
Blueprints Visual
Scripting for
Unreal Engine 5

Unleash the true power of Blueprints to create
impressive games and applications in UE5

Marcos Romero | Brenden Sewell

Third Edition

Blueprints Visual Scripting for
U

nreal Engine 5
Third Edition
M

arcos Rom
ero | Brenden Sew

ell

Third Edition

Unreal Engine's Blueprint visual scripting system enables designers to script their games and
programmers to create base elements that can be extended by designers. With this book, you'll
explore all the features of the Blueprint Editor, along with expert tips, shortcuts, and best practices.

The book guides you through using variables, macros, and functions, and helps you learn about
object-oriented programming (OOP). You'll discover the Gameplay Framework and advance to
learning how Blueprint Communication allows one Blueprint to access information from another
Blueprint. Later chapters focus on building a fully functional game step by step. You'll start with
a basic fi rst-person shooter (FPS) template, and each chapter will build on the prototype to create
an increasingly complex and robust game experience. You'll then progress from creating basic
shooting mechanics to more complex systems such as user interface elements and intelligent
enemy behavior. The book demonstrates how to use arrays, maps, enums, and vector operations
and introduces the elements needed for VR game development. In the fi nal chapters, you’ll learn
how to implement procedural generation and create a product confi gurator.

By the end of this book, you'll have learned how to build a fully functional game and have the skills
required to develop an entertaining experience for your audience.

Blueprints Visual Scripting for Unreal Engine 5

Things you will learn:

• Understand programming concepts
in Blueprints

• Create prototypes and iterate new game
mechanics rapidly

• Build user interface elements and
interactive menus

• Use advanced Blueprint nodes to manage
the complexity of a game

• Explore all the features of the Blueprint
editor, such as the Components tab,
Viewport, and Event Graph

• Get to grips with OOP concepts and explore
the Gameplay Framework

• Work with virtual reality development in
UE Blueprint

• Implement procedural generation and
create a product confi gurator

Blueprints Visual
Scripting for
Unreal Engine 5
Third Edition

Unleash the true power of Blueprints to create
impressive games and applications in UE5

Marcos Romero

Brenden Sewell

BIRMINGHAM—MUMBAI

Blueprints Visual Scripting for Unreal Engine 5
Third Edition
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Publishing Product Manager: Rohit Rajkumar
Senior Editor: Aamir Ahmed
Content Development Editor: Feza Shaikh
Technical Editor: Simran Udasi
Copy Editor: Safis Editing
Project Coordinator: Rashika Ba
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Shyam Sundar Korumilli
Marketing Coordinator: Teny Thomas

First published: July 2015

Second edition: August 2019

Third edition: April 2022

Production reference: 1290422

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80181-158-3

www.packt.com

https://www.packt.com

Contributors

About the authors
Marcos Romero is the author of the Romero Blueprints blog, which is one of the main
references on the internet to learn about Blueprints. Epic Games invited Marcos to the
Unreal Engine 4 closed beta program to experiment and collaborate with the evolution
of the tools. He was also one of the first recipients of Unreal Dev Grants for Education.
Marcos is a well-known figure in the Unreal community and, for Epic Games, he wrote
the official Blueprints Compendium and Blueprints Instructors' Guide.

I would like to thank Luis Cataldi and Tom Shannon from Epic Games for
sharing and recommending my Blueprint materials to developers around

the world.

I'd also like to thank Elinaldo Azevedo, Filipe Mendes, and Ingrid Mendes,
for their dedication to Beljogos, which is a local game development group

that I founded in the city of Belém, northern Brazil.

Brenden Sewell is a creative director with a decade of experience leading teams in the
development of compelling interactive experiences that entertain, teach, and inspire.
Prior to joining E-Line, he explored the intersection of educational practice and industry
game development, culminating in his work as the principal game designer at the Center
for Games and Impact. There, he specialized in the development of immersive games
for STEM education and teachers' professional development. Since joining the E-Line
team, he has led developments from concept, prototyping, and production, to release on
a variety of projects ranging from a brain-training first-person shooter to a construction
sandbox exploring the future of digital fabrication.

About the reviewer
Agne Skripkaite is an Unreal Engine software engineer. Coming from a strong
background in physics (with a Bachelor's of Science in Physics from the University of
Edinburgh), Agne likes to focus on the why of things and the overarching structure of
code in games. In the past, they have worked on Unreal Engine VR applications – both
room-scale and seated games, becoming an experienced user comfort and motion
sickness mitigation specialist for these contexts. This is the fifth Packt Publishing book on
Unreal Engine that Agne has reviewed as a technical editor.

Table of Contents
Preface

Part 1: Blueprint Fundamentals

1
Exploring the Blueprint Editor

Installing Unreal Engine 4
Creating new projects and
using templates 4
Blueprints Visual Scripting 8
Opening the Level Blueprint Editor 8
Creating a Blueprint Class 10

The Blueprint Class
Editor interface 11
The Toolbar panel 12

The Components panel 13
The My Blueprint panel 14
The Details panel 15
The Viewport panel 15
The Event Graph panel 16

Adding Components to
a Blueprint 17
Summary 19
Quiz 20

2
Programming with Blueprints

Storing values in variables 22
Defining the behavior of
a Blueprint with events
and actions 25
Events 26
Actions 27
The execution path 28

Creating expressions
with operators 29
Arithmetic operators 29
Relational operators 30
Logical operators 31

Organizing the script with
macros and functions 32
Creating macros 32

vi Table of Contents

Creating functions 36
Step-by-step example 39
Macros versus functions versus events 41

Summary 41
Quiz 41

3
Object-Oriented Programming and the Gameplay Framework

Getting familiar with OOP 44
Classes 44
Instances 44
Inheritance 45

Managing Actors 46
Referencing Actors 46
Spawning and destroying Actors 51
Construction Script 54

Exploring the other Gameplay
Framework classes 58
Pawn 60
Character 61
PlayerController 62
Game Mode Base 64
Game Instance 66

Summary 66
Quiz 67

4
Understanding Blueprint Communication

Direct Blueprint Communication 70
Casting in Blueprints 76
Level Blueprint Communication 82
Event Dispatchers 86

Binding Events 90
Summary 93
Quiz 94

Part 2: Developing a Game

5
Object Interaction with Blueprints

Creating the project and the
first Level 98
Adding objects to our Level 99
Exploring Materials 101
Creating Materials 101

Material properties and nodes 102
Adding substance to our Material 105

Creating the target Blueprint 107
Detecting a hit 109
Swapping a Material 110

Table of Contents vii

Improving the Blueprint 111

Adding movement 113
Changing the Actor's Mobility and
Collision settings 114
Breaking down our goal 115
Readying direction for calculations 118

Getting relative speed using delta time 119
Updating location 120

Changing direction 123
Testing moving targets 125

Summary 126
Quiz 127

6
Enhancing Player Abilities

Adding the running
functionality 130
Breaking down the character
movement 130
Customizing control inputs 134
Adding a Sprint ability 136

Animating a zoomed view 139
Using a timeline to smooth transitions 140

Increasing the projectile's
speed 143
Adding sound and
particle effects 145
Changing target states with branches 146
Triggering sound effects, explosions,
and destruction 148

Summary 151
Quiz 152

7
Creating Screen UI Elements

Creating simple UI meters
with UMG 154
Drawing shapes with Widget
Blueprints 156
Customizing the meter's appearance 159
Creating ammo and targets eliminated
counters 164
Displaying the HUD 168

Connecting UI values
to player variables 170

Creating bindings for health
and stamina 171
Making text bindings for the ammo
and targets eliminated counters 173

Tracking the ammo and
targets eliminated 174
Reducing the ammo counter 174
Increasing the targets
eliminated counter 176

Summary 177
Quiz 178

viii Table of Contents

8
Creating Constraints and Gameplay Objectives

Constraining player actions 180
Draining and regenerating stamina 181
Preventing firing actions when
out of ammo 195

Creating collectible objects 196
Setting a gameplay
win condition 201

Displaying a target goal in the HUD 202
Creating a win menu screen 204
Displaying the WinMenu 210
Triggering a win 212

Summary 214
Quiz 215

Part 3: Enhancing the Game

9
Building Smart Enemies with Artificial Intelligence

Setting up the enemy actor to
navigate 220
Importing from the Marketplace 220
Expanding the play area 221
Making the level traversable with a
NavMesh asset 227
Creating the AI assets 229
Setting up the BP_EnemyCharacter
Blueprint 231

Creating navigation behavior 233
Setting up patrol points 233
Creating the Blackboard keys 234
Creating the variables in BP_
EnemyCharacter 236
Updating the current patrol point key 237

Overlapping a patrol point 239
Running the Behavior Tree in
the AI Controller 241
Teaching our AI to walk with the
Behavior Tree 242
Selecting the patrol points in the
BP_EnemyCharacter instance 246

Making the AI chase the player 247
Giving the enemy sight with
PawnSensing 247
Creating a Behavior Tree Task 249
Adding conditions to the Behavior Tree 251
Creating a chasing behavior 253

Summary 254
Quiz 255

Table of Contents ix

10
Upgrading the AI Enemies

Creating an enemy attack 258
Making an attack task 258
Using the attack task in the
Behavior Tree 260
Updating the health meter 261

Making enemies hear and
investigate sounds 263
Adding hearing to the Behavior Tree 263
Setting up the investigating tasks 265
Creating variables and a macro to
update the blackboard 266
Interpreting and storing the
noise Event data 268
Adding noise to the player's actions 270

Making the enemies

destructible 272
Spawning more enemies
during gameplay 275
Creating the BP_EnemySpawner
blueprint 275

Creating enemy wandering
behavior 278
Identifying a wander point with a
custom task 278
Adding wandering to the Behavior Tree
 280
Last adjustments and test 281

Summary 283
Quiz 283

11
Game States and Applying the Finishing Touches

Making danger real with
player death 286
Setting up a lose screen 286
Showing the lose screen 287

Creating round-based scaling
with saved games 288
Storing game information using the
SaveGame class 289
Saving game information 290
Loading game information 293
Increasing the TargetGoal 294

Creating a transition screen to be
shown between rounds 296
Transitioning to a new round when the
current round is won 299

Pausing the game and
resetting the save file 301
Creating a pause menu 301
Resuming the game 303
Resetting the save file 304
Triggering the pause menu 305

Summary 307
Quiz 307

x Table of Contents

12
Building and Publishing

Optimizing your
graphics settings 310
Setting up our game to
be played by others 313

Packaging the game
into a build 317
Build configurations and
packaging settings 318
Summary 320
Quiz 321

Part 4: Advanced Blueprints

13
Data Structures and Flow Control

Exploring different types
of containers 326
Array 326
Set 335
Map 338

Exploring other
data structures 341
Enumerations 341
Structures 343
Data tables 347

Flow control nodes 351
Switch nodes 351
Flip Flop 352
Sequence 353
For Each Loop 353
Do Once 354
Do N 355
Gate 355
MultiGate 356

Summary 357
Quiz 358

14
Math and Trace Nodes

World and relative transforms 360
Points and vectors 363
Representation of a vector 365
Vector operations 366

Introduction to traces and
trace functions 370
Traces for objects 373
Traces by channel 374
Shape traces 375

Table of Contents xi

Debug lines 376
Example of vectors and trace nodes 376

Summary 380
Quiz 381

15
Blueprints Tips

Blueprint Editor shortcuts 384
Blueprint best practices 390
Blueprint responsibilities 390
Managing Blueprint complexities 393

Using miscellaneous
Blueprint nodes 399
Select 399
Teleport 400

Format Text 401
Math Expression 402
Set View Target with Blend 402
AttachActorToComponent 403
Enable Input and Disable Input 404
The Set Input Mode nodes 404

Summary 405
Quiz 406

16
Introduction to VR Development

Exploring the VR template 408
The VRPawn Blueprint 409
Teleportation 412
Object grabbing 416

Blueprint Communication
using interfaces 419
Interacting with the menu 422
Summary 425
Quiz 425

Part 5: Extra Tools

17
Animation Blueprints

Animation overview 430
Animation Editor 431
Skeleton and Skeletal Mesh 431
Animation Sequence 432
Blend Space 434

Creating Animation Blueprints 435
EventGraph 437
AnimGraph 439

Exploring State Machines 442
Importing the
Animation Starter Pack 446

xii Table of Contents

Adding Animation States 448
Modifying the Character Blueprint 449
Modifying the Animation Blueprint 452

Summary 460
Quiz 461

18
Creating Blueprint Libraries and Components

Blueprint Macro and
Function libraries 464
A Blueprint Function Library example 464
Creating the third function and testing 469

Creating Actor Components 473

Testing the Actor Component 479

Creating Scene Components 482
Summary 487
Quiz 488

19
Procedural Generation

Procedural generation with the
Construction Script 490
Creating the script to add the
instances on the level 493

Creating Blueprint Splines 498
A Spline Mesh component 504

Editor Utility Blueprint 505
Creating an Actor Action Utility 506

Summary 511
Quiz 511

20
Creating a Product Configurator Using the Variant Manager

The Product Configurator
template 514
The Variant Manager panel
and Variant Sets 516
The BP_Configurator Blueprint 518

UMG Widget Blueprints 524
Summary 528
Epilogue 529
Quiz 530

Appendix

Quiz answers 531
Index
Other Books You May Enjoy

Preface
Unreal Engine's Blueprint visual scripting system enables designers to script their games
as well as programmers to create base elements that can be extended by designers. With
this book, you'll explore all the features of the Blueprint Editor, along with expert tips,
shortcuts, and best practices.

The book guides you through using variables, macros, and functions, and helps you learn
about object-oriented programming (OOP). You'll discover the Gameplay Framework
and advance to learning how Blueprint Communication allows one Blueprint to access
information from another Blueprint. Later chapters will focus on building a fully
functional game step by step. You'll start with a basic first-person shooter (FPS) template,
and each chapter will build on the prototype to create an increasingly complex and robust
game experience. You'll then progress from creating basic shooting mechanics to more
complex systems, such as user interface elements and intelligent enemy behavior. The
book demonstrates how to use arrays, maps, enums, and vector operations and introduces
the elements needed for VR game development. In the final chapters, you'll learn how to
implement procedural generation and create a product configurator.

By the end of this book, you'll have learned how to build a fully functional game and have
the skills required to develop an entertaining experience for your audience.

Who this book is for
This book is for anyone interested in developing games or applications with Unreal Engine
5. Whether you are brand new to game development or have just not had any exposure to
Unreal Engine 5's Blueprint Visual Scripting system, this is a great place to start learning
about how to build complex game mechanics quickly and easily without writing any text
code. No programming experience is required!

xiv Preface

What this book covers
Chapter 1, Exploring the Blueprint Editor, covers the Blueprint Editor and all the panels
that are integrated into it. We will explore the Components tab, the My Blueprint tab,
the Details tab, and the Viewport and Event Graph tabs. Then, we will go through what
components are and how to add them to a Blueprint.

Chapter 2, Programming with Blueprints, explains programming concepts that are used in
Blueprints. We will learn about how to use variables, operators, events, actions, macros,
and functions.

Chapter 3, Object-Oriented Programming and the Gameplay Framework, teaches OOP
concepts and explores the Gameplay Framework.

Chapter 4, Understanding Blueprint Communication, explores different types of
Blueprint Communication, which allows one Blueprint to access the information of
another Blueprint.

Chapter 5, Object Interaction with Blueprints, covers how to bring new objects to a level
to help build the world in which the game will be set. We will move on to manipulating
materials on objects, first through the object editor, and then by triggering during runtime
via Blueprints.

Chapter 6, Enhancing Player Abilities, teaches you how to use Blueprints to generate new
objects during gameplay, and how to link actions in Blueprints to player control inputs.
You'll also learn about how to create Blueprints that allow objects to react to collisions
with our generated projectiles.

Chapter 7, Creating Screen UI Elements, demonstrates setting up a graphical user
interface (GUI) that will track the player's health, stamina, ammo, and current objective.
Here, you will learn how to set up a basic user interface using Unreal's GUI Editor and
how to use Blueprints to link the interface to the gameplay values.

Chapter 8, Creating Constraints and Gameplay Objectives, covers how to constrain the
player's abilities, define the gameplay objectives for a level, and track those objectives.
We'll walk through setting up collectible ammo packs that will refill the ammo of the
player's gun, as well as utilizing the level Blueprint to define a win condition for our game.

Chapter 9, Building Smart Enemies with Artificial Intelligence, is a crucial chapter
that covers how to create an enemy zombie AI that will pursue the player around the
level. We'll walk through setting up a navigation mesh on our level and see how to use
Blueprints to get enemies to traverse between patrol points.

Preface xv

Chapter 10, Upgrading the AI Enemies, teaches us how to create a compelling experience
by modifying the zombie AI to have states in order to give the zombies a little more
intelligence. In this chapter, we'll set up the patrol, searching, and attack states for the
zombies by using visual and auditory detection. Additionally, we'll explore how to make
new enemies appear gradually as the game is playing.

Chapter 11, Game States and Applying the Finishing Touches, adds the finishing touches
that are required to make our game a complete experience before we finalize our game for
release. In this chapter, we'll create rounds that will make the game increasingly difficult,
game saves so that the player can save their progress and return, and player death to make
the game's challenge meaningful.

Chapter 12, Building and Publishing, covers how to optimize graphics settings to get
our game performing and looking its best, and how to set up project information for
distribution. Then, we'll learn about how to create shareable builds of the game for
various platforms.

Chapter 13, Data Structures and Flow Control, explains what data structures are and
how they can be used to organize data in Blueprints. We'll learn about the concept of
containers and how to use arrays, sets, and maps to group multiple elements. This chapter
shows other ways to organize data using enumerations, structures, and data tables. In this
chapter, we'll also see how to control the flow of execution of a Blueprint by using various
types of flow control nodes.

Chapter 14, Math and Trace Nodes, covers some math concepts that are required for 3D
games. We will learn the difference between world and local coordinates and how to
use them when working with components. This chapter shows us how to use vectors to
represent the position, direction, velocity, and distance. The concept of traces is explained
and various types of traces are presented. We'll also see how to use traces to test collisions
in the game.

Chapter 15, Blueprints Tips, contains several tips to increase the quality of Blueprints.
We will learn about how to use various editor shortcuts that speed up our work. This
chapter demonstrates some Blueprint best practices that will help you decide where and
what types of implementation should be undertaken. Finally, we'll learn about more useful
Blueprint miscellaneous nodes.

Chapter 16, Introduction to VR Development, explains some VR concepts and explores
the VR template. This chapter explores the functionalities of the VRPawn Blueprint of
the VR template and explains how to create objects that can be grabbed by the player
using motion controllers. We will learn about the Blueprint functions used to implement
teleportation and how to use the interface for Blueprint communication. We will also see
how the menu works in the VR template.

xvi Preface

Chapter 17, Animation Blueprints, presents the main elements of the Unreal Engine
animation system, including Skeleton, Skeletal Mesh, Animation Sequences, and Blend
Spaces. It shows how to script an Animation Blueprint using the Event Graph and the
Anim Graph. It explains how state machines are used in an animation and how to create
new states for an animation.

Chapter 18, Creating Blueprint Libraries and Components, shows how to create Blueprint
Macro and Function Libraries with common functionalities that can be used throughout
the project. It explains in more detail the concept of components. We will also learn how
to create Actor components with encapsulated behavior and Scene components with
location-based behavior.

Chapter 19, Procedural Generation, shows several ways to generate level content
automatically. You can use the construction script of a Blueprint to script procedural
generation and use the Spline tool to define a path that will be used as a reference to
position the instances. Also, you can create an Editor Utility Blueprint to manipulate
assets and actors in edit mode.

Chapter 20, Creating a Product Configurator Using the Variant Manager, explains how to
create a product configurator, which is a type of application used in industry to attract
consumers to a specific product. You will learn how to use the Variant Manager panel and
variant sets to define a product configurator. The Product Configurator template is an
excellent resource for studying various Blueprint concepts in practice. We will analyze
the BP_Configurator Blueprint, which dynamically creates the user interface using
UMG widget Blueprints with the variant sets.

Appendix, Quiz answers, contains the answers to all the quiz questions, chapter-wise.

To get the most out of this book
Although some basic knowledge of the Windows OS or macOS is required, experience in
programming or Unreal Engine 5 is not necessary.

This book is focused on Unreal Engine 5, which means you only need a copy of Unreal
Engine to get started. Unreal Engine 5 can be downloaded for free from https://www.
unrealengine.com/ and comes with everything you need to follow along with
this book.

https://www.unrealengine.com/
https://www.unrealengine.com/

Preface xvii

Download the example code files
The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/-Blueprints-Visual-Scripting-for-Unreal-
Engine-5. If there's an update to the code, it will be updated on the existing
GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801811583_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in the text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "In the Level Editor, select the instance of BP_EnemyCharacter
that we placed on the level."

Bold: Indicates a new term, an important word, or words that you see on screen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "Change
Parameter Name to Metallic, and then click and drag the output pin from our Metallic
node to the Metallic input pin of the Material definition node."

Tips or Important Notes
Appear like this.

https://github.com/PacktPublishing/-Blueprints-Visual-Scripting-for-Unreal-Engine-5
https://github.com/PacktPublishing/-Blueprints-Visual-Scripting-for-Unreal-Engine-5
https://github.com/PacktPublishing/-Blueprints-Visual-Scripting-for-Unreal-Engine-5
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801811583_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801811583_ColorImages.pdf

xviii Preface

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of
your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata and fill in
the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share Your Thoughts
Once you've read Blueprints Visual Scripting for Unreal Engine 5, we'd love to hear your
thoughts! Please click here to go straight to the Amazon review page for this book and
share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

https://customercare@packtpub.com
https://www.packtpub.com/support/errata
mailto:copyright@packt.com
https://authors.packtpub.com
https://authors.packtpub.com
https://packt.link/r/180181158X

Part 1:
Blueprint

Fundamentals

This part will explore the basic building blocks of Blueprints. You will gain a solid
understanding of how Blueprints work and will be able to start creating your own games.

This part comprises the following chapters:

• Chapter 1, Exploring the Blueprint Editor

• Chapter 2, Programming with Blueprints

• Chapter 3, Object-Oriented Programming and the Gameplay Framework

• Chapter 4, Understanding Blueprint Communication

1
Exploring the

Blueprint Editor
Welcome to the amazing world of game development with Unreal Engine 5. In this book,
we will learn how to develop games in Unreal Engine using the Blueprints Visual Scripting
language, which was created by Epic Games for Unreal Engine.

The first step that is needed before we can learn about Blueprints is to prepare our
development environment. Unreal Engine is free to download. We will learn how to install
Unreal Engine 5 and create a new project. After that, we will learn about some of the basic
concepts of Blueprints and explore each panel of the Blueprint Editor.

In this chapter, we will cover the following topics:

• Installing Unreal Engine

• Creating new projects and using templates

• Blueprints Visual Scripting

• The Blueprint Class Editor interface

• Adding Components to a Blueprint

4 Exploring the Blueprint Editor

Installing Unreal Engine
To use Unreal Engine, you must first install the Epic Games Launcher:

1. Access the website at https://www.unrealengine.com.
2. Register and download the Epic Games Launcher.
3. Install and start the launcher.
4. Click the Unreal Engine tab on the left-hand side.
5. Click on the Library tab that appears at the top of the screen.
6. Click the + button next to ENGINE VERSIONS to add a version of Unreal Engine

to the launcher. You can use the newest version available.
7. Click the Install button. The launcher will start downloading the files needed for

installation and may take a long time to complete.
8. Click the Launch button to start an already installed version. It is possible to have

multiple versions of Unreal Engine installed on the same machine – you simply
set one of them as the current version. The Launch button at the top right of the
launcher will start the current version.

Figure 1.1 – Launching Unreal Engine

The Blueprint Visual Scripting system is already a well established and stable technology.
This book uses version 5.0.0, but the examples created in this book should work without
problems in later versions.

Creating new projects and using templates
After starting up Unreal Engine Editor, the Unreal Project Browser will appear. The
Recent Projects box on the top left is used to open existing projects and the other
boxes on the left are categories of templates used to create a new project. The following
screenshot shows the templates of the Games category.

https://www.unrealengine.com

Creating new projects and using templates 5

Figure 1.2 – Templates under the Games category

Templates are basic containers with some key files and a level that provide a basic starting
point for different types of projects. They are useful for rapid prototyping or to learn the
basic mechanics of a specific type of project. The use of templates is optional. All templates
can be simply recreated in the blank template. The following are descriptions of each
template in the Games category:

• First Person: For games with a first-person perspective. This template features
a player character represented by a pair of arms equipped with a gun that fires
a simple sphere projectile. The character can be moved around the level using
a keyboard, controller, or virtual joystick on a touch device.

• Handheld AR: For augmented reality applications for Android and iOS devices.
This template features runtime logic for toggling AR mode on and off, along with
some example code for hit detection and light estimation handling.

• Third Person: Contains a playable character with a camera that follows it. The
camera is positioned behind and slightly above the character. The character has
walking, running, and jumping animations and can be moved around the level
using a keyboard, controller, or virtual joystick on a touch device.

6 Exploring the Blueprint Editor

• Top Down: Contains a character controlled by a mouse with a camera at a great
distance above it. The player's character is controlled using a mouse or touchscreen
to click on the required destination and uses the navigation system to avoid
obstacles when moving to destinations. This top-down view is often used in action
role-playing games.

• Virtual Reality: Contains the essential features for virtual reality games. This
template features teleport locomotion, grabbable objects, interactive objects, and
a VR spectator camera. The template has a level where the player can move around
and contains objects that can be grabbed and interacted with.

• Vehicle: Contains a regular vehicle and a complex vehicle with suspension. The level
of this template contains a simple track and obstacles.

At the bottom right of the Unreal Project Browser, there are the Project Defaults with
project configuration options available for the selected template. In the examples of this
book, we will use the values selected on the screenshot. These options can be modified
later in the project, and they are as follows:

• Blueprint/C++: There are templates made with Blueprint or the C++ programming
language. In this book, we will only use Blueprint templates. A project in Unreal
Engine 5 can be developed using Blueprint, C++, or a combination of both.
You can add C++ code to Blueprint projects and Blueprint to C++ projects.

• Target Platform: Desktop or Mobile. Use Desktop if you are developing your
project for use on computers or game consoles. Choose Mobile if your project will
be viewed on a mobile device. In this book, we will use the Desktop option.

• Quality Preset: Scalable or Maximum. These options affect the project's
performance. The Scalable option disables some complex features, and the
Maximum option enables all the features available in the target platform. In this
book, we will use the Scalable option.

• Starter Content: If this checkbox is marked, the project will include Starter
Content. Starter Content is a content pack with simple meshes, materials, and
particle effects. The examples in this book assume that Starter Content is
being used.

• Raytracing: If this checkbox is marked, the project will use real-time raytracing,
which is a performance-intensive feature. The examples in this book will not
use raytracing.

Creating new projects and using templates 7

Select the Third Person template, choose a location folder, and fill in the Name field for
the project. Select the Project Defaults mentioned in the previous list and then click the
Create button. After the project loads, the Unreal Engine Level Editor will be displayed, as
shown in the following screenshot:

Figure 1.3 – The Unreal Engine Level Editor

These are the key panels of the Level Editor:

1. Toolbar: Located at the top of the Level Editor. It contains buttons with commonly
used operations. The toolbar buttons are separated into four groups. The first
group from the left provides quick access to features such as saving your work and
adding various objects and code to the project. The second group of buttons are
used to change the editing mode of the Level Editor. The third group lets you play
the current level and provides various platform-specific options. The final Settings
button all the way on the right provides easy access to project settings.

2. Viewport: Located at the center of the Level Editor. It shows the Level that is being
created. You can use the Viewport panel to move around the Level and add objects
on the Level. When holding down the right mouse button, move the mouse to
rotate the camera and use the WASD keys to move around.

8 Exploring the Blueprint Editor

3. Content Browser: This can be accessed by clicking on the Content Drawer
button located at the bottom-left corner of the Level Editor. It is used to manage
the assets of the project. An asset is a piece of content in an Unreal Engine project.
For example, Materials, Static Meshes, and Blueprints are all assets. If you drag an
asset from the Content Browser and drop it into the Level, the Editor creates a copy
of the asset to place in the Level.

4. Outliner: Located to the right of the Level Editor. It lists the objects that are in
the Level.

5. Details: Located to the right of the Level Editor, below Outliner. It shows the
editable properties of an object that is selected in the Viewport.

Now that we have an overview of the Unreal Engine Level Editor, let's focus on the
Blueprints Visual Scripting.

Blueprints Visual Scripting
The first question you should be asking is: what is a Blueprint?

The word Blueprint has more than one meaning in Unreal Engine. First, it is the name of
a visual scripting language created by Epic Games for Unreal Engine. Second, it can refer
to a new type of game object created using the Blueprint language.

There are two main types of Blueprints: Level Blueprint and Blueprint Class. Each Level
of the game has its own Level Blueprint and it is not possible to create a separate Level
Blueprint. On the other hand, Blueprint Class is used to create interactive objects for the
game and can be reused in any Level.

Opening the Level Blueprint Editor
To open the Level Blueprint Editor, click on the Blueprints button located in the
leftmost group of buttons in the toolbar of the Unreal Editor. Then, select the Open Level
Blueprint option from the dropdown, as shown in the following screenshot:

Blueprints Visual Scripting 9

Figure 1.4 – Opening a Level Blueprint

The Editor will open the Level Blueprint of the current Level. The Level Blueprint Editor
is simpler than the Blueprint Class Editor because it has only the My Blueprint panel,
the Details panel, and the Event Graph Editor. The following screenshot shows the Level
Blueprint Editor:

Figure 1.5 – The Level Blueprint Editor

10 Exploring the Blueprint Editor

For now, we will not do anything with the Level Blueprint. We opened it to get our first
glance at the interface. Close the Level Blueprint Editor to return to the Level Editor
window. Now, we will create a Blueprint Class to open the Blueprint Class Editor and see
all the panels available.

Creating a Blueprint Class
There are three ways to create a Blueprint Class:

1. Click the same Blueprints button in the toolbar that we used to open the Level
Blueprint. Then, click the New Empty Blueprint Class button in the dropdown.

2. Click the Content Drawer button to open the Content Browser, then click the Add
button and select Blueprint Class under the Create Basic Asset category.

3. Right-click anywhere on an empty space in the Content Browser and select
Blueprint Class from the menu that appears.

Figure 1.6 – Creating a Blueprint Class

The Blueprint Class Editor interface 11

On the next window, you must choose the parent class of the new Blueprint. For now,
think of the parent class as the Blueprint type. The window shows the most Common
classes, but if you need to choose another parent class, then just expand the All Classes
option. When you choose the parent class, this window will close, and a new Blueprint
asset will appear in the Content Browser to be renamed. You can click the Cancel button
because we are just familiarizing ourselves with the process.

Figure 1.7 – Blueprint Parent Class

Now that we've learned how to open the current Level Blueprint and how to create
a Blueprint Class, we will explore the panels of the Blueprint Class Editor. You can open
the Blueprint Class Editor by right-clicking on a Blueprint asset in the Content Browser
and selecting Edit, or by double-clicking on a Blueprint asset.

The Blueprint Class Editor interface
The Blueprint Class Editor contains several panels. Each panel is used to edit one aspect
of a Blueprint. The Blueprint Class Editor is usually simply called the Blueprint Editor.
The main panels of the Blueprint Editor are listed as follows:

1. Toolbar
2. Components
3. My Blueprint

12 Exploring the Blueprint Editor

4. Details
5. Viewport
6. Event Graph

These panels can be found in the next screenshot. We will use the
BP_ThirdPersonCharacter Blueprint of the Third Person template as an example.
It is located in the ThirdPerson/Blueprints folder. Double-click the
BP_ThirdPersonCharacter Blueprint to open the Blueprint Class Editor.

Figure 1.8 – Blueprint Editor panels

The Toolbar panel
The Toolbar panel is located at the top of the Blueprint Class Editor and contains some
essential buttons for editing Blueprints:

Figure 1.9 – Toolbar panel

The Blueprint Class Editor interface 13

The buttons are described as follows:

• Compile: Converts the Blueprint script into a lower-level format that can be
executed. That means a Blueprint must be compiled before running the game or
the changes made will not be reflected. Click this button to compile the current
Blueprint. A green check icon will appear if there is no error.

• Save: Saves all changes made to the current Blueprint.

• Browse: Shows the current Blueprint Class in the Content Browser.

• Find: Searches within a Blueprint.

• Hide Unrelated: When active, it hides the nodes unrelated to the selected nodes.

• Class Settings: Allows editing of the settings for the class in the Details panel.
The Class Settings options contain properties such as Description, Category, and
Parent Class.

• Class Defaults: Allows editing of the Class Defaults in the Details panel. Class
Defaults are the initial values of the Blueprint variables.

• Simulation: Allows the execution of the Blueprint inside the Blueprint Editor.

• Play: Allows you to play the current Level.

• Debug Object: This dropdown allows the selection of an object to debug. If none is
selected, it will debug any object created with the current Blueprint Class.

The Components panel
The Components panel shows all the Components that are part of the current Blueprint.

Figure 1.10 – Components panel

14 Exploring the Blueprint Editor

Components are ready-to-use objects that can be added to Blueprints. To do this, click
on the Add button of the Components panel. A Blueprint can be created with various
features just by using Components.

The properties of a selected Component can be edited on the Details panel and the visual
representation of some Components can be seen on the Viewport panel.

Static Meshes, lights, sounds, box collisions, particle systems, and cameras are examples of
Components found in the Components panel.

The My Blueprint panel
My Blueprint is a panel where we can create Variables, Macros, Functions, and Graphs
for the Blueprint:

Figure 1.11 – My Blueprint panel

New elements can be added by clicking on the Add button at the top of the panel, or the
+ button next to each category.

The properties of a selected element can be edited in the Details panel.

The Blueprint Class Editor interface 15

The Details panel
The Details panel allows you to edit the properties of a selected element of a Blueprint.
The selected element can be a Component, Variable, Macro, or Function element. The
properties shown in the Details panel are organized into categories.

The next screenshot shows the properties of a CapsuleComponent. There is a Search box
at the top of the panel that can be used to filter the properties.

Figure 1.12 – Details panel

The Viewport panel
The Viewport panel shows the visual representation of a Blueprint and its Components.
The Viewport panel has controls similar to the Level Editor, which you can use to
manipulate the location, rotation, and scale of the Components.

16 Exploring the Blueprint Editor

The following screenshot shows the Viewport panel. There is a SkeletalMesh Component
that represents the player, a Camera Component that defines the view of the player, and
a Capsule Component used for collision detection.

Figure 1.13 – Viewport panel

The Event Graph panel
It is in the Event Graph panel that we are going to program the behavior of a Blueprint.
The Event Graph contains Events and Actions that are represented by nodes and
connected by wires.

An Event is represented by a red node and is triggered by gameplay Events. A Blueprint
can have several Actions that will be performed in response to an Event. The next
screenshot shows two Events: InputAxis TurnRate and InputAxis LookUpRate:

Adding Components to a Blueprint 17

Figure 1.14 – Event Graph panel

You can move around the Event Graph by right-clicking and dragging it to see the
other Events.

The other nodes are Actions representing functions, operators, and variables. We will
learn about these elements in Chapter 2, Programming with Blueprints.

After this overview of the Blueprint Editor panels, we are now able to create our first
Blueprint. Close the Blueprint Class Editor and navigate back to the Level Editor.

Adding Components to a Blueprint
Now, let's create our first Blueprint. It will be a very simple Blueprint that will only contain
Components. For now, we will not use Events or Actions:

1. Click the Content Drawer button to open the Content Browser, then click the Add
button and select Blueprint Class.

2. On the next screen, choose Actor as the parent class.
3. Rename the Blueprint we just created to BP_RotatingChair. Blueprints

cannot have spaces in their name and there is a convention of starting Blueprint
names with BP_.

18 Exploring the Blueprint Editor

4. Double-click this Blueprint to open the Blueprint Editor.
5. On the Components panel, click the Add button and select Static Mesh, as shown

in the following screenshot. This Static Mesh will visually represent this Blueprint.

Figure 1.15 – Adding a Static Mesh Component

6. On the Details panel, there is a property named Static Mesh, which has a drop-
down input. Click on the dropdown and select the Static Mesh property named
SM_Chair. This Static Mesh is part of the starter content. The following screenshot
shows the selected SM_Chair:

Figure 1.16 – Selecting a Static Mesh asset

Summary 19

7. Let's add another Component. Click the Add button of the Components panel and
type rotating movement in the Search box.

8. Click on the Rotating Movement Component to add it. By default, this Component
will rotate the Blueprint around the z axis, so we don't need to change its properties.

9. Click the Compile button and save the Blueprint.
10. On the Level Editor, drag the BP_RotatingChair Blueprint from the Content

Browser and drop it somewhere in the Level.
11. Press the Play button of the Level Editor to see the rotating chair. You can use the

WASD keys to move the character and the mouse to rotate the camera. You can
exit the Level being played by pressing the Esc key. The next screenshot shows the
example in execution:

Figure 1.17 – The rotating chair

Summary
In this chapter, we learned how to install Unreal Engine and create new projects using
the available templates. We learned that there are two main types of Blueprints: Level
Blueprint and Blueprint Class.

Then, we explored the different types of panels that are part of the Blueprint Editor. Our
familiarization with these panels will help when developing with Blueprints. Finally, we
also created a simple Blueprint using only Components.

20 Exploring the Blueprint Editor

In the next chapter, we will learn how to program the behavior of Blueprints using Events
and Actions.

Quiz
1. You can have multiple versions of Unreal Engine installed on your computer.

a. True

b. False
2. The Level Blueprint Editor has more panels than the Blueprint Class editor.

a. True

b. False
3. Which type of Blueprint is appropriate for creating objects that can be reused in

any Level?

a. Level Blueprint

b. Blueprint Class
4. Which panel in the Blueprint Editor is where Events and Actions can be added?

a. Components panel

b. Event Graph panel

c. My Blueprint panel

d. Details panel
5. Which panel in the Blueprint Editor shows the variables and functions of the

current Blueprint?

a. Details panel

b. Components panel

c. My Blueprint panel

d. Event Graph panel

2
Programming

with Blueprints
This chapter presents the basic programming concepts used in Blueprints. Programming
is essentially a way of writing instructions that will be understood and executed by
a computer. Most programming languages are text-based, but Blueprint presents
a different form of visual programming by using a node-based interface.

Some programming languages are known as scripting languages when they exist in
a special environment or when they have a well-defined purpose. For example,
Blueprints is the visual scripting language of Unreal Engine.

In this chapter, we will cover the following topics:

• Storing values in variables

• Defining the behavior of a Blueprint with events and actions

• Creating expressions with operators

• Organizing the script with macros and functions

22 Programming with Blueprints

Storing values in variables
A variable is a programming concept. It consists of an identifier that points to a memory
location where a value can be stored. For example, a character in a game may have
variables to store the value of its health, its speed, and the quantity of ammunition.

A Blueprint can have many variables of various types. The variables of a Blueprint are
listed on the My Blueprint panel. Clicking the + button in the VARIABLES category
creates a variable:

Figure 2.1 – Creating a variable

The type of a variable defines the content that a variable can store. Blueprint is a strongly
typed language. This means that you must define the variable type when creating the
variable, and this type cannot be modified during program execution.

When you create a variable, its attributes are displayed in the Details panel. The first
attribute of a variable is its name, and the second attribute is its type. The various types
are as follows:

Storing values in variables 23

Figure 2.2 – Variable types

Each type is represented by a color. These are the types of variables:

• Boolean: Can only hold values of true or false.

• Byte: This is an 8-bit number. It can store integer values between 0 and 255.

• Integer: This is a 32-bit number. It can store integer values between −2,147,483,648
and 2,147,483,647.

• Integer64: This is a 64-bit number. It can store integer values between
−9,223,372,036,854,775,808 and 9,223,372,036,854,775,807.

• Float: This is a 32-bit floating-point number. It can store number values with
fractional parts and has a precision of seven decimal digits.

• Double: This is a 64-bit floating-point number. It can store number values with
fractional parts and has a precision of 16 decimal digits.

• Name: Piece of text used as an object identifier.

• String: Can store a group of alphanumeric characters.

24 Programming with Blueprints

• Text: This type is used for text that will be localized, meaning it allows for easier
implementation of translation into different languages.

• Vector: Contains the X, Y, and Z float values, which represent a 3D vector.

• Rotator: Contains the X (Roll), Y (Pitch), and Z (Yaw) float values, which represent
a rotation in 3D space.

• Transform: Can store location, rotation, and scale.

There are also other types of variables related to Structure, Interface, Object Types, and
Enum. We will learn about these types in the upcoming chapters.

The following screenshot shows the Details panel with the attributes that can be modified
in VARIABLE:

Figure 2.3 – Attributes of a variable

Defining the behavior of a Blueprint with events and actions 25

These attributes can be individually described as follows:

• Variable Name: This is the identifier of the variable.

• Variable Type: This specifies the type of values that can be stored in this variable.

• Instance Editable: When this box is checked, each copy of this Blueprint placed in
the level can store a different value in this variable. Otherwise, the same initial value
is shared by all copies, called instances.

• Blueprint Read Only: If checked, the variable cannot be changed by Blueprint
nodes.

• Tooltip: This contains information shown when the cursor hovers over the variable.

• Expose on Spawn: If checked, the variable can be set when spawning the Blueprint.

• Private: If checked, child Blueprints cannot modify it.

• Expose to Cinematics: If checked, this variable will be exposed to Sequencer.

• Category: This can be used to organize all variables in the Blueprint.

• Slider Range: This sets the minimum and maximum values that will be used by
a User Interface (UI) slider to modify this variable.

• Value Range: This sets the minimum and maximum values allowed for this variable.

• Replication and Replication Condition: They are used in networked games.

• DEFAULT VALUE: This contains the initial value of the variable. The Blueprint
must be compiled before you can set the default value.

Variables are used to represent the current state of a Blueprint, but the behavior is defined
by events and actions, which will be discussed in the following section.

Defining the behavior of a Blueprint with
events and actions
Most of the time, we will use Blueprints to create new Actors. In Unreal Engine, Actors are
game objects that can be added to a level.

Unreal Engine informs the state of a game for an Actor using events. We define how an
Actor responds to an event by using actions. Both events and actions are represented by
nodes in the Event Graph panel.

26 Programming with Blueprints

Events
To add events to a Blueprint, use the Event Graph panel. Right-click the Event Graph
panel to open Context Menu, which has a list of available events and actions. If you need
more space in the Event Graph panel, you can right-click and drag to move it to an empty
area of Event Graph. Context Menu has a Search bar that can be used to filter the list of
nodes. There is also the Context Sensitive checkbox that filters the possible actions based
on the node selected. The following screenshot shows Context Menu and some of the
events available:

Figure 2.4 – Events in Context Menu

You can add several events in the Event Graph panel, but you can add each event only
once. In addition to the events provided by Unreal Engine, you can create your own events
by clicking on Add Custom Event…. The next screenshot shows a Custom Event node
and its Details panel where you can rename the custom event and add input parameters.
We will learn about parameters later in this chapter, in the Creating macros topic:

Defining the behavior of a Blueprint with events and actions 27

Figure 2.5 – Creating a custom event

These are some of the events that are available:

• Collision Events: These are executed when two Actors collide or overlap.

• Input events: These are triggered by input devices, such as the keyboard, mouse,
touch screen, and gamepads.

• Event BeginPlay: This is executed either when the game is started for Actors
already present on the Level Editor, or immediately after the Actor is spawned if that
happens during runtime.

• Event End Play: This is executed when the Actor is about to be removed during
runtime.

• Event Tick: This is called every frame of the game. For example, if a game runs at
60 frames per second, this event will be called 60 times in a second.

We will now learn how to create actions that connect to events.

Actions
When an event is triggered, we use actions to define how a Blueprint will react to this
event. You can use actions to get or set values in the Blueprint variables or call functions
that modify the state of a Blueprint.

28 Programming with Blueprints

The following screenshot shows the Event BeginPlay event of a Blueprint. In this example,
the Blueprint has a string variable named Bot Name:

1. The SET action assigns the Archon value to the Bot Name variable.
2. The next action, Print String, displays the value that is received on the In String pin

on the screen. These values that are passed to the functions are
known as parameters.

3. The In String pin is connected to a GET node of the Bot Name variable that returns
the value of the Bot Name variable and passes it to the Print String function:

Figure 2.6 – Event BeginPlay with some actions

4. To add the GET and SET Actions of a variable to Event Graph, simply drag the
variable from the My Blueprint panel and drop it in Event Graph to show the GET
and SET options.

Other functions such as Print String are added from Context Menu that appears when
you right-click on the Event Graph panel. The GET and SET actions can also be searched
in Context Menu.

The white lines that connect the actions are also known as the execution path.

The execution path
The white pins of nodes are called execution pins. The other colored pins are the data
pins. The execution of the nodes of a Blueprint starts with a red event node, and then
follows the white wire from left to right until it reaches the last node.

There are some nodes that control the flow of execution of the Blueprint. These nodes
determine the execution path based on conditions. For example, the Branch node
has two output execution pins named True and False. The execution pin that will be
triggered depends on the Boolean value of the Condition input parameter. The following
screenshot shows an example of the Branch node:

Creating expressions with operators 29

Figure 2.7 – Branch node with two execution paths

In this example, when Event BeginPlay fires, the Branch node evaluates the value of the
Has Shield Boolean variable. If the value is True, then the True pin will be executed and
will set the value to 100.0 in the Shield Value variable. If it is False, the value 0.0 will be
set in the Shield Value variable.

We saw how to modify the value of a variable using an action. The next step is to learn
how to create expressions with variables.

Creating expressions with operators
Operators are used to create expressions using variables and values. These operators are
found in Context Menu within the Utilities | Operators category.

The main types of operators are arithmetic, relational, and logical.

Arithmetic operators
The arithmetic operators (+, -, x, and /) can be used to create mathematical expressions
in Blueprints. The following screenshot shows the equivalent nodes in Blueprints. These
operators receive two input values on the left and give the operation result on the right.
The arithmetic operators can have more than two input parameters; just click on the Add
pin button on the node to add another input parameter. The input values can be obtained
from a data wire or entered directly in the node:

Figure 2.8 – Arithmetic operation nodes

30 Programming with Blueprints

Note
The * symbol is the multiplication operator in programming languages.
Blueprints also recognize * as the multiplication operator but use the letter X as
the label of the multiplication node. You need to use the * symbol or write the
word multiply when searching for multiplication nodes in the Context Menu.

The following screenshot shows a simple arithmetic expression. The numbers on the
screenshot show the order of completion of the nodes. The execution starts with Event
BeginPlay. The SET node assigns a new value to the Magic Points variable, but this value
must be obtained using the data wire that is connected to the output of a multiplication
node, which will need to get the value of the Willpower variable using another data wire
to multiply by 20.0:

Figure 2.9 – Multiply operation

Relational operators
Relational operators perform a comparison between two values and return a Boolean
value (True or False) as a result of the comparison. The following screenshot shows the
relational operators in Blueprints:

Figure 2.10 – Relational operation nodes

Creating expressions with operators 31

The following screenshot shows an example with a relational operator, assuming these
actions are performed when a game object receives damage. A Branch node is used to test
whether the Health variable value is less than or equal to 0.0. If it returns True, then this
game object will be destroyed. If it returns False, nothing will happen since there are no
actions connected to the False branch of execution.

Figure 2.11 – Testing a condition with a relational operator

Logical operators
Logical operators perform an operation between Boolean values and return a Boolean
value (True or False) as a result of the operation. The following screenshot shows the
logical operators in Blueprints:

Figure 2.12 – Logical operation nodes

These are the descriptions of these operators:

• OR: Returns a value of True if any of the input values are True.

• AND: Returns a value of True if and only if all input values are True.

• NOT: Receives only one input value, and the result will be the opposite value.

• NOR: This is a combination of NOT and OR operators. It returns a value of True
if both inputs are False, otherwise, the return value is False.

• NAND: This is a combination of NOT and AND operators. It returns a value of
False if both inputs are True, otherwise, the return value is True.

32 Programming with Blueprints

• XOR: This operator is called exclusive OR. It returns a value of True if the two
inputs are different (one is True and the other is False). If the two inputs are the
same, the return value is False.

The following screenshot shows an example of using the AND operator. The Print String
node will only be executed if the Health value is greater than 70.0 and Shield Value is
greater than 50.0:

Figure 2.13 – Testing a condition with an AND operator

We already know how to use actions and operators; the next step is learning how to
organize them in macros and functions.

Organizing the script with macros and
functions
When we are creating Blueprint scripts, sometimes, a group of actions is used in more
than one place in Blueprint. These actions can be converted into macros or functions,
simplifying the initial script because this group of actions will be replaced by only one
node. Also, if you need to change something in this group of actions, this change will only
be implemented in the macro or function rather than having to search every location
where this group of actions was used. This is a good programming practice to use as it
simplifies code and debugging.

Creating macros
To create macros, use the My Blueprint panel and click the + button in the MACROS
category. The following screenshot shows the My Blueprint panel with a macro named
SetupNewWave:

Organizing the script with macros and functions 33

Figure 2.14 – Creating a macro

When a macro is created, a new tab is opened in the same place as the Event Graph.
This tab looks like the Event Graph but contains only the nodes relevant to the macro.
You will add the macro actions in this tab. You can close the Macro tab, and to open it
again, double-click the macro name on the My Blueprint panel. You can click the Event
Graph tab to return to Event Graph:

Figure 2.15 – The macro tab

34 Programming with Blueprints

The attributes of a macro are displayed in the Details panel. In this panel, you can define
input and output parameters. Input parameters are values passed to macros/functions.
Output parameters are values returned from macros/functions. The following screenshot
shows the Details panel of the SetupNewWave macro with two input parameters and
one output parameter. In macros, the white execution pins are defined as input/output
parameters of type Exec, so you can add as many as you like. In the following example,
we create an input execution pin named In and an output execution pin named Out:

Figure 2.16 – Attributes of a macro

Organizing the script with macros and functions 35

The following screenshot shows the contents of the SetupNewWave macro. The idea
of this macro is to set some variables for the next wave of enemies in a game. It receives
the current Wave Number as an input parameter, stores this value in the Current Wave
variable, and determines the number of enemies by multiplying the current Wave
Number by 5:

Figure 2.17 – Macro example

To add the macro to Event Graph, drag the name of the macro from the My Blueprint
panel and drop it in Event Graph, or look for it in Context Menu. When the macro is
executed, the actions that are in it will be executed. The following screenshot shows the
SetupNewWave macro being called in Event BeginPlay with a value of 1 in the Wave
Number input parameter.

Figure 2.18 – Calling a macro

36 Programming with Blueprints

Creating functions
One of the advantages of functions is that a function created in one Blueprint can be
called from another Blueprint. To create functions, use the My Blueprint panel and
click the + button in the FUNCTIONS category. The following screenshot shows the My
Blueprint panel with a function named CalculateWaveBonus:

Figure 2.19 – Creating a function

As with macros, the attributes of the function are displayed in the Details panel, where
input and output parameters can be defined. The following screenshot shows the Details
panel of the CalculateWaveBonus Function, with two input parameters and one
output parameter:

Organizing the script with macros and functions 37

Figure 2.20 – Attributes of a function

When creating a function, we can define whether it will be Pure. To do this, check the
Pure attribute shown in the previous screenshot. A Pure function has no execution pins;
therefore, it can be used in expressions. Pure functions should not modify the variables
of their Blueprint, so they are mostly used as get-type functions, which are functions
that just return a value. The following screenshot shows the visual difference between
a standard function and a Pure function:

Figure 2.21 – Standard and Pure functions

38 Programming with Blueprints

The following screenshot shows the contents of the CalculateWaveBonus function.
This function calculates the bonus points of a wave based on Wave Number and Time
Left. The value found is returned via the Bonus Points output parameter:

Figure 2.22 – Function example

The following screenshot is of the node that represents the CalculateWaveBonus
function. It can be added to the Event Graph panel from Context Menu by right-clicking
Event Graph or by dragging the function name from the My Blueprint panel and
dropping it in Event Graph:

Figure 2.23 – Function node

Organizing the script with macros and functions 39

Step-by-step example
Let's create a function step by step and execute it to see it in practice. The function name is
CalculatePower. It receives the player's level as an input parameter and returns their
power value using the following expression:

PowerValue = (PlayerLevel x 7) + 25

1. Click on the Content Drawer button to open the Content Browser, then click the Add
button and select Blueprint Class.

2. On the next screen, choose Actor as the parent class.
3. Rename the Blueprint created to FunctionExample.
4. Double-click this Blueprint to open the Blueprint Editor.
5. In the My Blueprint panel, click the + button in the Functions category to create

a function. Change the name of the function to CalculatePower.
6. Use the Details panel of this function to create an input parameter named

PlayerLevel of Integer type and an output parameter named PowerValue of
Integer type.

7. On the tab created for the CalculatePower function, create the expression seen in the
following screenshot. You can add the nodes of operators by right-clicking on the
graph to open Context Menu and search for add and multiply. To connect the nodes,
click on one of the pins, drag the mouse and drop it on the other pin. Don't forget to
insert the values 7 and 25 in the operator nodes. Compile the Blueprint.

Figure 2.24 – CalculatePower function

8. In the Event Graph, there is an Event BeginPlay node grayed out as it has no actions
connected. The Event BeginPlay node will light up when you connect any node to
it. Create the nodes seen in the next screenshot. Insert the value 3 in the Player Level
parameter of the Calculate Power node. These nodes will calculate the PowerValue
using the value 3 for Player Level.

9. Click on the arrow of the Print String node to see more input parameters.

40 Programming with Blueprints

10. Click on the color square to the right of the Text Color parameter. This will open
a Color Picker panel. Click any red color on the color wheel and click the OK button
to close the Color Picker panel.

11. Change the Duration parameter to 10.0.
12. Connect the PowerValue pin to the B pin of the Append node to automatically create

a conversion node from integer to string. In the A parameter, type POWER: with
a trailing space after :.

Figure 2.25 – Event BeginPlay

13. Compile and save the Blueprint. In the Level Editor, drag and drop the
FunctionExample Blueprint into the level.

14. Play the level to see the PowerValue printed on the screen.

Figure 2.26 – The result of the CalculatePower function

Summary 41

Macros versus functions versus events
Sometimes, it is not clear when to create a macro, a function, or a custom event, since they
have several characteristics in common. The following table shows a comparison between
them to help you to choose the most appropriate for your requirements:

Summary
In this chapter, we learned how to store values in the variables of a Blueprint and how
to use actions to define the response of a Blueprint to an event. After that, we saw how
to create expressions with operators and organize our script with macros and functions.
These are the key elements needed to define how a Blueprint should act within a game.

In the next chapter, we'll learn about the Gameplay Framework, which is a group of classes
with common functionality used in game development.

Quiz
1. What type of variable can only hold values of true or false?

a. Double

b. Text

c. Boolean

d. Byte
2. Which of the following events is not a collision event?

a. Hit

b. Tick

c. ActorBeginOverlap

d. ActorEndOverlap

42 Programming with Blueprints

3. The Branch node can be used to create different execution paths.

a. True

b. False
4. Which of the following logical operators returns a value of true only if all input

values are true?

a. NOT

b. OR

c. AND
5. Which of the following cannot be called by another Blueprint?

a. Macros

b. Functions

c. Custom events

3
Object-Oriented

Programming and
the Gameplay

Framework
Blueprints are based on the principles of object-oriented programming (OOP). One of
the goals of OOP is to bring programming concepts closer to the real world.

The Unreal Engine Gameplay Framework encompasses all the core systems required for
a video game, such as game rules, player input and controls, cameras, and user interfaces.

In this chapter, we will learn about the following topics:

• Getting familiar with OOP concepts

• Managing Actors

• Exploring the Gameplay Framework classes

44 Object-Oriented Programming and the Gameplay Framework

Getting familiar with OOP
Let's learn about some elementary concepts of OOP, such as classes, instances, and
inheritance. These concepts will help you learn about various elements of Blueprints
Visual Scripting.

Classes
In OOP, a class is a template for creating objects and providing the initial values for state
(variables or attributes) and implementations of behavior (events or functions).

Many real-world objects can be thought of in the same way, even if they are unique. As
a very simple example, we can think of a person class. In this class, we can have attributes
such as name and height, and actions such as move and eat. Using the person class, we can
create several objects of this class. Each object represents a person with different values for
their name and height attributes.

When we create a Blueprint, we are creating a new class that can be used to create objects
in the levels of a game. As the following screenshot shows, the option that appears when
creating a new Blueprint asset is Blueprint Class:

Figure 3.1 – Creating a Blueprint Class

Encapsulation is another important concept. It allows us to hide the complexity of a class
when it is viewed from the point of view of another class. The variables and functions of
a Blueprint class can be private, which means that they can only be accessed and modified
in the Blueprint Class where they were created. The public variables and functions are
those that can be accessed by other Blueprint Classes.

Instances
An object created from a class is also known as an instance of that class. Each time
you drag a Blueprint Class from Content Browser and drop it into the Level, you create
a new instance of this Blueprint Class.

All instances are created with the same default values for their variables as were defined in
the Blueprint Class. However, if a variable is marked as Instance Editable, the variable's
value can be changed in the Level for each of the instances without affecting the values
held by the other instances.

Getting familiar with OOP 45

For example, imagine that a Blueprint was created to represent a character type in a game.
The following screenshot shows that three instances of this Blueprint Class were added to
the Level:

Figure 3.2 – Instances of a Blueprint Class

Inheritance
In OOP, classes can inherit variables and functions from other classes. When we are
creating a Blueprint, the first thing we must do is choose the parent class of this Blueprint.
A Blueprint Class can only have one parent class but can have several child classes. The
parent class is also known as the superclass, while the child class is known as the subclass.

As an example of using inheritance, imagine that we are creating several Blueprints that
represent different types of weapons in a game. We can create a base Blueprint Class called
Weapon with everything that is common to all weapons in the game. Then, we can create
the Blueprints that represent each of the weapons using the Weapon class as the parent
class. The following diagram shows the hierarchy between these classes:

Figure 3.3 – Class hierarchy

46 Object-Oriented Programming and the Gameplay Framework

One advantage of inheritance is that we can create a function in the parent class and
override it in the child classes with different implementations. For example, there can be
a function named Fire in the Weapon parent class. The child classes inherit the Fire
function, so the Shock Rifle class overrides the Fire function with a version that
fires an energy beam, and the Rocket Launcher class overrides the Fire function to
launch rockets. At runtime, if we have a reference to the Weapon class and call the Fire
function, the instance class will be identified to run its version of the Fire function.

Inheritance is also used to define the class type of a class since it accumulates all the types
of its parent class. For example, we can say that an instance of the Shock Rifle class is
of the Shock Rifle type and of the Weapon type. Because of this, if we have a function
with a Weapon input parameter, it can receive instances of the Weapon class or any
instances of its child classes.

These elementary concepts of OOP will help us understand the Gameplay Framework.
Unreal Engine has some essential classes that are used in the development of games. These
classes are parts of the Gameplay Framework. The main class of the Gameplay Framework
is Actor.

Managing Actors
The Actor class contains all the functionality an object needs to exist in a Level. Therefore,
the Actor class is the parent class for all objects that can be placed or spawned in a Level.
In other words, any object that can be placed or spawned in a Level is a subclass of the
Actor class. Most of the Blueprints that we'll create will be based on the Actor class itself
or its child classes. Therefore, the features we will look at in this section will be useful for
these Blueprints.

Referencing Actors
Variable types such as integer, float, and Boolean are known as primitive types because
they only store simple values of the specified type. When working with objects or Actors,
we use a type of variable known as an object reference. References in Blueprints allow
different objects to talk to each other. We will explore this communication in greater detail
in Chapter 4, Understanding Blueprint Communication.

For example, the following diagram represents instances of two Blueprint Classes in
memory. The instance of the BP_Barrel Blueprint Class has an integer variable named
Hit Counter, with a current value of 2. The other variable, named BP_Fire, is an
object reference, which is referencing an instance of Blueprint Effect Fire. We can access
the public variables and functions of another Blueprint using an object reference variable:

Managing Actors 47

Figure 3.4 – Object reference

In a Blueprint, we can create variables that reference other objects/Actors. Let's create
a step-by-step functional example to see this concept in action:

1. Create a project based on the First Person template with the starter content.
2. Click on the Content Drawer button to open Content Browser, then click the Add

button and select Blueprint Class.
3. On the next screen, choose Actor as the parent class.
4. Name the Blueprint BP_Barrel and double-click it to open the Blueprint Editor.
5. Click the Add button in the Components panel and choose the Static Mesh

Component. In the Details panel, choose the Shape_Cylinder Static Mesh:

Figure 3.5 – Setting the static mesh

48 Object-Oriented Programming and the Gameplay Framework

6. In the My Blueprint panel, create a variable named BP_Fire. In the Details panel,
click on the drop-down menu of the Variable Type parameter. The Object Types
category lists the classes that are available in Unreal Engine and the Blueprints
Classes that we created in the project. Search for fire and hover over Blueprint
Effect Fire to display a submenu and then choose Object Reference:

Figure 3.6 – Creating an Object Reference

7. The default value of an Object Reference variable is None (also known as null),
which means that the variable is not referencing any instances. We can assign an
instance to this variable in the Level Editor. To do this, check the Instance Editable
attribute of the variable so that it is accessible in the Level Editor.

Figure 3.7 – Making the variable editable in the instances placed in the Level

8. Drag the BP_Fire variable from the My Blueprint panel and drop it into Event
Graph. Choose the Get BP_Fire option to create a node. Drag from the blue pin
of the BP_Fire node and drop in the graph to open Context Menu. Search for
hidden and choose the Set Hidden in Game (P_Fire) function:

Managing Actors 49

Figure 3.8 – Searching for a function in Context Menu

9. Right-click Event Graph and add Event Hit. Connect the Event Hit node to the Set
Hidden in Game (P_Fire) node. The New Hidden parameter must be unchecked.
These actions will unhide the particle system component of the instance referenced
by BP_Fire when an instance of the BP_Barrel Blueprint is hit:

Figure 3.9 – Actions of the Event Hit

10. Compile the Blueprint and return to the Level Editor. Drag the BP_Barrel
Blueprint from Content Browser and drop it into the Level.

50 Object-Oriented Programming and the Gameplay Framework

11. In Content Browser, go to the Content | StarterContent | Blueprints
folder, drag Blueprint_Effect_Fire, and drop it on top of the BP_Barrel
Blueprint that was added to the Level:

Figure 3.10 – BP_Barrel and Blueprint_Effect_Fire

12. In the Details panel of the Blueprint_Effect_Fire instance, select the P_Fire
component, search for hidden, and check the Hidden In Game attribute:

Figure 3.11 – Hiding the particle system of Blueprint_Effect_Fire

13. In the Details panel of the BP_Barrel instance, click on the drop-down menu
of the BP_Fire variable to list the Actors of the Level that are instances of
Blueprint_Effect_Fire. Select the instance that we dropped on top of BP_
Barrel to assign its instance to the BP_Fire variable.

Managing Actors 51

Figure 3.12 – Assigning an instance in the Level Editor

14. Click the Play button of the Level Editor to test the Level. Look in the direction
of the BP_Barrel instance we placed on the Level. The Blueprint_Effect_
Fire instance is hidden. Shoot the BP_Barrel instance using the left mouse
button. When the BP_Barrel instance is hit, the Blueprint_Effect_Fire
instance will appear.

Spawning and destroying Actors
There is a function called Spawn Actor from Class that creates an Actor instance. To add
this function to Event Graph, right-click the Event Graph panel to open Context Menu,
write spawn in the search box to filter the results, and click the function name.

Figure 3.13 – The Spawn Actor from Class function in Context Menu

52 Object-Oriented Programming and the Gameplay Framework

This function receives the class of the Actor and the Transformation that will be applied
as input parameters. The Transformation defines the location, rotation, and scale that will
be used by the new Actor. Another input parameter, called Collision Handling Override,
defines how to handle the collision at the time of creation. A reference to the new instance
is available in the Return Value output parameter and can be stored in a variable.

To remove an Actor instance from the Level, use the DestroyActor function. The Target
input parameter indicates which instance will be removed. The following screenshot
shows an example of using the Spawn Actor from Class and DestroyActor functions.

Figure 3.14 – Creating and destroying an instance

• To add the 1 key Input Event, right-click on the Event Graph and type 1 in the
search box. The 1 key Input Event can be found in Input > Keyboard Events.

• Pressing the 1 key creates an instance of Blueprint Effect Fire using the
same Transformation of the Blueprint instance that contains this script.
For example, if the preceding code was added to the Event Graph of the
ThirdPersonCharacter (found in the Third Person Template in Content |
ThirdPersonBP | Blueprints), then once the game is launched, pressing 1 on
the keyboard will create a fire effect at the current location of the player character.

Managing Actors 53

• The reference to the new Blueprint Effect Fire instance is stored in the BPFire
variable. If you didn't have the variable to store the instance, you could easily
promote the return value of the SpawnActor function to a variable, which then
automatically gives it the right variable type. To do this, drag from the Return
Value pin and drop on the Event Graph to open Context Menu and select Promote
to variable:

Figure 3.15 – Promoting the Return Value to variable

• When you press the 2 key, a test is done using the Is Valid Macro to check whether
the BPFire variable is referencing a valid instance. This check is necessary to avoid
calling a function using a null reference. If the value of BPFire is None, then it
is not valid. If it is valid, then it calls the DestroyActor function that receives the
BPFire variable as the Target input parameter and destroys the Blueprint Effect
Fire instance that was previously created.

• Just a note, pressing the 2 key will only delete the last Blueprint Effect Fire instance
created. If you create more than one fire instance before delete, the others will
remain in the Level because the BPFire variable is overridden when a Blueprint
Effect Fire instance is created.

54 Object-Oriented Programming and the Gameplay Framework

Construction Script
One of the panels in the Blueprint Editor is called Construction Script and is shown
in the following screenshot. Construction Script is a special function that all Actor
Blueprints perform when the Blueprint is first added to the Level, when a change is
made to its properties in the Level Editor, or when an instance of this Blueprint is
spawned at runtime:

Figure 3.16 – Construction Script panel

Construction Script is very useful for creating flexible Blueprints that allow the Level
Designer to configure some features of an instance of these Blueprints within the
Level Editor.

As an example, let's create a Blueprint with an Instance Editable Static Mesh so we can
choose a different Static Mesh for each instance of the Blueprint that is on the Level:

1. Create or use an existing project that has the starter content.
2. Click the Add button in Content Browser and choose the Blueprint Class option.
3. On the next screen, choose Actor as the parent class.
4. Name the Blueprint BPConstruction and double-click it to open the

Blueprint Editor.
5. Click the Add button in the Components panel and choose the Static Mesh

Component. Rename the Component StaticMeshComp, as shown in the
following screenshot:

Managing Actors 55

Figure 3.17 – Adding the Static Mesh Component

6. In the My Blueprint panel, create a new variable named SM_Mesh. In the Details
panel, click the Variable Type drop-down menu and search for Static Mesh.
Hover over Static Mesh to display a submenu and then choose Object Reference.
Check the Instance Editable attribute, as shown in the following screenshot:

Figure 3.18 – Details of the SM_Mesh variable

Important Note
Object Reference variables can also refer to instances that are created
at runtime.

56 Object-Oriented Programming and the Gameplay Framework

7. Press the Compile button on the toolbar. Let's define an initial Static Mesh for the
SM_Mesh variable at the bottom of the Details panel. Click the drop-down menu of
the Default value attribute and choose the SM_TableRound Static Mesh.

8. Click the Construction Script panel. Drag the StaticMeshComp Component
from the Components panel and drop it into the Construction Script graph to
create a node.

9. Click on the blue pin of the StaticMeshComp node, then drag and drop in the
graph to open Context Menu. Search for set static mesh and choose the
function with this name, as shown in the following screenshot:

Figure 3.19 – Selecting a function in Context Menu

10. Drag the SM_Mesh variable from the My Blueprint panel, drop it into the
Construction Script graph, and choose the Get SM_Mesh option in the menu
that appears. Connect the SM_Mesh node pin to the New Mesh pin of the Set
Static Mesh function. Construction Script should look similar to the following
screenshot. When Construction Script executes the Set Static Mesh function, it
gets the Static Mesh from the SM_Mesh variable and sets it on the Static Mesh
Comp Component:

Figure 3.20 – Construction Script Actions

Managing Actors 57

11. Compile the Blueprint. In the Level Editor, drag BPConstruction from Content
Browser and drop it into the Level to create an instance. Drag and drop the
BPConstruction again to create one more instance. Select one of the instances
on the Level and, in the Details panel of the Level Editor, check that the SM_Mesh
variable is visible and editable, as shown in the following screenshot:

Figure 3.21 – BPConstruction instance details

58 Object-Oriented Programming and the Gameplay Framework

12. Click the drop-down menu of the SM_Mesh variable and choose another Static
Mesh, such as SM_Couch. The Construction Script will immediately execute and
change the Static Mesh of the instance that was selected. The following screenshot
shows two instances of the BPConstruction class. The instance on the left of
the screenshot is using the default Static Mesh, but the instance on the right had its
Static Mesh modified to SM_Couch:

Figure 3.22 – Two instances of BPConstruction

The Actor class is the main class of the Gameplay Framework, but there are other classes
for different purposes we need to know.

Exploring the other Gameplay Framework
classes
One of the first steps when creating a new Blueprint is choosing the parent class that
will be used as a template. The following screenshot shows the panel that is displayed
for choosing the parent class. The classes that are displayed on the buttons are known as
Common Classes and are part of the Gameplay Framework. To use another class as the
parent class, expand the All Classes category and search for your desired class:

Exploring the other Gameplay Framework classes 59

Figure 3.23 – Choosing the parent class

The following diagram shows the hierarchy of Common Classes. In Unreal Engine, there
is a parent class called Object. Classes inherit the characteristics of the class above it,
which is their parent class. Based on the inheritance concept of OOP, we can state that an
instance of the Character class is of type Character, type Pawn, and type Actor:

Figure 3.24 – Hierarchy of Common Classes

60 Object-Oriented Programming and the Gameplay Framework

By analyzing this hierarchy, we can see that the Actor Component and Scene Component
classes are not Actors. These classes are used to create Components that can be added to
Actors. Two examples of Components are Static Mesh Component and Rotating
Movement Component, which we used in previous examples. We will cover the
creation of Components in Chapter 18, Creating Blueprint Libraries and Components.

Let's take a closer look at some of the Common Classes.

Pawn
Pawn is a child class of Actor. A Pawn is an Actor that can be possessed by a Controller
in the game. The Controller class represents a player or an artificial intelligence (AI).
Conceptually, an instance of the Pawn class is the physical body of the game character,
whereas an instance of the Controller class possessing it is a kind of brain of the character,
allowing it to move in the Level and perform other actions.

Create a Blueprint based on the Pawn class and click the Class Defaults button to display
it on the Details panel. The parameters that are inherited from the Pawn class are shown
in the following screenshot:

Figure 3.25 – Pawn Class defaults

Exploring the other Gameplay Framework classes 61

Some parameters show that the Pawn class can use the rotation values of the Controller
class that is possessing it. Others parameters indicate how the Pawn class must be
possessed by the Controller class.

The two main child classes of Pawn are Character and WheeledVehicle.

Character
The Character class is a child class of the Pawn class; therefore, an instance of the
Character class can also be possessed by an instance of a Controller class. This class was
created to represent characters that can walk, run, jump, swim, and fly.

A Blueprint based on the Character class would inherit the following character-specific
Components:

• CapsuleComponent: This is used for collision testing.

• ArrowComponent: This indicates the current direction of the character.

• Mesh: This Component is a Skeletal Mesh that visually represents the character.
The animation of the Mesh Component is controlled by an animation Blueprint.

• CharacterMovement: This Component is used to define various types of character
movements, such as walking, running, jumping, swimming, and flying.

These Components are shown in the following screenshot:

Figure 3.26 – Character Class Components

62 Object-Oriented Programming and the Gameplay Framework

The CharacterMovement Component handles movement as well as replication and
prediction in multiplayer games. It contains a lot of parameters that define various types
of movements for the character:

Figure 3.27 – Character Movement variables

PlayerController
The Controller class has two main child classes: PlayerController and AIController. The
PlayerController class is used by human players, while the AIController class uses AI to
control the Pawn.

Exploring the other Gameplay Framework classes 63

Instances of Pawn and Character classes can only receive input events if an instance of
PlayerController is possessing them. Input Events can be placed in the Event Graph of
either the PlayerController or the Pawn. The advantage of putting the input Events in
PlayerController is that these Events become independent of the Pawn, making it easier
to change a Pawn class that is being possessed by the Controller class. Whichever way
you choose, keep it consistent in your project.

The following screenshot shows how to change a Pawn possessed by PlayerController
in-game and shows the use of the Possess function. In this example, there are two
characters in the Level that can be controlled by the player by pressing the 1 or 2 keys.
Only the Character instance currently being possessed receives the PlayerController
commands:

Figure 3.28 – Possessing a Pawn

64 Object-Oriented Programming and the Gameplay Framework

Game Mode Base
Game Mode Base is the parent class for creating Game Mode. A Game Mode class is
used to define the rules of the game and specifies the default classes used for the creation
of Pawn, PlayerController, GameStateBase, HUD, and other classes. To change these
classes in Game Mode, click the Class Defaults button to display them on the Details
panel, as shown in the following screenshot:

Figure 3.29 – Game Mode Class defaults

To specify the default Game Mode class of a project in the Level Editor, click Edit |
Project Settings.... Then, in the Project category, select the Maps & Modes option.
Choose Game Mode in the Default GameMode property's dropdown, as shown in the
following screenshot. In the Selected GameMode category, you can override some of the
classes that are used by Default GameMode:

Exploring the other Gameplay Framework classes 65

Figure 3.30 – Specifying the Game Mode of a project

Each Level can have a different Game Mode. The Game Mode of a Level overrides
Default GameMode of the project. To specify Game Mode of a Level, click the Settings
button in the Level Editor and choose the World Settings option. Choose Game Mode in
the GameMode Override property's dropdown, as shown in the following screenshot:

Figure 3.31 – Specifying the Game Mode of a Level

66 Object-Oriented Programming and the Gameplay Framework

Game Instance
Game Instance is not one of Common Classes, but it is important to know about the
existence of this class. The Game Instance class and its data persist between Levels
because an instance of the Game Instance class is created at the beginning of the game
and is only removed when the game is closed.

All Actors and other objects in a Level are destroyed and respawned each time a Level
is loaded. So, the Game Instance class is an option to use if you need to preserve some
variable values in the Level transition.

To assign the Game Instance class for use in your game, modify the project's settings by
going to Edit | Project Settings | Maps & Modes on the Level Editor, as shown in the
following screenshot:

Figure 3.32 – Specifying the Game Instance Class

Summary
In this chapter, we learned about some of the principles of OOP that aid our understanding
of how Blueprints work. We learned how the Actor class is the parent class that's used for
objects that can be placed or spawned into a Level.

We also saw that the Gameplay Framework contains classes that are used to represent
certain game elements and learned how to create Blueprints based on some of the
Common Classes.

Our next step is to learn how our Blueprints can communicate with each other, which we
will cover in the next chapter.

Quiz 67

Quiz
1. What is the name of the function used to create an Actor instance?

a. Create Actor

b. Spawn Actor from Class

c. Generate Actor instance
2. The Construction Script runs when the Level begins to play.

a. True

b. False
3. The Character class is a subclass of the Actor class.

a. True

b. False
4. An instance of the Pawn class represents the brain, and an instance of the Controller

class represents the physical body.

a. True

b. False
5. Which of the following classes should be used to define the rules of the game?

a. Game Instance

b. Game Session

c. Game Mode

d. Game State

4
Understanding

Blueprint
Communication

This chapter presents Blueprint Communication, which allows one Blueprint to access
information from, and call the functions and events of, another Blueprint. In this chapter,
we will explain Direct Blueprint Communication and show you how to reference Actors
on a Level Blueprint. The concept of casting is explained in depth because it is an essential
part of Blueprint Communication. We are also going to learn about Event Dispatchers,
which enable communication between Blueprint classes and the Level Blueprint, as well as
how to bind Events.

For each of these topics, we will do step-by-step examples to facilitate our understanding
of the concepts and practice the creation of Blueprint scripts.

The following topics will be covered in this chapter:

• Direct Blueprint Communication

• Casting in Blueprints

• Level Blueprint Communication

• Event Dispatchers

• Binding Events

70 Understanding Blueprint Communication

Direct Blueprint Communication
Direct Blueprint Communication is a simple method of communication between
Blueprints/Actors. It is used by creating an object reference variable that stores a reference
to another Actor/Blueprint. Then, we can call Actions using this object reference variable
as the Target input parameter of these Actions.

As an example, let's create a Blueprint called BP_LightSwitch. The BP_LightSwitch
Blueprint has an object reference variable of the Point Light type that references a Point
Light placed in the Level. When the player overlaps the BP_LightSwitch Blueprint on
the Level, it toggles the visibility of the Point Light.

To create the Blueprint, follow these steps:

1. Open any existing project that you created that contains starter content or create
one if you want.

2. Click on the Content Drawer button to open Content Browser, then click the Add
button and select Blueprint Class.

3. On the next screen, choose Actor as the parent class.
4. Name the Blueprint BP_LightSwitch and double-click it to open the Blueprint

Editor.
5. Click the Add button in the Components panel and choose the Static Mesh

Component. In the Details panel, choose the SM_CornerFrame Static Mesh, as
shown in the following screenshot. This Static Mesh is a simple visual representation
of our light switch. Also, change Collision Presets to OverlapAllDynamic so that
Static Mesh will not block the player's movement:

Direct Blueprint Communication 71

Figure 4.1 – Choosing the Static Mesh

6. In the My Blueprint panel, create a new variable named Light:

Figure 4.2 – Creating a variable

72 Understanding Blueprint Communication

7. In the Details panel, click the Variable Type drop-down menu and search for
Point Light. Hover over Point Light to display a submenu and then choose
Object Reference. Check the Instance Editable attribute, as shown in the
following screenshot:

Figure 4.3 – Creating a variable of type Point Light

8. Drag the Light variable from the My Blueprint panel and drop it into the
Event Graph.

9. Choose the Get Light option to create a node. Drag from the blue pin of the Light
node and drop in the graph to open Context Menu. Make sure Context Sensitive is
checked to show the Actions that can be used with a Point Light object reference.

Figure 4.4 – Context Menu

Direct Blueprint Communication 73

10. Search for toggle and choose the function named Toggle Visibility
(PointLightComponent), as shown in the following screenshot:

Figure 4.5 – Adding the function Toggle Visibility

11. Right-click Event Graph and add Event ActorBeginOverlap. Drag from the blue
pin of the Light node, drop it in the graph to open Context Menu, and add the Is
Valid macro, which is the one with the white question mark. This macro is used to
test whether the Light variable is referencing an instance. Connect the nodes, as
shown in the following screenshot. Compile this Blueprint:

Figure 4.6 – Actions of Event ActorBeginOverlap

Important Note
Always use the Is Valid macro before executing a function using an object
reference variable. The variable can be invalid for several reasons. Executing a
function using an invalid variable will cause an error at runtime.

74 Understanding Blueprint Communication

12. In the Level Editor, click the Create button located on the toolbar. Hover over
Lights to display a submenu and drag Point Light and drop it somewhere in the
Level to create an instance:

Figure 4.7 – Creating a Point Light

13. In the Details panel, click on the name of the Point Light instance and change the
name to Lamp. Set the Mobility attribute to Movable to be able to change the light
properties at runtime.

Figure 4.8 – Details panel of the Point Light instance

Direct Blueprint Communication 75

14. Drag the BP_LightSwitch Blueprint class from Content Browser and drop it
in the Level in a place near the Point Light instance that we added to the Level.
The next screenshot shows the Details panel of BP_LightSwitch. The Light
variable appears in the Details panel because we checked the Instance Editable
attribute. Click the drop-down menu of the Light variable to show all Point Light
instances that are in the Level and select the Point Light instance that we renamed
to Lamp in the preceding step. Essentially, this is Direct Blueprint Communication.
BP_LightSwitch has an object reference to another Actor/Blueprint and can call
its Actions:

Figure 4.9 – Referencing an instance of the Level

76 Understanding Blueprint Communication

15. Click the Play button to see the BP_LightSwitch Blueprint in action. Every
time your character overlaps the instance of BP_LightSwitch, it toggles the
visibility of the selected Point Light. The following screenshot shows an example
using the Third Person template. The Point Light variable is on the wall, and the
BP_LightSwitch Blueprint is on the floor:

Figure 4.10 – Touching the BP_LightSwitch to turn on the light

In this section, we learned how to create a variable that refers to an instance of another
Blueprint. But sometimes we need to access attributes of the subclass of the instance being
referenced. In this case, we need to cast the reference.

Casting in Blueprints
There is a node named Cast To that tries to convert reference variable types to new
specified types. To understand casting, it is necessary to remember the concept of
inheritance between classes, which we covered in Chapter 3, Actors and the Gameplay
Framework.

Casting in Blueprints 77

The following diagram represents a Blueprint called BP_GameModeWithScore. Game
Mode Base is the parent class of this Blueprint. Based on the inheritance concept, we can
use a variable of the Game Mode Base object reference type to reference an instance of
BP_GameModeWithScore. However, this variable is unable to access the variables and
functions of a subclass like those defined in the BP_GameModeWithScore Blueprint,
because a Game Mode Base reference only knows the variables and functions that are
defined in the Game Mode Base class:

Figure 4.11 – BP_GameModeWithScore inherits from Game Mode Base

Therefore, if we have a Game Mode Base object reference, we can try to cast this
reference using the Cast To BP_GameModeWithScore function. If the instance
is of the BP_GameModeWithScore type, then Cast To will succeed and return a
BP_GameModeWithScore object reference that we can use to access the variables and
functions of BP_GameModeWithScore.

Another use of the Cast To node is to safely test whether an object reference is of a desired
type and this step-by-step example will illustrate both use cases:

1. Create or use an existing project, based on the Third Person template, with the
starter content.

2. Click the Add button in Content Browser and choose the Blueprint Class option.
3. On the next screen, choose Game Mode Base as the parent class.
4. Name the Blueprint BP_GameModeWithScore and double-click it to open the

Blueprint Editor.

78 Understanding Blueprint Communication

5. In the My Blueprint panel, create a variable named GameScore of type integer and
create a function named AddGameScore:

Figure 4.12 – Creating a variable and a function

6. In the Details panel of the AddGameScore function, add an Input Parameter
named Score of type integer. This function is used to add points to the
GameScore variable:

Figure 4.13 – Adding an input parameter

Casting in Blueprints 79

7. In the graph of the function, add the Actions shown in the following screenshot. To
add the GET and SET nodes of the Game Score variable, simply drag the variable,
drop it into the graph, and choose either GET or SET. The Print String function is
used to display the current value of the Game Score variable on the screen:

Figure 4.14 – The Actions of the Add Game Score function

Important Note
The node that is between SET and Print String is a converter. To create it,
simply connect the SET output parameter to the In String input parameter
of Print String. Because the parameters are of different types, the converter is
created automatically.

8. Compile and save the BP_GameModeWithScore Blueprint. The next step is to set
the Level to use BP_GameModeWithScore as Game Mode.

9. In the Level Editor, click the Settings button located on the right of the toolbar and
choose World Settings:

Figure 4.15 – Accessing the World Settings

80 Understanding Blueprint Communication

10. In the GameMode Override attribute, click the drop-down menu and choose BP_
GameModeWithScore, as shown in the following screenshot:

Figure 4.16 – Changing the Game Mode used by the Level

11. Create a Blueprint and use Actor as the parent class. Name it as BP_Collectable
and open it in the Blueprint Editor.

12. Click the Add button in the Components panel and choose the Static Mesh
Component. In the Details panel, choose the SM_Statue Static Mesh and in
Materials, go to Element 0 and choose M_Metal_Gold. Also, change Collision
Presets to OverlapAllDynamic, as shown in the following screenshot:

Figure 4.17 – Setting up the Static Mesh

Casting in Blueprints 81

13. Right-click Event Graph and add Event ActorBeginOverlap. Other Actor is the
instance that overlaps the BP_Collectable Blueprint. Drag from the blue pin of
Other Actor and drop in the graph to open Context Menu.

14. Choose the Cast To ThirdPersonCharacter action, as shown in the following
screenshot. ThirdPersonCharacter is the Blueprint that represents the player in the
Third Person template. We are using the Cast To action to test whether the instance
referenced by Other Actor is the player:

Figure 4.18 – Casting the Other Actor reference

15. Right-click Event Graph and add the Get Game Mode function. Drag from the
blue pin of Return Value and drop it in the graph to open Context Menu. Choose
the Cast To BP_GameModeWithScore action.

16. Drag from the blue pin of As BP Game Mode With Score, drop it in the graph, and
choose the Add Game Score action in the Context Menu. Type 50 in the Score
input parameter.

17. Right-click Event Graph and add the DestroyActor function. Connect the white
pins of the nodes. The content of Event ActorBeginOverlap is shown in the
following screenshot:

Figure 4.19 – Actions of Event ActorBeginOverlap

82 Understanding Blueprint Communication

Important Note
The Get Game Mode function returns a reference to Game Mode used by the
current Level. But the type of the return value is Game Mode Base. By using
a variable of this type, we were unable to access the Add Game Score function.
Therefore, it was necessary to use Cast To BP_GameModeWithScore.

18. Compile BP_Collectable. In the Level Editor, drag and drop some instances of
BP_Collectable in the Level. Click the Play button to test the Level. Use your
character to collect the statues and see your current score printed on the screen.

Important Note
The two white connection pins that appear in the previous screenshot are called
reroute nodes. They can be added from Context Menu and are used to aid in
the organization of the Blueprint.

This practical example shows two common ways of using the Cast To node. One way is to
test whether an instance is of a specific type. The other way is to have access to variables
and functions of a subclass. Now that we know how to use Cast To, let's learn how to add
references and events of Actors in the Level Blueprint.

Level Blueprint Communication
Unreal Engine has a special type of Blueprint called Level Blueprint. Each Level of the
game has a default Level Blueprint. They are useful for creating Events and Actions that
only happen at the current level. To access the Level Blueprint, click the Blueprints button
at the toolbar of the Level Editor and choose the Open Level Blueprint option, as shown
in the following screenshot:

Figure 4.20 – Opening Level Blueprint

Level Blueprint Communication 83

In the Level Blueprint, we can easily create references to Actors that are on the Level. To
see this in practice, let's create an example where Box Trigger is added to the Level. When
an Actor overlaps the trigger, Blueprint_Effect_Sparks is activated, producing the effect
of a spark:

1. Create or use an existing project based on the Third Person template with the starter
content.

2. In the Level Editor, click the Create button located on the toolbar. In the Basic
category, there is a Box Trigger, as shown in the following screenshot. Drag the Box
Trigger and drop it somewhere in the Level:

Figure 4.21 – Creating a Box Trigger

84 Understanding Blueprint Communication

3. Resize and place the Box Trigger in a location in the Level through which the player
must pass. The following screenshot shows an example. The Box Trigger is hidden
in the game:

Figure 4.22 – Resizing and placing the Box Trigger

4. Confirm that the Box Trigger is selected and open the Level Blueprint by clicking
the Blueprints button at the toolbar of the Level Editor and choosing Open Level
Blueprint.

5. Right-click Event Graph and add the Event labeled Add On Actor Begin Overlap
that is within the Add Event for Trigger Box 1 category, as shown in the following
screenshot:

Figure 4.23 – Adding an Event for Trigger Box

Level Blueprint Communication 85

6. Return to the Level Editor. In Content Browser, go to Content |
StarterContent | Blueprints and open Blueprint_Effect_Sparks.

7. On the Components tab, select the Sparks Component and in the Details tab,
search for the auto activate attribute and uncheck it, as shown in the following
screenshot. We did this so that the Sparks starts inactive so we can activate it at
runtime. Compile Blueprint_Effect_Sparks:

Figure 4.24 – Disabling Auto Activate of the Sparks component

8. In the Level Editor, drag Blueprint_Effect_Sparks from Content Browser and drop
it in the Level near the Box Trigger to create an instance.

9. Confirm that Blueprint_Effect_Sparks is selected and open the Level Blueprint.
Right-click on Event Graph and select Create a Reference to Blueprint_Effects_
Sparks, as shown in the following screenshot:

Figure 4.25 – Creating a reference to Blueprint_Effect_Sparks

86 Understanding Blueprint Communication

10. Drag from the Blueprint_Effect_Sparks blue pin of the node and drop it in the
graph to open Context Menu. Search for activate and choose Activate (Sparks).
Connect the white pin of the OnActorBeginOverlap (TriggerBox) event to the
white pin of the Activate function, as shown in the following screenshot:

Figure 4.26 – Activating Sparks when overlapping the TriggerBox

11. Compile the Level Blueprint and click the Play button of the Level Editor to test the
Level. Move your character to the location of the Box Trigger to activate the sparks.

In this example, we saw how to add references and events of Actors in the Level Blueprint.
This is the essence of Level Blueprint Communication. There is another form of
communication between Blueprints and Level Blueprint called Event Dispatchers.

Event Dispatchers
An Event Dispatcher allows a Blueprint to inform other Blueprints when an Event
happens. The Level Blueprint and other Blueprint classes can listen to this Event, and they
may have different Actions that run when the Event is triggered.

We create Event Dispatchers in the My Blueprint panel. As an example, let's create a
Blueprint named BP_Platform. When an Actor overlaps the BP_Platform Blueprint,
it calls an Event Dispatcher called PlatformPressed. The Level Blueprint is listening
for the PlatformPressed Event and spawns an explosion when this Event is triggered:

1. Create or use an existing project based on the Third Person template with the
starter content.

2. Create a Blueprint and use Actor as the parent class. Name it BP_Platform and
open it in the Blueprint Editor.

Event Dispatchers 87

3. Click the Add button in the Components panel and choose the Static Mesh
Component. In the Details panel, choose the Shape_Cylinder Static Mesh and
change the Z value of the Scale attribute to 0.1. Also, change Collision Presets to
OverlapAllDynamic, as shown in the following screenshot:

Figure 4.27 – Setting up the Static Mesh

88 Understanding Blueprint Communication

4. Compile the Blueprint. In the My Blueprint panel, create an Event Dispatcher and
name it PlatformPressed. An Event Dispatcher can have input parameters. Let's
create one to send a reference of the BP_Platform instance that was overlapped.
In the Details panel, create a new parameter in the Inputs category, name it BP_
Platform, and set it as a BP Platform type object reference, as shown in the
following screenshot:

Figure 4.28 – Creating an input parameter

5. Right-click Event Graph and add Event ActorBeginOverlap. Drag the
PlatformPressed Event Dispatcher and drop it in Event Graph. Choose Call
in the submenu. Right-click Event Graph, search for self, and select the Get a
reference to self action. The Self Action returns a reference of the current instance.
Connect the Actions, as shown in the following screenshot:

Figure 4.29 – Calling the Platform Pressed Event Dispatcher

6. Compile the Blueprint. In the Level Editor, drag BP_Platform from Content
Browser and drop it in the Level to create an instance.

Event Dispatchers 89

7. Make sure the BP_Platform instance is selected and click the Blueprint button at
the toolbar of the Level Editor and choose Open Level Blueprint. Right-click Event
Graph and select Add Platform Pressed, as shown in the following screenshot:

Figure 4.30 – Adding Platform Pressed in the Level Blueprint

8. Right-click Event Graph, search for spawn actor, and select Spawn Actor from
Class. Click the drop-down menu in the Class parameter and select Blueprint Effect
Explosion. Drag from the blue pin of the PlatformPressed (BP_Platform) Event,
drop it in the graph to open Context Menu, and choose the GetActorTransform
Action. Connect the nodes, as shown in the following screenshot:

Figure 4.31 – Spawning an instance of Blueprint Effect Explosion

90 Understanding Blueprint Communication

9. Compile the Level Blueprint and click the Play button of the Level Editor to test the
Level. Move your character to the location where BP_Platform is. When your
character overlaps it, the Level Blueprint will spawn an explosion at the same place:

Figure 4.32 – Touching the BP_Platform to spawn an explosion

We saw how the Level Blueprint can listen to an Event Dispatcher, but we can also make
a Blueprint listen to an Event Dispatcher of another Blueprint by binding events.

Binding Events
There is a Bind Event node that binds one Event to another Event or to an Event
Dispatcher, which can be in another Blueprint. When an Event is called, all the other
Events that are bound to it are also called.

As an example, let's create a child Blueprint Class of Blueprint_Effect_Sparks. This
new Blueprint binds an Event to the PlatformPressed Event Dispatcher of the BP_
Platform Blueprint that we created in the previous example:

1. Open the project used in the example of Event Dispatcher.
2. Create a Blueprint, expand the All Classes menu, and search for Blueprint_Effect_

Sparks, which we'll use as the parent class. Name it BP_Platform_Sparks and
open it in the Blueprint Editor.

Binding Events 91

3. On the Components tab, select the Sparks Component and in the Details tab,
search for the auto activate attribute and uncheck it if it is checked. This
should already be unchecked since we changed it in Blueprint_Effect_Sparks.

4. In the My Blueprint panel, create a variable named BP_Platform of the BP_
Platform type object reference. Check the Instance Editable attribute in the
Details panel:

Figure 4.33 – Creating a variable of type BP_Platform

5. Right-click Event Graph and add Event BeginPlay. Drag the BP_Platform
variable from the My Blueprint panel and drop it in Event Graph. Choose the GET
option to create a node.

6. Drag from the blue pin of the BP Platform node and drop it in the graph to open
Context Menu. Add the Is Valid macro to test whether the BP Platform variable is
referencing an instance. Connect the white pin of the Event BeginPlay to the Exec
pin of the Is Valid macro.

7. Drag again from the blue pin of the BP Platform node and add the Bind Event
to PlatformPressed action. Connect the Is Valid pin to the white pin of the Bind
Event node:

Figure 4.34 – Action to Bind Event to Platform Pressed

92 Understanding Blueprint Communication

8. Drag from the red pin of the Bind Event node, drop it in the graph, and choose
Add Custom Event.

9. Drag the Sparks Component from the Components panel and drop it in the
graph. Drag from the blue pin of the Sparks node, drop it in the graph, and choose
Activate.

10. Connect the nodes, as shown in the following screenshot, and compile BP_
Platform_Sparks:

Figure 4.35 – The Custom Event bound to Platform Pressed

11. Add an instance of BP_Platform_Sparks near the instance of BP_Platform
that is already on the Level. On the Details panel of the Level Editor, click the
drop-down menu of the BP_Platform variable and select one instance.

Figure 4.36 – Referencing an instance of the Level

Summary 93

12. Click the Play button of the Level Editor to test the Level. Move your character
to the location of BP_Platform. When your character overlaps it, the
PlatformPressed Event Dispatcher is triggered, and the Custom Event of BP_
Platform_Sparks is executed, activating the sparks:

Figure 4.37 – Touching the BP_Platform to activate the sparks

Summary
This was a practical chapter. We created step-by-step examples for each type of Blueprint
Communication. We learned about how a Blueprint can reference another Blueprint using
Direct Blueprint Communication and how to reference Actors on the Level Blueprint.
We saw how to use casting to access variables and functions of a child class, and how to
test whether an instance reference is of a certain class.

We learned about how to use an Event Dispatcher to inform us when an Event happens,
and how to respond to this Event Dispatcher in the Level Blueprint. We also saw that
we could bind an Event of another Blueprint to an Event Dispatcher.

This chapter concludes Section 1. We have now learned about the Blueprint fundamentals
necessary to start scripting games and applications in Unreal Engine 5.

In Section 2, we will start to build a first-person shooter from scratch with step-by-
step tutorials. In the next chapter, we will create the project, add objects to the Level,
manipulate the Materials of the objects, and add movement.

94 Understanding Blueprint Communication

Quiz
1. It is possible to call functions of another Blueprint using an object reference

variable.

a. True

b. False
2. The Cast To node is used to convert an object reference to a reference of any

other Blueprint Class.

a. True

b. False
3. In the Level Blueprint, it is possible to create references to Actors that are in

the Level.

a. True

b. False
4. The Level Blueprint cannot listen to an Event Dispatcher of a Blueprint class.

a. True

b. False
5. The Bind Event node can be used to bind an Event of a Blueprint to an Event

Dispatcher of another Blueprint.

a. True

b. False

Part 2:
Developing

a Game

In this part, you will start to build a first-person shooter from scratch with the help of
step-by-step tutorials. Blueprints will be used to develop the gameplay mechanics and
user interface.

This part comprises the following chapters:

• Chapter 5, Object Interaction with Blueprints

• Chapter 6, Enhancing Player Abilities

• Chapter 7, Creating Screen UI Elements

• Chapter 8, Creating Constraints and Gameplay Objectives

5
Object Interaction

with Blueprints
When setting out to develop a game, one of the first steps toward exploring your idea is to
build a prototype. Fortunately, Unreal Engine 5 and Blueprints make it easier than ever to
quickly get the essential gameplay functionality working so that you can start testing
your ideas sooner. We will begin by prototyping simple gameplay mechanics using some
default assets and a couple of Blueprints.

In this chapter, we will cover the following topics:

• Creating a new project and a Level

• Placing objects in a Level

• Changing an object's Material through Blueprints

• Moving objects in the world with Blueprints

By the end of this chapter, we will have learned how to create a Blueprint target that
changes its Material when it is hit and moves back and forth between two points regularly.
Each instance of the Blueprint target in the Level can be set to different speeds, directions,
and times to change direction.

98 Object Interaction with Blueprints

Creating the project and the first Level
In this section, we will start by creating a project using one of the Unreal Engine
templates. We will then explore the template to see what gameplay elements it provides.

Our game will be a first-person shooter. So, let's create a project using the First Person
template, which is in the Games category:

Figure 5.1 – Choosing the First Person template

Below the game templates, you can see a folder path field used to designate where
you would like to store your project. You can use the default folder or choose one
you prefer. The next screenshot shows the project defaults you should use in this project.
These PROJECT DEFAULTS options were explained in Chapter 1, Exploring the Blueprint
Editor. There is also a Project Name field to input the name by which your project will be
known. I named the project UE5BpBook, as shown in this screenshot:

Figure 5.2 – The project defaults used in our game

Adding objects to our Level 99

Now that we have a template selected and the project settings set up the way we like, we
can create the project. To do so, follow these steps:

1. Click on the blue Create button. After the engine is done with initializing the assets
and setting up your project, the Unreal Editor will open the Level Editor.

2. Press the Play button to try the default gameplay that is built into the First Person
template. You must click on the viewport for the game to start reacting to input.

You can move the player character using the W, A, S, and D keys and look around
by moving the mouse. You can fire projectiles using the left mouse button. The
projectile will affect some physics objects in the Level. Try shooting at the white
boxes scattered around the Level and observe them moving.

3. In Play mode, the Play button will be replaced with a Pause button, a Stop button,
and an Eject button. You can press Shift + F1 to access the mouse cursor and click
the Pause button to temporarily halt the play session, which can be useful when
you want to explore the properties of an interaction or Actor that you have just
encountered during gameplay.

Clicking the Stop button ends the play session and takes you back to editing mode.
Clicking the Eject button detaches the camera from the player, allowing you to move
freely through the Level. Go ahead and try playing the game before we continue.

Adding objects to our Level
Now, we want to start adding our own objects to the Level. Our goal is to create a simple
target Actor that changes color when shot with the included gun and projectile. We can
create a simple Actor by following these steps:

1. In the Level Editor, click the Create button located on the toolbar. Hover over
Shapes to display a submenu and drag Cylinder and drop it somewhere in the Level
to create an instance:

Figure 5.3 – Adding a Cylinder shape to the Level

100 Object Interaction with Blueprints

This creates a new Cylinder Actor and places it in our Level. You can reposition the
Cylinder as you wish by dragging and dropping it. You should see the Actor in the
Viewport as well as in the World Outliner panel, where it is named Cylinder
by default:

Figure 5.4 – World Outliner showing the added Cylinder

2. In the Details panel, change the name of the Cylinder instance to
CylinderTarget, as shown here:

Figure 5.5 – The Details panel of the Cylinder shape

We've added an Actor to the Level that will be used as a target; we're now going to learn
how to create a Material to apply to the Actor.

Exploring Materials 101

Exploring Materials
Earlier, we set ourselves the goal of changing the color of the Cylinder when it is hit by
a projectile. To do so, we need to change the Actor's Material. A Material is an asset that
can be added to an Actor's mesh to create its look. You can think of a Material as a coat of
paint applied on top of an Actor's mesh or shape. Since an Actor's Material determines its
color, one method for changing the color of an Actor is to replace its Material with one of
a different color. To do this, let's first create a Material of our own. It will make an Actor
appear red.

Creating Materials
Follow these steps to create a Material:

1. Click the Content Drawer button to open the content browser, and then click the
FirstPersonBP folder to access it. Click the Add button, select New Folder, and
name it Materials. This step is not necessary, but it is good practice to keep the
project file hierarchy tidy.

2. Navigate to the newly created folder, right-click in an empty space in the content
browser, and select Material to create a Material asset. Name it M_TargetRed:

Figure 5.6 – Creating a Material asset

102 Object Interaction with Blueprints

Material properties and nodes
Now, let's open the Material Editor and learn how to use nodes that modify the Material.

These are the steps to define the look of our simple Material:

1. Double-click on M_TargetRed to open a new Editor window for editing the
Material, like this:

Figure 5.7 – The Material Editor
You are now looking at the Material Editor, which shares many features and
conventions with Blueprints. The center of this screen is called the graph, and this is
where we place all the nodes that define the logic of our Materials. The node you see
in the center of the graph, labeled with the name of the Material, is called the result
node of the Material. This node, as seen in the previous screenshot, has a series of
input pins that other Material nodes can attach to define this Material's properties.

Exploring Materials 103

2. To give the Material a color, we need to create a node that provides information
about the color to the input labeled Base Color on this node. To do so, right-click
in an empty space near the node. A popup with a search box and a long list of
expandable options appears:

Figure 5.8 – The Material nodes menu
This shows all the available Material node options that we can add to this Material.
The search box is context-sensitive, so if you start typing the first few letters of
a valid node name, you will see the list below the search field shrink to include only
those nodes that include those letters in their names. The node we are looking for is
called VectorParameter, so we start typing this name in the search box and click on
the VectorParameter result to add that node to our graph:

Figure 5.9 – Adding a VectorParameter node

104 Object Interaction with Blueprints

3. Rename the added node Color. A vector parameter in the Material Editor allows
us to define a color, which we can then attach to the Base Color input on the tall
Material definition node.

4. We first need to give the node a color selection. Double-click on the black square in
the middle of the node to open Color Picker. We want to give our target a bright
red color when it is hit, so either drag the center point in the color wheel to the
red section of the wheel or fill in the RGB or hex values manually. When you have
selected the shade of red you want to use, click on OK. You will notice that the black
box in your vector parameter node has now turned red:

Figure 5.10 – The Color Picker panel

Exploring Materials 105

The final step is to link our color vector parameter node to the base Material node. In the
same way as with Blueprints, you can connect two nodes by clicking and dragging from
one node's output pin to another. Input pins are located on the left side of a node, while
output pins are always located on the right side. For our Material, we need to click and
drag a wire from the top output pin of the Color node to the Base Color input pin of the
Material node, as shown in the following screenshot:

Figure 5.11 – Setting the base color of the Material

We can define a simple Material using the Base Color input pin. We'll now see how to use
other input pins of the Material node.

Adding substance to our Material
We can optionally add some polish to our Material by taking advantage of some of the other
input pins on the Material definition node. 3D objects look unrealistic with flat single-color
Materials applied, but we can add additional reflectiveness and depth by setting a value for
the Materials' Metallic and Roughness inputs. To do so, follow these steps:

1. Right-click in an empty grid space and type scalarpa into the search box.
The node we are looking for is called ScalarParameter:

Figure 5.12 – Adding a ScalarParameter node

106 Object Interaction with Blueprints

2. Once you have a ScalarParameter node, select it and go to the Details panel.
ScalarParameter takes a single float value. Set Default Value to 0.1, as we want
any additional effects on our Material to be subtle.

3. Change Parameter Name to Metallic, then click and drag the output pin from
our Metallic node to the Metallic input pin of the Material definition node.

4. Let's make an additional connection to the Roughness parameter, so right-click on
the Metallic node we just created and select Duplicate. This generates a copy of that
node without the wire connection.

5. Select this duplicate Metallic node and then change the Parameter Name field
in the Details panel to Roughness. Let's keep the same default value of 0.1 for
this node.

6. Click and drag the output pin from the Roughness node to the Roughness input
pin of the Material definition node.

The result of our Material should look like this:

Figure 5.13 – The result of the M_TargetRed Material

Creating the target Blueprint 107

We have now made a shiny red Material that ensures our targets stand out when they are
hit. Click on the Save button at the top-left corner of the Editor to save the asset. Close the
Material Editor to return to the Level Editor.

We have learned how to use the Material Editor to create a simple Material using the Base
Color, Metallic, and Roughness input pins. In the next section, we will see how to change
the Material of an Actor during runtime.

Creating the target Blueprint
We now have a Cylinder in the world, as well as the Material we want to apply to the
Cylinder when it is shot. The final piece of the interaction is the game logic that evaluates
that the Cylinder has been hit, and then changes the Material on the Cylinder to our new
red Material. To create this behavior, we must convert our Cylinder into a Blueprint. To do
so, follow these steps:

1. Make sure you have the CylinderTarget object selected in the Level. In the
Details panel, click on the icon on the right of the Add button:

Figure 5.14 – Creating a Blueprint from an Actor in the Level

108 Object Interaction with Blueprints

2. You will then see a window with the title of Create Blueprint From Selection.
Rename the Blueprint BP_CylinderTarget. In the Path field, select the
/Game/FirstPersonBP/Blueprints folder. In Creation Method, use the
New Subclass option. The StaticMeshActor parent class is already selected because
it is the parent class of the Cylinder Actor. Click the Select button to create
the Blueprint:

Figure 5.15 – Creating a Blueprint from an Actor in the Level

The Blueprint Editor opens with BP_CylinderTarget in the Viewport tab. You can
see that the Blueprint already has a Static Mesh component with a Cylinder mesh assigned
to it.

We will explore the use of components in Chapter 6, Enhancing Player Abilities; for now,
we want to create a simple Blueprint that will react to a hit. To do so, click on the Event
Graph tab.

Creating the target Blueprint 109

Detecting a hit
To create a hit detection mechanism, follow these steps:

1. To create our hit detection event, right-click in an empty space of the EventGraph
and type hit in the search box. The Event Hit node is what we are looking for,
so select it when it appears in the search results. Event Hit is triggered every time
another Actor hits the Actor controlled by this Blueprint:

Figure 5.16 – Adding Event Hit
Now that we have the Event Hit node, we need to find an Action that will enable us
to change the Material of an Actor.

2. Click and drag a wire from the white execution pin of the Event Hit node to an
empty space to open the context menu. Type set material in the search box.
The node we want to select is called Set Material (StaticMeshComponent):

Figure 5.17 – Adding the Set Material node (StaticMeshComponent)

110 Object Interaction with Blueprints

Important Information
If you cannot find the node you are searching for in the Context Sensitive
search, try unchecking Context Sensitive to find it from the complete list of
node options. Even if the node is not found in the Context Sensitive search,
there is still a possibility that the node can be used in conjunction with the
node you are attempting to attach it to.

We've added the Set Material node, but now we need to adjust its input parameters.

Swapping a Material
Once you have placed the Set Material node, note that it is already connected via its input
execution pin to the Event Hit node's output execution pin. This Blueprint now fires the
Set Material Action whenever the Blueprint's Actor hits another Actor. However,
we haven't yet set up the Material that will be used when the Set Material Action is called.
Without setting the Material, the Action will fire but won't produce any observable effect
on the Cylinder target:

1. To set the Material that will be used, click on the drop-down field labeled Select
Asset underneath Material, which is inside the Set Material node. In the asset
finder window that appears, type red in the search box to find the M_TargetRed
Material that we created earlier. Clicking on this asset attaches it to the Material
field inside the Set Material node:

Figure 5.18 – Selecting the M_TargetRed Material

Creating the target Blueprint 111

2. We have now done everything we need with this Blueprint to turn the target
Cylinder red. Compile and Save the Blueprint.

Now that we have set up a basic gameplay interaction, it is wise to test the game to ensure
that everything is happening the way we want it to. You can click on the Play button
of the Blueprint Editor to test the game. Try both shooting and running into the BP_
CylinderTarget Actor you created:

Figure 5.19 – The cylinder turns red if something hits it

In the next section, we will look at how to improve the BP_CylinderTarget Blueprint.

Improving the Blueprint
When we run the game, we see that the Cylinder target changes colors upon being hit by
a projectile fired from the player's gun. This is the beginning of a framework of gameplay
that can be used to get enemies to respond to the player's Actions. However, you might
also have noticed that the target Cylinder changes color, even when the player runs into
it directly. Remember that we wanted the Cylinder target to turn red only when hit by
a player projectile and not due to any other object colliding with it. Unforeseen results
such as these are common whenever scripting is involved, and the best way to avoid them
is to check your work by playing the game as often as possible when you are constructing it.

112 Object Interaction with Blueprints

To fix our Blueprint so that the Cylinder target only changes color in response to a player
projectile, return to the BP_CylinderTarget tab and look at the Event Hit node again.

The remaining output pins on the Event Hit node are variables that store data about the
event that can be passed to other nodes. The color of the pins represents the type of data
variable they pass. Blue pins pass objects, such as Actors, whereas red pins contain
a Boolean (true or false) variable.

The blue output pin, labeled Other, contains a reference to the other Actor that hit the
Cylinder target. This is useful for us to ensure that the Cylinder target changes color only
when hit by a projectile fired from the player, rather than changing color because of any
other Actors that might bump into it.

Let's do a change to ensure that we are only triggering the Cylinder target in response
to a player projectile hit. Drag the Event Hit node to the left to make room for another
node, and then click and drag a wire from the Other output pin to an empty space. In
the context menu, type projectile. You should see some results that look like the
following screenshot. The node we are looking for is called Cast To FirstPersonProjectile:

Figure 5.20 – Adding the Cast To node

FirstPersonProjectile is a Blueprint included in Unreal Engine 5's First
Person template, which controls the behavior of the projectiles that are fired from
your gun. The Cast node is used to ensure that the Action attached to the execution
pin of this node occurs only if the Actor hitting the Cylinder target is an instance of
FirstPersonProjectile.

Adding movement 113

When the node appears, you should already see a blue wire between the Other output
pin of the Event Hit node and the Object pin of the casting node. Connect the white
execution pin of Event Hit to the execution pin of the Cast To FirstPersonProjectile
node, and connect the output execution pin of the Cast To FirstPersonProjectile node to
the execution pin of the Set Material node:

Figure 5.21 – The Event Hit Actions

Now, compile, save, and click on the Play button to test the game again. This time,
you should notice that the Cylinder target retains its default color when you walk up and
touch it, but if you move away and shoot it, it turns red.

We learned how to use the Cast To FirstPersonProjectile node to ensure that some
Actions will only be performed if the instance interacting with the Blueprint is of
a specific class. In the next section, we will make our Cylinder target move in the Level.

Adding movement
Now that we have a target that responds to the player shooting, we can add some sort of
challenge to start making our project feel like a game. A simple way to do this is to add
some movement to our target. To accomplish this, we first must declare that our target
Actor is an object that is intended to move, and then we need to set up logic within the
Blueprint that manages how it moves. Our goal is to make the target Cylinder move back
and forth across our Level.

114 Object Interaction with Blueprints

Changing the Actor's Mobility and Collision settings
To allow our target to move, we first must change its Mobility setting to Moveable. This
allows an Actor to be manipulated while playing the game. To do this, follow these steps:

Important Information
By default, basic Actors that are placed in the world are set to Static. Static means
that an object cannot move or be manipulated during gameplay. Static objects
are significantly less resource-intensive to render, and this should be our default
choice for non-interactive objects so that we can maximize frame rates.

1. Open BP_CylinderTarget again. On the Components panel, select Static Mesh
Component. On the Details panel, switch the Mobility toggle, located underneath
the TRANSFORM properties, from Static to Movable:

Figure 5.22 – Changing Mobility to Movable
Because we want to target this object with our gun, we also need to ensure that the
target is capable of being collided with so that our bullets don't pass through it.

Adding movement 115

2. In the Details panel, find the category called COLLISION and look for Collision
Presets in the drop-down menu. There are many other options in this drop-down,
and by choosing the Custom option, you can even set the object's Collision
interaction with different object types individually. For our purpose, we just need to
ensure that this drop-down menu is set to BlockAllDynamic:

Figure 5.23 – The collision presets must be BlockAllDynamic

Breaking down our goal
Now that we have made our target moveable, we are ready to set up Actions that tell the
Cylinder how to move. To move the Cylinder, we need four pieces of data:

• Where is the Cylinder currently located?

• What direction it is supposed to move in?

• How fast it should move?

• When should it switch between directions?

We will get the current location by using a function that returns the coordinates of the
Cylinder in the world. The speed, direction, and time to change direction are the values
we are providing to the Blueprint, but some calculations are necessary to turn those values
into information that the Blueprint can use to move the object.

116 Object Interaction with Blueprints

Follow these steps:

1. In the My Blueprint panel, create a variable named Speed. This variable will hold
a number that represents the speed of movement of BP_CylinderTarget.
In the Details panel, change Variable Type to Float and check the Instance
Editable attribute:

Figure 5.24 – The Speed variable

2. Compile the Blueprint to be able to set the default value. Set DEFAULT VALUE
to 200.0:

Figure 5.25 – The default value of the Speed variable

Adding movement 117

3. In the My Blueprint panel, create another Float variable named TimeToChange.
Check the Instance Editable attribute. Compile the Blueprint and set DEFAULT
VALUE to 5.0. This means the Cylinder will change direction after 5 seconds:

Figure 5.26 – The TimeToChange variable

4. In the My Blueprint panel, create another variable named Direction. In the
Details panel, change Variable Type to Vector and check the Instance Editable
attribute:

Figure 5.27 – The Direction variable of the Vector type

118 Object Interaction with Blueprints

5. A vector contains the X, Y, and Z float values. Compile the Blueprint and set
DEFAULT VALUE to 1.0 for the Y axis. This means it will follow the Y axis in the
positive direction:

Figure 5.28 – The default value of the Direction vector

Readying direction for calculations
Now, let's explore the steps necessary to get the information we need to provide
a movement instruction. It might look intimidating at first, but we will break down each
section and see how each node fits into the larger goal.

The first calculation we need to perform is to take our vector value for direction and
normalize it. Normalizing is a common procedure in vector math that ensures that the
vector is converted to a length of 1 unit, which makes it compatible with the rest of
our calculations. Fortunately, there is a Blueprint node that takes care of this for us:

1. Drag the Direction variable from the My Blueprint panel and drop it into the
EventGraph. Choose the Get Direction option to create a node.

2. Drag from the output pin of the Direction node and drop in the graph to open the
context menu. Search for normalize and select the Normalize node underneath
the category labeled vector. This connects our Direction variable to a node that
automatically does the normalizing calculation for us:

Figure 5.29 – Normalizing a vector

Adding movement 119

Important Information
It is good practice to leave comments on the sets of Blueprints as you create
them. Comments can help describe what a particular set of Blueprints is
intended to accomplish, which can be helpful if you are returning to
a Blueprint after some time and need to make sense of your prior work. To
leave a comment on a Blueprint, click and drag a selection box around the
nodes you want to create a comment around so that you can select them. Then,
right-click on one of the selected nodes and select the bottom option, Create
Comment from Selection.

Getting relative speed using delta time
Delta time is the time difference between the previous frame that was drawn and the
current frame. Delta time is used because the time taken between the frames of the
gameplay can differ. By multiplying our speed value by delta time, we can ensure that the
speed at which our object moves is the same, regardless of the game's frame rate:

1. Drag the Speed variable from the My Blueprint panel and drop it into the
EventGraph. Choose the Get Speed option to create a node.

2. Right-click in an empty space of the EventGraph to open the context menu and
search for delta. Select the Get World Delta Seconds option.

3. Drag from the output pin of the Speed node and drop it into an empty space. Type
an asterisk (*) in the search field (Shift + 8 on most computers) and select the
Multiply node:

Figure 5.30 – Adding the Multiply node

120 Object Interaction with Blueprints

4. Drag from the output pin of the Get World Delta Seconds node and drop in the
other input pin of the Multiply node to multiply the two values, like this:

Figure 5.31 – Multiplying speed with delta seconds

Updating location
Now that we have a normalized vector direction and a speed value relative to time,
we need to multiply these two values and add them to the current location:

1. Drag from the output pin of the Normalize node and drop it into an empty space.
Type an asterisk (*) in the search field and select the Multiply node.

2. The previous step created a Vector x Vector node, but we need to multiply the
vector with a float. So, right-click on the second input pin, hover over Convert
Pin…, and select Float:

Adding movement 121

Figure 5.32 – Converting a multiply input pin

3. Connect the output pin of the Float x Float node to the Float input pin that
we converted, as shown in the following screenshot:

Figure 5.33 – Multiplying a vector with a float

122 Object Interaction with Blueprints

4. We will use Event Tick to update the location of the Cylinder. Right-click in an
empty space of the EventGraph to open the context menu and search for tick.
Select the Event Tick option.

5. To move the Actor, we will use the AddActorWorldOffset node. This node has an
input parameter named Delta Location, which is a vector representing the change
of location of the Actor. Right-click to open the context menu, search, and add the
AddActorWorldOffset node. Connect Event Tick to the AddActorWorldOffset
node:

Figure 5.34 – Using Event Tick to update location

6. Connect the output pin of the Vector x Float node to the Delta Location input pin.
Completed, Event Tick looks like this:

Figure 5.35 – All Actions of Event Tick

Changing direction 123

In this section, we learned how to use a normalized vector, delta time, and speed to
move our Cylinder target. Compile the Blueprint, save, and play the game now. Note that
the Cylinder target moves according to the defined speed and direction as soon as the
game begins. However, since we don't have any instructions that cause the target to stop
moving, it will proceed in the same direction for as long as the game runs, even moving
through objects and out of the Level we created. To avoid this problem, in the next
section, we will make the Cylinder target change its direction periodically.

Changing direction
In this section, we will implement the logic to change the target's direction periodically.
This will result in a target that moves back and forth between two points regularly, much
like a shooting gallery target:

1. Right-click in an empty space of the EventGraph to open the context menu and
search for custom event. Select the Add Custom Event option. Rename the
event ChangeDirection:

Figure 5.36 – Creating a custom event

2. We are going to invert the Direction vector by multiplying it by -1:

Figure 5.37 – Invert the direction of a vector by multiplying it by -1

124 Object Interaction with Blueprints

3. Drag the Direction variable from the My Blueprint panel and drop it into the
EventGraph. Choose the Get Direction option to create a node.

4. Drag from the output pin of the Direction node and drop it into an empty space.
Type an asterisk (*) in the search field and select the Multiply node.

5. The previous step created a Vector x Vector node, but we need to multiply the
vector with a float. So, right-click on the second input pin, hover over Convert
Pin…, and select Float. Insert -1 in the Float parameter.

6. Drag the Direction variable from the My Blueprint panel and drop it
into the EventGraph. Now, choose the Set Direction option to create a node.
Connect the Set Direction node to the output pin of the Multiply node and the
ChangeDirection event. This completes the ChangeDirection event.

7. We will use a timer to run the ChangeDirection event periodically. Right-click in
an empty space of the EventGraph to open the context menu and search for timer
event. Select the Set Timer by Event option. Check the Looping parameter:

Figure 5.38 – Adding the Set Timer by Event node

Changing direction 125

8. Right-click to open the context menu and add Event BeginPlay. Drag the
TimeToChange variable from the My Blueprint panel and choose the Get
TimeToChange option. Connect the nodes as shown in the following screenshot:

Figure 5.39 – The timer will run the ChangeDirection Event periodically

9. Compile and save the Blueprint.

Testing moving targets
Now that we have updated our Blueprint, we can test to ensure that the
BP_CylinderTarget instance moves as expected. First, we must place the
BP_CylinderTarget instance in a position that allows it to move along the y axis
without bumping into other objects. The coordinates I used were 220 on the x axis,
-600 on the y axis, and 220 on the z axis.

126 Object Interaction with Blueprints

Note that these values only work relative to the default layout of the First Person template
map. If you have adjusted your Level, then you can adjust the location of the Cylinder in
your Level or change the values of the instance editable variables, such as the speed, the
time to change, or the direction, as shown in the following screenshot, and test until
you find a good patrol spot. Click on Play. If the Blueprint is functioning correctly, then
you will see the Cylinder move back and forth between two points at a steady rate:

Figure 5.40 – These variables can be edited in an instance

You can add other BP_CylinderTarget instances and try other directions, such as
following the x axis or up and down (the z axis).

Summary
In this chapter, we created a project and an initial Level using a first-person shooter
template. We then set up a target object that reacts to the player's gunfire by changing its
appearance. Finally, we set up a Blueprint that allows us to rapidly create moving targets.
The skills we have learned about here will serve as a strong foundation for building more
complex interactive behavior in later chapters, or even entire games of your own making.

Quiz 127

You may wish to spend some additional time modifying your prototype to include
a more appealing layout or feature faster moving targets. As we continue building our
game experience, remember that you always can linger on a section and experiment with
your own functionality or customization. One of the greatest benefits of a Blueprint's
visual scripting is the speed at which you can test new ideas, and each additional skill that
you learn will unlock exponentially more possibilities for game experiences that you can
explore and prototype.

In the next chapter, we will be looking more closely at the player controller that comes
with the First Person template. We will extend the existing Blueprint that governs player
movement and shoot with a gun that is tweaked to our liking, producing more interesting
visual impacts and sound effects.

Quiz
1. It is not possible to change the Material of a mesh using Blueprint script.

a. True

b. False
2. You can create a Blueprint class using an Actor that is in the Level.

a. True

b. False
3. The resulting vector of the Normalize function is a vector with a length equal to 1.

a. True

b. False
4. The amount of time a timer waits to execute an event is called delta time.

a. True

b. False
5. Event Tick is executed every frame.

a. True

b. False

6
Enhancing

Player Abilities
In this chapter, we will expand on the core shooting interaction that we created in
Chapter 5, Object Interaction with Blueprints, by making modifications to the player
character Blueprint. The player character Blueprint that comes with the First Person
template initially looks complex, especially when compared to the relatively simple
Cylinder target Blueprint that we have already created from scratch. We will be looking
into this Blueprint and breaking it down to see how each of its sections contributes to the
player's experience and allows them to control their character and shoot a gun.

It would be quick and easy to just use an existing asset that works, without spending time
learning how it accomplishes its functionality. However, we want to ensure that we can
repair problems as they arise, as well as extend the functionality of the player controls to
fit our needs better. For this reason, it is always advisable to take some time to investigate
and learn about any external assets you might bring into a project that you are building.

130 Enhancing Player Abilities

By the end of this chapter, we want to succeed in modifying the player character, so that
we can add the ability to sprint, zoom the view, and destroy the objects we shoot with
enjoyable explosions and sound effects. Along the way to achieving these goals, we will be
covering the following topics:

• Player inputs and controls

• Field of View (FOV)

• Timelines and branching logic

• Adding sounds and particle effects to an object interaction

Adding the running functionality
We'll begin our exploration of the FirstPersonCharacter Blueprint by adding
simple functionality that will give our players more tactical options for moving around
in the Level. Now, the player is limited to moving at a single speed. We will adjust the
Blueprint to increase the movement speed of the Character Movement Component when
the player presses the Left Shift key, but first let's learn about the Actions that are present
in the Event Graph of FirstPersonCharacter.

Breaking down the character movement
Let's begin by opening the FirstPersonCharacter Blueprint. In Content Browser,
access the Content | FirstPersonBP | Blueprints folder and double-click on the
FirstPersonCharacter Blueprint. You will open the Event Graph and see a large
series of Blueprint nodes. You can look around the Event Graph by right-clicking on the
graph and dragging it. The first group of nodes we will look at is bounded by the Event
Graph comment labeled Stick input, as shown here:

Adding the running functionality 131

Figure 6.1 – Stick input Events

The red Event nodes are triggered at every frame and pass the Axis Values of TurnRate
and LookUpRate from a controller input. These values are usually mapped to the
left/right and up/down axis triggers of an analog stick. Note that there are only two axis
triggers. Detecting a look down or a turn left Event is covered by these very nodes and is
represented as a negative number in the Axis Value that is passed.

Then, the values from the two axis triggers are each multiplied by a variable, representing
the base rate at which the player is intended to be able to turn around or look up or down.
The values are also multiplied by the world delta seconds to normalize against varying
frame rates, despite the triggers being called every frame. The value resulting from
multiplying all the three inputs is then passed to the Add Controller Pitch Input and Add
Controller Yaw Input functions. These are the functions that add translations between
the controller input and the effect on the player camera.

132 Enhancing Player Abilities

Below the Stick input group of Blueprint nodes, there is another comment block, called
Mouse input, and it looks quite like the Stick input group:

Figure 6.2 – Mouse input Events

Mouse input converts input from mouse movements (as opposed to controller axis sticks)
into data, and then passes those values directly to the corresponding camera yaw and
pitch input functions, without needing the same kind of calculations that are necessary for
analog input.

Now, let's look at the group of nodes that manage player movement, as shown in this
screenshot:

Adding the running functionality 133

Figure 6.3 – Movement input Events

The Select nodes test whether the player is using a virtual reality head-mounted display
(VR HMD). If a VR HMD is enabled, then the vectors used are from FirstPerson
Camera; if it isn't, then the vectors used are from the Actor root Component.

Functionally, the other nodes are set up similarly to the Stick input and Mouse input
groups. The axis value is taken from the forward and right movement axis inputs on
a controller or keyboard. Again, these nodes represent backward and left movements as
well, in the form of negative values for the Axis Value outputs. The significant difference
in movement translation is that we require the direction that the Actor is going to be
moved in, so that the degree of movement can be applied in the correct direction. The
direction is pulled from the Get Actor Vector nodes (both forward and right) and
attached to the World Direction input of the Add Movement Input nodes.

134 Enhancing Player Abilities

The last movement-related group of nodes to look at is the node group contained within
the comment block labeled Jump. This group is simply made up of a trigger node that
detects the pressing and releasing of the key mapped to jumping and applies the Jump
function from when the button is pressed until it is released.

Figure 6.4 – Jump input Event

We saw the Actions of the FirstPersonCharacter that control the character
movement. We will learn now how to map a keypress to an Action.

Customizing control inputs
We have seen how the First Person template has mapped certain player input Actions,
such as moving forward or jumping, to Blueprint nodes in order to produce the behavior
for the Actions. To create new kinds of behavior, we will have to map new physical control
inputs to additional player Actions. To do that, follow these steps:

1. To change the input settings for your game, click on the Settings button on the far
right of the toolbar, and select the Project Settings option:

Figure 6.5 – Accessing the Project Settings

Adding the running functionality 135

2. On the left side of the window that appears, look for the Engine category and select
the Input option.

3. Inside the Engine category, in the Input Settings menu, you will see two sections
under the Bindings category called Action Mappings and Axis Mappings. Click on
the > symbol on the left of each section to show the existing mappings.

Action Mappings are keypress and mouse click Events that trigger player Actions.
Axis Mappings map player movements and Events that have a range, such as the
W key and S key both affecting the Move Forward Action, but on different ends of
the range. Both our Sprint and Zoom functions are simple Actions that are either
active or inactive, so we will add them as Action Mappings:

Figure 6.6 – Creating Action Mappings

4. Click on the + sign next to Action Mappings twice to add two new Action
Mappings.

5. Name the first Action Sprint and select the Left Shift key from the drop-down
menu to map that key to your Sprint Event. Name the second Action Zoom and
map it to Right Mouse Button.

The changes are saved when you close the window.

136 Enhancing Player Abilities

Adding a Sprint ability
Now that we have a basic understanding of how the movement input nodes take the
controller input and apply it to our in-game character, we'll extend that functionality with
a Sprint ability. We'll set up a new series of nodes within the FirstPersonCharacter
Blueprint. They will look like this:

Figure 6.7 – Implementing the Sprint ability

First, we will need to add the Event that will activate our Sprint Action. Recall that
we previously mapped the Sprint Action to the Left Shift key. To add the Event, follow
these steps:

1. Right-click on the empty grid space to the left of the other movement functions and
search for Sprint. Select the Sprint Event to place the node.

Figure 6.8 – Adding the Input Action Sprint event

Adding the running functionality 137

2. Look at the Components panel of the Blueprint Editor and select Character
Movement (CharMoveComp) (Inherited). The Details panel will change to show
a long series of variables related to movement, as seen in the following screenshot:

Figure 6.9 – Character Movement variables
In this list of variables, you can find Max Walk Speed in the Walking category. This
is the value that determines the maximum speed at which the player can move, and
it should be the target of our Sprint function. However, changing the value in the
Details panel from the default of 600 would modify the player's movement speed
consistently, regardless of whether Left Shift was being pressed or not. Instead, we
want to pull this value out of the Character Movement Component and into our
Blueprint's Event Graph.

138 Enhancing Player Abilities

3. To do so, click on the Character Movement Component in the Components
panel and drag it onto Event Graph, near our InputAction Sprint Event. This will
produce a Character Movement node, as seen in this screenshot:

Figure 6.10 – Character Movement node

4. Click and drag the output pin from the Character Movement node to empty
grid space and type walk speed. Select the Set Max Walk Speed option. It will
connect the Character Movement node to the new node, setting the maximum
walk speed value.

5. Connect the Pressed output execution pin from the InputAction Sprint trigger to
the input execution pin of the Set Max Walk Speed node, to enable you to press
Left Shift to modify the maximum movement speed.

6. Finally, change the Max Walk Speed value within the node from 0.0 to 2200, to
provide a nice boost of speed over the default of 600.

We also need to ensure that the player slows down again once the Shift key
is released.

7. To do so, drag the output pin from the Character Movement node again, and then
search for and select another Set Max Walk Speed node to place it on Event Graph.
This time, connect the Released output execution pin of the InputAction Sprint
node to the input execution pin of the new node. Then, change the Max Walk
Speed value from 0.0 to the default of 600. To keep up with our good commenting
practice, click and make a selection box around all four nodes, right-click on one
of the selected nodes, and select Create Comment from Selection, then label the
group of nodes as Sprint.

8. Now compile, save, and press Play to test your work. You should notice a significant
boost in speed if you press down the Left Shift key.

Animating a zoomed view 139

We learned how to map a keypress to an Action and modify the max speed of the
character to simulate a sprint ability. Our next step is to add an ability to the player that
allows them to get a closer view of a target.

Animating a zoomed view
A core element of modern first-person shooters is a variable field of view (FOV) in the
form of a player's ability to look down the scope of a gun to get a closer view of a target.
This is a significant contributor to the feeling of accuracy and control that modern
shooters provide. Let's add a simple form of this functionality to our prototype. To do that,
follow these steps:

1. In an empty section of the grid next to your Mouse input nodes, right-click, search
for zoom, and add a Zoom Event node.

2. We want to modify the FOV value that is contained within the First Person
Camera Component, so go to the Components panel and drag First Person
Camera out onto Event Graph.

3. Drag the output pin of First Person Camera node into empty grid space, search
for the Set Field Of View node, and place it. Lowering the FOV gives the effect of
zooming into a narrower area in the center of the screen. Since the Default FOV
value is set to 90, for our zoom, let's set the FOV in the set node to 45, like this:

Figure 6.11 – Changing the Field of View

4. Click and drag the output execution pin from the InputAction Zoom node to the
input execution pin of the Set Field Of View node. Compile, save, and click on Play.

You will notice that when you are playing the game and press the right mouse button, the
FOV will snap to a narrow, zoomed-in view. Any instance where the main camera snaps
from one position to another can be jarring for a player, so we will have to modify this
behavior further. Also, the FOV does not reverse when the key is released. We will solve
both problems using a timeline.

140 Enhancing Player Abilities

Using a timeline to smooth transitions
To change the FOV smoothly, we will need to create an animation that shows a gradual
change in the Actor over time. To do so, return to the Event Graph instance of the
FirstPersonCharacter Blueprint and follow these steps:

1. Press Alt and click on the Pressed output execution pin of the InputAction Zoom
node to break the connection.

2. Drag a new wire out from Pressed to empty grid space. Search for and select Add
Timeline to add a timeline node:

Figure 6.12 – Timeline node

Important Note
There are different ways of accomplishing animations in Unreal Engine 5.
Timelines are perfect for simple value changes, such as the rotation of a door.
For more complex, character-based, or cinematic animations, you would
want to look into Sequencer, which is the engine's built-in animation system.
Sequencer and complex animations are out of the scope of this book, but
there are many dedicated learning resources available for using Sequencer.
I recommend starting with the Unreal documentation, which is available
at https://docs.unrealengine.com/en-us/Engine/
Sequencer.

3. A timeline will allow us to change a value (such as the FOV on a camera) over
a designated amount of time. To change the value within the timeline, double-click
on the Timeline_0 node.

https://docs.unrealengine.com/en-us/Engine/Sequencer
https://docs.unrealengine.com/en-us/Engine/Sequencer

Animating a zoomed view 141

This will open up the Timeline Editor. You will see four buttons in the top-left
corner of the Editor. Each of these will add a different kind of value that can be
changed over the course of the timeline. Because FOV is represented by a numerical
value, we will want to click on the button with the f label (Add Float Track). Doing
so will add a track to the timeline and prompt you to name this track.

4. Let's label this as Field of View. We will now have to edit the values over different
time intervals, as shown here:

Figure 6.13 – Timeline Editor

5. To accomplish this, hold down Shift and click on a point that is close to the 0.0 point
on the graph. You will see the Time and Value fields appear in the top-left part of
the graph as shown in Figure 6.14.

These allow precision tuning of our timeline. Ensure that the time is set to exactly
0.0 and set the value to 90, our default FOV. If the point disappears from the view,
you can use the two small buttons in the top-left of the graph to zoom into the
graph so that the point becomes visible. These buttons are inside the red rectangle
in Figure 6.14.

6. We want the zoom animation to be quick, so at the top of the Timeline Editor,
find the field next to Length and change to value to 0.3 to limit the range of the
animation to 0.3 seconds.

142 Enhancing Player Abilities

7. Now, press Shift and click at the end of the light gray area on the right of the graph.
Adjust the fields to 0.3 for Time and 45 for Value:

Figure 6.14 – Time and value of the second point
Notice how the line that represents the value gradually slopes down from 90 degrees
to 45 degrees. This means that when this animation is called, the player's FOV will
smoothly transition from being zoomed out to being zoomed in, rather than
a jarring switch between the two values. This is the advantage of using timelines
over changing the values directly with a set value Blueprint.

8. Now, return to Event Graph. We want to connect our timeline to our set FOV
operation, just like what is shown in this screenshot:

Figure 6.15 – Using the timeline to modify the FOV

Increasing the projectile's speed 143

9. You will notice that the Timeline_0 node now has a new output pin called Field Of
View. Connect this pin to the In Field Of View input pin of the Set Field of View
node. Now, connect the Update output execution pin from the Timeline_0 node to
the Set Field of View node.

This sets up the functions so that every time the FOV value is updated, it passes
the new value to the Set Field Of View function. Because of our timeline setup,
many values between 90 and 45 will be passed to set, enabling a gradual transition
between the two extremes over 0.3 seconds.

10. Finally, we want the zooming to end when the right mouse button is released. To do
this, drag the Released pin from the InputAction Zoom node to the Reverse pin of
the Timeline node.

This will cause the timeline animation to play in reverse order when the right mouse
button is released, ensuring that we have a smooth transition back to our normal
camera view. Also, remember to apply a comment to the node group so that you
remember what this functionality does if you revisit it later.

11. Now, compile, save, and play to test the transition in and out of your zoom view by
holding down the right mouse button.

These steps complete our implementation to animate a zoomed view. Now, let's make
some adjustments to the FirstPersonProjectile Blueprint.

Increasing the projectile's speed
Now that we have given the player character a new gameplay option to navigate the
world, our focus will be back on the shooting mechanics. Right now, the shots fired from
the gun on the controller are spheres that slowly arc through the air. We want to better
approximate the fast-moving bullets that we are used to from traditional shooters.

144 Enhancing Player Abilities

To change the properties of Projectile, we need to open the Blueprint called
FirstPersonProjectile, which is in the Content|FirstPersonBP|
Blueprints folder. Once opened, look at the Components panel and click on
Projectile. This is a projectile movement Component that has been added in the
FirstPersonProjectile Blueprint to define how the sphere will travel once it is
created in the world:

1. In the Details panel, you will see that Projectile has a lot of variables that describe
its movement. We are interested in only a few of these at this time:

Figure 6.16 – Projectile variables

First, find the Initial Speed and Max Speed fields, which are currently set to 3000. Initial
Speed determines how fast the projectile travels when it is first created at the tip of our
gun, and Max Speed determines how fast it can go if an additional force is applied to it
after creation. If we had a rocket, we might wish to apply acceleration to the rocket after it
is launched to signify the thruster engaging. However, since we are representing a bullet
coming from a gun, it makes more sense to make its initial speed the fastest that the
bullet will ever travel at. Adjust both Initial Speed and Max Speed to twice their original
value: 6000.

Let's change the Projectile Gravity Scale from 1.0 to 0.1. That way, the bullet appears
very light and thus not affected by gravity much.

Adding sound and particle effects 145

Additionally, you might have noticed that the current projectile bounces off walls and
objects as if it were a rubber ball. However, we want to mimic a harder and more forcefully
impacting projectile. To remove the bouncing, look for the Projectile Bounces section in
the Details panel and uncheck the box next to Should Bounce. The other values dictate
the way in which the projectile bounces only if Should Bounce is checked, so there is no
need to adjust them.

One last change to make in Event Graph is to connect the False pin of the Branch node
to the DestroyActor function so that the projectile is always Destroyed when it collides
with anything:

Figure 6.17 – Projectile Event Graph

Now, compile, save, and click on Play. You will find that shooting the gun results in
a much further-reaching projectile and that the projectile does not bounce off the
walls anymore.

We modified the projectile's speed and unchecked the bouncing property to make
the projectile behaves like a bullet. The next Blueprint we will modify is the
BP_CylinderTarget to simulate an explosion when it is destroyed.

Adding sound and particle effects
Now that we have the player moving and shooting to our liking, let's turn our attention
to the enemy targets. Shooting one of the target Cylinders currently results in it changing
its color to red. However, there is nothing that the player can currently do to destroy
a target outright.

146 Enhancing Player Abilities

We can add more dynamics to our enemy interaction by producing Blueprint logic that
destroys the target if it is shot more than once, while also increasing the reward for the
player by producing a satisfying sound and visual effect once the target is destroyed.

Changing target states with branches
Since we want to generate effects that will be triggered by changes in the state
applied to our target Cylinder, we must ensure that this logic is contained within our
BP_CylinderTarget Blueprint, which is in the Content | FirstPersonBP |
Blueprints folder. Open the Blueprint and look at the node group connected to Event
Hit. Right now, when our projectile hits the Cylinder object, these nodes tell it to swap to
a red material. To add the ability to change how the Cylinder behaves when it is shot more
than once, we will need to add a check to our Blueprints to see if the Cylinder has already
been hit, and then trigger a different result depending on its state.

We will use a Branch node to help us handle this scenario:

Figure 6.18 – Using the Branch node to check if the Cylinder has already been hit

The Branch node takes a Boolean variable as an input. Since Boolean values can only
be either True or False, the Branch node can produce only two outcomes. These two
outcomes can be executed by linking additional nodes to the two output execution pins,
representing the True path and the False path.

The first step of creating Branch is to determine what will be represented by your Boolean,
and what will cause the conditional value to change from False to True. In our case, we
want to create a Primed variable to show that the target has been hit and that it could be
destroyed with a second hit. Let's go ahead and create a Primed Boolean variable:

1. In the My Blueprint panel, click on the + button of the Variables category to add
a new variable. Set Variable Type to Boolean and give the name Primed to the
new variable.

Adding sound and particle effects 147

2. Compile and save the Blueprint. Because we do not want our targets to be in
a Primed state before they have been hit for the first time, we will leave the default
value of our variable as False (represented by an unchecked box).

3. Now that you have a Primed Boolean variable, drag it from the My Blueprint panel
to Event Graph, and select the Get option that appears in the submenu when
you drop the variable on Event Graph..

4. Click and drag a wire from the output pin of the new Primed node to empty grid
space on Event Graph. Search for and add the Branch node.

5. Finally, we can add Branch to our Event Hit Blueprint group. Break the connection
between the Cast To FirstPersonProjectile and Set Material nodes by holding
down the Alt key and clicking on one of the execution pins.

6. Drag the Set Material node out of the way for a moment, and then connect the
output execution pin of the Cast To node to the input execution pin of the Branch
node. This Blueprint will now call the Branch evaluation every time the target
Cylinder is hit by a projectile.

Now that we have our Branch node set up, we need to provide the target Cylinder
with instructions on what to do in each state. Namely, what should happen when it
is first hit (the Primed variable is False) and what should happen when it is hit
a second time (the Primed variable is True).

Let's handle when the target is hit for the first time. In this case, we must change
Material to TargetRed. Additionally, we will also have to set our Primed Boolean
variable to True. This way, when the target is hit again, the Branch node will route
the behavior to the True execution pin. The False execution sequence of nodes will
look like this:

Figure 6.19 – Changing to a red material when hit for the first time

148 Enhancing Player Abilities

7. Drag the Set Material node you moved aside before to the right of the Branch
node, and then connect the False output execution pin of the Branch node to the
Set Material node's input execution pin.

8. Now, drag the Primed variable from the My Blueprint panel to Event Graph,
and select the SET option. Connect this node to the Set Material node's output
execution pin and click on the checkbox next to Primed within the SET node. This
will ensure that the next time Target is hit, Branch evaluates to True.

We defined the actions of the False path of the Branch node. The next step is to define the
sequence of actions that will be triggered from the True path of the Branch node.

Triggering sound effects, explosions, and destruction
There are three things we wanted to accomplish when destroying a target. These were
hearing an explosion, seeing an explosion, and removing the target object from the game
world. We'll start with the often undervalued, but always critical, element of satisfying
game experiences: sound.

The most basic interaction we can design with sound is to play a .wav sound file at
a location in the game world once, and this will work perfectly for our purpose. Drag
a wire from the True execution node of the Branch node to empty grid space, and search
for the Play Sound at Location node:

Figure 6.20 – Playing an explosion sound

Play Sound at Location is a simple node that takes a Sound file input and a Location
input, and then—as you might have guessed—plays the sound at that location. There are
several sound files included in the Starter Content we brought into this project, and you
can see the list of these by clicking on the drop-down menu underneath the Sound input.
Find and select Explosion01 to set an explosion Sound effect.

Now that we have set Sound, we need to determine where the sound will play. We can use
a process like the one we used to set the FOV by taking the Static Mesh Component of the
Cylinder target, extracting its location value, and then linking that location vector directly
to our Sound node. However, the Event Hit trigger will make this process easier on us.

Adding sound and particle effects 149

One of the many output pins on the Event Hit node is called Hit Location. This pin
contains the location in the space where the two objects evaluated by Event Hit collide
with one another. The location of our projectile hitting the target is a perfectly reasonable
place to generate the explosion effect, so go ahead and drag a wire from Hit Location on
the Event Hit node to the Location input pin on Play Sound at Location.

Figure 6.21 – Using the Hit Location

Compile, save, and play to test the Blueprint. Shooting one of the moving targets once will
cause it to turn red. Every hit after that should produce an explosion sound effect.

Now that we have set up the sound of our explosion, let's add the visual effect and destroy
the Cylinder, following these steps:

1. Drag a wire from the output execution node of Play Sound at Location to empty
grid space. Search for and select the Spawn Emitter at Location node.

Figure 6.22 – Spawning particle effects

150 Enhancing Player Abilities

Important Note
An emitter is an object that will produce particle effects in a particular location.
Particle effects are collections of small objects that combine to create the
visual effect of objects that are fluid, gaseous, or otherwise intangible, such as
waterfall impacts, explosions, or light beams.

The Spawn Emitter at Location node looks similar to the Sound node we are
attaching it to, but with more input parameters and the Auto Destroy toggle.

2. In the drop-down menu beneath Emitter Template, find and select the
P_Explosion effect. This is another asset that came packed with the Starter
Content we pulled into our project and will produce a satisfying-looking explosion
wherever its emitter is attached.

3. Since we want the explosion to be generated in the same location as the sound of the
explosion, we will click and drag the same Hit Location pin of the Event Hit node
over into the Location pin of Spawn Emitter at Location.

The explosion is a 3D effect that looks the same from all angles, so we can leave the
Rotation input alone. The toggle for Auto Destroy determines whether the emitter
can be triggered more than once. We will destroy the Actor that contains this
emitter once this particle effect is created, so we can leave the toggle box checked.

4. Finally, we want to remove the target Cylinder from the game world after the sound
and visual explosion effects are played. Drag the output execution pin from the
Spawn Emitter at Location node and drop it into empty grid space. Search for and
add the DestroyActor node. This node takes only a single Target input with
a default value of self, which is a reference to the current instance.

5. Extend the comment box around the entire Event Hit sequence of nodes and
update the text to describe what the new sequence accomplishes. I chose When
hit, turn red and set to primed. If already primed,
destroy self. The result of this chain of nodes should look like the
following screenshot:

Summary 151

Figure 6.23 – Event Hit actions

Once you have left a useful comment around the Blueprint nodes, compile, save, and click
on Play to test the new interactions. You should see and hear the Cylinders explode once
they have been shot twice by the player's gun.

We saw how to use the Branch node to decide the execution flow based on the Primed
variable that represents the current state of the Cylinder. We also learned how to use
Blueprint nodes to play sound and spawn particle effects.

Summary
We've now started going down the path of making our game feel satisfying to the player.
We have added sound and visual effects, a player character that has most of the capabilities
we would expect from a modern shooter, and targets that react to the player's interactions.
The skills we have covered in the first chapters have been combined to start creating
increasingly complex and interesting behavior.

In this chapter, we created some customized player controls to allow sprinting and
zooming in with our gun. In the process, we explored how the movement controller
translates information from a player's inputs into the game experience. We also opened
the door to creating simple animations using timelines. Then, we added more feedback to
the player's interaction with the environment by attaching an explosion effect and sound
to the enemy targets, as well as adding another requirement for them to be hit by
two projectiles.

In the next chapter, we will explore adding a UI to our game that provides the player with
feedback on their state relative to the world.

152 Enhancing Player Abilities

Quiz
1. Action and Axis mappings are represented by red Event nodes in the Event Graph.

a. True

b. False
2. Set Field Of View is a function of the Character Movement Component.

a. True

b. False
3. A Timeline node can be used to create simple animations.

a. True

b. False
4. You can add Particle Effects in runtime using the Spawn Emitter at Location

function.

a. True

b. False
5. The function named Play Sound plays a sound at a given location.

a. True

b. False

7
Creating Screen

UI Elements
At the core of any gaming experience is the method game designers use to communicate
the goals and rules of the game to the player. One method of doing this, which is common
across all forms of games, is using a Graphical User Interface (GUI) to display and
broadcast important information to the player. In this chapter, we will set up a GUI that
will track the player's health and stamina, and we will set up counters that display the
targets eliminated and the ammo of the player. You will learn how to set up a basic User
Interface (UI) using Unreal's GUI Editor and how to use Blueprints to tie that interface to
gameplay values. We will create UI elements using the Unreal Motion Graphics (UMG)
UI Designer.

In the process, we will cover the following topics:

• Creating simple UI meters with the UMG

• Connecting UI values to player variables

• Tracking the ammo and eliminated targets

By the end of the chapter, you will know how to use the UMG Editor to create progress
bars that display the status of health and stamina and also know how to display the
number of targets eliminated and the ammo of the player.

154 Creating Screen UI Elements

Creating simple UI meters with UMG
In this section, we will learn how to use the UMG Editor to create the UI elements that
we will use in our game and how to position them on the screen.

The UMG Editor is a visual UI authoring tool. We can use the UMG Editor to create
menus and a Heads-Up Display (HUD). A HUD is a transparent display that provides
information without requiring the user to look away from the main view. It was initially
developed for military aviation. The acronym HUD has become common in games
because the information is displayed on the game screen. We want to show meters on the
HUD with the amounts of health and stamina the player currently possesses. These meters
that appear on the HUD are known as UI meters.

The health and stamina UI meters will look like this:

Figure 7.1 – The Health and stamina UI meters

The number of targets eliminated and the ammo of the player will be displayed using text:

Figure 7.2 – Targets eliminated and ammo counters

To create a HUD that will display the UI meters for health and stamina, we will first need
to create variables within the player character that can track these values. We will also
create the variables that will count the targets eliminated and the ammo of the player.

Follow these steps to create the variables:

1. In the Content Browser, access the /Content/FirstPersonBP/Blueprints
folder and double-click on the FirstPersonCharacter Blueprint.

2. Find the Variables category of the My Blueprint panel in the Blueprint Editor. Click
on the + sign to add a variable, name it PlayerHealth, and change Variable Type
to Float.

3. Follow the same steps again to create a second Float variable called
PlayerStamina.

4. Next, create a third variable, but this time, select Integer as Variable Type and
name it PlayerCurrentAmmo.

Creating simple UI meters with UMG 155

5. Finally, create a second Integer variable and name it TargetsEliminated.
The list of variables should look like this:

Figure 7.3 – The FirstPersonCharacter variables

6. Compile the FirstPersonCharacter Blueprint. Select the
PlayerCurrentAmmo variable, and in the Details panel, set DEFAULT VALUE
to 30:

Figure 7.4 – Setting the default value of a variable

7. Set DEFAULT VALUE of PlayerHealth and PlayerStamina to 1.0. This value is
used with the UI meters that will display the degree of fullness between 0.0 and
1.0. DEFAULT VALUE of TargetsEliminated was automatically set to 0.0 when
we compiled and that is the appropriate value, so there is no need to adjust it.

8. Compile, save, and close the Blueprint Editor.

Now, we will learn how to draw shapes that represent UI meters.

156 Creating Screen UI Elements

Drawing shapes with Widget Blueprints
The UMG Editor uses a specialized type of Blueprint called a Widget Blueprint. Since
the First Person template has no UI elements by default, we should create a new folder to
store our GUI work. Follow these steps to create a folder and a Widget Blueprint:

1. In the Content Browser, access the /Content/FirstPersonBP/ folder.
Right-click in an empty space next to the list of folders and select the New Folder
option. Name the folder UI:

Figure 7.5 – Creating the UI folder

2. Open the UI folder you just made, and then right-click in the empty folder space.
Go to User Interface | Widget Blueprint and name the resulting Blueprint HUD:

Figure 7.6 – Creating a Widget Blueprint

3. Double-click on this Blueprint to open the UMG Editor. We will use this tool to
define how our UI is going to look on the screen.

Creating simple UI meters with UMG 157

4. In the UMG Editor, find the panel labeled Palette. Inside it, open the category
named PANEL. You will see a series of containers listed that can organize the
UI information:

Figure 7.7 – The UMG Editor panel widgets

5. Select and drag Horizontal Box out of the Palette panel onto the Hierarchy panel,
releasing it on top of the Canvas Panel object. Click Horizontal Box under the
Canvas Panel to select it. In the Details panel at the right side of the Editor, change
the name of Horizontal Box to Player Stats:

Figure 7.8 – Changing the name of the horizontal box

158 Creating Screen UI Elements

6. You should now see the Player Stats horizontal box nested underneath the Canvas
Panel object in the Hierarchy panel. Our goal is to create two labeled Player Stats
bars using a combination of vertical boxes, text, and progress bars. The setup will
look like this:

Figure 7.9 – The Player Stats hierarchy

7. Two vertical boxes will contain the text and progress bars of health and stamina.
Look again at the Panel category within the Palette panel, then drag the Vertical
Box object onto the Player Stats horizontal box in Hierarchy, and change its name
to Player Stats Texts. Do this a second time so that the two vertical boxes
are aligned underneath Player Stats. Change the name of the second Vertical Box
object to Player Stats Bars.

8. Now, look under the Common category of the Palette panel to find the textboxes
and progress bars we need to create the UI. Drag two Text objects onto Player Stats
Texts and two Progress Bar objects onto Player Stats Bars, as shown in Figure 7.9.
We already have the UI elements that will be used to display Player Stats in our
HUD. The next step is to adjust their appearance and positions on the screen.

Creating simple UI meters with UMG 159

Customizing the meter's appearance
Now, we need to adjust the UI elements and organize them on the screen. The large
rectangular outline in the Graph view represents the boundaries of the screen that the
player will see, which is called the canvas. This is the Canvas Panel object that is at the
top level of Hierarchy. Elements positioned toward the top-left corner of the canvas will
appear at the top-left corner of the in-game screen:

 Figure 7.10 – The canvas panel

160 Creating Screen UI Elements

These are the next steps to set up the health and stamina UI elements:

1. Select Player Stats from Hierarchy and look at the central graph panel. You will see
some size controls that allow you to manipulate the size of the selected objects using
the mouse. We will set the position and size of the Player Stats horizontal box in the
Details panel. Set Position X to 50.0, Position Y to 30.0, Size X to 500.0, and
Size Y to 80.0:

Figure 7.11 – Player Stats' size and position

2. In the Hierarchy panel, select the first progress bar underneath Player Stats Bars.
In the Details panel, change the name to Health Bar. Then, in the Size toggle
under the SLOT category, click on the Fill button to adjust the vertical height of
the bar:

Creating simple UI meters with UMG 161

Figure 7.12 – Setting the size of the Health bar to Fill

3. Find Fill Color and Opacity under the APPEARANCE category, click on the
colored rectangle to open Color Picker, and select any red color:

Figure 7.13 – Setting the color of the Health bar

4. Now, let's repeat the same steps for the player's stamina. In the Hierarchy panel,
click on the second progress bar. In the Details panel, change the name to Stamina
Bar and click on the Fill button. In Fill Color and Opacity, select any green color.

5. In the Hierarchy panel, click on the Player Stats Bars vertical box, and in the
Details panel, click on the Fill button to scale the horizontal size of both the bars.

6. We have our meters looking as we want them to, so now, let's adjust the text labels.
Click on the first text object underneath Player Stats Text in the Hierarchy panel.
In the Details panel, change the name to Health label.

162 Creating Screen UI Elements

7. Click on the Right Align Horizontally button next to Horizontal Alignment
to position the text against the bar. Change the Text field under the CONTENT
category to Health. If you wish to change the font size or style, then you can adjust
it from the Font drop-down menu and fields underneath the APPEARANCE
category:

Figure 7.14 – Setting the color of the Health bar

8. Let's repeat the same steps for the stamina label. In the Hierarchy panel, click on
the second text object.

9. In the Details panel, change the name to Stamina label and click on the Right
Align Horizontally button next to Horizontal Alignment. Change the Text field of
this one to Stamina and adjust the font size and style if you want.

The final bit of adjustment to make is to anchor the UI meters to a side of the
screen. Since screen sizes and ratios can vary, we want to ensure that our UI
elements remain in the same relative position on the screen. Anchors are used to
define a widget's desired position on a canvas, regardless of the screen size.

Creating simple UI meters with UMG 163

10. To establish an anchor for our meters, select the Player Stats top-level object, and
in the Details panel, click on the Anchors dropdown. Select the first option that
appears, which shows a gray rectangle at the top-left corner of the screen:

Figure 7.15 – Setting the anchor of Player Stats

This will anchor our meters at the top-left corner, ensuring that they will always appear in
that corner regardless of the resolution or ratio.

For now, you can experiment with the progress bars by changing the Percent property in
the PROGRESS category. The range of Percent values is 0.0 (empty) to 1.0 (full):

Figure 7.16 – Percent determines the fill position of the progress bar

164 Creating Screen UI Elements

The following screenshot shows the progress bars with Percent set to 1.0:

Figure 7.17 – The final appearance of the progress bars

That concludes the customization of the health and stamina UI elements. The next step is
to create some UI text elements to display the ammo and targets eliminated counters.

Creating ammo and targets eliminated counters
The ammo and targets eliminated counter displays will work in a similar way to our player
statistics meters, except that we want to represent their values through text rather than
a continuous meter. The hierarchy of the new UI elements will look like this:

Figure 7.18 – The Weapon Stats and Goal Tracker hierarchy

Player Stats has been minimized, so we can focus on the Weapon Stats and Goal
Tracker elements.

Follow these steps to create these UI elements:

1. Select and drag Horizontal Box out of the Palette panel onto the Hierarchy panel,
releasing it on top of the Canvas Panel object. In the Details panel, change the
name of Horizontal Box to Weapon Stats.

Creating simple UI meters with UMG 165

2. We will place the Weapon Stats horizontal box at the top-right corner of the screen.
In the Details panel, click on the Anchors dropdown and select the third option.
Set Position X to -200.0, Position Y to 30.0, Size X to 160.0, and Size Y to
40.0:

Figure 7.19 – Weapon Stats' size and position

3. Drag a Text object onto Weapon Stats. In the Details panel, change the name to
Ammo label. Change the Text field under the CONTENT category to Ammo:
(including the colon).

4. Drag another Text object onto Weapon Stats. In the Details panel, change the name
to Ammo left. The value of this element is going to change as ammo is used, but
we can give it a default value to visualize on the UMG Editor. Since we have set the
default of our ammo variable on the player Blueprint as 30, go ahead and change
the Text value of Ammo left to 30 as well.

166 Creating Screen UI Elements

5. Select Weapon Stats in the Hierarchy panel. The icon that looks like a flower is the
Anchor Medallion, which represents the anchor position of the selected element on
the canvas panel:

Figure 7.20 – Weapon Stats' Anchor Medallion

6. We will repeat these steps for the goal tracker. Select and drag Horizontal Box out
of the Palette panel onto the Hierarchy panel, releasing it on top of the Canvas
Panel object. In the Details panel, change the name of Horizontal Box to Goal
Tracker.

7. We will place the Goal Tracker horizontal box at the top-center of the screen. In
the Details panel, click on the Anchors dropdown and select the second option.
Set Position X to -100.0 and Position Y to 50.0. Check the Size To Content
property so that we don't need to change the values of Size X and Size Y. The size of
this horizontal box will automatically adjust based on the size of its child elements:

Figure 7.21 – Goal Tracker uses the Size To Content property

Creating simple UI meters with UMG 167

8. Drag a Text object onto Goal Tracker. In the Details panel, change the name
to Targets label. Change the Text field under the CONTENT category to
Targets Eliminated: (including the colon).

9. We will increase the font size used by the Text objects of Goal Tracker to stand
out on screen. In the APPEARANCE category, change the Font size to 32:

Figure 7.22 – Changing the font size

10. Drag another Text object onto Goal Tracker. In the Details panel, change the name
to Target count. Change the Text field under the CONTENT category to 0 and
set the Font size to 32. Goal Tracker will look like this:

Figure 7.23 – Goal Tracker anchored at the top-center

11. Compile, save, and close the HUD Widget Blueprint.

With the UI elements aligned the way we want, we now need to ensure that the game
will actually know how to display the HUD. To do this, we need to revisit the Character
Blueprint.

168 Creating Screen UI Elements

Displaying the HUD
To display the HUD in the game, follow these steps:

1. In the Content Browser, access the /Content/FirstPersonBP/Blueprints
folder and double-click on the FirstPersonCharacter Blueprint.

2. We will modify Event BeginPlay. There is an easy way to find an event in the
EventGraph. Find the Graphs category of the My Blueprint panel and double-click
on Event BeginPlay. The Editor will move to the position in the EventGraph where
Event BeginPlay is already placed:

Figure 7.24 – The events of FirstPersonCharacter

3. Delete the previous nodes that were connected to Event BeginPlay because
they deal with the case of playing the game in VR, and we will not use VR in this
example game.

Creating simple UI meters with UMG 169

Important Information
In most cases, Event BeginPlay will call the subsequent Actions as soon as
the game is started. If the Blueprint instance isn't present when the game
starts, then instead, it will trigger as soon as the instance is spawned. Since the
FirstPersonCharacter player instance is present as soon as
the game begins, attaching the displaying logic to this event will create the
HUD immediately.

4. Drag a wire from the output execution pin of Event BeginPlay and add a Create
Widget node. Within the node, you will see a drop-down menu labeled Class. This
is our opportunity to use the Widget Blueprint we created. Recall that we named
our Widget Blueprint HUD. If you click the drop-down menu, then you will see
the HUD option. Select it to have the player Character Blueprint generate the UI
elements you created. The following screenshot shows the Create HUD Widget
node associated with our HUD Widget Blueprint:

Figure 7.25 – Creating an instance based on the HUD Widget Blueprint

5. Although we now have a Widget generated when the game starts, there is a final
step required to get the Widget containing our UI elements to appear on the
screen. Drag the Return Value output pin into empty grid space and add an Add to
Viewport node.

170 Creating Screen UI Elements

6. Create a comment around the three nodes. Label the comment Draw HUD on
Screen. The nodes should appear as follows:

Figure 7.26 – The Add to Viewport node shows the Widget Blueprint on screen

7. Now, compile, save, and click on Play to test the game.

We've learned how to create text elements and progress bars in the UMG Editor.
We've also learned how to use containers, such as horizontal and vertical boxes,
to organize UI elements on screen.

When playing the game, you should see the two meters representing the player's health
and stamina, as well as numerical counters for ammo and eliminated targets. But as
you shoot from your gun, you may notice one very important problem – none of the UI
values change! We will address this missing component in the next section.

Connecting UI values to player variables
To allow our UI elements to pull data from our player variables, we need to revisit the
HUD Widget Blueprint. To get our UI to update with player data, we will create
a binding. Bindings give us the ability to tie variables or functions of a Blueprint to
a Widget. Whenever the variable or function is updated, that change is reflected in the
Widget automatically.

So, instead of manually updating both the player's health stats and our Widget every time
the player takes damage (so that the health meter display changes), we can bind the meter
to the PlayerHealth player variable. Then, only one value will need to be updated.

Connecting UI values to player variables 171

Creating bindings for health and stamina
To create the bindings of the PlayerHealth and PlayerStamina variables with the
progress bars' UI, follow these steps:

1. In the Content Browser, access the /Content/FirstPersonBP/UI folder and
double-click on the HUD Widget Blueprint.

2. In the HUD UMG Editor, find the Hierarchy panel and click on the Health Bar
object nested underneath the Player Stats Bars object.

3. With Health Bar now selected, locate the Percent field in the Progress category
of the Details panel. Click on the Bind button next to Percent and select Create
Binding, as shown in the following screenshot:

Figure 7.27 – Creating binding for the Health bar

4. The UMG Editor will switch from the Designer view to the Graph view. A new
function has been created, allowing us to script a connection between the meter and
the PlayerHealth variable. Right-click on any empty graph space and add a Get
Player Character node.

5. Drag a wire from the Return Value output pin of the new node to empty space and
add the Cast To FirstPersonCharacter node.

6. Break the execution pin connection between the Get Health Bar Percent 0 and
Return Node nodes, and instead, connect Get Health Bar Percent 0 to
our casting node, as shown here:

Figure 7.28 – Getting a reference to the FirstPersonCharacter instance

172 Creating Screen UI Elements

7. Next, drag a wire from the As First Person Character output pin to empty
grid space, and add a Get Player Health node. Finally, connect the Cast To
FirstPersonCharacter node execution pin to Return Node, as shown in the
following screenshot:

Figure 7.29 – The value of the Player Health variable will be used as the percent of Health Bar

8. That's all we need to do to connect Player Health to the Health Bar UI. We need
to follow the same operation for the player's stamina. Click on the button at the
top-right of the screen labeled Designer to return to the Canvas view:

Figure 7.30 – Buttons to change the UMG Editor mode

9. Select Stamina Bar in the Hierarchy panel. By following the steps outlined
previously for Health Bar, create a binding that connects the Player Stamina
variable to the meter:

Figure 7.31 – The value of the Player Stamina variable will be used as the percent of Stamina Bar

10. Compile and save your work.

The next step is to hook up our bindings for the ammo and goal counters.

Connecting UI values to player variables 173

Making text bindings for the ammo and targets
eliminated counters
The ammo and targets eliminated counters will be represented by texts on the HUD.
Follow these steps to bind the counters:

1. Click on the Designer button to return to the canvas interface once more. This
time, we want to select the Ammo left text object in Hierarchy, which can be found
under Weapon Stats.

2. In the Details panel, find the Bind button next to the Text field and create a new
binding, as shown here:

Figure 7.32 – Creating a binding for Ammo left

3. We will follow the same pattern for this binding as we did for health and stamina.
In the Get Ammoleft Text 0 graph view that appears, create a Get Player Character
node, cast it using the Cast To FirstPersonCharacter node, and then drag from the
As First Person Character pin to add a Get Player Current Ammo node.

4. Finally, attach both the cast node and the Player Current Ammo node to Return
Node. You will notice that when you attach the Player Current Ammo output pin
to the Return Value input pin, a new ToText (integer) node will be created and
linked automatically. This is because Unreal Engine knows that for you to display
a numerical value as text on the screen, it first needs to convert the number into
a text format that the Widget knows how to display. The conversion node will be
hooked up already, so there is no need to make further modifications. The following
screenshot shows the nodes that are used in the binding:

Figure 7.33 – The value of the Player Current Ammo variable will be used as the Text of Ammo left

174 Creating Screen UI Elements

5. The final binding to create is for the target count. Return to the Designer view and
select the Target Count object in Hierarchy under Goal Tracker. Click on the
Bind button next to the Text field in the Details panel. By following the preceding
steps, create the Blueprint nodes that grabs the player character, casts it to the Cast
To FirstPersonCharacter node, and connects the Targets Eliminated variable to
the casting and return nodes. As with the ammo count, a ToText (integer) node for
conversion will be automatically generated and connected for you. The result should
look like this:

Figure 7.34 – The value of Targets Eliminated variable will be used as the text of the Target count

We've now successfully bound all our UI elements to player variables. Now is a good
time to compile and save our work. Because of our bindings, the UI will now do its job
of responding to events that occur within our game. However, we still need to create the
events that will trigger changes in the variables we have connected. In the next section,
we will modify the player variables based on Actions that the player takes while playing.

Tracking the ammo and targets eliminated
To get our UI to respond to the player interacting with the environment, we need to
modify the player and target Blueprints. Let's start with the ammo counter to decrease
when the player fires a shot from their gun.

Reducing the ammo counter
We need to modify the player fire logic so that the ammo counter is decreased when the
player fires their gun. Follow these steps:

1. In the Content Browser, access the /Content/FirstPersonBP/Blueprints
folder and double-click on the FirstPersonCharacter Blueprint.

2. Find the large series of Blueprint nodes contained within the Spawn projectile
comment block. We want to ensure that the counter tracking the player's current
ammo count reduces by one each time the player fires a shot. The Blueprint
scripting required to do so looks like this:

Tracking the ammo and targets eliminated 175

Figure 7.35 – Decreasing Player Current Ammo

3. Find the final node in the chain, Play Sound at Location. Drag a wire from the
output execution pin of this node to empty grid space and add a SET Player
Current Ammo node.

4. Drag a wire from the Player Current Ammo input pin to empty space and create
a Subtract node.

5. Drag a wire from the top input pin of the Subtract node and add a GET Player
Current Ammo node.

6. In the bottom field of the Subtract node, enter a value of 1. This sequence translates
to the following: after playing the firing sound, set the player's current ammo count to
the existing ammo count minus one.

7. Compile, save, and press Play to see your ammo counter decrease every time
you fire a shot from your gun. Note that we are not preventing the player from
shooting when they are out of ammo, and the ammo counter will continue to
register negative numbers. We will fix it in Chapter 8, Creating Constraints and
Gameplay Objectives.

Important Note
The SET Player Current Ammo node and the subtract node of the previous
screenshot can be replaced by the Decrement Int node, which subtracts 1
from the input variable and sets a new value in it. There is also the Increment
Int node, which adds 1 to the input variable.

176 Creating Screen UI Elements

Increasing the targets eliminated counter
Now, we want to increase our targets eliminated counter by 1 every time a target Cylinder
is destroyed. These are the steps:

1. In the Content Browser, access the /Content/FirstPersonBP/Blueprints
folder and double-click on the BP_CylinderTarget Blueprint.

2. We will add our new nodes close to the end of Event Hit, after all the nodes except
DestroyActor. There must not be other nodes after a DestroyActor node whose
Target is self because this node removes the current instance from the Level.

3. Break the link between the Spawn Emitter at Location and DestroyActor nodes,
and then move DestroyActor to the right to make room for the new
Blueprint nodes.

4. The goal is to create a series of nodes that will access the Targets Eliminated
variable from the player character and increase it by one, before going on to destroy
the Actor. The result will look like this:

Figure 7.36 – Increasing Targets Eliminated

5. Right-click on any empty graph space and add a Get Player Character node.
6. Drag a wire from the Return Value output pin of the Get Player Character node

and add the Cast To FirstPersonCharacter node.
7. Drag a wire from the As First Person Character pin and add a GET Targets

Eliminated node.
8. Drag a wire from the output of Targets Eliminated and add the Increment Int

node, which will add 1 to the Targets Eliminated variable.
9. Finally, connect the execution pins of the Cast To FirstPersonCharacter,

Increment Int, and DestroyActor nodes, ensuring that DestroyActor is the final
node in the chain.

Summary 177

10. Compile, save, and play the game to see the Targets Eliminated counter on the
screen increase every time you destroy a Cylinder target:

Figure 7.37 – Destroying the Cylinder target to increase the Targets Eliminated counter

Now, the ammo and targets eliminated counters are being modified by events that occur
within our game, and the updated values are displayed immediately in the HUD. The
script to modify the health and stamina meters will be implemented in the next chapters.

Summary
In this chapter, we enhanced the player experience by adding a HUD that tracks the
player's interaction with the environment. In doing so, we developed another conduit
through which we can communicate information to the player of our game. We now have
the skeletal structure of a first-person shooter, including guns that shoot, targets that
explode, and a UI that exposes the state of the world to the player. We have already come
a long way from the initial test scene, which featured minimal player interaction.

178 Creating Screen UI Elements

In the next chapter, we will begin transitioning from building the foundation of our game
structure to constructing the design of our game. The core of any game is made up of the
rules that the player must follow to create a fun experience. While the game, in its current
form, features some basic rules that define how the targets react to being shot, the overall
experience lacks a goal for the player to achieve. We will rectify this by establishing
a win condition for the player, as well as providing additional constraints that make the
experience holistic and consistent.

Quiz
1. What is the name of the specialized type of Blueprint used to create a UI?

a. UMG Blueprint

b. Widget Blueprint
2. The Percent property determines the fill position of a progress bar.

a. True

b. False
3. The X and Y values of an element's position in a canvas are always relative to the

top-left corner of the screen.

a. True

b. False
4. We can bind a property of a Widget to a function to retrieve the updated value

of a variable.

a. True

b. False
5. To create an instance of a Widget Blueprint and show it on the screen, you need to

use the Create Widget and Add to Viewport nodes.

a. True

b. False

8
Creating Constraints

and Gameplay
Objectives

In this chapter, we'll define a ruleset for our game, which will guide the player through
the gameplay experience. We want to give the player the ability to start the game and
immediately identify what they must do to win the game. In its most basic form, a game
could be defined by the win condition and the steps the player can take to reach that win
condition. Ideally, we want to ensure that each step the player takes toward that goal is fun.

We'll begin by applying some constraints to the player to increase the level of difficulty.
A game without a challenge quickly becomes boring, and we want to ensure that every
mechanic in our game provides the player with an interesting choice or challenge. We'll
then set up a goal for the player to achieve, along with the necessary adjustments to our
enemy targets to make that goal challenging to reach.

180 Creating Constraints and Gameplay Objectives

In this process, we'll work to accomplish the following:

• Reducing stamina while the player is sprinting and regenerating it when the player
is not sprinting

• Preventing the player's gun from firing if they run out of ammo

• Creating ammo pickups that allow the player to regain ammo

• Defining a win condition based on the number of targets eliminated

• Creating a menu that allows the player to replay or quit the game upon winning

By the end of the chapter, we will have a game with constraints and goals that make the
gameplay more interesting. We will learn how to create collectible objects and how to
create a menu system.

Constraining player actions
One important consideration to make when adding enhanced capabilities for the player
is the impact that they have on both the challenge and feel of the game experience. Recall
that we added the ability for the player to sprint in Chapter 6, Enhancing Player Abilities,
by holding down the Shift key. As it currently stands, holding down the Shift key while
moving provides a significant increase in the speed at which the player can move. Without
constraints applied to this ability, such as an enforced waiting period between uses, there
would be nothing discouraging the player from always holding down the Shift key as
they move.

This goes against the goal we set out to accomplish by adding a sprint functionality, which
was to provide more options to the player. If an option is so attractive that the player feels
compelled to always utilize it, then it doesn't increase the number of interesting choices
available to the player. From the player's perspective, the result would be the same if
we just increased the base speed of the player to the sprint speed.

We can rectify this, and other issues currently faced by our game prototype, by adding
constraints that limit a player's abilities, to increase decision making.

Constraining player actions 181

Draining and regenerating stamina
To add a constraint to the sprinting ability of the player, we'll need to return to the
player character Blueprint where we originally defined the ability. We need to create
some variables that will keep track of whether the player is sprinting, how much stamina
sprinting should cost, and the stamina recharge rate. We are going to create a custom
event to drain the player's stamina at a consistent rate while they are sprinting and to
recharge the stamina when they are not sprinting. Also, we will create other variables and
macros to organize the script.

These are the variables that we will create:

Figure 8.1 – Variables used in the stamina system

These are the macros that we will create to organize the stamina system:

Figure 8.2 – Macros used in the stamina system

182 Creating Constraints and Gameplay Objectives

Creating the variables
Follow these steps to create the variables needed for the new stamina system:

1. In Content Browser, access the /Content/FirstPersonBP/Blueprints
folder and double-click on the FirstPersonCharacter Blueprint.

2. In the VARIABLES category of the My Blueprint panel, click the + button to add
a variable. In the Details panel, name the variable IsSprinting and change
Variable Type to Boolean:

Figure 8.3 – The IsSprinting Boolean variable

3. Create another variable in the My Blueprint panel. In the Details panel, name the
variable StaminaManagerName and change Variable Type to String. Compile
the Blueprint and set DEFAULT VALUE to ManageStamina. This variable
stores the name of the stamina custom event, and we will use it when starting and
stopping the timer. We are creating this variable to avoid bugs due to spelling errors
that could occur if the name was always typed in manually:

Constraining player actions 183

Figure 8.4 – The StaminaManagerName string variable

4. Now we will start to create the Float variables. In the VARIABLES category of
the My Blueprint panel, click the + button to add a variable. In the Details panel,
name the variable SprintCost and change Variable Type to Float. Compile the
Blueprint and set DEFAULT VALUE to 0.05:

Figure 8.5 – The SprintCost float variable

184 Creating Constraints and Gameplay Objectives

5. Follow the same steps again to create a second Float variable called
StaminaRechargeRate. Compile the Blueprint and set DEFAULT VALUE to
0.01.

6. Create another Float variable called StaminaDrainAndRechargeTime.
Compile the Blueprint and set DEFAULT VALUE to 0.2.

7. Create another Float variable called SprintSpeed. Compile the Blueprint and set
DEFAULT VALUE to 2200.

8. Create another Float variable called WalkSpeed. Compile the Blueprint and
set DEFAULT VALUE to 600. We created the SprintSpeed and WalkSpeed
variables so that we can modify the speed values in one place instead of looking in
the script for the various places where these values are used.

Creating the StopSprinting macro
Now, let's create the first macro. We will start with the simplest of the macros:
StopSprinting.

These are the steps to create the macro:

1. In the My Blueprint panel, click the + button in the MACROS category to create
a macro. Change the name of the macro to StopSprinting:

Figure 8.6 – Creating a macro

2. By default, macros don't have execution pins. We need to add them as parameters.
Use the Details panel of the macro to create an input parameter named In of the
Exec type and an output parameter named Out of the Exec type:

Constraining player actions 185

Figure 8.7 – Adding the execution pins in a macro

3. On the tab created for the StopSprinting macro, add the nodes seen in the
following screenshot. All it does is set Is Sprinting to false and Max Walk Speed
back to the value stored in the Walk Speed variable:

Figure 8.8 – The StopSprinting macro

4. Drag a wire from the In pin of the Inputs node and add a SET Is Sprinting node.
Leave the Is Sprinting input parameter unchecked.

186 Creating Constraints and Gameplay Objectives

5. Click on the Character Movement component in the Components panel and drag
it onto Event Graph:

Figure 8.9 – Drag the Character Movement component to Event Graph

6. Drag a wire from the output pin of the Character Movement node and add the SET
Max Walk Speed node.

7. Drag a wire from the input pin of SET Max Walk Speed and add a GET Walk
Speed node.

8. Connect the white execution pins of the SET Is Sprinting, SET Max Walk Speed,
and Outputs nodes. Compile the Blueprint.

Creating the StartSprinting macro
The StartSprinting macro contains the actions that set up the sprinting.

Follow these steps to create the macro:

1. In the My Blueprint panel, click the + button in the MACROS category. Change the
name of the macro to StartSprinting.

2. In the Details panel of the macro, create an input parameter named In of the Exec
type and an output parameter named Out of the Exec type as shown in Figure 8.7.

Constraining player actions 187

3. On the tab created for the StartSprinting macro, add the nodes seen in the
following screenshot. The first half of the StartSprinting macro is almost the same
as StopSprinting, just with appropriate values. The Branch node checks whether
we already have the Stamina Manager timer going. If we have, the macro is done
and we can exit. If the timer does not exist yet, we set it:

Figure 8.10 – The StartSprinting macro

4. Drag a wire from the In pin of the Inputs node and add a SET Is Sprinting node.
Check the Is Sprinting input parameter.

5. Click on the Character Movement component in the Components panel and drag
it onto Event Graph.

6. Drag a wire from the output pin of the Character Movement node and add the SET
Max Walk Speed node.

7. Drag a wire from the input pin of the SET Max Walk Speed node and add a GET
Sprint Speed node.

8. Connect the white execution pins of the SET Is Sprinting and SET Max Walk
Speed nodes.

9. Drag a wire from the white output pin of the SET Max Walk Speed node and add
a Branch node.

10. Drag a wire from the True output pin of the Branch node and connect it to the
Out pin of the Outputs node.

11. Drag a wire from the Condition input pin of the Branch node and add a Does
Timer Exist by Function Name node.

188 Creating Constraints and Gameplay Objectives

12. Drag a wire from the Function Name pin of the Does Timer Exist by Function
Name node and add a GET Stamina Manager Name node.

13. Drag a wire from the False output pin of the Branch node and add a Set Timer by
Function Name node. Connect the white output pin of the Set Timer by Function
Name node to the Out pin of the Outputs node.

14. Drag a wire from GET Stamina Manager Name and connect it to the Function
Name pin of the Set Timer by Function Name node.

15. Drag a wire from the Time pin of the Set Timer by Function Name node and add
a GET Stamina Drain and Recharge Time node.

16. Check the Looping input parameter of the Set Timer by Function Name node.
Since the value of the Stamina Drain and Recharge Time variable is 0.2, this
timer will call the function/event five times a second. Compile the Blueprint.

Creating the ManageStaminaDrain macro
The ManageStaminaDrain macro drains Player Stamina and checks for conditions
that stop the sprinting.

These are the steps to create the macro:

1. In the My Blueprint panel, click the + button in the MACROS category to create
another macro. Change the name of the macro to ManageStaminaDrain.

2. In the Details panel of the macro, create an input parameter named In of the Exec
type and an output parameter named Out of the Exec type as shown in Figure 8.7.

3. On the tab created for the ManageStaminaDrain macro, add the nodes seen in
the following screenshot. There are two conditions for the player to keep sprinting
and draining stamina: the player needs to be moving and Player Stamina must be
greater than zero.

Constraining player actions 189

Figure 8.11 – The ManageStaminaDrain macro

4. Drag a wire from the In pin of the Inputs node and add a Branch node.
5. Drag a wire from the Condition input pin of the Branch node and add an AND

Boolean node.
6. Drag a wire from the top input pin of the AND node and add a Greater node.
7. Right-click on the empty space of Event Graph and add a Get Velocity node.
8. Drag a wire from the Return Value pin of the Get Velocity node and add

a VectorLengthSquared node. If the return value of the VectorLengthSquared
node is greater than zero, then the player is moving. As in our case, we only want to
know if the velocity is greater than zero, we use VectorLengthSquared instead of
VectorLength to avoid a square root.

190 Creating Constraints and Gameplay Objectives

9. Drag a wire from the Return Value pin of the VectorLengthSquared node and
connect it to the top input pin of the Greater node.

10. Drag a wire from the bottom input pin of the AND node and add a Greater node.
11. Drag a wire from the top input pin of the Greater node and add a GET Player

Stamina node.
12. Drag a wire from the True output pin of the Branch node and add a SET Player

Stamina node. Connect the white output pin of the SET Player Stamina node to
the Out pin of the Outputs node.

13. Drag a wire from the input pin of SET Player Stamina and add a Max (float) node.
This node returns the highest value of the input parameters. We use this node to
ensure that Player Stamina will never be less than 0.0.

14. Drag a wire from the top input pin of the Max (float) node and create a Subtract
node.

15. Drag a wire from the top input pin of the Subtract node and add a GET Player
Stamina node.

16. Drag a wire from the bottom input pin of the Subtract node and add a GET Sprint
Cost node.

17. Drag a wire from the False output pin of the Branch node and add the Stop
Sprinting macro node. Connect the white output pin of the Stop Sprinting node to
the Out pin of the Outputs node.

Creating the ManageStaminaRecharge macro
The ManageStaminaRecharge macro recharges Player Stamina until it is full.

Follow these steps to create the macro:

1. In the My Blueprint panel, click the + button in the MACROS category to create
another macro. Change the name of the macro to ManageStaminaRecharge.

2. In the Details panel of the macro, create an input parameter named In of the Exec
type and an output parameter named Out of the Exec type as shown in Figure 8.7.

3. On the tab created for the ManageStaminaRecharge macro, add the nodes seen in
the following screenshot. If Player Stamina is full (nearly equal to 1.0), we clear
the timer for Stamina Manager. If Player Stamina isn't full, we increment it.

Constraining player actions 191

Figure 8.12 – The ManageStaminaRecharge macro

4. Drag a wire from the In pin of the Inputs node and add a Branch node.
5. Drag a wire from the Condition input pin of the Branch node and add a Nearly

Equal (float) node. Enter the value 1.0 in the B input parameter of the Nearly
Equal (float) node. We are using the Nearly Equal (float) node because it has an
Error Tolerance property that is needed to compare values with floating-point
precision.

6. Drag a wire from the A input parameter of the Nearly Equal (float) node and add
a GET Player Stamina node.

7. Drag a wire from the True output pin of the Branch node and add a Clear Timer
by Function Name node.

8. Drag a wire from the Function Name parameter of Clear Timer by Function
Name and add a GET Stamina Manager Name node.

9. Connect the white output pin of Clear Timer by Function Name to the Out pin of
the Outputs node.

10. Drag a wire from the False output pin of the Branch node and add a SET Player
Stamina node. Connect the white output pin of SET Player Stamina to the Out pin
of the Outputs node.

11. Drag a wire from the input pin of SET Player Stamina and add a Min (float) node.
Enter the value 1.0 in the second input parameter of the Min (float) node. This
node returns the lowest value of the input parameters. We use this node to ensure
that Player Stamina will never be greater than 1.0.

192 Creating Constraints and Gameplay Objectives

12. Drag a wire from the top input pin of the Min (float) node and create an Add node.
13. Drag a wire from the top input pin of the Add node and add a GET Player Stamina

node.
14. Drag a wire from the bottom input pin of the Add node and add a GET Stamina

Recharge Rate node.

Updating the InputAction Sprint event
We need to modify the InputAction Sprint event to use the new stamina system.

Follow these steps:

1. Look in the GRAPHS category of the My Blueprint panel and double-click on
InputAction Sprint. The editor will move to the position in Event Graph where
InputAction Sprint is already placed:

Figure 8.13 – Finding the InputAction Sprint event

2. Delete the previous nodes that were connected to InputAction Sprint. We will add
the nodes seen in the following screenshot. When the Shift key is pressed, the game
checks whether there is enough stamina to begin sprinting, that is, whether the
current PlayerStamina amount is greater than or equal to SprintCost. If the player
has enough stamina to start sprinting, the Start Sprinting macro is called. When
the Shift key is released, the Stop Sprinting macro is called.

Constraining player actions 193

Figure 8.14 – The new version of the InputAction Sprint event

3. Drag a wire from the Pressed output pin of the InputAction Sprint node and add
a Branch node.

4. Drag a wire from the Condition input pin of the Branch node and add an OR
Boolean node.

5. Drag a wire from the top input pin of the OR node and add a Greater node.
We cannot use the Greater Equal node because we need to use the Nearly Equal
(float) node to verify that the two Float variables are equal.

6. Drag a wire from the top input pin of the Greater node and add a GET Player
Stamina node.

7. Drag a wire from the bottom input pin of the Greater node and add a GET Sprint
Cost node.

8. Drag a wire from the bottom input pin of the OR node and add a Nearly Equal
(float) node.

1. Drag a wire from the A input pin of the Nearly Equal (float) node and add a GET
Player Stamina node.

2. Drag a wire from the B input pin of the Nearly Equal (float) node and add a GET
Sprint Cost node.

194 Creating Constraints and Gameplay Objectives

3. Drag a wire from the True output pin of the Branch node and add the Start
Sprinting macro node.

4. Drag a wire from the Released output pin of the InputAction Sprint node and add
the Stop Sprinting macro node.

5. Change the label of the comment box to Inputs to start and stop
sprinting.

Creating the ManageStamina custom event
We will now create the custom ManageStamina event, which checks whether the player
is sprinting and calls the appropriate macro to drain or recharge the stamina.

These are the steps to create the custom event:

1. Right-click on the empty space of Event Graph. Search for custom event and
select Add Custom Event…. Rename the custom event to ManageStamina.

Figure 8.15 – Adding a custom event

2. Add the nodes shown in the following screenshot. This checks whether the player is
sprinting and calls the appropriate macro:

Figure 8.16 – The ManageStamina custom event

Constraining player actions 195

Compile, save, and test the game. As you sprint around the level, you should see your
stamina meter running out if you're holding the left Shift key, and the stamina recharging
when it's not held down and the player is walking or at rest.

We've completed the actions needed to manage stamina and sprinting, and our next step
is to implement a constraint related to the player's ammunition.

Preventing firing actions when out of ammo
For the next constraint that we'll place on the player's abilities, we need to restrict the
player from firing their gun when they reach an ammo count of 0. We will add a Branch
node right after the InputAction Fire event:

Figure 8.17 – Testing whether a player has ammo

To do that, follow these steps:

1. In the GRAPHS category of the My Blueprint panel, double-click on the
InputAction Fire event to move to the position in Event Graph where InputAction
Fire is already placed.

2. Drag from the Pressed pin of InputAction Fire and drop on an empty space to
open Context Menu. Add a Branch node. The Branch node will automatically
connect to InputAction Fire and to the next node in the chain.

3. Drag a wire from the Condition input pin of the Branch node to empty space and
add a Greater node.

196 Creating Constraints and Gameplay Objectives

4. Drag a wire from the top input pin of the Greater node and add a GET Player
Current Ammo node. Leave the bottom input field of the Greater node at its
default value of 0.

Now, compile, save, and test your game. You should find that the gun no longer fires when
the ammo counter reaches 0.

We have completed the player constraints, and now we need a new Blueprint to provide
ammo for the player.

Creating collectible objects
Restricting the player from firing their gun when they run out of ammo forces the player
to be considerate of the accuracy of the shots they attempt within the game. However,
limiting ammo would be unduly punishing without a way of acquiring more. We don't
want ammo to naturally recharge like our stamina meter. Instead, we'll create a collectible
ammo pickup to allow the player to regain ammo by exploring and traversing the level.

To create the BP_AmmoPickup Blueprint, follow these steps:

1. In the Content Browser, access the /Content/FirstPersonBP /Blueprints
folder. Click the Add button and select Blueprint Class.

2. On the next screen, choose Actor as the parent class.
3. Name the Blueprint BP_AmmoPickup and double-click it to open the

Blueprint Editor.
4. Click the Add button in the Components panel and choose the Static Mesh

component. In the Details panel, choose the Shape_Pipe Static Mesh and in
MATERIALS, go to Element 0 and choose M_Door. Change the X, Y, and Z values
of the Scale attribute to 0.5, as shown in the following screenshot:

Creating collectible objects 197

Figure 8.18 – Setting up the Static Mesh

5. Change Collision Presets of Static Mesh to OverlapAllDynamic:

Figure 8.19 – Setting Collision Presets

198 Creating Constraints and Gameplay Objectives

Important Note
While prototyping a game, it is most often useful to take advantage of readily
available assets rather than taking the time to create each asset from scratch.
This allows you to focus your time and effort on determining what mechanics
will result in the best play experience rather than spending time creating art
assets that might later be discarded if the mechanic is removed from the design.

6. We will create the AmmoPickupCount variable to store the amount of ammo the
player will receive when collecting an ammo pickup. In the VARIABLES category
of the My Blueprint panel, click on the + button to add a variable. In the Details
panel, name it AmmoPickupCount, change Variable Type to Integer, and check
the Instance Editable property:

Figure 8.20 – The AmmoPickupCount variable

7. Compile the Blueprint, and then set the AmmoPickupCount Default Value to 15.

Creating collectible objects 199

8. We will use Event ActorBeginOverlap of BP_AmmoPickup to check whether
it is the player (FirstPersonCharacter) who is overlapping the instance of BP_
AmmoPickup and to increase the Player Current Ammo value. These are the
nodes that we will use:

Figure 8.21 – Increasing the player's ammo

9. Right-click on the empty space of Event Graph and add Event ActorBeginOverlap.
10. Drag a wire from the Other Actor output pin of the Event ActorBeginOverlap

node and add the Cast To FirstPersonCharacter node.
11. Drag a wire from the As First Person Character pin and add a SET Player Current

Ammo node.
12. Drag another wire from the As First Person Character pin and add a GET Player

Current Ammo node.
13. Drag a wire from the GET Player Current Ammo output pin to empty space and

create an Add node.
14. Drag a wire from the bottom input pin of the Add node and add a GET Ammo

Pickup Count node.

200 Creating Constraints and Gameplay Objectives

15. Connect the output pin of the Add node to the input pin of the SET Player Current
Ammo node.

16. The previous steps complete the nodes shown in Figure 8.21. Next, let's play a sound
and destroy the instance when the collectible is picked up, as shown in the following
screenshot:

Figure 8.22 – Playing a sound and destroying the instance

17. Drag a wire from the white output pin of the SET Player Current Ammo node to
empty space and add a Play Sound at Location node.

18. For our prototype, we will use a sound wave from Engine Content. Click on the
Sound dropdown, then click on the gear icon to access the VIEW options. Check
the Show Engine Content option and select the CompileSucess sound wave from
the list:

Figure 8.23 – Show Engine Content in the asset list

Setting a gameplay win condition 201

19. Drag a wire from the Location input pin to empty space and add
a GetActorLocation node.

20. Drag a wire from the white output pin of the Play Sound at Location node to
empty space and add a DestroyActor node to ensure that each collectible can only
be grabbed once.

21. Compile and save the BP_AmmoPickup Blueprint.
22. Now, return to the level editor and drag the BP_AmmoPickup Blueprint from

the Content Browser into the level to create an instance. Add more instances in
different locations around the Level to seed the area with ammo pickups. Save the
level and click Play to test the game. You should see your ammo counter increase
every time you step onto one of the ammo pickups.

Figure 8.24 – Collect the ammo pickup to increase your ammo counter

We've learned how to create a Blueprint for a pickup that modifies the player's status when
it is collected. One of the final steps we need to carry out to establish a full game loop is to
create a condition for the player to win. We will look at that next.

Setting a gameplay win condition
We will modify our HUD Blueprint and player character Blueprint to account for a target
goal that the player must strive to achieve. We will display the target goal in the HUD next
to the target count, so the player can easily see how many targets need to be destroyed to
reach their goal.

We will also create another Widget Blueprint representing a win menu screen that will
be shown to the player when they reach their goal. Finally, we will implement the logic
needed to check whether the player has won and to show the win menu screen.

202 Creating Constraints and Gameplay Objectives

Displaying a target goal in the HUD
First, we need to create a variable in the FirstPersonCharacter Blueprint that will
establish how many targets we are asking the player to destroy to win the game. Then,
we need to display this information to the player in the HUD Blueprint.

Follow these steps to display the target goal:

1. In the Content Browser, access the /Content/FirstPersonBP/Blueprints
folder and double-click on the FirstPersonCharacter Blueprint.

2. In the VARIABLES category of the My Blueprint panel, click on the + sign to add
a variable, name it TargetGoal, and change Variable Type to Integer.

3. Compile the FirstPersonCharacter Blueprint and set Default Value to
2 for now:

Figure 8.25 – The TargetGoal integer variable

4. Compile, save, and close the Blueprint Editor.
5. In the Content Browser, access the /Content/FirstPersonBP/UI folder and

double-click on the HUD Blueprint to open the UMG editor. We will add two Text
objects to Goal Tracker as shown in the following screenshot:

Setting a gameplay win condition 203

Figure 8.26 – The HUD Goal Tracker with new elements

6. In the Designer view, drag a Text object from the Palette panel onto the Goal
Tracker object in the Hierarchy panel.

7. In the Details panel, change the name to Slash. Change the Text field under the
Content category to / (including the spaces before and after the slash) and set the
font size to 32.

8. Drag another Text object onto Goal Tracker. In the Details panel, change the name
to Target goal. Change the Text field under the Content category to 0 and set
the font size to 32. The new Goal Tracker will look like this:

Figure 8.27 – The Goal Tracker shows the target count and target goal

9. Now we need to bind the Target goal of the HUD to the TargetGoal variable
of the FirstPersonCharacter Blueprint. In the Details panel, find the Bind button
next to the Text field and create a new binding, as shown here:

Figure 8.28 – Creating a binding for Target goal

204 Creating Constraints and Gameplay Objectives

10. We will follow the same pattern for this binding as we did in the other HUD
bindings we created in Chapter 7, Creating Screen UI Elements. Add a Get Player
Character node, cast it using the Cast To FirstPersonCharacter node, and then
drag from the As First Person Character pin to add a Get Target Goal node.
Finally, attach both the Cast To node and the Target Goal node to Return Node:

Figure 8.29 – The value of the Target Goal variable will be shown on the HUD

11. Compile, save, and play the game.

You should see that the target counter increments as targets are destroyed. The Target
Goal shown on the right of the target counter does not change. Now, we need to ensure
that the player gets feedback when they reach their target goal.

Creating a win menu screen
To give the player feedback once they have won the game, we are going to create
a WinMenu screen that will appear upon destroying the required number of targets.
To create this WinMenu, we are going to need another Blueprint widget, like the one
we created for the HU:

1. In the Content Browser, access the /Content/FirstPersonBP/UI folder and
then right-click in the empty folder space. Go to User Interface | Widget Blueprint
and name the resulting Blueprint WinMenu:

Figure 8.30 – Creating a Widget Blueprint

Setting a gameplay win condition 205

2. Double-click on this Blueprint to open the UMG Editor. We are going to set up
three elements for this menu screen. The first will be a simple text object that
broadcasts You Win! to the player. The other two elements will be buttons that
allow the player to restart the game or quit it:

Figure 8.31 – The elements of the WinMenu Widget Blueprint

3. Drag a Text object from the Palette panel onto the CanvasPanel object in the
Hierarchy panel. In the Details panel, change the name to Win msg, click on
the Anchors dropdown, and select the option with the anchor in the center of
the screen:

Figure 8.32 – The anchor of this object is in the center of the screen

206 Creating Constraints and Gameplay Objectives

4. Set Position X to -190.0 and Position Y to -250.0. Check the Size To Content
property, so we don't need to adjust the values of Size X and Size Y:

Figure 8.33 – The position of an object is relative to its anchor

5. Change the Text field under the CONTENT category to You Win!. In the
APPEARANCE category, set the font size to 72, and in Color and Opacity, click
on the colored rectangle to open the color picker and select any green color:

Figure 8.34 – Setting the text, color, and font size

Setting a gameplay win condition 207

6. Drag a Button object from the Palette panel onto the CanvasPanel object in the
Hierarchy panel. In the Details panel, change the name to Btn restart, click
on the Anchors dropdown and select the option with the anchor in the center of
the screen.

7. Set Position X to -180.0, Position Y to -50.0, Size X to 360.0, and Size Y
to 100.0:

Figure 8.35 – Setting the position and size of the button

8. Drag a Text object from the Palette panel onto the Btn restart object in the
Hierarchy panel. In the Details panel, set the name to Txt restart, change the
Text field under the Content category to Restart, and set the font size to 48.

9. Drag another Button object from the Palette panel onto the CanvasPanel object
in the Hierarchy panel. In the Details panel, change the name to Btn quit, click
on the Anchors dropdown and select the option with the anchor in the center of
the screen.

10. Set Position X to -180.0, Position Y to 150.0, Size X to 360.0, and Size Y
to 100.0.

208 Creating Constraints and Gameplay Objectives

11. Drag a Text object from the Palette panel onto the Btn quit object in the Hierarchy
panel. In the Details panel, set the name to Txt quit, change the Text field under
the Content category to Quit, and set the font size to 48.

The WinMenu Widget Blueprint should look like this in the UMG Editor:

Figure 8.36 – The WinMenu elements

12. Now, we need to add actions that will execute when the Restart button is pressed.
Click on the Btn restart object, scroll down to the bottom of the Details panel,
and click on the + button next to the On Clicked event. This will add an event that
triggers when the button is clicked:

Figure 8.37 – Adding a button event

Setting a gameplay win condition 209

13. You will be taken to the Graph view, where an On Clicked (Btnrestart) node will
appear. Drag from the output pin of On Clicked (Btnrestart) onto Graph and add
an Open Level (by Object Reference) node. In the Level parameter, select the level
we are using, which is FirstPersonExampleMap. This node will reload the level
when the player clicks on the button, resetting all aspects of the level, including
targets, ammo collectibles, and the player.

14. Drag from the output pin of Open Level (by Object Reference) onto Graph and
add a Remove from Parent node. This node removes the WinMenu widget from
the view. We want the menu to go away once the level is reset:

Figure 8.38 – The actions of the Restart button

15. We will do similar steps for the Quit button. Return to the Designer view and click
on the Btn quit object, scroll down to the bottom of the Details panel, and click on
the + button next to the On Clicked event to add an event.

16. You will be taken to the Graph view, where an On Clicked (Btnquit) node will
appear. Drag from the output pin of On Clicked (Btnquit) onto Graph and add
a Quit Game node so that the player can shut down the game by clicking the
Quit button:

Figure 8.39 – The action of the Quit button

17. Compile, save, and close the UMG editor.

210 Creating Constraints and Gameplay Objectives

Now that our WinMenu has been created, we need to tell the game when to show it to
the player.

Displaying the WinMenu
As we did with the HUD Widget Blueprint, we will display the WinMenu from within the
FirstPersonCharacter Blueprint. We will create a custom event named End Game that
will be called when the game ends.

Follow these steps:

1. In the Content Browser, access the /Content/FirstPersonBP/Blueprints
folder and double-click on the FirstPersonCharacter Blueprint.

2. Right-click on the Event Graph and add a custom event. Rename it End Game:

Figure 8.40 – Adding a custom event

3. Drag a wire from the output execution pin of End Game, add a Set Game Paused
node, and check the Paused checkbox. This node will pause the game while the
player chooses an option in the WinMenu:

Figure 8.41 – Pausing the game

Setting a gameplay win condition 211

4. Right-click on Event Graph and add a Get Player Controller node. Drag from
the Return Value output pin and add a SET Show Mouse Cursor node. Check the
checkbox next to Show Mouse Cursor and attach this node to the output execution
pin of Set Game Paused. This will enable the player to regain control over the
mouse cursor after the game is paused:

Figure 8.42 – Showing the mouse cursor

5. Drag a wire from the output execution pin of the SET Show Mouse Cursor node
and add a Create Widget node. In the Class parameter, select Win Menu.

6. Drag the Return Value output pin of the Create Widget node and add an Add to
Viewport node:

Figure 8.43 – Creating and displaying the WinMenu

7. Create a comment around the nodes of the End Game event. Label the comment
End Game: Shows Win Menu. Compile and save the Blueprint.

The final step is to determine the conditions that will result in the End Game custom
event being triggered.

212 Creating Constraints and Gameplay Objectives

Triggering a win
We want the End Game event to happen once the player has destroyed enough cylinder
targets to meet the target goal. We will create a custom event named CheckGoal in the
FirstPersonCharacter Blueprint that will be called by BP_CylinderTarget each time
a target is destroyed.

These are the actions of the CheckGoal custom event that we will create:

Figure 8.44 – Checking whether the goal was achieved

To do that, follow these steps:

1. Right-click on the Event Graph of the FirstPersonCharacter Blueprint and add
a custom event. Rename it CheckGoal.

2. Drag a wire from the white output pin of the CheckGoal node to empty grid space
and add a Branch node.

3. Drag a wire from the Condition input pin of the Branch node to empty space and
add a Greater Equal node.

4. Drag a wire from the top input pin of the Greater Equal node and add a GET
Targets Eliminated node.

5. Drag a wire from the bottom input pin of the Greater Equal node and add a GET
Target Goal node.

Setting a gameplay win condition 213

6. Drag a wire from the True output pin of the Branch node and add a Delay node.
Enter 1.0 in the Duration parameter. This node is used to wait 1 second before
showing the WinMenu.

7. Drag a wire from the Completed output pin of the Delay node and add the End
Game node. This node will call the End Game custom event that we created to
show the WinMenu.

8. Compile, save, and close the Blueprint Editor.

Now, we will modify BP_CylinderTarget to call the CheckGoal event each time a target
is destroyed:

1. In the Content Browser, access the /Content/FirstPersonBP/Blueprints
folder and double-click on the BP_CylinderTarget Blueprint.

2. Move Event Graph to the end of the Event Hit actions. Drag the DestroyActor
node to the right to make room for another node.

3. Drag a wire from the As First Person Character output pin of the Cast To node
and add the Check Goal node. Connect the white output pin of the ++ node to the
white input pin of the Check Goal node and connect the output pin of the Check
Goal node to the white input pin of the DestroyActor node:

Figure 8.45 – Calling the Check Goal event

214 Creating Constraints and Gameplay Objectives

4. Compile, save, and play the game. If all Blueprints are set up correctly, then
you should see the game pause and the WinMenu appears as soon as you destroy
a second target. Clicking on the Restart button will reload the level and clicking
Quit will close the session:

Figure 8.46 – Showing the WinMenu in the game

We've created a target goal for the player and created a WinMenu Widget Blueprint that
is displayed when the player achieves the goal. The WinMenu gives feedback and some
options for the player to choose from when they finish the game.

Summary
In this chapter, we have enhanced the play experience by adding constraints to the player's
abilities and established a goal for the player to achieve. In the process, you have learned
how to use timers to repeat actions, how to create collectible objects in the game world,
and how to create a menu system.

This chapter concludes Part 2. The elements that make up the foundation of a video
game experience are present in the game that we've built. If you desire, make a copy of
the project, increase the target goal, and spend some time customizing the level layout to
create a properly challenging game experience that is uniquely yours.

Quiz 215

In Part 3, we'll begin tackling a more advanced subject of Blueprint scripting and game
development: artificial intelligence (AI). We will also add new features to the game and
see how to build and publish the game.

In the next chapter, we will replace our cylinder targets with smart enemies that can patrol
between points and pursue the player around the level.

Quiz
1. You should avoid using macros because they make scripts disorganized.

a. True

b. False
2. You can use timers as an alternative to the Event Tick because you can set a low

repetition rate for actions.

a. True

b. False
3. In our example game, we can define different amounts of ammunition in each

instance of BP_AmmoPickup on a level because the AmmoPickupCount variable
is checked as Instance Editable.

a. True

b. False
4. You can have only one Widget Blueprint added to the Viewport at the same time.

a. True

b. False
5. A Widget Blueprint can have buttons that trigger events when clicked.

a. True

b. False

Part 3:
Enhancing
the Game

In this part, you will learn the basic Artificial Intelligence (AI) techniques required to
create a smart enemy using Behavior Trees and Navigation Meshes. Additionally, new
features will be added to the game in order to make it more interesting. We will also
demonstrate how to build and publish a game.

This part includes the following chapters:

• Chapter 9, Building Smart Enemies with Artificial Intelligence

• Chapter 10, Upgrading the AI Enemies

• Chapter 11, Game States and Applying the Finishing Touches

• Chapter 12, Building and Publishing

9
Building Smart

Enemies with
Artificial Intelligence
In this chapter, we'll add another challenge to our gameplay by making enemies that pose
a threat to our player. To do so, we'll leave behind our target cylinders in favor of enemies
that have AI behavior. We want to set up enemies that have the potential to pose a threat
to the player and can analyze the world around them to make decisions. To accomplish
this, we are going to learn about Unreal Engine's built-in tools for handling AI behavior
and how those tools interact with our Blueprint scripting. In the process, we will cover
these topics:

• Setting up the enemy actor to navigate

• Creating navigation behavior

• Making the AI chase the player

By the end of the chapter, we will be able to create a Behavior Tree that handles enemy
navigation in the level and make them chase the player when they are in their line of sight.

220 Building Smart Enemies with Artificial Intelligence

Setting up the enemy actor to navigate
Until now, our targets have been represented by basic cylinder geometry. This worked well
for prototyping a non-responsive target that is only present as an aiming challenge for
the player. However, an enemy that will move around and present a threat to the player
will need a recognizable appearance that will at least indicate its direction of travel to
the player. Fortunately for us, Epic has created a freely available asset package for Unreal
Engine that we can use to add a humanoid model to our game – one that is suitable for
our new enemy type.

In the following sections, we will learn how to import an asset package from the
Marketplace, expand the play area, use a navigation mesh, and create the AI assets used by
the enemies.

Importing from the Marketplace
First, we'll step out of the Unreal Engine Editor and focus on the Epic Games Launcher.

Follow these steps to import a free asset package from the Marketplace:

1. Open Epic Games Launcher and click on the Unreal Engine section on the left side
of the window.

2. Click on the Marketplace tab at the top and search for animation starter
pack.

3. Click on the Add to Cart button of Animation Starter Pack:

Figure 9.1 – The Unreal Engine Marketplace

Setting up the enemy actor to navigate 221

4. Click on the Shopping Cart icon located at the top right.
5. Click on the Check Out button in the Shopping Cart panel.
6. When the panel closes, click on the image of Animation Starter Pack to open the

asset page.
7. Click on the Add to project button and select the project you have been using

to build your game. A folder called AnimStarterPack will be added to the
Content folder of your project.

Animation Starter Pack has the assets that we need to represent the enemy. Now, we need
more space in the play area for the player and the enemies.

Expanding the play area
To provide an interesting environment for our intelligent enemies to chase the player,
we need to make some changes to the default first-person example map layout. The
existing layout, while being serviceable for shooting targets, is too cramped for a player
to be able to avoid an enemy that is chasing them.

To quickly add a little bit of variety to the gameplay, we will expand the play area to be twice
as wide as it was earlier. We will also create an elevated area that is accessible by ramps to
both the player and the enemies. The following screenshot shows the new level layout:

Figure 9.2 – The new level layout

222 Building Smart Enemies with Artificial Intelligence

Follow these steps to modify the level layout:

1. Open the project in the Unreal Editor.
2. Remove the First Person Template label. Also, remove all the instances of

BP_CylinderTarget from the level. You can select them by clicking on the instances
in the Viewport or finding them in the World Outliner.

3. Click on Floor to select it. Hold the Alt key and click and drag the Y-axis arrow to
make a copy of Floor. Move the Floor copy on the Y axis until the play area is twice
as wide:

Figure 9.3 – Hold the Alt key and click and drag to duplicate the Floor mesh

4. We need to scale up LightmassImportanceVolume and PostProcessVolume to
cover the new play area. These volumes are used for lighting and effects:

Figure 9.4 – These volumes must cover the play area

Setting up the enemy actor to navigate 223

5. In the World Outliner panel, click on LightmassImportanceVolume. Then, in the
Details panel, click on the Lock icon of the Scale property to unlock it and set the
Y-axis (green) value of Scale to 2.0.

6. Next, in the Level Editor, move LightmassImportanceVolume on the Y axis until it
covers the play area:

Figure 9.5 – Increasing the Y scale of LightmassImportanceVolume

7. In the World Outliner panel, click on PostProcessVolume, and then, in the Details
panel, set the Y-axis (green) value of Scale to 44.0. Once that is done, go to the
Level Editor and move PostProcessVolume on the Y axis until it covers the play area:

Figure 9.6 – Increasing the Y scale of PostProcessVolume

8. In the Level Editor, click the wall named Wall3, which is in the middle of the play
area. In the Details panel, set the Y-axis (green) value of Location to 5945.0.

224 Building Smart Enemies with Artificial Intelligence

9. Next, click the wall named Wall1. Hold the Alt key and click and drag the Y arrow
to make a copy of the wall. In the Details panel, set the Y-axis (green) value of
Location to 4000.0.

10. Then, click the wall named Wall2. Hold the Alt key and click and drag the Y arrow to
make a copy of the wall. In the Details panel, set the Y-axis (green) value of Location
to 4000.0. The following screenshot shows how the play area is looking now:

Figure 9.7 – The play area is twice as wide now

11. Click the piece of wall named BigWall2. Hold the Alt key and click and drag the
Y arrow to make a copy of the wall. In the Details panel, set the Y-axis (green) value
of Location to 5295.0:

Figure 9.8 – Copy BigWall2 and move to the right

12. We will transform BigWall2 to create a larger wall in the center of the play area.
Click BigWall2 to select it. In the Details panel, set Location to X = -280, Y =
2000, and Z = 322 and Scale to X = 30, Y = 4, and Z = 3:

Setting up the enemy actor to navigate 225

Figure 9.9 – Modifying the BigWall2 transform

13. Now, we will add a ramp to access an elevated area. In the content browser, access
the Content/StarterContent/Shapes folder. Drag the Shape_Wedge_B
asset and drop it in the level. In the Details panel, set Location to X = -1630,
Y = 2500, and Z = 170, Rotation to X = 0, Y = 0, and Z = 90, and Scale to X = 6,
Y = 3, and Z = 3:

0

Figure 9.10 – Using Shape_Wedge_B to create a ramp

226 Building Smart Enemies with Artificial Intelligence

14. Under MATERIALS, change Element 0 from Shape_Wedge_B to the gray
CubeMaterial material:

Figure 9.11 – Changing the Shape_Wedge_B material

15. We will create another ramp to access the elevated area. Click the Shape_Wedge_B
instance that is in the level. Hold the Alt key and click and drag the X arrow to make
a copy of the ramp. In the Details panel, set Location to X = 1070, Y = 1500, and
Z = 170 and Rotation to X = 0, Y = 0, and Z = -90:

Figure 9.12 – Changing the location and rotation of the second ramp
Our elevated area should look like this:

Setting up the enemy actor to navigate 227

Figure 9.13 – The elevated area can be accessed by ramps

16. Grab some of the white boxes that are on one side of the level and distribute them
on the other side.

17. Add more instances of BP_AmmoPickup on the level.

We have created a level layout with more space for action between the player and enemies.
Now, we will create a NavMesh that is necessary for enemies to move through the level.

Making the level traversable with a NavMesh asset
To create AI behavior that allows our enemies to traverse the level, we need to create a
map of the environment that the AI will know how to read and navigate with. This map is
created with an asset known as a NavMesh, which is an abbreviation for Navigation Mesh.

228 Building Smart Enemies with Artificial Intelligence

Follow these steps to create a NavMesh for our play area:

1. In the Level Editor, click the Create button located on the toolbar. Hover over
Volumes to display a submenu and click on Nav Mesh Bounds Volume:

Figure 9.14 – Adding a NavMesh to the level

2. Now, we need to move and scale up the Nav Mesh Bounds Volume object until the
entire walkable space of our level is contained within it. In the Details panel, set
Location to X = -316, Y = 2116, and Z = 460 and Scale to X = 20, Y = 44, and
Z = 7:

Figure 9.15 – Modifying the NavMesh transform

3. Press the P key on your keyboard to see whether the NavMesh is placed correctly. If
so, you'll see a green mesh on top of your floors, as seen in the following screenshot:

Setting up the enemy actor to navigate 229

Figure 9.16 – Press the P key to toggle the NavMesh visibility on and off

With our play area and NavMesh now set up, we can return our focus to creating the
enemy and its AI.

Creating the AI assets
We need to create assets of four types that will work together to manage the behavior of
our enemy:

• Character: A blueprint class that represents the enemy character in the level.

• AI Controller: A blueprint class that serves as a connection between the character
and the Behavior Tree. It routes the information and actions that are generated
within the Behavior Tree to the character, which will enact those actions.

• Behavior Tree: A Behavior Tree is the source of the decision-making logic that will
instruct our enemy on what conditions should cause it to perform which actions.

• Blackboard: A Blackboard is a container for all the data used in the decision-
making that is shared between the AI controller and the Behavior Tree.

These are the steps to create the four assets:

1. In the content browser, access the /Content/FirstPersonBP/ folder. Right-
click in the empty space next to the list of folders and select the New Folder option.
Name the new folder Enemy.

2. Open the Enemy folder you created, and then right-click in the empty folder space
and select Blueprint Class.

230 Building Smart Enemies with Artificial Intelligence

3. Open the ALL CLASSES group at the bottom of the popup and type ASP_ into
the search bar. Select the Ue4ASP_Character class to create a new character
Blueprint. This is the base character class from Animation Starter Pack that we
added to the project at the beginning of the chapter:

Figure 9.17 – Selecting the parent class of the EnemyCharacter Blueprint

4. Rename the Blueprint BP_EnemyCharacter.
5. Now, we will create the AIController child class. Right-click in the empty space of

the Enemy folder and select Blueprint Class.
6. Open the All Classes group at the bottom of the popup and type AIController

into the search bar. Select the AIController class and name the resulting Blueprint
BP_EnemyController.

7. To create the Behavior Tree asset, right-click in the empty space of the Enemy
folder, hover over Artificial Intelligence to display a submenu, and select
Behavior Tree:

Figure 9.18 – Artificial Intelligence assets

Setting up the enemy actor to navigate 231

8. Rename the Behavior Tree asset BT_EnemyBehavior.
9. Finally, to create the Blackboard asset, right-click in the empty space of the

Enemy folder, hover over Artificial Intelligence to display a submenu, and select
Blackboard. Name it BB_EnemyBlackboard.

10. The following screenshot shows the assets of the Enemy folder:

Figure 9.19 – The Enemy folder assets

These are the assets that we will use to implement the AI of the enemy character. Next, we
need to make some modifications to the BP_EnemyCharacter Blueprint.

Setting up the BP_EnemyCharacter Blueprint
As we created BP_EnemyCharacter as a Ue4ASP_Character child class, it inherited
information about the desired mesh, texture, and animations from the character created
for the animation pack we imported. Some of this information we want to keep, such
as the mesh and animations. However, we need to ensure that BP_EnemyCharacter
knows how to be controlled by the right AI Controller. We will also change the material of
BP_EnemyCharacter and hide the capsule component that is being shown in the game.

Note
When you open a Blueprint that does not have any scripts, a simple editor is
displayed to edit the default values only. You need to click on the Open Full
Blueprint Editor link at the top to see the usual layout.

232 Building Smart Enemies with Artificial Intelligence

Follow these steps to make the adjustments:

1. Open the BP_EnemyCharacter Blueprint.
2. Click the Class Defaults button located on the toolbar:

Figure 9.20 – Accessing Class Defaults

3. In the Details panel, find the PAWN category. The last element of this category is
a drop-down list for AI Controller Class. Change the selection of this drop-down
list to our new BP_EnemyController class:

Figure 9.21 – Setting the AI Controller class

4. In the Components panel, click on Mesh (CharacterMesh0) (Inherited). Then,
in the Details panel, find the MATERIALS category and change Element 0 of
MATERIALS to the M_TargetRed material we created:

Figure 9.22 – Changing the mesh material

Creating navigation behavior 233

5. In the Components panel, click on CapsuleComponent (CollisionCylinder)
(Inherited). In the Details panel, change Collision Presets to BlockAllDynamic,
and in the RENDERING category, check the Hidden in Game property:

Figure 9.23 – Hiding CapsuleComponent

6. Compile the blueprint and drag the BP_EnemyCharacter blueprint onto the
level to create an instance of the enemy in our play area.

In this section, we learned how to import assets from the Marketplace. We expanded the
level and made it traversable using a NavMesh. We created the AI assets, and now we are
ready to implement the navigation behavior of the enemy.

Creating navigation behavior
The first goal for our enemy will be to get it to navigate between points that we create on
the map. To accomplish this, we'll need to create points on the map that the enemy will
navigate to, and then we need to set up the behavior that will cause the enemy to move to
each of the points in a cycle.

Setting up patrol points
Let's start by creating the path we want the AI to patrol. We will use a Sphere Trigger to
represent a patrol point, since it generates overlap events and is hidden in the game. We
need at least two patrol points on the level, since each instance of BP_EnemyCharacter
can navigate between two patrol points.

234 Building Smart Enemies with Artificial Intelligence

Follow these steps to create the patrol points:

1. In the Level Editor, click the Create button located on the toolbar, and then click on
Sphere Trigger. Place the Sphere Trigger anywhere on the floor:

Figure 9.24 – Creating a Sphere Trigger

2. In the Details panel, rename the Sphere Trigger PatrolPoint1.
3. Create another Sphere Trigger and name it PatrolPoint2. Place it far away from

the first patrol point so that movement between the two points is noticeable.

With our patrol points established, we can move on to building the intelligence of
our enemy.

Creating the Blackboard keys
A Blackboard stores information using keys and values. BB_EnemyBlackboard will
have two keys, one for storing the current patrol point and another to store a reference to
the player character. This information will be referenced by the Behavior Tree.

These are the steps to create the keys:

1. Open BB_EnemyBlackboard from the content browser.
2. Click on New Key and select Object as Key Type.

Creating navigation behavior 235

3. Name this new key CurrentPatrolPoint.
4. Click on the expansion arrow next to Key Type and change Base Class to Actor

with the dropdown:

Figure 9.25 – Creating the CurrentPatrolPoint key

5. Now, let's create the key for the player character. Click on New Key and select
Object as Key Type.

6. Name this new key PlayerCharacter. Click on the expansion arrow next to
Key Type and change Base Class to Character:

Figure 9.26 – Creating the PlayerCharacter key

236 Building Smart Enemies with Artificial Intelligence

Now, we need to set the value of the CurrentPatrolPoint key within Blackboard to
the actual patrol point in the level. We can do this from the BP_EnemyCharacter
Blueprint.

Creating the variables in BP_EnemyCharacter
We will create variables in BP_EnemyCharacter to store the patrol points and the key
names of the Blackboard.

Follow these steps to create the variables:

1. Open the BP_EnemyCharacter Blueprint.
2. In the Variables category of the My Blueprint panel, click the + button to add

a variable and name it PatrolPoint1.
3. In the Details panel, click the Variable Type drop-down menu and search for

Actor. Hover over Actor to display a submenu, and then choose Object Reference.
Check the Instance Editable attribute:

Figure 9.27 – Creating a variable that references an Actor instance

4. Follow the same steps to create a second Actor variable called PatrolPoint2.
5. Create another Actor variable called CurrentPatrolPoint. This time, leave the

Instance Editable attribute unchecked.
6. These are the variables we created. The open eye icon means that the variable is

Instance Editable, so the references of PatrolPoint1 and PatrolPoint2 variables
will be set in the Level Editor:

Creating navigation behavior 237

Figure 9.28 – The patrol point variables

7. Create another variable in the My Blueprint panel. In the Details panel, name the
variable PatrolPointKeyName and change Variable Type to Name. Compile the
Blueprint and set DEFAULT VALUE to CurrentPatrolPoint:

Figure 9.29 – This variable stores a Blackboard key name

Now, we can update the values on BB_EnemyBlackboard using these variables.

Updating the current patrol point key
We will create a macro to update the CurrentPatrolPoint key of BB_EnemyBlackboard
because it will be used in multiple places.

238 Building Smart Enemies with Artificial Intelligence

These are the steps to create the macro:

1. In the My Blueprint panel, click the + button in the MACROS category to create
a macro. Change the name of the macro to UpdatePatrolPointBB:

Figure 9.30 – Creating a macro

2. In the Details panel of the macro, create an input parameter named In and an
output parameter named Out both of the Exec type:

Figure 9.31 – Adding the execution pins in a macro

3. On the tab created for the UpdatePatrolPointBB macro, add the nodes seen in the
following screenshot:

Creating navigation behavior 239

Figure 9.32 – The UpdatePatrolPointBB macro

4. Right-click on the graph and add a Get Blackboard node. This is a utility function
that searches for the Blackboard being used by the AI controller.

5. Drag a wire from the Return Value pin of Get Blackboard and add a Set Value as
Object node.

6. Drag a wire from the Key Name pin of the Set Value as Object node and add
a GET Patrol Point Key Name node.

7. Drag a wire from the Object Value pin of the Set Value as Object node and add
a GET Current Patrol Point node.

8. Connect the white execution pins of the Inputs, Set Value as Object, and Outputs
nodes. Compile the Blueprint.

Next, we need to check when a BP_EnemyCharacter instance overlaps with a patrol
point to update the CurrentPatrolPoint key of BB_EnemyBlackboard.

Overlapping a patrol point
We will use Event ActorBeginOverlap to verify when an instance of BP_
EnemyCharacter reaches one of its two patrol points, and then we swap the patrol
point that the instance is moving toward. Every time we update the CurrentPatrolPoint
variable, we need to call the UpdatePatrolPointBB macro.

In Event BeginPlay, we will set an initial patrol point to CurrentPatrolPoint and call the
UpdatePatrolPointBB macro.

Follow these steps to create the events:

1. In the EventGraph of BP_EnemyCharacter, drag a wire from the white execution
pin of Event BeginPlay and add a SET Current Patrol Point node.

2. Drag a wire from the input pin of SET Current Patrol Point and add a GET Patrol
Point 1 node.

240 Building Smart Enemies with Artificial Intelligence

3. Drag a wire from the white output pin of the SET Current Patrol Point node and
add the UpdatePatrolPointBB macro node:

Figure 9.33 – Setting an initial patrol point

4. Now, let's create the Event ActorBeginOverlap event, which swaps the patrol
points. The event first checks whether the enemy overlaps with Patrol Point 1. If it
is true, then the event sets Patrol Point 2 as Current Patrol Point. If it is false,
then the event checks whether the enemy overlaps with Patrol Point 2. In this case,
the event sets Patrol Point 1 as Current Patrol Point:

Figure 9.34 – Swapping the patrol points

5. The nodes of steps 5–8 are to check whether the enemy overlaps with Patrol Point
1. Drag a wire from the white execution pin of the Event ActorBeginOverlap node
and add a Branch node.

6. Drag a wire from the Condition input pin of the Branch node and add an Equal
node.

7. Drag a wire from the top input pin of the Equal node and add a GET Patrol Point 1
node.

8. Connect the bottom input pin of the Equal node to the Other Actor output pin of
the Event ActorBeginOverlap node.

Creating navigation behavior 241

9. The nodes of steps 9–11 set Patrol Point 2 as Current Patrol Point. Drag a wire from
the True output pin of the Branch node and add a SET Current Patrol Point node.

10. Drag a wire from the input pin of the SET Current Patrol Point node and add a
GET Patrol Point 2 node.

11. Drag a wire from the white output pin of the SET Current Patrol Point node and
add the UpdatePatrolPointBB macro node.

12. The nodes of steps 12–15 are to check whether the enemy overlaps with Patrol
Point 2. Drag a wire from the False output pin of the Branch node and add another
Branch node.

13. Drag a wire from the Condition input pin of the second Branch node and add an
Equal node.

14. Connect the top input pin of the Equal node to the Other Actor output pin of the
Event ActorBeginOverlap node.

15. Drag a wire from the bottom input pin of the Equal node and add a GET Patrol
Point 2 node.

16. The nodes of steps 16–18 set Patrol Point 1 as Current Patrol Point. Drag a wire
from the True output pin of the second Branch node and add a SET Current Patrol
Point node.

17. Drag a wire from the input pin of the new SET Current Patrol Point node and add
a GET Patrol Point 1 node.

18. Connect the white output pin of the SET Current Patrol Point node to the input
pin of the UpdatePatrolPointBB node.

19. Compile and save the Blueprint.

These are the actions needed in the BP_EnemyCharacter Blueprint to handle the patrol
points. The next step is to modify the BP_EnemyController Blueprint to run the
Behavior Tree.

Running the Behavior Tree in the AI Controller
The AIController class has a function named Run Behavior Tree. It receives
a Behavior Tree asset as a parameter. We created the BP_EnemyController Blueprint
using AIController as the parent class to run our BT_EnemyBehavior Behavior Tree.

These are the steps to run the Behavior Tree:

1. Open the BP_EnemyController Blueprint.
2. In the EventGraph, drag a wire from the white execution pin of Event BeginPlay

and add a Run Behavior Tree node.

242 Building Smart Enemies with Artificial Intelligence

3. Set the BTAsset input parameter to BT_EnemyBehavior:

Figure 9.35 – Running the Behavior Tree

4. Compile and save the Blueprint.

We have completed the necessary actions in the Blueprints to navigate the patrol points.
We can now move on to the heart of the AI – the Behavior Tree.

Teaching our AI to walk with the Behavior Tree
Behavior Tree is a tool used to model the behavior of characters. It has control flow nodes
and task nodes.

The two primary control flow nodes you will utilize are Selector and Sequence. A
Selector node runs each of the nodes connected underneath it – called its children – from
left to right, but it succeeds and stops running as soon as one child successfully runs. Thus,
if a Selector node has three children, then the only way the third child node will run is
if the first two children failed to execute because the conditions attached to them were
false. A Sequence node is just the opposite. It also runs all the children in a sequence
from left to right, but the Sequence node only succeeds if all the children succeed.
The first child to fail causes the whole sequence to fail, ending the execution and aborting
the sequence.

Follow these steps to create our first Behavior Tree:

1. In the content browser, double-click the BT_EnemyBehavior asset to open the
Behavior Tree Editor.

2. In the Details panel, click the BEHAVIORTREE category and select
BB_EnemyBlackboard as Blackboard Asset. The KEYS dropdown of BB_
EnemyBlackboard will appear in the Blackboard panel at the bottom:

Creating navigation behavior 243

Figure 9.36 – Selecting the Blackboard asset used by the Behavior Tree

3. Look at the Behavior Tree graph. The top level of the logic tree will always be
the ROOT node, which simply serves to indicate where the logic flow will start.
The darker line at the bottom of the Behavior Tree nodes is the connection point
between nodes:

Figure 9.37 – The logic flow starts in the ROOT node

244 Building Smart Enemies with Artificial Intelligence

4. Click and drag a wire from the dark area at the bottom of the ROOT node and
drop it onto the empty graph space to open a selection menu popup. Select the
Sequence option:

Figure 9.38 – Adding a Sequence node

5. In the Details panel, change Node Name to Move to Patrol.
6. Drag a wire down from the Move to Patrol node and add a Move To node. This

type of node is a task node, has a purple color, and will always be the bottom-most
node in a Behavior Tree. Therefore, you will notice that there is no attachment point
for additional nodes at the bottom of a task node:

Figure 9.39 – The Move To node is a task node

7. In the Details panel of the Move To task node, change Blackboard Key to
CurrentPatrolPoint. This Blackboard key determines the location that the actor
will be moved to:

Creating navigation behavior 245

Figure 9.40 – This Blackboard key determines the destination

8. Drag a wire down from the Move to Patrol sequence node and add a Wait node.
9. In the Details panel of the Wait node, set Wait Time to 3.0 to add a 3-second

pause between patrols. Set Random Deviation to 1.0 to add a 1-second variation.
This will result in a pause of random length between 2 and 4 seconds:

Figure 9.41 – Adjusting the wait time

10. Save the Behavior Tree. When running the game, the Behavior Tree will execute the
Move To task node until the enemy reaches its destination. When this happens, the
Wait task node will be executed:

Figure 9.42 – Our first Behavior Tree

246 Building Smart Enemies with Artificial Intelligence

Note
Note the small gray circles with numbers inside of them that are positioned
at the upper-right corner of the nodes. These indicate the execution order of
the nodes, which are ordered according to their left-to-right and top-to-down
positions. The first node to be evaluated will be labeled with a 0 badge.

Now, we have everything set up to test the enemy patrol.

Selecting the patrol points in the BP_EnemyCharacter
instance
We created the PatrolPoint1 and PatrolPoint2 variables as Instance Editable in
BP_EnemyCharacter to be able to set them in the Level Editor.

These are the steps to selecting the patrol points:

1. In the Level Editor, select the instance of BP_EnemyCharacter that we placed on
the level.

2. In the Details panel, navigate down to the Default category and set Patrol Point 1
to the PatrolPoint1 instance and Patrol Point 2 to the PatrolPoint2 instance:

Figure 9.43 – Selecting the patrol points

3. Save the level and click the Play button to test.

Making the AI chase the player 247

You should see the red enemy character start navigating to the first of the two patrol
points. When it reaches the first point, it will briefly pause and then start walking to the
second patrol point. This pattern will continue back and forth while the game is running.

Now that we have a patrol behavior established, we will give the enemy the ability to see
the player and pursue them.

Making the AI chase the player
There is a component named PawnSensing that can be used to add vision and hearing
to the enemy. We will use this component and expand our Behavior Tree to make the
enemy pose some threat to the player.

Giving the enemy sight with PawnSensing
To grant the enemy the ability to detect the player, we need to add the PawnSensing
component to BP_EnemyController and store the PlayerCharacter reference in
BB_EnemyBlackboard when the enemy sees the player.

These are the steps to use the PawnSensing component:

1. Open the BP_EnemyController Blueprint.
2. Create a variable in the My Blueprint panel. In the Details panel, name the variable

PlayerKeyName and change Variable Type to Name. Compile the Blueprint and
set Default Value to PlayerCharacter.

3. In the Components panel, click the Add button and search for pawn. Select the
Pawn Sensing component:

Figure 9.44 – Adding the Pawn Sensing component

248 Building Smart Enemies with Artificial Intelligence

4. In the Details panel of the PawnSensing component, look in the Events category
and click the green button of the On See Pawn event to add it to the EventGraph:

Figure 9.45 – Adding the On See Pawn event

5. The On See Pawn event triggers when the enemy sees an instance of the Pawn class
(or its child class, Character) along its line of sight. We need to check whether the
instance seen is the player (the FirstPersonCharacter class). If it is the player, then
we store the instance reference in the Blackboard:

Figure 9.46 – Storing the PlayerCharacter reference in the Blackboard

6. Drag a wire from the Pawn output pin of the On See Pawn event and add a Cast
To FirstPersonCharacter node.

7. Right-click on the graph and add a Get Blackboard node.
8. Drag a wire from the Return Value pin of Get Blackboard and add a Set Value as

Object node.
9. Drag a wire from the Key Name pin of the Set Value as Object node and add

a GET Player Key Name node.
10. Drag a wire from the Object Value pin of the Set Value as Object node and

connect to the As First Person Character output pin.
11. Connect the white execution pins of the Cast To FirstPersonCharacter and Set

Value as Object nodes. Compile the Blueprint.

Making the AI chase the player 249

These are the changes needed in the BP_EnemyController Blueprint to make the
enemy see the player. Now, let's work on our Behavior Tree.

Creating a Behavior Tree Task
We can create new elements to use in our Behavior Tree, such as Task, Decorator, and
Service. These elements are specialized types of Blueprints. We will create a simple Task to
clear a Blackboard key.

Follow these steps to create a Task:

1. In the content browser, double-click the BT_EnemyBehavior asset to open the
Behavior Tree Editor.

2. Click the New Task button on the toolbar:

Figure 9.47 – Creating a Behavior Tree Task

3. If you don't have Tasks in the project, the Blueprint Editor will open with a new
Blueprint, using BTTask_BlueprintBase as the parent class. If you have Tasks,
you need to select the BTTask_BlueprintBase class in the dropdown that appears.

4. The Details panel shows the class defaults. Change the Node Name field to
Clear BB Value:

Figure 9.48 – Setting the node name

250 Building Smart Enemies with Artificial Intelligence

5. In the Variables category of the My Blueprint panel, click the + button to add
a variable. In the Details panel, name the variable Key, change its type to
Blackboard KeySelector, and check the Instance Editable attribute:

Figure 9.49 – Creating the Key variable

6. We will use the Event Receive Execute event that is called when the Task is activated
within the Behavior Tree. We will add the event using the My Blueprint panel to see
the other events available. Hover the mouse on the FUNCTIONS category of the
My Blueprint panel, click the Override dropdown, and select Receive Execute:

Figure 9.50 – Adding Event Receive Execute

7. We will clear the Blackboard value using the Key variable and use the Finish
Execute function to finish the Task:

Figure 9.51 – The Event Receive Execute actions

Making the AI chase the player 251

8. Drag a wire from the white output pin of Event Receive Execute and add a Clear
Blackboard Value node.

9. Drag a wire from the Key input pin of Clear Blackboard Value and add a Get Key
node.

10. Drag a wire from the white output pin of Clear Blackboard Value and add a Finish
Execute node. Check the Success parameter of the Finish Execute node.

11. Compile, save, and close the Blueprint Editor. In the content browser, rename
BTTask BTTask_ClearBBValue.

We will use our new Task to clear the PlayerCharacter reference after an enemy attack to
give the player a chance to run away.

Adding conditions to the Behavior Tree
We will need another Sequence node that will connect to tasks to get the enemy to chase
the player and a Selector node that will run one of the two Sequence nodes. We need to
ensure that the new Tasks only run when the enemy sees the player. To do this, we'll add
a Decorator. A Decorator attaches to the top of a node and provides conditions that must
be met before the Tasks can be performed.

The following screenshot shows the updated version of our Behavior Tree after the changes
in this section. The Tasks of the Attack Player sequence will be added in the next section:

Figure 9.52 – The Attack Player sequence node has a Decorator

252 Building Smart Enemies with Artificial Intelligence

Follow these steps to modify the Behavior Tree:

1. In the content browser, double-click the BT_EnemyBehavior asset to open the
Behavior Tree Editor.

2. Right-click on the middle of the ROOT node and select Break Node Link(s).
3. Drag a wire from the dark area at the bottom of the ROOT node and drop it onto

empty graph space to open a selection menu popup. Choose the Selector option.
4. Drag a wire down from the Selector node and connect it to the Move To Patrol

node.
5. Drag another wire down from the Selector node and add a Sequence node. This

new node must be on the left of the Move To Patrol node because it has priority
over the patrol behavior.

6. In the Details panel, change Node Name to Attack Player.
7. Now, we will use a Decorator to verify whether the enemy sees the player. Right-

click on the Attack Player node, hover over Add Decorator to expand the menu,
and select Blackboard to add the Decorator.

8. Click the Decorator, and in the Details panel, set Observer aborts to Lower
Priority, Blackboard Key to PlayerCharacter, and Node Name to Can see Player?:

Figure 9.53 – The Decorator settings

Making the AI chase the player 253

9. Save the Behavior Tree. The Decorator will only allow the node to run when the
PlayerCharacter key has a reference. It will also abort the Move to Patrol
sequence to execute the Attack Player sequence.

The only parts missing to make the enemy chase the player are the Task nodes of the
Attack Player sequence.

Creating a chasing behavior
To make the enemy chase the player, we will use the Move To Task node using the
PlayerCharacter reference as the destination. We will create a pause between the
attacks using the Wait node and use our BTTask_ClearBBValue Task to clear the
PlayerCharacter reference:

Figure 9.54 – The Task nodes of the Attack Player sequence

In the next chapter, we will make the enemy damage the player.

Follow these steps to add the Task nodes:

1. Drag a wire from the Attack Player sequence node and add a Move To Task node.
In the Details panel, change Blackboard Key to PlayerCharacter.

2. Drag a wire from the Attack Player sequence node and add a Wait Task node.
In the Details panel, set Wait Time to 2.0 seconds.

254 Building Smart Enemies with Artificial Intelligence

3. Drag another wire from the Attack Player sequence node and add a BTTask_
ClearBBValue task node. In the Details panel, change Key to PlayerCharacter and
change Node Name to Reset Player seen:

Figure 9.55 – Clearing the PlayerCharacter value in the Blackboard

4. Save the Behavior Tree and close the Behavior Tree Editor. Press the Play button
in the Level Editor to test the enemy behavior.

As you navigate the player character in front of the patrolling enemy, the enemy will
stop its patrol and chase the player. When the enemy reaches the player, it will stop for
2 seconds before returning to its patrol path. If it re-establishes a line of sight with the
player, then it will interrupt its patrol and begin chasing the player again.

Summary
In this chapter, we began the process of changing our simple moving targets into
fleshed-out game enemies that can challenge the player. In the process, you learned the
basics of how AIControllers, Behavior Trees, and Blackboards can be leveraged together to
create an enemy with the ability to sense the world around it and make decisions based on
that information.

As we continue the process of developing our AI to pose a serious challenge to the player,
you can use the skills you have learned to consider other kinds of behaviors you might be
able to give an enemy. Continued exploration of AI mechanics will see you continually
coming back to the core loop of sensing, decision-making, and acting that we began
implementing here.

Quiz 255

In the next chapter, we will extend our AI behavior to create an enemy that can truly
challenge the player. We will add the ability for the enemy to listen for the player and
investigate a sound, as well as giving the enemy an attack ability to damage the player
when they get too close. To balance the game around this new threat, we will also give the
player the ability to fight back against the enemies.

Quiz
1. The Run Behavior Tree function belongs to which class?

a. Actor

b. Pawn

c. AIController

d. PlayerController
2. A Blackboard is a specialized type of Blueprint that can have events and actions.

a. True

b. False
3. The Behavior Tree graph can have control flow nodes and Task nodes.

a. True

b. False
4. Which control flow node succeeds and stops running as soon as one child

successfully runs?

a. Selector

b. Sequence
5. Which element can we add to a node to provide conditions that must be met to

run it?

a. Task

b. Decorator

c. Service

10
Upgrading the

AI Enemies
In this chapter, we will add more functionality to our AI enemies to introduce the
potential for a player to fail and to create greater gameplay diversity. At this point, we are
going to begin settling on the kind of challenge we want to offer the player. We are going
to create zombie-like enemies that will relentlessly pursue the player, creating an
action-focused experience, where the player must try to survive against hordes of enemies.
We will start by giving more capability to the AI, including the ability to deal damage
and use wandering patterns to increase the difficulty of player survival. We will then turn
our attention to the player, giving them the ability to fight back against these dangerous
enemies. Finally, we will complete the balance of our increased difficulty by creating
a system to gradually spawn new enemies in the game world.

In this process, we will cover the following objectives:

• Introducing an enemy melee attack that will damage the player's health

• Giving the AI the ability to hear the player's footsteps and shots

• Having the enemy investigate the last known location of the player based on sound

• Allowing the player to destroy enemies with their gun

• Spawning new enemies in the world

• Setting AI enemies to wander the level randomly

258 Upgrading the AI Enemies

By the end of the chapter, we will have an enemy spawner that will be spawning AI
enemies that attack the player, can hear the player's footsteps and shots, and wander the
level randomly.

Creating an enemy attack
If the enemies we create are going to pose a genuine obstacle to the player achieving the
goals we create for them, then we will first need to give the enemies the ability to damage
the player. In Chapter 9, Building Smart Enemies with Artificial Intelligence, we set up
the basic structure of an enemy attack pattern. It is triggered when the player enters the
enemy's line of sight. We are now going to introduce a damage element to this attack,
ensuring that there is some consequence of the enemy reaching the melee range of
the player.

Making an attack task
We will create an attack task named BTTask_DoAttack that does damage, and we will
extend the Attack Player sequence we created in the enemy Behavior Tree. The task will
have two variables – one to store the target of the damage and one to store the amount of
damage to be applied.

Follow these steps to create the attack task:

1. In the content browser, access the Content/FirstPersonBP/Enemy folder and
double-click on the BT_EnemyBehavior asset to open the Behavior Tree Editor.

2. Click the New Task button on the Toolbar and select the BTTask_BlueprintBase
option from the drop-down menu that appears. The task is created in the same
folder as the Behavior Tree – Content/ FirstPersonBP/Enemy.

3. In the content browser, rename the newly created BTTask_BlueprintBase_New
asset to BTTask_DoAttack. Double-click on BTTask_DoAttack to return to the
Blueprint Editor.

4. The Details panel shows the class defaults. Change the Node Name field to
DoAttack.

5. In the My Blueprint panel, click the + button of the Variables category. In
the Details panel, name the variable TargetActorKey, change its type to
BlackboardKeySelector, and check the Instance Editable attribute:

Creating an enemy attack 259

Figure 10.1 – Creating the TargetActorKey variable

6. Create another variable in My Blueprint panel. In the Details panel, name the
variable Damage, change Variable Type to Float, and check the Instance Editable
attribute. Compile the blueprint and set DEFAULT VALUE to 0.25, which means
an attack will take 25% of the player's health:

Figure 10.2 – The Damage variable has a default value of 0.25

7. Hover the mouse on the Functions category of the My Blueprint panel, click the
Override dropdown, and select Receive Execute to add the event.

8. In Event Receive Execute, we will ensure Target Actor is valid and then apply
damage to it. The event gets the Target Actor reference from the blackboard and
checks whether it is valid before calling the Apply Damage function:

Figure 10.3 – The Event Receive Execute actions

260 Upgrading the AI Enemies

9. The nodes of steps 9–12 are to get the Target Actor reference from the blackboard
and check whether it is valid. Drag a wire from the white pin of Event Receive
Execute and add an Is Valid macro node.

10. Drag the Target Actor Key variable from the My Blueprint panel, drop in
EventGraph, and select Get Target Actor Key.

11. Drag a wire from the Target Actor Key node and add Get Blackboard Value
as Actor.

12. Drag a wire from Return Value of Get Blackboard Value as Actor and connect to
the Input Object pin of the Is Valid node.

13. The nodes of steps 13–15 are to call the Apply Damage function using the Target
Actor reference. Drag another wire from Return Value of Get Blackboard Value
as Actor and add an Apply Damage node. Connect the Is Valid output pin to the
white input pin of the Apply Damage node.

14. Drag a wire from the Base Damage input pin of Apply Damage and add a Get
Damage node.

15. Drag a wire from the white output pin of Apply Damage and add a Finish Execute
node. Check the Success parameter of the Finish Execute node.

16. Compile, save, and close the Blueprint Editor.

Now, we need to add our attack task to the attack sequence in BT_EnemyBehavior.

Using the attack task in the Behavior Tree
The attack of the enemy is a melee attack, so the enemy will only perform the attack after
reaching the player.

Follow these steps to use the DoAttack task:

1. In the Behavior Tree Editor, drag a wire down from the Attack Player sequence
node and add a BTTask_DoAttack task node between the Move To and Wait task
nodes.

2. In the Details panel, change the Target Actor Key selection to PlayerCharacter.
Change Node Name to Damage Player to describe how we are using BTTask_
DoAttack:

Creating an enemy attack 261

Figure 10.4 – The BTTask_DoAttack properties

3. Save the Behavior Tree. The Attack Player sequence should look like this:

Figure 10.5 – The Attack Player sequence with the BTTask_DoAttack node

The Attack Player sequence is complete. Now, we need to update the
FirstPersonCharacter blueprint to decrease the health meter when damage is dealt
out.

Updating the health meter
The health meter bar is linked to the Player Health variable of the
FirstPersonCharacter blueprint. We will use Event AnyDamage to decrease the
value of the Player Health variable.

262 Upgrading the AI Enemies

These are the steps to create Event AnyDamage:

1. In the content browser, access the Content/FirstPersonBP/Blueprints
folder and double-click on the FirstPersonCharacter blueprint.

2. Right-click on the empty space of Event Graph and add the Event AnyDamage
node. We will add these nodes to the Event:

Figure 10.6 – The Event AnyDamage actions

3. Drag a wire from the white output pin of the Event AnyDamage node and add
a SET Player Health node.

4. Drag a wire from the input pin of SET Player Health and add a MAX (float) node.
We use this node to ensure that Player Health will never be less than 0.0.

5. Drag a wire from the top input pin of the Max (float) node and create
a Subtract node.

6. Drag a wire from the top input pin of the Subtract node and add a GET Player
Health node.

7. Drag a wire from the bottom input pin of the Subtract node and connect to the
Damage output pin of Event AnyDamage.

8. Compile, save the blueprint, and press the Play button to test.

Note that the player's health meter depletes when an enemy gets within range of the player
and attacks.

Now that our enemy is attacking the player, we want to give more options on how the
enemy can detect the player.

Making enemies hear and investigate sounds 263

Making enemies hear and investigate sounds
Enemies that can only pursue players who walk directly in front of them can easily be
avoided. To address this, we will take advantage of the PawnSensing component to have
the enemy detect nearby sounds that the player makes. If the player makes a sound within
the detection range of an enemy, then the enemy will walk to the location of that sound
to investigate. If they catch the player in their sight, they will try to attack; otherwise, they
will wait at the location of the sound for a moment before returning to their patrol.

Adding hearing to the Behavior Tree
We will add a sequence of tasks that occur when the enemy hears a sound. We want the
enemy to continue attacking the player once they see them, so investigating a sound has
a lower priority on the Behavior Tree.

To have the enemy investigate the point where it heard a sound, we will need to create two
keys within the blackboard. The HasHeardSound key is of the Boolean type and will
be used to store whether a sound has been heard. The LocationOfSound key is of the
Vector type and will be used to store the location that the sound came from – hence, the
location that the enemy AI should investigate.

Follow these steps to create the blackboard keys and add the Investigate Sound sequence
node to the Behavior Tree:

1. In the content browser, access the Content/FirstPersonBP/Enemy folder and
double-click on the BT_EnemyBehavior asset to open the Behavior Tree Editor.

2. Click the Blackboard tab:

Figure 10.7 – Switching the Behavior Tree Editor to Blackboard mode

3. Click the New Key button and select Bool as the key type. Name this new key
HasHeardSound:

Figure 10.8 – The HasHeardSound Bool key

264 Upgrading the AI Enemies

4. Click the New Key button again and select Vector as key type. Name this new key
LocationOfSound:

Figure 10.9 – The LocationOfSound Vector key

5. Save the blackboard and click the Behavior Tree tab.
6. Move the Attack Player sequence and all its task nodes further to the left in the

Behavior Tree, leaving room between Attack Player and Move to Patrol. This is
where we will add our hearing sequence.

7. Drag a wire down from the Selector node and add a Sequence node. Rename this
node Investigate Sound.

8. Right-click on the Investigate Sound node, hover over Add Decorator to expand
the menu, and select Blackboard to add a decorator.

9. Click on the decorator, and in the Details panel, set Observer aborts to Lower
Priority, Blackboard Key to HasHeardSound, and Node Name to Heard Sound?:

Figure 10.10 – The decorator settings

Making enemies hear and investigate sounds 265

The following screenshot shows the Investigate Sound sequence node with the
decorator. Note that the priority of nodes in a Behavior Tree is left to right:

Figure 10.11 – The Investigate Sound sequence node

We have created the blackboard keys, the sequence node, and the decorator. Our next step
is to create the task nodes of the Investigate Sound sequence.

Setting up the investigating tasks
The Investigate Sound sequence will be like the Attack Player sequence. If an enemy is
patrolling and hears a sound, they will move to the location of the sound:

Figure 10.12 – The task nodes of the Investigate Sound sequence

266 Upgrading the AI Enemies

Follow these steps to add the task nodes:

1. Drag a wire from the Investigate Sound sequence node and add a Move To task
node. In the Details panel, change Blackboard Key to LocationOfSound.

2. Drag a wire from the Investigate Sound sequence node and add a Wait task node.
In the Details panel, set Wait Time to 3.0 seconds.

3. Drag another wire from the Investigate Sound sequence node and add a BTTask_
ClearBBValue task node. In the Details panel, change Key to HasHeardSound and
change Node Name to Reset Heard Sound.

4. Save the Behavior Tree and close the Behavior Tree Editor.

Now, we need to return to the BP_EnemyController blueprint and add some actions
that will instruct our AI how to react to sounds in the game.

Creating variables and a macro to update the
blackboard
We will create variables and a macro in the BP_EnemyController blueprint to update
the keys of the BB_EnemyBlackboard related to sound.

These are the steps:

1. In the content browser, access the Content|FirstPersonBP|Enemy folder and
double-click on the BP_EnemyController blueprint.

2. In the Variables category of the My Blueprint panel, click the + button to add
a variable. In the Details panel, name the variable HearingDistance and
change Variable Type to Float. Compile the blueprint and set DEFAULT VALUE
to 1600.0.

3. Create another variable in the My Blueprint panel. In the Details panel, name the
variable HasHeardSoundKey and change Variable Type to Name. Compile the
blueprint and set DEFAULT VALUE to HasHeardSound.

4. Create another Name variable called LocationOfSoundKey. Compile the
blueprint and set DEFAULT VALUE to LocationOfSound.

5. In the My Blueprint panel, click the + button in the Macros category to create
a macro. Change the name of the macro to UpdateSoundBB.

6. In the Details panel of the macro, create an input parameter named In of the Exec
type, another input parameter named Location of the Vector type, and an output
parameter named Out of the Exec type:

Making enemies hear and investigate sounds 267

Figure 10.13 – Creating the macro parameters

7. The following screenshot shows the nodes we'll be creating in the following steps for
the UpdateSoundBB macro:

Figure 10.14 – The UpdateSoundBB macro

8. The nodes of steps 8–11 are to store the location of sound in the blackboard using
the Location Of Sound Key node. On the tab created for the UpdateSoundBB
macro, right-click on the graph and add a Get Blackboard function node.

9. Drag a wire from the Return Value pin of Get Blackboard and add a Set Value as
Vector node.

10. Drag a wire from the Key Name pin of Set Value as Vector node and add a GET
Location Of Sound Key node.

11. Connect the Location pin of the Inputs node to the Vector Value pin of Set Value
as Vector, and connect the white execution pins of the Inputs and Set Value as
Vector nodes.

12. The nodes of steps 12–14 are to set the True value in the Has Heard Sound Key of
the blackboard. Drag another wire from the Return Value pin of Get Blackboard
and add a Set Value as Bool node. Check the Bool Value parameter.

268 Upgrading the AI Enemies

13. Drag a wire from the Key Name pin of the Set Value as Bool node and add a GET
Has Heard Sound Key node.

14. Connect the white execution pins of the Set Value as Vector, Set Value as Bool, and
Outputs nodes. Close the UpdateSoundBB macro tab and compile the blueprint.

With the UpdateSoundBB macro created, we will use another event of the PawnSensing
component to detect sound.

Interpreting and storing the noise Event data
The PawnSensing component we added to BP_EnemyController gives us the
foundation to build both visual and auditory sensing in our enemy AI. We will use the
On Hear Noise event that activates any time the PawnSensing component detects
a special type of sound broadcast by a pawn noise emitter.

We will have to set up the blueprint so that the enemies only detect noises that are made
a short distance away; otherwise, it would feel unfair for the player to shoot their gun
from the opposite corner of the map and let every enemy instantly know their location.

Follow these steps to create the On Hear Noise event:

1. In the Components panel, select the PawnSensing component. In the Details
panel, look in the Events category and click the green button of the On Hear Noise
event to add it to the Event Graph:

Figure 10.15 – Adding the On Hear Noise event

2. In the On Hear Noise, we call the Update Sound BB macro if the distance between
the sound location and the enemy is less than the value of HearingDistance:

Making enemies hear and investigate sounds 269

Figure 10.16 – The On Hear Noise actions

3. Drag a wire from the white pin of the On Hear Noise (PawnSensing) node and add
a Branch node. The next steps will create an expression that uses the VectorLength
function to calculate the distance between the sound location and the enemy
location. If the result of this expression is less than the value of Hearing Distance,
then the True output pin of the Branch node is executed.

4. Drag a wire from the True pin of the Branch node and add the Update Sound BB
macro node. Connect the Location pin of the On Hear Noise (PawnSensing) node
to the Location pin of the Update Sound BB macro.

5. Drag a wire from the Condition input pin of the Branch node and add a Less node.
6. Drag a wire from the bottom input pin of the Less node and add a GET Hearing

distance node.
7. Right-click on the empty space of Event Graph and add a Get Controlled

Pawn node to get the enemy instance that is being controlled by this
BP_EnemyController.

8. Drag a wire from the Return Value pin of the Get Controlled Pawn node and add
a GetActorLocation node to get the enemy location.

9. Drag a wire from the Location pin of the On Hear Noise (PawnSensing) node and
add a Subtract node.

10. Connect the bottom input pin of the Subtract node to the Return Value pin of the
GetActorLocation node.

11. Drag a wire from the output pin of the Subtract node and add a VectorLength
node.

12. Connect Return Value of the VectorLength node to the top input pin of the Less
node. Return Value of the VectorLength node is the distance between the location
of the sound and the enemy location.

13. Compile and save the blueprint.

270 Upgrading the AI Enemies

Now that we have modified our enemy AI to be able to detect sounds that are broadcast to
the listener, we need to create the nodes in the FirstPersonCharacter blueprint that
will trigger the hearing response and attach them to player actions.

Adding noise to the player's actions
The Pawn Sensing component of EnemyController is only able to detect noise if it is
created from Pawn Noise Emitter. The existing sound effect that we play when the player
fires their gun will not trigger the enemy's Pawn Sensing component. It is important to
know that the nodes that produce noise for pawn sensing have no direct relationship with
the sound a player hears. The noise exists only in terms of producing an event that the AI
can hear and respond to.

The Pawn Noise Emitter component must be added to an actor for the noises it
broadcasts to be detected by a pawn sensor. We will change two player abilities, namely
sprinting and shooting, to produce detectable noise by utilizing this component.

These are the steps to use Pawn Noise Emitter:

1. In the content browser, access the Content > FirstPersonBP >
Blueprints folder and double-click on the FirstPersonCharacter
Blueprint.

2. In the Components panel, click the Add button and search for pawn. Select the
Pawn Noise Emitter component:

Figure 10.17 – Adding the Pawn Noise Emitter component

3. We will begin by adding noise to sprinting. In the My Blueprint panel, double-click
the ManageStaminaDrain macro to open the macro tab. We will add the Make
Noise node after the SET Player Stamina node:

Making enemies hear and investigate sounds 271

Figure 10.18 – Modifying the ManageStaminaDrain macro to make noise

4. Drag the Outputs node to the right to make room for another function node.
5. Drag a wire from the white output pin of the SET Player Stamina node, search for

make noise, and add the Make Noise (PawnNoiseEmitter) function:

Figure 10.19 – Adding the Make Noise function of the PawnNoiseEmitter component

6. Change the Loudness input of the Make Noise node to 1.0.
7. Drag a wire from the Noise Location input of the Make Noise node and add

a GetActorLocation node.

272 Upgrading the AI Enemies

8. The next place we will add the Make Noise node is in the InputAction Fire event,
after reducing the ammunition. You can find the InputAction Fire event in the
Graphs category of the My Blueprint panel:

Figure 10.20 – Modifying the InputAction Fire event to make noise

9. Drag a wire from the white output pin of the SET Player Current Ammo node,
search for make noise, and add the Make Noise (PawnNoiseEmitter) function.

10. Change the Loudness input of the Make Noise node to 1.0.
11. Drag a wire from the Noise Location input of the Make Noise node and add

a GetActorLocation node.
12. Compile, save, and then click on Play to test the game.

While behind an enemy, or otherwise outside their line of sight, sprinting or firing
your gun should result in the enemy approaching the position you were at when you made
the noise. If they establish a line of sight with you during their investigation, then they will
begin heading directly toward you.

With detection possible with both sight and sound, you might now find it difficult to avoid
being spotted by enemies. We will now turn our attention to the other side of gameplay
balancing and equip the player with the means to combat their enemies.

Making the enemies destructible
Recall that in earlier chapters, we created enemy targets that the player could destroy after
a couple of hits with a projectile. We want to give the player a similar ability to mitigate
the threat provided by our new enemies. To do so, we will add blueprint nodes in
BP_EnemyCharacter to handle damage-taking and destruction. The player needs to
hit an enemy character three times to destroy them.

Making the enemies destructible 273

Follow these steps to deal with a hit:

1. In the content browser, access the Content > FirstPersonBP > Enemy
folder and double-click on the BP_EnemyCharacter blueprint.

2. In the Variables category of the My Blueprint panel, click the + button to add
a variable, and name the variable EnemyHealth.

3. In the Details panel, set Variable Type to Integer. Compile the blueprint and set
DEFAULT VALUE to 3:

Figure 10.21 – EnemyHealth starts with 3 points

4. Right-click on the empty space of Event Graph and add an Event Hit node.
The following screenshot shows the first part of the Event Hit actions:

Figure 10.22 – The first part of the Event Hit actions

274 Upgrading the AI Enemies

5. Drag a wire from the Other output pin of the Event Hit node and add a Cast To
FirstPersonProjectile node. Connect the white pins of Event Hit and Cast To
FirstPersonProjectile.

6. Drag a wire from the white output pin of the Cast To FirstPersonProjectile node
and add a Branch node.

7. Drag a wire from the Condition pin of the Branch node and add a Greater node.
8. Drag a wire from the top input pin of Greater node and add a Get Enemy Health

node. Set a value of 1 in the bottom input of the Greater node.
9. Drag a wire from the True output pin of the Branch node and add a Decrement

Int node.
10. Drag a wire from the input pin of the Decrement Int node and add a Get Enemy

Health node.
11. Drag a wire from the False output pin of the Branch node and add a Spawn Actor

from Class node. In the Class parameter, select the Blueprint_Effect_Explosion
class, which is a blueprint from the starter content.

12. Drag a wire from the Spawn Transform parameter and add a GetActorTransform
node.

13. The nodes of the second part of Event Hit are the same used in the
BP_CylinderTarget blueprint:

Figure 10.23 – The second part of the Event Hit actions

14. Open the BP_CylinderTarget blueprint located in the Content >
FirstPersonBP > Blueprints folder.

15. Select and copy the nodes shown in Figure 10.23, and then paste the nodes into the
BP_EnemyCharacter blueprint.

16. Connect the white output pin of the Spawn Actor node to the white input of the
Cast to FirstPersonCharacter node.

17. Compile, save, and then press Play to test.

Spawning more enemies during gameplay 275

From now on, when the player shoots an enemy three times, the enemy will explode and
be destroyed in a similar way to how the cylinder targets behaved.

Now that we can destroy enemies, we need to ramp up the difficulty for the player again
by spawning more enemies.

Spawning more enemies during gameplay
We are going to spawn new enemies in the level periodically so that the game can
continue if the player destroys the first few enemies, and if they are too slow to defeat
enemies, then the difficulty will gradually increase.

Creating the BP_EnemySpawner blueprint
We will create a blueprint that will spawn enemies in random locations in the level. The
time between spawns is determined by a variable called SpawnTime. There is another
variable called MaxEnemies that limits the spawning of enemies.

Follow these steps to create the blueprint:

1. In the content browser, access the Content > FirstPersonBP > Enemy
folder. Click the Add button and choose the Blueprint Class option.

2. On the next screen, choose Actor as the parent class. Name the blueprint
BP_EnemySpawner and double-click it to open the Blueprint Editor.

3. In the Variables category of the My Blueprint panel, click the + button to add
a variable, and name it SpawnTime. In the Details panel, change Variable Type
to Float, and check the Instance Editable attribute. Compile the blueprint and set
DEFAULT VALUE to 10.0:

Figure 10.24 – Creating the SpawnTime float variable

276 Upgrading the AI Enemies

4. Create another variable in the My Blueprint panel and name it MaxEnemies.
In the Details panel, change Variable Type to Integer, and check the Instance
Editable attribute. Compile the blueprint and set DEFAULT VALUE to 5:

Figure 10.25 – Creating the MaxEnemies integer variable

5. In the My Blueprint panel, click the + button in the Macros category to create
a macro. Change the name of the macro to SpawnEnemy.

6. In the Details panel of the macro, create an input parameter named In and an
output parameter named Out both of the Exec type:

7. On the tab created for the SpawnEnemy macro, add these nodes to spawn
a BP_EnemyCharacter instance in a random location in the level:

Figure 10.26 – The SpawnEnemy macro

8. Right-click on the graph and add a Spawn AIFrom Class node. Connect the white
execution pins of the Inputs, Spawn AIFrom Class, and Outputs nodes.

Spawning more enemies during gameplay 277

9. In the Pawn Class parameter, select BP_EnemyCharacter. In the Behavior Tree
parameter, select BT_EnemyBehavior.

10. Drag a wire from the Location parameter and add a GetRandomPointIn
NavigableRadius node. Set Radius to 10000.0. This node returns a random
location based on the navigation mesh.

11. Drag a wire from the Origin parameter and add a GetActorLocation node:

Figure 10.27 – Setting the timer to spawn enemies

12. In the Event Graph of BP_EnemySpawner, drag a wire from the white execution
pin of Event BeginPlay and add a Set Timer by Event node.

13. Check the Looping parameter. Drag a wire from the Time parameter and add a Get
Spawn Time node.

14. Drag a wire from the Event parameter and add a custom event. Name it
TryToSpawnEnemy.

15. Drag a wire from the white pin of TryToSpawnEnemy and add a Get All Actors Of
Class node. In the Actor Class parameter, select BP_EnemyCharacter.

16. Drag a wire from the white output pin of Get All Actors Of Class and add a Branch
node.

17. Drag a wire from the True pin of the Branch node and add the Spawn Enemy
macro node.

18. Drag a wire from the Out Actors pin of Get All Actors Of Class and add a Length
node. The return value of the Length node will be the number of enemies in the level.

278 Upgrading the AI Enemies

19. Drag a wire from the output pin of the Length node and add a Less node. Connect
the output pin of the Less node to the Condition parameter of the Branch node.

20. Drag a wire from the bottom pin of the Less node and add a Get Max Enemies
node.

21. Compile, save, and close the Blueprint Editor. Drag BP_EnemySpawner from
the content browser and drop anywhere on the level to create an instance. Click the
Play button to test your enemy spawning.

You will regularly see new enemies appear as you run the game. Note, however, that the
enemies are not moving once spawned unless they hear or see the player. This is because
they are not being created with an established patrol point to pursue. Rather than adding
patrol points to our spawned enemies, we will add randomness to our enemy navigation
behavior.

Creating enemy wandering behavior
In Chapter 9, Building Smart Enemies with Artificial Intelligence, we set the default
behavior for enemies as a patrolling movement between two points. While this worked
well as a testbed for our hearing and seeing components and would be appropriate for
a stealth-oriented game, we are going to ramp up the challenge and action of this game's
experience by replacing this behavior with random wandering. This will make avoiding
enemies significantly harder, encouraging more direct confrontations. To do this, we are
going to return to the BT_EnemyBehavior Behavior Tree.

Identifying a wander point with a custom task
We need to create a key in BB_EnemyBlackboard that will store the location of the next
destination that the enemy should wander to. Unlike the PatrolPoint key, our destination
won't be represented by an in-game actor but, rather, by vector coordinates. Then, we will
create a task to determine where in the level the enemy should be wandering.

Follow these steps to create the key and the task:

1. In the content browser, double-click the BT_EnemyBehavior asset to open the
Behavior Tree Editor.

2. Click the Blackboard tab to edit BB_EnemyBlackboard.
3. Click the New Key button and select Vector as the key type. Name this new key

WanderPoint:

Creating enemy wandering behavior 279

Figure 10.28 – Creating the WanderPoint key in the blackboard

4. Save the blackboard and click on the Behavior Tree tab to return to the Behavior
Tree.

5. Click the New Task button on the Toolbar and select the BTTask_BlueprintBase
option from the drop-down menu that appears.

6. In the content browser, rename the newly created BTTask_BlueprintBase_
New asset BTTask_FindWanderPoint. Double-click on BTTask_
FindWanderPoint to return to the Blueprint Editor.

7. The Details panel shows the class defaults. Change the Node Name field to
FindWanderPoint.

8. In the My Blueprint panel, click the + button of the Variables category. In the
Details panel, name the variable WanderKey, change its type to Blackboard
KeySelector, and check the Instance Editable attribute:

Figure 10.29 – Creating the WanderKey variable

9. Hover the mouse on the Functions category of the My Blueprint panel, click the
Override dropdown, and select Receive Execute to add the event.

280 Upgrading the AI Enemies

10. In Event Receive Execute, we will get a random location of the level and store in the
blackboard:

Figure 10.30 – The Event Receive Execute actions

11. Drag a wire from the white pin of Event Receive Execute and add a Set Blackboard
Value as Vector node.

12. Drag a wire from the white output pin of Set Blackboard Value as Vector and add
a Finish Execute node. Check the Success parameter of the Finish Execute node.

13. Drag a wire from the Key parameter of Set Blackboard Value as Vector and add
a Get Wander Key node.

14. Drag a wire from the Value parameter of Set Blackboard Value as Vector and add
a GetRandomPointInNavigableRadius node. Set Radius to 10000.0.

15. Drag a wire from the Origin parameter and add a Make Vector node.
16. Compile and save the blueprint.

Now that we have our custom task, we can modify BT_EnemyBehavior to make the
enemy find and move to WanderPoint.

Adding wandering to the Behavior Tree
We will convert the Move To Patrol sequence to a Wander sequence. The new Wander
sequence is represented in the Behavior Tree by these nodes:

Creating enemy wandering behavior 281

Figure 10.31 – The new Wander sequence

Follow these steps to modify the Behavior Tree:

1. In the content browser, double-click the BT_EnemyBehavior asset to open the
Behavior Tree Editor.

2. Select the Move To Patrol sequence node. In the Details panel, change Node Name
to Wander.

3. Select the Move To task node and change Blackboard Key to WanderPoint.
4. Drag a wire out from the Wander sequence node to the left of the other nodes

and add the BTTask_FindWanderPoint node.
5. In the Details panel, set Wander Key to WanderPoint. Also, change Node Name

to Get Next Wander Point.
6. Save and close the Behavior Tree Editor.

That is all we need to change in the Behavior Tree to include the enemy wandering
behavior. There are some adjustments that we need to do in the two blueprints.

Last adjustments and test
We will remove Event BeginPlay of BP_EnemyCharacter that was used to
set Patrol Point. We don't need it anymore because we are using the random
WanderPoint.

The other change we need to do is modify the Target Goal value of
FirstPersonCharacter to be higher so that the game can continue for longer.
We will set this value to 20 so that the player must eliminate 20 enemies before winning
the game.

282 Upgrading the AI Enemies

These are the steps to adjust the blueprints:

1. Open the BP_EnemyCharacter blueprint.
2. In the Event Graph, delete Event BeginPlay and all the nodes connected.
3. Compile, save, and close the Blueprint Editor.
4. Open the FirstPersonCharacter blueprint.
5. In the My Blueprint panel, select the TargetGoal variable. In the Details panel,

change DEFAULT VALUE to 20:

Figure 10.32 – Changing the default value of TargetGoal

6. Compile, save, and close the Blueprint Editor.
7. To test the enemy's wandering behavior, it is better to use the Simulate option

that is in the menu, which can be accessed by clicking on the three dots next to the
Play button:

Figure 10.33 – Using Simulate to move freely in the level

Summary 283

Hold the right mouse button and use the W, A, S, and D keys and the mouse to move
freely on the level. You will see the enemies spawning and moving to a random location in
the level.

We created a custom task to find a random wander point and modified the Behavior Tree
to use this new task. Now, the enemies spawned by BP_EnemySpawner know how to
move in the level.

Summary
In this chapter, we started on the path of creating a challenging but balanced game
experience by enhancing the capabilities of our AI-driven enemies. We gave our enemies
zombie-like behavior by allowing them to wander aimlessly around the level until noticing
the player by sight or sound. We also gave them the ability to charge forward when they
notice the player and launch a melee attack, lowering the player's health. Then, we gave
the player the chance to fight back by attacking the enemy, eventually destroying them
once the enemy's health is depleted. Finally, we gave new flexibility to our game by setting
up a system to create new enemies as the game is being played.

At this point, the core content of our game is nearly complete. You should feel proud
of the significant progress you have made! You can take some time to tweak the many
variables you have created to customize the gameplay to your liking, or you can continue
reading if you are ready to move on to the final system.

In the next chapter, we will add the final elements necessary for a full game experience.
We will end the game when the player runs out of health, create a round-based
advancement system, and create a save system so that the player can return to a previously
saved game state.

Quiz
1. What is the name of the event used in a Behavior Tree task?

a. Tick

b. Event Receive Execute

c. Event Begin Play
2. What is the name of the component used to add sight and hearing to AI?

a. Pawn Sensing

b. AI Sensing

c. AI Perception

284 Upgrading the AI Enemies

3. A blackboard can have a key of the Vector type.

a. True

b. False
4. The Set Timer by Event node has a Function Name parameter.

a. True

b. False
5. The GetRandomPointInNavigableRadius node returns a random location based

on the navigation mesh.

a. True

b. False

11
Game States and

Applying the
Finishing Touches

In this chapter, we will take the final steps to evolve our game into a complete and fun
experience that challenges the player. First, we will introduce player death, which is
activated when the player's health is fully drained. Then, we will introduce a round system
that will elevate the challenge for the player by requiring increasingly numerous enemies
to be defeated as they progress through the rounds. Finally, we will introduce a saving and
loading system so that the player can leave the game and later return to the round that
they were last playing. In this chapter, we will cover the following topics:

• Showing different menus based on player conditions

• Creating scaling difficulty with gameplay modifiers

• Supporting the game state being saved and reloaded later

• Branching level initialization based on the saved data

• Creating transition screens that display gameplay data

By the end of the chapter, we will have an arcade-style first-person shooter that a player
can continually return to for an increasingly difficult challenge.

286 Game States and Applying the Finishing Touches

Making danger real with player death
In Chapter 10, Upgrading the AI Enemies, we made significant progress toward a balanced
game in which enemies threaten the player but the player can use skill to overcome that
challenge. One element remains glaringly missing. If the player runs out of health, then
they should not be able to continue progressing through the game. So, we will take what
we've learned about from the win screen we created in Chapter 8, Creating Constraints
and Gameplay Objectives, and apply it to a lose screen. This screen will enable the player
to restart the level with full ammo and a freshly filled health bar, but will also negate any
progress they had made toward reaching their target goal.

Setting up a lose screen
The lose screen will be presented when the player runs out of health. We will present them
with options to restart the last round or quit the game. You may remember the win screen
we created; we presented similar options there. Rather than remaking the UI screen from
scratch, we can save some time by using our WinMenu asset as a template.

Follow these steps to create LoseMenu:

1. In the Content Browser, access the Content|FirstPersonBP|UI folder.
Right-click on WinMenu and select the Duplicate option.

2. Name this new Blueprint Widget LoseMenu:

Figure 11.1 – Duplicating and renaming WinMenu

3. Double-click on the LoseMenu asset to open the UMG Editor. Select the text
object showing You Win!. In the Details panel, rename the text element to Lose
msg, change the Text field under Content to You Lose!, and change Color and
Opacity to a dark red color:

Making danger real with player death 287

Figure 11.2 – Setting the message of LoseMenu

4. Compile and save. The two buttons, Restart and Quit, can remain identical to their
WinMenu counterparts in appearance and functionality for now.

Now we need to modify the FirstPersonCharacter Blueprint to show the lose screen.

Showing the lose screen
We will create a Custom Event named LostGame that will be called when the player runs
out of health.

These are the steps to create the Custom Event:

1. In the Content Browser, access the Content > FirstPersonBP >
Blueprints folder and double-click on the FirstPersonCharacter Blueprint.

2. Right-click on the Event Graph and add a Custom Event. Rename it LostGame.
These are the nodes we will add to the LostGame Event:

Figure 11.3 – LostGame actions

3. Drag a wire from the output execution pin of LostGame, add a Set Game Paused
node, and check the Paused checkbox.

4. Right-click on the Event Graph and add a Get Player Controller node. Drag from
the Return Value output pin and add a SET Show Mouse Cursor node. Check the
checkbox next to Show Mouse Cursor and attach this node to the output execution
pin of Set Game Paused.

288 Game States and Applying the Finishing Touches

5. Drag a wire from the output execution pin of the SET Show Mouse Cursor node
and add a Create Widget node. In the Class parameter, select LoseMenu.

6. Drag the Return Value output pin of the Create Widget node and add an Add to
Viewport node.

7. We will modify Event AnyDamage to call the LostGame Event if Player Health is
Nearly Equal to 0.0:

Figure 11.4 – Modifying Event AnyDamage

8. Drag a wire from the white output pin of the SET Player Health node and add
a Branch node.

9. Drag a wire from the output pin of the SET Player Health node and add a Nearly
Equal (float) node. Connect the Return Value pin to the Condition input pin of
the Branch node.

10. Drag a wire from the True output pin of the Branch node and add the LostGame
node.

11. Compile, save, and then click on Play to test your work. If you stand next to an
enemy long enough for it to drain your health to zero, then you should see the
LoseMenu we created.

Now, the player needs to be more careful with the enemies to not lose the game. The next
step to make the game more interesting is to create a round-based experience.

Creating round-based scaling with saved games
We now have a game that supports a full play experience. However, the gameplay
experience is limited by the number of enemies we have set as our target goal. This results
in the game feeling shallow. To address this, we can adopt techniques used by arcade
games, which increase the difficulty of the game as the player progresses through a series
of rounds. This is a way to add depth and fun to your game using the existing assets,
without requiring you to spend hours creating custom content.

Creating round-based scaling with saved games 289

The rounds we create will serve as the score of the player. The higher the round they reach,
the more the player is thought to have achieved. To ensure that the maximum round the
player reaches is limited only by their skill, rather than the amount of time for which they
play the game in a single sitting, we will implement a save system so that the player can
pick up from where they left off if they leave the game and come back to it later.

Storing game information using the SaveGame class
The first step we need to perform to create a save system is to create a Blueprint child of
the SaveGame class that will store the game data that we want to save. We want to track
which round the player was on before they quit the game. We do not need to store any
data on how many enemies the player has killed because it would make more sense to the
player for each game session to start at the beginning of a round.

Follow these steps to create a child of the SaveGame class:

1. In the Content Browser, access the Content|FirstPersonBP|Blueprints
folder. Click the Add button and select Blueprint Class.

2. On the next screen, search for and select SaveGame as the parent class:

Figure 11.5 – Selecting SaveGame as the parent class

3. Name the Blueprint BP_SaveInfo and double-click it to open the Blueprint Editor.

290 Game States and Applying the Finishing Touches

4. In the Variables category of the My Blueprint panel, click on the + button to add
a variable. In the Details panel, name it Round, and change Variable Type to
Integer. Compile the Blueprint, and then set Default Value to 1:

Figure 11.6 – Creating the Round integer variable

5. Compile, save, and close the Blueprint editor.

That's all we need to do in the BP_SaveInfo Blueprint. The next step is to learn how to
save and load using the BP_SaveInfo Blueprint.

Saving game information
Now that we have a container for our saved data, we need to ensure that the data is
stored somewhere on the player's machine and that it is retrieved when the player
returns to the game. Like the rest of our gameplay settings, we will add this process to the
FirstPersonCharacter Blueprint. We will create some variables and a macro to save
game information.

Follow these steps to create the variables and macro:

1. In the Content Browser, access the Content|FirstPersonBP|Blueprints
folder and double-click on the FirstPersonCharacter Blueprint.

2. In the Variables category of the My Blueprint panel, click on the + button to add
a variable. In the Details panel, name it CurrentRound, and change Variable
Type to Integer. Compile the Blueprint, and then set Default Value to 1.

Creating round-based scaling with saved games 291

3. Create a variable in the My Blueprint panel and name the variable SaveInfoRef.
4. In the Details panel, click the Variable Type drop-down menu and search for BP_

SaveInfo. Hover over BP_SaveInfo to display a submenu and then choose Object
Reference:

Figure 11.7 – The SaveInfoRef variable references an instance of BP_SaveInfo

5. Create another variable in the My Blueprint panel. In the Details panel, name
the variable SaveSlotName and change Variable Type to String. Compile the
Blueprint and set Default Value to SaveGameFile. This variable stores the
filename:

Figure 11.8 – SaveSlotName stores the filename

6. In the My Blueprint panel, click the + button in the Macros category to create
a macro. Change the name of the macro to SaveRound. In the Details panel of
the macro, create an input parameter named In of the Exec type and an output
parameter named Out of the Exec type.

292 Game States and Applying the Finishing Touches

7. On the tab created for the macro SaveRound, add the nodes seen in the following
screenshot. We check whether SaveInfoRef is valid. If it is not valid, we create an
instance of BP_SaveInfo and store it in SaveInfoRef. We update the Round
variable of SaveInfoRef and then save the contents of SaveInfoRef:

Figure 11.9 – The SaveRound macro

8. Drag a wire from the In pin of the Inputs node and add an Is Valid macro node.
9. Drag a wire from the Input Object parameter and add a Get Save Info Ref node.
10. Right-click on Event Graph and add another Get Save Info Ref node. Drag a wire

from the Get Save Info Ref node and add a SET Round node.
11. Connect the Is Valid output pin to the white input pin of the SET Round node.

Drag a wire from the Round input pin and add a Get Current Round node.
12. Drag a wire from the white output pin of the SET Round node and add a Save

Game to Slot node. Connect the white output pin of Save Game to Slot to the Out
pin of the Outputs node.

13. Connect the Save Game Object pin to the Get Save Info Ref node. Drag a wire
from the Slot Name pin and add a Get Save Slot Name node.

14. Drag a wire from the Is Not Valid output pin and add a Create Save Game Object
node. In Save Game Class, select BP_SaveInfo.

15. Drag a wire from the Return Value pin of Create Save Game Object and add
a SET Save Info Ref node. Connect the white output pin of SET Save Info Ref to
the white input pin of the SET Round node.

16. Compile and save the Blueprint.

Our next step is to create the macro to load the contents we save using the SaveRound
macro.

Creating round-based scaling with saved games 293

Loading game information
We will create a macro named LoadRound that will retrieve the saved Round and store it
in the CurrentRound variable.

These are the steps to create the macro:

1. In the My Blueprint panel of the FirstPersonCharacter Blueprint, click the
+ button in the Macros category to create a macro. Change the name of the macro
to LoadRound. In the Details panel of the macro, create an input parameter named
In of the Exec type and an output parameter named Out of the Exec type.

2. On the tab created for the LoadRound macro, add these nodes:

Figure 11.10 – The LoadRound macro

3. Drag a wire from the In pin of the Inputs node and add a Does Save Game Exist
node. Drag a wire from the Slot Name pin and add a Get Save Slot Name node.

4. Drag a wire from the Return Value pin and add a Branch node. Connect the white
output pin of Does Save Game Exist to the white input pin of the Branch node.

5. Connect the False pin of the Branch node to the Out pin of the Outputs node.
You can double-click a wire to add a reroute node and modify the shape and
position of a wire.

6. Drag a wire from the True pin of the Branch node and add a Load Game from Slot
node. Drag a wire from the Slot Name pin and add a Get Save Slot Name node.

7. Drag a wire from the Return Value pin of Load Game from Slot and add a Cast To
BP_SaveInfo node. Connect the white output pin of Load Game from Slot to the
white input pin of the Cast To BP_SaveInfo node.

294 Game States and Applying the Finishing Touches

8. Connect the Cast Failed pin of the Cast To BP_SaveInfo node to the Out pin of
the Outputs node. Add a reroute node if needed.

9. Drag a wire from As BP Save Info of Cast To BP_SaveInfo and add a SET Save
Info Ref node. Connect the white pins of Cast To BP_SaveInfo and SET Save
Info Ref.

10. Drag a wire from the output blue pin of SET Save Info Ref and add a Get Round
node.

11. Drag a wire from the Round pin and add a SET Current Round node. We are
getting the value of the Round variable that was saved and storing it in the Current
Round variable of the FirstPersonCharacter Blueprint.

12. Connect the white pins of SET Save Info Ref, SET Current Round, and Outputs
nodes.

13. Compile and save the Blueprint.

Using the SaveRound and LoadRound macros, we can make the player resume the game
on the round they stopped. To increase the challenge, let's set the TargetGoal based on
the round.

Increasing the TargetGoal
We will take advantage of the data we store in the save file to change the gameplay for the
player as they progress. We will do this by creating a RoundScaleMultiplier variable that
will multiply the Current Round to find the new TargetGoal.

Follow these steps to increase the TargetGoal:

1. In the Variables category of the My Blueprint panel, click on the + button to add
a variable. In the Details panel, name it RoundScaleMultiplier, then change
Variable Type to Integer. Compile the Blueprint, and then set Default Value to 2:

Creating round-based scaling with saved games 295

Figure 11.11 – The RoundScaleMultiplier variable

2. In the My Blueprint panel, click the + button in the Macros category to create
a macro. Change the name of the macro to SetRoundTargetGoal. In the Details
panel of the macro, create an input parameter named In of the Exec type and an
output parameter named Out of the Exec type.

3. On the tab created for the SetRoundTargetGoal macro, add these nodes:

Figure 11.12 – The SetRoundTargetGoal macro

4. Drag a wire from the In pin of the Inputs node and add a SET Target Goal
node. Connect the white output pin of SET Target Goal to the Out pin of the
Outputs node.

5. Drag a wire from the Target Goal pin and add a Multiply node.
6. Drag a wire from the top input pin of the Multiply node and add a Get Current

Round node.

296 Game States and Applying the Finishing Touches

7. Drag a wire from the bottom input pin of the Multiply node and add a Get Round
Scale Multiplier node.

8. Compile, save the Blueprint, and return to the Event Graph tab.
9. Access Event BeginPlay in the Graphs category of the My Blueprint panel and add

the Load Round and Set Round Target Goal macro nodes:

Figure 11.13 – Modifying Event BeginPlay

When a round starts, we use the Load Round macro to load a saved file if it exists. Then
we use the Set Round Target Goal macro to set the TargetGoal.

When the player reaches the TargetGoal, we need to show a transition screen.

Creating a transition screen to be shown between
rounds
Currently, when the player defeats enough enemies to meet the requirements displayed by
TargetGoal, they are presented with WinMenu. It congratulates them and offers them the
opportunity to restart the game or quit the application. Now that we are adopting round-
based gameplay, we will adapt this WinMenu screen as a transition screen that will bring
the player into the next round of gameplay.

Follow these steps to create the transition screen:

1. In the Content Browser, access the /Content/FirstPersonBP/UI folder and
rename the WinMenu Widget Blueprint to RoundTransition so that it more
accurately reflects its new purpose.

2. Double-click the RoundTransition Widget Blueprint to open the UMG Editor.
The new RoundTransition screen will have these elements:

Creating round-based scaling with saved games 297

Figure 11.14 – RoundTransition hierarchy panel

3. In the Hierarchy panel, delete the You Win! text element and delete the Btn quit
button as we will not need to present an option to quit during the round transitions.

4. Click the Graph tab. In the Event Graph, delete the On Clicked (Btnquit) Event.
Click the Designer tab to return to UMG Editor.

5. Select the Txt restart element and rename it to Txt begin. In the Details panel,
change the text from Restart to Begin Round. Rename the Btn restart to Btn
begin. The functionality of reloading the level will remain the same.

6. Drag a Horizontal Box from the Palette panel onto the Hierarchy panel above the
Btn restart button.

7. In the Details panel, click on the Anchors dropdown and select the top-center
option. Set Position X to -300.0, and set Position Y to 200.0. Check the Size
To Content property, so we don't need to change the values of Size X and Size Y.
The size of this horizontal box will automatically adjust based on the size of its
child elements:

Figure 11.15 – Horizontal Box properties

298 Game States and Applying the Finishing Touches

8. Drag a Text object onto the Horizontal Box. In the Details panel, change the Text
field under the Content category to Round. In the Appearance category, change
the font Size to 120.

9. Drag another Text object onto the Horizontal Box. In the Details panel, set
Padding Left to 20.0 and change the Text field under the Content category to 99
as a reference. In the Appearance category, change the font Size to 120.
The RoundTransition layout should look like this:

Figure 11.16 – RoundTransition screen elements

10. In the Details panel, find the Bind button next to the Text field and create a new
binding, as shown here:

Figure 11.17 – Creating a binding for a round

11. In the Get Text 0 graph view that appears, add a Get Player Character node, cast
it using the Cast To FirstPersonCharacter node, and then drag from the As First
Person Character pin to add a Get Current Round node.

Creating round-based scaling with saved games 299

12. Attach the cast node and the Current Round node to Return Node. The editor will
create a ToText (integer) node to convert the number into a text format:

Figure 11.18 – We will show onscreen the value of the Current Round variable

13. Compile, save, and close the UMG Editor.

To complete the round-based system, we just need to modify the End Game Event.

Transitioning to a new round when the current round
is won
The modifications of the End Game Event in the FirstPersonCharacter Blueprint
will be simple because the RoundTransition screen will be displayed since it is a modified
version of WinMenu.

When the player wins a round, we will increment the Current Round variable and save.

Follow these steps to modify the End Game Event:

1. In the Content Browser, access the Content > FirstPersonBP >
Blueprints folder and double-click on the FirstPersonCharacter
Blueprint.

2. In Event Graph, select the End Game Event. In the Details panel, change the Event
name to End Round.

300 Game States and Applying the Finishing Touches

3. Change the comment box label to End Round: Shows Transition Menu:

Figure 11.19 – The new nodes of the End Round Event

4. Break the wire between the End Round and Set Game Paused nodes. Move the
End Round node to the left to make room for some more nodes.

5. Right-click on Event Graph and add a Get Current Round node.
6. Drag a wire from the output pin of the Get Current Round node and add an

Increment Int node. Connect the white pins of the Increment Int and End
Round nodes.

7. Drag a wire from the output white pin of Increment Int and add the Save Round
macro node.

8. Connect the Out pin of Save Round to the white input pin of the Set Game
Paused node.

9. Compile, save, and click the Play button to test.

When you load the game, you should notice that the target goal counter at the top of the
game has a low number of enemies as the goal. Defeat the number of enemies indicated
by the goal and you should see the round transition screen appear, displaying Round 2.
When you press the Begin Round button, you will reload the level with your health and
ammo restored, but with a higher number of enemies as the target. If you quit the game
and then click on the Play button again, you will see that the game loads the round that
you were last on.

Now that we can track the player's progress, we should offer them the ability to reset their
save file if they wish to begin the game from the start.

Pausing the game and resetting the save file 301

Pausing the game and resetting the save file
We will create PauseMenu, which will present the player with options to resume playing
the game, reset the game to round one, or quit the application.

Creating a pause menu
PauseMenu is like our LoseMenu. So, we will use it as a template. The following screenshot
shows the elements we want in PauseMenu:

Figure 11.20 – Pause menu elements

 Follow these steps to create PauseMenu:

1. In the Content Browser, access the Content > FirstPersonBP > UI folder.
Right-click on LoseMenu and select the Duplicate option.

2. Name this new Blueprint Widget PauseMenu.
3. Select the text displaying You Lose! and, in the Details panel, change the Text field

to Paused and change the Color and Opacity to a blue color:

Figure 11.21 – Setting the message of PauseMenu

302 Game States and Applying the Finishing Touches

4. We will move the Paused text further up to make room for another button. In the
Slot category, set Position X to -170.0, and set Position Y to -450.0:

Figure 11.22 – Setting the position of the Paused text

5. We will add a button to be the Resume option and will change the Restart button to
be the Reset All option. The Hierarchy of PauseMenu will look like this:

Figure 11.23 – Hierarchy of PauseMenu

6. Drag a Button element from the Palette panel onto the CanvasPanel object in the
Hierarchy panel below the Paused message. In the Details panel, change the name
to Btn resume, click on the Anchors dropdown, and select the option with the
anchor in the center of the screen.

7. Set Position X to -180.0, Position Y to -250.0, Size X to 360.0, and Size Y
to 100.0.

8. Drag a Text object from the Palette panel onto the Btn resume element in the
Hierarchy panel. In the Details panel, set the name to Txt resume, change the
Text field under the Content category to Resume, and set the font Size to 48.

Pausing the game and resetting the save file 303

9. Now, let's transform the Restart button into the Reset All button. Change the Btn
restart button name to Btn reset, Txt restart to Txt reset, and then change
the Text field to Reset All.

10. Compile and save.

We've already added the visual elements of PauseMenu; now let's work on the functionality.

Resuming the game
To resume the game, we need to remove PauseMenu from the viewport, hide the mouse
cursor, and unpause the game.

These are the steps to add the functionality:

1. Click on the Btn resume element, scroll down to the bottom of the Details panel,
and click on the + button next to the On Clicked Event.

2. On the Graph view, add these nodes to the On Clicked (Btnresume) Event:

Figure 11.24 – Resume button actions

3. Drag a wire from the On Clicked (Btnresume) node and add a Remove from
Parent node.

4. Right-click on Event Graph and add a Get Player Controller node.
5. Drag a wire from Return Value of Get Player Controller and add a SET Show

Mouse Cursor node. Connect the white output pin of Remove from Parent to
the white input pin of SET Show Mouse Cursor. Leave the Show Mouse Cursor
parameter unchecked.

6. Drag a wire from the white output pin of SET Show Mouse Cursor and add a Set
Game Paused node. Leave the Paused parameter unchecked.

These are the actions of the Resume button. Now, let's add the actions of the Reset
All button.

304 Game States and Applying the Finishing Touches

Resetting the save file
The Reset All button will delete the save game if it exists and then reload the game level.
We will create a macro with the actions to delete the save game.

Follow these steps to create the macro:

1. In the My Blueprint panel, click the + button in the Macros category to create
a macro. Change the name of the macro to DeleteFile. In the Details panel of
the macro, create an input parameter named In of the Exec type and an output
parameter named Out of the Exec type.

2. On the tab created for the DeleteFile macro, add the nodes seen in the following
screenshot. We get a reference to the FirstPersonCharacter instance to retrieve the
value of the Save Slot Name variable.

Figure 11.25 – DeleteFile macro actions

3. Add a Get Player Character node, cast it using the Cast To FirstPersonCharacter
node, and then drag from the As First Person Character pin to add a Get Save Slot
Name node.

4. Drag a wire from the white output pin of Cast To FirstPersonCharacter and add
a Does Save Game Exist node. Connect the Slot Name pin to the Get Save Slot
Name node.

5. Drag a wire from Does Save Game Exist and add a Branch node. Connect the
Return Value pin to the Condition pin.

Pausing the game and resetting the save file 305

6. Drag a wire from the True output of the Branch node and add a Delete Game in
Slot node. Connect the Slot Name pin to the Get Save Slot Name node. Connect
the white output pin to the Out pin of the Outputs node.

7. Connect the Cast Failed pin of Cast To FirstPersonCharacter and the False pin of
the Branch node to the Out pin of the Outputs node.

8. On Event Graph, add the Delete File macro node after the On Clicked
(Btnreset) Event:

Figure 11.26 – Modifying the On Clicked (Btnreset) Event

9. Compile and save PauseMenu.

We created our PauseMenu screen. Now we need a way for the player to bring up
PauseMenu.

Triggering the pause menu
We will use the Enter key to pause the game and open PauseMenu. We need to add
a Pause action mapping in Project Settings… and add actions to the InputAction Event
created for the Pause action mapping.

Follow these steps to trigger PauseMenu:

1. To change the input settings for your game, click on the Settings button on the far
right of the toolbar, and select the Project Settings… option:

Figure 11.27 – Accessing Project Settings

306 Game States and Applying the Finishing Touches

2. On the left side of the window that appears, look for the Engine category and select
the Input option. Click on the + sign next to Action Mappings. Name the new
action Pause and select the Enter key from the drop-down menu to map that key to
the Pause Event:

Figure 11.28 – Creating an Action Mapping

3. In the Content Browser, access the Content > FirstPersonBP >
Blueprints folder and double-click on the FirstPersonCharacter Blueprint.

4. Right-click on Event Graph, search for input action pause, and add the
Pause Event node. Copy all the nodes from the LostGame Custom Event and paste
them near the InputAction Pause node:

Figure 11.29 – InputAction Pause Event actions

5. Connect the Pressed pin of the InputAction Pause node to the white input pin of
the Set Game Paused node.

6. Change the Class parameter of the Create Widget node to Pause Menu.
7. Compile, save, and then click on Play to test.

Summary 307

Now, while playing, you should be able to press the Enter key you set up to bring up the
pause menu. Clicking on the Resume button should close the pause menu and return
you to the game. If you progress several rounds through the game and then press the
Reset All button from the pause menu, then you should automatically reload the level,
with your progress reset to the first round of the game. If this is what you see, then
congratulations! You have accomplished a significant achievement in creating a save
system that is able to store, load, and reset progress across multiple rounds of gameplay.

Summary
In this chapter, we have made significant strides toward making our game a complete
experience that can be played and enjoyed by other people. You learned how to show
different screens based on whether the player has won or lost. You also learned how to
implement a save system that allows the player to return to their earlier game sessions
with their progress intact. Then, we implemented a round system that modifies the
gameplay goal each time the player progresses to a new round. Finally, we implemented
additional menu systems that give the player information about which round they are on
and give them the opportunity to pause the gameplay and even reset their own save file.

In the next chapter, we will explore making builds of the game we created so that we can
share the experience with others.

Quiz
1. The Create Widget node creates an instance of the widget class selected in

the parameter.

a. True

b. False
2. What is the name of the class that is used to store data that will be saved?

a. SaveData

b. SaveInfo

c. SaveGame

308 Game States and Applying the Finishing Touches

3. The Save Game to Slot function receives a structure as an input parameter with the
data that will be saved.

a. True

b. False
4. The Load Game from Slot function returns an instance of the SaveGame class.

We need to use the Cast To node to access the variables that were saved.

a. True

b. False
5. An Action Mapping named Shoot triggers an Event named InputAction Shoot.

a. True

b. False

12
Building and

Publishing
One of the best ways to grow as a game developer is to share your work with others so that
you can get feedback on how to evolve your designs and content. An early priority should
be to create shareable builds of your game so that other people can play it for themselves.
Fortunately, Unreal Engine 5 makes it extremely simple to create builds of your game for
multiple platforms. In this chapter, we will look at how to optimize the settings of our
game and the process of building for your target desktop platform. In the process, we will
cover the following topics:

• Optimizing your graphics settings

• Setting up our game to be played by others

• Packaging the game into a build

By the end of the chapter, you will have a packaged version of our game that you can share
and install on other machines.

310 Building and Publishing

Optimizing your graphics settings
Prior to creating a build, or a version of our game that has been optimized to play on
a particular platform, you should change the graphics settings of our game to ensure
that they are suited to your target machines. The graphics settings in Unreal Engine 5 are
identified as Engine Scalability Settings. This settings interface is composed of several
graphics settings, each of which determines the final visual quality of one element of the
game. With any game, there is a trade-off between high-quality effects and visuals, and the
performance of that game in terms of frame rate.

Games that struggle with low frame rates feel bad from a gameplay perspective, even if the
mechanics are otherwise solid. As such, it is important to balance the desire to make
your game look as good as it can with the need to understand what the performance
impact will be on the machines that your players will be running the game on.

Because of the varying hardware performance of PCs and macOS computers, many games
targeting those platforms use custom menu settings to allow the player to tweak the
graphics settings of the game themselves. However, the game we have created only uses
very simple assets and a relatively constrained level size, so we are simply going to define
some workable defaults before generating a build to distribute.

Follow these steps to modify Engine Scalability Settings:

1. Click the Settings button located on the right-hand side of the Level Editor toolbar.

Figure 12.1 – Accessing Engine Scalability Settings

Optimizing your graphics settings 311

2. Hover over Engine Scalability Settings to see a pop-out display of the Quality
settings that you can tweak, as seen in the following screenshot:

Figure 12.2 – Engine Scalability Settings elements

3. The buttons along the top of this menu, ranging from Low to Epic, serve as presets
of the settings based on the broad level of performance versus quality that you want
to target at runtime. Clicking on the Low button will set all the quality settings to
the minimum, giving you the best possible performance, in exchange for the least
visually attractive settings. Epic is the opposite end of the spectrum, raising all the
engine quality settings to their maximum, at the expense of significant performance,
depending on the assets you have chosen to use.

4. The Cinematic button will set all the quality settings to cinematic quality, which is
used for rendering cinematics. This setting is not intended for use during gameplay
or at runtime.

5. The Auto button will detect the hardware of the machine you are currently running
the Editor on and adjust the graphics settings to a level that strikes a good balance
between performance and a graphical quality that is suitable for your machine.
If you are intending to target hardware that is roughly equivalent to the machine
you are developing on, using the Auto setting can be a simple way to establish the
graphics settings for your build.

312 Building and Publishing

6. If you wish to tweak the settings individually, you can use this brief description of
their functions to help you:

 � Resolution Scale: This setting causes the engine to render the game in a lower
resolution than the resolution that your player will be targeting and uses software
to upscale the game to the targeted resolution. This improves the performance of
the game, at the cost of perceived fuzziness at lower-resolution scales.

 � View Distance: This determines the distance from the location of the camera
where objects will be rendered. Objects beyond this distance will not be rendered.
Shorter view distances increase performance but can cause objects to pop into
view suddenly as they cross the view distance boundary.

 � Anti-Aliasing: This setting softens the jagged edges of 3D objects in the world,
which can dramatically improve the look of your game. At the higher settings,
you will see fewer jagged edges, but this will decrease performance.

 � Post Processing: This setting changes the baseline quality settings of several filters
that get applied to the screen after the scene is created, such as motion blur and
light bloom effects.

 � Shadows: This changes the base quality of several bundled settings that combine
to determine the look of shadows in the game. Highly detailed shadows often have
a dramatic impact on performance.

 � Textures: This setting will affect the process by which the textures used in
your game are managed by the engine. If you have many large textures in
your game, reducing this setting can help avoid running out of graphics memory
and thus increases performance.

 � Effects: This setting changes the baseline quality settings of several special effects
applied to the game, such as material reflections and translucency effects.

 � Foliage: This setting will affect the quality of foliage used in the game.

 � Shading: This setting will affect the quality of the materials.

Setting up our game to be played by others 313

Ultimately, the best way of optimizing the performance of your game is to regularly test it
on the machines you intend for people to play it on. If you notice sluggish performance,
take note of where you see it occur. If the performance of your game is always low,
you might need to reduce some of the postprocessing or anti-aliasing effects. If
performance is low only in certain areas of your level, you might need to look at reducing
the object density in that area or reducing the quality of a particular game model.

Now that we know how to adjust the graphics settings, let's customize some project
settings before the build.

Setting up our game to be played by others
Unreal Engine 5 offers a wide variety of platforms that you can choose from to build
your game, and this list will continue to expand as newer versions of the engine are
released and new technologies emerge. You can deploy your game on Windows, macOS,
iOS, Android, and Linux. The engine supports the creation of content for various virtual
reality platforms, such as Oculus Quest. There is also support for 8th and 9th generation
consoles, but you need to be a registered console developer with the appropriate
development kit.

Each platform has its own unique requirements and best practices associated with it for
game development. Mobile games have higher optimization requirements to get games to
perform well.

We can customize some of the settings that will determine how our project appears on the
target machine.

Follow these steps to customize the project settings:

1. Click on the Settings button in the Level Editor toolbar, and then click on Project
Settings..., as shown here:

Figure 12.3 – Accessing Project Settings

314 Building and Publishing

2. Inside Project Settings, you will see a wide variety of options in the left panel
for the customization of different aspects of the game, engine, and platform
interactions. By default, the Project - Description page will open. Here, you can
customize the project name, the thumbnail as it will appear in the Unreal Engine
project selector, and a brief description of the project and its creator or publisher, as
shown in this screenshot:

Figure 12.4 – Project - Description page

Setting up our game to be played by others 315

3. Clicking on Maps & Modes in the left panel will bring you to a page where you can
determine which map the game will load by default. Our game has only one map,
so that makes this choice easy, but you will often need to designate a map dedicated
to your main menu screen to be the first map to load. When you create games with
multiple maps, you will need to ensure that the first map loaded can manage which
map is loaded next in the play experience.

Figure 12.5 – Project - Maps & Modes page

4. Finally, clicking on the platform you are targeting with this build will bring you to
that platform's customization page.

316 Building and Publishing

5. In the Windows example shown in the following screenshot, the Splash screens
and the game's Icon image are available for changing. Mobile and console platform
targets will have more options to change, which will be specific to each of those
platforms.

Figure 12.6 – Platforms - Windows page

6. Replace the default SPLASH and ICON settings with the images you would like to
use for your game. This can be as simple as an edited screenshot from the game, or
you can show off a custom piece of art made specifically for icons and splash screens.

Once you are satisfied with your project settings, close the Project Settings window so
we can start packaging our project.

Packaging the game into a build 317

Packaging the game into a build
Creating a distributable form of your game for one of these platforms involves a process
called packaging. Packaging takes all the code and assets of the game and sets them up in
the proper format to be able to perform on the selected platform. We will be following the
path to making a Windows or macOS release of your game.

Note
It is important to note that Unreal Engine 5 can only create Windows builds
from a copy of the engine running on a Windows system, and OS X builds
from copies installed on a macOS running OS X. Thus, the platforms that
you can target with your game will be partially limited by the machine you are
developing the game on. If you are developing on a Windows PC and wish to
create an OS X build of the game, you can install Unreal Engine 5 on a macOS
and copy your project files to this new machine. From there, you will be able to
generate an OS X build, with no further changes required.

These are the steps to package your game to be played on a particular platform:

1. Click the Platforms button in the toolbar, hover over the desired platform, and then
click on Package Project, as follows:

Figure 12.7 – Packaging the project for Windows

318 Building and Publishing

2. Once you click on a platform, you will be prompted to select a location on
your computer to store the build you make. After selecting a location, you will
see a popup that tells you that the engine is packaging the project. If something
goes wrong in the packaging process, you will be shown the details of the error
in the output log window that pops up. Packaging a project can take a bit of time,
depending on how complex and large the project is, but if you don't encounter any
errors, then you will eventually see a message saying that the packaging is complete.
Congratulations – you have created a packaged copy of your game!

3. Navigate to the folder where you chose to store your build. On macOS, open the
folder called MacNoEditor and double-click on the application to launch it. For
Windows, open the WindowsNoEditor folder and double-click on the executable
to run the game. Take a moment to go through the game you created in its final
form and reflect on just how far you have come. You now have a functional game
that other people can play and enjoy. Making even simple games is no easy feat, so
you should feel proud of your accomplishment!

We packaged the project using the default settings, but there are a lot of options that
you can modify in the packaging.

Build configurations and packaging settings
In this section, we will see some of the settings available for build and packaging.

The Platforms submenu has the Packaging Settings option, which displays the
Project - Packaging page with configuration options that can be modified.

Build configurations and packaging settings 319

Figure 12.8 – Project - Packaging page

The PACKAGING category contains a lot of technical options that can be used to
optimize the packaging. The Build Configuration option defines how the build will be
done. In Blueprint-only projects, you have two options: Development and Shipping.
Development builds contain information that is used in debugging to help you find errors.
Shipping builds are cleaner as they do not have debug information and should be used to
create the final version of the game that will be distributed.

The Staging Directory property is used to define the folder where the packaged build will
be stored. The For Distribution option is required when submitting a game to the App
Store or Google Play Store.

You can now close the Project - Packaging page.

320 Building and Publishing

When you want to move the project to another computer or to pass the project to
someone else, you can use the Zip Project option available in the File menu of the Level
Editor. The Zip Project option copies and compresses the essential project files.

Figure 12.9 – Zip Project

There are many packaging options and some of them are platform-specific. Take the time
to study the various packaging options for your game's target platform.

Summary
In this chapter, we discussed creating playable builds of the game we created across
multiple platforms. We learned how to optimize the graphics settings and discussed
how to set up the game to be played by others. Finally, we saw how to change the build
configurations and packaging settings.

With what you've learned in this chapter, you will be able to better present your project
and distribute it on different platforms so that others can enjoy it.

This chapter concludes Part 3 and ends our implementation of the playable shooter game.
Part 4 will cover advanced Blueprints concepts. In the next chapter, we will learn about
data structures and flow control.

Quiz 321

Quiz
1. You can adjust the graphics settings of your game in the Engine Scalability

Settings panel.

a. True

b. False
2. In Unreal Engine 5, you can package your game for consoles without being a

registered console developer.

a. True

b. False
3. To package your game, you need to access a menu by clicking the Platforms button.

a. True

b. False
4. Which option is not a Build Configuration option in Blueprint-only projects?

a. Development

b. Shipping

c. Test
5. The Staging Directory property is used to define the folder where the packaged

build will be stored.

a. True

b. False

Part 4:
Advanced

Blueprints

This part will explore advanced Blueprints concepts that will help you when you are
developing complex games. We will examine data structures, flow control, math nodes,
trace nodes, and Blueprints tips to increase the quality of Blueprints. The final chapter
explains some Virtual Reality (VR) concepts and explores the VR template.

This part comprises the following chapters:

• Chapter 13, Data Structures and Flow Control

• Chapter 14, Math and Trace Nodes

• Chapter 15, Blueprints Tips

• Chapter 16, Introduction to VR Development

13
Data Structures

and Flow Control
In Part 3, we learned how to create a basic AI game using Behavior Trees, how to add
game states, and how to package a game for distribution.

Part 4 will teach you about advanced Blueprint concepts that will help when developing
complex games. We will learn about data structures, flow control, math nodes, and
Blueprint tips, and gain an understanding of virtual reality development.

This chapter will explain what data structures are and how they can be used to organize
data in Blueprints. We will learn about the concept of containers and how to use arrays,
sets, and maps to group multiple elements, as well as other ways to organize data using
enumerations, structures, and data tables. In this chapter, we will also see how to control
a Blueprint's flow of execution by using various types of flow control nodes.

We will cover the following topics in this chapter:

• Exploring different types of containers

• Exploring other data structures

• Flow control nodes

By the end of the chapter, you will know about various data structures and flow control
nodes that will increase your ability to solve problems in Blueprints.

326 Data Structures and Flow Control

Exploring different types of containers
A container is a type of data structure whose instances can store collections of values or
instances. The values in a container must be of the same type. An element of a container
can be retrieved later by using a label that the element is associated with.

The containers available in Blueprints are arrays, sets, and maps. To turn a variable into
a container, click the icon next to Variable Type and choose one of the containers that
appear, as shown in the following screenshot:

Figure 13.1 – Creating a container

We will start by learning about the most used container type – an array.

Array
An array is a container type that stores one or more values of a specific data type. Thus,
a single variable can be used to store multiple values instead of using separate variables for
each value.

Arrays provide indexed access to their elements, so the label used to retrieve an element is
the element's sequential index in the container. Every element keeps its place in the array
unless an element is inserted in the middle of it.

These are the steps to create an array:

1. In the My Blueprint panel, create a variable and define its type.

Exploring different types of containers 327

2. Click the icon next to the Variable Type drop-down menu and select the icon of an
array, as shown in this screenshot:

Figure 13.2 – Creating an array of integers

3. Compile the Blueprint to be able to add the default values of the array. In the
DEFAULT VALUE panel of the variable, click the + icon to add elements
to the array.

The following screenshot shows an example of an Integer array named Ammo Slot
with four elements used to store the amount of ammunition the player has. Each
element of the array stores the amount of ammunition of a type of weapon:

Figure 13.3 – Adding the default values of an array

Note
Arrays always start from index 0. So, in the previous example with four
elements, the index of the first element is 0, and the index of the last
element is 3.

328 Data Structures and Flow Control

To get a value from an array, use the Get (a copy) node. This node has two input
parameters, which are a reference to an array and the index of the element, as shown in
the following screenshot. The Get (a copy) node creates a temporary copy of the value
stored in the array; therefore, any changes to the value retrieved will not affect the value
stored in the array:

Figure 13.4 – Getting a value from an array

To modify an element of an array, use the Set Array Elem node. The example in the
following screenshot sets the Item value to 10 of the element with Index set to 2:

Figure 13.5 – Setting a value in an array element

Two nodes can be used to add elements to an array. The ADD node adds an element to
the end of the array. The INSERT node adds an element at the index passed as an input
parameter, and all the elements that used to be in this index onward will move to the next
indexes. For example, if we insert an element at index 2, then the previous element that
was at index 2 will be moved to index 3. The element that was at index 3 will be moved to
index 4, and so on. The length of the array dynamically increases when using these nodes.
Both nodes receive a reference as parameters to an array and a reference to the element
that will be added to the array:

Figure 13.6 – Adding elements to an array

Exploring different types of containers 329

You can get the number of elements in an array by using the LENGTH node. Since the
index of an array starts at zero, then the index of the last element will be LENGTH – 1.
Alternatively, you can use the LAST INDEX node, which returns the index of the last
element of the array. The following screenshot shows these two nodes:

Figure 13.7 – Getting the length and last index of an array

Note
Be careful not to access an index in an array greater than the last index. It may
give unexpected results and, in turn, cause crashes that may be difficult to track
down later.

You can use the Random Array Item node to get a random element of the array. The IS
EMPTY or IS NOT EMPTY nodes are used to check whether the array has elements:

Figure 13.8 – Nodes to get a random array element and to check whether the array has elements

The Make Array node is used to create an array from variables in the EventGraph. Click
on Add pin + to add input pins. The example in the screenshot is from a Level Blueprint.
There are four instances of PointLight in the level, and the Make Array node is used to
create Point Lights Array:

Figure 13.9 – Using the Make Array node

330 Data Structures and Flow Control

Let's create an example to examine the use of arrays that store object references.

Array example – creating BP_RandomSpawner
In this example, we'll create a Blueprint called BP_RandomSpawner, which will have
an array of Target Points. The elements of the Target Points array can be set in the Level
Editor. When the level starts, the BP_RandomSpawner Blueprint will randomly select
one element of Target Points and spawn an instance of a specified Actor class in the same
location of the Target Point selected.

These are the steps to create this example:

1. Create a project based on the Third Person template with the starter content.
2. In the Content Browser, access the Content folder. Right-click in the empty

space next to the list of folders and select the New Folder option. Name the folder
BookUE5. We will use this folder to store this chapter's assets.

3. Open the BookUE5 folder you just made, then click the Add button in the Content
Browser, and choose the Blueprint Class option.

4. On the next screen, choose Actor as the parent class. Name the Blueprint
BP_RandomSpawner and double-click it to open the Blueprint Editor.

5. In the My Blueprint panel, create a new variable named TargetPoints. In the
Details panel, click the Variable Type drop-down menu and search for target
point. Hover over Target Point to display a submenu and then choose Object
Reference. Click the icon to the right of Variable Type and select the Array icon.
Check the Instance Editable attribute, as shown in the following screenshot:

Figure 13.10 – Creating an array of Target Point

6. Create another variable and name it SpawnClass. Click the Variable Type
drop-down menu and search for actor. Hover over Actor to display a submenu
and then choose Class Reference:

Exploring different types of containers 331

Figure 13.11 – Creating a variable that references an Actor class

7. Click the icon to the right of Variable Type and select the single variable icon.
Check the Instance Editable attribute. We will use the class specified in the
SpawnClass variable when spawning an Actor:

Figure 13.12 – SpawnClass can be specified in an instance on the level
In Event BeginPlay, we will use a Branch node to validate the Spawn Class and
Target Points variables. Any variable storing a reference should be validated before
use to avoid runtime errors. If the variables are valid, then we spawn an Actor
using the class stored in the Spawn Class variable and the transform of a randomly
selected Target Point stored in the array:

Figure 13.13 – The Event BeginPlay actions

332 Data Structures and Flow Control

8. The nodes of steps 8–13 are to validate the Spawn Class and Target Points variables.
Drag the Spawn Class variable from the My Blueprint panel, drop it into the
EventGraph near Event BeginPlay, and select Get Spawn Class.

9. Drag a wire from the Spawn Class node and add an Is Valid Class node.
10. Drag a wire from the Return Value pin of Is Valid Class and add an AND node.

We are using the AND node because we will only spawn the Actor if both variables
are valid.

11. Drag the Target Points array variable from the My Blueprint panel, drop it into the
EventGraph near the Spawn Class node, and select GET Target Points.

12. Drag a wire from the TargetPoints node and add an IS NOT EMPTY node.
Connect the output pin of the IS NOT EMPTY node to the bottom input pin of the
AND node. We need to check whether the array has elements.

13. Drag a wire from the output pin of the AND node and add a Branch node. Connect
the white pin of Event BeginPlay to the white input pin of the Branch node.

14. The nodes of steps 14–18 are to spawn an Actor using the class stored in Spawn
Class. Drag a wire from the True output pin of the Branch node and add
a SpawnActor from the Class node.

15. Drag a wire from the Class input pin of the SpawnActor node and add a Get
Spawn Class node.

16. Drag a wire from the Target Points node and add a Random Array Item node.
17. Drag a wire from the top output pin of the Random node and add

a GetActorTransform node.
18. Connect the Return Value pin of GetActorTransform to the Spawn Transform

input pin of the SpawnActor node.
19. Compile and save the Blueprint.

Now, we need to prepare the level to be able to test BP_RandomSpawner.

Testing BP_RandomSpawner
We will add some instances of Target Point on the level. The BP_RandomSpawner
instance will use the transform of one of these Target Points:

1. In the Level Editor, we will use Place Actors Panel to easily find the Target Point
class. Click on the Create button on the toolbar to open a submenu, and then click
on Place Actors Panel:

Exploring different types of containers 333

Figure 13.14 – Accessing Place Actors Panel

2. Search for target in the Place Actors panel, as shown in the following screenshot.
Drag Target Point and drop some instances in different locations in the level:

Figure 13.15 – Finding the Target Point class

334 Data Structures and Flow Control

3. Drag BP_RandomSpawner from the Content Browser and drop it on the level.
The TargetPoints and Spawn Class variables appear in the Details panel of the
instance because we checked the Instance Editable attribute. Click on the + icon
to add elements to the array. Expand the drop-down menu of each element and
select one of the TargetPoint instances that are in the level. In Spawn Class, select
Blueprint_Effect_Smoke:

Figure 13.16 – Setting the variables of the BP_RandomSpawner instance

4. Click on the Play button of the Level Editor. BP_RandomSpawner will spawn an
instance of Blueprint Effect Smoke at one of the TargetPoint instances. Exit and
play again to see Blueprint Effect Smoke spawning in different locations:

Figure 13.17 – The instance of Blueprint Effect Smoke spawned on the level

Arrays are widely used in game development. Now, let's look at other types of containers.

Exploring different types of containers 335

Set
A set is another type of container. It is an unordered list of unique elements. The search
for an element of a set is based on the value of the element itself. There is no index. The
elements of a set must be of the same type, and repeated elements are not allowed.

Follow these steps to create a set:

1. In the My Blueprint panel, create a variable and define its type.
2. Click on the icon next to the Variable Type drop-down menu and select the icon of

a set, as shown in this screenshot:

Figure 13.18 – Creating a set of strings

3. Compile the Blueprint so that you can add default values to the set. In the DEFAULT
VALUE panel of the variable, click on the + icon to add elements to the set.

4. The following screenshot shows an example of a string set with four elements:

Figure 13.19 – Adding default values to a set

336 Data Structures and Flow Control

The next screenshot shows some of the nodes of the set container. Here is a brief
description of each node:

• ADD: Adds an element to a set.

• ADD ITEMS: Adds elements from an array to a set. The array must be of the same
type as the set.

• CONTAINS: Returns true if the set contains the element.

• LENGTH: Returns the number of elements in a set:

Figure 13.20 – Nodes of the set container

A set does not have a GET element node, so if you need to iterate through the elements of
a set, then you can copy the elements of a set to an array. The next screenshot shows the
TO ARRAY node and other nodes that are used to remove elements:

• TO ARRAY: Copies the elements of a set to an array. Note that copying a whole
array of large objects can be a very costly operation.

• CLEAR: Removes all elements of a set.

• REMOVE: Removes an element of a set, or returns True if an element was
removed and False if the element was not found.

• REMOVE ITEMS: Removes the elements specified in an array from a set:

Figure 13.21 – Nodes to remove items and convert a set to an array

Some nodes perform operations with two sets and return a different set. These nodes are
shown in the next screenshot:

• UNION: The resulting set contains all the elements from the two sets. Since the
result is a set, all duplicates will be removed.

• DIFFERENCE: The resulting set contains the elements of the first set that are not in
the second set.

• INTERSECTION: The resulting set contains only the elements that exist in
both sets:

Exploring different types of containers 337

Figure 13.22 – Operations with two sets

Use the Make Set node to create a set from variables in the EventGraph. Click on Add pin
+ to add input pins:

Figure 13.23 – The Make Set node

The following screenshot shows a simple example of the use of a set. There is a set named
Unique Names that keeps the names of the players who have won a round. In this case,
we want to know the players who have won at least one round; we do not need to know
how many rounds a player has won:

Figure 13.24 – A set container usage example

The set container is not used as much as the array. Now, let's look at the last container
available in Blueprint – map.

338 Data Structures and Flow Control

Map
A map container uses a key-value pair to define each element. The key type can be
different from the value type. A map is unordered and is searched by using the key value,
so duplicate keys are not allowed. Duplicate values, however, are allowed.

These are the steps to create a map:

1. Create a variable, and in Variable Type, select the type that will be used as the
key type.

2. Click on the icon next to the Variable Type drop-down menu, and select the icon of
a map, as shown in the following screenshot.

3. After that, you need to choose the value type on the second dropdown that
appeared. The example in the following screenshot uses String as the key type and
Float as the value type:

Figure 13.25 – Creating a map container

4. Just like any other new variable in Blueprints, it is necessary to compile the
Blueprint before adding the default values of the map. In the DEFAULT VALUE
panel of the variable, click on the + icon to add elements to the map.

5. The following screenshot shows an example of a map with four elements. Each
element has a string key and a float value:

Figure 13.26 – Adding default values to a map

Exploring different types of containers 339

The following screenshot shows some map nodes to add an element, remove an element,
and remove all elements of a map:

• ADD: Adds a key-value pair to a map. If the key already exists in the map, then the
value associated with the key will be overwritten.

• REMOVE: Removes a key-value pair from a map. It returns True if the key-value
pair was removed. If the key was not found, then the node returns False.

• CLEAR: Removes all elements of a map:

Figure 13.27 – Map nodes to add and remove elements

The following nodes are used to get the length of a map, check whether a key exists, and
get the value associated with a key in the map:

• LENGTH: Returns the number of elements in a map.

• CONTAINS: Receives a key as an input parameter and returns True if the map
contains an element that uses that key.

• FIND: The FIND node is like the CONTAINS node, but it also returns the value
associated with the key used in the search:

Figure 13.28 – Map nodes to get the length and search for a key

The following nodes are used to copy the keys and values of a map to arrays:

• KEYS: This copies all the keys of a map to an array.

• VALUES: This copies all the values of a map to an array:

Figure 13.29 – Map nodes to copy the keys and values to arrays

340 Data Structures and Flow Control

Use the Make Map node to create a map from variables in the EventGraph. Click on Add
pin + to add input pins:

Figure 13.30 – The Make Map node

The following screenshot shows an example usage of a map. Price Table is a map that
uses Product Name as its key and the price of the product as its value. There is a function
named Calculate Total Price that receives as input parameters Product Name and
Amount, which counts the products being bought. Product Name is searched in the
Price Table map to get the price of the product. The price of the product is multiplied by
Amount to find Total Price:

Figure 13.31 – Using a map to get the price of a product

We covered the containers available in Blueprints, which are arrays, sets, and maps, and
learned when we should use each of them. The use of containers avoids the need to create
several single variables to store information. In the next section, we will see other data
structures that help to organize data within a game or application.

Exploring other data structures 341

Exploring other data structures
There are data structures that are not created within a Blueprint class. They are independent
auxiliary assets that can be used in a Blueprint. With these data structure assets, you are
able to add your own data types to a project and can learn how to use tools that help
you deal with a large volume of data in your project.

Let's learn how to create and use enumerations, structures, and data tables.

Enumerations
An enumeration, also known as an enum, is a data type that contains a fixed set of named
constants and can be used to define the type of a variable. The value of a variable whose
type is an enumeration is restricted to the set of constants defined in the enumeration.

Follow these steps to create an enumeration:

1. Click the ADD button in the Content Browser, and in the Blueprints submenu,
select Enumeration, as shown in the following screenshot:

Figure 13.32 – Creating an enumeration

2. There is a naming convention of starting the name of an enumeration with an
uppercase E. Give the name EWeaponCategory to the created enumeration and
double-click it to edit its values.

342 Data Structures and Flow Control

3. In the Enumeration Editor, click on the New button to add a named constant to this
enumeration. Add the five named constants shown in the following screenshot.
You can add descriptions to the enumeration and for each constant:

Figure 13.33 – Adding the elements of an enumeration

4. To use the enumeration data type, create a variable in the Blueprint Editor, expand
the Variable Type drop-down menu, and search for the name of the enumeration,
as shown in the following screenshot:

Figure 13.34 – Using the enumeration data type

The following screenshot shows that a variable defined with an enumeration type is
restricted to the constants of the enumeration:

Exploring other data structures 343

Figure 13.35 – Setting the value of an enumeration variable

For each enumeration type, there is a Switch on node that is used to change the execution
flow based on the enumeration value, as shown in the following screenshot:

Figure 13.36 – Using the Switch on node on an enumeration

This is all we need to know about enumerations. The next data asset we will look at is
the structure.

Structures
A structure, also known as a struct, is a composite data type that can group variables of
different types into a single type. An element of a structure can be of a complex type, such
as another structure, array, set, map, or object reference.

344 Data Structures and Flow Control

These are the steps to create a structure:

1. Click the ADD button in the Content Browser, and in the Blueprints submenu,
select Structure, as shown in the following screenshot:

Figure 13.37 – Creating a structure

2. Rename the created structure as Weapon Type and double-click it to define its
variables.

3. In the STRUCTURE Editor, click the New Variable button to add variables to
the structure. Each variable can be of a different type, and you can click on the
container icon to turn the variable into a container, such as an array, set, or map.

4. Add the variables shown in the following screenshot. Note that the Category
variable is of the EWeapon Category enumeration type that was previously created:

Exploring other data structures 345

Figure 13.38 – The variables of a Weapon Type structure

5. To use the Structure data type, create a variable in the Blueprint Editor, click the
Variable Type drop-down menu, and search for the name of the structure, as shown
in the following screenshot:

Figure 13.39 – Using a structure data type

346 Data Structures and Flow Control

6. Compile the Blueprint so that you can edit DEFAULT VALUE. The following
screenshot shows the structure, filled with example values of weapons:

Figure 13.40 – Adding default values to a structure type variable

Note
The float variables in the previous screenshot use relative values that represent
percentages – for example, 0.5 is 50% and 1.0 is 100%.

For each structure type, there are Make and Break nodes available for use in a Blueprint.
The Make node receives the separate elements as input and creates a structure. The Break
node receives a structure as input and separates its elements. The next screenshot shows
the Make and Break nodes of the Weapon Type structure:

Figure 13.41 – Nodes to make a structure and get its elements

Exploring other data structures 347

The structure is very useful in Blueprints for combining several variables into a new type.
The last data structure we will look at is the data table.

Data tables
A data table is a table of values based on a structure. It can be used to represent
a spreadsheet document. This is useful for data-driven gameplay where game data needs
to be constantly modified and balanced. In these cases, the data can be modified in
a spreadsheet editor and then imported into the game.

Follow these steps to create a data table:

1. Click on the ADD button in the Content Browser, and in the Miscellaneous
submenu, select Data Table, as shown in the following screenshot:

Figure 13.42 – Creating a data table

2. After selecting Data Table, the Unreal Editor will ask you to choose a structure that
represents the data type of the table. Select the WeaponType structure:

Figure 13.43 – Selecting the structure used by the data table

348 Data Structures and Flow Control

3. Rename the created data table WeaponTable and double-click on it to open the
Data Table Editor.

4. Click on the Add button to add a row to the table. Each row has a row name that
identifies the row, which must be unique. To change a row name, you need to
right-click on a row and select Rename. In the example in the following screenshot,
the row name is a simple index. Add some rows to the data table, as shown in the
following screenshot:

Figure 13.44 – Editing a data table
The data table can also be imported from a plain text Comma-Separated Values
(CSV) file. The following screenshot shows an example of a CSV file.
A spreadsheet editor can export a spreadsheet to the CSV format:

Exploring other data structures 349

Figure 13.45 – WeaponTable in the CSV format

5. To import a CSV file, click on the Import button in the Content Browser and select
the CSV file. A dialog box will appear, asking you to select a structure in the Choose
DataTable Row Type field, as shown in the following screenshot:

Figure 13.46 – Importing a data table from a CSV file

6. To use a data table in a Blueprint, create a variable in the Blueprint Editor and select
Data Table > Object Reference as Variable Type:

Figure 13.47 – Creating a data table reference

350 Data Structures and Flow Control

7. Compile the Blueprint, and in DEFAULT VALUE, select one data table, as shown in
the following screenshot:

Figure 13.48 – Setting the default data table

The following screenshot shows some actions to get data from a data table:

• Get Data Table Row: Returns a structure with the data of a specific row

• Get Data Table Row Names: Copies all the row names of a data table to an array

• Get Data Table Column as String: Copies all the values of a column to an array
of strings:

Figure 13.49 – Getting content from a data table

The following screenshot shows an example of how a data table is used. Select Weapon
is a function that receives Weapon ID as an input parameter and searches in Weapon
Table for a weapon whose row name is equal to Weapon ID. If it finds the weapon, then it
copies the weapon data to the Current Weapon variable:

Figure 13.50 – Getting data from a row of a data table

Flow control nodes 351

We saw some data structure assets that we can create to organize data in a project. Now,
we will learn about more Blueprint nodes that are useful to organize your script.

Flow control nodes
There are some nodes that control the flow of the execution of a Blueprint. These nodes
determine the execution path based on conditions. We've already seen the Branch node,
which is a commonly used flow control node. Let's learn about the other main types of
flow control nodes.

Switch nodes
A switch node determines the flow of execution based on the value of an input variable.
There are different types of switch nodes. The next screenshot shows an example of the
Switch on Int node:

Figure 13.51 – An example of the Switch on Int node

The Selection input parameter receives an integer value that determines the output pin
that will be executed. If the input value has no pin, then the Default pin will execute.
You can change the start index in the Details panel of Switch on Int. The output pins are
added by using the Add pin + option.

352 Data Structures and Flow Control

Another type of switch is the Switch on String node, which is shown in the following
screenshot. The output values must be added in the Details panel of the Switch on String
node, under Pin Options | Pin Names:

Figure 13.52 – An example of the Switch on String node

There is also Switch on Enum, which uses the values of an enumeration as the available
output pins.

Flip Flop
Every time a Flip Flop node is executed, it toggles between two output pins – A and B.
There is a Boolean output parameter named Is A. If the Is A parameter is True, then it
indicates that pin A is running. If it is False, then pin B is running.

Note
The Flip Flop node does not work properly inside a function because Flip Flop
has an internal variable that is deleted when the function ends. So, every time,
the A pin will be executed inside a function.

The following screenshot shows an example of the Flip Flop node:

Figure 13.53 – An example of the Flip Flop node

Flow control nodes 353

If the player is using dual wield pistols, then when they fire, only one of the pistols fires.
In the next shot, the other pistol fires. Fire Left Pistol and Fire Right Pistol are custom
macros, used here to simplify this example.

Sequence
When a Sequence node is triggered, it executes all the Actions connected to the output
pins in order. Thus, it executes all the Actions of a pin, then all the Actions of the next pin,
and so on. It is useful to organize groups of Actions.

The next screenshot shows the Sequence node in use. The Print String functions are used
to show the order of execution:

Figure 13.54 – An example of the Sequence node

The Add pin + option adds output pins. To remove a pin, right-click on the pin and
choose the Remove execution pin option.

For Each Loop
A For Each Loop node receives an array as an input parameter and performs the Actions
of the Loop Body output pin for each element of the array. The current Array Element
and Array Index are available as output pins. The Completed output pin is executed when
For Each Loop finishes its execution.

354 Data Structures and Flow Control

In the next screenshot, the For Each Loop node is used to iterate through an array of
Point Light references that contain the lamps of a room:

Figure 13.55 – An example of the For Each Loop node

The lamps are turned on by using the Set Visibility function of Point Light Component,
which is inside the Point Light array element.

Do Once
The Do Once node executes the output pin only once. If it is triggered again, then its
output pin will not be performed. The Reset input pin needs to be triggered to allow the
Do Once node to run the output pin again.

The following screenshot shows an example of how it is used:

Figure 13.56 – An example of the Do Once node

When the player presses Space Bar, the Do Once node is triggered, and a charged weapon
is used. After that, a timer is created to execute Full charge Custom Event, which resets
the Do Once node after 30.0 seconds. If the player presses Space Bar again before
30 seconds have elapsed, then the Do Once node will not execute its output pin.

Flow control nodes 355

Do N
The Do N node allows you to specify how many times the output pin can execute. After
the number of executions has completed, the Actions of the output pin will only be
executed again if the Reset pin is triggered.

The following screenshot shows an example of how the Do N node is used:

Figure 13.57 – An example of a Do N node

The player can press Space Bar to fire a special weapon. After the third shot, they need to
press the R key to reset the Do N node to be able to fire three more times.

Gate
The Gate node has an internal state; it can be opened or closed. If it is open, then the
output pin will execute when the Gate node is triggered. If it is closed, then the output pin
will not execute.

These are the input pins of the Gate node:

• Enter: An execution pin that receives the flow of execution

• Open: An execution pin that sets the state of Gate to open

• Close: An execution pin that sets the state of Gate to closed

• Toggle: An execution pin that toggles the state of the Gate node

• Start Closed: A Boolean variable that determines whether the Gate node should
start in the closed state

356 Data Structures and Flow Control

The example in the next screenshot is of a Blueprint that applies damage to actors that are
overlapping it:

Figure 13.58 – An example of the Gate node

When an actor is overlapping, the Gate node stays open, and damage is applied to the
actor on every tick. If the actor stops overlapping, then the Gate node will close, and the
damage will no longer be applied.

MultiGate
When a MultiGate node is triggered, one of the output pins is executed. A MultiGate
node can have multiple output pins. To add another output pin, use the Add pin + option.

These are the input pins of the MultiGate node:

• Reset: An execution pin used to reset the MultiGate node and allow new executions
of the output pins.

• Is Random: A Boolean variable. If the value is True, then the order of execution of
the output pins is random.

• Loop: This is a Boolean variable that indicates how the MultiGate node will behave
after the last output pin is executed. If the value is True, then the MultiGate node
continues to execute the output pins. If False, then the MultiGate node will stop
executing the output pins.

• Start Index: An integer value indicating the first output pin to be executed.

Summary 357

The following screenshot shows an example of the MultiGate node:

Figure 13.59 – An example of the MultiGate node

When the Tab key is pressed, a MultiGate node is used to set a different Static Mesh at
each execution. The Loop parameter is checked, so MultiGate will continue executing
from the first output pin after the last output pin is executed.

These are the flow control nodes available in Blueprints. It's good to know about their
existence because we can find problems that can be easily solved using one of them.

Summary
In this chapter, we learned how to use data structures to organize data in Blueprints.
We learned how to store various elements in an array and how to retrieve any of those
elements. We learned how to use other types of containers, such as sets and maps, to
store data.

After that, we learned how to create and use enumerations, structures, and data tables, and
we saw examples of how they can be related. It was presented to us as several flow control
nodes, such as Switch, Gate, and For Each Loop.

358 Data Structures and Flow Control

This chapter showed various Blueprint features that will help us to organize data so that it
can be used effectively. The flow control nodes can simplify the EventGraph because, for
each situation, there may be a more suitable node.

In the next chapter, we will learn about world and local coordinates, vector operations,
and the use of traces to test collisions.

Quiz
1. Arrays do not allow repeated elements.

a. True

b. False
2. For each enumeration type, there is a Switch On node available in Blueprints.

a. True

b. False
3. All variables in a structure must be of the same type.

a. True

b. False
4. A data table uses a structure to define the data type of the table.

a. True

b. False
5. Which node is not a flow control node?

a. For Each Loop

b. Spawn Actor from Class

c. Do Once

d. Gate

14
Math and Trace

Nodes
The representation of a 3D world is based on mathematical concepts. If you do not
understand these concepts, then it will be more difficult to understand certain operations
performed in a 3D game. This chapter explains some math concepts that are needed for
3D games. We will learn about the difference between world and relative transforms and
how to use them when working with components. We will learn how to use vectors to
represent the position, direction, velocity, and distance. The concept of traces is explained
and various types of traces are presented. This chapter also shows how to use traces to test
collisions in a game.

These are the topics covered in this chapter:

• World and relative transforms

• Points and vectors

• Introduction to traces and trace functions

By the end of the chapter, you will know how to use vectors and traces to make the player
interact with other actors in the level.

360 Math and Trace Nodes

World and relative transforms
The Actor class has a Transform structure. This structure has three variables, which are
used to represent Location, Rotation, and Scale. The Transform structure of an actor that
is on the Level can be modified by using the Details panel.

Figure 14.1 – Modifying the transform in the Details panel

In the Level Editor, you can use the transformation widget that appears when you select
an actor. There are buttons to select the type of transformation the widget will apply to an
actor, as we can see in the following screenshot:

Figure 14.2 – Using the widget to modify the transform

World and relative transforms 361

The 3D space is represented by three axes: x, y, and z. These axes are represented by colors:
red is the x axis, green is the y axis, and blue is the z axis.

The Location variable of the Transform structure has a set of values for X, Y, and Z,
which determines the position on each axis. These values are also known as the world
location of the actor. The following screenshot shows some actions that we can use to get
and set an actor's location:

• GetActorLocation: Returns the current location of the actor

• SetActorLocation: Sets New Location for the actor

• AddActorWorldOffset: Uses the Delta Location input parameter to modify the
current location of the actor.

Figure 14.3 – Getting and setting the actor location

The Rotation variable of the Transform structure has a set of values for X, Y, and Z in
degrees, which determines the rotation on each axis. The following screenshot shows the
following rotation nodes:

• GetActorRotation: Returns the current rotation of the actor

• SetActorRotation: Sets New Rotation for the actor

• AddActorWorldRotation: Adds the Delta Rotation input parameter to the current
rotation of the actor.

Figure 14.4 – Getting and setting the actor rotation

362 Math and Trace Nodes

The Scale variable of the Transform structure has a set of values for X, Y, and Z, which
determines the scale on each axis. The following screenshot shows the nodes that are used
to get and set an actor's scale:

Figure 14.5 – Getting and setting the actor scale

When a Blueprint has Actor components, the transforms of those components are known
as relative transforms because they are relative to the component's parent. The following
screenshot shows an example of components. DefaultSceneRoot is a small white sphere
that is hidden in the game and used to store the actor's position in the world. It can be
replaced with another Scene component.

Below it, in the component's hierarchy shown in the screenshot, there is a Static Mesh
component named Table, and below the Table component in the hierarchy, there is
another Static Mesh component named Statue. The transform of Table is relative to the
DefaultSceneRoot transform, and the transform of the Statue component is relative
to the Table transform. So, if you move the Table component in the Viewport, then the
Statue component will move too, but if you change the relative transform of the Statue
component instead, then the Table component will remain where it is.

Figure 14.6 – Component's hierarchy

Points and vectors 363

There are nodes to get and set a component's relative location. You can also get a
component's world location, as you can see in the following screenshot:

Figure 14.7 – Getting and setting the component's relative location

The Location and Scale variables are represented by Vector structures, which is our
next topic.

Points and vectors
There is a structure in Unreal Engine named Vector, which has three variables of the float
type: X, Y, and Z. Same as the concept of a vector in mathematics, this Vector can be used
to represent a point (location) in 3D space or velocity (speed in a specified direction).

Let's first look at an example of using Vector as a point in 3D space. The following
screenshot has two actors. One actor represents a character and the other represents
a couch.

Figure 14.8 – Two actors on the level

364 Math and Trace Nodes

The following screenshot shows the character's location. The Location variable of the
Transform structure is of the Vector type (X, Y, and Z), and one Unreal unit equals
1.0 cm by default.

Figure 14.9 – The character's location

We can represent the character's location simply as (50.0, 0.0, 20.0). The couch's location
is (450.0, 0.0, 20.0), which can be seen in the following screenshot:

Figure 14.10 – The couch's location

Now, let's see how to use a vector to represent movement. We are going to instruct
our character on how to get to the couch. They need to know the direction and distance
in which they must move. The following screenshot shows that we are instructing the
character to move 400 cm on the x axis:

Figure 14.11 – Moving 400 cm on the x axis

Points and vectors 365

Both the direction and distance are represented by a single vector, using X, Y, and Z
values. In the previous screenshot, the value of the vector that describes the movement
is (400, 0, 0).

If we take the character location vector and add it to the vector that represents this
movement, then the result is the couch location vector. To add two vectors, add each of
their elements:

couch_location = character_location + vector_movement
couch_location = (50, 0, 20) + (400, 0, 0)
couch_location = (50 + 400, 0 + 0, 20 + 0)
couch_location = (450, 0, 20)

If we have a start point and a destination point, and we want to find out the movement
vector, then we just need to get the destination point and subtract the start point.

For example, if we want to know the vector that leads from the start point of (25, 40,
55) to the destination point of (75, 95, 130), then we need to solve this expression:

vector_movement = destination_point - start_point
vector_movement = (75, 95, 130) - (25, 40, 55)
vector_movement = (75 - 25, 95 - 40, 130 - 55)
vector_movement = (50, 55, 75)

Now, let's see how we can represent a vector.

Representation of a vector
A vector is a directed line segment and can be represented by an arrow.

Figure 14.12 – Arrow representing a vector

Point A is the initial point of the vector and point B is the terminal point. The initial point
of all world locations is always (0,0,0), whereas the initial point of all relative locations
is always the terminal point of the parent of the component.

366 Math and Trace Nodes

A vector has a magnitude (or length) and a direction. Two vectors are equivalent if they
have the same magnitude and direction.

Vector operations
Several mathematical operations can be done with vectors. Understanding these
operations is fundamental to manipulating objects in 3D space:

• Vector addition: The sum of two vectors is determined by adding each of
their elements. The following example shows the sum of vectors (3, 5, 0)
and (5, 2, 0):

V1 = (3, 5, 0)
V2 = (5, 2, 0)
V1 + V2 = (3 + 5, 5 + 2, 0 + 0)
V1 + V2 = (8, 7, 0)

The following is a graphical representation of the previous example of vector
addition. To simplify the graph, we are only drawing the x and y axes. The initial
point of V1 is the world origin (x=0, y=0, z=0). The terminal point of V1 is (x=3,
y=5, z=0). The initial point of V2 is the terminal point of V1 and the terminal point
of V2 is the result of the sum (x=8, y=7, z=0).

Figure 14.13 – Adding vectors
For example, if V1 is the character's world location and V2 is the relative location of
the character's weapon, then V1 + V2 will be the weapon's world location.

Points and vectors 367

The following screenshot shows the vector addition node:

Figure 14.14 – Node to add vectors

• Vector subtraction: The subtraction of one vector from another is determined by
subtracting each of its elements. This is an example of vector subtraction using the
vectors (6, 8, 0) and (1, 4, 0):

V1 = (6, 8, 0)
V2 = (1, 4, 0)
V1 – V2 = (6 – 1, 8 – 4, 0 – 0)
V1 – V2 = (5, 4, 0)

The following is a graphical representation of the previous example of vector
subtraction. Since this is subtraction, the V2 vector is represented by its
opposite vector:

Figure 14.15 – Subtracting vectors
For example, if V1 is the character weapon's world location and V2 is the relative
location of the character's weapon, then V1 - V2 will be the character's world
location.

368 Math and Trace Nodes

The vector subtraction node is shown in the following screenshot:

Figure 14.16 – Node to subtract vectors

• Length of a vector: The length (or magnitude) of a vector is the distance between
its initial and terminal points. If you have two world locations, the length of the
difference between the two will be the distance between those world locations.
The length of a vector is calculated using the Blueprint node shown in the
following screenshot:

Figure 14.17 – VectorLength node

• Normalizing vectors: We use vector normalization to find a unit vector. The
unit vector has a length equal to one. It is often used when direction needs to be
indicated. There is a node named Normalize that receives a vector as input and
returns the normalized vector:

Figure 14.18 – Normalize vector node

• Scalar vector multiplication: An integer or float number is also known as a scalar
value. The multiplication of a vector by a scalar value is done by multiplying each of
its elements by the scalar value. This operation changes the length of the vector, but
the direction remains the same unless the scalar is negative, in which case the vector
will point in the opposite direction following multiplication.

Points and vectors 369

Figure 14.19 – Multiplying a vector by a float

Note
The multiply node is a wildcard node. This means that when you connect
a vector variable to the node, it will be converted into a Vector x Vector node.
You need to right-click on the second input pin, hover over Convert Pin…,
and select Float.

• Dot product: The dot product is a projection of one vector onto another vector. The
dot product of two normalized vectors is equal to the cosine of the angle formed
between the vectors and can range from -1.0 to 1.0:

Figure 14.20 – Dot product node
The dot product can be used to verify the relationship between two vectors, such
as whether they are perpendicular or parallel. The following diagram shows some
examples of a dot product between two vectors, A and B:

Figure 14.21 – Examples of the dot product

370 Math and Trace Nodes

• Actor vectors: There are functions that return the forward, right, and up vectors of
an actor. The returned vectors are normalized (length = 1). The following screenshot
shows these functions, which are often used to direct movement:

Figure 14.22 – Getting actor vectors

To find the opposite vector, just multiply the vector by -1. By doing this, you can find the
backward, left, and down vectors of an actor. The following screenshot shows how to find
the backward vector:

Figure 14.23 – Finding the opposite vector

Vectors are widely used in game programming; they can be used to indicate directions
and to represent speed, acceleration, and a force acting on an object.

In the next section, we will see another important concept used to interact with
a 3D world, which is traces.

Introduction to traces and trace functions
Traces are used to test whether there are collisions along a defined line segment. A trace
can be done by channel or object type and can return the single or multiple objects that
have been hit.

The trace channels available are Visibility and Camera. The object type can be
WorldStatic, WorldDynamic, Pawn, PhysicsBody, Vehicle, Destructible, or Projectile.
You can create more channels and object types in Project Settings | Engine | Collision.

Introduction to traces and trace functions 371

Actors and components need to define how they react to each trace channel and object
type. The response can be Ignore, Overlap, or Block.

The following screenshot shows the collision responses of a Static Mesh actor. There are
collision presets that can be selected, such as BlockAll, OverlapAllDynamic, and Pawn.
Alternatively, you can choose Custom… for Collision Presets and define the Collision
Responses properties individually. The object type is set via the Object Type property
dropdown, while the Visibility and Camera channels are defined in the Trace Responses
section of the Collision Responses table.

Figure 14.24 – Collision Responses table

372 Math and Trace Nodes

When a trace function collides with something, it returns one or more Hit Result
structures. The Break Hit Result node can be used to access the Hit Result variables, as
shown in the following screenshot:

Figure 14.25 – Hit result structure variables

These are some of the variables of the Hit Result structure:

• Blocking Hit: A Boolean value that indicates whether the trace hit something

• Location: The location of the hit

• Impact Normal: The normal vector that is perpendicular to the surface that was hit

• Hit Actor: The reference to the actor hit by the trace

Introduction to traces and trace functions 373

In the next sections, we will see the trace functions available in Blueprint.

Traces for objects
The LineTraceForObjects function tests for collisions along a defined line and returns
a Hit Result structure with data for the first actor hit that matches one of the Object
Types values specified in the input parameter.

The MultiLineTraceForObjects function has the same input parameters as the
LineTraceForObjects function. The difference between the functions is that the
MultiLineTraceForObjects function returns an array of Hit Result structures describing
all actors hit by the trace, rather than a single result, making it more expensive to perform.
The following screenshot shows the two TraceForObjects functions:

Figure 14.26 – TraceForObjects functions

These are the input parameters of the two TraceForObjects functions:

• Start: The location vector that defines the start of the line to be used for the
collision test.

• End: The location vector that defines the end of the collision test line.

• Object Types: An array that contains object types that will be searched with the
trace. The trace will ignore all objects of any other types.

• Trace Complex: A Boolean value. If it is True, then the trace will test against the
actual Mesh. If it is False, then the trace will test against simplified collision shapes.

374 Math and Trace Nodes

• Actors to Ignore: An array with actors that should be ignored in the collision tests.

• Draw Debug Type: This allows the drawing of a 3D line that represents the trace.

• Ignore Self: A Boolean value that indicates whether the Blueprint instance that is
calling the function should be ignored in the collision test.

There are other line trace functions that use Trace Channel instead of Object Types, as we
will see in the next section.

Traces by channel
The LineTraceByChannel function tests for collisions along a defined line using
Trace Channel, which can be set to Visibility or Camera, and returns a Hit Result
structure with data for the first actor hit in the collision test. There is also the
MultiLineTraceByChannel function, which returns an array of Hit Result structures
describing all actors hit by the trace.

Figure 14.27 – TraceByChannel functions

The input parameters of these functions are as follows:

• Start: The location vector that defines the start of the line to be used for the
collision test.

• End: The location vector that defines the end of the collision test line.

Introduction to traces and trace functions 375

• Trace Channel: A channel used for the collision test. It can be Visibility or Camera.
The trace will search for objects that overlap or block the trace channel selected.

• Trace Complex: A Boolean value. If it is True, then the trace will test against the
actual Mesh. If it is False, then the trace will test against simplified collision shapes.

• Actors to Ignore: An array with actors that should be ignored in the collision tests.

• Draw Debug Type: This allows the drawing of a 3D line that represents the trace.

• Ignore Self: A Boolean value that indicates whether the Blueprint instance that is
calling the function should be ignored in the collision test.

A line trace is not the only type of trace function. You can also use shapes to do traces.

Shape traces
There are trace functions for the sphere, capsule, and box shapes, but these functions are
more expensive to perform than line traces.

The following screenshot shows the SphereTraceForObjects, CapsuleTraceForObjects,
and BoxTraceForObjects functions:

Figure 14.28 – Shape trace functions

For all these shapes, there are functions to trace by channel and object type. There are also
functions that return a single hit or multiple hits.

376 Math and Trace Nodes

Debug lines
The trace functions have an option to draw debug lines that help when testing traces.
Click on the small arrow at the bottom of the trace functions to display the Trace Color,
Trace Hit Color, and Draw Time parameters, as shown in the following screenshot:

Figure 14.29 – Debug line options

The Draw Debug Type parameter can be set to one of the following values:

• None: Don't draw the line.

• For One Frame: The line only appears for one frame.

• For Duration: The line stays for the time specified in the Draw Time parameter.

• Persistent: The line does not disappear.

Debug lines are useful to find the problem when the traces are not acting as expected.

Example of vectors and trace nodes
Let's do an example to see the use of vectors and trace nodes. We will modify the Player
Character to use a line trace to find and toggle the light of another Blueprint:

1. Create a new project using the First Person template with starter content.
2. Open the FirstPersonCharacter Blueprint, which is in the

Content|FirstPersonBP|Blueprints folder.

Introduction to traces and trace functions 377

3. In the My Blueprint panel, create a Macro and name it Trace Locations. In the
Details panel, add two output parameters of the Vector type. Name the parameters
Start Location and End Location, as shown in the following screenshot.
We do not need input parameters.

Figure 14.30 – Macro output parameters

4. In the graph of the Trace Locations macro, add the nodes shown in the
following screenshot. This macro calculates the Start and End locations that will
be used by Line Trace. Since this is a first-person game, we are using the camera as
Start Location, and End Location is 300 cm ahead of Camera.

Figure 14.31 – The nodes of the Trace Locations macro

378 Math and Trace Nodes

5. Click the Event Graph tab, right-click on Event Graph, and add an input event for
the Enter key.

Figure 14.32 – Adding the Enter keyboard event

6. Add a LineTraceByChannel node and add the Trace Locations macro to
Event Graph. Connect the Pressed pin of the Enter event to the white pin of
LineTraceByChannel. Connect the outputs of the macro to the Start and End
inputs of Line Trace, as shown in the following screenshot:

Figure 14.33 – Using the LineTraceByChannel node

Introduction to traces and trace functions 379

7. Connect the nodes shown in the following screenshot to the output of the
LineTraceByChannel node. These nodes test whether Hit Actor is of the
Blueprint_WallSconce type. If it is, then the light of Blueprint_WallSconce is
toggled. Compile the Blueprint to apply the changes.

Figure 14.34 – Testing whether Hit Actor is of the Blueprint_WallSconce type

8. Add an instance of Blueprint_WallSconce (which is in the
Content|StarterContent|Blueprints folder) to the Level, and then play
the Level.

380 Math and Trace Nodes

9. Move your character close to the instance of Blueprint_WallSconce, look at
it, and press the Enter key to toggle the light. The following screenshot shows the
Player Character and Blueprint_WallSconce:

Figure 14.35 – Interacting with Blueprint_WallSconce

This example showed a practical use of vectors and trace nodes. It is important to
understand these concepts because they will help to solve many problems in 3D game
development.

Summary
This chapter presented some math concepts and showed you how to use world and relative
transforms. We saw how several Blueprint nodes are used to modify an element of a
transform, such as Location, Rotation, and Scale.

This chapter has shown that a vector structure can be used to represent a point in 3D
space or a mathematical vector. We learned how to do several vector operations using
Blueprint nodes.

Quiz 381

Finally, we saw how to test collisions using trace nodes. There are many trace nodes,
which are based on the type of collision response, the shapes used, and whether the trace
nodes return single or multiple hits.

In the next chapter, we will learn several tips for dealing with the complexity of Blueprints
and increasing the quality of Blueprints.

Quiz
1. In Unreal Engine, Transform is a structure that contains the Location, Rotation,

and Scale variables.

a. True

b. False
2. The Location and Scale variables of the Transform structure are of the Vector type.

a. True

b. False
3. A normalized vector can be any length.

a. True

b. False
4. Visibility and Camera are examples of object types.

a. True

b. False
5. The MultiLineTraceByChannel function returns an array of Hit Result structures.

a. True

b. False

15
Blueprints Tips

This chapter contains several tips on how to improve the quality of Blueprints. We will learn
how to use various editor shortcuts that speed up our work. We will also learn about some
Blueprint best practices that will help you to decide what type of implementation should be
done and where. Finally, we'll learn about more useful miscellaneous Blueprint nodes.

These are the topics covered in this chapter:

• Blueprint Editor shortcuts

• Blueprint best practices

• Using miscellaneous Blueprint nodes

By the end of the chapter, you will be familiar with shortcuts, best practices, and Blueprint
nodes that will help you when developing more complex games.

384 Blueprints Tips

Blueprint Editor shortcuts
In the Blueprint Editor, we are going to work with variables a lot, so let's start with the
shortcuts related to variables.

When you drag a variable from the My Blueprint panel and drop it in EventGraph,
a submenu appears for you to choose either the GET or SET nodes. However, there are
shortcuts to create GET and SET nodes. If you hold the Ctrl key and drag a variable to the
graph, then the editor will create a GET node. To create a SET node, hold the Alt key and
drag a variable to the graph. The following screenshot shows the GET and SET nodes:

Figure 15.1 – Shortcuts to create GET and SET nodes

There is another way to create GET and SET nodes. If you drag a variable and drop it on
a compatible pin of another node, then the editor will create a GET or SET node
depending on the parameter type.

The following screenshot shows an example of the Score variable being dropped on an input
parameter pin. If the pin is compatible, then the editor will show a tooltip with a check icon
and a label such as Make B = Score. This expression means that the B pin of the node will
get the value of the Score variable. So, the editor will create a GET Score node:

Figure 15.2 – Dragging a variable and dropping it on an input pin to create a GET node

Blueprint Editor shortcuts 385

If you drop the Score variable on an output parameter pin, as shown in the following
screenshot, then the editor will show the Make Score = ReturnValue label, and it will
create a SET Score node using the ReturnValue label of the other node as the input
parameter:

Figure 15.3 – Dragging a variable and dropping it on an output pin to create a SET node

The Blueprint Editor has an automatic type conversion system. To use it, drag a wire from
the pin of one variable type and drop it on a pin of another variable type. The following
screenshot shows that a tooltip appears to confirm that the conversion is possible:

Figure 15.4 – Creating a converter node

Another useful feature of the Blueprint Editor is that it is possible to change an existing
node for another node that uses the same variable type without breaking the connections.

386 Blueprints Tips

There is an example of this in the following screenshot. Player Health and PlayerStamina
are float variables. If you drag the PlayerStamina variable and drop it on the SET Player
Health node, then the node will change to a SET PlayerStamina node and keep all the
connections.

Figure 15.5 – Changing a node and keeping all connections

There is a shortcut to create variables based on the type of an input or output pin of a node.
To do this, right-click on a data pin and select the Promote to Variable option, as shown in
the following screenshot. This option creates a variable and connects it to the pin.

Figure 15.6 – Promoting the return value to a variable

Blueprint Editor shortcuts 387

If you need to break all the connections of a pin, hold the Alt key and click on the pin.
You can move all the connections of a pin to another compatible pin by holding the Ctrl
key, dragging the connections, and dropping them on another pin. This is very useful
because you don't need to redo the connections one by one. In the following screenshot,
all the connections of the As First Person Character pin will be moved to the As BP
Player Character.

Figure 15.7 – Dragging all connections to another pin

The Blueprint Editor offers several options for node alignment. To use them, select some
Blueprint nodes and right-click on one of them to open a menu. Alignment is one of the
options on this menu. The following screenshot shows the Alignment options available:

Figure 15.8 – The Alignment options

388 Blueprints Tips

Most of the Alignment options are self-explanatory, but let's look at an example:
Straighten Connection(s). The following screenshot shows three nodes selected:

Figure 15.9 – These nodes will be aligned

After applying Straighten Connection(s), the nodes will be aligned, as shown in the
following screenshot:

Figure 15.10 – The nodes after applying Straighten Connection(s)

There are shortcut keys to create some common nodes in Blueprints. If you want to create
a Branch node, then hold the B key and left-click on the graph. To create a Sequence
node, hold the S key and left-click on the graph, as shown in the following screenshot:

Figure 15.11 – Shortcuts for Branch and Sequence nodes

Blueprint Editor shortcuts 389

Other shortcut keys are F + left-click, which creates a For Each Loop node, and D + left-
click, which creates a Delay node. These can be seen in the following screenshot:

Figure 15.12 – Shortcuts for the For Each Loop and Delay nodes

To create a comment box around some nodes, first select the nodes, then right-click on
one of the selected nodes and select the Create Comment option from Selection, or
you can just press the C key. The following screenshot shows a comment box that is
labeled More shortcut keys. Inside the comment box, there are more examples of
shortcut keys used to create flow control nodes.

Figure 15.13 – Shortcuts for some flow control nodes

When you get used to some shortcuts, you will see how they speed up your work. Now,
let's look at tips to help you build better Blueprints.

390 Blueprints Tips

Blueprint best practices
In a project, you will deal with several Blueprint classes, and some of these Blueprint
classes will be complex, with many nodes. The tips in this section will help you analyze
your project and carry out some practices that will make your Blueprint classes more
manageable. I separated these tips into two categories: Blueprint responsibilities and
Blueprint complexities.

Blueprint responsibilities
When creating a Blueprint, you need to decide what its responsibilities will be. This refers
to what it will do and what it will not do. You need to make the Blueprint as independent
as possible. A Blueprint must be responsible for its internal state.

To illustrate the concept of Blueprint responsibilities, let's work with a simple
example created for teaching purposes. In a game, the player is represented by the
FirstPersonCharacter Blueprint. If the player collides with an enemy Blueprint, then the
player will die, and an explosion effect will be spawned. The following screenshot shows
the event hit that was implemented in the enemy Blueprint:

Figure 15.14 – Event hit of an enemy Blueprint

Blueprint best practices 391

After that, you'll create another Blueprint that can also kill the player. So, you copy Event
Hit and the nodes of the previous screenshot and paste them into the new Blueprint.
Then, you create another different type of enemy Blueprint and copy and paste Event
Hit again. But you decide to change the way the player dies. The player does not explode
anymore; instead, a death animation is executed. However, to make this change in your
game, you will have to search for all Blueprints that can kill the player and modify the
script of all of them. This is a problem because you might forget one of the Blueprints, and
the script may have frequent changes.

There is a way to avoid this type of problem. The script that defines how player death
works must be implemented in the player Blueprint, which, in this example, is the
FirstPersonCharacter Blueprint. The point is that the player Blueprint is responsible for
the way the player dies. Let's redo our example, but now, we will create a custom event
named Death in the FirstPersonCharacter Blueprint, as shown in this screenshot:

Figure 15.15 – Creating the Death event in the FirstPersonCharacter Blueprint

This way, if there are changes in the way the player dies, then these changes will need to be
done only in the Death event of the FirstPersonCharacter Blueprint.

392 Blueprints Tips

When a collision occurs, the other Blueprints that can kill the player will just have to
trigger the Death event of the FirstPersonCharacter Blueprint. The following screenshot
shows the new version of Event Hit of the Enemy Blueprint:

Figure 15.16 – New version of Event Hit of Enemy Blueprint

So, you can use events and functions to define how a Blueprint can communicate with
other Blueprints. If you need to send data between Blueprints, then it can be sent through
input or output parameters.

Another topic related to Blueprint responsibilities is Level Blueprint. Each Level has
a Level Blueprint, so if you create your game rules logic inside a Level Blueprint, then
when you add another Level, you will need to copy and paste all Blueprint nodes to the
Level Blueprint of the new Level. If your game rules logic changes, then you will need to
modify all the Level Blueprints, and this can become a maintenance nightmare.

A Level Blueprint must be used only for logic and situations specific to one Level.
A typical example is to put a hidden trigger on a Level. When the player overlaps it,
an enemy is spawned in another room.

A better place to implement game rules logic is in a GameMode Blueprint class. The
logic for other actors should be implemented in Blueprint classes rather than being
implemented in the Level Blueprint because instances of a Blueprint class can be added
to any Level, so you do not need to copy and paste Blueprint nodes to use the same
functionality in another Level.

Blueprint best practices 393

Managing Blueprint complexities
A Blueprint EventGraph can become very complex and scary. When you open a Blueprint
of this kind that was done by someone else, you might wonder, what's going on?

Some practices and Blueprint tools will help you to manage the complexities of a Blueprint
and keep it readable.

The most important concept that will help you deal with complex Blueprints is
abstraction. Abstraction is used to handle complexities by hiding low-level details,
allowing the developer to focus on a problem at a high abstraction level without worrying
about unnecessary details of other parts of the script.

In an EventGraph, there is a simple way to apply abstraction. You can select a group
of nodes and convert them into a collapsed graph, Function, or Macro. To convert
the nodes, right-click on the selected nodes. In the submenu that appears, within the
ORGANIZATION category, you will see the options shown in the following screenshot:

Figure 15.17 – Collapse options

Let's look at an example. The following screenshot shows some nodes connected to the
InputAction Pause event. These nodes are responsible for showing the Pause Menu:

Figure 15.18 – Nodes used to show the Pause Menu

394 Blueprints Tips

If we select the nodes, right-click on one of the selected nodes and use the Collapse
Nodes option, then the editor will create Collapsed Graph, which is represented by
a single node. You can give a meaningful name to this node. The following screenshot
shows the node named Show Pause Menu, which represents Collapsed Graph.
If you want to see or edit the nodes of Collapsed Graph, then double-click on the
collapsed node:

Figure 15.19 – The nodes were converted into a collapsed graph

Only use collapsed nodes if the group of nodes is not going to be used in another place.
If the same group of nodes is used in other places of the EventGraph, then you can use
Collapse to Macro. If you think that a group of nodes could be called from another
Blueprint, then use Collapse to Function.

Now, let's imagine that you are opening a very complex Blueprint. But instead of seeing
a giant graph of nodes, you see collapse graphs, macros, and functions with meaningful
names. At least you will get an overview of what the Blueprint does. The complexities are
there, but they are hidden, and you can look at the low-level details of a specific part
when needed.

Another handy tool that can increase the readability of a complex EventGraph is
a comment box. A comment box helps to identify a logic block. Its label stays visible when
you zoom out of the EventGraph, and you can even change the color of comment boxes.
The following screenshot shows an EventGraph zoomed out with three comment boxes:

Blueprint best practices 395

Figure 15.20 – The comments are visible when the EventGraph is zoomed out

You can see a list of the comment boxes of a graph in the Bookmarks window, which
can be accessed from the top menu by going to Window | Bookmarks. The following
screenshot shows the Bookmarks window:

Figure 15.21 – Bookmarks window

396 Blueprints Tips

If you double-click on an item in the Bookmarks window, then the EventGraph will be
positioned in the associated location. You can create bookmarks to reference a location
of the EventGraph by clicking on the icon located in the top left of the EventGraph and
giving a name to the bookmark, as shown in the following screenshot:

Figure 15.22 – Creating a bookmark

In the My Blueprint panel, you can see a list of the events being used in the EventGraph,
as can be seen in the following screenshot. Double-click on an event name to move the
EventGraph to the position of the event:

Figure 15.23 – List of events in the EventGraph

Blueprint best practices 397

A complex Blueprint can have many variables. There are two variable properties, named
Tooltip and Category, which help you identify and organize variables. These properties
are found in the Details panel of a variable, as shown in the following screenshot:

Figure 15.24 – Tooltip and Category properties

You can describe the purpose of the variable in the Tooltip property. The tooltip is shown
when the mouse cursor is over the variable, as shown in the following screenshot. If the
variable is set to Instance Editable, then it should have a tooltip so that the purpose of the
variable is clear to the designer who is using an instance of the Blueprint in the Level.

Figure 15.25 – The tooltip appears when hovering over a variable

398 Blueprints Tips

The Category property is used to group related variables. You can create categories or
select an existing category in the drop-down menu. Variables are separated by categories
in the My Blueprint tab, which you can open and close when you need it. This separation
makes it easier to understand the variables of a Blueprint. The following screenshot shows
a category named Round State, which has three variables:

Figure 15.26 – Variables are grouped by categories

If you need to create variables that hold temporary values to help with more complex logic,
then consider creating a function. A function allows the creation of local variables, which are
only visible within the function. When you are editing a function, there is one more category
for local variables in the My Blueprint panel, as shown in the following screenshot. Just
a note; the values of local variables are discarded at the end of the function execution.

Figure 15.27 – Creating a local variable

Using miscellaneous Blueprint nodes 399

This section covers some best practices to deal with Blueprint responsibilities and
complexities. We will now see how to use some interesting miscellaneous Blueprint nodes.

Using miscellaneous Blueprint nodes
In this section, we will learn about some Blueprint nodes that can be very useful in
certain situations.

These are the nodes covered in this section:

• Select

• Teleport

• Format Text

• Math Expression

• Set View Target with Blend

• AttachActorToComponent

• Enable Input and Disable Input

• The Set Input Mode nodes

Select
The Select node is very flexible. It can work with several types of variables for the index and
the values of options. The node returns a value associated with the option that corresponds
to the index that is passed as input. The following screenshot shows the Select node:

Figure 15.28 – The Select node

400 Blueprints Tips

To add more input option pins, click on Add pin +. You can set a pin type of Option 0,
Option 1, or Index by dragging a variable reference or wire onto the pins. Option 0 and
Option 1 can be of any type, but the Index type must be Integer, Enum, Boolean, or Byte.

The following screenshot shows the Select node in use:

Figure 15.29 – Example of a Select node

There is an enumeration named Difficult Level that has the values of Easy, Normal, and
Hard. The Spawn Boss custom event will spawn a different class of the Boss Blueprint,
depending on the value of the Difficult Level enumeration variable. The option type in
this example is Actor Class Reference.

Teleport
The Teleport node moves an actor to the specified location. The advantage of using
Teleport rather than setting the actor's location is that if there is an obstacle at the
location, then the actor is moved to a nearby place where there will be no collision.

The following screenshot shows an example of using the Teleport node:

Using miscellaneous Blueprint nodes 401

Figure 15.30 – Example of a Teleport node

There is a BP Teleport Platform Blueprint that has a reference to Next Teleport Platform.
When the player overlaps BP Teleport Platform, they are teleported to Next Teleport
Platform.

Format Text
The Format Text node builds text based on a template text and parameters specified in the
Format input parameter. To add new parameters in Text, use the {} delimiters with the
name of the new parameter inside the delimiters. An input parameter is created for each
{} delimiter found in the Format parameter.

The following screenshot shows the Format Text node being used to print the result of
a round, along with the template text {Name} wins the round with {Score}
points:

Figure 15.31 – Example of a Format Text node

An example output is Sarena wins the round with 17 points.

402 Blueprints Tips

Math Expression
The Math Expression node is a collapsed graph created by the editor and is based on the
expression typed in the name of the node. An input parameter pin is created for each
variable name found in the expression. The Return Value output parameter is the result of
the expression.

The following screenshot shows an example of using the Math Expression node:

Figure 15.32 – Example of a Math Expression node

There is a function named Calculate Money Reward, which uses a Math Expression
node. The expression of the node is (PlayerLuck/5) * (EnemyHP/30).

Set View Target with Blend
The Set View Target with Blend node is a function from the Player Controller class. It is
used for switching the game view between different cameras. The New View Target input
parameter is the actor to set as a view target, usually a camera.

The following screenshot shows an example of using the Set View Target with Blend node:

Figure 15.33 – Example of a Set View Target with Blend node

Using miscellaneous Blueprint nodes 403

There is an event of the Level Blueprint that is triggered when the player enters the
treasure room. The Set View Target with Blend function is used to change the game view
to the camera that is in the treasure room.

AttachActorToComponent
The AttachActorToComponent node attaches an actor to the component referenced in
the Parent input parameter. The transformations of the Parent component affect the actor
attached. Optionally, Socket Name can be used to identify the place where the actor will
be attached.

The following screenshot shows an example of using the AttachActorToComponent node:

Figure 15.34 – Example of an AttachActorToComponent node

The Equip Shield custom event uses the AttachActorToComponent node to equip a
Shield Actor component on a Skeletal Mesh component. The Skeletal Mesh component
has a socket named LeftArmSocket, which is used to position the shield on the arm.

404 Blueprints Tips

Enable Input and Disable Input
The Enable Input and Disable Input nodes are functions used to define whether an actor
should respond to inputs events such as from a keyboard, mouse, or gamepad. The nodes
need a reference to the Player Controller class in use.

A common use of these nodes is to allow an actor to only receive input events when the
player is near the actor, as shown in the following screenshot:

Figure 15.35 – Example of Enable Input and Disable Input nodes

The Enable Input node is called when the player begins to overlap the Blueprint. When
the player finishes overlapping the Blueprint, the Disable Input node is called.

The Set Input Mode nodes
There are three Set Input Mode nodes that are used to define whether the priority in
handling user input events is with the UI or with the player input. These are the nodes:

• Set Input Mode Game Only: Only Player Controller receives input events.

• Set Input Mode UI Only: Only the UI receives input events.

• Set Input Mode Game and UI: The UI has priority in handling an input event, but
if the UI does not handle it, then Player Controller receives the input event. For
example, when the player overlaps a Blueprint representing a shop, a UI is displayed
with options for the player to choose to use the mouse, but the player can still use
the arrow keys to move away from the shop.

Summary 405

Figure 15.36 – The Set Input Mode nodes

I recommend you get used to these miscellaneous Blueprint nodes. When working on
a project, you will have to deal with some problems that can easily be solved with some
specific Blueprint nodes.

Summary
In this chapter, we saw how to use editor shortcuts to create variables in various ways
and how to organize Blueprint nodes using alignment tools. We also learned about some
shortcut keys that are used to create specific Blueprint nodes.

Then, we looked at some Blueprint best practices to define Blueprint responsibilities and
manage the complexities of Blueprints.

Finally, we learned about some more useful Blueprint nodes. All of these tips will help
you to improve your scripts and build quality projects.

In the next chapter, we will explore the virtual reality template that is available in the
Unreal Engine Editor.

406 Blueprints Tips

Quiz
1. To create a GET node, hold the Alt key and drag a variable to the graph.

a. True

b. False
2. A Blueprint must be responsible for its internal state and be as independent

as possible.

a. True

b. False
3. You can select a group of nodes and convert them into a collapsed graph, Function,

or Macro.

a. True

b. False
4. The Index parameter of the Select node can be of any type.

a. True

b. False
5. The Math Expression node creates an input parameter pin for each variable name

found in the expression.

a. True

b. False

16
Introduction to VR

Development
This chapter explains several Virtual Reality (VR) concepts and explores the VR template.
As VR headsets are becoming more affordable, the number of users is increasing fast.
Therefore, the demand for VR games and business applications is rising as well.
We will focus on the Blueprints of the VR template. This will be another opportunity
to see Blueprint nodes being used in practice. You will be able to use some Blueprint
concepts from this chapter in several other types of projects, so this is a useful chapter
even if you do not have a VR headset.

In this chapter, we will analyze the functionality of the VRPawn Blueprint of the VR
template. We will explain how to create objects that can be grabbed by the player using
motion controllers, and we will learn about the Blueprint functions used to implement
teleportation and how to use interfaces for Blueprint Communication. We will also see
how the menu works in the VR template.

These are the topics we will cover in this chapter:

• Exploring the VR template

• The VRPawn Blueprint

• Teleportation

408 Introduction to VR Development

• Object grabbing

• Blueprint Communication using interfaces

• Interacting with the menu

By the end of the chapter, you will understand how the VR template works and will know
how to create interfaces to allow different Blueprints to share data with each other.

Exploring the VR template
The Unreal Engine Editor has a Blueprint VR template that makes it easy to start
experimenting with VR development. The VR template uses the OpenXR framework,
which is an open standard for VR and augmented reality development. Because of
OpenXR, the VR template works on multiple devices without any platform-specific
modification.

The VR template is in the GAMES category. The following screenshot shows the creation
of a project using the VR template:

Figure 16.1 – Selecting the VR template

The VRPawn Blueprint 409

The next screenshot shows the VR template map with a ball, weapons, and cubes that can
be grabbed by the user:

Figure 16.2 – The VR template map

If there is a VR display device installed on your computer and set up for development,
then you can launch the Level in VR by clicking on the dropdown of the Play button and
selecting VR Preview. If you don't have a VR display device, you can launch the Level
by using the New Editor Window option of the Play button and pressing the Tab key to
toggle Spectator Mode. You will be able to move around the Level using the W, A, S, and
D keys and the mouse.

In VR Mode, you can teleport to different locations in the Level by pressing up on the
right motion controller's thumbstick to mark a location and releasing the thumbstick to
execute the teleport. Some objects in the Level can be grabbed. To grab an object, bring
the motion controller closer to the object and hold the grip button. To drop the object,
release the grip button.

The Blueprints used in the template are in the Content > VRTemplate > Blueprints
folder. Let's learn about how they work to make it easier to adapt them to our projects.
Also, this will be an excellent opportunity to see practical examples of Blueprints.

The VRPawn Blueprint
The VRPawn Blueprint represents the user in the Level. This Blueprint contains the logic
for input events from the motion controllers, which are the physical devices that the user
holds to interact in VR.

410 Introduction to VR Development

The following screenshot shows the Components panel of the VRPawn Blueprint:

Figure 16.3 – The VRPawn components

MotionControllerRight and MotionControllerLeft are Motion Controller
components that track motion controller devices. When you move the motion controller
device, the data of this movement is sent to the Motion Controller component.

The Camera component is the user view. There is a Static Mesh component named
HMD to visually represent the head-mounted display in the Level. When using the
spectator camera, we can see a representation of the user because of the HMD and
Motion Controller components:

The VRPawn Blueprint 411

Figure 16.4 – A user representation in the VR template

Another component in VRPawn is TeleportTraceNiagaraSystem, which is a Niagara
particle system component used to represent the teleport trace.

Then, we have another pair of Motion Controller components. The VR template
uses these extra components as a simple way to get the aim locations. By default,
the Motion Controller component uses the grip location, but you can change
Motion Source in the Details panel. The next screenshot shows the properties of
MotionControllerRightAim. The Display Device Model property is unchecked so that
this Motion Controller component is not displayed in the Level:

Figure 16.5 – The properties of MotionControllerRightAim

412 Introduction to VR Development

The last component left to mention is the Widget Interaction component. It works
like a laser pointer and is used to interact with the Widget menu, which is activated by
pressing the Menu button on the motion controller:

Figure 16.6 – Interacting with the Widget menu

In the EventGraph of VRPawn, there are several input events from motion controllers,
which we will see in detail in the Teleportation and Object grabbing sections.

Teleportation
In this section, we'll see the event and functions used in teleportation.

To start the teleport, press up on the right motion controller's thumbstick to mark
a location. When you release the thumbstick, you will teleport to the marked location.
The teleport destination is represented by the VRTeleportVisualizer Blueprint:

Figure 16.7 – The VRTeleportVisualizer Blueprint

Teleportation 413

The input event used for teleportation is InputAxis MovementAxisRight_Y. The first
nodes of the event check whether Axis Value is positive, which means the thumbstick
was pressed up, and check whether Axis Value is greater than the deadzone, which is
a minimum Axis Value to start the teleport:

Figure 16.8 – The first nodes of InputAxis MovementAxisRight_Y

The next screenshot shows the nodes connected to the True output of the Branch node of
Figure 16.8. The Do Once node is used to ensure that the Start Teleport Trace function
will not run again while the teleport trace is active. The Teleport Trace function keeps
updating the destination while the user presses up on the thumbstick:

Figure 16.9 – Activating the teleport trace

414 Introduction to VR Development

The following screenshot shows the nodes connected to the False output of the Branch
node of Figure 16.8, which means that the user is not pressing up on the right motion
controller's thumbstick. If the teleport trace was active, then the event ends the teleport
trace and tries to teleport to the destination. The Try Teleport node connects to the Reset
pin of the Do Once node:

Figure 16.10 – Ending the teleport trace and teleporting

Let's analyze the Start Teleport Trace, TeleportTrace, End Teleport Trace, and Try
Teleport functions used in teleportation.

The Start Teleport Trace function sets True in the Teleport Trace Active Boolean
variable, sets visibility as True in the Teleport Trace Niagara System component, and
spawns an instance of VRTeleportVisualizer:

Figure 16.11 – The Start Teleport Trace function

The TeleportTrace function uses a function named Predict Projectile Path By Object
Type to calculate Projected Teleport Location and Teleport Trace Path Positions. The
following screenshot shows the last nodes of the TeleportTrace function, which update
the TeleportVisualizer location and set the vector array used by the Niagara particle
system component for teleport trace visual effects:

Teleportation 415

Figure 16.12 – The last nodes of the Teleport Trace function

The End Teleport Trace function is the opposite of the Start Teleport Trace function.
It sets the Teleport Trace Active Boolean variable as False, destroys the Teleport
Visualizer instance, and hides the Teleport Trace Niagara System component:

Figure 16.13 – The End Teleport Trace function

The End Teleport Trace function uses a Validated Get node. When you have an Object
Reference Get node, you can right-click it and select Convert to Validated Get:

Figure 16.14 – Converting a Get node to a Validated Get node

The original node is converted to a GET node with execution pins that can be used to
check whether the object reference is valid:

Figure 16.15 – A GET node with branching execution pins

416 Introduction to VR Development

The Try Teleport function checks whether Valid Teleport Location is True and then uses
the Teleport function to teleport the user to the destination location:

Figure 16.16 – The Try Teleport function

There is another type of movement in the VR template named Snap Turn. In this
movement, you can rotate your virtual character by pressing left or right on the left
motion controller's thumbstick. The input event used for Snap Turn is InputAxis
MovementAxisLeft_X.

We saw the events and functions used for teleportation. In the next section, we will see
how object grabbing works in the VR template.

Object grabbing
The object grabbing system is based on a GrabComponent Blueprint that was created
for the VR template, which can be found in the Content > VRTemplate >
Blueprints folder.

GrabComponent is a child class of SceneComponent. For more information about
Blueprint components, see Chapter 18, Creating Blueprint Libraries and Components.

To make any Actor of the Level grabbable, add GrabComponent to the Actor and set
Mobility to Movable:

Object grabbing 417

Figure 16.17 – Making an Actor grabbable

There is an enumeration named Grab Type that defines how the object attaches to the
motion controller. For more information about enumeration, see Chapter 13, Data
Structures and Flow Control.

You can set Grab Type in the Details panel of GrabComponent:

Figure 16.18 – Grab Type enumeration

These are the grab types available:

• None: Use this option when you want to disable grabbing without removing the
Grab component of an Actor.

• Free: The object attaches to the motion controller while maintaining its relative
location and orientation to it. This type is best used for objects that don't need to be
held in a certain way to be used, such as the cubes in the VR template.

418 Introduction to VR Development

• Snap: When picked up, the object snaps to a specific predefined location and
rotation relative to the motion controller that grabbed it. This grab type is usually
used for objects with a clear grip location, such as the weapons in the VR template.

• Custom: This option allows the developers to create their own grab type. The
Grab component has the bIsHeld Boolean variable and the OnGrabbed and
OnDropped event dispatchers, which can be used to create custom logic.

The events of VRPawn that deal with grabbing are InputAction GrabLeft and
InputAction GrabRight, which are triggered by the grip button of the motion controllers.
To grab an Actor on the Level, bring the motion controller closer to the Actor and hold
the grip button. To drop the Actor, release the grip button.

Let's analyze the InputAction GrabLeft event. The following screenshot shows the first
nodes of the event:

Figure 16.19 – The first nodes of InputAction GrabLeft

The Get Grab Component Near Motion Controller function uses a sphere trace to
search for a nearby Actor. If an Actor is found, it checks whether it has GrabComponent.
If it does, a reference to GrabComponent is returned.

For more information about traces, see Chapter 14, Math and Trace Nodes.

If no Actor was found or if the Actor found had no component of GrabComponent
type, the Nearest Component output pin would return an invalid component (since
there wasn't any). Hence, the Is Valid node checks for the validity of the output. If the
output is valid, the Try Grab function of GrabComponent is executed. This function
disables the Actor physics if enabled and attaches the Actor to the motion controller. The
GrabComponent reference is stored in the Held Component Left variable:

Blueprint Communication using interfaces 419

Figure 16.20 – Executing the Try Grab function of GrabComponent

If the object grabbed was being held by the other hand, then the other hand needs to
release the object. This is done by clearing the reference in the Held Component variable
of the other hand:

Figure 16.21 – Clearing the Held Component Right variable

The next screenshot shows the nodes connected to the Release pin of the InputAction
GrabLeft event. The Try Release function detaches the Actor from the motion controller.
After that, the Held Component Left variable is cleared:

Figure 16.22 – Nodes executed when the user drops the Actor

The user can interact with some grabbed Actors, such as the pistols, through Blueprint
Interfaces.

Blueprint Communication using interfaces
A Blueprint Interface is a special type of Blueprint that only contains function names and
parameters. It is used to allow communication between different types of Blueprints.

420 Introduction to VR Development

To create a Blueprint Interface, follow these steps:

1. Click the Add button in the content browser, and in the Blueprints submenu, select
Blueprint Interface:

Figure 16.23 – Creating a Blueprint Interface

2. The VR template has a Blueprint Interface named VRInteraction BPI in the
Content > VRTemplate > Blueprints folder. Double-click it to open the
Blueprint Interface Editor. The following screenshot shows the functions of the
VRInteraction BPI interface:

Figure 16.24 – The VRInteractionBPI interface functions

Blueprint Communication using interfaces 421

3. Open the Pistol Blueprint to see an example of an interface implementation. Click
the Class Settings button of the Blueprint Editor. In the Details panel, go to the
Interfaces category to see that the VRInteraction BPI interface was added to the
Pistol Blueprint:

Figure 16.25 – Adding an interface
The Pistol Blueprint implemented the Trigger Pressed function of the
VRInteraction BPI interface. Since the Trigger Pressed function does not have
output parameters, it is implemented as an event:

Figure 16.26: Implementing a function of the interface

422 Introduction to VR Development

4. In this event, the Pistol Blueprint spawns an instance of the Projectile Blueprint.
The Trigger Pressed function is called by the VRPawn Blueprint in the
InputAction TriggerLeft and InputAction TriggerRight events:

Figure 16.27 – The VRPawn Blueprint calls the Trigger Pressed function of the interface

The VRPawn Blueprint gets the Actor owner of GrabComponent and calls the Trigger
Pressed function using the Actor owner reference. If the Actor has an implemented
VRInteraction BPI interface, then Trigger Pressed is executed. Nothing happens if the
Actor did not implement the VRInteraction BPI interface.

In the next section, we will see how the user interacts with the menu in the virtual world.

Interacting with the menu
The VR template has a menu system that is activated by pressing the Menu button on
the motion controller. The menu system is implemented by the Menu Blueprint and
the WidgetMenu Blueprint. Both Blueprints are in the Content > VRTemplate >
Blueprints folder.

The events of VRPawn that deal with the menu are InputAction MenuToggleLeft and
InputAction MenuToggleRight, which are triggered by the Menu button of the motion
controllers. The Menu button is used to show and hide the menu.

The next screenshot shows the InputAction MenuToggleRight event that executes the
Toggle Menu function of VRPawn:

Interacting with the menu 423

Figure 16.28 – The InputAction MenuToggleRight event

The Toggle Menu function checks whether the menu is active. In this case, it calls the
Close Menu function of the Menu Blueprint. If the menu is not active, it spawns an
instance of the Menu Blueprint:

Figure 16.29 – The Toggle Menu function

The Menu Blueprint is responsible for showing WidgetMenu attached to the motion
controller and defining the interaction between them.

424 Introduction to VR Development

Double-click WidgetMenu to open the UMG Editor:

Figure 16.30 – The WidgetMenu in the UMG editor

In the Graph tab of the UMG Editor, we can see the On Clicked events of the buttons.
The On Clicked (RestartButton) event uses the Open Level function to reload the Level:

Figure 16.31 – The On Clicked (RestartButton) event

The ExitButton button has the Real Life label. The On Clicked (ExitButton) event uses
the Quit Game function to exit the application:

Figure 16.32 – The On Clicked (ExitButton) event

Summary 425

If you want to add command buttons to the menu, you only need to modify the
WidgetMenu Blueprints. For more information about UMG, see Chapter 7, Creating
Screen UI Elements.

We have analyzed the main elements used in the VR template, so it will now be easier to
understand more complex parts of the VR template.

Summary
In this chapter, we explored the VR template, which is a simple way to start experimenting
with VR development. We saw that the main functionalities of the VR template are in the
VRPawn Blueprint.

We analyzed the Blueprint functions used to implement teleportation and saw how
GrabComponent is used to make grabbable objects.

We learned about the concept of Blueprint Interfaces and saw how they can be used to
allow the user to shoot using the Pistol Blueprint. We also saw how to modify the UMG
menu used by the VR template.

This chapter concludes Part 4, Advanced Blueprints, about advanced Blueprint concepts.
Part 5, Extra Tools, will cover some extra tools available in Unreal Engine. In the next
chapter, we will learn about Animation Blueprints.

Quiz
1. The VR template does not use the OpenXR framework.

a. True

b. False
2. The VRPawn Blueprint has Motion Controller components to track the

motion controller devices.

a. True

b. False
3. You can right-click an Object Reference Get node and convert it to a Validated Get

node with execution pins that can be used to check whether a reference is valid.

a. True

b. False

426 Introduction to VR Development

4. To create a grabbable Actor, you need to create a Blueprint class child of the
GrabComponent Blueprint.

a. True

b. False
5. When an interface function does not have output parameters, it is implemented as

an event.

a. True

b. False

Part 5:
Extra Tools

This part will cover several tools that are very useful for solving specific problems.
We are going to learn how to script an animation blueprint as well as how to create
Blueprint macro/function libraries and components. We will also look at procedural
generation and see how to create a product configurator using the variant manager.

This part comprises the following chapters:

• Chapter 17, Animation Blueprints

• Chapter 18, Creating Blueprint Libraries and Components

• Chapter 19, Procedural Generation

• Chapter 20, Creating a Product Configurator Using the Variant Manager

17
Animation
Blueprints

Part 4 presented data structures, flow control, math nodes, Blueprints tips, and an
introduction to virtual reality development.

In Part 5, we will look at Animation Blueprints, Blueprint libraries and components,
procedural generation, and the Product Configurator template.

This chapter presents the main elements of the Unreal Engine animation system, such as
Skeleton, Skeletal Mesh, Animation Sequences, and Blend Spaces. It shows how to script
an Animation Blueprint using EventGraph and AnimGraph. It also explains how State
Machines are used in an animation and how to create new states for an animation.

These are the topics covered in this chapter:

• Animation overview

• Creating Animation Blueprints

• Exploring State Machines

• Importing the Animation Starter Pack

• Adding Animation States

430 Animation Blueprints

By the end of the chapter, you will know how to use Animation Blueprints and how to add
Animation States.

Animation overview
The animation system in Unreal Engine is very flexible and powerful. It consists of
numerous tools and editors that work together. In this chapter, we will look at the main
concepts of animation in Unreal Engine with a focus on Animation Blueprints.

We will start with a project using the Third Person template to see animation concepts and
explore the Animation Editor.

Follow these steps to create the project:

1. Create a project using the Third Person template with starter content:

Figure 17.1 – Creating a project using the Third Person template

2. Press the Play button to try the default gameplay that is built into the Third Person
template. You can move the player Character using the WASD keys and look around
by moving the mouse. Press the spacebar to make the Character jump.

Now that we have an example project, let's explore the Animation Editor.

Animation overview 431

Animation Editor
There are five Animation Tools for working with Skeleton animation. These tools can be
accessed by opening an associated asset. There are five buttons at the top right of each
of the Animation Tools, as shown in the following screenshot, which are used to switch
between the different tools:

Figure 17.2 – Using the buttons to switch between the Animation Tools

The Animation Tools accessed by the buttons are from left to right:

• Skeleton Editor: Used to manage Skeleton bones

• Skeletal Mesh Editor: Used to modify the Skeletal Mesh that is linked to the
Skeleton and represents the Character visually

• Animation Editor: Allows the creation and modification of animation assets

• Animation Blueprint Editor: Allows the creation of scripts and State Machines to
control the animations that the Character must use according to its current state

• Physics Asset Editor: Used to create physics bodies that will be used in simulations

Let's see the relationship between Skeleton and Skeletal Mesh.

Skeleton and Skeletal Mesh
A Skeletal Mesh is linked to a Skeleton. A Skeleton is a hierarchy of interconnected bones
used to animate the polygon vertices of a Skeletal Mesh.

In Unreal Engine, Skeleton is a separate asset from Skeletal Mesh. As the animation is
done in Skeleton, the animation can be shared by several other Skeletal Meshes that use
the same Skeleton.

432 Animation Blueprints

Let's visualize the Skeleton used by the Third Person template. Access the Content >
Mannequin > Character > Mesh folder and double-click on the UE4_Mannequin_
Skeleton asset to open the Skeleton Editor, as shown in the following screenshot:

Figure 17.3 – The Skeleton Editor

The left-side panel has the Skeleton Tree with the hierarchy of bones that are part of this
Skeleton. You can select a bone and adjust its position and rotation relative to the Skeleton.

Animation Sequence
An Animation Sequence asset contains keyframes that specify bone transformations at
specific times. It is used to play a single animation on a Skeletal Mesh.

The Animation Sequences available to a Skeleton can be viewed in the Asset Browser of
the Animation Editor. The following screenshot shows the Animation Sequences of the
Third Person template:

Animation overview 433

Figure 17.4 – The Animation Sequences

Double-click on an Animation Sequence to play it in the Viewport. The ThirdPersonRun
Animation Sequence is playing in the following screenshot:

Figure 17.5 – Previewing the ThirdPersonRun Animation Sequence

434 Animation Blueprints

The Asset Browser of the Animation Editor lists other types of animation assets besides
Animation Sequences. For example, in Figure 17.4, the ThirdPerson_IdleRun_2D asset
has a different-colored icon because it is a Blend Space, which we will see in the
next section.

Blend Space
Blend Space is an asset type that allows the blending of animations based on one or two
parameter values. To facilitate understanding, let's analyze the ThirdPerson_IdleRun_2D
asset, which is a Blend Space based on one parameter.

Double-click on the ThirdPerson_IdleRun_2D asset in the Asset Browser to open it in
the Viewport. This Blend Space has a parameter named Speed and uses three Animation
Sequences, which are ThirdPersonIdle, ThirdPersonWalk, and ThirdPersonRun. Hold
the Shift key to move the preview value of the Speed parameter, which is represented by
the green plus icon:

Figure 17.6 – Blending the walking and running Animation Sequences

Creating Animation Blueprints 435

The ThirdPerson_IdleRun_2D Blend Space mapped the following Speed values for each
Animation Sequence:

• ThirdPersonIdle: 0.0

• ThirdPersonWalk: 93.75

• ThirdPersonRun: 375.0

In the example of Figure 17.6, the value used for Speed is approximately 234.3, then the
resulting animation is using 50% of ThirdPersonWalk and 50% of ThirdPersonRun.

Animation in Unreal Engine is an extensive topic that requires the study of specific
documentation aimed at animators. The purpose of this animation overview section
was to introduce the main animation concepts so that you can work with Animation
Blueprints, which we will introduce in the following section.

Creating Animation Blueprints
An Animation Blueprint is a specialized Blueprint with tools geared toward Character
animation scripting. The Animation Blueprint Editor is like the Blueprint Editor, but it has
some specific panels for animation.

Follow these steps to create an Animation Blueprint:

1. Click the ADD button in the Content Browser, and in the Animation submenu,
select Animation Blueprint, as shown in the following screenshot:

Figure 17.7 – Creating an Animation Blueprint

436 Animation Blueprints

2. In the next window, you need to select the target Skeleton. The animation assets
and the Animation Blueprint are linked to a specific Skeleton. Optionally, you can
select a different parent class instead of the default class. For this example, do not
select a parent class and select UE4_Mannequin_Skeleton, which is in the /Game/
Mannequin/Character/ path:

Figure 17.8 – Selecting the target Skeleton

3. Give a name to the Animation Blueprint created in the Content Browser and
double-click it to open the Animation Blueprint Editor.

The Animation Blueprint Editor has two types of graphs that work together to create the
animation. The EventGraph is the same as the one from the Blueprint Editor, but with
some specific nodes for animation. In the AnimGraph, we can create State Machines and
use nodes to play Animation Sequences and Blend Spaces.

Let's start by analyzing the EventGraph.

Creating Animation Blueprints 437

EventGraph
We use the EventGraph of an Animation Blueprint to get data from the Pawn/Character
that is using the Animation Blueprint instance and update the variables of the Animation
Blueprint. The EventGraph has two nodes already added to the graph:

Figure 17.9 – Animation Blueprint Editor EventGraph

These are descriptions of the nodes:

• Event Blueprint Update Animation: This event is executed at every frame, allowing
for the updating of variables used by the animation. The Delta Time X parameter is
the amount of time elapsed since the last frame.

• Try Get Pawn Owner: This function tries to get the reference of the Pawn or
Character that is using the Animation Blueprint instance. We need this function so
we can get Character data to use in the animation.

If you need to do some initialization on the animation, you can use Event Blueprint
Initialize Animation:

Figure 17.10 – Event used to initialize animation

As an example of using the EventGraph, let's create the Speed variable and update its
value using data from the Pawn/Character that is using the Animation Blueprint instance.

438 Animation Blueprints

These are the steps to create the example:

1. In the My Blueprint panel of the Animation Blueprint Editor, create a variable
named Speed and set Variable Type to Float:

Figure 17.11 – Creating the Speed variable

2. In the EventGraph, we will add the nodes shown in the following screenshot. If
the Pawn Owner reference is valid, then we get the velocity vector of the Pawn and
calculate its length to find the scalar value of Speed:

Figure 17.12 – Updating the Speed variable

3. Drag a wire from the white output pin of Event Blueprint Update Animation and
add an Is Valid macro node. Connect the Input Object pin to the Return Value pin
of the Try Get Pawn Owner node.

4. Drag a wire from the Is Valid output pin and add a SET Speed node.
5. Drag a wire from the Return Value pin of the Try Get Pawn Owner node and add

a Get Velocity node.

Creating Animation Blueprints 439

6. Drag a wire from the Return Value pin of the Get Velocity node and add
a VectorLength node.

7. Connect the Return Value pin of the VectorLength node to the Speed input pin.
8. Compile and save the Animation Blueprint.

Now that the Speed variable is updated, we can use it in the AnimGraph.

AnimGraph
In the AnimGraph, we use nodes to play Animation Sequences and Blend Spaces. We can
also create State Machines to organize the animation into states.

The AnimGraph can only access variables from the Animation Blueprint, so we use the
EventGraph to get the updated values from the Pawn.

The final node of an Animation Graph is the Output Pose node, which will receive the
resulting pose of each frame to apply to the Skeletal Mesh:

Figure 17.13 – AnimGraph with the Output Pose

440 Animation Blueprints

There is an Asset Browser available in the bottom right of the Animation Blueprint Editor:

Figure 17.14 – Asset Browser in the Animation Blueprint Editor

You can drag an animation asset from the Asset Browser and drop it in the AnimGraph
to create the equivalent node. In the example shown in the following screenshot, the
ThirdPersonRun Animation Sequence was dropped in the AnimGraph to create the
Play ThirdPersonRun node. You need to connect the white character icon of the Play
ThirdPersonRun node to the white character icon of the Output Pose node and compile
the Animation Blueprint to preview the animation in the Viewport:

Figure 17.15 – Playing the ThirdPersonRun animation in the Animation Blueprint Editor

To create a Blendspace Player node, just drag a Blend Space asset, such as ThirdPerson_
IdleRun_2D, and drop it in the AnimGraph. In the following screenshot, the value of the
Speed variable is being used as the parameter of the Blend Space:

Creating Animation Blueprints 441

Figure 17.16 – Playing a Blend Space in the Animation Blueprint Editor

After compiling the Animation Blueprint, you can modify the value of the Speed
variable in the Anim Preview Editor, located at the bottom right of the Animation
Blueprint Editor:

Figure 17.17 – Anim Preview Editor

Assign different values to the Speed variable between 0 and 375 and see the resulting
animation in the Viewport.

We saw how to connect the animation nodes directly to the Output Pose node, but the
AnimGraph was created with a State Machine in mind. We will discuss State Machines in
the following section.

442 Animation Blueprints

Exploring State Machines
A State Machine in the AnimGraph allows you to organize the animation into a series of
states. To exemplify this, we will create a State Machine with two states: idle and moving.

We need to define Transition Rules to control the transition from one state to another.

Follow these steps to create the State Machine:

1. Remove the other animation nodes and leave only the Output Pose node in
the AnimGraph.

2. Right-click on the AnimGraph, search for state machine, and select Add New
State Machine…:

Figure 17.18 – Adding a State Machine

3. Rename the State Machine to Char States. You can rename it in the Details
panel. Connect the white icon of the State Machine to the white icon of the Output
Pose node:

Figure 17.19 – Connecting the State Machine to the Output Pose node

Exploring State Machines 443

4. Double-click on the Char States node to edit the State Machine. Then, right-click
on the graph and select Add State…. Rename the state to Idle and drag a wire
from the Entry to Idle state node:

Figure 17.20 – Adding states

5. Add another state and rename it to Moving. Drag a wire from the outer border
of the Idle state node and connect it to the outer border of the Moving state node.
Drag another wire from the Moving state node to the Idle state node. The arrow
indicates that a transition is possible between the states:

Figure 17.21 – The states and their transitions

6. Double-click on the Idle state node to edit the state. Drag the ThirdPersonIdle
Animation Sequence from the Asset Browser and drop it in the AnimGraph.
Connect the white icons of the Play ThirdPersonIdle and Output Animation
Pose nodes:

Figure 17.22 – The Idle state

444 Animation Blueprints

7. You can alternate between the AnimGraph state screens by clicking the name of
the screen in the path located at the top of the graph. This path is known as
a breadcrumb. Click Char States in the breadcrumb and double-click on the
Moving state.

8. Drag the ThirdPerson_IdleRun_2D Blend Space from the Asset Browser and
drop it in the AnimGraph. Drag a wire from the Speed input pin and add a Get
Speed node. Connect the white icons of the ThirdPerson_IdleRun_2D and Output
Animation Pose nodes:

Figure 17.23 – The Moving state

9. Our next step is to specify the Transition Rules. Return to the Char States graph.
The Transition Rules icons are created together with the transition arrows:

Figure 17.24 – The Transition Rules icons

Exploring State Machines 445

10. Double-click on the Idle to Moving transition rule, which is the one at the top. The
transition happens when the Result node receives the True value. In our example,
if Speed is greater than 5.0, then the animation will change from the Idle to the
Moving state. Add these nodes to the graph:

Figure 17.25 – Idle to Moving rule

11. Return to the Char States graph and double-click on the Moving to Idle transition
rule. Add the nodes to check whether Speed is less than 5.0. If it is True, then the
animation will change from the Moving to the Idle state:

Figure 17.26 – Moving to Idle rule

12. Compile the Animation Blueprint and return to the Char States graph. You can
modify the value of the Speed variable in Anim Preview Editor to see the
transition between the states.

13. Save and close the Animation Blueprint Editor.

After this introduction to State Machines, we can now work with a more complex
State Machine.

446 Animation Blueprints

Importing the Animation Starter Pack
In the next sections, we will use the Animation Starter Pack because it has more
animations available.

Follow these steps to import the Animation Starter Pack:

1. Access the Epic Games Launcher and go to Unreal Engine | Library | Vault. Search
for Animation Starter Pack and click the Add To Project button:

Figure 17.27 – Adding the Animation Starter Pack to a project

Note
If you don't have the Animation Starter Pack installed, follow the instructions
in Chapter 9, Building Smart Enemies with Artificial Intelligence, to install it.

2. Select the project you created for this chapter. A folder called AnimStarterPack
will be added to the Content folder of your project.

3. Look in the Viewport of the Level Editor and delete the ThirdPersonCharacter
instance that is in the Level. We will use the Character of the Animation Starter Pack.

4. Open the ThirdPersonGameMode Blueprint located in the Content >
ThirdPersonBP > Blueprints folder. The Blueprint will open as a data-only
Blueprint.

5. In the CLASSES category, change Default Pawn Class to Ue4ASP_Character, which
is the Character Blueprint of the Animation Starter Pack:

Importing the Animation Starter Pack 447

Figure 17.28 – Changing Default Pawn Class in the Game Mode Blueprint

6. Compile, save, and close the ThirdPersonGameMode Blueprint.
7. Open the Ue4ASP_Character Blueprint located in the Content >

AnimStarterPack folder.
8. We need to hide the Capsule component in the game. In the Components panel,

click on CapsuleComponent (CollisionCylinder) (Inherited). In the Details
panel, in the RENDERING category, check the Hidden in Game property:

Figure 17.29 – Hiding CapsuleComponent

9. Compile, save, and close the Ue4ASP_Character Blueprint.

Now, our project is using the Character of the Animation Starter Pack and we are going to
start modifying the animations it uses.

448 Animation Blueprints

Adding Animation States
In this section, we will modify the Character Blueprint and Animation Blueprint that
come in the Animation Starter Pack. We will add the following states to the State Machine:

• Prone

• ProneToStand

• StandToProne

We will use the project created at the start of the chapter, which is using the Character
from the Animation Starter Pack.

First, let's create the input mappings that we are going to use in our example. We will
create two input actions: Crouch and Prone.

Note
The actions and states for the Crouch input action are already present in the
Animation Starter Pack. To make Crouch work, we just need to add, in Project
Settings, an action mapping named Crouch.

Follow these steps to create the input mappings:

1. Click the Settings button on the far right of the toolbar, and then select the Project
Settings… option:

Figure 17.30 – Accessing Project Settings

2. On the left side of the window that appears, look for the Engine category and select
the Input option.

3. Inside the Engine category, in the Input Settings menu, you will see two sections
under the Bindings category called Action Mappings and Axis Mappings. Click on
the > symbol in the Action Mappings section to show the existing mappings.

4. Click on the + sign next to Action Mappings twice to add two action mappings:

Adding Animation States 449

Figure 17.31 – Adding action mappings

5. Name the first action Crouch. Click the keyboard icon and press the C key to map
that key to your Crouch event.

6. Name the second action Prone. Click the keyboard icon and press the X key to
map that key to your Prone event.

The changes are saved when you close the window. We can now implement the Prone
event in the Character Blueprint.

Modifying the Character Blueprint
We will add a Boolean variable named Proning to the Character Blueprint of the
Animation Starter Pack. This variable will indicate whether the Character is prone.
The Prone event will toggle the value of the Proning variable.

We will also disable the Character's movement when it is prone.

Follow these steps to modify the Character Blueprint:

1. Open the Ue4ASP_Character Blueprint located in the Content >
AnimStarterPack folder.

450 Animation Blueprints

2. In the My Blueprint panel, create a variable named Proning of the Boolean type:

Figure 17.32 – Creating the Proning Boolean variable

3. Right-click on some empty space in the EventGraph and search for prone. Select
the Prone event to place the node:

Figure 17.33 – Adding the input action Prone event

4. Add a Set Proning node and a Get Proning node near the Prone event. Also, add
the Not Boolean node and connect them, as shown in the following screenshot. The
Not Boolean node will toggle the Boolean value (true/false) of the Proning variable
every time the Prone event is executed:

Figure 17.34 – The nodes of the input action Prone event

Adding Animation States 451

5. Now, we will disable the Character movement when it is prone. Find the InputAxis
MoveForward event in the EventGraph. Hold the Alt key and click the white
execution pin of InputAxis MoveForward to break the connection.

6. Add a Branch node and a Get Proning node and connect them, as shown in the
following screenshot. The Add Movement Input node will only be executed if the
value of the Proning variable is False:

Figure 17.35 – Disabling the forward and backward movement when prone

7. Repeat step 5 and step 6 in the InputAxis MoveRight event:

Figure 17.36 – Disabling the right and left movement when prone

452 Animation Blueprints

8. Before closing the Blueprint, let's look at where we associate the Character
Blueprint with the Animation Blueprint. In the Components panel, select Mesh
(CharacterMesh0) (Inherited). In the Details panel, in the ANIMATION category,
Animation Mode must be set to Use Animation Blueprint and Anim Class must
specify the Animation Blueprint being used:

Figure 17.37 – Specifying the Animation Blueprint used by the Character

9. Compile, save, and close the Blueprint.

We have completed the Character Blueprint adjustments. Now, we can add the prone
Animation States to the Animation Blueprint.

Modifying the Animation Blueprint
We will also add the Proning Boolean variable to the Animation Blueprint to be able to
use it in the Transition Rules. Then, we will add three states to the State Machine.

Follow these steps to modify the Animation Blueprint:

1. Double-click on the UE4ASP_HeroTPP_AnimBlueprint asset located in the
Content > AnimStarterPack folder to open the Animation Blueprint Editor.

2. In the My Blueprint panel, create a variable named Proning of the Boolean type.
We need to create this variable in the Animation Blueprint because it will be used in
the state Transition Rules:

Adding Animation States 453

Figure 17.38 – Creating the Proning variable in the Animation Blueprint

3. Find Event Blueprint Update Animation in the EventGraph. At the end of the
event, drag a wire from the white output pin of the SET Crouching node and add
a SET Proning node.

4. Drag a wire from the blue output pin of the Cast To Ue4ASP_Character node and
add a Get Proning node. Connect the output pin of Get Proning to the input pin
of SET Proning:

Figure 17.39 – Updating the Proning variable of the Animation Blueprint

454 Animation Blueprints

5. In the My Blueprint panel, double-click on Locomotion to open the State Machine:

Figure 17.40 – Opening the Locomotion State Machine

6. The following screenshot shows the current Locomotion states:

Figure 17.41 – Locomotion states

7. We will add three states related to the prone action:

Adding Animation States 455

Figure 17.42 – The new states

8. We will start creating the three states. Right-click on the graph and select Add State.
Rename the state to StandToProne. Create two more states, named Prone and
ProneToStand.

9. Drag a wire from the outer border of the Idle state node and connect it to the outer
border of the StandToProne state node. Drag another wire from the outer border of
StandToProne and connect it to the outer border of the Prone state node.

10. Drag a wire from the outer border of the Prone state node and connect it to the
outer border of the ProneToStand state node. Drag another wire from the outer
border of ProneToStand and connect it to the outer border of the Idle state node.

11. Double-click on the Prone state node to edit the state. Drag the Prone_Idle
Animation Sequence from the Asset Browser and drop it in the AnimGraph:

Figure 17.43 – Using the Prone_Idle Animation Sequence

456 Animation Blueprints

12. Connect the white icons of the Play Prone_Idle and Output Animation
Pose nodes:

Figure 17.44 – The Prone state

13. Click on Locomotion in the breadcrumb to return to the previous graph and
double-click on the ProneToStand state.

14. Drag the Prone_To_Stand Animation Sequence from the Asset Browser and drop
it in the AnimGraph. Connect the white icons of the Play Prone_To_Stand and
Output Animation Pose nodes:

Figure 17.45 – The ProneToStand state

15. Select the Play Prone_To_Stand node. In the Details panel, uncheck the Loop
Animation property, because this animation should run only once:

Adding Animation States 457

Figure 17.46 – Unchecking the Loop Animation property

16. Click on Locomotion in the breadcrumb to return to the previous graph and
double-click on the StandToProne state.

17. Drag the Stand_To_Prone Animation Sequence from the Asset Browser and drop
it in the AnimGraph. Connect the white icons of the Play Stand_To_Prone and
Output Animation Pose nodes:

Figure 17.47 – The StandToProne state

18. Select the Play Stand_To_Prone node. In the Details panel, uncheck the Loop
Animation property.

19. Click on Locomotion in the breadcrumb to return to the Locomotion graph.

458 Animation Blueprints

We have finished defining the content of each state. Now, we just need to define the
Transition Rules of the states.

Defining the Transition Rules
In our new states, we will use two types of Transition Rules. In the Transition Rules
from the Idle and Prone states, we will check the value of the Proning variable. In the
Transition Rules from StandToProne and ProneToStand, the transition happens when
the animation ends.

These are the steps to define the Transition Rules:

1. Double-click on the Idle to StandToProne transition rule icon. Add a Get Proning
node and connect to the Result node:

Figure 17.48 – Idle to StandToProne rule

2. Return to the Locomotion graph and double-click on the StandToProne to Prone
transition rule icon. Right-click on the graph and add a Time Remaining (ratio)
(Stand_To_Prone) node.

3. Drag a wire from Return Value and add a Less node. Type 0.1 in the bottom
parameter of the Less node. Connect the output of the Less node to the Result node:

Figure 17.49 – StandToProne to Prone rule

Adding Animation States 459

4. Return to the Locomotion graph and double-click on the Prone to ProneToStand
transition rule icon. Add a Get Proning node and a NOT Boolean node. Connect
the nodes, as shown in the following screenshot:

Figure 17.50 – Prone to ProneToStand rule

5. Return to the Locomotion graph and double-click on the ProneToStand to Idle
transition rule icon. Right-click on the graph and add a Time Remaining (ratio)
(Prone_To_Stand) node.

6. Drag a wire from Return Value and add a Less node. Type 0.1 in the bottom
parameter of the Less node. Connect the output of the Less node to the Result node:

Figure 17.51 – ProneToStand to Idle rule

7. Compile, save, and close the Animation Blueprint.

460 Animation Blueprints

8. Click the Play button of the Level Editor. Use the C key to crouch and the X key
to prone:

Figure 17.52 – Press the X key to prone

The Animation Blueprint has specific tools that allow you to control complex animations
by breaking them into states. A great advantage of Animation Blueprints is the separation
of animation logic and game logic in a project.

Summary
This chapter presented some animation concepts, focusing on Animation Blueprints.
We looked at Animation Editor, Skeleton, Skeletal Mesh, Animation Sequence, and
Blend Space.

This chapter showed how to use the EventGraph and AnimGraph of an Animation
Blueprint. We also learned how to create State Machines in the AnimGraph.

We also saw a practical example of how to add states to the Character of the Animation
Starter Pack.

In the next chapter, we will learn how to create Blueprint libraries and components that
can be used throughout a project.

Quiz 461

Quiz
1. A Blend Space allows the blending of animations based on parameters.

a. True

b. False
2. An Animation Blueprint has AnimGraph but doesn't have an EventGraph.

a. True

b. False
3. The Output Pose node needs to be the final node of an Animation Graph.

a. True

b. False
4. A State Machine is an independent auxiliary asset that contains a fixed set of named

constants.

a. True

b. False
5. The transition from one state to another is controlled by a Transition Rule.

a. True

b. False

18
Creating Blueprint

Libraries and
Components

In this chapter, you will learn how to create Blueprint Macro and Function libraries with
common functionalities that can be used throughout a project. It will explain in more
detail the concept of components. We will also learn how to create Actor Components
with encapsulated behavior and Scene Components with location-based behaviors.

These are the topics covered in this chapter:

• Blueprint Macro and Function libraries

• Creating Actor Components

• Creating Scene Components

By the end of this chapter, you will have created a Blueprint Function Library to simulate
dice rolls, an Actor Component to manage experience points and leveling up, and a Scene
Component that rotates around the Actor.

464 Creating Blueprint Libraries and Components

Blueprint Macro and Function libraries
Sometimes, in a project, you identify a macro or function that can be used in several
Blueprints. The Unreal Editor allows you to create a Blueprint Macro Library to gather the
macros that you want to share between all Blueprints. In the same way, you can create
a Blueprint Function Library to share utility functions between all Blueprints.

The menu options to create Blueprint Function Library and Blueprint Macro Library
are in the Blueprints submenu that appears when creating an asset:

Figure 18.1 – The menu options to create Blueprint Macro and Function Libraries

When creating a Blueprint Macro Library, you need to choose a Parent class. The macros
of the library will have access to variables and functions of the Parent class selected, but
the Macro Library can only be used by subclasses of the chosen Parent class. Selecting the
Actor class will be the best option in most cases.

Let's create a Blueprint Function Library to see in practice how we can share functions
between all Blueprints.

A Blueprint Function Library example
We will create a Blueprint Function Library for a dice roll named BP_DiceLibrary
with three functions – RollOneDie, RollTwoDice, and RollThreeDice. All
functions have the same input parameter named NumberOfFaces and return the result
of each dice and the sum.

This Blueprint Function Library can be used when creating digital board games or in
RPGs (Role-Playing Games) based on a dice roll.

Blueprint Macro and Function libraries 465

Follow these steps to create a Blueprint Function Library:

1. Create a project based on the Third Person template with the starter content.
2. In the content browser, access the Content folder. Right-click in the empty

space next to the list of folders and select the New Folder option. Name the folder
Chapter18. We will use this folder to store this chapter's assets.

3. Open the Chapter18 folder you just made, then click the Add button in the
content browser, hover over Blueprints, and choose the Blueprint Function
Library option:

Figure 18.2 – Creating a Blueprint Function Library

4. Name the Blueprint BP_DiceLibrary and double-click it to open the
Blueprint Editor.

5. The Blueprint Editor opens with a default function. Rename the function
RollOneDie.

6. In the Details panel, add an input parameter named NumberOfFaces of the
Integer type. Click the > symbol to expand the options and set Default Value to 6:

Figure 18.3 – Creating an input parameter and setting the default value

466 Creating Blueprint Libraries and Components

7. In the Details panel, add an output parameter named Result of the Integer type:

Figure 18.4 – Creating an output parameter

8. In the EventGraph, add the nodes of the following screenshot. These nodes check
whether Number Of Faces is greater than 1. It is good practice to validate input
parameters to avoid unexpected and hard-to-find errors:

Figure 18.5 – Checking whether Number Of Faces is greater than 1

Note
You can simulate coin flipping using a number of faces equal to two.

9. Right-click the EventGraph and add a Random Integer in Range node. This node
returns a random integer value greater than or equal to Min and less than or equal
to Max. Type 1 in the Min input parameter:

Figure 18.6 – Using the Random Integer in Range node

Blueprint Macro and Function libraries 467

10. Drag a wire from the Number Of Faces parameter and connect to the Max input
pin. Connect the Return Value output pin to the Result pin. Connect the True pin
of the Branch node to the white pin of Return Node.

11. Let's create the second function of our Blueprint Function Library. In the
My Blueprint panel, click the + icon at the right of FUNCTIONS:

Figure 18.7 – Creating another function

12. Name the function RollTwoDice. Create an input parameter named
NumberOfFaces of the Integer type. Click the > symbol to expand the options
and set Default Value to 6.

13. Create output parameters named Sum, Die1, and Die2, all of the Integer type:

Figure 18.8 – Creating the output parameters

14. In the EventGraph, we will do the same validation of the RollOneDie function to
check whether Number Of Faces is greater than 1. Add the nodes of Figure 18.5.
You can also access the RollOneDie function, and select and copy the validation
nodes to paste into the RollTwoDice function.

468 Creating Blueprint Libraries and Components

15. Add two Random Integer in Range nodes to the EventGraph. Type 1 in the Min
input parameter of the two nodes:

Figure 18.9 – Generating two random integer numbers

16. Drag wires from the Number Of Faces parameter and connect to the Max input pin
of the two nodes.

17. Connect the Return Value output pin of the first Random Integer in Range node
to the Die 1 pin. Connect the Return Value output pin of the second Random
Integer in Range node to the Die 2 pin.

18. Right-click the EventGraph and create an Add node. Connect the Return Value
output pin of the first Random Integer in Range node to the top input pin of Add
node. Connect the Return Value output pin of the second Random Integer in
Range node to the bottom input pin of the Add node.

19. Connect the output pin of the Add node to the Sum pin of Return Node. Connect
the True pin of the Branch node to the white pin of Return Node.

20. Compile and save the Blueprint.

With these steps, we have concluded creating the second function of the library. In the
next section, we will create the third function, which will be done differently from the
second function to show an alternative example. Then, we will test our Blueprint
Function Library.

Blueprint Macro and Function libraries 469

Creating the third function and testing
In the third function, we will use local variables to store temporary values. Local variables
are only visible within the function where they are defined. The values of local variables
are discarded at the end of the function execution.

Another important point to note is that we will use only one Random Integer in Range
node to generate the values of the three dice.

These are the steps to create the third function and test:

1. In the My Blueprint panel, click the + icon at the right of FUNCTIONS. Name the
function RollThreeDice:

Figure 18.10 – Creating the third function of the library

2. Create an input parameter named NumberOfFaces of the Integer type. Click the
> symbol to expand the options and set Default Value to 6.

3. Create output parameters named Sum, Die1, Die2, and Die3, all of the
Integer type:

Figure 18.11 – Creating the output parameters

470 Creating Blueprint Libraries and Components

4. The My Blueprint panel shows the local variables of the function being edited.
Click the + icon at the right of Local Variables to create the Die1Var, Die2Var,
and Die3Var local variables of the Integer type. The name of a local variable must
be different from the names of the input and output parameters of the function:

Figure 18.12 – Creating the local variables

5. In the EventGraph, we will do the same validation of the RollOneDie function to
check whether Number Of Faces is greater than 1. Add the nodes of Figure 18.5.

6. Add one Random Integer in Range node to the EventGraph. Type 1 in the Min
input parameter. Add the SET Die1Var, SET Die2Var, and SET Die3Var nodes and
connect them as shown in the following screenshot:

Figure 18.13 – Generating three random integer numbers

Blueprint Macro and Function libraries 471

Note
When each SET node is executed, the Random Integer in Range node is
executed again to generate a new random number.

7. Connect the white output pin of the SET Die3Var node to the white pin of Return
Node. Add the GET Die1Var, GET Die2Var, GET Die3Var, and Add nodes. Click
Add pin + to add the third pin of the Add node. Connect the nodes as shown in the
following screenshot:

Figure 18.14 – Returning the values of the local variables

8. Compile and save the Blueprint. Close the Blueprint Editor.
9. We will use the Level Blueprint to test our BP_DiceLibrary Function Library. Click

the Blueprints button on the toolbar and select Open Level Blueprint:

Figure 18.15 – Opening the Level Blueprint

472 Creating Blueprint Libraries and Components

10. Right-click the EventGraph near the Event BeginPlay node. Search for roll. The
functions of our Blueprint Library will be available in the BP Dice Library category:

Figure 18.16 – The BP Dice Library functions are available for all Blueprints of the project

11. Select the Roll Three Dice function and connect the white pin of Event BeginPlay
to the white input pin of the Roll Three Dice node. Right-click the EventGraph and
add the Format Text and Print Text nodes:

Figure 18.17 – Testing the Roll Three Dice function

12. Add the following expression in the Format parameter of the Format Text node:

Sum: {Sum} / Die1: {Die1} / Die2: {Die2} / Die3: {Die3}

13. The names between {} will be converted to input parameters in the Format Text
node. For more information about this node, see Chapter 15, Blueprints Tips.

14. Connect the output white pin of the Roll Three Dice node to the input white
pin of Print Text. Connect the other output pins input of Roll Three Dice to the
equivalent input pins of Format Text.

15. Connect the Result pin of Format Text to the In Text pin of Print Text. Click
the small arrow on the bottom of the Print Text node to expand the optional
parameters. Set Duration to 10.0 seconds.

16. Compile, save, and close the Level Blueprint Editor.
17. Click the Play button of the Level Editor. The result of rolling three dice will be

printed on screen:

Creating Actor Components 473

Figure 18.18 – The result of rolling three dice

The functions of BP_DiceLibrary can be used in any Blueprint. The same idea
applies to a Blueprint Macro Library, but instead of functions, we create macros. For
more information on the differences between macros and functions, see Chapter 2,
Programming with Blueprints.

In the next section, we will see another way to share common functionalities by creating
Actor Components.

Creating Actor Components
When creating an Actor Blueprint, we often add components with encapsulated
functionality ready to use, such as Projectile Movement, Static Mesh, and Collision
components. We can also create our own Actor Components using Blueprints.

When creating a Blueprint, in the Pick Parent Class panel, there are two COMMON classes
that can be used to create components, namely Actor Component and Scene Component:

Figure 18.19 – Creating Actor and Scene Components

474 Creating Blueprint Libraries and Components

The Scene Component is a Child class of the Actor Component that has the Transform
structure (location, rotation, and scale). Because of the Transform, a Scene Component
can be attached to another Scene Component. We will explore the Scene Component in
the next section.

When scripting a component in the EventGraph, you can get a reference of the Actor that
is using the component with the Get Owner node:

Figure 18.20 – Getting the reference of the Actor that is using the component

We will create an Actor Component named BP_ExpLevelComp that has an array of
integers to store the experience points of each level needed to level up. The component
will have a function named IncreaseExperience to increase the experience points
and to check whether the Actor should level up.

If you want to add a level-up manager to an Actor, you can just add the
BP_ExpLevelComp component to the Actor, adjust the array with the experience
points needed to level up, and use the functions of the component.

These are the steps to create our Actor Component:

1. Click the Add button in the content browser and choose the Blueprint Class option.
2. On the next screen, choose Actor Component as the Parent class. Name the

Blueprint BP_ExpLevelComp and double-click it to open the Blueprint Editor.
Note that the Components tab is not shown because we cannot add components
inside another component.

3. In the My Blueprint panel, create CurrentLevel and CurrentXP variables of the
Integer type:

Figure 18.21 – Creating the variables of the component

Creating Actor Components 475

Note
The acronym XP means Experience Points.

4. Create another variable of the Integer type named ExpLevel. In the Details panel,
click the icon at the right of Variable Type and select Array:

Figure 18.22 – Creating an array to store the experience points needed for each level

5. Compile the Blueprint. In Default Value, add 10 elements in the ExpLevel array.
In BP_ExpLevelComp, the CurrentLevel variable will be used as the index of the
ExpLevel array. Type the values of the following screenshot for each element:

Figure 18.23 – The experience points needed for each level

476 Creating Blueprint Libraries and Components

6. We will create a function named IncreaseExperience to increase the experience and
level up. But first, we will create two macros to simplify the function graph.

7. In the My Blueprint panel, create a macro named CanLevelUp:

Figure 18.24 – Creating the CanLevelUp macro

8. In the Details panel, create the input and output parameters of the macro:

Figure 18.25 – Creating the input and output parameters of the CanLevelUp macro

9. Add the nodes of the following screenshot in the CanLevelUp macro. This macro
checks whether the Actor is at the maximum level by comparing the Current Level
variable with LAST INDEX of the Exp Level array:

Figure 18.26 – The nodes of the CanLevelUp macro

10. In the My Blueprint panel, create another macro named XpReachesNewLevel. In
the Details panel, create the same input and output parameters of the CanLevelUp
macro shown in Figure 18.25.

Creating Actor Components 477

11. Add the nodes of the following screenshot to the XpReachesNewLevel macro.
We need to use the Get (a copy) node of the Exp Level array because we just need
to read the value stored in the array. This macro checks whether Current XP is
equal to or greater than the experience points stored in the next index of the
Exp Level array:

Figure 18.27 – The nodes of the XpReachesNewLevel macro

12. Compile the Blueprint. In the My Blueprint panel, create a function named
IncreaseExperience:

Figure 18.28 – Creating the IncreaseExperience function

13. In the Details panel, create the input and output parameters of the function:

Figure 18.29 – Creating the input and output parameters

478 Creating Blueprint Libraries and Components

14. In the My Blueprint panel, create a local variable named LevelUpVar of Boolean
type. This local variable will store the value that will be returned by the function,
indicating whether the Actor has leveled up. The default value of a Boolean variable
is False:

Figure 18.30 – Creating a local variable

15. The next screenshot shows the first part of the Increase Experience function. The
function is using the two macros that we created. Add the nodes of the screenshot and
connect the No output pin of Can Level Up to the white input pin of Return Node:

Figure 18.31 – The first part of the IncreaseExperience function

16. The next screenshot shows the second part of the IncreaseExperience function. If
the Yes pin of the Xp Reaches New Level macro is executed, then we increment the
Current Level variable by one and set the Level Up Var variable to True. Add the
nodes of the screenshot and compile the Blueprint:

Figure 18.32 – The second part of the IncreaseExperience function

Creating Actor Components 479

17. Compile the Blueprint and close the Blueprint Editor.

We have finished the BP_ExpLevelComp component. To test it, we need to add the
component to an Actor.

Testing the Actor Component
We will add the BP_ExpLevelComp component to ThirdPersonCharacter and use
a timer to increase the experience points every second. We will print a message on screen
every time ThirdPersonCharacter levels up.

Follow these steps to test the BP_ExpLevelComp component:

1. Open the ThirdPersonCharacter Blueprint located in the Content >
ThirdPersonBP > Blueprints folder.

2. In the Components panel, click the ADD button and search for level. Select BP
Exp Level Comp:

Figure 18.33 – Adding BP Exp Level Comp

480 Creating Blueprint Libraries and Components

3. In the Details panel, you can modify the default values of the Exp Level array or
add more array elements:

Figure 18.34 – The Exp Level array is editable

4. In the EventGraph, add the Event BeginPlay node and the Set Timer by Event
node. We will use the timer to call an event once a second, which will increase
the experience points. Set the Time parameter to 1.0 and check the Looping
parameter:

Creating Actor Components 481

Figure 18.35 – Creating a timer to run an event once a second

5. Drag a wire from the Event pin of the Set Timer by Event node and select Add
Custom Event in the Context Menu. Rename the custom event GainXP. This event
will run the Increase Experience function of the BP Exp Level Comp component,
passing a value of 100 as the input parameter. These are the nodes we will add to
the GainXP event:

Figure 18.36 – The nodes of the GainXP custom event

6. Drag BP Exp Level Comp from the Components panel and drop it in the
EventGraph to create a Get node.

7. Drag a wire from the Get BP Exp Level Comp node and add the Increase
Experience function node. Type 100 in the Experience Points parameter.

8. Add a Branch node to check whether the Actor has leveled up. Add the Print
String and Append nodes to the EventGraph and connect them as shown in
Figure 18.36. The conversion node is created automatically when you connect pins
of different types.

482 Creating Blueprint Libraries and Components

9. In the A pin of the Append node, type Levelled up to with a space at the end.
This node will create a String using the values of the A and B pins.

10. Compile the Blueprint and click the Play button of the Level Editor. A message will
be printed on screen every time ThirdPersonCharacter levels up:

Figure 18.37 – Printing a message on screen when the character levels up

If you need to display the experience points and the level of the character on screen, you
can get the values by using the Get Current XP and Get Current Level nodes of the BP
Exp Level Comp component:

Figure 18.38 – Getting the Current XP and Current Level variables

We've learned how to create an Actor Component. Our next step is to create a Scene
Component to attach other components to it.

Creating Scene Components
We will create a Scene Component named BP_CircularMovComp that rotates around
the Actor. Then, we will attach a Static Mesh Component to the BP_CircularMovComp
component to simulate a rotating shield.

Follow these steps to create our Scene Component:

1. Access the Chapter18 folder that we created in the first example of this chapter.
2. Click the Add button in the content browser and choose the Blueprint Class option.
3. On the next screen, choose Scene Component as the parent class. Name the

Blueprint BP_CircularMovComp and double-click it to open the Blueprint Editor.

Creating Scene Components 483

4. In the My Blueprint panel, create the RotationPerSecond and DeltaAngle
variables of the Float type:

Figure 18.39 – Creating the variables of the component

5. Compile the Blueprint and select the RotationPerSecond variable. In the Details
panel, set DEFAULT VALUE to 180.0. This value is in degrees, so the component
will complete a rotation around the Actor in 2 seconds:

Figure 18.40 – Setting the default value of the Rotation Per Second variable

6. We will use Event Tick to create a smooth movement for the component. Event
Tick is executed every frame. It has the Delta Seconds parameter, which stores the
time elapsed since the last execution of Event Tick. We will multiply Delta Seconds
by Rotation Per Second to find DeltaAngle, which is the value of the angle that we
will rotate in the current frame. Add the nodes of the screenshot in the EventGraph:

Figure 18.41 – Calculating the value of Delta Angle

484 Creating Blueprint Libraries and Components

7. The next screenshot shows the other nodes that we will add to Event Tick.
These nodes are used to calculate and set the new relative location of the Scene
Component and to modify the local rotation to make the Scene Component always
point toward the center of rotation. You need to right-click the Delta Rotation
parameter of AddLocalRotation and select Split Struct Pin to access the Delta
Rotation Z (Yaw) pin:

Figure 18.42 – The other nodes of Event Tick

8. Compile the Blueprint. This is all BP_CircularMovComp does. Our next step is to
add this component to an Actor and then attach a Static Mesh Component to it.

9. Open the ThirdPersonCharacter Blueprint located in the Content >
ThirdPersonBP > Blueprints folder.

10. In the Components panel, select Capsule Component to make sure that our Scene
Component will be attached to the Root Component. Click the ADD button and
search for circular. Select BP Circular Mov Comp:

Figure 18.43 – Adding BP Circular Mov Comp

11. In the Components panel, select BP_Circular Mov Comp that was added and click
the ADD button. Select the StaticMesh component to attach it to BP_Circular Mov
Comp. The movement and rotation applied on BP_Circular Mov Comp will affect
StaticMesh:

Creating Scene Components 485

Figure 18.44 – Attaching a StaticMesh component to our Scene Component

12. Now, we need to configure the components. Access the Viewport tab so we can see
the result of the next change. Select BP_Circular Mov Comp in the Components
panel. In the Details panel, set the x (red) value of Location to 70.0. You can
modify the value of Rotation Per Second in the DEFAULT category:

Figure 18.45 – Setting the relative Location of BP_Circular Mov Comp

486 Creating Blueprint Libraries and Components

13. Select the StaticMesh component in the Components panel. In the Details
panel, select Shape_Cube as the Static Mesh and M_Tech_Hex_Tile_Pulse as the
Material. You can view the components in the Viewport tab. Set the z (blue) value
of Location to -80.0 and Scale to x = 0.1, y = 1.0, and z = 1.5:

Figure 18.46 – Setting up the Static Mesh Component

14. Compile the Blueprint and click the Play button of the Level Editor. BP_Circular
Mov Comp will make the shield rotate around the character:

Summary 487

Figure 18.47 – The character has a rotating shield

The Scene Component is used as a reference location for other components. You can
create a hierarchy by attaching Scene Components to each other. Actors need to have
a Scene Component that is designated as the root component. The Actor's transform is
obtained from the root component.

Summary
In this chapter, we learned how to create Blueprint Macro and Function Libraries to be
used throughout the project. We created a Blueprint Function Library to simulate dice
rolls.

This chapter explained the difference between Actor Components and Scene Components.
We learned how to create an Actor Component to manage experience points and
leveling up.

We also created a Scene Component that rotates around the Actor and attached a Static
Mesh Component to it to simulate a rotating shield.

In the next chapter, we will learn how to use the Construction Script of a Blueprint to
script procedural generation. We will also learn how to use the Spline tool and how to
create an Editor Utility Blueprint.

488 Creating Blueprint Libraries and Components

Quiz
1. The macros of a Blueprint Macro Library have access to variables and functions of

the Parent class.

a. True

b. False
2. A Blueprint Function Library can have functions and macros.

a. True

b. False
3. An Actor Component is a Child class of a Scene Component.

a. True

b. False
4. In an Actor Component, you can use the Get Owner node to get a reference of the

Actor that is using the component.

a. True

b. False
5. A Scene Component can be placed directly in a Level.

a. True

b. False

19
Procedural
Generation

In this chapter, we will look at several ways to generate level content automatically.
You can use the Construction Script of a Blueprint to script procedural generation and use
the Spline tool to define a path that will be used as a reference to position the instances.
Also, you can create an Editor Utility Blueprint to manipulate Assets and Actors in
edit mode.

In this chapter, we will cover the following topics:

• Procedural generation with the Construction Script

• Creating Blueprint Splines

• Editor Utility Blueprints

By the end of this chapter, you will know how to generate Level contents using the
Construction Script and how to create a Blueprint Spline to place Actors on a predefined
path. You will also be able to create Blueprint functions that run in the Editor.

490 Procedural Generation

Procedural generation with the Construction
Script
Procedural generation is a method of creating level content using scripts instead of
manually. It can be used to avoid repetitive tasks in level editing. Our main tool to make
procedural generation in Blueprints is the Construction Script.

We saw how to use the Construction Script in Chapter 3, Object-Oriented Programming
and the Gameplay Framework, to allow a Level Designer to change the Static Mesh of
a Blueprint in the Level Editor.

A useful component for procedural generation is the Instanced Static Mesh component.
This component is optimized to render multiple copies of the same mesh in the level.

Note
There is also the Hierarchical Instanced Static Mesh component, which is
similar to Instanced Static Mesh but is useful when the mesh has a Level of
Detail (LOD).

We set the Static Mesh in the component and use the Add Instance function to add an
instance on the level using Instance Transform:

Figure 19.1 – The Add Instance function

We will create a Blueprint named BP_ProceduralMeshes to see the procedural
generation in action. This Blueprint will add rows of static mesh instances on the level.
The Level Designer will be able to specify the Static Mesh used, the number of rows, and
how many instances per row.

We will use a Blank project because we will be able to see the result in the Level Editor of
the Blueprints of this chapter.

Procedural generation with the Construction Script 491

Follow these steps to create the Procedural Generation Blueprint:

1. Create a Blank project with the starter content:

Figure 19.2 – Creating a Blank project

2. In the content browser, access the Content folder. Right-click in the empty
space next to the list of folders and select the New Folder option. Name the folder
Chapter19. We will use this folder to store this chapter's assets.

3. Open the Chapter19 folder you just made, then click the Add button in the content
browser, and choose the Blueprint Class option.

4. On the next screen, choose Actor as the parent class. Name the Blueprint
BP_ProceduralMeshes and double-click it to open the Blueprint Editor.

5. In the My Blueprint panel, create a variable named StaticMeshVar. Click on
Variable Type and search for static mesh. Hover over Static Mesh and select
Object Reference:

Figure 19.3 – Creating a variable to reference a Static Mesh

492 Procedural Generation

6. In the Details panel, check the Instance Editable property so that we can change in
the Level Editor the static mesh used by the instance:

Figure 19.4 – The StaticMeshVar variable

7. Compile the Blueprint. In the Static Mesh Var default value, select the SM_Chair
Static Mesh:

Figure 19.5 – Selecting the default Static Mesh used in the generation

8. In the My Blueprint panel, create the variables shown in the following screenshot.
All of them must be set to Instance Editable. You can click on the eye icon to make
a variable instance editable:

Figure 19.6 – The variables used in the generation script

9. Compile the Blueprint and set the following default values for the variables:

 � InstancesPerRow: 1

 � NumberOfRows: 1

 � SpaceBetweenInstances: 100.0

 � SpaceBetweenRows: 150.0

Procedural generation with the Construction Script 493

10. In the Components panel, click the + Add button and search for instance. Select
Instanced Static Mesh:

Figure 19.7 – Adding the Instanced Static Mesh component

We have the variables and the component we need for this Blueprint. Now, let's work on
the script.

Creating the script to add the instances on the level
The scripting of this Blueprint will all be done in the Construction Script. Follow these
steps to create the procedural generation script:

1. Click the Construction Script tab:

Figure 19.8 – Accessing the Construction Script

2. In the My Blueprint panel, create a local variable named InstanceLocationX of
the Float type:

Figure 19.9 – Creating a local variable

494 Procedural Generation

3. The next screenshot shows the first part of the nodes we will add to Construction
Script. We get the Static Mesh stored in the Static Mesh Var variable and set it to be
used by the Instanced Static Mesh component. For Loop will repeat according to
Number Of Rows. We calculate Instance Location X for each row by multiplying
the current Index of For Loop by Space Between Rows:

Figure 19.10 – The first part of the Construction Script

4. Add the Get Instanced Static Mesh and Get Static Mesh Var nodes near the
Construction Script node.

5. Drag a wire from the Get Instanced Static Mesh node and add the Set Static Mesh
node. Drag a wire from the Get Static Mesh Var node and connect it to the New
Mesh parameter.

6. Drag a wire from the white output pin of Set Static Mesh and add a For Loop node.
Type 1 in the First Index parameter. Drag a wire from the Last Index parameter
and add a Get Number Of Rows node.

7. Add the Get Space Between Rows node. Drag a wire from the Index output node
and add a Multiply node. Drag a wire from Get Space Between Rows and connect
it to the bottom pin of the Multiply node. The pin will be converted from integer to
float.

8. Drag a wire from the Loop Body output pin and add a Set Instance Location X
node. Connect the output pin of the Multiply node to the input pin of Instance
Location X.

9. The next screenshot shows the second part of the nodes we will add to
Construction Script. The second For Loop node will repeat according to Instances
Per Row. The Add Instance node will add a Static Mesh instance on the level. The
relative Location X will be the same for all instances of the current row. The relative
Location Y is calculated by multiplying the current index of the second For Loop
node by Space Between Instances:

Procedural generation with the Construction Script 495

Figure 19.11 – The second part of the Construction Script

10. Drag a wire from the white output pin of Set Instance Location X and add a For
Loop node. Type 1 in the First Index parameter. Drag a wire from the Last Index
parameter and add a Get Instances Per Row node.

11. Add the Get Space Between Instances node. Drag a wire from the Index output
node and add a Multiply node. Drag a wire from Get Space Between Instances and
connect it to the bottom pin of the Multiply node. The pin will be converted from
integer to float.

12. Add the Get Instanced Static Mesh node. Drag a wire from its output pin and add
the Add Instance node. Connect the Loop Body output pin to the white input pin
of the Add Instance node.

13. Right-click on the Instance Transform parameter and select Split Struct Pin.
Right-click on the Instance Transform Location parameter and select Split Struct
Pin again.

14. Drag a wire from Instance Transform Location X and add the Get Instance
Location X node.

15. Connect the output pin of the Multiply node to the input pin of Instance
Transform Location Y.

16. Compile the Blueprint and close the Blueprint Editor. Drag BP_ProceduralMeshes
from the content browser and drop it in the level.

496 Procedural Generation

17. In the Details panel of Level Editor, set Instances Per Row to 10 and Number Of
Rows to 10:

Figure 19.12 – Setting up the BP_ProceduralMeshes properties on the level

18. The result of the procedural generation can be seen in the next screenshot:

Figure 19.13 – Generating 10 rows of 10 chairs

19. We can generate a plantation using the same BP_ProceduralMeshes instance. In
the Details panel of the Level Editor, change Static Mesh Var to SM_Bush, and set
Space Between Instances to 300.0 and Space Between Rows to 300.0:

Procedural generation with the Construction Script 497

Figure 19.14 – Modifying the BP_ProceduralMeshes properties on the level

20. This is the result of the procedural generation with the new parameters:

Figure 19.15 – Generating a plantation

As we can see, small changes in the parameters produce very different results. This
example is just the tip of the iceberg of what can be done with procedural generation.

In the next section, we will learn how to spawn instances along a path.

498 Procedural Generation

Creating Blueprint Splines
A Spline is a special mathematical function used to define curves. A Blueprint Spline
component can be used to define a path to move Actors in the level. We can also get
locations along the path to place instances. We can edit the spline in the Level Editor by
adding, translating, and rotating spline points.

The next screenshot shows three common functions of the Spline component:

Figure 19.16 – Some functions of the Spline component

Here is a description of the functions:

• Get Spline Length: This function returns a Float value with the length of the Spline.

• Get Location at Distance Along Spline: This function receives Distance as an
input parameter and returns the location found in the Spline. Coordinate Space
can be Local (relative) or World.

• Get Rotation at Distance Along Spline: The same idea as the previous function,
but it returns the rotation.

We will create a Blueprint named BP_SplinePlacement that adds Static Mesh
instances along the spline. The Level Designer can edit the spline in the Level Editor and
specify the space between the instances.

Creating Blueprint Splines 499

These are the steps to create the Blueprint:

1. Click the Add button in Content Browser and choose the Blueprint Class option.
On the next screen, choose Actor as the parent class. Name the Blueprint BP_
SplinePlacement and double-click it to open the Blueprint Editor.

2. In the My Blueprint panel, create a variable named StaticMeshVar. Click on
Variable Type and search for static mesh. Hover over Static Mesh and select
Object Reference. Click the eye icon to make the variable instance editable.

3. Compile the Blueprint. In the Static Mesh Var default value, select the SM_
FieldArrow Static Mesh:

Figure 19.17 – Selecting the default Static Mesh used in the generation

Note
If the SM_FieldArrow Static Mesh does not appear, click the settings icon
of the content browser and select Show Engine Content.

4. In the My Blueprint panel, create a variable named SpaceBetweenInstances
of the Float type. Click the eye icon to make the Instance Editable variable.

5. Compile the Blueprint and set Default Value of SpaceBetweenInstances
to 100.0.

6. In the Components panel, click the + Add button and search for spline. Select
the Spline component:

Figure 19.18 – Adding the Spline component

500 Procedural Generation

7. Select DefaultSceneRoot in the Components panel and add an
InstancedStaticMesh component:

Figure 19.19 – The components used by BP_SplinePlacement

8. We will create a macro to simplify the Construction Script graph. In the
My Blueprint panel, create a macro named CalculateNumberOfInstances:

Figure 19.20 – Creating the macro

9. In the Details panel, create an Outputs parameter named Number Of
Instances of the Integer type:

Figure 19.21 – Creating the output parameter

Creating Blueprint Splines 501

10. Add the nodes shown in the following screenshot in the
CalculateNumberOfInstances macro. This macro gets the spline length and divides
it by Space Between Instances to find the number of instances that will be created
along the spline. The Floor node is used to round down the result of the division:

Figure 19.22 – The nodes of the CalculateNumberOfInstances macro

Note
If the denominator of a division is zero, it generates a divide by a zero runtime
error. Blueprint has a node named Safe Divide that returns zero if the
denominator is zero, but it does not generate an error.

11. Click the Construction Script tab. The next screenshot shows the first part of the
nodes to add to Construction Script. We get the Static Mesh stored in the Static
Mesh Var variable and set it as the Static Mesh that will be used by the Instanced
Static Mesh component. For Loop will repeat according to Number Of Instances.
We calculate the distance along the spline by multiplying the current Index of For
Loop by Space Between Instances:

Figure 19.23 – The first part of the Construction Script

502 Procedural Generation

12. The following screenshot shows the second part of the nodes to add to
Construction Script. The Add Instance node will add a static mesh instance on the
level using the location and rotation received from the spline. Note that Coordinate
Space must be Local, and you need to right-click on the Instance Transform
parameter and select Split Struct Pin:

Figure 19.24 – The second part of the Construction Script

13. Compile the Blueprint and close the Blueprint Editor. Drag BP_SplinePlacement
from the content browser and drop it in the level.

14. A spline has spline points represented by white points in the Level Editor. You can
select one spline point to translate and rotate it. To add spline points, right-click the
spline and select Add Spline Point Here:

Figure 19.25 – Adding spline points

Creating Blueprint Splines 503

15. You can make a path by adding, translating, and rotating spline points. The Static
Mesh instances will be added along the spline:

Figure 19.26 – The Static Mesh instances follow the spline

The Level Designer will have the flexibility to define the spline path around the level
content.

A spline can also be used to deform a Static Mesh, as we will see in the next section.

504 Procedural Generation

A Spline Mesh component
There is another component that uses splines named the Spline Mesh component. This
component is used to deform a Static Mesh along a two-point spline. We can edit the
points of the spline in the Level Editor or set them using Blueprint functions.

The Set Start and End function can be used in the Construction Script to define the
Spline Mesh:

Figure 19.27 – A function to define the spline mesh

The next screenshot shows an example of a Static Mesh deformed by a spline:

Figure 19.28 – A Static Mesh deformed by a spline

Editor Utility Blueprint 505

We could modify the example of the previous section to add Spline Mesh components
instead of Static Mesh instances to create curved pipes on the level. Unfortunately, the
calculation of the tangents for the spline instances would require mathematical concepts
that are beyond the scope of this book.

In the next section, we will learn some ways to expand the Unreal Editor.

Editor Utility Blueprint
Editor Utility Blueprint is a type of Blueprint that is executed only in the Unreal Editor.
You can use them to manipulate Assets in the content browser and Actors in the level.

There is also Editor Utility Widget, which is a UMG widget that we can use to create
panels for the Unreal Editor with new functionalities.

We can create Editor Utility Blueprint and Editor Utility Widget by accessing the Editor
Utilities submenu in the Asset creation menu:

Figure 19.29 – Menu options to create Editor Utility Blueprints

506 Procedural Generation

Right-click on the EventGraph of an Editor Utility Blueprint and look in the Editor
Scripting category to get an idea of the functions available to script the Editor:

Figure 19.30 – The Editor Scripting category and subcategories

The functions created in an Editor Utility Blueprint will appear in the Script Actions
submenu when you right-click an Asset or an Actor in the level. To create functions that
will manipulate Assets in the content browser, you need to select AssetActionUtility
as the parent class. To manipulate Actors in the level, use ActorActionUtility as the
parent class.

Creating an Actor Action Utility
We will create an Editor Utility Blueprint named BPU_ActorAction using
ActorActionUtility as the parent class. This Blueprint will have a function named
AlignOnXAxis that will get the Location X of the first Actor selected and set the same
value in the other selected Actors.

Editor Utility Blueprint 507

These are the steps to create the Blueprint:

1. Click the Add button in the content browser, hover over Editor Utilities, and select
the Editor Utility Blueprint option:

Figure 19.31 – Creating an Editor Utility Blueprint

2. On the next screen, choose ActorActionUtility as the parent class:

Figure 19.32 – Selecting the parent class

3. Name the Blueprint BPU_ActorAction and double-click it to open the
Blueprint Editor.

508 Procedural Generation

4. In the My Blueprint panel, create a function named AlignOnXAxis:

Figure 19.33 – Creating the function that will be called in the Editor

5. In the LOCAL VARIABLES category of the My Blueprint panel, create a local
variable named LocationX of the Float type. This variable will store Location X
of the first selected Actor to set in the other selected Actors:

Figure 19.34 – Creating a local variable

6. Add the nodes shown in the following screenshot, which shows the first part of the
Align on XAxis function. The Get Selection Set node returns an array of the Actors
selected in the Level Editor. We get the first Actor of the array (index 0) and store
its Location X:

Figure 19.35 – The first part of the Align on XAxis function

7. Add the nodes of the second part of the Align on XAxis function. For Each Loop
iterates on the array returned by Get Selection Set. For each Actor, we update
Location X. We need to right-click the Location parameters and use Split Struct
Pin to see the X, Y, and Z pins:

Editor Utility Blueprint 509

Figure 19.36 – The second part of the Align on XAxis function

8. Compile the Blueprint and close the Blueprint Editor. Drag and drop in the
level three times the SM_TableRound asset, located in the Content >
StarterContent > Props folder:

Figure 19.37 – Adding three instances of SM_TableRound

510 Procedural Generation

9. Hold down the Ctrl key and click the SM_TableRound instances to add them to
the selection. After selecting the three instances, right-click one of them, hover over
Scripted Actor Actions, and select the Align on XAxis function:

Figure 19.38 – Running the utility function in the Editor

10. After the execution of the function, all instances selected will have the same
Location X:

Figure 19.39 – All instances with the same Location X

By using Editor Utility Blueprints and Editor Utility Widgets, we can expand the Unreal
Editor with new functionalities that can speed up the development of a project with
specific characteristics.

Summary 511

Summary
This chapter showed how to do procedural generation using the Construction Script.
We created a Blueprint that adds rows of static mesh instances in the level. The Static
Mesh, the number of rows, and how many instances per row can be changed in the level.

We also learned how to create Blueprint Splines to spawn instances along a path and saw
that there is a Spline Mesh Component that can be used to deform a Static Mesh.

We also looked at the Editor Utility Blueprint, which is useful to create functions that run
in the Editor and can manipulate Assets and Actors in edit mode. We created an Editor
Utility Blueprint with a function that aligns the selected Actors.

The next chapter will explain what a Product Configurator is. We will learn how to use the
Variant Manager panel and Level Variant Sets to define a Product Configurator.

Quiz
1. The best place to write a procedural generation script is in Event Begin Play.

a. True

b. False
2. We can only edit a spline in the Viewport of the Blueprint Editor.

a. True

b. False
3. We can use a Spline Mesh component to deform a Static Mesh.

a. True

b. False
4. The functions of an Editor Utility Blueprint can only manipulate Assets in the

content browser.

a. True

b. False
5. We can create panels for the Unreal Editor using Editor Utility Widgets.

a. True

b. False

20
Creating a Product
Configurator Using

the Variant Manager
This chapter explains how to create a Product Configurator, which is a type of application
used in industry to attract consumers to a specific product. You will learn how to use the
Variant Manager panel and Variant Sets to define a Product Configurator. The Product
Configurator template is an excellent resource for studying various Blueprint concepts in
practice. We will analyze the BP_Configurator Blueprint that dynamically creates the
user interface using UMG Widget Blueprints with the Variant Sets.

These are the topics covered in this chapter:

• The Product Configurator template

• The Variant Manager panel and Variant Sets

• The BP_Configurator Blueprint

• UMG Widget Blueprints

514 Creating a Product Configurator Using the Variant Manager

By the end of the chapter, you will know how to create a Product Configurator using the
Product Configurator template, the Variant Manager panel, and Variant Sets. You will
know how the BP_Configurator Blueprint and the UMG Widget Blueprints work to
be able to adapt them to your applications.

The Product Configurator template
The main idea behind the Product Configurator application is to let users switch between
different options for a product and visualize them in real-time 3D experiences. This type
of application is becoming common in the industry.

Unreal Engine has a Product Configurator template that can be used as a starting
point to make your own Product Configurator. Follow these steps to use the Product
Configurator template:

1. In the New Project panel, select the AUTOMOTIVE PRODUCT DESIGN &
MANUFACTURING category, and then select the Product Configurator template:

Figure 20.1 – Selecting the Product Configurator template

The Product Configurator template 515

2. Choose a folder and a name for the project, and then click on the Create button.
3. After the Unreal Editor loads the project, click the Play button to run the template.

The next screenshot shows the main interface of the guitar example that comes with
the Product Configurator template:

Figure 20.2 – The guitar example of the Product Configurator template

4. The two buttons on the right allow you to change the camera and environment
lighting. When you click on a button, other buttons are displayed to choose the
current option of the group. Click the Camera button and select another camera:

Figure 20.3 – Selecting another camera

516 Creating a Product Configurator Using the Variant Manager

5. The buttons at the bottom allow you to change various parts of the guitar. Try each
one to see the potential of a Product Configurator:

Figure 20.4 – Selecting the body color

Now that we have seen how to use the Product Configurator template, we can analyze the
tools used in a Product Configurator.

The Variant Manager panel and Variant Sets
The main tool behind a Product Configurator is the Variant Manager. We use the Variant
Manager panel to edit the Level Variant Sets Asset, which allows us to modify the
properties of Actors in the level. Each configuration of a part of the product is a Variant,
and we can group Variants into Variant Sets.

In the Product Configurator template, each button that appears on the screen when you
start the application represents a Variant Set. When you click on one of these Variant Set
buttons, other buttons are displayed that represent the Variants that belong to the current
Variant Set.

The Variant Manager panel and Variant Sets 517

These are the steps to use the Variant Manager panel:

1. Double-click the VariantSet asset located in the Content >
ProductAssets folder to open the Variant Manager panel:

Figure 20.5 – The Level Variant Sets of the template

2. The Variant Sets and the Variants are listed on the left. In the next screenshot,
we can see that Body Shape is a Variant Set with three Variants: Strat Type, I Type,
and V Type. Click on I Type to see its properties:

Figure 20.6 – The Variant Manager panel

3. For each Variant, we can add Actors from the level that will be modified by the
Variant. In the previous screenshot, Body is a StaticMeshActor that has its
Static Mesh modified by the Variant.

518 Creating a Product Configurator Using the Variant Manager

4. Use the +Variant Set button to add Variant Sets, and use the + button at the right of
the Variant Set name to add the Variants in the Variant Set.

5. Double-click a Variant to activate it. The change is applied immediately in the level.
6. The Static Mesh Actors representing guitar parts are grouped by an Actor named

GuitarRoot in the level, so you can move them together. The following screenshot
is from the Outliner panel in the Level Editor:

Figure 20.7 – The Static Mesh Actors of the guitar

To be able to change the Variants during runtime, the VariantSet asset was dropped in
the level to create Level Variant Sets Actor.

The Product Configurator template is very flexible. You just need to learn to use the
Variant Manager panel and import your Static Meshes to create your own Product
Configurator.

In the next section, we will analyze the BP_Configurator Blueprint. You do not need
to know how it works to use the Product Configurator, but it is a great opportunity to see
advanced Blueprint techniques in practice.

The BP_Configurator Blueprint
The Product Configurator template has a Blueprint named BP_Configurator that uses
the data of a Level Variant Set to create an interface using UMG Widget Blueprints. This is
a very interesting Blueprint to study because we will see several Blueprint concepts being
used together.

There is an instance of BP_Configurator on the level that you can select in the
Outliner panel. In the Details panel, under the Default category, there are two instance-
editable variables. The LVSActor variable is a reference to the Level Variant Sets Actor,
and Camera Actor is a reference to the camera used to visualize the Product:

The BP_Configurator Blueprint 519

Figure 20.8 – The BP_Configurator instance-editable variables

Before we open the BP_Configurator Blueprint, let's look at STRUCT_VarSet, located
in the Content > ProductConfig > Blueprints folder:

Figure 20.9 – The STRUCT_VarSet variables

The structure has two variables. VariantSet is a reference to a Variant Set and
currentIndex is an integer variable used to store the index of the selected Variant in
a Variant Set.

520 Creating a Product Configurator Using the Variant Manager

Open the BP_Configurator Blueprint, located in the Content > ProductConfig
> Blueprints folder. Let's start by looking at the variables in the My Blueprint panel:

Figure 20.10 – The BP_Configurator variables

This is what each variable does:

• ObjectVariantSets: An array of STRUCT Var Set that stores all Variant Sets of
the product

• EnviroVarSet: A Variable of the STRUCT Var Set type that stores the Variant Set of
environment lighting

• CameraVarSet: A Variable of the STRUCT Var Set type that stores the camera
Variant Set

• LVSActor: A reference to Level Variant Sets Actor

• CameraActor: A reference to the camera used to visualize the product

• GUI: A reference to the main UMG Widget Blueprint

Note
There are several variables in the UI Options category that can be used to
modify the appearance of the Product Configurator. These variables are
instance-editable, so you can modify them in the instance that is in the level.

The BP_Configurator Blueprint 521

Now, let's look at the functions:

Figure 20.11 – The BP_Configurator functions

This is what each function does:

• initConfigVarSets: It gets the Variant Sets of the Level Variant Sets Actor and stores
them in the ObjectVariantSets array, the EnviroVarSet variable, and the
CameraVarSet variable.

• resetAllVariants: Calls the resetVariant function for EnviroVarSet,
CameraVarSet, and each element of the ObjectVariantSets array.

• resetVariant: Resets a Variant Set by activating the first element of the Variant Set.

• callVariantActorAction: Calls the Variant Switched On function for all
Actors and components used by the current Variant that implements the
BPI_RuntimeAction interface. This allows Actors to run script when the
Variant is activated.

• callVariantActorInit: Calls the Variant Initialize function for all
Actors and components used by the current Variant that implements the
BPI_RuntimeAction interface.

• activateVariant: Activates a Variant of a given Variant Set.

• initCamera: Initializes the camera.

522 Creating a Product Configurator Using the Variant Manager

Event BeginPlay has a Sequence node with three outputs. The first output wire connects
to the nodes that store the BP_Configurator reference in BP_ConfigGameMode so that
other Blueprints can get the BP_Configurator reference by accessing the game mode:

Figure 20.12 – Storing the BP_Configurator reference in the game mode

The second output wire connects to initialization functions that store the Variant Sets,
initialize the camera, and reset all Variant Sets to the first (default) Variant:

Figure 20.13 – Initialization functions

On the second output wire, there are also nodes that create an instance of the WBP
Main GUI widget and store the reference in the GUI variable. The widget is added to the
Viewport, and the input mode is set to Game and UI:

The BP_Configurator Blueprint 523

Figure 20.14 – Configuring the user interface

The third output wire connects to nodes that perform the GUI event bindings. This
is where the magic happens. We will see in the next section that the WBP Main GUI
Widget Blueprint has an event dispatcher named Variant Selected. The nodes on the next
screenshot bind a Custom Event named GUIVariantSelected to the Variant Selected
event dispatcher:

Figure 20.15 – GUI event binding

When the user clicks on a button to activate a Variant, WBP Main GUI calls the Variant
Selected event dispatcher. The GUIVariantSelected Custom Event will execute because it
is bound to the Variant Selected event dispatcher.

For more information about event dispatchers and bindings, see Chapter 4, Understanding
Blueprint Communication.

524 Creating a Product Configurator Using the Variant Manager

The GUIVariantSelected Custom Event calls the Activate Variant function, using the
selected Variant Set and Variant Index parameters. The Switch On function of the
Variant is used to activate the Variant:

Figure 20.16 – The Activate Variant function

The dynamic interface is created by some UMG Widget Blueprints that work together and
use the variables from BP_Configurator.

UMG Widget Blueprints
There are five UMG Widget Blueprints used in the Product Configurator interface. For
more information about UMG, see Chapter 7, Creating Screen UI Elements.

These are the UMG Widget Blueprints:

• WBP_MainGUI: The main Widget Blueprint that contains the other widgets.

• WBP_MainSelector: This is the Widget responsible for reading the Level Variant
Sets and creating the corresponding buttons.

• WBP_VariantRibbonSelector: This Widget is used to show the Variant options of
the selected Variant Set.

• WBP_PopupSelector: This Widget is similar to WBP_VariantRibbonSelector,
but it is used for camera and environment lighting.

• WBP_Button: This Widget represents the button used to select a Variant or
a Variant Set.

UMG Widget Blueprints 525

The next screenshot shows the relationship between some of the Widgets:

Figure 20.17 – The relationship of the Widgets

The Widget Blueprints are located in the Content > ProductConfig > UMG
folder. Let's start by looking at WBP_MainGUI. The following screenshot is from its
Hierarchy panel:

Figure 20.18 – The WBP_MainGUI Hierarchy panel

WBP_MainGUI uses two WBP_Button Widgets and two WBP_PopupSelector Widgets
to manage the camera and environment lighting options. MainPartVarSelector is a
WBP_MainSelector Widget that manages the Variants of the product.

The buttons of the Variant Sets and each Variant are created in Event Construct of the
WBP_MainSelector Widget. The Populate Options function creates the buttons using
the thumbnails from the Level Variant Sets:

Figure 20.19 – Event Construct of WBP_MainSelector

526 Creating a Product Configurator Using the Variant Manager

All five Widget Blueprints have event dispatchers. The first event dispatcher is triggered
when the user clicks on WBP_Button:

Figure 20.20 – The WBP_Button On Clicked event

WBP_VariantRibbonSelector binds an event to the Button Clicked event dispatcher of
WBP_Button. The new event triggers the Ribbon Option Selected event dispatcher:

Figure 20.21 – WBP_VariantRibbonSelector binding an event to Button Clicked

UMG Widget Blueprints 527

WBP_MainSelector has the PartSelectedEvent Custom Event to trigger the Part
Selected event dispatcher:

Figure 20.22 – WBP_VariantRibbonSelector binding an event to Button Clicked

The binding of PartSelectedEvent to the Ribbon Option Selected event dispatcher is
done in the Create Event Bindings function using the Create Event node:

Figure 20.23 – Using the Create Event node to bind an event

To use the Create Event node, drag a wire from the Event input pin of a Bind Event node
and select Create Event:

Figure 20.24 – Using the Create Event node to bind an event

528 Creating a Product Configurator Using the Variant Manager

In the Create Event node, you will be able to select an event that has the same type of
input parameters as the event dispatcher.

The last event dispatcher is from WBP_MainGUI, which binds a Custom Event to the
Part Selected event dispatcher of WBP_MainSelector:

Figure 20.25 – WBP_MainGUI binding an event to Part Selected

The Variant Selected event dispatcher is the one that is bound in the BP_Configurator
Blueprint.

In this section, we saw how UMG Widget Blueprints can be used together to create
a dynamic and configurable interface.

Summary
In this chapter, we explained what a Product Configurator is, and we showed how to use
the Product Configurator template. We learned how to use the Variant Manager panel to
create Variants and Variant Sets.

We also learned how the BP_Configurator Blueprint stores all the information of the
Level Variant Sets Actor needed to create a dynamic interface. We had an overview of the
BP_Configurator functions and saw how to activate a Variant in a Blueprint.

Then, we saw how the WBP_MainGUI Widget uses the other UMG Widget Blueprints
to create a user interface and saw how several event dispatchers were used to make the
BP_Configurator act when a button was clicked.

Epilogue 529

Epilogue
I can't believe we have reached the end of the book. This was an extensive project, and
I consider this book as my definitive work on Blueprints. It's been a long journey since
I started programming games in the C language in 1993, when I was 14 years old. My first
games were in text mode, and they looked like the game ZZT by Tim Sweeney, founder of
Epic Games.

In 1999, I started the first game development company in the state of Pará, northern
Brazil. The company name was RH Games. In 2001, I developed the MRDX, which is
a framework for 2D game programming using the C/C++ languages. In 2002, I presented
the MRDX at the first Brazilian Games Workshop. In 2003, I founded a local group called
Beljogos, with the goal of encouraging the development of games in northern Brazil.

In 2011, I started a blog named Romero UnrealScript, with the goal of teaching game
programming with UnrealScript. Because of this blog, in June 2013, Epic Games invited
me to be part of the Unreal Engine 4 closed beta program so I could have early access to
Unreal Engine 4. I started the blog Romero Blueprints in March 2014, when Unreal Engine
4 was launched.

In August 2015, Epic Games awarded me an Unreal Engine Educational Dev Grant for the
work that I had done in the Romero Blueprints blog to help people learn Unreal Engine
4 scripting. In 2016, I wrote the Blueprints Compendium for Epic Games, which was
distributed to the public at the Game Developer Conference (GDC). In June 2017,
I finished writing the third volume of the Blueprints Compendium.

In 2018, Epic Games hired me to write the official Blueprint Instructor Guide. In 2019,
I wrote the book Blueprints Visual Scripting for Unreal Engine – Second Edition, published
by Packt. In 2020, my project to teach C++ programming in Unreal Engine was selected
for the Epic MegaGrants program. In August 2020, Epic Games invited me to a live stream
named Teaching & Learning Blueprints with Marcos Romero, which is available on Unreal
Engine's YouTube channel.

I am grateful for the opportunity to write this book, and I hope it will help the journey of
the next generation of Unreal Engine developers.

530 Creating a Product Configurator Using the Variant Manager

Quiz
1. The Product Configurator template allows the user to modify parts of the product,

camera, and environment lighting.

a. True

b. False
2. The changes made in the Variant Manager panel will only be visible in the level at

runtime.

a. True

b. False
3. Variants are organized into Variant Sets, and each set can only have one active

Variant.

a. True

b. False
4. BP_Configurator stores the product Variant Sets in an array.

a. True

b. False
5. The user interface of the Product Configurator template is defined in only one UMG

Widget Blueprint.

a. True

b. False

Appendix
Quiz answers
The following are the answers to all the quiz questions, chapter-wise:

• Chapter 1, Exploring the Blueprint Editor: 1-a; 2-b; 3-b; 4-b; 5-c.

• Chapter 2, Programming with Blueprints: 1-c; 2-b; 3-a; 4-c; 5-a.

• Chapter 3, Object-Oriented Programming and the Gameplay Framework: 1-b; 2-b;
3-a; 4-b; 5-c.

• Chapter 4, Understanding Blueprint Communication: 1-a; 2-b; 3-a; 4-b; 5-a.

• Chapter 5, Object Interaction with Blueprints 1-b; 2-a; 3-a; 4-b; 5-a.

• Chapter 6, Enhancing Player Abilities: 1-a; 2-b; 3-a; 4-a; 5-b.

• Chapter 7, Creating Screen UI Elements: 1-b; 2-a; 3-b; 4-a; 5-a.

• Chapter 8, Creating Constraints and Gameplay Objectives: 1-b; 2-a; 3-a; 4-b; 5-a.

• Chapter 9, Building Smart Enemies with Artificial Intelligence: 1-c; 2-b; 3-a; 4-a; 5-b.

• Chapter 10, Upgrading the AI Enemies: 1-b; 2-a; 3-a; 4-b; 5-a.

• Chapter 11, Game States and Applying the Finishing Touches : 1-a; 2-c; 3-b; 4-a; 5-a.

• Chapter 12, Building and Publishing: 1-a; 2-b; 3-a; 4-c; 5-a.

• Chapter 13, Data Structures and Flow Control: 1-b; 2-a; 3-b; 4-a; 5-b.

• Chapter 14, Math and Trace Nodes: 1-a; 2-a; 3-b; 4-b; 5-a.

• Chapter 15, Blueprints Tips: 1-b; 2-a; 3-a; 4-b; 5-a.

• Chapter 16, Introduction to VR Development: 1-b; 2-a; 3-a; 4-b; 5-a.

• Chapter 17, Animation Blueprints: 1-a; 2-b; 3-a; 4-b; 5-a.

• Chapter 18, Creating Blueprint Libraries and Components: 1-a; 2-b; 3-b; 4-a; 5-b.

• Chapter 19, Procedural Generation: 1-b; 2-b; 3-a; 4-b; 5-a.

• Chapter 20, Creating a Product Configurator Using the Variant Manager: 1-a; 2-b;
3-a; 4-a; 5-b.

Index

A
abstraction 393
Actor Action Utility

creating 506-510
Actor class

Construction Script 54-58
destroying 51-53
managing 46
referencing 46-50
spawning 51-53

Actor Components
creating 473-478
testing 479-482

ammo counter
creating 164-167
reducing 174, 175
text bindings, creating for 173, 174
tracking 174

anchors 162
animation

overview 430
project, creating 430

Animation Blueprint Editor 431
Animation Blueprints

AnimGraph, using 439-441
creating 435, 436

EventGraph, analyzing 437, 438
modifying 452-458
Transition Rules, defining 458-460

Animation Editor
about 431
exploring 431

Animation Sequence 432-434
Animation Starter Pack

importing 446, 447
Animation States

adding 448, 449
Animation Blueprint, modifying 452
Character Blueprint, modifying 449-452

AnimGraph
using 439-441

arithmetic operators
using, to create expressions 29, 30

array
about 326-329
BP_RandomSpawner, creating 330-332
BP_RandomSpawner, testing 332-334
creating 326, 327

artificial intelligence (AI) 60
AttachActorToComponent node 403

534 Index

B
Behavior Tree

attack task, using 260-262
hearing, adding 263-265

binding 170
Blend Space 434, 435
Blueprint

actions that connect to events,
creating 27, 28

best practices 390
casting 76-82
Components, adding 17-19
events, adding 26, 27
execution path 28

Blueprint, best practices
complexities, managing 393-399
responsibilities 390-392

Blueprint Class Editor interface
about 11
Event Graph panel 16, 17
panels 11

Blueprint Class Editor interface, panels
Components panel 13, 14
Details panel 15
My Blueprint panel 14
Toolbar panel 12, 13
Viewport panel 16

Blueprint Communication
interfaces, using for 419-422

Blueprint Editor
about 11
shortcuts 384-389

Blueprint Function Library
about 464
example 464-468
third function, creating 469-473
third function, testing 469-473

Blueprint Macro Library 464
Blueprint Splines

about 498
creating 499-503
functions 498

Blueprints Visual Scripting
about 8
Blueprint Class, creating 10, 11
Level Blueprint Editor, opening 8-10

BP_Configurator Blueprint
about 518-524
functions 521
variables 520

BP_EnemySpawner blueprint
creating 275-278

BP_RandomSpawner
creating 330-332
testing 332-334

branches
target states, changing with 146, 148

breadcrumb 444
Build configurations 318-320

C
canvas 159
casting

in Blueprints 76-82
Character Blueprint

modifying 449-452
Character class 61
character movement

breaking down 130-134
children 242
classes 44
collectible objects

creating 196-201
Comma-Separated Values (CSV) 348

Index 535

Components
adding, to Blueprint 17-19

constraints
applying, to player actions 180

Construction Script
about 54-58, 490
used, for procedural generation 490-492

containers, types
array 326-329
exploring 326
map 338-340
set 335-337

control inputs
customizing 134, 135

D
data pins 28
data structures

data table 347-350
enumeration (enum) 341, 342
exploring 341
structure (struct) 343-347

data table
about 347
creating 347-350

debug lines
about 376
parameter 376

delta time 119
destructions

triggering 148-151
Direct Blueprint Communication 70-76
Disable Input node 404
Do N node 355
Do Once node 354

E
Editor Utility Blueprint

about 505, 506
Actor Action Utility, creating 506-510

Editor Utility Widget 505
Enable Input node 404
encapsulation 44
End Game Event

modifying 299, 300
enemies

making destructible 272-275
making, to hear and

investigate sound 263
spawning, during gameplay 275

enemy actor
setting up, to navigate 220

enemy actor navigation
AI assets, creating 229-231
behavior, creating 233
BP_EnemyCharacter Blueprint,

setting up 231-233
importing, from Marketplace 220, 221
level, making traversable with

NavMesh asset 227, 228
play area, expanding 221-227
setting up 220

enemy actor navigation behavior
Behavior Tree, running in AI

Controller 241, 242
Blackboard keys, creating 234, 236
creating 233
current patrol point key,

creating 237-239
modeling, with Behavior Tree 242-246
patrol point, overlapping 239-241

536 Index

patrol points, setting in BP_
EnemyCharacter instance 246, 247

patrol points, setting up 233, 234
variables, creating in BP_

EnemyCharacter 236, 237
enemy attack

creating 258
health meter, updating 261, 262
task, creating 258-260
task, using in Behavior Tree 260, 261

enemy wandering behavior
adding, to Behavior Tree 280, 281
adjustments 281-283
creating 278
wander point with custom task,

identifying 278-280
enumeration (enum)

about 341, 342
creating 341, 342

Event Dispatchers 86-90
EventGraph

analyzing 437, 438
events

binding 90-93
versus functions 41
versus macros 41

exclusive OR 32
execution path 28
Experience Points (XP) 475
explosions

triggering 148-151
expressions, creating with operators

arithmetic operators, using 29, 30
logical operators, using 31, 32
relational operators, using 30, 31

F
field of view (FOV) 139
firing actions

preventing, when out of ammo 195, 196
Flip Flop node 352, 353
flow control nodes

about 351
Do N node 355
Do Once node 354
Flip Flop node 352, 353
For Each Loop node 353
Gate node 355, 356
MultiGate node 356, 357
Sequence node 353
switch node 351, 352

For Each Loop node 353
Format Text node 401
functions

creating 36-38
creating, step by step example 39, 40
used, for organizing script 32
versus events 41
versus macros 41

G
game

packaging, into build 317, 318
pausing 301
resuming 303

Game Developer Conference (GDC) 529
game information

loading 293, 294
saving 290-292
storing, with SaveGame class 289, 290

Game Instance class 66
Game Mode Base class 64, 65

Index 537

Gameplay Framework classes
Character class 61
exploring 58-60
Game Instance 66
Game Mode Base 64, 65
Pawn 60, 61
PlayerController 62, 63

gameplay win condition
setting 201
target goal, displaying in HUD 202
WinMenu screen, creating 204-209
win, triggering 212-214

game, to be played by others
setting up 313-316

Gate node 355, 356
Get Game Mode function 82
graph 102
graphics settings

optimizing 310-313

H
Heads-Up Display (HUD)

about 154
displaying 168-170

HUD Blueprint
target goal, displaying 202-204

I
inheritance 45, 46
InputAction Sprint event

updating 192, 193
Instanced Static Mesh component 490
instances 25, 44
interfaces

using, for Blueprint
Communication 419-422

investigating tasks
setting up 265, 266

L
Level

objects, adding 99, 100
Level Blueprint Communication 82-86
Level Editor, key panels

Content Browser 8
details 8
outliner 8
toolbar 7
viewport 7

Level of Detail (LOD) 490
Level Variant Sets 516
local variables 469
Location variable

about 361
actions 361

logical operators
using, to create expressions 31, 32

lose screen
displaying 287, 288
setting up 286

M
macros

creating 32-35
creating, to update blackboard 266-268
used, for organizing script 32
versus events 41
versus function 41

ManageStamina custom event
creating 194

ManageStaminaDrain macro
creating 188-190

538 Index

ManageStaminaRecharge macro
creating 190-192

map
about 338-340
creating 338

Material
about 101
creating 101
exploring 101
graph 102
nodes, using 102-105
properties, defining 102-105
result node 102
substance, adding 105-107

Material Editor 102
mathematical operations, of vector

actor vectors 370
addition 366
dot product 369
length 368
normalization 368
scalar value 368
subtraction 367

Math Expression node 402
menu

interacting with 422-424
miscellaneous Blueprint nodes

AttachActorToComponent node 403
Disable Input node 404
Enable Input node 404
Format Text node 401
Math Expression node 402
Select node 399, 400
Set Input Mode nodes 404, 405
Set View Target with Blend node 402
Teleport node 400
using 399

MultiGate node 356, 357

N
Navigation Mesh (NavMesh) 227
noise Event data

interpreting 268, 269
storing 268, 269

normalizing 118
null 48

O
object grabbing system 416-419
object-oriented programming (OOP)

classes 44
inheritance 45, 46
instance 44

object reference 46
objects

adding, to Level 99, 100
Oculus Quest 313
OpenXR framework 408

P
packaging 317
Packaging Settings 318-320
parameters 28
pause menu

creating 301, 302
triggering 305, 306

Pawn class 60, 61
Pawn Sensing component

about 263
Behavior Tree Task, creating 249-251
chasing behavior, creating 253, 254
conditions, adding to Behavior

Tree 251-253
used, for chasing player 247

Index 539

used, for detecting noise 270-272
used, for granting detection

ability to player 247-249
Physics Asset Editor 431
player actions

constraining 180
firing actions, preventing when

out of ammo 195, 196
stamina, draining 181
stamina, regenerating 181

PlayerController class 62, 63
player death

lose screen, displaying 287, 288
lose screen, setting up 286

player death scene
used, for making danger real 286

primitive types 46
private, Blueprint class 44
procedural generation

about 490
performing, with Construction

Script 490-492
script, creating for adding

instances on level 493-497
Product Configurator template 514-516
project

creating, template used 98, 99
first Level 99

projectile's speed
increasing 143-145

public variables and functions 44

R
relational operators

using, to create expressions 30, 31
relative transforms

about 362

using 360, 361
reroute nodes 82
result node, Material 102
Role-Playing Game (RPG) 464
root component 487
Rotation variable

about 361
rotation nodes 361

round-based scaling
creating, with saved games 288

running functionality
adding 130
character movement, breaking

down 130-134
control inputs, customizing 134, 135
Sprint ability, adding 136-138

S
save file

resetting 301-305
SaveGame class

used, for storing game
information 289, 290

scalar value 368
Scale variable 362
Scene Components

creating 482-487
script

organizing, with functions 32
organizing, with macros 32

Select node 399, 400
Sequence node 353
set

about 335-337
creating 335

Set Input Mode nodes 404, 405
Set View Target with Blend node 402

540 Index

shape trace 375
simple UI meters

creating, with Unreal Motion
Graphics (UMG) 154, 155

simple UI meters, with UMG
ammo and targets eliminated

counters, creating 164-167
appearance, customizing 159-163
creating 154, 155
HUD, displaying 168-170
shapes, drawing with Widget

Blueprints 156-158
Skeletal Editor 431
Skeletal Mesh 431, 432
Skeletal Mesh Editor 431
Skeleton 431, 432
Snap Turn 416
sound and particle effects

adding 145, 146
sound effects

triggering 148-151
Sphere Trigger 233
spline 498
Spline Mesh Component 504, 505
Sprint ability

adding 136-139
stamina

draining 181
InputAction Sprint event,

updating 192, 193
ManageStamina custom

event, creating 194
ManageStaminaDrain macro,

creating 188-190
ManageStaminaRecharge

macro, creating 190-192
regenerating 181
StartSprinting macro, creating 186, 187

StopSprinting macro, creating 184-186
variables, creating 182-184

StartSprinting macro
creating 186, 187

State Machines
exploring 442-445

StopSprinting macro
creating 184-186

structure (struct)
about 343-347
creating 344, 346

subclass 45, 77
superclass 45
switch node 351, 352

T
target

movement, adding 113
target Blueprint

creating 107, 108
hit detection mechanism,

creating 109, 110
improving 111-113
Material, swapping 110, 111

target goal
displaying, in HUD Blueprint 202-204
increasing 294-296

target movement
Actor's Mobility and Collision

settings, modifying 114, 115
adding 113
direction, changing 123-125
direction vector, normalizing 118, 119
goal, breaking down 115-118
location, updating 120-123

Index 541

relative speed, obtaining with
delta time 119, 120

testing 125
Target Points 330
targets eliminated counter

creating 164-167
increasing 176, 177
text bindings, creating 173, 174
tracking 174

target states
changing, with branches 146, 148

teleportation
event and functions, using 412-416

Teleport node 400
templates

in Games category 5, 6
TraceByChannel function

about 374
input parameters 374, 375

TraceForObjects function
about 373
input parameters 373

trace function
about 372
debug lines 376
shape trace 375
TraceByChannel function 374
TraceForObjects function 373

trace nodes
example 376-380

traces
overview 370

Transition Rules
defining 442-460

transition screen
creating, to show between

rounds 296-299

U
UI meters 154
UI values, connecting to player variables

about 170
bindings, creating for health

and stamina 171, 172
text bindings, creating 173

UMG Widget Blueprints 524-528
Unreal Engine

installing 4
new projects, creating 4
templates, using 5

Unreal Motion Graphics (UMG)
used, for creating simple UI

meters 154, 155

V
values

storing, in variables 22-25
variables

creating, for stamina system 182-184
creating, to update blackboard 266-268
types 23, 24
values, storing 22-25

Variant 516
Variant Manager panel

about 516
using 517, 518

Variant Sets 516-518
vector

about 363-365
example 376-380
mathematical operations 366
representation 365

virtual reality head-mounted
display (VR HMD) 133

542 Index

VRPawn Blueprint 409-412
VR template

exploring 408, 409

W
Widget Blueprints

used, for drawing shapes 156-158
WinMenu

displaying 210, 211
screen, creating 204-209

world transforms
using 360-363

Z
zoomed view

animating 139
changing, with timelines 140-143

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

544 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Game Development Projects with Unreal Engine

Hammad Fozi , Gonçalo Marques , David Pereira and Devin Sherry

ISBN: 978-1-80020-922-0

• Create a fully-functional third-person character and enemies

• Build navigation with keyboard, mouse, gamepad, and touch controls

• Program logic and game mechanics with collision and particle effects

• Explore AI for games with Blackboards and Behavior Trees

• Build character animations with Animation Blueprints and Montages

https://subscription.packtpub.com/product/game_development/9781800209220

Other Books You May Enjoy 545

Unreal Engine 4 Game Development Quick Start Guide

Rachel Cordone

ISBN: 978-1-78995-068-7

• Use project templates to give your game a head start

• Create custom Blueprints and C++ classes and extend from Epic's base classes

• Use UMG to create menus and HUDs for your game

• Create more dynamic characters using Animation Blueprints

• Learn how to create complex AI with Behavior Trees

https://subscription.packtpub.com/product/game-development/9781789950687

546

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

http://authors.packtpub.com
http://authors.packtpub.com

 547

Hi!

I am Marcos Romero, author of Blueprints Visual Scripting for Unreal Engine 5. I really
hope you enjoyed reading this book and found it useful for increasing your productivity
and efficiency in Blueprints.

It would really help me (and other potential readers!) if you could leave a review on
Amazon sharing your thoughts on this book.

Go to the link below to leave your review:

https://packt.link/r/180181158X

Your review will help us to understand what's worked well in this book, and what could be
improved upon for future editions, so it really is appreciated.

Best wishes,

https://packt.link/r/180181158X

	Cover
	Title page
	Copyright and Credits
	Contributors
	About the reviewer
	Table of Contents
	Preface
	Part 1:
Blueprint Fundamentals
	Chapter 1: Exploring the Blueprint Editor
	Installing Unreal Engine
	Creating new projects and using templates
	Blueprints Visual Scripting
	Opening the Level Blueprint Editor
	Creating a Blueprint Class

	The Blueprint Class Editor interface
	The Toolbar panel
	The Components panel
	The My Blueprint panel
	The Details panel
	The Viewport panel
	The Event Graph panel

	Adding Components to a Blueprint
	Summary
	Quiz

	Chapter 2: Programming
with Blueprints
	Storing values in variables
	Defining the behavior of a Blueprint with events and actions
	Events
	Actions
	The execution path

	Creating expressions with operators
	Arithmetic operators
	Relational operators
	Logical operators

	Organizing the script with macros and functions
	Creating macros
	Creating functions
	Step-by-step example
	Macros versus functions versus events

	Summary
	Quiz

	Chapter 3: Object-Oriented Programming and the Gameplay Framework
	Getting familiar with OOP
	Classes
	Instances
	Inheritance

	Managing Actors
	Referencing Actors
	Spawning and destroying Actors
	Construction Script

	Exploring the other Gameplay Framework classes
	Pawn
	Character
	PlayerController
	Game Mode Base
	Game Instance

	Summary
	Quiz

	Chapter 4: Understanding Blueprint Communication
	Direct Blueprint Communication
	Casting in Blueprints
	Level Blueprint Communication
	Event Dispatchers
	Binding Events
	Summary
	Quiz

	Part 2:
Developing
a Game
	Chapter 5: Object Interaction with Blueprints
	Creating the project and the first Level
	Adding objects to our Level
	Exploring Materials
	Creating Materials
	Material properties and nodes
	Adding substance to our Material

	Creating the target Blueprint
	Detecting a hit
	Swapping a Material
	Improving the Blueprint

	Adding movement
	Changing the Actor's Mobility and Collision settings
	Breaking down our goal
	Readying direction for calculations
	Getting relative speed using delta time
	Updating location

	Changing direction
	Testing moving targets

	Summary
	Quiz

	Chapter 6: Enhancing
Player Abilities
	Adding the running functionality
	Breaking down the character movement
	Customizing control inputs
	Adding a Sprint ability

	Animating a zoomed view
	Using a timeline to smooth transitions

	Increasing the projectile's speed
	Adding sound and particle effects
	Changing target states with branches
	Triggering sound effects, explosions, and destruction

	Summary
	Quiz

	Chapter 7: Creating Screen
UI Elements
	Creating simple UI meters with UMG
	Drawing shapes with Widget Blueprints
	Customizing the meter's appearance
	Creating ammo and targets eliminated counters
	Displaying the HUD

	Connecting UI values to player variables
	Creating bindings for health and stamina
	Making text bindings for the ammo and targets eliminated counters

	Tracking the ammo and targets eliminated
	Reducing the ammo counter
	Increasing the targets eliminated counter

	Summary
	Quiz

	Chapter 8: Creating Constraints and Gameplay Objectives
	Constraining player actions
	Draining and regenerating stamina
	Preventing firing actions when out of ammo

	Creating collectible objects
	Setting a gameplay win condition
	Displaying a target goal in the HUD
	Creating a win menu screen
	Displaying the WinMenu
	Triggering a win

	Summary
	Quiz

	Part 3:
Enhancing
the Game
	Chapter 9: Building Smart Enemies with Artificial Intelligence
	Setting up the enemy actor to navigate
	Importing from the Marketplace
	Expanding the play area
	Making the level traversable with a NavMesh asset
	Creating the AI assets
	Setting up the BP_EnemyCharacter Blueprint

	Creating navigation behavior
	Setting up patrol points
	Creating the Blackboard keys
	Creating the variables in BP_EnemyCharacter
	Updating the current patrol point key
	Overlapping a patrol point
	Running the Behavior Tree in the AI Controller
	Teaching our AI to walk with the Behavior Tree
	Selecting the patrol points in the BP_EnemyCharacter instance

	Making the AI chase the player
	Giving the enemy sight with PawnSensing
	Creating a Behavior Tree Task
	Adding conditions to the Behavior Tree
	Creating a chasing behavior

	Summary
	Quiz

	Chapter 10: Upgrading the
AI Enemies
	Creating an enemy attack
	Making an attack task
	Using the attack task in the Behavior Tree
	Updating the health meter

	Making enemies hear and investigate sounds
	Adding hearing to the Behavior Tree
	Setting up the investigating tasks
	Creating variables and a macro to update the blackboard
	Interpreting and storing the noise Event data
	Adding noise to the player's actions

	Making the enemies destructible
	Spawning more enemies during gameplay
	Creating the BP_EnemySpawner blueprint

	Creating enemy wandering behavior
	Identifying a wander point with a custom task
	Adding wandering to the Behavior Tree
	Last adjustments and test

	Summary
	Quiz

	Chapter 11: Game States and Applying the Finishing Touches
	Making danger real with player death
	Setting up a lose screen
	Showing the lose screen

	Creating round-based scaling with saved games
	Storing game information using the SaveGame class
	Saving game information
	Loading game information
	Increasing the TargetGoal
	Creating a transition screen to be shown between rounds
	Transitioning to a new round when the current round is won

	Pausing the game and resetting the save file
	Creating a pause menu
	Resuming the game
	Resetting the save file
	Triggering the pause menu

	Summary
	Quiz

	Chapter 12: Building and Publishing
	Optimizing your graphics settings
	Setting up our game to be played by others
	Packaging the game into a build
	Build configurations and packaging settings
	Summary
	Quiz

	Part 4:
Advanced
Blueprints
	Chapter 13: Data Structures
and Flow Control
	Exploring different types of containers
	Array
	Set
	Map

	Exploring other data structures
	Enumerations
	Structures
	Data tables

	Flow control nodes
	Switch nodes
	Flip Flop
	Sequence
	For Each Loop
	Do Once
	Do N
	Gate
	MultiGate

	Summary
	Quiz

	Chapter 14: Math and Trace Nodes
	World and relative transforms
	Points and vectors
	Representation of a vector
	Vector operations

	Introduction to traces and trace functions
	Traces for objects
	Traces by channel
	Shape traces
	Debug lines
	Example of vectors and trace nodes

	Summary
	Quiz

	Chapter 15: Blueprints Tips
	Blueprint Editor shortcuts
	Blueprint best practices
	Blueprint responsibilities
	Managing Blueprint complexities

	Using miscellaneous Blueprint nodes
	Select
	Teleport
	Format Text
	Math Expression
	Set View Target with Blend
	AttachActorToComponent
	Enable Input and Disable Input
	The Set Input Mode nodes

	Summary
	Quiz

	Chapter 16: Introduction to VR Development
	Exploring the VR template
	The VRPawn Blueprint
	Teleportation
	Object grabbing
	Blueprint Communication using interfaces
	Interacting with the menu
	Summary
	Quiz

	Part 5:
Extra Tools
	Chapter 17: Animation Blueprints
	Animation overview
	Animation Editor
	Skeleton and Skeletal Mesh
	Animation Sequence
	Blend Space

	Creating Animation Blueprints
	EventGraph
	AnimGraph

	Exploring State Machines
	Importing the Animation Starter Pack
	Adding Animation States
	Modifying the Character Blueprint
	Modifying the Animation Blueprint

	Summary
	Quiz

	Chapter 18: Creating Blueprint Libraries and Components
	Blueprint Macro and Function libraries
	A Blueprint Function Library example
	Creating the third function and testing

	Creating Actor Components
	Testing the Actor Component

	Creating Scene Components
	Summary
	Quiz

	Chapter 19: Procedural Generation
	Procedural generation with the Construction Script
	Creating the script to add the instances on the level

	Creating Blueprint Splines
	A Spline Mesh component

	Editor Utility Blueprint
	Creating an Actor Action Utility

	Summary
	Quiz

	Chapter 20: Creating a Product Configurator Using the Variant Manager
	The Product Configurator template
	The Variant Manager panel and Variant Sets
	The BP_Configurator Blueprint
	UMG Widget Blueprints
	Summary
	Epilogue
	Quiz

	Appendix
	Index
	Other Books You May Enjoy

