuning	 374
15.9   Summary	 375

References	 377
Index	 385

This page intentionally left blank

xxiii

Preface

The performance engineering of computer systems and the systems
they control concerns the methods, practices, and disciplines that may
be used to ensure that the systems provide the performance that is
expected of them. Performance engineering is a process that touches
every aspect of the software lifecycle, from conception and require-
ments planning to testing and delivery. Failure to address performance
concerns at the beginning of the software lifecycle significantly increases
the risk that a software project will fail. Indeed, performance is the
single largest risk to the success of any software project. Readers in the
United States will recall that poor performance was the first sign that
healthcare.gov, the federal web site for obtaining health insurance poli-
cies that went online in late 2013, was having a very poor start. News
reports indicate that the processes and steps recommended in this book
were not followed during its development and rollout. Performance
requirements were inadequately specified, and there was almost no
performance testing prior to the rollout because time was not available
for it. This should be a warning that adequate planning and timely
scheduling are preconditions for the successful incorporation of perfor-
mance engineering into the software development lifecycle. “Building
and then tuning” is an almost certain recipe for performance failure.

Scope and Purpose

The performance of a system is often characterized by the amount of
time it takes to accomplish a variety of prescribed tasks and the number
of times it can accomplish those tasks in a set time period. For
example:

•	 A government system for selling health insurance policies to
the general public, such as healthcare.gov, would be expected
to determine an applicant’s eligibility for coverage, display
available options, and confirm the choice of policy and the

Prefacexxiv

premium due within designated amounts of time regardless of
how many applications were to be processed within the peak
hour.

•	 An online stock trading system might be expected to obtain a
quote of the current value of a security within a second or so
and execute a trade within an even shorter amount of time.

•	 A monitoring system, such as an alarm system, is expected to be
able to process messages from a set of sensors and display cor-
responding status indications on a console within a short time
of their arrival.

•	 A web-based news service would be expected to retrieve a story
and display related photographs quickly.

This is a book about the practice of the performance engineering of
software systems and software-controlled systems. It will help the
reader address the following performance-related questions concern-
ing the architecture, development, testing, and sizing of a computer
system or a computer-controlled system:

•	 What capacity should the system have? How do you specify
that capacity in both business-related and engineering terms?

•	 What business, social, and engineering needs will be satisfied
by given levels of throughput and system response time?

•	 How many data records, abstract objects, or representations of
concrete, tangible objects must the system be able to manage,
monitor, and store?

•	 What metrics do you use to describe the performance your
system needs and the performance it has?

•	 How do you specify the performance requirements of a system?
Why do you need to specify them in the first place?

•	 How can the resource usage of a system be measured? How can
you verify the accuracy of the measurements?

•	 How can you use mathematical models to predict a system’s
performance? Can the models be used to predict the perfor-
mance if an application is added to the system or if the transac-
tion rate increases?

•	 How can mathematical models of performance be used to plan
performance tests and interpret the results?

Preface xxv

•	 How can you test performance in a manner that tells you if the
system is functioning properly at all load levels and if it will
scale to the extent and in the dimensions necessary?

•	 What can poor performance tell you about how the system is
functioning?

•	 How do you architect a system to be scalable? How do you
specify the dimensions and extent of the scalability that will be
required now or in the future? What architecture and design
features undermine the scalability of a system?

•	 Are there common performance mistakes and misconceptions?
How do you avoid them?

•	 How do you incorporate performance engineering into an agile
development process?

•	 How do you tell the performance story to management?

Questions like these must be addressed at every phase of the soft-
ware lifecycle. A system is unlikely to provide adequate performance
with a cost-effective configuration unless its architecture is influenced
by well-formulated, testable performance requirements. The require-
ments must be written in measurable, unambiguous, testable terms.
Performance models may be used to predict the effects of design choices
such as the use of scheduling rules and the deployment of functions on
one or more hosts. Performance testing must be done to ensure that all
system components are able to meet their respective performance
needs, and to ensure that the end-to-end performance of the system
meets user expectations, the owner’s expectations, and, where applica-
ble, industry and government regulations. Performance requirements
must be written to help the architects identify the architectural and
technological choices needed to ensure that performance needs are
met. Performance requirements should also be used to determine how
the performance of a system will be tested.

The need for performance engineering and general remarks about
how it is practiced are presented in Chapter 1. Metrics are needed to
describe performance quantitatively. A discussion of performance met-
rics is given in Chapter 2. Once performance metrics have been identi-
fied, basic analysis methods may be used to make predictions about
system performance, as discussed in Chapter 3. The anticipated work-
load can be quantitatively described as in Chapter 4, and performance
requirements can be specified. Necessary attributes of performance

Prefacexxvi

requirements and best practices for writing and managing them are
discussed in Chapters 5 through 7. To understand the performance that
has been attained and to verify that performance requirements have
been met, the system must be measured. Techniques for doing so are
given in Chapter 8. Performance tests should be structured to enable
the evaluation of the scalability of a system, to determine its capacity
and responsiveness, and to determine whether it is meeting through-
put and response time requirements. It is essential to test the perfor-
mance of all components of the system before they are integrated into
a whole, and then to test system performance from end to end before
the system is released. Methods for planning and executing perfor-
mance tests are discussed in Chapter 9. In Chapter 10 we discuss pro-
cedures for evaluating the performance of a system and the practice of
performance modeling with some examples. In Chapter 11 we discuss
ways of describing system scalability and examine ways in which scal-
ability is enhanced or undermined. Performance engineering pitfalls
are examined in Chapter 12, and performance engineering in an agile
context is discussed in Chapter 13. In Chapter 14 we consider ways of
communicating the performance story. Chapter 15 contains a discus-
sion of where to learn more about various aspects of performance
engineering.

This book does not contain a presentation of the elements of prob-
ability and statistics and how they are applied to performance engi-
neering. Nor does it go into detail about the mathematics underlying
some of the main tools of performance engineering, such as queueing
theory and queueing network models. There are several texts that do
this very well already. Some examples of these are mentioned in
Chapter 15, along with references on some detailed aspects of perfor-
mance engineering, such as database design. Instead, this book focuses
on various steps of the performance engineering process and the link
between these steps and those of a typical software lifecycle. For exam-
ple, the chapters on performance requirements engineering draw par-
allels with the engineering of functional requirements, and the chapter
on scalability explains how performance models can be used to evalu-
ate it and how architectural characteristics might affect it.

Preface xxvii

Audience

This book will be of interest to software and system architects, require-
ments engineers, designers and developers, performance testers, and
product managers, as well as their managers. While all stakeholders
should benefit from reading this book from cover to cover, the follow-
ing stakeholders may wish to focus on different subsets of the book to
begin with:

•	 Product owners and product managers who are reluctant to
make commitments to numerical descriptions of workloads
and requirements will benefit from the chapters on performance
metrics, workload characterization, and performance require-
ments engineering.

•	 Functional testers who are new to performance testing may
wish to read the chapters on performance metrics, performance
measurement, performance testing, basic modeling, and per-
formance requirements when planning the implementation of
performance tests and testing tools.

•	 Architects and developers who are new to performance engi-
neering could begin by reading the chapters on metrics, basic
performance modeling, performance requirements engineer-
ing, and scalability.

This book may be used as a text in a senior- or graduate-level course
on software performance engineering. It will give the students the
opportunity to learn that computer performance evaluation involves
integrating quantitative disciplines with many aspects of software
engineering and the software lifecycle. These include understanding
and being able to explain why performance is important to the system
being built, the commercial and engineering implications of system
performance, the architectural and software aspects of performance,
the impact of performance requirements on the success of the system,
and how the performance of the system will be tested.

This page intentionally left blank

xxix

Acknowledgments

This book is based in part on a training course entitled Foundations of
Performance Engineering. I developed this course to train performance
engineering and performance testing teams at various Siemens operat-
ing companies. The course may be taught on its own or, as my col-
league Alberto Avritzer and I have done, as part of a consulting
engagement. When teaching the course as part of a consulting engage-
ment, one may have the opportunity to integrate the client’s perfor-
mance issues and even test data into the class material. This helps the
clients resolve the particular issues they face and is effective at showing
how the material on performance engineering presented here can be
integrated into their software development processes.

One of my goals in writing this book was to relate this practical
experience to basic performance modeling methods and to link perfor-
mance engineering methods to the various stages of the software life-
cycle. I was encouraged to write it by Dr. Dan Paulish, my first manager
at Siemens Corporate Research (now Siemens Corporation, Corporate
Technology, or SC CT); by Prof. Len Bass, who at the time was with the
Software Engineering Institute in Pittsburgh; and by Prof. C. Murray
Woodside of Carleton University in Ottawa. We felt that there was a
teachable story to tell about the practical performance issues I have
encountered during a career in performance engineering that began
during the heyday of mainframe computers.

My thinking on performance requirements has been strongly influ-
enced by Brian Berenbach, who has been a driving force in the practice
of requirements engineering at SC CT. I would like to thank my former
AT&T Labs colleagues, Dr. David Hoeflin and Dr. Richard Oppenheim,
for reading and commenting on selected chapters. We worked together
for many years as part of a large group of performance specialists. My
experience in that group was inspiring and rewarding. I would also
like to thank Dr. Alberto Avritzer of SC CT for many lively discussions
on performance engineering.

I would like to thank the following past and present managers and
staff at SC CT for their encouragement in the writing of this book.

Acknowledgmentsxxx

Between them, Raj Varadarajan and Dr. Michael Golm read all of the
chapters of the book and made useful comments before submission to
the publisher.

Various Siemens operating units with whom I have worked on per-
formance issues kindly allowed me to use material I had prepared for
them in published work. Ruth Weitzenfeld, SC CT’s librarian, cheer-
fully obtained copies of many references. Patti Schmidt, SC CT’s in-
house counsel, arranged for permission to quote from published work
I had prepared while working at Siemens. Dr. Yoni Levi of AT&T Labs
kindly arranged for me to obtain AT&T’s permission to quote from a
paper I had written on scalability while working there. This paper
forms the basis for much of the content of Chapter 11.

I would like to thank my editors at Addison-Wesley, Bernard
Goodwin and Chris Zahn, and their assistant, Michelle Housley, for
their support in the preparation of this book. It has been a pleasure to
work with them. The copy editor, Barbara Wood, highlighted several
points that needed clarification. Finally, the perceptive comments of
the publisher’s reviewers, Nick Rozanski, Don Shafer, and Matthew
Scarpino, have done much to make this a better book.

xxxi

About the Author

André B. Bondi is a Senior Staff
Engineer working in performance engi-
neering at Siemens Corp., Corporate
Technology, in Princeton, New Jersey.
He has worked on performance issues
in several domains, including telecom-
munications, conveyor systems, finance
systems, building surveillance, railways,
and network management systems.
Prior to joining Siemens, he held senior
performance positions at two start-up
companies. Before that, he spent more
than ten years working on a variety of
performance and operational issues at
AT&T Labs and its predecessor, Bell
Labs. He has taught courses in perfor-
mance, simulation, operating systems
principles, and computer architecture at

the University of California, Santa Barbara. Dr. Bondi holds a PhD in
computer science from Purdue University, an MSc in statistics from
University College London, and a BSc in mathematics from the
University of Exeter.

Ph
ot

o
by

 R
ix

t B
os

m
a,

 w
w

w
.r

ix
tb

os
m

a.
nl

../../../../../www.rixtbosma.nl/default.htm

This page intentionally left blank

1

Chapter 1

Why Performance
Engineering? Why
Performance
Engineers?

This chapter describes the importance of performance engineering in a
software project and explains the role of a performance engineer in
ensuring that the system has good performance upon delivery.
Overviews of different aspects of performance engineering are given.

1.1  Overview

The performance of a computer-based system is often characterized by
its ability to perform defined sets of activities at fast rates and with
quick response time. Quick response times, speed, and scalability are
highly desired attributes of any computer-based system. They are also
competitive differentiators. That is, they are attributes that distinguish
a system from other systems with like functionality and make it more
attractive to a prospective buyer or user.

Why Performance Engineering? Why Performance Engineers?2

If a system component has poor performance, the system as a whole
may not be able to function as intended. If a system has poor perfor-
mance, it will be unattractive to prospective users and buyers. If the
project fails as a result, the investment in building the system will have
been wasted. The foregoing is true whether the system is a command
and control system, a transaction-based system, an information
retrieval system, a video game, an entertainment system, a system for
displaying news, or a system for streaming media.

The importance of performance may be seen in the following
examples:

•	 A government-run platform for providing services on a grand
scale must be able to handle a large volume of transactions from
the date it is brought online. If it is not able to do so, it will be
regarded as ineffective. In the United States, the federal web site
for applying for health insurance mandated by the Affordable
Care Act, healthcare.gov, was extremely slow for some time after
it was made available to the public. According to press reports
and testimony before the United States Congress, functional,
capacity, and performance requirements were unclear. Moreover,
the system was not subjected to rigorous performance tests before
being brought online [Eilperin2013].

•	 An online securities trading system must be able to handle large
numbers of transactions per second, especially in a volatile
market with high trading volume. A brokerage house whose
system cannot do this will lose business very quickly, because
slow execution could lead to missing a valuable trading
opportunity.

•	 An online banking system must display balances and state-
ments rapidly. It must acknowledge transfers and the transmis-
sion of payments quickly for users to be confident that these
transactions have taken place as desired.

•	 Regulations such as fire codes require that audible and visible
alarms be triggered within 5 or 10 seconds of smoke being
detected. In many jurisdictions, a building may not be used if
the fire alarm system cannot meet this requirement.

•	 A telephone network must be able to handle large numbers of
call setups and teardowns per second and provide such ser-
vices as call forwarding and fraud detection within a short time
of each call being initiated.

1.1  Overview 3

•	 A rail network control system must be able to monitor train
movements and set signals and switches accordingly within
very short amounts of time so that trains are routed to their cor-
rect destinations without colliding with one another.

•	 In combat, a system that has poor performance may endanger
the lives or property of its users instead of endangering those of
the enemy.

•	 A medical records system must be able to pull up patient records
and images quickly so that retrieval will not take too much of a
doctor’s time away from diagnosis and treatment.

The foregoing examples show that performance is crucial to the
correct functioning of a software system and of the application it con-
trols. As such, performance is an attribute of system quality that pre-
sents significant business and engineering risks. In some applications,
such as train control and fire alarm systems, it is also an essential ingre-
dient of safety. Performance engineering mitigates these risks by ensur-
ing that adequate attention is paid to them at every stage of the software
lifecycle, while improving the capacity of systems, improving their
response times, ensuring their scalability, and increasing user produc-
tivity. All of these are key competitive differentiators for any software
product.

Despite the importance of system performance and the severe risk
associated with inattentiveness to it, it is often ignored until very late in
the software development cycle. Too often, the view is that perfor-
mance objectives can be achieved by tuning the system once it is built.
This mindset of “Build it, then tune it” is a recurring cause of the failure
of a system to meet performance needs [SmithWilliams2001]. Most per-
formance problems have their root causes in poor architectural choices.
For example:

•	 An architectural choice could result in the creation of foci of
overload.

•	 A decision is made that a set of operations that could be done in
parallel on a multiprocessor or multicore host will be handled
by a single thread. This would result in the onset of a software
bottleneck for sufficiently large loads.

One of the possible consequences of detecting a performance issue
with an architectural cause late in the software lifecycle is that a consid-
erable amount of implementation work must be undone and redone.

Why Performance Engineering? Why Performance Engineers?4

This is needlessly expensive when one considers that the problem
could have been avoided by performing an architectural review. This
also holds for other quality attributes such as reliability, availability,
and security.

1.2  The Role of Performance Requirements in
Performance Engineering

To ensure that performance needs are met, it is important that they be
clearly specified in requirements early in the software development
cycle. Early and concise specifications of performance requirements are
necessary because:

•	 Performance requirements are potential drivers of the system
architecture and the choice of technologies to be used in the sys-
tem’s implementation. Moreover, many performance failures
have their roots in poor architectural choices. Modification of the
architecture before a system is implemented is cheaper than
rebuilding a slow system from scratch.

•	 Performance requirements are closely related to the contractual
expectations of system performance negotiated between buyer
and seller, as well as to any relevant regulatory requirements
such as those for fire alarm systems.

•	 The performance requirements will be reflected in the perfor-
mance test plan.

•	 Drafting and reviewing performance requirements force the
consideration of trade-offs between execution speed and sys-
tem cost, as well as between execution speed and simplicity of
both the architecture and the implementation. For instance, it is
more difficult to design and correctly code a system that uses
multithreading to achieve parallelism in execution than to build
a single-threaded implementation.

•	 Development and/or hardware costs can be reduced if
performance requirements that are found to be too stringent
are relaxed early in the software lifecycle. For example, while
a 1-second average response time requirement may be
desirable, a 2-second requirement may be sufficient for busi-
ness or engineering needs. Poorly specified performance

1.3  Examples of Issues Addressed by Performance Engineering Methods 5

requirements can lead to confusion among stakeholders and
the delivery of a poor-quality product with slow response times
and inadequate capacity.

•	 If a performance issue that cannot be mapped to explicit perfor-
mance requirements emerges during testing or production,
stakeholders might not feel obliged to correct it.

We shall explore the principles of performance requirements in
Chapter 5.

1.3  Examples of Issues Addressed by Performance
Engineering Methods

Apart from mitigating business risk, performance engineering meth-
ods assist in answering a variety of questions about a software system.
The performance engineer must frequently address questions related
to capacity. For example:

•	 Can the system carry the peak load? The answer to this question
depends on whether the system is adequately sized, and on
whether its components can interact gracefully under load.

•	 Will the system cope with a surge in load and continue to func-
tion properly when the surge abates? This question is related to
the reliability of the system. We do not want it to crash when it
is most needed.

•	 What will be the performance impacts of adding new function-
ality to a system? To answer this question, we need to under-
stand the extra work associated with each invocation of the
functionality, and how often that functionality is invoked. We
also need to consider whether the new functionality will
adversely affect the performance of the system in its
present form.

•	 Will the system be able to carry an increase in load? To answer
this question, we must first ask whether there are enough
resources to allow the system to perform at its current level.

•	 What is the performance impact of increasing the size of the
user base? Answering this question entails understanding the
memory and secondary storage footprints per user as well as in

Why Performance Engineering? Why Performance Engineers?6

total, and then being able to quantify the increased demand for
memory, processing power, I/O, and network bandwidth.

•	 Can the system meet customer expectations or engineering
needs if the average response time requirement is 2 seconds
rather than 1 second? If so, it might be possible to build the sys-
tem at a lower cost or with a simpler architecture. On the other
hand, the choice of a simpler architecture could adversely affect
the ability to scale up the offered load later, while still maintain-
ing the response time requirement.

•	 Can the system provide the required performance with a cost-
effective configuration? If it cannot, it will not fare well in the
marketplace.

Performance can have an effect on the system’s functionality, or its
perceived functionality. If the system does not respond to an action
before there is a timeout, it may be declared unresponsive or down if
timeouts occur in a sufficiently large number of consecutive attempts at
the action.

The performance measures of healthy systems tend to behave in a
predictable manner. Deviations from predictable performance are
signs of potential problems. Trends or wild oscillations in the perfor-
mance measurements may indicate that the system is unstable or that a
crash will shortly occur. For example, steadily increasing memory
occupancy indicates a leak that could bring the system down, while
oscillating CPU utilization and average response times may indicate
that the system is repeatedly entering deadlock and timing out.

1.4  Business and Process Aspects of Performance
Engineering

Ensuring the performance of a system entails initial and ongoing
investment. The investment is amply rewarded by reductions in busi-
ness risk, increased system stability, and system scalability. Because
performance is often the single biggest risk to the success of a project
[Bass2007], reducing this risk will make a major contribution to reduc-
ing the total risk to the project overall.

The initial performance engineering investments in a software
project include

1.4  Business and Process Aspects of Performance Engineering 7

•	 Ensuring that there is performance engineering expertise on the
project, perhaps including an individual designated as the lead
performance engineer

•	 Drafting performance requirements
•	 Planning lab time for performance measurement and perfor-

mance testing
•	 Acquiring and preparing performance measurement tools,

load generation tools, and analysis and reporting tools to
simplify the presentation and tracking of the results of the
performance tests

Incorporating sound performance engineering practices into every
aspect of the software development cycle can considerably reduce the
performance risk inherent in the development of a large, complicated
system. The performance process should be harmonized with the
requirements, architectural, development, and testing phases of the
development lifecycle. In addition to the steps just described, the per-
formance engineering effort should include

1.	 A review of the system architecture from the standpoints of
performance, reliability, and scalability

2.	 An evaluation of performance characteristics of the technolo-
gies proposed in the architecture specification, including quick
performance testing of any proposed platforms [MBH2005]

3.	 Incremental performance testing following incremental func-
tional testing of the system, followed by suggestions for archi-
tectural and design revisions as needed

4.	 Retesting to overcome the issues revealed and remedied as a
result of the previous step

Performance engineering methods can also be used to manage cost-
effective system growth and added functionality. For an existing sys-
tem, growth is managed by building a baseline model based on
measurements of resource usage and query or other work unit rates
taken at runtime. The baseline model is combined with projected traffic
rates to determine resource requirements using mathematical models
and other methods drawn from the field of operations research
[LZGS1984, Kleinrock1975, Kleinrock1976, MenasceAlmeida2000].

We now turn to a discussion of the various disciplines and tech-
niques a performance engineer can use to perform his or her craft.

Why Performance Engineering? Why Performance Engineers?8

1.5  Disciplines and Techniques Used in Performance
Engineering

The practice of performance engineering draws on many disciplines
and skills, ranging from the technological to the mathematical and
even the political. Negotiating, listening, and writing skills are essen-
tial for successful performance engineering, as is the case for successful
architects and product owners. The set of original undergraduate major
subjects taken by performance engineers the author has met includes
such quantitative disciplines as mathematics, physics, chemical engi-
neering, chemistry, biology, electrical engineering, statistics, econom-
ics, and operations research, as well as computer science. Those who
have not majored in computer science will need to learn about such
subjects as operating systems design, networking, and hardware archi-
tecture, while the computer scientists may need to acquire additional
experience with working in a quantitative discipline.

To understand resource usage and information flow, the perfor-
mance engineer must have at least a rudimentary knowledge of com-
puter systems architecture, operating systems principles, concurrent
programming principles, and software platforms such as web servers
and database management systems. In addition, the performance engi-
neer must have a sound grasp of the technologies and techniques used
to measure resource usage and traffic demands, as well as those used
to drive transactions through a system under test.

To understand performance requirements and the way the system
will be used, it is necessary to know something about its domain of
application. The performance and reliability needs of financial transac-
tion systems, fire alarm systems, network management systems, con-
veyor belts, telecommunications systems, train control systems, online
news services, search engines, and multimedia streaming services dif-
fer dramatically. For instance, the performance of fire alarm systems is
governed by building and fire codes in the jurisdictions where the sys-
tems will be installed, while that of a telephone system may be gov-
erned by international standards. The performance needs of all the
systems mentioned previously may be driven by commercial consid-
erations such as competitive differentiation.

Because performance is heavily influenced by congestion, it is
essential that a performance engineer be comfortable with quantitative
analysis methods and have a solid grasp of basic statistics, queueing
theory, and simulation methods. The wide variety of computer

1.5  Disciplines and Techniques Used in Performance Engineering 9

technologies and the evolving set of problem domains mean that the
performance engineer should have an eclectic set of skills and analysis
methods at his or her disposal. In addition, it is useful for the perfor-
mance engineer to know how to analyze large amounts of data with
tools such as spreadsheets and scripting languages, because measure-
ment data from a wide variety of sources may be encountered.
Knowledge of statistical methods is useful for planning experiments
and for understanding the limits of inferences that can be drawn from
measurement data. Knowledge of queueing theory is useful for exam-
ining the limitations of design choices and the potential improvements
that might be gained by changing them.

While elementary queueing theory may be used to identify limits
on system capacity and to predict transaction loads at which response
times will suddenly increase [DenningBuzen1978], more complex
queueing theory may be required to examine the effects of service time
variability, interarrival time variability, and various scheduling rules
such as time slicing, preemptive priority, nonpreemptive priority, and
cyclic service [Kleinrock1975, Kleinrock1976].

Complicated scheduling rules, load balancing heuristics, protocols,
and other aspects of system design that are not susceptible to queueing
analysis may be examined using approximate queueing models and/
or discrete event simulations, whose outputs should be subjected to
statistical analysis [LawKelton1982].

Queueing models can also be used in sizing tools to predict system
performance and capacity under a variety of load scenarios, thus facili-
tating what-if analysis. This has been done with considerable commer-
cial success. Also, queueing theory can be used to determine the
maximum load to which a system should be subjected during perfor-
mance tests once data from initial load test runs is available.

The performance engineer should have some grasp of computer
science, software engineering, software development techniques, and
programming so that he or she can quickly recognize the root causes of
performance issues and negotiate design trade-offs between architects
and developers when proposing remedies. A knowledge of hardware
architectures, including processors, memory architectures, network
technologies, and secondary storage technologies, and the ability to
learn about new technologies as they emerge are very helpful to the
performance engineer as well.

Finally, the performance engineer will be working with a wide
variety of stakeholders. Interactions will be much more fruitful if the
performance engineer is acquainted with the requirements drafting

Why Performance Engineering? Why Performance Engineers?10

and review processes, change management processes, architecture and
design processes, and testing processes. The performance engineer
should be prepared to work with product managers and business man-
agers. He or she will need to explain choices and recommendations in
terms that are related to the domain of application and to the trade-offs
between costs and benefits.

1.6  Performance Modeling, Measurement, and
Testing

Performance modeling can be used to predict the performance of a sys-
tem at various times during its lifecycle. It can be used to characterize
capacity; to help understand the impact of proposed changes, such as
changes to scheduling rules, deployment scenarios, technologies, and
traffic characteristics; or to predict the effect of adding or removing
workloads. Deviations from the qualitative behavior predicted by
queueing models, such as slowly increasing response times or memory
occupancy when the system load is constant or expected to be constant,
can be regarded as indications of anomalous system behavior.
Performance engineers have used their understanding of performance
models to identify software flaws; software bottlenecks, especially
those occurring in new technologies that may not yet be well under-
stood [ReeserHariharan2000]; system malfunctions (including the
occurrence of deadlocks); traffic surges; and security violations. This
has been done by examining performance measurement data, the
results of simulations, and/or queueing models [AvBonWey2005,
AvTanJaCoWey2010]. Interestingly, the principles that were used to
gain insights into performance in these cases were independent of the
technologies used in the system under study.

Performance models and statistical techniques for designing exper-
iments can also be used to help us plan and interpret the results of
performance tests.

An understanding of rudimentary queueing models will help us
determine whether the measurement instrumentation is yielding valid
values of performance metrics.

Pilot performance tests can be used to identify the ranges of trans-
action rates for which the system is likely to be lightly, moderately, or
heavily loaded. Performance trends with respect to load are useful for
predicting capacity and scalability. Performance tests at loads near or

1.7  Roles and Activities of a Performance Engineer 11

above that at which any system resource is likely to be saturated will be
of no value for predicting scalability or performance, though they can
tell us whether the system is likely to crash when saturated, or whether
the system will recover gracefully once the load is withdrawn. An
understanding of rudimentary performance models will help us to
design performance tests accordingly.

Methodical planning of experiments entails the identification of
factors to be varied from one test run to the next. Fractional replication
methods help the performance engineer to choose telling subsets of all
possible combinations of parameter settings to minimize the number of
experiments that must be done to predict performance.

Finally, the measurements obtained from performance tests can be
used as the input parameters of sizing tools (based on performance
models) that will assist in sizing and choosing the configurations
needed to carry the anticipated load to meet performance requirements
in a cost-effective manner.

1.7  Roles and Activities of a Performance Engineer

Like a systems architect, a performance engineer should be engaged in
all stages of a software project. The performance engineer is frequently
a liaison between various groups of stakeholders, including architects,
designers, developers, testers, product management, product owners,
quality engineers, domain experts, and users. The reasons for this are:

•	 The performance of a system affects its interaction with the
domain.

•	 Performance is influenced by every aspect of information flow,
including
•	 The interactions between system components
•	 The interactions between hardware elements and domain

elements
•	 The interactions between the user interface and all other

parts of the system
•	 The interactions between component interfaces

When performance and functional requirements are formulated,
the performance engineer must ensure that performance and scalabil-
ity requirements are written in verifiable, measurable terms, and that
they are linked to business and engineering needs. At the architectural

Why Performance Engineering? Why Performance Engineers?12

stage, the performance engineer advises on the impacts of technology
and design choices on performance and identifies impediments to
smooth information flow. During design and development, the perfor-
mance engineer should be available to advise on the performance char-
acteristics and consequences of design choices and scheduling rules,
indexing structures, query patterns, interactions between threads or
between devices, and so on. During functional testing, including unit
testing, the performance engineer should be alerted if the testers feel
that the system is too slow. This can indicate a future performance
problem, but it can also indicate that the system was not configured
properly. For example, a misconfigured IP address could result in an
indication by the protocol implementation that the targeted host is
unresponsive or nonexistent, or in a failure of one part of the system to
connect with another. It is not unusual for the performance engineer to
be involved in diagnosing the causes of these problems, as well as
problems that might appear in production.

The performance engineer should be closely involved in the plan-
ning and execution of performance tests and the interpretation of the
results. He or she should also ensure that the performance instrumen-
tation is collecting valid measurement data and generating valid loads.
Moreover, it is the performance engineer who supervises the prepara-
tion of reports of performance tests and measurements in production,
explains them to stakeholders, and mediates negotiations between
stakeholders about necessary and possible modifications to improve
performance.

If the performance of a system is found to be inadequate, whether
in testing or in production, he or she will be able to play a major role in
diagnosing the technical cause of the problem. Using the measurement
and testing methods described in this book, the performance engineer
works with testers and architects to identify the nature of the cause of
the problem and with developers to determine the most cost-effective
way to fix it. Historically, the performance engineer’s first contact with
a system has often been in “repairman mode” when system perfor-
mance has reached a crisis point. It is preferable that performance issues
be anticipated and avoided during the early stages of the software
lifecycle.

The foregoing illustrates that the performance engineer is a per-
formance advocate and conscience for the project, ensuring that
performance needs are anticipated and accounted for at every
stage of the development cycle, the earlier the better [Browne1981].
Performance advocacy includes the preparation of clear summaries of

131.8  Interactions and Dependencies between Performance Engineering

performance status, making recommendations for changes, reporting
on performance tests, and reporting on performance issues in pro-
duction. Thus, the performance engineer should not be shy about
blowing the whistle if a major performance problem is uncovered
or anticipated. The performance reports should be concise, cogent,
and pungent, because stakeholders such as managers, developers,
architects, and product owners have little time to understand the
message being communicated. Moreover, the performance engi-
neer must ensure that graphs and tables tell a vivid and accurate
story.

In the author’s experience, many stakeholders have little training
or experience in quantitative methods unless they have worked in dis-
ciplines such as statistics, physics, chemistry, or econometrics before
joining the computing profession. Moreover, computer science and
technology curricula seldom require the completion of courses related
to performance evaluation for graduation. This means that the perfor-
mance engineer must frequently play the role of performance teacher
while explaining performance considerations in terms that can be
understood by those trained in other disciplines.

1.8  Interactions and Dependencies between
Performance Engineering and Other Activities

Performance engineering is an iterative process involving interactions
between multiple sets of stakeholders at many stages of the software
lifecycle (see Figure 1.1). The functional requirements inform the
specification of the performance requirements. Both influence the
architecture and the choice of technology. Performance requirements
may be formulated with the help of performance models. The models
are used to plan performance tests to verify scalability and that
performance requirements have been met. Performance models may
also be used in the design of modifications. Data gathered through
performance monitoring and capacity planning may be used to deter-
mine whether new functionality or load may be added to the
system.

The performance engineer must frequently take responsibility for
ensuring that these interactions take place. None of the activities and
skills we have mentioned is sufficient for the practice of performance
engineering in and of itself.

Why Performance Engineering? Why Performance Engineers?14

Functional
Requirements

Performance
Requirements

Architecture and
Technology

Choices

Performance
Modeling

Design and
Implementation

Performance
Testing

Functional
Testing

Delivery

Performance
Monitoring

Capacity
Management and

Planning

Drives specification

Informs specification

Figure 1.1  Interactions between performance engineering activities and other software
lifecycle activities

1.9  A Road Map through the Book 15

1.9  A Road Map through the Book

Performance metrics are described in Chapter 2. One needs perfor-
mance metrics to be able to define the desired performance characteris-
tics of a system, and to describe the characteristics of the performance
of an existing system. In the absence of metrics, the performance
requirements of a system can be discussed only in vague terms, and the
requirements cannot be specified, tested, or enforced.

Basic performance modeling and analysis are discussed in
Chapter 3. We show how to establish upper bounds on system through-
put and lower bounds on system response time given the amount of
time it takes to do processing and I/O. We also show how rudimentary
queueing models can be used to make predictions about system
response time when a workload has the system to itself and when it is
sharing the system with other workloads.

In Chapter 4 we explore methods of characterizing the workload of
a system. We explain that workload characterization involves under-
standing what the system does, how often it is required to do it, why it
is required to do it, and the performance implications of the nature of
the domain of application and of variation in the workload over time.

Once the workload of the system has been identified and under-
stood, we are in a position to identify performance requirements. The
correct formulation of performance requirements is crucial to the choice
of a sound, cost-effective architecture for the desired system. In Chapter 5
we describe the necessary attributes of performance requirements,
including linkage to business and engineering needs, traceability, clar-
ity, and the need to express requirements unambiguously in terms that
are measurable, testable, and verifiable. These are preconditions for
enforcement. Since performance requirements may be spelled out in
contracts between a buyer and a supplier, enforceability is essential. If
the quantities specified in a performance requirement cannot be meas-
ured, the requirement is deficient and unenforceable and should either
be flagged as such or omitted. In Chapter 6 we discuss specific types of
the ability of a system to sustain a given load, the metrics used to
describe performance requirements, and performance requirements
related to networking and to specific domains of application. In Chapter 7
we go into detail about how to express performance requirements
clearly and how they can be managed.

One must be able to measure a system to see how it is functioning,
to identify hardware and software bottlenecks, and to determine
whether it is meeting performance requirements. In Chapter 8 we

Why Performance Engineering? Why Performance Engineers?16

describe performance measurement tools and instrumentation that can
help one do this. Instrumentation that is native to the operating system
measures resource usage (e.g., processor utilization and memory
usage) and packet traffic through network ports. Tools are available to
measure activity and resource usage of particular system components
such as databases and web application servers. Application-level meas-
urements and load drivers can be used to measure system response
times. We also discuss measurement pitfalls, the identification of incor-
rect measurements, and procedures for conducting experiments in a
manner that helps us learn about system performance in the most
effective way.

Performance testing is discussed in Chapter 9. We show how per-
formance test planning is linked to both performance requirements
and performance modeling. We show how elementary performance
modeling methods can be used to interpret performance test results
and to identify system problems if the tests are suitably structured.
Among the problems that can be identified are concurrent program-
ming bugs, memory leaks, and software bottlenecks. We discuss suit-
able practices for the documentation of performance test plans and
results, and for the organization of performance test data.

In Chapter 10 we use examples to illustrate the progression from
system understanding to model formulation and validation. We look
at cases in which the assumptions underlying a conventional perfor-
mance model might deviate from the properties of the system of inter-
est. We also look at the phases of a performance modeling study, from
model formulation to validation and performance prediction.

Scalability is a desirable attribute of systems that is frequently
mentioned in requirements without being defined. In the absence of
definitions, the term is nothing but a buzzword that will engender
confusion at best. In Chapter 11 we look in detail at ways of charac-
terizing the scalability of a system in different dimensions, for
instance, in terms of its ability to handle increased loads, called load
scalability, or in terms of the ease or otherwise of expanding its struc-
ture, called structural scalability. In this chapter we also provide exam-
ples of cases in which scalability breaks down and discuss how it can
be supported.

Intuition does not always lead to correct performance engineering
decisions, because it may be based on misconceptions about what
scheduling algorithms or the addition of multiple processors might
contribute to system performance. This is the reason Chapter 12, which
contains a discussion of performance engineering pitfalls, appears in

1.10  Summary 17

this book. In this chapter we will learn that priority scheduling does
not increase the processing capacity of a system. It can only reduce the
response times of jobs that are given higher priority than others and
hence reduce the times that these jobs hold resources. Doubling the
number of processors need not double processing capacity, because of
increased contention for the shared memory bus, the lock for the run
queue, and other system resources. In Chapter 12 we also explore pit-
falls in system measurement, performance requirements engineering,
and other performance-related topics.

The use of agile development processes in performance engineer-
ing is discussed in Chapter 13. We will explore how agile methods
might be used to develop a performance testing environment even if
agile methods have not been used in the development of the system as
a whole. We will also learn that performance engineering as part of an
agile process requires careful advance planning and the implementa-
tion of testing tools. This is because the time constraints imposed by
short sprints necessitate the ready availability of load drivers, measure-
ment tools, and data reduction tools.

In Chapter 14 we explore ways of learning, influencing, and telling
the performance story to different sets of stakeholders, including archi-
tects, product managers, business executives, and developers.

Finally, in Chapter 15 we point the reader to sources where more
can be learned about performance engineering and its evolution in
response to changing technologies.

1.10  Summary

Good performance is crucial to the success of a software system or a
system controlled by software. Poor performance can doom a system
to failure in the marketplace and, in the case of safety-related systems,
endanger life, the environment, or property. Performance engineering
practice contributes substantially to ensuring the performance of a
product and hence to the mitigation of the business risks associated
with software performance, especially when undertaken from the ear-
liest stages of the software lifecycle.

This page intentionally left blank

19

Chapter 2

Performance Metrics

In this chapter we explore the following topics:

•	 The essential role and desirable properties of performance metrics
•	 The distinction between metrics based on sample statistics and

metrics based on time averaging
•	 The need for performance metrics to inform us about the prob-

lem domain, and how they occur in different types of systems
•	 Desirable properties of performance metrics

2.1  General

It is essential to describe the performance of a system in terms that are
commonly understood and unambiguously defined. Performance
should be defined in terms that aid the understanding of the system
from both engineering and business perspectives. A great deal of time
can be wasted because of ambiguities in quantitative descriptions, or
because system performance is described in terms of quantities that
cannot be measured in the system of interest. If a quantitative descrip-
tion in a contract is ambiguous or if a quantity cannot be measured, the
contract cannot be enforced, and ill will between customer and sup-
plier may arise, leading to lost business or even to litigation.

Performance is described in terms of quantities known as metrics.
A metric is defined as a standard of measurement [Webster1988].

Performance Metrics20

The following are examples of metrics that are commonly used in eval-
uating the performance of a system:

•	 The response time is a standard measure of how long it takes a
system to perform a particular activity. This metric is defined as the
difference between the time at which an activity is completed and
the time at which it was initiated. The average response time is the
arithmetic mean of the response times that have been observed.

•	 The average device utilization is a standard measure of the pro-
portion of time that a device, such as a CPU, disk, or other I/O
device, is busy. For this metric to be valid, the length of time
during which the average was taken should be stated, because
averages taken over long intervals tend to hide fluctuations,
while those taken over short intervals tend to reveal them.

•	 The average throughput of a system is the rate at which the sys-
tem completes units of a particular activity.

The start and end times of the measurement interval over which an
average is taken should be stated, to enable the identification of a rela-
tionship between the values of performance metrics, to enable verifica-
tion of the measurements, and to provide a context for the measurements,
such as the load during the time at which they were taken.

The utilitarian philosopher Jeremy Bentham advocated economic
policies that would result in the greatest happiness for the greatest
number [Thomson1950, p. 30]. It is easy to define a standard metric for
the greatest number, but not for happiness. The user’s happiness with
a system cannot be easily characterized by a metric or set of metrics.
Webster’s Ninth New Collegiate Dictionary cites the statement that “no
metric exists that can be applied directly to happiness.” Debate about
metrics for happiness, the use of such metrics, and what constitutes
happiness continues to this day [Mossburg2009, Bok2010].

The values of some metrics are obtainable by direct measurement,
or else by arithmetic manipulation of measurements or of the values of
other metrics. For example:

•	 The average response time during a particular time interval [0,T]
is the arithmetic mean of the response times that were
observed during that interval. It is a sample statistic whose value
is given by

	 ∑=
=

R
N T

Ri
i

N T1
() 1

()

	 (2.1)

2.1  General 21

where N(T) ≥ 1 is the number of individual observations of
response times seen in [0,T]. Individual response times can be
obtained by direct measurement of transactions. For example, if
a transaction is generated by a load generation client, its response
time may be obtained by associating an initiation time stamp
with the transaction when it is created and comparing that time
stamp with the current time when the transaction has been com-
pleted. The average response time is obtained by adding the indi-
vidual response times to a variable that has been set to zero before
measurements were accumulated, and then dividing by the
number of recorded response times at the end of the run.

•	 The average utilization of a device may be obtained indirectly
from the average service time, if known, and the number of jobs
served during the observation period. Alternatively, it can be
obtained by direct measurement of the system and is usually
available directly from the host operating system. It is an example
of a time-averaged statistic, which is not the same thing as a sam-
ple statistic. Let us define the function U(t) for a single resource as
follows:

	 =U t t
t{() 1 if the resource is busy at time

0 if the resource is idle at time
	 (2.2)

	� Then, the average utilization of the resource during [0,T] is
given by

	 ∫=U
T

U t dt
T

1
()

0

	 (2.3)

In many computer systems, the processor utilization is obtained directly
by accumulating the amount of time the CPU is not busy, dividing that
by the length of the observation interval, and then subtracting that
result from unity. The time the CPU is not busy is the time it spends
executing an idle loop. The idle loop is a simple program of the form
“jump to me” that is executed when there is no other work for the
processor(s) to do. Thus, it executes at the lowest level of priority if the
operating system supports priority scheduling.

For multiprocessor systems, one must distinguish between the uti-
lizations of individual processors and the utilization of the entire set of
processors. Both are available from standard operating system utilities.
In Linux- and UNIX-based systems, these are available from mpstat and

Performance Metrics22

sar, or from system calls. In Windows XP, Windows 7, and related
systems, they may be obtained from perfmon or from system calls. The
utilizations of the individual processors would be obtained from
counters linked to individual idle loops. The utilization uCPU i, is the
measured utilization of the ith processor for 1 ≤ i ≤ p. The average
utilization of the entire set of processors in a host is given by

	 ∑=
=

U
p

uCPU CPU i
i

p1
,

1

	 (2.4)

Both the utilizations of the individual processors (or, in the case of mul-
ticore processors, the individual cores) and the total overall utilizations
of the processors can be obtained in the Linux, Windows, and UNIX
environments.

It is also possible to specify a metric whose value might not be
obtainable, even though the formula for computing it is well known.
For example, the unbiased estimator of the variance of the response
time corresponding to the data used in equation (2.1) is given by

	 ∑
=

−

−−
=S

R N T R

N TN T
kk

N T
()

() 1() 1
2

2 2

1

()

	 (2.5)

This metric is obtainable only if N(T) ≥ 2 and the sum of squares of the
individual response times has been accumulated during the experi-
ment, or if the individual response times have been saved. The former
incurs the cost of N(T) multiplications and additions, while the latter
incurs a processing cost that is unacceptable if secondary storage (e.g.,
disk) is used, or a memory cost and processing cost that may be unac-
ceptable if main memory or flash memory is used. This example illus-
trates the point that collecting data incurs a cost that should not be so
high as to muddy the measurements by slowing down the system
under test, a phenomenon known as confounding. As we shall see in the
chapters on measurement and performance testing, load generators
should never be deployed on the system under test for this reason.
Similarly, the resource costs associated with measurements should
themselves be measured to ensure that their interference with the work
under test is minimal. Otherwise, there is a serious risk that resource
usage estimates will be spuriously increased by the costs of the meas-
urements themselves. Measurement tools must never be so intrusive as
to cause this type of problem.

2.2  Examples of Performance Metrics 23

2.2  Examples of Performance Metrics

Having seen some examples of system characteristics that can be meas-
ured and some that cannot, let us examine the useful properties of per-
formance metrics in detail.

A performance metric should inform us about the behavior of the
system in the context of its domain of application and/or in the con-
text of its resource usage. What is informative depends on the point of
view of a particular stakeholder as well as on the domain itself. For
example, an accountant may be interested in the monthly transaction
volume of a system. By contrast, an individual user of the system may
be interested only in the response time of the system during a period
of peak usage. This means that the system must be engineered to han-
dle a set number of transactions per second in the peak hour. The latter
quantity is of interest to the performance engineer. It is of interest to
the accountant only to the extent that it is directly related to the total
monthly volume. If the two metrics are to be used interchangeably,
there must be a well-known understanding and agreement about the
relationship between them. Such an example exists in telephony. In the
latter part of the twentieth century, it was understood that about 10%
of the calls on a weekday occur during the busy hour. In the United
States, this was true of both local call traffic and long-distance traffic
observed concurrently in multiple time zones [Rey1983]. It is also
understood that the number of relevant business days in a month is
about 22. Thus, the monthly traffic volume would be approximately 22
times the busy hour volume, divided by 10%. For example, if 50,000
calls occur in a network in the busy hour, the number of calls per
month could be approximately estimated as 22 × 50,000/10% = 22 ×
500,000 = 11,000,000 calls. As we shall see in Chapter 5, this relation-
ship must be stated in the performance requirements if any require-
ment relies on it.

It is sometimes useful to distinguish between user experience
metrics and resource usage metrics. Examples of user experience
metrics include

•	 The response time of a system, as measured between two well-
defined events such as a mouse click to launch a transaction and
the time at which the response appears.

•	 The waiting time of a server or device. This is the server’s
response time minus its service time.

Performance Metrics24

Examples of resource usage metrics include

•	 Processor utilization, the percent of time that the processor is exe-
cuting. This can include the utilization in user mode, and the uti-
lization in system, privileged, or kernel mode, when operating
system functions are being executed.

•	 Bandwidth utilization. This is the number of bits per second at
which data is being transmitted, divided by the maximum
available bandwidth.

•	 Device utilizations of any kind.
•	 Memory occupancy.

Other metrics may be related to revenue, such as the number of calls
per hour handled at a telephone switch or the number of parcels per
hour handled by a conveyor system in a parcel distribution center or
post office.

2.3  Useful Properties of Performance Metrics

Lilja has identified the following useful properties of performance met-
rics [Lilja2000]:

•	 Linearity. If a metric changes by a given ratio, so should the perfor-
mance it quantifies. For example, if the average response time is
decreased by 50%, the user should experience a drop in response
time of 50% on average. Similarly, if the measured CPU utiliza-
tion drops by 50%, this means that the processor load has actually
dropped by 50%. The same is true for throughput and offered
load. By contrast, loudness is measured in decibels (dB), which
are on a base-10 logarithmic scale rather than a linear one. The
Richter scale for earthquakes is also on a base-10 logarithmic scale.
This means that a magnitude 5 earthquake is ten times as forceful
as a magnitude 4 earthquake. Thus, the metrics for noise volume
and earthquake force are nonlinear. It is therefore more difficult
to intuitively grasp the impacts of changes in their value. A mag-
nitude 5 earthquake could cause disproportionately more destruc-
tion than one of magnitude 4. On the other hand, the linearity of
processor utilization means that reducing it by half enables the
offered load on the processors to be doubled, provided (and only

2.3  Useful Properties of Performance Metrics 25

provided) that no other system resource will be saturated as a
result.

•	 Reliability. A metric is considered reliable if System A outper-
forms System B whenever the metric indicates that it does.
Execution time is a reliable indicator of performance at a spe-
cific load, but clock speed and instruction rate are not, because
a processor with a higher clock speed might be connected to a
memory bank with a slower cycle time than a processor with a
lower clock speed, while instruction sets can vary from one pro-
cessor to the next.

•	 Repeatability. If the same experiment is run two or more times
on the same system under identical configurations, the metrics
that are obtained from the experiments should have the same
value each time.

•	 Ease of measurement. A metric is particularly useful if it can
be obtained directly from system measurements or simply
calculated from them. If the collection of a metric is diffi-
cult, the procedure for doing so may be prone to error. The
result will be bad data, which is worse than no data because
incorrect inferences about performance could be drawn
from it.

•	 Consistency. A metric is said to be consistent if its definition and
the units in which it is expressed are the same across all sys-
tems and configurations. This need not be true of the instruc-
tion rate (often expressed in MIPS, or million instructions per
second) because a processor with a reduced instruction set
(RISC) may require more instructions to execute the same
action as a processor with a complex instruction set (CISC). For
example, a Jump Subroutine (JSR) instruction, which pushes a
procedure’s activation record onto the runtime stack, may be
present in a stack-oriented CISC machine but not in a RISC
machine. Hence, a procedure call takes more instructions in a
RISC machine than in a CISC machine with a JSR instruction.
Using MIPS to compare RISC and CISC machines may be
misleading.

•	 Independence. A metric should not reflect the biases of any stake-
holder. Otherwise, it will not be trusted. For this reason, MIPS
should not be used to compare processors with different instruc-
tion sets.

Performance Metrics26

More than one metric may be needed to meaningfully describe the per-
formance of a system. For online transaction processing systems, such as
a brokerage system or an airline reservation system, the metrics of inter-
est are the response times and transaction rates for each type of transac-
tion, usually measured in the hour when the traffic is heaviest, sometimes
called the peak hour or the busy hour. The transaction loss rate, that is, the
fraction of submitted transactions that were not completed for whatever
reason, is another measure of performance. It should be very low. For
packet switching systems, one may require a packet loss rate of no more
than −10 6 or −10 8 to avoid retransmissions. For high-volume systems
whose transaction loss rates may be linked to loss of revenue or even loss
of life, the required transaction loss rate might be lower still.

We see immediately that one performance metric on its own is not
sufficient to tell us about the performance of a system or about the qual-
ity of service it provides. The tendency to fixate on a single number or to
focus too much on a single metric, sometimes termed mononumerosis, can
result in a poor design or purchasing decision, because the chosen metric
may not reflect critical system characteristics that are described by other
metrics. For a home office user, choosing a PC based on processor clock
speed alone may result in disappointing performance if the main mem-
ory size is inadequate or if the memory bus is too slow. If the memory is
too small, there is a substantial risk of too much paging when many
applications are open or when larger images are being downloaded, no
matter how fast the CPU. If the memory bus is too slow, memory accesses
and I/O will be too slow. The lessons we draw from this are:

1.	 One cannot rely on a single number to tell the whole story
about the performance of a system.

2.	 A description of the performance requirements of a system
requires context, such as the offered load (job arrival rate), a
description of what is to be done, and the desired response time.

3.	 A performance requirement based on an ill-chosen single
number is insufficiently specific to tell us how well the system
should perform.

2.4  Performance Metrics in Different Domains

We now illustrate how performance metrics arrive in different problem
domains. When the corresponding systems are computer controlled,
many of the domain-specific metrics correspond to performance

2.4  Performance Metrics in Different Domains 27

metrics commonly used in computer systems such as online transac-
tion processing systems.

2.4.1  Conveyor in a Warehouse

Figure 2.1 shows a conveyor system in a warehouse. Parcels arrive at
the point marked Induct and are routed to one of the four branches.
The conveyor system is controlled by program logic controllers
(PLCs) that communicate with each other and with the outside world
via a tree-structured network. Each parcel has a bar code that is read
by a scanner. Once a parcel’s bar code is read, the routing database
(MFC DB) is queried to determine the path the parcel should follow
through the system. The PLCs at the junctions, known as diverts,
route the parcels accordingly as they pass sensors placed strategi-
cally alongside the conveyor. The PLCs also monitor the status of
various pieces of the conveyor and send notifications of malfunc-
tions or that all is well to a status monitoring system. The entire
system must be able to stop abruptly if anyone pulls a red emer-
gency cord.

Domain-related performance metrics include

•	 The number of parcels per second at each point on the conveyor,
including at the bar code scanner

•	 The speed of the conveyor, for example, 2 meters per second
•	 The distance between parcels, and the average length of each

parcel
•	 The query rate of the parcel routing database

MFC
DB

Bar Code Scanner

Induct

Figure 2.1  A conveyor system

Performance Metrics28

•	 The response time of the parcel routing database
•	 Message rates and latencies between PLCs
•	 Volume of the status monitoring traffic, along with the corre-

sponding message delivery times
•	 Status notification time, that is, the time from a change of status

to its notification on a display
•	 The time from the pulling of an emergency cord to the shut-

down of the entire conveyor line

Some of these metrics are related to one another. The database
query rate is a function of the number of parcels passing the bar code
scanner each second. This in turn is determined by the length of the par-
cels in the direction of travel, the distance between them, and the speed
of the conveyor. The message rates between the PLCs are determined
by the parcel throughput and by the volume of status monitoring traf-
fic. The latencies between the PLCs depend on the characteristics of the
PLCs, the message rates through them, the available network band-
width, the bandwidth utilization, and the characteristics and topology
of the network connecting them. For the system to function correctly,
the PLCs, the routing database, and the local area network connecting
them must be fast enough to set the diverts to route the parcels cor-
rectly before each one arrives there. The faster the conveyor moves the
parcels and/or the closer the parcels are together, the shorter the com-
bined time that is allowed for this.

2.4.2  Fire Alarm Control Panel

One or more fire alarm control panels are connected to a network of
smoke sensors, alarm bells and flashers, door-closing devices, ventila-
tion dampers, and the like. The control panels may be connected to
each other. Control panels are installed at locations known to the local
fire department and contain display panels whose function is also
known to the fire department. Each control panel has a display and
buttons for triggering resets, the playing of evacuation announcements,
and so on. The National Fire Alarm Code [NFPA2007, Section 6.8.1.1]
specifies that “actuation of alarm notification appliances or emergency
voice communications, fire safety function, and annunciation at the
protected premises shall occur within 10 seconds after the activation of
an initiating device” [NFPA2007]. The performance metrics of interest
include, but may not be limited to,

2.4  Performance Metrics in Different Domains 29

•	 The time from the activation of an initiating device (such as a
smoke detector or a pull handle) to the time to sound the first
notification appliance (such as strobe lights, gongs, horns, and
sirens)

•	 The time to process the first A alarms coming from the first D
devices to the time to activate N notification appliances

•	 The rates at which devices send messages to an alarm panel
•	 The rates at which alarm control panels in different parts of the

protected premises send messages to each other
•	 The time to reset a fire alarm control panel once the reset button

has been pushed

Notice that the set of metrics of interest here is determined by local
codes and regulations as well as by the nature of the supporting con-
figuration. Notice also that the set of metrics does not include average
response times of any kind. In this application, it is not the average that
matters, but the time to complete a specific set of tasks. We shall discuss
this more in Section 2.7.

2.4.3  Train Signaling and Departure Boards

In a metropolitan train network, trains move from one segment of track
to the next and from one station to the next. The position of each train
is displayed on a rail network map in the signal control room or signal
box. The times to the arrivals of the next few trains and their destina-
tions are displayed on monitors on each platform in each station, as
well as on monitors elsewhere in each station, such as at the tops and
bottoms of escalators. The information displayed differs from station to
station. Metrics describing performance objectives might include

•	 The time from a train moving past a sensor to the completion of
the corresponding information update on the monitors in the
stations

•	 The time from a train moving past a sensor to the completion of
the corresponding information update on the rail network map

Metrics describing load and performance requirement drivers might
include

•	 The number of train movements per minute.
•	 The speed of each train in each segment of track.

Performance Metrics30

•	 The average time from arrival to departure of a train at each
station, including the time for passengers to board and alight.
The value of this metric depends on the station and the time of
day. It will take longer for passengers to alight and board dur-
ing the rush hour at Times Square in New York, Oxford Circus
in London, or Marienplatz in Munich than at the ends of the
corresponding lines at midnight.

•	 The number of trains en route or at intermediate stations.
•	 The number of stations to be notified about each train.
•	 The travel time between stations.

Some of these metrics are related to one another. One must take this
into account when computing their values. For instance, the time
between stations is a decreasing function of the train speed, provided
there are no other variables to take into account.

2.4.4  Telephony

There is a long tradition of performance evaluation in the field of tele-
communications. Teletraffic engineers use the terms offered load and car-
ried load to distinguish between the rate at which calls or transactions
are offered to the network and the rate at which they are actually
accepted, or carried [Rey1983]. One would like these figures to be iden-
tical, but that is not always the case, particularly if the network is over-
loaded. In that case, the carried load may be less than the offered load.
This is illustrated in Figure 2.2. The line y = x corresponds to the entire
offered load being carried. In this illustration, the offered load could be
carried completely only at rates of 300 transactions per second or less.
The uncarried transactions are said to be lost. The loss rate is 1 – (carried
load/offered load). The carried load is sometimes referred to as the
throughput of the system. The rate at which successful completions
occur is sometimes called the goodput, especially in systems in which
retries occur such as packet networks on which TCP/IP is
transported.

2.4.5  An Information Processing Example: Order Entry and
Customer Relationship Management

A clothing or electronics vendor may sell goods to customers who
visit a store in person, who place orders over the phone, or who
order online. Order tracking and the handling of complaints entail

2.4  Performance Metrics in Different Domains 31

the retrieval of customer sales records, whether the customer com-
plains in person, on the phone, or online. During quiet periods,
reports are generated to track the number of items of each type that
were ordered, the number of shipments completed, the number of
complaints associated with each catalog item, the number of orders
entered, and the like.

For online transactions triggered by a customer or a company rep-
resentative, metrics describing performance objectives might include

•	 The response times of online searches of each type (shop for an
item, order tracking, lists of prior orders)

•	 The response times of order placement transactions
•	 The response times of transactions to enter a complaint
•	 The times to display dialog pages of any kind
•	 The number of agents and customers who could be simultane-

ously engaging in transactions of any kind
•	 The average number of times in the peak hour that each type of

transaction succeeds or fails

T
ra

ns
ac

tio
ns

/s
ec

100,100

400,400

400,316

Carried Load
(y<=x)

Offered Load (transactions/sec)

Offered Load (y=x)

450

400

350

300

250

200

150

100

50

0
50 100 150 200 250 300 350 400 4500

200,200

Actual TPS
y=x

300,300

Figure 2.2  Offered and carried loads (transactions per second, or TPS)

Performance Metrics32

Measures of demand would include

•	 The average number of times in the peak hour that each type of
transaction occurs

•	 The average number of items ordered per customer session
•	 The duration of a customer session

For overnight, weekly, and monthly reports, a performance objective
might be the completion of a report by the time the head office opens in
the morning. To this end, performance measures might include

•	 The time to complete the generation of a report of each type

Measures of demand might include

•	 The number of entries per report
•	 The number of database records of each type to be traversed

when generating the report

2.5  Examples of Explicit and Implicit Metrics

A metric may contain an explicit description of the load, or an implicit
one. An explicit metric contains complete information about what it
describes. The average number of transactions per second of a given
transaction type is an explicit metric, as is the average response time of
each transaction of each type. By contrast, the number of users logged in
describes the offered load only implicitly. The number of users logged in
is an implicit metric because the average number of transactions per sec-
ond of each type generated by the average user is unspecified. In the
absence of that specification, any requirement or other description
involving the number of users logged in is ambiguous and incomplete,
even if it is possible to count the number of users logged in at any instant.
For example, a news article about the poor performance of the US gov-
ernment health insurance brokerage web site, healthcare.gov, under test
did not say whether the users were trying to enroll in the system, check
on enrollment status, or inquire about available coverage [Eilperin2013].

2.6  Time Scale Granularity of Metrics

To avoid ambiguity, the time scale within which an average metric is
computed should be stated explicitly. An average taken over 24 hours

2.7  Performance Metrics for Systems with Transient, Bounded Loads 33

or over a year will be very different from one calculated from
measurements taken during the peak hour. This is true whether one is
measuring average response times or average utilizations.

It is much easier to meet a requirement for the average response time
taken over a whole year than it is to meet the requirement during the busy
hour, when it really matters. When one averages response times over a
whole year, the short response times during quiet periods compensate for
unacceptably high response times during the peak hour. Performance
requirements should be specified for the peak hour, because it is that hour
that matters the most in almost all applications. Moreover, if delay require-
ments can be met under heavy load, it is quite likely that they can also be
met under light load unless there is a severe quirk in the system.

CPU utilizations tend to fluctuate over short periods of time
depending on the amount of activity in the system. Even if the load is
light, the CPU will appear to be 100% busy at times if observations are
taken over intervals that are short enough. That means that the average
utilization must be computed over time intervals that are long enough
to be meaningful. As a rule of thumb, it is useful to collect measure-
ments over 5- or 10-second intervals when testing performance in the
lab, but over intervals of 1 or 5 minutes in production environments.
Measurements should be taken over shorter intervals when it is neces-
sary to relate spikes in resource usage to the inputs or outputs of the
system under test or to the activities of particular processes or threads.

2.7  Performance Metrics for Systems with Transient,
Bounded Loads

In some types of systems, the average value of a performance measure
is less important than the amount of time required to complete a given
amount of work. Let us consider a human analogy. During the intermis-
sion at a theater, attendees may wish to obtain refreshments at the bar.
It is understood that attendees seated closest to the bar will get there
first, and that very few attendees, if any, will leave their seats before the
applause has ended. The average time to obtain a drink is of less impor-
tance than the ability to serve as many customers as possible early
enough to allow them to consume what they have bought before the
intermission ends, especially since refreshments may not be brought
into the auditorium. It follows that the performance metrics of interest
here are (1) the time from the beginning of the intermission until the
time at which the last customer queueing for refreshments leaves the

Performance Metrics34

bar after paying and (2) the number of customers actually served dur-
ing the intermission. If service expansion is desired, the bar manager
may also be interested in the number of customers who balked at queue-
ing for a long time at the bar, perhaps because they thought that they
would not have time to finish their drinks before the end of the inter-
mission. If each customer queues only once, the number of customers
requesting drinks is limited by the number of tickets that can be sold.

In some network management systems, large batches of status poll-
ing requests are issued at constant intervals, for example, every
5 minutes [Bondi1997b]. Status polls are used to determine whether a
remote node is operational. They are sometimes implemented with a
ping command. If the first polling attempt is not acknowledged, up to
N - 1 more attempts are made for each node, with the timeout interval
between unacknowledged attempts doubling from an initial value of
10 seconds. If the Nth message is unacknowledged, the target node is
declared to be down, and an alarm is generated in the form of a red icon
on the operator’s screen, a console log message, and perhaps an audi-
ble tone. If the nth message is acknowledged by the target ≤n N(), the
corresponding icon remains green. For =N 4 (as is standard for ICMP
pings), the time to determine that a node is down is at least
150 seconds.

In an early implementation of a network management system, no
more than three outstanding status polling messages could be unac-
knowledged at any one time. This limitation is not severe if all polled
nodes are responsive, but it causes the system to freeze for prolonged
periods if there is a fault in the unique path to three or more nodes,
such as a failed router in a tree-structured network. The rate at which
status polling messages can be transmitted is the maximum number of
outstanding polls divided by the average time to declare whether a
node is either responsive or unresponsive. If many nodes are unre-
sponsive, the maximum rate at which polling messages can be trans-
mitted will be extremely limited. To ensure timely monitoring of node
status, such freezes are to be avoided. A method patented by the author
[Bondi1998] allows an arbitrary number of status polling messages to
be unacknowledged at any instant. This allows the polling rate to be
increased markedly, while avoiding polling freezes.

What metrics should be used to compare the performance of the
original polling mechanism with that of the proposed one? For each
polling request, the performance measure of interest is the time taken
from the scheduling of the batch to the time at which the first attempt
on this round is transmitted. If B nodes are being polled in a batch, one

2.9  Exercises 35

performance measure of interest is the total time to transmit all B first
attempts, as this is the time to transmit the last of the batch from the
initiation of a polling interval. It is shown in [Bondi1997b] that the pro-
posed method performs much better than the original method whether
the probability of a node being unresponsive is high or low.

2.8  Summary

In this chapter we have seen that performance should be quantified
unambiguously in terms of well-defined, obtainable metrics. We have
also described useful properties that these metrics should have, such as
repeatability and reliability. We have also briefly examined situations
where average values of measures are useful, and those in which it is
more meaningful to look at the total amount of time taken to complete
a specified amount of work. We shall explore these points further in the
chapters on performance requirements and performance testing.

2.9  Exercises

2.1.	 Why is the number of users logged into a system an unreliable
indicator of demand? Explain.

2.2.	 Identify the performance metrics of a refreshment service that
is open only during class breaks or breaks between sessions at
a conference.

2.3.	 A large corporation has introduced a web-based time sheet
entry system. The head of the accounts department has speci-
fied that the system should support 1 million entries per month.
There are 50,000 potential users of the system. Company policy
stipulates that time entries shall be made at the end of each
working day. Is the number of entries per month a metric of
interest to system developers? Why or why not? Explain.

This page intentionally left blank

37

Chapter 3

Basic Performance
Analysis

This chapter contains an overview of basic performance laws and
queueing models of system performance. Among the topics dis-
cussed are

•	 Basic laws of system performance, including the Utilization Law
and Little’s Law

•	 Open and closed queueing network representations of systems,
and performance models to analyze them

•	 Product form queueing networks and Mean Value Analysis
•	 Loss systems
•	 The relationship between performance modeling principles

and the formulation of performance requirements
•	 The use of performance models to inform the interpretation of

performance measurements and performance test results

3.1  How Performance Models Inform Us about Systems

Performance models of computer systems are used to predict system
capacity and delays. They can also be used to predict the performance
impact of changes such as increasing or decreasing demand, increasing

Basic Performance Analysis38

the numbers of processors, moving data from one disk to another, or
changing scheduling rules. Even if a performance model does not pre-
dict response times or system capacity accurately, it can be used to
inform us about qualitative trends in performance measures as a func-
tion of the offered load and of the device characteristics. For example,
basic laws tell us that device utilizations, including processor utiliza-
tions, are linear functions of the offered load. They also tell us that aver-
age performance measures should be constant as long as the average
load is constant. The failure of a system to conform to these laws should
be investigated, because it is usually a sign of a flaw in the implementa-
tion or a consequence of how the system is operated or used.
Performance models can also tell us whether performance require-
ments are achievable while helping us to identify the maximum load
level for which a performance test will be meaningful. Thus, we build
performance models not only for predictive purposes, but also to help
us understand whether and why a system might be deviating from
expected behaviors.

In this chapter we shall describe how to quantify the performance
characteristics of queues and show how to carry out basic performance
modeling. After describing basic laws relating to the performance
measures of queues, we shall examine a single queue in isolation. We
then go on to describe the modeling of networks of queues. Our descrip-
tion of the behavior and modeling of queues will be qualitative and
intuitive. The reader will be referred to the literature for detailed math-
ematical derivations of many of the models.

3.2  Queues in Computer Systems and in Daily Life

Many systems we encounter in daily life can be thought of as collec-
tions of queues. Whether lining up for lunch at a cafeteria, to enter a
museum, to clear security and board a plane, to pay a road toll, or to
use a cash dispenser, we all encounter queues. Even those who provide
services may have to queue. For example, at some air terminals and
railway stations, taxis have to queue for passengers, and waiters and
waitresses fetching beer at Munich’s Oktoberfest must queue at beer
dispensing points to obtain drinks for their customers.

Computer systems usually contain abstract representations of
queues for resources as well. Some of these may be for hardware objects
such as processors, I/O devices, and network transmission devices.

3.3  Causes of Queueing 39

Others may be for software objects such as locks, database records,
thread pools, and memory pools. Schedulers may contain separate
queues for those threads or processes wishing to read an object (the
readers) and those wishing to modify it (the writers). Separate queues
are required for readers and writers because readers may share the
object, but each writer must have exclusive access to it, without sharing
the object with readers or with other writers. Some abstract objects,
including processors, may have schedulers that give some classes of
processes or threads priority over others.

3.3  Causes of Queueing

Queueing for service occurs when a job or customer arriving at a server
finds the server busy or otherwise unavailable, such as for maintenance
or repair. If the server is available on arrival, service can begin immedi-
ately. If the calculated utilization of a server is less than one—that is, if
the time between arrivals is greater than the service time, and both
times are constant for all customers—queueing will not occur.

If both the service time and the time between arrivals (also called
the interarrival time) are constant, queueing will not occur provided that
the interarrival time is greater than the service time. To see this, notice
that if this condition holds, service will have been completed before the
next arrival occurs, because it begins immediately. This is illustrated in
Figure 3.1.

If the interarrival times vary while the service time remains con-
stant, queueing can occur because the next arrival could occur before
the customer in service leaves. This is illustrated in Figure 3.2.

Similarly, if the interarrival times are constant while the service
time varies, queueing can occur, because the customer currently in ser-
vice could be there at the time the next arrival occurs. This is illustrated
in Figure 3.3.

If both the interarrival time and the service time vary, even more
queueing will occur. This is illustrated in Figure 3.4.

If at least one (and possibly both) of the mean service time or arrival
rate (i.e., the reciprocal of the average interarrival time) increases to the
point where the calculated server utilization exceeds 100%, queueing
will occur whether or not the service time and interarrival time are
constant, and an unceasing backlog will build up unless customers are
dropped or go away because there is no place for them to wait.

Basic Performance Analysis40

Number
Present

TimeArrivals

Departures

Figure 3.1  Evolution of number present with constant service and interarrival time

Number
Present

Time

Arrivals Departures

Figure 3.2  Evolution of number present with variable interarrival and constant
service times

Number
Present

TimeArrivals

Departures

Figure 3.3  Evolution of a queue’s length with constant interarrival and variable
service times

3.3  Causes of Queueing 41

The variability of the service and interarrival times may be charac-
terized by the variances and higher-order moments of their respective
distributions. For most performance engineering purposes, it is usually
sufficient to characterize the distributions by their means (average
values), variances, and their coefficients of variation. The coefficient of
variation is the standard deviation or the square root of the variance
divided by the mean.

Variability in either or both the service time and interarrival time is
sufficient for queueing to occur. In principle, queueing can be reduced
by reducing any one of these factors on its own, provided that the
server is not overloaded because the arrival rate exceeds the service
rate. Service time variability is usually inherent in the nature of the
work to be done. Interarrival time variability has many possible causes,
including but not limited to arrivals in bulk and interdeparture time
variability from one or more servers upstream.

We close this section with some formal definitions:

•	 The interarrival time is the time between the successive arrivals of
two customers or jobs at a queue. It may be constant, or it may
vary randomly.

•	 The arrival rate is the reciprocal of the average interarrival time.
•	 The service time is the time a customer spends being served

upon reaching the head of the queue.
•	 The service rate is the reciprocal of the average service time.

Number
Present

TimeArrivals

Departures

Figure 3.4  Evolution of a queue’s length with variable interarrival and service times

Basic Performance Analysis42

3.4  Characterizing the Performance of a Queue

A queue consists of a waiting line with a server at its head and a stream of
customers or jobs arriving for service. In everyday life, the customers may
be people wishing to complete a transaction. In a computer, the custom-
ers may be processes, threads, data packets, or other abstract objects
awaiting the use of a resource. A single-server queue is shown in Figure 3.5.

The following are examples of the occurrence of single-server
queues:

•	 Processes contending for a single CPU are placed in a run queue
or ready list.

•	 Processes issuing read or write requests at a particular device,
such as a disk, are placed in an I/O queue.

•	 Arriving packets are placed in an input buffer, while those
awaiting transmission are placed in an output buffer.

Sometimes multiple parallel servers are present, as would be the case
with parallel processors, a uniprocessor with multiple cores, or multi-
ple windows in a bank or post office fed by a single queue. A single
queue with multiple servers in parallel is illustrated in Figure 3.6.

Finally, one or more servers may be fed by multiple queues of cus-
tomers. The queues may contain different classes of customers. The
customers may have different classifications, such as priority or status.
In many computer systems, jobs completing I/O are given priority for
processing over other jobs so that the I/O buffer, a scarce resource, can
be freed. Many airlines have separate boarding queues for their fre-
quent fliers and for business-class customers, and the immigration
halls at airports in the European Union have separate queues for EU
passport holders and non–EU citizens.

A queue’s performance may be characterized by the following
variables:

•	 The arrival rate, sometimes denoted by A or l.
•	 The throughput, often denoted by X. Since jobs may be lost, we

have λ≤X . Ideally, jobs are not lost, and the throughput equals
the arrival rate.

•	 The mean service time, sometimes denoted by S or 1/μ, where
μ is the mean service rate.

•	 The response time, which is the length of time from a job’s
arrival to its service completion. The response time is the

3.4  Characterizing the Performance of a Queue 43

duration of the job’s sojourn at the server. Hence, it is some-
times called the sojourn time.

•	 The waiting time, which is defined as the length of time between
a job’s arrival and the time at which it begins service.

•	 The queue length, that is, the number of jobs present in the sys-
tem, including the number in service.

•	 The traffic intensity ρ λ µ λ= =/ S. The traffic intensity is a
measure of the load offered to the system. For example, if a
transaction has a mean service time of 3 seconds (3)=S , the traf-
fic intensity is 0.9 when the arrival rate is 0.3 transactions per
second λ =(0.3), and 0.3 when the arrival rate is 0.1 transactions
per second λ =(0.1). Usually, higher traffic intensity means a
longer delay for service, because the queue is longer. For a
single-server queue, if the traffic intensity is greater than or
equal to one ρ ≥(1), the server cannot keep up with demand,
and the average waiting time is undefined because each arriv-
ing job waits longer than the previous one.

•	 The utilization U. This is the proportion of time that the server
is busy. In systems in which jobs are not lost, the utilization and
traffic intensity are the same; thus ρ= .U If jobs can be lost, the
utilization may be less than the traffic intensity, and ρ≤ .U

Arrivals
Server Departures

Queue

Figure 3.5  A single-server queue

Arrivals
Server1 Departures

Queue

Server0

Server2

Figure 3.6  A single queue with multiple servers at its head

Basic Performance Analysis44

In practice, one usually refers to the averages of these values during
a particular time interval. As we saw in Chapter 2, the average response
time and average waiting time are sample statistics, while the average
arrival rate, average queue length, and average utilization are all time-
averaged statistics.

The load on a server is described by the job arrival rate, the mean
service time per job, and the distributions of the service and interarrival
times. Sometimes there is a single server at the head of the queue.

The server utilization ranges from 0% to 100%. If the server’s pre-
dicted utilization is greater than or equal to 100%, the rate at which jobs
arrive will exceed the maximum rate at which they can depart, and the
server is said to be saturated. Then, the average queue length, average
response time, and average waiting times are undefined, as the queue
length and response time will steadily increase over time until the
arrival process stops, until the memory allocated for the arriving jobs is
exhausted, or until the system crashes for whatever reason, whichever
comes first.

The order in which customers are served is called the queueing dis-
cipline. There are many queueing disciplines. Among the most common
ones in computer systems are the following:

•	 First Come First Served (FCFS). In this case, jobs are served in the
order in which they arrive, once the job in service has been com-
pleted. FCFS is sometimes referred to as First In First Out (FIFO).

•	 Last Come First Served (LCFS), in which the most recently
arriving job is served next, once the job in service has been com-
pleted. LCFS is sometimes referred to as Last In First Out (LIFO).

•	 Last Come First Served Preemptive Resume (LCFSPR), in which
the most recently arriving job preempts the job in service and is
served to completion, at which point the interrupted job
resumes being served.

•	 Time slicing or Round Robin. In many operating systems, jobs
are given a maximum amount of processing time before a timer
interrupt forces them to cede control of the processor to the next
job in the CPU queue. The preempted job goes to the back of the
queue and only executes once it reaches the front. The effect is
to smooth the impact of highly variable processing times among
jobs. This smoothing does not come without a cost, as the con-
text of the interrupted job must be saved and that of the resum-
ing or starting job loaded into registers with every interruption
[Habermann1976].

453.5  Basic Performance Laws: Utilization Law, Little’s Law

•	 Processor Sharing (PS). In the limit as the duration of the time
slice tends to zero, all n jobs present at the server receive service
at 1/n times the service rate. Thus, if the service rate is m,
the service rate per job when n jobs are present is / .µ n Since n
jobs are receiving service concurrently, the overall service rate
(the reciprocal of the average service time) is / .µ = µn n

Notice that the order in which jobs or transactions are processed does
not affect the traffic intensity or server utilization. If the server can keep
up with arriving transactions and transactions are not lost, work is
conserved.

3.5  Basic Performance Laws: Utilization Law,
Little’s Law

There are basic laws that relate to the performance measures of a queue.
Bearing these laws in mind can help tell us whether performance
requirements are achievable and whether performance measurements
are realistic. If the numerical parameters of the performance require-
ments do not conform to the laws, the requirements are unrealistic and
unachievable. If the performance measurements do not conform to the
basic performance laws, they should be regarded as suspect and the
instrumentation investigated. For example, some versions of perfmon,
the performance monitoring tool supplied with the Windows XP and
NT operating systems, can produce measured disk utilizations that
exceed 100%. This data should be treated with suspicion and an alter-
native measurement used where it is available [Willis2009].

3.5.1  Utilization Law

The first law we consider is the Utilization Law. It relates completion
rate, average service time, and utilization. The Utilization Law states
that the average utilization of a single server is its throughput multi-
plied by the average service time. Thus,

	 =U XS	 (3.1)

Changing the queueing discipline does not change the average server
utilization, because arriving jobs will always be served unless the
server is saturated. This is similar to the principle of conservation of
work in physics.

m

m m

Basic Performance Analysis46

Example. We are told that three transactions per second arrive at a proces-
sor, and that the average service time is 100 msec per transaction. What is
the utilization?
Solution. The average utilization of this server is 3 × .01 = 0.3.

Example. The measured utilization of a device with a transaction rate of
100 jobs per second is 90%. What is the average service time?
Solution. Applying the Utilization Law, we have

= = = × =−0.9
100

9 10 sec 9msec per job3S
U
X

Example. The average service time per transaction at a device is 10 msec.
What is the maximum transaction rate that the device should be expected
to handle?
Solution. We require that the utilization always be less than 100%. Thus,
we require that

	 1= <U XS 	 (3.2)

Hence, we must have

	 < = × =−1/ 1/(10 10) 100 transactions per second3X s 	

We usually require that the average utilization of any device should not
exceed 80% to avoid saturation. In that case, we require that

	 < = × =−0.8/ 0.8/(10 10) 80 transactions per second3X S 	

As we shall see in Section 3.6, the reason for this requirement is that the
average response time is highly sensitive to changes in the offered load
when the utilization exceeds this level. A system should not be engi-
neered to operate at higher utilizations because users desire that
response times be stable.

When interpreting the utilizations reported by measurement tools,
it is important to consider the time scale over which their average val-
ues have been computed, and how the measurements were obtained.
The utilizations of central processing units are often obtained by meas-
uring the fraction of time that an idle loop is executing and subtracting
that value from 100%. An idle loop is a process or thread of lowest
priority that executes only when there is no other work for the proces-
sor to do. For sufficiently short measurement intervals, the resulting

473.5  Basic Performance Laws: Utilization Law, Little’s Law

CPU utilization could appear to be 100%. Taking averages over inter-
vals that are too short will reveal higher variability in the value of the
measurement, which may be regarded as a noisy signal. Taking an
average over a longer interval will usually yield a lower measured
average value, with a less noisy signal.

3.5.2  Little’s Law

Little’s Law relates the average response time, average throughput, and
average queue length. Note that these are all time-averaged quantities.

Little’s Law describes the average number of jobs or customers that
are present and waiting at a server. It states that

	 =n XR	 (3.3)

where n is the average queue length, X is the average throughput, and R
is the average response time [Little1961]. The variables on the right-hand
side are jobs passing through in unit time and time. Thus, the dimension
on the left-hand side is the number of jobs in the queue. Since jobs either
arrive or depart one at a time, the number present increases or decreases
one at a time. This is sometimes referred to as one-step behavior.

Figure 3.7 illustrates this evolution. Without loss of generality, sup-
pose that the queueing discipline is FCFS, and that the queue is initially

Queue
Length

A3 R3 R4

R2

R1 R2 R4

R3

D2

A4

A2

A1

Observation Interval [0, T]

0

1

2

3

D3

D4

T Time

R2
R3

R4

R1

Figure 3.7  Evolution of the queue length over time

Basic Performance Analysis48

empty and the server initially idle. At arrival instant A1, the number of
jobs present increases from 0 to 1. Since the first job finds the system
empty and idle, it leaves after time R1. The second job to arrive arrives
at A2 and has response time R2. Its arrival causes the number of jobs
present to increase from 1 to 2, and job 3’s arrival causes the queue length
to increase from 2 to 3. Job 1’s departure causes the queue length to drop
by one. Now, the average queue length in the time interval [0,T] is equal
to the area under the graph divided by T. A step up on the graph corre-
sponds to the arrival of a job, while a step down corresponds to a depar-
ture. The time between a step up and a corresponding step down is the
response time of a job. Hence, the area under the graph is the sum of the
response times. The throughput is the number of jobs that both arrived
and completed during the time interval [0,T], which we denote by C.

Now, the average response time is given by

	 ∑=
=

1

1

R
C

Ri
i

C

	 (3.4)

The average throughput in the observation period [0,T] is given by

	 = X
C
T

	 (3.5)

The average is the area under the queue length graph divided by the
length of the observation period. This is the sum of the response times
divided by the length of the observation period T. Hence,

	
∑ ∑ ∑

= = = = == = =1 1 1n
R

T
C
C

R

T
C
T

R

C
XR

i
i

C

i
i

C

i
i

C

	 (3.6)

as we desired to show.
If the server is replaced by a faster one, we expect both the average

response time and the mean queue length to decrease. The reverse is
true if the server is replaced by a slower one. Intuitively, a faster server
should have both shorter response times and average queue lengths
given the same arrival rate. One can infer this linkage by an inspection
of Figure 3.7. The server utilization is the fraction of time that the server
was busy. In this example, the first arrival occurred at time A1, and the
last departure occurred at time D4. The server was idle from time 0 to

3.6  A Single-Server Queue 49

time A1 and from time D4 to time T. Therefore, the utilization of the
server in this example is

	
4 1= −

U
D A

T
	 (3.7)

A longer average service time corresponds to a higher utilization, and
also to a longer time between the first arrival and the last departure, as
illustrated in the first exercise at the end of the chapter.

3.6  A Single-Server Queue

Suppose that a single server is fed by an arrival stream. If the service
times are fixed, and the times between arrivals are also fixed and far
enough apart that the utilization of the server is less than 100%, the
arrival stream and the server will be in lockstep, and queueing will not
occur. This is shown in Figure 3.1 earlier in the chapter.

If service times are constant and jobs arrive randomly, it is possible
that an arrival will occur while service is in progress and will have to
queue for service, as will any job that subsequently arrives while ser-
vice is in progress. This is depicted in Figure 3.2.

Similarly, if job interarrival times are constant and service times fluc-
tuate according to some probability distribution or vice versa, one or
more jobs may have to be queued while service is in progress. This is
shown in Figure 3.3. Clearly, this also holds if both the interarrival times
and service times are random, as shown in Figure 3.4. That is why buff-
ers are needed to hold queues of packets, why run queues are needed
for CPU scheduling, and why queues are also needed to schedule I/O at
disks and other devices. It is variability that causes queueing [Whitt1984].

Suppose that jobs arrive at a server with FCFS queueing according
to a Poisson process with rate l and that the service time distribution at
this server is exponential with rate μ. The mean service time at this sys-
tem is 1/m, and the server utilization is given by

	 ρ
λ

µ
= 	

We also call r the traffic intensity. We require 1ρ < , since the server utili-
zation cannot exceed 100%. If 1ρ ≥ , the system is saturated, and a back-
log of jobs will build up over time ad infinitum because the rate of
customers entering the system exceeds the rate going out. We say that

Basic Performance Analysis50

the queue is in equilibrium if it is not saturated and if it displays long-
term average behavior (see, e.g., [Cooper1981] or [Kleinrock1975] for
details). This type of queue is known as an M/M/1 queue. Here, M
stands for Markov, and the number 1 refers to the single server. It can
be shown that the average number of jobs present, or mean queue
length including the customer in service, is given by

	
ρ

ρ
ρ=

−
≤ <

1
,0 1n 	 (3.8)

This expression is undefined if 1ρ = and does not make physical sense
if 1ρ > , since a negative queue length cannot occur. The average response
time may be obtained from this equation and Little’s Law. We have

	
λ

=R
n 	

	
λ

=
µ−

1 	 (3.9)

This quantity is defined only if λ µ< , because it would be infinite or
negative otherwise. Intuitively, l is the rate at which jobs flow into the
system, while µ is the rate at which jobs flow out. If λ µ≥ , the jobs will
flow in faster than they can flow out, and the backlog will grow over
time without ever being cleared. In a computer system, it will grow
until the memory allocated for the queue is fully occupied, at which
point the system will either discard jobs or crash, depending on what it
is programmed to do in this circumstance. Moreover, the average queue
length will be undefined, because it is inherently meaningless when the
system is not in equilibrium.

To see what these expressions tell us about the behavior of the
queue at light, moderate, and heavy loads, let us examine the plot of
the mean response time with 1λ = as shown in Figure 3.8. With 1λ = , the
mean queue length and response time are identical because of Little’s
Law. The mean queue length increases very slowly with respect to the
arrival rate until it approaches 0.7. Beyond that point, the slope becomes
very much steeper, with a very sharp increase as the load increases
from 0.9 to 0.99.

Put another way, the system is much more sensitive to small
increases in load when it is more heavily loaded. Now, running a sys-
tem at very low levels of utilization might not be cost-effective, but
running a system at a high level of utilization can result in very high

λ µ<

3.6  A Single-Server Queue 51

response times. Therefore, the system should be engineered so that the
load on a server during peak periods is somewhere between 50% and
70%. Engineering the server to have an average utilization of at most
70% during the peak period keeps response times at acceptable levels,
especially when arrival rates and/or service times are subject to major
fluctuations. Greater loads will be seen by the user or system owner as
unsustainable, because the response time is unacceptable.

The average queue length and average response time are affected
not only by the average arrival rate and service time, but also by their
respective distributions. We briefly discuss the impact of service time
variability on a single FCFS queue in isolation here. For details, the
reader is referred to [Kleinrock1975]. Briefly, the more variable the ser-
vice time, the longer the mean queue length is expected to be. This is
partly because an arriving customer sees not only those who arrived pre-
viously, but also the remaining service time of the customer being served
at the instant the customer arrived. This is the residual service time,
which is an increasing function of the variance of the service time distri-
bution. For a single-server queue with Poisson arrivals, traffic intensity
r, and service time coefficient of variation

2

C , known as an M/G/1 queue,
the average queue length is given by the Pollaczek-Khinchin formula,

	 ρ ρ
ρ

= + +
−

(1)
2(1)

2 2

n
C

	 (3.10)

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

po
ns

e
T

im
e

Load

Maximum Sustainable Load

Figure 3.8  Mean response time of an M/M/1 queue

Basic Performance Analysis52

This equation shows that for a given traffic intensity r, the mean queue
length is least when the service time is constant, that is, when c2 = 0.
When the service time is constant, we have

	 ρ ρ
ρ

= +
−2(1)

2

n 	 (3.11)

When the service time is exponentially distributed, we have c2 = 1.
Substituting, we have

	 ρ ρ
ρ

ρ ρ ρ
ρ

ρ
ρ

= +
−

= − +
−

=
−

2
2(1)

2 (1) 2
2(1) 1

2 2

n 	 (3.12)

as expected. From equation (3.10), we see immediately that constant
service time yields a lower mean queue length than exponentially dis-
tributed service time when the two servers have the same utilization or
traffic intensity. Indeed, for suitably chosen parameters, a server with
constant service can have a higher mean queue length than one with
exponential service if the former’s utilization is large enough. Thus,
both utilization and service time variability are factors affecting mean
queue length and response time. This comparison reinforces our intui-
tion about the causes of queueing discussed earlier.

When two or more servers in parallel are fed by a single queue, as
is the case in multiprocessor systems, including those on some inex-
pensive laptops today, the effects of service time variability are
smoothed somewhat [BondiBuzen1984]. This is because not every cus-
tomer who starts service ahead of a tagged customer will complete ser-
vice before that tagged customer, since parallel service of multiple jobs
allows the possibility of overtaking.

3.7  Networks of Queues: Introduction and
Elementary Performance Properties

Many physical systems may be represented by networks of queues.
Customers in a cafeteria move through waiting lines to obtain a tray
and cutlery, drinks, different kinds of foods (soups, salads, main
courses, desserts, etc.), and then queue to pay a cashier. In a computer,
processes, threads, or tasks queue for processing at the CPU and for
I/O when necessary. Each of these systems may be represented by a

533.7  Networks of Queues: Introduction and Elementary Performance Properties

network of queues. In this section we will see how a queueing network
model can be used to represent a computer system, and then look at the
way elementary properties of a network of queues can be used to derive
rudimentary bounds on the average system response time and the
maximum attainable system throughput. We will also explore the rela-
tionship between the utilizations of the devices in the queueing net-
work and the system throughput.

3.7.1  System Features Described by Simple Queueing
Networks

Figure 3.9 shows a queueing network representation of a computer sys-
tem known as a central server model [Buzen1973]. In the central server
model, jobs enter the system, queue for service at the CPU, and then
move from the CPU to the I/O devices and other peripherals such as
LAN cards and back again. They may also move from the CPU to itself
if the CPU scheduler uses time slicing. The CPU queue is sometimes
known as the run queue or the ready list. Each I/O device also has its
own queue of requests. Jobs leave the system from the CPU upon com-
pletion. LAN cards may also have their own dispatch queues for out-
going packets, as well as receive queues for inbound packets. Concurrent
execution of I/O and processing allows several jobs to be served simul-
taneously by the system as a whole.

Access to the processor and I/O devices is arranged by schedulers
that determine the order in which queued processes or threads will be
served. Data packets arrive at a host via receive buffers and are queued
for transmission in send buffers. As they move across a network,

Time Slicing

Job Completion

IO1

IO2

IO3

CPU

Figure 3.9  A central server model with a single CPU and three I/O devices

Basic Performance Analysis54

packets will go through a succession of receive and send buffers in
switches and routers before arriving at their destinations.

The use of queues to mediate access to devices enables computer
systems to perform I/O on one or more processes while processing is
taking place. This allows multiple processes to receive service of vari-
ous kinds concurrently. In early computers, this task was performed by
human operators. Eventually, this function was taken over by a com-
puter program, which, because it did the work of an operator, became
known as the operating system [Habermann1976]. Concurrency ena-
bles computer systems to maintain the illusion that they are doing
many things at once, even though a single processor can serve only one
process at a time.

3.7.2  Quantifying Device Loadings and Flow through a
Computer System

In this section we consider how to quantify the relative amounts of
processing activity, input/output activity, and networking activity. For
a particular action, there may be given numbers of reads or writes to
one or more disks, flash memories, or network cards, with processing
occurring in between. Each input/output action incurs some transfer
time that is related to the amount of data transferred and the properties
of the device involved. The processing time depends on the nature of
the action, the algorithm used to implement it, as well as the properties
of the processor and memory involved. The relative numbers of visits
to the devices, including the processor, are called visit ratios, denoted by
Vi for the ith device. The average time spent receiving service at each
device on each visit is called the mean service time per visit to the
device and is usually denoted by Si. In the special case of a central
server model like that shown in Figure 3.9, there is a visit to the CPU for
every visit to an I/O device, as well as a visit when a job is started.
Hence, for this central server model, we have

	 1 1 2 3= + + +V V V VCPU IO IO IO 	 (3.13)

since

	 1 1, 2, 3, = =p jIOj CPU 	 (3.14)

Also,

	 ,=V V pIOj CPU CPU IOj	 (3.15)

553.7  Networks of Queues: Introduction and Elementary Performance Properties

It can be shown that equations (3.13) and (3.15) have a unique
solution.

The throughputs of the individual devices and the system through-
put are related to one another. Let

0
X denote the system throughput,

and let X
i
 denote the throughput of the ith device. Since every visit to

the system as a whole results in V
i
 visits to the ith device, we have

	 , 1, 2,...,0= =X V X i Ki i 	 (3.16)

Equation (3.16) is known as the Forced Flow Law [DenningBuzen1978].
The Forced Flow Law implies that the throughputs of the individual
devices in the system increase together in proportion to the global sys-
tem throughput

0
X . Multiplying equation (3.16) on both sides by the

mean service time Si, we obtain

	 , 1, 2,...,0= =X S X V S i Ki i i i 	 (3.17)

The left-hand side of this equation is the utilization of the ith device.
We define the demand on server i as

	 =D V Si i i	 (3.18)

Then, we easily obtain

	 , 1, 2,...,0= =U X D i Ki i 	 (3.19)

This equation shows that the utilizations of all the devices in the sys-
tem rise in proportion to the global system throughput. If one plots the
utilizations of the servers as functions of the global system throughput,
they will appear as straight lines with slopes proportional to the cor-
responding demands D

i
. If one plots the utilizations as functions of the

global system throughput on a logarithmic scale, the resulting curves
will be constant distances apart. To see this, observe that

	 log log log 1, 2,...,0= + =U D X i Ki i 	 (3.20)

and that for nonzero utilizations,

	 log(/) log() log() log(/)= − =U U U U D Di k i k i k 	 (3.21)

independent of .0X An example of a set of utilization curves is shown in
Figure 3.10 for demands (, ,) (0.09,0.06,0.03)1 2 3 =D D D in an open

Basic Performance Analysis56

queueing system with external arrival rates ranging from 1 to 10. An
example of a set of utilization curves on a logarithmic scale is shown
in Figure 3.11. The curve for the utilization of device 2 is a constant
linear vertical distance from its neighbors immediately above and
below.

3.7.3  Upper Bounds on System Throughput

Equation (3.19) implies that the global system throughput is limited by
the maximum throughput of the bottleneck device, that is, the one with
the highest demand Di. To see this, recall that the utilization of any
device must be less than one if saturation is to be avoided. Hence, from
equation (3.2), we have

	 1, 1, 2,...,0 < =D X i Ki 	 (3.22)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12

S
er

ve
r

U
til

iz
at

io
n

Arrival Rate

Util1

Util2

Util3

Figure 3.10  Example utilizations versus arrival rate, vertical scale linear

573.7  Networks of Queues: Introduction and Elementary Performance Properties

Let b denote the index of the largest of the Dis. Since equation (3.22)
holds for all demands Di, it must hold for the largest of them. Therefore,

	 1/0 <X Db	 (3.23)

This shows that the maximum throughput of the system as a whole is
bounded above by that of the most heavily loaded device, as one might
expect. Moreover, by analogy with our analysis of the single-server
queue in Section 3.6, we must limit the global system throughput so
that the system response time is insensitive to small changes in the
offered load. There are also ramifications for performance require-
ments, because equation (3.23) implies that a throughput requirement

0.01

0.1

1

0 1 2 3 4 5 6 7 8 9 10 11 12

S
er

ve
r

U
til

iz
at

io
ns

 (
lo

g
sc

al
e)

Arrival Rate

Util1

Util2

Util3

Figure 3.11  Example utilizations versus arrival rate, vertical scale logarithmic

Basic Performance Analysis58

is not achievable unless the desired system throughput is less than the
reciprocal of the service demand made by a given task at the bottleneck
device.

3.7.4  Lower Bounds on System Response Times

Suppose jobs are served at only one device at a time, that is, that all
activity is synchronous. Just as throughputs are bounded above by the
capacity of the system bottleneck, response times are bounded below
by the total processing demands at all the devices visited while a job is
being executed. If the response time at the ith device is Ri, and that
device is visited Vi times by each job, the total execution time is the sum
over all devices of the number of visits to each device multiplied by the
response time at that device. Thus, the overall system response time is
given by

	 0
1

∑=
=

R V Ri
i

K

i	 (3.24)

If the job has the system to itself, there is no queueing delay for service,
and the time spent at the device on each visit is simply the service time.
This means that a job will take at least as long as the sum of the total
amounts of time being served at all the devices. Therefore, in general,
provided no job is receiving service from more than one server at a
time,

	 0
1 1

∑ ∑≥ =
= =

R V S Di
i

K

i i
i

K

	 (3.25)

This inequality implies that a performance requirement that the overall
average response time be less than the total demands at each of the
devices is neither realistic nor achievable if the devices are visited one
at a time.

3.8  Open and Closed Queueing Network Models

Queueing systems occur in a variety of forms. In the ones we experience
in our daily lives, customers arrive, queue, receive service, perhaps pro-
gress to another service point in the system, and eventually leave. In
others, the number of jobs or customers in the system is fixed. The jobs
move from server to server, but the sum of the numbers of jobs at

3.8  Open and Closed Queueing Network Models 59

individual servers is fixed. The first type of system is called an open
queueing system, because customers enter and leave. The second type
of system is called a closed system, because the jobs, or more precisely,
entities representing the jobs, never leave the system but always circu-
late within it. One of the earliest closed queueing network models
describes the circulation of carts from one service point to another in a
coal mine [Koenigsberg1958]. Buzen was among the earliest to use
a closed queueing network to represent a batch computer system with a
constant number of concurrently executing jobs and an apparently infi-
nite backlog, so called because a departing job is immediately replaced
by a queued one [Buzen1973]. In the 1960s, 1970s, and even the early
1980s, jobs were more commonly initiated by loading a deck of punched
cards into a reader than by pressing the Enter or Return key on an inter-
active terminal. Students of computer science during those years may
well have experienced the backlog of batch jobs as being infinite.

We shall now examine simple performance models of open and
closed queuing networks, and then discuss the qualitative differences
between open and closed network representations of queueing
systems.

3.8.1  Simple Single-Class Open Queueing Network Models

A queueing system is said to be open if jobs enter and leave it. If the
system is functioning properly, jobs will enter and leave the system at
the same rate. This is a necessary condition for the system to be in equi-
librium. If a system is not in equilibrium, its long-term average perfor-
mance measures are meaningless. To see this, consider that if at least
one server in the system is saturated, the departure rate will be less
than the arrival rate, because jobs will be able to leave only as fast as the
saturated server allows. At least one queue will build up inside the
system until queueing space, such as memory, is exhausted. Long-term
average performance measures also have no meaning if a system has
periodic behavior. Hence, a periodic system cannot be in equilibrium,
even if the bounds of the performance measures are finite and stable.

In the special case in which the service time distribution at all FCFS
servers in the network is exponential and the outside arrival process is
Poisson, and routing from one server to another is probabilistic, the
queue length distribution at all servers will be geometric, and the joint
queue length distribution will be the product of the individual distri-
butions. The joint queue length distribution is said to have a product
form. For single-class open queueing networks, this result is known as
Jackson’s Theorem [Jackson1963].

Basic Performance Analysis60

Suppose that the network consists of K service centers, each with a
single FCFS server. Let the arrival rate at the system be l, and suppose
that the visit ratio and mean service time of server k are Vk and Sk respec-
tively. The utilization of the kth device is given by

	 , 1, 2,...,= λ =U V S k Kk k k 	 (3.26)

When 1 ,< ∀U kk none of the servers is saturated, and the joint queue
length distribution is given by

	 Pr(, , ...,) (1)1 2
1

∏= −
=

n n n U UK k k
n

k

K
k	 (3.27)

The mean queue length at each server is given by

	
1

, 1, 2,...,=
−

=n
U

U
k Kk

k

k

	 (3.28)

provided that 1 for 1, 2,..., ,< =U k Kk that is, that none of the servers is
saturated. Notice that this expression has the same form as in equation
(3.12), as if each server were in isolation. The joint probability distribu-
tion of the queue lengths factorizes into the probability distributions of
the lengths of the individual queues. This shows that the probability
distribution at one queue is independent of those of all the others in the
network. Intuitively, this may be linked to the exponential distribution
of the service times, the Poisson nature of the arrival process from out-
side the network, and state-independent probabilistic routing of jobs
from one service center to the next.

3.8.2  Simple Single-Class Closed Queueing Network Model

In batch processing systems, the number of jobs circulating through the
system may be regarded as fixed, because a newly completed job is
immediately replaced by another, similar one upon completion.
Examples of applications that are processed in batch include the large-
scale processing of payrolls, monthly billing, monthly bank statements,
and the preparation of data-intensive reports.

In interactive transaction systems with a fixed number of terminals
logged in, a user launches a task by hitting Return or clicking with a
mouse. The task is processed in the computer system and returns to the
user, where it is delayed while the user thinks about what to do next.

3.8  Open and Closed Queueing Network Models 61

The task returns to the computer system once the user has finished
thinking and clicks once again. The average time the user spends think-
ing before relaunching the task is called the think time, usually denoted
by ,Z while the time spent circulating among the devices in the com-
puter system is the global response time 0R . This is illustrated in
Figure 3.12. In a pure batch processing system, there is no think time,
and 0=Z .

The computer system is modeled as a network of queues. The set of
processors and other devices that constitute the computer system is
often called the central subsystem. The think time is modeled as a queue
with infinite service (IS). Infinite service is so called because a server is
available for every job that returns to the terminal. It is sometimes
called a pure delay server because the instant availability of a server
means there is no queueing for service.

The think time, average response time, and system throughput are
related by the Response Time Law, which is a direct consequence of
Little’s Law. The Response Time Law is easily derived by observing
that the average total time between task launches is the sum of the
average response time and the think time. The number of circulating
tasks is equal to the number of terminals logged in, denoted by .M The
system throughput, 0X , and the average response time depend on the
number of terminals logged in, since having a larger number logged in

CPU

IO1

IO2

IO3

Time Slicing

M Users Logged In
Think Time Z

Closed Queueing Network
with M Circulating Jobs
(Sessions), Response Time R0

Global
Throughput
X

R0

Figure 3.12  Computer system with terminals, central processor, and three I/O
devices

Basic Performance Analysis62

tends to increase contention in the central subsystem. From Little’s
Law, we obtain

	 [()] ()0 0+ =R M Z X M M	 (3.29)

From this, we obtain the Response Time Law,

	 ()
()0

= −R M
M

X M
Z	 (3.30)

Rearranging equation (3.29), we can see that a larger think time reduces
the system throughput, since

	 ()
[()]0

0

=
+

X M
M

R M Z
	 (3.31)

If users spend more time thinking, they will not be sending transac-
tions to the central subsystem as frequently. Similarly, a higher through-
put is associated with a lower response time, while a lower throughput
is associated with a higher response time. As the think time is reduced
to zero, the response time of the central subsystem will increase, and
vice versa.

3.8.3  Performance Measures and Queueing Network
Representation: A Qualitative View

A system in which a departing job is always instantaneously replaced
may be represented as a closed network of queues, because the number
of circulating jobs within it is constant for all intents and purposes.
Such a system is said to have infinite backlog. Because the number of
waiting jobs at a server in a closed system is bounded above by the total
number of jobs in the system, the average queue length is bounded
above by the number of (circulating) jobs, and the average response
time at any server is bounded above by the number of jobs in the sys-
tem multiplied by the average service time, even if the server is 100%
busy. If the system were open, the number of jobs queued would be
unconstrained, and the average response time could be larger than in a
closed system with servers having the same utilizations and through-
puts. It can be shown that this is indeed the case [Zahorjan1983]. Using
simulations and experimental data, Schroeder et al. [SWH2006] show
that the impacts of scheduling rules or service time variability on

633.9  Bottleneck Analysis for Single-Class Closed Queueing Networks

response time behavior can differ markedly between open networks
and closed ones. The effects of scheduling rules in open networks are
always more marked, among other reasons because the number of
queued jobs can grow without bound. In closed networks, while
increased service time variability can degrade throughput, the effect
need not be large [BondiWhitt1986].

3.9  Bottleneck Analysis for Single-Class Closed
Queueing Networks

When designing a computer system, it is often necessary to determine
the maximum throughput and the minimum response time that can be
achieved. For systems that can be represented by a closed queueing
network, these quantities depend not only on the characteristics of the
devices and the workloads, but also on the number of concurrently cir-
culating jobs or processes. In this section we will derive formulas for
asymptotic bounds on throughput and response time in single-class
networks and briefly examine the performance consequences of asyn-
chronous activities, such as asynchronous I/O, which can be used to
reduce response times. Performance bounds for multiple-class queue-
ing networks are described in [Kerola1986].

3.9.1  Asymptotic Bounds on Throughput and Response Time

As in an open queueing network, the maximum possible throughput of
a closed queueing network is constrained by the demand made on the
bottleneck device. From equation (3.23), we know that the system
throughput is bounded above by the reciprocal of the demand on the
bottleneck device. Let us consider how the throughput changes as the
number N of circulating jobs increases from one. At this stage of our
analysis, we shall set the think time Z to zero, since we are considering
only the throughput and response time of the central subsystem.

When only one job is circulating in the central subsystem, it does
not have to queue for any server. Thus, with 1,=N the response time of
the central subsystem is simply the sum of the demands made of all the
servers. Hence, from equation (3.25), we have

	 (1)
1

∑=
=

R V So i
i

K

i	 (3.32)

Basic Performance Analysis64

provided that a job can receive service at only one server at a time, that
is, synchronously. Because this is the response time with only one job
present and no contention, the response time of the central subsystem
cannot be any better than this. When we study performance require-
ments in Chapters 5 through 7, we shall visit this notion once again.

Using Little’s Law or the Response Time Law with 1=M and 0,=Z
the system throughput with the sole job having the central subsystem
to itself is given by

	 (1) 1/0
1

∑=
=

X V Si i
i

K

	 (3.33)

As the number of jobs in the central subsystem increases, the through-
put attainable by the central subsystem will always be less than or
equal to (1) / (1).0 0=NX N R But the throughput will also be less than or
equal to the maximum achievable throughput at the bottleneck device.
Hence, it must be less than or equal to the smaller of them, giving us

	 () min(/ (1), 1/)0 0≤X N N R Db 	 (3.34)

This shows that one must improve the bottleneck device if one wishes
to increase system capacity at heavy loads. For systems with terminals
and nonzero think times, inequality (3.34) becomes

	 () min(/[(1)], 1/)0 0≤ +X M M R Z Db 	 (3.35)

The throughput bounds for the central subsystem (i.e., not considering
think time) resulting from these inequalities are shown in Figure 3.13.

Queueing at the bottleneck device ensues to the extent that it degrades
throughput when the number of circulating jobs in the central subsystem
is sufficiently large. It occurs when the two throughput bounds cross.
Thus, queueing ensues for the smallest population such that

	 (1)
1

0

=N
R V Sb b 	 (3.36)

Thus, queueing ensues for some *N such that

	 (1)* 0 1

∑
≥ = =N

R
V S

V S

V Sb b

b b
i

K

b b

	 (3.37)

653.9  Bottleneck Analysis for Single-Class Closed Queueing Networks

*N is known as the saturation point. It is the minimum network
population for which queueing will occur. For systems with thinking
terminals, queueing ensues when the number of terminals logged in
exceeds

	
(1)* 0 1

∑
≥

+
=

+
=M

R Z
V S

V S Z

V Sb b

i

K

b b

	 (3.38)

Inequality (3.35) shows that thinking terminals and other sources of
pure delay inhibit system throughput. Put another way, the more time
users spend thinking before launching each new activity into the cen-
tral subsystem, the less work they can throw at the central subsystem.
Inequality (3.38) shows that a longer think time allows more terminals
to be logged in before queueing ensues in the central subsystem. We
shall take note of this when we consider how to configure load testing
clients and how many to use.

Combining inequality (3.35) with the Response Time Law gives us
a way to place lower bounds on the system response time. Since

1/0 ≤X Db we must have

	 ()0 ≥ −R M MV S Zb b 	 (3.39)

0 N* N (Number of Jobs)

0

1/VbSb

Throughput X0

Maximum Attainable
Throughput

X0 System
Throughput

Figure 3.13  Bounds on the throughput of the central subsystem

i i

Basic Performance Analysis66

when the think time is nonzero. But the response time also has to be at
least as large as the time to circulate through it unimpeded. Therefore,
we have

	 () max[, (1)]0 ≥ −R M MV S Z Rb b o 	 (3.40)

Response time bounds are illustrated in Figure 3.14.

3.9.2  The Impact of Asynchronous Activity on Performance
Bounds

Asynchronous I/O is sometimes used to reduce application response
times. Its purpose is to allow I/O to proceed without requiring the CPU
to await its completion. The response time is reduced because I/O
activity and processing activity can be overlapped. While the response

0

−Z

Response Time R0

M = Number
of Terminals
Logged In

M*

R0 = MVbSb − Z

R0(M)

R0 = ∑VkSk

K

k=1

Figure 3.14  Response time bounds with logged-in thinking terminals

673.9  Bottleneck Analysis for Single-Class Closed Queueing Networks

time is reduced, it cannot be less than the time spent at the bottleneck
device, even if no other jobs are present. If only one job is present in a
closed system, we must have

	 (1)0
1

∑≤ ≤
=

D R Db i
i

K

	 (3.41)

depending on how much overlap there is between activities at the vari-
ous devices. Notice that this violates the principle that a job cannot
receive service at more than one device at a time. That was one of the
conditions for equations (3.24) and (3.32) and the equations that are
derived from them.

For larger numbers of circulating jobs, suppose that the amount of
overlap with N circulating jobs is Nα(). In that case, the average response
time is given by

	 R N V R N Ni i
i

i K

∑ α= −
=

=

() () ()0
1

	 (3.42)

and the system throughput with think time Z and M terminals logged
in is given by

	 X M
M

R M Z Mα
=

+ −
()

() ()0
0

	 (3.43)

This shows that the system throughput of a closed queueing network
can be increased by using asynchronous I/O. The potential increase
is limited, though, because the bottleneck device has the same
amount of work to do as before, and therefore the same maximum
throughput.

Measurements indicate that asynchronicity is present when the
response time is less than the sum of the demands, or when it is less
than the sum of the total times spent at the individual devices,
that is,

	 0 1
∑≤

=
R V Ri ii

K
	 (3.44)

This is also true for parallel executions of tasks within a job
[Gunther1998].

Basic Performance Analysis68

3.10  Regularity Conditions for Computationally
Tractable Queueing Network Models

For many queueing network models to have computationally tractable
exact solutions, they must conform to a set of conditions, some of which
are statistical and some of which relate to the operating environment.
By computationally tractable, we mean that it is possible to find a rea-
sonably fast algorithm to obtain the performance measures predicted
by the model. Experience shows that these models are quite accurate
even when some of these conditions are not satisfied.

Many queueing networks have joint queue length distributions
that have a product form. We have already seen that this is the case for
open queueing networks with probabilistic routing, Poisson arrivals,
and exponential service. A single-class closed queueing network with
FCFS servers has a joint queue length distribution of the form

	 (, , ...,)
1
()

, 1 2
11

∑∏= =
==

P n n n
G N

D n NK i
n

i
i

K

i

K
i 	 (3.45)

where ()G N is a normalizing constant chosen so that the probabilities
sum to one, that is,

	 ()
1...1 2

∏∑=
=+ + + =

G N Di
n

i

K

n n n N

i

K

	 (3.46)

Notice that unlike the case with open queueing networks, the joint queue
length distribution does not factorize into the marginal distributions at
the individual nodes. This is because the presence of n jobs at one node
implies that −N n nodes are present at all the other nodes combined.

According to the BCMP Theorem [BCMP1975], a system with open,
closed, or mixed networks and Poisson arrivals for the open networks
has product form if each server in it satisfies the following conditions:

1.	 The service time distribution has a rational Laplace transform.
2.	 The service time discipline is First Come First Served (FCFS),

Last Come First Served Preemptive Resume (LCFSPR),
Processor Sharing (PS), or Infinite Service (IS).

3.	 If the server is FCFS, the service time has an exponential distri-
bution with the same mean for all classes of jobs.

4.	 Routing is probabilistic and independent of the state of the
network.

693.11  Mean Value Analysis of Single-Class Closed Queueing Network Models

A queueing network satisfies the conditions for the BCMP Theorem if
it satisfies the conditions for Jackson’s Theorem. The queueing disci-
plines mentioned in condition 2 or approximations of them often occur
in computer systems:

•	 First Come First Served queueing usually occurs unless some
other queueing discipline has been implemented. For instance,
packets arriving in a buffer are usually queued and forwarded in
FCFS order.

•	 In a server with Processor Sharing (PS), each of n jobs present at
the server receives service at a rate that is 1/n times the average
service rate. Thus, if the service rate is μ, each job is served at rate

/ .µ n This is very similar to time slicing, in which each job
receives a fixed slice of processing time t before being sent to the
end of the CPU queue. Processor sharing may be thought of as
the limiting discipline as the length t of each slice tends to zero.

•	 In some operating systems, the completion of a READ or WRITE at
a disk triggers an interrupt that causes the job executing at the CPU
to be preempted, and the job whose I/O has just been completed to
take control of the CPU to finish the associated processing. This
corresponds to Last Come First Served Preemptive Resume.

•	 Think time is usually modeled as an Infinite Server (IS) because
the progress of the job through the network is only delayed by
the think time, and the job does not queue. If a queueing network
model has product form, it can be solved using a fast computa-
tional algorithm such as the convolution algorithm [Buzen1973]
or Mean Value Analysis (MVA) [ReisLav1980]. Computational
algorithms for closed, open, and mixed queueing networks are
described in [LZGS1984] and [BruellBalbo1980]. In the next sec-
tion we introduce Mean Value Analysis because its formulation
can be easily related to Little’s Law, and because one can easily
implement a small-scale version of it in a spreadsheet.

3.11  Mean Value Analysis of Single-Class Closed
Queueing Network Models

Suppose a closed queueing network has a single class of jobs circulat-
ing within it, and that it satisfies the conditions of the BCMP Theorem.
Suppose that it has K FCFS servers and a single infinite server with

Basic Performance Analysis70

think time Z. Suppose further that the mean service time at the ith
server is Si and that the visit ratio is .Vi Mean Value Analysis uses a
relationship between a server’s response time with N jobs present in
the system and the mean queue length at the server with one less circu-
lating job in the system. The mean queue length observed by an arriv-
ing customer is the mean queue length at the server with the arriving
customer removed. This is known as the Arrival Theorem or the
Sevcik-Mitrani Theorem [SevMit1981]. Using the Arrival Theorem, we
can write

	 () [1 (1)]= + −R N S n Ni i i 	 (3.47)

Intuitively, the response time of an arriving customer is equal to the
service time of that customer, together with the service times associated
with those customers who are already waiting. The average number
who are already waiting is the mean queue length in a closed network
with the arriving customer removed, by the Sevcik-Mitrani Theorem. If
the queueing discipline is PS or LCFSPR, the arriving customer will not
see any remaining service time for the customer in service at the arrival
instant. If the service discipline is FCFS, the expected remaining service
time (also known as the residual service time) is equal to the mean ser-
vice time only if the service time distribution is exponential. If the
server is IS, the arriving customer begins service immediately. This is
the case with a job returning to a terminal. At a terminal, the job delay
is equal to the think time Z.

To build a recurrence relation on ,N we need a starting condition
and a means of computing ()n Ni given (1)−n Ni .

•	 When there is only one job circulating in the system, it will never
arrive at a server to find another one queueing or being served.
Therefore, we have 1=N and (0) 0.=ni

•	 To compute the queue lengths at servers when N jobs are circu-
lating, we first need to compute the system throughput. This
can be done using Little’s Law.

Recall that the time to cycle through the system is the think time,
together with the response time of the central subsystem. The system
throughput is then obtained using Little’s Law. Hence, we have

	 ()

()
0

1

∑
=

+
=

X N
N

Z V R Ni i
i

K
	 (3.48)

3.12  Multiple-Class Queueing Networks 71

We can then obtain the mean queue length with N jobs present at each
of the K servers using Little’s Law once the throughput at each server is
known. The latter is easily obtained from the Forced Flow Law, since

	 () ()0=X N V X Ni i 	 (3.49)

Applying Little’s Law at the ith server, we obtain

	 () () (), 1, 2,...,= =n N X N R N i Ki i i 	 (3.50)

This gives us the complete set of equations we need to solve the model
for the desired performance metrics using Mean Value Analysis. The
algorithm is depicted in Figure 3.15.

The analysis inputs and outputs would include the following:

•	 Input: visit ratios, think times, mean service times, number of ter-
minals logged in or multiprogramming level

•	 Output: utilizations, response times, throughputs, mean queue
lengths

3.12  Multiple-Class Queueing Networks

Some types of systems may have different types of workloads, charac-
terized by the use of different disk drives, different arrival frequencies,
different processing requirements, different amounts of bandwidth,

Figure 3.15  Algorithm for single-class Mean Value Analysis

for (i=1;i<=K;i++) { (0) 0.0;=n
i

 0 }
for (n=1;n<=N;n++) {

Ri(n) = 0.0;
for (i=1;i<=K;i++) {

() (1 (1));= + −R n S n n
i i i

() ()
0

+ =R n V R n
i i

}
() /(());

0 0
= +X n n R n Z

for (i=1;i<=K;i++) {
() () ()

0
=n n V X n R n

i i i

() ()
0

=U n V X n S
i i i

}
}

Basic Performance Analysis72

and so on. The different job types are represented in queueing network
models by different job classes. Here are some examples:

•	 A web-based online banking system has variable numbers of
users logging in concurrently, generating different types of trans-
actions, such as checking balances and initiating one-time and
repeating payments. These activities take place interactively and
may occur at the same time as background activities such as clean-
ing up databases or backing up databases and transaction histo-
ries. The online transactions enter the system and then leave once
completed. They arrive randomly. Therefore, they may be mod-
eled as a set of jobs traversing an open queueing network. The
background activities are executed by a fixed set of processes that
neither enter nor leave the system. Therefore, they may be mod-
eled as a set of jobs that circulate in a closed queueing network.

•	 Consider a network management system that monitors the sta-
tus of a collection of managed nodes consisting of routers, hubs,
switches, file servers, gateway servers, and all manner of hosts
performing various functions. The network management sys-
tem (NMS) is deployed on a single workstation. The NMS is
scheduled to send a status poll to each of the managed nodes
according to a defined timetable. Many of the managed nodes
are equipped with a program known as an agent. The agent can
respond to the poll and also supply information about the
node’s status. The agent can also generate messages of its own
accord if an alarm condition or other designated event occurs.
Such messages are known as traps. From the standpoint of the
NMS, the traps are random events, because they are not sched-
uled. In the NMS, the polling activity may be regarded as a set
of jobs that circulate within a closed queueing network. The
polling jobs alternate between sleeping for set periods and
awakening to initiate polls. They sleep until the polls are
acknowledged, or until a timeout occurs because the acknowl-
edgment did not arrive. The trap stream is modeled as an open
class of tasks, because the system performs a particular set of
actions (such as interrogating a database and raising an alarm)
for each trap that arrives and does not execute those actions
until the next trap arrives. Polling activity may be modeled as a
closed system, because the polling tasks never enter or leave
the system; they simply alternate between sleeping and
executing.

3.12  Multiple-Class Queueing Networks 73

From these examples, we see that it is possible for a computer sys-
tem to host workloads with fixed numbers of jobs and workloads con-
sisting of jobs that enter the system, execute, and then leave. Regardless
of what the jobs in the closed workloads are doing, the jobs in the open
classes must be able to leave the system at the same rate at which they
enter it, or they will be backed up inside. This is called flow balance.
Flow balance causes open classes of jobs to effectively take capacity
away from closed classes of jobs, even if they do not have priority over
them. Jobs in both kinds of classes will delay each other as well as jobs
in their own classes by queueing together, assuming no priority sched-
uling rule is in place. The presence of open job classes delays the pro-
gress of jobs in closed classes, thus reducing the throughput of the
closed workloads.

To explain this further, we first need to enhance our notation by
adding a subscript c to each model parameter and performance meas-
ure to denote the job class. We let C denote the set of closed job classes
and W denote the set of open job classes.

•	 λc denotes the arrival rate of open job class c, that is, for ∈c W .
•	 Vic denotes the visit ratio of class c jobs to the thi device.
•	 Sic denotes the mean service time of class c jobs at the thi device.
•	 Nc denotes the number of circulating jobs in closed class .c

Without loss of generality, the vector N (, ...,)1= N NB denotes the
set of B closed job classes. Hence, =  ,B C that is, B is the
number of closed classes, the cardinality of the set C.

We have the following relationships:

•	 By the BCMP Theorem, if the thi device has FCFS queueing, we
must have =S Sic i for all classes c.

•	 By the Forced Flow Law, the arrival rate of class c jobs at the thi
device is λ = λ Vic ic ic if c belongs to the set of open job classes .W

It follows immediately from the Forced Flow Law that the utilizations
are given by

	 {
 if

 if
=

λ ∈
∈

U
V S c W

X V S c Cic
ic ic ic

ic ic ic

	 (3.51)

for open and closed job classes respectively.

Basic Performance Analysis74

We now return to the impact of open job classes on the progress
through the network of jobs in closed classes.

For servers with all queueing disciplines except IS, define the fol-
lowing scaling for the closed classes of jobs:

	
1

, *

∑
=

−
∈

∈

S
S

U
c Cic

ic

ir
r W

	 (3.52)

Notice that when there are no open job classes, = ∅W and the sum in
the denominator of equation (3.52) is empty. In that case, we have

	 , * = = ∅S S Wic ic 	 (3.53)

as expected. *Sic is used to compute the mean response times of the
closed job classes at the individual servers. By analogy with equation
(3.47), the device response time of a closed class is given by

	 N N 1() [1 ()] *= + − ∈R S n c Cic ic ic c 	 (3.54)

where 1c denotes a vector with a 1 in position c and zeros everywhere
else.

For open job classes, we have

	
N[1 ()]

1 ∑
=

+
−

∈

R
S n

U
ic

ic i

ic
c W

	 (3.55)

Thus, the delay of an arriving open job is caused by the delay due to the
average number of queued closed jobs plus the service of the arriving
open job, all inflated by the complement of the resource usage attribut-
able to the open jobs. The form of the response time of the open jobs is
similar to that for closed jobs, with the exception that an arriving closed
job sees the average queue length with itself removed, while the arriv-
ing open job sees the average queue length with no closed jobs removed.
The closed formula is a consequence of Jackson’s Theorem and the
Arrival Theorem, while the open formula is a consequence of the
Arrival Theorem and the theorem that Poisson arrivals see time aver-
ages (PASTA) [Wolff1982].

753.13  Finite Pool Sizes, Lost Calls, and Other Lost Work

3.13  Finite Pool Sizes, Lost Calls, and Other Lost Work

In many types of systems, an arriving customer, task, or job will be
discarded if a server is not available or if there is no place for the cus-
tomer to wait. For example:

•	 In circuit-switched telephone systems, calls may be dropped or
rerouted if all of the circuits in a direct trunk group are busy. Calls
are not queued until a trunk becomes available. Calls that cannot
be routed along a particular trunk group are declared to be lost.
Teletraffic engineers often wish to size trunk groups so as to keep
the probability of a lost call below a small threshold. Sizing
depends on the anticipated call volume and call duration during
the busiest hour of the day.

•	 A barbershop has a fixed number of barber’s chairs and a fixed
number of chairs in the waiting area. If all the barbers are busy
and all the chairs in the waiting area are occupied, an arriving
customer will balk and go elsewhere. That customer is lost. A
sufficiently high customer loss rate may justify the addition of
more chairs in the waiting area and/or the addition of one or
more barbers. The decision to do either must be made carefully:
adding barbers may increase costs more than revenue, while
adding chairs in the waiting area may not increase costs but
could increase waiting times to the point that waiting custom-
ers will leave before being served.

•	 A multitiered computer system may consist of one or more web
servers in parallel, one or more application servers in parallel,
and a back-end database server. Communications between an
application server and the database server are mediated via a
pool of connections sometimes known as Java Database
Connections (JDBCs). This pool is known as the JDBC pool. It
has a configurable maximum size, M, say. If all of the M connec-
tors in a JDBC pool are occupied when a thread on the applica-
tion server needs to communicate with the database, the thread
will be queued until a JDBC becomes free. If the queueing buffer
itself overflows, the user’s transaction may be lost. Since both
delay and loss are undesirable, both the JDBC pool and the
memory allocated to waiting threads should be sized to keep
the probability of each occurrence below small thresholds.

Basic Performance Analysis76

Simple queueing models exist to aid the performance engineer in
sizing the number of servers or abstract objects and the waiting area (if
any) to prevent transaction loss and reduce the risk of delay. Here, we
present the Erlang formula for the lost calls. The reader is referred to
[Kleinrock1975] or [Cooper1981] for other cases.

Suppose that a telephone trunk group consists of s trunks, and that
the average duration or holding time of a call is H seconds. Suppose
further that calls arrive at the rate of l per second. The traffic intensity
is the product of the trunk holding time and the call arrival rate. It is
sometimes called the offered load. In effect, it is the average number of
trunks that calls would occupy if they were available and if calls were
not lost. It is given by the following formula:

	 ρ λ= H 	 (3.56)

This is the expected number of occupied trunks. If the traffic intensity
exceeds the number of trunks, that is, if ρ > ,s, a very large fraction of
calls will be lost, but the trunk group will continue to function.

The probability that a call will be lost is given by

	

∑
ρ ρ

ρ
=

=

(,)
/ !

/ !
0

B s
s

k

s

k

k

s 	 (3.57)

ρ(,)B s is known as the Erlang loss formula. For a given offered load ρ ,
we can engineer the number of trunks or servers s to ensure that the
probability of a lost call is below a certain level. The purpose of this is
to make the carried load—that is, the expected number of completed
calls—as large as possible. The choices of trunk group size and loss
probability are often determined by engineering and cost considera-
tions. The carried load is given by the offered load multiplied by 1
minus the probability of each call being lost. Thus, the carried load ρ′ is
given by

	 ρ ρ ρ′ = −[1 (,)]B s 	 (3.58)

A teletraffic engineer desiring to engineer a trunk group size s for a
particular loss objective, for example, one lost call in a million, would
choose the smallest trunk group size to make ρ(,)B s less than 10 .6− In
the absence of cheap computing power, this used to be done with the

3.14  Using Models for Performance Prediction 77

aid of Erlang loss curves. Examples of these curves can be found in
[Cooper1981] and elsewhere.

A recurrence relation on the number of trunks can be used to com-
pute the Erlang loss formula efficiently. When there are no trunks, all
calls are lost, so

	 ρ =(0,) 1B 	 (3.59)

For 1≥s , it can be shown that

	 ρ ρ ρ
ρ ρ

= −
+ −

=B s
B s

s B s
s(,)

(1,)
(1,)

, 1, 2,... 	 (3.60)

The smallest value of the trunk group size s satisfying the loss require-
ment is found by iterating through equation (3.60) on s until ρ(,)B s is
less than the desired value. Applying this recurrence relation is compu-
tationally cheaper than adding up partial series as in equation (3.57)
and may be numerically more stable as well, because the quantities in
the numerator and denominator of equation (3.60) are of the same
order of magnitude.

3.14  Using Models for Performance Prediction

Computer performance engineers, industrial engineers, and operations
research practitioners have been successfully using models like the
ones described in this chapter to make system performance predictions
for computer systems, telecommunications systems, manufacturing
systems, and other industrial systems for a very long time. Erlang’s
work on loss probabilities for telecommunications was published in
1917 [Erlang1917].

The steps of performance prediction include

1.	 The identification of the system structure, including paths fol-
lowed by jobs through the system from server to server

2.	 The formulation of a queueing network model that represents
the service centers and their queueing disciplines

3.	 The estimation of model parameters, whether by measure-
ment or the application of experience (sometimes called expert
intent)

Basic Performance Analysis78

4.	 Validation of the model, by comparing its predictions with
measurements of the predicted values in the actual system
under the same assumptions

5.	 Running the model with new parameters corresponding to
system changes to predict the performance impact of those
changes

Step 5 is sometimes called what-if analysis, because it is used to answer
questions of the form “What if this change is made?” In operations
research, running the model with different sets of parameters is some-
times called sensitivity analysis.

3.15  Limitations and Applicability of Simple
Queueing Network Models

Queueing network models are very useful for predicting the direction
of performance changes when various parameters are altered. The pre-
dictions cannot be better than the accuracy of the modeling assump-
tions, including assumptions about the values of the parameters. They
also may not be able to take the effects of scheduling rules into account.
In particular, the queueing models described in this chapter do not
address priority queueing of any kind. They also do not address the
modeling of specialized features such as graphics processor units,
channel controllers, queueing for memory, and contention for shared
threads, memory partitions, locks, and other discrete objects. However,
the simple models can be combined to build very good approximate
models of complex system characteristics. Both the simple models and
the more complex models have been used for performance engineering
with considerable success. Examples of models of specialized system
features are given in [LZGS1984], [Gunther1998], and various confer-
ence papers and articles. It should be noted that even though [LZGS1984]
predates the creation of the World Wide Web, it contains many exam-
ples that go beyond the simple queues presented here. Many types of
problems occur in multiple technological guises. For example, similar
queueing models can be used to predict the performance of queues for
memory slots, discrete sets of objects in pools (such as threads or
JDBCs), or the movement of packets subject to sliding window flow
control.

793.16  Linkage between Performance Models

3.16  Linkage between Performance Models,
Performance Requirements, and Performance
Test Results

Comparing the predictions of performance models with the results of
performance tests can offer us insights into the functioning of the sys-
tem under study. Conformance to performance predictions can be an
indicator that the system is operating smoothly, while deviations from
the predictions can be an indicator that something is amiss and afford
us insights into possible improvements.

When choosing load generators for performance testing, care
should be taken when deciding whether the workload to be tested is
open or closed. The results in [SWH2006] show that open workloads
tend to have larger response times than closed ones for the same
throughput and utilizations, and that the effect of scheduling rules and
service time variability is much more marked with open loads than
with closed ones. This is predicted by performance models. The trends
indicated by the performance models should be borne in mind when
analyzing test results and when making design choices about schedul-
ing rules.

The average values of performance measures such as utilizations,
response times, and queue lengths depend on the loads also running
close to their average values. If the average values of the factors driving
the performance measures, the arrival rates and the service times, vary
over time, the values of the utilizations, queue lengths, and response
times will also vary over time.

Measured values of performance must conform to the laws
described previously and to physical realities. As we shall see in the
chapter on measurement, if the observed average utilization of a device
with a single server, such as a disk, exceeds 100%, the validity of the
measurement should be called into question. Similarly, if measured
average response times, queue lengths, and arrival rates fail to satisfy
Little’s Law, the cause should be investigated. The cause could be clock
drift (a failure of the system clock to maintain the correct time), diffi-
culty keeping the clocks of different computers accurately synchro-
nized, corruption of the arrival time stamp, or the collection of the
response time in the wrong place in the job’s execution path.

Performance requirements must be consistent with the Utilization
Law, Little’s Law, and the Response Time Law if they are to be achieved.

Basic Performance Analysis80

A system with a throughput requirement of 110 jobs per second at a
server with mean service time of 1 second will have a predicted server
utilization of 110%, which is clearly not achievable. Either the through-
put requirement must be reduced, or the server must be sped up to the
point where the predicted utilization is much less than 100% in order to
have a stable average response time. We shall learn more about perfor-
mance requirements in Chapter 5.

3.17  Applications of Basic Performance Laws to
Capacity Planning and Performance Testing

Monitoring resource utilizations is usually easier than monitoring sys-
tem response times, because counters for tracking the utilizations are
usually provided by commonly used operating systems, while
response times must often be measured using purpose-built load gen-
eration scripts. Throughputs can sometimes be obtained from applica-
tion logs or platforms such as those used to implement business logic
and databases. Tracking the resource utilizations and plotting them
against transaction rates gives us a glimpse into the amount of spare
capacity of the system and might provide the data needed to warn that
a system might soon be saturated. As we shall see in Chapter 9, the
Utilization Law can be used to plan the loads that could be realistically
applied to performance tests, and the Response Time Law can be used
to determine the number of load drivers that might be required
to do so.

3.18  Summary

In this chapter we have presented the basic rules relating the perfor-
mance measures of queues occurring in computer systems to one
another, and then presented basic models of performance and their
properties. We have explored the differences between open and closed
representations of workloads and given an overview of differences
between the values of performance measures they predict. These dif-
ferences are inherent in the system structure: a closed system has a
fixed number of jobs in it, while the number of jobs in an open system
is unconstrained and potentially unbounded. Therefore, an open

813.19  Exercises

system is much more sensitive to changes in service time distributions
and scheduling disciplines. Performance measurements of systems
must be consistent with the basic performance laws or regarded as sus-
pect, and the values of performance measures stated in performance
requirements must be consistent with the laws for the performance
requirements to be achievable.

3.19 Exercises

3.1.	 We are given the following observations for a single-server
queue. During the time interval [0, 8], 4 jobs were started and
completed. The observed service times were 2.56, 0.4, 1.5, and
1.5. The observed response times were 4, 2, 4, and 4. The first
arrival occurred at time 1, the last departure at time 7. There
were no periods of idleness between the departures of custom-
ers. Compute the following for this observation period:
(a)	 The average completion rate
(b)	The average service time
(c)	 The average response time
(d)	The average throughput
(e)	 The average utilization in two ways (Hint: No idle period

between service times in this example.)
(f)	 The mean queue length

3.2.	 An airline security checkpoint may be modeled as a system of
two queueing networks. The passengers arrive at a rack of trays
to hold items to be X-rayed, load the trays, and then queue to
walk through a metal detector while the trays go through an
X-ray machine. The network seen by the customers consists of
one or more guard stations at which identities and boarding
passes are checked, followed by a queue for trays, and another
queue to go through the metal detector. The trays are stacked
(queued) in racks, awaiting use by passengers and filled one at
a time. The trays are then queued up to go through the X-ray
machines. Once emptied by the passengers who loaded them,
the trays are stacked on rolling pallets. The pallets are rolled to
their positions at the benches before the X-ray machines to be
reused.

Basic Performance Analysis82

(a)	 Identify the type of queueing network traversed by the
trays and the nodes through which they pass.

(b)	Explain the effect of delaying rolling the tray pallets back to
their positions before the X-ray machines. Discuss the pos-
sible impact of having large stacks of trays on a small num-
ber of pallets versus small stacks of trays on a larger number
of pallets. What happens if there are not enough pallets to
station them both before and after the X-ray machines? How
many pallets should there be to ensure smooth operation?
(Hint: Consider the delay in moving a full pallet from the
checkpoint exit to positions before the X-ray machines.)

(c)	 Explain the effect of having too few trays. How would you
size the pool of trays? (Hint: Think about how long each one
is in use, and about policies to return them to their original
positions after use.) What basic performance laws can you
use to obtain a rough estimate for the number of trays
needed per X-ray machine?

(d)	 Identify the type of queueing network traversed by the pas-
sengers. Explain the effect on passenger delays of having
(i)	 Multiple X-ray machines and tray racks
(ii)	 Too few trays
(iii)	 A single agent for checking boarding passes and iden-

tity documents
(e)	 Propose configurations of X-ray machines, tray pallets, ID

inspection lines, and the like when the airport has a policy
of giving priority to frequent fliers at the entrance to the
security area. Explain what happens if the proportion of fre-
quent fliers at a given hour is high or low.

3.3.	 Using a spreadsheet or otherwise, use equations (3.59) and
(3.60) to generate a plot of the loss probability for trunk group
sizes s varying one by one from 1 to 20 with an offered load
of ρ = 15.. Explain what happens to the loss probability as the
number of trunks increases from 14 to 15 and then from 15 to
20. If there is a fixed amount of revenue r for every call, when
does the expected increase in revenue fall below /10r as the
trunk group size increases?

3.4.	 Using a spreadsheet or otherwise, implement single-class
Mean Value Analysis for a closed network with up to five ser-
vice centers and thinking terminals.

833.19  Exercises

(a)	 Your output should show the global system throughput 0X ,
the global response time 0R , and the throughputs, utiliza-
tions, mean queue lengths, and mean response times of the
individual servers. If you are using a spreadsheet tool with
plotting capabilities, plot the global system throughput, uti-
lizations of the service centers, and average response times
on separate sets of axes.

(b)	Consider a closed queueing network with the parameters
depicted in the following table. Identify the bottleneck
device. Plot bounds on the system throughput when the
think time is 0 and when the average think time is 2 seconds
and 4 seconds. Plot bounds on the response time of the cen-
tral subsystem.

(c)	 Use your MVA tool to predict the performance of the queue-
ing network model with the same parameters with 1, 2, 3, . . .,
10 terminals logged in for think times of 0 and 4. Plot the
predicted throughputs and response times on the same axes
on which you plotted the performance bounds.

(d)	Using a spreadsheet or otherwise, build a tool to predict the
performance of an open network consisting of the CPU and
two or three disks only, without thinking terminals, based
on Jackson’s Theorem.
(i)	 Using the global system throughputs predicted by the

closed queuing network model as inputs to the open
model, predict the utilizations, response times, and mean
queue lengths of the individual servers and the response
time of the system as a whole. Also, compute the sum of
the mean queue lengths of the individual servers.

(ii)	 Compare your results with those predicted by the
closed queueing network model when the think time
is zero. Are the predicted utilizations the same

Device Name Visit Ratio Service Time (sec) Service Discipline

CPU 6.0 0.0090 PS

Disk 0 1.0 0.0400 FCFS

Disk 1 4.0 0.0250 FCFS

Thinking terminals 1.0 4.0 IS

Basic Performance Analysis84

or different in the open and closed models? Are the
predicted mean queue lengths and response times the
same or different in the open and closed models? What
is the sum of the mean queue lengths? Is it less than or
equal to the number of logged-in terminals with zero
think time?

(iii)	 Explain the differences between the predictions of the
open and closed models.

(iv)	 Someone states that the CPU is the bottleneck in this
system and should be replaced with a faster one. Is this
view supported by the data in the preceding table or
by your model outputs? Explain.

(v)	 Which disk should be improved? Using your models,
predict the effect of spreading the load on Disk 1 evenly
across two disks.

(vi)	 Based on your answers to (iv) and (v) above, what rec-
ommendation would you make to the system adminis-
trator for modifying the hardware configuration to
improve performance with the current workloads?

3.5.	 Use Little’s Law and Jackson’s Theorem to derive an expres-
sion for the overall average response time of an open queueing
network. (Hint: Start with equation (3.28).)

85

Chapter 4

Workload
Identification and
Characterization

We describe the need to specify the functionalities of a system and to
identify the nature of the performance characteristics each functionality
must have to be effective. The notion of a reference workload will be
introduced as a vehicle for specifying a straw workload for the purposes
of when several workloads are possible. We shall discuss the impact of
time-varying behavior on system performance—for example, whether
the load offered to it is rhythmic and regular, whether it varies seasonally
or by time of day, whether it is growing over time, and whether it is
inherently subject to potentially disruptive bursts of activity. These work-
load characteristics must be understood for performance requirements
to be properly formulated and for the system to be architected in a cost-
effective manner to meet performance and functional needs. Numerical
examples of workloads from different application domains will be given.

4.1  Workload Identification

In Chapter 1 we saw that speed, capacity, and scalability are essen-
tial characteristics of a computer system, and that the nature of the
system’s functions and competitive and regulatory considerations

Workload Identification and Characterization86

determine the desirable range of performance the system should
have. Identifying the functions of the system and the recurring or
continuous background activities needed to support those functions
is a precondition for correctly formulating performance require-
ments and devising a cost-effective architecture for the system. It is
also a precondition for developing a performance model of the sys-
tem and/or of its components. Our focus is on linking quantitative
characterizations of the workload to defined sets of functionalities
rather than on statistical characterization. One of the reasons for this
is that many types of computer-controlled systems have two or more
types of workloads. Often, one of these involves ongoing back-
ground activity occurring at regular intervals, while another might
involve handling a burst of message traffic within a very short
amount of time so as to trigger certain types of actions, such as
sounding alarms. With this kind of bursty traffic, analysis of average
performance measures is meaningless because averages relate to
steady-state behavior, while the application requires that the first
transaction in a burst be completed within a short amount of time,
and that a burst of transactions be processed within a somewhat
longer period of time.

When qualitatively determining the performance needs of a sys-
tem, one may ask the following questions:

•	 What is the main purpose of the system?
•	 What are the functions of the system?
•	 Where does the system traffic come from?

•	 Is it externally driven?
•	 Does it come from a limited set of sources?
•	 Are there any monitoring and/or cleanup processes that

make system demands at fixed intervals, at irregular inter-
vals, or that run continuously in the background? What
resources do they use and how fast must they be completed?
Will the background activities be competing for the same
resources as those activities with requirements for short
response times?

•	 Is the system mission critical? Do life, limb, and/or safety of
property depend upon it? Does national security depend upon
it? Are real-time reactions to stimuli required?

•	 What are the risks and impacts if the system does not meet its
performance requirements?

4.2  Reference Workloads for a System in Different Environments 87

•	 Is there a mix of activities in the system, for example, record
retrieval and image processing? Should some of the activities
be offloaded to another system? Is this the intent?

•	 Are short response times needed for some kinds of activities?
Will longer response times suffice for other kinds? Is there a
mix of response time requirements among the applications?

•	 Are there any constraints on the response times?
•	 Is the system receiving data that must not be lost or allowed to

accumulate for long periods of time without being processed?
•	 How much data loss can be tolerated?
•	 What are the consequences of data loss?

•	 What constituencies are served by each human interface?
•	 What constituencies, business needs, and engineering needs

must be served by each data interface?

The answers to the questions about background activity influence
performance requirements and operational practice. For instance, a
background process that purges deleted database records may com-
pete with a user query application for processing time, disk, memory,
and table access. If ongoing cleanup is not critical to query performance
but could adversely affect it, it may be wise to establish an operational
procedure in which cleanup takes place only during periods of relative
quiet, such as the middle of the night.

4.2  Reference Workloads for a System in Different
Environments

Systems and suites of products are often targeted at multiple market
segments. This can make it difficult to determine whether a system will
meet the needs of a prospective customer. This is true of a wide variety
of systems. Product managers and sales engineers are faced with the
problem of convincing a prospective customer that a system can be
configured in a way that meets their anticipated needs for functionality
and capacity while allowing room for growth or even a decline in busi-
ness volume. The problem is frequently compounded by the custom-
er’s inability to quantify what the demand on the system will be,
whether because of uncertainty about it or because of an aversion to
quantitative reasoning.

Workload Identification and Characterization88

One way to address this difficulty is to identify a set of clearly
described straw workloads that may be similar to those that will occur
in the customer’s environment. The customer and supplier can refer to
these when making decisions about how to size a system. We call these
workloads reference workloads. Reference workloads may be devised for
a variety of situations and applications:

•	 Small banking institutions such as regional savings banks and
credit unions need to provide the same services and comply with
the same government reporting and security regulations as large
banks, but they may lack the resources to develop their own soft-
ware to do so. They will obtain a platform from an independent
supplier instead. The supplier must be able to size the system for
small and large banks. To illustrate the viability of its wares, the
supplier should identify “typical” workloads with set transaction
volumes for banks with perhaps tens of thousands of accounts
and banks with hundreds of thousands or even millions of
accounts. These workloads will include numbers of transactions
per customer per month, the number of online transactions of
various types occurring in the busiest hour of the month, the
number of logged-in customers during the busiest hour of the
month, as well as workloads for backing up the systems and gen-
erating seasonal reports.

•	 A supplier of a road traffic control system needs to be able to
demonstrate that the system will function in jurisdictions with
populations varying from tens of thousands to millions, cover-
ing both small and large areas. The number of lights the system
will control and the number of road sensors depends on the
number of intersections, the number of kilometers of road, the
widths of the various roads, and other factors such as the den-
sity of road traffic. In this case, reference workloads would be
devised for areas with populations of 10,000, 100,000, and
1 million, with road densities comparable to those of a sprawl-
ing city in a midwestern state or an intense amount of conges-
tion comparable to that in a very densely populated city.

•	 A supplier of fire alarm and building surveillance systems can
identify functionalities (such as detecting smoke and sounding
alarms) that are common to small and large buildings. Reference
workloads and their intended configurations may be identified
for a small school, a large university campus, a small-scale
chemical factory, or even a skyscraper.

4.3  Time-Varying Behavior 89

4.3  Time-Varying Behavior

Many systems are subject to time-varying demands. The variation may
be seasonal, or it may be sudden because of external events. For
example:

1.	 Securities trading systems often cause order execution only
when markets are open. If an account holder places a trade
order when the markets are closed, it must be queued until the
markets reopen. The trading systems may be subject to bursts
of activity because of external events, such as the announce-
ment that a drug has been approved by a regulatory body, the
outbreak of a war, an airplane crash, or extraordinarily success-
ful sales of an electronic gizmo or tickets to a newly released
film. In addition, they may be subject to a rush of trading as the
end of the trading day approaches.

2.	 Conveyor systems at airports are subject to higher demands
during peak travel periods than during quiet periods. The
demand on one or more portions of the conveyor system
abruptly increases when several planes arrive at a terminal in
succession. Similarly, conveyor systems in warehouses and
parcel-sorting facilities experience considerable variation in
activity by time of day.

3.	 Telephone call centers and e-commerce systems see consider-
able increases in traffic during holiday periods. In turn, the call
center activity triggers computer activity through order entry.
This triggers activity in the warehouses that process the orders.
Call centers and the computer systems used to support the
transactions performed by the agents may experience surges
of activity during the commercial breaks in popular TV shows,
such as sporting matches, if commercials exhort the viewers to
buy something.

4.	 The processing of computerized images used in medicine or
surveillance may go through different phases, each of which
makes particular demands on the system as a whole. These
demands can be for processing time, network bandwidth,
memory, I/O, retrieval and storage, or some combination of
these, at any time.

5.	 Fire alarm systems experience bursts of activity when smoke is
detected. The level of activity may increase as the fire spreads.

Workload Identification and Characterization90

6.	 In the United States and other countries, suppliers of income
tax preparation software and tax filing services experience huge
spikes in demand as the annual tax filing deadline approaches
but experience little demand the rest of the year.

If time-varying behavior is not understood, there is a risk that the
system will be engineered to cope only with average loads rather than
peak ones. The consequences of an inability cope to with load varia-
tions vary from system to system. For the preceding examples:

1.	 If a securities trading system lacks the ability to process spikes
in transaction volume in a timely manner, the prices of at least
some of the securities may reach undesirable levels before
trades are executed, perhaps resulting in losses or in missed
opportunities to execute stop loss orders, that is, orders to sell
when the price achieves a chosen level. Transactions will not be
executed at all if the packets describing them are lost because
of network congestion. Long transaction response times by
online traders at home may raise concerns about whether a
trade has been executed at all, especially if the market is vola-
tile at the time.

2.	 If a conveyor’s control system is overloaded, a suitcase
approaching a diversion to the right or to the left might miss
its flight because the necessary control messages arrive after
the suitcase has passed the diversion point. In that case, the
suitcase might have to be sent to an entry point in the sort-
ing system and pass along the conveyor again. Moreover, the
wrong suitcase might be diverted and be put on the wrong
flight.

3.	 It is not reassuring to be told by a call center operator that “the
computer is slow today.” Nor is it reassuring if one cannot get
quick response times when trying to order tickets for a popular
show or for steeply discounted flights. Users who experience
unacceptable delays at web sites may attempt to shop at com-
peting web sites instead.

4.	 The demands of particular phases of image processing, stor-
age, and retrieval may differ widely. It is important to under-
stand how they differ to ensure that no one phase saturates the
system and keeps it from functioning entirely for any length
of time.

4.4  Mapping Application Domains to Computer System Workloads 91

5.	 For safety-related systems such fire detection and alarm sys-
tems, the consequences of being unable to process bursts of
traffic in a timely manner are potentially catastrophic, to the
extent that the occupancy of a building may be prohibited by
local inspectors until the problem is fixed.

6.	 A taxpayer could be unfairly penalized for filing a return late if
system delays mean that the filing deadline is not met.

In each of these cases, there is the potential for economic loss and,
in the case of safety systems, even for loss of life if the computer-based
control system cannot cope with the loads to which it is subjected. It
follows that computer systems must be engineered to handle spikes in
load as well as average loads. To that end, an understanding of the
peak workloads is essential.

4.4  Mapping Application Domains to Computer
System Workloads

In this section we look at the process of mapping domain-specific
actions to specific actions within a computer system, and then illustrate
how they may be quantified.

4.4.1  Example: An Online Securities Trading System for
Account Holders

A securities trading system is accessed via a browser interface. Account
holders access the system to initiate balance queries, track history, and
order trades in stocks, bonds, mutual funds, and other types of invest-
ments. The load on the system varies by time of day and perhaps by
season. Spikes in load may occur for a variety of reasons, including
political events or announcements about corporate earnings or losses
or changes in interest rates by the central bank. Surges in mutual fund
orders may occur during the last hour of trading because their value is
based on the values of their holdings when the exchange closes. Balance
inquiries and requests for statements might occur at any time but might
be more frequent in the evening because some account holders would
prefer to view them in the privacy of their homes rather than at work.
Statement generation occurs in batch mode at the end of the month,
and tax reporting documents, whether in electronic form or paper

Workload Identification and Characterization92

form, might be generated in batch mode in January each year.
Transaction logging takes place continuously to ensure the existence of
an audit trail. Fraud monitoring may occur continuously or after the
fact. Reports to regulators may have to be generated at a fixed time,
such as 30 minutes after the occurrence of an important event.

It is important to understand when these activities are likely to take
place, because each one makes a different kind of demand on system
resources. The rates at which the online activities occur and the volumes
of seasonal batch activities and the demands they are likely to make on
system resources characterize the workload on the system. The perfor-
mance requirements for distinct application functionalities differ from one
another. A user may be concerned if an online trade is not executed
promptly, because the strike price might differ from the desired price by
the time the trade is completed. A user may be uncomfortable if it takes a
few seconds longer than usual to retrieve transaction histories or state-
ments, but that difference in retrieval time will not affect the value of the
securities in the account, unlike a delay in completing a trade. These dis-
tinctions in desired response times or execution times must be reflected in
performance requirements in the design and implementation of the sys-
tem. The distinctions must be captured when the workloads are character-
ized so that the correct design and implementation choices can be made.

4.4.2  Example: An Airport Conveyor System

In an airport conveyor system, the principal units of work are the move-
ment of a suitcase from a check-in point or from an arriving plane to its
connecting flight, perhaps via a security inspection station, and from
planeside to a baggage claim area, perhaps via a customs checkpoint in
which it is X-rayed or sniffed by dogs to check for contraband. Each
suitcase is associated with a sequence of actions, the one of principal
concern being routing from its arrival point in the system to its destina-
tion. Upon check-in, each suitcase is equipped with an identifying bar
code that is associated with its intended destination via a routing data-
base. The bar code is scanned at various points in the system. A scan
may trigger a database query whose result is a list of one or more rout-
ing instructions needed to send the suitcase to its correct destination, or
simply the writing of a record indicating that the suitcase arrived at a
specific point at a particular time. Without loss of generality, a destina-
tion may be a plane, a storage location, or a designated baggage carou-
sel in the baggage claim area. To engineer the performance of the
conveyor system and the components of the control system, including

4.4  Mapping Application Domains to Computer System Workloads 93

the routing database, we need to understand how often database que-
ries occur and develop an understanding of the message transmission
pattern as the suitcase progresses from one diversion point to the next.

We may note the following when characterizing the workload
attributable to luggage movement:

•	 Since a database access is triggered by the initial check-in of the
suitcase and subsequent scans of the associated bar code, we will
need to compute the average number of scans per suitcase pass-
ing through an airport, the number of suitcases passing through
the airport per hour, and the sum of the rates at which the suit-
cases pass all the scanners.

•	 The rate at which suitcases pass a scanner is determined by the
speed of the adjacent conveyor and the average distance
between the suitcase handles to which the bar code tags have
been attached. The conveyor speed and the distance from a
scanner to the next diversion point determine how soon the sys-
tem must know which way to send the suitcase. The faster the
belt is moving and/or the shorter the distance between the
scanner and the diversion point, the shorter the combination of
database query time and message delivery time must be. For
example, the response time requirement will be much more
stringent if the conveyor is moving at 2 meters per second than
if it is moving at 1 meter per second. For a given conveyor
speed, the scanning rate will be twice as high if the suitcase
handles are 1 meter apart rather than 2 meters apart.

•	 It may be useful to be able to estimate the distribution (or at
least the variance) of the distance between the suitcases, since
this will affect the variability in the times between database
queries. As we saw in Chapter 3, that affects queue lengths
within the system.

•	 The queue lengths in the system are also affected by the average
journey time of a suitcase from check-in to loading into a cargo
bin, and the average journey time from an arriving cargo bin to
a conveyor in the baggage claim area.

There is also workload associated with monitoring functions. To reduce
the risk of outages and to facilitate the targeting of preventive mainte-
nance, control systems monitor the status of various components of the
hardware, including the temperatures of motors and power supplies,
revolutions per minute, and connectivity to the control system itself.

Workload Identification and Characterization94

Depending on the design of the system, the monitoring may take the
form of periodic polls to check status and/or the issuance of alarms
when certain operating parameters, such as temperature, are exceeded.
Excessive temperature could be a sign of bearing wear, and lack of con-
nectivity to a programmable control unit would mean that that piece of
the system could not be controlled at all. Finally, a monitoring system
is needed to detect jams and other alarm conditions, such as the pulling
of a red cord to stop the conveyor altogether. All of this monitoring
incurs network, processing, and logging costs. Performance engineers
must determine the permissible delays of these functionalities, espe-
cially the time to stop the conveyor after the cord is pulled, and ensure
that safety monitoring is not impeded by payload functionality, such as
moving luggage.

Combining this data with knowledge about the flow of information
through the control system, the topology of the conveyor system, and
the topology of the network that controls it, we can establish a baseline
workload characterization of the system that will eventually be used as
input to the preparation of performance requirements and may even
impact the system architecture. For this system, the following types of
workloads may be identified, each with its own demand characteristics
and performance requirements: luggage movement and delivery, sys-
tem monitoring, and quick response to alarm conditions such as the
pulling of a red cord to stop the system altogether. In some systems,
logging of luggage movement may also be required as a deterrent to
tampering and theft. This logging may also be useful to improve effi-
ciency, since luggage that is misrouted may be returned to the system
entry point. This is wasteful.

4.4.3  Example: A Fire Alarm System

A fire alarm system interprets information about environmental condi-
tions and must carry out multiple actions in response. Among these are
the closing or opening of vents and doors, notification of the local fire
brigade, and the generation of audible and visual alarms to prompt
people to evacuate. Fire codes [NFPA2007] specify how soon these
things must happen once smoke is detected. The workload for this sys-
tem in emergency mode is defined by the number of stimuli such as
smoke alarms coming in and the number of actions, such as turning on
sirens and closing vents, that must occur as a result. The fire code is a
source of requirements about how long it should take to carry out the
necessary actions to get people out of the building safely.

4.5  Numerical Specification of the Workloads 95

As with conveyor systems, fire alarm systems may be equipped
with their own internal monitoring functions. Apart from monitoring
smoke alarms for the presence of smoke, they must repeatedly monitor
the functional status of the smoke detectors, horns, pull handles, tem-
perature indicators, and other safety-related devices and issue trouble
indicators if any sign of a malfunction arises. This is essential to ensure
that the absence of a smoke alarm is also evidence of the absence of
smoke, and to ensure that maintenance teams are aware of malfunc-
tions that must be corrected to ensure safety. As with the conveyor
system, monitoring actions may be initiated according to a schedule.
Some devices may be able to issue their own notifications of malfunc-
tions (known in the United States as troubles), but they can do so only
if they have connectivity to a monitoring system.

During a fire, the cost of processing a burst of alarm indicators
may impede the processing of indications that sensors are not func-
tioning. This information may be useful to the emergency responders,
because detectors and/or connectivity with them may be disabled as
a consequence of the fire itself. As part of the workload characteriza-
tion of the alarm system, it is important to understand the mix of alarm
indicators and trouble indicators. When performance requirements
are drafted, one should determine whether it is necessary to ensure
that trouble indicators are processed even in the presence of heavy
alarm traffic.

From the foregoing, it is clear that there are at least three types of
identifiable workloads in the fire alarm system, each of which makes
its own resource demands and each of which is associated with perfor-
mance requirements: alarm notification, trouble notification, and main-
tenance and monitoring activities. When the system is architected and
implemented, care must be taken to ensure that the performance needs
of each of them are accounted for individually and together.

4.5  Numerical Specification of the Workloads

The numerical characteristics of the workloads should be specified in
terms of performance metrics that have all of the desirable properties
we described in Chapter 2. In particular, they must be informative
about the domain of application and be measurable. One must also be
sure that factors that might affect memory occupancy and object pool
usage, such as the anticipated durations of login sessions, are taken

Workload Identification and Characterization96

into account when characterizing the workload, since a lack of such
resources can result in considerable performance degradation, or even
a system malfunction.

The identification and numerical specification of the workloads are
preludes to writing the performance requirements that the system
must meet. Let us illustrate these points using some of the examples
mentioned earlier.

4.5.1  Example: An Online Securities Trading System for
Account Holders

We can readily identify three types of workloads for this system: the
transactions initiated by the users, the report generation workload con-
sisting of statement processing and the generation of reports for the tax
authorities, and a fraud or anomalous transaction detection workload
that we cannot quantify because the brokerage house will not tell us
how it works.

For the transaction aspect of the system, the number of users who
might be logged into this system simultaneously cannot be larger than
the number of account holders. Unless the trading system is meant
exclusively for day traders, or unless there is some unusual event in the
market, such as an initial public offering or an impending market crash,
the number of users logged in simultaneously will be much lower than
that. Since the system must be engineered to perform well during the
peak hour of the day, the workload should be specified in terms of the
load anticipated then. The following quantities are used in specifying
the user transaction workload:

•	 The number of login sessions initiated in the peak hour
•	 The average duration of a login session
•	 If the system is already in production, the average and peak

numbers of login sessions observed during the peak hour
•	 The average number of transactions of each type in a session—

for example, balance inquiry, price inquiry, statement request,
purchase of a security, sale of a security, placement of a limit
order, and so on

•	 The frequency with which transaction logging and audit func-
tions are activated in the background, and the amount of work
they have to do as a function of the rate at which the transac-
tions and login sessions occur

4.5  Numerical Specification of the Workloads 97

These figures tell us something about the anticipated external load on
the system. Using Little’s Law as described in Chapter 3, we can com-
pute the average number of concurrent login sessions in the peak hour:
it is the average duration of a login session multiplied by the number of
login sessions per hour in the peak hour. This quantity will figure in the
performance requirements for the number of concurrent sessions to be
supported.

The following quantities may be of interest for the report genera-
tion workload:

•	 The number of account holders, the number of transactions
recorded on each statement, and the number of different securi-
ties held by each account holder

•	 The number of statements to be generated each month
•	 The number of tax reports to be generated shortly after the end

of each tax year

4.5.2  Example: An Airport Conveyor System

The characterization of the workload for the network of computers and
programmable logic units controlling a conveyor system clearly
depends on the size of the airport, the volume of arriving and depart-
ing flights in the peak hour, the proportion of luggage that must be
routed from one plane to another, how far the luggage must travel, and
what kind of security facilities it must go through (explosives detection
chambers, X-ray machines, etc.).

When characterizing the workload, the performance engineer and
other stakeholders must work together to identify and quantify the
load drivers at various points in the system. Two workloads may be
readily identified: the suitcase movement workload and the monitor-
ing workload.

The suitcase movement workload might be described by the fol-
lowing quantities:

•	 The number of suitcases checked in during the busy hour.
•	 The number of suitcases in transit recorded during the busy

hour. These will be recorded at the originating airport and
transmitted to a transit airport before their arrival on an inbound
plane.

•	 The spacing of suitcases on the belts.

Workload Identification and Characterization98

•	 The numbers of bar code queries per hour from each scanner.
•	 The number of diversion points.
•	 The lengths of the conveyor segments.

The monitoring workload is used to ensure the continuous function
and prompt repair of the various components of the conveyor system.
The workload might be described by the following quantities:

•	 The number of motor devices being monitored.
•	 The number of polls of motor status per motor device per hour.
•	 The size of each polling status message for each motor. The

message might include motor temperature, whether it is run-
ning, whether it is getting a clean power supply at the right
voltage and amperage, and so on.

•	 The number of other hardware devices being monitored, the
number of polling messages per hour associated with each one,
and the sizes of those messages.

•	 The number of program logic controllers and other networked
elements in the conveyor system, and the frequency and size of
each type of associated status message.

•	 The actions to be taken upon receipt of the response to a polling
message, or the absence of a response to a polling message for
whatever reason.

4.5.3  Example: A Fire Alarm System

A fire alarm system might be characterized by the number of alarm
monitoring stations in a facility, the extent to which they are connected
with one another, the kind of information they exchange and how often
they exchange it, the maximum number of alarm and equipment trou-
ble messages that might arrive in a burst, and the number of notifica-
tions and commands that an alarm monitoring station must issue in
case of an emergency. Examples of notifications might include an auto-
matically generated call to the fire department, exchanges of alarm
information with other monitoring stations, and the activation of
alarms and lights. Examples of commands might include closing damp-
ers and doors and generating programmed voice announcements
instructing people to evacuate the building. In addition to receiving
notifications from each other, alarm monitoring stations receive notifi-
cations from smoke detectors, heat detectors, and the like, which the

4.6  Numerical Illustrations 99

local program logic must turn into commands to be acted upon by
automated devices and safety personnel. In addition to the emergency
workload, there is a background workload that repeatedly checks the
status of monitoring devices. These devices include, but are not limited
to, smoke detectors, communication devices such as alarm boxes, and
an automated telephone dialer to alert the fire department.

The three example systems have very different traffic patterns:

•	 The online securities trading system experiences a steady stream
of work when the markets are open, with bursts of activity pro-
voked by events such as profit announcements or natural
disasters.

•	 The airport conveyor system’s operations are somewhat rhyth-
mical. Suitcases tend to be equally spaced along the most heav-
ily traveled segments of the conveyor, which is moving at
constant speed. Traffic will be more intense during peak travel
periods. Monitoring in the background is very rhythmical. It is
essential to the smooth functioning of the conveyor and to the
expeditious handling of repairs.

•	 The fire alarm system has two distinct traffic patterns.
Monitoring of detection devices and output devices occurs at
regular intervals to ensure functionality in an emergency. When
the emergency occurs, bursts of traffic must be cleared within a
very short time interval to ensure the timely activation of alarms
and other activities, such as closing ventilators and doors.

4.6  Numerical Illustrations

We now illustrate our examples with some numerical data. All of the
data described here is fictional. None of it has been obtained from
measurements. It should be understood that the data from your system
could be very different.

The scenarios captured in the following tables are entirely fictitious.
They are presented for the purpose of illustration only. A domain expert
might challenge some of the values and ask for refinements based on
observations or on knowledge of how the system is used. That is a nor-
mal part of the performance engineering process. It is also desirable,
because it is easier to do quality performance engineering work if the
domain experts are part of the engineering process.

Workload Identification and Characterization100

4.6.1  Numerical Data for an Online Securities Trading System

Table 4.1 shows an example workload characterization for an online
securities trading system. The principal online work driver is a login
session. The expected numbers of transactions of each type in a login
session are estimates based on user experience or on measurements of
existing systems. Notice that the combined numbers of buy and sell
orders in the peak hour are equal to the number of login sessions mul-
tiplied by the sum of the probabilities of each type of transaction occur-
ring within a session. This consistency is an essential feature of a
workload specification.

Table 4.1  Example Trading System Workload Specification

Quantity Value

The number of login sessions initiated in the peak
hour

100

The number of login sessions ended in the peak hour 100

The average duration of a login session 10 minutes

Calculated average number of sessions (100/hour × 10
minutes) = (100/hour × 0.167 hours)

16.7 sessions logged in

Maximum allowed number of login sessions 100

If the system is already in production, the average and
peak numbers of login sessions observed during the
peak hour

Compare this with the
calculated value

The average number of buy transactions in a session 0.8

The average number of sell transactions in a session 0.8

The average number of limit order transactions in a
session

0.05

The average number of balance inquiries in a session 0.95

The average number of statement requests in a session 0.05

Numbers of buys and sells during the peak hour 160

Statements generated at the end of each month 1,000,000

Logging of user interactions 1 record per mouse click

Transaction history requests generated online per
session

0.3

The frequency with which transaction logging and
audit functions are activated in the background, and
the amount of work they have to do as a function of the
rates at which the transactions and login sessions occur

1/minute

Fraud monitoring activities Unknown

4.6  Numerical Illustrations 101

The table does not tell us when or how often fraud monitoring
activities occur. Nevertheless, fraud monitoring is a critical activity
with performance requirements and demands of its own. Fraud detec-
tion logic might be invoked during or after each transaction. It could
also be an ongoing activity that occurs in the background. The cost of
background processing might increase with the transaction volume, or
it could be constant. Even if the security team does not wish anything
to be shared about fraud detection logic, including processing costs
and performance requirements, enough processing and storage
resources must be provided to ensure that fraud detection is timely and
that it does not interfere with the applications of interest. In the absence
of detailed information, performance engineering to support fraud
detection might be done by making assumptions about resource costs
and performance requirements, and flagging these assumptions in
requirements documents and the descriptions and parameterizations
of performance models and their predictions. The parameters may be
varied between their assumed best and worst cases so that a range of
impacts on overall performance can be determined.

4.6.2  Numerical Data for an Airport Conveyor System

Table 4.2 shows data for an entirely fictional conveyor system with
components from one or more fictional vendors. The conveyor system

Table 4.2  Illustrative Parameters Describing the Workload of a Conveyor System

Quantity Value

Space between suitcase handles 1.5 m

Conveyor speed 1 m/sec

Bags checked in per hour 3,000

Departures per hour 15

Bags transferred between flights per hour 1,000

Arriving flights per hour 15

Bags claimed at this airport per hour 3,000

Induction points (entry points for luggage) 30

Bar code scanners 50

Diversion points 50

Programmable logic controllers 25

Number of status monitors 80

Number of status messages per monitor per hour 60

Workload Identification and Characterization102

serves an airport with 15 departures and 15 arrivals during the peak
hour. By way of comparison, Chicago’s O’Hare International Airport
(ORD) handles about 200 traffic movements in the peak hour
[Hilkevitch2013]. These figures contain implicit assumptions about the
number of passengers on each plane, the dimensions of suitcases, and
the number of suitcases checked by each passenger. The number of
diversions (junctions) in the conveyor system depends on the convey-
or’s topology. The number of program logic controllers and the num-
ber of status messages per device monitor depend on the system
implementation and the technology.

4.6.3  Numerical Data for the Fire Alarm System

The numerical data in Table 4.3 illustrates the configuration for a hypo-
thetical fire alarm system in a fictional office building, supplied by an
entirely fictional vendor. The building has three levels, with 30 rooms
per level (including restrooms, janitors’ closets, and open spaces), two
staircases, two elevators, a main entrance, and four emergency exits at
ground level. There are smoke detectors in every room, on every stair
landing, and above every exit door. There are five pull stations on every
level, one on each stair landing, and five alarm devices (a pull station is
a device with a handle that can be pulled by a person detecting a fire).

Table 4.3  Numerical Data for a Fire Alarm System

Quantity Value

Number of smoke detectors 100

Time between status messages sent by each smoke detector or
other device during the quiet period

5 minutes

Time between alarm messages for each alarmed smoke detector 10 seconds

Time between alarm messages for each activated pull station 10 seconds

Time between trouble messages sent by a malfunctioning device 15 seconds

Number of pull stations 20

Maximum number of alarm messages sent by a smoke detector
once in the alarmed state

30

Maximum number of alarm messages sent by an activated pull
station

30

Number of alarm panels 1

Number of enunciators 20

4.8  Exercises 103

There are five enunciators (alarm bell, strobe light, or loudspeaker for
playing stored messages instructing evacuation) on every floor. There
is one alarm control panel for the entire building, near the main
entrance. When there is no emergency, each smoke detector sends a
status message to the alarm control panel every 5 minutes. Each smoke
detector that has “smelled” smoke sends a message to the alarm control
panel every 10 seconds. The alarm panel logs all messages from the
pull stations and smoke detectors and displays the ten most recent ones
to come in on a liquid crystal panel. This data is summarized in Table 4.3.

4.7  Summary

Workload identification proceeds naturally from an examination of the
sets of functionalities of a system and the time patterns of their invoca-
tion. The specification of the invocation patterns is complemented by a
description of the numbers of entities of various types involved in the
functionality and perhaps their expected sojourn time in the system.
Numerical specifications of the workloads must be mutually consist-
ent, so as to avoid confusion about the scale of the system and how
many user components the system must support. As we shall see in
Chapter 5, this is a prerequisite for the correct identification of system
performance requirements.

4.8  Exercises

4.1.	 A web-based news service allows viewing of the front page of
a newspaper, the display of stories shown on the home page,
and, for premium subscribers, access to all the news stories
posted on the site in the last ten years. Premium users must be
registered in the system and then may log in and out to access
the story database as much as they desire. Payment for access
may be by a period subscription or by the article viewed.
(a)	 Identify the activities a subscriber or an unsubscribed reader

may perform.
(b)	Describe the set of activities a journalist may perform on

the site.
(c)	 Describe the set of activities an editor may perform on

the site.

Workload Identification and Characterization104

(d)	Describe the set of activities a layout editor might perform
on the site.

(e)	 Identify the workloads on this system. Give estimates for
the frequencies with which each type of activity is
performed.

(f)	 Explain how the workloads will be characterized if the site
owner’s mission is to provide editorial content and news
articles according to the rhythm of a printed newspaper.
Contrast this with a news service whose stated mission is
the immediate display of breaking stories.

4.2.	 The design of a fabric woven on a continuous loom is imple-
mented by a system that controls how different-colored threads
are woven in. The fabric is advanced along the loom each time
a set of shuttles has jumped across it. Complicated designs
with many colors require more shuttle excursions than simple
designs or a stretch that is just one color. The movement of the
fabric and the placement of the finished weave on a roller are
fully automated. The process is managed by a loom control-
ler that also monitors the state of various pieces of machinery,
including the amount of remaining thread on each shuttle. The
design is stored on a disk drive accessible to the controller.
Your task is to identify the workloads performed by the loom
controller in conversations with the mill manager and a techni-
cian who tends the loom.
(a)	 Identify the events that are controlled by the loom

controller.
(b)	 Identify the events that are monitored by the loom

controller.
(c)	 Explain how you would determine the amount of shuttle

activity occurring in the loom controller. Is this affected by
the complexity of the design?

(d)	Explain the monitoring activities of the loom controller and
describe how often they would occur. Does this depend on
the complexity of the design?

(e)	 Identify the workloads on this system. Give estimates for
the frequencies with which each type of activity is
performed.

105

Chapter 5

From Workloads to
Business Aspects of
Performance
Requirements

We build a bridge from workload identification to performance require-
ments, explore how performance requirements relate to the software
lifecycle, and explore how performance requirements fit into a busi-
ness context, particularly as they relate to the mitigation of business
risk and commercial considerations. We also describe criteria for ensur-
ing that performance requirements are sound and meaningful, such as
unambiguousness, measurability, and testability.

5.1  Overview

Poor computer system performance has been called the single most
frequent cause of the failure of software projects [SmithWilliams2001]
and is perceived as the single biggest risk to them [Bass2007]. The prin-
cipal causes of poor performance are architectural choices that are

From Workloads to Business Aspects of Performance Requirements106

inappropriate for the intended scale of the system and inadequately
specified performance requirements. In our experience, performance
requirements may be vaguely written or might not even have been
written at all by the time the software project is close to completion. At
that point, serious concerns will arise about whether the customers’
and users’ expectations have been met. In the absence of well-written
performance requirements or any performance requirements at all, it
will be difficult to resolve any conflicts over what those expectations
were and how they have been met. Thus, performance requirements
are essential to the management of customer expectations, to the verifi-
cation that customer expectations have been met, to the assurance of
proper delivery after development, and to the avoidance of conflicts
about these expectations.

The absence of sound performance requirements increases the risk
that performance will receive inadequate attention during the architec-
tural, development, and functional testing phases of a software project.
Performance requirements are key drivers of computer and software
architecture. Since performance problems often have their roots in poor
architectural decisions, the early establishment of performance require-
ments for a new system is crucial to the project’s success. As we shall
see, the performance requirements must be formulated in terms of an
agreed set of metrics that meet the criteria for metrics set out in
Chapter 2, including a link between the choice of metrics, the values
they take, and business and engineering needs.

In the remainder of this chapter we shall briefly discuss the transi-
tion from workload identification to performance requirements, the
relationship between performance requirements and product manage-
ment, the role of performance requirements in development and perfor-
mance testing, and the role of performance requirements in formulating
contracts and mitigating business and engineering risks. Finally, we
examine criteria that make a performance requirement sound.

5.2  Performance Requirements and Product
Management

A software system that does not meet the performance needs of the user
or customer as the user perceives them is unlikely to achieve much suc-
cess in the marketplace. Nor is a system that is scaled to perform at a
much higher level than is perceived to be required if the cost of doing so

5.2  Performance Requirements and Product Management 107

is a lot more than the customer is willing to spend. To complicate mat-
ters further, one cannot be sure that the customers themselves are able to
quantify their needs well, perhaps because of market uncertainties or
because they do not have adequate data to forecast their needs properly.
In many organizations, the product manager is the interface between
the customer and the architecture and development teams. The product
manager’s guidance can be useful in identifying and interpreting cus-
tomer expectations to the architects and developers. Interpreting expec-
tations about performance may be especially difficult when both the
customer and product manager are uncertain about them. In this section
we discuss some techniques for overcoming organizational uncertainty
about performance needs. We also discuss the linkage of performance
requirements to business, regulatory, and engineering needs. This link-
age is essential to establishing a baseline set of performance require-
ments, while ensuring that physical constraints are taken into account.

5.2.1  Sizing for Different Market Segments: Linking
Workloads to Performance Requirements

When product managers are responsible for identifying the desired
features and performance characteristics of systems that are intended
for small-scale and large-scale installations with a wide variety of
needs, they are faced with the daunting task of identifying the perfor-
mance requirements and performance capabilities in terms that are
credible and appealing to a broad base of customers, perhaps while
keeping cost parameters in mind. The performance requirements for
one customer’s system may not be suitable for another’s, because the
sizes of their systems and the mixes of tasks they do may be very dif-
ferent. Market segments, application domains, and regulations may
evolve during the years that might be needed for a complete software
development and testing cycle, while architecture and design decisions
must be made early on. These in turn are heavily influenced by perfor-
mance needs, which may not be completely understood.

One way to deal with this conundrum is to derive performance
requirements for different market segments from reference workloads and
reference scenarios like those described in Chapter 4. Basing the perfor-
mance requirements on reference workloads has the following benefits:

•	 It enables the early identification of a system architecture and a
system design that are intended to meet a wide range of perfor-
mance needs.

From Workloads to Business Aspects of Performance Requirements108

•	 It allows performance testers to begin work on performance
test suites to validate performance requirements in time for use
once functional testing is completed.

•	 It enables the performance testers to design the performance
test environment to accommodate deviations from the perfor-
mance requirements.

•	 When negotiating with customers, the product managers
will be able to point to reference sets of performance require-
ments and performance test results that show they have
been met.

5.2.2  Performance Requirements to Meet Market,
Engineering, and Regulatory Needs

All performance requirements must be linked to business and
engineering needs. Linking to a business need reduces the risk of
engineering the system to meet a requirement that is unnecessarily
stringent, and linking to an engineering need helps us to understand
why the requirement was specified in the first place. An example of a
business need is the desire to provide a competitive differentiator
from a slower product. An example of an engineering need is that a
TCP packet must be acknowledged within a certain time interval to
prevent timeouts. Another example of an engineering need is the
standards requirement that an alarm be delivered to a console and/
or sounded within a maximum amount of time from when the cor-
responding problem was detected [NFPA2007]. This is an engineer-
ing need because timely delivery of notifications is essential to the
timely execution of other functions, such as the activation of a noise-
making device or the activation of a mechanism for closing a door or
a vent.

For mission-critical systems, a product manager must be able to
convince a customer that a system will deliver good performance under
various types of operating conditions, and also that the system will
meet the performance requirements dictated by regulations and
standards, whether these are set by government bodies, insurance
companies, or industry associations. Even for systems that are not mis-
sion critical, the product manager must be able to convince a customer
that the system will meet performance needs dictated by market condi-
tions, or even that the performance requirements met by the system
will be a competitive differentiator for the customer.

5.2  Performance Requirements and Product Management 109

Examples of market-related performance needs include

•	 The ability to complete a particular action faster than on present
systems

•	 The capability of supporting a higher level of throughput than
on present systems

•	 The capability of supporting a broader set of functionalities
than the current ones, while maintaining better or equal perfor-
mance for the existing functionalities

•	 The capability of supporting larger numbers of customers or
abstract objects than on present systems

•	 Higher network bandwidth than is presently available
•	 The ability to support administrative functions without dimin-

ishing the performance of payload functionality

Examples of performance-related engineering needs may be specific to
the domain. In TCP/IP networks:

•	 The network round-trip times must be short enough to avoid
timeouts and to avoid throttling traffic by causing the sliding win-
dow to close because the product of bandwidth and round-trip
time exceeds the window size. Of course, the ability to meet this
need may be constrained by physical realities, such as the lower
bound on propagation delay for a given distance imposed by the
speed of light.

•	 Bandwidth utilization must be low enough to avoid buffer
overflows, since these lead to packet loss, the closure of the slid-
ing window, and a potentially large retransmission rate.

On some railways, the status of the next signal on the line is delivered
to a display on the engine driver’s console. If the signal status message
is not delivered by the time the train has reached the last point at which
the train can be smoothly and safely brought to a stop, either the driver
or an automatic system must activate the brakes. The train must then
remain stationary until the signal status arrives. If the corresponding
signal is red, nothing has been lost. If the corresponding signal is
green, time will be lost, and there will be an energy cost associated
with getting the train moving again, as well as wear and tear on the
brakes and tracks. Therefore, a performance requirement is needed for
the delivery time of signal status messages in terms of the train’s speed
and the associated stopping distance. In systems that control chemical

From Workloads to Business Aspects of Performance Requirements110

reactions, the system must respond to changes in temperature early
enough to activate controls that reduce the temperature or cause valves
to be opened. In some applications, there are regulations that influence
performance requirements. For instance, fire alarms must be sounded
within 5 or 10 seconds of smoke being detected. This is handled by an
alarm control system [NFPA2007].

5.2.3  Performance Requirements to Support Revenue Streams

Many systems are tied to revenue models that depend on sound per-
formance. Performance requirements constitute a useful mechanism
for specifying what fraction of revenue loss can be tolerated if perfor-
mance is insufficient. They are also a useful mechanism for specifying
the quality of service (QoS) that must be provided.

In Chapter 3 we saw how the Erlang loss model can be used to esti-
mate the number of telephone circuits between two points needed to
carry designated volumes of calls of a given average duration with a
given call loss probability. A performance requirement would stipulate
that the fraction of calls lost would be less than some small quantity, such
as 10-6. If the call volume in the busy hour and the average revenue per
call are known, the average revenue loss associated with lost calls can be
easily computed. Similarly, stringent performance requirements must be
written and followed to ensure that the call billing records are not lost.
Failure to prevent the loss of billing records can result in lawsuits being
brought against the equipment vendor by the telephone carrier.

Securities trading systems have very stringent requirements about
transaction loss. Because of the need for auditing and because of the
sums that can be lost if trades are not executed in a timely manner,
trading systems must be engineered to have extremely low loss prob-
abilities. A correspondingly stringent performance requirement is
needed to ensure that measures are taken to avoid transaction losses at
every phase of the software lifecycle. It is worth noting that a failure to
execute a trade would result in a lost commission at the brokerage
house, quite apart from the damage that would be suffered by the
account holder.

A quick response time is a competitive differentiator for a web site.
To ensure that the average response time is short and does not vary
much under heavy loads, performance requirements should be written
that specify the desired values of the average response times for vari-
ous transaction types, together with the value of the (small) fraction of
transactions whose response times may exceed a larger specified value.

5.3  Performance Requirements and the Software Lifecycle 111

5.3  Performance Requirements and the Software
Lifecycle

Like functional requirements, performance requirements should be
formulated as early as possible in the software lifecycle, preferably
before the system architecture is decided [BPKR2009]. There are a num-
ber of reasons for this:

•	 Satisfactory system performance depends heavily on architec-
tural choices being made to support it. This means that expecta-
tions about system performance should be well specified and
commonly understood.

•	 Customer expectations about system performance can be man-
aged and met only if both customer and supplier understand
the metrics to be used to describe performance and the level of
performance to be provided.

•	 The early specification and review of performance require-
ments allow timely decisions to be made about whether the cost
of meeting the requirements is appropriate or excessive.

•	 Performance is widely seen as the biggest risk to the success of
a system [Bass2007] and has been mentioned as the single larg-
est cause of project cancellations. Careful attention to perfor-
mance requirements can mitigate this risk.

The author is aware of organizations that now demand that every
functional requirement have associated performance requirements.
This is an interesting strategy for creating awareness of the perfor-
mance ramifications of functional requirements and for creating a
shared understanding of how fast the corresponding functionality
must be executed, as well as how many objects might be involved with
the functionality. This practice could be especially useful for capacity
planning in highly modular systems or in service-oriented architec-
tures, since the introduction of new applications creates new demands
for the services. The main risk associated with this practice is that the
proliferation of performance requirements and their origination among
different sources may lead to inconsistencies that must be resolved
before implementation and performance testing. To mitigate this risk,
the performance requirements associated with functional requirements
must be reviewed for mutual consistency and achievability before they
are approved.

From Workloads to Business Aspects of Performance Requirements112

Performance requirements are also essential for the development of
sound performance tests. The absence of performance requirements
places a burden on the performance tester to identify the ranges of
workloads to which the system should be subjected before delivery. In
such cases, performance testers must make conjectures about the antic-
ipated system load and use case mix, and then devise load tests accord-
ingly. The tester must also make and state assumptions about what
values of such performance metrics as throughput and response times
will be acceptable. Forcing the tester to do either or both of these incurs
a huge business risk:

•	 If the system is tested at a lighter load than will occur after instal-
lation and is declared to have passed, performance may well be
unacceptable to the customer once the system is in production.

•	 On the other hand, if the system performs badly under much
heavier loads than would occur in production, and manage-
ment is not aware of the discrepancy, the project might need-
lessly be canceled. This could result in ill will, needless costs,
and even job loss and litigation.

Therefore, it is absolutely essential that performance requirements and
the load tests derived from them be carefully tailored to the load that is
anticipated in production. Since it is very often the case that perfor-
mance testing will be done on a system that is smaller than the one that
will be used in production for cost reasons, performance requirements
regarding the load must be specially written for the small-scale system.
As we shall see in Chapter 9 on performance testing, the performance
test results must then be interpreted in the context of an architecture
review. One of the goals of the architecture review should be to verify,
by modeling or otherwise, that the system capacity can be increased by
scaling the system up, installing faster processors or multiple pro-
cessors and perhaps more I/O devices, and memory or scaling the
system out by adding parallel replicates of the system under test.

5.4  Performance Requirements and the Mitigation of
Business Risk

One of the purposes of writing performance requirements is the formal
specification of the performance expectations of the system in quantifi-
able, measurable terms that are related to the needs of the business and

5.4  Performance Requirements and the Mitigation of Business Risk 113

that account for the engineering constraints of the problem domain.
This is a prerequisite for ensuring that the system’s performance will
meet market expectations and/or contractual obligations in a cost-
effective manner, while laying the groundwork for performance verifi-
cation through performance testing.

We have found that poorly written performance requirements incur
an insidious cost. They cause confusion among the developers charged
with meeting them, as well as among the performance testers who must
verify that they are met. The confusion must be resolved in meetings in
order to understand what was meant. In the author’s experience, clari-
fication of the performance requirements often means rewriting them
in keeping with the spirit in which they were meant, and then commu-
nicating the revisions to the various stakeholders for approval. The con-
fusion can be reduced if performance requirements are written in terms
of obtainable metrics whose meanings are clearly defined and that will
actually be measurable when the time comes to test the performance of
the system as a whole and/or the performance of its components.

By contrast, clearly specified performance requirements represent
goals that architects, developers, functional testers, and performance
testers can bear in mind when carrying out their respective tasks. This
should aid the smooth execution of an implementation process in
which the ability to meet performance requirements is clearly tracked
throughout the software lifecycle. Once performance requirements
have been drafted, the performance risks inherent in a chosen architec-
ture, such as the choice of platform or operating system, can be miti-
gated by conducting performance benchmarking tests of the platform
components on which the system can be implemented before full-
blown development commences. This prevents money from being
wasted on the development of large amounts of software that is based
on the application program interfaces (APIs) of unsuitable environ-
ments. For example:

•	 In [AvWey1999], the unfortunate choice of an architecture was
avoided when early performance tests based on early perfor-
mance requirements showed that the synchronization operations
in the operating system kernel were too slow to support the
intended application.

•	 In [MBH2005], performance tests based on an early draft of per-
formance requirements showed that one of the service environ-
ments under consideration was so inefficient that throughput
objectives would not be achieved if it were used.

From Workloads to Business Aspects of Performance Requirements114

In both cases, performance problems that would have been difficult to
overcome without extensive (and therefore expensive) reworking of
the code were averted. The resulting delays in the time to market were
avoided by the timely specification of clear performance requirements
and early performance testing of the platforms or environments under
consideration.

5.5  Commercial Considerations and Performance
Requirements

Disclaimer: This section does not contain legal advice. You should seek the
advice of legal counsel when drafting any agreements or documents incorpo-
rated into agreements by reference. Legal obligations and practice may differ
from one jurisdiction to another. The author is not a lawyer.

5.5.1  Performance Requirements, Customer Expectations, and
Contracts

Whether or not they are well formulated, performance requirements
are a key ingredient of customer expectations of what the system will
do. Therefore, they may constitute part of an agreement about what the
supplier is supposed to deliver. Poorly drafted requirements increase
the prospect of incurring customer ill will, which can have undesirable
consequences, including loss of business and even litigation. It follows
that the performance measures described in the agreement be expressed
in terms of quantities that can actually be measured, and that the per-
formance requirements mentioned or referred to in the agreement be
testable. Otherwise, the performance requirements and the contractual
agreements to which they relate may not be enforceable. This could
adversely affect the customer and undermine the reputation of the
supplier.

5.5.2  System Performance and the Relationship between
Buyer and Supplier

Situations may arise in which the supplier has greater expertise in sys-
tem performance than the buyer, or vice versa. In the author’s experi-
ence, both are possible whether the buyer is a start-up and the supplier

5.5  Commercial Considerations and Performance Requirements 115

is established, both are start-ups, both are established, or the supplier is
a start-up and the buyer is established. In any of these cases, transpar-
ency and adherence to commonly accepted guidelines for writing
requirements, such as those prescribed by [IEEE830] for software require-
ments documents, will go a long way toward preventing misunder-
standings and disputes regarding performance requirements and the
interpretation of performance test results. The guidelines in [IEEE830]
describe the sections a requirements document must include, the form
each section should take, and criteria for the soundness of functional and
performance requirements. Some of these are discussed in Section 5.6.

5.5.3  Confidentiality

A great deal can be inferred about the competitiveness of a product or
the commercial position of the intended customer by examining per-
formance requirements. For example:

•	 The ability of an online order entry system or call center to handle
transactions at a given rate in the busy hour may be an indicator
of the owner’s anticipated growth, with consequent impacts for
revenue and market share. This intelligence could be valuable to
a competitor or an investment analyst trying to forecast the future
earnings of both the buyer and the supplier.

•	 The ability of a network management system to handle traps at
a given peak rate, combined with knowledge of the number of
nodes to be managed and the peak polling rate, can tell us about
the intended market segment of the product while nourishing
speculation about the product’s feature set, or even about the
nature of the site the system is intended to support. This can
affect price negotiations between supplier and buyer, and per-
haps the supplier’s share price.

These examples illustrate why performance requirements and any con-
tractual negotiations related to them should be treated as confidential
and perhaps even covered by nondisclosure agreements (NDAs). The
release of performance requirements and performance data outside a
circle of individuals with a need to know should be handled with great
care. Engineering, marketing, legal, and intellectual property depart-
ments should all be involved in setting up a formal process to release
performance data to third parties under nondisclosure agreements or
to the general public.

From Workloads to Business Aspects of Performance Requirements116

5.5.4  Performance Requirements and the Outsourcing of
Software Development

The specification of both performance and functional requirements is
crucial to successful delivery when software development is to be done
by an outside supplier. The outsourcing party should have a clear
understanding of the performance impact of the outsourced compo-
nent on the rest of the system so that performance and functional
requirements can be clearly conveyed to the outside supplier. Moreover,
a formal process should be defined for the specification of the perfor-
mance requirements and performance testing of the deliverable
throughout the development process of the deliverable. This will
reduce the risk of taking delivery of an inadequate software compo-
nent whose performance undermines that of the system as a whole.

5.5.5  Performance Requirements and the Outsourcing of
Computing Services

The performance requirements for outsourced computing services,
such as those performed in the cloud, should be clearly communicated
to the provider, preferably as part of a formal process that includes per-
formance testing under conditions similar to those in production. The
process might also include monitoring demand for the services and
monitoring designated performance metrics of those services in pro-
duction, to ensure that performance requirements continue to be met.

5.6  Guidelines for Specifying Performance
Requirements

Because of their significance to the commercial success, engineering
success, and even the safety of a product, it is important that perfor-
mance requirements be clearly understood and measurable. One of the
reasons they must be clearly understood is that the system supplier
and the customer must read and interpret them the same way if func-
tionality of the system is to be ensured and if disputes are to be avoided.
There must also be clear agreement about the origin and correctness of
the measurements that are used in the requirements. In this respect,
performance requirements must meet criteria that are very similar to
those for functional requirements. The IEEE guidelines for functional

5.6  Guidelines for Specifying Performance Requirements 117

requirements [IEEE830] are also applicable to performance require-
ments and mention performance requirements explicitly. In this sec-
tion we examine the relationship between functional and performance
requirements, and then examine criteria for performance requirements
that are needed to make them sound.

5.6.1  Performance Requirements and Functional
Requirements

The criteria for specifying performance requirements are a superset of
those in [IEEE830] for functional requirements. In particular, like func-
tional requirements, performance requirements must be unambiguous,
traceable, verifiable, complete, and correct. Additional criteria relate to
the quantitative nature of performance requirements. To be useful,
they must be written in measurable terms, expressed in correct statisti-
cal terms, and written in terms of one or more metrics that are informa-
tive about the problem domain. They must also be written in terms of
metrics suitable for the time scale within which the system must
respond to stimuli. In addition, the requirements must be mathemati-
cally consistent. We now elaborate on each of these criteria in turn.

5.6.2  Unambiguousness

First and foremost, a performance requirement must be unambiguous.
Ambiguity arises primarily from a poor choice of wording, but it can
also arise from a poor choice of metrics.

Example 1: “The response times shall be less than 5 seconds 95% of the time.”

This requirement is ambiguous. It opens the question of whether this
must be true during 95% of the busy hour, during 95% of the busiest 5
minutes of the busy hour (both of which may be hard to satisfy), or
during 95% of the year (which might be easy to satisfy if quiet periods
are included in the average). In any case, the response time is a sam-
pled discrete observation, not a quantity averaged over time.

Consider an alternative formulation:

Example 2: “The average response time shall be 2 seconds or less in
each 5-minute period beginning on the hour. Ninety-five percent of all
response times shall be less than 5 seconds.”

This requirement is very specific as to the periods in which averages
will be collected, as well as to the probability of a sampled response
time exceeding a specific value.

From Workloads to Business Aspects of Performance Requirements118

Example 3: “The system shall support all submitted transactions.”

Requiring that a system shall support all submitted transactions is
ambiguous, because:

•	 There is no statement of the rate at which transactions occur.
•	 There no statement of what the transactions do.
•	 There is no explicit definition of the term support.

Instead, one might state that the submitted rate of transactions is 5 per
second, or (equivalently) 300 per minute. If this requirement is coupled
with an unambiguous response time requirement like that given in
Example 2, and by a further requirement that no errors occur while the
transactions are being handled, we may be able to say that the transac-
tion rate is being supported if the response time and transaction loss rate
requirements are also met. We may also be able to say that a desired
transaction rate is sustainable if all resources in the system are at utiliza-
tion levels below a stated average utilization that is less than saturation
(e.g., 70%) to allow room for spikes in activity when this transaction
rate occurs.

5.6.3  Measurability

A well-specified performance requirement must be expressed in terms
of quantities that are measurable. If the source of the measurement is
not known or is not trustworthy, the requirement will be unenforce
able. Therefore, it must be possible to obtain the values of the metric(s)
in which the requirement is expressed. To ensure this, the source of the
data involved in the requirement should be specified alongside the
requirement itself. The source of the data could be a measurement tool
embedded in the operating system, a load generator, or a counter gen-
erated by the application or one of its supporting platforms, such as an
application server or database management system. A performance
requirement should not be adopted if it cannot be verified and enforced
by measurement.

Example 4: The average, minimum, and maximum response times during
an observation interval may be obtained from a commercial load generator,
together with a count of the number of attempted, successful, and failed
transactions of each type, but only if the load generator is set up to collect
them. A performance requirement expressed in terms of these quantities
should be written only if they are obtainable from the system under test
or from the performance measurement tools available in the load drivers.

5.6  Guidelines for Specifying Performance Requirements 119

Example 5: The sample variance of the response times can be obtained
only if the load generator also collects the sum of the squared response
times during each observation interval, or if all response times have been
logged, provided always that at least two response times have been col-
lected. A performance requirement that refers to the variance of a quan-
tity should be specified only if the variance is actually being collected.

5.6.4  Verifiability

According to [IEEE830], a requirement is verifiable “. . . if, and only if,
there exists some finite cost-effective process with which a person or
machine can check that the software product meets the requirement.
In general any ambiguous requirement is not verifiable.” For perfor-
mance requirements, this means that each requirement must be testable,
consistent, unambiguous, measurable, and consistent with all other per-
formance and functional requirements pertaining to the system of
interest.

Where a performance requirement is inherently untestable, such as
freedom from deadlock, a procedure should be specified for determin-
ing that the design fails to meet at least one of the three necessary con-
ditions for deadlock. These are circular waiting for a resource, mutual
exclusion from a resource, and nonpreemption of a resource
[CoffDenn1973]. On the other hand, if deadlock happens to occur dur-
ing performance testing, we know that the requirement for freedom
from it cannot be met. We also know that there is a possibility of a
throughput requirement not being met, since throughput is zero when
a system is in deadlock.

5.6.5  Completeness

A performance requirement is complete if its parameters are fully speci-
fied, if it is unambiguous, and if its context is fully specified. A require-
ment that specifies that a system shall be able to process 50,000
transactions per month is incomplete because the type of transaction
has not been specified, the parameters of the transaction have not been
specified, and the context has not been specified. In particular, to be able
to test the requirement, we have to know how many transactions are
requested in the peak hour, and then have some context for inferring
that the peak hourly transaction rate is functionally related to the num-
ber of transactions per month. We also have to define a performance
requirement for the acceptable time to complete the transaction.

From Workloads to Business Aspects of Performance Requirements120

5.6.6  Correctness

In addition to being correct within the context of the application to
which it refers, a performance requirement is correct only if it is speci-
fied in measurable terms, is unambiguous, and is mathematically con-
sistent with other requirements. In addition, it must be specified with
respect to the time scale for which engineering steps must be taken.

5.6.7  Mathematical Consistency

There are multiple aspects to the mathematical consistency of perfor-
mance requirements:

•	 Performance requirements must be mathematically consistent
with one another. To verify consistency, one must ensure that no
inference can be drawn from any requirement that would conflict
with any other requirement and inferences drawn from it.
Inferences could be drawn through the use of models. They could
also be drawn by deriving an implied requirement from a stated
one. If the implied requirement is inconsistent with other require-
ments, so is the source requirement.

•	 Each performance requirement must be consistent with stated
performance assumptions, such as traffic conditions and engi-
neering constraints. For example, a message round-trip time
should be less than the timeout interval, while the product of
the processing time and the system throughput must be less
than 100% so that the CPU is not saturated.

•	 The performance requirements must not specify combinations
of loads and anticipated service times that make it unachiev
able. This will happen if the product of the offered traffic rate
and the anticipated average service time of any device is greater
than the number of devices acting in parallel. If there is only
one device on its own for a particular function, the product
must be less than one.

5.6.8  Testability

We desire that all performance requirements be testable. By testable,
we mean that a cost-effective, repeatable method exists for running an
experiment that enables us to obtain a designated set of performance
measurements under defined conditions in a controlled, observable

5.6  Guidelines for Specifying Performance Requirements 121

environment. Testability is closely related to measurability. If a metric
mentioned in a performance requirement cannot be measured, the per-
formance requirement cannot be tested.

Not all performance requirements are directly linked to the ability
to attain specific values for metrics. Moreover, such requirements may
be very difficult to test. For example, as discussed previously, freedom
from deadlock must be verified from the system structure. Since the
potential for deadlock can be masked under light loads, and since test-
ing for freedom from deadlock involves the enumeration of all execu-
tion paths, freedom from deadlock is not verifiable by performance
testing alone.

5.6.9  Traceability

Like functional requirements, performance requirements must be
traceable. Traceability addresses the following points:

•	 Why has this performance requirement been specified?
•	 To what business need does the performance requirement

respond?
•	 To what engineering needs does the performance requirement

respond?
•	 Does the performance requirement enable conformance to a

government or industrial regulation?
•	 Is the requirement consistent with industrial norms? Is it

derived from industrial norms?
•	 Who proposed the requirement?
•	 How were the quantities in this requirement derived? If this

requirement is based on a mathematical derivation or model,
the parameters should be listed and a reference to or a descrip-
tion of the model provided.

•	 If this requirement is based on the outputs of a load model, a
reference and pointer to the load model and its inputs should
be provided, together with the corresponding version number
and date of issue.

Traceability is inherently beneficial to cost containment. If all of the pre-
ceding points can be satisfactorily addressed, the risk will be reduced
that a performance requirement that is expensive to implement goes
beyond the stated needs of the product. Traceability also reduces the

From Workloads to Business Aspects of Performance Requirements122

risk of inconsistency propagating through performance requirements
throughout the lifecycle, because it provides a framework for methodi-
cally responding to queries about a requirement in case there is doubt
about its validity. Inconsistencies in performance requirements can
lead to incorrect implementations, quite apart from causing time to be
spent trying to resolve them.

5.6.10  Granularity and Time Scale

Performance requirements should be specified at a level of granularity
that is commensurate with the time scale in which the corresponding
functionality will be invoked and, in the case of functionalities that
involve human interaction, experienced. Choosing the right time scale
for a performance requirement like average response time or throughput
is necessary because averaging over a long time period obscures the
longer delays that occur during peak periods. These delays are the ones
that inherently affect the largest numbers of users and could occur when
the system is most needed. For example, a senior accountant at a large
company might specify that a timekeeping system should be able to han-
dle 100,000 entries per month, while the employees are concerned about
being able to enter their timekeeping logs as quickly as possible at the
end of the working day. Clearly, the performance requirements of the
system should be expressed in terms related to the user experience to
make the best use of employees’ time. Thus, the throughput might be
expressed in terms of the number of timekeeping sessions and entries
occurring between 17:00 and 18:00 each working day, which translates to
about 4,500 sessions in the busy hour, since 100,000 records/22 working
days per month works out to 4,545 timekeeping sessions in the busy
hour each day. The performance requirement can be broken down fur-
ther to describe the number of screens each employee sees and how long
it should take to load each one, how long it should take to log into the
timekeeping system, how long it should take to save the records once
entered, and so on.

5.7  Summary

Performance requirements define the performance expectations of the
system. Expectations about the volume and nature of the work to be
handled arise from identification of the workloads and sometimes from

5.8  Exercises 123

performance requirements about individual functionalities. The per-
formance requirements must be linked to business and engineering
needs, such as transaction volume and response and delivery times of
various kinds. To be sound, performance requirements must satisfy
criteria that are related to the criteria for sound functional require-
ments, such as unambiguousness, measurability, and traceability. We
have also seen that performance requirements can be closely linked to
commercial considerations, such as the volume of business conducted
by a company or to the competitiveness of the software product itself,
and that they must therefore be handled with the appropriate sensitiv-
ity. The use of performance requirements and timely testing also miti-
gates the performance risk inherent in the development of any software
system.

5.8  Exercises

5.1.	 A university requires students to use a web-based tool to
upload essays on deadline throughout the term. Each essay-
based course has its own deadline for submission. In addition
to enabling teachers and graders to mark essays and give them
back to the students, the system will archive the essays so that
other essays may be compared with them to detect plagiarism.
To be usable, the system should not take long to upload essays,
even as the deadline approaches. The system should be able
to carry out plagiarism checks early enough for the teachers to
have enough time to grade the essays within a week of receipt
or, in the case of essays that are part of take-home exams, well
before the end of finals week.
(a)	 Explain how you might formulate the performance require-

ments of this system (i) if it is meant to be used at a small
private college with a maximum enrollment of 1,500 stu-
dents, (ii) if it is meant to support a large university with an
enrollment of 30,000 students, (iii) if it is meant to support
the university system of an entire state, such as New York
or California.

(b)	 Identify performance requirements for different parts of the
work, such as uploading by the students, downloading by
the teachers, uploading by the teachers after marking, and
checking for plagiarism.

From Workloads to Business Aspects of Performance Requirements124

(c)	 How would the storage and performance requirements dif-
fer if the plagiarism check were based on the archives of the
small university, the large university, and entire university
systems as in question (a)?

(d)	Can response time requirements for upload, download, and
plagiarism checks be formulated independently of the scale
of the university being served? Explain.

5.2.	 The essay processing system will also provide the ability for
teachers to enter grades and comments. The students will be
able to access their own grades. Each teacher will be able access
the grades of all students at the university. It may not be possi-
ble to support response time requirements for the grade check-
ing system during the times just before the deadlines for essays
in large classes or at the end of term. How would you write
performance requirements to account for this possibility? How
would you write response time requirements that insist that
the quality of service for those checking grades be maintained
even during periods of heavy upload traffic, such as at the end
of the term?

125

Chapter 6

Qualitative and
Quantitative Types
of Performance
Requirements

System performance requirements often state that a given load shall be
sustainable by the system, and that the system shall be scalable, with-
out specifying the meaning of sustainability and without specifying the
dimensions in which a system is to be scaled, and what successful scal-
ability means in terms of system performance and/or in terms of the
number of objects encompassed by the system. In this chapter we shall
describe the expression of performance requirements in quantitative,
measurable terms. We shall show how they can be used to reformulate
qualitative requirements in terms that meet the criteria for sound
performance requirements, such as being measurable, testable, and
unambiguous.

Qualitative and Quantitative Types of Performance Requirements126

6.1  Qualitative Attributes Related to System
Performance

Performance requirements may contain a statement of the form “The
system shall be scalable.” All too often, there is no mention of the dimen-
sion with respect to which the system should be scaled, or the extent to
which the system might be scaled in the future. Absent these criteria for
scalability, testers will not know how to verify that the system is indeed
scalable, and product managers and sales engineers will not be able to
manage customer expectations about the ability of the system to be
expanded. Characteristics for scalability, such as load scalability, space-
time scalability, space scalability, and structural scalability, are described
in [Bondi2000] and in Chapter 11 of this book. Examples of the corre-
sponding dimensions include transaction rates, the ability to exploit
parallelism, storage available to users and the operating environment,
and constraints imposed by the size of the address space.

Stability is a quality attribute that is related to scalability. If the sys-
tem runs smoothly when N objects are present but crashes when N + 1
objects are present, the scalability of the system is limited by the num-
ber of objects the system can support. Clearly, the number of objects the
system can support is a dimension of scalability that is limited in this
case.

Stability or a tendency to instability is also indicated by charac-
teristics of the performance metrics. For example, during a prolonged
period when the average offered transaction rate is constant, one
expects (1) that the completion rate will be equal to the transaction
rate, (2) that average resource utilizations will be approximately
constant, (3) that average response times will be approximately con-
stant, and (4) that memory occupancy will be approximately constant.
These expectations are consequences of the basic modeling equations
described in Chapter 3. Performance requirements for these character-
istics of performance metrics should be specified. Failure to meet them
in performance tests or in production should be cause for an investiga-
tion. Upward trends in any or all of these measures are an indication of
saturation or of an oncoming crash. In particular, increasing memory
occupancy is a sign of a memory leak. If the system leaks enough to
exhaust a memory pool or object pool before being rebooted, it will
simply stop running.

It should be noted that fluctuations in memory occupancy need not
be indicative of a problem, although they could be. The memory

6.2  The Concept of Sustainable Load 127

occupancy in programming languages like Java that support garbage
collection will drop whenever a garbage collection episode occurs. The
occupancy may then rise, perhaps irregularly, until garbage collection
is triggered once again. Since there are processing costs and sometimes
delays associated with garbage collection, the system should be tuned
to ensure that the performance impact of garbage collection episodes is
not so severe that performance requirements cannot be met while they
are in progress.

6.2  The Concept of Sustainable Load

Performance requirements sometimes state that a particular load shall
be sustainable, or that the system shall support a designated number of
users. As we saw in Chapter 5, a requirement formulated in these terms
is potentially ambiguous unless sustainability is defined, and unless
the activities performed by the users and how often each one requests
particular actions of the system are specified. To define sustainability,
we need to describe the desired performance of the system in terms of
metrics that fall within a set of acceptable bounds. Thus, we might say
that a load is sustained by the system if the distribution of the transac-
tion response times has certain characteristics, such as an average being
below a certain level, if all the resource utilizations under a stipulated
load are less than a certain percentage, and if the system continues to
accept transactions at a certain rate without crashing and without hav-
ing large amounts of variability in the performance measures under a
constant transaction rate. Another criterion for sustainability would be
that the average response time is insensitive to small increases in load
when the system is running at the desired engineered peak load.

The foregoing discussion leads us to the following working defini-
tion of sustainability. We say that a specified transaction mix can be
sustained at a given rate if all of the following hold:

•	 The requirements for the average response time and the probabil-
ity that a response time exceeds a certain level are both met.

•	 A small increase in the transaction rate will cause only a small
increase in the average response time.

•	 The average utilizations of all resources such as CPU, I/O, and
bandwidth are below designated thresholds.

•	 There are no memory leaks.

Qualitative and Quantitative Types of Performance Requirements128

In addition, a transaction-based system can support N users if all of the
following hold:

•	 The combined load they generate is sustainable by all resources
(CPU, I/O, network, etc.).

•	 Their concurrent footprints fit into memory without causing so
much paging that the load would not be sustainable.

•	 There is enough room for their combined disk footprint.

Notice that these criteria include not only temporal ones relating to
response time, throughput, and utilization but also spatial ones relat-
ing to memory space occupancy and disk space occupancy. The spatial
criteria could have a temporal ingredient, since some of the space might
be occupied only temporarily, and since the total average occupancy
could include a component that lasts at most only as long as a transac-
tion does. The average occupancy due to that component is the product
of the holding time of that space by a transaction multiplied by the
throughput of transactions needing their own space, by Little’s Law as
described in Chapter 3.

As we saw in Chapter 3, the average response time at a single-
server device increases abruptly when its utilization exceeds 70%. This
is an indication that the arrival rate causing 70% utilization is the maxi-
mum rate that can be sustained by the system. This working definition
is broadly applicable to systems that operate under fairly constant
loads most of the time. The reader should be aware that other defini-
tions of sustainability may be required for systems on which demands
appear in bursts, such as alarm systems.

To guide the reader in the correct formulation of requirements, we
provide illustrations of ill-formulated requirements and show how
they may be corrected to conform to the guidelines for writing sound
criteria we discussed in Chapter 5. These examples are taken directly
from performance requirements documents reviewed by the author.

6.3  Formulation of Response Time Requirements

Before describing a way to word a response time requirement that con-
forms to the guidelines for requirements listed in Chapter 5, let us first
look at some examples of performance requirements that fail to con-
form to them in one or more respects:

6.3  Formulation of Response Time Requirements 129

1.	 Ideally, the response time shall be at least 1 second.
2.	 The response time shall be at most 2 seconds.
3.	 Both requirements must hold simultaneously.

The first requirement is faulty because it places a lower bound on the
acceptable response time rather than an upper bound. In addition, it
contains a qualifier, “ideally,” which induces ambiguity because there
is no accompanying statement of why the desired value range is ideal.
Moreover, a subjective qualifier such as “ideally” has no place in the
statement of an objective, measurable requirement. The second
requirement is not achievable because the single occurrence of a
response time in excess of 2 seconds would violate it. In practice,
response times are probabilistically distributed in a way that may not
be known a priori. Instead, the requirement statement should say
something like this:

1.	 The average response time during the busy hour shall be at
most 1 second.

2.	 99% of the response times shall be less than 2 seconds in the
busy hour.

3.	 Both requirements must hold simultaneously.

The first part of the requirement gives an upper bound on the desired
average value. The second part of the requirement gives a measurable
criterion for ensuring that few response times will exceed 2 seconds.
This set of response time requirements is consistent. It contains no
qualifiers. Notice that the second requirement does not have the same
meaning as a statement that the response time shall be less than 2 sec-
onds long 99% of the time. The use of the colloquial qualifier “of the
time” induces ambiguity for the following reasons:

•	 We do not know the observation period implied by “of the time.”
An observation period of 24 hours or a year may include many
intervals in which an “of the time” response time requirement is
easily satisfied because the load is light. The average response
time requirement might be harder to meet during an observation
period of 5 minutes during the busy hour.

•	 The average response time is a sample statistic, not a time-
averaged statistic. Therefore, one must count the number of
response times that satisfy the requirement, not the fraction of
time during which the requirement is met.

Qualitative and Quantitative Types of Performance Requirements130

The statement of the requirement may be accompanied by supporting
commentary that explains why this requirement was chosen, why the
upper bound of the average has the value 1 second, the points in the
transaction at which the response time measurement begins and ends,
and how the response time is measured. Including these points in the
supporting commentary supports verifiability, traceability, and mea
surability, some of the criteria for sound requirements mentioned in
Chapter 5 and in [IEEE830].

6.4  Formulation of Throughput Requirements

A transaction throughput requirement must unambiguously state that
the peak average transaction rate of the system shall be X units of work
in a given unit of time. Any set of performance requirements relating to
throughput must be internally consistent.

Consider the following pair of performance requirements relating
to throughput:

1.	 The system shall sustain a throughput of 1 transaction per
second.

2.	 The system shall support 100 users, each of whom generates
0.1 transactions per second.

In the absence of criteria for the ability to sustain a given throughput,
the first requirement is ambiguous. The second requirement is incon-
sistent with the first, because it implies a system throughput of 0.1 ×
100 = 10 transactions per second. It is also ambiguous in the absence
of criteria describing what constitutes support of a given transaction
rate, such as a desired average value for the response time and the
system not crashing at this transaction rate. This pair of requirements
must be redrafted to make them internally consistent. Their context
must be specified so as to make them unambiguous. Context may be
provided by a statement in the performance requirements document
that defines the terms sustainable and support, as described in
Section 5.6.

The throughput requirements of networks are usually expressed
in terms of packets per second. Of course, the minimum, maximum,
and average packet sizes should be specified, and names of the trans-
port and application-layer protocols involved should be specified, so
that the reader can determine whether the requirement is consistent

6.5  Derived and Implicit Performance Requirements 131

with the available bit rate of the transmission medium. This is essen-
tial for determining whether the performance requirement is
achievable.

6.5  Derived and Implicit Performance Requirements

Consider a situation in which a system freezes or goes into deadlock on
overload. If there is no explicitly stated requirement that the system be
free from deadlock, stakeholders who do not wish to incur the cost of
fixing the problem may resist doing so on the ground that there was no
requirement that deadlock not occur, especially if the cost is potentially
considerable. They will argue that fixing a problem that allegedly
occurs only rarely entails not only the cost of the repair but the cost of
testing to make sure that the repair has had the desired effect. A purist
might argue that this is like saying that there is no requirement that the
system shall function continuously, which is like saying that the system
need not always work. The purist might argue that there is always an
implicit requirement that the system be free from deadlock. In practice,
acceptance of that implicitness depends on the organizational mindset.
Therefore, it may be necessary to leave as little to chance as possible by
enumerating requirements that appear to be basic, lest there be organi-
zational resistance to fixing systems that fail to meet them.

A requirement may also be derived from other requirements as the
result of an algebraic relationship or as the result of a design choice.
This can arise for both functional and performance requirements. For
example, a resource pool may be implemented with methods to allocate
an object in the pool to a particular process or thread, and to deallocate
the object once it is no longer required. Since the pool is shared, mutual
exclusion is needed to ensure correct operation. At the same time, a
requirement for the pool size must be derived to ensure that the prob-
ability of the pool being exhausted is very low. The sizing requirement
is derived from whatever information is available about the number of
times pool members are demanded and freed per second, and the num-
ber of seconds for which each pool member is held on average.

The foregoing are examples of implied and derived requirements.
Inattention to these types of requirements when the requirements are
drafted and when implementation takes place can eventually result in
a system malfunction and user dissatisfaction or worse. In the remain-
der of this section we explore derived and implicit performance

Qualitative and Quantitative Types of Performance Requirements132

requirements in greater detail with a view toward preventing the short-
coming we have just mentioned.

6.5.1  Derived Performance Requirements

While performance requirements about transaction rates, throughputs,
and response times are often explicitly stated, consequent requirements
on subsystems, including object pool size and memory usage, are not.
If they are not explicitly stated, they must be derived from the quanti-
ties that are given to ensure system stability and to ensure that suffi-
cient numbers of concurrent activities can be supported. Even if explicit
values are stated, care must be taken to verify that the stated values for
the object pool and memory sizes are consistent with, or at least not less
than, the space/time occupancy implied by the throughput and
response time requirements. The implied occupancy is a consequence
of Little’s Law and the Utilization Law described in Chapter 3. The
object pool and the memory size must be sized to keep the probability
of overflow below a certain low threshold. One way of ensuring this is
to apply the Erlang loss formula [Kleinrock1975] to the sizing of the
pool, as is also discussed in Chapter 3. In the author’s experience, an
astute developer and/or tester may ask the performance engineer to
specify the maximum size of the object pool so that testing can be done
to verify that the pool does indeed have the desired size.

As an example, suppose that a transaction will be dropped if an
object pool is exhausted. The required transaction response time may
be thought of as an average value for the holding time, while the trans-
action rate multiplied by the number of times an object will be acquired
and released by the transaction may be thought of as an arrival rate or
request rate. If we require that the probability of object pool exhaustion
be −10 6 or less, we can approximately size the object pool to achieve this
requirement using the Erlang loss formula. The calculated object pool
size is the derived requirement needed to achieve the desired probabil-
ity of pool exhaustion. While the loss probability requirement is inher-
ently hard to test because losses should not occur, the ability to store
the desired number of objects is easily tested in principle, provided that
the test harness is capable of doing so.

6.5.2  Implicit Requirements

We think of a requirement as being implicit if it seems apparent from
the context or if it is taken as given by all stakeholders. The problem

6.5  Derived and Implicit Performance Requirements 133

with implicit requirements is that they are part of what might be
described as a domain-specific, technical culture. Because of globaliza-
tion, outsourcing, and high labor turnover, one should not assume that
what is implicit to one set of stakeholders is implicit to another. It is
particularly easy to assume that all stakeholders take implicit require-
ments for granted when one is part of a large organization whose mem-
bership is stable. In the author’s experience, it is better to err on the side
of safety by spelling out the context of each requirement. In effect, no
requirement should be regarded as implicit, even if it trivially seems so.

One might assume that freedom from deadlock is always an implicit
requirement. It is implied by any performance requirement that speci-
fies or implies a nonzero throughput, because a system in deadlock has
zero throughput. Freedom from deadlock is also prerequisite for sys-
tem stability. There may be resistance to the specification of a require-
ment that the system be free from deadlock if a legacy system is prone
to it, or if a deadlock, such as that occurring in a database, can be
resolved within a stipulated amount of time. Notice that we have not
said that deadlock should be resolved within an acceptable amount of
time, because acceptability is in the eyes of the beholder, depends on
the nature of the problem, or both. For an example of ambiguity lead-
ing to a possibly incorrect implementation with catastrophic results,
the reader is referred to [Swift1912] for a narrative on the consequences
of an agreement that an egg should be cut open at the convenient end,
rather than at the big end or the little end.

Implicit requirements often arise in transaction-oriented systems
and in telephony. A requirement that a telephone switch or trunk be
able to handle n calls per hour may be based on an implicit assumption
that a “typical” call lasts 3 minutes and does not make use of any spe-
cial services such as charging with a prepaid card, a telephone credit
card, conference calling, a voicemail system, or an automated announce-
ment system. The services involved in the call and the average dura-
tion should be specified. The mix of services changes as technology
changes, while the average call duration may depend on whether the
called party is an individual, an agent in a call center, or a conference
bridge. The duration of a call may also be driven by cost, provided one
can assume that the user base is sensitive to cost. One is more likely to
converse for an hour if one’s phone has unlimited long-distance service
than if one is billed at US$3 per minute or more.

A requirement that a web site be able to support n concurrently
logged-in users assumes many hidden, implicit characteristics, such as
what the users are assumed to be doing, how long they will remain

Qualitative and Quantitative Types of Performance Requirements134

logged in, the average footprint per user, and how often they will be
triggering activities of various kinds. Similarly, a performance require-
ment that a web site or an application be able to handle X user sessions
per month may be adequate for forecasting revenue, but it is uninform-
ative about how the web site has to be engineered for acceptable per-
formance. To remedy this, there should be an explicit statement about
the amount of user activity during the peak hour, or about how the
activity in the peak hour is related to the total monthly activity.

6.6  Performance Requirements Related to
Transaction Failure Rates, Lost Calls, and Lost
Packets

Costs are incurred when a telephone system drops or fails to complete
calls, when customers abandon a transaction or call because the
response time is too long, or when packets are lost in a computer net-
work. Even if the pricing model is such that no revenue is lost when a
transaction fails or a call is lost, there is an inherent cost associated with
the loss due to the delays caused to other work by wasted processing as
well as the cost of processing or transmission associated with repeating
the lost work. Moreover, these costs can propagate to other layers of the
system. A prerequisite for containing the associated cost is the specifi-
cation of limits on the probabilities that these events will occur.

•	 If a telephone call is lost, the processing power and network band-
width associated with setting up the call will have been wasted. If
the call is retried, the cost of setting it up will essentially be twice
what it would have been had it been completed properly on the
first attempt.

•	 If a caller on hold at a call center abandons the call and hangs
up, the time spent on hold may be charged to the call center if
the call is toll free, or to the caller if the call is not toll free or was
placed from a mobile phone. In addition, the caller may decide
to call a competitor’s call center instead, if there is one.

•	 If a packet being sent over a TCP connection is lost, network
throughput will be degraded and bandwidth consumed by the
retransmission of all packets sent between the most recently
acknowledged one and the one declared to be lost. This is a
waste of bandwidth.

1356.7  Performance Requirements Concerning Peak and Transient Loads

In each of these cases, a performance requirement must be specified
that limits the loss rate, expressed in terms relating to the domain:

•	 In a telephone network that carries upward of 100 million revenue-
generating calls per day, a loss rate of 1% will still result in the loss
of a million calls per day, which is unacceptable. Therefore, it may
be necessary to specify a performance requirement that the prob-
ability of not completing a call be less than −10 8 or even −10 9.

•	 In a revenue-generating call center, and/or one in which there
are high telecommunications costs when customers are kept on
hold, it is necessary to keep the call abandonment rate below a
specified level, such as −10 6 or whatever level is justified by a
trade-off between costs and revenue. This requirement may
lead to requirements on the call handling time, the time to
answer, and the number of agents available to answer calls, not
to mention the number of telephone circuits that are needed to
support the traffic [Bondi1997a].

•	 In a packet-switched network, packet loss may cause both per-
formance and safety issues at the application level. To prevent
this, a very low packet loss rate may be required for each net-
work element, for example, −10 9.

6.7  Performance Requirements Concerning Peak and
Transient Loads

Our focus up to now has been on systems in which transactions occur
with some regularity. This is not always the case with control or moni-
toring systems, such as sensor networks that are used to monitor the
functioning of a manufacturing plant or a train, or those that are used
to monitor a building for intrusions or the occurrence of a fire. As we
have seen in earlier chapters, a fire alarm system must be able to trigger
enunciation devices such as bells, sirens, and blinking lights within a
few seconds of smoke being detected, as well as within a few seconds
of someone pulling a red handle. Similarly, a conveyor system must be
able to shut down abruptly if someone pulls an alarm cord or if an
overheated motor is detected. Of course, the term abruptly should not
be used in a formal requirement specification because it is not specific.
Instead, the time from event notification to shutdown should be

Qualitative and Quantitative Types of Performance Requirements136

specified. In the case of a fire alarm system, notifications of the presence
of smoke or about sensor malfunctions may arrive in very short bursts,
and the responses to them must happen within time intervals that are
specified in local fire codes, such as [NFPA2007]. For these types of
systems, a statement of the corresponding performance requirements
might take the following form:

1.	 An audible alarm shall be sounded in the vicinity of detected
smoke, and a telephone call shall automatically be made to the
fire brigade, within 5 seconds of the arrival of the first notifica-
tion of the occurrence of smoke by a detector.

2.	 Door closers shall be activated within 30 seconds of the arrival
of the first notification of the occurrence of smoke by a detector,
whether or not notifications have arrived from up to N notifica-
tion devices.

3.	 All N notifications shall be cleared within 3 minutes.

Here, N depends on the size and nature of the installation. A smaller
building may have a smaller value of N than a larger building, depend-
ing on the nature of the building, the number of sensors in the building,
how the building is used (e.g., whether it houses offices, a library, a
laboratory, a chemical plant, a hospital, a museum, or a concert hall),
and what is stored there.

Transient bursts of activity can also happen in systems in which
there are bulk arrivals. For example:

•	 The arrival of a train or plane at an international terminus may
result in the discharge of a large number of passengers who must
be cleared through border inspection in order to make connec-
tions within a stipulated time of arrival.

•	 When a session ends at a conference, all attendees must be
served refreshments with adequate time to mingle before the
next session starts.

6.8  Summary

In this chapter we have seen examples of different forms of require-
ments and shown how some misleading or ambiguous statements of
requirements can be reworded to render them sound and unambigu-
ous. We have also seen that performance requirements that seem

1376.9  Exercises

implicit from their context may very well be ambiguous unless their
context is specified, and that performance requirements must be for-
mulated in terms of the time scale within which they are to be engi-
neered if they are to be useful. We have also seen that requirements
regarding the exhaustion probabilities of object pools must be speci-
fied, and how the desired sizes of these object pools can be derived
from the values of other metrics and various mathematical assump-
tions. Finally, we have illustrated the formulation of performance
requirements relating to bursts of activity, especially those that occur in
mission-critical systems such as alarm systems.

6.9  Exercises

6.1.	 A conference has five concurrent tutorials with 30 attend-
ees each. During a 20-minute break, one or more waiters will
pour tea into cups from pots at a buffet. Tea must be consumed
before the attendees return to class. Write performance require-
ments for the tea service using the following steps:

(a)	 Identify the constraining factors.
(b)	 Identify the demand variables.
(c)	 Identify criteria for satisfactory performance.
(d)	 Identify metrics

(i)	 Describing the work done
(ii)	 Describing the performance of the system

(e)	 Explain which objectives are served by
(i)	 Having all tutorials on break at the same time
(ii)	 Having tutorials on break at different times

	 Explain how your performance requirements are shaped by
your choice of which of these objectives to fulfill.

6.2.	 At a German beer festival, waitresses in dirndls circulate
between a beer dispensing point and tables of revelers. Each
waitress serves patrons at a predetermined set of tables. Beer
may be consumed only by people sitting at tables. Waitresses
take batches of orders from one table at a time. Each table seats
at most ten revelers. The waitresses may carry up to ten mugs
of beer at a time, each of which has a capacity of 1 liter and
weighs 1 kilogram when empty. The distance from a group of
tables to the beer dispensing point is about 50 meters.

Qualitative and Quantitative Types of Performance Requirements138

(a)	 Identify a set of performance requirements for this system
from the point of view of a patron at a table.

(b)	 Identify a set of performance requirements for this system
from the point of view of the waitresses’ union.

(c)	 Explain how the waitresses’ performance requirements
must be reflected in a set of performance requirements writ-
ten by the beer dispensers’ union.

(d)	 Identify a set of performance requirements from the point of
view of the brewery that owns the tent in which the festival
is held.

(e)	 Determine whether the performance requirements of the
different sets of stakeholders are consistent or in conflict,
and suggest a resolution if they are in conflict. Explain the
trade-offs.

139

Chapter 7

Eliciting, Writing,
and Managing
Performance
Requirements

We explore the processes of eliciting, gathering, and documenting
performance requirements. We also examine some pitfalls that may
arise in documentation, such as the expression of requirements in forms
that are antipatterns because they can lead to ambiguity and/or cause
difficulty in measurement. We show how pitfalls can arise when
prescribing the performance requirements of a system or component
that is replacing a legacy system, because the functionality in the new
system may be different but hidden, and describe how circular
dependence should be avoided. This chapter also contains guidance on
the organization of a performance requirements document and the
contents of individual requirements.

Eliciting, Writing, and Managing Performance Requirements140

7.1  Elicitation and Gathering of Performance
Requirements

Gathering performance requirements involves the identification of
functionalities, the identification of sound performance metrics, and
the specification of the values these metrics should take to support the
functionalities. As with functional requirements, the gathering of per-
formance requirements entails interviewing stakeholders from many
different teams from many potential stakeholder groups.

In the author’s experience, the set of stakeholders can include prod-
uct managers and sales engineers, because they identify the market
segments for a system, such as customers for large-scale and small-
scale systems. Any pertinent regulations that could affect performance
requirements must also be identified, such as fire codes in the case of
alarm systems. The set of stakeholders also includes architects, design-
ers, developers, and testers. It is important to interview the architects
and developers. This provides an early opportunity to avoid designing
bottlenecks into the system and to verify that technologies they pro-
pose to use are capable of meeting the envisaged system demand, while
allowing for the early introduction of innovations.

Stakeholders may be reluctant to commit to a particular set of esti-
mates of demand for system usage because Customer A may argue
that his or her organization’s load is not like Customer B’s. For exam-
ple, the work mix of a small rural clinic may be very different from that
of a large hospital using similar sorts of computer-controlled diagnos-
tic equipment for different purposes. Even the workloads of hospitals
with similar numbers of beds may differ, because one hospital might
specialize in orthopedics while the other does only cancer care. Their
fire alarm systems may be quite different, too, because of the nature of
materials held in storage areas or in use among patients, such as oxy-
gen tanks and isotopes. Despite the possible disparities among poten-
tial locations and user communities, performance requirements
specification and testing should not be avoided. Instead, the project
team should resort to the use of a set of reference scenarios describing
a workload clearly and reflecting standardized needs for particular
response time levels applicable to all systems. These would constitute
baseline performance requirements. Reference mixes of activities driv-
ing throughput needs can be tailored to the needs of a given site for
sizing purposes if desired. That way, development and testing can pro-
ceed even if a particular customer for the system has not been

7.1  Elicitation and Gathering of Performance Requirements 141

identified before the product is announced. The reference scenarios
might be agreed to by product managers and/or sales engineers, and
then mapped to the corresponding activities in the computer system,
with corresponding descriptions of workloads.

Typically, the performance engineer and/or the system architect
must take the lead to elicit performance requirements related to busi-
ness needs from the product managers and the sales engineers, if only
because the latter two may not be comfortable with numerical reason-
ing and almost certainly will not be comfortable with organizing the
performance requirements into a form in which they can be stored by a
requirements management system. Moreover, the performance engi-
neer will often have the responsibility for ensuring that the perfor-
mance requirements meet the guidelines set out in [IEEE830] as well as
the performance extensions to them described in Chapters 5 and 6.

One of the difficulties often encountered when eliciting perfor-
mance requirements is that a product manager or other customer stake-
holder may request a performance requirement that appears to be
realistic on the surface but turns out to be quite absurd and even overly
expensive when taken to its logical conclusion. For example, a business
building a call center to serve a finite subscriber base for an ongoing
service might insist on sizing the center to handle very large volumes
of traffic. Analysis might show that the business’s traffic assumptions
underlying the sizing requirement imply that a very large share of the
subscriber base would be phoning in with complaints every two or
three days. Engineering customer care for a service of such poor qual-
ity would lead to unnecessary capital and labor costs if the service
turned out to be better than that. If the product were really that bad,
subscribers would be inclined to cancel the service, which would
reduce the call center load even more.

Performance requirements are sometimes specified after the func-
tional requirements have been identified. Some organizations demand
that every functional requirement be accompanied by a corresponding
performance requirement. This may prompt the requirements writer to
think about the feasibility of a requirement, its potential impact on
resource consumption, and the resulting impact on the performance
associated with other functional requirements. The pitfall of such an
approach is that the overall performance picture may be submerged in a
detailed enumeration of performance requirements that makes business-
related and engineering aspects of the requirements less visible. For
example, a demand that an alarm condition be indicated within a cer-
tain amount of time may obscure the notion that a set of alarms should

Eliciting, Writing, and Managing Performance Requirements142

be processed within some longer time period. Moreover, potential inter-
actions between individual performance requirements may be missed
unless the time is taken to review the performance requirements in their
entirety for consistency. This is not to say that associating one or more
performance requirements with every functional requirement is bad
practice. Rather, it means that the set of associated performance require-
ments should not be regarded as telling the whole story about the per-
formance and capacity needs of the system. The individual performance
requirements for each functionality may need to be augmented by global
performance requirements as well as a set of underlying traffic assump-
tions that describe the desired performance of the system as a whole.

The following is a list of steps to be taken when eliciting and gath-
ering performance requirements. These steps should be taken whether
or not performance requirements are associated with each individual
functional requirement.

1.	 Identify the activities to be performed by the system.
2.	 Identify any regulations and standards that might be drivers of

performance requirements.
3.	 Identify any business and engineering needs that might be

drivers of performance requirements.
4.	 Determine which of these activities are performed serially and

which in parallel.
5.	 Determine which of these activities occur with repetitive regu-

larity under normal conditions and which occur in bursts.
6.	 Identify which activities occur in the background, such as data-

base cleanup, and which result in bulk arrivals of work, such as
alarms in emergency situations.

7.	 Identify the salient domain-specific performance measures
and map them to common performance measures, such as the
throughputs offered to specific system components, as needed
for performance modeling and requirements verification
purposes.

8.	 Identify the means and tools by which each performance
metric and each quantity specified in a performance require-
ment can be measured. This is essential to demonstrating the
measurability of all performance quantities and the testability
of all performance requirements.

9.	 Determine the desired response time associated with each
activity, and how often each activity is likely to occur.

7.2  Ensuring That Performance Requirements Are Enforceable 143

Identify activities that occur periodically and those that
occur in bursts, along with the corresponding periods and
burst sizes.

10.	 Working with product managers and other subject matter
experts, identify traffic assumptions and reference scenarios
related to the sets and volumes of actions to be performed con-
currently at different times of the day, seasonally, and under
different types of conditions, including normal conditions and
emergency conditions.

11.	 Determine whether there are timing requirements for system
reboot and system shutdown, and identify the factors affecting
these times.

12.	 Document the performance requirements while gathering
them, and review them for consistency, feasibility, and testabil-
ity. Ensure that the requirements meet the guidelines set forth
in [IEEE830].

13.	 Identify reference traffic scenarios for performance assessment.
14.	 Document the performance requirements continuously, and

record any derivations of quantities and sources of information
there as well.

The progression through these steps might be led by a performance
engineer, a requirements engineer, or an architect who would be desig-
nated as the owner of the performance requirements and be responsi-
ble for managing any necessary iterations through the steps. As with
functional requirements, the preparation of the performance require-
ments should involve functional testers, performance testers, develop-
ers, product management, and an architect to reduce the risk of
overlooking potentially valuable insights.

A detailed discussion about the elicitation and gathering of require-
ments is beyond the scope of this book. For this, the reader is referred to
[BPKR2009]. Here, our focus is performance requirements specifically.

7.2  Ensuring That Performance Requirements Are
Enforceable

Recall that performance requirements are an enumeration of the expec-
tations about such performance metrics as system throughput, response
time, and the ability to have a stated number of entities under the

Eliciting, Writing, and Managing Performance Requirements144

system’s management. For performance requirements to be enforceable,
they must satisfy the criteria for clarity described in Chapter 5, such as
unambiguousness, correctness, and completeness, while also being con-
sistent with one another and being verifiable. Moreover, the quantities
in the performance requirements must be obtainable from measure-
ments, and it must be possible to conduct performance tests whose
results will show whether the performance requirements are met. Under
no circumstances should the set of performance requirements be
reduced to a single number. As we saw in Chapter 2, the chapter on
performance metrics, doing so will mask potential complexities and
obscure any possibilities for trade-offs. This phenomenon was described
as mononumerosis. Since the value cited in a case of mononumerosis
might not be measurable, there is a risk that a performance requirement
cast in terms of a single variable may not be enforceable.

7.3  Common Patterns and Antipatterns for
Performance Requirements

While performance requirements for specialized embedded systems
may take unusual, domain-specific forms, those for transaction-oriented
systems tend to fall into patterns for average response time, throughput,
and number of supported users. We have already seen some examples
of these in the foregoing. Smith and Williams have used the term perfor-
mance antipattern to describe an aspect of system structure or algorith-
mic behavior that leads to poor performance [SmithWilliams2001]. We
shall use the term performance requirements antipattern to denote a form
of performance requirement that is ambiguous at best and misleading at
worst. Antipatterns are to be avoided, even if they express sentiments
that are laudable. We illustrate patterns and antipatterns with examples
encountered by the author. Some these have already been encountered
in the discussion of performance metrics in Chapter 2.

7.3.1  Response Time Pattern and Antipattern

In Chapter 6 we saw ill-formulated performance requirements like
these:

1.	 Ideally, the response time shall be at most 1 second.
2.	 The response time shall be at most 2 seconds.

7.3  Common Patterns and Antipatterns for Performance Requirements 145

This pair of requirements is problematic. The term ideally expresses
a sentiment about response times that is inconsistent with the second
requirement and may not be attainable. The occurrence of a single
response time in excess of 2 seconds would mean that the second
requirement had not been met. Nothing is stated about when or how
often the response time requirement must be met. If a sentiment like
that in the first part of the requirement must be documented, it is best
to place it in a section on supporting commentary rather than in the
body of the requirement itself.

The reformulation of the requirement we proposed in Chapter 6 is
an example of the pattern that the response time requirement for a
transaction-oriented system should assume. It has the advantage of
being expressed in measurable terms and of being testable.

1.	 The average response time during the busy hour shall be at
most 1 second.

2.	 Ninety-nine percent of all response times shall be less than
2 seconds during the busy hour.

3.	 Both requirements shall be met simultaneously.

The wording in parts 1 and 2 of this requirement reflects the fact that
the average response time is a sample statistic rather than a time-
averaged statistic. The two parts of the requirement are consistent with
one another and can be attained simultaneously, since the average is
much lower than the desired maximum.

7.3.2  “… All the Time/… of the Time” Antipattern

Were a requirement to say that the response time should be less than
2 seconds 99% of the time, we would have to clarify the requirement by
asking whether the requirement for the average response time would
be met for 0.99 × 3,600 = 3,564 seconds in every hour, or during some
fraction of the year, or some other time interval. The problem may be
illustrated by a quote from former US President George W. Bush: “I
talk to General Petraeus all the time. I say ‘all the time’—weekly; that’s
all the time—…” [Bush2007]. The quantification is ambiguous because
the time scale and frequency of interaction are unspecified, and because
one cannot tell from colloquial use whether the “… all the time” or “…
of the time” refers to a sample statistic such as average response time,
to a time-averaged statistic such as utilization or queue length, or to a
frequency of occurrence, such as the number of events per second or

Eliciting, Writing, and Managing Performance Requirements146

even the number of communications between a president and a gen-
eral per month or per week.

7.3.3  Resource Utilization Antipattern

A requirement that states that the CPU utilization shall be 60% is
erroneous because the resource utilization depends on the hardware
and on the volume of activity. The desired response time and through-
put requirements might well be met at higher utilizations.
Furthermore, the requirement would fail to be met under light loads,
which is absurd.

When confronted with a requirement like this, the performance
engineer could ask whether the stakeholder who originated the require-
ment is concerned about overload, and then offer to reformulate the
requirement as an upper bound on processor utilization. Doing so
helps to ensure that the system will be able to gracefully deal with tran-
sients that could cause the utilization to briefly exceed the stated level
under normal conditions.

It is entirely appropriate to state a resource utilization requirement
of the form “The average utilization of resource X shall be less than Y%
in the peak hour.” For single-server resources, Y might be set to 70%.
For a pair of parallel servers in which one acts as a backup for the other,
it is appropriate to state that the utilizations of individual processors
must not exceed 40%, so that the maximum load on one of them after a
failover would be no more than 80%. Anything higher than that could
result in system saturation.

7.3.4  Number of Users to Be Supported Pattern/Antipattern

We have already mentioned performance requirements of the follow-
ing form:

•	 The system shall support N users.

There are several problems with this requirement that make it ambigu-
ous and incomplete:

•	 There is no statement about what the users do, or how often they
do it.

•	 There is no statement about how many users are logged in at
the same time.

•	 There is no distinction between types of users.

7.3  Common Patterns and Antipatterns for Performance Requirements 147

These difficulties can be mitigated by placing a description of what the
users do and their behavior in a section about traffic and other assump-
tions, thus establishing a context for the requirement.

7.3.5  Pool Size Requirement Pattern

In a service-oriented architecture, the implementer of a service must
ensure that it can cater for the possibility that it must provide a large
number of objects. Failure to provide enough objects in the pool could
cause the loss and/or delay of transactions and other system malfunc-
tions. These objects could be memory partitions, semaphores, locks,
threads, JDBC connectors, or instances of other kinds of type abstrac-
tions. A pool size requirement is often overlooked during the prepara-
tion of performance requirements and functional requirements.

A performance model can be used to determine the required size of
an object pool. As we saw in Chapter 3, where basic performance mod-
els were discussed, requirements for object pool sizes are driven by
average and peak transaction rates and by the holding times of
resources. These in turn may be driven by the numbers of users logged
in or by other factors, depending on the application and the implemen-
tation. The required size of the object pool may also be driven by the
maximum probability of pool exhaustion that we can tolerate, that is,
the maximum probability that an object is not available when it
is needed. This probability, e, will be very small, for example, in the
range ≤ ε ≤− −10 1012 6 e ≤ ε ≤− −10 1012 6. The value of the probability should be deter-
mined while considering the effect of not having an object available
when it is needed. The choice of e must be listed with the requirement,
together with the mathematics used to do the sizing. Both of these will
be listed under the “Derivation of quantities” section of the perfor-
mance requirement, as discussed in the section on the structure of a
performance requirement later in this chapter.

7.3.6  Scalability Antipattern

Consider a performance requirement of the form

•	 The system shall be scalable.

This statement indicates an intent to have the system support larger or
smaller numbers of objects while maintaining similar response time
objectives, but it does not tell us anything about the dimensions in
which the system should be scaled, such as the number of logged-in

Eliciting, Writing, and Managing Performance Requirements148

users, the number of account holders, the number of devices under
management, or the throughput of units of work that the system might
eventually be required to host or support. Nor does it tell us about the
extent of scalability or the direction (up or down). Such a requirement
is clearly ambiguous and incomplete. A less ambiguous scalability
requirement might be written as follows:

•	 A small system shall host 100 users, a large one 1,000 users.

This requirement informs us about the dimension in which the system
must be scaled, namely, the number of users, and what numbers of users
are to be hosted in large-scale and small-scale systems. It is complete and
unambiguous only to the extent that the performance requirements and
demands of a user are specified. In other words, the clarity of the refor-
mulated requirement depends on the context within which it is given.

7.4  The Need for Mathematically Consistent
Requirements: Ensuring That Requirements
Conform to Basic Performance Laws

There are multiple aspects to the mathematical consistency of perfor-
mance requirements.

First, performance requirements must be mathematically consistent
with one another. To verify consistency, one must ensure that no inference
can be drawn from any requirement that would conflict with any other
requirements or inferences that could be drawn from them. Inferences
could be drawn through the use of models. They could also be drawn by
deriving an implied requirement from a stated one. If the implied require-
ment is inconsistent with other requirements, so is the source requirement.

Second, each performance requirement must be consistent with
stated performance assumptions, for example, assumptions about the
traffic conditions and engineering constraints. For example, a message
round-trip time in a protocol with acknowledgments should be less
than the timeout interval.

Finally, the performance requirement must not specify combina-
tions of loads and anticipated service times that make it unachievable.
This will happen if the product of the offered traffic rate and the antici-
pated average service time of any device is greater than the number of
devices acting in parallel. For instance, the product of the average pro-
cessing time and the system throughput at a uniprocessor must be less
than 100% so that the CPU is not saturated.

7.6  Avoidance of Circular Dependencies 149

To reduce the risk of there being inconsistent performance require-
ments, the performance requirements document should be reviewed
by at least one individual with both quantitative expertise and knowl-
edge about the domain of application of the system before the docu-
ment is approved for release.

7.5  Expressing Performance Requirements in Terms
of Parameters with Unknown Values

Even if numerical values associated with performance requirements are
unknown, it may be possible to identify algebraic relationships between
them. These relationships should be spelled out in any case to ensure
consistency among the requirements. Where a performance measure is
an independent variable whose value is unknown, any performance
requirements involving it and any quantities depending upon it should
be identified. The corresponding performance requirements should list
the variables in question as parameters to be filled in once their values
have been identified. Notice that there might be more than one valid set
of parameters, and that different sets of performance requirements
would have to be generated for each one. For example, the desired
workload throughputs and numbers of customers to be supported in
small, medium, and large configurations might not be fully known
when requirements elicitation begins. The preparation of performance
requirements should proceed even when not all the values of parame-
ters are known, so that dependencies between performance require-
ments or links to functional requirements may be identified. The
parameterized requirements should initially be listed as placeholders
to be completed as the document evolves or to be flagged as unknowns
during requirements review. There should be no unknown values in
the performance requirements document once product development
begins, because these could affect the scale of the hardware platform
and lead to the overengineering or underengineering of the system.

7.6  Avoidance of Circular Dependencies

A circular dependence can arise between two or more performance
requirements if the values of the parameters in each depend on the
values of parameters in the other, either directly or indirectly. Such
circular dependencies are to be avoided because they make

Eliciting, Writing, and Managing Performance Requirements150

performance testing and modification of the requirements difficult.
They might also be a sign of self-expansion, a characteristic of system
performance that undermines a system’s scalability and potentially its
stability under heavy loads [Bondi2000]. Self-expansion of memory
requirements and response time can occur when the release of a
resource bound to a process or thread is delayed by the presence of that
process or thread in a queue ahead of the thread or process that must
deliver the release signal. The increased holding time of the resource
by the first process delays the acquisition of other like resources in the
same pool by other resources, which in turn delays release. This prob-
lem will be discussed further in Chapter 11 on scalability.

7.7  External Performance Requirements and Their
Implications for the Performance Requirements of
Subsystems

The demands on a complex system may be regarded as being triggered
by external stimuli. These stimuli may consist of arriving customers,
the arrival of transactions, or other events. The rates at which these
stimuli occur constitute the system throughput requirements. As the
architecture of the system takes shape, the information flow through
the system and the frequencies with which various software and hard-
ware components are visited will become apparent. These frequencies
are the throughputs offered to the corresponding components. The use
of these components may involve the acquisition, retention, and free-
ing of objects within them. The number of such objects needed to assure
performance should be derived from the throughput requirements,
estimated service times, and predicted resource holding times, using
methods such as those discussed in Section 7.3.5 on object pool sizes.

7.8  Structuring Performance Requirements
Documents

We recommend a structure for a performance requirements document
that is quite similar to that recommended in [IEEE830] for functional
requirements. A section on traffic assumptions specific to the domain
should be included in the document to reduce the risk of ambiguity or

7.8  Structuring Performance Requirements Documents 151

misunderstanding. This is especially important when there is a risk of
high staff turnover.

Reference work items and reference workloads are needed to estab-
lish the context for domain-specific metrics. A reference work item
may be a particular kind of transaction or set of transactions and activi-
ties. A reference workload specifies the mix and volumes of the trans-
actions and activities. A reference scenario might be a set of workloads,
or a set of actions to be carried out upon the occurrence of a specific
type of event. For instance, a reference scenario for a fire alarm system
might be the occurrence of a fire that triggers summoning the fire bri-
gade, the sounding of alarms, and the automated closure of a defined
set of ventilators and doors. The performance metrics used in the
requirements, especially those that are specific to the domain, should
be defined and mapped to related system actions. The instrumentation
used to gather the metrics should also be specified to the extent known,
so that one can establish that a mechanism for verifying and enforcing
the requirements via testing exists.

A performance requirements document must be structured to facil-
itate the reader’s understanding of quantitative specifications of the
performance requirements, as well as the requirements’ context. The
scope and purpose of the document should be clearly stated. Among
the questions answered by the scope and purpose section would be the
following:

1.	 How is the document going to be used? Will it be used as
the basis for performance tests? Will it be used for marketing
purposes?

2.	 What feature set is covered by the performance requirements
document?

3.	 What aspects or features of the system are not covered by the
document?

4.	 With what systems will the system or component to which the
requirements pertain communicate or interact?

The last point arises because the interactions with other systems or
components may be stimuli from them or responses to them. These
trigger or are the results of work that must meet performance require-
ments. Moreover, the performance requirements may be influenced by
the interoperability requirements of the interacting systems.

Next, the intended audience should be identified. This includes the
set of stakeholders who must understand the document and

Eliciting, Writing, and Managing Performance Requirements152

implement and test the requirements. It also includes stakeholders who
need to understand the economic aspects of the system, such as the
costs and revenues associated with achieving performance objectives.
The intended audience might include architects, product managers,
designers, developers, testers, and the product owner. Mentioning
stakeholders implies that the requirements and/or their supporting
commentary are understandable by at least one of them, and prefera-
bly by as many of them as possible.

A set of references should include the functional requirements doc-
uments to which this performance requirements document relates, any
technical standards and draft standards that should be cited, any rele-
vant government regulations and statutes, and any product manage-
ment documents and contractual documents that will influence the
content of the requirements. The reference list should also include any
books, published articles, patents, and published patent applications.
For convenience, one may wish to list proprietary and/or classified
references in one subsection and published materials in another
subsection.

Next, there should be a statement of the basic assumptions that
underlie everything else that is stated in the document. These assump-
tions may be explicit or implicit. Since implicitness is in the eyes of the
beholder, one should state both implicit and explicit assumptions. For
example, there are implied assumptions among telecommunications
engineers of a certain era that the average phone call lasts 3 minutes
and that 10% of the traffic in a 24-hour day occurs during the peak
hour. These assumptions depend on social behavior and on how tele-
phone service is used. These two assumptions may have been valid
when the price of telephone calls was high and before conference calls
became ubiquitous. They may not be valid today. If these assumptions
are used, they should be stated explicitly, so that they are apparent to
all readers of the document present and future, and so that they can be
questioned if measurements warrant it. The statement of assumptions
should also describe any industry norms and standards relating to the
functionality of the system. These should also be listed in the reference
list. Assumptions about the intended traffic load will be stated here,
together with criteria for load sustainability, definitions of the perfor-
mance metrics to be used in the performance requirements, and
assumptions about the instrumentation to be used to collect the meas-
urements needed to verify and validate the performance of the system.
The enumeration of the performance requirements follows the state-
ment of assumptions.

7.9  Layout of a Performance Requirement 153

A summary of the proposed document structure is shown in
Table 7.1. The layout of an individual performance requirement is dis-
cussed in the next section.

7.9  Layout of a Performance Requirement

In addition to being recorded in a document in a format like the one in
Table 7.1, performance requirements should be stored in a machine-
readable database to enable classification, search, and retrieval. For
ease of maintenance and to ensure consistency, the performance
requirements document should be generated from the database in
which the requirements are stored, as can be done for functional
requirements. The requirements may be stored in a spreadsheet, or in
special-purpose tools such as Rational Rose or Doors. We shall think of
a performance requirements document as a set of records, each of
which has a set of fields, including an index number for the require-
ment and a descriptive title.

The suggested fields of a performance requirements record reflect
many of the concerns we have discussed in the earlier chapters on
requirements. Some fields, like the list of precedents, sources, and
standards, are intended to provide traceability. Separating supporting
commentary from the statement of the requirement reduces the risk of
ambiguity while providing an opportunity to document some of the

Table 7.1  Structure of a Performance Requirements Document

1.	 Scope and purpose

2.	 Intended audience

3.	 References (including related functional requirements specification document)

4.	 Statement of assumptions:

a.	 Assumptions about the system

b.	 Assumptions and conventions about the problem domain

c.	 Traffic assumptions

d.	 Criteria for load sustainability

e.	 Definitions of metrics used for the requirements

f.	 Instrumentation to gather the metrics for verification

5.	 Performance requirements

Eliciting, Writing, and Managing Performance Requirements154

reasoning behind the requirement and the requirement’s purpose.
Listing dependent and precedent performance requirements helps one
to see how requirements are intertwined.

Storing the statement of the requirement and the supporting
commentary in separate fields facilitates the distinction between a
requirement and the reasons for specifying it. The statement of the
requirement will list the values or range of values, or a statistical
description of the values, that a set of performance metrics should take.
The supporting commentary will describe why this requirement was
specified, citing standards, marketing documents, mathematical deri-
vations, the related clauses in contracts, and/or engineering conven-
tions as necessary. These documents should all be listed in the reference
section of the performance requirements document.

The requirements record should contain a field listing the prece-
dents, sources, standards documents, and other material supporting
the requirement. This is essential for ensuring that the requirement is
traceable.

Any quantities listed in the performance requirement should be
justified either by reference to standards or by reference to calculations.
The calculations may be listed in a suitably indexed appendix, or they
may appear in public or proprietary documents. The documents should
be cited and the citations included in the list of references.

Each requirement should be accompanied by a list of the require-
ments that depend upon it (the dependent requirements).

Each requirement should be accompanied by a list of the assump-
tions on which it depends and by a list of the other requirements on
which it depends. The assumptions should be listed in the “Statement
of assumptions” section of the performance requirements document.

If a performance requirement contains a numerical value that must
be measured, the source and means of measurement should be
specified.

There should be flags to show the following:

•	 An indicator if the requirement is independently modifiable
•	 An indicator that the requirement is traceable
•	 An indicator that the requirement is unambiguous, or if not,

why not
•	 An indicator that the requirement is correct, or if not, why not
•	 An indicator that the requirement is complete, or if not, why not
•	 An indicator that the requirement has passed or failed review,

or if not, why not

1557.10  Managing Performance Requirements

These indicators will be used by the performance requirements engi-
neer and by reviewers to track whether a performance requirement
meets or is believed to satisfy each criterion. A summary of the
suggested fields of a performance requirements record is shown in
Table 7.2.

7.10  Managing Performance Requirements:
Responsibilities of the Performance Requirements
Owner

Performance requirements play a role in every stage of the software life-
cycle, whether the lifecycle is managed using a waterfall process, an agile
process, or otherwise. To facilitate access by the stakeholders, perfor-
mance requirements should be centrally stored, perhaps in the same sys-
tem that is used to store functional requirements. To ensure that
performance considerations do not fall through the cracks, it is essential
that an individual be designated as their owner, and that this individual

Table 7.2  Suggested Fields of a Performance Requirements Record

1. Requirement number

2. Title

3. Statement of requirement

4. Supporting commentary

5. List of precedents, sources, standards

6. Derivation of quantities

7. List of dependent requirements

8. List of assumptions and precedent performance requirements

9. Sources of measurement data

10. Name of a subject matter expert on this requirement

11. Indicator if the requirement is independently modifiable, or if not, why not

12. Indicator that the requirement is traceable

13. Indicator that the requirement is unambiguous, or if not, why not

14. Indicator that the requirement is correct, or if not, why not

15. Indicator that the requirement is complete, or if not, why not

16. Indicator that the requirement has passed or failed review, and why

Eliciting, Writing, and Managing Performance Requirements156

be visibly mandated and empowered to communicate with all project
stakeholders about performance issues. Examples of possible owners
include the chief architect of the project, the chief requirements engineer
or a designate, or the chief performance engineer or a designate.

As functional requirements evolve or as new ones emerge, the
performance requirements must be updated to ensure consistency
with the new functionality. Similarly, as product managers and other
stakeholders identify new performance requirements or changes to
those already written, care must be taken to ensure that the new and
modified requirements are consistent with the ones that have not
been explicitly changed. Otherwise, ambiguities will arise that will
complicate performance testing while potentially creating confu-
sion about performance expectations and inconsistencies within the
document.

In addition to addressing performance concerns, the performance
requirements owner will be responsible for managing change control
and requirements traceability, and for ensuring that every change or
addition is linked to business and engineering needs. When perfor-
mance requirements are negotiated and written or modified, the per-
formance requirements owner will also play a pivotal role in mediating
between different groups of stakeholders, including architects, design-
ers, the owners of various system components, and perhaps even law-
yers. Involvement with the latter is necessary to ensure that contracted
levels of performance are described in measurable terms. If perfor-
mance requirements are changed, the performance requirements
owner must ensure that the changes are understood by all of these
stakeholders, as well as by sales engineers, so that the necessary changes
to architecture, implementation, and appropriate commitments to cus-
tomers can be made.

7.11  Performance Requirements Pitfall: Transition
from a Legacy System to a New System

When transitioning from a legacy system to a new one, it is easy to
overlook subtle changes in functionality that might affect the way per-
formance requirements should be formulated. The author encountered
this pitfall when transitioning from his father’s 1940s vintage 35mm
coupled rangefinder camera to a modern point-and-shoot digital cam-
era. With the old camera, pressing the shutter button causes the subject

1577.11  Performance Requirements Pitfall

to be captured pretty much in the state seen by the user. In this case, the
subject was a walking cow with a bell hanging from its collar. The digi-
tal camera took so much time to capture the image that the resulting
photo included the cow’s udder, but not the bell. The difficulty was
that the shutter reaction time on the digital camera included autofocus
and exposure settings. With the vintage camera, these would have been
done manually in advance of the shutter being released. The problem
occurred because the author erroneously assumed that the digital cam-
era would have the same shutter reaction time as the vintage camera. It
does not, and the unexpected image was the result.

One might ask whether the comparison of the shutter reaction
times is fair, given that the digital camera does so much more when the
button is pressed. The answer is that a comparison should reflect expec-
tations of the functionality that will be implemented, and that the user
should plan the shot accordingly. With the vintage camera, planning
the shot would have included several preparatory steps:

1.	 Opening the light meter, aligning the settings pointer on the
light meter with the needle, noting the required combination
of aperture setting and shutter speed, and setting these on the
camera.

2.	 Composing the picture in the camera’s viewfinder, and setting
the camera’s focus using the focus ring on the lens.

3.	 Pressing the shutter release button. The image is captured in
the time it takes to open and close the shutter. This is known as
the shutter speed.

The combined time to perform all of these actions could be long enough
for the cow to walk out of view altogether. By contrast, pressing the
shutter release button on the digital camera causes all three steps to be
performed. The instant at which the image is captured may be later
than the instant at which the shutter button is pressed, but the subject
may still be close to the desired position by the time the image is
captured.

Only one functionality is triggered by pressing the shutter button
on the legacy camera: opening and closing the shutter to capture the
image. On many digital cameras, multiple actions occur when the
shutter button is pressed. The lesson we draw from this comparison is
that one must evaluate the set of functionalities to be performed by
both the legacy and the replacement system components when deter-
mining the performance requirements of the replacements. We must

Eliciting, Writing, and Managing Performance Requirements158

also take into account any changes to the interface that are required
when integrating the replacement into the system, including timing
characteristics.

7.12  Formulating Performance Requirements to
Facilitate Performance Testing

If performance requirements are ambiguous or not expressed in mea
surable terms, they cannot be tested. Adherence to the IEEE 830 guide-
lines for requirements should enable the implementation of performance
tests to ensure that the system is running smoothly. Even if the perfor-
mance requirements are not clear, performance testing should still be
done because it facilitates the unmasking of functional problems that
are the result of concurrent programming errors, memory leaks, and
poor programming choices that slow a system down to the point of its
being perceived as nonfunctional or dysfunctional. If carefully struc-
tured, performance tests can also reveal the performance limitations of
the implementation.

Performance testing can reveal whether the performance metrics of
a system behave as predicted by performance models. Failure to do so
can be a sign of a system malfunction. Performance requirements
should be written to ensure that performance tests are structured to
reveal deviation from the properties predicted by performance models
as well as to verify adherence to performance requirements.

In a well-behaved system subject to external arrivals of work at
constant rates, the utilizations of such resources as the processors,
disks, and network bandwidth should be linear functions of the offered
load. The largest of those utilizations will be first to top out at 100% as
the transaction loading increases. This is a consequence of the Utilization
Law and the Forced Flow Law we saw in Chapter 3. Moreover, if the
average service times and average arrival rates at the system are con-
stant and the mix of work is constant with respect to time, the average
utilizations and average response times should also be constant.
Deviation from this behavior is a sign of a problem. Therefore, there
should be performance requirements that state that:

1.	 The average resource utilizations measured at regular inter-
vals should be constant or vary within a very small range (to
be specified) during periods when the arrival rate is constant

7.12  Formulating Performance Requirements to Facilitate Performance Testing 159

yet low enough to avoid saturating any resource in the system.
During such periods, the resource utilizations shall be free
from trends of any kind.

2.	 The average resource utilizations for systems subject to con-
stant loads over sufficiently long periods of time (to be speci-
fied) shall be linear functions of the offered load of a specified
transaction mix.

3.	 The average memory occupancy for systems subject to
constant loads over sufficiently long periods of time (to be
specified) shall be constant and free of trends under the
same conditions as the CPU and other resource utilizations
would be.

4.	 The average response times measured during regular inter-
vals should be constant or vary within a very small range (to
be specified) during periods when the arrival rate is constant.
During such periods, the average response time shall be free
from trends of any kind.

5.	 If the arrival rate oscillates, oscillations of the resource
utilizations and average response times should occur with
peaks and troughs being the same distance apart as those of
the arrival process, and at the same time. If the average arrival
rate describes a square wave over time, the resource utiliza-
tions and average response times should also describe square
waves.

Performance requirements 1 through 5 are applicable to systems whose
workloads do not inherently saturate them and when the systems are in
equilibrium. In the theory of Markov chains, a system is said to be in equi-
librium if all states are recurrent, if each state is reachable from every other
state (i.e., the chain is irreducible), if the long-term probability of being in a
given state tends to a constant as time tends to infinity, and if the chain is
aperiodic [BhatMiller2002]. We use the term equilibrium somewhat more
loosely here. Requirements 1 through 5 are in keeping with the Markov
chain definition. Failure to meet these requirements should trigger an
investigation. In particular, since increasing memory occupancy is a sign
of a memory leak, a requirement that there should be no leaks implies the
third requirement listed. On the other hand, if the system has at least one
component that is implemented in a language supporting garbage collec-
tion, such as Java, oscillation of memory occupancy within a fixed range
may indicate that garbage collection is taking place as desired.

Eliciting, Writing, and Managing Performance Requirements160

As we shall see in Chapter 9 on performance testing, the lengths of
the sampling intervals and durations of the performance tests needed
to verify that these requirements are being met depend on the antici-
pated lengths of the response times and the desired system through-
puts. If offered load is one transaction per hour, the average performance
measures will be very different from what would be observed if the
transaction rate were one per second (3,600 per hour) or even one every
5 seconds (720 per hour). To verify that performance requirements
1 through 5 hold, we must subject our test system to increasing traffic
loads and maintain each traffic load long enough to ensure that equilib-
rium is reached.

Performance requirements 1 through 5 are not applicable to sys-
tems that are subject to bursty traffic, such as alarm systems operating
in an emergency situation, because they are not operating in a steady-
state or equilibrium environment. Instead, performance requirements
for such situations should be expressed in terms of the amount of time
within which a fixed number of actions must be executed and, in the
case of fire alarm systems, the maximum amount of time that may
elapse between the first arrival of a signal from a smoke detector or the
activation of a hand pull and notifications such as the sounding of the
first alarm and the automatic telephoning of the fire brigade.

7.13  Storage and Reporting of Performance
Requirements

Performance requirements can be quite complex and may change over
time. At the same time, it is important that they always be accessible to
the right stakeholders so that inquiries about them can be promptly
dealt with. This is especially important because the perceived value of
a system to its purchaser or owner hinges in large part on the system’s
capacity, responsiveness, and ability to recover gracefully from stress-
ful loads. It is therefore important that they be well organized, easily
retrievable, and easily tracked. At the very least, performance require-
ments should be tabulated in a spreadsheet or a text document. These
two methods can become cumbersome as the number of performance
requirements expands and as the links between performance require-
ments and functional requirements become increasingly numerous.

In many large projects, functional requirements are stored in an off-
the-shelf requirements management system from which a requirements

7.14  Summary 161

document structured along the lines of Table 7.1 can be automatically
generated. Storing the performance requirements in the same system
may facilitate providing software links between functional require-
ments and performance requirements, so that the impacts of each upon
the other can be readily assessed. For review purposes, it is useful to be
able to configure the requirements management system to automati-
cally generate requirements reports with structures like those in
Table 7.1. There, the individual requirements can be laid out as in
Table 7.2. Using the requirements management system allows updates
to the requirements to be propagated to the document without major
manual effort and its associated risk of errors.

7.14  Summary

In this chapter we have given an overview of how performance require-
ments documents might be prepared and structured, and about some
of the pitfalls that can arise when writing them. In this and the two
preceding chapters we have repeatedly underscored the need to avoid
ambiguity in the formulation of performance requirements and the
need to provide a clear context for them. We also insist that quantita-
tive requirements not be expressed using colloquial phrases such as
“all the time” or “of the time,” to reduce the risk of confusion about
what is meant and to provide a clear inference about how the quantities
of interest are to be measured. This is a prerequisite for the formulation
of meaningful and informative performance tests to verify that the per-
formance requirements can indeed be met.

This page intentionally left blank

163

Chapter 8

System Measurement
Techniques and
Instrumentation

We describe the motivation for system measurement and explore tools
and techniques for doing so. Measurement pitfalls and instrumentation
flaws will be used to illustrate the need for the validation of measure-
ment tools. We will also examine the applicability and limitations of
profiling tools and measurements embedded in the applications.

8.1  General

In earlier chapters we underscored the need to ensure that performance
requirements be expressed in measurable terms so that they can be
verified. In this chapter we look at reasons for gathering measurements,
including verifying performance requirements. We will examine some
of the tools with which measurements can be gathered. Discussion of
the procedures for planning measurement exercises is deferred to
Chapter 9, where performance testing will be discussed.

Just as government statistics offices collect data to track social and
economic trends, performance engineers and system managers need to
measure system resource usage and system performance to track the

System Measurement Techniques and Instrumentation164

evolution of the load. This is done to ensure that the system is not over-
loaded, to verify the effects of system changes, and to ensure that the
performance of the system is meeting requirements, engineering needs,
and customer needs. Performance measurements can also be used to
anticipate the onset of system malfunctions.

Measurement is necessary to identify relationships between
resource usage measures, offered traffic, processed and lost traffic, and
response times. If the response time of a system is too long, one’s first
instinct should be to measure its resource usage to identify the cause
and fix the problem. This is true even of self-contained systems such as
laptops. However, there are many other reasons for gathering perfor-
mance measurements:

•	 A production system should be measured continuously so that
baseline patterns for system resource usage can be established for
different times of day and for different times of the year.
Continuous measurement and presentation of the measurements
by time of day can also reveal anomalies and trends in resource
usage. Moreover, continuous measurement of a system in pro-
duction is necessary to identify the time of day during which the
offered load is greatest.

•	 A production system should be measured before and after any
configuration change, so that the impact of the change on
resource usage can be determined.

•	 System measurement is necessary for fault detection, the trigger-
ing of alerts that undesirable events are about to take place or are
in progress, and the application of the correct measures to deal
with them. A system or network in production should be moni-
tored continuously so that a quick decision can be made to inter-
vene with a remedy if unexpected changes in performance and/
or resource usage occur. For example, sudden or otherwise unan-
ticipated increases in measured response time could be used to
trigger software rejuvenation and avert a system crash or detect
the presence of intruders [AvBonWey2005, AvColeWey2007].

•	 The performance of a system under development should be
measured whenever the development of new features has been
completed so that their impact on system performance can be
evaluated.

•	 Similarly, the performance characteristics of a subsystem or plat-
form, whether bought off the shelf or purpose built, should be
measured to ensure that it is suitable for the intended application.

8.1  General 165

•	 System measurement is essential for capacity planning.
Resource exhaustion can be avoided and the timely introduc-
tion of new resources can be accomplished and managed in a
cost-effective manner only if sufficient data is present to make
informed decisions about resource additions and configuration
changes.

•	 The performance of a new or changed system undergoing a
performance test is measured to verify that performance
requirements are being met, and to verify that the system is
behaving in a stable manner.

It is essential to collect measurements over a period that is long enough
for the average values of system performance measures to be meaning-
ful. At the same time, a clear understanding of the workload is needed
so that the relationship between the values of the performance meas-
ures and the offered load can be interpreted, and so that random fluc-
tuations in the observations can be filtered out [CockcroftPettit1998].

Measurements may be needed of all layers and components of a
system. System resource measures are provided by hooks in the oper-
ating system accessible through commands, utilities, or system calls.
The performance of an application may be measured using a load gen-
eration tool that monitors the rate at which work requests are gener-
ated and collects the response times of individual transactions or even
of elements of transactions. Commercial databases can sometimes be
programmed to track the frequency with which tables are queried, the
response time of a query, and the frequencies with which locks are set
and the amounts of time the locks are held. Middleware can be instru-
mented analogously.

In many cases, the emergence and market acceptance of a new soft-
ware platform such as a web application server platform or a database
platform are followed by the introduction of software to monitor its
performance, and software to gather and integrate the performance
measures from all the other performance monitors. Sometimes the
measurement instrumentation is provided by the platform vendor.

There is a special problem associated with the measurement of
computer systems, compared with the measurement of other types
of systems such as chemical processing plants or biological systems or
people: the system being measured is used to gather the measurements.
Processing power is required to run the instrumentation. The measure-
ments may be stored on disk, in a dedicated section of memory, or sent
for storage across a network. This means that the measurement of the

System Measurement Techniques and Instrumentation166

measurement of the system effectively changes its state. Moreover, a
program that is violating address boundaries may function differently
when debug statements are turned on or off.

To prevent system measurements from excessively muddying the
results, one must measure the resource usage by the measurement
tools themselves to verify that they are not interfering with the system
payload to any great extent. We note in passing that the problem of
instruments interfering with the results is not confined to measuring
computer systems. It is analogous to the Heisenberg Uncertainty
Principle [AIPWEBSITE], which states, “The more precisely the posi-
tion [of a particle] is determined, the less precisely the momentum is
known in this instant, and vice versa.”

The correctness of the measurements is a necessary condition for
correct inferences to be made from them. Therefore, performance
instrumentation must be validated by experiment. Before the instru-
mentation is used, it is a good idea to find out if anyone else has had
difficulties with its giving suspect results. The existence of online
forums makes this much easier than it would have been prior to 1995,
when the World Wide Web was not ubiquitous. The opinions expressed
in the online forums should be corroborated with experiments con-
ducted locally if there are any doubts.

In the remainder of this chapter, we will learn how the user can
obtain measurements at the system level and at various software lev-
els. We shall also examine how measurements might be gathered for
multiple hosts simultaneously, as is usually the case for multitiered
systems hosting web applications. We shall look at the individual
measurements that are available from the system utilities and show
how to relate them to the performance metrics we discussed in
Chapter 2 and to the principles underlying the performance models we
discussed in Chapter 3. Since performance requirements must always
be expressed in measurable terms, we shall explore how measurements
can be taken to determine whether performance requirements are
being met.

Disclaimer: This chapter describes general principles of computer system
measurement. There are many commercial and open-source tools and pro-
grams for measuring system resource usage. Some tools are supplied with the
operating system. Many use operating system primitives, software probes
embedded in middleware or the application, or some combination thereof.
Mention of a tool by the author does not imply endorsement or criticism.
Similarly, omission of a tool does not imply criticism. The discussion of a prob-
lem with a measurement tool is based on the author’s experience with the

8.2  Distinguishing between Measurement and Testing 167

version of the tool used at the time and is stated for the purpose of illustration
only, not as a warning about a particular tool. This chapter should not be
regarded as a complete listing of the measurement tools that are available, or
as a complete catalog of the characteristics and capabilities of these tools. It is
incumbent on every tool user to validate the accuracy and effectiveness of the
measurements produced, and of every counter used, as the results may vary
from release to release of the host operating system and from one system con-
figuration to another.

8.2  Distinguishing between Measurement and
Testing

It is important to draw a distinction between performance measure-
ment and performance testing. Performance measurement is concerned
solely with how performance data should be measured and collected.
Performance measurement can be done while a system is under test or
while it is in production. Indeed, performance measurement should
always be done for systems that are in production when possible to
ensure that they are running properly and to enable the owner or user
to ascertain whether the system is running out of capacity, is running
at reasonable levels of usage, or has too much spare capacity.
Performance testing is an exercise in which a system is subjected to
loads in a controlled manner. Measurements of resource usage and sys-
tem performance are taken during the performance test for subsequent
analysis.

The following documents should be created as part of the perfor-
mance engineering process, in part to underscore the distinction
between testing and measurement, but also to enable the system archi-
tect, owners, and administrators to understand the resources that will
be needed for measurement and testing:

•	 A performance measurement plan describes the instrumentation
that will be used to collect measurements.

•	 A capacity management plan describes how a system will be
measured in production, and how these measurements will be
related to measurements of the work that is being offered to the
system at different times of the day or under different operating
scenarios. A performance measurement plan could be part of
the capacity management plan.

System Measurement Techniques and Instrumentation168

•	 A performance test plan describes what measurements should
be collected in the course of a performance test and why, the
work plan for the test, the pre- and post-test conditions of the
test environment, the set of workloads to be tested, and the
workload drivers to be used. A performance measurement plan
could be part of the test plan.

This chapter concerns performance measurements only. Performance
test plans will be discussed in Chapter 9.

8.3  Validate, Validate, Validate; Scrutinize,
Scrutinize, Scrutinize

Measurement tools consist of tools and programs created by people.
Therefore, there is always the possibility that they might not function
correctly. Since crucial calculations and decisions will be made based
on the measurements, it is important that they be validated at every
step. There are many known bugs in instrumentation and tools for the
collection of measurement. The World Wide Web facilitates research-
ing them. If any measurements look peculiar, they probably are. If the
instrumentation was homegrown, check it carefully. If it was acquired
externally or came with the operating system, check it thoroughly and
research anything strange online. Your measurements must conform to
physical laws and be algebraically consistent with one another. That
means that they must conform to Little’s Law, the Forced Flow Law,
and the Utilization Law. Timing measurements must be sensible. This
holds for IT systems and for the physical systems that they might be
used to control. Einstein told us that nothing can move faster than the
speed of light. An observation that brought this into question turned
out to be due to a wiring error [ARSTECHNICA2012]. This story illus-
trates that the performance engineer’s mantra must always be Validate,
validate, validate; scrutinize, scrutinize, scrutinize.

8.4  Resource Usage Measurements

Resource utilization is a fundamental indicator of the demands being
made on a system. Because it is usually too costly to measure individ-
ual service times, the measured utilization of a resource is usually the

8.4  Resource Usage Measurements 169

primary source of the measured service time. It is obtained from the
Utilization Law (=U XS) we studied in Chapter 3.

8.4.1  Measuring Processor Usage

Blaming the lack of sufficient processing power for poor system perfor-
mance is very common. Measuring processor utilization and the utili-
zations of other devices is the best way to determine whether that is
indeed the problem.

Processor utilizations are usually obtained from counters that
measure idle time. The utilization generated by the system is the com-
plement of the idle time. The idle time counter is increased whenever a
processor spends time executing the idle loop, also known as the mill
soaker. This is a process that operates at the lowest level of priority. It
might consist of a single instruction to branch to itself in an infinite
loop. It continues executing until it is preempted by a higher-priority
activity such as an I/O completion interrupt or a user process. If P is
the time-averaged fraction of time that the processor spends executing
the idle loop, the utilization is computed as − P1 .

There are further refinements for collecting the amount of time the
processor spends executing interrupt handlers, executing system calls
in kernel mode or privileged mode, and executing user code.

Precisely how this counting is done depends on the operating sys-
tem and on the architecture of the hardware on which the system is
running.

One way to do so is to accumulate the number of idle cycles in one
counter (perhaps a register) and the total execution time of the system
in another counter (also a register). The two counters are set to zero at
the same time. The ratio of the idle counter’s value to that of the cumu-
lative clock counter is the fraction of time that the system was idle. In
the 1970s and 1980s, before microprocessor-based systems became
ubiquitous, resource usage could be measured by attaching probes to
each of the bits of the instruction address register (also known as the
program counter). The probes would sense whether the bits were zeros
or ones. The probes were connected to a hardware monitor consisting
essentially of a plug-configurable logic board and a tape drive. ANDing
the combination of bits corresponding to the address of the idle loop
with the bits of the instruction address register and a sampling strobe
enabled one to determine how much time was spent executing in each
address. The fraction of time the system is idle is one minus the
utilization.

System Measurement Techniques and Instrumentation170

There is a fundamental assumption about inferring CPU utilization
and CPU service times with reference to the clock cycle: the frequency
of the CPU’s clock cycle must be invariant over time. This is normally
true for systems that are not subject to a power management regime.
Power management is used to conserve energy, to extend the life of a
battery between charges, or to reduce the amount of heat generated by
the CPU during periods of low utilization. It follows that the system
under test should be connected to the power supply and that power
management should be disabled when measuring resource usage for
the purpose of determining processing time and for the purpose of
comparing processing times with one system configuration or another,
especially if one is trying to determine whether one software imple-
mentation is faster than another. Similar issues might arise with other
devices whose speed is varied according to the available amount of
power, or to reduce the amount of heat generated if necessary. For
example, hard drives in battery-powered laptops may spin more slowly
when the power adapter is unplugged, and the clock speeds of proces-
sors may be reduced as the battery power declines.

The Windows, Linux, and UNIX operating systems all provide
tools to show the average CPU utilization. On systems with single pro-
cessors, this is simply the utilization of that processor. In multiproces-
sor systems, one must distinguish between the utilizations of the n
individual processors UCPU k, for = −k n0,1, ..., 1 and the overall average
processor utilization,

	 ∑=
=

−

U UnCPU CPU k
k

n1
,

0

1

	 (8.1)

With multicore and/or multiprocessors now being available in
even the cheapest laptops and netbooks, one should determine how
many cores or processors are present before conducting extensive and
intensive measurements of the system. Examining the utilizations of
the individual processors shows us whether processing activity is
equally spread among the processors, or whether the load is focused
on only a subset of them. If the load is focused on a single processor
and only one application is running, that application is inherently
single-threaded. Adding processors to the system will not improve its
performance. If the utilizations of the processors are positive but
unequal, the load is not being spread among them equally. This could
indicate that one running thread is more CPU intensive than another. If
response times increase as the load increases, without increasing the

8.4  Resource Usage Measurements 171

utilizations of the individual CPUs or even of a single one, it is likely
that the system is suffering from a software bottleneck
because insufficient threads are available to spread the load around,
or because some other discrete software resource pool has been
exhausted.

On single-processor, multiprocessor, or multicore systems, the aver-
age utilization shown by the CPU utilization counter in Windows perf-
mon and by vmstat, iostat, or sar in Linux and UNIX systems is the average
utilization among all the processors or cores given by equation (8.1).

In Windows, the utilizations of all individual processors are graphi-
cally displayed in the Performance tab of the Task Manager. If Windows
perfmon is used, the counters showing the aggregate average CPU utili-
zation and the utilizations of the individual processors must be added
to the list of active counters one by one. In Linux and UNIX, the utiliza-
tions of the individual processors are displayed numerically by the
mpstat command issued from the command line. They may also be
available from a log gathered by the System Activity Reporter sar with
the correctly chosen options.

Windows perfmon also provides counters to display processor
utilizations in user mode and in privileged mode. Processes are exe-
cuted in user mode when they are not interacting with other system
components by doing I/O. They execute in privileged mode, which
has higher levels of priority and security, when performing I/O and
other activity that involves interactions with other parts of the sys-
tem, such as generating and receiving network packets and paging
of virtual memory. Processes executing in privileged mode operate
at a higher level of CPU priority than those in user mode and are not
time sliced while in privileged mode. The corresponding mode in
UNIX is called kernel or system mode. The CPU time in kernel mode
appears in the column marked SYS or sys in the outputs of the
standard UNIX measurement tools, including vmstat, iostat, mpstat,
and sar.

8.4.2  Processor Utilization by Individual Processes

Long response times may be due to excessive processing demand or
some other cause, such as a software bottleneck. Examining the CPU
utilizations of individual processes is needed to isolate the root cause
of long response times as well as to enable one to determine if an
increase in a particular kind of activity is likely to exhaust the CPU or
some other resource.

System Measurement Techniques and Instrumentation172

Both Windows and UNIX/Linux provide tools to measure the pro-
cessor utilization by each process, and even by each thread:

•	 In Windows perfmon, it is possible to obtain the CPU utilization
attributable to processes whose names are the program names.

•	 There are at least two ways to obtain per-process utilization in
Linux and UNIX. The System Activity Reporter sar allows track-
ing of the processor utilization by a process when the PID (pro-
cess ID) of the process is known. The PID must be supplied as a
command-line argument to sar when sar is invoked. The IDs of
all processes in the system may be obtained by invoking the ps
(process status) command with option –au.

•	 The UNIX command ps –elf causes a line to be generated con-
taining information about every process and thread that is run-
ning on the system at the time it is invoked. The information
includes the amount of time used by every process to the near-
est second since the process started up, as well as the swap
space size of the process. To obtain the processing time during
a particular time interval, ps –elf must be invoked at the begin-
ning of the time interval and at the end. The CPU execution
time used by any process is its cumulative processing time at
the end of the interval less its cumulative processing time at the
start of the interval. The resulting CPU utilization is the differ-
ence between the cumulative times divided by the end time
minus the stop time, with the numerator and denominator
expressed in the same time units. If this ratio is larger than one,
the process is multithreaded and has threads executing concur-
rently on more than one core or more than one processor. To
obtain the utilization for a particular process in a multiproces-
sor or multicore system, one must divide the ratio by the num-
ber of processors or the number of cores respectively.

•	 In UNIX and Linux, the data used by ps is also available from
the set of files in /proc/<pid>/stat, where <pid> is an integer
denoting the identity of a process. Since the ps command shows
CPU usage only to the nearest second, it will be necessary to
obtain per-process CPU data from /proc/<pid>/stat using system
calls if a higher level of precision is desired.

•	 The UNIX/Linux command top displays the top users of pro-
cessing power and also shows the most recently used CPU of
each process. Since top itself runs as a process, executing it may
cause processes to change processors more often than they

8.4  Resource Usage Measurements 173

might otherwise. Moreover, running top induces a distortion of
its own: it must displace a process from one of the CPUs in
order to run. The exact syntax and set of options may vary from
one operating system version to the next. The performance
engineer or other analyst should consult the man page corre-
sponding to the operating environment of the system under test
when choosing options for the top command and interpreting
the output [TopManPage].

Beware: One cannot get a higher level of precision for a single observa-
tion than the granularity of the reporting clock. So, if the clock shows
times only to the nearest tenth of a second, that is the best precision one
can achieve for a single observation.

8.4.3  Disk Utilization

Fetching data from a disk or writing to the disk involves moving the
disk arm so that the disk heads are positioned over the correct track
(seek time), waiting for the data to be under the heads (rotational
latency), and then transferring the data. The disk is said to be busy
when any of these three activities occurs. Since data transfer is the goal
of disk I/O, one would like to keep the seek time and rotational latency
as small as possible. In some systems, it is possible to schedule I/O
activity to minimize head movement and rotational latency. Hierarchies
of disks, channels, controllers, and storage array networks may compli-
cate the set of measurements needed to determine what areas of the
system are to be improved.

In some architectures, there are bits indicating whether the disk
arm is moving, whether a transfer is taking place through the disk
heads, and whether the device is awaiting the rotation of the disk so
that the record is under the heads. Each bit is set to one if the corre-
sponding activity is in progress and zero otherwise. The disk is busy if
the OR of these three bits is true. Synchronized sampling of the bits can
be used to determine the fraction of time the disk is busy as well as the
amount of time that the disk is seeking, transferring, or awaiting disk
rotation. Additional bits keep track of whether the current I/O on the
disk is for reading or writing. Sampling those bits can tell us the frac-
tion of time that the disk is being used for a read or a write.

Some measurement tools, including perfmon in the Windows family
of operating systems, can show disk utilizations attributable to reading
and writing, as well as the amounts of data transferred to and from the
disk. This can tell us a lot about how the disk is being used.

System Measurement Techniques and Instrumentation174

8.4.4  Bandwidth Utilization

Bandwidth utilization is essentially the rate at which bits are used
divided by the available bandwidth of the transmission medium. The
effect of utilization on performance depends on the network technol-
ogy and on the media access discipline it uses.

•	 The original Ethernet uses Carrier Sense Multiple Access with
Collision Detection (CSMA/CD) to mediate access to the Ethernet
bus. If a collision occurs because two hosts were attempting trans-
mission simultaneously, both hosts must back off for random
amounts of time and then reattempt transmission. Offered band-
width utilization of 25% or more effectively saturates the Ethernet,
because repeated retransmissions are a lot more frequent when
the bandwidth exceeds that threshold [AlmesLazowska1982].
The available bandwidth is effectively e−1 times the nominal band-
width, a substantial reduction.

•	 By contrast, switched Ethernet does not have backoffs and
retransmissions, so the maximum available bandwidth afforded
by switching is essentially the nominal bandwidth.

We need to measure bandwidth utilization to determine if the capacity
on one or more links is lightly or heavily used. Examples of counters
available in Windows perfmon for the network interface include

•	 Bytes transmitted per second
•	 Bytes received per second
•	 Current bandwidth
•	 Output queue length
•	 Packets outbound discarded
•	 Packets sent per second
•	 Packets received/unicast per second
•	 Packets received/non-unicast per second

Because the meaning of these measurements is sometimes unclear, and
because their meaning and how they are implemented might change
from one point release of the measurement instrumentation to the next,
the reader is strongly encouraged to review the documentation of each
counter online before interpreting the values it produces. If the docu-
mentation appears to be ambiguous, controlled experiments in which
fixed numbers of packets of known size are transmitted and received

8.5  Utilizations and the Averaging Time Window 175

during a fixed time period should be performed so that the meanings
of the counters can be verified.

8.4.5  Queue Lengths

For any device, and for many software objects, the current number of
queued processes, threads, or transactions is an indicator of conges-
tion. Perfmon, the standard graphical performance monitoring tool sup-
plied with various versions of the Windows operating system, allows
one to gather the current queue length at time instants fixed intervals
apart and the average queue length measured over successive time
intervals of fixed length. The measurements do not include the number
of jobs currently in service. As we saw in Chapter 3, the instantaneous
queue length observed at constant time intervals is not equal to the
average queue length, nor is the averaged value of instantaneous queue
lengths equal to the average queue length over time in general. There is
an exception to this that is mathematically justified. It is known as
PASTA: Poisson Arrivals See Time Averages [Wolff1982]. PASTA states
that the fraction of customers arriving according to a Poisson process
that see a given queue length is equal to the fraction of time that a
queue has that length. Hence, the average of the queue lengths seen by
customers arriving according to a Poisson process is equal to the aver-
age queue length. Observers arriving constant time intervals apart are
arriving according to a deterministic process, not a Poisson process, so
the average of the queue lengths they see is not the same as the average
queue length over time. Therefore, one should check queue length
measurements to see if they are instantaneous or time averages. For
Windows perfmon, the length of time over which all averages are com-
puted is the time interval between the logging of the measurements.
This is a configurable value.

8.5  Utilizations and the Averaging Time Window

The measured utilizations provided via operating system functions are
samples with the values 0 and 1 (corresponding to idle and busy respec-
tively) that are taken often enough to give the illusion of smooth behav-
ior with values lying somewhere between 0 and 1. The length of the
time interval over which one takes observations plays a major role in
charting the evolution of the utilizations.

System Measurement Techniques and Instrumentation176

Averaging the processor utilizations over long intervals smooths
out spikes and temporary surges in the utilization plot.

Averaging over short intervals allows one to see rapid oscillations in
the CPU utilization. These oscillations are not harmful by themselves:
they may simply indicate that the processes are engaging in CPU-intensive
activity at some times and I/O-intensive activity at others, or that they
are alternating between waiting for user input and processing it. To illus-
trate how different utilization patterns can result in the same average,
we have plotted three hypothetical series of utilizations in Figure 8.1. In
one of them, the utilization is a constant 0.5. In another, the utilization is
1 or 0 in alternating seconds, giving rise to a square wave. In the third,
the utilization is 1 for the first 10 seconds and 0 for the second 10-second
period. In all cases, the average utilization over the observation period
of 20 seconds is 0.5, or 50%. Thus, radically different processor utiliza-
tion patterns can yield the same average processor utilization.

The choice of measurement interval lengths has a strong influence
on one’s perception of how well the system is running. If the measure-
ments are taken at very short intervals, for example, once per second,
substantial fluctuations in the processor utilization and other measure-
ments will be observed. By contrast, computing the average processor
utilization during a 1-hour period could mask any observation that the
system is alternating rhythmically between periods of saturation and

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20

U
ti

liz
at

io
n

Time (seconds)

Utilization High Then Zero
Constant Utilization
Alternating Utilization

Figure 8.1  Series of utilizations, all with average 0.5 during the period between
time = 0 and time = 20

8.6  Measurement of Multicore or Multiprocessor Systems 177

periods of zero utilization of a particular resource. Therefore, the length
of the time window used for computing average performance measures
must be chosen with care.

When concluding that a system under test is saturated, it is impor-
tant to specify the lengths of the time intervals over which the utiliza-
tions were measured. The transient saturation of one or more processors
is not necessarily a bad thing: it merely indicates that there are time
intervals when it is saturated, and times when it is not. If these time
intervals are short, one will be more likely to see short intervals in
which the CPU utilization is 100%, as well as intervals in which it is 5%
or even zero. From this, one could draw the mistaken inference that the
processor is incapable of handling multiple transactions with this sort
of traffic pattern, and that something needs to be tuned or modified to
reduce the CPU utilization. The author has participated in studies in
which concern was expressed about these intermittently high CPU uti-
lizations with only one process running. Until the performance engi-
neer pointed out that allowing more processes to do the same kind of
work concurrently would smooth the fluctuations, considerable effort
was being invested in reducing the sporadically high utilizations when
it was not necessary to do so. The lesson one should draw from this
experience is that although it is useful to measure utilizations with
short time intervals, there is much to be learned by combining the inter-
vals so that spikes are smoothed over so as to get a broader picture of
system usage and capacity.

8.6  Measurement of Multicore or Multiprocessor
Systems

It can be shown that the average queueing time for parallel servers fed
by a single queue is optimized when the average utilizations of all the
processors are equal. A multicore processor or a set of two or more par-
allel processors fits this description. Usually, operating systems balance
the load among processors or cores by routing a queued process to the
first processor that becomes free. In some system architectures, cache
affinity is used to route a process to the processor at which it was exe-
cuting most recently before it was preempted, so as to increase the like-
lihood of data pertaining to it still being in the processor’s cache
memory. In some situations, one may wish to configure the system to
permanently bind a high-priority process to one processor and route all

System Measurement Techniques and Instrumentation178

other processes to the other processors. In that case, the processor utili-
zations could be unbalanced. The utilizations of individual processors
can also become unbalanced if a process is single-threaded and is
bound to a given processor by cache affinity. In some environments, the
child threads of a process must all be routed to the processor on which
the parent process is executing. If a process is multithreaded and sub-
ject to this constraint, it will not be able to exploit the other processors,
even if they are idle. Early Java virtual machines suffered from this
constraint [Killelea2000]. This inability to exploit parallelism under-
mines a system’s load scalability [Bondi2000] (also see Chapter 11).
Sometimes the problem is recognized only after measurements have
taken place.

Figure 8.2 shows the utilizations of the individual processors in a
two-processor system. The loads are clearly unbalanced. Were the
loads balanced, the utilizations of both processors would be quite
close to the average utilization shown. This plot is based on contrived
data, but it is very similar to a plot of actual data taken from a Solaris

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10 11

%
C

P
U

 U
ti

liz
at

io
n

Offered Load

CPU0
CPU1
Average Utilization

Figure 8.2  Unbalanced processor utilization as a function of the offered load (synthetic
data)

8.6  Measurement of Multicore or Multiprocessor Systems 179

server with two processors using the mpstat command. The server
was running a version of UNIX supplied by Sun Microsystems that
used cache affinity. The utilizations of the individual processors and
the average utilizations are linear with respect to the offered load, and
thus they obey the Utilization Law. An inspection of the processor
utilizations attributable to individual processes showed that one
CPU-intensive process was bound to the more heavily used of the two
processors. The CPU utilization attributable to this process was
approximately equal to the larger of the two processor utilizations at
all load levels. Less-CPU-intensive processes ran on the other proces-
sor. We shall examine this further in Chapter 11, which deals with
scalability.

Sometimes it is necessary to conduct a pilot test with a contrived
process to clear up any questions about the interpretation of measure-
ments and the function of the operating system when the documenta-
tion is not entirely clear. When measuring a multiprocessor system, one
might be confronted with two questions:

1.	 How does the operating system balance threads or processes
among the processors?

2.	 What do the utilization counters generated by the operating
system actually mean?

One way to confront these two questions simultaneously is to run a
pilot test of a program that is known to generate at least as many
threads as there are processors and see how they are spread around.
The threads should be very CPU intensive and not contain any varia-
bles in common. Each thread will contain an infinite loop that executes
arithmetic operations, so that there will not be any I/O to cause the
thread to give up the CPU. Each thread consists solely of an executing
fragment of the form shown in Figure 8.3. Within the loop, a is repeat-
edly incremented. It is also repeatedly decremented to prevent integer
overflow.

If the number of threads is equal to the number of cores or proces-
sors, the utilization of each one will approach 100%. If there is one more
thread than there are cores or processors, a thread will be seen to
bounce from one processor to another. This is manifested by a rapidly
oscillating CPU utilization whose maximum value seems to move from
one processor to the other.

System Measurement Techniques and Instrumentation180

8.7  Measuring Memory-Related Activity

It is essential to measure memory-related resource usage to determine
whether there is sufficient main memory to meet performance needs,
and to determine whether there is excessive paging. Windows perfmon
provides counters that can be chosen from a menu in a dialog box to do
this. Linux and UNIX provide values of relevant counters as part of the
outputs of system commands.

It is necessary to measure overall memory-related activity and the
memory usage of individual processes. When a constant transaction
rate is applied to the system, steadily increasing swap space usage
and/or steadily decreasing free space are indicators of a memory leak.
The process that is leaking can be found by examining whether its
image size is increasing over time. The image size of a process is the
total of the sizes of its program space (sometimes called the code seg-
ment) and its data space (sometimes called the data segment), whether
currently loaded in memory or not. In UNIX and Linux, the entire
image resides in the swap space, while only a subset known as the resi-
dent set resides in main memory. The ps –elf command generates the
current swap space size (column SZ), current resident set size (column
RSS), and the cumulative CPU time used since the process started,
among other measurements. Executing the command at regular
intervals—for example, in a shell script that sleeps for a fixed amount
of time and then wakes up to execute the command—enables the val-
ues of these measures to be tracked over time. In test environments, a
sleep interval of 10 or 15 seconds is useful for processes whose lifetimes
exceed the runtime of a performance test, which could last anywhere
from 10 minutes to several days depending on the purpose of the test.
In production environments, less frequent sampling may be required
to reduce the risk of a log file consuming all available disk space. The
desired performance measures for each process may be extracted from

Thread AddAndSubtractRepeatedly()
{
 local int a;
 while (TRUE)
 {
 a++;
 a--;
 }
}

Figure 8.3  Metacode fragment for testing CPU load balancing

1818.8  Measurement in Production versus Measurement for Performance Testing

a log file using a script written in awk, Perl, Python, or some other
scripting language of the analyst’s choice.

8.7.1  Memory Occupancy

The size of the virtual address space of individual processes is
available in UNIX and Linux from the ps command. The private mem-
ory space of a process is available in Windows from the Task Manager’s
Processes tab.

The sum total of the sizes of all process images in UNIX and Linux
is equal to the size of the swap space, which can be obtained from the
vmstat command. The analogous quantity in Windows is the number of
committed bytes. It is easily seen in the Task Manager. It is one of the
fields of the Memory object in perfmon, which, unlike the Task Manager,
can be configured to save a log of all collected performance measure-
ments to disk.

8.7.2  Paging Activity

It can be hard to attribute paging activity to individual processes if
many of them are active concurrently. This is one reason why it is
sometimes necessary to measure the performance of processes or appli-
cations in isolation. Page reads and page replacements are indicators
that insufficient memory is present, or that there is a problem with the
way memory has been allocated. Page writes need not be indicators of
trouble, since the operating system may routinely write modified pages
to the paging device. It is hard to break out disk usage when paging,
swapping, and application-related I/O activity are all on the same sec-
ondary storage device. To reduce the risk of contention for space and
for I/O bandwidth, it is often sensible to use different disks for these
purposes. The measurements of individual components of disk usage
will then be available by default.

8.8  Measurement in Production versus Measurement
for Performance Testing and Scalability

Usually, one needs to collect measurements of a smaller number of
resources in production than one does when doing performance or other
types of diagnostic testing. Moreover, one tends to collect measurements
at longer intervals in production than one does during testing.

System Measurement Techniques and Instrumentation182

For transaction-oriented systems in production, one is mainly con-
cerned with monitoring the evolution of resource usage as a function of
load during the course of the day, week, month, or year. For this pur-
pose, it is sufficient to collect measurements of processor, I/O, network,
memory, and per-process usage once per minute or even once every
5 minutes. All of these measurements must be collected routinely for
capacity planning purposes. The collection of memory data, particu-
larly the size of the swap space in UNIX and Linux or its counterpart in
Windows systems, is necessary to prevent the onset of a system crash if
there is a memory leak.

The costs of measurement arise as follows:

•	 There are processing and I/O costs associated with every mea-
surement that is collected. Network costs are also incurred if the
measurements are sent across a network to a central collection
point such as a network management system.

•	 Every measurement that is collected has to be stored for future
interpretation, unless one is doing “quick and dirty” measure-
ments looking at console logs on a screen.

•	 The total collection costs increase linearly with the frequency
with which measurements are collected. The storage costs
increase linearly with the number of measurements that are col-
lected and with the frequency with which they are collected.

When planning a test, one must ensure that sufficient space is avail-
able to store the measurements for the entire test run. Otherwise, data
may be lost because the storage space is exhausted. This holds whether
disk space or memory is used. If pilot measurements show that mem-
ory is plentiful and that memory bus contention is not severe, one
may wish to consider storing observations in memory and then
dumping them to a secondary storage medium, such as a local disk or
an external hard drive, at the end of the run. This will reduce the risk
of measurement I/O causing spurious delays in the system under test
during the test run. This is especially important for measurements
taken within the application. On the other hand, if pilot tests show a
lot of paging because memory is not plentiful, cleaner measurements
might be obtained by writing them directly to disk if this is not done
too often. Pilot experiments should be performed to determine which
of these is the wiser course. The experiments may also reveal if some
other method of storing measurement data should be used, such as a
removable memory card or USB stick with low latency. The full test

8.9  Measuring Systems with One Host and with Multiple Hosts 183

plan should then be executed using the storage device of choice to
store the measurement logs.

8.9  Measuring Systems with One Host and with
Multiple Hosts

Many web-based systems consist of multiple logical tiers. In many
cases, each tier may reside on its own host. For example, the web server,
which serves pages, the application server, which implements the busi-
ness logic, and the database server may all reside on separate hosts. To
increase reliability and preserve system continuity in case of a failure,
each tier may reside on a pair of hosts. When the hosts are collocated,
they will be connected to each other by a high-speed local area net-
work, such as a switched Ethernet. Transactions arrive through the web
server tier. The application-layer tier generates queries to the database
server and passes the results back to the web server for presentation to
the user. A simplified view of a multitier system is shown in Figure 8.4.

To measure the performance of the system, one must measure the
resource usage of each of the hosts in each of the individual tiers, as
well as the end-to-end system response times and, where possible, the
response times of operations within each of the tiers. Two problems are
immediately apparent:

1.	 Each host and measuring device or load driver has its own
clock, so the times may not be synchronized. That could com-
plicate the task of relating measurements and time stamps on
different hosts.

Application
Server 0

Application
Server 1

Database
Server 1

Database
Server 0

Web Server 0

Web Server 1

Replication PathReplication Path

Figure 8.4  A multitier configuration

System Measurement Techniques and Instrumentation184

2.	 Each host and measuring device is potentially collecting large
quantities of data from different sources. These must be gath-
ered and reconciled for analysis.

We first consider clock synchronization, and then consider how to deal
with multiple sources of measurements.

8.9.1  Clock Synchronization of Multiple Hosts

When plotting measurements from different hosts on a common set of
axes, one wishes to be sure that their clocks are aligned so that the
events occurring on one host or measurement device can be properly
related to events occurring on another. Clocks on all hosts and
measurement instrumentation involved in a test should be set to the
same time zone and should be synchronized with a common time
server. Since it takes different amounts of time for time signals to reach
different hosts, some variation between the clocks is unavoidable.
Therefore, one should strive to ensure that the clocks are close enough
to prevent unnecessary discrepancies in the times of events and meas-
urements. For example, the transmission time stamp on a received
packet should always be earlier than the current time at the receiving
host. Since clocks drift, resynchronization with the common time server
should occur often enough to keep clocks sufficiently synchronized to
prevent discrepancies between send and receive times from occurring.
We use the term sufficiently because the overhead in observing and
recording the time itself means that perfection cannot be attained. If the
time server is many network hops from individual nodes, the random
variation in the elapsed times synchronization messages take to reach
their different destinations may induce an error of its own, not to men-
tion delays caused by possible contention within the time server itself.

8.9.2  Gathering Measurements from Multiple Hosts

There are different approaches to gathering measurements from multi-
ple hosts. The simplest method is to initiate measurement on each host
in turn, and then gather the resulting log files onto a separate worksta-
tion for analysis after each experimental run, perhaps manually. In pro-
duction systems, software agents can be stationed at each host for the
purpose of gathering data. They can then relay the data to a central
gathering point when polled by a central data server, such as a network
management system. Some agents can be configured to send data to
the central data server at regular intervals. They might also be

8.9  Measuring Systems with One Host and with Multiple Hosts 185

configured to send data under unusual circumstances, for example,
when the memory pool occupancy has attained a designated threshold,
indicating that a system crash might be likely. Repeated gathering of
data facilitates display on one or more monitoring stations. That allows
administrators to observe when a system is overloaded or approaching
overload. The administrators can also observe the onset of quiet peri-
ods, which might be the best time to take one of a set of identical serv-
ers out of service for maintenance or to schedule a backup.

Automated gathering of performance data can be more convenient
than manual data gathering, especially if several sources and perfor-
mance measures are involved. A wide range of tools exists for this pur-
pose. Some are available commercially, and at least one is available as
an open-source tool.

Network management stations can be used to gather information
centrally from agents on individual hosts. Under a standard network
management protocol known as SNMP (Simple Network Management
Protocol), the measurement information on each host is stored in man-
agement information bases (MIBs) in standard formats. The MIBs fol-
low a standard hierarchy. Data can be collected from the MIBs using
polls initiated at the network management stations at configurable
intervals, or on demand using a form of get command. The SNMP agent
on each node might also be configured to send alarm messages to the
network management station when a designated performance measure
crosses a network threshold.

Munin is an open-source measurement tool that was originally
developed in Norway [Munin2008]. A Munin Master centrally gathers
performance data from Munin Nodes on individual hosts at regular
intervals (every 5 minutes) and uses a web-based interface to generate
graphs of resource measurements. It is highly customizable. It can be
equipped with plug-ins to gather all sorts of performance data of the
user’s choice from hosts in various flavors of UNIX and Linux, as well
as Windows hosts. It can also gather information from SNMP using the
MIBs.

Gathering data across a network and centralizing it while the sys-
tem is running can be conveniently automated to provide information
at regular intervals, usually once every 5 minutes. Some off-the-shelf
products are configured to gather the data once every 5 minutes.
Sending large amounts of performance data to a central monitoring
station could incur considerable overhead, so the frequency with which
data is sent must be chosen with care. Sending the data every 10 or 15
seconds, which might be useful for diagnostic, testing, and debugging

System Measurement Techniques and Instrumentation186

purposes, may be informative, but it could also consume enough band-
width or incur enough cost to interfere with production.

Collecting data on each host using local utilities and then manually
moving the logs to a central host might seem cumbersome. It is usually
an adequate approach within the test environment and incurs minimal
network overhead while a multihost application is running. Sometimes,
this approach may be necessary if more elaborate tools cannot be con-
figured to collect performance measurements more often than once
every 5 minutes.

8.10  Measurements from within the Application

One may wish to take measurements within an application to deter-
mine how often particular data structures are used, as well as the total
time for particular actions to be executed. The measurements may have
to be crafted and built into the application by hand. This must be done
with care, because (1) taking measurements from within the applica-
tion will slow it down, and (2) logging the measurements will incur
memory and/or I/O storage costs, which can mount up very quickly
and possibly interfere with the performance of the system under test.

It is essential that the procedure for turning application-level
measurements on be simple to reduce setup time and the risk of errors.
This could be done through conditional compilation of the measure-
ments or via a command-line option. Conditional compilation requires
a lot of test setup time for large systems but has the advantage that the
code need not repeatedly do conditional checks to see whether the
measurements should be collected, stored, and written out. If a
command-line option is used, the reverse is true.

Examples of application-level measurements include counts of the
number of transactions of various types, the numbers of times particu-
lar data structures are executed, the numbers of times dynamic objects
are created and destroyed, and the frequency with which static objects
are drawn from a pool and returned to the pool, and how long they are
held. Using this data, we can apply Little’s Law to determine the aver-
age number of objects in use during the course of the run. It is impor-
tant to count the number of times an object is acquired or created and
returned or deleted. If the number of acquisitions in a test period is
greater than or equal to the number of deallocations, the object pool
may be causing a memory leak. This is undesirable, because pool
exhaustion can crash the system and/or cause transactions to be lost.

8.11  Measurements in Middleware 187

If you are coding your own statistics collection program for an
application-level object pool, you should collect the following data:

•	 Start and end time of the measurement period in the same time
zone as all other measurements

•	 Average pool size (see Chapter 3 and [LawKelton1982] for how
to do this)

•	 Largest number of allocated objects
•	 Smallest number of allocated objects
•	 Largest free pool size
•	 Smallest free pool size
•	 Number of pool allocations
•	 Number of pool deallocations
•	 Allocation rate = (number of allocations)/(measurement end

time – measurement start time)

If you are coding your own statistics collection program to measure a
time duration, such as a response time, you should collect the follow-
ing data:

•	 Start and end time of the measurement period in the same time
zone as all other measurements

•	 Largest response time
•	 Smallest response time
•	 Number of response times observed
•	 Rate of job completions = (number of completed response

times)/(measurement end time – measurement start time)
•	 Average response time
•	 Standard deviation of the response time (must have two or

more observations)

8.11  Measurements in Middleware

The issues one faces when collecting measurements in middleware are
similar to those arising when collecting system-level and application-
level measurements. One needs to be concerned about storage costs
and processing costs. Off-the-shelf software may be available to collect
the resource usage of the various services and applications within the

System Measurement Techniques and Instrumentation188

middleware tier. If performance issues are encountered, one should
begin an investigation to find the cause by using external measure-
ments of the processes and resource pools (such as thread pools that
communicate between Java applications and databases) to measure the
servers and their resource usage.

8.12  Measurements of Commercial Databases

There are many reasons why performance issues can arise in databases.
Queries might be poorly written. Unnecessary and repetitive searches
might be carried out while processing a query. Tables may not be well
organized. Searches within the database might be poorly organized
because of inadequate indexing. Inadequate indexing can lead to the
need for a long sequence of table searches to find the records of inter-
est. This is an example of the circuitous treasure hunt performance
antipattern [Smith2000].

There are commercial tools available for the measurement of Oracle,
Sybase, and SQL databases. For example, STATSPACK is used to tune
Oracle databases. These tools are documented in many places. An
explanation of the use of commercial measurement tools is beyond the
scope of this book. Books have been written on this subject [Burleson2002,
ShaibalSugiyama1996]. Instead, we briefly discuss what might be
measured in a database, and why.

Response times can be degraded even if the CPU utilization by the
database server is low. This can occur if tables are locked in their
entirety instead of being locked one row at a time. Locking an entire
table prevents threads wishing to access different rows from doing so
concurrently. This causes prolonged contention for the lock and
reduces concurrency. Some care is required in the decision to use
row- or table-level locking, because the creation of locks and the mech-
anisms to mediate their acquisition and release can incur overheads of
their own.

If a deadlock occurs in a database, it may be resolved by a deadlock
detection algorithm. At the onset of deadlock, there could be a sudden
drop in processor utilization until the deadlock is resolved. Deadlocks
can occur if two or more processes are contending for a resource that is
neither sharable nor preemptible, and if contention occurs in a manner
that causes a cyclic dependency between the processes. The same holds
for threads. For example, if Thread 1 attempts to lock Table A and then
Table B before releasing both tables, while Thread 2 attempts to lock

8.13  Response Time Measurements 189

Table B and then Table A before releasing both, a deadlock will occur if
Thread 1 locks Table A and Thread 2 locks Table B, because each will
be waiting for the table required by the other. The causes of deadlocks
can be very difficult to determine. Deadlock is one of the things one
should suspect if response times are increasing while process and I/O
utilizations are down.

The following is a list of measurements that might be of interest in
examining database performance:

•	 The number of times each table is searched
•	 The number of times each table is locked, and for how long
•	 For databases with row-level locking, the number of times each

row in a table is locked, and for how long
•	 The response times of particular queries

This list is far from complete. Your database administrator and data-
base architect may have their own thoughts about what should be
measured.

8.13  Response Time Measurements

In transaction-based systems, the system response time is the perfor-
mance metric that is most often experienced by the user. In batch sys-
tems, which are often used to generate large volumes of bank statements,
bills, and the like, there is a need to complete an entire run within a
certain amount of time. The complete runtime is also called the response
time in mathematical models of system performance like the ones we
saw in Chapter 3. When batch jobs contend for the same resources as
transactions, it is desirable to run them overnight when the demand for
transactions is much less likely. There may be a performance require-
ment that the entire run be completed within 5 hours.

The system response time includes the response times of individual
servers and, in the case of multitier systems, the response times of vari-
ous actions requested in the individual tiers. When the measured sys-
tem response time is excessive, it may be necessary to drill down and
measure the response times of the individual actions that constitute the
transaction as whole, especially those that are likely to be taking the
longest. These response times might be measured while the system is
under load, or in isolation, perhaps even while conducting unit tests to
verify functionality.

System Measurement Techniques and Instrumentation190

The response times of web-based interactions are very often meas-
ured by planting hooks in load generators that record the time at
which a transaction began and the time at which it ended. The load
generators are clients, sometimes called virtual users. It is best to run
virtual user clients on PCs other than the hosts on which the applica-
tion is running, so that the load generator does not use resources that
could be used by the application under test. The virtual users are rep-
resented by programmed scripts mimicking the actions of users. The
advantage of running load tests with virtual users is that they can be
programmed to perform transactions in a predictable, repeatable way.
This facilitates repetition of the experiments with changed system
parameters under controlled load conditions. The rate at which trans-
actions are generated and the number of virtual users should be con-
figurable by the test engineer. Several commercial tools are available
for this purpose. Typically, the tools will run scripts and gather
response times and other performance measurements, including
resource usage measurements.

The response times and resource usage of individual layers within
the application may be measured by commercial tools or coded into the
application directly as discussed earlier. The circumstances under
which this level of detail is required may vary. Where possible, the per-
formance characteristics of individual components should be measured
before they are incorporated into the application so that problems can
be isolated readily, just as one would perform unit testing on pieces of
software to verify functionality before integrating them into the whole
system.

8.14  Code Profiling

Code profiling measures the number of times every line of code is exe-
cuted during the course of an experimental run. It slows down execu-
tion to the extent that the measured performance of the system as a
whole with it turned on is not indicative of the performance in produc-
tion under the same load. In any case, to be informative, code profiling
is best used to examine code execution triggered by one transaction on
its own, or a small, fixed number of transactions on their own. Code
profiling can tell us if a procedure or method, or a set of lines of code
within the method, is executed more often than expected and therefore
offers us the increased possibility of gaining insights into how the code

8.15  Validation of Measurements Using Basic Properties of Performance Metrics 191

should be tuned. It is also useful for debugging, because it can tell us if
code that should have been executed was not or vice versa. While code
profiling might offer us insights into how code can be tuned, tuning
will not remedy problems that are inherent in the architecture of the
system. As we discussed in Chapter 1, architectural decisions are fre-
quently the root cause of performance problems.

8.15  Validation of Measurements Using Basic
Properties of Performance Metrics

Whether one obtains measurements from operating system utilities or
applications, all measurements must be consistent with one another.
The data must always conform to the relationships between perfor-
mance measures described in Chapter 3. If they do not, investigation is
needed.

•	 All quantities must be greater than or equal to zero.
•	 Counts of transactions observed in one part of the system must

agree with counts observed in another part of the system if all
transactions were completed.

•	 The Forced Flow Law must always hold. This means that if n
actions of a certain kind are known to be taken for each transac-
tion, and there were N transactions, the action count in the
observation period should be N × n.

•	 Measured utilizations should always range from 0% and 100%.
This is not trivial.
•	 The author has seen disk measurements in excess of 100%

on a Windows-based system. A web search revealed this to
be a known bug. There could be a number of reasons for
this, including observations being taken from a controller
with more than one disk attached to it. A web search on the
string “utilization exceeds 100% perfmon” yields several
interesting pages on this subject, including [ITGUYSBLOG]
and [MSOFTSUPPORT1].

•	 A negative utilization in a real-time system being measured
by a colleague was the result of the system clock moving
backward instead of being incremented. A conversation
with the engineers revealed that this was a known bug.

System Measurement Techniques and Instrumentation192

•	 Response times (or object holding times), throughputs, and
average queue lengths (or average object pool occupancy)
should always be related by Little’s Law.

•	 The object pool occupancy must never be greater than the size
of the pool or less than zero.

Since average service times or average service demands are obtained
from throughputs, it is important that the utilizations and throughputs
be gathered correctly.

8.16  Measurement Procedures and Data Organization

Performance measurement is costly because it requires an experimen-
tal setup, lab time, and staffing effort. Crucial decisions with significant
economic impact may be based on the results. It is therefore essential
that measurements be validated, that measurement procedures follow
a carefully drafted script, and that measurement and test plans be pre-
pared to answer the questions of interest and to reveal hidden potential
problems. Moreover, the results of the performance tests and notes
taken before, during, and after the tests should be carefully archived
and documented so that the results can be reviewed. This is especially
important if any anomalies are found. It is essential to determine
whether a strange result is due to a property of the system under test or
the manner in which the test was conducted. For example, the system
configuration and build number are important aspects of the precondi-
tions of the test that must be recorded. If a program is compiled with
debug statements turned on and then subjected to a performance test,
the amounts of CPU in system/kernel mode and the amounts of I/O
activity will be seen to be much higher than they should be, but the
results will be spurious because a system in production would not be
compiled in debug mode.

Many of the laboratory disciplines one learns in physics, chemistry,
and biology classes are applicable to performance testing:

•	 An experimental plan must be written describing an inventory of
the equipment and samples to be used in the test, the experimen-
tal procedures, and the means of collecting the data.

•	 A checklist should be prepared on which the steps of the proce-
dure will be noted as they occur, together with the times at

8.16  Measurement Procedures and Data Organization 193

which they occurred. A notebook should be used to record the
observations as they occur.

•	 Instrumentation must be validated. In an electrical experiment,
one wishes to ensure that a voltmeter works as prescribed. In a
chemistry experiment, balances used to weigh out samples
must show zero when there is nothing on them. The balances
may also have to be calibrated for correctness.

•	 The test environment must be clean. Only clean test tubes
should be used in a chemistry experiment. Bottles and other
containers of potentially dangerous reagents should be closed
and removed from the test environment. Electrical connections
must be tight. There must be no magnetic interference in a phys-
ics experiment, unless that is what we are trying to measure.

•	 Before testing begins, safety checks should be performed,
including donning safety glasses and gloves and positioning a
fire extinguisher as necessary.

•	 All staff involved in the experiment should be in position and
alert.

Similar rules apply to performance measurement:

•	 A performance test plan must be written describing an inventory
of the equipment and samples to be used in the test, the experi-
mental procedures, and the means of collecting the data. This
includes a list of system commands to collect the data with the
corresponding settings, a list of scripts to drive those commands,
and an explanation of how and where the data will be stored and
reduced for presentation afterward. Performance test plans are
discussed in the next chapter.

•	 A checklist should be prepared on which the steps of the test
procedure will be noted as they occur, together with the times
at which they occurred. A notebook should be used to record
the observations as they occur. If performance testing is auto-
mated, this functionality should be included in the automated
test script.

•	 Instrumentation must be validated. In the case of standard
operating system instrumentation, validation may consist of
checks that the presence of an offered load is reflected in a
change in resource usage, together with thorough research on
known bugs in measurement instrumentation so that these may

System Measurement Techniques and Instrumentation194

be taken into consideration when analyzing the data. Note:
When hardware probes were used, checks were performed to
ensure that they were responding to the voltage changes that
are supposed to occur when bits are set to zero or one.

•	 The test environment must be clean. Nothing should be run-
ning on the system that is not related to the test. In particular,
the list of running processes should be checked to ensure that
only users who are working on the test are logged into any
hosts involved in it, and that only processes that are related to
the system under test, including those that would be executing
in production, are running. Any extraneous users should be for-
cibly logged off and any extraneous processes should be killed.

•	 Before testing begins, safety checks of any equipment controlled
by the system under test should be performed. Any equipment
that is not involved in the test should be disconnected. Staff
involved with the equipment controlled by the system under test
should be dressed and equipped as safety regulations require,
perhaps including donning a helmet, safety glasses, gloves, and/
or ear protection and positioning a fire extinguisher as necessary.

•	 Measurement instrumentation should be turned on before load
is applied to the system. Baseline measurements should be noted.

•	 All staff involved in the experiment should be in position and
alert.

•	 The test load should be applied and the time at which it was
started noted.

•	 Once the test is completed, all test data should be secured away
from the test environment. Nothing should be deleted. The con-
figuration of the system should be checked to ensure that it is
the same as it was before the test started.

•	 The correct functioning of the system under test should be noted
before and after the conduct of the test, as well as during it.

•	 A debriefing of the personnel involved in the test should be
done as soon as the test is completed. This includes collection of
personal observations.

•	 Analysis of the test data should be performed.

8.18  Interpreting Measurements in a Virtualized Environment 195

8.17  Organization of Performance Data, Data
Reduction, and Presentation

The measurement data should be organized so that data files from dif-
ferent hosts and different measurement instrumentations all have dis-
tinct names. The filenames should include the instrumentation, source
host, the date of the test, and some encoding of the test case and run
number so that individual files can be retrieved easily later, and so that
data files are not accidentally overwritten.

8.18  Interpreting Measurements in a Virtualized
Environment

The performance of an application in a virtualized or cloud environ-
ment is heavily dependent on the resource demands of the other appli-
cations that are running in the same environment. This is not
astonishing. It is also true of multiple applications running in a main-
frame environment or in a cluster of parallel servers. Performance
models of resource contention among applications or workloads date
back to the 1970s [ReiserKobayashi1975, WilliamsBhandiwad1976,
BruellBalbo1980]. In the mainframe environment, each application is
essentially a single process within which multiple threads run. In a
virtualized environment, each virtual machine mimics a physical one,
to the point of providing its own performance counters. The problem
is that these counters are inaccurate, in part because the virtual
machine’s clock may not tell time on the same scale as the “wall” clock.
In other words, a second of time on the virtual machine’s clock may
not be the same as that of the physical machine or the clock on the wall
in the machine room. Moreover, the measured resource utilizations of
the counters in the virtual machines may not bear much relation to the
counters in the host physical machine. We therefore recommend that
detailed performance measurement and testing not be conducted in a
virtualized environment at all until one is certain that the performance
characteristics of the system under test in a physical environment are
well understood.

System Measurement Techniques and Instrumentation196

8.19  Summary

The variety of performance quantities to be measured in the hardware,
operating system, middleware, and applications and the large selec-
tion of measurement tools available and needed to do so indicate that
there are many facets to computer and system performance measure-
ment. While the measurement tools are varied, the practices to which
one must adhere when using them are constant:

•	 The validity of all measurement tools and procedures must
always be scrutinized.

•	 Measured values that appear to be unrealistic or peculiar should
always be investigated, especially if they violate basic perfor-
mance laws, such as Little’s Law and the Utilization Law.

•	 Performance measurement and testing should always be done
in a clean environment in which only the system being meas-
ured is running. This is analogous to using clean test tubes in
chemistry experiments.

•	 The instrumentation used to collect measurements should not
interfere with the payload work the system is designed to do.

These principles apply whether the instrumentation is new or in estab-
lished use. It is essential to adhere to them when measuring new tech-
nology for the first time, so that one can determine whether
measurements truly reflect the behavior of the system under study.
They hold for every aspect of measurement considered in this book.

8.20  Exercises

8.1.	 A new programming language is introduced to implement
monitoring and control systems. Explain how you would
verify that executable code that is generated from the source
code of this language is capable of running on multiple proces-
sors simultaneously.

8.2.	 An array of disks is addressed by a single controller attached
to the I/O bus of a multiprocessor computer. Measurements
of the array suggest that it is 100% busy despite the fact that
the application is known to be CPU bound and not do much

8.20  Exercises 197

I/O. Explain how the architecture and the instrumentation of
the disk subsystem might be used to account for this discrep-
ancy. How would you research the issue online? How would
you corroborate suggestions for resolving the discrepancy that
you might find there?

8.3.	 Measurements of an application that is believed to be I/O
bound reveal short bursts of heavy CPU activity when obser-
vations of the performance measurements are taken every
2 seconds instead of every 15 seconds. When measurements are
taken every 15 seconds, the average CPU utilization is much
less than the peaks observed in the 2-second intervals. How
would you investigate whether this is cause for concern? (Hint:
Is the duration of high CPU activity longer than the required
average response time for this particular operation?)

This page intentionally left blank

199

Chapter 9

Performance Testing

Performance testing is essential for avoiding unpleasant surprises in
production, such as slow response time, inadequate throughput, and
dropped transactions. In this chapter we will learn how performance
tests can be structured to verify that the system has desirable scalability
properties, such as resource utilizations that are linear functions of the
offered load. We shall discuss performance testing practices and proce­
dures and review and interpret actual performance data. This data illus­
trates how performance testing can be used to uncover undesirable
properties of the system, preferably before it goes into production. The
chapter concludes with a discussion of performance test automation and
the value of automating the analysis of performance measurements.

9.1  Overview of Performance Testing

Performance tests may be conducted at any stage of the software life­
cycle. The code that is subjected to performance tests should already have
passed functional testing, so that functional problems do not muddy the
results of the performance tests, making them hard to interpret.

One reason for running performance tests is to ensure that perfor­
mance requirements and customer expectations about performance
will be met. One must also verify that functional requirements are sat­
isfied during performance testing, even if the system has passed all
unit tests and integration tests. This is because functional problems

Performance Testing200

may be caused by concurrent programming errors that could not occur
in unit tests when only one process or one thread is running.
Performance testing may also be done to test the limits of system capac­
ity, to obtain measurements for modeling and capacity planning pur­
poses, and to identify workload scenarios or sequences of events that
could cause the system to crash.

Performance testing may be used to assess the feasibility of sup­
porting performance requirements, adding load, or adding functional­
ity on a particular platform or with a particular technology.
Understanding the performance characteristics of a particular platform
or technology is a good way of minimizing the risk that it is inherently
incapable of meeting performance needs. For instance, if it is known
that an application is likely to invoke system calls or library functions
at a given rate, testing the platform’s ability to do so before code is
developed or ported can be done to mitigate engineering risk. This is
worth doing when one is considering porting an existing system to
another platform or when the code has not yet been developed
[MBH2005].

Of course, performance measurements may be taken of a system
that is already in production or that is about to go into production, to
be sure that the system is ready for service. Performance testing may be
conducted at any stage of the software lifecycle.

While it is sensible to test the performance of those functionalities that
have already passed functional tests, the correct functioning of a system
undergoing a performance test must be verified to ensure that it is not
adversely affected by being under load. Apart from providing the data
needed to verify that performance requirements are being met, performance
testing can uncover functional problems that cannot occur during unit test­
ing or that may not have emerged during unit testing. For example:

•	 Concurrent programming errors leading to deadlocks, lack of
thread safety, and delays caused by poor scheduling choices can­
not emerge during unit testing but may manifest themselves dur­
ing performance testing.

•	 Misconfiguration of object pool sizes may lead to very large
delays that could be accompanied by low CPU and network
utilizations or, in the case of memory pools, by large amounts of
paging, or even a system crash.

In this chapter we shall discuss performance testing practices and
procedures and explain how measurements can be used to diagnose
the causes of system problems, including performance problems. We

9.1  Overview of Performance Testing 201

shall also use performance modeling principles to structure perfor­
mance tests to reveal various sorts of performance problems.

Experience shows that the deviation of performance measurements
from patterns predicted by performance models is a sure sign of the
presence of a performance issue that will diminish the capacity, usabil­
ity, and even the reliability of the system under study. A deviation of
this sort can also be a sign of a functional problem, such as the corrup­
tion of data caused by lack of thread safety or incorrectly implemented
mutual exclusion on shared objects.

The following are examples of modeling principles, deviations
from which indicate the presence of a performance issue or a possible
fault in the instrumentation or data reduction:

•	 In a transaction-oriented system in which the arrival rate is held
constant during a given period, the average performance
measures taken at regular intervals during the time period should
be constant also. Thus, graphs of average utilizations and average
response times plotted against time should show little deviation
from horizontal lines corresponding to their respective average
values. If the average utilizations fluctuate markedly, even though
the average arrival rate is constant, there is something amiss in the
system. For example, sporadic drops in utilizations could indicate
a drop in throughput (despite a constant arrival rate). This could
be a sign of system deadlock. Similarly, sporadic spikes in response
times could indicate deadlock followed by a timeout.

•	 The utilizations of resources such as processors, network band­
width, and I/O devices should increase proportionately as the
arrival rate is increased. In other words, the average utilizations
at various load levels are linear with respect to the offered loads.
This is a consequence of the Utilization Law and the Forced
Flow Law. In addition, as the load is increased, the largest utili­
zation should eventually approach 100%. Deviations from this
rule indicate a problem in the system. For example:
•	 A sudden increase in the utilization of the paging device in the

absence of an increase in offered load, possibly accompanied
by a large increase in processor utilization in kernel mode,
indicates that an excessive amount of paging is going on.

•	 A software bottleneck may be present if repeatedly or stead­
ily increasing the offered load fails to cause the utilization of
the bottleneck resource to approach 100%. Even though the
bottleneck utilization ceases to increase with the load, there

Performance Testing202

may be an increase in the measured response time as a func­
tion of the offered load, together with an increase in the
measured response time versus time when the load reaches
the point that saturates some software bottleneck. Examples
of software bottlenecks include contention for locks and
insufficiently sized resource pools.

•	 Little’s Law must hold for measured queue lengths or object
pool occupancy, response times, and throughputs. Moreover,
the sampled number of response times or object holding times
must be equal to or in exact proportion to the number of trans­
actions that are completed. If the number of sampled response
times is less than what is required, the pool occupancy will
increase along with the object holding time. This is indicative of
leaks that could eventually cause a system to crash. All transac­
tions that are initiated in the system must be completed at the
same rate at which they occur. This is a consequence of
the Forced Flow Law and of the rate in = rate out condition for
the system to reach equilibrium. If jobs flow into the system
faster than they are completed, they will either back up in the
system or be discarded or fail. Symptoms of this include aver­
age response times increasing over time (perhaps with decreas­
ing sample sizes in successive intervals of equal length), large
transaction failure rates (perhaps accompanied by attempts to
retry the transactions), and the presence of a large backlog of
jobs or transactions that are completed more slowly than the
original arrival rate once the arrivals are turned off.

By planning and structuring performance tests to determine con­
formity with the behavior predicted by performance models, one can
identify performance issues that could undermine system scalability or
eventually cause system failure, apart from enabling the evaluation of
the ability of a system to meet performance requirements.

9.2  Special Challenges

Normally, the integration of the system and integration testing would
precede performance testing of the complete system. Still, we have
seen instances in which the performance testing team is the very first
group to set up, install, integrate, and configure a software system in its
entirety and subject it to something like a live load. The system has

9.3  Performance Test Planning and Performance Models 203

never been used before. Installation and configuration entail the use of
documentation and tools for the first time ever, as well as the creation
of data files and data streams intended to be like those that will be in
place when the system goes live.

The performance testing team should not be required to go about its
task in isolation from other stakeholders. To facilitate the timely resolu­
tion of issues that arise, the performance team should have ready access
to the system architect, functional testers, the development teams, and
the teams that developed the integration and configuration tools needed
to set up the system. All of these stakeholders should be available to
provide support in dealing with any bugs that arise. Any necessary
changes to the system under test should be implemented while follow­
ing your organization’s change management process, so that the changes
and their effects are clearly documented. A configuration change will be
less arduous than one involving a change to the code. If a change must
be implemented more quickly than a change management process
would allow, the lead performance engineer must ensure that all
changes and their observed impacts are carefully documented so that
the changes can be appropriately logged. This is essential for software
auditing purposes. Some customers for the software may require it.

Conversations with product managers and even users may help the
performance testers build and implement a performance test plan that
has broad credibility. Acquaintance with the domain of application of
the system under test is also useful. The performance testing team
should have access to the specifications for functional and nonfunc­
tional requirements so that they can determine if observed behaviors
are correct, or whether strange behaviors are due to ambiguities or
other defects in the requirements themselves. A defect in a requirement
or a poorly written specification could lead to unexpected behavior that
is sufficient to prevent any further testing from going forward. Systems
based on service-oriented architectures are vulnerable to this problem:
if one of the services has undesirable performance characteristics,
hangs, or goes into an infinite loop, nothing built on top of it will work.

9.3  Performance Test Planning and Performance Models

Figure 9.1 shows an example of a simple performance testing environ­
ment in which a system under test is driven by M load generators. Each
load generator may be configured to generate transactions at a con­
stant rate, or to await a response to each transaction before generating

Performance Testing204

the next one. In this example, the transaction response time is measured
from the instant in time at which a task is initiated to the time at which
the load generator receives a response. The response times in other
situations may be defined and measured differently. For instance, in a
network management system, the time to respond to an alarm or trap
might be measured from the time at which the trap message is read
from the LAN card to the time it is registered in a database, or the time
at which an action is triggered to display an alarm on a console.

From the Utilization Law, we know that resource utilizations
attributable to a particular type of transaction are linear functions of
the rate at which that transaction occurs. Failure of a system to con­
form to the Utilization Law is indicative of a malfunction or of a design
flaw. Performance tests should be designed to test for linearity of the
utilization with respect to the arrival rate of some defined unit of work
so that such problems can be revealed. Linearity might break down
because of a property of an algorithm in the system under test. For
example, a series of transactions that trigger insertion sorts makes pro­
cessing demands that increase over time, because the cost of an inser­
tion sort is proportional to the square of the number of entries already
made. In that case, the processing time per transaction is increasing
over time, and the system is not in equilibrium. Under those circum­
stances, the average service time is not defined and the Utilization
Law breaks down.

System Under Test

Virtual
User M

Responses

Load Generator
with
M Virtual
Users

Virtual
User 1

Requests

Figure 9.1  Hypothetical load generator and the system under test

9.3  Performance Test Planning and Performance Models 205

In many systems, background activity for maintenance consumes
resources that are or should be independent of the user’s payload. For
instance:

•	 In a telecommunications system, a switch may periodically
exchange status messages with the other switches with which it is
communicating to ensure that they are still operational. This may
occur regardless of the rate at which the switch is processing calls
at any instant.

•	 In a conveyor system, programmable logic controllers may
periodically broadcast their status to their neighbors and also
send status reports regarding the temperatures of the motors
they control and other sensory information. This status infor­
mation may be a function of the number of devices in the con­
veyor system, but it is independent of the rate at which entities
are being transported by the conveyor, either in the system as a
whole or in any segment of it. There is background processing
activity associated with monitoring these messages and with
recording them.

•	 A program that monitors resource usage in a computer system
itself consumes resources. Consumption might be periodic, for
example, when measurements are written to disk. The extent to
which this is noticeable depends on the amount of resources
consumed and on whether the observations are collected fre­
quently or infrequently relative to the frequency at which aver­
ages are collected.

•	 A fire alarm system must repeatedly check the status of the
devices that send messages to it, so that it can send out a notifi­
cation to maintenance staff if any of them appear to be
malfunctioning.

•	 Garbage collection might occur irregularly in a web application
server that is largely implemented in Java.

•	 A database system may periodically initiate a cleanup process
to purge it of records that have been marked for deletion but
not yet deleted.

These are all examples of background load of some kind. Suppose that
the background load is ongoing rather than intermittent. Denote the
background load at device k when there is no payload activity

Performance Testing206

by bk , which could be zero. Then, when the transaction rate on the sys­
tem is λ, the utilization of resource k should take the form

	 Uk ( λ ) = λ Dk + bk	 (9.1)

To verify that our system has this property, we should run performance
tests on it at different levels of λ to determine whether Uk is indeed
linear in the offered transaction rate λ. One should choose the values of
λ so that they cause the utilization of the bottleneck resource to range
from 10% to 95%. Pilot tests at various levels of the arrival rate or trans­
action rate λ should be used to determine those values. Running the
system with a single (possibly large) transaction rate λ tells us only
whether the system was able to function at that rate or not. It does not
tell us about trends in system loading.

The system should be measured for a nontrivial amount of time,
such as 5 minutes, without any applied load present, so that one can
determine if there is any background activity that consumes system
resources. Doing so enables the determination of values of the intercept
bk for each device. One should also investigate whether there is a
system-based reason for there to be a background load that runs even
when no payload is present. It is important to do this because arbitrar­
ily setting the intercept to zero implies an assumption that there is no
background load, while also resulting in a possible incorrect estimation
of the demand Dk.

We can evaluate the linearity of utilizations with respect to transac­
tion rate with the following steps:

1.	 Run the performance tests at increasing load levels, for the
same period of time for each load level, and measure the aver­
age resource utilizations over each run. If the load is driven
asynchronously, the load levels may be chosen by varying the
arrival rate or, equivalently, the average time between arrivals.
This corresponds to an open queueing system. If, in the actual
system, the user thinks between receiving the response to
the previous transaction and launching the next one—that is,
synchronously—the throughput can be increased by increas­
ing the number of virtual users, and sometimes by reducing
the average think time. If the load is driven synchronously,
the throughput cannot be controlled, but the device utiliza­
tions should be linear functions of the measured throughputs
nonetheless.

9.3  Performance Test Planning and Performance Models 207

2.	 For asynchronous loads, plot the actual offered transaction
rates and completed transaction rates against the target rates. If
the actual rates are less than the target rates at any load level—
that is, if they fall below the line =y x—one should check
whether transactions are being lost, whether they are indeed
being generated at the desired rate, or whether they are back­
ing up somewhere in the system under test because something
there is saturated.

3.	 Plot the utilizations against the actual transaction rates
observed (as opposed to the target rates, which could be
different).

4.	 Examine the plots.
a.	 If the resulting plots of the individual utilizations appear

to be linear or nearly linear in the regions in which no uti­
lization is close to 100%, one can obtain the values of the
slope Dk and the intercept bk by fitting a linear regression
line. Statistical packages such as SAS, S, R, and the statis­
tics add-on in Microsoft Excel can all be used to fit linear
regression coefficients. In Excel, the function is called
LINEST. When using LINEST, a dialog box will appear
giving one the option of forcing the intercept bk through
the origin or not. Forcing the intercept through the origin
may change the slope; it also implies an assumption that
there is no statistically significant background load. An
analysis of variance will reveal whether bk is statistically
significant. If bk is statistically zero, there is no measurable
background load on device k. If bk is not statistically dif­
ferent from zero, or if there is a physical reason for it to be
positive, such as a known background task that executes
continuously, arbitrarily setting it equal to zero could
result in an erroneous estimation of the demand Dk on the
kth device. This would lead to errors in the prediction of
performance.

b.	 If the resulting plots are not linear in the regions in which
the utilization is less than 100%, follow a different line of
investigation. One must also investigate further if the
resource utilization of the bottleneck device levels off at a
value below 99% regardless of how much one increases the
transaction rate λ. This is a sign of a software bottleneck,
since no hardware element is saturated.

Performance Testing208

Any regression line should be fitted only through consecutive points
on the graph that appear to be more or less in a straight line and for
which the resource utilization is strictly less than 100%. If the meas­
ured utilization of any resource is close to 100% at a particular load
level, the system cannot reach equilibrium there, and long-term
average values of performance measures for the run will be mean­
ingless. Because the actual throughput is less than the offered
throughput, the least throughput causing the utilization to be 100%
may be lower than the offered one. Thus, the experimental condition
at a point at which the system is saturated is different from the
experimental conditions at other points, and the assumptions
required for a regression to be valid will not hold if the offending
point is included.

9.4  A Wrong Way to Evaluate Achievable System
Throughput

Testers sometimes attempt to determine the throughput of a system by
creating a very large number of transactions and then throwing them at
the system all at once, or as fast as the load generator can send them to
the system. The maximum throughput is taken to be the rate at which
tasks are completed just before the system crashes, or the number of
tasks submitted to the system divided by the amount of time it took to
crash. This procedure is uninformative and misguided for a number of
reasons:

•	 It is necessary to establish that the system is running properly and
that functional requirements are met at light, moderate, and heavy
load levels.

•	 It is necessary to ensure that the average resource usage and
performance metrics are constant at constant loads, that the
resource utilizations are linear in the offered load, and that the
average response times are increasing with respect to the
offered load. The maximum sustainable throughput is identi­
fied as the largest one for which the desired response time is
attained.

•	 Using this “bang the system as hard as you can” method, the
rate at which transactions are offered to the system

9.5  Provocative Performance Testing 209

is uncontrolled, so there is no way to determine whether the
utilization is linear with respect to the offered load. Moreover,
there is no way to determine the arrival rate at which the bot­
tleneck device will be saturated.

•	 Nor is there any way to determine the maximum sustainable
throughput, that is, the maximum transaction rate at which
transactions of a given type can be submitted while meeting
stated response time requirements.

•	 Because the transaction rate is uncontrolled, we cannot deter­
mine the minimum transaction rate that would cause the sys­
tem to crash, or the minimum transaction rate for which the
average response time exceeds the desired value.

The “bang the system as hard as you can” testing method may pro­
vide some information about how systems function under saturation,
as may be the case with alarm systems in an emergency situation, but
it will not help us to identify performance trends and limitations on
scalability the way a test structured to verify linearity of utilizations
would. To verify linearity, one must subject the system to constant
loads at different levels for sustained periods of time as we discussed
in Section 9.3.

9.5  Provocative Performance Testing

“Banging the system as hard as you can” is an example of a method one
might call provocative performance testing. The intent is to create or repro­
duce conditions that have provoked or might provoke the onset of a
performance-related problem such as large or erratically varying
response times or a system crash. Provocation is straightforward when
the cause of a program malfunction has been identified and has been
shown to occur the same way on the same input data. Such a program
is described in the literature of fault tolerance as having a Bohr bug,
after Niels Bohr’s deterministic model of the atom. Performance prob­
lems and bugs that are due to concurrent programming issues can
occur nondeterministically or not at all, and they may not be reproduc­
ible given the same input data owing to small changes in the execution
environment or changes in the order of execution. These are known as
Heisenbugs, after the Heisenberg Uncertainty Principle, which states

Performance Testing210

that the act of measurement changes the state of an electron [Jalote1994].
Provocation of a problem can take many forms:

•	 A multiprocessor system could be configured to run with all but
one processor disabled, or with a fixed number of processors
enabled, if the operating system allows for this.

•	 Deadlock could be provoked in a system that is prone to it on
overload with a specific transaction mix by generating an
intense load of transactions with a mix that is believed to be
problematic. If the problem does not arise on one run, a
randomized reordering of the transactions might provoke it on
a subsequent run. This enables identification of the traffic ranges
in which the problem is likely to occur.

•	 The consequences of a steady memory leak could be provoked
by generating the transactions that cause it at a very high rate.

•	 Problems can be provoked by configuring a system to make it
vulnerable to a chosen problem, and then subjecting the system
to a load that brings it about. For example, if a network man­
agement system is known to freeze when the failure of a node
renders many other nodes unreachable, one can bring on the
freeze by taking the offending node out of service and observ­
ing what happens next.

If a remedy is proposed for a provoked problem, provocative tests
should be rerun to check that the problem does not occur with the
intended remedy in place and to check that the remedy is not causing
other problems. This is difficult when the problem arises nondetermin­
istically. Repeated experiments with randomization of sequences of
actions may go some way toward providing assurance that the prob­
lem has been fixed.

9.6  Preparing a Performance Test

Preparation for a performance test entails acquiring a basic under­
standing of the system’s functionality, the points at which measure­
ments can be applied, and how a representative load can be driven into
the system so that meaningful measurements can be obtained. It is also
necessary to understand whether there are safety or legal constraints
that might affect how the system can be tested. For instance, a control

9.6  Preparing a Performance Test 211

system or a safety monitoring system must be tested in a way that does
not undermine the safety of the controlled system or of the monitored
environment, and the testing of a financial system may have to be con­
ducted in a dedicated test environment to comply with antifraud regu­
lations. Test equipment must be validated, and the number of load
generators needed to offer a given load must be calculated using basic
performance modeling techniques. We now elaborate on these points.

9.6.1  Understanding the System

To prepare a performance test, the performance testing team should
acquire an understanding of the architecture of the system, how the
system will be used, its functionality, the workload that is likely to be
placed upon it, how the system should be instrumented to collect per­
formance measures, and how load can be driven through it.

It will be necessary to procure and set up a test platform and a testing
environment. The testing platform comprises hardware on which the per­
formance tests will be run and an installation of the test system. The test
environment includes the platform and the hardware, the software, the
tools to configure the system, the tools needed to populate the system
with user and application data, and the tools used to drive the load
through it. Use cases must be identified for testing, and scripts developed
to drive them.

•	 If the system is a control system, devices or stubs must be
attached to it that are similar to those that will be driven in a
live system. For instance, if the system under test is a fire alarm
system, alarms or devices that process messages that have been
sent to trigger them must be attached to the system under test
to capture the resulting effect. The times when the associated
events occurred must be noted.

•	 If the system is a transaction-oriented system or other system
involving the use of a back-end database, the database must be
populated with data that is very similar to live data. If the test is
to be realistic, the size and scale of the database should be of the
same order of magnitude as those of the live system or, if the test
system is to be scaled down, of an order of magnitude that is in
the same proportion to the whole as the test load will be. In addi­
tion, test scripts must avoid hitting the same database records
repeatedly, unless the production system will do so. Because
records are typically cached in memory, the response times of

Performance Testing212

the second and subsequent queries to a record may be lower
than the response time of the first query. This will bias the results.

•	 The state of a database or other repository of output data before
and after a test should be recorded. To enable repeatability and
pure comparisons of test runs under different loads or under other
conditions, it may be desirable to roll the database back to its state
and condition prior to each test. Unfortunately, doing so may be
so time-consuming and/or costly that this may not be feasible.
For this reason, the usage history of the database should be
recorded to determine if database aging is biasing the perfor­
mance test results. Aging bias might be introduced if many records
are marked for deletion without actually being purged. These
marked but unpurged records occupy disk space and potentially
increase search times. If the tables of which they are a part are
loaded into memory, the memory occupancy will also be increased.

•	 Careful attention must be paid to the configuration parameters
of the system and to the state of the build that is used for test­
ing. Many incidents of poor performance in the field and in the
lab are caused by incorrect configuration settings. A build with
debugging statements turned on will perform much more
slowly than one with those statements turned off for produc­
tion, potentially yielding alarmingly bad performance.

Populating a large database can be a complex exercise. Because of pri­
vacy considerations and legal restrictions, one may not be able to popu­
late a test database with live data without taking great pains to obfuscate
the identities of those whom it concerns, and perhaps even altering the
substantive contents of the records. There may also be complications
because the system might have to send transaction logs to an external
authority while recording transactions in the system. For example:

•	 In the United States, the privacy of health care records is governed
by stringent regulations under the Health Insurance Portability
and Accountability Act (HIPAA) [HIPAA2014]. Thus, any test sys­
tem must be populated with fake data or with obfuscated live data.

•	 In countries belonging to the European Union, certain kinds of
financial transactions are covered by European Market
Infrastructure Regulation (EMIR) [EMIR2014]. The regulations
include logging requirements and the clearance of some trans­
actions via a central authority. All of this requires computer
actions that might not be included in testing. This could compli­
cate the preparation of the tests and the analysis of the results.

9.6  Preparing a Performance Test 213

9.6.2  Pilot Testing, Playtime, and Performance Test
Automation

Our experience has been that a testing team is more likely to write
effective scripts for automated testing quickly if the members have an
understanding of how the system will be used, and if they have a
chance to play with it while looking at measurements before running
planned formal tests. Playtime enables the testers to discover quirks in
the user interface that may have been overlooked while the scripts
were being written or while configuration was being done. It also
enables testers to get a feel for how the measurement instrumentation
works and for what patterns might emerge in graphical displays of
performance data while the test is in progress, for example, by observ­
ing the graphical outputs of perfmon and the performance displays in
the Windows Task Manager. Since the Processes tab in the Windows
Task Manager can be set to display the processes in descending or
ascending order of processor usage, the testers also have an opportu­
nity to get a feel for where the processors are spending their time. This
is especially useful for systems that have never been in production and
have never been tested before. Playtime and pilot testing provide
opportunities to uncover bugs that would render a full-blown perfor­
mance test pointless. Moreover, if the system has never been run before
and automated measurement instrumentation and tools for analyzing
and reducing measurement data do not yet exist, the experience of
manual measurement and data reduction will motivate the testing
team to determine what is best automated to relieve them of tedious,
repetitive work. A useful by-product of this is that careful automation
reduces the risk of human error in any of the automated steps.

9.6.3  Test Equipment and Test Software Must Be Tested, Too

Since test scripts are programs in their own right, they should be tested
to verify that they are correctly exercising the desired functionalities
and correctly collecting the desired performance statistics. For exam­
ple, the portion of a script that collects the response time after a mouse
click should collect the time from the click to the corresponding
response, not the duration of the login session.

The anticipated duration of a login session, the anticipated response
time of a transaction, and the anticipated offered transaction rates affect
the design and capacity of the performance testing environment as well
as of the system under test. Instances of transaction generators must be
spread among PCs or other workstations to ensure that transactions

Performance Testing214

can be generated at the desired rate. If the utilizations of the hardware
resources on load generation stations are too high, they may not be able
to generate the load at the desired rate. Similarly, it must be assured
that the networks delivering load to the system under test have enough
capacity to do so, and that production transactions and test transac­
tions do not interfere with one another on the network.

The load generation platforms must have sufficient memory to
support the number of instances needed to generate the desired loads.
From Little’s Law, we know that the average number of pending trans­
actions of any kind is the transaction rate multiplied by the average
response time. Because Little’s Law is based on average values, we
must size the system to accommodate more than the average number
of pending transactions, so that memory or software bottlenecks do not
degrade the capacity of the test generators. That would reduce the load
that one could drive through the system under test.

Finally, the software used to extract and present the measurement
data must be tested to ensure that it is generating correct outputs. Some
of the checks that must be performed are rudimentary: the printed max­
imum, minimum, and average values of all quantities must correspond
to those in the actual data, and estimates of variances must be non-
negative, since they are equivalent to sums of squares. The measure­
ment data itself must be sensible: there should be no negative quantities
at all, because execution times are always non-negative, as are utiliza­
tions. This is not to be taken for granted. In one specialized system we
have seen, descending sequences of time stamps arose because of errors
within the operating system or within the data collection mechanism.
They were found only because the data analysis software was crashing
and generating error messages when computing utilizations. Since the
occurrence of the problem was rare, we simply discarded the offending
observations and made do with the remainder. If the development or
other team is aware of this sort of anomaly, effort can be saved by ensur­
ing that the performance testing team is aware of it.

9.6.4  Deployment of Load Drivers

Software load drivers are programs that use system resources, just like
those in the system under test. The measurements of the system under
test and the behavior under test should reflect the resource demands of
that system only. If the load drivers are run on the same machines as the
system under test, each will interfere with the other, and the results of the
performance tests might be spurious. Moreover, in transaction-driven

9.6  Preparing a Performance Test 215

systems, whether these are banking systems or control systems driven
by events such as signals from sensors, the production loads will arrive
from external sources. Therefore, the test loads should also arrive from
external sources. That means that load generators should be deployed on
hosts that are separate from those on which the system under test is
being run. That will reduce the risk of confounding the test results with
resource usage that is an artifact of the way the test was run. Avoiding
this muddying of the measurements is essential to making an informed
inference about the system based on measurement data. Confounding
measurements of the system under test and the load drivers complicates
the process of making an informed inference about the system based on
the measurement data. For this reason, load drivers should never be run
on the same hardware as the system under test.

The number of load drivers and the manner in which they trigger
actions play a role in determining the rate at which they will drive work
through the system. If transactions are generated asynchronously, that
is to say one after another whether or not the previous one has finished,
the transaction rate λ is limited by the capacity of the load driver or set
of load drivers, or perhaps by the bandwidth of the network connection
between the load driver and the system under test. The system will
essentially behave like an open queueing network as described in
Chapter 3. The throughput of the system will not be constrained by the
system response time or by the think time. On the other hand, if the
load generator is emulating the behavior of a user who awaits a response
to a request and then thinks before initiating the next one, the through­
put will potentially be constrained by the system response time, the
think time, and the number of emulated users. To see this, recall that
the system throughput X, average response time R, and average think
time Z are related by the Response Time Law, which is a consequence
of Little’s Law. Thus, if M is the number of virtual users, we have

	 = −R M X Z/ 	 (9.2)

Rearranging, we see that the throughput X is given by

	 = +X M R Z/() 	 (9.3)

Thus, a longer think time or a longer response time could drive down
the maximum throughput that can be attained. If it is necessary to
increase the offered throughput without increasing the number of vir­
tual users M, one must reduce the think time.

Performance Testing216

There are a number of reasons why one might not be able to increase
the number of virtual users. If commercial load drivers are used, the
license cost per virtual user might be high. Even if there is no addi­
tional monetary cost per license, the number of virtual users running
simultaneously may be constrained by the number of load-driving PCs
available for the test and by their individual capacities. Therefore, it
may be desirable to increase the load that can be offered in the testing
environment by reducing the value of the think time Z.

The maximum attainable throughput for a given number of virtual
users M is obtained by setting the think time to zero. Thus,

	 ≤X M R/ 	 (9.4)

Of course, R and X are what we are trying to find by measurement. As
we know from our analysis in Chapter 3, the lowest possible value for
the response time is obtained with =M 1. As we discussed previously
in this chapter and in Chapter 3, the system throughput X will be
increased by increasing the number of virtual users or logged-in termi­
nals M but only to the point that no server is saturated, that is, to the
point that no utilization Uk is close to or equal to 100% for any k.

9.6.5  Problems with Testing Financial Systems

There are special regulatory and security problems with conducting
functional and performance tests of financial systems, including those
that are used for internal reporting:

•	 In the United States, and in companies doing business with
and/or trading on stock exchanges in the United States, the
Sarbanes-Oxley regulations governing truth in financial report­
ing may impede the creation of dummy accounts and dummy
transactions on production systems for testing purposes,
as these could be used to generate fraudulent financial reports.
It may be necessary to run tests of such systems on a platform
that is entirely separate from the one that hosts the production
system.

•	 Dummy account identifiers and passwords in the scripts must
correspond to those stored in the system under test. Care must
be taken to prevent them from being used to compromise secu­
rity by allowing unauthorized users (virtual or otherwise)
access to an area of the system that they should not have.

9.7  Lab Discipline in Performance Testing 217

•	 Privacy concerns and regulations necessitate the obfuscation of
account identifiers, US Social Security numbers, UK National
Insurance numbers, and other identifying information in the
test database.

•	 In the European Union, certain types of transactions must be
cleared through a designated authority [EMIR2014]. Emulating
the processing costs, network delays, and any remote process­
ing delays due to this clearing may be problematic.

•	 Some systems allow access only during specific times of the
day, such as stock exchange trading hours, and block access
otherwise. If the performance test will be run outside these
times, arrangements must be made to authorize system access
and configure the system under test accordingly.

9.7  Lab Discipline in Performance Testing

Performance testing practice has a great deal in common with the lab
discipline needed in physics, chemistry, or biology experiments. Care
must be taken to ensure that the experimental environment and results
are uncontaminated, that the test procedure and results are carefully
documented, and that safety is ensured. Electrical, magnetic, and radio
interference must be prevented in physics experiments; clean test tubes
are needed in chemistry experiments; and a clean bench and rubber
gloves must be used in biology experiments. Measures to prevent fire,
air pollution, and other safety hazards are always required. In perfor­
mance testing, one must ensure that nothing is running on the com­
puter system that is not related to the performance test. If it is not
feasible to use dedicated local area networks (and sometimes wide area
networks) in the test, one should at least determine that the volume of
traffic that is not related to the test is not so large that it would interfere
with the test results or that the network traffic attributable to the test is
not so large as to interfere with production work.

Accurate note taking is an integral element of lab discipline in the
natural sciences. So it should be in performance testing. Parameter and
configuration settings should all be logged, as should any observations
arising during the preparation for and conduct of the performance
tests. Automation helps to ensure that this is done, but it is not a
complete substitute for contemporaneous documentation of an
experiment.

Performance Testing218

9.8  Performance Testing Challenges Posed by
Systems with Multiple Hosts

Many computer systems are implemented on multiple hosts. Different
hosts may support different functionalities. For example, in multitier
web-based systems, separate hosts may be used for one or more back-
end databases, application servers that implement business logic, and
a web server to act as the interface between the users and the business
logic and to serve pages. Some hosts might be dedicated to balancing
the load among the other hosts. Server farms to support search engines
might have hundreds of hosts. The resource usage of all hosts must be
measured so that system bottlenecks and areas of low resource utiliza­
tion can be revealed. Each host may exhibit performance and/or func­
tional characteristics that could have an adverse impact on the
performance of the hosts with which it interfaces and even on
the application as a whole. Problems and practices relating to testing
the performance of web-based systems are described in [Microsoft2007].

Before testing the performance of the entire system from end to end,
it may be desirable to test the performance of the individual system hosts,
just as one would test the functionalities of individual components before
testing the functionality of the entire system. It is much easier to identify
problems arising in isolation than it is to find them when components are
interacting with one another. This also holds for service-oriented archi­
tectures: it is much easier to test one service at a time and identify possi­
ble causes of performance problems than it is to test when the service is
being invoked in many places in the application code. For a web-based
multitier system with a back-end database, it is worth subjecting the
database to queries in isolation so that it can be ruled out as the cause of
slow response time problems that might be due to the business logic in
the adjacent tier or to the inadequate allocation of JDBC threads.

When measuring the performance of complex systems, one is not
only collecting response time and hardware resource usage data. One
may also be collecting data from within the software platforms that imple­
ment the tiers of the system. These include data on locking and table scans
of databases and data on waiting times and use case invocations within
the business logic of the application server tier. All of this data must be
reconciled so that performance issues can be identified. If one is collecting
tens of streams of data from multiple hosts, the automated generation of
plots of the performance data is essential for analysis. Tools to generate
them such as PAL (found at http://pal.codeplex.com) or gnuplot (found

../../../../../pal.codeplex.com/default.htm

9.9  Performance Testing Scripts and Checklists 219

at www.gnuplot.info/) may be used to do this. Even with automated
plotting tools, the analysis of the performance test results might be an
onerous, labor-intensive task. The task can be simplified through the use
of software that can identify common behavior patterns in performance
data and automatically generate averages from those sets of data for
which it is sensible to do so [Bondi2007a].

9.9  Performance Testing Scripts and Checklists

A performance test can involve a large amount of staff time and equip­
ment, with all the costs that that entails. It is therefore essential that the
execution of the test be carefully scripted, that the system be properly
configured before the test, that all load drivers and measurement instru­
mentation be carefully calibrated before the test, that there be enough
storage space for measurement and other test log files, and that nothing
in the system be changed after pretest calibration and preparation.

A well-prepared performance test has much in common with a
space shot, an orchestral concert, surgery, an airline flight, or a movie
shoot. All personnel are in position before action commences, and all
are equipped with scripts and checklists to ensure that all steps are car­
ried out [Gawande2009]. Participating staff are trained on how to pro­
ceed and communicate if something unexpected occurs. At least one
staff member is responsible for documenting the test as it unfolds. That
includes logging the checklists and noting the times at which events
occur and the results. This is essential for root cause analysis after the
test. Some systems have peculiar security and authorization features.
Test preparation must cater to these. Preparing a playbook and follow­
ing it will go a long way toward ensuring team cohesiveness, the
smooth running of the load test according to plan, and reinforcing the
usefulness of the test results.

A performance testing playbook might include the following steps.
Each step is conducive to ensuring orderly conduct of the test and the
production of uncontaminated test results. A playbook along these
lines should be followed for each test case.

1.	 Record the build numbers and release numbers of the system
under test, and make sure that they are correct.

2.	 Check that the correct configuration parameters have been set,
and that the proper test data is in place. Test databases must be

http:www.gnuplot.info/

Performance Testing220

properly configured and perhaps rolled back to a desired initial
state.

3.	 Check that the system is empty and idle, and that no trans­
actions are going through it.

4.	 Check that users are authorized to perform the desired trans­
actions at the time specified.

5.	 Be sure that only staff and virtual users essential to the test
have access to the system. No one and nothing else should be
connected to the system under test.

6.	 Check that only the desired set of processes is active.
7.	 Turn on all performance instrumentation and be sure that it is

running properly.
8.	 Turn on all logs and make sure they are running properly.
9.	 Check that there is enough storage space for measurement logs

and the logs that are generated by the system under test and by
the load generators.

10.	 Check that the load generators are configured properly.
11.	 Check that all staff are in position, logged in, authorized to pro­

ceed, and quiet.
12.	 Begin load generation.
13.	 Check recording status continuously.
14.	 Terminate load generation at the stipulated time.
15.	 Copy all logs to at least one other storage location. Do not erase

anything.

Once consensus has been reached on the contents of the playbook, the
steps in it should be automated to the fullest extent possible and their
outcomes logged for every test. This will provide an audit trail while
reducing the risk of omitting crucial steps or of running tests with
incorrect configuration and input parameters.

9.10  Best Practices for Documenting Test Plans and
Test Results

A performance test plan contains a specification of actions that will be
applied to a system and the test environment, a description of the
tools that will be used to apply the actions, a description of

9.10  Best Practices for Documenting Test Plans and Test Results 221

the instrumentation that will be used to measure the system, and an
explanation of the expected outcomes. In this respect, a performance
test plan is not unlike a requirements specification. The following is a
list of desirable characteristics of a performance test plan document:

•	 The elements of the document must be traceable to requirements
documents, product management specifications, architecture
documents, and the like.

•	 The tests and the results they generate must be reproducible.
•	 The procedure for conducting the tests should be repeatable.
•	 To assure repeatability, the test environment should be

described in detail. Moreover, the criteria for a clean test envi­
ronment should be specified and steps included in the test plan
and playbook to ensure that these criteria are met before each
test case is executed.

•	 The description of the testing parameters and the expected out­
puts should be linked to the performance requirements docu­
ment if there is one.

The test plan document should contain sections describing the goals of
the tests, the functionalities to be tested, and the workload to be offered
to the system under test. Since performance tests are often done on
scaled-down versions of the production system, the test plan should
contain a section explaining the architectural justification for assuming
that the test results will scale up to the larger production system. For
example, if a system is to be scaled up by increasing the number of
identical servers and each server is completely independent of the oth­
ers, it may be assumed that the capacity of the system will increase
linearly with the number of servers, so long as they do not contend for
any data elements in common.

The test plan document should contain a description of the test
scripts, together with a path in the file system that shows where they
are stored and the scripts used to start them.

There should be a section listing each of the test cases, the precondi­
tions, the desired postconditions, and intended duration of execution
of each test case.

There should be a description of the organization of the output files
containing the test data and measurement data, including a diagram of
the directory structure and a table explaining the file naming conven­
tion. It is essential that the file naming convention be consistent and
humanly intelligible. Consistent naming enables one to check whether

Performance Testing222

cases were omitted. It also facilitates automated processing of large
numbers of log files by automated scripts. A naming convention that is
humanly intelligible enables one to identify the test case to which each
file relates. This is the machine equivalent of labeling paper output
meaningfully, so that all know the source of the output and the condi­
tions under which it was generated.

9.11  Linking the Performance Test Plan to
Performance Requirements

Ideally, a performance test plan should be driven by performance
requirements. It could be driven by such considerations as the need to
see how a system behaves under stress or by the results of pilot tests
that revealed a problem. In some cases, performance tests may be
undertaken on small-, medium-, and large-scale systems intended to
provide the same functionality under commensurately small, medium,
and large offered loads. In that case, the purpose of the performance
test may be to determine the largest offered load that can be carried by
each size of system while maintaining acceptable levels of perfor­
mance and system stability. Essentially, one may be reverse engineer­
ing the throughput requirements of the system of each size after
development has reached an advanced stage or been completed. This
sort of prospective testing is useful for facilitating the sizing of con­
figurations for different customer needs, but it carries the risk that the
configuration sizes may not be well aligned to market segments. It is
preferable to identify the market segments and to size the configura­
tions accordingly before the system is built and tested. On the other
hand, if it is found that a system does not meet those requirements
once built, one can still use performance testing to reverse engineer
the performance requirements so that a suitable market segment can
be identified.

The nature of the test cases depends on the performance require­
ments that are to be validated. If one is attempting to validate, say,
that the average response time of a particular transaction shall be
2 seconds or less when there are 100 transactions per second, test
cases should be run at 50, 75, 100, and 125 transactions per second so
that one can (1) determine that the response time requirement has
been met, (2) determine whether utilizations are linear in the offered
load, and (3) determine the smallest transaction rate for which the

9.12  The Role of Performance Tests in Detecting and Debugging Concurrency Issues 223

response time cannot be met. If that transaction rate is less than 100
per second, a remedy must be sought. If that transaction rate is
greater than 100 per second, there may be some room to grow the
system load or add functionality once the system is in production, or
else the system has been overengineered. Testing at a higher rate
than the required one allows one to determine whether the system
can cope with transient spikes when the transaction rate might
exceed the specified rate.

When testing performance, one should also ensure that functional
requirements have been met by verifying that outputs are as expected.
Unexpected outputs could be, but need not be, caused by concurrent
programming errors. The importance of this is underscored by the
need to verify that concurrently executing programs have interacted as
intended. That is the subject of the next section.

9.12  The Role of Performance Tests in Detecting and
Debugging Concurrency Issues

We have already seen that the average values of performance measures
in a well-behaved system will follow operational laws. In particular, if
the average transaction rate is held constant throughout a performance
test, the average performance measures should also be constant when
measured with the same time granularity. So, if the average transaction
arrival rate is ten transactions per second in successive 10-second inter­
vals, the average response time and resource utilizations should also be
constant in successive 10-second intervals, or nearly so. If the perfor­
mance measures fluctuate wildly or show trends, all is not well with
the system.

Adding processors or multiple cores to a system allows multiple
threads to execute concurrently. In that case, we expect the average
response time to be lower for a given transaction arrival rate, and the
maximum sustainable throughput to be higher. If there is no improve­
ment, but the performance of the system is no worse, the chances are
that the system is single-threaded. This is especially likely to be the case
if the utilizations of the individual processors or cores are unbalanced.
Adding processors can also make the performance significantly worse.
This is a sure sign of a concurrent programming issue of some kind.

If the average performance measures, including processor utili­
zations, are constant, but the average response times are longer than

Performance Testing224

with a uniprocessor or single-core system, it is likely that using mul­
tiprocessors is aggravating contention for a shared lock and/or for
the memory bus shared by the processors. In particular, contention
for the data structure implementing the head and tail of the CPU
run queue or ready list could radically slow processing down
[DDB1981].

If response times are seriously degraded and/or the introduction of
multiprocessing causes performance to fluctuate erratically over time,
it is likely that threads or processes are not getting exclusive access
when modifying shared objects, or that deadlocks or incidents of indef­
inite waiting (“After you,” “No, please, after you!”) are occurring. Each
of these problems has its own symptoms:

1.	 If mutual exclusion is an issue, the shared data may be cor­
rupted. The corruption might trigger error checks and correc­
tions. This might be verified by establishing whether the data
has the intended values after the end of the test run. If it does
not, mutual exclusion is likely to be the culprit. A thread safety
problem is present.

2.	 If response times and resource utilizations are seen to fluctu­
ate erratically, it is very likely that deadlocks are occurring and
then being resolved by timeouts. When a deadlock occurs, the
processor utilization attributable to the deadlocked threads
drops to zero until a timeout mechanism breaks the deadlock,
when processing will resume.

3.	 Indefinite waiting is a form of deadlock involving increased
resource consumption. It is sometimes called livelock, because
processes or threads attempt to communicate or to use
resources repeatedly without making any progress, perhaps
causing the starvation of other processes or resources as well.

Each of these concurrent programming issues is an indication of incor­
rect system function that cannot manifest itself in unit testing. Clearly,
functional requirements cannot be met if shared data is corrupted.
Throughput and response time requirements cannot be met if processes
are blocking one another, whether via deadlock or livelock. Systems in
deadlock or livelock cannot function correctly, either, because the
threads or processes involved can neither progress nor make use of the
data that is meant to be passed from one to the other. An example of
livelock appears in Chapter 11. Livelock is discussed further in
[HSH2005].

9.13  Planning Tests for System Stability 225

9.13  Planning Tests for System Stability

A performance test is a useful opportunity to monitor a system for
signs of instability, because instability can often manifest itself in errat­
ically fluctuating performance measures. A system whose average
offered load is constant during an experiment should have constant
average utilizations, queue lengths, throughputs, and response times
during all intervals following a ramp-up period immediately after the
arrival streams have been turned on and preceding a cool-down period
after the arrival streams have been turned off. Deviations from this
behavior are indicators of instability.

Instability may arise if there are memory leaks. Apart from causing
increased paging, which will degrade system response time by increas­
ing the utilization of the processors, the paging device, and the I/O and
memory buses, a memory leak might cause a system to crash. If a sys­
tem is subjected to a homogeneous workload with a constant arrival
rate, a memory leak may manifest itself in global performance meas­
ures or in performance measures that pertain to one or more individual
processes:

•	 Evidence of a leak in global performance measurements. The total mem­
ory occupied by the core images of all executing processes will
increase steadily with time, with constant or nearly constant
slope. In Windows-based systems, it will be seen that the number
of committed bytes and the amount of occupied physical memory
are increasing with constant slope. The amount of occupied phys­
ical memory is easily seen by bringing up the Task Manager after
typing Ctrl-Alt-Delete. The committed byte rate is displayed as a
number. The number of committed bytes and the percent of com­
mitted bytes are available in perfmon. In UNIX and Linux systems,
the size of the occupied virtual address space is represented by
the swap space size. The swap space size is obtainable from the
sar (System Activity Reporter) and vmstat (virtual memory statis­
tics) commands.

•	 Evidence of a leak in per-process measurements. In Windows-,
UNIX-, and Linux-based systems, the memory sizes of leaking
processes involved in the transactions will grow at a constant
rate when subjected to a load with a constant arrival rate if they
are leaking memory. In Windows, the memory size of each pro­
cess can be seen in the Processes tab of the Task Manager or by

Performance Testing226

collecting the corresponding counter in perfmon. In UNIX- and
Linux-based systems, the image size can be obtained for all pro­
cesses at once by invoking the ps command with options –elf, or
by using corresponding system calls. In Linux systems, the vir­
tual image size can be obtained for a task with a given process
ID (PID) by invoking the pidstat command.

Persistently increasing values of the average response times, queue
lengths, and like quantities are also signs of instability, as are sudden
unexplained drops or increases in the utilizations of any resource and
in the response times of any kind of transaction.

9.14  Prospective Testing When Requirements Are
Unspecified

It is possible to plan performance tests when the performance require­
ments are unspecified or poorly specified. This occurs when a proto­
typical system has been built without adequately identifying the target
market, on speculation, or when the system or system component forms
part of a general service whose performance requirements are not
understood. Let us illustrate this with a service that is intended to sup­
port a transaction-oriented system. The first step is to identify a pilot
range of offered transaction rates with which to drive a synthetic system
load. Much can be learned about the extent to which the system can be
scaled by running the system at some chosen rate λ. If the utilization of
the bottleneck device is 90% or more or if the system is saturated, a per­
formance test should be run at rates λ /2, λ /4, and so on until bottle­
neck utilizations well below saturation level are observed. The
utilizations should all be plotted against the actual transaction rates to
determine whether they are linear in the offered load. Average response
times of the service should be plotted to determine the transaction rates
that are just to the left and right of the knee in the response time curve,
as illustrated in Figure 3.8. The maximum sustainable rate is the one
that is just to the left of the knee, provided the associated utilization of
the bottleneck resource is less than 80%. This is how we determine the
range of sustainable loads as defined in Sections 5.6.3 and 6.2.

Where performance requirements are absent or poorly specified, it
may be possible to synthesize the throughput requirements by devel­
oping a plausible synthetic workload characterization. This must be

9.14  Prospective Testing When Requirements Are Unspecified 227

done with extreme care. If the synthesized workload is much larger
than will occur in practice, the system may appear to be unfit for ser­
vice when subjected in testing even if it is actually adequate for the
anticipated customer base. If the synthetic workload is too light, the
performance test results might provide a false sense of security to
stakeholders.

Once a synthetic workload has been devised, it may be useful to
run it through some thought experiments to check that it is sensible.
Two anecdotes illustrate this:

•	 The provider of a subscription-based service specified a workload
for a customer care center that seemed exaggerated. The work­
load was based on the assumption that every subscriber would be
generating calls at a particular rate. The figures implied that the
average customer would have a complaint about the service once
every two or three days. A service generating that kind of call
volume and customer dissatisfaction would not be in business for
very long. From this, one could conclude that the anticipated
workload was grossly overestimated.

•	 The results of performance tests on an engineering tool intended
to be accessible to a large user base indicated that the tool was
unfit for service at the upper range of transaction rates used in
the test but was adequate at the lower rates. The test results
showed severe overload of software resources such as buffers
and object pools. Project cancellation (which would have
resulted in the loss of many jobs) was contemplated until fur­
ther investigation showed that the heavier workload was unre­
alistic. The system was made available to a small user base
without difficulties. Observations and measurements during
production yielded insights leading to better design choices in
subsequent versions of the system, allowing the expansion of
the user base.

The lesson to be drawn from the first example is that it is possible to
exaggerate the extent of the planned workload and incur unneces­
sary costs by oversizing the system. The lesson to be drawn from the
second example is that the workloads used in performance testing
should be based on a clear understanding of the initial user base,
so that poor performance test results at excessive loads do not scare
management into making inappropriate decisions about what to
do next.

Performance Testing228

9.15  Structuring the Test Environment to Reflect the
Scalability of the Architecture

Building a test environment that is comparable in scale to that of the
production environment could be prohibitively expensive. If the test
environment is going to be on a smaller scale than the production envi­
ronment, it is important to structure it so that the magnitude, distribu­
tion, and nature of the test load reflect the structure of the system and
how it will be used in the field. One should ask how the system will be
scaled in production, and whether the architecture of the test system is
truly a scaled-down version of the architecture of the system in
production.

When a system is scaled horizontally (sometimes called scaling
out), the load is distributed among several hosts. These hosts could
be performing identical functions. This is particularly easy to do if
each host will serve a distinct set of customers or jobs that might be
operating on disjoint sets of data. An example of this would be a
telephone network in which each switch serves a particular region,
and all regions are expected to have similar traffic characteristics. A
system is scaled vertically if functions that originally ran inside one
host are distributed among multiple hosts. A three-tier web-based
system that can be supported on one host when it has a very small
customer base could be expanded to support a large customer base
by both vertical and horizontal scaling. Vertical scaling occurs
when the application layer, the web server layer, and the back-end
database layer are moved into separate hosts. Horizontal scaling
occurs if the application-layer hosts are replicated to increase capac­
ity. Further horizontal scaling would occur if the web server layer
is spread among multiple hosts as well. By contrast, database sys­
tems cannot always be easily replicated and deployed on multiple
servers. A database that cannot be scaled horizontally must be
deployed on a more powerful host with larger amounts of process­
ing power, memory, and disk storage to accommodate growing
query rates and amounts of data. The host must be scaled up rather
than being scaled out or scaled vertically [DGLS1999, quoted in
MenasceAlmeida2000, p. 99].

The architecture of a scaled-down system should enable the kinds
of performance issues to occur that might be anticipated in the field. It
should be a microcosm of the production system. A small-scale version
of a multitier system that is implemented in a single host with only one

9.16  Data Collection 229

processor will not be able to capture the impacts of various factors
affecting performance and scalability. For example:

1.	 Deploying all tiers of a multitier system on one host will mask
the potential impact of network contention and delays.

2.	 Deploying all tiers of a multitier system on one host will
obscure the capability of a multitier system to exploit the pos­
sibility of overlapping activities on multiple hosts.

3.	 If the test host has only one processor, it will not be possible
for the test environment to reflect the possible benefits or pit­
falls of having a dedicated multiprocessor/multicore environ­
ment for each tier in which multiple threads could execute
simultaneously.

4.	 Deployment on a single tier could mask or exacerbate the
impact of having an insufficient number of logical connec­
tions between different layers, such as JDBC connections
between a Java-based application layer and a back-end data­
base. Deployment on a single tier could also mask the effect
of having transient or persistent connections between the tiers.
An insufficient number of persistent connections can be the
cause of a software bottleneck, while a reliance on transient
connections could increase response times.

5.	 If a back-end database is replicated in production, deploying
replicates on a single host will not capture the costs of replicat­
ing it across a network. Not replicating the database at all will
mask the complexities of replication while possibly exacerbat­
ing contention issues.

These examples illustrate only a few of the ways that a scaled-down
test system could fail to reflect the behavior of a production system. It
follows that the configuration of a lab environment for performance
testing should be chosen with care.

9.16  Data Collection

When measuring a system to evaluate its performance, it is useful to
track how system performance and resource usage measures evolve
over time. As we discussed in Chapter 8, the collection of measurements
uses the very resources one is trying to measure. For measurements of

Performance Testing230

systems in production, it is usually sufficient to collect performance data
in successive intervals that are 1 or 5 minutes long. Since performance
testing is used not only for performance evaluation but to detect anoma­
lies, average measures should be collected in consecutive time intervals
of 10 or 15 seconds. The tools that are used to do this should allow the
time interval to be configured. Since systems are usually spread across
multiple hosts, one should ensure that the clocks on all systems to be
measured are set to the same time to the extent that the use of time serv­
ers enables this. They should also be set to the same time zone. This will
make the analysis of the data much easier. The author’s preference is to
use GMT or UTC as the time zone, especially in organizations whose
hosts and/or load drivers are located in more than one time zone.

9.17  Data Reduction and Presentation

To thoroughly understand how a system is performing and how its
various components interact, it is essential to look at the evolution of
performance measures and resource usage measures over time. In sta­
ble systems, if the average offered load is constant over time, the aver­
age performance measures should also be constant. Under these
circumstances, trends and oscillations, especially oscillations with
wildly varying amplitudes and over wildly varying ranges, are indica­
tors of problems in the system that could potentially reduce its capacity
over time or eventually lead to a system crash.

For sizing purposes, however, we also need to look at the average
resource usage and performance over time intervals in which the
demand, usually in the form of transaction rates, is kept constant. These
intervals must be long enough to allow sufficient transactions to be
measured for the results to be meaningful. When a load is first applied
to an idle system, there is a ramp-up period during which the perfor­
mance measures increase until they reach an equilibrium level, just as
an aircraft on a long journey climbs to cruising altitude. When the load
is turned off, resource utilizations should decrease in what might be
called a ramp-down or cool-down period of indeterminate or even zero
length. If they do not, something has gone wrong in the system! To
prevent distortions, one should exclude data from the ramp-up and
ramp-down periods from the calculations of the time-averaged perfor­
mance and resource usage measures. We will illustrate these ideas in
the first example in the next section.

9.18  Interpreting the Test Results 231

9.18  Interpreting the Test Results

9.18.1  Preliminaries

Our approach to analyzing performance data is based upon the premise
that a well-behaved system will exhibit characteristics predicted by per­
formance models. Thus, utilizations should be linear functions of the
offered transaction rate, and the values of average performance measures
should be constant if the average offered load is constant in successive
measurement intervals and no resource is saturated. The last two crite­
ria approximately correspond to two of the three necessary conditions
for a Markov chain to be in equilibrium, and hence they approximate
two of the four conditions for average performance measures to exist.
The other two conditions are that the Markov chain be aperiodic and
that the Markov chain be irreducible, that is, that every state in the chain
should be reachable from every other state in a finite number of transi­
tions. If the arrival process is periodic over any time scale, or any other
system property such as the service rate or the number of available
servers is periodic, the periodicity should be reflected in the values of
the average performance measures. Conversely, if the performance
measurements exhibit periodicity, the cause should be established.

9.18.2  Example: Services Use Cases

Here, we consider two services provided by a service-oriented archi­
tecture. Both services are invoked at very high rates. In this example,
we shall see that the performance of one is healthy and that the perfor­
mance of the other is not. Figure 9.2 shows the utilizations of the healthy
service as a function of the offered transaction rate. The actual through­
put is plotted against the right-hand vertical axis, and the measured
CPU utilization is plotted against the left-hand vertical axis. The CPU
utilization increases as a perfect straight line from 100 TPS to 300 TPS,
and then has a sharp corner with a shallower slope from 300 TPS to 400
TPS. The reason for this is that the CPU utilization at 300 TPS is 80%.
The offered throughput from 300 TPS to 400 TPS is an increase of 1/3,
which would result in an infeasible CPU utilization of (4/3)
× 80%~106.7%. We see a measured utilization of about 99% instead,
together with a measured throughput that falls below the target
throughput depicted by the line =y x. The utilization graph has a sharp
change in slope from 300 TPS to 400 TPS. Hence, when fitting a regres­
sion line to the utilization graph to estimate the CPU demand per

Performance Testing232

transaction, we should include only the observations for the arrival
rates 100, 200, and 300 TPS.

This system appears to be well behaved. Good behavior is indi­
cated by the slow increase in average response time as a function of
offered transactions per second shown in Figure 9.3, and the flat utili­
zation and response time curves as functions of time shown in
Figures 9.4 and 9.5. This service has a healthy performance profile.

Let us now look at a different service with a much higher transaction
rate. Figure 9.6 shows that the CPU utilization peaks at about 45% as the
load on the system is increased beyond 1,500 TPS, and then drops off
slightly rather than increasing linearly as the arrival rate increases to 2,000
TPS and beyond. The average response time starts rising sharply at 1,500
TPS also, as shown in Figure 9.7. We also see that the throughput levels off
below 1,500 TPS even as the arrival rate is increased to 2,500 TPS. When
looking at the average utilizations and response times with respect to time

Target TPS

0
0

10

20

30

40

50

60

70

80

90

100

100 200 300 400
0

50

A
ct

ua
l T

P
S

100

150

200

250

300

350

400

450

CPU Actual TPS Y=X

C
P

U
 P

ct
 B

us
y

Figure 9.2  CPU utilization (left axis) and throughput (right axis) of a healthy system
versus offered throughput
Source: [AvBon2012] With kind permission from Springer Science+Business Media: Avritzer, A., and
Bondi, A. B. “Resilience Assessment Based on Performance.” In Resilience Assessment and Evaluation of
Computing Systems, edited by K. Wolter, A. Avritzer, M. Vieira, and A. van Moorsel, 305–322. New York:
Springer, 2012.

9.18  Interpreting the Test Results 233

0.00

R
es

po
ns

e
T

im
e

(s
ec

)

0.05

0.10

0.15

0.20

0.25

0.30

100
Target TPS

0 200 300 400

Figure 9.3  Transaction response time of the healthy system versus offered throughput
Source: [AvBon2012] With kind permission from Springer Science+Business Media: Avritzer, A.,
and Bondi, A. B. “Resilience Assessment Based on Performance.” In Resilience Assessment and
Evaluation of Computing Systems, edited by K. Wolter, A. Avritzer, M. Vieira, and A. van Moorsel,
305–322. New York: Springer, 2012.

Figure 9.4  CPU utilization versus time for the healthy system—offered throughput 300
transactions per second
Source: [AvBon2012] With kind permission from Springer Science+Business Media: Avritzer, A., and
Bondi, A. B. “Resilience Assessment Based on Performance.” In Resilience Assessment and Evaluation of
Computing Systems, edited by K. Wolter, A. Avritzer, M. Vieira, and A. van Moorsel, 305–322. New York:
Springer, 2012.

Performance Testing234

Figure 9.5  Average response time versus time for the healthy system—offered throughput 300
transactions per second
Source: [AvBon2012] With kind permission from Springer Science+Business Media: Avritzer, A., and Bondi,
A. B. “Resilience Assessment Based on Performance.” In Resilience Assessment and Evaluation of Computing
Systems, edited by K. Wolter, A. Avritzer, M. Vieira, and A. van Moorsel, 305–322. New York: Springer, 2012.

0
0

10

20

30

40

50

C
P

U
 P

ct
 B

us
y

A
ct

ua
l T

P
S60

70

80

90

100

500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

CPU Actual TPS Y=X

Figure 9.6  Throughput and CPU utilization of an unhealthy system
Source: [AvBon2012] With kind permission from Springer Science+Business Media: Avritzer, A., and Bondi,
A. B. “Resilience Assessment Based on Performance.” In Resilience Assessment and Evaluation of Computing
Systems, edited by K. Wolter, A. Avritzer, M. Vieira, and A. van Moorsel, 305–322. New York: Springer, 2012.

9.18  Interpreting the Test Results 235

0

0.02

0.04

0.06

0.08

0.1

R
es

po
ns

e
T

im
e

(s
ec

on
ds

) 0.12

0.14

0 500 1000

Target TPS

1500 2000 2500

Figure 9.7  Average response time versus transactions per second
Source: [AvBon2012] With kind permission from Springer Science+Business Media: Avritzer, A.,
and Bondi, A. B. “Resilience Assessment Based on Performance.” In Resilience Assessment and
Evaluation of Computing Systems, edited by K. Wolter, A. Avritzer, M. Vieira, and A. van Moorsel,
305–322. New York: Springer, 2012.

when 2,000 TPS are applied, we see that utilization is declining slightly
with time as shown in Figure 9.8, while the average response time oscil­
lates wildly with amplitude that increases over time, as shown in Figure
9.9. Moreover, the average CPU utilization for 2,000 TPS in Figure 9.8 is
lower than the measured utilization for 1,500 TPS shown in Figure 9.7.

Taken together, these observations are signs of a concurrent pro­
gramming problem that manifests itself once the arrival rate exceeds
1,500 TPS. Since the CPU is the bottleneck and its utilization is linear in
the arrival rate up to this level, with a value of approximately 40%, we
surmise that the service could be provided at 2,000 TPS on this plat­
form without difficulty in the absence of the concurrent programming
problem. The system would have to be restricted to 1,500 TPS for the
system to be operable as implemented, but that would be hazardous,
since concurrent programming bugs tend to occur nondeterministi­
cally. On investigation, a segment of Java code was found in which the
wait, notify, and notify_all operations were being used incorrectly.
Replacing this piece of code resulted in more regular performance.

9.18.3  Example: Transaction System with High Failure Rate

In this example, the number of load generators sending transactions to a
system is increased at regular intervals, so that the graph of the number
of active load generators with respect to time describes a staircase. All
load generators are sending identical transactions to the system at the

Performance Testing236

same rate. The top plot in Figure 9.10 shows the number of load genera­
tors (also known as virtual clients) as a function of time. In the bottom
figure, the upper plot shows the transaction completion rates and the
lower plot shows the transaction failure rates as functions of time. It
appears that this system is either grossly saturated or dysfunctional,
because the number of failed transactions is equal to the number of com­
pleted transactions from time to time. Notice also that there is a spike in
the rate at which transactions are completed sometime after the intro­
duction of each load generator. A performance test with this sort of result
raises questions about whether the throughput requirements of the sys­
tem and hence the test cases were wisely chosen. It turns out that the
code also suffered from thread safety issues. This caused data to be cor­
rupted, contributing to the volume of failed transactions.

Figure 9.8  CPU utilization versus time for the unhealthy system, with an offered throughput
of 2,000 TPS
Source: [AvBon2012] With kind permission from Springer Science+Business Media: Avritzer, A., and Bondi,
A. B. “Resilience Assessment Based on Performance.” In Resilience Assessment and Evaluation of Computing
Systems, edited by K. Wolter, A. Avritzer, M. Vieira, and A. van Moorsel, 305-322. New York: Springer, 2012.

9.18  Interpreting the Test Results 237

9.18.4  Example: A System with Computationally Intense
Transactions

Consider a transaction system in which the work items consist of com­
putationally intense transactions. These could be requests to process
images as they arrive. Such systems might be used in the oil industry
or in medical applications. Testing the performance of this system
required the preparation of a large set of representative images, which
were submitted for processing to the system under test at fixed inter­
vals. The times between submissions were configurable so that the
effects of different arrival rates could be measured. The performance

Figure 9.9  Average response time versus time for the unhealthy system, offered throughput
2,000 TPS
Source: [AvBon2012] With kind permission from Springer Science+Business Media: Avritzer, A., and Bondi,
A. B. “Resilience Assessment Based on Performance.” In Resilience Assessment and Evaluation of Computing
Systems, edited by K. Wolter, A. Avritzer, M. Vieira, and A. van Moorsel, 305-322. New York: Springer, 2012.

Performance Testing238

Figure 9.10  Transaction systems with high failure rate. Top: Number of virtual users
versus time. Bottom: Transaction pass rate is the thicker line and transaction rate
failure is the thinner line.

9.18  Interpreting the Test Results 239

measure of interest was the time from request submission to request
completion. The usage of system resources was measured. A perfor­
mance model similar to the open queueing model described in
Chapter 3 was derived from the measurements to allow performance
prediction. The modeling assumptions ignored two key features of the
system: the use of multiple processors and the use of asynchronous
I/O. Asynchronous I/O allows work on the CPUs to proceed even if
I/O has not been completed. Measurements of the system showed that
the I/O subsystem was the bottleneck. Toward the end of some runs,
processor utilizations varied slightly from the average for reasons that
the system architect was able to explain. The following is a summary of
the results of the performance tests and the modeling effort:

•	 The average utilizations for each run were linear with respect to
the offered transaction rate. The User_Disk is the system bottle­
neck. It has the highest utilization. This is illustrated in Figure 9.11.
This was also predicted by the performance model.

•	 The CPU load was spread somewhat uniformly among the pro­
cessor cores, but not exactly so. Still, the load among the cores
was not badly skewed. This is illustrated in Figure 9.12.

•	 Plots of the resource utilizations over time indicated that they
were flat under constant load for the most part.

•	 Average response times were also constant over time, as
desired.

•	 Extrapolating from the highest utilization curve, we see that the
maximum achievable throughput of this system with this sort
of offered work is 4 normalized work units per second. At that
throughput, the utilization of the bottleneck device is 90%.
Higher loads would saturate the bottleneck device.

•	 The performance model yielded pessimistic predictions about
the system response time as a function of the offered transaction
rate. This is illustrated in Figure 9.13. This may well be because
the equation for the global response time (equation (3.24) in
Chapter 3) is based on the assumption that processing and I/O
for a particular job do not occur at the same time, while the sys­
tem under test used asynchronous I/O, which allows some pro­
cessing and I/O to occur for the same job simultaneously. In
particular, the measured average response time at the lightest
load was less than the predicted response time, even though the
load was high enough for a modest amount of contention in the
system. Another possible cause of error is that our simple Mean

Performance Testing240

Value Analysis tool is based on the assumption that there was
only one processor. The system under test had two processors,
each with four cores, each running at a slower speed than we
used for the representation of the single processor in our model.
It appears that asynchronous I/O was having the desired impact
on performance. Notice that using asynchronous I/O does not
increase the maximum achievable throughput because it does
not change the utilizations of the devices for a given offered
load; it only changes the total time to complete work by allow­
ing processing and I/O to be overlapped for each job.

This example illustrates the following points:

•	 A performance model can be used to understand the throughput
limits, based on the linearity of measured resource utilizations as
a function of the offered load.

•	 Since processing is observed to be spread fairly evenly among
the processor cores, the capacity of the system is not artificially
limited by the concentration of processing demand on one of
them. If the user I/O device were not the bottleneck, the

Work Units per Second

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

R2 = 0.9671

R2 = 0.9533

User_Disk_Util
System_Disk_Util
Linear (Total CPU Util)
Linear (User_Disk_Util)
Linear (System_Disk_Util)

Total CPU Util

R2 = 0.9999

0

10

20

30

40

P
er

ce
nt

 U
til

iz
at

io
n

50

60

70

80

90

100

Figure 9.11  Computationally intense transactions: average processor, user I/O, and system
I/O utilizations with regression lines

9.18  Interpreting the Test Results 241

concentration of demand on one processor would prevent the
others from being used and wastefully limit the ability of the
system to handle increased loads.

•	 Informative results can be obtained from a coarse performance
model to understand system features (such as asynchronous
I/O) and capacity limitations. In particular, the performance
model correctly predicted response time trends, including the
effect of increasing load on response time, even though it did not
capture the reduction in average response time attributable to
the use of asynchronous I/O or the effect of parallel processors.

9.18.5  Example: System Exhibiting Memory Leak and
Deadlocks

A memory leak can eventually cause a system to halt abruptly unless the
process that is leaking is stopped and restarted. In [AvBon2012],

Normalized Work Units per Second
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

User_Disk_Util
System_Disk_Util

CPU1_1util
CPU1_0util
CPU0_3util
CPU0_2util
CPU0_1util
CPU0_0util

CPU1_2util
CPU1_3util

Total CPU Util

0

10

20

30

40

P
er

ce
nt

 U
til

iz
at

io
ns

50

60

70

80

90

100

Figure 9.12  System with computationally intense transactions: utilization of all devices,
including individual processor cores

Performance Testing242

performance data displayed by the Task Manager of a Windows XP–
based system indicates that the committed byte rate is increasing over
time, while the CPU utilization occasionally drops sharply and then
rebounds. The increasing committed byte rate indicates that there is a
memory leak, and the fluctuations in CPU utilization are signs of dead­
lock being resolved by a timeout. A snapshot of the Task Manager dis­
play is shown in Figure 9.14. An investigation identified the causes of
both the leak and the recurrence of deadlock. Both were remedied, and
the test case was repeated on the modified system. The results of the
repeated test are shown in Figure 9.15. The latter plots show that the
committed byte rate is constant, while the CPU utilization oscillates
within a very narrow range about a horizontal line. This line is lower
than the average and peak CPU utilizations prior to the remedy being
implemented. A comparison of the figures also shows a reduction in I/O
activity. Thus, remedying a memory leak and the recurrence of deadlock
led to a reduction in resource utilizations and the increased stability of
the system at the same time. This is not unusual in our experience.

Normalized Work Units per Second

N
or

m
al

iz
ed

 A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(s
ec

)

0
0

50

100

150

200

250

300

1 2 3 4 5

Measured Avg Response Time

Predicted Response Times

Predicted Response Time RAID

Predicted Response Time CPU
and System Disk Combined

Figure 9.13  Response times for the computationally intense transactions

9.18  Interpreting the Test Results 243

Figure 9.14  Task Manager performance display showing signs of a memory leak and repeated
deadlocks
Source: [AvBon2012] With kind permission from Springer Science+Business Media: Avritzer, A., and Bondi,
A. B. “Resilience Assessment Based on Performance.” In Resilience Assessment and Evaluation of Computing
Systems, edited by K. Wolter, A. Avritzer, M. Vieira, and A. van Moorsel, 305–322. New York: Springer, 2012.

Figure 9.15  The same system as in Figure 9.14 after remedies were applied
Source: [AvBon2012] With kind permission from Springer Science+Business Media: Avritzer, A., and Bondi,
A. B. “Resilience Assessment Based on Performance.” In Resilience Assessment and Evaluation of Computing
Systems, edited by K. Wolter, A. Avritzer, M. Vieira, and A. van Moorsel, 305–322. New York: Springer, 2012.

Performance Testing244

9.19  Automating Performance Tests and the Analysis
of the Outputs

One benefit of performance test automation is that it frees the perfor­
mance testing team from the need to repeatedly carry out tedious man­
ual testing tasks that could be prone to error. By automating aspects of
a performance test such as system configuration, test parameter set­
ting, verifying that the system is empty and idle, data logging, and
verifying whether the desired values of performance measures fall into
specific ranges, the performance testing team and the performance
engineers are given a verifiable way of ensuring that tests have been
carried out as intended. Thus, automated performance testing ensures
that the playbook has been executed properly. Moreover, automation
enables the repetition of performance tests under verifiable conditions
after changes have been made to the system in a controlled manner.
Finally, test automation provides an audit trail for the configuration,
execution, and logging of the performance test and the test results.
Notice that automated performance testing is not a panacea: it is merely
an automated implementation of a testing procedure that could be exe­
cuted manually.

The act of writing the program to automate the playbook provides
impetus and opportunities for correcting any ambiguities the playbook
might contain. The same holds for the automated verification of the
pre- and postconditions of the test.

The conduct of performance tests may be managed with a commer­
cial test case manager. When a commercial test case manager is either
unavailable or unsuitable for the application at hand, scripts may be
written to drive the execution of successive test cases. The testing team
may be motivated to do this by its early experience of conducting pilot
performance tests manually [BondiRos2009]. Indeed, it may be worth­
while for the team to execute pilot performance tests manually so as to
acquire a solid acquaintance with the system under test and with the
environment used for load generation.

When automating the analysis of the outputs, one should first con­
sider the characteristics of the outputs that are desirable. If detection of
undesirable characteristics and the verification of desirable characteris­
tics can be done automatically, the undesirable characteristics should
be flagged so that the performance engineering team can focus on iden­
tifying and remedying their causes. This is especially useful

9.19  Automating Performance Tests and the Analysis of the Outputs 245

when testing applications that involve large numbers of hosts, such as
a distributed network of servers deployed at the stops of a public tran­
sit system. Based on the examples of test results we have presented
here, we can identify basic characteristics that might be detected auto­
matically. The following desirable characteristics apply to systems to
which a load is applied with an average arrival rate that is constant
from one measurement interval to the next:

1.	 After the load has ramped up to its constant level and before
it ramps down at the end of the test, all measured average
resource utilizations and average response times should be
constant or vary within a very narrow range. No series of
measurement data should contain any trends. The graphs of
all averages of performance measures should be horizontal
between ramp-up and ramp-down.

2.	 Oscillations in resource utilizations, memory occupancy, and
response times are signs of anomalous behavior such as dead­
locks resolved by timeouts and should be avoided.

3.	 The transaction completion rate and the transaction arrival rate
should be equal throughout each test run. They should be con­
stant after ramp-up and before ramp-down. If the completion
rate is less than the arrival rate, one of the following is likely to
be occurring:

a.	 Jobs are being lost.
b.	 Jobs are backing up in a queue for a saturated resource such

as an I/O device or processor.
c.	 Jobs are backing up for a discrete resource that has been

exhausted, such as an object pool or memory pool.
4.	 Before the load is applied, resource usage within the system

should be constant, and preferably zero.

5.	 Average response times should fall below the levels specified
in the performance requirements at all loads.

6.	 The average utilizations of all resources computed after ramp-
up and before ramp-down such as disks, processors, and net­
work bandwidth should be linear functions of the offered load
provided no component of the system is saturated.

Any deviations from these characteristics should be flagged and
investigated.

Performance Testing246

9.20  Summary

In this chapter we have covered a wide range of topics concerning per­
formance testing. While some of the suggested performance testing
practices may appear to be mundane or obvious, we have recom­
mended them because our experience has shown that failure to adhere
to them seriously diminishes the value of the performance test results.
We have shown how performance testing that is structured to verify
that the conformance of a system to properties predicted by rudimen­
tary performance models yields essential information about the ability
of the system to handle increased offered loads. Among these proper­
ties are constant values of average performance measures and resource
usage measures under constant average offered loads and linearity of
the resource utilizations with respect to the average offered loads. We
have described how test beds should be structured to reflect the archi­
tecture of the target production system and explained how perfor­
mance measurements should be collected in a clean environment to
ensure that they reflect resource usage by the system under test alone.
We have also illustrated how the results of performance tests can be
used to identify concurrent programming issues and software bottle­
necks and have related these results to the predictions of standard per­
formance models.

9.21  Exercises

9.1.	 As passengers’ luggage passes through an airport conveyor
system, the bar codes on luggage tags are read by a scanner
that sends the unique identifier of each tag to a database for
instructions on how to route the suitcase. The average suitcase
passes ten such bar code scanners during its passage through
the airport. The luggage belt moves at 2 meters per second,
and suitcases are positioned so that the handles bearing the
tags are 1 meter apart. There is a database of this kind in each
airport. A suitcase is registered in the database either when it is
checked in by a passenger departing from the airport or when
the manifest of an arriving plane is downloaded into the data­
base. An arriving suitcase may be routed straight to baggage
claim or to the loading bins destined for connecting flights.
The following is the set of use cases you are asked to assess by

9.21  Exercises 247

performance testing: (i) the recording of a newly checked-in
suitcase in the database, (ii) the querying of the routing data­
base for routing instructions as a suitcase approaches a scan­
ner, (iii) the recording of all suitcases in the manifest of an
arriving aircraft.

(a)	 Explain how you would test the ability of the database to
handle queries at various loads associated with each use
case being executed in isolation and with all three of the use
cases being executed concurrently.

(b)	 Identify the variables that must be varied from test run to
test run to assess the ability of the routing database to
respond to queries in a timely manner.

(c)	 Identify the points in the transaction at which the response
time would be measured.

(d)	What operating procedures must you consider when for­
mulating the tests? What performance requirements must
you consider?

(e)	 If some of those performance requirements are missing or
inconsistently specified, what operational considerations at
the airport will you consider to link the test results to
domain-specific business and engineering needs?

(f)	 Explain how you would determine the maximum number
of suitcases per hour that could be handled by the routing
database. What travel patterns and characteristics of aircraft
might determine this?

(g)	 Describe the set of performance measurements and resource
usage measurements you would collect in the course of the
test. You may assume that the database is hosted on
Windows platforms. (Hint: What performance measure­
ments relate specifically to the problem at hand?)

9.2.	 In Exercise 3.4 we saw the following table of resource demands
for a computer system with thinking terminals:

Device Name Visit Ratio Service Time (sec) Service Discipline

CPU 6.0 0.0090 PS

Disk 0 1.0 0.0400 FCFS

Disk 1 4.0 0.0250 FCFS

Thinking terminals 1.0 4.0 IS

Performance Testing248

(a)	 Suppose that there are no thinking terminals, and that these
are the parameters of an open system in which transactions
arrive asynchronously, without awaiting a system response.
What maximum throughput should be offered to the sys­
tem by the load drivers? Explain your results using Mean
Value Analysis or otherwise.

(b)	Suppose instead that we wish to measure the effect of vary­
ing the think time between 0 and 8 seconds. What is the
maximum number of logged-in terminals the system can
sustain with think times of 0, 4, and 8 seconds? If you wish
to double the number of sampled response times obtained
when there are four terminals logged in (e.g., so as to be
able to have narrower confidence bounds), what combina­
tion of think time and number of terminals would you use?
Explain your results and justify your choice using Mean
Value Analysis or otherwise.

9.3.	 Performance measurements displayed by the Windows XP
Task Manager show that both processors in a dual-core system
are 50% busy even when the system is empty and idle before
load has been applied. Clicking on the Processes tab shows that
there is a polling process whose processor utilization is 100%.
The polling process is intended to check if an arriving mes­
sage queue is nonempty, and then forward any waiting mes­
sages to an application process for handling. An examination
of the design document reveals that the polling process should
repeatedly check the queue to see if a message has arrived, and
then forward it for processing elsewhere. The specification con­
tains no statement about how often polling must occur or about
how the polling process should behave as long as the queue is
empty. Neither does the corresponding functional requirement.
(a)	 Explain why the displayed CPU utilization of a single pro­

cess is 100% while the utilizations of both processors are
only 50%. What feature of the operating system might make
this possible?

(b)	What desirable attributes appear to be missing from the
functional requirement for the polling process?

(c)	 Propose a design change to the polling process that will fix
the CPU utilization problem and does not impose a theo­
retical constraint on the maximum polling rate. That is,

9.21  Exercises 249

there should be no theoretical limitation on the number of
times a poll can take place in unit time.

(d)	Propose a performance test plan that you will use to check
that the remedy works as desired once it has been
implemented.

(e)	 Explain the undesirable impact on the function, capacity,
and performance of the system if the problem is not urgently
fixed. Also, explain the impact on the performance testing
schedule and the time to market of the system. Note: Only
an explanation in general terms is required.

(f)	 Identify the list of stakeholders who must be persuaded
that the fix should be made, and the list of those who must
make the change, bearing your organization’s change man­
agement process in mind. (Hint: It might not be just the
developers.)

This page intentionally left blank

251

Chapter 10

System
Understanding,
Model Choice, and
Validation

To evaluate a system’s performance, one must first acquire an under-
standing of its desired function and of the paths followed by the
information that flows through it. The performance of a complex
system may best be understood by breaking it down into compo-
nents whose performance can be engineered separately, and then
combining the resulting models into a larger one so that the entire
system can be modeled as a whole. This entails understanding the
mission of the system, the system’s architecture, the information
flow through the system, and sometimes the flow of transported
entities. At the same time, one needs to obtain both a qualitative and
a quantitative feel for the traffic demands and the performance
requirements, because these are, or should be, the drivers of the
need for capacity and the design and implementation choices made
to support them. If a performance model turns out to be inaccurate,
the reasons for the inaccuracy should be investigated so that the
limitations of the model can be understood.

System Understanding, Model Choice, and Validation252

10.1  Overview

In this chapter we shall study how one goes about modeling a computer
system. This entails not only identifying the servers and the parameters
of a queueing model as suggested in Chapter 3. To begin with, one must
identify the questions to be answered by the model and identify the sali-
ent aspects of the system’s structure and function. One should identify
those portions of the system that could be modeled separately and
determine the level of detail to be captured in each component model.

It is not always advantageous to build a detailed model incorporat-
ing all facets of the system. A highly detailed model may not be needed
to answer basic questions about the capacity of the system or about the
effectiveness of a design choice from a performance standpoint. It is
often sufficient to focus one’s modeling efforts on the foci of load and
the principal factors determining capacity and response time. The more
detail is captured in the model, the more parameters are required to
evaluate it. The values of the parameters may not always be obtainable,
and using incorrect values may introduce errors in the performance
predictions that might not have occurred with a less detailed model.
Moreover, a detailed model may include a considerable amount of
information about the state of the system. In general, the more dimen-
sions are used to describe the state of the system, the more computa-
tionally expensive the evaluation of the system performance might be.
If a question arises about the influence of a detail of system design such
as buffer size or the use of a scheduling rule, it may be preferable to
address the question in isolation in a separate model. The results of that
model can then be used to address the impact of the detail on the sys-
tem as a whole. For example, if it is determined that a scheduling rule
could cause the system to go into deadlock and crash, it is best to
address the performance impact of that scheduling rule on its own, and
then determine what the performance of the system would be if a
deadlock-free rule were used instead.

The application of performance engineering techniques often
begins with questions about a system’s functionality and the perfor-
mance needs it must meet. The questions depend on the current status
of the system and/or how it might be changed. For example:

•	 If one is building or procuring a system for the first time,
there will be questions about the needed capacity, the desired
response times, the functionality to be supported, the tech-
nology that is available to implement functional and

10.1  Overview 253

performance requirements, and constraints on implementa-
tion such as the need to interface with legacy systems or a
requirement to use a particular operating system.

•	 If the system is in production and is perceived to be performing
badly, one should ask questions about the reasons for poor per-
formance and what might be done about it. Insights about the
causes can be gained from constructing a model of the traffic
offered to the system and conducting performance measure-
ments of the system over a weeklong cycle. This allows one to
assess performance and resource usage as the traffic varies.

•	 If one is adding functionality or load to an existing system,
there will be questions about whether the existing functionality
can be supported and the performance of and demands for the
existing and desired functionalities.

•	 If one is contemplating the introduction or deployment of a
new algorithm or technology to reduce response time or
increase capacity, the modeler may be asked to predict whether
the new technology will have the desired impact on perfor-
mance before it is introduced.

•	 Similarly, if one is forced to migrate a system to a new environ-
ment, such as an operating system or a new family of disk
drives, because the present one will no longer be supported,
there will be questions about the ability of the new system to
maintain present performance levels or provide better ones.

When formulating performance requirements, one is asking and address-
ing questions about how good the performance of the system must be
and what kind of load it is supposed to carry. These requirements are
drivers of the system architecture. The requirements and the architecture
determine how the functionality and performance of the system are
tested. In addition, requirements and architecture play a role in determin-
ing the kinds of questions to be answered by a performance modeling
study and hence by the performance models used to carry it out.

In testing the performance of the system as described in Chapter 9,
one devises and executes an experimental plan to determine whether
performance requirements have been met. One also verifies that the
performance and resource usage measures of a system meet require-
ments, obey basic performance laws, and conform to patterns that are
consistent with those expected of stable, well-behaved systems when
subjected to controlled loads. Performance models help us make

System Understanding, Model Choice, and Validation254

predictions about the effects of design choices and changes in load or
technology, whether these concern systems that have not yet been built
or changes to existing systems.

10.2  Phases of a Modeling Study

A modeling study may be thought of as consisting of four phases:

1.	 A model development phase, in which the essence of the informa-
tion flow is captured and a corresponding queueing network
model is mapped out, and special features of the system are
identified that might have to be modeled separately. For exam-
ple, asynchronous I/O is a special feature that we shall exam-
ine later in this chapter.

2.	 A measurement phase, in which the actual system is subjected
to a controlled test load believed to be representative of what
would be seen in production.

3.	 A validation phase, in which the parameters of the model are
computed from resource usage measurements and the perfor-
mance measures predicted by the model compared with the
measured values.

4.	 A projection phase, in which one varies the parameters of the
model to project the impacts of changes before they are made
[LZGS1984].

The first three phases were illustrated in our examination of a computa-
tionally intensive transaction processing system in Chapter 9. Our view
of the system was formulated in a model development phase. This was
followed by a measurement phase, in which we chose measurements to
be gathered in performance testing, and then used the measurement
data as inputs to a simple performance model. In the validation phase,
we found that the resource utilizations predicted by the model were
identical to measured results. This was to be expected, because the test
data showed that the system was stable and well behaved and that the
resource utilizations were linear functions of the offered load. The ser-
vice demands at each device were obtained by fitting regression lines
through the measured utilizations as a function of the measured system
throughput, and then calculated from the slopes of the regression lines
using the Utilization Law. During the validation phase, it was seen that
the predicted response times at all load levels were greater than the

10.2  Phases of a Modeling Study 255

measured ones. Despite that, the predicted response time plot and the
measured response time plot had similar shapes, reflecting the onset of
saturation as the offered load increased. The discrepancy was at least
partially explained by the use of asynchronous I/O to allow I/O and
processing of a transaction to occur simultaneously rather than serially.

In the projection phase, a validated model could be used as a base-
line for answering questions about what would happen to system per-
formance if transactions involved amounts of I/O activity or processing
time that differed from those that were measured, because of changes
in the nature of the work. It could also be used to model the effects of
adding more I/O devices to ease the load on the existing ones, or the
effects of adding faster processors.

Projecting the changed performance of the system is sometimes
called what-if analysis, because one is addressing questions like “What
if we add an I/O device?” or “What if we add a faster processor?”
Because the baseline model we described in Chapter 9 does not capture
the effect of asynchronous I/O, parallel CPUs, RAID (redundant array
of inexpensive disks) devices, or priority scheduling of any kind, it
should not be used to answer questions about the effects of changing
them. Of course, the model will tell us something about the values of
the response times in the absence of asynchronous I/O, since complete
serialization of I/O and processing were assumed. Moreover, because
utilizations depend only on processing time and arrival rate, and not
on scheduling polices, the baseline model will also tell us whether add-
ing load to the system will cause its capacity to be exceeded.

The inadequacies of the simple model illustrate a critical question
often faced by modelers and performance engineers: Is the performance
model that has been devised sufficient to address the concerns of the
system’s stakeholders, or are more accurate models that capture more
system details needed? The answer to this question could depend on
multiple factors, including the resources and time available to build
more sophisticated models, the level of expertise that is available within
the organization to address the associated modeling complexities and
interpret the results, and the availability of sophisticated modeling tools
and the availability of data needed to compute the values of modeling
parameters. Purpose-built queuing network models of asynchronous
I/O are described in [HeidelbergerTrivedi1982]. If a queueing system is
not susceptible to modeling using queueing network models, the use of
discrete event simulations may be appropriate [LawKelton1982].

In the remainder of this chapter we examine how one might go
about modeling the performance of a fictitious conveyor system. We

System Understanding, Model Choice, and Validation256

then examine the limitations of a simple performance model of the com-
putationally intense system whose measurements we saw in Chapter 9.
We go on to discuss how exploring the limitations of a simple model
might be used to determine what problem areas should be the subject of
further modeling studies, and how the choice of these areas should be
reconciled with limitations on the resources available to the clients who
commission this work. Since clients’ budgets and time to market are
usually limited, it is important to focus one’s performance engineering
efforts where they are most likely to have the largest impact.

Finally, we discuss examples of system behaviors, such as thrash-
ing in paged virtual memory and periodic behavior patterns, that are at
odds with some of the assumptions underpinning the basic queueing
models we presented in Chapter 3. Ignoring these characteristics can
lead to inaccurate performance predictions.

10.3  Example: A Conveyor System

To illustrate how the performance model of a system can be broken into
parts, let us consider a conveyor system as described in earlier chapters.
It might have the following components involving computations:

•	 A parcel database that contains records of the origin, destination,
and movements of every parcel. This database is queried by the
programmable logic controllers (PLCs) to determine how a parcel
should be routed on the conveyor belt.

•	 A set of PLCs that control the movement of parcels on the belt
and provide alerts of emergencies such as overheated or
jammed components and the pulling of an emergency cord to
bring the belt to a stop.

•	 One or more local area networks to connect the PLCs to each
other, to the routing database, and perhaps to a central control
or monitoring station if there is one.

•	 Bar code readers to identify the parcels to the PLCs.
•	 A system for registering the intake of parcels, including such

information as the origin, the destination, the sender, the
receiver, all movements including intake and delivery, and any
information about special handling such as the requirement for
an adult signature on delivery, whether the parcel is fragile, or

10.3  Example: A Conveyor System 257

whether it should be X-rayed or sniffed by dogs on behalf of
law enforcement.

•	 A monitoring system to keep track of the status of the convey-
or’s parts, including PLCs, motors, temperature sensors for the
motors, jam sensors, and sensors that detect when the red emer-
gency cord has been pulled or emergency stop button pushed.

•	 Interfaces (human or otherwise) for parcel intake, delivery, and
system monitoring.

The PLCs use a local area network to communicate with one another
and to send queries to the parcel routing database. The responses to the
queries tell the PLCs whether a parcel should be diverted or moved
straight ahead.

The load drivers for the parcel routing database are parcel move-
ments, parcel location queries generated by people, and the occurrence
of parcel intake and parcel delivery events. The load drivers for the
monitoring station are status messages sent by the PLCs, including
alarms of any kind.

From the point of view of the PLCs and the systems for intake and
delivery, the parcel routing database is a black box whose operational
characteristics are the times taken to respond to queries and the con-
tents of the queries. From the point of view of the database, the queries,
intake registrations, and delivery registrations are streams of transac-
tions to be processed according to whatever business logic is required.
The operational characteristics of the local area network are the times
taken to deliver messages.

For the purpose of this exercise, let us assume that the response
time requirements of the parcel routing database have been specified,
and that the sum of the peak rates at which parcels pass the bar code
readers is known. Let us also assume that the message pattern between
PLCs is known and that the rates at which PLCs generate queries to the
parcel routing database at various times of day are also known. From
the standpoint of the PLCs, the query response time consists of the sum
of the database response time and the network delivery time of the
message carrying the response. The requirement for an upper bound
on the value of this sum is determined by the speed of the belt and the
distance a parcel must travel between the bar code reader and the next
point on the belt at which it might be diverted. The faster the conveyor,
the lower this sum can be. Similarly, the closer the bar code reader is to
the diversion point, the lower this sum can be. Our task is to determine

System Understanding, Model Choice, and Validation258

whether the sum of the database query response time, the network
delay, and the PLC processing time is less than the time it takes for the
parcel to travel from the bar code reader to the diversion point. It is
usually less costly to determine these delays individually in the lab
than it is to build an entire system and see how it performs once it is
switched on. It is also easier to model the PLC, database, and network
delays separately than to model them as one large system. The results
of the respective performance models might then be combined into a
whole, just as the system components are combined into a whole after
functional and integration testing.

To summarize, we need to formulate the following models to eval-
uate the performance of the conveyor system:

1.	 A model describing the status message traffic between the
PLCs and the conveyor status monitor. This includes routine
status traffic and alarm traffic where needed.

2.	 A model describing the message traffic directly attributable to
the routing and movement of parcels along the conveyor belt.
This includes routing queries made to the parcel routing data-
base and their responses.

3.	 A model describing the message traffic directly attributable to
the registration, induction, movement, and delivery of parcels.

4.	 A model of the local area network used to transport the reg-
istration, induction, movement, routing query, and delivery
message traffic.

5.	 A model of the server hosting the routing query database.
6.	 A characterization of processing delays in the PLCs.
7.	 A model that integrates the results of the outputs of the various

models.

The outputs of the first three models are inputs to the fourth model.
The outputs of the third model are inputs to the fifth model. The model
of the traffic attributable to the routing of parcels also describes the
demand made on the routing query database, that is, the sixth model.
All of these outputs cascade into the integrated model mentioned in
item 7. The network traffic model is described in [BSA2005].

Let us turn our attention to a model of the parcel routing database.
Because we have neither direct traffic data nor performance data for an
actual system nor an actual architecture, we recommend the use of a
reference architecture and contrived model parameters to build an ini-
tial model of the system.

10.3  Example: A Conveyor System 259

Following the modeling approach discussed in Chapter 3, our initial
focus is on the portion of the resource consumption by the database that
is driven by transactions triggered by parcel registration and parcel
movement. We would begin by examining a reference architecture that
is intended to support a reference workload and proceed from there to
build a performance model. We would model proposed changes to the
architecture by changing the parameters of the performance model and
computing the performance measures that would result.

The design of our fictitious system is based on the following
considerations:

1.	 Database records pertaining to parcels on the conveyor belt will
be stored in the database cache. They may be removed from the
cache once they are no longer on the conveyor belt, either because
they have been loaded onto their target mode of transport, such as
a plane, train, container, or truck, or because they have been deliv-
ered to a pickup point such as a baggage claim belt at an airport.

2.	 The route to be followed by a parcel will be computed before
the parcel is loaded onto the conveyor for the first time at an
induction point and stored in the routing database cache as
well as on disk.

3.	 The database will be updated every time a parcel enters a new
belt segment, whether because of a diversion or because two
segments abut one another. This is done to ensure complete
traceability of the chain of custody of the parcel.

4.	 Updates about the disposition of the parcel will always be written
to disk after being written in the database cache, for logging pur-
poses. Updates to the disk will be done asynchronously so that
parcel movement is not delayed until the disk update is complete.

5.	 Records of parcels that are no longer on the belt will be removed
from the database cache whenever the cache occupancy reaches
a high-water mark. The oldest records will be removed first.

6.	 Routing queries for parcels in transit are based on the parcel’s
bar code only.

7.	 The actual parcel is mapped to the bar code when the parcel is
registered. The corresponding record is loaded into the database
cache when the parcel is loaded onto the conveyor for the first
time. A long time may elapse between registration and intake.
For example, a parcel may be registered online when a shipping
label is created late in the evening, but intake may not occur
until the parcel is brought to a drop-off point the next morning.

System Understanding, Model Choice, and Validation260

8.	 Modifications to the route can occur while the parcel is in tran-
sit, whether because of breakdowns or because of a change in
a parcel’s destination for whatever reason. The cancellation of
the shipment of a parcel that is already on the belt is equivalent
to treating the place where the parcel will be retrieved as its
new destination.

These activities and behaviors would be reflected in the choice of trans-
action rates, visit ratios, and service times at the CPUs and the disks in
the system hosting the database.

Once we have established that the communication traffic in and out
of the routing database server will not saturate any of the network
devices on the paths to it, the focus of the performance study of the
routing database should be contention for processing power, disk
access, and perhaps memory.

Contention for memory and for software objects such as read and
write locks will not usually be considered initially unless there is rea-
son to believe that a software bottleneck exists, for example, if the pro-
cessor utilization does not rise as the query rate increases. The database
should have been designed to reduce the risk of lock contention in the
first place, for example, by using row-level locking instead of table-
level locking where appropriate. Even then, repeated lock contention
does not add to processor or disk usage so long as contending threads
and processes are put into a sleep state until the locks become availa-
ble. Even if contending threads do not sleep until the lock becomes
available, there is no contribution to disk usage if the object protected
by the lock is resident in memory. Still, the designers of the system
should be advised to avoid repeated contention, since it slows process-
ing down by stealing both memory and execution cycles.

10.4  Example: Modeling Asynchronous I/O

In our discussion of the computationally intense system in Chapter 9,
we did not examine the effect of asynchronous I/O on performance in
detail. We explore the modeling issues here. For a detailed discussion
of the performance modeling of asynchronous I/O, the reader is
referred to [HeidelbergerTrivedi1982].

Asynchronous I/O may be used to shorten system response times
when it is not necessary for the process that initiated the I/O to wait
until it has been completed before proceeding. This is applicable when

10.4  Example: Modeling Asynchronous I/O 261

a process is writing to a device and does not need notification of I/O
completion for a computation to continue, or if the process has issued
a read request and does not need the returned result until reading is
complete. Asynchronous I/O in Windows-based systems is described
in [WindowsKB2013].

To model the performance impact of asynchronous I/O, one should
take the following points into account:

•	 Asynchronous scheduling of I/O does not change the work that
must be done to carry it out. Hence, using it does not change the
utilization of the I/O device.

•	 The use of asynchronous writing entails the buffering of the data
to be written until the write operation on the I/O device has been
completed. Similarly, data that is read asynchronously from the
I/O device must be stored at a known memory location until the
process that initiated the request reads it. Sufficient buffer space
must be available in memory to hold the data that is to be written
or retrieved. Here, we shall focus solely on asynchronous writes.

•	 An I/O device may perform both synchronous and asynchro-
nous I/O depending on the needs of the application. Since syn-
chronous and asynchronous activities are competing for the
same resource, each kind of I/O will tend to increase the device
response time of the other kind.

Let us now formulate a performance model. Let k be the index of the
I/O device of interest. As depicted in Figure 10.1, we can think of an
asynchronous I/O request as an I/O that is spawned by a job that then
goes its own way, returning to the CPU to continue its work. By con-
trast, a synchronous I/O request goes back to the CPU only once it has
been completed in the usual way.

As usual, we denote the average service time of the device by Sk .
The device has both asynchronous and synchronous visits. Denote the
corresponding visit ratios by Vk a, and Vk s, respectively. The demand on
device k is given by

	 = +D V V Sk k a k s k(), , 	 (10.1)

Denote the delay a process experiences when performing an asynchro-
nous I/O by dk. Denote the response time for any request at device k by
Rk. Then, the global response time for the process doing asynchronous
I/O and synchronous I/O at this device may be formulated as

System Understanding, Model Choice, and Validation262

	 R V R V d V Ri
i k

i k a k k s k∑= + +
≠

, ,0 	 (10.2)

The following assumptions are implied by the formulation:

1.	 The second term assumes that the process suffers a constant
delay dk when performing asynchronous I/O, regardless of
the system load. The means for estimating dk , or, perhaps more
easily, V dk a k, , depend on the nature of the system and on the
available measurements.

2.	 The expressions for the individual response times depend on
the processing demands at the individual devices and on the
system throughput, and on whether the central subsystem is
best modeled as an open or closed network of queues.

Notice that if there were no asynchronous I/O, we would have =Vk a 0, ,
giving us the same formulas for the device loading Dk and system res-
ponse time R0 as usual. If we have purely asynchronous I/O at device
k, the system response time becomes

	 ∑= +
≠

R V R V di
i k

i k a k,0 	 (10.3)

because return to the CPU is not delayed until completion of the I/O.

I /O1

CPU
Asynch/
Synch
I /Ok

Asynch
I/O Request

Asynch Delay dk

Asynch I /O
Start and
Completion

Synch
I/O
Request

Vk,s

Vk,a

Vk,a

Figure 10.1  A queueing network model of asynchronous I/O

10.4  Example: Modeling Asynchronous I/O 263

Whether the central subsystem is modeled as a closed network of
queues with a fixed number of circulating jobs or as an open network
with an essentially unconstrained number of circulating jobs, the num-
ber of asynchronous I/O requests queued at device k is unconstrained,
because the jobs generating the asynchronous requests need not wait
until they have been completed. For an analysis in a closed network
with a fixed number of circulating jobs, the reader is referred to
[HeidelbergerTrivedi1982].

Let us now consider the response time and capacity of device k.
Suppose that the central subsystem is an open network. Then, device k
can be modeled as an open queue with exponential service time. The
mean queue length of device k is given by

	 =
−

≤ <n
U

U
Uk

k

k
k1

, 0 1 	 (10.4)

where the utilization Uk , which is due to both synchronous and asyn-
chronous activity, is given by

	 = +U X V V Sk k a k s k()0 , , 	 (10.5)

and X0 is the global system throughput. Using Little’s Law and the
expression for the average length of an M/M/1 queue, it can be
shown that the average amount of time to process I/O requests of
either kind is

	 =
−

≤ <R
S

U
Uk

k

k
k1

, 0 1	 (10.6)

Notice that the portion of this response time attributable to asynchro-
nous activity contributes to the overall system response time only to
the extent that the activity contributes to the delay in handling any syn-
chronous activity. The total time to complete all asynchronous activity
for a job, Rk a, , is the average response time per visit multiplied by the
number of asynchronous visits. Thus, we have

	 =R V Rk a k a k, , 	 (10.7)

If the activity at device k consists solely of writes, the time to complete
all work on behalf of a transaction is bounded below by both Rk a, and
R0. Asynchronous I/O allows the combined time to complete activity to

System Understanding, Model Choice, and Validation264

be less than or equal to the sum of these two delays. Hence, the total
time to complete all activity related to a job of this type RJ is governed
by the following inequality:

	 ≤ ≤ +R R R R Rk a J k amax(,)0 , 0 , 	 (10.8)

Let us now revisit the test data and initial modeling results we saw
in Chapter 9. Figure 10.2 shows the predicted and measured response
times for the overall response time, and the predicted response times
for the individual devices.

Here, we see that the predicted response time of the RAID device is
the driver of the predicted overall response time, because it is the bot-
tleneck device, while the predicted values of the combined response
time contributions of the CPU and system disks to the predicted
response times do not increase much with the load. Because we were
not able to capture the response times of the individual devices, we
cannot directly validate the predicted values of the response times.

Normalized Work Units per Second

Measured Avg
Response Time

Predicted Response
Times

Predicted Response
Time RAID

Predicted Response
Time CPU and System
Disk Combined

0
0

50

100

150

N
or

m
al

iz
ed

 A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(s
ec

)

200

250

300

1 2 3 4 5

Figure 10.2  Response times for the computationally intensive system

10.4  Example: Modeling Asynchronous I/O 265

Still, the shapes of the response time curves and their placement do
yield some insights and some caveats about both the model and the
system:

1.	 While the rise in the measured overall response time under the
asynchronous I/O regime is not as dramatic as the predicted
rise under the assumption that I/O is purely synchronous, it
is large enough for us to suppose that not all of the I/O at the
RAID device is asynchronous. If it were, the overall average
response time would hardly rise at all, because the combined
predicted average response time of the CPU and the system
disk does not increase much with the load.

2.	 Even if the response time perceived by the user does not
include the asynchronous portion of the I/O, the I/O will take
a great deal of time to be completed, so that any activity that
entails reading the information written to the I/O device will be
delayed until that I/O is completed. This implies that the over-
all system response time that should be measured and mod-
eled should include that delay. The performance measurements
do include that delay. The modified response time formula in
equation (10.2) may not do so, in part because it does not quan-
tify the extent of overlap between I/O and the activity at other
devices. Indeed, the extent of that overlap may be a function
of the load itself, as is indicated by the widening difference
between the overall measured response time and the predicted
response times of the CPU and system disks combined.

3.	 Modeling a RAID device as a single-server FCFS queue might
not be accurate. The predicted values of the response times
could be too high. Performance models of RAID devices are dis-
cussed in [LeeKatz1993], [CLGKP1994], and [TTH2012], among
others.

4.	 As we mentioned in Chapter 9, the system under study has
parallel CPUs and parallel cores. This was not captured in
our model. Some of the error in the predicted overall response
time may be due to this, but not all, because the CPU is lightly
loaded compared with the bottleneck device.

In summary, while the original coarse performance model correctly
predicts the qualitative nature of the performance of the system and the
load at which saturation occurs, and correctly tells us where the

System Understanding, Model Choice, and Validation266

bottlenecks are, it is insufficiently detailed to accurately inform us
about the effects of design choices such as asynchronous I/O and mul-
tiprocessing on overall performance. To accomplish this, a more
detailed and involved modeling effort would be required than was fea-
sible within the scope of the work commissioned by the client.

10.5  Systems with Load-Dependent or
Time-Varying Behavior

The performance of systems with load-dependent behavior will not be
predicted accurately by performance models with constant, load-
independent, and time-independent parameters. Even if the perfor-
mance model is accurate initially, it may not be later on. The examples
that follow show that it is necessary to monitor the performance of a
system over time both during initial tests and in production to ensure
that performance models remain accurate. If resource utilizations and
other performance measures show trends, oscillate, or otherwise vary
considerably over time, performance models with constant parameters
based on the average values of measurements will not be accurate.
Some examples illustrate this point.

10.5.1  Paged Virtual Memory Systems That Thrash

Systems with paged virtual memory may experience repeated ejection
and retrieval of pages at a rapid rate if too many jobs are loaded into
main memory at once, especially if the size of main memory is too
small for the demand. In some cases, the same pages are rejected and
retrieved over and over again. This is known as thrashing. Thrashing
increases the average system response time while seriously degrading
the system throughput, because it is accompanied by a massive increase
in demand for I/O to bring missing pages into memory while writing
modified pages out before ejecting them from memory. In addition,
there is a demand for processor power to drive those I/Os and to
choose pages for replacement. Once the need to replace pages abates,
perhaps because a job has finished execution or been canceled, thus
freeing memory, thrashing subsides. For a discussion of thrashing and
mechanisms for mitigating or avoiding it, the reader is referred to
[CoffDenn1973], [Denning1980], and [PS1985].

26710.5  Systems with Load-Dependent or Time-Varying Behavior

10.5.2  Applications with Increasing Processing Time per
Unit of Work

There are many cases in which the amount of processing time or I/O
activity per unit of work increases over time. In such cases, the perfor-
mance of the system will degrade. Its capacity will be reduced and the
response time per unit of work will increase. The accuracy of perfor-
mance models of these systems will deteriorate over time if they have
constant parameters. For example:

•	 As the number of records stored in a database grows, the amount
of processing needed to carry out each query may increase.

•	 If a stream of unsorted incoming records is stored in ascending
order in a data structure using an insertion sort, the time to
insert each record in order could go up with the square of the
number of records already present [HS1976].

10.5.3  Scheduled Movement of Load, Periodic Loads, and
Critical Peaks

Some systems are subject to periodic or oscillating loads. For example:

•	 Some monitoring or control systems have pairs of components
that are arranged in parallel. To ensure that each component
can act as a standby for the other in case of failure, the load is
shifted from one to the other at regular intervals, such as hourly.
A performance prediction based on the average use of the two
components over a prolonged period will underestimate the
average response time. The system capacity under this regime
may be overestimated by a factor of 2.

•	 Payroll and online banking systems experience peaks of activity
on and shortly after the days that employee payments are issued.
Performance engineering for these systems, including modeling
and testing, should be done for the period of peak activity.

•	 We have already seen that the average values of performance
measures of alarm systems operating in emergency mode are
uninformative. Performance models of the average behavior of
such systems will tend not to be accurate or meaningful.

•	 In the United States, tax returns must be filed annually by mid-
night on April 15 or the first business day thereafter. The loads on
electronic filing systems will increase markedly as the deadline

System Understanding, Model Choice, and Validation268

approaches. A performance model based on the average load
during a 48-hour period on April 14 and 15 is unlikely to provide
meaningful predictions about their performance.

10.6  Summary

The foregoing examples suggest that combining a coarse performance
model and a well-structured performance test is often sufficient for the
prediction of qualitative performance trends with respect to the drivers
of load and memory footprint. Examples of drivers of load include the
offered transaction rate in transaction systems and the rates at which
events occur in monitoring systems. Examples of drivers of the mem-
ory footprint include the sizes of the executable codes of all running
programs, the number of concurrently active transactions, the size of
the in-memory portion of any database, and, in the case of monitoring
systems, the number of devices being monitored and/or managed.

Investigating the performance impact of particular design choices,
scheduling rules, or hardware technologies might entail identifying the
areas where delays occur, and then building detailed models of these
aspects of the system in isolation. The results might then be incorpo-
rated into an integrated model of the system as a whole. Related tech-
niques include hierarchical decomposition [LZGS1984] and layered
queueing networks [FAWOD2009, XOWM2005].

For systems that have been measured while in production or while
being tested, a preliminary analysis of the measurements may provide
an indication of what part of the system may be causing performance
issues. For systems that are not yet in production, a traffic modeling
effort may be initiated because of early concerns about whether the
volume of work will exceed the capacity of one or more system compo-
nents. For example, in the case of the conveyor system, one may be able
to determine from design and protocol specifications that a given rate
of parcel movement could cause available bandwidth or I/O capacity
to be exceeded. If that is the case, investing in a detailed model captur-
ing a broad range of system functionalities would not be helpful.
Instead, one should work with the architects and other stakeholders to
determine methods to reduce the amount of message activity to the
point that the network bandwidth would be sufficient to handle the
anticipated parcel movement rate. Once concerns about network satu-
ration have been addressed, one may turn to concerns about any other
bottlenecks that might be unmasked as a result.

10.6  Summary 269

As we saw in Section 10.5, various time-varying and/or load-
dependent system behaviors can undermine the validity of perfor-
mance models that are based on long-term average values of
performance measures. For this reason, the values of the performance
measures of the system over time and at various load levels should be
examined to rule out the possibility of aberrant behaviors that not only
undermine the validity of performance models but could also be indi-
cators of system instability that might impact performance.

The following is an outline of questions that might be asked when
one is deciding whether to embark on a modeling study and what
direction a modeling study should take:

1.	 What do we wish to learn from the model? What questions will
it help us answer?

2.	 How will the model be used in the future?
3.	 Can the model be used to help stakeholders make necessary

decisions about design, implementation, and/or capacity?
4.	 Can the model be used to help understand whether the

system will be able to meet throughput and response time
requirements?

5.	 Are the input parameters of the model available from measure-
ments or otherwise?

6.	 How sensitive are the model predictions to the values of the
parameters?

7.	 Is the model intended to answer questions about the entire sys-
tem, or only one part of it? Is there a particular bottleneck in
the system whose performance should be examined first?

Deciding what we wish to learn from the model and how it will be
used in the future is a precondition for deciding what aspects of the
system must be modeled in detail and what aspects can be modeled
coarsely. If the model parameters are not available from measurements,
validation of the model by comparing it with measurement data will
not be possible. In that case, it will be necessary to use best-effort esti-
mates of the model parameters and run the model on various input
values to determine if the model’s predictions are highly sensitive to
them. Sensitivity to model parameters could be a sign that the intended
operating range of the system is near saturation, that the system is not
robust, or that the model is not robust. The robustness of the model and
of the system under study should always be examined carefully.

System Understanding, Model Choice, and Validation270

In our study of the I/O-bound computationally intense transaction
processing system in this chapter and in Chapter 9, we saw that our
coarse model was adequate for predicting hardware resource utiliza-
tions and for showing the absence of software bottlenecks, but that it
could not be used to answer detailed questions about the deployment
of multiple processors or changes in priority scheduling, since these
features were not included. It could be used to answer questions about
distributing I/O processing among multiple I/O devices, although it
could not be used in its present form to determine whether different
RAID schemes would be superior to what is in place at the moment,
since those features are not captured in the model. To answer questions
about particular system features, it may be worthwhile to build simple
models of these features that capture them in isolation, and then incor-
porate the results and/or the smaller models into the larger model.

10.7  Exercises

10.1.	 In the computationally intense transaction processing system
discussed in this chapter and in Chapter 9, the definition of
the transaction response time has not been fully described.
The transaction response time could end when the last asyn-
chronous I/O has been initiated, or when the last I/O has been
completed.
(a)	 Give an expression for the transaction response time based

on the definition that the response time ends when the last
I/O to the asynchronous device has been initiated.

(b)	Explain why this definition is unsatisfactory if the goal of
the transaction is to transform data for subsequent process-
ing by another computation that cannot proceed until the
transformed data is available on the asynchronous I/O
device.

(c)	 Give formulas for upper and lower bounds on the transac-
tion response time that include the final writing of data to
the asynchronous device.

(d)	 Explain the circumstances under which the bounds will hold.

10.2.	 The status of the conveyor system in this chapter is monitored
by a system that receives status messages at regular intervals
from the PLCs and from sensors that are connected to them.

10.7  Exercises 271

Status messages are sent to the monitoring station over the
same local area network that is used to send parcel movement
control messages and parcel routing queries.
(a)	 Describe how you would characterize and model the local

area network traffic attributable to parcel movements.
(b)	Describe how you would characterize and model the local

area network traffic attributable to status messages.
(c)	 Explain how you would assess whether the monitoring traf-

fic limits the capacity of the conveyor system to the point
that the desired number of parcels cannot be handled. (Hint:
Is the combined bandwidth of the parcel movement control
traffic and the monitoring traffic close to that of the availa-
ble bandwidth on the local area network on any of its
segments?)

(d)	Observations of the conveyor system indicate that the mis-
routing of parcels is 50% more likely to occur when the
ambient temperature in the warehouse exceeds 40 degrees
Centigrade, causing some of the conveyor motors and PLCs
to overheat. It is also known that overheating will trigger
the generation of alarm messages at a rapid rate. Describe
how you might use your performance model to explain
how overheating could cause misrouting of parcels even if
there is no mechanical problem associated with increased
temperatures. Explain how you might corroborate this find-
ing through the use of measurements.

(e)	 Discuss the impact of this misrouting on the query pattern
at the routing database, and how you might go about explor-
ing the resulting performance impact of overheating.

10.3.	 A system with paged virtual memory may show a marked
increase in paging activity when the number of jobs in the
system is large. Using the bottleneck analysis methods of
Chapter 3, explain how a tenfold increase in paging activ-
ity with some number N jobs present would drive down the
maximum achievable throughput and drive up the minimum
response time of the central subsystem. (Hint: Consider the
visit ratio of the paging device and the resulting visit ratio of
the CPU.)

This page intentionally left blank

273

Chapter 11

Scalability and
Performance

Scalability is a highly desirable and commercially necessary feature of
many systems. Despite that, there is no universally accepted definition
of it. There is no hard-and-fast rule about how to achieve it, although the
factors that might undermine it are often readily identifiable and easily
understood. In this chapter we shall explore some definitions of scalabil-
ity. We shall identify practices and system characteristics that are condu-
cive to it and patterns and characteristics that can undermine it. Scalability
pitfalls will be explored. We shall show how to plan performance tests to
verify scalability and interpret the test results accordingly.

11.1  What Is Scalability?

Scalability is a desirable attribute of a network, system, or process. The
concept connotes the ability of a system to accommodate an increasing
number of elements or objects, to process growing or shrinking vol-
umes of work gracefully, and/or to be amenable to reduction in size or
to enlargement. Usually, one thinks of the need to scale a system up so
that it can cope with an increased workload; or control, manage, or
monitor larger numbers of devices. In some cases, the ability to scale
down a system is desirable when it is being adapted for a niche market
or the setting in which the system is intended to operate is inherently

Scalability and Performance274

smaller. For instance, there are features of building management sys-
tems and alarm systems that one might wish to deploy in small build-
ings as well as in large ones. Similarly, one might wish to deploy
components of a medical system in a rural clinical setting as well as in
a large metropolitan hospital, but at far less cost, because the revenue
base in the rural area is smaller.

The scalability of a system subject to growing demand is crucial to
its long-term success. At the same time, the concept of scalability and
our understanding of the factors that improve or diminish it are vague
and even subjective. Too often, we know when we don’t have enough of
it but are not always able to describe why or in what terms. Many sys-
tems designers and performance analysts have an intuitive feel for scal-
ability, but the determining factors and the means of quantifying their
impacts are not always clear. They may vary from one system to another.

When procuring or designing a system, we often require that it be
scalable. The requirement may even be mentioned in a contract with a
vendor. The requirement may be ambiguous unless the scope and
dimensions of scalability are specified. When we say that a system is
unscalable, we usually mean that the additional cost of coping with a
given increase in traffic or size is excessive, or that it cannot cope at this
increased level at all. Cost may be quantified in many ways, including
but not limited to response time, processing overhead, space, memory,
or even money. A system that does not scale well adds to labor costs or
harms the quality of service. It can delay or deprive the user of revenue
opportunities. Eventually, it must be replaced.

The terms coping and excessive are subjective. This is true of many
characteristics and definitions of scalability. Metrics that might describe
scalability depend on the context to which they are being applied. The
adequacy of scalability depends on the extent to which a system must
be scaled, and the dimensions in which it must be scaled. The extent
and the dimensions of scalability should be specified in the perfor-
mance requirements, as we discussed in Chapter 6.

US Supreme Court Justice Potter Stewart once said he could not
define obscenity, but that he knew it when he saw it [Jac1964]. Knowing
scalability when we see it or when the system apparently fails to pro-
vide it is insufficient for engineering purposes. Hill [Hill1990, quoted
in Duboc2009] writes that “I examined aspects of scalability, but did
not find a useful, rigorous definition of it. Without such a definition,
I assert that calling a system ‘scalable’ is about as useful as calling it
‘modern’. I encourage the technical community to either rigorously
define scalability or stop using it to describe systems.”

11.2  Scaling Methods 275

Here, we attempt to describe some characteristics of systems that are
scalable, and characteristics of systems that make them unscalable. A
definition as rigorous and consistent as appears to be desired by Hill
may be unobtainable, in part because different types of scalability, such
as load, space, and structural scalability, are intertwined [Bondi2000].
Jogalekar and Woodside have explored metrics to describe scalability
[JW2000]. They have underscored the need to separate the evaluation of
scalability in terms of throughput from the evaluation of system perfor-
mance in terms of response time. Thus, they implicitly make the point
that for a system to be considered scalable with respect to the offered
load, the increased offered load must be sustainable in the sense we
have described in the context of performance requirements in Chapter 6.

In her doctoral thesis, Duboc [Duboc2009] quotes these and other
works on scalability and describes a framework for characterizing and
analyzing the scalability of software systems. Duboc et al. [Duboc2008]
define scalability as “. . . the ability of a system to satisfy its quality goals
to levels that are acceptable to its stakeholders when characteristics of
the application domain (‘the world’) and system design (‘the machine’)
vary over expected ranges.” This is a general definition of scalability
that may be applicable not only to the impact of scale on performance,
but also to the impact of scale on reliability, dependability, security, and
other quality attributes that are relevant to the system of interest.

Our focus in the remainder of this chapter will be on those aspects of
scalability that are directly related to performance, namely, load scalabil-
ity, structural scalability, space scalability, and space-time scalability.
While examining characteristics of scalability that affect performance,
we shall explore aspects of software architecture, design, and implemen-
tation that can affect scalability favorably or unfavorably. We shall link
these aspects of scalability to performance engineering topics we have
explored earlier in this volume, including performance requirements
and modeling. But first, we briefly examine some scaling methods.

11.2  Scaling Methods

When discussing scalability, it is necessary to describe the dimensions
in which scaling is to occur, and the method used and architectural
choices made to scale a system to meet performance, business, and
engineering needs. These needs may arise from increasing or decreas-
ing the supportable traffic volume and from increasing or decreasing
the number of objects stored, monitored, or managed by the system.

Scalability and Performance276

Adding resources to a system only increases the rate at which it can
process units of work if those resources are usable and used. This is not
trivial. For example, if the architecture of a system is inherently single-
threaded, adding processors or cores to it will not increase its usable
capacity, because the single thread can use only one processor or core.
On the other hand, replacing the processor with a faster one may
increase the sustainable system throughput, provided that the proces-
sor is the bottleneck, and provided that the system is not otherwise
constrained by memory, memory bus speed, I/O capacity, or other fac-
tors. Here, we discuss some methods of scaling a system. In Section
11.3 we shall look at different types of scalability.

11.2.1  Scaling Up and Scaling Out

Replacing a single processor with a faster one is an instance of scaling
up, while adding multiple processors is an instance of scaling out. In
general, scaling up means that we replace a slow device or server with
a faster one, while scaling out means that we replicate the device or
server so that the replicates run in parallel. Scaling out may be imple-
mented by distributing work among different hosts. These may be in
the same location, or in different locations.

By way of illustration, consider a web application consisting of
three logical tiers: a web page server to draw and serve the web pages,
an application server to implement business logic, and a back-end
database for data storage and retrieval. Initially, a bench-scale version
of this system might be implemented on a desk-side PC with a single
processor. If the processor is heavily loaded, it might be replaced with
a single faster processor. Time slicing on this system may give the illu-
sion of providing concurrent execution of database queries, the han-
dling of business logic, and the presentation of pages. The inevitable
frequent context switching among these functions may slow the system
down. Some parallel execution may be achieved by putting multiple
processors in the same system unit, but increased memory contention
as the database grows may cause the paging device or the memory bus
to become a bottleneck. Thus, scaling up the processor or distributing
the processing among processors within the same box may not be suf-
ficient to meet the increasing demands on the system.

11.2.2  Vertical Scaling and Horizontal Scaling

The next step is to separate the three functions into separate system
units or servers that communicate via a local area network. This is

11.3  Types of Scalability 277

known as vertical scaling, because the information flows vertically from
one tier to its neighbor above or below. Web page service, application
processing, and database processing each run on dedicated system
units known as servers. If the application server is overloaded, its work
can be spread among two or more identical servers operating in paral-
lel. This is known as horizontal scaling or scaling out. The software on
each server should be multithreaded, so that multiple activities can
occur in parallel on multiple processors. Each web page server can
spread the application processing load among the application servers.
A load balancer is needed to distribute arriving tasks among parallel
web page servers. It may be more difficult to scale the database out,
since doing so requires replication of the data. At least one commercial
database platform is available to do this. Setting up replication and
clustering may require special expertise during implementation, and
careful monitoring and administration in production [Niemiec2012].
Moreover, horizontal and vertical scaling may be difficult to achieve if
the interfaces between the tiers are not amenable to it. If the interfaces
consist of TCP sockets, separation of functions across multiple hosts
may be straightforward, even though configuration of the IP addresses
must be done with care.

11.3  Types of Scalability

When exploring the architectural and design choices that must be made
to support scalability, it is useful to consider the types of scalability that
may be required. Load scalability pertains to the ability of the system to
cope with increasing amounts of traffic. Space scalability relates to the
amount of memory that will be required. Space-time scalability relates to
memory requirements as a function of the load. Structural scalability
concerns those aspects of system structure that limit scalability, for
example, the limit on memory usage imposed by the number of bits in
the address space or the limit on the number of outstanding messages in
a network connection due to the window size prescribed by a standard.

11.3.1  Load Scalability

We say that a system has load scalability if it has the ability to function
gracefully, that is, without undue delay and without unproductive
resource consumption or resource contention at light, moderate, or
heavy loads while making good use of available resources.

Scalability and Performance278

Of course, the terms light, moderate, heavy, gracefully, and undue,
while descriptive, are somewhat subjective. Therefore, they must be
viewed in the context of the performance requirements associated with
the desired level of scaling. The term gracefully is used to express conti-
nuity of operation without interruptions, spikes, or troughs in response
times, transient drops in throughput, and the like. A system that goes
into deadlock or crashes on overload is not functioning gracefully. A
system or application that has multiple processors at its disposal and
can use only one of them is not making good use of available resources.

It may be easier to describe system characteristics that undermine
load scalability than it is to describe those that aid it. In each of the exam-
ples that follow, we shall see structural attributes that may diminish scal-
ability, even if they were designed to prevent a different kind of problem.

Some of the factors that can undermine load scalability include
(1) the scheduling of a shared resource, (2) the scheduling of a class of
resources in a manner that increases the class’s own usage (self-
expansion), and (3) inadequate exploitation of parallelism. An
Ethernet-based network using the CSMA/CD protocol does not have
load scalability, because the high collision rate at heavy loads prevents
bandwidth from being used effectively. The token ring with nonexhaus-
tive service does have load scalability, because every packet awaiting
transmission is served within a bounded amount of time.

A scheduling rule may or may not have load scalability, depending
on its properties and the nature of the arriving traffic. For example, the
Berkeley UNIX 4.2BSD operating system gives higher CPU priority to
the first stage of processing inbound packets than to either the second
stage or the first stage of processing outbound packets. This in turn has
higher priority than I/O, which in turn has higher priority than user
activity. This means that sustained intense inbound traffic can starve
the outbound traffic or prevent the processing of packets that have
already arrived. This scenario is quite likely at a web server
[MogRam1997]. The situation can also lead to livelock, a form of block-
ing from which recovery is possible once the intense packet traffic
abates. Inbound packets cannot be processed and therefore are unac-
knowledged. This eventually causes the TCP sliding window to shut,
while triggering retransmissions. Network goodput, the rate at which
data actually reaches its destination, then drops to zero. Even if
acknowledgments could be generated for inbound packets, it would
not be possible to transmit them, because of the starvation of outbound
transmission. It is also worth noting that if I/O interrupts and inter-
rupts triggered by inbound packets are handled at the same level of

11.3  Types of Scalability 279

CPU priority, heavy inbound packet traffic will delay I/O handling as
well. This delays information delivery from web servers.

A system may also have poor load scalability because one of the
resources it contains has a performance measure that is self-expanding,
that is, its expectation is an increasing function of itself. This may occur
in queueing systems in which a common FCFS work queue is used by
processes wishing to acquire resources or wishing to return them to a
free pool. This is because the holding time of a resource is increased by
contention for a like resource, whose holding time is increased by the
delay incurred by the customer wishing to free it. Self-expansion dimin-
ishes scalability by reducing the traffic volume at which saturation
occurs. In some cases, it might be detected when performance models of
the system in question based on fixed-point approximations predict that
performance measures will increase without bound, rather than con-
verging. In some cases, the presence of self-expansion may make the per-
formance of the system unpredictable when the system is heavily loaded.
Despite this, the operating region in which self-expansion is likely to
have the biggest impact may be readily identifiable: it is likely to be close
to the point at which the loading of an active or passive resource begins
to steeply increase delays, because it is close to saturation.

We have already seen that load scalability may be undermined by
inadequate parallelism. A quantitative method for describing parallel-
ism is given in [Latouche1981]. Parallelism may be regarded as inade-
quate if system structure prevents the use of multiple processors or
multiple cores for tasks that could be executed asynchronously. For
example, a transaction processing (TP) monitor might handle multiple
tasks that must all be executed within the context of a single process. If
the host operating system allows only one task within the TP monitor
to be executed at a time, only a single processor or core can be used.
Horizontal scaling across processors or cores is infeasible in such a sys-
tem. Similarly, single-threaded systems cannot make use of more than
one processor, either. In some cases, an application may perform multi-
ple activities. If the most CPU intensive of these can execute units of
work only serially, the load among the processors will be unbalanced.

11.3.2  Space Scalability

A system or application is regarded as having space scalability if its mem-
ory requirements do not grow to intolerable levels as the number of
items it supports increases. Of course, intolerable is a relative term. We
might say that a particular application or data structure is space scalable

Scalability and Performance280

if its memory requirements increase at most sublinearly with the num-
ber of items in question. Various programming techniques might be
used to achieve space scalability, such as sparse matrix methods or com-
pression. Because compression takes time, it is possible that space scal-
ability may be achieved only at the expense of load scalability. Cacéres
et al. expand this definition of space scalability to include keeping mem-
ory consumption and bandwidth consumption within acceptable levels
as the workload increases [CRPH2010]. They suggest that an operating
system is space scalable if its requirement for physical memory can be
reduced by using paged virtual memory management to store unused
memory pages on disk. The demand for physical memory is only part of
the story: it is possible that the image of the address space stored on disk
could become unmanageably large, too. Moreover, if an application has
poor locality of reference (as some transaction-oriented systems do), the
system may have poor space scalability and poor load scalability because
of the recurring and frequent need to write modified pages onto the pag-
ing device and bring pages from the paging device into main memory.

11.3.3  Space-Time Scalability

We regard a system as having space-time scalability if it continues to
function gracefully as the number of objects it encompasses increases
by orders of magnitude. A system may be space-time scalable if the
data structures and algorithms used to implement it are conducive to
smooth and speedy operation whether the system is of moderate size
or large. For example, a search engine that is based on a linear search
would not be space-time scalable, while one based on an indexed or
sorted data structure such as a hash table or balanced tree could be,
because the processing cost of a search is potentially much lower than
that of a linear search. Notice that this may be a driver of load scalabil-
ity for the following reasons:

•	 The presence of a large number of objects may lead to the pres-
ence of a heavier load.

•	 The ability to perform a quick search may be affected by the
size of a data structure and how it is organized.

•	 A system or application that occupies a large amount of mem-
ory may incur considerable paging overhead.

Space scalability is a necessary condition for space-time scalability in
most systems, because excessive storage requirements could lead to
memory management problems and/or increased search times.

11.3  Types of Scalability 281

A system with poor locality of reference may exhibit poor space-time
scalability, because of the paging or communications overhead associ-
ated with moving unused data or pages out of memory to make room
for other pages. Notice also that poor locality of reference can be inher-
ent in transaction-oriented applications that repeatedly refer to new
records, or it can be a characteristic of a system that must progress
through multiple functionalities or code segments rapidly in time, and
therefore spends only a small percentage of time executing each one.

11.3.4  Structural Scalability

We may think of a system as being structurally scalable if its implemen-
tation or standards do not impede the growth of the number of objects
it encompasses, or at least will not do so within a chosen time frame.
Structural scalability is relative, because the desired extent of scalabil-
ity depends on the number of objects of interest now relative to the
number of objects later. Any system with a finite address space has
limits on its scalability. The limits are inherent in the addressing
scheme. For instance, a packet header field typically contains a fixed
number of bits. If the field is an address field, the number of address
able nodes is limited. If the field is a window size, the amount of unac-
knowledged data is limited. A telephone numbering scheme with a
fixed number of digits, such as the North American Numbering Plan,
is scalable only to the extent that the maximum quantity of distinct
telephone numbers is significantly greater than the set of numbers cur-
rently assigned. In this case, the extent of structural scalability may be
constrained by the need to assign three-digit area codes to geographi-
cal regions, regardless of the size of the subscriber base in each one. The
binding of area codes to regions prevents the use of the entire number-
ing space, as does the requirement that area codes and the seven-digit
local numbers that follow them must not begin with either a 0 or a 1
(www.nanpa.com).

11.3.5  Scalability over Long Distances and under Network
Congestion

An algorithm or protocol may be said to be distance scalable if it works
well over long distances as well as short distances, for example, by
meeting bandwidth or message throughput requirements. An algo-
rithm or protocol is speed/distance scalable if it works well over long dis-
tances as well as short distances at high and low speeds. The motivation
for these types of scalability is TCP/IP. Its sliding window protocol

../../../../../www.nanpa.com/default.htm

Scalability and Performance282

shows poor speed/distance scalability in its original form, because the
loss of a packet triggers the closing of the sliding window. Throughput
is degraded until recovery from the loss occurs. A long round-trip time,
due to distance, network congestion, or both, exacerbates this problem.
The degradation is much larger if the maximum available transmission
bandwidth is high [JacBrad1988]. Modifications to TCP/IP involving
the slow expansion of window sizes after packet loss have been pro-
posed to mitigate this problem [BOP1994].

11.4  Interactions between Types of Scalability

The foregoing types of scalability are not entirely independent of one
another. Indeed, poor scalability of one type may, but need not, under-
mine another. Systems with poor space scalability or space-time scala-
bility might have poor load scalability because of the attendant memory
management overhead or search costs. Systems with good space-time
scalability because their data structures are well engineered might have
poor load scalability because of poor decisions about scheduling or
parallelism that have nothing to do with memory management.

Let us now consider the relationship between structural scalability
and load scalability. Clearly, the latter is not a driver of the former,
though the reverse could be true. For example, the inability to exploit
parallelism and make use of such resources as multiple processors
undermines load scalability but could be attributed to a choice of
implementation that is structurally unscalable. For example, a system
whose thread pool cannot be expanded beyond a certain point, per-
haps because the number of threads allowed by a software license is
capped, has poor structural scalability. It also has poor load scalability,
because the constrained number of threads may prevent the full exploi-
tation of parallel processors.

While the types of scalability presented here are not entirely indepen-
dent of one another, many aspects of each type are. Therefore, though
they provide a broad basis for a discussion of scalability, that basis is
not orthogonal in the sense that a suitable set of base vectors could be.
Nor is it clear that an attempt at “orthogonalization”—that is, an
attempt to provide a characterization of scalability consisting only of
independent, noninteracting components—would be useful to the soft-
ware practitioner, because the areas of overlap between the aspects of
scalability discussed here are a reflection of the sorts of design choices
a practitioner might face.

11.5  Qualitative Analysis of Load Scalability and Examples 283

11.5  Qualitative Analysis of Load Scalability and
Examples

In this section we illustrate the analysis of load scalability. Our exam-
ples fall into three categories: systems that cannot exploit parallel
resources, systems with repeated unproductive cycling through finite
state machines, and systems whose poor load scalability can be over-
come with the judicious choice of a job scheduling rule. The use of
finite state machines to depict system behavior is illustrated in
[Shaw1974]. In the context of software performance engineering, small
finite state machines have been used to depict the behavior of embed-
ded components [SmithWilliams1998]. Concurrently interacting finite
state machines have been studied by Kurshan and coworkers
[KatzKursh1986].

By an unproductive cycle, we mean a repeated sequence of states in
which a process spends an undesirable amount of time using resources
without actually accomplishing the goals of the user or programmer.
Classical examples include busy waiting on locks in multiprocessor
systems, Ethernet bus contention, and solutions to the dining philoso-
phers’ problem that do not have controls for admission to the dining
room [Hoare1974, Dijkstra1965]. Other examples include systems
whose performance does not degrade gracefully as the load on them
increases beyond their rated capacity. Some systems or procedures that
are perceived as scaling poorly use resources inefficiently. They may
hold one or more resources while being in an idle or waiting state, or
they may incur overheads or delays that are tolerable at low volumes
of activity but not at high volumes.

We now turn to examples that suggest how load scalability might
be improved by reducing the occurrence of unproductive cycles, by
modifying a job scheduling rule, or by facilitating the exploitation of
parallel resources.

11.5.1  Serial Execution of Disjoint Transactions and the
Inability to Exploit Parallel Resources

In Section 11.3.1 we described a system in which tasks are executed seri-
ally on one thread, even though they could be executed in parallel
because they have no data in common. Another thread does back-
ground work. This architectural property became apparent when the
performance engineer produced a plot of individual processor utiliza-
tions similar to the one in Figure 11.1. The host under test was a Sun

Scalability and Performance284

server with two processors running Solaris. The operating system uses
cache affinity to return a thread to the processor on which it last ran
before the most recent context switch suspending its execution.
Measurements of the system were taken at increasing loads, with each
load being run for a long period of time. The processor utilizations were
obtained using the mpstat command. The total processor utilizations by
individual threads could be computed by using the ps –eLF command
or corresponding system calls to obtain the differences between succes-
sive values of the cumulative processing times and dividing these by
the wall clock time between the observations. Since the observed utili-
zation of each processor is a linear function of the offered load, there is
no apparent software bottleneck. The processor utilizations computed
from ps –eLF observations corresponded to the utilizations obtained

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10 11

%
C

P
U

 U
ti

liz
at

io
n

Offered Load

CPU0

CPU1

Average Utilization

Figure 11.1  Utilizations of unbalanced parallel processors, based on contrived data

11.5  Qualitative Analysis of Load Scalability and Examples 285

from mpstat. From this and our knowledge of how the scheduling
works, we infer that particular threads were bound to particular pro-
cessors. Under this regime, the maximum achievable throughput is
lower than if the work could be evenly spread between the two proces-
sors, because the utilization of one CPU is much higher than that of the
other. Thus, the load scalability of this system is limited by the single-
threaded architecture of the application that executes the transactions
and the inherent seriality of the system [Gunther1998]. Figure 11.2
shows that with full load balancing, the maximum transaction through-
put could be increased from 8 to 11 transactions per second.

Note: The data in Figure 11.1 and Figure 11.2 has been contrived for
the purpose of illustration because the actual results are not publicly
available.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10 11

%
C

P
U

 U
ti

liz
at

io
n

Offered Load

CPU0

CPU1

Average Utilization

Figure 11.2  Parallel processors with balanced utilizations, based on contrived data

Scalability and Performance286

11.5.2  Busy Waiting on Locks

In the early days of multiprogrammed computing, contention for
shared objects was arbitrated solely with the aid of hardware locks in
memory. The lock is set by the first process that finds it unset; this pro-
cess then unsets it when it has finished with the object protected by the
lock. Other processes must repeatedly check it to see if it is unset. This
repeated checking steals processing and memory cycles that could oth-
erwise be used for useful work. Repeated cycle stealing, especially in a
multiprocessor environment, degrades performance.

Figure 11.3 shows a state transition diagram for this concurrency
control mechanism. The first directed graph represents the states of
the memory bus, the second the states of a process trying to access the
lock. Each attempt to access a lock corresponds to a complete cycle
through the memory bus state transition diagram, as well as through
a loop consisting of the three states Get memory, Read lock, Free memory
in that order. Each process trying to access the lock corresponds to an
instance of the second directed graph. Although one cannot break
these cycles, one can reduce the frequency with which they are tra-
versed by implementing mutual exclusion with a semaphore
[Habermann1976, Dijkstra1965]. By putting a process to sleep until the
object to which it seeks access becomes available, the semaphore
mechanism simultaneously reduces lock contention, memory bus con-
tention, and the unproductive consumption of CPU cycles. However,
frequent context switching in a multiprocessor system with shared
memory will still cause heavy memory bus usage, because of conten-
tion for the ready list lock [DDB1981]. Thus, the locking mechanism is
not load scalable. However, minimizing the use of locks does

Memory Bus

Free Sought Busy

Lock
free

(must try again)

Get memory

Free memory
(done)

Free
memory

Read
lock

Set lock

START

Lock
already set

Process

Figure 11.3  Busy waiting on locks

Source: [Bondi2000] © 2000 Association for Computing Machinery, Inc. Reprinted by permission.

11.5  Qualitative Analysis of Load Scalability and Examples 287

ameliorate the problem by reducing the occurrence of unproductive
cycles spent busy waiting.

11.5.3  Coarse Granularity Locking

Coarse granularity locking can undermine scalability in different ways.
It occurs when an object or a set of objects is locked for longer than
mutual exclusion on the object(s) of interest is needed. The problem can
arise in databases when entire tables or indices are locked, even though
only one row in a table is being read or modified. Programmers some-
times resort to coarse granularity locking of multiple objects to avoid
divisibility issues, or to ensure compliance with the ACID principle of
atomicity, consistency, isolation, and durability.

A measurement study by Horikawa [Horikawa2011] shows how
the throughput capacity of a database system can be increased by a fac-
tor of 1.6 in a 16-processor system. This was done by systematically
identifying coarse-grained locks and replacing them with fine-grained
locks. Interestingly, refining locking granularity did not cause the pro-
cessing load to be spread among the processors any more than before.
That can be achieved only by designing the system to execute multiple
threads in parallel, preferably on disjoint sets of objects.

The choice of granularity depends on the nature of the workload.
Shasha and Bonnet [SB2003] show that row-level locking is useful for
online transactions that hold records for short amounts of time. They
also report that the overhead of maintaining the locks is low in modern
systems. This means that the overhead of managing multiple locks is
mitigated by the increased throughput enabled by reduced contention
for large objects, provided that the system is suitably multithreaded. On
the other hand, if large numbers of records will be locked simultane-
ously, performance may be improved if page-level or table-level lock-
ing is used instead. Some database systems support lock escalation as a
means of reducing the amount of locking overhead when the number of
records locked in a table by one thread is large, but this can increase the
risk of deadlock. The reader is referred to [SB2003] for details.

11.5.4  Ethernet and Token Ring: A Comparison

The delay and throughput of the Ethernet and token ring with cyclic
nonexhaustive service were compared in [Bux1981]. Here, we consider
their performance with the aid of state transition diagrams. Figure 11.4
shows state transition diagrams for an Ethernet bus and for a single

Scalability and Performance288

packet awaiting transmission. The bus repeatedly goes through the
unproductive cycle (Busy, Collision, Idle, Busy, Collision, . . .) when more
than one workstation attempts to transmit simultaneously. Similarly, a
station attempting to transmit a packet could repeatedly go through
the cycle (Silent, Backoff, Silent, Backoff, . . .) before finally being sent suc-
cessfully. It is well known that the performance of the Ethernet does not
degrade gracefully as it approaches saturation [AlmesLaz1979].
Repeated traversals of these cycles help explain why. Introducing a bus
with higher bandwidth only defers the onset of the problem. Thus, the
CSMA/CD protocol is not load scalable.

Let us now examine the token ring. The state transition diagrams
for the token and for a workstation attempting transmission of a single
packet are shown in Figure 11.4. We see that the token moves between
available states cyclically, and that it suffers increased delay in moving
from one station to the next only if it is doing useful work, that is, if it
is in use. A station attempting to transmit a packet is silent until the
token becomes available to it. It then sends the packet without the need
for backoff. Notice that the state transition graph for the LAN card con-
tains no cycles. This helps to explain the graceful performance degra-
dation of the token ring as it approaches saturation. The contrast with
the Ethernet’s cyclic behavior is clear.

Work
station
transition
per
packet
sent

Backoff

Sending

Silent

Start If bus idle

If bus busy

Ethernet bus

Idle Busy
Collision

Solo
transmission

Conflicting
transmission

Start
Backoff

Figure 11.4  Transition diagram for Ethernet

Source: [Bondi2000] © 2000 Association for Computing Machinery, Inc. Reprinted by permission.

11.5  Qualitative Analysis of Load Scalability and Examples 289

11.5.5  Museum Checkrooms

This is a simplification of a problem that could occur in replicated data-
base systems [BondiJin1996]. At a museum checkroom like the one at
the Metropolitan Museum of Art in New York (the Met), visitors are
required to join a common FCFS queue to deposit and collect their
coats. The scarce resources are coat hangers (passive) and attendants
(active). Coats are placed on hangers, which are hung on carousels,
each of which is maintained by a dedicated attendant. An attendant
taking a coat performs a linear search on the assigned carousel to find
an empty hanger, or to find the visitor’s coat. Our objective is to maxi-
mize the time the customer can spend looking at exhibits and spending
money in the museum restaurant and gift shop by assuring the smooth
functioning of the checkroom.

The performance of this system degrades badly under heavy loads.
First, the service time increases with the occupancy of the hangers,
because it takes longer to find free ones. Second, and more seriously,
the system is prone to deadlock at heavy loads, such as during the win-
ter holiday season. In the morning most visitors are leaving their coats;
in the evening they are all picking them up. The deadlock problem
arises at midday or in the early afternoon, when many visitors might be
doing either. Deadlock occurs when the hangers have run out, and visi-
tors wishing to collect coats are stuck in the queue behind those wish-
ing to leave them. Attendants can break the deadlock by asking those
who wish to collect coats to come forward. This amounts to the resolu-
tion of deadlock by timeout, which is inefficient.

The museum checkroom with a common queue for leaving and col-
lecting coats is a metaphor for an object pool in a computer system in
which threads join a common FCFS queue to acquire and free elements
in the pool. If deadlock occurs, the system hangs. We have seen this
pattern in more than one system. Determining why a complicated sys-
tem has hung can be extremely hard. Therefore, the use of an FCFS
common queue to acquire and release discrete objects should avoided.

With its original service rules, the museum checkroom will func-
tion adequately at light loads and with low hanger occupancy but will
almost certainly deadlock at some point otherwise. Regardless of the
number of attendants and the number of coat hangers, the system is
likely to go into deadlock if the volume of traffic is heavy enough.
Increasing the number of hangers only defers the onset of deadlock; it
does not eliminate the possibility. Increasing the number of attendants
to clear a backlog of arriving and departing visitors only allows the

Scalability and Performance290

hangers to be filled sooner, bringing on an earlier occurrence of dead-
lock. Load scalability is further undermined because the holding time
of a currently occupied hanger is increased in two ways:

1.	 The search time for an unoccupied hanger increases as the
hanger occupancy increases. This increases the queueing time
for those collecting and leaving coats.

2.	 A customer arriving to collect a coat (and thus free a hanger)
must wait behind all other waiting customers, including those
wishing to leave coats. This increases the time to free a hanger.

Both of these factors make the hanger holding time self-expanding. If the
holding time is self-expanding, the product of the customer arrival rate
and the hanger holding time—that is, the expected number of occupied
hangers—will increase to exceed the total number of hangers even if the
customer arrival rate does not increase. This is a sure sign of saturation.

Notice that the impediments to the scalability of this system vary
with the time of day. In the morning, when almost all visitors are leav-
ing coats, the impediments are the number of attendants and the some-
what confined space in which they work. The same is true at the end of
the day, when all visitors must pick up their coats by closing time. At
midday, the principal impediment is the FCFS queueing rule, which
leads to deadlock.

For this system, load scalability can be increased with the following
modifications:

1.	 There should be separate queues for those collecting and leav-
ing coats, with (nonpreemptive) priority being given to the
former so as to free the hangers as quickly as possible. This pri-
ority ordering reduces the tendency of the holding time to be
self-expanding. Deadlock is avoided because the priority rule
guarantees that a hanger will be freed if someone arrives to col-
lect a coat.

2.	 To prevent attendants from jostling each other in peak periods,
there should also be more than one place at which they can
serve museum visitors, regardless of the carousel on which a
deposited coat is kept.

3.	 To prevent visitors from jostling one another, there must be a
wide aisle between the queue and the counter.

4.	 A sorted list of free hangers could be maintained for each car-
ousel, to reduce the time to search for one.

11.5  Qualitative Analysis of Load Scalability and Examples 291

The first modification would be easy to implement within architectural
constraints, provided that the floor space is available in the main hall to
maintain two separate queues. The second one may also be cheaper,
while the third and fourth modifications are less so. The first alone
would yield substantial benefits by eliminating the risk of deadlock
and reducing hanger occupancy. The usefulness of the second depends
on the patience of attendants and visitors alike, especially as closing
time approaches. The cost of the fourth modification must be weighed
against the reduced cost of keeping fewer attendants around.

The first modification is in use at the Louvre’s coatroom in Paris. It
continues to function smoothly even when the hangers are heavily
occupied.

An enhanced version of the first modification is in place at the
Museum of Modern Art (MoMA) in New York. In addition to having
separate queues for visitors collecting and depositing their coats, those
depositing their coats are directed by attendants to secondary queues
for carousels where hangers have recently been freed. Similarly, a visi-
tor collecting a coat joins a specific queue for a subset of the carousels
containing the one on which his or her coat has been hung.

While the Louvre’s coatroom is free of deadlock, it has another
quirk. Unlike its counterparts in New York, it does not accept hats or
backpacks, although it does accept umbrellas. Hats and backpacks
must be left in a separate checkroom on the opposite side of the entrance
hall, for which the visitor is also required to queue. While this may
increase the space scalability of the Louvre’s coatroom by allowing
more coats to be squeezed into a fixed area, it will please only those
visitors who arrive bareheaded and empty-handed. Staff will not per-
mit hats to be stuffed into coat sleeves, though scarves are allowed.

There are analogies between these physical systems and computer
systems. The visitors correspond to processes or threads. The carousels
and hangers respectively correspond to memory banks and memory
partitions. A visitor may not enter the galleries with a backpack or an
umbrella and must either wear a coat or check it. This is analogous to a
task acquiring a memory partition in a computer system. For perfor-
mance analysis of an open arrival system in which jobs queue for a
memory partition before processing and I/O may begin, the reader is
referred to [Latouche1981], [AviHey1973], and [Bondi1992]. The
attendants correspond to processors. The corridor between the carou-
sels and the counter at which visitors arrive corresponds to a shared
memory bus via which all memory banks are accessed. This is an exam-
ple in which the main (and most easily surmounted) impediment to

Scalability and Performance292

scalability lies in the mechanism for scheduling service, rather than in
eliminating the unproductive consumption of cycles. At the Met, the
corridor (memory bus) is a secondary impediment, because attendants
bump into each other while hanging or fetching coats during peak peri-
ods, unless each attendant is assigned to one carousel only. In a com-
puting environment, this would be analogous to having a single bus
for each memory bank. Finally, scalability is impeded by the narrow
doorway between the head of the queue and the counter. This is analo-
gous to there being a unique path from the CPU to the entire set of
memory banks, that is, the bus. The Louvre’s system of handling coats
and umbrellas at one checkroom and hats and backpacks at another is
analogous to distributing disjoint functionalities between two distinct
servers. The order in which one visits the checkrooms is unspecified,
but a visitor wearing a coat and carrying a backpack must visit both,
since neither is allowed in the galleries, and since no checkroom accepts
both backpacks and coats.

11.6  Scalability Limitations in a Development
Environment

It is sometimes useful and convenient to model a system using a
markup language in a development environment. Eysholdt and
Rupprecht describe a case in which a specification in UML/XML
becomes so large that an hour is needed to load it into a modeling
tool [EysRupp2010]. While the tool may be adequate for smaller spec-
ifications, it would seem to be inadequate for large ones because of
the computational effort required to interpret the specification and
build an internal representation of it. The specification has grown to
the point where the programming environment simply cannot pro-
vide a user with a fast enough response. Depending on the imple-
mentation of the environment, load, space, and space-time scalability
issues may be present. The specification may require more memory
than can be practically provided, so a good deal of paging may ensue
as the user moves from one section of the model to another. The
amount of processing that may be required to build the model inter-
nally and translate subsequent changes into an internal representa-
tion may be unacceptable. The solution used in this case had two
parts: (1) porting the models to a text-based environment which per-
mitted faster processing, and (2) configuring the host system to store

11.7  Improving Load Scalability 293

default values of attributes and observing a convention that only val-
ues other than the default ones would be specified in the model.
While there is a risk of introducing some opacity into the resulting
models, avoiding the repeated, explicit specification of default values
enabled savings in processing and storage costs. This is a linguistic or
modeling equivalent of eliminating unproductive cycles in environ-
ments with concurrently executing threads or processes as described
in the previous section.

11.7  Improving Load Scalability

Our examples of poor load scalability show that it can have a variety of
causes, ranging from access policies that are repetitively wasteful of
active resources (e.g., busy waiting) to assignment policies that under-
mine the “common good” of the system by causing passive resources
(e.g., coat hangers) to be held longer than is necessary to accomplish
specific tasks.

One way to improve the scalability of a system is to reduce the
amount of time it spends in unproductive cycles. This can be done by
modifying the implementation so that the time spent cycling is reduced,
or by eliminating the cycle altogether through a structural change or a
scheduling change.

If a system is not structurally unscalable—for example, if its scala-
bility is not limited by its address space—its load scalability might be
improved by mitigating the factors that prevent it from being load scal-
able, space scalable, or space-time scalable. The first steps to improve-
ment are

•	 Identification of unproductive execution cycles and their root
causes, as well as means of breaking them.

•	 Understanding the sojourn times (the time spent) in the unpro-
ductive cycles, and the means of shortening them.

•	 Understanding how and whether a system could migrate into
an undesirable absorbing state (such as deadlock) as the load
increases, and devising scheduling rules and/or access control
mechanisms to prevent this from happening.

•	 Identifying system characteristics that make performance mea
sures self-expanding, and finding ways to eliminate or circum-
vent them.

Scalability and Performance294

•	 Determining whether scalability is impeded by a scheduling
rule, and altering the rule.

•	 Avoiding structural issues, such as software bottlenecks, that
cause idleness of resources even when there is work to be done
by them.

•	 Understanding whether asynchronicity can be exploited to
allow parallel execution, and modifying the system accord-
ingly. Notice that when evaluating the increased benefit of par-
allelism, one must also account for the additional cost of
controlling interprocess communication.

Not all of these steps are applicable to all situations. Nor can we be
certain that this list is complete. But, once these steps have been taken,
one may attempt to identify design changes and/or system improve-
ments that either reduce the sojourn times in the cycles or break the
cycles altogether. This must be done with care, because any design
change could (1) result in the creation of a new set of cycles and/or (2)
result in the creation of a new scheduling rule that induces anomalies
of its own. Moreover, a modification might simply reveal the existence
of another bottleneck that was concealed by the first one. On the other
hand, modifications may well lead to unintended beneficial side effects
such as reducing resource holding times and queueing delays.
Experimental work by Hashemian et al. [HAKC2013] shows that
changing platform configurations from their defaults can increase the
maximum throughput that can be supported while maintaining given
levels of average response times or percentages of response times
exceeding a given level, depending on the nature of the workload. For
a TCP/IP-intensive workload, multiple cores were best exploited by
binding transactions to particular cores, since this reduces data migra-
tion from one cache to another. By contrast, spreading network inter-
rupt handling among all cores rather than confining it to one core
resulted in considerable performance improvements, whether the
workload was TCP/IP intensive or application (and hence CPU)
intensive.

Let us reconsider the load scalability examples in the light of the
foregoing:

•	 Semaphores reduce the occurrence of unproductive busy waiting
and hence memory cycle stealing in multiprocessor systems with
shared memory. Thus, systems that use semaphores rather than
locks are likely to perform better under heavy loads. However,

11.8  Some Mathematical Analyses 295

the solution comes with a cost, the overhead of managing sema-
phores. The use of semaphores might also expose a previously
hidden bottleneck, namely, lock contention for the head and tail
of the CPU run queue (ready list) in the presence of too many
processors. This is not an argument against the introduction of
semaphores, merely a warning about the next bottleneck that
might arise.

•	 Eliminating collisions in an unswitched Ethernet LAN clearly
increases capacity for a given bandwidth. Unlike the Ethernet,
the token ring provides an upper bound on packet transmission
time, albeit at the cost of waiting one’s turn as the token moves
from one node to the next.

•	 The museum checkroom example illustrates many facets of
scalability. Giving priority to customers collecting coats in the
museum checkroom reduces the average number of occupied
hangers. This contributes to the reduction of delay by reducing
the time to find a free a hanger. This in turn reduces the time the
checkroom attendants spend on each visitor, and maybe even
the number of attendants required to maintain a given level of
service quality. It also prevents deadlock. Indexing the free and
occupied hangers reduces search time, though not retrieval
time, since the desired occupied hanger is always brought to
the front for access. Deploying attendants to the carousel where
they are needed instead of assigning them to particular ones
increases their utilization. Allowing them enough space to
move around freely also reduces customer service time.
Dedicating one attendant to coat retrievals reduces hanger
occupancy while making scarce hangers available sooner. All of
these modifications improve the ability of the system to func-
tion properly at increased loads, either by cutting down on
active processing time or by reducing the holding times of pas-
sive resources.

11.8  Some Mathematical Analyses

Simple mathematical analyses can sometimes be used to explore per-
formance issues in load scalability. In the first example, we explore
ranges of parameters to understand the extent to which semaphores

Scalability and Performance296

can reduce memory cycle stealing and lock contention. In the second
example, we use simple expressions for delays to understand the driv-
ers of self-expansion when there is a common FCFS queue for the ele-
ments of a shared resource pool, such as hangers in the museum
checkroom.

11.8.1  Comparison of Semaphores and Locks for
Implementing Mutual Exclusion

In this section we propose a framework for analyzing the relative per-
formance impacts of different mechanisms for implementing mutual
exclusion. In particular, we shall compare locks and semaphores, as in
our previous example. A semaphore does not eliminate lock contention
entirely; it simply focuses lock contention on the shared data structures
accessed by its primitives while preparing to put a process to sleep
until a critical section becomes available. This mechanism could be
applied to protect data in shared memory or, as might be the case with
a database record, on disk. Let L be the lock used to implement mutual
exclusion without semaphores, and S be a lock that is used to impose
mutual exclusion on the data structures used to implement a sema-
phore operation. In the database example, L could reside on disk before
being loaded into memory as part of a record. The lock used by the
semaphore might protect a ready list or queue; in any case it is accessed
only by designated primitive operations that are part of the kernel of
the host operating system.

Let pi denote the probability that a lock of type I (= L,S) is accessed
and set (or reset) successfully on the current attempt. Let ai denote the
number of successful attempts that must be made to acquire and relin-
quish control of a critical section. For a simple lock, aL = 2 since a test-
and-set or a test-and-reset would be required for acquisition and release
respectively. We make the simplifying assumption that the probabili-
ties of success on each attempt to access the lock are identical, and that
successive attempts are independent. The probability of success
depends on how the lock is used, the number of processors, their loads,
and how much context switching is occurring at the time. The need to
make at least one attempt and the assumption that successes are i.i.d.
(independently, identically distributed) give the number of attempts
needed for success a displaced geometric distribution with mean 1/pi.
If we assume that the costs of accessing locks S and L are the same, and
that some constant overhead k is associated with the semaphore

11.8  Some Mathematical Analyses 297

mechanism, the ratio of the costs of the simple locking mechanism to
those of the semaphore mechanism is given by

	 = +f p p a p k a pL S L L L S(,) (/)/[/) 	 (11.1)

We use semaphores because we expect pS to be a good deal larger
than pL, but we do not know what values these probabilities take in
practice. Therefore, we have evaluated f over a large subset of the unit
square, (0,0.95] × (0,0.95], for aL = aL = 2 and k = 0,5,10, as shown in
Figure 11.5. The scale of probabilities on the long horizontal axis is
repeated to allow the simultaneous display of three surfaces, one for
each value of the semaphore overhead analyzed.

As one might expect, when the probability of successfully obtain-
ing a lock is high for both locking mechanisms, there is not much to
choose between them. As pL tends to zero, the cost of the simple locking
mechanism is many times that of the semaphore mechanism. This
means that the onset of problems with load scalability is much less
likely when a semaphore mechanism is used than when a straight lock-
ing mechanism is used, and that the performance of an implementation

20
19
18
17
16
15
14
13
12
11
10Cost Ratio

Lock success probability using semaphores with increasing levels
of overhead (0, 5, 10 instruction cycles per attempt)

9
8
7
6
5
4
3
2
1

0.05
0.20
0.35
0.50
0.65

0.95
0.98
0.1
0.25
0.4
0.55
0.7
0.85
0.96
0.99
0.15
0.30
0.45
0.60
0.75
0.90
0.97

0.97
0.55

0.05
Lock success
probability
with straight
locking

0.80

0

19–20
18–19
17–18
16–17
15–16
14–15
13–14
12–13
11–12
10–11
9–10
8–9
7–8
6–7
5–6
4–5
3–4
2–3
1–2
0–1

Figure 11.5  Cost ratios of the expected number of lock attempts with straight locking and
semaphores

Scalability and Performance298

using the former is much more robust than that of a system using the
latter. To enhance scalability, we would choose the mechanism whose
performance is least sensitive to a change in the operating load. In this
instance, the semaphore mechanism is the better candidate, as prior
literature has led us to expect [DDB1981].

11.8.2  Museum Checkroom

We have argued that the average delay in queueing for a coat hanger
will be minimized if those collecting coats are given head-of-the-line
(HOL) priority over those leaving their coats, because this minimizes the
average hanger holding time. This is also the only discipline that avoids
self-expansion of queueing delay with respect to hanger holding time.

Recall that our objective is to maximize the time available to look at
exhibitions while avoiding deadlock on contention for hangers. The
sojourn time in the museum may be decomposed into time spent wait-
ing to deposit a coat D, exhibit viewing time V, and coat pickup time T.
The hanger holding time H is given by

	 H = T + V	

and the sojourn time in the museum is given by

	 S = D + T + V	

Since the museum is open for only a finite amount of time each day, M
say, we immediately have

	 S, H ≤ M	

Since we cannot control the behavior or preferences of visitors, we can-
not control V. Still, one should allow V to be as large as possible by
reducing at least one or both of D and T, because this is what the visitor
came to do, and because it allows more time to visit gift shops, coffee
bars, and so on within the museum.

Because increased hanger holding time H increases the risk of dead-
lock while increasing both D and T, the queueing times to leave and
collect coats respectively, we should first focus on reducing T in order
to reduce H, and hence eliminate self-expansion. Under FCFS schedul-
ing, customers collecting coats and leaving them delay each other.
This increases H by increasing T. If N denotes the maximum number of
hangers and l the visitor throughput, we must haveλlH < N for the

11.9  Avoiding Scalability Pitfalls 299

checkroom queue to be in equilibrium. Hence, increasing T tends to
make the queue unstable by increasing H. Of course, T could also be
reduced by speeding up service, but that would only increase the value
of l for which saturation might occur; it cannot prevent deadlock
altogether.

Let c denote the number of customers in queue to collect a coat, and
a the number of customers in queue to leave a coat at the time the next
customer arrives to pick one up. Let s denote the service time. If the queue
is FCFS and there is only one attendant, the latest customer must wait

	 T = (c + a + 1)s	

to obtain a coat. This is an upper bound on T if more than one attendant
is present. If those collecting coats are given HOL priority, we have T ≤
(c + 1)s. This clearly reduces the upward pressure on H, and hence D
and T. This shows that using HOL eliminates self-expansion and hence
reduces the tendency to saturate the hangers. This policy is optimal
with respect to the average waiting time of all customers, regardless of
whether they are collecting or leaving coats, because it reduces to short-
est hanger holding time next.

Not all customers may understand the optimality of this policy. If
customers collecting coats temporarily outnumber customers leaving
them or vice versa at certain times of the day, it may be worthwhile to
convince the minority that they are not being ignored by ensuring that
they are served one of every k times. This rule must be applied judi-
ciously, because it allows self-expansion. Hence, k must be chosen with
care. If too many customers leaving coats are served ahead of those
collecting them, the resulting self-expansion in the hanger holding time
could lead to deadlock, or at the very least an increase in the average
values of D and T, as well as of H. A policy for determining k in response
to changing conditions is beyond the scope of this book.

11.9  Avoiding Scalability Pitfalls

The preceding examples show how unproductive cycles and poor
choices of scheduling rules can undermine scalability. Poor architec-
tural choices and restrictions on protocols can do this also.

The Louvre’s use of separate facilities to handle coats and umbrel-
las on one side of the entrance hall and backpacks and hats on the other
may increase the capacity of each by limiting functionality and hence

Scalability and Performance300

reducing service time variability and perhaps even space requirements.
On the other hand, the system imposes an extra burden on visitors with
backpacks and coats by requiring them to queue four times per visit
instead of twice (once on arrival, once on departure). Depending on the
weather, this could increase congestion in the main hall.

The excessive use of performance antipatterns can undermine sys-
tem performance and scalability [SmithWilliams2000]. For example:

•	 A “god class” is a system element or component that interacts with
many others, perhaps in a single-threaded way. Such a class can
become a hardware bottleneck simply by virtue of the amount of
traffic going through it. If it is single-threaded, it will also become a
software bottleneck. Domain name servers and authentication serv-
ers are potentially susceptible to this problem, the former because
all IP addresses must be resolved through them, and the latter
because of the volume of activities that must be vetted by them.

•	 A database query that involves searches through a long sequence
of tables is known as a circuitous treasure hunt. Scalability is
undermined simply by the number of searches involved.

•	 Where several threads are simultaneously engaged in circui-
tous treasure hunts involving the same set of tables, scalability
is further undermined by the extent to which the repeated lock-
ing of one or more tables simultaneously could cause delay by
reducing parallelism.

•	 The use of a common path by two or more classes of jobs, pro-
cesses, or threads that cannot be present on it simultaneously is
sometimes called a one-lane bridge, because vehicles can travel
on it in only one direction at a time. Those traveling in the oppo-
site direction must wait until vehicles present on the bridge
have left it. Moreover, a scheduling rule must be applied to
ensure that a stream of vehicles traveling in one direction does
not prevent the timely passage of a lone vehicle traveling in the
opposite direction.

The adverse impacts on performance and load scalability might be
mitigated as follows:

•	 If data that is “owned” by the god class is only being read and not
being modified, the class can safely be replicated and threads dis-
tributed among the replicates. For instance, multiple copies of
domain name servers and authentication servers could be used,
because their contents seldom change.

11.9  Avoiding Scalability Pitfalls 301

•	 To avoid a circuitous treasure hunt, indices might be built to
reduce the number of pointers that must be traversed to imple-
ment a query.

•	 To enhance concurrent execution, row-level locking is prefera-
ble to table-level locking if there is no dependence between
rows, and if the cost of allocating locks to individual rows is not
excessive. In any case, it is good programming practice to
ensure that the smallest number of abstract objects is ever
locked simultaneously. Furthermore, all threads should acquire
locks in the same sequence and release them in the reverse
sequence to prevent deadlock caused by cyclic dependencies.

•	 As with the god class, the impact of a one-lane bridge can be
mitigated by replicating objects that will not be modified and
minimizing the holding time of shared objects that might be
modified. This is analogous to shortening a one-lane stretch by
narrowing the road as close to the bridge as possible.

These mitigations all involve the redistribution or rescheduling of work
so as to avoid queueing delays and to enable the concurrent use of
resources. The resources may be active, as is the case with processors,
or passive, as is the case with locks, records, memory slots, and other
objects that do no processing but are points of contention nonetheless.
As we saw in our discussion of asynchronous I/O in Chapter 10,
rescheduling and redistribution do not reduce the amount of work that
must be done, but they can help to maximize the timely utilization of
the resources that are available to do it. That can reduce the time to
overall completion.

Redistribution of work to achieve scalability requires care and
attention to detail. For example:

•	 While requiring museum patrons to visit multiple checkrooms to
deposit disparate objects may increase the throughput and stor-
age capacity of each checkroom, it could be seen as imposing an
undue burden on visitors who have difficulty getting around,
such as the elderly. An analogy with our conveyor system exam-
ple may be that the data associated with a parcel might have to
travel with an associated transaction from one node to another,
thus increasing network loading.

•	 Post offices sometimes require all customers to join a single
queue to reach any of several windows providing identical ser-
vices along a single counter. One of the benefits of this is that a
customer requiring prolonged service need not delay the next

Scalability and Performance302

one in line excessively. On the other hand, delays can be unwit-
tingly introduced if many of the windows are so far from the
head of the queue that an elderly customer might take a very
long time to walk to the next available one. To see this, consider
that the agent at this window will experience enforced idleness
until the slow-moving customer arrives. Part of the benefit of
parallel service by multiple agents has been lost because of
staging delays. The computing analogy here is that a service
thread, for which tasks must queue, might not be able to com-
mence execution until all data needed for the work at hand has
been loaded into memory.

Redistribution and rescheduling cannot be implemented without suit-
able architectural and protocol support. If the work associated with a
transaction is broken into several tasks that could be executed in paral-
lel, data structures and fields are needed in task control blocks to bind
the parallel tasks to the originating transactions so that the results may
be delivered to it. Similarly, if priority scheduling is to be implemented,
there must be support for marking the tasks as having one priority
level rather than another. There must also be distinct logical queues for
the different priority levels.

11.10  Performance Testing and Scalability

In Chapter 9 we discussed how performance tests might be planned
and executed to verify the scalability of a system. We showed how one
verifies scalability by ensuring that systems are well behaved, in the
sense that the utilizations of such resources as processors, disks, and
bandwidth increase linearly as the offered load is increased. We also
illustrated impediments to scalability such as software bottlenecks and
the presence of errors in concurrent programming. In the present chap-
ter we have described system characteristics that prevent resources
from being fully utilized, that waste them with needless repetition of
unproductive cycles of execution, or that have long queueing delays
because of serial execution when parallel execution on disjoint data
objects is feasible.

When reviewing the results of performance tests to see how scala-
bility might be improved, we should not only be asking how resources
are being used, but what might be preventing them from being used if
their utilization is low. We should be open to the possibility that the

11.11  Summary 303

results will reveal opportunities for improved scalability through the
improved use of resources as well as the avoidance of impediments
because of wasted resource usage. Once an opportunity for improve-
ment or the cause of an anomaly is suspected, such as busy waiting on
locks or inappropriate values for configuration parameters, experi-
ments should be planned that explore how corresponding implemen-
tation changes might yield performance improvements while
improving load scalability. The results in [HAKC2013] illustrate that
the use of default configuration settings in a web-based system can
result in reduced resource utilization, while changes to those settings
that are tailored to resource usage patterns inherent in the workload
can improve resource utilizations considerably without adversely
affecting response times. The experiments described in [Horikawa2011]
show that changes to locking strategies can improve the usage of mul-
tiple cores while reducing wasted CPU cycles, but that there are inher-
ent limits to the extent of improvement. The goal of an experiment
aimed at improving scalability should not only be the identification of
improvements to the performance of a system with a particular work-
load. Configuration parameters or design choices should be sufficiently
varied to allow the performance engineers and other stakeholders to
identify strategies for improvement that are robust when actual work-
load differs from the one that was tested, too.

11.11  Summary

At the beginning of this chapter, we pointed out that the term scalability
is vague. Attempts that have been made to define it may differ in
semantics or scope, but they all relate to enabling a system or family of
systems to gracefully grow or shrink to accommodate changes in
demand and the number of objects within their scope. The various def-
initions have been attempted so that one can determine the extent to
which scalability is a desirable quality attribute that confers technical
and commercial advantages on a system’s stakeholders.

To place scalability on a solid footing, one should view it in the
context of performance requirements and performance metrics. As we
saw in earlier chapters, performance requirements should be linked to
business and engineering needs so that the cost of meeting them can be
justified. The performance requirements, whether present or antici-
pated, can guide us in determining the extent of scalability that is
required to meet stakeholders’ needs.

Scalability and Performance304

It is also useful to identify features of a system that limit its scalabil-
ity as well as capabilities that will mitigate the limits and perhaps
enhance scalability. A scheduling rule that prevents deadlock can also
reduce average system response times, while mechanisms that avoid
unproductive cycles enable the efficient use of resources, thus poten-
tially increasing overall system capacity. Frequently, the scalability of a
system and the ability to reduce its response time are limited not by
hardware constraints, but by constraints inherent in the software archi-
tecture, such as single threading. Because the demand for a successful
system may increase, it is wise to architect it so that its scalability will
not be needlessly impeded by a poor choice of scheduling algorithms
or by the use of structures that inherently prevent the use of parallel
cores or processors, or by the use of performance antipatterns such as
god classes. While attending to these aspects of system design and
architecture will not guarantee that a system is scalable to the extent
needed, doing so will reduce the scalability risk inherent in any
system.

11.12  Exercises

11.1.	 In a performance test, transactions are sent to an online trans-
action processing system at regular intervals. The CPU utiliza-
tion of this system increases quadratically with time, while the
size of the swap space and the amount of occupied disk space
increase linearly with time.
(a)	 Explain why this system has poor load scalability in its pres

ent form.
(b)	 Identify a simple data structure and algorithm that might

be in use in this application. If the development team con-
firms that this is indeed what is being used, explain what
should be used in its place to prevent this problem.

11.2.	 You are participating in an architecture review of a computa-
tionally intense system in which successively arriving trans-
actions operate on completely disjoint sets of data. Upon
arrival, an arbitrary number of transactions may go through
some preprocessing concurrently. Once the preprocessing is
complete, each transaction joins a queue for a software com-
ponent that can process only one transaction at time, because
it is single-threaded. The application is hosted by a system

11.12  Exercises 305

that supports paged virtual memory and has multiple cores.
The paging device and the application data are stored on sep-
arate drives.
(a)	 Explain why this application will have poor load

scalability.
(b)	Describe the instrumentation you would use to measure the

resource usage of the system over time in a Windows envi-
ronment and in a UNIX or Linux environment.

(c)	 Suppose that load is offered to the system at 1 transaction
per second for 15 minutes, then at 2 transactions per second
for the next 15 minutes, then at 4 transactions per second for
the next 15 minutes, and so on for 2 hours. Describe how the
utilizations of the individual processors might evolve dur-
ing the test given the description of the computation. Also
describe how you might expect the transaction response
times to evolve.

(d)	Propose a design change that will improve the load scalabil-
ity of the system.

11.3.	 The following changes are proposed for a database system:
(i) using semaphores rather than busy waiting for all locking;
(ii) applying locks so that each process or thread locks the
minimum number of objects (tables, rows, etc.) simultane-
ously, whether the locking is implemented using busy waiting
or semaphores; (iii) using row-level locking rather than table-
level locking whenever possible.
(a)	 Explain the performance impact of each of these changes

with respect to processor utilization and concurrent
execution.

(b)	 In some database platforms, a semaphore must be created
or allocated every time a thread initiates the first access to a
critical section. The semaphore is released when no thread
is accessing the object being guarded by the critical section.
To reduce the overhead associated with the creation and
deletion of semaphores, someone suggests that they be kept
in a pool for use as needed. Describe the performance
impact if the pool is too small. How would you evaluate the
trade-off between dynamic creation of semaphores and the
use of a pool of fixed size in a system with a high volume of
locking and unlocking? Explain what aspects of scalability
are involved.

This page intentionally left blank

307

Chapter 12

Performance
Engineering Pitfalls

Choices of scheduling policies or the use of new technologies are some-
times made with the intent of increasing capacity, increasing the sustain-
able load, shortening average response times, or pleasing one or more
stakeholders or constituencies. In many of these cases, the proposed
modification will not result in the achievement of the stated performance
goal. Indeed, some performance engineering choices may cause undesir-
able side effects or even worsen performance, while incurring consider-
able implementation and testing costs. The introduction of priority
scheduling can lead to the starvation of lower-priority tasks and have
other unintended side effects. Adding processors can sometimes worsen
performance. Spawning all tasks of a specific type as threads within a
single process or virtual machine can limit parallelism and diminish sys-
tem reliability. Physical limitations on the potential instruction rates of
individual processors will make it ever more necessary to use concur-
rently executing processes and threads to shorten the total execution
times of applications and to increase system throughput. Even then, the
individual threads of execution must be implemented with performance
consideration in mind if the greatest use is to be gained from available
processing, network, and I/O resources. Virtualized environments have
performance measurement and engineering issues of their own, which
we shall also explore. Finally, we consider organizational pitfalls in per-
formance engineering, including the failure to collect or review data
about the performance of systems in production.

Performance Engineering Pitfalls308

12.1  Overview

As performance engineers, we are often confronted with stakeholders
who believe that the introduction of a particular scheduling policy or
the use of a new technology must inevitably bring about performance
improvements. Many performance practitioners have encountered or
read about cases in which the well-intentioned use of a scheduling rule
has had consequences for performance and service quality that might
not have been previously imagined. In previous chapters we described
cases in which the introduction of new capacity, such as adding proces-
sors, degraded performance or did not provide performance gains that
were commensurate with the cost of the new hardware or other technol-
ogy. In this chapter we shall explore some of these potential pitfalls.

We will see that while priority scheduling can provide performance
benefits in some situations, it can be detrimental or be of no benefit in
others. It cannot increase the capacity of system resources such as
processors, I/O devices, and network bandwidth. As we saw in
Chapter 11, it can have unintended consequences. As we saw
in Chapter 10, asynchronous activity can shorten total execution times,
but it cannot in and of itself increase system capacity. The use of multi-
ple processors and cores can degrade system performance by increas-
ing memory bus contention and lock contention, so the number of
processors competing for these resources must be chosen carefully.
While the automated garbage collection used in programming lan-
guages such as Java might relieve the programmer of the responsibility
to free up unused objects, its spontaneous occurrence with its associ-
ated processing cost can seriously degrade system performance when
capacity is most needed. Finally, we briefly examine the performance
engineering pitfalls of virtual machines. These are intended to provide
contained environments for execution in server farms. They can also be
used to provide contained, isolated environments for functional test-
ing. Their use for performance testing is questionable, because there is
no way of mapping resource consumption time in the virtual environ-
ment to corresponding values in a physical environment.

12.2  Pitfalls in Priority Scheduling

Priority scheduling has many uses, but increasing the processing capac-
ity of a system is not among them. This is because the payload work

12.2  Pitfalls in Priority Scheduling 309

that must be done is always conserved. Indeed, preemptive priority
scheduling can increase the processor utilization for a given offered
load, because it triggers a context switch to start the execution of a
higher-priority task, and a second context switch to restart the execu-
tion of the lower-priority task once it has finished using the processor.

•	 Pitfall: Not tailoring priority scheduling to the traffic situation and
its requirements.

•	 Reason this is a problem: There may be unintended consequences,
including performance degradation. It could lead to deadlock,
livelock, or starvation.

•	 Mitigation: Give priority only to activities of short duration.

Priority scheduling can have two benefits. First, there is the obvious
one of reducing the average waiting time of the process or thread that is
given priority. A second, and no less important, benefit is that discrete
resources bound to a high-priority job, such as locks and objects drawn
from pools, can be released sooner for use by others. The principle of
giving priority to jobs in possession of scarce resources is applicable to
the handling of I/O interrupts. These should be given priority for pro-
cessing over application code so that I/O buffers can be freed quickly. In
everyday life, the principle is at play on roundabouts in the United
Kingdom (known as traffic circles in the United States). Traffic on the
roundabout has priority over traffic attempting to enter it, so that the
vehicles that are on it can free space for those wishing to enter. Reversing
those priorities could lead to a traffic jam because a stream of entering
traffic at an entry point could prevent cars from reaching the following
exit point, thus causing a potentially very large backlog at some other
entry point. In France, where traffic approaching to the right normally
has priority at intersections, drivers entering roundabouts pass signs in
the form of an inverted triangle with a red border bearing the legend
“Vous n’avez pas la priorité” (You do not have priority). Giving priority to
traffic on the roundabout rather than traffic from the right avoids con-
gesting the roundabout, thus mitigating the effect of a rule that would
be detrimental to the smooth flow of traffic if it were universally applied.

In Chapter 11 we saw how giving high priority to the processing of
inbound TCP packets is useful for freeing up space for receive buffers,
but doing so delays the transmission of acknowledgment packets. Under
extreme loads, the delay is long enough to prevent acknowledgments
from being received by the sender early enough to prevent retransmis-
sion of the apparently unacknowledged packets on timeout. This leads

Performance Engineering Pitfalls310

to a vicious cycle that could be mitigated, if not entirely prevented, by
the use of a fairness scheduling algorithm, such as cyclic nonexhaustive
service, that would place upper bounds on the delays in processing the
first incoming and outgoing packets. Another side effect of the vicious
cycle is the prolonged residence of unacknowledged packets in the
sender’s transmission buffer. While the transmission buffer might not be
viewed as being as scarce a resource as the physical receiving buffer at
the server, the penalty of letting it fill up is extra traffic due to retransmit-
ted messages, with effects that could propagate along the possible physi-
cal paths between the sender and the receiver. Here, we see that priority
inversion is a pitfall because of cyclic dependency.

In the museum checkroom example in Chapter 11, we saw how giv-
ing priority to a process that frees an occupied resource reduces the
holding time of that resource while eliminating the possibility of dead-
lock when requests to acquire and free the resource must pass through
a common FCFS queue. From the material in Chapter 3, we know that
the average resource occupancy in this case is equal to the throughput
multiplied by the holding time. Thus, because priority scheduling
shortens that average holding time, the constraint on system through-
put due to the number of discrete resources is potentially relaxed. The
principle of giving priority to the freeing of discrete resources also
applies to giving higher processing priority to the completion of I/O
requests, since this frees the I/O buffer in a designated memory loca-
tion in which a piece of data recently read from disk is stored, or in
which a piece of data to be written to disk is stored. This is one of the
main applications of priority interrupts, and one of the main reasons
that operating systems in kernel or privileged mode are given CPU
priority. Preemption to complete an I/O via a priority interrupt is
an example of Last Come First Served Preemptive Resume (LCFSPR),
a discipline that can be found in many operating systems.

One of the reasons that giving CPU priority to privileged operating
system functions such as I/O is effective is that they usually use a small
fraction of the available CPU time. Priority scheduling is of little use
when it is used to give preferential treatment to a function that con-
sumes a very large share of the resource being requested. In that case,
lower-priority tasks may be unduly starved of CPU. The starved pro-
cesses will hold passive resources such as memory partitions and locks
much longer than they would otherwise.

Frequent fliers may have had the experience of being on a flight in
which almost all passengers have elite or priority status. Under those con-
ditions, no benefit is conferred by having elite status. Indeed, allowing

12.2  Pitfalls in Priority Scheduling 311

priority boarding to elite passengers may be counterproductive, since
passengers with assigned seats near the front of the plane will block the
access of those seated in the rear if they board first. This will increase the
total boarding time for all passengers. In that case, allowing passengers
whose seats are in the rear to board first will speed departure for all. This
is a case where priority scheduling is detrimental to performance, because
it can seriously delay the departure of the aircraft.

When considering priority scheduling, one must distinguish
between preemptive priority and head-of-the-line (HOL) priority.
Under preemptive priority, a high-priority job interrupts the service of
a lower-priority job and seizes control of the server until it is done. The
higher-priority jobs at this server are oblivious to the presence of the
lower-priority jobs. The lower-priority job can resume execution only if
no other higher-priority job has arrived in the meantime. Under HOL
priority, also called nonpreemptive priority, an arriving job of higher pri-
ority must wait until the job in service completes execution regardless
of its priority level.

•	 Pitfall: Assuming that priority scheduling increases system capacity.
•	 Reason this is a problem: Work is conserved. Giving priority

ensures earlier access to a resource for only some classes of jobs
or threads.

•	 Mitigation: Assess the total load, and avoid giving priority to a
class of jobs that would dominate usage of the resource.

Let us now consider some conservation properties. First, the
Utilization Law tells us that the utilization of a server or device is equal
to the average throughput multiplied by the average service time.
Thus, the total utilization by jobs of all priority levels is invariant with
respect to priority ordering. Second, it can be shown that in systems
with nonpreemptive priority in which the service times of the queued
jobs are not taken into account when deciding who will be served next,
the average waiting time among all jobs of all priority levels, weighted
by their respective traffic intensities, is invariant with respect to the
priority ordering. This is intuitively appealing, because giving higher
priority to one job class to reduce its average waiting time increases the
average waiting times of jobs of lower priority, as one might expect
[Kleinrock1976]. A related conservation rule applies to preemptive pri-
ority systems under certain restrictive conditions [Cobham1955,
BuzenBondi1983]. As Kleinrock writes about priority queueing
[Kleinrock1976], “You don’t get something for nothing.”

Performance Engineering Pitfalls312

The situation is not so straightforward when the buffer or waiting
area is finite. We consider the case of two priority classes with nonpreemp-
tive priority service and common or reserved waiting areas. With a com-
mon waiting area for both priority classes, if the mean service time is the
same for both priority classes, arrivals are Poisson, and the service time is
exponentially distributed, the distribution of the total number of packets
or jobs in the buffer is independent of the priority ordering. The through-
put of the high-priority packets suffers as their arrival rate increases,
because the buffer fills with low-priority packets that crowd the high-
priority packets out of the buffer. The throughput of the low-priority
packets is also degraded by this crowding. Dedicating some of the buffer
space to low- or high-priority packets may not necessarily improve the
packet throughput for either priority class [Bondi1989].

12.3  Transient CPU Saturation Is Not
Always a Bad Thing

Suppose that the initiation of a transaction results in the CPU utiliza-
tion rising to 100% for a short amount of time before the utilization falls
back. Consider also the possibility that a burst of transactions in an
embedded system might result in the utilization of its single processor
being 100% for a limited but noticeable amount of time. Some might
consider these periods of saturation to be a cause for concern, but this
need not be the case.

•	 Pitfall: Averaging performance measures over time intervals that
are too short.

•	 Reason this is a problem: Unnecessary concerns might be raised
about fluctuations in resource usage that are normal conse-
quences of the workload.

•	 Mitigations: Determine whether the observed irregular behav-
ior prevents performance requirements from being met. Take
averages over periods that are long enough to smooth irregu-
larities but short enough to reveal trends.

We first consider the case of a single transaction causing CPU satura-
tion for a limited amount of time. We refer to this time as the saturation
epoch. The duration of the saturation epoch must be compared with the
desired response time of the transaction in question. If the duration of the
saturated period exceeds the response time requirement, there is certainly

31312.3  Transient CPU Saturation Is Not Always a Bad Thing

cause for concern. If no other demands will be made of the processor
before the period of saturation has passed, there is no cause for concern if
throughput and response time requirements are being met, provided one
is satisfied that the processor utilization can be attributed to useful work
and is not caused by infinite looping. The duration and reasons for the
saturation epoch should be considered before effort is invested in trying
to eliminate it. If the CPU is saturated under constant load for the entire
length of a test run, the response time may be excessive.

Recall that a process or thread that is not interrupted will hold the
CPU until it needs to perform I/O. If no I/O is required, the CPU will
be 100% busy. The only thing that matters here is how long this busy
epoch will last. There is far more cause for concern if execution halts
before the work has been completed, because it could indicate that data
is missing or be a sign that interacting threads have gone into deadlock.
If the product of the duration of the busy epoch and the desired through-
put is less than the number of processors that will be used by the task,
there is no cause for concern. Intervention is needed only if the response
time requirement is exceeded. Even if multiple processes are contend-
ing for the processors, saturation is not a cause for concern unless the
throughput and response time requirements cannot be met for the task
that is saturating the CPU, or for other tasks, unless other processes or
threads will also need to use it, unless an increase in load is anticipated,
or unless there is concern about more urgent tasks being deprived of
access to resources. In the last case, CPU priority scheduling can be used
to allow urgent tasks to execute if the operating system supports it.

The time scale of measurement is important in the evaluation of
this situation. Recall that the CPU utilization is taken to be 100% if the
idle loop is not executing and 0% if it is. An average utilization of 100%
can always be observed if the measurement period is short enough.
There are two lessons to be learned here:

•	 Before embarking on an expensive investigation of why the pro-
cessor is 100% for a transient amount of time when load is applied,
it is worth determining whether the high utilization is preventing
any performance requirements from being met. If it is not, other
causes for concern should be identified before technical staff
members are assigned to finding out why. Otherwise, an incorrect
interpretation of performance metrics will lead to a waste of staff
time that could be devoted to solving other problems.

•	 The utilizations should be averaged over longer periods of
time. This will smooth out the effect of the utilization spikes.

Performance Engineering Pitfalls314

If the overall level of utilization is still too high, further investi-
gation may be warranted. Measuring over too short a period
may raise unnecessary concerns.

12.4  Diminishing Returns with
Multiprocessors or Multiple Cores

It is a mistake to suppose that the capacity of a system will increase
linearly with the number of processors in a server, or that adding pro-
cessors will always reduce system response time. Many factors can
reduce or even negate the benefit of adding additional processors.

•	 Pitfall: Increasing the number of processors does not necessarily
increase system capacity. Indeed, it can reduce it.

•	 Reason this is a problem: Money might be invested with the intent
of mitigating a problem without having the desired effect. It
might even have a negative effect.

•	 Mitigation: Consider the architecture of the system before mak-
ing the investment.

The following examples illustrate this pitfall:

•	 The head of the ready list or run queue, the list of processes that
are ready for execution, is shared among all processors and there-
fore must be protected by a lock to ensure mutual exclusion.
Contention for both the lock and the ready list head will cause
memory cycle stealing and memory bus contention. In extreme
cases, adding processors can make performance worse. This was
discussed in Chapter 11 and is discussed further in [DDB1981].

•	 Each processor has its own cache. If multiple processors share a
copy of the contents of a data location, there will be a copy in
each processor’s cache. These copies must be kept consistent.
Memory bus contention to achieve this will cause delays in
updating the cache copies, which will slow down execution.
Therefore, data sharing among multiple processors should be
kept to a minimum [Gunther1998].

•	 If the executing application is single-threaded, it can use only
one processor. The presence of multiple processors in a host
will not aid the processing of this application, because it cannot
exploit parallelism. This is a sign of a software bottleneck, as we
have seen in earlier chapters.

12.6  Virtual Machines: Panacea or Complication? 315

•	 We have already seen in Chapter 10 that adding processors or
using multiple cores can increase the system response time if
concurrently executing threads that access shared objects are
not properly synchronized, or if thread safety is not properly
implemented. The problem becomes apparent because the
thread interleaving enabled by using multiple processors
enables different sequences of events to occur from those in a
single-processor system. Some of these sequences may lead to
error conditions that cause retries and even crashes.

12.5  Garbage Collection Can Degrade Performance

Garbage collection is used to free memory blocks containing objects to
which there are no longer any valid pointers. It is part of the implemen-
tation of interpreted languages such as LISP and languages with built-
in memory management such as Java and C#. It can be used in compiled
languages that support dynamic storage allocation, including compiled
implementations of Java. It is not used in older languages such as
FORTRAN which have only static storage allocation. Garbage collec-
tion removes the responsibility for the cleanup of unused memory from
the programmer. Since control is removed from the programmer as
well, there is little or no control over when it occurs. Because collection
takes up both processing time and memory, it will degrade perfor-
mance. In some implementations of Java that allow execution of threads
within the same virtual machine on multiple processors, the execution
of all of the threads will be suspended while collection is in progress.
During this time, the benefit of execution on multiple processors will
be completely lost.

The literature on garbage collection is vast. Correct tuning of garbage
collection parameters such as the heap size at which collection is triggered
depends on the application and on the collection algorithms themselves
[BCM2004]. The reader is encouraged to look at what has been written
most recently about the implementation used in the system of interest.

12.6  Virtual Machines: Panacea or Complication?

A pitfall with the measurement of resource usage by threads and
processes in virtual machines is that the utilization per process is mea
sured relative to the time that the virtual machine possesses the resource

Performance Engineering Pitfalls316

rather than with respect to physical (wall) clock time. The resource
usage may or may not reflect contention by other processes running in
different virtual machines.

•	 Pitfall: The resource utilizations indicated by virtual machines
may not be true indicators of resource utilization.

•	 Reason this is problem: Based on this incorrect data, the system
could be modified in a way that makes matters worse.

•	 Mitigation: Measure the system in isolation on a real machine to
avoid confounding.

Virtual machines are programs that can mimic diverse operating
systems on a single host. For example, they can emulate UNIX, Linux,
and Windows environments while keeping each logically hidden from
the others. They are useful for functional testing because they provide
contained environments that prevent programs from running amok
and interfering with the memory address spaces of other programs. If
a virtual machine hangs, that is, ceases functioning, it does not disrupt
the operation of its host. It merely stops. Other virtual machines on the
host can continue to execute. Virtual machines are also seen as attrac-
tive because they can collectively make use of idle processing power in
a host, even if the applications running within each one are I/O bound.
At the same time, the processes within a virtual machine are invisible
to those in other virtual machines. This provides privacy and protec-
tion in a shared environment which might otherwise not be available.

Scheduling and synchronization of processes and threads can occur
only within the context of a virtual machine. Operating system con-
structs cannot be used to implement interprocess communication across
virtual machine boundaries. It might be possible for virtual machines to
communicate with one another via TCP sockets or other network
devices, but synchronization would be enforced entirely at the applica-
tion level in that case, and not at the operating system level. It may
therefore be difficult to detect bugs attributable to faulty or mismatched
communications between processes in different machines by referring
to the resource usage measurements of processes and threads alone.

A process might occupy 100% of the processing time available to a
virtual machine, but not necessarily 100% of the processing time rela-
tive to the wall clock time. If a virtual machine is starved of access to
the CPUs by other virtual machines operating on the same host, the
physical processor utilizations of a process would be per-process utili-
zation measured within the virtual machine multiplied by the physical
processor utilization of the containing virtual machine itself.

31712.7  Measurement Pitfall: Delayed Time Stamping

Because the operating system within one virtual machine is totally
oblivious to the state and presence of processes in other virtual machines,
processes and threads can be scheduled only within a virtual machine.
Scheduling the execution of virtual machines on the hosts does not con-
trol the scheduling of entities operating within them. In some cases, a
virtual machine may not even be able to distribute the concurrent exe-
cution of threads and processes within it among the physical processors
or cores of the host. For example, early Java virtual machines could sup-
port multithreading, but the threads could execute only on the proces-
sor on which the virtual machine itself was executing. The result was a
software bottleneck in which processors remained idle despite the pres-
ence of a backlog of threads that were ready to run. In a test environ-
ment, the confinement of threads to one processor might be considered
an advantage if threads are spawned in an infinite loop without being
destroyed. Although their virtual machine might crash, its threads
would not compete for all of the processing power within a host, thus
reducing the risk of total disruption of the execution of the other virtual
machines. Thus, the inability of a virtual machine to exploit parallel pro-
cessors could be seen as having the deficiencies of its merits.

12.7  Measurement Pitfall: Delayed Time
Stamping and Monitoring in Real-Time Systems

In previous chapters we discussed how discrepancies between system
clocks on different hosts and clock drift could lead to spurious mea
surements of response times. In systems that frequently track measure-
ments of such quantities as speed, displacement, temperature, and
pressure, there is always a risk that processing delays or contention for
memory could lead to perplexing apparent discrepancies between sets
of system measurements, or between the measurements and the time
stamps.

•	 Pitfall: Time stamps are delayed and do not always agree with the
clock.

•	 Reason this is a problem: Spurious inferences about delays may be
made.

•	 Mitigation: Check that the granularity of the time stamp is no
finer than the delay in recording it. Use a coarser resolution
when interpreting it if necessary.

Performance Engineering Pitfalls318

This could occur, for instance, if values are displayed and/or
logged less frequently than they change, or if the time stamp is recorded
only when the values are displayed and logged rather than when they
were stored in memory or registers. For example, a system that tracks
the speed, distance traveled, and other properties of a vehicle such as a
train, bus, or car might experience delays in recording these observa-
tions and bind the observations to a time stamp only when recording
occurs. One result of this might be that the measurements of the physi-
cal aspects of the system are inconsistent with one another. Thus, if
x vi i, , and ti respectively denote the ith observations of position,
speed, and time in a moving object, we might find that

	 − ≠ −+ +x x v t ti i i i i()1 1 	

even if the speed is more or less constant and the difference between
the time stamps is small. If the motion of the vehicle is very steady
compared with the granularity of the observations, it may be best to
take the observed speeds and distances traveled at face value and treat
the time stamps as approximate at best. Analogous discrepancies may
arise in system measurements that seem to fail to satisfy Little’s Law or
the Utilization Law over short time intervals. Unless there are forensic
considerations such as a crime or crash investigation, it may be worth
smoothing the performance measurements by averaging them over
longer time periods to overcome the consequences of clock variability.

12.8  Pitfalls in Performance Measurement

As we discussed in Chapters 8 and 9 on performance measurement
and testing respectively, it is essential that performance measurements
and the instrumentation and statistical tools used to generate them be
repeatedly validated. This is especially true of measurement hooks that
are crafted on hosting software platforms, such as tools that measure
query response times within database systems and hooks that measure
response times in load generation scripts.

•	 Pitfall: The time stamps of job completions may be recorded after
completion has occurred.

•	 Reason this is a problem: It could create the impression that the
measured response time is longer than it should be when in fact
it is not.

12.9  Eliminating a Bottleneck Could Unmask a New One 319

•	 Mitigation: Ensure that the process that records job completion
is not delayed so long that the measurements are late.

As pointed out in [NagVaj2009] and elsewhere, response times are
measured on systems that are computers themselves. It is therefore
important to ensure that the collection of the response time is not itself
delayed, since this will induce a pessimistic bias in the measured
results. This can happen if the load generator has a saturated resource
such as CPU, I/O, or an object pool, or if the load generation script is
running at too low a level of CPU priority. One does not wish to dis-
patch a team to fix an alleged response time issue that turns out to have
its roots in the instrumentation. This is the reason that we insist on
resource measurement in the hosts on which the load drivers are run as
well as in the hosts on which the system under test is run. We should
require measurement of passive resources within the load generators,
such as any pools of objects representing uncompleted transactions, as
well as processor, disk, and network bandwidth utilizations. The
Response Time Law tells us that high occupancy of objects represent-
ing transactions and long response times will impede the generation of
transactions at a sufficiently high rate. If the main memory of the load-
driving host is very heavily occupied, thrashing may ensue, delaying
the recording of response times.

12.9  Eliminating a Bottleneck Could
Unmask a New One

Improving the performance of a system bottleneck can often cause a
system bottleneck to appear elsewhere, because increasing the maxi-
mum achievable throughput of the bottleneck device enables the next
most loaded device to become saturated. The saturation level of the
next most loaded device is the maximum throughput that can be
obtained by improving the original bottleneck.

•	 Pitfall: Increasing the capacity of a system bottleneck results in the
appearance of a different bottleneck.

•	 Reason this is a problem: The capacity and performance of the
system may not be increased as much as is required.

•	 Mitigation: Perform a bottleneck analysis of the system to antici-
pate where the next bottleneck might be so that the level of
improvement can be anticipated.

Performance Engineering Pitfalls320

The following examples illustrate how eliminating one bottleneck
can unmask another:

•	 Eliminating a software bottleneck by increasing the size of a JDBC
pool between the application server and the database server in a
three-tier web system may reduce queueing for database queries,
only to allow another bottleneck to appear in the database server,
such as the exhaustion of the CPU as the transaction rate increases,
or the emergence of contention for a lock.

•	 Adding processing capacity to a system with a saturated CPU
may allow an I/O device to become saturated.

•	 Adding memory to a database server may improve response
time by allowing more tables to be held in memory, but the
result could also be the emergence of an I/O bottleneck.

Each of these improvements results in a reduction in the utilization
of the resource that was the bottleneck, to the extent that some other
resource might have the largest utilization instead. That is the new
bottleneck. We can anticipate that a bottleneck will shift using the bot-
tleneck analysis techniques we discussed in Chapter 3. Recall from
Section 3.7.2 that the demand on the ith device is given by

	 = =U X D i Ki i , 1, 2, ...,0 	

The bottleneck device is the one with the largest Di . Denote the sorted
demands Dk by

	
≤ ≤ ≤ ≤ =−D D D D DK K b...(1) (2) (1) () 	

where b is the index of the bottleneck device. We know that the system
throughput cannot be larger than 1/ ()D K . If the original bottleneck
device is improved to the point that ≤ −D Db K(1) , the system throughput
is now bounded above by −D K1/ (1) . The bottleneck has been shifted to
the next most heavily loaded device. This means that the largest gain in
throughput is constrained by the capacity of the next most loaded device
in the system. It follows that the factor by which the maximum through-
put can be increased is

	 =− −D D D DK K K K[1/]/[1/] /(1) () () (1) 	

which is greater than one by construction. Hence, if the CPU is the bot-
tleneck device in the original system, doubling its speed (and hence

12.11  Organizational Pitfalls in Performance Engineering 321

halving the demand for processing time) will not double the maximum
attainable system throughput unless ≥−D DK K/ 2.() (1)

12.10  Pitfalls in Performance
Requirements Engineering

One of the riskiest pitfalls in performance requirements engineering is
not having any idea of the workload that will be placed on the system.
Overestimating the workload will lead to unnecessary expense, while
underestimating it will lead to unsatisfactory performance and even
commercial failure or, if the system is mission critical, a failure to meet
safety requirements. If product managers and other stakeholders are
hesitant or reticent about providing estimates of the workload, the lead
performance engineer would be well advised to draft a reference work-
load for requirements engineering and testing purposes so that all
stakeholders will have some idea of what load the system could sup-
port under the assumed normal and stressful operating conditions.

•	 Pitfall: Uncertainty about the workload and its nature, including
memory, response time, and throughput requirements.

•	 Reasons this is a problem: The system might be over- or underen-
gineered, causing unnecessary costs, user dissatisfaction, or
even endangerment. One is unable to size the system for the
correct market segment.

•	 Mitigation: In the absence of knowledge about the workload or
performance needs, develop a reference workload and a refer-
ence set of performance requirements.

12.11  Organizational Pitfalls
in Performance Engineering

In most of this book we have focused on issues in performance engi-
neering related to portions of the software lifecycle occurring before a
system goes into production, such as performance requirements, engi-
neering, architecture, development, and testing. Ownership and over-
sight of the performance of a system must continue while the system is
in production to ensure that the system meets throughput and response
time requirements as the load changes, and to enable the orderly

Performance Engineering Pitfalls322

planning of additions to the load, additions of capacity to support the
additional load, and the orderly planning of additional functions and
the capacity needed to sustain them. Data on resource usage and the
performance of applications should be collected and above all tracked
so that degradation can be detected and service levels maintained.
When new applications are added, the measurement instrumentation
should be enhanced so that data can be collected about them, too. At
least one individual in the organization should be designated to take
ownership of these tasks. In the remainder of this discussion we refer
to that individual as the capacity manager. The capacity manager
should be given the resources and time to undertake those tasks, and
access to those who will need to act on performance findings as usage
of the system evolves. This individual must have access not only to the
people responsible for building and maintaining the system, but also to
those who are liable to cause demands to be made upon it. For exam-
ple, if an advertising campaign is expected to trigger huge numbers of
calls to call center agents and/or huge numbers of visits to particular
web pages and the back-end systems they access, an effort should be
made to estimate what that demand will be so that would-be custom-
ers do not go to competing web sites because they do not like long
delays, and so that call center agents are not put in the position of say-
ing to prospective customers that “the computer is slow.” The capacity
manager may have difficulty persuading stakeholders to take emerg-
ing performance issues seriously. Diplomatic skills and carefully pre-
sented data will always be necessary in this situation.

12.12  Summary

Examples of performance pitfalls in this chapter and throughout this
book show that performance pitfalls can occur in many guises. They
can be inherent in memory management techniques. They can arise
because of organizational decisions or because of misconceptions about
the work conservation properties of scheduling rules. They can occur
because of inaccurate measurements or because of organizational anxi-
ety that leads to the misinterpretation of why performance measures
such as resource utilizations might have high values for a short amount
of time. There is no hard-and-fast rule for avoiding these pitfalls. Only
healthy vigilance and skepticism in the light of experience and clear
analysis can be used to prevent, mitigate, or remedy them.

12.13  Exercises 323

12.13  Exercises

12.1.	 Consider a replicated database system in which copies are
stored on separate hosts. Strict consistency between the rep-
licates is required. That means that commitment on one copy
cannot take place unless it takes place on both copies.
(a)	 Should the update begin on the busier host or the less busy

host? Explain.
(b)	Should the process or thread that is beginning updates at

the second host be given priority over threads that are doing
the first update of some other record? (Hint: Think of the
museum checkroom problem discussed in Chapter 11 (scal-
ability). For a discussion of this problem, see [BondiJin1996].)

12.2.	 Explain why giving high priority to a workload that dominates
the usage of any resource may not be helpful.

12.3.	 The average CPU utilization of a quad-processor system is only
25%, yet the utilization of one of the processors is 100% while
the other three processors are idle. Absent further information,
what do you suspect about the response time? What suspicions
do you have about the system architecture? What will you try
to find out about the executing processes?

12.4.	 For the system in Exercise 3.4 with device characteristics like
those in the following table, what is the maximum system
throughput that can be attained if the speed of the bottleneck
device is doubled?

Device Name Visit Ratio Service Time (sec) Service Discipline

CPU 6.0 0.0090 PS

Disk 0 1.0 0.0400 FCFS

Disk 1 4.0 0.0250 FCFS

Thinking terminals 1.0 4.0 IS

This page intentionally left blank

325

Chapter 13

Agile Processes and
Performance
Engineering

The use of an agile software development process provides opportuni-
ties for the early detection of performance issues that might emerge only
after the completion of functional testing of the entire system under a
waterfall process. The successful integration of performance testing into
an agile process requires meticulous discipline and preparation to ensure
that it can be carried out and the results analyzed within the tight time
constraints of development sprints. Even if the overall development pro-
cess of a system is not agile, agile methods can be used to quickly develop
performance testing tools and test data so as to facilitate the timely deliv-
ery of a product. We examine both scenarios in this chapter.

13.1  Overview

Agile software development processes use sprints lasting a few weeks
at most to provide frequent opportunities for iteration between the con-
ception of the software’s purpose, design, implementation, and testing.
Each iteration occurs during the course of a sprint. The early testing that

Agile Processes and Performance Engineering326

sprints afford means that flaws in concepts, architecture, implementa-
tion, and function can be detected earlier than they would under a
waterfall software development lifecycle. In the waterfall development
process, there are distinct stages of software development that follow
one another in sequence. Each stage can last many months. The stages
include requirements specification, architecture, design, implementa-
tion, functional testing, performance testing, and delivery [Boehm1988].
By contrast, in an agile development process, pieces of each stage of the
lifecycle occur in short sprints in which smaller pieces of the system are
developed.

Performance issues and their origins might be detected and reme-
died earlier under an agile development process than they would be in
a waterfall environment. There are a number of reasons for this:

•	 The early and frequent performance testing that could occur in an
agile process would increase the possibility of performance issues
being uncovered early, rather than after the development and
functional testing of the entire system have been completed.

•	 The analysis of performance test results could be reflected in
the refactoring and design modifications that might occur in a
subsequent sprint.

•	 Similarly, if performance requirements change early in an agile
development process, they can be reflected in changes to the
implementation and to the design.

For this to be accomplished effectively within the tight time constraints
of a sprint, however, considerable planning is required to ensure that
the performance testing infrastructure is in place before the start of
each sprint, including load drivers, scripts for automating performance
testing, measurement instrumentation, and analysis and data reduc-
tion tools [Bondi2007b]. If performance testing cannot be accomplished
in the same sprint in which a piece of the software was developed and
tested, it must be done in the next sprint.

Agile methods can be used to develop a performance testing envi-
ronment even if the overall software development process is not agile
[BondiRos2009], just as they can be used to develop functional testing
software. The performance testing environment is itself a suite of soft-
ware programs that must be developed and tested before they are
applied “in production,” that is, to the testing of software components
before they can be delivered. An agile process can effectively be used to
set up a performance testing environment and execute performance

13.2  Performance Engineering under an Agile Development Process 327

tests under the supervision of a performance expert even when the
team has little or no performance expertise.

13.2  Performance Engineering under an Agile
Development Process

The goals of performance engineering in an agile environment are the
same as those in a waterfall or other development environment: to
ensure that the system can meet performance requirements once those
have been specified; to ensure that the software architecture is condu-
cive to meeting those requirements; and to ensure that there is a method-
ical, repeatable, and traceable performance testing process to verify that
performance requirements have been met and to enable the recognition
of performance issues. As with functional testing, one key difference
between performance testing in a waterfall process and in an agile pro-
cess is that performance testing is done repeatedly in short sprints in the
latter, but often only toward the end of the development process in the
former. This means that the performance testing infrastructure must be
planned and prepared well in advance of the sprints, perhaps even in
the inception phase of an agile process. Another key difference between
a waterfall process and an agile process is that stories, and hence perfor-
mance requirements, may change from one sprint to the next. Since the
failure to meet performance requirements usually has its roots in the
poor choice of an architecture and/or in poorly specified performance
requirements, it would seem that there are better chances of a system
meeting performance requirements if there is at least a broad idea of the
architecture and performance requirements before the start of the first
development sprint. On the other hand, performance issues that are
caused by inefficient code implementations or poor design choices can
be caught earlier in an agile process than in a waterfall process, because
opportunities for performance testing occur earlier in an agile process.
Moreover, because inefficiencies and concurrent programming bugs
can be introduced when code is refactored, functional and performance
testing should always be repeated with the modified code in place.

Whether the system is being developed under an agile process or
some other process, the performance engineer will always be faced
with the challenge of not being able to execute a performance test
until functional tests have executed and passed. It is not worthwhile
to execute a performance test on a system that does not do what it is

Agile Processes and Performance Engineering328

supposed to be doing in single-user mode. Moreover, as we saw in
Chapter 9, performance tests can reveal functional problems with
concurrent programming that cannot emerge in unit testing. If func-
tional testing is delayed because development is delayed, perfor-
mance testing will be squeezed into an amount of time that is
insufficient for the careful completion of the task. This problem is
even more severe in an agile environment, because the short duration
of sprints (two to four weeks) means that a slight delay can still con-
sume a large fraction of the time to the sprint’s planned end. It has
been the author’s experience that a sprint can consist of a series of
waterfalls with very short travel times between them, and that the
allowable travel times become shorter the further along one is in the
sprint. For this and other reasons, an agile process is not a panacea for
a weak or poorly trained set of teams. Indeed, the compressed nature
of sprints can exacerbate the effects of weaknesses in the develop-
ment organization. If anything, stronger levels of discipline, maturity,
and experience are required under an agile development process than
under a conventional one such as the V model or the waterfall model.

Care should be taken to ensure that samples of the data to be used
in performance tests be available before the sprint commences. Load
drivers, measurement instrumentation, and data analysis tools should
be built to enable repeated and repeatable executions with little effort
during each sprint. The development of test data should be planned to
coincide with or precede the delivery of the portion of software that is
going to use it. This is a concern of functional testers also. Indeed, the
commonality between functional tests and performance tests is so great
that it may be worthwhile for these groups of testers to work together
to reinforce and avoid duplication of each other’s work. Each team
must have a clear understanding of the other’s procedures and needs,
especially in an agile environment, because time pressures there are
particularly intense.

13.2.1  Performance Requirements Engineering Considerations
in an Agile Environment

When performance requirements evolve from one sprint to the next,
care must be taken to ensure that the essential criteria of sound perfor-
mance requirements described in Chapters 5 through 7 are maintained,
including traceability, correctness, and consistency. In particular, each
new performance requirement must be consistent with the ones speci-
fied in earlier sprints, as must all changed performance requirements.

13.2  Performance Engineering under an Agile Development Process 329

When performance requirements are added in later sprints, care must
be taken to ensure that they can be met by the parts of the system that
have been architected and implemented to date. This is especially true
of new functionalities that might be implemented during a sprint.
These must coexist with those developed previously. Since new func-
tions may consume new resources, one must verify that the new per-
formance requirements concerning them and the performance
requirements relating to previously developed functions are still
achievable. This might be predicted by performance modeling. In any
case, it must be verified by performance testing. This means that the
performance tests done in prior sprints must be repeated in subsequent
sprints in which new functionality, workloads, and performance
requirements are added, or when code has been refactored. This under-
scores the need for a heavily automated performance testing environ-
ment that enables the repeated and repeatable conduct of performance
tests [BondiRos2009]. Repeatability is a precondition for the validity of
comparisons of both system performance and function before and after
any modifications have been made.

13.2.2  Preparation and Alignment of Performance Testing
with Sprints

The level of preparation required for performance testing in an agile
process depends on the nature of the system. All the guidelines and
practices we have described in previous chapters are applicable here. If
anything, performance tests must be planned and executed with even
more stringent care than in a waterfall environment because of the
tight time constraints imposed by sprints. The size and makeup of any
database must be commensurate with that which is anticipated for use
in production on similar target hardware. Since functional testing pre-
cedes performance testing, the database will be populated by func-
tional testers in any event. The performance engineer and the leader of
the performance testing team will be negotiating a schedule with a
wide variety of stakeholders.

The schedule for the preparation of a performance testing environ-
ment will begin with an inventory of the hardware and software that
will be needed to populate the system with application data and sys-
tem configuration data. Scheduling must be done at two levels: a long-
term level to ensure readiness for each sprint, and within sprints. We
consider the long-term aspects first:

Agile Processes and Performance Engineering330

•	 Resource measurement instrumentation can be chosen and con-
figured once the host platforms and network elements have been
chosen.

•	 Scripts for reduction, display, and analysis of the resource mea-
surements can be written and tested on like platforms once the
operating system, network elements, hardware platforms, and
off-the-shelf software such as application servers and databases
have been identified.

•	 The writing of load generation tools with embedded hooks for
measuring response times can be done only once the set of test
transactions and their expected responses have been identified.
In some cases, it may be feasible to insert the measurement hooks
in the load-driving scripts for functional testing. Time must be
planned to discuss this with the functional testing group.

•	 Test scripts should be developed for pieces of the application,
service components, and platform elements in order of delivery
so that functional and performance testing can begin as soon as
possible thereafter.

Let us now turn to scheduling within a sprint. Because performance
testing of the use cases or functions that are developed within a sprint
can occur only once functional testing is complete, it is quite possible
that some or even all of the performance testing and analysis will spill
over into the next sprint. Within each sprint, the test cases that pose the
highest risk to the rest of the system or application should be tested for
performance first, so that problems can be corrected as early as possi-
ble. Very severe problems, such as overloads at levels well below the
target levels, may be the ones to emerge first. Pilot testing might be
sufficient to identify an issue that can then be followed up by perfor-
mance engineers, architects, and developers alike.

13.2.3  Agile Interpretation and Application of Performance
Test Results

Data reduction and analysis of performance test results must occur
much more quickly in an agile development process than in a more
conventional one because of the time constraints imposed by sprints. If
a performance problem is encountered, it may be necessary to trouble-
shoot it by developing performance tests at different load levels and/
or with different configuration parameters. This might be deferred to

13.2  Performance Engineering under an Agile Development Process 331

the next sprint so that all test cases in the current sprint are executed at
least once. In the case of large projects, this is something that may have
to be discussed in “Scrum of Scrum meetings” at which scrum masters
or other representatives of individual scrum teams meet to discuss
blocking issues that can be resolved only in cooperation with other
teams.

13.2.4  Communicating Performance Test Results in an Agile
Environment

Because little time is available for the retrospective sessions that occur
at the end of a sprint, the performance engineer should be prepared to
condense the test results into a few slides describing the following:

•	 What the performance test needed to show, and the results that
were desired (quantitative and qualitative)

•	 Bullet items showing which performance requirements were
met and, more importantly, which were not

•	 Performance problems identified, and their potential impact,
including risks to the project as a whole

•	 Next steps, either to address any problems identified or to
accommodate the goals of the next sprint

The author’s personal experience has been that it may be necessary
to step outside the agile/sprint framework to resolve performance
issues, especially complex ones that involve major changes to software
or, in the case of a service-oriented architecture, the replacement of the
entire implementation of a service or use case. The emergence of a severe
performance problem that potentially undermines the rest of the system
should be addressed rapidly, firmly, and vigorously. It must also be
explained and documented clearly. Its resolution may entail explaining
the problem and its suspected causes to different sets of stakeholders in
terms that each can understand. The performance engineer may have to
take the lead in proposing a solution to the problem. Sending e-mail to
several stakeholders at once may not be sufficient to obtain timely reso-
lution of a problem, because there will be no sense of accountability. The
performance engineer might be well advised to gather insights from
several stakeholders and distill them for explanation to the chief archi-
tect and product owner, as they will have final responsibility for the
choice of a remedy.

Agile Processes and Performance Engineering332

13.3  Agile Methods in the Implementation and
Execution of Performance Tests

There is a place for agile methods in the development of performance
testing suites even if the system under test is being developed under a
waterfall or other non-agile process [BondiRos2009]. We can do this
because a performance test suite is a software system containing several
components that depend only on the operating systems, hardware, and
commercial software platforms involved as well as components whose
implementation depends on the application. We have already seen that
measurement instrumentation for the operating systems, hardware
platforms, and off-the-shelf software such as web servers, application
servers, databases, and network elements is often readily available and
easily customized to measure the system under test. By contrast, load-
generating software usually has to be programmed to generate transac-
tions and requests that are meaningful to the application.

The practices one must follow when implementing performance
tests in an agile manner are not different from those we have discussed
in Chapters 8 and 9. Performance tests must be conducted in a clean
environment on a platform that reflects the scale of the tested load and
the number of objects encompassed by the system.

13.3.1  Identification and Planning of Performance Tests and
Instrumentation

Performance tests should be structured to inform us whether perfor-
mance requirements are being met and to reveal potential problems
that would not have occurred in unit testing. The performance test plan
should reflect this. Preparation for performance testing should begin
early enough to allow performance testing of key components as soon
as they emerge from functional testing. A schedule of sprints should be
devised to

1.	 Formulate the test plan.
2.	 Identify the instrumentation that is independent of the applica-

tion and arrange for its timely procurement.
3.	 Identify and develop the instrumentation and load drivers that

depend on the application.
4.	 Put the instrumentation in place and test it.

13.3  Agile Methods in the Implementation and Execution of Performance Tests 333

5.	 Document all of the preceding steps.
6.	 Create tools to verify the correct functioning of the system with

multiple users and multiple concurrent activities. This includes
ensuring that databases were correctly updated and that no
unarbitrated race conditions emerged.

7.	 Execute one or more rounds of performance tests and docu-
ment the results.

These steps may occur in separate sprints or in parallel in the same
sprint, depending on the skill sets of the participating staff. For exam-
ple, the identification of resource usage measurement instrumentation
can be done in parallel with the creation of tools to verify that the sys-
tem is functioning correctly with multiple users.

Incremental testing of performance instrumentation and load driv-
ers as they are developed has the following benefits:

•	 It helps to ensure that correct data is offered to the application at
the right rates.

•	 It allows verification that system resource usage measurements
and statistics about response times are correctly collected.

•	 It provides an opportunity to verify that instrumentation and
load generators are correctly calibrated.

13.3.2  Using Scrum When Implementing Performance Tests
and Purpose-Built Instrumentation

Ongoing communication among the members of the performance test-
ing team is very useful for resolving blocking issues and keeping the
development of the performance test suite on track and focused on its
goals. If the team has never done performance testing before, it should
be coached and supervised by a performance engineering and testing
expert. The author’s experience has been that holding scrums shortly
before lunch and shortly before the close of the working day facilitates
quick tool development and quick correction of mistakes. Knowing
that one will have to describe one’s progress also places subtle pressure
on the testing team to achieve a deliverable at regular intervals. At the
same time, shared knowledge of difficulties encountered provides
opportunities for self-organization and the formation of small groups
to pool expertise and solve problems as they arise. The physical pres-
ence of the performance expert among the performance testers pro-
vides opportunities for quick discussions about points needing

Agile Processes and Performance Engineering334

clarification. If the performance testing team will be the first to inte-
grate the various components of the system as a whole and drive work
through it, communication with architects, developers, and require-
ments engineers will help the team understand what behavior is to be
expected while expediting the clarification of any ambiguous require-
ments. Pilot performance tests should be planned with the Scrum time-
table in mind so that there will be a scheduled time when first
observations can be shared and the causes of the results identified.

13.3.3  Peculiar or Irregular Performance Test Results and
Incorrect Functionality May Go Together

As we discussed in Chapter 9, irregular performance test results and
incorrect functionality may go together. Erratic resource utilizations or
response times under constant transaction load are indicative of concur-
rent programming issues like deadlocks and the incorrect implementa-
tions of thread safety and mutual exclusion. Incorporating performance
testing into an agile sprint provides an opportunity to correct these
problems with the developers and other stakeholders before adding
more code to the system makes them harder to find. Sometimes unstruc-
tured playtime enables the testers to reveal unexpected problems that
warrant attention. This was the author’s experience of playtime with a
testing team that was untrained in performance testing, as described in
[BondiRos2009]. The team was the first to put the pieces of the system
together and subject it to load. Playtime is discussed in the next
section.

13.4  The Value of Playtime in an Agile
Performance Testing Process

As with any scientific endeavor, unstructured playtime provides an
opportunity to acquire familiarity with system behavior and the
responses of instrumentation to changes in system configuration and
offered loads. Bondi and Ros describe the beneficial role of playtime in
finding a potentially disruptive problem in a complex system during
the course of an agile performance testing process [BondiRos2009]. Each
release of the system under test was developed according to a V model
process [VXT2009], with a progression from concept to requirements to
architecture, followed by a progression to design, implementation,

13.4  The Value of Playtime in an Agile Performance Testing Process 335

functional testing, and, ultimately, end-to-end performance testing. The
system under test was a complex service-oriented XP-based platform
that provided services for various applications, implemented in a mix of
C and C++.

The performance testing team acquired a better feel for what was
happening in the system by playing with it in a spontaneous manner
for an hour or so. They could see the performance impact of sending in
requests at different rates and try out different perfmon counters to see
which ones might yield insights and which ones not. The performance
engineer found that playtime with the system improved the team’s
morale and team members’ willingness to take the initiative to try out
different kinds of tests.

The team was delighted when applying load to the system resulted
in a visible increase in CPU utilization, and when turning the load off
resulted in a drop. Unfortunately, starting and finishing average CPU
utilizations were not zero but 50%, even when the system was suppos-
edly empty and idle. This provided a teachable moment. Under the
guidance of the performance engineer, the team learned the value of
collecting the utilizations of individual processors when one was
shown to be 100% and the other 0% in the absence of applied load.
Further investigation showed that one process was the culprit. One of
the test engineers recognized that the offending process was repeat-
edly polling an empty message interface, and that neither the require-
ments nor the architecture had allowed for any other kind of interprocess
communication, including a mechanism that would have allowed the
offending process to sleep until the arrival of a message, such as a
semaphore.

At this point, the team lost interest in documenting its work and
wanted to try out all sorts of things. This sort of playtime was condu-
cive to their getting a feel for how performance measures and instru-
mentation work. After struggling to record what the team was doing
and the results, the performance engineer called a halt and gathered
the team members in a conference room. We recorded observations,
possible causes, and possible avenues for investigation in separate col-
umns on a whiteboard, transcribed them into a spreadsheet, and devel-
oped an action plan for the following business day. The plan included
sending e-mails to the system development team and systematically
conducting short tests with different parameters under tightly con-
trolled conditions, with careful documentation. The upshot was the
identification of some serious bugs in both the software and the under-
lying requirements. Change requests were written against them on the

Agile Processes and Performance Engineering336

following business day. The team could not proceed with the execution
of test cases until they had identified a work-around to the most
obstructive problem and implemented it.

This experience gave a valuable lesson that obstacles encountered
in the execution of a test plan can provide useful insights into the way
the system behaves. It also showed the team that performance testing
is extremely valuable for provoking concurrency and scheduling prob-
lems that could not have shown up in unit testing.

13.5  Summary

The foregoing narrative shows that it is possible to use agile methods to
conduct performance engineering activities such as performance testing
even when the system under test is not developed under an agile process.
Interestingly, the clear separation of the stages of the software lifecycle
enables the development and execution of performance tests to be con-
ducted under whatever process works best for the performance testing
team. Our experience has been that agile development can be very effec-
tive in these circumstances when testing team members are under the
guidance of an experienced performance engineer with agile experience.
When performance engineering is part of the development sprints, con-
siderable advance preparation of testing tools and data analysis tools is
needed to enable timely performance testing under constraints imposed
by the short durations of sprints and the likelihood that completion of the
functional testing that must precede performance testing will be delayed.

13.6  Exercises

13.1.	 You are the lead performance engineer in a team that is cur-
rently planning the sprints of a large software development
effort. You must negotiate time for the preparation of measure-
ment instrumentation and load generators to verify that the
performance of the system is sound.
(a)	 At this stage, the performance requirements of the system

are likely to be unstable, assuming that anyone has speci-
fied them, which may be unlikely. The functional require-
ments may not be fully specified either. What instrumentation
can you procure or prepare now or in an early sprint to

13.6  Exercises 337

ensure timely measurement and performance evaluation of
the features that are developed in each sprint?

(b)	 Explain how you might work with functional testers to
develop load-driving scripts and scripts to verify that the
system has functioned correctly after each performance test.
Explain why such verification is necessary, even if the system
passes all functional tests before performance testing com-
mences. Explain how early discussions of these points might
influence your choice of a commercial software testing pack-
age to execute both performance and functional tests.

13.2.	 The results of your performance tests indicate the presence of
some serious problems. Identify the stakeholders who must be
informed of this.
(a)	 Explain how you would formulate an ad hoc test plan to

help isolate the cause of the problem. Can you reuse any of
the tools that you used to run the original performance tests
and analyze the results?

(b)	 Develop a short presentation to explain the performance
problems you have seen. It must be understood by multiple
stakeholders, such as architects, developers, requirements
engineers, functional test engineers, and the product owner.
Contrast what you saw with what you expected to see, and
explain what this might mean for the success of the product
and what the cause might be. Bear in mind that your presen-
tation has two purposes: obtaining the lab time and staff time
needed to run the ad hoc performance tests and triggering
insights on the solution of the problem from the other stake-
holders. Be sure to indicate that you are prepared to revise
your ad hoc test plan to take those insights into account.

This page intentionally left blank

339

Chapter 14

Working with
Stakeholders to
Learn, Influence, and
Tell the Performance
Engineering Story

The effectiveness of performance engineering depends very heavily on
one’s ability to learn about the system and stakeholders’ concerns and to
relate one’s analysis and recommendations to them in terms they can
understand. The first step is to understand what aspects of performance
matter to which stakeholders so that their concerns can be documented
and articulated. At the same time, the performance engineer must assure
all stakeholders that one of the main goals of a performance engineering
effort is to ensure that performance concerns and customer expectations
are addressed, while providing them with the means and tools to meet
them. At every stage, the performance engineer needs to show that the
performance effort is adding value to the product, directly or by mitigat-
ing business and engineering risks. In this chapter, we describe which
aspects of performance may matter to whom and then explore where the

Working with Stakeholders to Learn, Influence340

performance story begins. We then go on to describe how concerns might
be explained to those with different roles in the software organization.

14.1  Determining What Aspect of
Performance Matters to Whom

In previous chapters we have focused primarily on performance engi-
neering methods and practice at various stages of the software lifecy-
cle. Here, we turn our attention to understanding the performance
story, developing it, shaping it, and explaining it to others, preferably
in terms that they can understand and that address their concerns.
Those concerns may depend on the roles of the individuals in their
organizations and on the nature of the domain.

Within the last three or four decades, the use of computers has
evolved from running intensive calculations in batch mode and inter-
actively handling business transactions to controlling and monitoring
systems in every industry, as well as delivering entertainment and ser-
vices to the home and to handheld devices everywhere. Every domain
has its own set of concerns, related performance requirements (whether
acknowledged and specified or not), and, in many cases, its own set of
regulations and standards to which the equipment and the computers
controlling related systems and providing services must conform. The
basic metrics one uses to describe performance have not changed much
during this time, although the technology, events, and actions to which
they relate have. Fundamentally, one is usually concerned with
delays, throughputs, and data storage capacity, regardless of the
problem domain.

Measurement instrumentation usually lags behind the introduc-
tion of new software platforms and sometimes behind new technolo-
gies as well, but the underlying methods one uses to dissect observed
performance issues have not: they are based on the scientific method
and on the design of experiments. Our understanding of how perfor-
mance issues arise has evolved as the variety of technologies and
applications involving the use of computer systems has grown. Yet,
similar problems tend to arise with the introduction of each new appli-
cation, including constraints on processing power, wired network
bandwidth, memory, radio bandwidth, and secondary storage size
and latency. The basic principles of performance engineering are appli-
cable to them all.

14.2  Where Does the Performance Story Begin? 341

Whether response time and throughput requirements are directly
related to safety, as is the case with systems that control power stations,
chemical plants, cars, aircraft, and trains, or whether these require-
ments are largely a question of convenience and competitive differen-
tiation, as is the case with entertainment and gaming systems,
performance engineering is needed to ensure that they are met. The
performance engineer should proactively engage in the task of identi-
fying the drivers of performance requirements, and then elicit and/or
formulate those requirements in concert with product managers and
domain experts. The criteria for sound performance requirements are
discussed in Chapters 5 through 7. In every case, the requirements
should be linked to business, engineering, and regulatory needs.

Some stakeholders will be reluctant to express their performance
needs in quantitative terms, whether these terms are measurable or
not. This could be due to lack of numerical facility or to a hesitation to
make a commitment to a given level of traffic, among other reasons. By
contrast, some stakeholders will be engaged in the numerical details of
their own aspect of the problem to the extent that the global picture of
the performance situation is lost. The performance engineer must be
able to both absorb the performance story and share it with stakehold-
ers at both of these extremes and at all levels in between. Regardless of
the stakeholders’ ability to reason in a quantitative manner, the perfor-
mance engineer may need to act as a data shepherd to ensure that pro-
jections about load, performance requirements, and the capabilities of
the proposed hardware and software platforms on which the software
will be run are all plausible. Tips on communicating about data may be
found in [HuffGeis1954]. Some of these tips relate to the careful choice
of scales on axes. The use of graphics to illuminate data is described
vividly in [Tufte2006].

14.2  Where Does the Performance Story Begin?

The story the performance engineer must learn and eventually tell
depends upon the position of the system of interest in the software
lifecycle and how it is perceived by stakeholders. If it is in production,
there may already be complaints about its being too slow or apprehen-
sion about how it will perform when load and new functionality are
added. The architecture phase presents the best opportunity for incor-
porating system properties that support high throughput and short

Working with Stakeholders to Learn, Influence342

response times and enable scalability. In performance testing, expecta-
tions about performance will be refined and problems and opportuni-
ties for improvement identified provided that the test plan is soundly
structured and provided that the measurements are stored and pro-
cessed in a manner that facilitates analysis.

In many instances, the performance engineer’s first encounter with
a system will be with stakeholders who are apprehensive about system
performance, whose expectations about performance and capacity may
be only vaguely described, and whose approaches to resolving perfor-
mance issues may have gaps or not be well formulated. The perfor-
mance engineer’s first task is to draw out the stakeholders’ expectations
and observations, and then shape a performance engineering plan
based on business and engineering goals and the stakeholders’ ability
to put resources in place to help carry them out. These resources may
include personnel (who may have to be trained), measurement instru-
mentation, access to a performance testing lab, and lab and staff time to
carry out performance tests. They also include the time and efforts of
architects, testers, and many others involved in the various phases of
the software lifecycle.

One does not want the performance story to begin on the evening
news or the front page of a newspaper. Sometimes this is unavoidable,
even though it might be foreseeable. A stock market crash, a sale of
tickets for a rock concert, unusually cheap air fares, a natural disaster,
a terrorist attack on a major city, or, more recently, the introduction of
health insurance exchanges to implement the US Affordable Care Act
can trigger enough demand on the corresponding web sites to cause
them to become excruciatingly slow or cease functioning altogether
[Carr2013]. The earlier chapters in this book provide guidance on how
one might diagnose the causes of the exchanges’ performance issues.
Conclusions about the causes of performance problems in the health
insurance exchanges or any other system based on news reports alone
may be wrong. It could well be that performance issues are due to
system malfunctions or misconfiguration rather than to a lack of sys-
tem resources. System measurements and functional testing under
load must usually be used to determine the causes of performance
issues.

When interviewing stakeholders before or during a performance
engineering effort, the performance engineer should be carefully atten-
tive to what matters to whom and to the potential costs of possible
remedies to performance issues. The stakeholders’ interests, concerns,
and viewpoints are as diverse as their functions in the organization,
their training, and their educational background. The performance

14.2  Where Does the Performance Story Begin? 343

engineer may be interacting with product managers, project managers,
marketing executives, architects, developers, testers, and many others.
The most pressing questions to be borne in mind usually are:

•	 What aspects of performance engineering matter to whom? How
can their interests and concerns be addressed?

•	 What are the various stakeholders apprehensive about? Is their
apprehension justified? Is it based on the right metrics? Is it
based on folklore or on experimental evidence?

•	 When is the system to be delivered? When are enhancements
expected to be installed, including new features?

•	 What costs and constraints would limit the choices of software
development efforts or hardware upgrades to address a perfor-
mance issue? Are there technological constraints, such as the
need to interface with existing systems or the need to avoid
licensing costs, that would affect the choices made to remedy a
performance problem or to ensure that performance require-
ments are met?

•	 Within what time are solutions to performance issues needed?
When is a major increase in load expected?

Then there are questions related to engineering, regulation, and
planned growth:

•	 What form does the load take? What are the use cases?
•	 What performance is required of the system? Has this been

documented?
•	 What transaction response times are expected and why?
•	 What performance measurements are being taken?
•	 Is the system perceived to be overloaded?
•	 Are surges of load expected? Will there be large amounts of

seasonal variation?
•	 What performance tests have been run? Were the tests well

structured? How do the results look?
•	 What are the safety concerns related to the system?
•	 Are there stringent reliability requirements or limitations on

downtime? If so, what recovery mechanisms are in place and
what are the desired failover and recovery times? Have these
been thought through?

•	 What regulatory needs have to be met by the system?

Working with Stakeholders to Learn, Influence344

•	 What is the planned growth trajectory for the offered load or
the number of application-related objects in the system?

•	 Does the organization have processes in place for performance
management, performance engineering, and, in the case of pur-
chasers of the system, capacity management?

•	 What is the competition up to? What is their edge? What is the
performance engineer’s client’s edge or desired edge?

The performance engineer will develop a picture of a performance
story. He or she should then be able to develop a plan of action with
stakeholders as the answers to these questions fall into place. The per-
formance engineer must also be prepared to help justify a plan of action
on cost grounds as well as engineering grounds.

14.3  Identification of Performance
Concerns, Drivers, and Stakeholders

The performance concerns of a system are always tied to system func-
tions and/or business functions. Therefore, the first step in identifying
performance concerns is understanding what the system does, how
quickly it needs to do it, how it does it if it already exists or is partially
developed (i.e., the information flow), and how often it needs to do it.

A system may have foreground and background activities. The
foreground activities usually involve taking actions in response to
stimuli and, depending on the nature of the application, performing
computations. The results of the computations may be required to
determine the responses to the stimuli. The computations may be
intense but need not be. The actions could be as varied as setting up a
telephone call or web connection; performing database transactions; or
initiating such time-critical actions as sounding alarms and closing
doors in case of a fire, closing grade crossing barriers on a railway, or
stopping or slowing a train as it approaches a signal. The computations
might include processing or generating images or analyzing large
quantities of scientific data for the purpose of information or predic-
tion. Background activities might include archiving, monitoring of the
system itself so that processes that halt can be restarted, transaction
logging, detecting and generating notifications of intrusions, purging
database records marked for deletion, or triggering overload control
mechanisms. These lists are not exhaustive.

14.4  Influencing the Performance Story 345

Because the stakeholders will be the richest source of information
about how a system works and how its applications can be measured,
it is essential to identify and begin working with them as early as pos-
sible in the performance effort. Some of them will be responsible for
obtaining the information about architecture and design needed to
understand performance issues and how to resolve them, while others
will execute measurement plans and performance tests. Many will
have a direct line to managers who will decide whether performance
engineering is adding value to their product and solving their prob-
lems. The performance engineers will be able to reach their goals more
effectively and satisfy business goals if they develop good working
relationships with those managers and with other stakeholders.

14.4  Influencing the Performance Story

The system stakeholders may turn into the performance engineer’s best
advocate for implementing his or her recommendations for perfor-
mance improvement, and they may well come up with excellent recom-
mendations of their own which the performance engineer can then
check and even improve. It is much easier to persuade an organization
to implement a recommendation if its members had a part in conceiving
it. In some cases, the recommendations may be patentable. An inside
stakeholder whose work is rightly commended by a performance engi-
neer may well turn into an inside champion for the performance engi-
neer’s work and recommendations. This can be very productive for all
involved. Moreover, it reinforces the notion that a performance engineer
is there to help the engaging organization get where it needs to go and
to help empower those who will take it there with his or her expertise.

We now turn to a discussion of the impact of performance engi-
neering at various stages in the software lifecycle and the roles of vari-
ous stakeholders in performance engineering.

14.4.1  Using Performance Engineering Concerns to Affect the
Architecture and Choice of Technology

In Chapter 11 we saw how architectural and design choices could either
promote system scalability or undermine it. In particular, we saw that
a program that serially processes work on disjoint sets of data objects
would not be able to exploit the potential for parallel execution offered

Working with Stakeholders to Learn, Influence346

by multiprocessor and multicore systems. The problem is even more
complicated with distributed systems because of the communications
cost of moving data from one host to another and problems with coor-
dinating activities in different places. The reasons for separating com-
putations may have as much to do with business, legal, or political
constraints as with engineering considerations. For instance, the new
health insurance exchanges in the United States must query govern-
ment databases to verify the identities, incomes, employment status,
and eligibility of would-be policyholders while keeping sensitive data
private. The details of this data are independent of the geographical
information and choices of options that insurance companies use to
determine the price of insurance coverage and so are held separately.

Let us once again consider a museum checkroom as a metaphor for
a computer system with separable concerns. All checkrooms at the
Metropolitan Museum of Art in New York accept hats, coats, gloves,
scarves, shopping bags, small backpacks, umbrellas, and small parcels.
At the Louvre in Paris, coats and umbrellas are accepted at one check-
room, but backpacks and hats must be checked at another. Absent an
inquiry of those who made the policy at the Louvre, one can only specu-
late about the concerns that led to its adoption. The reasons might be
historical, or they might have to do with coatroom attendants not want-
ing to fumble with small objects or deal with a lack of floor space.
Similarly, the deployment of distinct functions on different host systems
may simplify the implementation by enforcing modularity, but doing so
will also increase communication costs. Understanding the drivers that
lead to architectural choices is crucial to making recommendations to
improve performance, especially when the recommendations include
choices that are different from those that have already been made.

As we have seen in earlier chapters, the choice of technologies to
implement a system is often influenced by performance considerations.
The use of exploratory testing is a useful way of reducing the risk of
making a poor choice of technology or of encouraging platform ven-
dors to improve the performance of functions that will be frequently
invoked [AvWey1995, MBH2005].

14.4.2  Understanding the Impact of Existing Architectures and
Prior Decisions on System Performance

When a system in production or in performance testing is demonstrably
failing to meet performance expectations, the performance engineer’s
first steps should be to review the architecture and information flow
through the system and review the measurements that have been taken.

14.4  Influencing the Performance Story 347

A review of the architecture will enable the identification of additional
places where performance measurements should be taken, such as in
software platforms like web servers, application servers, and the inter-
faces to other systems that must be queried so that actions can be com-
pleted. The purpose of inserting these extra measurement points is to
isolate bottlenecks and, in the case of remote systems, determine
whether any component of delay is outside the system owner’s control.
A review of the measurements and measurement procedures might
reveal that the performance concerns are justified, or that they are
based on a misunderstanding of the meaning of the data. In either case,
the performance engineer must provide a clear and careful interpreta-
tion of the measurements so that a correct decision can be made about
what needs to be done next, if anything.

At the same time, a review of the information flow should reveal
the locations of foci of overload and antipatterns such as god classes
and circuitous treasure hunts. God classes are centralized points of
activity that result in foci of overload, while circuitous treasure hunts
are long chains of activity [SmithWilliams2000].

One may encounter architectural constraints that make it infeasible
to implement a performance-enhancing recommendation. Once again
using the museum checkroom as a metaphor, there may not be support
for implementing a priority scheduling scheme with multiple queues
to prevent deadlock between those visitors collecting and those leaving
coats. The architecture of the main hall at the Metropolitan Museum
does not support this, because only one doorway can be used to enter
the checkroom and only one to leave it. Similarly, the process table
entries of a simple operating system may not have fields indicating
process type or priority level. This makes priority scheduling and dis-
tinguishing between processes freeing and acquiring objects from a
pool impossible, and deadlock cannot be prevented. This is an architec-
tural or implementation deficiency that prevents a desired performance
improvement. The remedy would be to equip the operating system
with a priority scheduling mechanism and a method of tagging pro-
cesses or threads with markers indicating their needs for different lev-
els of priority at different times, according to a well-defined set of rules.

14.4.3  Explaining Performance Concerns and Sharing
and Developing the Performance Story with Different
Stakeholders

Performance engineering involves partnerships with diverse stakehold-
ers. It is not a soloist’s pursuit. We now summarize the issues that are

Working with Stakeholders to Learn, Influence348

most likely to be encountered when working with different sets of stake-
holders, and how the performance story could be influenced by each one.
If the system is in trouble, the performance engineer needs to indicate
strongly to all concerned that his or her role is to help enable the team to
understand and solve performance problems, and not to apportion blame.
Those who feel threatened might not share information gladly.

Apart from organizational considerations, it is important to ensure
that there is a common understanding of the performance metrics and
the impact of their values on the functioning, usability, and effectiveness
of the system. As we discussed in Section 14.2, some metrics may be of
greater interest to one set of stakeholders than to another. It is important
to ensure that the descriptions of their metrics and their values are
mutually consistent so as to reduce the risk of misunderstandings. These
misunderstandings could lead to the delivery of a system that fails to
meet performance expectations as well as to conflicts within the organi-
zation about the meanings of metrics and about customers’ expectations
about performance. Measures should be taken to avoid them.

14.4.3.1  Architects

The architect is usually, but not always, the sole player in the software
project who interacts with all stakeholders and who has a global view
of the pieces of the system and how they relate to one another
[Paulish2002]. In the author’s experience as a performance engineer,
and in the experience of a number of fellow performance analysts with
whom he has worked, a performance engineer complements this role
by examining information flows throughout the system and by
identifying bottlenecks as well as performance requirements and other
quality attributes.

Usually, it is the architect who has the mandate from the project’s
customer to see to it that the implementation is performant and scal
able, and to require that specific solutions be adopted to achieve that
end. The architect therefore has the responsibility for ensuring that
information about the performance characteristics of solutions and
technologies are well understood and, where they are not understood,
that an understanding be acquired through early testing to minimize
business risk [MBH2005] or through consultations with trusted
colleagues with related experience. This is essential to containing the
business and engineering risks inherent in the project.

At the same time, the architect must ensure that solutions are cost-
effective, and that they comply with regulatory requirements and
legacy constraints. An example of a regulatory requirement would be

14.4  Influencing the Performance Story 349

the need to ensure that a fire alarm is activated within 10 seconds of
smoke being detected [NFPA2007]. An example of a legacy constraint
is a requirement to use the same database management system as in
an existing implementation to reduce porting and training costs. It is
incumbent upon the software architect to ensure that constraints are
understood, that performance requirements are gathered, that perfor-
mance artifacts are specified for each system component, and that
performance and scalability are part of the mindset of all
stakeholders.

To meet the responsibility for the performance of the system, the
architect must take a lead role in ensuring that the performance require-
ments are carefully elicited in terms that are measurable and testable.
This entails ensuring that product management, design, development,
and testing managers and their teams all understand the performance
requirements and how they will be tested. The architect should give a
clear and visible mandate to the performance engineer to facilitate the
cooperation of other stakeholders in meeting performance goals.

If accurate performance requirements cannot be elicited, the perfor-
mance engineer should identify acceptable ranges of performance
measures and workloads, based on an investigation of the domain and
of business needs. Then, the architect should ensure that consensus for
those operating ranges has been reached among domain experts and
product managers, among others.

14.4.3.2  Management

While managers may understand that inadequate performance poses a
risk to their systems, they may need to be convinced of the value of
efforts to mitigate that risk and of the benefits of remedying performance
deficiencies or proactively avoiding them altogether. They will also need
to be reassured that proposed remedies will be effective or, in some cases,
that all is well with the system and that only minor changes are needed
to ensure that performance needs are met. Where third-party subsys-
tems, platforms, and hardware are involved, the performance engineer
should take the initiative to provide recommendations about the perfor-
mance requirements of those subsystems and explain how they support
the overall performance needs of the system. The performance engineer
may also have to understand and explain the limitations of those third-
party elements, so as to avoid specifying requirements that are infeasible
with the technology available. Moreover, the performance engineer may
be asked to assist management in negotiations with third-party suppli-
ers to ensure that performance needs are met.

Working with Stakeholders to Learn, Influence350

It is essential for the performance engineering team to have a solid
relationship with management, because management will frequently
have to give the performance engineer a visible mandate to spend time
with other stakeholders to ensure that the performance needs of the
systems are met. One reason for this is that stakeholders may feel too
preoccupied with features and deliverables to be concerned about per-
formance. Another reason is that stakeholders may fear that a perfor-
mance engineer’s role is to apportion blame for why a system is failing
to meet performance expectations. The managers and performance
engineering team can help to create an atmosphere in which all are try-
ing to solve a problem and all are part of the solution.

14.4.3.3  Requirements Engineers

Every functional requirement has a performance impact or a performance
need, whether or not these have been specified. Similarly, every perfor-
mance requirement will have an impact on the functioning of a system,
on the system’s effectiveness and usability from a customer standpoint,
and, in the case of commercial systems, on the system owner’s competi-
tiveness. Each organization may have its own preferences about whether
every functional requirement should have its own performance require-
ment, or about whether performance requirements should be presented
separately. Either way, it may be fruitful for the performance engineering
team and the requirements engineering team to coordinate their efforts
by storing both sets of requirements in a common requirements manage-
ment system and by ensuring that performance requirements are man-
aged using the same processes and functional requirements. These
processes include requirements elicitation, review, and change control.
Using common terminology to describe, evaluate, and write functional
and performance requirements will facilitate this. That is the reason that
the chapters on performance requirements in this book use the terminol-
ogy and evaluation criteria that are listed in [IEEE830].

14.4.3.4  Designers and Developers

Designers and developers often intimately know the inner workings of
the pieces of the system for which they are responsible. They will be
able to tell the performance engineer about algorithms that are inher-
ently inefficient, the use of single threading in a way that impedes the
exploitation of parallel processors, and implementations that conform
to known antipatterns. They may also describe scheduling rules that
either they or the performance engineer may recognize as leading to

14.4  Influencing the Performance Story 351

deadlock, other concurrency issues, or increased response times.
Discussions with developers may help the performance engineer iden-
tify suggestions for improvement and give some idea of the effort
needed to implement them to other stakeholders.

Developers and designers, among others, may resist involvement
with performance engineering efforts because of the fallacious myth that
code optimization is evil. As pointed out by Hyde [Hyde2009], early
software performance engineering is not the same thing as (allegedly)
evil premature code optimization. This is part of a description imputed
to Knuth but apparently due to Hoare. Indeed, Hyde points out that
Hoare was actually advocating early attention to performance considera-
tions in software design (italics added), and that the “evil” was devoting
time to micro-optimization of code rather than to designing algorithms
for performance. Hyde argues, moreover, that the quotation is greatly
responsible for the attitude that performance problems can be solved
after the system is built. The point to be shared with developers and oth-
ers, then, is that careful attentiveness to the performance aspects of algo-
rithms, architecture, coding, and design is essential to assuring the
performance of the system. The performance of the system can seldom
be radically improved once the system is built, because most perfor-
mance problems have their roots in incorrect architecture and design.

14.4.3.5  Functional Testers and Performance Testers

Insights into program performance might be gained by sensitizing func-
tional testers to its importance and encouraging them to pass their
observations to the performance engineer, the architect, and the func-
tional testing team’s coach if there is one. If a functional tester is manu-
ally conducting a unit test, he or she will instinctively be aware of an
excessive response time and will usually be the first to know about it. In
a start-up or agile environment in which information can be exchanged
quickly, the performance engineer or even the tester can quickly alert
the development team that something is amiss and have the problem
rectified. If unit testing is automated, it might be worthwhile to log the
initiation and completion times of the test if the automated test manager
has that capability. The testers should be encouraged to pass those
results to the performance engineer so that performance problems can
be quickly identified. The long execution time may be due to a configu-
ration issue, or it may be due to a deficiency in the code. Either way,
early intervention may save a lot of aggravation and cost later on. Even
if the development process does not permit rapid intervention—for

Working with Stakeholders to Learn, Influence352

example, if a rigorous waterfall model is in place—there is much to be
gained by logging issues of this nature to facilitate the determination of
the cause of the problem later. This is important because isolating the
cause of a performance issue becomes more difficult (and hence more
costly) as the system becomes more complex and as integration pro-
ceeds. Therefore, there is a tangible business value to having a working
relationship between the performance engineering and functional test-
ing teams. This relationship is particularly valuable in a compartmen-
talized organization in which information does not flow easily between
teams. It is also valuable for enabling the performance testers to use the
functional testers’ scripts and test data to eventually run performance
tests once the functional tests have been run, and for encouraging the
functional testers to make the performance testers and other stakehold-
ers aware of emerging performance issues.

The performance engineer should work with performance testers
to identify the form that the test results should take to facilitate analysis
and debugging. Commercial performance test drivers may already
provide the performance measurements in a form that is susceptible to
analysis, including files containing data from which plots can be gener-
ated automatically. One should verify that the test drivers are config-
ured to generate measurement log files and plots in the desired format
for subsequent analysis. The performance engineer should also ensure
that the performance test plan covers the performance requirements,
and that it is structured in a manner that allows the revelation of hid-
den problems such as software bottlenecks and even configuration
errors. Configuration errors might manifest themselves in the form of
significantly long response times and functional errors. For example, if
the error is the incorrect entry of an IP address, a transaction might fail,
but only after it has repeatedly been attempted because acknowledg-
ments at the transport or application layers have not arrived.

14.4.3.6  User Experience Engineers

The sequence of steps in which a user must navigate through a user
interface may significantly influence or be influenced by the way in
which business logic is implemented. The way graphics are rendered at
the user interface may have real or perceived performance impacts,
and the responsiveness of the business logic under various loads will
influence the user’s perceptions about the system’s effectiveness and
usability. The user experience engineers and the performance engineers
may wish to discuss what response times are attainable and whether
the user interface can be designed to minimize its performance impact
on the business logic of the system. They should discuss whether the

35314.5  Reporting on Performance Status to Different Stakeholders

interface can be designed for performance testability as well as func-
tional testability. In addition, the user experience engineer’s ideas
about desired response times might be taken into account when writ-
ing performance requirements. Finally, one should not forget the cost
of dynamically managing users’ performance expectations through the
use of progress bars and other notifications. These have resource costs
and performance issues of their own.

14.4.3.7  System Administrators and Database Administrators

If a system is already in production, system administrators will be able
to tell you what is being measured at the operating system level, where
the performance data is coming from, and with what level of granular-
ity. They will be able to describe how the system has been configured
and, for example, where load is taking place and what procedures are
in place to move data from one disk drive to another as storage capac-
ity limits are approached and when utilizations appear to be high. They
may be the custodians of logs that could give insights into performance-
related system crashes and surges of activity that resulted in increased
delays. This is data that the performance engineer will share with man-
agement when decisions are made about implementing recommenda-
tions for performance improvements. The systems administrators may
also have knowledge about performance complaints that might not
have been logged in a problem tracking system.

14.5  Reporting on Performance Status
to Different Stakeholders

Graphical depictions of data and trends always communicate a perfor-
mance story more effectively than tables of data. Tables of data should
be used for verification purposes and to generate statistical analyses if
necessary. The graphs should be set up to tell stakeholders how the per-
formance of the system evolves during a test run and about the average
values of performance measurements taken over specific periods of
time. Data and modeling predictions can be used to support recommen-
dations in addition to describing the current performance status of the
system and the status of the system before and after various changes
were made. The data and the graphs should be presented in a manner
that enables stakeholders to understand the strong and weak perfor-
mance points of the system and to support recommendations for system
improvement. The specifics of how the story is told and communicated

Working with Stakeholders to Learn, Influence354

depend on the situation and the nature and duration of a performance
engineer’s engagement with the development organization.

A performance engineer should always convey a nonjudgmental
attitude about the quality of the work of the team he or she is support-
ing. On no account should he or she describe a design decision or
architectural decision as silly or sloppy, for example. The emphasis
should always be on helping the team achieve the goal of delivering a
robust, performant system that will meet or exceed perceived customer
expectations, whether these expectations have been carefully
described or not.

14.6  Examples

A performance engineer was once called in to evaluate the performance
of a system that was close to delivery. There were concerns about where
the bottlenecks were and whether the system would support the
desired transaction volume. Measurements that had already been sys-
tematically collected showed high resource utilizations under a load
close to the target load. Response times were higher than desired, yet
processor utilization was below saturation, while I/O utilizations
seemed high but not intolerable. The testing team had also collected
measurements showing that the system spent very small amounts of
time in large numbers of sections of the code, through both profiling
and observing processor utilizations by threads. Thus, the system had
poor locality of reference. The performance engineer and the testing
team put together a quick performance test plan to use the instrumen-
tation in the operating system to measure resource utilizations at loads
of n, 2n, 3n, 4n, and 5n transactions per second. Resource utilizations
were linear in the load, indicating that there was no software bottle-
neck. The cache hit ratio was low. Combining these observations with
the knowledge that the system had poor locality of reference, we came
to the conclusion that the architecture of the system was sound from a
performance standpoint, but that the memory bus and memory cycle
times were degrading performance. The test results were presented
with all stakeholders in the room. Each one was given the opportunity
to relate the observations about the measurements with the parts of the
system he or she knew best, and a course of action was then mapped
out to resolve the problem.

A performance engineer on a prolonged engagement developed
automated testing and analysis tools to provide performance assurance

14.7  The Role of a Capacity Management Engineer 355

of a system with a very large capital cost and with a large number of
use cases. Tightly integrating the use of these tools into the testing and
development processes ensured that performance issues were identi-
fied well before the delivery of each release, thus reducing the risk of
user dissatisfaction while ensuring the timely remedy of performance
issues as they arose. In this case, the performance test results and their
analysis were immediately shared with test engineers, development
managers, and architects to assure timely solutions of the problems
encountered. Presentations containing condensed depictions of the
performance data and what they said about the system were given to
management from time to time, and the full detailed data was shared
with those who were more closely involved with responding to it as
needed.

14.7  The Role of a Capacity Management Engineer

Once a system is in production, its performance and resource utiliza-
tions should be monitored and tracked on an ongoing basis by a capac-
ity planning engineer or by a performance engineer. The capacity
planning engineer has a duty to maintain awareness of how the load
and performance of the system are evolving over time and to motivate
and possibly direct and coordinate system changes to respond to
changing loads. The capacity planning engineer should be informed
well in advance when extra traffic or functionality is to be added, for
example, because of the introduction of a new service, product, or spe-
cial offer. He or she can then plan the procurement and installation of
new hardware and software resources (such as licenses) needed to cope
with the extra demand. Cost-effective procurement requires the addi-
tion of resources commensurate with the new load. The lead time for
the planned addition of new load should take the time to approve pro-
curement requests and product delivery times into account.

The capacity engineer should be sure that the system owner is contin-
ually aware of computer resource usage, lest capacity be taken for granted
and the capacity manager’s role fade into the background. The best way of
doing this depends on the culture of the organization. One way of main-
taining visibility is the timely delivery of reports showing the hourly evo-
lution of traffic demand and resource utilizations over the course of an
entire week, as well as summary reports showing the demand during the
peak hour and the corresponding resource utilizations.

Working with Stakeholders to Learn, Influence356

14.8  Example: Explaining the Role of Measurement
Intervals When Interpreting Measurements

As we discussed in Chapters 8 and 9, the choice of the length of a mea
surement interval plays an important role in how data is interpreted.
Long measurement intervals tend to smooth out the effects of spikes in
measured values such as the CPU utilization, while short ones may
yield graphs that reveal and perhaps exaggerate the importance of very
short spikes. We illustrate how this story can be told to testers and oth-
ers who may be concerned about the high utilizations they have seen.
Figure 14.1 shows a plot of CPU utilization versus time during a per-
formance test run. The system takes about 11 minutes to ramp up, and
then settles down to periodic behavior.

The different curves show the effect of averaging the observed
utilizations in contiguous nonoverlapping groups of one, two, and
ten intervals. The CPU utilization achieves its peak value for very
short amounts of time when the intervals are looked at individually.

0

0:
38

:0
2

0:
39

:1
7

0:
40

:3
7

0:
41

:5
2

0:
43

:1
2

0:
44

:3
2

0:
45

:4
7

0:
47

:0
7

0:
48

:2
2

0:
49

:4
2

0:
50

:5
7

0:
52

:1
7

0:
53

:3
2

0:
54

:5
2

Time Points

%
 P

ro
ce

ss
or

 T
im

e
(A

ll
C

or
es

)

0:
56

:1
2

0:
57

:2
7

0:
58

:4
7

1:
00

:0
2

1:
01

:2
2

1:
02

:3
7

1:
03

:5
7

1:
05

:1
7

1:
06

:3
2

1:
07

:5
2

1:
09

:0
7

1:
10

:2
7

1:
11

:4
7

1:
13

:0
7

10

20

30

40

50

60

70

80

90

100

Original Interval Length Double Interval Length 10 Intervals Combined

Figure 14.1  Processor utilizations with original observations, averages of pairs of
adjacent observations, and averages of groups of ten observations combined

35714.8  Example: Explaining the Role of Measurement Intervals

The peaks are lower and appear to last longer when the intervals are
grouped. The peaks are lower with grouping because the utiliza-
tions were averaged over longer intervals, and they appear to be
longer because the groups of measurement intervals cover longer
time periods. Grouping the intervals masks the peaks. This can be a
disadvantage if we are trying to detect the presence of oscillations as
was discussed in Chapter 8. It can also be an advantage if one is try-
ing to determine the overall average utilizations for capacity plan-
ning purposes and if spikes in delays are not a concern. Figures 14.2,
14.3, and 14.4 show histograms of the distributions of the numbers
of intervals with utilizations at each level. The histograms show that
the distribution of the number of intervals in which the utilizations
achieve specific levels is highly sensitive to their lengths. The wide
variation in distributions and in the frequencies with which the
peaks occur suggests that peak utilizations should be a concern only
when tolerance for variability of the overall response time is very
small, especially when the peaks have short duration and when the
average utilization is a good deal smaller than the peak. It is

0
0 5 10 15 20 25 30 35 40 45 50 55

CPU Utilization Group

F
re

qu
en

cy

60 65 70 75 80 85 90 95 More

20

40

60

80

100

120

Figure 14.2  Histogram showing the distributions of the numbers of intervals with
different measured utilizations

Working with Stakeholders to Learn, Influence358

important that all stakeholders be aware of this so that effort is not
unnecessarily expended on trying to get rid of those peaks. The
peaks may occur when a transaction starts or during a particular
phase of the transaction and are therefore predictable. The absence
of utilization in the presence of load should be a much greater cause
for concern, since it indicates a system malfunction, perhaps due to
an error in concurrent programming such as deadlock.

In this example, the focus of attention was the value of a single
metric, the CPU utilization. The completion times or response times
of the tasks at hand, including those of maintenance tasks running in
the background, should also have been considered in the discussion.
An examination of the response times during the same observation
periods might have revealed that the response times did not reach
intolerable levels even at the desired throughput. In that case, the
variability in the utilizations should not have been of concern. That is
one part of the performance story. Another part of the performance

0
0

2

4

6

F
re

q
u

en
cy

8

10

12

5 10 15 20 25 30 35 40 45 50

CPU Utilization Group

55 60 65 70 75 80 85 90 95 More

Figure 14.3  Histogram showing the distributions of the numbers of pairs of intervals with
different average utilizations

35914.8  Example: Explaining the Role of Measurement Intervals

story that may have been overlooked by stakeholders is that the
choice of measurement granularity and the choice of the length of the
measurement intervals can have a significant impact on one’s view of
the system. This occurs because short intervals might exaggerate the
apparent effect of peak values, while measurement intervals that are
too long might mask them altogether. In this case, the actual measure-
ments and histograms of their values were combined to explain this
point. The lesson to be drawn from this example is that a careful
examination of more than one performance metric and an examin-
ation of the evolution of the metrics over time should be done before
determining that a problem exists whose resolution could require
considerable staffing efforts.

0
0

1

2

3

F
re

q
u

en
cy 4

5

6

7

5 10 15 20 25 30 35 40 45 50

CPU Utilization Group

55 60 65 70 75 80 85 90 95 More

Figure 14.4  Histogram showing the distributions of the numbers of groups of ten intervals
with different average utilizations

Working with Stakeholders to Learn, Influence360

14.9  Ensuring Ownership of Performance Concerns
and Explanations by Diverse Stakeholders

If a sense of ownership of performance is not widespread in a software
organization, it may be necessary for the performance engineer to fos-
ter one so that all stakeholders are sensitive to performance concerns
and adjust their efforts accordingly. Three likely hurdles to this are

•	 A culture in which it is more important to get new features and
functionality out the door than it is to ensure that the existing ones
are fast and reliable

•	 A mistaken belief that performance can be tuned once a system
is built

•	 A mistaken belief that performance is someone else’s concern in
the organization, and that one should focus on one’s own
assigned tasks

The first of these hurdles may be difficult to overcome, unless there
is an emerging social consensus that users prefer having an efficient,
small set of features rather than an overwhelmingly large set of features.
It may be countered by the knowledge that at least one study shows that
poor performance is the biggest risk to a software project [Bass2007].
Overcoming the second hurdle requires the dint of persuasion and
socialization among architects. Empowerment and enabling stakehold-
ers to achieve demonstrable successes may be the best ways to over-
come the third hurdle, especially if the cost of making a system change
and carrying out the testing needed to validate it is not prohibitive.

14.10  Negotiating Choices for Design Changes
and Recommendations for System Improvement
among Stakeholders

Sometimes, there will be resistance to implementing a remedy for a
performance issue on the grounds that it may be too complicated, or
that the implementation may incur a high software risk that can be
mitigated only by subjecting the modified system to extensive regres-
sion testing. Let us return to the museum checkroom example. If the
floor plan and space constraints prevent the implementation of sepa-
rate queues with priority scheduling for those collecting coats to

14.10  Negotiating Choices for Design Changes 361

prevent deadlock, it may be necessary to propose a different remedy
that may reduce the risk of deadlock while not preventing it entirely.

1.	 One alternative method would be to redirect visitors wishing
to leave coats to another checkroom when the number of occu-
pied coat hangers reaches a designated threshold. The hanger
occupancy level at the alternate checkroom should be very low.
Notice that a solution involving the redirection of those collect-
ing their coats is not feasible, since the coats will remain where
they were left. Of course, this proposal means shifting the load
elsewhere. If visitors leaving coats at the second checkroom
and those collecting them go through a common FCFS queue
there, the problem will only be shifted away from the first
checkroom. It will not go away.

2.	 A second alternative method might be to allow the checkroom
attendant to summon those collecting their coats to the head
of the queue when all hangers are occupied. A single queue
can be used to access the checkroom, but there must be a way
to label the visitors wishing to pick up their coats, so that the
attendants can identify them. Moreover, a mechanism must be
devised for the attendants to search for visitors wishing to pick
up their coats, if there are any in the queue. Of course, this will
contribute to the time taken to resume service once deadlock
has occurred.

3.	 A third alternative method might be to do nothing to change
the system. Instead, the owner is supplied with guidelines for
determining the maximum tolerable load at which deadlock is
unlikely, and then sheds any load in excess of that by randomly
refusing to accept coats. This method is not recommended
because controlling the load to prevent traffic spikes is com-
plex and will not change the sequence in which visitors join the
queue or the sequence in which they are served.

Of these alternative solutions, the first simply kicks the problem down
the road. Deadlock occurs because the order in which visitors are
served is independent of the function they wish to perform. The second
method alters the order in which visitors are served only when all the
hangers are full but incurs the additional processing cost of identifying
those visitors wishing to collect their coats. The third method is not a
solution at all, because it will not prevent or resolve deadlock with cer-
tainty even if load is shed when the hanger occupancy is high.

Working with Stakeholders to Learn, Influence362

How might the performance engineer and the stakeholders negoti-
ate among four choices of actions, of which only the potentially most
costly provides a guarantee of deadlock avoidance? The decision should
depend on the risks to the users and other system stakeholders associ-
ated with the occurrence of deadlock and the time to recover from dead-
lock if it occurs. Since the occurrence of deadlock depends on both load
and the sequence in which resource allocations and deallocations occur,
it is difficult to say how frequently deadlock would occur, although the
identification of the operation regions in which it is likely is fairly
straightforward. Unfortunately, even demonstrating the ineffectiveness
of the three alternative methods may not be sufficient to persuade stake-
holders to adopt the most reliable method. The assessment of risk
depends on the nature of the problem domain. The risks associated with
any of the three alternatives might be acceptable in a museum. It is pos-
sible that the risks associated with any of them might not be acceptable
in a mission-critical system. It is quite possible that the risks associated
with any of the three alternatives are acceptable to the supplier, though
perhaps not to the buyer, while the development risk associated with
the deadlock-free method may not be acceptable to the builders and
suppliers of the system, since they must bear the cost of thorough test-
ing and maintenance. In this situation, the performance engineer’s best
course of action may be to provide a clear written assessment docu-
menting the benefits and deficiencies of each method, being careful to
explain the risks associated with the occurrence of deadlock, the circum-
stances under which it is likely to occur, and the time taken to recover
from it. This will at least ensure that all stakeholders are aware of the
consequences of any of the choices considered, even if the best one is not
used. The report will also provide evidence that the performance engi-
neer has exercised due diligence in this matter.

14.11  Summary

In many ways, the practice of performance engineering is like resolv-
ing the story of the three blind men and the elephant. One man touched
the elephant’s tail and said an elephant was like a rope. One touched
the elephant’s leg and said it was like a tree. Another touched the ele-
phant’s trunk and said it was a like a snake. All three men were correct,
but none on his own could fully describe the elephant. One must com-
municate with multiple stakeholders to gain a solid idea of a system’s

14.12  Exercises 363

purpose, architecture, and function. Depending on the position of the
system in the software lifecycle, one must also elicit performance
requirements, carefully gather and interpret performance measure-
ments, build models to make performance predictions, and effectively
communicate one’s understanding of the results to influence the deci-
sions that will be made about the architecture of the system, how much
load it can support, and changes that could or must be made to the
system to improve its performance. All of this must be achieved with
the cooperation of a diverse set of stakeholders. These stakeholders
usually possess the information needed to understand a system. They
sometimes have the ability to influence the decisions that might be
made to implement recommendations provided by the performance
engineer, often based on their input.

14.12  Exercises

14.1.	 The state of Catawba has its own successful health insurance
exchange as authorized by the Affordable Care Act. Catawba
decides to offer a state-subsidized dental insurance scheme to
senior citizens who do not have other coverage, because pub-
licly insured dental care is not provided by their government-
run insurance plans. You are a performance engineer who has
been called in by the Catawba health department to advise
on ensuring the performance of the system with the added
workload.

(a)	 Describe a general high-level plan for a performance pro-
cess to ensure the smooth introduction of a web-based
scheme for applying for the new dental insurance scheme.
Your plan should include steps for baselining the load and
performance of the existing system, estimating the system
demand of the new service, and ensuring the performance
of the new service on the same platform as the existing ser-
vices. Do you need to conduct a full performance study of
the existing system before you proceed? Explain.

(b)	 Identify those parts of your plan that can be executed
regardless of changing rules, functional requirements, and
changing performance requirements.

(c)	 Identify those parts of your plan that depend on changing
functional and performance requirements.

Working with Stakeholders to Learn, Influence364

(d)	Devise an outline for a project plan for performance assur-
ance of the new exchange system and identify the stakehold-
ers you must work with from inception to the introduction
of the service. The outline should be quite general. It may be
needed subsequently, as indicated in the next item.

(e)	 Two years after the extension of dental care to seniors, the
Catawba state legislature decides to offer dental insurance
to Medicaid recipients as well (Medicaid is a health cover-
age scheme for the poor below retirement age). Explain how
your responses to questions (a)–(d) can be extended to sup-
port this. Identify the stakeholders involved and make the
case for your participation in this extension from inception
through development, testing, and production.

(f)	 Make the case for developing a performance test plan for
this system. Identify the ranges of workloads that the test
plan should cover.

14.2.	 A university hosts a department of archaeology, a department
of natural history, and a medical school. The three faculties
decide to jointly produce an openly accessible, widely adver-
tised online archive to display documents and images of their
holdings, including static medical images of archaeological
and zoological artifacts. The system will also contain links to
the catalog of the university’s library so that one can research
related holdings. The system will be built by the university’s
IT department with occasional assistance from the computer
science department. Funding will be provided by the national
government and private foundations. Quick response times
are an explicitly but vaguely stated condition for funding. As
a performance engineer, you have been asked to join the team
that will design and build this system.
(a)	 Explain why you would have liked to be part of the team

that wrote the grant proposal and negotiated the statement
of work with the funding agency. Your audience consists of
a committee including the head of the office that manages
government funding for the university, the heads of the
three departments, the head of the library’s IT department,
and the head of the university’s IT department. Make the
case for being part of such an effort in the future.

(b)	Since the demand for the system is unknown, the architec-
ture of the system will have to be scalable either upward or
downward. Before you write performance requirements,

14.12  Exercises 365

prepare a written list of questions for discussions with the
system architect about how the system might be built to
cope with unpredictable demand in a cost-effective and eas-
ily administrable manner. Bear in mind that one of your
objectives is to guide the architect in the formulation of a
request for tender for equipment and software (and possi-
bly hosting) to meet the need for flexible sizing.

(c)	 Identify the stakeholders who have an interest in response
time requirements. Explain the possible range of resource
requirements and time needed for the delivery of images
and captions. What kinds of activities should the response
times include? At what points in the delivery chain does a
response time begin and end? How will you negotiate
response time budgets with the various stakeholders?

14.3.	 A large manufacturer of automated industrial equipment will
demonstrate its technical prowess to the public by hosting a
tent at the 210th anniversary of a beer festival in 2020. The tent
will feature the automated dispensing and delivery of differ-
ent varieties of beer and other drinks to customers seated at
up to ten tables. Each place at the tables will be uniquely num-
bered and equipped with a radio-frequency identification chip
(RFID). The system will also automatically prepare and deliver
sausages and other traditional foods. Delivery will be in closed,
uniquely identified containers via a combination of conveyor
belts and cable cars suspended from the ceiling of the tent.
Order entry and payment will be via apps in customer-owned
handheld devices and via touchscreens that are permanently
mounted at the tables. The devices will communicate with the
order entry system via a dedicated Wi-Fi. Customers will return
used containers to one or more drop-off points from which the
containers will be sent to a station for washing and reuse. The
dispensing of beer will be done in glassed-in areas that are vis-
ible to the customers. Since the late delivery of beer and the
delivery of cold sausages will lead to bad publicity, a perfor-
mance engineer has been recruited to work on the project.
(a)	 Identify possible key components of this system and their

potential load drivers.
(b)	Outline the performance requirements of a system that texts

order status messages to the customers.
(c)	 Identify the stakeholders in the key components of the sys-

tem and their potential customers. Describe how you would

Working with Stakeholders to Learn, Influence366

outline a performance engineering process for each compo-
nent. Briefly describe the workloads and the nature of the
performance requirements for each one, including the cable
car system and the conveyor system. Be prepared to discuss
the impacts of the workloads and performance require-
ments with architects, developers, and testers. Do not forget
alarm handling capabilities.

(d)	Explain the advantages of prototyping the system with a
single table from a performance standpoint.

(e)	 Since the beer festival is a few years off, explain how your
performance process would cope with changes in technol-
ogy for order entry and payment occurring up to a year
before the festival starts.

(f)	 During performance testing, it is observed that the time
from order entry to the delivery of beer is exceedingly slow,
even when only two people are sitting at a single table.
Describe a test and measurement plan for determining
whether the cause of the problem is in the order entry sys-
tem, the delivery system, or elsewhere.

367

Chapter 15

Where to Learn More

Although computer technology has changed rapidly, the basic prin-
ciples of performance engineering have changed little. Rather than
focusing on specific technologies and computer architectures, we have
sought to acquaint the reader with basic performance engineering
principles related to measurement, performance testing, performance
requirements engineering, performance modeling, and the link
between these and scalability. We have not written about the prin-
ciples of statistics that can be applied, as these are well documented in
other texts. Moreover, we have not covered the application of perfor-
mance engineering techniques to every conceivable problem domain
or operating environment. These environments changed rapidly while
the book was being written and will continue to do so. In this chapter
we introduce the reader to texts that cover queueing theory, statistics,
and simulation and point the reader to papers and books that cover
specialized topics in performance engineering. In doing so, we hope to
acquaint the reader with the mindset needed to deal with the perfor-
mance aspects of new technologies and system architectures as they
arise.

15.1  Overview

Performance engineering is a rich area that uses techniques, tools, and
disciplines from many different fields, depending on the nature of the
problem at hand. In this book we have shown how basic performance

Where to Learn More368

modeling can inform thinking about performance and functional test-
ing, scalability, architecture, performance requirements, and the defi-
nition and identification of workloads. The disciplines on which
performance engineering draws include, but are not limited to, operat-
ing systems principles, computer architecture, statistics, and various
techniques used in operations research, such as discrete event simula-
tion and optimization. Discrete event simulation is particularly useful
for modeling scheduling rules that cannot be modeled simply with
analytical queueing models. Optimization techniques can be applied to
a wide variety of problems, including deciding how to allocate load
among various servers. In this chapter we point to sources for informa-
tion on topics related to performance engineering that we have not dis-
cussed in depth or that we have only mentioned in passing. Many of
the references we mention here have also been mentioned earlier in
this book, while some have not.

Conference proceedings and journals can be used to track how the
field is evolving and to find information about questions that may have
already been addressed by others. There are a number of books that
focus on the application of methods from statistics and operations
research to performance engineering, as well as books containing chap-
ters that address specialized topics such as databases, networking, and
performance issues in concurrency.

Performance evaluation has a long and rich history going back to
the 1960s. Many of the issues one encounters in computer systems
today have analogies to problems that have been encountered before.
Some of the issues, such as those related to memory management, con-
currency control, and scheduling, keep reappearing in various guises,
even though the technology on which they are run or the programming
languages and environments in which they occur have changed.

The reader should not view a reference with skepticism or disdain
merely because it is “old.” It might still be relevant. The early work on
computer performance evaluation and modeling was done by practi-
tioners and researchers trained in such disciplines as operations
research, physics, mathematics, and statistics. Related work on queue-
ing theory, including models of systems that lose calls, goes back to the
1920s. Moreover, computer performance modeling problems often
have analogies in manufacturing and other areas usually addressed by
operations research or industrial engineering. For example, the first
product form closed queueing network model was used to model carts
in a coal mine in the 1950s [Koenigsberg1958]. Similar models have
been applied to flexible manufacturing systems [VinSol1985] and to

15.2  Conferences and Journals 369

computer systems [Buzen1973]. A performance engineer should be
open to exploring these, too. While the examples in books and the
applications in papers reflect the technology of the times in which they
were written, many of the principles and much (but not all) of the
mathematics they describe have remained the same.

Because it is not feasible to prepare a complete list of articles and
books related to computer performance evaluation and engineering,
the reference list at the end of the book and the material cited here
should be regarded as only a starting point for further investigation.

In the next section we refer the reader to conferences and journals
containing articles that are particularly relevant to the subject of this
book. In subsequent sections we introduce the reader to books and
other references in various related subject areas, including performance
analysis, queueing theory, statistics, discrete event simulation, and
performance tuning.

15.2  Conferences and Journals

There are a number of conference proceedings and journals that are
focused on performance-related topics.

The Computer Measurement Group (CMG, www.cmg.org) hosts a
series of conferences that cover a very broad range of performance-
related topics. Much of their emphasis is on the application of measure-
ment techniques to systems on a variety of platforms and applications,
including commercial and open-source databases and cloud-based
applications. Capacity planning issues receive a lot of attention here.
The subtitle of the group’s 2013 conference was “Measuring the Impact
of Virtualization, Cloud, and Big Data.” The conference also hosts
exhibits by vendors of software of interest to those working in perfor-
mance evaluation, such as modeling and measurement tools. Regional
groups provide a forum for the discussion of performance topics of
local interest. CMG also issues a periodical containing articles address-
ing practical problems in performance engineering.

The Standard Performance Evaluation Corporation (SPEC, http://
spec.org) is devoted to the development and maintenance of standard-
ized benchmarks whose performance can be evaluated on a variety of
platforms. At the time of writing, it hosts a research group, an open
systems group, a high-performance computing group, a graphics and
workstation performance group, and several project groups.

../../../../../www.cmg.org/default.htm
../../../../../spec.org/default.htm
../../../../../spec.org/default.htm

Where to Learn More370

The Association for Computing Machinery’s Special Interest
Group on Performance Evaluation, known as SIGMETRICS (www.
sigmetrics.org), is devoted to topics in performance measurement
and modeling. It sponsors an annual conference and issues several
editions of a bulletin, Performance Evaluation Review, each year.
Together with its sister special-interest group on software engineer-
ing, ACM SIGSOFT, it has sponsored workshops focused on software
aspects of performance known as the Workshop on Software and
Performance (WOSP).

In 2010, WOSP and SPEC held their first jointly organized confer-
ence on performance engineering, known as the International
Conference on Performance Engineering (ICPE). These are the URLs of
the 2013 and 2014 conferences respectively: http://icpe2013.ipd.kit.
edu/ and http://icpe2014.ipd.kit.edu/. (Disclosure: The author of the
present volume currently serves as the chairman of the steering com-
mittee of WOSP.)

The journal Performance Evaluation contains many articles on math-
ematical models to predict the performance of various types of systems,
protocols, and scheduling rules. Articles on topics related to perfor-
mance can also be found in such journals as the IEEE Transactions on
Software Engineering, the Journal of the Association for Computing
Machinery (JACM), Communications of the Association for Computing
Machinery (CACM), Computers and Operations Research, and many
others.

15.3  Texts on Performance Analysis

The present volume emphasizes the relationship between performance
engineering and various stages in the software lifecycle. We have
shown that there are relationships between the properties of basic per-
formance models, performance requirements, the results of perfor-
mance tests, and scalability. Prior authors have taken complementary
approaches and cover different ground. The following descriptions
should be seen as a starting point for further study. This is not a com-
plete list, nor are the descriptions complete.

Neil Gunther’s The Practical Performance Analyst describes more
queueing models than we have here. The book also contains studies of
transient behavior in packet switches and circuit switches. There is a

../../../../../www.sigmetrics.org/default.htm
../../../../../www.sigmetrics.org/default.htm
../../../../../icpe2013.ipd.kit.edu/default.htm
../../../../../icpe2013.ipd.kit.edu/default.htm
../../../../../icpe2014.ipd.kit.edu/default.htm

15.3  Texts on Performance Analysis 371

great deal of mathematical analysis of various properties of queueing
systems, and applications of performance evaluation techniques to
client/server systems and other topics [Gunther1998].

David Lilja’s Measuring Computer Performance [Lilja2000] contains a
detailed discussion on performance metrics, together with applications
of statistics to performance engineering. In addition, there are chapters
on errors in measurement, simulation modeling and analysis, bench-
marking techniques, and basic statistical methods for analyzing
measurements.

In Performance Solutions, Smith and Williams explore such topics as
the application of UML to performance engineering, execution models
(which can be used for performance budgeting, among other activities),
distributed web-based applications, and embedded systems. Their
book also contains an extensive discussion of performance patterns
and performance antipatterns [SmithWilliams2001].

Quantitative System Performance by Lazowska et al. is an extensive
description of the state of the art in performance evaluation as it stood
when the book first appeared. In addition to discussing basic perfor-
mance models, the book has extensive descriptions of approximate
models of local area networks and I/O systems with control chan-
nels. These topics are worth exploring, because they deal with such
issues as the simultaneous possession of resources (e.g., I/O channels
and read/write disk head) that one might encounter today when
modeling the simultaneous possession of nested software locks
[LZGS1984].

The Art of Computer Systems Performance Analysis by R. K. Jain covers
many aspects of probability theory, statistics, queueing theory, mod
eling, experimental design, and simulation that we have not covered
here [Jain1991].

For recent information on performance benchmarking, the reader is
referred to the proceedings of the 2009 SPEC Benchmark Workshop
[KS2009] and the book edited by John and Eeckhout [JE2006].

Performance Modeling and Design of Computer Systems: Queueing
Theory in Action, by Mor Harchol-Balter, contains a comprehensive sur-
vey of queueing theory and probability theory applied to performance
modeling. In addition to covering queueing systems in equilibrium,
Harchol-Balter covers recent topics such as the influence of high vari-
ability and probability distributions with heavy tails on the perfor-
mance of web-based systems. The book also addresses performance
issues in large-scale server farms [HarcholBalter2013].

Where to Learn More372

15.4  Queueing Theory

The literature in queueing theory is too rich for us to go into in
detail here. Classical texts on queueing theory include Queues by
Cox and Smith [CoxSmith1961], Introduction to Queueing Theory by
Cooper [Cooper1981], and the two volumes by Kleinrock, Queueing
Systems, Volume 1: Theory [Kleinrock1975] and Queueing Systems,
Volume 2: Applications [Kleinrock1976]. Books on specialized topics
in queueing theory abound. For example, queueing models of vari-
ous complex systems are explored in [Neuts1981], and queues with
customers who give up queueing and retry later are explored in
[FaTemp1997].

15.5  Discrete Event Simulation

In Chapter 3 we showed how basic queueing models could be used to
predict the average performance measures of computer systems under
a fairly restricted set of conditions. Those models are analytic queueing
models. In analytic queueing models, the performance predictions are
based on computations of the values of closed form expressions or on
algorithms for solving sets of equations. By contrast, discrete event
simulations are computer programs that mimic the logic of scheduling,
event handling, and routing combined with scheduled arrivals and
service times to estimate performance. Arrivals, service completions,
and routing decisions occur based on the values of variables whose
values are generated using pseudo–random numbers. Discrete event
simulations can be used to investigate the evolution of system perfor-
mance over time based on decision logic and scheduling rules that may
be more complicated and less restrictive than the assumptions that
underlie analytical performance models. Simulations can also be driven
by traces of time-stamped events that have been recorded in a log to
determine resource utilizations, response times, and the like. They can
also be used to determine the operating conditions under which unde-
sirable behaviors such as deadlocks occur.

While analytical models are usually used to predict average perfor-
mance, simulation models can be used to investigate transient effects
such as the buildup in resource utilization when load generation starts
and the buildup in queues and the decline in utilizations that occur

15.6  Performance Evaluation of Specific Types of Systems 373

when part of a system goes into deadlock. Discrete event simulations
can be combined with the numerical solution of differential equations
to predict system behavior in the presence of complex phenomena
[Pritsker1986]. The choice of parameters and statistical distributions to
model the scheduling of events is called input analysis. The analysis of
the simulation results is called output analysis. Both involve the use of
common statistical methods for fitting model parameters, the planning
of experiments, and the statistical analysis of the simulation outputs.
Techniques for programming simulations are described in several texts,
including [Pritsker1986] and [LawKelton1982]. Essential methods for
the analysis of simulation data and modeling are given in
[LawKelton1982] and [Fishman2001].

The statistical methods used to plan simulation studies and their
outputs are also applicable to the planning and analysis of performance
tests. The planning of experiments can be used to reduce the variance
in the experimental output so that the underlying factors causing par-
ticular performance properties can be more easily identified.
Commercial and open-source packages exist to support simulations.
The development of basic simulation tools for generating random vari-
ates, scheduling events, and gathering statistics on utilizations, queue
lengths, and response times can be done as an assignment in a univer-
sity course.

15.6  Performance Evaluation of Specific Types of
Systems

As we mentioned previously, the examples in books on performance
evaluation and queueing theory are usually related to technologies that
are of interest at the time of writing. The present volume concerns gen-
eral principles, software engineering aspects, and foundations of per-
formance engineering. Conference papers, journal articles, and other
books may cover types of systems of particular interest that we have
not covered here. For example, performance aspects of cloud and enter-
prise computing are specifically addressed in [Gregg2013], and server
farms are addressed in [HarcholBalter2013]. Capacity planning, basic
modeling, and examples related to e-business are described in
[MenasceAlmeida2000], and capacity planning and modeling for web
services are described in [MenasceAlmeida2002].

Where to Learn More374

15.7  Statistical Methods

Performance engineers draw on statistical and operations research
methods that are essential to any quantitative study. We have not
covered them in detail in this book because they are well documented
in many of the texts already cited.

Standard spreadsheet packages such as Microsoft Excel contain
standard statistical analysis tools. Readers wishing to understand the
basis of statistical methods such as linear regression and the fitting of
distributions may wish to begin by consulting [VenRip2002], which dis-
cusses the underlying principles as well as their application using statis-
tical tools such as S and R. R is widely available. In particular, linear
regression analysis should be used to fit equations to obtain service
times from measured resource utilizations when the throughputs are
known and the relationship between the throughputs and utilizations
appears to be linear up to the point of saturation. Thus, regression analy-
sis can be used to fit the values of the products ViSi using observed utili-
zations, observed throughputs, and the Utilization Law, =U X V Si i i0 .

The methods of experimental design may be used to plan perfor-
mance tests and modeling studies. When confronted with a large num-
ber of factors and a complicated parameter space for performance
testing and modeling, fractional designs can be used to choose a perti-
nent subset of the parameter space for measurement and analysis
[AndersonMcLean1974].

Standard methods of experimental design are not the only methods
one might use to plan performance tests. Avritzer and Weyuker advo-
cate selecting the parameters of performance tests based on a Markov
chain representation of the states a system may enter [AvWey1995],
with the aim of finding performance issues while the system is in each
state or each group of states.

15.8  Performance Tuning

The focus of this book is foundations and principles of software and
systems performance engineering. We have not devoted much space
to the performance tuning of types of architectures or of specific soft-
ware platforms because new ones emerge frequently while new
releases of existing ones may change how they behave and how they
should be configured. There are performance tuning books on Java

15.9  Summary 375

[CockcroftPettit1998], Oracle databases [AKP2013], Sun-based systems
[CockcroftPettit1998], the cloud [Gregg2013], Network File System
(NFS) [Olker2002], and many other topics that are too numerous to list
here. Their contents should be regarded as complementary to the basic
performance engineering principles we have presented in this volume.
We should also reiterate that performance tuning will not compensate
for the inadequacies inherent in a poorly conceived performance
architecture.

15.9  Summary

Software and system performance engineering encompass many disci-
plines. New performance issues arise as technology changes, yet the
underlying principles of measurement and analysis remain unchanged.
Performance issues that were identified and studied many years ago
will continue to recur in different guises. The literature we have cited
in this chapter and elsewhere in this book covers operating systems
principles, performance engineering, database design, queueing the-
ory, statistics, simulation, operations research, and requirements engi-
neering among many others. The author has used all of these disciplines
and more to assure the sound performance of the systems on which he
has worked. It is hoped that the reader will be able to do likewise.

This page intentionally left blank

377

References

[AIPWEBSITE] Heisenberg’s Uncertainty Principle paper, quoted at www.aip.org/
history/heisenberg/p08.htm.

[AKP2013] Alapati, S., P. Kuhn, and B. Padfield. Oracle 12c Performance Tuning Recipes:
A Problem Solving Approach. APress, 2013.

[AlmesLaz1979] Almes, G. T., and E. D. Lazowska. The behavior of Ethernet-like com-
puter communications networks. Technical Report no. 79-05-01, Department of
Computer Science, University of Washington, April 1979.

[AlmesLazowska1982] Almes, G. T., and E. D. Lazowska. The behavior of Ethernet-like
communication networks. ACM SOSP ’79, Proceedings of the Seventh ACM Sympo-
sium on Operating Systems Principles, 66–81, 1979.

[AndersonMcLean1974] Anderson, V. I., and R. A. McLean. Design of Experiments:
A Realistic Approach. Marcel Dekker, 1974.

[ARSTECHNICA2012]   http://arstechnica.com/science/2012/06/faster-than-light-
neutrino-findings-really-thoroughly-dead/.

[AvBon2012] Avritzer, A., and A. B. Bondi. Resilience assessment based on performance
testing. In Resilience Assessment and Evaluation of Computing Systems, edited by K.
Wolter, A. Avritzer, M. Vieira, and A. van Morsel. Springer, 2012.

[AvBonWey2005] Avritzer, A., A. B. Bondi, and E. Weyuker. Ensuring stable perfor-
mance for smoothly degrading systems. Proc. 5th International Workshop on Software
and Performance (WOSP 2005), Palma, Spain, 2005.

[AvColeWey2007] Avritzer, A., E. Weyuker, and R. G. Cole. Using performance signa-
tures and software rejuvenation for worm mitigation in tactical MANETs. Proc.
6th International Workshop on Software and Performance (WOSP 2007), Buenos Aires,
Argentina, 172–180, 2007.

[AviHey1973] Avi-Itzhak, B., and D. P. Heyman. Approximate queueing models for
multiprogramming computer systems. Operations Research 21 (1), 1212–1230, 1973.

[AvTanJaCoWey2010] Avritzer, A., R. Tanikellea, K. James, R. G. Cole, and E. Weyuker.
Monitoring for security intrusion using performance signatures. Proc. First Joint
WOSP/SIPEW International Conference on Performance Engineering 2010, San Jose,
California, 93–104, 2010.

[AvWey1995] Avritzer, A., and E. Weyuker. The automatic generation of load test suites
and the assessment of the resulting software. IEEE Trans. Softw. Eng. 21 (9),
705–716, 1995.

[AvWey1999] Avritzer, A., and E. Weyuker. Deriving workloads for performance
testing. Software: Practice and Experience 26 (6), 613–633, 1999.

../../../../../www.aip.org/history/heisenberg/p08.htm
../../../../../www.aip.org/history/heisenberg/p08.htm
../../../../../arstechnica.com/science/2012/06/faster-than-light-neutrino-findings-really-thoroughly-dead/default.htm
../../../../../arstechnica.com/science/2012/06/faster-than-light-neutrino-findings-really-thoroughly-dead/default.htm

References378

[Bass2007] Bass, Len, Robert L. Nord, William Wood, and David Zubrow. Risk themes
discovered through architecture evaluations. WICSA 2007, Mumbai, India, January
2007.

[BCM2004] Blackburn, S. M., P. Cheng, and K. S. McKinley. Myths and realities: The
performance impact of garbage collection. Proc. ACM SIGMETRICS 2004, 25–36,
2004.

[BCMP1975] Baskett, F., K. M. Chandy, R. R. Muntz, and F. Palacios. Open, closed, and
mixed networks of queues with different classes of customers. JACM 22 (2),
248–260, 1975.

[BhatMiller2002] Bhat, U. N., and G. K. Miller. Elements of Applied Stochastic Processes.
Wiley-Interscience, 2002.

[Boehm1988] Boehm, B. A spiral model of software development and enhancement.
IEEE Computer 21 (5), 61–72, 1988.

[Bok2010] Bok, Derek. The Politics of Happiness: What Government Can Learn from
the New Research on Well-Being. Princeton University Press, 2010.

[Bondi1989] Bondi, A. B. An analysis of finite capacity queues with common or reserved
waiting areas. Computers and Operations Research 16 (3), 217–233, 1989.

[Bondi1992] Bondi, A. B. A study of a state-dependent job admission policy in a
computer system with restricted memory partitions. Performance Evaluation 15 (3),
133–153, 1992.

[Bondi1997a] Bondi, A. B. A model of the simultaneous possession of agents and trunks
with automated recorded announcement. In Proc. ITC15, edited by V. Ramaswami
and P. E. Wirth, 1347–1358. Elsevier, 1997.

[Bondi1997b] Bondi, A. B. A non-blocking mechanism for regulating the transmission
of network management polls. Proc. ISINM97, 565–580, San Diego, California,
May 1997.

[Bondi1998] Bondi, A. B. Network management system with improved node discovery
and monitoring. US Patent No. 5710885, issued January 20, 1998.

[Bondi2000] Bondi, A. B. Characteristics of scalability and their impact on performance.
Proc. 2nd International Workshop on Software and Performance (WOSP 2000), Ottawa,
Canada, 195–203, September 2000.

[Bondi2007a] Bondi, A. B. Automating the analysis of load test results to assess the scal-
ability and stability of a component-based SOA-based system. Proc. CMG 2007,
San Diego, California, December 2007.

[Bondi2007b] Bondi, A. B. Experience with incremental performance testing of a sys-
tem based on a modular or service-oriented architecture. Proc. ROSATEA, Medford,
Massachusetts, July 2007.

[BondiBuzen1984] Bondi, A. B., and J. P. Buzen. The response times of priority classes
under preemptive resume in M/G/m queues. Proc. ACM SIGMETRICS 1984,
195–201, 1984.

[BondiJin1996] Bondi, A. B., and V. Y. Jin. A performance model of a design for a mini-
mally replicated distributed database for database-driven telecommunications
services. Distributed and Parallel Databases 4, 295–317, 1996.

[BondiRos2009] Bondi, A. B., and J. Ros. Experience with training a remotely located
performance test team in a quasi-agile global environment. Proc. International
Conference on Global Software Engineering, Limerick, Ireland, July 2009.

References 379

[BondiWhitt1986] Bondi, A. B., and W. Whitt. The influence of service-time variability
in a closed network of queues. Performance Evaluation 6, 219–234, 1986.

[BOP1994] Brakmo, L. S., S. O’Malley, and L. L. Peterson. TCP Vegas: New techniques
for congestion detection and avoidance. Proc. ACM SIGCOMM 1994, 24–35, 1994.

[BPKR2009] Berenbach, B., D. Paulish, J. Kazmeier, and A. Rudorfer. Software & Systems
Requirements Engineering in Practice. McGraw-Hill, 2009.

[Browne1981] Browne, J. C. Designing systems for performance. Keynote address,
ACM SIGMETRICS Conference, Las Vegas, Nevada, 1981. Performance Evaluation
Review 10 (1), 1, 1981.

[BruellBalbo1980] Bruell, S. C., and G. Balbo. Computational Algorithms for Closed Queue-
ing Networks. North-Holland, 1980.

[BSA2005] Bondi, A. B., C. S. Simon, and K. W. Anderson. Bandwidth usage and net-
work latency in a conveyor system with Ethernet-based communication between
controllers. Proc. IEEE PacRim 2005, Victoria, BC, August 2005.

[Burleson2002] Burleson, D. K. ORACLE9i High Performance Tuning with STATSPACK.
Oracle Press/McGraw-Hill, 2002.

[Bush2007] Remarks by President Bush to the Naval War College, June 28, 2007. www
.prnewswire.com/cgi-bin/stories.pl?ACCT=104&STORY=/www/story/06-28-2007/
0004617850&EDATE=.

[Bux1981] Bux, W. Local area subnetworks: A performance comparison. IEEE Trans.
Communications COM-29, 1645–1673, 1981.

[Buzen1973] Buzen, J. P. Computational algorithms for closed queueing networks with
exponential servers. Communications of the ACM 16, 527–531, 1973.

[BuzenBondi1983] Buzen, J. P., and A. B. Bondi. The response times of priority
classes under preemptive resume in M/M/m queues. Operations Research 31 (3),
456–465, 1983.

[Carr2013] Carr, D. Obamacare insurance exchange websites: Tech critique. Information
Week, October 3, 2013. www.informationweek.com/healthcare/policy/obamacare-
insurance-exchange-websites-te/240162176?queryText=Affordable%20Care%20Act.

[CLGKP1994] Chen, P. M., E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson.
RAID: High-performance, reliable secondary storage. ACM Computing Surveys 26
(2), 145–186, 1994.

[Cobham1955] Cobham, A. Priority assignment—a correction. Operations Research
3, 547, 1955.

[CockcroftPettit1998] Cockcroft, A., and R. Pettit. Sun Performance and Tuning: Java and
the Internet, Second Edition. Sun Microsystems Press/Prentice Hall, 1998.

[CoffDenn1973] Coffman, E. G., and P. J. Denning. Operating Systems Theory. Prentice
Hall, 1973.

[Cooper1981] Cooper, R. B. Introduction to Queueing Theory, Second Edition. Elsevier/
North-Holland, 1981.

[CoxSmith1961] Cox, D. R., and W. Smith. Queues. Methuen, 1961; reprinted by Chap-
man and Hall, 1971, and CRC Press, 1999.

[CRPH2010] Cacéres, J., L. M. Vaquero, L. Rodero-Merino, A. Polo, and J. J. Herro. Scal-
ability over the cloud. In Handbook of Cloud Computing, edited by B. Fuhrt and
A. Escalante, 357–377. Springer, 2010.

../../../../../www.prnewswire.com/cgi-bin/stories.pl@ACCT=104&STORY=_2Fwww_2Fstory_2F06-28-2007_2F0004617850&EDATE=
../../../../../www.prnewswire.com/cgi-bin/stories.pl@ACCT=104&STORY=_2Fwww_2Fstory_2F06-28-2007_2F0004617850&EDATE=
../../../../../www.prnewswire.com/cgi-bin/stories.pl@ACCT=104&STORY=_2Fwww_2Fstory_2F06-28-2007_2F0004617850&EDATE=
../../../../../www.informationweek.com/healthcare/policy/obamacareinsurance-exchange-websites-te/240162176@queryText=Affordable%20Care%20Act
../../../../../www.informationweek.com/healthcare/policy/obamacareinsurance-exchange-websites-te/240162176@queryText=Affordable%20Care%20Act

References380

[DDB1981] Denning, P. J., T. Dennis, and J. A. Brumfield. Low contention semaphores
and ready lists. Communications of the ACM 24 (10), 687–699, 1981.

[Denning1980] Denning, P. J. Working sets past and present. IEEE Trans. Softw. Eng.
SE-6 (1), 64–84, 1980.

[DenningBuzen1978] Denning, P. J., and J. P. Buzen. The operational analysis of queue-
ing network models. ACM Computing Surveys 10 (3), 225–261, 1978.

[DGLS1999] Devlin, B., J. Gray, B. Laing, and G. Spix. Scalability terminology: Farms,
clones, partitions, and packs: RACS and RAPS. Technical Report MS-TR-99-85,
Microsoft Research, December 1999.

[Dijkstra1965] Dijkstra, E. W. Solution of a problem in concurrent programming con-
trol. Communications of the ACM 8, 569, 1965.

[Duboc2008] Duboc, L., Letier, E., Rosenblum, D., and Wicks, T. (2008), Case Study in
Eliciting Scalability Requirements, in RE’08: Proceedings of the 2008 16th IEEE
International Requirements Engineering Conference, Barcelona, Spain.

[Duboc2009] Duboc, L. A framework for the characterization and analysis of software
systems scalability. Doctoral thesis, University College London, 2009. Obtainable at
http://discovery.ucl.ac.uk/19413/.

[Eilperin2013] Eilperin, J. CGI warned of HealthCare.gov problems a month
before launch, documents show. Washington Post, October 29, 2013. www
.washingtonpost.com/blogs/post-politics/wp/2013/10/29/cgi-warned-of-healthcare-gov-
problems-a-month-before-launch-documents-show/.

[EMIR2014] www.esma.europa.eu/page/European-Market-Infrastructure-Regulation-EMIR.
[Erlang1917] Erlang, A. K. Solution of some problems in the theory of probabilities of

significance in automatic telephone exchanges. Elektroteknikeren, 13, 1917.
[EysRupp2010] Eysholdt, M., and J. Rupprecht. Migrating a large modeling environ-

ment from XML/UML to Xtext/GMF. Proc. SPLASH 10, 97–103, 2010.
[EZL1989] Eager, D., J. Zahorjan, and E. D. Lazowska. Speedup versus efficiency in

parallel systems. IEEE Trans. on Computers 38 (3), 408–423, 1989.
[FaTemp1997] Falin, G. I., and J. G. C. Templeton. Retrial Queues. Chapman and Hall, 1997.
[FAWOD2009] Franks, G., T. Al-Omari, M. Woodside, O. Das, and D. Derisavi. En-

hanced modeling and solution of layered queueing networks. IEEE Trans. Softw.
Eng. SE-35 (2), 148–181, 2009.

[Fishman2001] Fishman, G. S. Discrete Event Simulation: Modeling, Programming, and
Analysis. Springer Series in Operations Research, 2001.

[Gawande2009] Gawande, Atul. The Checklist Manifesto: How to Get Things Right.
Metropolitan Books, 2009.

[Gregg2013] Gregg, B. Systems Performance: Enterprise and the Cloud. Prentice Hall, 2013.
[Gunther1998] Gunther, N. J. The Practical Performance Analyst. McGraw-Hill/Authors

Choice Press, 1998.
[Habermann1976] Habermann, A. N. Introduction to Operating System Design. SRA, 1976.
[HAKC2013] Hashemian, R., M. Arlitt, D. Krishnamurthy, and N. Carlsson. Improving

the scalability of a multi-core web server. Proc. International Conference on Perfor-
mance Engineering (ICPE2013), Prague, Czech Republic, 161–172, 2013.

[HarcholBalter2013] Harchol-Balter, Mor. Performance Modeling and Design of Computer
Systems: Queueing Theory in Action. Cambridge University Press, 2013.

../../../../../www.washingtonpost.com/blogs/post-politics/wp/2013/10/29/cgi-warned-of-healthcare-gov-problems-a-month-before-launch-documents-show/default.htm
../../../../../www.washingtonpost.com/blogs/post-politics/wp/2013/10/29/cgi-warned-of-healthcare-gov-problems-a-month-before-launch-documents-show/default.htm
../../../../../www.washingtonpost.com/blogs/post-politics/wp/2013/10/29/cgi-warned-of-healthcare-gov-problems-a-month-before-launch-documents-show/default.htm
../../../../../www.esma.europa.eu/page/European-Market-Infrastructure-Regulation-EMIR
../../../../../discovery.ucl.ac.uk/19413/default.htm

References 381

[HeidelbergerTrivedi1982] Heidelberger, P., and K. S. Trivedi. Queueing network mod-
els for parallel processing with asynchronous tasks. IEEE Trans. Comp. C21 (11),
1099–1109, 1982.

[Hilkevitch2013] Hilkevitch, J. New O’Hare runway expected to boost traffic, ease delays.
Chicago Tribune, October 17, 2013. http://articles.chicagotribune.com/2013-10-17/news/
ct-met-ohare-runway-1017-20131017_1_new-runway-new-o-hare-second-runway.

[Hill1990] Hill, M. D. What is scalability? ACM SIGARCH Computer Architecture News
18 (4), 18–21, 1990.

[HIPAA2014] www.hhs.gov/ocr/privacy/hipaa/understanding/summary.
[Hoare1974] Hoare, C. A. R. Monitors: An operating system structuring concept. Com-

munications of the ACM 17 (10), 549–557, 1974.
[Horikawa2011] Horikawa, T. An approach for scalability-bottleneck solution: Identifica-

tion and elimination of scalability bottlenecks in a DBMS. Proc. ACM/SPEC Second In-
ternational Conference on Performance Engineering ICPE 2011, Karlsruhe, Germany, 2011.

[HS1976] Horowitz, E., and S. Sahni. Fundamentals of Data Structures. Computer Science
Press, 1976.

[HSH2005] Ho, A., S. Smith, and S. Hand. On deadlock, livelock, and forward progress.
Technical Report no. 633, Computing Laboratory, University of Cambridge, 2005.
www.cl.cam.ac.uk/techreports/UCAM-CL-TR-633.pdf.

[HuffGeis1954] Huff, D., and I. Geis. How to Lie with Statistics. Penguin, 1954; reissued
by Norton, 1993.

[Hyde2009] Hyde, R. The fallacy of premature optimization. ACM Ubiquity Magazine,
article no. 1, February 2009. http://dl.acm.org/citation.cfm?id=1513451.

[IEEE830] IEEE Std 830-1998, IEEE recommended practice for software requirements
specifications—description.

[ITGUYSBLOG] www.it-etc.com/2010/04/14/use-perfmon-to-monitor-servers-and-find-
bottlenecks/.

[Jac1964] Jacobellis v. Ohio. https://supreme.justia.com/cases/federal/us/378/184/
case.html.

[JacBrad1988] Jacobson, V., and R. Braden. TCP extensions for long-delay paths. IETF
RFC1072, 1988. http://tools.ietf.org/html/rfc1072.

[Jackson1963] Jackson, J. R. Jobshop-like queueing networks. Mgt. Sci. 10, 131–142, 1963.
[Jain1991] Jain, R. K. The Art of Computer Systems Performance Analysis: Techniques for

Experimental Design, Measurement, Simulation, and Modeling. Wiley, 1991.
[Jalote1994] Jalote, P. Fault Tolerance in Distributed Systems. Prentice Hall, 1994.
[JE2006] John, L. K., and J. L. Eeckhout, eds. Performance Evaluation and Benchmarking.

CRC/Taylor and Francis, 2006.
[JW2000] Jogalekar, P. P., and C. M. Woodside. A scalability metric for distributed com-

puting applications in telecommunications. Proc. Fifteenth International Teletraffic
Congress (ITC-15) 2a, 101–110, 1997.

[KatzKursh1986] Katznelson, J., and R. Kurshan. S/R: A language for specifying proto-
cols and other coordinating processes. Fifth Annual International Phoenix Confer-
ence on Computers and Communications, 1986.

[Kerola1986] Kerola, T. The composite bound method for computing throughput
bounds in multiple class environments. Performance Evaluation 6 (1), 109, 1986.

../../../../../www.hhs.gov/ocr/privacy/hipaa/understanding/summary
../../../../../articles.chicagotribune.com/2013-10-17/news/ct-met-ohare-runway-1017-20131017_1_new-runway-new-o-hare-second-runway
../../../../../articles.chicagotribune.com/2013-10-17/news/ct-met-ohare-runway-1017-20131017_1_new-runway-new-o-hare-second-runway
../../../../../www.cl.cam.ac.uk/techreports/UCAM-CL-TR-633.pdf
../../../../../dl.acm.org/citation.cfm@id=1513451
../../../../../www.it-etc.com/2010/04/14/use-perfmon-to-monitor-servers-and-find-bottlenecks/default.htm
../../../../../www.it-etc.com/2010/04/14/use-perfmon-to-monitor-servers-and-find-bottlenecks/default.htm
../../../../../https@supreme.justia.com/cases/federal/us/378/184/case.html
../../../../../https@supreme.justia.com/cases/federal/us/378/184/case.html
../../../../../tools.ietf.org/html/rfc1072

References382

[Killelea2000] Killelea, Patrick. Java threads may not use all your CPUs. Java World,
August 11, 2000. www.javaworld.com/article/2076147/java-web-development/
java-threads-may-not-use-all-your-cpus.html.

[Kleinrock1975] Kleinrock, L. Queueing Systems, Volume 1: Theory. Wiley, 1975.
[Kleinrock1976] Kleinrock, L. Queueing Systems, Volume 2: Applications. Wiley, 1976.
[Koenigsberg1958] Koenigsberg, E. Cyclic queues. Operations Research 9 (1), 22–35, 1958.
[KS2009] Kaeli, D., and Kai Sachs. Computer Performance Evaluation and Benchmarking:

SPEC Benchmark Workshop, Austin, Texas, January 2009. Lecture Notes in Computer
Science 5419. Springer, 2009.

[Latouche1981] Latouche, G. Algorithmic analysis of a multiprogramming-
multiprocessing computer system. JACM 28 (4), 662–679, 1981.

[LawKelton1982] Law, A. M., and W. David Kelton. Simulation Modeling and Analysis.
McGraw-Hill, 1982.

[LeeKatz1993] Lee, E. K., and R. H. Katz. An analytic model of disk arrays. Proc. ACM
SIGMETRICS 1993, 98–109, Santa Clara, California, 1993.

[Lilja2000] Lilja, David J. Measuring Computer Performance: A Practitioner’s Guide. Cam-
bridge University Press, 2000.

[Little1961] Little, J. D. C. A proof for the queuing formula L = λW. Operations Research
9 (3), 383–387, 1961.

[LZGS1984] Lazowska, E. D., J. Zahorjan, G. S. Graham, and K. C. Sevcik. Quantitative
System Performance. Prentice Hall, 1984. Also available online at www.cs.washing-
ton.edu/homes/lazowska/qsp/.

[MBH2005] Masticola, S., A. B. Bondi, and M. Hettish. Model-based scalability estima-
tion in inception-phase software architecture. In ACM/IEEE 8th International Confer-
ence on Model-Driven Engineering Languages and Systems, 2005. Lecture Notes in
Computer Science 3713, 355–366. Springer, 2005.

[MenasceAlmeida2000] Menasce, D. A., and V. A. F. Almeida. Scaling for E-Business:
Technologies, Models, Performance, and Capacity Planning. Prentice Hall, 2000.

[MenasceAlmeida2002] Menasce, D. A., and V. A. F. Almeida. Capacity Planning for Web
Services: Metrics, Models, and Methods. Prentice Hall, 2002.

[Microsoft2007] Microsoft Corporation. Performance Testing for Web Applications.
O’Reilly, 2007.

[MogRam1997] Mogul, J. C., and K. K. Ramakrishnan. Eliminating receive livelock in an
interrupt-driven kernel. ACM Transactions on Computer Systems 15 (3), 217–252, 1997.

[Mossburg2009] Mossburg, Marta. Happiness is no metric for a country’s success.
Washington Examiner, September 18, 2009. http://washingtonexaminer.com/arti-
cle/33621#.UDvD2qC058E.

[MSOFTSUPPORT1] http://support.microsoft.com/kb/310067.
[Munin2008] Pohl, G., and M. Renner. Munin: Graphisches Netzwerk- und System-

Monitoring. Open Source Press, 2008.
[NagVaj2009] Nagarajan, S. N., and S. Vajravelu. Avoiding performance engineering

pitfalls. In Performance Engineering and Enhancement, SET Labs Briefings 7 (1), 9–14,
Infosys, 2009. Available online at www.infosys.com/infosys-labs/publications/
Documents/SETLabs-briefings-performance-engineering.pdf.

../../../../../www.javaworld.com/article/2076147/java-web-development/java-threads-may-not-use-all-your-cpus.html
../../../../../www.javaworld.com/article/2076147/java-web-development/java-threads-may-not-use-all-your-cpus.html
../../../../../www.cs.washington.edu/homes/lazowska/qsp/default.htm
../../../../../www.cs.washington.edu/homes/lazowska/qsp/default.htm
../../../../../washingtonexaminer.com/article/33621#.UDvD2qC058E
../../../../../washingtonexaminer.com/article/33621#.UDvD2qC058E
../../../../../support.microsoft.com/kb/310067
../../../../../www.infosys.com/infosys-labs/publications/Documents/SETLabs-briefings-performance-engineering.pdf
../../../../../www.infosys.com/infosys-labs/publications/Documents/SETLabs-briefings-performance-engineering.pdf

References 383

[Neuts1981] Neuts, Marcel. Matrix-Geometric Solutions in Stochastic Models: An Algorith-
mic Approach. Johns Hopkins University Press, 1981; reprinted with corrections by
Dover Publications, 1994.

[NFPA2007] NFPA 72, National Fire Alarm Code, 2007 Edition, NFPA, Quincy, MA
02169-7471.

[Niemiec2012] Niemiec, R. Oracle Database 11g Release 2 Performance Tuning Tips & Tech-
niques. Oracle Press/McGraw-Hill, 2012.

[Olker2002] Olker, D. Optimizing NFS Performance. HP/Prentice Hall, 2002.
[Paulish2002] Paulish, D. J. Architecture-Centric Software Project Management: A Practical

Guide. Addison-Wesley, 2002.
[Pritsker1986] Pritsker, A. A. B. Introduction to Simulation and SLAM II, Third Edition.

Halsted Press/Wiley, 1986.
[PS1985] Peterson, J. L., and A. Silberschats. Operating System Concepts, Second Edition.

Addison-Wesley, 1985.
[ReeserHariharan2000] Reeser, P., and R. Hariharan. Analytic model of web servers in

distributed environments. Proc. 2nd International Workshop on Software and Perfor-
mance (WOSP 2000), Ottawa, Canada, 2000.

[ReiserKobayashi1975] Reiser, M., and H. Kobayashi. Queueing networks with multi-
ple closed chains: Theory and computational algorithms. IBM J. of R. & D. 19 (3),
283–294, 1975.

[ReisLav1980] Reiser, M., and S. S. Lavenberg. Mean value analysis of closed multi-
chain queueing networks. JACM 27 (2), 1980.

[Rey1983] Rey, R. F., ed. Engineering and Operations in the Bell System. AT&T Bell Labo-
ratories, 1983.

[SB2003] Shasha, S., and P. Bonnet. Database Tuning. Morgan Kaufmann, 2003.
[SevMit1981] Sevcik, K. C., and I. Mitrani. The distribution of queueing network states

at input and output instants. JACM 28 (2), 358–371, 1981.
[ShaibalSugiyama1996] Shaibal, R., and M. Sugiyama. Sybase Performance Tuning.

Prentice Hall, 1996.
[Shaw1974] Shaw, A. C. The Logical Design of Operating Systems. Prentice Hall, 1974.
[Smith2000] Smith, C. Software performance antipatterns. Proc. 2nd International Work-

shop on Software and Performance (WOSP 2000), Ottawa, Canada, 127–136, 2000.
[SmithWilliams1998] Smith, C. U., and L. Williams. Performance engineering evalua-

tion of CORBA-based distributed systems. First International Workshop on Soft-
ware and Performance (WOSP98), 1998.

[SmithWilliams2000] Smith, C. U., and L. Williams. Software performance antipatterns.
Proc. 2nd International Workshop on Software and Performance (WOSP 2000), Ottawa,
Canada, 2000.

[SmithWilliams2001] Smith, Connie U., and Lloyd G. Williams. Performance Solutions:
A Practical Guide to Creating Responsive, Scalable Software. Addison-Wesley, 2001.

[SWH2006] Schroeder, B., A. Wierman, and M. Harchol-Balter. Open vs. closed: A cau-
tionary tale. USENIX NSDI’06. http://static.usenix.org/events/nsdi06/tech/full_
papers/schroeder/schroeder_html.

[Swift1912] Swift, J. Gulliver’s Travels. Rand McNally, 1912.

../../../../../static.usenix.org/events/nsdi06/tech/full_papers/schroeder/schroeder_html
../../../../../static.usenix.org/events/nsdi06/tech/full_papers/schroeder/schroeder_html

References384

[Thomson1950] Thomson, David. England in the Nineteenth Century. Penguin, 1950.
[TopManPage] http://linux.about.com/od/commands/l/blcmdl1_top.htm.
[TTH2012] Thomasian, A., Y. Tang, and Y. Hu. Hierarchical RAID: Design, perfor-

mance, reliability, and recovery. J. Parallel and Distributed Computing 72 (12),
1753–1769, 2012.

[Tufte2006] Tufte, E. Beautiful Evidence. Graphics Press, 2006.
[VenRip2002] Venables, W. N., and B. D. Ripley. Modern Applied Statistics with S, Fourth

Edition. Springer, 2002.
[VinSol1985] Vinod, B., and J. J. Solberg. The optimal design of flexible manufacturing

systems. Int. J. Production Research 23 (6), 1141–1151, 1985.
[VXT2009] Die Beauftragte der Bundesregierung fuer Informationstechnik. Das

V-Modell XT. www.v-modell-xt.de/, Version 3, February 2009.
[Webster1988] Webster’s Ninth New Collegiate Dictionary. Collegiate, 1988.
[Whitt1984] Whitt, W. Minimizing delays in the GI/G/1 queue. Operations Research

32 (1), 41–51, 1984.
[WilliamsBhandiwad1976] Williams, A. C., and R. A. Bhandiwad. A generating function

approach to queueing network analysis of multiprogrammed computers.
Networks 6, 1–22, 1976.

[Willis2009] Willis, John. Percent disk time from Windows Perfmon can exceed 100%.
www.gulfsoft.com/blog_new/modules.php?op=modload&name=News&file=
article&sid=125.

[WindowsKB2013] Microsoft.com Knowledge Base. Synchronous and asynchronous
I/O. http://msdn.microsoft.com/en-us/library/windows/desktop/aa365683%28v=
vs.85%29.aspx, Build 4/16/2013.

[Wolff1982] Wolff, R. W. Poisson arrivals see time averages. Operations Research 30 (2),
223–231, 1982.

[XOWM2005] Xu., J., A. Oufimtsev, M. Woodside, and L. Murphy. Performance
modeling and prediction of enterprise JavaBeans with layered queuing network
templates. SAVCBS ’05, Proceedings of the 2005 Conference on Specification and Verifica-
tion of Component-Based Systems, Article No. 5. ACM, 2005.

[Zahorjan1983] Zahorjan, J. Workload representations in queueing models of computer
systems. Proc. ACM SIGMETRICS, Conference on Measurement and Modeling of Com-
puter Systems, Minneapolis, 70–81, 1983.

../../../../../linux.about.com/od/commands/l/blcmdl1_top.htm
../../../../../www.v-modell-xt.de/default.htm
../../../../../www.gulfsoft.com/blog_new/modules.php@op=modload&name=News&file=article&sid=125
../../../../../www.gulfsoft.com/blog_new/modules.php@op=modload&name=News&file=article&sid=125
../../../../../msdn.microsoft.com/en-us/library/windows/desktop/aa365683%28v=vs.85%29.aspx
../../../../../msdn.microsoft.com/en-us/library/windows/desktop/aa365683%28v=vs.85%29.aspx

385

Index

A
ACID (Atomicity, consistency, isolation,

and durability), 287
ACM (Association for Computing

Machinery), 370
Agile software development

aligning tests with sprints, 329–330
communicating test results, 331
connection between irregular test

results and incorrect functionality,
334

identifying and planning test and test
instrumentation, 332–333

interpreting and applying test results,
330–331

methods for implementing tests, 332
overview, 325–327
performance engineering in, 327–328
performance requirements in,

328–329
playtime in testing process, 334–336
Scrum use in performance test

implementation and performance
test instrumentation, 333–334

summary and exercises, 336–337
Airport conveyor system example. see

Conveyor systems, airport
luggage example

Alarms. see Fire alarm system
Alerts, system measurement in trigger-

ing, 164
… “all the time/… of the time”

antipattern, 145–146
Ambiguity

properties of performance require-
ments, 117–118

testing and, 158
Analysis. see Performance analysis
Antipatterns

… “all the time/… of the time”
antipattern, 145–146

information flow review revealing, 347
number of users supported, 146–147
overview of, 144
performance antipattern (Smith and

Williams), 300
resource utilization, 146
response time, 144–145
scalability, 147–148

Application domains, mapping to
workloads

airport conveyor system example,
92–94

fire alarm system example, 94–95
online securities trading example,

91–92
overview, 91

Applications
processing time increasing per unit of

work, 267
system measurement from within,

186–187
time-varying demand workload

examples, 89–90
Architects

gathering performance requirements,
140

ownership of performance
requirements, 156

stakeholder roles, 348–349
Architectural stage, of development, 12
Architecture

avoiding scalability pitfalls, 299
causes of performance failure, 4,

105–106
early testing to avoid poor choices,

113
hardware architectures, 9
performance engineering concerns

influencing, 345–346
reviewing as step in performance

engineering, 7

 Index386

Architecture, continued
skills need by performance engineers, 8
structuring tests to reflect scalability

of, 228–229
understanding before testing,

211–212
understanding impact of existing,

346–347
Arrival rate

characterizing queue performance, 42
connection between models, require-

ments, and tests, 79
formulating performance require-

ments to facilitate testing, 159
modeling principles, 201
quantifying device loadings and flow

through computer systems, 56
Arrival Theorem (Sevcik-Mitrani

Theorem), 70, 74
The Art of Computer Systems Performance

Analysis (Jain), 371
Association for Computing Machinery

(ACM), 370
Assumptions

in modeling asynchronous I/O, 262
in performance requirements

documents, 152
Asynchronous activity

impact on performance bounds,
66–67

modeling asynchronous I/O,
260–266

parallelism and, 294
queueing models and, 255

Atomicity, consistency, isolation, and
durability (ACID), 287

Audience, specifying in performance
requirements document, 151–152

Automating
data analysis, 244–245
testing, 213, 244–245

Average device utilization
definition of common metrics, 20
formula for, 21

Average service time, in Utilization Law,
45–47

Average throughput, 20
Averaging time window, measuring

utilization and, 175–177

B
Back-end databases, understanding

architecture before testing,
211–212

Background activities
identifying concerns and drivers in

performance story, 344–345
resource consumption by, 205

Bandwidth
linking performance requirements to

engineering needs, 108
measuring utilization,

174–175
sustainable load and, 127

“Bang the system as hard as you can”
testing method

example of wrong way to evaluate
throughput, 208–209

as provocative performance testing,
209–210

Banking systems
example of multiple-class queueing

networks, 72
reference workload example, 88
scheduling periodic loads and peaks,

267
Baseline models

determining resource requirements, 7
using validated model as baseline,

255
Batch processing, in single-class closed

queueing network model, 60
BCMP Theorem, 68, 73
Bentham, Jeremy, 20
Bohr bug, 209
Bottlenecks

contention and, 260
eliminating unmasks new pitfall,

319–321
improving load scalability, 294
measuring processor utilization by

individual processes, 171
modeling principles, 201–202
performance modeling and, 10
in single-class closed queueing

networks, 63
software bottlenecks, 314
upper bounds on system throughput

and, 56–58

Index 387

Bounds
asymptotic bounds impacting

throughput and response time,
63–66

asynchronous activity impacting
performance bounds, 66–67

lower bounds impacting response
time, 56–58

upper bounds impacting response
time, 129

Bugs, Bohr bug, 209
Business aspects

linking performance requirements to
needs, 108

linking performance requirements to
risk mitigation, 112–114

of performance engineering, 6–7
Busy hour, measuring response time

and transaction rates at, 26
Busy waiting, on locks, 285–286
Buyer-seller relationships, expertise and,

114–115

C
C#, garbage collection and, 315
CACM (Communications of the Association

for Computing Machinery), 370
Calls, performance requirements related

to lost calls, 134–135
Capacity management engineers,

stakeholder roles, 355
Capacity planning

applying performance laws to, 80
creating capacity management plan, 167
measurement and, 165

Carried load, telephony metrics, 30–31
Carrier Sense Multiple Access with

Collision Detection (CSMA/CD)
bandwidth utilization and, 174
load scalability and, 278

Central processing units. see CPUs
Central server model, simple queueing

networks, 53–54
Central subsystem, computers, 61
Change management, skills need by

performance engineers, 10
Checklists

measurement, 192–193
test, 219–220

Circuitous treasure hunt
performance antipatterns and,

300–301
review of information flow revealing,

347
Clocks. see System clocks
Closed queueing networks

bottleneck analysis, 63
defined, 59
Mean Value Analysis, 69–71
modeling asynchronous I/O and, 263
qualitative view of, 62–63
with single-class, 60–62

Clusters, of parallel servers, 195
CMG (Computer Measurement Group),

369
Coarse granularity locking,

undermining scalability, 287
Code profiling, system measurement

and, 190–191
Code segments, in measuring

memory-related activity, 180
Collisions, load scalability and, 295
Commercial considerations

buyer-seller relationships and,
114–115

confidentiality, 115
customer expectations and contracts

and, 114
outsourcing and, 116
skills need by performance engineers

and, 8
Commercial databases, measuring,

188–189
Communication, of test results in agile

development, 331
Communications of the Association for

Computing Machinery (CACM), 370
Competitive differentiators

linking performance requirements to
business needs, 108

response time for web sites, 110
Completeness, of performance

requirements, 119
Completion rate, in Utilization Law,

45–47
Compression, in achieving space

scalability, 280
Computationally tractable, defined, 68

 Index388

Computer Measurement Group (CMG),
369

Computer science, skills need by
performance engineers, 9

Computer services, outsourcing, 116
Computer systems. see also Systems

background activities in resource use,
205

central subsystem, 61
challenges posed by multiple-host

systems, 218–219
mapping application domains to

workloads, 91–95
modeling asynchronous I/O,

252–254
quantifying device loadings and flow

through, 54–56
queueing examples, 38–39
skills need by performance engineers

and, 8
system measurement and, 165–166

Computers and Operations Research, 370
Concurrency

detecting/debugging issues, 223–224
illusion of multiprocessing and, 54
row-locking preferable to table-level

locking, 301
Conferences, learning resources for

performance engineering, 369–370
Confidentiality, commercial considera-

tions related to performance
requirements, 115

Confounding, undue cost of
performance tests and, 22

Conservation, priority scheduling and,
311

Consistency
ACID properties, 287
mathematical consistency of perfor-

mance requirements, 120, 148–149
properties of metrics, 25
workload specification and, 100

Contention. see Lock contention
Contracts

between buyer and seller, 4
commercial considerations related to

performance requirements, 114
Control systems, understanding system

architecture before testing,
211–212

Conveyor systems
example of metrics applied to

warehouse conveyor, 27–28
example of time-varying demand

workload, 89–90
examples of background activities in

resource use, 205
Conveyor systems, airport luggage

example
applying numerical data to work-

loads, 101–102
mapping application domains to

workloads, 92–94
specifying workloads numerically,

97–98
traffic patterns and, 99

Correctness, of performance
requirements, 120

Costs
of measurement, 182
performance requirements and, 4–6
of poor performance requirements,

113
scalability and, 274
traceability of performance require-

ments and, 121–122
CPUs. see also Processors

benefits and pitfalls of priority
scheduling, 310

diminishing returns from
multiprocessors or multiple cores,
320

interpreting results of system with
computationally intense
transactions, 239–241

interpreting results of system with
memory leak and deadlocks,
242–243

load scalability and scheduling rules
and, 278–279

measuring multicore and multipro-
cessor systems, 177–180

measuring utilization, 21–22
measuring utilization and averaging

time window, 175–177
playtime in testing process and, 335
quantifying device loadings and flow

through a computer system, 54–56
resource utilization antipattern and,

146

Index 389

simple queueing networks and,
53–54

single-server queues and, 42
sustainable load and, 127
time scale granularity in measuring

utilization, 33
transient saturation not always bad,

312–314
utilization in service use cases

example, 231–235
Crashes, stability and, 126
CSMA/CD (Carrier Sense Multiple

Access with Collision Detection)
bandwidth utilization and, 174
load scalability and, 278

Custom relationship management,
metrics example, 30–32

Customer expectations
as commercial consideration, 114
performance requirements and,

106–107

D
Data

collecting from performance tests,
229–230

reducing and interpreting in agile,
330–331

reducing and presenting, 230
in reporting performance status,

353–354
system measurement and

organization of, 195
Data segments, 180
Database administrators, stakeholder

roles, 353
Databases

background activities in resource use,
205

layout of performance requirements
and, 153

measuring commercial, 188–189
parcel routing example, 258–260
understanding architecture before

testing, 211–212
Deadlocks

benefit of testing of functional and
performance requirements
concurrently, 200

detecting/debugging, 224

implicit performance requirements
and, 133

improving load scalability, 293, 295
interpreting results of system with

memory leak and deadlocks,
241–243

measuring in commercial databases,
188–189

museum checkroom example, 289,
291

performance modeling and, 10
provocative performance testing, 210
verifying freedom from, 119

Decision making, understanding impact
of prior decisions on system
performance, 346–347

Dependencies
avoiding circular, 149–150
in performance engineering, 13–14

Derived performance requirements, 132
Design, negotiating design choices,

360–362
Designers

gathering performance requirements
from, 140

as stakeholder role, 350–351
Developers

gathering performance requirements
from, 140

as stakeholder role, 350–351
Development

agile development. see Agile software
development

feature development, 164
model development, 254
software development. see Software

development
waterfall development, 325

Development environment, scalability
limits in, 292–293

Diagnosis, role of performance
engineers, 12

Disciplines, in performance
engineering, 8–10

Discrete event simulation, 372–373
Disjoint transactions, serial execution of,

283–285
Disk I/O, measuring utilization, 173. see

also I/O (input/output)
Distance scalability, 281

 Index390

Documents/documentation
performance requirements, 150–153
test plans and results, 220–222

Drafts
performance requirements, 7
tests based on performance

requirements drafts, 113
Durability property, ACID properties, 287

E
Ease of measurement, properties of

metrics, 25
Enforceability, of performance require-

ments, 143–144
Equilibrium

Markov chains and, 159, 231
of queue behavior, 50

Equipment, checking test equipment,
213–214

Erlang loss formula
applying to performance

requirements, 110
applying to probability of lost calls,

76–77
derived performance requirements

and, 132
Ethernet

comparing scalability with token
ring, 287–288

CSMA/CD and, 174
improving load scalability, 295
load scalability and, 278

Excel, statistical methods in, 374
Experimental plans, measurement

procedures, 192
Expert intent, in predicting

performance, 77
Expertise

buyer-seller relationships and,
114–115

investing in, 7
model sufficiency and, 255

Explicit metrics, 32
External performance requirements,

implications for subsystems, 150

F
Failure

interpreting results of transaction
system with high failure rate,
235–237

transaction failure rates, 134–135
Faults, system measurement in

detecting, 164
FCFS (First Come First Served)

regularity conditions for
computationally tractable
queueing network models, 68–69

types of queueing disciplines, 44
Feature set

in performance requirements
documents, 151

system measurement and feature
development, 164

Fields, in performance requirements
database, 154–155

Finite pool sizes, queues/queueing,
75–77

Fire alarm system
background activities impacting

resource use, 205
linking performance requirements to

regulatory needs, 110
mapping application domains to

system workloads, 94–95
metrics applied to, 28–29
occurrence of periodic loads and

peaks, 267
peak and transient loads and,

135–136
reference workload example, 88
specifying workloads numerically,

98–99
time-varying demand workloads in,

89–91
traffic pattern in, 99

First Come First Served (FCFS)
regularity conditions for computa-

tionally tractable queueing
network models, 68–69

types of queueing disciplines, 44
Flow balance, multiple-class queueing

networks and, 73
Forced Flow Law (Denning and Buzen)

benefits and pitfalls of priority
scheduling, 311

measurements conforming to, 168
modeling principles, 201–202
multiple-class queueing networks

and, 73
quantifying device loadings and

flows, 55

Index 391

transaction loading and, 158
validating measurements, 191

Functional requirements
associating performance

requirements with, 111
ensuring consistency of performance

requirements with, 156
guidelines for, 116–117
performance requirements and, 117
referencing related requirements in

performance requirements
document, 152

specifying performance requirements
and, 141–142

testing concurrently with perfor-
mance requirements, 199–200

Functional testers, stakeholder roles,
351–352

Functional testing
executing performance test after, 327
performance requirements and, 106

G
Garbage collection

background activities in resource use,
205

performance engineering pitfalls, 315
Global response time (R0), in single-class

closed queueing network model,
61

gnuplot, plotting performance data,
218–219

“god class”
information flow review reveals

antipatterns, 347
performance antipatterns and, 300

Goodput, telephony metrics, 30
Granularity

coarse granularity locking, 287
time scale in measuring utilization

and, 32–33
time scale of performance

requirements and, 122
Graphical presentation, in reporting

performance status, 353–354

H
Head-of-the-line (HOL) priority, 311
Heisenberg Uncertainty Principle, 166,

209–210
HOL (head-of-the-line) priority, 311

Horizontal scaling (scaling out)
overview, 276–277
structuring tests to reflect scalability

of architecture, 228
Hosts

measuring single- and multiple-host
systems, 183–186

testing multiple-host systems,
218–219

I
ICPE (International Conference on

Performance Engineering), 370
Idle counters, processor usage and, 169
IEEE Transactions on Software

Engineering, 370
Implicit metrics, 32
Implicit performance requirements,

132–134
Income tax filing, electronic, example of

time-varying demand workload,
90–91

Independence, properties of metrics, 25
Infinite loops, processor usage and, 169
Infinite Service (IS), regularity conditions

for computationally tractable
queueing network models, 68–69

Information, combining knowledge
with controls, 94

Information flow, understanding impact
of prior decisions on system
performance, 347

Information processing, metrics
example, 30–32

Input analysis, discrete event
simulation, 373

Input/output (I/O). see I/O (input/
output)

Instruments of measurement
aligning tests with sprints, 330
identifying and planning in agile

development, 332–333
lagging behind software platforms

and technologies, 340
overview, 166
Scrum use of, 333–334
scrutiny in use of, 168
validating, 168, 193–194

Integration tests
functional requirements and, 199–200
performance tests and, 202

 Index392

Interactions
in performance engineering, 13–14
in performance requirements

documents, 151
Interarrival time, queueing and, 39–41.

see also Arrival rate
International Conference on Perfor-

mance Engineering (ICPE), 370
Interoperability, in performance

requirements documents, 151
Interpreting measurements, in virtual

environments, 195
Interpreting test results

applying results and, 330–331
service use cases example, 231–235
system with computationally intense

transactions, 237–241
system with memory leak and

deadlocks, 241–243
transaction system with high failure

rate, 235–237
Introduction to Queueing Theory (Cooper),

372
Investments, in performance

engineering, 6–7
I/O (input/output)

asynchronous activity impacting
performance bounds, 66–67

benefits and pitfalls of priority
scheduling, 310

load scalability and scheduling rules
and, 278–279

measuring disk utilization, 173
quantifying device loadings and flow

through a computer system, 54–56
single-server queues and, 42
sustainable load and, 127
where processing time increases per

unit of work, 267
I/O devices

modeling principles, 201
in simple queueing networks,

53–54
iostat (Linux/UNIX OSs), measuring

CPU utilization, 171
IS (Infinite Service), regularity condi-

tions for computationally tractable
queueing network models,
68–69

Isolation property, ACID properties, 287

J
Jackson’s Theorem

multiple-class queueing networks
and, 74

single-class queueing networks and,
59–60

Java
garbage collection and, 315
performance tuning resources, 374
virtual machines, 317

Journal of the Association for Computing
Machinery (JACM), 370

Journals, learning resources for perfor-
mance engineering, 369–370

K
Kernel mode (Linux/UNIX OSs),

measuring CPU utilization, 171

L
Labs

investing in lab time for measure-
ment and testing, 7

testing and lab discipline, 217
Last Come First Served (LCFS), 44
Last Come First Served Preemptive

Resume (LCFSPR)
regularity conditions for computa-

tionally tractable queueing
network models, 68–69

types of queueing disciplines, 44
Layout, of performance requirements,

153–155
Learning resources, for performance

engineering
conferences and journals, 369–370
discrete event simulation,

372–373
overview, 367–369
performance tuning, 374–375
queueing theory, 372
statistical methods, 374
summary, 375
system performance evaluation, 373
texts on performance analysis,

370–371
Legacy system, pitfall in transition to

new system, 156–158
Linear regression, 374
Linearity, properties of metrics, 24–25

Index 393

Linux/UNIX OSs
gathering host information, 185
measuring memory-related activity,

180–181
measuring processor utilization,

21–22, 170
measuring processor utilization by

individual processes, 172
measuring processor utilization in

server with two processors, 179
skills need by performance engineers

and, 8
testing system stability, 225–226
virtual machines mimicking, 316

LISP, garbage collection and, 315
Little’s Law

applying to processing time for I/O
requests, 263

connection between models, require-
ments, and tests, 79

derived performance requirements
and, 132

Mean Value Analysis of single-class
closed queueing networks, 71

measurements conforming to, 168
measurements from within applica-

tions and, 186
modeling principles, 202
overview, 47–49
Response Time Law and, 61–62
single-server queue and, 50
verifying functionality of test

equipment and software, 214
Live locks, detecting/debugging

concurrency issues, 224
Load. see also Workloads

deploying load drivers, 214–216
museum checkroom example, 289
occurrence of periodic, 267–268
performance engineering addressing

issues in, 5
performance requirements in

development of sound tests, 112
performance requirements related to

peak and transient loads, 135–136
scalability. see Load scalability
spikes or surges in, 91–92
sustainable, 127–128
systems with load-dependent

behavior, 266

telephony metrics example, 30–31
testing background loads, 205
testing load drivers, 214–216
testing using virtual users, 190
time-varying demand examples, 89–91

Load generation tools
aligning tests with sprints, 330
delayed time stamping as measure-

ment pitfall, 319
deploying software load drivers and,

214–216
factors in choosing, 79
incorrect approach to evaluating

throughput, 208–209
interpreting results of transaction

system with high failure rate,
235–237

measuring response time, 20–21
planning performance tests, 203–204
verifying functionality of test

equipment, 213–214
virtual users and, 190

Load scalability
busy waiting on locks, 285–286
coarse granularity locking, 287
improving, 293–295
interaction with structural scalability,

282
limitations in a development

environment, 292
mathematical analysis of, 295–296
overview, 277–279
qualitative analysis of, 126, 283
serial execution of disjoint

transactions impeding, 283–285
Load tests

aligning tests with sprints, 330
background loads, 205
load drivers and, 214–216
performance requirements in

development of sound tests, 112
planning performance tests, 203–204
virtual users in, 190

Lock contention
bottlenecks and, 260
busy waiting on locks, 285–286
coarse granularity locking and, 287
comparing implementation options

for mutual exclusion, 296–298
virtual machines and, 316

 Index394

Locks
benefits of priority scheduling for

releasing, 309
busy waiting, 285–286
coarse granularity of, 287
comparing with semaphores, 296–298
row-locking vs. table-level locking,

301
Loops, processor usage and, 169
Lost calls/lost work

performance requirements related to,
134–135

queues/queueing and, 75–77
Lost packets, 134–135
Lower bounds, on system response

times, 58

M
Management

of performance requirements,
155–156

as stakeholder, 349–350
Management information bases (MIBs),

185
Mapping application domains, to

workloads
example of airport conveyor system,

92–94
example of fire alarm system, 94–95
example of online securities trading

system, 91–92
Market segments, linking performance

requirements to size, 107–109
Markov chains, 159, 231
Markup language, modeling systems in

development environment with,
292

Mathematical analysis, of load
scalability, 295–296

Mathematical consistency
ensuring conformity of performance

requirements to performance
laws, 148–149

of performance requirements, 120
Mean service time, in characterizing

queue performance, 42
Mean Value Analysis (MVA), of single-

class closed queueing networks,
69–71

Measurability, of performance require-
ments, 118–119

Measurement
collecting data from performance

test, 229–230
comparing with performance testing,

167–168
investing in lab time and tools for, 7
metrics applied to. see Metrics
in performance engineering, 10–11
performance engineering pitfalls,

317–319
performance modeling and, 11
performance requirements and,

118–119
of systems. see System measurement

Measurement intervals, explaining to
stakeholders, 356–359

Measurement phase, of modeling
studies, 254

Measuring Computer Performance (Lilja),
371

Memory leaks
interpreting measurements of system

with memory leak and deadlocks,
241–243

measuring from within applications,
186

provocative performance testing and,
210

sustainable load and, 127
testing system stability, 225–226

Memory management
background activities and, 205
diminishing returns from multipro-

cessors or multiple cores, 320
garbage collection causing degraded

performance, 315
measuring memory-related activity,

180–181
performance engineering pitfalls, 321
space-time scalability and, 280

Memory occupancy
formulating performance require-

ments to facilitate testing, 159
measuring memory-related activity,

180–181
qualitative attributes of system

performance, 126–127
Metrics, 23–24. see also Measurement;

System measurement
ambiguity and, 117–118
applying to conveyor system, 27–28

Index 395

applying to fire alarm system, 28–29
applying to information processing,

30–32
applying to systems with transient,

bounded loads, 33–35
applying to telephony, 30
applying to train signaling and

departure boards, 29–30
explicit and implicit, 32
focusing on single metric

(mononumerosis), 26
gathering performance requirements

and, 140
in numerical specification of

workloads, 95
overview, 19–22
properties of, 24–26
reference workloads for

domain-specific, 151
for scalability, 274–275
summary and exercises, 35
testing and, 158
time scale granularity of, 32–33
user experience metrics vs. resource

metrics, 23–24
in various problem domains, 26–27

MIBs (management information bases),
185

Microsoft Excel, statistical methods in,
374

Middleware, measuring, 187–188
Mission-critical systems, linking

performance requirements to the
engineering needs of, 108

Models
asynchronous I/O, 260–266
computer systems, 252–254
connection between models, require-

ments, and tests, 79–80
conveyor system example, 256–260
getting system information from,

37–38
modeling principles, 201
in performance engineering, 10–11
phases of modeling studies, 254–256
planning, 203–204
predicting performance with, 77–78
in reporting performance status,

353–354
occurrence of periodic loads and

peaks, 267–268

summary and exercises, 268–271
of systems with load-dependent or

time-varying behavior, 266
understanding limits of, 251

Monitoring
airport conveyor system example,

93–94, 98
fire alarm system example, 95
online securities trading example,

101
in real-time systems, 317–318

Mononumerosis (tendency to focus on
single metric), 26

mpstat (Linux/UNIX OSs)
measuring CPU utilization, 171
measuring processor utilization, 21,

284–285
measuring processor utilization in

server with two processors, 179
Multicore systems

CPU utilization in, 170–171
detecting/debugging concurrency

issues, 223–224
diminishing returns from, 314–315
measuring, 177–180
performance engineering concerns

influencing architecture and
technology choices, 346

Multiple-class queueing networks,
71–74

Multiple-host systems
challenges of testing, 218–219
measuring performance of, 183–186

Multiprocessor systems
CPU utilization in, 170–171
detecting/debugging concurrency

issues, 223–224
diminishing returns from, 314–315
measuring, 177–180
performance engineering concerns

influencing architecture and
technology choices, 346

provocative performance testing, 210
Multitier configuration, of Web systems,

183–186
Munin tool, gathering measurements of

multiple hosts with, 185
Museum checkroom, scalability

example, 289–292, 298–299
Mutual exclusion, comparing sema-

phores with locks, 296–298

 Index396

MVA (Mean Value Analysis), of single-
class closed queueing networks,
69–71

N
NDAs (nondisclosure agreements),

confidentiality of performance
requirements and, 115

Negotiation, regarding design choices
and system improvement recom-
mendations, 360–362

Network management systems (NMSs)
applying metrics to systems with

transient, bounded loads, 34–35
gathering host information with, 185
multiple-class queueing networks

and, 72
Networks

scalability and congestion in, 281–282
scalability attribute of, 273
traffic in conveyor system model, 258

Networks of queues
applicability and limitations of

simple queueing networks, 78
asymptotic bounds on throughput

and response time, 63–66
asynchronous activity impacting

performance bounds, 66–67
bottleneck analysis, 63
lower bounds on system response

times, 58
Mean Value Analysis, 69–71
multiple-class queueing networks,

71–74
overview, 52–53
qualitative view of, 62–63
quantifying device loadings and

flow, 54–56
regularity conditions for computa-

tionally tractable queueing
network models, 68–69

simple queueing networks, 53–54
single-class closed queueing net-

works, 60–62
single-class open queueing networks,

59–60
upper bounds on system throughput,

56–58
Nondisclosure agreements (NDAs),

confidentiality of performance
requirements and, 115

Number of users supported pattern/
antipattern, 146–147

Numerical data, characterizing work-
loads with

airport conveyor system example,
101–102

fire alarm system example, 102–103
online securities trading example,

100–101
overview, 99

Numerical specification, of workloads
airport conveyor system example,

97–98
fire alarm system example, 98–99
online securities trading example,

96–97
overview, 95–96

O
Object pools

benefits of priority scheduling for the
release of members of, 309

concurrent testing of functional and
performance requirements and, 200

delayed time stamping as measure-
ment pitfall, 319

finite pool sizes, 75–77
memory leaks and, 186
pool size requirement pattern, 147
validating measurements and, 192

Offered load
lost jobs and, 76
in telephony metrics, 30–31

One-lane bridge, performance antipat-
terns and, 300–301

One-step behavior, in Little’s Law, 47
Online banking system. see also Banking

systems
example of multiple-class queueing

networks, 72
occurrence of periodic loads and

peaks, 267
Online securities trading. see Securities

trading example
Open queueing network models

defined, 59
modeling asynchronous I/O and, 263
qualitative view of queueing network

representation, 62–63
single-class open queueing networks,

59–60

Index 397

Operating systems (OS)
Linux/UNIX OSs. see Linux/UNIX

OSs
virtual machines mimicking, 316–317
Windows OSs. see Windows OSs

Oracle
commercial tools for measuring

databases, 188
performance tuning resources, 374

Organizational pitfalls, in performance
engineering, 321–322

OS (operating systems). see Operating
systems (OS)

Output analysis, discrete event
simulation, 373

Outputs. see also I/O (input/output)
automating analysis of, 244–245
of conveyor system model, 258

Outsourcing, commercial considerations
related to performance
requirements, 116

Ownership
ensuring of performance concerns,

360
of performance requirements,

155–156

P
Packet handling

examples of single-server queues
and, 42

performance requirements related to
lost packets, 134–135

Packet-switched network, 135
Paged virtual memory systems,

thrashing of, 266
Paging activity

measuring memory-related activity,
181

modeling principles and, 201
thrashing of paged virtual memory

systems, 266
PAL tool, in performance plot

generation, 218–219
Parallelism

improving load scalability and, 294
interpreting measurements in virtual

environments, 195
load scalability undermined by

inadequacy of, 279
measuring parallel systems, 177–180

multicore systems. see Multicore
systems

multiprocessors. see Multiprocessor
systems

single-threaded applications and, 314
Parameters, expressing performance

requirements via, 149
Parcel routing database, 258–260
PASTA (Poisson Arrivals See Time

Averages), 175
Patterns/antipatterns

… “all the time/… of the time”
antipattern, 145–146

information flow review revealing,
347

number of users supported pattern/
antipattern, 146–147

overview of, 144
pool size requirement pattern, 147
resource utilization antipattern, 146
response time pattern and antipat-

tern, 144–145
scalability antipattern, 147–148

Peak hour, measuring response time and
transaction rates at, 26

Peak load
issues addressed by performance

engineering, 5
occurrence of , 267–268
performance requirements related to,

135–136
perfmon (Windows OSs)

automating tests, 213
measuring bandwidth utilization, 174
measuring CPU utilization, 171
measuring disk I/O, 173
measuring memory-related activity,

180–181
measuring processor utilization, 22
measuring processor utilization by

individual processes, 172
measuring queue lengths, 175
playtime in testing process in agile

development and, 335
testing system stability,

225–226
Performance analysis

applying performance law to, 80
asymptotic bounds and, 63–66
of asynchronous activity impacting

performance bounds, 66–67

 Index398

Performance analysis, continued
of bottlenecks in single-class closed

queueing networks, 63
finite pool sizes, lost calls, and lost

work and, 75–77
investing in analysis tools, 7
of link between models, require-

ments, and tests, 79–80
Little’s Law in, 47–49
of lower bounds impact on system

response times, 58
Mean Value Analysis of single-class

closed queueing network models,
69–71

measurement procedures in, 194
of multiple-class queueing networks,

71–74
of networks of queues, 52–53
overview, 37
performance models in, 37–38
predicting performance based on,

77–78
qualitative view of queueing network

representation, 62–63
quantifying device loadings and

flow through a computer system,
54–56

of queueing causes, 39–41
of queueing in computer systems and

in daily life, 38–39
of queueing performance, 42–45
of regularity conditions for computa-

tionally tractable queueing
network models, 68–69

of simple queueing networks, 53–54,
78

of single-class closed queueing
network model, 60–62

of single-class open queueing
network model, 59–60

of single-server queue, 49–52
summary and exercises, 80–84
texts on performance analysis,

370–371
of upper bounds impact on system

throughput, 56–58
Utilization Law and, 45–47

Performance antipattern (Smith and
Williams), 144, 300. see also
Antipatterns

Performance bounds. see Bounds

Performance engineering, introduction
business and process aspects of, 6–7
disciplines and techniques in, 8–10
example issues addressed by, 5–6
interactions and dependencies, 13–14
modeling, measuring, and testing,

10–11
overview, 1–4
performance requirements, 4–5
road map to topics covered in book,

15–17
roles/activities of performance

engineers, 11–13
summary, 17

Performance engineering pitfalls. see
Pitfalls

Performance engineers
lead role in performance require-

ments gathering, 141
as owner of performance require-

ments, 156
roles/activities of, 11–13
system measurement by, 163

Performance Evaluation Review, 370
Performance laws

ensuring conformity of performance
requirements to, 148–149

Little’s Law. see Little’s Law
Utilization Law. see Utilization Law

Performance metrics. see Metrics
Performance Modeling and Design of

Computer Systems: Queueing Theory
in Action (Harchol-Balter), 371

Performance models. see Models
Performance requirements

in agile development, 328–329
… “all the time/… of the time”

antipattern, 145–146
avoiding circular dependencies,

149–150
business risk mitigation and, 112–114
commercial considerations, 114–116
completeness of, 119
complying with regulatory needs,

108–110
concurrent testing of functional

requirements, 199–200
conforming to performance laws,

148–149
connection between models,

requirements, and tests, 79–80

Index 399

consistency of, 120
correctness of, 120
derived, 132
drafting, 7
eliciting and gathering, 140–143
eliciting, writing, and managing, 139
ensuring enforceability of, 143–144
expressing in terms of parameters

with unknown values, 149
formulating generally, 253
formulating response time

requirements, 128–130
formulating throughput

requirements, 130–131
formulating to facilitate testing,

158–160
functional requirements and, 117
granularity and time scale of, 122
guidelines for specifying, 116–117
implications of external requirements

for subsystems, 150
implicit, 132–134
layout of, 153–155
linking tests to, 222–223
managing, 155–156
measurability of, 118–119
meeting workload size, 107–108
number of users supported pattern/

antipattern, 146–147
overview, 105–106, 125–126
patterns/antipatterns. see Patterns/

antipatterns
performance engineering pitfalls and,

321
pool size requirement pattern, 147
product management and, 106–107
qualitative attributes of system

performance, 126–127
questions to ask in determining, 86–87
related to peak and transient loads,

135–136
related to transaction failure rates,

lost calls, lost packets, 134–135
resource utilization antipattern, 146
response time pattern and

antipattern, 144–145
role in performance engineering, 4–5
scalability antipattern, 147–148
software lifecycle and, 111–112
storing and reporting, 160–161
structuring documentation of, 150–153

summary and exercises, 122–124,
136–138, 161

supporting revenue streams, 110
sustainable load and, 127–128
testability of, 120–121
traceability of, 121–122
transitioning from legacy system

and, 156–158
unambiguous quality of, 117–118

Performance Solutions (Smith and
Williams), 371

Performance story
determining which performance

aspects matter to stakeholders,
340–341

ensuring ownership of performance
concerns, 360

explaining measurement intervals to
stakeholders, 356–359

identifying concerns, drivers, and
stakeholders, 344–345

most pressing questions in, 343–344
negotiating design choices and

system improvement recommen-
dations, 360–362

overview, 339–340
reporting performance status to

stakeholders, 353–354
sharing/developing with

stakeholders, 347–348
stakeholder influence on, 345
understanding impact of existing

architecture, 346–347
using performance engineering

concerns to influence architecture
and technology choices, 345–346

where it begins, 341–343
Performance test plan

documenting, 220–222
linking tests to performance

requirements in, 222–223
measurement procedures in, 193
overview, 4
system measurement and, 168
system stability and, 225–226

Performance testers, stakeholder roles,
351–352

Performance tests
applying performance laws to, 80
automating, 213, 244–245
background loads and, 205

 Index400

Performance tests, continued
basing on performance requirement

draft, 113
challenges in, 202–203
checking test equipment and

software, 213–214
collecting data from, 229–230
comparing performance measure-

ment with performance testing,
167–168

comparing production measurement
with performance testing and
scalability measurement, 181–183

connection between models, require-
ments, and tests, 79–80

costs of, 22
deploying load drivers, 214–216
detecting/debugging concurrency

issues, 223–224
developing sound tests, 112
documenting plans and results,

220–222
evaluating linearity of utilization,

205–208
example of wrong way to evaluate

throughput, 208–209
formulating performance require-

ments to facilitate, 158–160
interpreting results of service use

cases example, 231–235
interpreting results of system with

computationally intense transac-
tions, 237–241

interpreting results of system with
memory leak and deadlocks,
241–243

interpreting results of transaction
system with high failure rate,
235–237

lab discipline in, 217
linking performance requirements to

size, 108
linking tests to performance require-

ments, 222–223
measurement procedures, 193–194
measuring multiprocessor systems,

179–180
modeling and, 10
multiple-host systems and, 218–219
overview of, 199–202

in performance engineering, 10–11
performance test plan, 168
planning tests and models, 203–204
planning tests for system stability,

225–226
preparing for, 210–211
provocative performance testing,

209–210
reducing and presenting data, 230
regulatory and security issues,

216–217
role of performance engineers in, 12
scalability and, 302–303
scripts and checklists, 219–220
steps in performance engineering, 7
structuring to reflect scalability of

architecture, 228–229
summary and exercises, 246–249
understanding system architecture

and, 211–212
unspecified requirements and

(prospective testing), 226–227
Performance tests, in agile development

aligning with sprints, 329–330
communicating test results, 331
identifying and planning tests and

test instrumentation, 332–333
implementing, 332
interpreting and applying test results,

330–331
link between irregular test results

and incorrect functionality, 334
playtime in testing process, 334–336
Scrum use in test implementation

and test instrumentation, 333–334
Performance tuning, learning resources

for, 374–375
pidstat (Linux/UNIX OSs), 225–226
Pilot tests

automating, 213
measuring multiprocessor systems,

179–180
performance modeling and, 10–11

ping command, determining remote
node is operational, 34

Pitfalls
diminishing returns from multipro-

cessors or multiple cores, 314–315
eliminating bottleneck unmasks new

pitfall, 319–321

Index 401

garbage collection, 315
measurement and, 317–319
organizational, 321–322
overview, 307–308
priority scheduling, 308–312
scalability, 299–302
summary and exercises, 322–323
transient CPU saturation, 312–314
in transition from legacy system to

new system, 156–158
virtual machines and, 315–317

Plans/planning
capacity planning. see Capacity

planning
documenting, 220–222
identifying, 332–333
models and, 203–204
performance test planning. see

Performance test plan
Platforms, system measurement and,

164
Playbook, creating scripts and checklists

for performance testing, 219–220
Playtime

automating tests, 213
in testing process, 334–336

PLCs (programmable logic controllers),
256–258

Plotting tools, automating plots of
performance data, 218–219

Poisson arrivals, 74
Poisson Arrivals See Time Averages

(PASTA), 175
Pool size. see also Object pools

finite pool sizes, 75–77
pool size requirement pattern, 147

The Practical Performance Analyst
(Gunther), 370

Predicting performance, 77–78
Preemptive priority, 311
Priority scheduling. see also Scheduling

rules
benefits and pitfalls, 347
preemptive priority, 311

Privacy, regulations in performance tests
and, 217

Procedures, system measurement,
192–194

Process aspects, of performance
engineering, 6–7

Processes
scalability attribute of, 273
synchronization on virtual machines,

316
Processor Sharing (PS)

regularity conditions for computa-
tionally tractable queueing
network models, 68–69

types of queueing disciplines, 45
Processors. see also CPUs

diminishing returns from multipro-
cessors or multiple cores, 314–315

measuring multicore and multipro-
cessor systems, 177–180

measuring processor utilization,
21–22, 169–171

measuring processor utilization and
averaging time window, 175–177

measuring processor utilization by
individual processes, 171–173

modeling principles, 201
quantifying device loadings and flow

through a computer system. see
CPUs

Product form, 59
Product management, performance

requirements and, 106–107
Product managers, gathering perfor-

mance requirements from, 141
Production

comparing production measurement
with performance testing and
scalability measurement,
181–183

system measurement in production
systems, 164

Programmable logic controllers (PLCs),
256–258

Programming, skills need by perfor-
mance engineers, 9

Projection phase, phases of modeling
studies, 254–255

Properties
ACID properties, 287
of performance metrics, 24–26,

191–192
of performance requirements,

117–118
Prospective testing, when requirements

are unspecified, 226–227

 Index402

Provocative performance testing,
209–210

PS (Processor Sharing)
regularity conditions for

computationally tractable
queueing network models, 68–69

types of queueing disciplines, 45
ps command (Linux/UNIX OSs)

measuring memory-related activity,
180–181

obtaining processor utilization,
284–285

testing system stability, 225–226
Pure delay servers, 61

Q
Qualitative attributes, of system

performance, 126–127
Qualitative view, of queueing network

representation, 62–63
Quality of service (QoS), linking

performance requirements to, 110
Quantitative analysis, skills need by

performance engineers, 8
Quantitative System Performance

(Lazowska et al.), 371
Queries, performance issues in

databases, 188
Queue length

for airport luggage workload, 93
in characterizing queue performance,

43
connection between models,

requirements, and tests, 79
in measuring utilization, 175
single-server queue and, 51

Queueing models/theory
model sufficiency and, 255
modeling asynchronous I/O and, 263
performance modeling and, 10
skills need by performance engineers,

8–9
Queueing Systems, Volume 1: Theory

(Kleinrock), 372
Queueing Systems, Volume 2: Applications

(Kleinrock), 372
Queues (Cox and Smith), 372
Queues/queueing

asymptotic bounds on throughput
and response time, 63–66

asynchronous activity impacting
performance bounds, 66–67

avoiding scalability pitfalls, 301–302
bottleneck analysis, 63
causes of, 39–41
characterizing performance of,

42–44
in computer systems and in daily life,

38–39
connection between models, require-

ments, and tests, 79–80
finite pool sizes, lost calls, and lost

work, 75–77
learning resources for, 372
limitations/applicability of simple

models, 78
Little’s Law and, 47–49
load scalability and, 279
lower bounds on system response

times, 58
Mean Value Analysis, 69–71
measuring queueing time in

multicore and multiprocessor
systems, 177–180

multiple-class queueing networks,
71–74

museum checkroom example,
289–290

networks of queues, 52–53
predicting performance and, 77–78
product form and, 59
priority scheduling and, 311, 347
qualitative view of, 62–63
quantifying device loadings and flow

through a computer system,
54–56

regularity conditions for computa-
tionally tractable queueing
network models, 68–69

simple queueing networks, 53–54
single-class closed queueing network

model, 60–62
single-class open queueing network

model, 59–60
single-server queue, 49–52
types of queueing disciplines,

44–45
upper bounds on system throughput,

56–58
Utilization Law and, 45–47

Index 403

R
R programming language, statistical

methods and, 374
R0 (global response time), in single-class

closed queueing network model,
61

RAID devices, modeling asynchronous
I/O and, 265–266

Railway example, linking performance
requirements to regulatory needs,
109

Real-time systems, monitoring in,
317–318

Reducing data, 230, 330–331
Reference workloads

in performance requirements
documents, 151

for systems with differing environ-
ments, 87–88

Regression analysis
obtaining service demand, 254
statistical methods and, 374

Regularity conditions, for
computationally tractable
queueing network models, 68–69

Regulations
financial regulations in performance

tests, 216–217
linking performance requirements to,

108–110
in performance requirements

documents, 152
Reliability

under load, 4
properties of metrics, 25

Repeatability, properties of metrics, 25
Reports/reporting

investing in reporting tools, 7
online securities trading example, 96
performance requirements and,

160–161
performance status to stakeholders,

353–354
role of performance engineers in,

12–13
Requirements

functional requirements. see
Functional requirements

performance requirements. see
Performance requirements

Requirements engineers, stakeholder
roles, 350

Resident set, in Linux/UNIX systems,
180

Resources
background activities in resource use,

205
determining resource requirements, 7
measuring utilization, 158–159,

168–169
priority scheduling not always

beneficial or cost-effective, 308
resource utilization antipattern, 146
user experience metrics vs. resource

metrics, 23–24
Resources, for learning. see Learning

resources, for performance
engineering

Response time
airport luggage workload, 93
asymptotic bounds on, 63–66
asynchronous activity impacting,

66–67
asynchronous I/O and, 260–266
challenges in testing systems with

multiple hosts, 218–219
in characterizing queue performance,

42–43
common metrics for, 20
as competitive differentiator for web

sites, 110
connection between models, require-

ments, and tests, 79
delayed time stamping as measure-

ment pitfall, 317–318
detecting/debugging concurrency

issues in multiprocessor systems,
223–224

facilitating testing, 159
formula for average response time,

20–21
formulating response time require-

ments, 128–130
global response time (R0) in single-

class queueing model, 61
in Little’s Law, 47–49
lower bounds on system response

times, 56–58
measuring at peak or busy hour, 26
measuring generally, 189–190

 Index404

Response time, continued
measuring in commercial databases,

188
modeling principles, 201
pattern and antipattern, 144–145
pitfalls, 321
qualitative view of queueing

networks, 62–63
response time pattern and antipat-

tern, 144–145
single-server queue and, 51
sustainable load and, 128
system design and, 6
unbiased estimator of variance of, 22
upper bounds on, 129
validating measurements and, 192
validation phase of model and, 254

Response Time Law
applying to capacity planning and

performance testing, 80
combining inequality with, 65–66
connection between models, require-

ments, and tests, 79
delayed time stamping as measure-

ment pitfall, 319
relating think time, average response

time, and system throughput,
61–62

Response time pattern and antipattern,
144–145

Revenue streams, linking performance
requirements to, 110

Review process, skills need by perfor-
mance engineers, 10

Risks
performance and, 6
reducing business risk, 112–114

Road traffic control system, 88
Road map, to topics covered in this

book, 15–17
Round Robin, types of queueing

disciplines, 44
Round-trip times, linking performance

requirements to engineering
needs, 108

S
S programming language, statistical

methods, 374
Safety checks, testing and, 193–194

Sample statistics, comparing with
time-average statistics, 21

sar (Linux/UNIX OSs)
measuring processor utilization, 22,

171
measuring processor utilization by

individual processes, 172–173
testing system stability, 225–226

Sarbanes-Oxley financial regulations, in
performance tests, 216

Saturation
diminishing returns from multipro-

cessors or multiple cores, 320
equilibrium and, 50
transient saturation not always bad,

312–314
utilization and, 56
Utilization Law and, 45–46

Saturation epoch, 312–313
Scalability

antipattern, 147–148
avoiding pitfalls of, 299–302
busy waiting on locks and, 285–286
causes of system performance failure,

106–107
coarse granularity locking and, 287
comparing options for mutual

exclusion, 296–298
comparing production measurement

with performance testing and
scalability measurement, 181–183

definitions of, 275
in Ethernet/token ring comparison,

287–288
improving load scalability, 293–295
interactions between types of, 282
limitations in development environ-

ment, 292–293
load scalability, 277–279
mathematical analysis of, 295–296
museum checkroom example,

289–292, 298–299
over long distances and network

congestion, 281–282
overview, 273–275
performance tests and, 302–303
qualitative analysis of, 283
qualitative attributes of system

performance, 126
scaling methods, 275

Index 405

serial execution of disjoint transac-
tions, 283–285

space scalability, 279–280
space-time scalability, 280–281
structural scalability, 281
structuring tests to reflect,

228–229
summary and exercises, 303–305
types of, 277

Scalability antipattern, 147–148
Scaling methods, 275
Scaling out (horizontal scaling)

overview, 276–277
structuring tests to reflect scalability

of architecture, 228
Scaling up (vertical scaling)

overview, 276–277
structuring tests to reflect scalability

of architecture, 228
Scheduling

aligning tests with sprints,
329–330

periodic loads and peaks, 267–268
Scheduling rules

avoiding scalability pitfalls, 299
improving scalability and, 294
load scalability and, 278
not always improving performance,

308
pitfalls related to priority scheduling,

308–312
qualitative view of queueing

networks, 62–63
Scope and purpose section, in perfor-

mance requirements documents,
151

Scripts
creating test scripts, 219–220
for verifying functionality, 213

Scrums, in agile test implementation
and instrumentation, 333–334

Scrutiny, in system measurement, 168
Securities trading example

applying numerical data to character-
ize workloads, 100–101

linking performance requirements to,
110

mapping application domains to
system workloads, 91–92

numerical specification of workloads,
96–97

time-varying demand on workload,
89–90

traffic patterns and, 99
Security, testing financial systems and,

216–217
Self-expansion, 150, 290
Seller-buyer relationships, performance

expertise and, 114–115
Semaphores

comparing with locks, 296–298
load scalability and, 294–295
mathematical analysis of load

scalability, 295–296
Sensitivity analysis, 78
Serial execution, of disjoint transactions,

283–285
Servers, central server model, 53–54
Service rate, queueing and, 41
Service time

connection between models, require-
ments, and tests, 79

in Little’s Law, 49
qualitative view of queueing

networks, 62–63
queueing and, 39–41
single-server queue and, 52
in Utilization Law, 45–47

Services
obtaining service demand, 254
outsourcing, 116
use cases, 231–235

SIGMETRICS (ACM Special Interest
Group on Performance Evalua-
tion), 370

SIGSOFT (ACM Special Interest Group
on Software Engineering), 370

Simple Network Management Protocol
(SNMP), 185

Simple queueing networks. see Net-
works of queues

Simulation
discrete event simulation, 372–373
skills need by performance engin-

eers, 8
Single-class closed queueing networks

asymptotic bounds on throughput
and response time, 63–66

asynchronous activity impacting
performance bounds, 66–67

bottleneck analysis, 63
Mean Value Analysis, 69–71

 Index406

Single-class open queueing networks,
59–62

Single-host systems, measuring perfor-
mance of, 183

Single-server queue, 49–52
Size, linking performance requirements

to, 107–108
SNMP (Simple Network Management

Protocol), 185
Software

aligning tests with sprints, 329–330
associating performance require-

ments with lifecycle of, 111–112
checking test equipment and,

213–214
deploying load drivers, 214–216
examples of importance of perfor-

mance in systems, 2–3
performance requirements and, 106

Software bottleneck
diminishing returns from multipro-

cessors or multiple cores, 314–315
eliminating bottleneck unmasks new

pitfall, 320
Software development

agile approach. see Agile software
development

outsourcing, 116
skills need by performance engi-

neers, 9
waterfall approach, 325

Software development cycle
interactions and dependencies in

performance engineering and, 14
limitation of “build it, then tune it”

approach, 3–4
performance requirements and, 155

Software engineering, skills need by
performance engineers, 9

Software project failure
interpreting results of transaction

system with high failure rate,
235–237

transaction failure rates, 134–135
Sojourn time

in characterizing queue performance,
42–43

Space dimension, sustainable load and,
128

Space scalability, 126, 279–280
Space-time scalability, 280–281, 292

SPEC (Standard Performance Evalua-
tion Corporation), 369

SPEC Benchmark Workshop (2009), 371
Special Interest Group on Performance

Evaluation (SIGMETRICS), 370
Special Interest Group on Software

Engineering (SIGSOFT), 370
Specification

benefits of performance reqirements,
113

of functional and performance
requirements, 141–142

guidelines for, 116–117
of workloads. see Numerical specifi-

cation, of workloads
Speed/distance scalability, 281–282
Spreadsheet packages, 374
Sprints (iterations)

in agile development, 325
aligning tests with, 329–330
identifying and planning tests and

test instrumentation, 332–333
performance requirements evolving

between, 328
SQL, commercial tools for measuring

databases, 188
Stability

planning tests for system stability,
225–226

qualitative attributes of system
performance, 126

system measurement and, 165
Stakeholders

architects, 348–349
capacity management engineers, 355
designers and developers, 350–351
determining which performance

aspects matter to, 340–341
ensuring ownership of performance

concerns, 360
example of working with, 354–355
explaining concerns and sharing

performance story with, 347–348
explaining measurement intervals to,

356–359
facilitating access to performance

requirements, 155
functional testers and performance

testers, 351–352
identifying performance concerns,

drivers, and stakeholders, 344–345

Index 407

influencing performance story, 345
interactions and dependencies and, 13
model sufficiency and, 255
negotiating design choices and

system improvement recommen-
dations, 360–362

overview, 339–340
performance engineers relating to, 13
in performance requirements

documents, 151–152
performance story and, 341–344
relationship skills need by perfor-

mance engineers, 9–10
reporting performance status to,

353–354
requirements engineers and, 350
requirements gathering and, 140
roles of, 349–350
summary and exercises, 362–366
system administrators and database

administrators, 353
testers, 351-352
understanding impact of existing

architecture on system perfor-
mance, 346–347

user experience engineers, 352–353
using performance engineering

concerns to influence architecture
and technology choices, 345–346

Standard Performance Evaluation
Corporation (SPEC), 369

Standards, citation of and compliance
with, in performance require-
ments documents, 152

State transition diagrams, 287–288
Statistics

comparing time-average with
sample, 21

learning resources for statistical
evaluation, 374

performance modeling and, 10
skills need by performance engi-

neers, 8–9
Storage, performance requirements,

160–161
Story. see Performance story
Structural scalability, 126, 281–282
Subsystems

central subsystem of computers, 61
external performance requirements

and, 150

system measurement and, 164
Sun-based systems, 374
Suppliers, specification guidelines,

116–117
Sustainable load, 127–128
Sybase, commercial tools for measuring

databases, 188
System administrators, 353
System architects, 141
System architecture. see also Architecture

reviewing as step in performance
engineering, 7

skills need by performance engi-
neers, 8

testing and, 211–212
System clocks

clock drift causing measurement
errors, 317

synchronization in multiple-host
systems, 184

System configuration
provocative performance testing, 210
understanding system architecture

before testing, 212
System managers, system measurement

by, 163
System measurement. see also

Measurement; Metrics
from within applications, 186–187
bandwidth utilization, 174–175
code profiling, 190–191
of commercial databases, 188–189
comparing measurement with

testing, 167–168
comparing production measurement

with performance testing and
scalability measurement, 181–183

data organization and, 195
disk utilization, 173
interpreting measurements in virtual

environments, 195
memory-related activity, 180–181
in middleware, 187–188
multicore and multiprocessor

systems, 177–180
overview of, 163–167
procedures, 192–194
processor usage, 169–171
processor usage by individual

processes, 171–173
queue length, 175

 Index408

System measurement, continued
resource usage, 168–169
response time, 189–190
of single-host and multiple-host

systems, 183–186
summary and exercises, 196–197
utilizations and the averaging time

window, 175–177
validating with basic properties of

performance metrics, 191–192
validation and scrutiny in, 168

System mode (Linux/UNIX OSs), 171
System resources, 308. see also Resources
Systems

application where processing time
increases per unit of work over
time, 267

conveyor system example, 256–260
interpreting results of system with

computationally intense transac-
tions, 237–241

learning resources for evaluating
performance of, 373

load scalability and, 279
with load-dependent or time-varying

behavior, 266
lower bounds on response time, 58
measuring response time, 189
modeling asynchronous I/O, 260–266
modeling computer systems, 252–254
negotiating system improvement

recommendations, 360–362
phases of modeling studies, 254–256
pitfall in transition from legacy

system, 156–158
planning tests for stability of,

225–226
qualitative attributes of performance,

126–127
reference workloads in different

environments, 87–88
scalability antipattern, 147–148
scalability attribute of, 273–275
scheduling periodic loads and peaks,

267–268
summary and exercises, 268–271
thrashing of paged virtual memory

systems, 266
with transient, bounded loads, 33–35
understanding, 251

understanding impact of existing
architecture on, 346–347

upper bounds on throughput, 56–58

T
Task Manager (Window OSs)

automating tests, 213
interpreting results of system with

memory leak and deadlocks, 243
measuring CPU utilization, 171
measuring memory-related activity,

181
testing system stability, 225–226

Tax filing, occurrence of periodic loads
and peaks, 267–268

TCP/IP, speed/distance scalability of,
281–282

Techniques, in performance engineering,
8–10

Technologies
evaluating performance

characteristics of, 7
using performance engineering

concerns to influence, 345–346
Telephone call center

performance requirements related to
transaction failure rates, lost calls,
lost packets, 134–135

time-varying demand workload
examples, 89–90

Telephony
background activities in resource use,

205
implicit performance requirements

and, 133
lost jobs and, 75
metrics example, 30
structural scalability and, 281

Test plan. see Performance test plan
Testability, of performance require-

ments, 120–121
Testers, gathering performance require-

ments from, 140
Tests

functional. see Functional testing
integration. see Integration tests
performance. see Performance tests
pilot. see Pilot tests
unit. see Unit tests

Texts, on performance analysis, 370–371

Index 409

Think time, in single-class closed
queueing network model, 61

Thrashing, of paged virtual memory
systems, 266

Thread safety
concurrent testing of functional and

performance requirements, 200
detecting/debugging concurrency

issues, 223–224
Threads, synchronization on virtual

machines, 316
Throughput

applying performance law to, 80
asymptotic bounds on, 63–66
characterizing queue performance, 42
detecting/debugging concurrency

issues, 224
in Ethernet/token ring comparison,

287–288
example of wrong way to evaluate,

208–209
formulating throughput require-

ments, 130–131
in Little’s Law, 48
lower bounds on, 58
modeling principles, 201
pitfalls, 321
quantifying device loadings and

flow through a computer system,
55

replacing coarse granularity locks
with fine-grained locks, 287

speed/distance scalability and, 282
telephony metrics, 30–31
upper bounds on, 56–58

Time (temporal) dimension, sustainable
load and, 128

Time scalability, 126
Time scale

granularity and time scale of
performance requirements, 122

metrics and, 32–33
Time slicing, types of queueing

disciplines, 44
Time stamps, delay as measurement

pitfall, 317–318
Time-average statistics, 21
Time-varying behavior

systems with, 266
workloads and, 88–91

Token ring
comparing scalability with Ethernet,

287–288
improving load scalability, 295

Traceability, of performance
requirements, 121–122

Traffic intensity
in characterizing queue performance,

43
single-server queue, 49

Train signaling and departure boards,
metrics example, 29–30

Transaction failure rates. see also Failure
interpreting results of transaction

system with high failure rate,
235–237

performance requirements related to,
134–135

Transaction rates
ambiguity and, 117–118
completeness of performance

requirements and, 119
evaluating linearity of utilization with

respect to transaction rate, 205–208
measuring at peak or busy hour, 26
measuring from within applications,

186
online securities trading example, 96
validating measurement of, 191

Transaction-oriented systems,
understanding system architecture
before testing, 211–212

Transactions
interpreting results of system with

computationally intense
transactions, 237–241

interpreting results of transaction
system with high failure rate,
235–237

serial execution of disjoint
transactions, 283–285

Transient load, performance
requirements related to, 135–136

U
Unambiguousness, properties of

performance requirements,
117–118

Unit tests
functional requirements and, 199–200

 Index410

Unit tests, continued
role of performance engineers, 12
verifying functionality with, 189

UNIX OS. see Linux/UNIX OSs
Upper bounds, on system throughput,

56–58
Use cases, interpreting results of service

use cases, 231–235
User base

number of users supported pattern/
antipattern, 146–147

performance impact of increasing
size of, 5–6

User experience engineers, stakeholder
roles, 352–353

User experience metrics, 23–24
Utilization (U)

applying performance law to, 80
characterizing queue performance, 43
connection between models,

requirements, and tests, 79
CPU utilization in service use cases

example, 231–235
evaluating linearity with respect to

transaction rate, 205–208
interpreting results of system with

computationally intense
transactions, 239–241

measuring bandwidth utilization,
174–175

measuring processor utilization,
169–171

measuring processor utilization and
averaging time window, 175–177

measuring processor utilization by
individual processes, 172–173

modeling principles, 201
quantifying device loadings and flow

through a computer system, 55–56
resource utilization antipattern, 146
sustainable load and, 127–128
synchronous and asynchronous

activity and, 263
in Utilization Law, 45–47
validating measurements and, 191

Utilization Law
applying to capacity planning and

performance testing, 80
connection between models,

requirements, and tests, 79

derived performance requirements
and, 132

measurements conforming to, 168
measuring utilization in server with

two processors, 179
modeling principles, 201
obtaining service demand, 254
overview, 45–47
performance test planning and, 204
resource utilization measurement,

169
statistical methods and, 374
transaction loading and, 158

V
Validation

predicting performance and, 78
of system measurement, 168
of system measurement with basic

properties of performance metrics,
191–192

Validation phase, of modeling studies,
254

Verifiability, of performance require-
ments, 118–119

Vertical scaling (scaling up)
overview, 276–277
structuring tests to reflect scalability

of architecture, 228
Virtual clients, 236
Virtual environments, interpreting

measurements in, 195
Virtual machines, performance

engineering pitfalls and, 315–317
Virtual users, load testing with, 190
Visit ratios, CPUs, 54
vmstat (Linux/UNIX OSs)

measuring CPU utilization, 171
measuring memory-related activity,

181
testing system stability, 225–226

W
Waiting time

in characterizing queue performance,
43

priority scheduling and, 309
Waterfall development, 325
Web sites, implicit performance require-

ments and, 133–134

Index 411

Web systems, multiplier configuration
of, 183–186

Web-based online banking system,
example of multiple-class queue-
ing networks, 72

What-if-analysis
predicting performance and, 78
projecting changes, 255

Windows OSs
automating tests, 213
gathering host information, 185
measuring bandwidth utilization, 174
measuring disk I/O, 173
measuring memory-related activity,

180–181
measuring processor utilization, 22,

170–171
measuring processor utilization by

individual processes, 172
measuring queue lengths, 175

playtime in testing process in agile
development and, 335

skills need by performance engineers
and, 8

virtual machines mimicking, 316
Workloads. see also Load

applying numerical data to the
characterization of, 99–103

identifying, 85–87
mapping application domains to,

91–95
overview, 85
performance requirements designed

for size of, 107–108
pitfalls, 321
reference workloads in different

environments, 87–88
specifying numerically, 95–99
summary and exercises, 103–104
time-varying demand and, 88–91

This page intentionally left blank

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefi ts.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall
Professional, Que, and Sams. Here you will gain access to quality and trusted content and
resources from the authors, creators, innovators, and leaders of technology. Whether you’re
looking for a book on a new technology, a helpful article, timely newsletters, or access to
the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefi ts:

• Access to supplemental content,
including bonus chapters,
source code, or project fi les.

• A coupon to be used on your
next purchase.

Registration benefi ts vary by product.
Benefi ts will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

../../../../../www.informit.com/register
../../../../../www.informit.com/register
../../../../../www.informit.com/default.htm

 InformIT is a brand of Pearson and the online presence
for the world’s leading technology publishers. It’s your source
for reliable and qualified content and knowledge, providing
access to the top brands, authors, and contributors from
the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opin-
ions, advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by
subscribing to a wide variety of newsletters.
Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at
informit.com/articles.

• Access thousands of books and videos in the Safari Books
Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the
hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?
Connect with Pearson authors and editors via RSS feeds, Facebook,
Twitter, YouTube, and more! Visit informit.com/socialconnect.

../../../../../www.informit.com/default.htm
../../../../../www.informit.com/newsletters
../../../../../www.informit.com/podcasts
../../../../../www.informit.com/articles
../../../../../www.safari.informit.com/default.htm
../../../../../www.informit.com/blogs
../../../../../www.informit.com/learn
../../../../../www.informit.com/socialconnect
../../../../../www.informit.com/default.htm

Activate your FREE Online Edition at
informit.com/safarifree

STEP 1: Enter the coupon code: MKYUQGA.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have diffi culty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

Your purchase of Foundations of Software and System Performance Engineering includes
access to a free online edition for 45 days through the Safari Books Online subscription service.
Nearly every Addison-Wesley Professional book is available online through Safari Books Online,
along with thousands of books and videos from publishers such as Cisco Press, Exam Cram, IBM
Press, O’Reilly Media, Prentice Hall, Que, Sams, and VMware Press.

Safari Books Online is a digital library providing searchable, on-demand access to thousands
of technology, digital media, and professional development books and videos from leading
publishers. With one monthly or yearly subscription price, you get unlimited access to learning
tools and information on topics including mobile app and software development, tips and tricks
on using your favorite gadgets, networking, project management, graphic design, and much more.

FREE
Online Edition

../../../../../www.informit.com/safarifree
service@safaribooksonline.com

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgments
	About the Author
	Chapter 1 Why Performance Engineering? Why Performance Engineers?
	1.1 Overview
	1.2 The Role of Performance Requirements in Performance Engineering
	1.3 Examples of Issues Addressed by Performance Engineering Methods
	1.4 Business and Process Aspects of Performance Engineering
	1.5 Disciplines and Techniques Used in Performance Engineering
	1.6 Performance Modeling, Measurement, and Testing
	1.7 Roles and Activities of a Performance Engineer
	1.8 Interactions and Dependencies between Performance Engineering and Other Activities
	1.9 A Road Map through the Book
	1.10 Summary

	Chapter 2 Performance Metrics
	2.1 General
	2.2 Examples of Performance Metrics
	2.3 Useful Properties of Performance Metrics
	2.4 Performance Metrics in Different Domains
	2.4.1 Conveyor in a Warehouse
	2.4.2 Fire Alarm Control Panel
	2.4.3 Train Signaling and Departure Boards
	2.4.4 Telephony
	2.4.5 An Information Processing Example: Order Entry and Customer Relationship Management

	2.5 Examples of Explicit and Implicit Metrics
	2.6 Time Scale Granularity of Metrics
	2.7 Performance Metrics for Systems with Transient, Bounded Loads
	2.8 Summary
	2.9 Exercises

	Chapter 3 Basic Performance Analysis
	3.1 How Performance Models Inform Us about Systems
	3.2 Queues in Computer Systems and in Daily Life
	3.3 Causes of Queueing
	3.4 Characterizing the Performance of a Queue
	3.5 Basic Performance Laws: Utilization Law, Little’s Law
	3.5.1 Utilization Law
	3.5.2 Little’s Law

	3.6 A Single-Server Queue
	3.7 Networks of Queues: Introduction and Elementary Performance Properties
	3.7.1 System Features Described by Simple Queueing Networks
	3.7.2 Quantifying Device Loadings and Flow through a Computer System
	3.7.3 Upper Bounds on System Throughput
	3.7.4 Lower Bounds on System Response Times

	3.8 Open and Closed Queueing Network Models
	3.8.1 Simple Single-Class Open Queueing Network Models
	3.8.2 Simple Single-Class Closed Queueing Network Model
	3.8.3 Performance Measures and Queueing Network Representation: A Qualitative View

	3.9 Bottleneck Analysis for Single-Class Closed Queueing Networks
	3.9.1 Asymptotic Bounds on Throughput and Response Time
	3.9.2 The Impact of Asynchronous Activity on Performance Bounds

	3.10 Regularity Conditions for Computationally Tractable Queueing Network Models
	3.11 Mean Value Analysis of Single-Class Closed Queueing Network Models
	3.12 Multiple-Class Queueing Networks
	3.13 Finite Pool Sizes, Lost Calls, and Other Lost Work
	3.14 Using Models for Performance Prediction
	3.15 Limitations and Applicability of Simple Queueing Network Models
	3.16 Linkage between Performance Models, Performance Requirements, and Performance Test Results
	3.17 Applications of Basic Performance Laws to Capacity Planning and Performance Testing
	3.18 Summary
	3.19 Exercises

	Chapter 4 Workload Identification and Characterization
	4.1 Workload Identification
	4.2 Reference Workloads for a System in Different Environments
	4.3 Time-Varying Behavior
	4.4 Mapping Application Domains to Computer System Workloads
	4.4.1 Example: An Online Securities Trading System for Account Holders
	4.4.2 Example: An Airport Conveyor System
	4.4.3 Example: A Fire Alarm System

	4.5 Numerical Specification of the Workloads
	4.5.1 Example: An Online Securities Trading System for Account Holders
	4.5.2 Example: An Airport Conveyor System
	4.5.3 Example: A Fire Alarm System

	4.6 Numerical Illustrations
	4.6.1 Numerical Data for an Online Securities Trading System
	4.6.2 Numerical Data for an Airport Conveyor System
	4.6.3 Numerical Data for the Fire Alarm System

	4.7 Summary
	4.8 Exercises

	Chapter 5 From Workloads to Business Aspects of Performance Requirements
	5.1 Overview
	5.2 Performance Requirements and Product Management
	5.2.1 Sizing for Different Market Segments: Linking Workloads to Performance Requirements
	5.2.2 Performance Requirements to Meet Market, Engineering, and Regulatory Needs
	5.2.3 Performance Requirements to Support Revenue Streams

	5.3 Performance Requirements and the Software Lifecycle
	5.4 Performance Requirements and the Mitigation of Business Risk
	5.5 Commercial Considerations and Performance Requirements
	5.5.1 Performance Requirements, Customer Expectations, and Contracts
	5.5.2 System Performance and the Relationship between Buyer and Supplier
	5.5.3 Confidentiality
	5.5.4 Performance Requirements and the Outsourcing of Software Development
	5.5.5 Performance Requirements and the Outsourcing of Computing Services

	5.6 Guidelines for Specifying Performance Requirements
	5.6.1 Performance Requirements and Functional Requirements
	5.6.2 Unambiguousness
	5.6.3 Measurability
	5.6.4 Verifiability
	5.6.5 Completeness
	5.6.6 Correctness
	5.6.7 Mathematical Consistency
	5.6.8 Testability
	5.6.9 Traceability
	5.6.10 Granularity and Time Scale

	5.7 Summary
	5.8 Exercises

	Chapter 6 Qualitative and Quantitative Types of Performance Requirements
	6.1 Qualitative Attributes Related to System Performance
	6.2 The Concept of Sustainable Load
	6.3 Formulation of Response Time Requirements
	6.4 Formulation of Throughput Requirements
	6.5 Derived and Implicit Performance Requirements
	6.5.1 Derived Performance Requirements
	6.5.2 Implicit Requirements

	6.6 Performance Requirements Related to Transaction Failure Rates, Lost Calls, and Lost Packets
	6.7 Performance Requirements Concerning Peak and Transient Loads
	6.8 Summary
	6.9 Exercises

	Chapter 7 Eliciting, Writing, and Managing Performance Requirements
	7.1 Elicitation and Gathering of Performance Requirements
	7.2 Ensuring That Performance Requirements Are Enforceable
	7.3 Common Patterns and Antipatterns for Performance Requirements
	7.3.1 Response Time Pattern and Antipattern
	7.3.2 “… All the Time/… of the Time” Antipattern
	7.3.3 Resource Utilization Antipattern
	7.3.4 Number of Users to Be Supported Pattern/ Antipattern
	7.3.5 Pool Size Requirement Pattern
	7.3.6 Scalability Antipattern

	7.4 The Need for Mathematically Consistent Requirements: Ensuring That Requirements Conform to Basic Performance Laws
	7.5 Expressing Performance Requirements in Terms of Parameters with Unknown Values
	7.6 Avoidance of Circular Dependencies
	7.7 External Performance Requirements and Their Implications for the Performance Requirements of Subsystems
	7.8 Structuring Performance Requirements Documents
	7.9 Layout of a Performance Requirement
	7.10 Managing Performance Requirements: Responsibilities of the Performance Requirements Owner
	7.11 Performance Requirements Pitfall: Transition from a Legacy System to a New System
	7.12 Formulating Performance Requirements to Facilitate Performance Testing
	7.13 Storage and Reporting of Performance Requirements
	7.14 Summary

	Chapter 8 System Measurement Techniques and Instrumentation
	8.1 General
	8.2 Distinguishing between Measurement and Testing
	8.3 Validate, Validate, Validate; Scrutinize, Scrutinize, Scrutinize
	8.4 Resource Usage Measurements
	8.4.1 Measuring Processor Usage
	8.4.2 Processor Utilization by Individual Processes
	8.4.3 Disk Utilization
	8.4.4 Bandwidth Utilization
	8.4.5 Queue Lengths

	8.5 Utilizations and the Averaging Time Window
	8.6 Measurement of Multicore or Multiprocessor Systems
	8.7 Measuring Memory-Related Activity
	8.7.1 Memory Occupancy
	8.7.2 Paging Activity

	8.8 Measurement in Production versus Measurement for Performance Testing and Scalability
	8.9 Measuring Systems with One Host and with Multiple Hosts
	8.9.1 Clock Synchronization of Multiple Hosts
	8.9.2 Gathering Measurements from Multiple Hosts

	8.10 Measurements from within the Application
	8.11 Measurements in Middleware
	8.12 Measurements of Commercial Databases
	8.13 Response Time Measurements
	8.14 Code Profiling
	8.15 Validation of Measurements Using Basic Properties of Performance Metrics
	8.16 Measurement Procedures and Data Organization
	8.17 Organization of Performance Data, Data Reduction, and Presentation
	8.18 Interpreting Measurements in a Virtualized Environment
	8.19 Summary
	8.20 Exercises

	Chapter 9 Performance Testing
	9.1 Overview of Performance Testing
	9.2 Special Challenges
	9.3 Performance Test Planning and Performance Models
	9.4 A Wrong Way to Evaluate Achievable System Throughput
	9.5 Provocative Performance Testing
	9.6 Preparing a Performance Test
	9.6.1 Understanding the System
	9.6.2 Pilot Testing, Playtime, and Performance Test Automation
	9.6.3 Test Equipment and Test Software Must Be Tested, Too
	9.6.4 Deployment of Load Drivers
	9.6.5 Problems with Testing Financial Systems

	9.7 Lab Discipline in Performance Testing
	9.8 Performance Testing Challenges Posed by Systems with Multiple Hosts
	9.9 Performance Testing Scripts and Checklists
	9.10 Best Practices for Documenting Test Plans and Test Results
	9.11 Linking the Performance Test Plan to Performance Requirements
	9.12 The Role of Performance Tests in Detecting and Debugging Concurrency Issues
	9.13 Planning Tests for System Stability
	9.14 Prospective Testing When Requirements Are Unspecified
	9.15 Structuring the Test Environment to Reflect the Scalability of the Architecture
	9.16 Data Collection
	9.17 Data Reduction and Presentation
	9.18 Interpreting the Test Results
	9.18.1 Preliminaries
	9.18.2 Example: Services Use Cases
	9.18.3 Example: Transaction System with High Failure Rate
	9.18.4 Example: A System with Computationally Intense Transactions
	9.18.5 Example: System Exhibiting Memory Leak and Deadlocks

	9.19 Automating Performance Tests and the Analysis of the Outputs
	9.20 Summary
	9.21 Exercises

	Chapter 10 System Understanding, Model Choice, and Validation
	10.1 Overview
	10.2 Phases of a Modeling Study
	10.3 Example: A Conveyor System
	10.4 Example: Modeling Asynchronous I/O
	10.5 Systems with Load-Dependent or Time-Varying Behavior
	10.5.1 Paged Virtual Memory Systems That Thrash
	10.5.2 Applications with Increasing Processing Time per Unit of Work
	10.5.3 Scheduled Movement of Load, Periodic Loads, and Critical Peaks

	10.6 Summary
	10.7 Exercises

	Chapter 11 Scalability and Performance
	11.1 What Is Scalability?
	11.2 Scaling Methods
	11.2.1 Scaling Up and Scaling Out
	11.2.2 Vertical Scaling and Horizontal Scaling

	11.3 Types of Scalability
	11.3.1 Load Scalability
	11.3.2 Space Scalability
	11.3.3 Space-Time Scalability
	11.3.4 Structural Scalability
	11.3.5 Scalability over Long Distances and under Network Congestion

	11.4 Interactions between Types of Scalability
	11.5 Qualitative Analysis of Load Scalability and Examples
	11.5.1 Serial Execution of Disjoint Transactions and the Inability to Exploit Parallel Resources
	11.5.2 Busy Waiting on Locks
	11.5.3 Coarse Granularity Locking
	11.5.4 Ethernet and Token Ring: A Comparison
	11.5.5 Museum Checkrooms

	11.6 Scalability Limitations in a Development Environment
	11.7 Improving Load Scalability
	11.8 Some Mathematical Analyses
	11.8.1 Comparison of Semaphores and Locks for Implementing Mutual Exclusion
	11.8.2 Museum Checkroom

	11.9 Avoiding Scalability Pitfalls
	11.10 Performance Testing and Scalability
	11.11 Summary
	11.12 Exercises

	Chapter 12 Performance Engineering Pitfalls
	12.1 Overview
	12.2 Pitfalls in Priority Scheduling
	12.3 Transient CPU Saturation Is Not Always a Bad Thing
	12.4 Diminishing Returns with Multiprocessors or Multiple Cores
	12.5 Garbage Collection Can Degrade Performance
	12.6 Virtual Machines: Panacea or Complication?
	12.7 Measurement Pitfall: Delayed Time Stamping and Monitoring in Real-Time Systems
	12.8 Pitfalls in Performance Measurement
	12.9 Eliminating a Bottleneck Could Unmask a New One
	12.10 Pitfalls in Performance Requirements Engineering
	12.11 Organizational Pitfalls in Performance Engineering
	12.12 Summary
	12.13 Exercises

	Chapter 13 Agile Processes and Performance Engineering
	13.1 Overview
	13.2 Performance Engineering under an Agile Development Process
	13.2.1 Performance Requirements Engineering Considerations in an Agile Environment
	13.2.2 Preparation and Alignment of Performance Testing with Sprints
	13.2.3 Agile Interpretation and Application of Performance Test Results
	13.2.4 Communicating Performance Test Results in an Agile Environment

	13.3 Agile Methods in the Implementation and Execution of Performance Tests
	13.3.1 Identification and Planning of Performance Tests and Instrumentation
	13.3.2 Using Scrum When Implementing Performance Tests and Purpose-Built Instrumentation
	13.3.3 Peculiar or Irregular Performance Test Results and Incorrect Functionality May Go Together

	13.4 The Value of Playtime in an Agile Performance Testing Process
	13.5 Summary
	13.6 Exercises

	Chapter 14 Working with Stakeholders to Learn, Influence, and Tell the Performance Engineering Story
	14.1 Determining What Aspect of Performance Matters to Whom
	14.2 Where Does the Performance Story Begin?
	14.3 Identification of Performance Concerns, Drivers, and Stakeholders
	14.4 Influencing the Performance Story
	14.4.1 Using Performance Engineering Concerns to Affect the Architecture and Choice of Technology
	14.4.2 Understanding the Impact of Existing Architectures and Prior Decisions on System Performance
	14.4.3 Explaining Performance Concerns and Sharing and Developing the Performance Story with Different Stakeholders

	14.5 Reporting on Performance Status to Different Stakeholders
	14.6 Examples
	14.7 The Role of a Capacity Management Engineer
	14.8 Example: Explaining the Role of Measurement Intervals When Interpreting Measurements
	14.9 Ensuring Ownership of Performance Concerns and Explanations by Diverse Stakeholders
	14.10 Negotiating Choices for Design Changes and Recommendations for System Improvement among Stakeholders
	14.11 Summary
	14.12 Exercises

	Chapter 15 Where to Learn More
	15.1 Overview
	15.2 Conferences and Journals
	15.3 Texts on Performance Analysis
	15.4 Queueing Theory
	15.5 Discrete Event Simulation
	15.6 Performance Evaluation of Specific Types of Systems
	15.7 Statistical Methods
	15.8 Performance Tuning
	15.9 Summary

	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

