

Running Lean: Iterate from Plan A
to a Plan That Works

Ash Maurya

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

For Natalia and Ian, who gave me a new appreciation for our scarcest resource —
time

Special Upgrade Offer
If you purchased this ebook directly from oreilly.com, you have the following
benefits:

DRM-free ebooks — use your ebooks across devices without restrictions
or limitations
Multiple formats — use on your laptop, tablet, or phone
Lifetime access, with free updates
Dropbox syncing — your files, anywhere

If you purchased this ebook from another retailer, you can upgrade your
ebook to take advantage of all these benefits for just $4.99. Click here to
access your ebook upgrade.
Please note that upgrade offers are not available from sample content.

http://oreilly.com

Praise for Running Lean, Second
Edition

“Easily one of the best technical books on Lean Startup ever written. Period. End of
point. Done.”

— Dan Martell Founder, Clarity.fm Angel Investor

“In Running Lean, Ash has put together a book I wish I’d read before pursuing my
own startup. The Lean methodology has received a lot of press, but the level of detail,
including case studies and practical applications, make this book a resource worthy of
sitting on every aspiring entrepreneur’s shelf. It’s not just great advice, but a great
read, too.”

— Rand Fishkin CEO and Cofounder, SEOmoz Coauthor, The Art of
SEO

“Customer validation has always been one of the best ways to eliminate wasted effort
and shortcut directly to what will work. Eric Ries and Steve Blank did the startup
world a great service by codifying and labeling the principles involved. Ash Maurya
goes one step further, providing a clear roadmap for Internet entrepreneurs, with a
delightfully clear and simple writing style.”

— David Skok Author, For Entrepreneurs Blog General Partner,
Matrix Partners

“Ash provides compelling, actionable guidance for applying Lean principles to a
startup. His startup canvas changed the way I think about my own startup. This book is
a valuable guide whether you are a serial entrepreneur or a first-time founder.”

— Sean Ellis Founder and CEO, CatchFree

“Lean concepts are exciting, but it’s hard to know what to actually do. Ash not only
gives advice, he makes it practicable — this is the first comprehensive guidebook for
how to execute a Lean Startup.”

— Jason Cohen Founder, WP Engine and Smart Bear

“Ash has laid out a clear compass for anyone to validate their ideas, solve real
problems, and create a successful business. I’d recommend this book to anyone trying
to get a business off the ground.”

— Noah Kagan Chief Sumo, AppSumo.com

“You’ve read the theory — now Ash distills it to practice. Running Lean is a
straightforward toolkit that distills wisdom from the startup world’s greatest minds
into battle-tested, actionable steps.”

— Dan Shapiro CEO and Founder, Sparkbuy and Ontela

“I wish I had read Ash’s book before setting out on my own entrepreneurial journey,
as it lays out clearly and concisely a cheat sheet to learn many of the lessons that I’ve
learned in the last four years through the school of hard knocks.”

— Jason Jacobs Founder and CEO, RunKeeper

“Running Lean is remarkably relevant and clarifying for today’s generation of
Internet entrepreneurs, and it’s applicable to so much more. Ash outlines a way of
thinking, testing, and launching that can and should be applied to various
organizations (small to big), functions (engineering to marketing), and models
(consumer to enterprise).”

— Ryan Spoon Investor, Polaris Venture Partners Author,
RyanSpoon.com

“In Running Lean, Ash Maurya lays out a clear, practical plan for giving your startup
the best possible chance. We used his approach at Year One Labs with every one of
our startups. It’s the best way for new companies to find their groove, explain their
business model, and ultimately, grow their business.”

— Alistair Croll Founding Partner, Year One Labs Solve for
Interesting

“The ‘Missing Manual’ for startups. The advisory team at MaRS uses the tools in
Running Lean every day. Over the last year, we’ve tested them with dozens of startups
and found them invaluable in moving entrepreneurs from idea to product/market fit
efficiently.”

— Mark Zimmerman Senior Advisor, MaRS

“Running Lean is a terrific step-by-step guide combining the best of Lean Startup,
customer development, business model canvas, and agile/continuous integration.
Anyone involved in starting, funding, or helping others build new businesses will
benefit, as our students at Northwestern have, from this practical and comprehensive
guide to the modern startup.”

— Todd Warren Divergent Ventures Class Chairman, NUvention
Web, Northwestern University

“This is an invaluable resource for budding entrepreneurs, providing a wealth of
immediately actionable advice within a logical and accessible framework.”

— Dave Chapman Vice-Dean for Enterprise, Faculty of Engineering
Sciences Deputy Head of Department, Science & Innovation Director

MSc Technology Entrepreneurship University College London

“Running Lean is THE practical guide for understanding and implementing Lean
Startup. It’s clear, well-organized, and detailed. Ash doesn’t guarantee success, or
claim Lean is perfect (it’s not!), but he’ll help you avoid the most common and painful

pitfalls of running a startup. If you want to be systematic, rigorous, and honest in your
startup efforts, as opposed to throwing a Hail Mary pass while blindfolded in space,
read and use Running Lean.”

— Benjamin Yoskovitz VP Product, GoInstant Founding Partner,
Year One Labs instigatorblog.com

“Running Lean was a good overview of the Lean Startup principles as practically
applied to software/Internet startups. Virtually everyone in the space, including those
very familiar with other writing on the Lean Startup, can pull at least one useful tactic
out of it. I particularly liked the discussion of how to use customer development
interviews to overcome pricing objections.”

— Patrick McKenzie Founder, Kalzumeus Software @patio11

“Running Lean is a great resource for the aspiring or successful web entrepreneur
since it consolidates the best startup thinking in a practical guidebook that will prevent
you from making the some of the most common early-stage mistakes. It is required
reading for all my students and angel investment management teams since it improves
the chance of startup success.”

— Michael Marasco Director and Professor, Farley Center for
Entrepreneurship and Innovation, Northwestern University Angel

Investor

“Running Lean is the Missing Manual to the Lean Methodology that focuses on
actionable tactics to help you find and vet your web startup idea. If you’re considering
building an application using the Lean methodology, you are wasting valuable time by
not following the path Ash has laid out in this book.”

— Rob Walling Serial Entrepreneur Author, Start Small, Stay Small:
A Developer’s Guide to Launching a Startup

Foreword
Running Lean is the first book in the new Lean Series. Following the
publication of The Lean Startup last year, I have had the opportunity to meet
thousands of entrepreneurs and managers around the world. I have enjoyed
hearing their stories and grappling with their questions. Most of all, I have
heard an overwhelming demand for practical guidance for how to put Lean
Startup principles into practice. There is no better person to begin that
mission than Ash Maurya.
Practice Trumps Theory. When I first read those words on Ash Maurya’s
blog, I knew he would be a valuable addition to a fledgling movement that
was just getting started. Since then, he has been a tireless advocate for the
Lean Startup movement. He has rigorously tested techniques for applying
these ideas in his own startups, sharing what works and what doesn’t. He has
conducted countless workshops, each of which is a crucible for discovering
the challenges that real entrepreneurs face and for evaluating which solutions
really work. And he has been a leader in bringing the movement to his
hometown of Austin, one of our most important startup hubs.
The result of all of this work is the volume you now hold in your hand.
Running Lean is a handbook for practicing entrepreneurs who want to
increase their odds of success. This is not a book of philosophy, or an
entertaining compendium of anecdotes. Rather, it is a detailed look at a
battle-tested approach to building companies that matter.
We are living in an age of entrepreneurship. Most of the net new job growth
in the USA in the past few decades has come from high-growth startups. All
of us — investors, managers, policy makers, and ordinary citizens — have an
interest in creating the conditions that will foster entrepreneurship. Our future
prosperity depends on it.
There are probably more entrepreneurs operating today than at any time in
history, thanks to profound changes in the startup landscape. New
technologies, like cloud computing, are making it easier and cheaper to get
started. New management methods, like the Lean Startup, are helping
founders make better use of these capabilities. There has never been a better
time to be an entrepreneur.

If I had to summarize these changes in one phrase, it would be this one: “the
rentership of the means of production” — turning Karl Marx’s famous
dictum on its head. In past eras, to build and operate a company of significant
scale required dozens of stakeholders to give you permission. You needed
access to capital, machinery, factories, warehouses, distribution partners,
mass-market advertising, and so on.
Today, anyone with a credit card can rent all of these capabilities and more.
What is significant about this development is that it enables more startup
experiments than ever before. And make no mistake, a startup is an
experiment. Today’s companies can build anything they can imagine. So the
question we are called on to answer is no longer primarily, “can it be built?”,
but rather, “should it be built?”
We need these experiments more than ever. The old management tools,
pioneered by 20th-century companies like General Motors, relied on planning
and forecasting in order to measure progress, assess opportunities, and hold
managers accountable. And yet who really feels that our world is getting
more and more stable every day?
Successful new products require constant, disciplined, experimentation — in
the scientific sense — in order to discover new sources of profitable growth.
This is true for the tiniest startup as well as for the most established company.
Running Lean provides a step-by-step blueprint to put these ideas into action.
A business plan rests on a series of leap-of-faith assumptions, each of which
can be tested empirically. Will customers want the product we’re building?
Will they pay for it? Can we provide a service profitably? And once we find
customers, can we grow? Running Lean lays out Ash’s approach to breaking
these assumptions down so that they can become the subjects of rigorous
experiments.
Running Lean’s simple, action-oriented templates provide tools that startups
in all stages of development can use to help build breakthrough, disruptive
new products and organizations.
It’s been just about three years since I first wrote the phrase “lean startup” in
a blog post that a few dozen people read. Since then, these ideas have grown
into a movement, embraced by thousands of entrepreneurs around the world
dedicated to making sure that new products and new startups succeed. As you
read through Running Lean, I hope you will put these ideas into practice and

join our community. Odds are there is a Lean Startup Meetup taking place in
your city. A complete list of meetups and links to other resources can be
found at the official Lean Startup homepage: http://theleanstartup.com.
Welcome to the cutting edge of entrepreneurial practice. I hope you’ll share
what you learn, what works and what doesn’t. Thank you for being part of
this experiment.
Eric Ries
January 20, 2012
San Francisco, CA

http://theleanstartup.com

Preface
The first edition of Running Lean (released as an ebook) was targeted
primarily at people like me: technical founders building web-based products.
I was running my first company and on my fifth product at the time. I had
been inspired by Steve Blank’s book The Four Steps to the Epiphany
(http://www.cafepress.com/kandsranch) and the early works on the Lean
Startup methodology by Eric Ries.
My goal with the ebook was to create an actionable guide for other
entrepreneurs building web-based products. I wrote and self-published the
ebook iteratively using the same methodology outlined in the ebook.
However, once the ebook was published in January 2011, the audience for
the book grew beyond my prototypical early adopter, and I was repeatedly
met with two kinds of feedback:

“I can see how these techniques worked for your business, but they won’t
work for me because I am building X.”
“Even though I am building X, these techniques have greatly helped my
business with only slight modifications.”

(Where X ranged from software to hardware, B2C to B2B, and high-tech to
low-tech.)
I was curious and decided to explore further. In the past year, I have actively
sought opportunities to expose and test these ideas with a wide range of
businesses by way of running workshops, taking on mentor positions at
several accelerators, and working closely with other entrepreneurs. I still
remember being nervous the first time I delivered a workshop to a room full
of biotech entrepreneurs. But each time, the results were positively
encouraging.
The second edition of Running Lean aims to synthesize my learning over the
past year and broaden the audience. Even though a lot of these ideas came out
of the high-tech startup world, I believe the principles they embody are
universally applicable to any startup or product.
This is reflected in a completely new layout for the book that delineates meta-
principles from tactics.

http://www.cafepress.com/kandsranch

I have also replaced the Lean Canvas case study (which some people found
confusing) with a more complete example that follows throughout the book
from ideation to exit. In addition, I’ve supplemented the text with several
other smaller case studies from a wide range of products that illustrate these
principles at work.
Finally, since I wrote the first version, Eric Ries has published his book, The
Lean Startup (Crown Business). Along with being the authoritative guide on
Lean Startups, the book also introduces several new and powerful concepts
like Innovation Accounting and Engines of Growth that I have incorporated
into this edition.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to find
the answers you need quickly.
With a subscription, you can read any page and watch any video from our
library online. Read books on your cell phone and mobile devices. Access
new titles before they are available for print, and get exclusive access to
manuscripts in development and post feedback for the authors. Copy and
paste code samples, organize your favorites, download chapters, bookmark
key sections, create notes, print out pages, and benefit from tons of other
time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online service.
To have full digital access to this book and others on similar topics from
O’Reilly and other publishers, sign up for free at
http://my.safaribooksonline.com.

http://my.safaribooksonline.com

We’d Like to Hear from You
Please address comments and questions concerning this book to the
publisher:
O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)
We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at:

http://shop.oreilly.com/product/0636920020141.do

To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see
our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

http://shop.oreilly.com/product/0636920020141.do
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Attributions and Permissions
This book is here to help you get your job done. If you reference limited parts
of it in your work or writings, we appreciate, but do not require, attribution.
An attribution usually includes the title, author, publisher, and ISBN. For
example: “Running Lean, Second Edition (O’Reilly). Copyright 2012 Ash
Maurya, 978-1-449-30517-8.”
If you feel your use of examples or quotations from this book falls outside
fair use or the permission given above, feel free to contact us at
permissions@oreilly.com.

mailto:permissions@oreilly.com

Introduction

What Is Running Lean?
We live in an age of unparalleled opportunity for innovation. With the advent
of the Internet, cloud computing, and open source software, the cost of
building products is at an all-time low. Yet, the odds of building successful
startups haven’t improved much.
Most startups still fail.
But the more interesting fact is that, of those startups that succeed, two-thirds
report having drastically changed their plans along the way.[1]

So, what separates successful startups from unsuccessful ones is not
necessarily the fact that successful startups began with a better initial plan (or
Plan A), but rather that they find a plan that works before running out of
resources.
Up until now, finding this better Plan B or C or Z has been based more on
gut, intuition, and luck. There has been no systematic process for rigorously
stress-testing a Plan A.
That is what Running Lean is about.
Running Lean is a systematic process for iterating from Plan A to a plan that
works, before running out of resources.

Why Are Startups Hard?
First, there is a misconception around how successful products get built. The
media loves stories of visionaries who see the future and chart a perfect
course to intersect it. The reality, however, rarely plays out quite as simply.
Even the unveiling of the visionary computer, the iPad, in Steve Jobs’ words
was years in the making, built on several incremental innovations (and
failures) of software and hardware.
Second, the classic product-centric approach front-loads some customer
involvement during the requirements-gathering phase but leaves most of the
customer validation until after the software is released. There is a large
“middle” when the startup disengages from customers for weeks or months
while they build and test their solution. During this time, it’s quite possible
for the startup to either build too much or be led astray from building what
customers want. This is the fundamental dilemma described by Steve Blank

in The Four Steps to the Epiphany, in which he offers a process for building a
continuous customer feedback loop throughout the product development
cycle that he terms Customer Development.
And finally, even though customers hold all the answers, you simply cannot
ask them what they want.

If I had asked people what they wanted, they would have said faster horses.
— Henry Ford

A lot of people cite the preceding quote and declare it hopeless to talk to
customers. But hidden in this quote is a customer problem statement: had
customers said “faster horses,” they would really have been asking for
something faster than their existing alternative, which happened to be horses.
Given the right context, customers can clearly articulate their problems, but
it’s your job to come up with the solution.

It is not the customer’s job to know what they want.
— Steve Jobs

Is There a Better Way?
Running Lean provides a better, faster way to vet new product ideas and
build successful products:

Running Lean is about speed, learning, and focus.
Running Lean is about testing a vision by measuring how customers
behave.
Running Lean is about engaging customers throughout the product
development cycle.
Running Lean tackles both product and market validation in parallel using
short iterations.
Running Lean is a disciplined and rigorous process.

Running Lean references an array of methodologies and thinkers. Three of
the most important follow.

Customer Development
Customer Development is a term coined by Steve Blank and is used to
describe the parallel process of building a continuous feedback loop with
customers throughout the product development cycle. It is defined in his

book, The Four Steps to the Epiphany.
The key takeaway from Customer Development can best be summed up as:

Get out of the building.
— Steve Blank

Most of the answers lie outside the building — not on your computer, or in
the lab. You have to get out and directly engage customers.

Lean Startup
Lean Startup is a term trademarked by Eric Ries and represents a synthesis of
Customer Development, Agile Software Development methodologies, and
Lean (as in the Toyota Production System) practices.
The term Lean is often misunderstood as “being cheap.” While “being Lean”
is fundamentally about eliminating waste or being efficient with resources,
that interpretation is not completely misguided because money happens to be
one of those resources.
However, in a Lean Startup, we strive to optimize utilization of our scarcest
resource, which is time. Specifically, our objective is maximizing learning
(about customers) per unit time.
The key takeaway from Lean Startup can best be summed up around the
concept of using smaller, faster iterations for testing a vision.

Startups that succeed are those that manage to iterate enough times before running out
of resources.

— Eric Ries

Bootstrapping
Bootstrapping is more commonly understood as a collection of techniques
used to minimize the amount of external debt or funding needed from banks
or investors. Too often, people confuse bootstrapping with self-funding. A
stricter definition is funding with customer revenues.
However, I subscribe to a much more philosophical definition of
bootstrapping put forward by Bijoy Goswami:

Right action, right time.

Startups are inherently chaotic, but at any given point in time, there are only a

few key actions that matter. You need to just focus on those and ignore the
rest.

What Will This Book Teach You?
In this book, you’ll learn:

How to first find a problem worth solving, before defining a solution
How to find early customers
When is the ideal time to raise funding
How to test pricing
How to decide what goes into Release 1.0
How to build and measure what customers want
How to maximize for speed, learning, and focus
What is product/market fit
How to iterate to product/market fit

Is This Book for You?
If you are an entrepreneur considering building a new product, or if you
already have a product and you want to raise your odds of making it
successful, this book is for you.
Running Lean is for:

Business managers
CEOs
Developers and programmers who are interested in becoming successful
entrepreneurs
Bloggers, cofounders, small-business people, writers, musicians —
anyone who’s creative and interested in starting a new business project
Innovators
Startup founders

How Is This Book Organized?
This book is organized into four parts. The parts are meant to be read in
order, as they outline the chronological steps required to apply Running Lean
to your product — from ideation to product/market fit. Even if you already
have a product launched, I recommend starting from the beginning. You will
not have to spend as much time going through the stages, and this exercise
will help you baseline where you currently are and formulate your next

actions.
Each part ends with gating criteria that will help you decide if you’re ready to
move on to the next one.

Part 1: Roadmap
Part I provides an overall roadmap of the Running Lean process. Specifically,
it describes the three core meta-principles that capture the essence of Running
Lean and ends with a short case study that helps illustrate these principles in
action.
The rest of the book covers each of the following meta-principles in detail in
three parts.

Part 2: Document Your Plan A
Part II walks through the process of documenting your initial vision (or Plan
A) using a portable one-page format called Lean Canvas. Your Lean Canvas
will serve as your product’s tactical map and blueprint.

Part 3: Identify the Riskiest Parts of Your Plan
Part III helps you identify which aspects of your plan to focus on first. It lays
some groundwork on the different types of risks startups face, shows you
how to prioritize them, and prepares you to start the process of testing and
experimentation.

Part 4: Systematically Test Your Plan
Part IV outlines the four-stage process for systematically stress testing your
initial plan and shows you how to iterate from your Plan A to a Plan That
Works.

About Me
I bootstrapped my most recent company, WiredReach, in 2002, and sold it in
late 2010. Throughout that time, I built products in stealth, attempted
building a platform, dabbled with open sourcing, practiced “release early,
release often,” embraced “less is more,”[2] and even tried “more is more.”
The first realization early on was that building in stealth is a really bad idea.
There is a fear, especially common among first-time entrepreneurs, that their
great idea will be stolen by someone else. The truth is twofold: first, most
people are not able to visualize the potential of an idea at such an early stage,
and second (and more importantly), they won’t care.
The second realization was that startups can consume years of your life. I
started WiredReach with just a spark of an idea, and before I knew it, years
had passed. While I’ve had varying levels of success with the products I built,
I realized that I needed a better, faster way to vet new product ideas.
Life’s too short to build something nobody wants.
And finally, I learned that while listening to customers is important, you have
to know how to do it. I used a “release early, release often” methodology for
one of my products, BoxCloud, and launched a fairly minimal file-sharing
product built on a new peer-to-web model we had developed in 2006. After
we launched, we got covered by a few prominent blogs and dumped some
serious cash into advertising on the DECK network (primarily targeted at
designers and developers).
We started getting a lot of feedback from users, but it was all over the place.
We didn’t have a clear definition of our target customer and didn’t know how
to prioritize this feedback. We started listening to the most popular (vocal)
requests and ended up with a bloated application and lots of one-time-use
features.
Around that time, I ran into Steve Blank’s lectures on Customer
Development, from which I followed the trail to Eric Ries’s early ideas of the
Lean Startup. I had dreamt the big vision, rationalized it in my head, and built
it and refined it the long, hard way. I knew customers held the answers but
didn’t know when or how to fully engage them. That’s exactly what
Customer Development and Lean Startup were attempting to address.

I was sold.

Why This Book?
I was determined to test these techniques on my next product (CloudFire) but
ran into many early challenges when trying to take these concepts to practice.
For one, Steve Blank’s book was written for a specific type of business,
enterprise software, which made it hard to carry over many of the tactics to
my products. Also, while Eric Ries was sharing his retrospective lessons
learned from working at IMVU, IMVU was no longer a startup. With a
technical staff of 40 people and more than $40 million in revenue, what you
saw was a fully realized Lean Startup machine, which was at times daunting.
I had more questions than answers, which prompted my two-year journey in
search of a better methodology for building successful products. The product
of that journey is Running Lean, which is based on my firsthand experiential
learning building products and the pioneering work of Eric Ries, Steve Blank,
Dave McClure, Sean Ellis, Sean Murphy, Jason Cohen, Alex Osterwalder,
and many others who I reference throughout the book.
I am thankful to the thousands of readers who subscribed to my blog, left
comments week after week, sent me notes of encouragement to keep on
writing, and subjected their products to my testing. This book was really
“pulled” out of me by them.

Field-Tested
As a way to test the content for this book, I started speaking and teaching
Running Lean workshops. I have shared this methodology with hundreds of
startups and worked closely with many of them to test and refine it.
Whereas my blog is a near-real-time account of my lessons learned, this book
benefits from retrospective learning and from reordering and refining steps
for a more optimal workflow.
I am applying this new workflow to my next startup, which is also a by-
product of my blogging and learning over the past year. As of this writing, I
have sold WiredReach and am in the process of building and launching a new
startup, Spark59.

Disclaimers
Practice Trumps Theory
You get a gold star not for following a process, but for achieving results. One
of the things that particularly drew me to the Lean Startup methodology is
that it is a meta-process from which more specific processes and practices can
be formulated. The same principles used to test your product can and should
be applied to test your tactics when taking these principles to practice.[3]

Everything in this book is based on first-hand experiential learning and
experimentation on my own products. I encourage you to rigorously test and
adapt these principles for yourself. The legal, financial, and accounting
aspects of launching a company are outside the scope of the book. When the
time comes, it is important to get competent professional advice about
financing and structuring your company and its intellectual property assets.

There Are No Silver Bullets
No methodology can guarantee success. But a good methodology can provide
a feedback loop for continuous improvement and learning.
That is the promise of this book.

[1] John Mullins and Randy Komisar, Getting to Plan B (Boston, MA: Harvard Business
Review Press, 2009).
[2] A product development philosophy popularized by 37signals.
[3] There is no room for faith in a Lean Startup: http://www.ashmaurya.com/2011/02/do-
you-have-faith-in-lean-startups/.

http://www.ashmaurya.com/2011/02/do-you-have-faith-in-lean-startups/

Part I. Roadmap

Chapter 1. Meta-Principles
The proper application of any methodology first requires a clear
understanding and separation of principles from tactics.
Principles guide what you do. Tactics show you how.
The essence of Running Lean can be distilled into three steps:

1. Document your Plan A.
2. Identify the riskiest parts of your plan.
3. Systematically test your plan.

In this chapter, we’ll cover these meta-principles. The rest of the book will
focus on the reduction of these meta-principles to practice.

Step 1: Document Your Plan A
There Is an “I” in Vision

All men dream: but not equally. Those that dream by night in the dusty recesses of
their minds wake in the day to find that it was vanity: but the dreamers of the day are
dangerous men, for they may act their dreams with open eyes, to make it possible.

— T.E. Lawrence, “Lawrence of Arabia”

Everyone gets hit by ideas when they least expect them (in the shower, while
driving, etc.). Most people ignore them. Entrepreneurs choose to act on them.
While passion and determination are attributes that are essential in order to
drive a vision to its full potential, if they are left unchecked, they can also
turn the journey into a faith-based one driven by dogma.
Reasonably smart people can rationalize anything, but entrepreneurs are
especially gifted at this.
Most entrepreneurs start with a strong initial vision and a Plan A for realizing
that vision. Unfortunately, most Plan A’s don’t work.
While a strong vision is required to create a mantra and make meaning, a
Lean Startup strives to uphold a strong vision with facts, not faith. It is
important to accept that your initial vision is built largely on untested
assumptions (or hypotheses). Running Lean helps you systematically test and
refine that initial vision.

Capture Your Business Model Hypotheses
Too many founders carry their hypotheses in their heads alone, which, though
the fastest way to iterate, only helps to further support their own “reality
distortion fields.”
The first step is writing down your initial vision and then sharing it with at
least one other person.
Traditionally, business plans have been used for this purpose. But, while
writing a business plan is a good exercise for the entrepreneur, it falls short of
its true purpose: Facilitating conversations with people other than yourself.
Additionally, since most Plan As are likely to be proven wrong anyway, you
need something less static and rigid than a business plan. Taking several

weeks or months to write a 60-page business plan largely built on untested
hypotheses is a form of waste.

Waste is any human activity which absorbs resources but creates no value.
— James P. Womak and Daniel T. Jones, Lean Thinking (Free

Press)

My format of choice is to use the one-page business model diagram (Lean
Canvas) shown in Figure 1-1.

Figure 1-1. Lean Canvas

Lean Canvas is my adaptation of Alex Osterwalder’s Business Model
Canvas, which he describes in the book Business Model Generation (Wiley).
[4]

I particularly like the one-page canvas format because it is:

Fast
Compared to writing a business plan, which can take several weeks or
months, you can outline multiple business models on a canvas in one
afternoon. Because creating these one-page business models takes so little
time, I recommend spending a little additional time up front, brainstorming
possible variations to your model and then prioritizing where to start.

Concise
The canvas forces you to pick your words carefully and get to the point.
This is great practice for distilling the essence of your product. You have
30 seconds to grab the attention of an investor over a hypothetical elevator
ride, and eight seconds to grab the attention of a customer on your landing
page.[5]

Portable
A single-page business model is much easier to share with others, which
means it will be read by more people and probably will be more frequently
updated.

If you have ever written a business plan or created a slide deck for investors,
you’ll immediately recognize most of the building blocks on the canvas. I
won’t spend time describing these blocks right now, as we’ll cover them in
great detail in Part II of the book.
A key point I would like you to take away for now, though, is that your
product is NOT “the product” of your startup.

Your Product Is NOT “the Product”
I purposely made the solution box less than one-ninth of the entire canvas
because, as entrepreneurs, we are most passionate about the solution box and
what we are naturally good at (see Figure 1-2).

Figure 1-2. Your product is NOT “the product”

Dave McClure of 500 Startups has sat through hundreds of entrepreneur
pitches and will probably sit through hundreds more. During these sessions,
he has repeatedly called out entrepreneurs for spending a disproportionate
amount of time talking about their solution and not enough time talking about
the other components of the business model.

Customers don’t care about your solution. They care about their problems.
— Dave McClure, 500 Startups

Investors, and more important, customers, identify with their problems and
don’t care about your solution (yet). Entrepreneurs, on the other hand, are
naturally wired to look for solutions. But chasing after solutions to problems
no one cares enough about is a form of waste.
Your job isn’t just building the best solution, but owning the entire business
model and making all the pieces fit.

Recognizing your business model as a product is empowering. Not only does
it let you own your business model, but it also allows you to apply well-
known techniques from product development to building your company.
If you take a step back, you’ll see that these meta-principles are nothing more
than the divide and conquer technique applied to the process of starting up.
Lean Canvas helps deconstruct your business model into nine distinct
subparts that are then systematically tested, in order of highest to lowest risk.

Step 2: Identify the Riskiest Parts of Your Plan
Building a successful product is fundamentally about risk mitigation.
Customers buy from you when they trust you can solve their problems.
Investors bet on you when they trust you can build a scalable business model.
Startups are a risky business, and our real job as entrepreneurs is to
systematically de-risk our startups over time.
Another technique taken from the Product Development playbook is that of
“tackling the riskiest parts first.” Not coincidentally, for most products, the
solution isn’t what’s riskiest.
Unless you are trying to solve a particularly hard technical problem (like
finding a cure for cancer, building the next big search algorithm, or splitting
isotopes), chances are you will be able to build your product given enough
time, money, and effort.
The bigger risk for most startups is building something nobody wants.
While what’s riskiest varies across products, a lot of that risk is driven by the
stage of your startup, which we’ll cover next.

The Three Stages of a Startup
A startup goes through three distinct stages, as shown in Figure 1-3.

Figure 1-3. Three stages of a startup

Stage 1: Problem/Solution Fit
Key question: Do I have a problem worth solving?
The first stage is about determining whether you have a problem worth
solving before investing months or years of effort into building a solution.
While ideas are cheap, acting on them is quite expensive.

A problem worth solving boils down to three questions:
Is it something customers want? (must-have)
Will they pay for it? If not, who will? (viable)
Can it be solved? (feasible)

During this stage, we attempt to answer these questions using a combination
of qualitative customer observation and interviewing techniques that we’ll
cover in great detail Chapter 5 and Chapter 6.[6]

From there you derive the minimum feature set to address the right set of
problems, which is also known as the minimum viable product (MVP).

Stage 2: Product/Market Fit
Key question: Have I built something people want?
Once you have a problem worth solving and your MVP has been built, you
then test how well your solution solves the problem. In other words, you
measure whether you have built something people want.
In Part IV of this book, we’ll cover both qualitative and quantitative metrics
for measuring product/market fit.
Achieving traction or product/market fit is the first significant milestone for a
startup. At this stage, you have a plan that is starting to work — you are
signing up customers, retaining them, and getting paid.

Stage 3: Scale
Key question: How do I accelerate growth?
After product/market fit, some level of success is almost always guaranteed.
Your focus at this stage shifts toward growth, or scaling your business model.

Pivot Before Product/Market Fit, Optimize After
Achieving product/market fit is the first significant milestone of a startup and
greatly influences both strategy and tactics. For this reason, it is helpful to
further delineate the stages of a startup as “before product/market fit” and
“after product/market fit.”
Before product/market fit, the focus of the startup centers on learning and
pivots. After product/market fit, the focus shifts toward growth and
optimizations. (See Figure 1-4.)

Figure 1-4. Before and after product/market fit

Pivot is a term used by Eric Ries to describe a change in direction of a startup
while staying grounded in learning. The best way to differentiate pivots from
optimizations is that pivots are about finding a plan that works, while
optimizations are about accelerating that plan.
In a pivot experiment, you attempt to validate parts of the business model
hypotheses in order to find a plan that works. In an optimization experiment,
you attempt to refine parts of the business model hypotheses in order to
accelerate a working plan. The goal of the first is a course correction (or a
pivot). The goal of the second is efficiency (or scale).
This may sound like a subtle distinction, but it has a significant impact on
both strategic and tactical execution. Before product/market fit, a startup
needs to be architected to maximize learning.
You stand to learn the most when the probability of the expected outcome is
50%; that is, when you don’t know what to expect.
In order to maximize learning, you have to pick bold outcomes instead of
chasing incremental improvements. So, rather than changing the color of
your call-to-action button, change your entire landing page. Rather than
tweaking your unique value proposition (UVP) for a single customer
segment, experiment with different UVPs for different customer segments.
Later in the book, we’ll visit many other examples that explain how you
purposely architect for learning over optimization.

Where Does Funding Fit into All This?
It’s funny to note how the 37signals folks went from “Outside money is Plan
B” to “Outside money is Plan Z” between their last two books: Getting Real
and Rework (37signals.com). Once you’re profitable, it’s easy to make such a

declaration, but some times are certainly better than others to consider
external funding (see Figure 1-5).

Figure 1-5. Ideal time to raise funding

Even though you may need to raise seed funding sooner, the ideal time to
raise your big round of funding is after product/market fit, because at that
time, both you and your investors have aligned goals: to scale the business.

Traction is a measure of your product’s engagement with its market. Investors care
about traction over everything else.

— Nivi and Naval, Venture Hacks

A lot of (especially first-time) entrepreneurs feel that Step 1 involves writing
a business plan/building a slide deck and getting funded. Taking several
months to write and pitch a business plan to investors is not the best use of
time for a startup; especially since all you have at that point is a vision and a
set of untested hypotheses. Selling this to investors without any level of
validation is a form of waste.
Instead, your first goal should be to establish just enough of a runway to
allow you to start testing and validating your business model with customers.
While not the same thing, bootstrapping and Lean Startups are quite
complementary. Both cover techniques for building low-burn startups by
eliminating waste through the maximization of existing resources before
expending effort on the acquisition of new or external resources.

Bootstrapping + Lean Startup = Low-Burn Startup
(For more, see How to Build a Low-Burn Startup in the Appendix.)

Step 3: Systematically Test Your Plan
With your Plan A documented and your starting risks prioritized, you are
now ready to systematically test your plan. In a Lean Startup, this is done by
running a series of experiments.
The Lean Startup methodology is strongly rooted in the scientific method,
and running experiments is a key activity. We’ll cover steps for running
effective experiments in Part III of the book, but for now, let’s start by
defining an experiment.

What Is an Experiment?
A cycle around the validated learning loop shown in Figure 1-6 is called an
experiment.

Figure 1-6. Build-Measure-Learn loop

The validated learning loop, or Build-Measure-Learn loop, was codified by
Eric Ries and describes the customer feedback loop that drives learning in a
Lean Startup.
It begins in the Build stage with a set of ideas or hypotheses that are used to
create some artifact (mock-ups, code, landing page, etc.) for the purpose of
testing a hypothesis. We put this artifact in front of customers and “measure”
their response using a combination of qualitative and quantitative data. This

data is used to derive specific “learning” that serves to validate or refute a
hypothesis, which in turn drives the next set of actions.

The Iteration Meta-Pattern
While an experiment helps you validate or invalidate a specific business
model hypothesis, an iteration strings multiple experiments together toward
achieving a specific goal, such as getting to product/market fit.
Figure 1-7 shows the basic iteration meta-pattern we’ll use throughout this
book.

Figure 1-7. Iteration meta-pattern

The first two stages (Understand Problem and Define Solution) are about
getting to problem/solution fit or finding a problem worth solving.
Then you iterate toward product/market fit by testing whether you’ve built
something people want using a two-stage approach: first qualitative (micro-
scale), then quantitative (macro-scale).

[4] To understand the differences between Lean Canvas and the original Business Model
Canvas, see http://www.ashmaurya.com/why-lean-canvas.
[5] It is estimated that up to 50% of visitors to landing pages will bail in the first eight
seconds. Source: MarketingSherpa’s “Landing Page Handbook” (2005).
[6] In The Four Steps to the Epiphany, Steve Blank points out the importance of in-depth
customer interviews, which he terms “Customer Discovery.”

http://www.ashmaurya.com/why-lean-canvas

Chapter 2. Running Lean
Illustrated
A great way to understand the meta-principles covered in Chapter 1 is to see
them applied to a real product.
I wanted to pick a simple example that would be readily understood. So,
rather than picking a software or hardware product, I decided to outline the
process I used to write this book.
Even if you haven’t written a book, you can probably appreciate the steps
that go into writing a book, which, as you’ll see, isn’t unlike building a
product.

Case Study: How I Wrote Iterated This Book
Writing a book was never in my plans. I was too busy running my company. I
started my blog in October 2009 because I had more questions about Lean
Startups than answers.
Along the way, a few of my blog readers started suggesting that I turn my
blog posts into a book. I knew writing a book (even from blog posts) would
be a massive undertaking, so while I was flattered by the requests, I did
nothing at first. After about a dozen such requests, I decided to explore
further.
What follows is how I applied the Running Lean process to writing this book.

Understand the Problem
I called these readers and asked them why they wanted me to write a book.
Specifically, I asked what would be different about this book from what was
already on my blog, or in other blogs and books that are already out there. In
other words, I was trying to understand this book’s unique value proposition
in relation to existing alternatives.
From these interviews, I learned that, like me, my readers were also
struggling with taking Customer Development and Lean Startup techniques
to practice (problem statement) and viewed my blog posts as a “step-by-step”
guide for applying these techniques from the ground up (solution). Many of
them were also technical founders like me who were building web-based
products (early adopters).

Define the Solution
With that knowledge, I spent a day building a demo. It was a teaser landing
page with a table of contents, a title, and a stock book-cover image (see
Figure 2-1).

Figure 2-1. Running Lean teaser page

I knew the riskiest part about writing this book was nailing down the table of
contents — not the title, book cover, or even price (since most business books
have fairly established pricing).
I called the same readers and asked them: “If I were to write this book, would
they buy it?” Their feedback helped me refine the table of contents (define
the solution) and gave me a strong signal to move forward.
While encouraging, writing a book for just a dozen or so readers wasn’t
indicative of a problem worth solving. So I left the teaser page up and
announced the book with a “coming this summer” launch time frame on my
blog in March 2010. My readers helped spread the message (channel testing).
Then I went back to running my company.
By June, I had collected 1,000 emails (potential prospects), which made
writing the book a problem worth solving for me. My rationale for this was at

least covering my costs using a simple back-of-the-envelope calculation.

Validate Qualitatively
Writing a whole book was still a massive undertaking. I tried writing the first
chapter using “copy-and-paste” from my blog but wasn’t happy with the
results. I needed to build something even smaller that allowed me to start
learning from customers (a minimum viable product).
I took the table of contents and turned it into a slide deck with the same
outline and a few bullet points under each topic. I announced a free Running
Lean workshop in Austin, Texas and got 30 people interested.
A local incubator, Tech Ranch, was gracious enough to provide a venue but
only had room for 10 people. This was perfect, as it meant I could run at least
two more workshops with the others (iterate in small batches).
Based on the success of the first workshop, not only did I run more
workshops, but I also started charging for them (getting paid is the first form
of validation). With each workshop, I continually tweaked the slide deck
content for better flow and doubled pricing until I hit some resistance.
By the end of the summer, I understood the solution well enough and started
writing. Here again, instead of writing the whole book in isolation, I
contacted my potential prospects from the teaser page, many of whom were
growing impatient as my initial launch date had come and gone. I apologized
for not having finished the book and told them I’d be writing and releasing
the book iteratively, much like software. Rather than waiting six more
months to get the book, if they preordered the book, now they would get two
chapters of the book every two weeks in PDF format.
About half of the people agreed to this arrangement. The others chose to wait
for the “finished product,” citing print, iPad, and/or Kindle as their preferred
reading format. This further helped me distinguish early adopters from latter-
stage customers. These early adopters were driven by the content alone and
didn’t care how it was packaged. The content for me was still the riskiest part
of the product to test.
Customer feedback during this two-week iteration cycle was immensely
valuable. Entire chapters were rewritten for better flow, illustrations were
improved,[7] and little typos and grammatical errors were nipped in the bud.
Not only was I able to write a better book using this process, but I did so

faster.

Verify Quantitatively
Only once the book was “content-complete” in January 2011 did I hire a
designer for the book cover, start testing book subtitles, research print/ebook
options, and build a marketing website (right action, right time).
While I’d always been prepared to self-publish this book, an interesting thing
happened. I was contacted by a major publisher in December 2010 that got
wind of the fact that I was writing this book. Not only had they already
reviewed the latest version out at the time, but they were interested in
publishing the book as-is.
I asked them if my model for writing and selling the book so far would be a
deal breaker. On the contrary, they wished more authors wrote their books
this way.
At first I was confused, but then it all made sense. The fact that I was able to
sell 1,000 copies of the book on my own demonstrated early traction, which
helped mitigate market risk for the publisher. This is not unlike how a latter-
stage investor views a startup.
As with building a product, the ideal time to attract external resources is after
product/market fit, which may or may not be the right action for you at that
time.
In my case, I’m happy to say that additional conversations with other
publishers, along with advice from Eric Ries, helped me determine that going
the publisher route was the right action given my goals. I signed a contract
with O’Reilly. Not only had the O’Reilly folks been early proponents of the
Lean Startup movement, but they were also highly supportive of an official
Lean series of books.
As of September 2011, I had sold just over 10,000 copies of Running Lean on
my own and was writing a new and updated edition (the book you hold in
your hands). This version was even further refined through countless
interviews and workshops with entrepreneurs that spanned a wide spectrum
of products (build a continuous feedback loop with customers). The goal was
to synthesize my learning over the past year and broaden the audience
beyond my initial prototypical early adopters of web-based entrepreneurs.
The timeline shown in Figure 2-2 summarizes the process I used to write the

first edition of Running Lean.

Figure 2-2. Running Lean timeline

Is the Book Finished?
A book, like large software, is never finished — only released.
Because I wrote this book iteratively about a topic that is still evolving, the
book was just the beginning.

I still share my raw learning on my blog.
I write a biweekly “Running Lean Mastery” newsletter.
Demand for my workshops has gone up.

While I love teaching these workshops, my true passion still lies in building
products. Immersing myself in the world of hundreds of startups helped me
identify a number of problems worth solving.
That is how Lean Canvas and USERcycle came to be.
Lean Canvas is a business model validation tool. It’s a companion tool to this
book that helps you document your business model, measure progress, and
communicate learning with your internal and external stakeholders.
USERcycle is customer lifecycle management software that helps companies
convert their users into passionate customers. Passionate customers come
back and use your product, tell others about your product, and pay for your
product (or get you paid).

[7] A reader and fellow Austin entrepreneur, Emiliano Villarreal, redid my illustrations and
sent me the updated files. We started collaborating on other visuals and he now works with
me at Spark59.

Part II. Document Your Plan A

Chapter 3. Create Your Lean
Canvas
Capture your business model in a portable, one-page diagram.
The Lean Canvas is the perfect format for brainstorming possible business
models, prioritizing where to start, and tracking ongoing learning.
The best way to illustrate the use of the canvas is through an example. I’ll
describe the thought process that went into building my first product,
CloudFire, using this methodology.

Brainstorm Possible Customers
When you first start out, all you have is an inkling of a problem, a solution,
and maybe a customer segment. Just as rushing to build a solution can lead to
waste, so can prematurely picking a customer segment or business model.
The danger here is that this “selection bias” is untested and may result in a
suboptimal business model or local maxima.

THE HILL-CLIMBING ALGORITHM AND THE PROBLEM OF LOCAL
MAXIMA

In computer science, hill climbing is a mathematical optimization technique. It is an
iterative algorithm that starts with an arbitrary solution to a problem, then attempts to
find a better solution by incrementally changing a single element of the solution. If the
change produces a better solution, an incremental change is made to the new solution,
and the process is repeated until no further improvements can be found.

Hill climbing is good for finding a local optimum (a solution that cannot be improved by
considering a neighboring configuration), but it is not guaranteed to find the best
possible solution (the global optimum) out of all possible solutions (the search space).

Source: http://en.wikipedia.org/wiki/Hill_climbing

While there is no way to completely avoid the local maxima problem, you
raise your odds for finding a better solution when you are initially open to
exploring and even testing multiple models in parallel.
Start by brainstorming the list of possible customers for your product:

Distinguish between customers and users.
If you have multiple user roles in your product, identify your customers.
A customer is someone who pays for your product. A user does not.

Split broad customer segments into smaller ones.
I’ve worked with startups that felt the problems they are solving are so
universal, they apply to everyone.
You can’t effectively build, design, and position a product for everyone.
While you might be aiming to build a mainstream product, you need to
start with a specific customer in mind. Even Facebook, with its now 500
million+ users, started with a very specific user in mind: Harvard
University students.

http://en.wikipedia.org/wiki/Hill_climbing

Put everyone on the same canvas at first.
If you are building a multisided business, you might find it necessary to
outline different problems, channels, and value propositions for each side
of the market. I recommend starting with a single canvas first and using a
different color or tag to identify each customer segment. This helps you
visualize everything on a single page. Then split if needed.

Sketch a Lean Canvas for each customer segment.
As you’ll find shortly, the elements of your business model can and will
vary greatly by customer segment. I recommend starting with the top two
or three customer segments you feel you understand the best or find most
promising.

CASE STUDY: CLOUDFIRE

Background:

Prior to CloudFire, I had launched a file-sharing application called BoxCloud that
simplified the process of sharing large files, using a proprietary peer-to-web (p2web)
framework we had built.

BoxCloud’s unique value proposition (UVP) was that it allowed the sharer to share a
file/folder directly from his computer without any uploading. Recipients accessed the
shared file/folder directly from their browser without the need to install any additional
software.

BoxCloud was primarily targeted at business users and was in use by graphic designers,
attorneys, accountants, and other small-business owners.

I was interested in exploring other uses of the p2web framework, especially around
media sharing (photos, videos, and music), which is how CloudFire came about.

Really broad category:

Anyone that shares lots of media content.

More specific possible customers:

Photographers
Videographers
Media consumers (scratch my own itch)
Parents

While I was initially drawn to building something for the consumer segment (with
myself as the prototypical customer), I had recently become a parent and witnessed some
pain points around photo and (especially) video sharing. That is the segment I decided to

model first.

Sketching a Lean Canvas
In this section, I’ll outline the process for sketching a Lean Canvas.

Sketch a canvas in one sitting.
While it’s tempting to iterate endlessly on the whiteboard, your initial
canvas should be sketched quickly — in less than 15 minutes. The point of
creating the canvas is to take a snapshot of what’s in your head at this
moment in time, then move on to identifying what’s riskiest, and finally
get out of the building and test your model with people other than yourself.

It’s OK to leave sections blank.
Rather than trying to research or debate the “right” answers, put something
down or leave it blank. Leaving a section blank might be indicative of
what’s really riskiest about your model and the place to start your testing.
Some other elements, like Unfair Advantage, take time to figure out, and
your best answer right now might be “I don’t know,” which is also OK.
The canvas is meant to be an organic document that evolves with time.

Be concise.
It’s a lot easier to describe something in a paragraph than in a single
sentence. The space constraints on the canvas are a great way to distill
your business model down to its essence. Aim to fit your canvas on a
single page.

Think in the present.
Business plans try too hard to predict the future, which is impossible.
Instead, write your canvas with a “getting things done” attitude. Based on
your current stage and what you know right now, what are the next sets of
hypotheses you need to test to move your product forward?

Use a customer-centric approach.
Alex Osterwalder describes several techniques for approaching an initial
business model canvas in his book. Since Running Lean is heavily
customer-driven, I find it sufficient to start with just a customer-centric
approach. As we’ll see shortly, tweaking just the customer segment can
completely change the business model.

When creating my canvases, I follow the prescribed order shown in Figure 3-

1, which is the order the rest of the sections will follow.

Figure 3-1. Lean Canvas

Problem and Customer Segments
I find that the “problem-customer segment” pair usually drives the rest of the
canvas, which is why I tackle them together.

List the top one to three problems.
For the customer segment you are working with, describe the top one to
three problems they need solved. Another way to think about problems is
in terms of the jobs customers need done:

When people need to get a job done, they hire a product or service to do it for them.
The marketer’s task is to understand what jobs periodically arise in customers’
lives for which they might hire products the company could make.

— Clayton M. Christensen

List existing alternatives.
Document how you think your early adopters address these problems
today. Unless you are solving a brand new problem (unlikely), most
problems have existing solutions. Many times these solutions may not be
from an obvious competitor.
As an example, the biggest alternative to most online collaboration tools is
not another collaboration tool, but email. Doing nothing could also be a
viable alternative for a customer if the pain is not acute enough.

Identify other user roles.
Identify any other user roles that will interact with this customer.
Examples:

In a blogging platform, the customer is the blog author while the user is
a reader.
In a search engine, the customer is the advertiser while users are people
running searches.

Hone in on possible early adopters.
With these problems in mind, get more specific on the customer segment.
Narrow down the characteristics of your prototypical customer.
Your objective is to define an early adopter, not a mainstream customer.

CASE STUDY: CLOUDFIRE: PROBLEM AND CUSTOMER
SEGMENTS

Having just become a parent, I observed the “perfect storm” of problems that I wanted to
explore further, listed here and shown in Figure 3-2:

The number of photos (and especially videos) we took increased significantly after
the baby was born.
We were sleep-deprived and found the existing solutions time-consuming and
sometimes painful to use.
The demand for this content from family (especially grandparents) and friends was
high and often time-sensitive.

Figure 3-2. CloudFire: problem and customer segments

Unique Value Proposition
Dead center in the Lean Canvas is a box for your UVP. This is one of the
most important boxes on the canvas and also the hardest to get right.
Since writing the first version of Running Lean, I have refined my definition
of the UVP:

Unique Value Proposition: Why you are different and worth buying getting attention.

“Selling” is a conversation, and I believe it’s too hard to do that with a single
statement. More important, the first battle isn’t even selling; it’s getting a
prospect’s attention.

NOTE

First-time visitors spend eight seconds on average on a landing page. Your UVP is their
first interaction with your product. Craft a good UVP and they might stay and view the

rest of your site. Otherwise, they’ll simply leave.

Even with this revised definition, the UVP is still hard to get right because
you have to distill the essence of your product in a few words that can fit in
the headline of your landing page. Additionally, your UVP also needs to be
different, and that difference needs to matter.
The good news is that you don’t have to get this perfect right away. Like
everything on the canvas, you start with a best guess and iterate from there.

How to craft a unique value proposition
First, I highly recommend getting a copy of the classic book on marketing by
Al Ries and Jack Trout: Positioning: The Battle for Your Mind (McGraw-
Hill). Ries and Trout are considered the fathers of modern advertising. This is
an “easy read” and the best crash course on marketing I’ve ever come across.
Here are some of my tips on how to craft a UVP:

Be different, but make sure your difference matters.
The key to unlocking what’s different about your product is deriving your
UVP directly from the number-one problem you are solving. If that
problem is indeed worth solving, you’re more than halfway there already.

Target early adopters.
Too many marketers try to target the “middle” in the hopes of reaching
mainstream customers, and in the process they water down their message.
Your product is not ready for mainstream customers yet. Your sole job
should be to find and target early adopters, which requires bold, clear, and
specific messaging.

Focus on finished story benefits.
You’ve probably heard about the importance of highlighting benefits over
features. But benefits still require your customers to translate them to their
worldview. A good UVP gets inside the head of your customers and
focuses on the benefits your customers derive after using your product.
So, for instance, if you are creating a résumé-building service:

A feature might be “professionally designed templates.”
The benefit would be an “eye-catching résumé that stands out.”
But the finished story benefit would be “landing your dream job.”

A good formula for crafting an effective UVP (by way of Dane Maxwell)
is:

Instant Clarity Headline = End Result Customer Wants + Specific
Period of Time + Address the Objections

NOTE
The second and third items in the preceding formula are great if you can use them,
but they are not required.

A classic example that fits this formula is Domino’s slogan:
Hot fresh pizza delivered to your door in 30 minutes or it’s free.

Pick your words carefully and own them.
Words are key to any great marketing and branding campaign. Look at
how the top luxury car brands have used a single word to define
themselves:

Performance: BMW
Design: Audi
Prestige: Mercedes

Picking a few “key” words that you consistently use also drives your
search engine optimization (SEO) ranking.

Answer: what, who, and why.
A good UVP needs to clearly answer the first two questions — what is
your product and who is your customer. The “why” is sometimes hard to
fit in the same statement, and I’ll frequently use a subheading for that.
Here are example UVPs I have used in products:

Lean Canvas
Spend More Time Building Versus Planning Your Business.
The faster, more effective way to communicate your business model

USERcycle
Turn your users into passionate customers.
Customer Lifecycle Management Software

Study other good UVPs.

The best way to craft a good UVP is to study the UVPs of the brands you
admire. Visit their landing pages and deconstruct how and why their
messaging works.
Some of my best teachers have been Apple, 37signals, and FreshBooks.

Create a high-concept pitch.
Another useful exercise is creating a high-concept pitch. High-concept
pitches are used heavily by Hollywood producers to distill the general plot
of a movie to a memorable sound bite. The high-concept pitch was also
popularized as an effective pitching tool by Venture Hacks in its ebook,
Pitching Hacks.
Examples:

YouTube: “Flickr for video”
Aliens (movie): “Jaws in space”
Dogster: “Friendster for dogs”

The high-concept pitch should not be confused with a UVP and is not
intended to be used on your landing page. There is a danger that the
concepts the pitch is based on might be unfamiliar to your audience. For
this reason, the high-concept pitch is more effective when used to quickly
get your idea across and make it easy to spread, such as after a customer
interview. We’ll cover this specific use of the high-concept pitch in
Chapter 7.

CASE STUDY: CLOUDFIRE: UNIQUE VALUE PROPOSITION

Given the current list of existing alternatives, I decided to use speed as the “difference
that would matter” for my UVP and “no uploading” as the key words to position around
(see Figure 3-3).

Later, you’ll see how this UVP evolved significantly after just a few customer
interviews.

Figure 3-3. CloudFire: UVP

Solution
You are now ready to tackle solution possibilities.
Because all you have are untested problems, it is fairly common for them to
get reprioritized or completely replaced with new ones after just a few
customer interviews. For this reason, I recommend not getting carried away
with fully defining your solution just yet. Rather, simply sketch out the
simplest thing you could possibly build to address each problem.
Bind a solution to your problem as late as possible.

CASE STUDY: CLOUDFIRE: SOLUTION

Based on my list of problems, I created a short list of top features I would include in the
minimum viable product, or MVP (see Figure 3-4).

Figure 3-4. CloudFire: solution

Channels
Failing to build a significant path to customers is among the top reasons why
startups fail.
The initial goal of a startup is to learn, not to scale. So, at first it’s OK to rely
on any channels that get you in front of potential customers.

The good news is that following a “customer discovery[8]/interview” process
forces you to build a path to “enough” customers early. However, if your
business model relies on acquiring large numbers of customers to work, that
path may not scale beyond the initial stages, and it’s quite possible you’ll get
stuck later.
For this reason, it’s equally important to think about your scalable channels
from day one so that you may start building and testing them early.

While there are a plethora of channel options available, some channels may
be outright inapplicable to your startup, while others may be more viable
during later stages of your startup.
I typically look for the following characteristics in my early channels.

Freer versus paid
First, there is no such thing as a free channel. Channels we normally associate
as being free, like SEO, social media, and blogging, have a nonzero human
capital cost associated with them. Calculating their ROI is complicated
because, unlike a paid channel that is used up after you pay for it, these
channels keep working for you over time.
A commonly cited paid channel is search engine marketing (SEM). Eric Ries
has written about how he tested his early product on $5 a day using Google
AdWords, driving 100 clicks at a cost-per-click of 5 cents. If you can pull
this off today, by all means use it, but unfortunately those days are long gone
for most products. Keyword competition is so fierce now that you need to
either outspend or outwit your competition. Both of these activities are better
suited to the after product/market fit time frame when your focus shifts to
optimizing versus learning.

Inbound versus outbound
Inbound channels use “pull messaging” to let customers find you organically,
while outbound channels rely on “push messaging” to reach customers.
Examples of inbound channels:

Blogs
SEO
Ebooks
White papers
Webinars

Examples of outbound channels:
SEM
Print/TV ads
Trade shows
Cold calling

When you don’t yet have a tested value proposition, it’s hard to justify
spending marketing dollars or effort on outbound messaging. Getting “tech-
crunched” or seeking other forms of PR before then is a form of waste. Now
might be the time to start building inroads to influencers, but you are not
ready to “get covered.”
Interviews are a form of outbound channel that are the exception. As we’ll
see with the next two points, the return on learning from an interview far
exceeds the cost of running an interview.

Direct versus automated
As a scalable channel, direct sales only make sense in businesses where the
aggregate lifetime value of the customers exceeds the total compensation of
your direct sales people, such as in certain B2B and enterprise products.
But as a learning channel, direct selling is one of the most effective, since
you interact face to face with the customer.
First sell manually, then automate.

Direct versus indirect
Another area where startups waste energy is prematurely trying to establish
strategic partnerships. The idea is to partner with a larger company to
leverage its channels and credibility. The problem is that until you have a
proven product, you won’t get the right level of attention from the bigger
company’s sales reps to make this work. Imagine you are a sales rep at the
bigger company. Given the choice of selling what you know or selling an
unproven product to make your quota, which would you choose?
The same principle applies to hiring external salespeople. While a
salesperson can probably outsell you on the execution of a sales plan, she
can’t create that plan.
You have to first sell your product yourself, before letting others do it.

Retention before referral
Many startups are obsessed with building virality and referral/affiliate
programs into their product from day one. While referral programs can be
very effective in spreading the word about your product, you need to have a
product worth spreading first.

Build a remark-able product.
— Seth Godin, Purple Cow (Portfolio Hardcover)

CASE STUDY: CLOUDFIRE: CHANNELS

I planned to start with several outbound channels (friends and other parents at daycare)
for interviews, and list a few possible, more scalable channels for later (see Figure 3-5).

Figure 3-5. CloudFire: channels

Revenue Streams and Cost Structure
The bottom two boxes, labeled “Revenue Streams” and “Cost Structure,” are
used to model the viability of the business. Rather than thinking in terms of
three- or five-year forecasts, take a more ground-up approach.
First, model the runway you will need to define, build, and launch your MVP.
Then, revise after you get there.

Revenue streams
A lot of startups choose to defer the “pricing question” because they don’t
think their product is ready. Something I hear a lot is that an MVP is, by
definition, embarrassingly minimal. How can you possibly charge for it?
First, an MVP is not synonymous with a half-baked or buggy product. Your
MVP should address not only the top problems customers have identified as
being important to them, but also the problems that are worth solving. By that
definition, you should plan to deliver enough value to justify charging.
But there is another line of reasoning that is frequently cited for deferring
pricing: to accelerate initial learning. The argument goes that pricing creates
unnecessary friction that should be avoided early on.
The mindset most of us have when we’re launching a new product is one of
lowering signup friction. We want to make it as easy as possible for the
customer to say yes and agree to take a chance on our product, hoping the
value we deliver over time will earn us the privilege of his business.
Not only does this approach delay validation of one of the riskier parts of the
model (because it’s too easy for a user to say yes), but a lack of strong
customer “commitment” can also be detrimental to optimal learning.
Furthermore, you don’t need a lot of users to support learning — just a few
good customers.
I believe that if you intend to charge for your product, you should charge
from day one.

NOTE

A reasonable exception is when you’re offering a value proposition that is built over
time — for example, premium LinkedIn accounts.

Here’s why:

Price is part of the product.
Suppose I place two bottles of water in front of you and tell you that one
costs 50 cents and the other costs 2 dollars. Despite the fact that you
wouldn’t be able to tell them apart in a blind taste test (the products are
similar enough), you might be inclined to believe (or at least wonder)
whether the more expensive water is of higher quality.

Here, price has the power to change your perception of the product.

Price defines your customers.
More interesting is the fact that the bottled water you pick determines your
customer segment. From the existing market for bottled water, we know
there is a viable business for bottled water at both price segments. What
you charge signals your positioning on which customers you want to
attract.

Getting paid is the first form of validation.
Getting a customer to give you money is one of the hardest actions you can
ask them to take and is an early form of product validation.

Although there is a lot of science around pricing, pricing is more art than
science. For a great primer, I highly recommend getting a copy of Neil
Davidson’s free ebook on software pricing, Don’t Just Roll the Dice.
One technique for setting initial pricing is pricing against the list of existing
alternatives from the Problem box. These alternatives provide reference price
anchors against which your offering will be measured.
(For more specific techniques for pricing Software as a Service [SaaS]
products, including when to use freemium pricing, see How to Set Pricing for
a SaaS Product in the Appendix.)

Cost structure
List the operational costs you will incur while taking your product to market.
It’s hard to accurately calculate these too far into the future. Instead, focus on
the present:

What will it cost you to interview 30 to 50 customers?
What will it cost you to build and launch your MVP?
What will your ongoing burn rate look like in terms of both fixed and
variable costs?

Use the revenue streams and cost structure inputs to calculate a break-even
point and estimate how much time, money, and effort you need to get there.
You will use this later to prioritize which model you start with.

CASE STUDY: CLOUDFIRE: REVENUE STREAMS AND COST
STRUCTURE

Using the existing alternatives for price anchoring, which ranged from $24 to $39 per
year for Flickr and SmugMug, to $99/year for Apple’s MobileMe (a lot more than just
photos/videos), I decided to start with $49/year pricing.

Prints (and other merchandise) were also revenue streams these companies used, but I
wasn’t sure if enough people still purchased prints anymore to make it worthwhile (a
hypothesis that would need to be tested). More important, prints represented a potential
secondary revenue stream that could only be realized once customers derived a core
UVP. For this reason, I left out prints from both the MVP and initial canvas (see
Figure 3-6).

The only initial costs to getting an MVP out were people costs, which I list in the next
section.

Figure 3-6. CloudFire: revenue streams and cost structure

Key Metrics
Find the key number that tells you how your business is doing in real time, before you
get the sales report.

— Norm Brodsky and Bo Burlingham, The Knack (Portfolio
Hardcover)

Every business has a few key numbers that can be used to measure how well
it is performing. These numbers are key for both measuring progress and
identifying hot spots in your customer lifecycle.

A model I use heavily is Dave McClure’s Pirate Metrics,[9] shown in
Figure 3-7.

Figure 3-7. CloudFire: Pirate Metrics

Even though Pirate Metrics was built with software companies in mind, the
model is applicable to many different types of businesses. Let’s walk through
each step using a flower shop and a software product as examples.

Acquisition
Acquisition describes the point when you turn an unaware visitor into an
interested prospect.
In the case of the flower shop, getting someone walking by your window to
stop and come in to your shop is an acquisition event.
On a product website, getting someone to do anything other than leave your
website (abandon) is a measure of acquisition. I specifically measure

successful acquisition as getting my visitors to view my signup page.

Activation
Activation describes the point when the interested customer has his first
gratifying user experience.
In the case of the flower shop, if the prospect found the shop in disarray once
he comes inside, there would be a disconnect with the promise made at the
front of the store. That wouldn’t be a gratifying first user experience.
On the product site, once the prospect signs up, you have to make sure you
get the customer to a point where he can connect the promise you made on
your landing page (your UVP) with your product.

Retention
Retention measures “repeated use” and/or engagement with your product.
So, in the case of the flower shop, the action of coming back to the store —
and in the case of the product website, the act of logging back in to use the
product again — would count toward retention.
As we’ll see in Part IV of the book, this is one of the key metrics to
measuring product/market fit.

Revenue
Revenue measures the events that get you paid.
These could be buying flowers or buying a subscription for your product.
These events may or may not occur on the first visit.

Referral
Referral is a more advanced form of a user acquisition channel where your
happy customers refer or drive potential prospects into your conversion
funnel.
In the case of the flower shop, this could be as simple as telling another
friend about the store.
For the software product, this could range from implicit viral or social
sharing features (like Share with a friend), to explicit affiliate referral
programs or Net Promoter Score.

CASE STUDY: CLOUDFIRE: KEY METRICS

In Figure 3-8 I map specific user actions that correspond to each of the key metrics
discussed earlier.

Figure 3-8. CloudFire: key metrics

Unfair Advantage
This is usually the hardest section to fill, which is why I leave it for last. Most
founders list things as competitive advantages that really aren’t — such as
passion, lines of code, or features.
Another frequently cited advantage in business models is the “first-mover”
advantage. However, it doesn’t take much to see that being first can actually
be a disadvantage, as most of the hard work of paving new ground (risk
mitigation) falls on your shoulders, only to be potentially picked up later by
fast-followers unless you’re able to constantly outpace them with a real
“unfair advantage.” None of these companies were first movers: Ford,
Toyota, Google, Microsoft, Apple, or Facebook.

An interesting perspective (via Jason Cohen) to keep in mind is that anything
worth copying will be copied, especially once you start to demonstrate a
viable business model.
Imagine a scenario where your cofounder steals your source code, sets up
shop in Costa Rica, and slashes prices. Do you still have a business? How
about if Google or Apple launches a competitive product and drops the price
to $0?
You have to be able to build a successful business in spite of that, which led
Jason Cohen to offer the following definition:[10]

A real unfair advantage is something that cannot be easily copied or bought.
— Jason Cohen, A Smart Bear blog

Here are some examples of real unfair advantages that fit this definition:
Insider information
The right “expert” endorsements
A dream team
Personal authority
Large network effects
Community
Existing customers
SEO ranking

Some unfair advantages can also start out as values that become
differentiators over time.
For example, Zappos CEO Tony Hsieh believes strongly in creating
happiness for his customers and employees. This manifested itself in many
company policies that, on the surface, didn’t make much business sense, such
as allowing customer service representatives to spend as much time as was
needed to make a customer happy and offering a 365-day return policy with
two-way paid shipping. But these policies served to differentiate the Zappos
brand and build a large, passionate, and vocal customer base that played a
large role in the company’s eventual $1.2 billion acquisition by Amazon in
2009.
You may have to leave this box blank when you first start out, but it’s here to
make you really think about how you can/will make yourself different and
make your difference matter.

CASE STUDY: CLOUDFIRE: UNFAIR ADVANTAGE

Even though CloudFire is built on a proprietary p2web framework that might give us an
early advantage, anything worth copying will be copied. So I decide to base my unfair
advantage on something harder to replicate. In this case, community (see Figure 3-9).

Figure 3-9. CloudFire: unfair advantage

Now It’s Your Turn
Documenting your Plan A is a prerequisite for moving on. Too many
founders carry their hypotheses in their heads alone, which makes it hard to
systematically build and test a business.
You have to draw a line in the sand.
How you create your Lean Canvas is up to you.
You can:

Visit http://LeanCanvas.com and create your online canvas there.
Create a version in PowerPoint or Keynote.
Sketch a canvas on paper.

The important thing is to share your Lean Canvas with at least one other
person when you are done.

[8] The first step described by Steve Blank in his book The Four Steps to the Epiphany
(http://www.cafepress.com/kandsranch).
[9] Dave McClure called them Pirate Metrics because when you put the first letter in each
funnel step together, they spell the word: AARRR.
[10] Jason Cohen. “No, that IS NOT a competitive advantage”;
http://blog.asmartbear.com/not-competitive-advantage.html.

http://LeanCanvas.com
http://www.cafepress.com/kandsranch
http://blog.asmartbear.com/not-competitive-advantage.html

Part III. Identify the Riskiest Parts of Your
Plan

Chapter 4. Prioritize Where to Start
Now that you have a list of possible models, the next step is to prioritize
where to start. Otherwise, it’s easy to fall into the trap of making marginal
progress, only to get stuck later.
Incorrect prioritization of risk is one of the top contributors of waste.

What Is Risk?
Before moving on, it helps to define what I mean by risk. We know that
startups are highly uncertain, but uncertainty and risk aren’t the same thing.
We can be uncertain about a lot of things that aren’t risky.
Douglas Hubbard makes a clear distinction between the two in his book, How
to Measure Anything (Wiley):

Uncertainty: The lack of complete certainty, that is, the existence of more than one
possibility.
Risk: A state of uncertainty where some of the possibilities involve a loss, catastrophe,
or other undesirable outcome.

The good news is that the Lean Canvas automatically captures uncertainties
that also are risks — the loss here can be quantified both in terms of
opportunity costs and real costs. But not all these risks are equal.
The way you quantify risk in your business model is by quantifying the
probabilities of a specific outcome along with quantifying the associated loss
if you’re wrong. This is a key step to prioritizing what’s riskiest on your
business model and determining where to start.
For instance, in the “How I Iterated This Book” case study from Chapter 2, I
didn’t consider pricing for the book as high risk. The reason for this is that
even though the loss of nobody buying the book would be huge, the
probability of that happening was low provided I wrote a “good” book. That
is why I shifted my focus early to testing the “Table of Contents” versus the
price.
Risks in a startup can be divided into three general categories, listed here and
depicted in Figure 4-1:

Product risk
Getting the product right

Customer risk
Building a path to customers

Market risk
Building a viable business

Figure 4-1. Risks

Tackling all these risks at once can be overwhelming, which is why you need
to prioritize them based on the stage of your product, and tackle them
systematically.
There is a whole science to quantifying and measuring risks using
probabilities and statistical modeling techniques. If you are so inclined, get a
copy of Douglas Hubbard’s book, which is a great read even for qualitative
measurements like customer interviewing results.
I am not recommending using a statistical model to measure risks on your
Lean Canvas, but even a basic understanding of how to ballpark relative risks
on your canvas goes a long way toward prioritizing where to start. While
what is riskiest in your model will vary depending on the type of product
you’re building, I’ve found some initial risks to be universal and a good
starting point for ranking business models, which we’ll cover next.

Rank Your Business Models
It’s time to lay your Lean Canvases side by side and prioritize which models
to start with.
Your objective is to find a model with a big enough market you can reach
with customers who need your product that you can build a business around.
Here is the weighting order I use (from highest to lowest):

1. Customer pain level (Problem)
Prioritize customer segments that you believe will need your product
the most. The goal is to have one or more of your top three problems as
must-haves for them.

2. Ease of reach (Channels)
Building a path to customers is one of the harder aspects of building a
successful product. If you have an easier path to one segment of
customers over others, take that into consideration. It doesn’t guarantee
you’ll find a problem worth solving or a viable business model, but it
will get you out of the building faster and speed up your learning.

3. Price/gross margin (Revenue Streams/Cost Structure)
What you can charge for your product is largely driven by the customer
segment. Pick a customer segment that allows you to maximize on your
margins. The more money you get to keep, the fewer customers you
need to reach to break even.

4. Market size (Customer Segments)
Pick a customer segment that represents a big enough market given the
goals for your business.

5. Technical feasibility (Solution)
Visit your Solution box to ensure that your planned solution not only is
feasible, but also represents the minimum feature set to put in front of
customers.

CASE STUDY: CLOUDFIRE: PRIORITIZE WHERE TO START

Figure 4-2 through Figure 4-5 depict all the CloudFire Lean Canvases followed by their
ranking.

Figure 4-2. CloudFire: Parents Lean Canvas

Figure 4-3. CloudFire: Photographers Lean Canvas

Figure 4-4. CloudFire: Videographers Lean Canvas

Figure 4-5. CloudFire: Consumers Lean Canvas

Even though the Videographers customer segment had the highest potential margins, it
also represented the model that would be technically most challenging because our
existing technology hadn’t been proven to work with really large files (large size is
typical of video files). The Consumer segment represented the weakest value proposition
and was a hard monetization model to pull off. Based on these rankings, I decide to
prioritize starting with the Parents and Photographers customer segments.

Seek External Advice
Another effective technique for further calibrating your risks is getting out of
the building and validating them with people other than yourself.[11]

It is imperative that you share your model with at least one other person.
I used to advocate jumping right into customer interviews after documenting
my initial models, but now I prefer to first spend a little additional time
prioritizing risks and brainstorming alternative models with people other than
customers — e.g., advisors.
The main reason I do this is to maximize speed and learning. Customers
cannot directly give you all the answers, and due to the iterative and
qualitative nature of early learning, validating hypotheses takes time.
Furthermore, you might still be targeting too broad a customer segment, too
small a customer segment, or the wrong customer segment altogether.
The “right” advisors, on the other hand, can help you identify risks on the
“total plan” and help you to further refine and/or outright eliminate some
models.
I use the term advisor rather loosely. An early advisor might be a prototypical
customer, a potential investor, or another entrepreneur with specific expertise,
domain knowledge, or experiential knowledge that applies to you.
For instance, since selling my last company, I’ve shared my lessons learned
on CloudFire with several other entrepreneurs who were also looking to
target the Parents customer segment. I estimate that my advice and specific
tactics have saved them somewhere in the ballpark of three to four months,
which is hugely valuable, especially in the earliest stages.
Here are some guidelines for running business model interviews:

Avoid the 10-slide deck.
I completely avoid a traditional “10-slide deck” because the point of the
interview is learning versus pitching. The other extreme, no slides,
although most natural, requires practice and may not lead to as many
actionable insights because it may be hard for the other person to retain
everything you tell her.
My tool of choice is an incremental build of the Lean Canvas delivered on
an iPad (or paper). I start with a blank canvas and incrementally reveal

parts of the business model as I walk through it.

Devote 20% of your time to setup, 80% to conversation.
The stacked flow allows me to pace the conversation and leave all the
information on the screen. It usually takes me three to five minutes to walk
through my model; then I shut up and listen.
I have found that leaving the complete canvas open in front of people
always evokes a reaction because people can visualize the entire model and
they always have an opinion.

Ask specific questions.
I specifically want to know:

What do they consider to be the riskiest aspect of this plan?
Have they overcome similar risks? How?
How would they go about testing these risks?
Are there other people I should speak with?

Be wary of the “advisor paradox.”
As we’ll see shortly, just as customer interviews aren’t about asking
customers what they want, these interviews aren’t about asking advisors
what to do.

The Advisor Paradox: Hire advisors for good advice but don’t follow it, apply it.
— Venture Hacks

The key is not to take this feedback as either “judgment” or “validation,”
but rather as a means of identifying and prioritizing risk.
It is still your job to own your business model. But because you don’t have
all the answers, you need to build your startup through a series of
conversations — with advisors, customers, investors, and even
competitors.
Success is unlocked at the intersection of these conversations, and it’s your
job as the entrepreneur to synthesize it into a coherent whole.

Recruit visionary advisors.
Much like early adopters want to help when you nail their problems,
visionary advisors will want to help when you present them with
interesting problems that trigger their strengths and passion.
You’ll know if there’s a fit based on their answers and body language. If

so, consider bringing them on as formal advisors.

[11] This is a technique that Douglas Hubbard describes as the “Instinctive Bayesian
Approach” in his book.

Chapter 5. Get Ready to
Experiment
With your starting models and risks prioritized, now you need to get ready to
run experiments.

Assemble a Problem/Solution Team
Before you start running your first set of experiments, it’s important to
assemble the right team.

Forget Traditional Departments
In a Lean Startup, traditional department labels like “Engineering,” “QA,”
“Marketing,” and so forth can get in the way and create needless friction. Eric
Ries instead recommends organizing around two teams, the Problem team
and the Solution team.

The Problem team
The Problem team is mostly involved with “outside-the-building” activities
such as interviewing customers, running usability tests, and so on.

The Solution team
The Solution team is mostly involved with “inside-the-building” activities
such as writing code, running tests, deploying releases, and so on.

I say “mostly” because these teams need to be highly cross-functional with
overlapping members. Also, interacting with customers is everyone’s
responsibility.
While I agree with the logical distinction between Problem and Solution
teams, at this stage of a product, you’re best served with having a single
Problem/Solution team.

Start with the Smallest Team Possible, but No Smaller
The ideal Problem/Solution team size is two or three people.
There are many arguments for building your Release 1.0 (minimum viable
product, or MVP) with a small team:

Communication is easier.
You build less.
You keep costs low.

I built CloudFire “mostly” as a single founder. The biggest challenge I faced
was balancing outside-the-building activities with inside-the-building
activities, and I had to come up with a set of work hacks to make this work

(see How to Achieve Flow in a Lean Startup in the Appendix).
While it is possible to build a product by yourself, I highly recommend
working with at least one other person who can, at a minimum, help to
enforce periodic reality checks. Ideally, this is a cofounder, but advisors,
investors, and even an ad hoc board made up of other startup founders can fill
this role.
More important than the number of members is ensuring that you have the
right talents within the team to iterate quickly.

The three must-haves: development, design, and marketing
You don’t always need three people to complete the team. Sometimes you
can find these talents across two people, and other times all you need is one
person. I tend to look for people with some level of expertise in all three
areas.
Here’s how I define them:

Development
If you are building a product, you need strong product development skills
on your team. Having prior experience building stuff is key, along with
expertise in the specific technology you are using.

Design
By “design” I mean both aesthetics and usability. In newer markets,
function can take precedence over form, but we live in an increasingly
“design-aware” world where form cannot be ignored. Also, a product is not
just a collection of features but rather a collection of user flows. You need
people on your team that can deliver on the right experience that matches
your customers’ worldview.

Marketing
Everything else is marketing. Marketing drives the external perception of
your product, and you need people that can put themselves in the shoes of
your customer. Good copywriting and communication skills are key here,
along with an understanding of metrics, pricing, and positioning.

Be Wary of Outsourcing Your Problem/Solution Team
I constantly run across teams that try to outsource one or more of these three

areas, which is usually a bad idea. While you might be able to outsource an
early prototype or demo, be wary of putting yourself at the mercy of someone
else’s schedule, as that can limit your ability to both iterate quickly and learn.
The one thing you should never outsource is learning about customers.

Running Effective Experiments
In this section, I’ll lay a few ground rules for defining and running effective
experiments.

Maximize for Speed, Learning, and Focus
Because the goal of a startup is to find a plan that works before running out
of resources, we know that speed, as measured by cycle time around the
Build-Measure-Learn loop shown in Figure 5-1, is important. We also know
that learning — specifically, learning about customers — is important. But
something that doesn’t get nearly enough attention is focus.
You need all three — speed, learning, and focus — to run an optimal
experiment. Let’s see what happens when you don’t have all three (see
Figure 5-2).

Figure 5-1. Speed, learning, and focus

Figure 5-2. Maximize for speed, learning, and focus

Speed and focus
When you are going fast and are focused but not learning, the image of a
dog chasing its tail comes to mind. You are expending a lot of energy but
simply going around in circles.

Learning and focus
When you are focused on the right thing and learning but you are not
moving quickly enough, you stand the danger of running out of resources
or getting outpaced by a competitor.

Speed and learning
Finally, when you are going fast and learning but you are not focused, you
can fall into the premature optimization trap. Some examples of premature
optimization are scaling servers when you have no customers, and
optimizing landing pages when you don’t yet have a product that works.

Identify a Single Key Metric or Goal

A startup can focus on only one metric. So you have to decide what that is and ignore
everything else.

— Noah Kagan

When formulating an experiment, stay focused on the key learning or key
metric you need to achieve, which will vary by the type and stage of your
product. While it’s possible to tackle multiple metrics and goals
simultaneously, I’ve always found it most effective to stay singularly
focused.

Do the Smallest Thing Possible to Learn
The best is often the enemy of the good.

— Voltaire

Challenge yourself to find the simplest thing you can do to test a hypothesis.
This is an underappreciated skill. Once you truly understand what’s riskiest
about your product, it’s often possible to build something other than the
product to test it.

YOU DON’T NEED CODE TO TEST A SOFTWARE PRODUCT.
(DROPBOX)

While building Dropbox at MIT, Drew Houston posted a three-minute demo on Hacker
News that went viral. The video-plus-teaser landing page helped him attract tens of
thousands of early adopters, find a cofounder, and get accepted into Y Combinator. At
the time, Drew estimated his launch date at less than three months away. It took him 18
months to publicly launch Dropbox.

YOU DON’T NEED A RESTAURANT TO TEST A NEW FOOD
CONCEPT. (AUSTIN FOOD TRAILERS)

Food trailers have become quite hip and popular in Austin, Texas, but they started as an
inexpensive way for aspiring restaurateurs to test concepts rapidly. After proving a new
concept at a small scale, they typically graduate to a brick-and-mortar restaurant.
(Franklins BBQ is the latest success story to make this transition after being named the
“Best barbecue joint in the country” by Bon Appétit magazine.) But some have still kept
their trailer counterparts going. That’s where they still experiment with new menu items
before pushing them to their restaurants.

YOU DON’T NEED AUTOMATION TO VALIDATE A MARKETPLACE.
(FOOD ON THE TABLE)

Manuel Rosso had a big vision for building a nationwide service that generates weekly
meal plans and grocery lists based on consumers’ preferences and what’s on sale at their
local grocery store. To realize this vision, he needed to know where people shop, their
food preferences, and what was on sale to tie into yet another recipe database from
which consumers would generate a customized meal plan. Instead of building a
sophisticated automated system to do that, Manuel and his VP of product, Steve
Sanderson, picked a single grocery store that was close to them and near a Starbucks
coffee shop where they conducted numerous interviews with people who shopped there.
They started with a single customer and manually built these weekly plans to validate
their riskiest assumptions first. Their objective was learning over efficiency. Over time,
they signed up more customers and incrementally replaced the most inefficient portions
of their solution with “just enough” automation to move them closer to their original big
vision. This technique of using a highly personalized service as the MVP to speed up
learning was appropriately termed “Concierge MVP” by Eric Ries.

Formulate a Falsifiable Hypothesis
What most people write down for their business model is really not yet in a
form that is testable. The Lean Startup methodology is heavily rooted in the
scientific method and requires that you convert these assumptions into
falsifiable hypotheses.
A falsifiable hypothesis is a statement that can be clearly proven wrong.
When you skip this step, you can easily fall into the trap of accumulating just
enough evidence to convince yourself that your hypothesis is correct.
This is best illustrated with an example.
Here are two statements that describe a channel hypothesis:

Too vague
Being known as an “expert” will drive early adopters.

Specific and testable
A blog post will drive 100 signups.

The first statement is a hypothesis that cannot be proven wrong because the
expected outcome of driving early adopters is not measurable. Specifically, it
is not clear how many early adopters are needed to prove this hypothesis to
be true — 1 or 100 or 1,000 — or what “being an expert” really entails.
The second statement not only has a specific and measurable outcome, but it
is also based on a specific and repeatable action that makes it testable. Even if

you fail to hit the expected outcome, the mere action of declaring it up front
is hugely valuable, not only for enforcing a reality check, but also for
improving your judgment.
A formula for crafting a falsifiable hypothesis is:

Falsifiable Hypothesis = [Specific Repeatable Action] will [Expected
Measurable Outcome]

Validate Qualitatively, Verify Quantitatively
Before product/market fit, the terrain is riddled with extreme uncertainty. The
good news is when you have a lot of uncertainty, you don’t need a lot of data
to learn.

If you have a lot of uncertainty now, you don’t need much data to reduce uncertainty
significantly. When you have a lot of certainty already, then you need a lot of data to
reduce uncertainty significantly.

— Douglas Hubbard

This naturally works to your advantage.
Your initial goal is to get a strong signal (positive or negative) that typically
doesn’t require a large sample size. You might be able to do this with as few
as five customer interviews.[12]

A strong negative signal indicates that your bold hypothesis most likely
won’t work and lets you quickly refine or abandon it. However, a strong
positive signal doesn’t necessarily mean your hypothesis will scale up to
statistical significance; nevertheless, it gives you permission to move forward
on the hypothesis until it can be verified later through quantitative data.
Validating hypotheses in this way — first qualitatively, then quantitatively —
is a key principle we’ll see applied in various stages throughout this book.

Make Sure You Can Correlate Results Back to Specific
Actions
One of the harder things to do is to correlate measured results back to specific
and repeatable actions, as your product is always changing. When running
qualitative experiments (like interviews), it’s important to run them the same
way until certain repeatable patterns emerge. For quantitative experiments,
techniques like cohort analysis and split testing allow you to achieve this.

We’ll cover this in more detail a bit later.

Create Accessible Dashboards
Testing hypotheses can be scary for founders. This is understandable, as
startup founders pour their blood, sweat, and tears into their work. They have
a lot riding on the outcome of their efforts and don’t like to be proven wrong.
But without a level of transparency and objectivity, there is a danger of
running your startup primarily on faith. It is imperative to openly share your
experiments company-wide.

A business should be run like an aquarium, where everybody can see what’s going on.
— Jack Stack, The Great Game of Business (Currency/Doubleday)

Communicate Learning Early and Often
Company-wide dashboards are great for on-the-ground tactical analysis, but
it is equally important to report on your learning milestones at a strategic
level.
A good way to do this is to periodically communicate the lessons learned
from your last batch of experiments — weekly with your internal team and at
least monthly with your external advisors and investors. This lets you pause,
reflect on your findings as a team, and better plan the next set of activities
(i.e., hypotheses to test).
The last two steps form the basis of what Eric Ries describes as “Innovation
Accounting” in his book The Lean Startup (Crown Business). Figure 5-3
shows my implementation of an Innovation Accounting model I use, which
combines ongoing learning with Lean Canvas and a cohort-based conversion
dashboard.

Figure 5-3. Lessons learned

It starts by identifying the key goal or metric at the top.
On the left, it summarizes your learning from a particular period, broken into
sections describing what you expected to happen (your hypotheses), what

actually happened (your insights), and what you are going to do next (future
experiments).
This “learning” is kept in check on the right using a tactical view into your
customer lifecycle (which we’ll cover in depth later) and a strategic view into
your business model assumptions.
Communicating progress in this way lets you stay grounded in learning while
constantly iterating toward a plan that works.

Applying the Iteration Meta-Pattern to Risks
Risks are tackled through experiments. The terrain before product/market fit
is riddled with qualitative learning; though you may be able to mitigate some
risks, you can never completely eliminate them through a single experiment.
There are two common fallouts of this. One is that startups get discouraged
from their initial lukewarm or negative learning and either pivot prematurely
or abandon further experiments. The other is the complete opposite. Here,
startups get overly optimistic from their initial positive learning only to get
potentially stuck later.
The first significant milestone of a startup is achieving product/market fit,
which isn’t just about building the “right” product but building a scalable
business model that works.
You can’t afford to blindly follow a process (even this one) or aimlessly run
experiments just for the sake of learning. Instead, you need to start with the
end in mind and carefully align your experiments into “staged iterations” so
that your learning is additive.

Maximize learning (about what’s riskiest) per unit time.

The starting point is a completed Lean Canvas that lays out a plan that you
believe should work. You then methodically run staged experiments that visit
every box on the canvas.

Your business model is not a dartboard.

Earlier, I outlined the top three starting risks on the Lean Canvas as Problem,
Channels, and Revenue streams.
While the top three starting risks serve as a quick diagnostic for prioritizing
your canvases, here is how you systematically tackle them in stages (see
Figure 5-4):

Stage 1: Understand the problem
Conduct formal customer interviews or use other customer observational
techniques to understand whether you have a problem worth solving. Who
has the problem, what is the top problem, and how is it solved today?

Stage 2: Define the solution
Armed with knowledge from Stage 1, take a stab at defining the solution,

build a demo that helps the customer visualize the solution, and then test it
with customers. Will the solution work? Who is the early adopter? Does
the pricing model work?

Stage 3: Validate qualitatively
Build your MVP and then soft-launch it to your early adopters. Do they
realize the unique value proposition (UVP)? How will you find enough
early adopters to support learning? Are you getting paid?

Stage 4: Verify quantitatively
Launch your refined product to a larger audience. Have you built
something people want? How will you reach customers at scale? Do you
have a viable business?

Figure 5-4. Systematically eliminate risk

Here is how you view them based on risks:

Product risk: Getting the product right
1. First make sure you have a problem worth solving.
2. Then define the smallest possible solution (MVP).
3. Build and validate your MVP at small scale (demonstrate UVP).
4. Then verify it at large scale.

Customer risk: Building a path to customers
1. First identify who has the pain.
2. Then narrow this down to early adopters who really want your product

now.
3. It’s OK to start with outbound channels.
4. But gradually build/develop scalable inbound channels — the earlier

the better.
Market risk: Building a viable business

1. Identify competition through existing alternatives and pick a price for
your solution.

2. Test pricing first by measuring what customers say (verbal
commitments).

3. Then test pricing by what customers do.
4. Optimize your cost structure to make the business model work.

What About Unfair Advantage?
The only box not tackled is the Unfair Advantage box. This is because your
true unfair advantage can only be tested in the face of competition. Until you
demonstrate product/market fit, you most likely won’t attract much (if any)
competition.
So until then, embrace obscurity — it’s a gift.

[12] This number comes from usability-testing research (via Jakob Nielsen/Steve Krug) that
shows how five testers are enough to uncover 85% of the problems. We’ll also see some
specific examples later in the book where I’ve been able to verify this claim.

Part IV. Systematically Test Your Plan

Chapter 6. Get Ready to Interview
Customers
The fastest way to learn is to talk to customers. Not releasing code, or
collecting analytics, but talking to people. We’ll be using customer
interviews as a learning tool[13] throughout the rest of book. This chapter lays
some groundwork for conducting good interviews.

No Surveys or Focus Groups, Please
When asked to do the smallest thing to learn from customers, many founders’
first instinct is to conduct a bunch of surveys or focus groups. While running
surveys and focus groups may seem more efficient than interviewing
customers, starting there is usually a bad idea.
Here’s why:

Surveys assume you know the right questions to ask.
It is hard, if not impossible, to script a survey that hits all the right
questions to ask, because you don’t yet know what those questions are.
During a customer interview, you can ask for clarification and explore
areas outside your initial understanding.
Customer interviews are about exploring what you don’t know you don’t
know.

Worse, surveys assume you know the right answers, too.
In a survey, not only do you have to ask the right questions, but you also
have to provide the customer with the right choice of answers. When
taking a survey, how many times has your best answer been “Other”?
The best initial learning comes from “open-ended” questions.

You can’t see the customer during a survey.
Body language cues are as much an indicator of Problem/Solution Fit as
the answers themselves.

Focus groups are just plain wrong.
The problem with focus groups is that they quickly devolve to “group
think,” which is wrong for most products.

Are Surveys Good for Anything?
While surveys are bad at supporting initial learning, they can be quite
effective at verifying what you learn from customer interviews.
I discussed the principle of two-phase validations earlier — first qualitative,
then quantitative. The customer interview is a form of qualitative validation
that is quite effective in uncovering strong signals for or against hypotheses
using a “reasonably” small sample size.

Once you have preliminary validation on your hypotheses, you can then use
what you have learned to craft a survey and verify your findings
quantitatively. The goal is no longer learning, but demonstrating scalability
(or statistical significance) of the results.

But Talking to People Is Hard
The customer development battle cry, “Get out of the building,” codified by
Steve Blank, is simultaneously one of the most basic and difficult practices to
implement.
People assume talking to customers came easy for me, which is simply not
true. (They also assume I live in Silicon Valley, which is also not true.)
Like most other technical founders, I too was a closeted geek. I used tools
like email, discussion forums, and product blogs for years to avoid having to
talk directly to customers. When I did talk to customers, the conversations
either didn’t feel productive or sent me off on wild goose chases.
I knew listening to customers was important, but I didn’t know how.
I went from dreading direct customer interaction to wiring my mobile phone
to a toll-free number. The pivotal turning point for me occurred when I
realized: “Life is too short to keep building something nobody (or not enough
people) want.”
This coincided with my early exposure to customer development and Lean
Startups that jump-started my own rigorous testing and application of these
principles.
While customer development makes a compelling, albeit rational, argument
for talking to customers, getting our bodies to listen to our heads is
nonetheless challenging at first.
“Go talk to a customer” is about as useful as “Build something people want.”
The big question is: What do you say to them?
Here are some tactics for overcoming your initial mental blocks:

Build a frame around learning, not pitching.
In a pitch, since you’re doing most of the talking, it’s very easy for
customers to pretend to go along with what you’re saying, or to outright lie
to you.
The problem with starting with a pitch is that it is predicated on having
knowledge about the “right” product for the customer (Problem/Solution
Fit).
Before you can pitch the “right” solution, you have to understand the

“right” customer problem.
In a learning frame, the roles are reversed: you set the context, but then
you let the customer do most of the talking. You don’t have to know all the
answers, and every customer interaction (interview, tech support, feature
request, etc.) turns into an opportunity for learning. Plus, people are
generally willing to help if you set the right expectation of seeking their
advice over trying to pitch to them.

Don’t ask customers what they want. Measure what they do.
It’s fairly common to find customers lying in interviews — sometimes out
of politeness and sometimes because they really don’t know or don’t care
enough.[14] Your job shouldn’t be to call out their lies, but rather to find
ways to validate what they say with what they do, preferably during the
interview.
For example, if a customer declares a problem as a must-have, probe
deeper. Ask him how he solves the problem today. If he is doing nothing
and still getting by, the problem may not be as acute. If, however, he is
using a homegrown or competitor’s solution and he is not happy, that may
be a problem worth solving.
Another tactic is to use strong calls to action. If a customer says he would
pay for your product, instead of getting just a verbal commitment, ask for
an advance payment or partial payment and provide him with a money-
back guarantee.
We’ll cover several other tactics later in the book.

Stick to a script.
While exploration is a critical aspect of talking to customers, you need to
bind the conversation around specific learning goals. Otherwise, you can
easily blow off a lot of time and end up with an overwhelming amount of
unactionable information.
Unlike a pitch, it doesn’t help to tweak your story after every interview.
You need consistency and repeatability to instill some method to the
process. Scripts help you do that.
I’ll share actual scripts I use for each type of interview in the next chapter.

Cast a wider net initially.
Even though your first objective will be to home in on the defining
attributes of early adopters, not all of your prospects will (or should) be

early adopters. It’s better to start with a broader sweep of initial prospects
at this stage (to avoid running into a local-maxima problem), and refine
from there. You will have ample opportunity to narrow down your filter in
the next round of interviews.

Recruit loosely and grade on a curve.
— Steve Krug, Rocket Surgery Made Easy (New Riders Press)

Prefer face-to-face interviews.
Earlier, I stressed the importance of being able to see your interviewees. In
addition to picking up on body language cues, I find that meeting someone
in person instills a sense of closeness that you can’t re-create virtually.
This is critical in customer relationship building.

Start with people you know.
Finding people to interview can be challenging at first. Start with people
you know who fit your target customer profile. Then use them to get two
or three degrees out to find other people to interview. Not only does this
help you practice and get comfortable with your script, but it’s an effective
way to get warm introductions to other prospects.

Take someone along with you.
It always helps to have one other person in the room during the interview
to make sure nothing slips through the cracks. But more important, it helps
to keep the learning objective.[15]

I conducted my first problem interview for CloudFire with my wife. I also
asked her to tag along with me during subsequent interviews, which not
only helped me connect better with other moms but also served as a
constant reality check along the way.

Pick a neutral location.
I prefer to conduct the first interview in a coffee shop to create a more
casual atmosphere. Doing it at a prospect’s office makes it more “business-
like” and makes it feel more like a sales pitch — which it shouldn’t be.
That being said, I’ll agree to meet the prospect wherever she chooses.

Ask for sufficient time.
My interviews typically run between 20 and 30 minutes, without feeling
rushed. Make sure you set the right time expectations up front and are

respectful of the interviewees’ time.

Don’t pay prospects or provide other incentives.
Unlike usability testing, where it is acceptable to provide incentives for
participation, your goal here is to find customers who will pay you, not the
other way around.

Avoid recording the interviewees.
I tried recording interviewees early on (with their permission), but found
that it made some people self-aware during the interview — another
example of observer bias. That, coupled with the fact that I never really
went back to listen to an interview, made it a nonstarter for me. Your
mileage may vary.

Document results immediately after the interview.
I recommend spending five minutes immediately following an interview to
document the results while your thoughts are fresh. Debrief with others
later.

Prepare yourself to interview 30 to 60 people.
As a rule of thumb, prepare to interview 30 to 60 people over a four- to
six-week period, which means talking to two or three customers a day,
with some time built in for iteration.
The actual numbers could vary based on the strength of the signal you
receive, your specific path to customers, and your business model. You
know when you are done: when you stop learning anything new from the
interviews. In other words, when you can accurately predict what the
customer is going to say just by asking a few qualifying questions, you are
done.

Consider outsourcing interview scheduling.
The biggest source of waste during this period is waiting — waiting for
people to get back to you, coordinating around their schedules, juggling
time zones, and so on. If you do a little up-front work, you might be able to
successfully delegate this task to someone else (like a virtual assistant).
Here’s how I have made this work:

I script all my email requests for interviews.
I clear my afternoons so that it’s easy to schedule interviews.

I’m copied in all the emails so that I can intervene when needed.

Finding Prospects
Whenever possible, you want to prioritize finding prospects through a
channel you will actually use to acquire future customers. Unless you already
have a path to customers, this may not be possible at this stage.
Here is a list of other techniques you can use to find and recruit interviewees:

Start with your first-degree contacts.
The first place to start is with your immediate contacts that meet your
target customer demographic. Some are wary that feedback received from
close contacts may be biased. My view is that talking to anyone is better
than talking to no one.

Ask for introductions.
The next step is to ask your first-degree contacts for introductions to
people who meet your customer demographic. It’s a good idea to include a
message template that your contacts can simply cut and paste and forward
to save them time. Here’s an example:

Hey [friend],
Hope all is well... I have a quick favor to ask.
I’ve got a product idea that I’m trying to validate with wedding
photographers. My goal is to chat with local photographers to better
understand their world and evaluate whether it’s worthwhile pursuing
this product.
I’d really appreciate it if you could send this message along to people
you know who fit this target.
(Feel free to change it a bit if you like.)

Hello,
We are an Austin-based software company currently working on a new
service to simplify how photographers showcase and sell their
images online. Specifically, we are building better and faster tools for
online proofing, archiving, and selling.
I would love to get 30 minutes of your time to help us understand your
current workflow. I’m not selling anything, just looking for advice.
Thanks,
Ash

Play the local card.
People are generally willing to meet if they can identify with you. The
email in the preceding list item emphasizes “Austin” in the body and was
quite effective in setting up meetings with local photographers.

Create an email list from the teaser page.
If the Web is a viable channel for your product, setting up a teaser page
early is a great way to find people to interview. See the Appendix for
detailed steps on crafting a teaser page.
While you may not know whether people here meet your target customer
demographic, they do represent people who were motivated enough to act
on your unique value proposition (UVP). Reach out to them and ask if
they’d be willing to spend 20 to 30 minutes with you on a call.

Give something back.
Turn the interview into a “real interview” and offer a write-up, blog post,
or video in exchange.

Use techniques such as cold calling, emailing, and LinkedIn.
The secret to getting a prospect (cold or warm) to agree to an interview is
to “nail their problem.” You may not be able to do that out of the gate,
which is why I typically rely on the other techniques in this list to run a
few interviews first.

Preemptive Strikes and Other Objections (or Why I
Don’t Need to Interview Customers)
Let me address some common objections to the idea of interviewing
customers:

“Customers don’t know what they want.”
It is not your job to ask your customers for a list of features. Rather, it’s to
understand their problems and solve them with a compelling solution.

“Talking to 20 people isn’t statistically significant.”
A startup is about bringing something bold and new into the world. Your
biggest challenge at first will be to get anyone to pay attention.

When 10 out of 10 people say they don’t want your product, that’s pretty
significant.

— Eric Ries

Once you can get 10 people to repeatedly say yes, you’re in a much better
position.

“I only rely on quantitative metrics.”
Another commonly used tactic is to sit back and rely solely on quantitative
metrics. The first problem with this approach is that initially you probably
won’t have or be able to buy enough traffic. But more important, metrics
can only tell you what actions your visitors are taking (or not); they can’t
tell you why this is happening. Did they abandon your website because of
bad copy, graphics, pricing, or something else? You could endlessly try
various combinations, or you could just ask the customers.

“I am my own customer, so I don’t need to talk to anyone else.”
The 37signals folks advocate building products for yourself (scratching
your own itch) as the best way to build a successful product. While I agree
that is an advantage since you start with a problem you’ve experienced
firsthand, it’s not an excuse for not talking to customers. For starters, can
you really be that objective about the problem and pricing?
While you might share the same problems with your potential customers,
the fact that you are also an entrepreneur automatically disqualifies you as
a customer. Even if you think you are building products for other

entrepreneurs who share the same worldview as you, you have to test that.
Scratching your own itch is a great way to get started, but you still need to
validate that you have a problem worth solving by talking to other people.

“My friends think it’s a great idea.”
I advocate talking to anyone at first, but the point isn’t to get objective
learning. Your family and friends may paint a rosier picture (or not)
depending on their perceptions of entrepreneurship as a profession.
Instead, use your friends to practice your script, and find more people to
interview that are a few degrees out.

“Why spend weeks talking to customers when I can build something over a
weekend?”

“Release early, release often” was a mantra that software developers
jumped on several years ago as a means to facilitate faster feedback, but
spending any time building even this “small” release can be time wasted.
First, these “small” releases are almost never “small” enough. But more
important, you don’t need to finish building a solution in order to test it.
Yes, you will need to help customers visualize your solution, but you don’t
need code or the actual product for that — proxies like mock-ups, physical
prototypes, sketches, videos, and landing pages can fit the bill quite well.
You have to challenge yourself to come up with the smallest possible
solution in order to speed up learning.

“I don’t need to test the problem, because it’s obvious.”
Problems may be obvious for a number of sometimes legitimate reasons:

You have extensive prior domain knowledge.
You are solving generally acknowledged problems, such as improving
sales or conversion rates on a landing page.
You are solving well-known but difficult problems, such as finding the
cure for cancer or fighting poverty.

In these cases, the bigger risks may not have to do with testing the
problem, but rather understanding the problem — that is, which customers
are most affected (early adopters), how they solve these problems today
(existing alternatives), and what you would offer that is different (UVP).
Even in these cases, I still recommend running a few Problem interviews to
validate your understanding of the problem and then moving on to the

Solution interviews.

“I can’t test the problem, because it isn’t obvious.”
You might be building a product that you think isn’t designed to solve a
problem — for example, a video game, a short film, or a fiction novel. I
argue that even in these cases there are underlying problems, albeit more
desire- than pain-driven.
As in the previous case, I agree that these don’t need to be explicitly tested.
Instead first spend time understanding your audience (early adopter) and
then look for smaller, faster ways to test your solution — for example,
build a teaser trailer for your video game, short film, or book.

“People will steal my idea.”
The initial interviews (and teaser pages) should be entirely problem-
focused, where you are seeking to understand problems from customers
who already know they have them. So there’s nothing to steal here.
It’s not until the Solution interviews that you start revealing your solution.
By then you should have qualified those early adopters who most likely
would rather pay for your solution than build one themselves.
That being said, it’s equally important to remember that your sustainable
advantage will come from your ability to outlearn your current (and future)
competition.

“People won’t buy vaporware.”
When you are able to nail the customer’s problem and help him visualize a
viable solution, he will buy from you, provided that you remove other
objections — for example, by providing a trial period, making it easy to
cancel, and so on.

Selling a product is fundamentally about risk mitigation.
With my latest product, USERcycle, I used only customer interviews,
HTML, and Illustrator mock-ups to understand the problem, define the
solution, and sign up 100 paying customers before I started building the
MVP. We’ll cover how to do this in Chapter 8.

[13] In The Four Steps to the Epiphany, Steve Blank points out the importance of in-depth
customer interviews, which he terms “Customer Discovery.”
[14] This is also called observer bias (or the Heisenberg and Hawthorne bias), where the

mere act of observing customers makes them change their behavior.
[15] Entrepreneurs are typically optimistic by nature and easily susceptible to the
expectancy bias — seeing what they want to see.

Chapter 7. The Problem Interview
Understand your customer’s worldview before formulating a solution.

What You Need to Learn
The Problem interview is all about validating your hypotheses around the
“problem-customer segment” pair. In the Problem interview, you are
specifically looking to tackle the following risks:

Product risk: What are you solving? (Problem)
How do customers rank the top three problems?

Market risk: Who is the competition? (Existing Alternatives)
How do customers solve these problems today?

Customer risk: Who has the pain? (Customer Segments)
Is this a viable customer segment?

Testing the Problem
Your first objective is measuring how customers react to your top problems.
Some ways of doing this are measuring customer reaction to a problem-
centric teaser landing page,[16] blog post, or a Google/Facebook ad.
While these tactics can be helpful in quickly gauging problem resonance with
customers, you still need to engage customers more actively to truly
understand the problems they face — specifically if/how they solve them
today. This might be done using informal observation techniques like those
employed in the “Design Thinking” and “User Centric Design”
methodologies, and/or using structured customer interviewing techniques.
When faced with a new product idea, I typically prefer starting with some or
all of the informal testing/observation techniques above to quickly gauge
customer reaction, and then follow up with a more structured Problem
Interview script, which we’ll cover next.
For additional resources on these customer observation and interviewing
techniques, I recommend checking out:

The Four Steps to Epiphany by Steve Blank
(http://www.cafepress.com/kandsranch)
Rapid Contextual Design by Karen Holtzblatt, Jessamyn Wendell, and
Shelley Wood (Morgan Kaufmann)
Human-Centered Design Toolkit by IDEO (ideo.com)

CASE STUDY: UNDERSTAND PROBLEMS THROUGH OBSERVATION

After publishing the first edition of Running Lean, I set aside 2 hours a week for readers
to set up a free 30-minute chat with me where they could ask me any question about
their startup. The point of these calls wasn’t to pitch them a solution or even get
feedback about the book (which often surprised the callers), but simply to understand
how other entrepreneurs approached their products and what problems they faced. These
calls were instrumental in helping me identify recurring problem themes that led to more
blog posts, more workshops, this book, and two products: Lean Canvas and USERcycle.

http://www.cafepress.com/kandsranch

Formulate Falsifiable Hypotheses
To make the interview results actionable, you need to take an additional step
to convert the hypotheses from your canvas into falsifiable hypotheses.
This process is best illustrated with an example.

CASE STUDY: CLOUDFIRE

Figure 7-1 shows my canvas from earlier, with the sections being tested highlighted.

Figure 7-1. CloudFire Problem interview

For each of these areas, I applied the falsifiable hypothesis formula to create the basis of
my experiments (see Figure 7-2).

Falsifiable Hypothesis = [Specific Repeatable Action] will [Expected Measurable Action]

Figure 7-2. CloudFire Problem interview experiments

NOTE

When you engage customers, it’s fairly common to learn a lot more than you set out to
test. We’ll capture this additional knowledge more loosely (as insights) and reflect them
onto our canvas at the end of the iteration.

Conduct Problem Interviews
Next, we’ll walk through a Problem interview script that follows the structure
shown in Figure 7-3.

Figure 7-3. Problem interview script

Welcome (Set the Stage)
(2 minutes)
Briefly set the stage for how the interview works:

Thank you very much for taking the time to speak with us today.
We are currently working on a photo and video sharing service designed

for parents. I got the idea for the service after recently becoming a parent
and watching my wife get frustrated with existing solutions.
But before getting too far ahead of ourselves, we wanted to make sure
other parents share these problems and see whether this was a product
worth building.
The interview will work like this. I’ll start by describing the main
problems we are tackling, and then I’ll ask if any of those resonate with
you.
I’d like to stress that we don’t have a finished product yet, and our
objective is to learn from you, not to sell or pitch anything to you.
Does that sound good?

Collect Demographics (Test Customer Segment)
(2 minutes)
Ask some introductory questions to collect basic demographics that you
believe will drive how you segment and qualify your early adopters:

Before we go on to the problems, I’d like to learn a little about you:
How many kids do you have?
How old are they?
Do you share photos online?
Do you share videos online?
How often?
With whom?

Tell a Story (Set Problem Context)
(2 minutes)
Illustrate the top problems with a story:

Great, thanks. So, let me tell you about the problems we are tackling.
Once we had kids, we found ourselves taking a lot more photos than
before, and especially more videos. We also started getting regular
requests (as in, weekly) for updates from grandparents and other family
members. But we found it difficult to share all this content on a regular
basis because the process was too time-consuming and sometimes painful.
We had to organize the files, resize them, and babysit the upload process.
Video was even more painful because we often had to convert the video

first (transcode it) into a web-friendly format.
Like most other parents, we are sleep-deprived and don’t have as much
free time as before. Having kids has given us a whole new appreciation for
free time and we’d much rather spend our time doing other things.
Does any of this resonate with you?

Problem Ranking (Test Problem)
(4 minutes)
State the top one to three problems and ask your prospects to rank them:

Specifically:
1. Do you find yourself taking more photos/videos than before?
2. Do you find the photo/video sharing process painful?
3. Are you like most parents in that you don’t have a lot of free time?

Do you have any other photo- and video-sharing pet peeves I didn’t talk
about?

NOTE

So that you don’t bias the ranking, frequently reorder the Problem list.

Explore Customer’s Worldview (Test Problem)
(15 minutes)
This is the heart of the interview. The best script here is “no script.”
Go through each problem in turn. Ask the interviewees how they address the
problem today. Then sit back and listen.
Let them go into as much detail as they wish. Ask follow-up questions, but
don’t lead them or try to convince them of the merits of a problem (or
solution).
In addition to their raw responses, judge their body language and tone to get a
sense of how they’d rate the problem: “must-have,” “nice to have,” or “don’t
need.”
If they offer up new problems along the way, explore them the same way:

1. So, how do you share photos and videos today?

2. Could you walk us through your workflow?
3. What products do you currently use and how did you first hear about

them?
Ask any follow-up questions to understand their current workflow.

This section is invaluable both for understanding the problems and for
confirming the prospects’ earlier problem ranking. Sometimes people
unknowingly lie to you during the problem rankings, either because they are
being polite or they simply don’t know. Check for that here. If they claim a
problem is a “must-have,” but they aren’t actively doing anything to solve it,
there’s a disconnect.

Wrapping Up (the Hook and Ask)
(2 minutes)
We are done with all of the hypothesis-related questions, but you still have
one more thing to do and two more questions to ask.
Even though you aren’t ready to talk about your solution in detail, you need
to provide a hook to maintain interest. The high-concept pitch is perfect for
this. It not only helps explain your solution at a high level, but also leaves a
memorable sound bite that helps the interviewees spread your message.
Then you need to ask for permission to follow up. Your goal is to establish a
continuous feedback loop with prospects. And finally, you need to ask the
interviewees for referrals to other potential prospects:

As I mentioned at the start, this isn’t a finished product, but we are
building a product that will simplify how parents share their photos and
videos online. The best way to describe the concept might be “SmugMug
without any uploading” (replace “SmugMug” with the name of the
interviewee’s existing service).
Based on what we talked about today, would you be willing to see the
product when we have something ready?
Also, we are looking to interview other people like yourself. Could you
introduce us to other parents with young kids?

Document Results
(5 minutes)

Take the five minutes immediately following an interview to document your
results while they’re still fresh in your mind.
It helps to create a template like the one that follows so that you can quickly
jot down the responses to the hypotheses you set out to test.
I recommended earlier that you run the interview with one other person
whenever possible to keep the results objective. Each of you should
independently fill out the form first. Then have a debriefing session later
where you compare notes and make a final entry into whatever system you
use to record your interview results.

Problem Interview

Date: _______________

Contact Information

Name: __

Email: __

Demographics

Number of kids: ________ Ages: ________________

Shares photos online: _______ Shares videos online: _______

How often? _____________________ With whom? _______________________

Problem 1: Sharing lots of photos and videos is time-consuming.

 Priority ranking: ________ Pain level: _________

How problem is addressed today? ____________________________________

__

Problem 2: There is a lot of external demand for this content.

 Priority ranking: ________ Pain level: _________

How problem is addressed today? ____________________________________

__

Problem 3: I don’t have enough free time for photo/video sharing.

 Priority ranking: ________ Pain level: _________

How problem is addressed today? ____________________________________

__

Notes: ___

Referrals: __

NOTE

Using a tool like Wufoo or Google Forms makes it easy to not only capture results but
also to run reports to analyze the results later.

Do You Understand the Problem?
In this section, I’ll discuss how to make sense of your interview results, refine
the interview script, and determine when you are done.

Review your results weekly.
If you are scheduling interviews at a good pace, you should be talking to
10 to 15 people a week. Don’t change the script during the week. Rather,
debrief at the end of each week to review that week’s batch of interviews,
summarize your learning, and make any adjustments to your script.
The kinds of adjustments you make will vary based on the type of
hypotheses you are testing and the strength of the signal you are getting
from interviewees. The goal is to adjust the script and customer
demographic along the way so that you can incrementally get stronger and
more consistent positive signals with each subsequent batch.

Start to home in on early adopters.
Look for identifying demographics among the responses that were most
favorable (i.e., strong problem resonance). Similarly, drop segments that
were least favorable.

Refine the problems.
If you get a strong “don’t need” signal across the board, drop that problem
from the script. Similarly, if you discover a new “must-have” problem, add
it to the script. Your eventual goal is to distill your product down to one
“must-have” problem — one Unique Value Proposition (UVP).

Really understand their existing alternatives.
Understanding your early adopters’ existing alternatives is key to
formulating the right product. Early adopters will use their existing
alternatives as anchors against which they will judge your solution,
pricing, and positioning. So, for instance, if their existing alternatives are
all free, your product has to promise and deliver enough value to overcome
the fact that the alternatives are free.

Pay attention to words customers use.
The best way to uncover the “key” words to use in your UVP is to listen
closely to how customers describe their workflow.

Identify the potential paths to reaching early adopters.
Once you start getting a sense of who the early adopters are, start
identifying the path to reach more people like them. We’ll start testing
these channels in Chapter 8.

What Are the Problem Interview Exit Criteria?
You are done when you have interviewed at least 10 people and you:

Can identify the demographics of an early adopter
Have a must-have problem
Can describe how customers solve this problem today

CASE STUDY: CLOUDFIRE: PROBLEM INTERVIEW LEARNING

After running 15 problem interviews with parents, we felt we had a good understanding
of the problem.

Here’s what we learned.

Product risk: What are you solving? (Problem)

Hypothesis

Problem interviews will reveal that difficulty in sharing lots of media is a must-have
problem.

Insights

More than 80% of the interviewees expressed frustration with their current solution. We
thought most of the frustration was going to be around the uploading process, but we
learned that while uploading lots of photos was painful, people had implemented certain
measures, such as selecting a few photos at a time to share. Asked whether they would
share more if the process were simpler, most people said yes (a new hypothesis that
would need to be tested).

A bigger pain seemed to exist around video sharing. A lot of parents weren’t sharing
videos today but wanted to. The biggest obstacle was that they did not know how to get
started. Many had tried but gave up after they failed to get their videos transcoded
(converted) correctly for web viewing.

In addition to these insights, simply listening to parents describe their existing workflow
uncovered a whole host of other problems, captured in the workflow diagram shown in
Figure 7-4.

Figure 7-4. CloudFire pain points

One that repeatedly stood out was the fear of losing all their photos and videos (currently
only on their desktops) due to a lack of backups. We started testing this in subsequent
Problem interviews and it resonated strongly with the other parents, too.

Market risk: Who is the competition? (Existing Alternatives)

Hypothesis

Problem interviews will validate our belief that customers use one or more of the
existing alternatives (SmugMug, Flickr, MobileMe, Facebook, etc.).

Insights

Going into these interviews, we expected most parents to be using either SmugMug or
Flickr, but we were surprised to learn that 60% of them used only email for photo
sharing (see Figure 7-5).

Figure 7-5. Existing Alternatives learning

When asked why this was so, they cited ease of use — interestingly, not for themselves,
but for their viewers, typically grandparents. Despite the attachment size limits on email,
everyone knew how to use email already.

Your customers’ customers are your customers.

Customer risk: Who has the pain? (Customer Segment)

Hypothesis

Problem interviews will validate our belief in parents as a viable customer segment.

Insights

Eighty percent of parents expressed some form of frustration with their existing
solutions, but 60% of them were currently getting by with a “free alternative”: email.
This posed a challenge, as we would need to justify the value of CloudFire against
something that was free, and we uncovered several additional hypotheses that would
need to be tested:

A simpler sharing workflow would make parents share more content (including
video).
An automatic backup process would solve a big pain point for parents.
Parents would pay $49 a year for this solution.

Updated Lean Canvas

Based on these insights, we updated our canvas with the changes shown in Figure 7-6.

Figure 7-6. Updated Parents Lean Canvas

What’s next?

Turning these insights into a demo and conducting Solution interviews.

[16] See the Appendix for how to create a teaser landing page.

Chapter 8. The Solution Interview
Test the solution with a “demo” before building the actual product.

What You Need to Learn
Armed with a prioritized problem list and an understanding of existing
alternatives, you are now ready to formulate and test a solution.
You will start by double-checking your learning from the Problem interview,
then look to test the following additional risks:

Customer risk: Who has the pain? (Early Adopters)
How do you identify early adopters?

Product risk: How will you solve these problems? (Solution)
What is the minimum feature set needed to launch?

Market risk: What is the pricing model? (Revenue Streams)
Will customers pay for a solution?
What price will they bear?

Testing Your Solution
The main objective here is to use a “demo” to help customers visualize your
solution and validate that it will solve their problem.
Most customers are great at articulating problems but not at visualizing
solutions.
I use the term demo loosely to mean anything that can reasonably stand in for
the actual solution. The assumption here is that building the “full solution” is
time-consuming and could lead to waste if you build the wrong solution or
add unneeded features. You want to build just enough of the solution (or a
proxy, like screenshots, a prototype, etc.) that you can put in front of
customers for the purpose of measuring their reaction and further defining the
requirements for your minimum viable product (MVP).
For software products, mock-ups and videos are a great way to “demo” your
intended solution. Physical products could rely on sketches, computer-aided
design (CAD) models, or even rapid prototypes built with clay or 3D
printing.
Whatever medium you pick for your demo, keep these guidelines in mind:

The demo needs to be realizable.
I have friends at design studios that have special teams in place just to
build early user demos. These demos are very much a part of the sales
process and a lot of emphasis is placed on them, but they often rely on
technologies (like Flash) that aren’t what the final product is built in.
While they are quite effective at making the sale, they make the
implementation team’s job quite difficult — with many of the more
“flashy” elements sometimes being impossible to re-create. This leads to a
disconnect in what is promised (and sold) to the client and what is
eventually delivered.

The demo needs to look real.
I also don’t like going to the other extreme of relying on barebones
wireframes or sketches. While they are faster to put together, they require
the customer to take a leap of faith on the finished product, which I try to
avoid.
The more real your demo looks, the more accurately you’ll be able to test

your solution.

The demo needs to be quick to iterate.
You will probably get valuable usability feedback during the interviews
that you’ll need to quickly incorporate and test in subsequent interviews.
This is where outsourcing your demo to an external team could actually
hurt you if your ability to iterate is driven by their schedule.

The demo needs to minimize waste.
Creating a mock-up in anything other than the final technology in which
the product will be delivered creates some waste. For my mockups,
although I start rapid prototyping using paper sketches, Photoshop, and
Illustrator, at some point I convert them into HTML/CSS, which results in
less waste in the long run.

The demo needs to use real-looking data.
Instead of using “dummy data” (e.g., lorem ipsum text), come up with
“real-looking” data that not only will help you lay out your screen but will
also support your solution narrative.

Content precedes design. Design in the absence of content is not design, it’s
decoration.

— Jeffrey Zeldman, A List Apart (Happy Cog Studios)

CASE STUDY: CLOUDFIRE

In the case of CloudFire, I strung together a few screens and built a video that
demonstrated how a user could share 500 photos from existing photo albums in iPhoto
and 10 movies from a desktop folder in less than two minutes.

As before, there are techniques for quickly gauging initial reaction to a
potential solution — for example, by posting a demo video to your landing
page or blog and measuring engagement with it (like Dropbox did). Here too,
I prefer starting with these techniques as a quick litmus test, but rely on more
structured customer interviews for validation.

CASE STUDY: TESTING A SOLUTION USING A BLOG POST

In August 2009, I published a blog post titled “How I Document My Business Model
Hypotheses.” I had been following Steve Blank’s approach for capturing business model
hypotheses using worksheets as described in his book, but I was struggling with keeping

them updated. From conversations with other Customer Development practitioners, I
knew others had the same problem.

I had come across Alex Osterwalder’s work on the Business Model Canvas prior to that
but had originally dismissed the canvas approach as too simple. Seeing another
entrepreneur, Rob Fitzpatrick, create a variation that combined Steve Blank’s
worksheets with Alex Osterwalder’s canvas inspired me to do some tinkering of my
own. The result was Lean Canvas, which I described in this post.

The post quickly rose to become one of my most popular posts of all time. I interpreted
this as a strong signal favoring this approach and used this momentum to line up several
formal customer interviews that further validated the merits of this solution. That
eventually led to recruiting a team[17] (also through my blog) to build the online version
of Lean Canvas.

Testing Your Pricing
I find that people often misunderstand the “learning versus pitching”
metaphor for customer interviews. Yes, your objective in customer interviews
is to learn, not to sell, but you can’t learn effectively when you’re too vague
or open-ended.
You have to go into interviews with clear falsifiable hypotheses that may
very well be shattered. That’s OK.
What you intend to charge for your product is one such hypothesis, but how
you test it is a little different. Unlike a “must-have” problem hypothesis
where you attempt to uncover an inherent “truth about customer behavior”
through probing, pricing is a lot more “gray” and needs to be tackled more
directly.

Don’t Ask Customers What They’ll Pay, Tell Them
Can you imagine Steve Jobs asking you what you would have been willing to
pay for an iPad before it launched? Sounds ludicrous, right? Yet, you’ve
probably asked a customer for a “ballpark price” at some point.
Well, that’s just backward. Think about it. There is no reasonable economic
justification for a customer to offer anything but a low-ball figure. Customers
might honestly not know how much they’d pay, and this question only makes
them uncomfortable.
You can’t (and shouldn’t) convince a customer that she has a must-have
problem, but you often can (and should) convince a customer to pay a “fair”
price for your product that is usually higher than what both you and the
customer think it is.
The mindset most of us have during Solution interviews is one of “lowering
signup friction.” We want to make it as easy as possible for customers to say
yes and agree to take a chance on our product, hoping the value we deliver
over time will earn us the privilege of their business.
Not only does this approach delay validation because it’s too easy to say yes,
but a lack of strong customer “commitment” can also be detrimental to
optimal learning.
Your job is to find early adopters who are at least as passionate about the

problems you’re addressing as you are, and if you’re charging, who are
willing to pay your fair price. As we covered earlier, your pricing not only is
part of your product, but it also defines the customer segment you attract.

Don’t Lower Signup Friction, Raise It
I know this may run counter to your intuition. It did with mine. Here’s a
social experiment I ran during one of my customer interviews (and have
repeated several times since then) that changed my perspective.
I had just finished demonstrating the solution and verified that we had a real
“must-have” problem and solution on our hands.

Me: So, let’s talk about pricing...
Customer: Do we need to negotiate pricing right away?
Me: This is not really a negotiation. While we have been using this
product internally ourselves, we need to justify whether it’s worth
productizing externally.
Customer: Oh, OK.
Me: So, what would you pay for this product?
Customer: I don’t know — probably something in the range of $15 to $20
a month.
Me: Well, that’s not the pricing we had in mind. We want to start with a
$100/month plan. I can understand why you don’t want to pay a lot
(because you are pre-revenue), and it’s possible that we’ll offer a
freemium or starter plan in the future.
Right now, we are specifically looking for 10 [define early adopters] who
clearly have a need for [state top problem]. We will work closely with
these 10 companies to validate [state unique value proposition (UVP)]
within 30 to 60 days or give them their money back.
You mentioned that you’ve spent several developer hours a month
building a homegrown system and still haven’t been happy with the
results. This product is our third attempt; $100/month is less than two
developer hours a month.
Customer: Yes, that makes a lot of sense. We want to be on the shortlist. I
can justify paying $1,200/year. It’s just a fraction of what we pay our
developers. How do we get on the list?
Me: We’re still finalizing some product details and I’ll get back to you
once we’re ready.

Customer: We seriously want to be part of the initial customer list. I’ll run
upstairs and get my checkbook if you want me to...

So, what happened there? Why did the customer agree to pay five times the
original amount?
There were a number of principles in play, summarized as follows:

Prizing
Oren Klaff discusses this framing technique in his book, Pitch Anything
(McGraw-Hill). He describes how, in most pitches, the presenter plays the
role of a jester entertaining in a royal courtyard (of customers). Rather than
trying to impress, position yourself to be the prize.

Scarcity
The “10 customer” statement was not a fake ploy. The first objective with
your MVP is to learn. I’d much rather have 10 “all-in” early adopters I can
give my full attention to than 100 “on-the-fence” users any day.[18]

Anchoring
As we covered earlier, price is relative. However, while pricing against
“existing alternatives” might seem logical to you, customers might not
automatically make the reference themselves. Even Steve Jobs used this
principle when he introduced pricing for the iPad in a brand-new category.
He skillfully anchored iPads against pundit predictions (who used netbooks
for price anchors) and made the iPad look like a steal.

Confidence
Most people are reluctant to charge for their MVP because they feel it’s
too “minimal,” and they might even be embarrassed by it. I don’t subscribe
to this way of thinking. The reason for painstakingly testing problems and
reducing scope is to build the “simplest” product that solves a real
customer problem.

The Solution Interview as AIDA
AIDA is a marketing acronym for Attention, Interest, Desire, and Action, and
a useful framework for structuring Solution interviews. Here’s how:

Attention
Get the customer’s attention with your UVP — derived from the number-

one problem you uncovered during earlier Problem interviews.
The most effective way to get noticed is to nail a customer problem.

Interest
Use the demo to show how you will deliver your UVP and generate
interest.

Desire
Then take it up a notch. When you lower signup friction, you make it too
easy for the customer to say yes, but you are not necessarily setting
yourself up to learn effectively. You need to instead secure strong
customer commitments by triggering on desire. The earlier pricing
conversation generated desire through scarcity and prizing.

Action
Get a verbal, written, or prepayment commitment that is appropriate for
your product.

How Is This Different from a Pitch?
While this might look a lot like a pitch, the framing is still around learning.
A pitch tends to be an all-or-nothing proposition. Here, you lead with a clear
hypothesis at each stage and measure the customer’s reaction. If you fail to
elicit the expected behavior at each stage, it’s your cue to stop and probe
deeper for reasons. For instance, you might have your positioning wrong or
be talking to the wrong customer segment.
The AIDA framework used here is also applicable when designing your
future landing page or other sales collateral. Over time, you tend to rely on
other elements like social proof, brand, and so on to generate desire, but
never underestimate the power of incorporating strong emotional triggers.

Formulate Testable Hypotheses
Once again, you need to document the testable hypotheses you intend to test
during the interview.

CASE STUDY: CLOUDFIRE

Figure 8-1 shows our canvas from earlier with the sections being tested highlighted.
Figure 8-2 shows the basis of my experiments.

Figure 8-1. CloudFire Solution interview

Figure 8-2. CloudFire Solution interview experiments

Conduct Solution Interviews
You’re now ready to conduct the Solution interview:

Use old prospects.
You should have received permission to follow up from your earlier
Problem interviews. If the prospects match your early-adopter
demographic, arrange a follow-up Solution interview with them.

Mix in some new prospects.
It’s a good idea to mix in new prospects with every batch of interviews so
that you test all the hypotheses with a “beginner’s mind.” Your earlier
interviews should have yielded some referrals that you can use. This is also
the time to start testing any other channels you identified in your last
iteration.

Next, we’ll walk through a Solution interview script using the structure
shown in Figure 8-3.

Figure 8-3. Solution interview script

Welcome (Set the Stage)
(2 minutes)
As before, you need to briefly set the stage for how the interview works:

Thank you very much for taking the time to speak with us today.
We are currently working on a photo and video sharing service designed

for parents. I got the idea after becoming a parent and experiencing some
frustrations firsthand with existing solutions.
The interview will work like this. I’ll start by describing the main
problems we are tackling and then I’ll ask whether any of those resonate
with you. I also would like to show you an early demo of the application.
I’d like to stress that we don’t have a finished product yet, and our
objective is to learn from you, not to sell or pitch anything to you.
Does that sound good?

Collect Demographics (Test Customer Segment)
(2 minutes)
Ask some introductory questions to collect basic demographics that you
believe will drive how you segment and qualify your early adopters. If
you’ve already interviewed this prospect, you can skip this section unless
there are additional questions you’ve uncovered since you last interviewed
him.

Before we go on to the problems, I’d like to learn a little about you:
How many kids do you have?
How old are they?
Do you share photos online?
Do you share videos online?
How often?
With whom?

Tell a Story (Set Problem Context)
(2 minutes)
As before, illustrate the top three problems with a story:

Great, thanks. So, let me tell you about the problems we are tackling.
Once we had kids, we found ourselves taking a lot more photos than
before, and especially more videos. We also started getting regular
requests (as in, weekly) for updates from grandparents and other family
members. But we found it difficult to share all this content on a regular
basis because the process was too time-consuming and sometimes painful.
We had to organize the files, resize them, and babysit the upload process.
Video was even more painful because we often had to convert the video

first (transcode) into a web-friendly format.
Like most other parents, we are sleep-deprived and don’t have as much
free time as before. Having kids has given us a whole new appreciation for
free time, and we’d much rather spend our time doing other things.
Does any of this resonate with you?

If you don’t sense a strong problem resonance, don’t continue with the
Solution interview, but rather use the Problem interview script to learn more
about how the prospects solve these problems today.

Demo (Test Solution)
(15 minutes)
This is the heart of the interview.
Go through each problem in turn and illustrate how you solve it using the
supporting demo.

<For each problem>
Illustrate how you solve the problem using the supporting demo.
Pause after each one and ask if they have any questions.
<Repeat for other problems>
So, that’s what the application looks like right now. We are trying to
prioritize what to finish and release first and would like to ask you a few
more questions:
What part of the demo resonated with you the most?
Which could you live without?
Are there any additional features you think are missing?

Test Pricing (Revenue Streams)
(3 minutes)
Finding the right price is more art than science.
Usually the right price is one the customer accepts, but with a little
resistance.
Test pricing using the “starting price” you determined earlier for this
customer segment.
Don’t ask the customer for ballpark pricing. Instead, tell him your pricing
model (with or without anchoring) and gauge his response immediately

afterward. If he accepts the pricing, make a note of whether he hesitated or
readily accepted.

So, let’s talk about pricing next.
We will launch the service using a subscription model.
Would you pay $49 a year for unlimited photo and video sharing?

Wrapping Up (the Ask)
(2 minutes)
We are done with all the hypothesis questions, but you still have two more
questions to ask.
The first is permission to follow up with them to test the service when it’s
ready. If possible, try to secure a more concrete commitment than just a
verbal one.
The second is to ask for referrals to other people you could potentially
interview.

Thanks a lot for your time today. You have been very helpful.
As I mentioned at the start, this isn’t a finished product, but we are close
to launching something soon. Would you be interested in trying out the
product when we have something ready?
Also, we are looking to interview more people like yourself. Do you know
any other parents of young kids who we could interview?

Document Results
(5 minutes)
Take the five minutes immediately following an interview to document your
results while they’re still fresh in your mind.
It helps to create a template like the one that follows so that you can quickly
jot down the responses to the hypotheses you set out to test.
As before, have each interviewer independently fill out the form first. Then
have a debriefing session later where you compare notes and make a final
entry into whatever system you use to record your interview results.

Solution Interview

Date: _______________

Contact Information

Name: __

Email: __

Demographics

Number of kids: ________ Ages: ________________

Shares photos online: _______ Shares videos online: _______

How often? _____________________ With whom? _______________________

Solution: Instant, no-upload sharing

 Priority ranking: ________ Pain level: _________

Additional comments: ___

Solution: iPhoto/folders integration

 Priority ranking: ________ Pain level: _________

Additional comments: ___

Solution: Automatic video transcoding

 Priority ranking: ________ Pain level: _________

Additional comments: ___

Pricing

Willing to pay ($X/month): ___________

Notes: __

Referrals: ___

Do You Have a Problem Worth Solving?
In this section, I’ll discuss how to make sense of your interview results, refine
the interview script, and determine when you are done.

Review your results weekly.
As before, wait until you have a week’s worth of interviews to change the
script.

Add/kill features.
If you received specific usability or feature enhancements, discuss whether
there were compelling reasons to incorporate them. Remove unnecessary
features.

Confirm your earlier hypotheses.
If you ended your Problem interview iteration with strong positive signals,
there should be no surprises here. Otherwise, revisit your older hypotheses
and refine them until you get consistent results.

Refine pricing.
If you got no resistance to your pricing, consider testing a higher price.
Take the customers’ alternative solutions into account. If their current
solution is free, how can you provide more value to justify them paying for
your solution?
Again, look for patterns. Who are the prototypical early adopters and what
price will they bear? Can you build a viable business at that price?

What Are the Solution Interview Exit Criteria?
You are done when you are confident that you:

Can identify the demographics of an early adopter
Have a must-have problem
Can define the minimum features needed to solve this problem
Have a price the customer is willing to pay
Can build a business around it (using a back-of-the-envelope calculation)

CASE STUDY: CLOUDFIRE: SOLUTION INTERVIEW LEARNING

After running another 20 Solution interviews, here’s what we learned:

Customer risk: Who has the pain? (Early Adopters)

Hypothesis

Solution interviews will validate parents with young kids as early adopters.

Insights

Based on earlier responses, we observed that moms typically did most of the sharing and
that the motivation to share was highest with the first child in the family, which also
translated to family members. We also noticed that some sharing fatigue set in once the
child was more than three years old.

In subsequent interviews, we were able to further narrow our early-adopter definition to
“first-time moms with kids under the age of three.” This was very useful, as it made the
process of identifying and targeting our early adopters much simpler.

Product risk: How will you solve these problems? (Solution)

Hypothesis

Solution interviews will validate the minimum feature set.

Insights

The demo we showed was very well received and conveyed the speed and ease of
sharing. The fact that originals got backed up as a side effect of sharing really hit home.
While many parents requested specific third-party app integration (into iPhoto, Picasa,
etc.), they were OK about starting with a folder-based sharing model. Our rationale for
starting there was that it required less work (than building custom integrations into third-
party apps) and it was universal (every desktop has a filesystem).

Market risk: What is the pricing model? (Revenue Streams)

Hypothesis

Solution interviews will drive verbal commitments to pay $49/year.

Insights

As expected, parents with “free alternatives” were a little resistant to pricing, but they
did see value in backing up their files by way of sharing and agreed to a trial. Parents
who were already paying for a service had no reservations about paying, provided that
we made it simple to migrate their existing content to CloudFire.

Updated Lean Canvas

Based on the refined early-adopter definition, we identified a few more potential
channels, shown in Figure 8-4.

Figure 8-4. Updated Parents Lean Canvas

What’s next?

Use this learning to define and build the MVP.

[17] Lukas Fittl, Ross Hale, Andrew Elliott
[18] The 10X Product Launch: http://www.ashmaurya.com/2011/10/the-10x-product-
launch/

http://www.ashmaurya.com/2011/10/the-10x-product-launch/

Chapter 9. Get to Release 1.0
Reduce scope and shorten the cycle time between requirements and release so
that you get to the learning parts faster.

Product Development Gets in the Way of Learning
Let’s start by taking a closer look at where learning (about customers)
happens during a typical product development cycle (see Figure 9-1).

Figure 9-1. Traditional product development cycle

While some learning happens during the requirements-gathering stage, most
learning happens after you release your product. Even though building a
product is the purpose of a startup, very little learning happens during
development and QA. Sure, you’re learning about other things then, just not
about customers.
We obviously can’t eliminate development and QA, but we can shorten the
cycle time from requirements to release so that you get to the learning parts
faster.
The first step is to reduce the scope of your minimum viable product (MVP)
to its essence so that you build the smallest thing possible.

Reduce your mVP
A danger with iterating through mock-ups during the Solution interview is
that it is quite easy to get carried away and end up with more than you need
for your MVP. In order to reduce waste and speed up learning, you need to
pare down your mock-ups so that all you have left is the essence of your
product: your MVP.
Reducing the scope of your MVP not only shortens your development cycle,
but also removes unnecessary distractions that dilute your product’s
messaging.
Your MVP should be like a great reduction sauce — concentrated, intense,
and flavorful.
Here’s how to do that:

1. Clear your slate.
Don’t automatically assume that any features have to be included in
your MVP. Start with a clean slate and justify the addition of each one.

2. Start with your number-one problem.
The job of your unique value proposition (UVP) is to make a
compelling promise.
The job of the MVP is to deliver on that promise.
The essence of your MVP should be captured in the mock-up of your
number-one problem. Start there.

3. Eliminate nice-to-haves and don’t-needs.
From your Solution interviews, you should be able to label every
element on your mock-up as “must-have,” “nice-to-have,” or “don’t
need.” Immediately eliminate the don’t-needs, and add the nice-to-
haves to your features backlog queue unless it is a prerequisite feature
for a must-have feature.

4. Repeat Step 3 for your number-two and number-three problem mock-
ups.

5. Consider other customer feature requests.
Your customers may have highlighted certain features that are needed
to make your product complete or usable — for example, integration
with Salesforce.com. Visit these next, and add/defer them based on the
“must-have” level of need.

6. Charge from day one, but collect on day 30.
It is a given for products nowadays to have some sort of trial period. It
is also generally a good practice to defer up-front collection of credit
card information to reduce signup friction and avoid negative option
billing.
Both of these work to your advantage to further reduce scope. You
don’t need to worry about merchant accounts, recurring subscription
providers, or supporting multiple plans for launch. You’ll have 30 days
after launch to get these things working.

7. Focus on learning, not optimization.
All your energy needs to be channeled toward accelerating learning.
Speed is key. Don’t waste any effort trying to optimize your servers,
code, database, and so on for the future. Chances are quite high that you
will not have a scaling problem when you launch. In the rare event that
you do (a great problem), most scaling problems can be initially
patched with additional hardware that you can justify because you
should be charging your customers — buying you time to address the
problem more efficiently.

Get Started Deploying Continuously
Another technique for shortening the cycle time from requirements to release
is implementing a Continuous Deployment process (see Figure 9-2).
Continuous Deployment is a practice of releasing software continuously
throughout the day — in minutes versus days, weeks, or months.

Figure 9-2. Continuous Deployment process

Continuous Deployment is built on continuous flow techniques that were
developed at Toyota. Continuous flow has been shown to boost productivity
by rearranging manufacturing processes so that products are built end-to-end,
one at a time, versus the more prevalent batch-and-queue approach.
The goal is to eliminate waste. The biggest waste in manufacturing is created
from having to transport products from one place to another. The biggest
waste in software is created from waiting for software as it moves from one
state to another: waiting to code, waiting to test, waiting to deploy. Reducing
or eliminating these wait times leads to faster iterations, which is the key to
success.
Of all the Lean Startup techniques, Continuous Deployment is one of the
most controversial. One of the immediate concerns that is usually raised
concerns quality: comparing Continuous Deployment to “cowboy coding.”
Implemented correctly, Continuous Deployment does not shortcut quality and
actually demands much stricter testing and monitoring standards. Continuous
Deployment is not just practiced by small startups; it is in use at larger
companies like IMVU (one of the earliest pioneers), Flickr, and Digg. But
among all the examples, Wealthfront is often used as the poster child for
operating in a true mission-critical environment — deploying more than a
dozen releases a day in a highly regulated SEC environment.
These companies collectively serve millions of users a day and have built
fairly sophisticated Continuous Deployment systems to ensure high quality
standards, which leads to the second concern.

The second concern usually raised is that building such a Continuous
Deployment system is a massive and daunting undertaking. It is. But these
systems were built incrementally over a span of years. As we’ll see, the
Continuous Deployment process is itself a feedback loop for continuous
learning and improvement, which lends itself well to starting out small and is
why I am covering it now.
Right now is the perfect time to lay the groundwork and practice with
Continuous Deployment — while you don’t have customers, lots of code, or
servers to worry about. While Continuous Deployment won’t help you launch
your MVP faster, starting with a basic system won’t slow you down and will
help lay the foundation for speeding up future iterations after you launch.
It is also important to point out that while Continuous Deployment deploys
code into production in small batches, this code does not have to be live for
your users. There is a distinction between a “software release” and a
“marketing release.”
(See How to Get Started with Continuous Deployment in the Appendix.)

Define your activation Flow
Once you have distilled your features list, you are ready to start defining your
activation flow.
Your activation flow describes the path customers take from signing up for
your service to having a gratifying first experience.

The Anatomy of an Activation Flow
The activation flow is a subfunnel made up of the steps shown in Figure 9-3.

Figure 9-3. Activation flow

While the ultimate objective of your activation flow is to get your customers
to experience your UVP as quickly as possible, most of what goes wrong
right after you launch happens here.
For this reason, it is far more critical to architect your activation flow for
learning over optimization.
Here are some ways to do that:

Reduce signup friction, but not at the expense of learning.
It is generally a good practice to keep your signup forms short and only
collect what you absolutely need, but don’t shy away from asking for
critical contact information (like an email address) up front. (See the
sidebar, Have a Back Channel to Customers: CloudFire, for more on this.)

Forms are the least of our problems.
— Joshua Porter, Bokardo (Bokardo.com)

Reduce the number of steps, but not at the expense of learning.
The same principle of architecting for learning over optimization also
applies to the number of steps in your activation flow. While it is important
to reduce the number of steps, it is far more important to keep critical steps
separate so that you can troubleshoot where people drop off when things
go wrong. (See the sidebar, Avoid Premature Optimization: Posterous
(Blogging Platform), for more on this.)

Deliver on your UVP.
A good activation flow needs to deliver on the promise established on your
landing page. When you map out your activation flow, make sure it
demonstrates your UVP — preferably in one sitting. You only get one
chance to make a good first impression.

Be prepared for when things go wrong.
Offer inline troubleshooting and provide multiple ways customers can
reach out for help: email, a 1-800 number, and so forth.

HAVE A BACK CHANNEL TO CUSTOMERS: CLOUDFIRE

CloudFire is a downloadable desktop application, and in the interest of simplifying the
signup process, we put a simple Download button on the home page and deferred the
account creation step to post-installation.

Our analytics showed a huge discrepancy between the number of downloads and the
number of signups. We knew we were losing people during the installation step but
didn’t know why. At first, we tried implementing several hypotheses (best guesses),
such as reducing the installer size, supporting an online installer, and so on, which took
several weeks to implement but with no noticeable impact. Then we moved up the
signup screen and started asking for an email address before the download step.

While this didn’t fix the activation problem, it allowed us to identify the users that ran

into these problems and reach out to them. Several of them responded, which helped us
quickly uncover a few critical issues we hadn’t caught before that were the key to
solving our low activation rates.

AVOID PREMATURE OPTIMIZATION: POSTEROUS (BLOGGING
PLATFORM)

In terms of keeping critical steps separate, an extreme example that comes to mind is the
landing page on the Posterous website when it first launched. Rather than asking you to
sign up for an account, they asked you to email them a message with the contents of
your first post (see Figure 9-4). While this was a novel idea, they were essentially asking
you to “abandon” their landing page to send an email, which treated an activated user the
same way as an uninterested visitor. This flow, while highly optimized, offered little
opportunity for learning when things went wrong.

Figure 9-4. Posterous screenshot

Build a Marketing Website
The purpose of your marketing website is simple: to sell your product.
Your marketing website is critical in driving the acquisition trigger in your
customer lifecycle.
Acquisition describes the path a customer takes from first landing on your
website as an unaware visitor to becoming an interested prospect.

The Anatomy of a Marketing Website
Acquisition is itself a subfunnel (see Figure 9-5).

Figure 9-5. Acquisition subfunnel

Following the principle of architecting for learning over optimization, I
recommend starting with explicit pages for each step. Each page should have

a primary call to action and a secondary call to action. My primary call to
action directs visitors to my pricing page (acquisition subgoal), while my
secondary call to action offers a link to more information (e.g., product tour).
The landing page is by far the hardest of the three. Its job is to make a case
for your product to an unaware visitor in fewer than eight seconds. We’ll
deconstruct the elements of a good landing page shortly, but first I’ll list a
few other pages you probably should also include:

About page
While the job of your landing page is to provide a compelling reason to
buy your product, the job of your About page is to provide a compelling
reason to buy from your company. This is your opportunity to put a face on
your product, to tell your story, and to connect with your customers.

Terms of Service and Privacy Policy pages
Both of these pages are basic requirements for offering a service on the
Web. They are also fairly standard, with lots of good examples online to
model after. That said, the Terms Of Service and Privacy Policy can create
legal headaches if they are not adequate. Put in at least enough time
researching this part of your site to satisfy yourself that you are relying on
decent models. If you have doubts, you should get some competent
professional advice.

Tour page (video/screenshots)
I usually defer this page to later and start with just the landing page. But if
your customers are more analytical or research-oriented, you might need to
provide a separate page with more details, technical specifications, and so
forth.
It comes down to fundamentally understanding your customers and their
motivations.

The Landing Page Deconstructed
While the landing page has the daunting task of very quickly connecting with
your visitors, there are several basic elements that make up a successful
landing page, listed here and shown in Figure 9-6:

Unique value proposition
Put the latest refinement of your UVP here. This is the most important

element of the page.

Supporting visual
Support your UVP with a visual aid that resonates strongly with your
target audience. The actual medium may be an image, a screenshot, or a
video depending on your specific audience.

A clear call to action
Every page needs to have a single, clear call to action. It should stand out
and set a clear expectation as to what happens next.

Invitation to learn more
Some visitors may need more information before they’re convinced.
Provide additional links to your tour page (if you have one), or your 1-800
number.

Figure 9-6. Landing page elements

The landing page shown in Figure 9-6 is missing one critical element:

Social proof
Social proof elements help to raise your credibility and trust. They are
typically provided through customer testimonials and “As Seen On” logos.
The reason they are absent from the landing page in Figure 9-6 is that you
don’t have these yet and will get them later from your early adopters.

Chapter 10. Get Ready to Measure
You need not only the ability to visualize your customer lifecycle, but also
the ability to measure it.

The Need for Actionable Metrics
Even though the terrain before product/market fit is riddled with qualitative
learning, you still need actionable metrics to be able to visualize and measure
your customer lifecycle.
The objective before product/market fit is not as much about optimizing for
conversion and all about quickly identifying and troubleshooting hot spots in
your customer lifecycle.
Up until now, you have made a number of product decisions based on what
customers have told you. It’s time to start measuring what they do.

What Is an Actionable Metric?
An actionable metric is one that ties specific and repeatable actions to
observed results.
The opposite of actionable metrics are vanity metrics (like web hits or the
number of downloads), which only serve to document the current state of the
product but offer no insight (by themselves) into how you got there or what
to do next.
A warning flag that indicates you might have a vanity metric on your hands is
when the numbers don’t go anywhere but up and to the right every month.
Put another way, things like web hits or downloads are elements of
subfunnels that make up the larger macro metric that matters, such as
acquisition and activation.
It’s not what you measure, but how.
Understanding the difference between a vanity metric and a macro metric is
the first step. In order to make your metrics actionable, you have to
additionally make them accessible (through simple reports) and auditable (by
being able to go behind the numbers).

The three A’s of metrics are: Actionable, Accessible, and Auditable.
— Eric Ries

I’ll go into some detail regarding how you do that in the next few sections,
and then I’ll outline the steps for building a conversion dashboard.

Metrics Are People First
Eric Ries popularized the meme of “metrics are people too” for the purpose
of making your metrics auditable, but I don’t believe it goes far enough.
While I am a big proponent of building a metrics-driven culture, there is a lot
more to building a great product than numbers. For starters, you have to be
able to go to the people behind the numbers.
The ideal conversion dashboard is part analytics and part customer
relationship management.
Here’s why:

Metrics can’t explain themselves.
When you first launch a product or new feature, lots of things can and do
go wrong. Metrics can help you identify where things are going wrong, but
they can’t tell you why. You need to talk to people for that.

Don’t expect your users to come to you.
When users first use your product, they aren’t yet invested in your
solution. They usually start out interested, but they are skeptical and their
motivation decays quickly when things go wrong. In other words, you
can’t expect users to promptly send in a bug report or pick up the phone
and call you when they need help. They might do this, but it’s more likely
that they’ll simply abandon your product and leave. The burden of quickly
identifying problems and reaching out to your users is yours.

Not all metrics are equal.
You’ve been very selective about who you’ve interviewed up until now.
Once you launch, you won’t be able to control who uses your product. In
addition to your target early adopters, you might be visited by bots, curious
onlookers, and maybe even other undiscovered target customers. When
you just look at numbers, you get an averaging effect that can be greatly
skewed if you don’t yet have a lot of traffic (or the right traffic). You need
a way to segment your metrics into different buckets.

Simple Funnel Reports Aren’t Enough
The funnel report is a powerful analysis tool. It’s simple to understand and
lends itself well to visually depicting a conversion dashboard. But most third-
party implementations of funnel reports are better suited at tracking micro-
level funnels, like landing page conversions, than macro-level funnels, like
your customer lifecycle.
Micro-level funnels are characterized by short lifecycle events typically
measured in minutes, while macro-level funnels are characterized by long
lifecycle events typically measured in days or months.
Simple funnel reports work by letting you specify a reporting period over
which the number of key event occurrences are counted and visualized. This
approach doesn’t work when the intervals between events fall outside the
reporting period.
To illustrate these problems, let’s consider an example for a downloadable
product that uses a 14-day trial.
Figure 10-1 shows an example of what a typical funnel report might look
like.

Figure 10-1. Typical funnel report

In Figure 10-1, the “acquisition” and “activation” events are short lifecycle
events, while the “revenue” event is a long lifecycle event.
This poses the following issues:

Inaccurate conversion rates
The numbers reported for the revenue event most likely include purchases
made in May and exclude purchases made in July, which skews the overall
conversion rates.

Dealing with traffic fluctuations
This skewing of numbers is further exacerbated by any fluctuations in
traffic. If signups go down in July, your conversion rates will appear to be
better when they may not be.

Measuring progress (or not)
Another problem with this sort of reporting is that your product is also
constantly changing. It is hard, if not outright impossible, to tie back
observed results (good or bad) to actions you took in the past, such as
launching a new feature.

Segmenting funnels
Over time, you will probably run a split test or need to segment your
funnel to isolate one group of customers from another. You can’t do this
with a simple funnel report.

Say Hello to the Cohort
So, while funnels are a great visualization tool, funnels alone are not enough.
The answer is to couple funnels with cohorts.
Cohort analysis is very popular in medicine, where it is used to study the
long-term effects of drugs and vaccines:

A cohort is a group of people who share a common characteristic or experience within
a defined period (e.g., are born, are exposed to a drug or a vaccine). Thus a group of
people who were born on a day or in a particular period, say 1948, form a birth
cohort. The comparison group may be the general population from which the cohort is
drawn, or it may be another cohort of persons thought to have had little or no
exposure to the substance under investigation, but otherwise similar. Alternatively,
subgroups within the cohort may be compared with each other.[19]

We can apply the same concept of the cohort or group to users and track their
lifecycle over time. For our purposes, a cohort is any property that can be
attributed to a user. The most common cohort used is “join date,” but as we’ll
see, this could just as easily be the user’s “plan type,” “operating system,”
“gender,” or something else.
Let’s see how cohort reports overcome the shortcomings with simple funnel
reports.
The weekly cohort report (by join date) shown in Figure 10-3 was generated
using the same data used in the simple funnel report earlier (which I show
again in Figure 10-2 for comparison).

Figure 10-2. Simple funnel report

Figure 10-3. Weekly cohort (by join date)

You’ll notice immediately that while the acquisition and activation
conversion numbers are close enough, the revenue conversion rates are very
different.

Dealing with traffic fluctuations
Since all the events are tied back to the users that generated them, cohort
reports handle fluctuations in traffic correctly.

Measuring progress (or not)

More important, though, the weekly cohort report visibly highlights
significant changes in the metrics, which can then be tied back to specific
activities done in a particular week.

Segmenting funnels
Since cohort reports are inherently built around grouping users, they can be
used to segment your funnels longitudinally around any property you track.

How to Build Your Conversion Dashboard
There are lots of third-party analytics products on the market. I have cut my
teeth on Google Analytics, KISSmetrics, and Mixpanel. Each tool has its
strengths and weaknesses, but unfortunately I haven’t found a single analytics
solution (yet) that addresses all the needs I outlined earlier.[20]

Rather than getting bogged down on the specifics of each tool, I cover how I
built my conversion dashboard from a functional perspective in the
Appendix.

[19] http://en.wikipedia.org/wiki/Cohort_study
[20] USERcycle is my attempt at solving this problem.

http://en.wikipedia.org/wiki/Cohort_study

Chapter 11. The MVP Interview
Before selling your minimum viable product (MVP) to strangers through
your distribution channel (e.g., marketing website), sell it face to face to
friendly early adopters. Learn from them. Then refine your design,
positioning, and pricing for launch.

What You Need to Learn
With your MVP, marketing website, and conversion dashboard ready, you
are all set to pay your prospects another visit. Your objective is to sign them
up to use your service and, in the process, test out your messaging, pricing,
and activation flow.
If you can’t convert a warm prospect in a 20-minute face-to-face interview, it
will be much harder to convert a visitor in less than eight seconds on your
landing page.
During the MVP interview, you are specifically looking to answer the
following questions:

Product risk: What is compelling about the product? (Unique Value
Proposition or UVP)

Does your landing page get noticed?
Do customers make it all the way through your activation flow?
What are the usability hot spots?
Does your MVP demonstrate and deliver on your UVP?

Customer risk: Do you have enough customers? (Channels)
Can you bring on more customers using your existing channels?

Market risk: Is the price right? (Revenue Streams)
Do customers pay for your solution?

Formulate Testable Hypotheses
By now you should come to expect this step.

CASE STUDY: CLOUDFIRE

Figure 11-1 shows our canvas from earlier, with the sections being tested highlighted in
Figure 11-2.

Figure 11-1. CloudFire MVP interview

Figure 11-2. CloudFire MVP interview experiment

Conduct MVP Interviews
The MVP interview, like the Problem and Solution interviews, is less about
pitching and more about learning. The structure of this interview largely
follows a usability testing format described by Steve Krug in his book,
Rocket Surgery Made Easy (New Riders Press). I highly recommend getting
a copy of that book, as you’ll be conducting a lot more usability tests in
Part IV of this book.
It is particularly important to conduct your initial MVP interviews in person.
Over time, you might be able to do these with remote screen-sharing
software.
If your entire team cannot be present during the interview, I recommend
using screen-recording software (e.g., Camtasia, ScreenFlow) to record the
testing session for others to watch later.

Watching usability tests is like travel: it’s a broadening experience.
— Steve Krug, Rocket Surgery Made Easy (New Riders Press)

Next, we’ll cover an MVP interview script using the structure shown in
Figure 11-3.

Figure 11-3. MVP interview script

Welcome (Set the Stage)
(2 minutes)
Briefly set the stage for how the interview works.

Thank you very much for taking the time to meet with us again.
We are almost ready to launch the photo- and video-sharing service we
spoke about earlier. But before we launch, we wanted to show you the
product, get your feedback, and, if you’re still interested, give you early
access to the tool.
Does that sound good?

Great. We’d like to run the interview in a usability test format. So I’ll start
by showing you our website and asking you a few questions. It would be
really helpful if you think out loud as we go along. That will help us
identify any problems or issues we need to address.
Are you ready?

Show Landing Page (Test UVP)
(2 minutes)
Run a five-second test to test the site navigation/call to action.

OK, we’ll start with the home page. Please take a look at the home page
and tell us what you make of it. Feel free to look around, but don’t click
anything yet.
Is it clear what the product is about?
What would you do next?

Show Pricing Page (Test Pricing)
(3 minutes)
The interviewee should eventually end up on the pricing page, where you can
then ask him about your pricing model.

Now, feel free to navigate anywhere on the site.
<When the interviewee navigates to the pricing page>
This is the pricing model we decided to launch with.
What do you think of it?

Signup and Activation (Test Solution)
(15 minutes)
This is the heart of the interview.
Ask the interviewee to sign up and watch how he navigates your activation
flow.

Are you still interested in trying out this service?
You can do so by clicking the “Sign up” link.
It would be immensely valuable to us if we could watch you go through
the signup process. Would that be OK?

Wrapping Up (Keep Feedback Loop Open)
(2 minutes)
Hopefully, the interviewee made it all the way through and you have a list of
usability issues to address.
Congratulations, you have your first user!
Make sure the user knows what to do next, and keep the conversation channel
open with him.

That’s it. You’re signed up and ready to go.
What did you think of the process?
Is there anything we could improve?
Do you know what to do next?
Thank you very much for your time today. If you have any questions or
run into any issues, please call us or drop us a note.
Would it be OK if I check in with you after you’ve had some time to use
the tool some more — say, in a week?
Great. Thanks again.

Document Results
(5 minutes)
As before, take the five minutes immediately following the interview to
document your results while they’re still fresh in your mind.
Use the following template to write down the top three problems you
observed.
Have each person fill out this form independently and debrief later.

MVP Interview

Date: _____________

Contact Information

Name: ___

Email: ___

Usability Problem 1

__

__

__

Usability Problem 2

__

__

__

Usability Problem 3

__

__

__

Pricing

Willing to pay ($X/month): ___________

Notes: ___

Referrals: __

Chapter 12. Validate Customer
Lifecycle
Now that you have some early customers signed up, work closely with them
to ensure that they make it through your conversion funnel completely.

Make Feedback Easy
The fastest way to learn from customers is to talk to them.
Much like I favor interviewing customers over conducting surveys, I prefer
getting feedback from customers in person or over the phone than through
other means like email, forums, or discussion boards.
Here’s why:

It shows you care.
A toll-free number sends a signal to your customers that you care and that
you went the extra mile to make it easy for them to call you.

You don’t have a scaling problem yet.
Contrary to popular belief, you won’t be bombarded with phone calls. A
lot of my calls are typically from prospects with questions about the
service, not about support issues. It is fairly easy to set calling hours during
the day and reroute the calls if and when you run into a scaling problem
(which is a great problem to have).

Tech support is a continual learning feedback loop.
After each call, I review the reason for the call and see if I can change
something on the site — messaging, help, tips, pricing clarifications, and
so on — to continually improve the product.

Tech support is customer development.
Not only does talking to a customer help you better understand customer
problems, but it provides you an opportunity to ask your customers a
question or two.

Tech support is marketing.
The opportunity to learn from customers in this way is so great that I have
my mobile phone tied to the 1-800 number of all my products.
Having the founder of the company answer the phone further shows your
commitment to listening to customers, and I’ve found it empowers
customers to open up even more.

It avoids voter-based feedback tools.
I’m not a fan of voter-based tools like GetSatisfaction and UserVoice

because I don’t believe all customers are equal. Listening to the most vocal
or popular feedback does not guarantee you’ll uncover the right learning to
build a better product. More often than not, it can have the exact opposite
effect.

Troubleshoot Customer Trials
I particularly like trials because they time-box the full customer lifecycle and
force an outcome that leads to quick, actionable learning. Properly conducted
trials are a goldmine of opportunity for learning, but they can just as easily be
fumbled. The way to troubleshoot your trials is to follow the path a user takes
through your customer lifecycle (see Figure 12-1).
Your first objective during trials is to reduce user abandonment on your
acquisition and activation paths. Your next objective is to increase retention
and engagement, get paid (if that applies), and collect favorable customer
testimonials.
Your goal should be to get 80% of your early adopters through the complete
cycle. Because you’ve manually qualified your early adopters until now, this
number needs to be higher than what you might typically expect after you
publicly launch your product.

Figure 12-1. Customer trials

Acquisition and Activation
Priority: Ensure that you are driving enough traffic to support learning.

Drill into your subfunnels.
Explore your acquisition and activation subfunnels to see where users are
dropping off.
Start with the leakiest bucket first. Are you losing them on a particular
page, such as the landing page or pricing page?
Look for patterns. Do certain types of users (e.g., Mac versus Windows
users) experience higher failure rates than others?

Reach out to your users.
You should be able to extract the list of users that failed at a particular step
in your funnel. If you know what went wrong, correct it, and ask those
users to come back. If you don’t know what went wrong, reach out with an
offer for help (more like a call for help).

Catch and report unexpected errors.
When early users run into problems, they don’t turn into testers. They
leave. To be able to still learn from their experience, catch and report
unexpected errors so that you can troubleshoot the problem without them.

Retention
Priority: Get users to come back and use your product during the trial.

Send gentle email reminders.
Email is a very effective (and often underutilized) medium for engaging
your customers. Everyone has an email address. Email can be automated,
tracked, and measured.
A common technique used by email marketers is drip marketing, where
you schedule a set of predetermined messages to your users over time.
Even interested users get busy and distracted, and gentle reminders can
help bring them back to your product.
But even better than drip marketing is lifecycle marketing. Lifecycle
marketing additionally considers the user’s stage in the customer lifecycle.
So, for instance, if a user gets stuck during activation, instead of educating
him about your advanced features, you would know to send him timely and
appropriate troubleshooting help.

Follow up with your interviewees.
During the MVP interview, you asked for permission to follow up with

your early adopters. Follow through. Call them up or meet with them and
get their feedback.

Revenue
Priority: Get paid.

Implement a payment system.
Now is the time to implement a payment system for customers to pay you.

Get paying customers to talk to you.
Get them on the phone, thank them for upgrading, and ask them:

How they heard about you (if you don’t know)
Why they bought from you
What could be improved

Get “lost sales” prospects to talk to you.
You stand to learn as much (if not more) from your lost sales as you do
from your sales. While some people are happy to provide honest feedback
if you make a sincere request at the end of the trial, others might need a
small incentive. Offer a $25–$50 gift card or donation to charity in
exchange for 15 minutes of their time.

Don’t spend a lot of effort acquiring customers and then just let them walk away.
— Gary Vaynerchuck

Referral
Priority: Get testimonials.

Ask for customer testimonials.
Get happy customers to write a short paragraph on your product’s value
proposition.

Are You Ready to Launch?
In this section, I’ll discuss how to determine when you are ready to open your
product to the world.

1. Review your results frequently.
Usability testing research shows that you can uncover 85% of your
product’s problems with as few as five testers.

2. Start with the most critical problems.
Review everyone’s top three problems and rank them by severity.

3. Do the smallest thing possible.
Resist the temptation to completely redesign a new landing page or
signup flow at this stage. Your objective is to first establish a baseline
that works, and you can get there by making smaller tweaks. You’ll
have lots of opportunities to test alternate hypotheses in Part IV of this
book.

4. Make sure things improve.
Validate that your fixes actually improve things in subsequent
interviews. Repeat Steps 1–3.

5. Audit your conversion dashboard.
This is the perfect opportunity to audit your conversion dashboard and
make sure everything works as expected.

What Are the Launch Criteria?
You are ready when at least 80% of your early adopters consistently make it
through your conversion funnel.
Specifically, they should:

Be able to clearly articulate your unique value proposition (UVP)
Be primed to sign up for your service
Accept your pricing model
Make it through your activation flow
Provide positive testimonials

3, 2, 1 ... Launch!
Once you have a minimum viable product (MVP) that works, your final step
is to revisit your acquisition channel(s) to ensure that you have a steady

stream of prospects entering your funnel. However, be wary of spending a lot
of effort prematurely optimizing your acquisition channels at this stage.
Strive to drive this traffic through the actual channels you’ve identified for
your product (e.g., content marketing), but supplement with other means if
needed (e.g., search engine marketing).
Your goal is to establish “just enough” traffic to support learning.
If you have a large list of “warm” prospects from your earlier efforts (teaser
page, referrals from interviewees), consider exhausting that list first in the
form of more “early access” signups before doing a public launch.

CASE STUDY: CLOUDFIRE: MVP LEARNING

We knew the photo- and video-sharing market was already crowded, which made it
particularly important for us to validate our UVP. The first challenge to overcome with
the UVP is “getting noticed.” We used these interviews to test our UVP by showing
people our landing page and measuring their reactions.

Product risk: Does the product deliver on value? (UVP)

Hypothesis

MVP interviews will validate the UVP on the landing page.

Insights

Iteration 1: Benefit hook

We started by showing moms the landing page depicted in Figure 12-2.

Figure 12-2. CloudFire landing page, iteration 1

The feedback we received was that this didn’t look “different enough” from existing

services. Most moms felt their service was fast enough until we brought to their attention
the fact that we used the word instantly, which meant we helped them share hundreds of
photos/videos in “zero time.” We learned that the word instant, like countless other
marketing terms, carried no weight with prospects and was ignored. I even did a Google
search afterward and found the following ad, which drove this point home:

Some Photo Printing Service
Get your photos printed while you wait.
Instantly in 30 minutes.

Even though we had a carefully orchestrated two-minute demo video link on the site,
when a headline didn’t connect with visitors, they didn’t stick around to watch the video.
We confirmed this with other usability tests we ran on UserTesting.com (which is an
online usability testing service).

Iteration 2: Word hook

Next, we knew that words matter, so we made the targeted customer segment (Busy
Parents) prominent in the headline and added a “No Uploading Required” splash burst to
the screenshot in the hopes of attracting attention (see Figure 12-3).

Figure 12-3. CloudFire landing page, iteration 2

The splash burst definitely caught viewers’ attention and we got two types of reactions
— both bad.

When a technical person encountered the “No Uploading Required” splash burst, he
challenged that claim. We would then spend five minutes explaining how the product
worked using a peer-to-web (p2web) model to achieve instant sharing without
uploading.

When a nontechnical person encountered the “No Uploading Required” splash burst, he

would get confused and ask how the product works. We’d have to spend five minutes
again giving a less technical explanation.

The reason both reactions were bad is that you don’t have five minutes on a landing
page. When people don’t trust you, they leave. So, even though we could have added a
“how it works” page or graphic on the landing page, chances are people wouldn’t stick
around long enough to notice it.

Iteration 3: Emotional hook

Rather than trying to present a particular benefit or explain how the product works, we
took a more aspirational tack; one that used an image to connect with the target customer
and communicated a finished story benefit (see Figure 12-4).

Figure 12-4. CloudFire landing page, iteration 3

This version worked. The first reaction we got from moms was: “That’s my life.” That
connection made them more open to reading the lefthand side of the page, which further
connected with them by making the promise: “Get back to the more important things in
your life. Faster.” That piqued their interest enough to want to learn more, which is
exactly what you want out of your UVP headline.

UVP: Why you are different and worth paying attention to.

Qualitative versus quantitative learning

Interestingly, this experiment in landing pages also serves as a great example of showing
how qualitative learning can trump quantitative learning in the early stages of a product.
While we were interviewing moms, I also started an A/B split-test using Google Website
Optimizer, driving traffic using Facebook ads, Google AdWords, and StumbleUpon.

CloudFire was the product I used to rigorously test Lean Startup techniques, and here I
was pitting qualitative interviewing, which seemed like more effort, against quantitative
metrics, which was much easier to conduct.

Through the interviews, we were able to conclusively declare iteration 3 as the winner

within a week and after just 10 interviews. Not only did we know which version worked,
but importantly, we knew why. All the insights mentioned earlier came directly from the
parents we interviewed.

The quantitative A/B split-test, on the other hand, was still inconclusive after the third
week. We eventually decided to cut the testing short because 100% of the moms we
interviewed told us they had found their existing solution through a referral. They hadn’t
actively searched for a photo/video sharing solution, which made us further question the
validity of testing these pages via ads. Who were these people clicking through the ads?

Market risk: Is the price right? (Revenue Streams)

Hypothesis

MVP interview will validate pricing.

Insights

Everyone we interviewed accepted the pricing model and signed up for the service.

Customer risk: Do you have enough customers? (Channels)

Hypothesis

Outbound channels will drive 50 signups per week.

Insights

We had enough “warm” prospects on our email list to last us at least four more weeks at
that rate. By then, we anticipated driving more traffic through additional channels that
needed to be tested.

Updated Lean Canvas

Figure 12-5 depicts the updated Lean Canvas.

Figure 12-5. Updated Parents Lean Canvas

What’s next?

Start testing other channels to drive traffic to a much wider audience.

Chapter 13. Don’t Be a Feature
Pusher

In a great market, a market with lots of real potential customers, the market pulls the
product out of the startup.

— Marc Andreessen, “The Pmarca Guide to Startups”

Features Must Be Pulled, Not Pushed
Earlier, I advocated implementing a Continuous Deployment system. While
Continuous Deployment helps you streamline your product development
process for speed, you have to be wary of simply cranking out more features
faster.
When you launch your product, lots of things can and will go wrong. Sure
enough, feature requests will also start pouring in. The common tendency is
to build more, but that is seldom the answer.
Here’s why:

More features dilute your unique value proposition (UVP).
You have taken great effort to keep your minimum value proposition
(MVP) as small and focused as possible. Don’t dilute your UVP with
unnecessary distractions.
Simple products are simple to understand.

Don’t give up on your MVP too early.
Building great software is hard. While you have painstakingly tested
problems worth solving, you have only tested a semblance of the solution.
Give your MVP a chance. First troubleshoot and resolve issues with
existing features before chasing new features.

Put down the compiler until you learn why they’re not buying.
— Jason Cohen, A Smart Bear blog

Features always have hidden costs.
More features mean more tests, more screenshots, more videos, more
coordination, more complexity, and more distractions.

Start With No.
— 37signals, Getting Real

You still don’t know what customers really want.
Treat your future feature ideas like experiments. Keep them on your
feature backlog for now. I’ll cover how you prioritize, build, and validate
new features shortly.

Feature creep can become an addiction.
— Ben Yoskovitz, Instigator blog

Implement an 80/20 Rule
A good rule of thumb for prioritizing focus is to implement an 80/20 Rule
(see Figure 13-1).

Figure 13-1. 80/20 Rule

Most of your time immediately after launch should be spent measuring and
improving existing features versus chasing after shiny new features.
But even with this breakdown, it’s possible to keep cranking out
improvements that have zero impact.
The next section helps with that.

Constrain Your Features Pipeline
A good practice for keeping your features pipeline in check is to limit the
number of features that can be concurrently worked on and only work on new
features after you’ve validated that the features you just deployed had a
positive or negative impact (i.e., yielded learning).

A great way to do this is to use a Kanban[21] board (or visual board).
A Kanban board is to feature tracking as a Conversion Dashboard is to
metrics tracking. Both let you focus on the macro.
Figure 13-2 shows a very basic Kanban board, with three buckets.

Figure 13-2. Basic Kanban board

The general idea is that features start on the lefthand side and move through
stages of product and customer development before they are considered
“Done.”
Here is a high-level overview of the three basic process steps shown in
Figure 13-2.

1. Backlog
All potential features start life in the Backlog bucket. They get in there
in one of the following ways:

Existing feature improvements (e.g., refined signup flow)
Customer feature requests
Your feature requests (e.g., the nice-to-haves you deferred earlier)

Before going further, it is important to distinguish between minimal
marketable features (MMFs) and smaller features/bug fixes. MMF was
first defined in the book Software by Numbers by Mark Denne and Jane
Cleland-Huang (Prentice Hall) as the smallest portion of work that
provides value to customers.
By “feature,” I always mean an MMF. A good test for an MMF is to
ask yourself if you’d announce it to your customers in a blog post or
newsletter. If it’s too tiny to mention, it’s not an MMF.
An MMF is typically made up of smaller work items (tasks) that, if you
are implementing Continuous Deployment, define your small batches.
Smaller features and bug fixes typically fit within a work item or small
batch.
I only track MMFs on a Kanban board and use a lighter-weight task
board tool (like Pivotal Tracker) to track smaller features, bug fixes, and
work items.

2. In-Progress
The Backlog queue is usually kept in priority order based on the current
goals (focus) of your product. This makes it easy to simply pick the top
feature in the list and begin work. The In-Progress step is, in turn, made
up of several substeps, such as building mock-ups, coding, deploying,
and so forth. I’ll cover these details in Chapter 14.
A key principle of Kanban that works to constrain the work queue
involves setting limits on the number of features that can be in progress
at any given time. This allows you to maximize throughput while

minimizing waste. For the technically inclined, Donald Reinertsen’s
book, The Principles of Product Development Flow (Celeritas
Publishing), covers why this is so in great detail.
I recommend starting with a work-in-progress limit equal to the number
of founders/team members and adjusting later if you need to. So, if you
have three founders, only three features can be worked on at any given
time.

3. Done
When the feature is done, it’s moved into the “Done” bucket. The
“Done” state is somewhat arbitrary, and different software development
teams use “Done” to mean anything from “Code Complete” to “Tested”
to “Deployed.”
In a Lean Startup, however, a feature is only “Done” when it provides
validated learning from customers (see Figure 13-3).

Figure 13-3. Validated learning stage

For this reason, Eric Ries suggests either defining “Done” to include
validated learning or adding a fourth state for validated learning. As we’ll see
a little later, I do a bit of both using a two-phase validation — first
qualitatively, then quantitatively.
Defining “Done” this way further constrains your feature pipeline and
prevents you from working on any new features unless you can prove that the
current features just deployed provided validated learning.

Process Feature Requests
In this section, I’ll outline a Getting Things Done (GTD) style workflow for
how to process new work requests that will inevitably come up (see
Figure 13-4).

Figure 13-4. Feature workflow

The first determination involves checking the request against your product’s
immediate needs and priorities: is it “Right action, right time?” So, for
instance, if you have serious problems with your signup flow, all other
downstream requests should take a backseat to that.
After that, you need to consider whether this is a small feature/bug fix or a
larger MMF.
If this is a small work item and something that is needed immediately, fix it
right away (i.e., code-test-deploy using your Continuous Deployment
process). Otherwise, add it to your task board’s Backlog bucket. I
recommend also keeping the task board Backlog in priority order. That way,
anyone on the team can simply pull off a small work item and push it all the
way through deployment when she has some idle time.
If this is a larger MMF, it goes on your Kanban board’s Backlog bucket.
Next, I’ll cover how you prioritize and work on these features.

The Feature Lifecycle
The iteration meta-pattern we have been using to define, build, and validate
your MVP also applies to MMFs.
In this section, I’ll outline a feature lifecycle built on this meta-pattern and
implemented using a Kanban board.

How to Track Features on a Kanban Board
Before I get into the specifics of the process steps, I’d like to highlight some
general aspects of the Kanban board first (see Figure 13-5).

Figure 13-5. Feature lifecycle

Goals
It is a good idea to list your immediate goals and priorities (focus) at the
top of your Kanban board. This helps keep everyone on the same page
when prioritizing your backlog.

Work-in-progress limits
The work-in-progress limit is shown in the top header row. It is typical in
larger teams to also set limits on each substate (mock-up, demo, code,
etc.), but that is overkill at this stage since most startup teams are small.

Buffer lanes
Each process step is divided into two parts. The top section is used for
features currently “under work,” while the bottom section (also called the
buffer) is used to hold features that have been “completed” and are waiting
to be picked up for the next process step.

Features that can be killed at any stage
Multiple customer validation stages are built in to the feature lifecycle. If a
feature fails validation, either it can be moved back to the previous stage to
be reworked or it can be killed. Features slated to be killed are marked in
red.

Continuous Deployment
I assume you are following a Continuous Deployment process and group
the Commit-Test-Deploy-Monitor cycle simply under Code.

NOTE
Even though I am using software in this example, Code could just as easily be
replaced with the appropriate Build phase of your product.

Two-phase validation
Because quantitative verification can take a while, I only use qualitative
testing to declare a feature as “Done.” This releases the work-in-progress
lock on that feature so that other features can be worked on while more
data is collected.

The Process Steps Explained
Now I’ll describe the full feature lifecycle through the process steps.
Understand problem:

1. Backlog
We finished Chapter 12 with a simple workflow for quickly vetting

feature requests for your backlog. These are placed in the top part of the
Backlog column since they aren’t started yet. Because you have a finite
work-in-progress limit, you need to carefully prioritize your backlog
queue against your product’s immediate goals.
Once you have identified a feature, the first step is to test to see if the
problem is worth solving. If you can’t justify building the feature, kill it
immediately.

a. Customer-pulled requests
If the feature is a customer-pulled request, arrange a call or
meeting with the customer. Even though the customer might be
asking for a specific solution, get to the root of the problem. Try
to talk the customer out of wanting the feature. Have the customer
sell you on why you should add the feature.
At the end of the call, you should be able to assess whether this is
a nice-to-have or a must-have problem, whether it is worth
solving, and which macro it will affect.

b. Internal requests
If the feature was generated internally, review the same criteria as
shown earlier with other team members, and similarly get to an
“Is this worth solving?” determination for this feature.

Define solution:
1. Mock-up

Once you have a feature worth building, build a mock-up using the
same approach outlined in Chapter 8. Start with paper sketches, but
quickly get to HTML/CSS views that are ideally accessible from within
your application.

2. Demo
With the mock-up ready, conduct an interview similar in structure to the
Solution interview that tests your solution with customers. Iterate as
needed on the mock-up until you have a strong signal to move forward.

3. Code
With the mock-up validated, you can now start to build the functionality
behind the feature. It will most likely make sense to break the feature
into a number of smaller work items that you can track using your task
board and deploy incrementally using your Continuous Deployment
system.

Validate qualitatively:
1. Partial rollout

Once the feature is coded and ready for use, partially deploy it to just a
few customers first.

2. Validate qualitatively
Conduct usability interviews similar to the MVP interview. Iterate as
needed to correct issues.

Verify quantitatively:
1. Full rollout

You are ready to do a full rollout. Once your feature is rolled out, it is
marked “Done,” and the lock of the work-in-progress limit is released.
This allows you to start working on the next feature in the backlog
queue.

2. Verify quantitatively
With the feature fully live, you should now be able to compare your
conversion cohorts for the week the feature went live against the
previous week to verify the expected macro impact.
Depending on the type of feature, you might additionally need to set up
a split-test. Split-testing is a matter of judgment at this stage.
The more concurrent split-tests you have going, the longer the
verification time window. Long-running experiments can also start
interfering with other experiments and complicate your cohorts. For
these reasons, it is best to use your judgment to decide when to split-test
and when not to.
Here are some guidelines:

I generally don’t split-test a brand-new feature because you can
compare against older cohorts that didn’t have this feature.
I don’t split-test experiments that get very strong signals during
qualitative testing.
I do recommend split-testing experiments that got a medium to
strong signal during qualitative testing and those that test
improvements or alternate flows.

[21] Kanban is a scheduling system designed by Taiichi Ohno, father of the Toyota
Production System, that tells you what to produce, when to produce, and how much to

produce. (Source: http://en.wikipedia.org/wiki/Kanban).

http://en.wikipedia.org/wiki/Kanban

Chapter 14. Measure
Product/Market Fit
The first step is to define a metric to measure product/market fit. Once you
have that, you can systematically iterate toward achieving it.

What Is Product/Market Fit?
Even though Marc Andreessen did not coin the term product/market fit,[22]

his blog post on the topic remains one of the most popular descriptions of
what product/market fit feels like:

Product/Market fit means being in a good market with a product that can satisfy that
market.
You can always feel when product/market fit isn’t happening. The customers aren’t
quite getting value out of the product, word of mouth isn’t spreading, usage isn’t
growing that fast, press reviews are kind of “blah,” the sales cycle takes too long, and
lots of deals never close.
And you can always feel product/market fit when it’s happening. The customers are
buying the product just as fast as you can make it — or usage is growing just as fast as
you can add more servers. Money from customers is piling up in your company
checking account. You’re hiring sales and customer support staff as fast as you can.
Reporters are calling because they’ve heard about your hot new thing and they want to
talk to you about it.

— Marc Andreessen, “The Pmarca Guide to Startups”

Unfortunately, Marc ended that post with more questions than answers and
didn’t offer any guidance on how to achieve or measure product/market fit.
Sean Ellis makes the concept less abstract by offering a metric for
determining early traction that is a prerequisite to achieving product/market
fit. I will cover this next.

The Sean Ellis Test
Sean Ellis ran a consulting company, 12in6, which specialized in helping
startups during their growth transition stage. As a condition to taking on a
client, he conducted a qualitative survey across a sampling of the company’s
users to determine if the company’s product had early traction, which was a
good indicator that the company was on the right track.
The key question on the survey was:

How would you feel if you could no longer use [product]?

1. Very disappointed
2. Somewhat disappointed
3. Not disappointed (it isn’t really that useful)
4. N/A – I no longer use [product]

If you find that over 40% of your users are saying that they would be “very
disappointed” without your product, there is a great chance you can build sustainable,
scalable customer acquisition growth on this “must have” product. This 40%
benchmark was determined by comparing results across hundreds of startups. Those
that were above 40% are generally able to sustainably scale the businesses; those
significantly below 40% always seem to struggle.[23]

I feel the exact wording of the question could use some slight tweaking
depending on your target market. For example, in a B2B/enterprise context,
posturing to take away a product may not sit well with your early customers
who are investing time in your product. Aside from that, the basic premise of
the test is sound. It attempts to measure your product’s resonance with users.
The bigger challenge, though, with implementing Sean’s test, is the same one
I outlined earlier with customer surveys:
Surveys are more effective at verification than learning.
In this case, while Sean’s test can help determine if you have early traction, it
doesn’t help you achieve it.
Additionally, for the results to be statistically significant, you need to have a
large enough sample size, account for customer segmentation, and consider
user motivation. For these reasons, the test is best administered when you are
close to product/market fit (which is also what Sean recommends).
So, what do you do until then? How do you steer your product toward

product/market fit?
The answer lies within your conversion dashboard. In the next section, I’ll
outline another approach to measuring your product’s early resonance with
users using two key metrics from your customer lifecycle — activation and
retention, which together make up your value metrics.

Focus on the “Right” Macro
Build something people want.

— Paul Graham

Achieving product/market fit or traction can fundamentally be reduced to
building something people want or, in other words, delivering on your UVP.
Some products are designed to capture one-time value — for example,
wedding photographers, divorce attorneys, books, DVDs, and so on. Other
products are designed to capture recurring value through repeated use — for
example, Software as a Service products, social networking services,
restaurants, magazines, and so on.
The first is primarily driven by the experience of the service, which can be
effectively measured using the activation metric. The second also relies on a
good first experience (so good activation is still important), but success is
driven through repeat usage — making retention the more indicative measure
of “building something people want” (see Figure 14-1).

Figure 14-1. Focusing on the right macro

The argument can be made that repeated use of a product over a long enough
period should correlate closely enough to the responses of Sean’s “very
disappointed” survey question. This makes it possible to apply the same 40%

threshold to determining early traction.[24]

You have early traction when you are retaining 40% of your activated users,
month after month.

What About Revenue?
While I believe pricing is part of the product and advocate charging from day
one, revenue is only the first form of validation and, when used just by itself,
could be a false positive as a product/market fit test. I’ve experienced
numerous cases with my products where customers kept paying for a product
they did not use (not even sporadically). Sometimes this was because
someone else was paying (their company, for instance) or they simply forgot
to cancel the product.
Other times, I’ve seen startups get distracted by chasing the wrong type of
revenue — for example, doing one-time licensing/custom development deals.
While revenue is the first form of validation, retention is the ultimate form of
validation.
Furthermore, if you offer a one-time product, charge appropriately, and have
good activation, revenue will take care of itself. Similarly, if you offer a
subscription service and charge from day one and you have good retention,
revenue will take care of itself.

Have You Built Something People Want?
In this section, I’ll summarize the process of iterating toward early traction
and determining when you have achieved it:

1. Review your conversion dashboard results weekly.
Set a time every Monday to review your weekly conversion dashboard
with the entire team. Identify the leakiest buckets you need to fix first.

2. Prioritize your goals and features backlog.
Review your features backlog to prioritize new and existing feature
improvements.

3. Formulate bold hypotheses.
At this stage, avoid micro-optimization experiments. Instead, come up
with bold hypotheses, but build the smallest thing possible to test them.

4. Add/kill features.
Review features throughout the feature lifecycle to ensure that they
have a positive impact. Otherwise, rework or kill them.

5. Monitor your value metrics.
Review your retention cohorts. Your goal is to see steady upward
movement in these numbers. Otherwise, you’re simply spinning your
wheels.

6. Run the Sean Ellis Test.
Once your retention numbers approach 40%, consider running the Sean
Ellis Test.

What Are the Early Traction Exit Criteria?
You are done when you can:

Retain 40% of your users
Pass the Sean Ellis Test

What About the Market in Product/Market Fit?
By that I mean things like churn, viral coefficient, cost of customer
acquisition, lifetime value — things that make your business model scalable.
Focusing on scaling your business before you can demonstrate early traction
is a form of waste.
Once you can demonstrate early traction, your focus should shift toward
achieving sustainable growth.

Start by Identifying Your Key Engine of Growth
The engine of growth is the mechanism that startups use to achieve sustainable
growth.

— Eric Ries, The Lean Startup (Crown Business)

In his book, Eric Ries describes the three engines of growth as follows:

Sticky: high retention
A product that uses the sticky engine of growth relies on having a high
customer retention rate (or a low churn rate). Examples: telephone/cable
service providers, Software-as-a-Service (SaaS) products.
Churn rate is the fraction of customers who leave or fail to remain
engaged with a product after a given time period.
Growth here is driven by keeping Customer Acquisition Rate > Churn
Rate.

Viral: high referral
A product that uses the viral engine of growth relies on having a high
customer-to-customer referral rate (or a high viral coefficient), which is
often a built-in side effect of using the product. Examples: online social
networks like Facebook and Twitter.
Viral coefficient measures the number of converted referrals per customer.
Growth here is driven by keeping the Viral Coefficient > 1 (i.e., each user
brings in at least one other user).

Paid: high margins
A product that uses the paid engine of growth relies on reinvesting a
portion of customer revenues (lifetime value or LTV) toward customer
acquisition activities like buying advertising or hiring sales people.

Growth here is driven by keeping customer lifetime value (LTV) > cost of
customer acquisition (COCA).
A good rule of thumb by way of David Skok, Matrix Partners, is to keep
LTV > 3 * COCA.

So which one do you pick?
While some or all of these may apply to your product, it’s important to focus
on a single engine first that has the most potential for impact given your
specific product’s path to customers (channels).

What’s stopping your business from growing 10x?
— David Skok

It is typical for the right selection to be nonobvious, as many products exhibit
some elements of all three, and the “right” engine of growth can also change
over time.
Here are some general guidelines to make the selection process easier:

1. Start with validating your value metrics.
Every product has to start by demonstrating and delivering a basic value
proposition to customers.

2. Understand how customers behave with your product.
Study your baseline customer lifecycle to identify any particular usage
patterns:

If you have implicit virality built into your product — that is, users
repeatedly bring in other users as a natural side effect of using your
service (e.g., Facebook and Twitter) — you might consider investing
in a viral engine of growth. Often, that also drives the lowering of
signup friction, such as making the service free to maximize user
growth.
If you have a recurring use model — for example, a Software as a
Service product — it might be worthwhile to invest your effort
initially to drive up the lifetime value of your customers by reducing
your churn rate. At some point, you will hit a ceiling of diminishing
returns, which might be your cue to switch to another engine of
growth, like paid. In these types of products, even though you might
have some referrals, the referrals do not repeat beyond one or two
degrees (i.e., the viral coefficient is less than 1).
If you have a one-time-use product that isn’t also viral, such as the

wedding photographer and divorce attorney examples, your only bet
is to invest in the paid engine of growth. Again, your product might
exhibit word-of-mouth referrals, and you may even have repeat
customers, but neither of these are key to driving sustainable growth.

3. Pick an engine to tune.
Once you’ve selected your key engine of growth, put a stake in the
ground: Declare the key metric and improvement you want to achieve.
Then, align your next set of experiments toward that goal.

CASE STUDY: CLOUDFIRE: PIVOT, PERSEVERE, OR RESET

By the end of the preceding stage, we had signed up a number of moms who helped us
further refine the minimum viable product (MVP). A fair percentage of them made it to
the end of the customer lifecycle, resulting in paid subscribers and favorable customer
testimonials.

However, as we opened CloudFire to a larger audience, we faced new challenges with
scaling to more customers. While we were building a product targeted at busy first-time
moms, the very fact that they were so busy (dealing with a significant life-changing
event) was getting in the way of getting the right level of attention (engine of growth
challenge). There had been several early warning signs, in the form of last-minute
scheduling cancellations and multiple follow-ups, that we had failed to pick up on.

In parallel, we had also been testing CloudFire for the photographers market (using a
separately branded “pro website”) and narrowed in on wedding photographers as early
adopters. Unlike moms, their livelihood depended on sharing and selling this content. As
a result, they were much more motivated to both use and pay more for CloudFire. But
there was an even more unplanned connection between these two customer segments.

Wedding photographers were in the ideal position to sell CloudFire to newlyweds who
may eventually use the service for other significant “life events,” like having a baby —
thereby increasing the lifetime value of the service.

Wedding photographers were motivated to act as channel partners because CloudFire
allowed them to differentiate their offering and potentially benefit from branding and
search engine optimization (SEO) benefits we were building into the product.

While all this sounded promising, there was a problem. I had founded this company
around a technical vision and a prototypical customer that looked more like me than a
mom or wedding photographer. While I had great passion for the technology behind the
solution, I found myself with little passion for the customers or their problems.

Only having passion for the solution is a problem.

Looking back, I can see how this happened. My entrepreneurial journey so far can be
described in three stages:

1. Lure of Creative Addiction: Entrepreneurs Are Artists

We built it and we didn’t expect it to be a company, we were just building this
because we thought it was awesome.

— Mark Zuckerberg

Like many entrepreneurs, I was initially driven by an inexplicable need to “create”
— to build something unique that potentially changes the world.
I started my company back in 2002, building a private social networking app
called 6Degrees. Little did I know that only months later Friendster would launch,
followed by dozens of other social networking sites. That didn’t stop us, because
we were taking a different approach (built on privacy and decentralization).
Competition felt like validation and gave us permission to keep “creating” more.
Privacy and social networking back in 2002 didn’t go together.
Lesson 1: Being different is good only if that difference matters.

2. Startup As Survival: Artists Need to Eat, Too
Fairly early on, you have to figure out how you are going to set up enough of a
runway to afford the “starting-up dip.”
Bootstrapping wasn’t my first choice. I had just been part of a nine-digit startup
exit (largely owned by the founders), so I set up a meeting with the founders. To
my surprise, while they liked the concept, they were unwilling to fund its
development. This was the first of many lessons to come on understanding startup
risks and the true job of an entrepreneur. I didn’t completely understand this one at
the time.
Capital was really tight back in 2002 (especially in Texas), but I was determined to
move forward. I eventually got a “lucky break” from an entrepreneur in Norway
who found me through a blog post and funded the development of the platform I
was building in exchange for a discounted licensing deal.

The amount of serendipity that will occur in your life, your Luck Surface Area,
is directly proportional to the degree to which you do something you’re
passionate about combined with the total number of people to whom this is
effectively communicated.

— Jason Roberts, “How to Increase Your Luck Surface Area”

Even back then, I placed a premium on my time. I made a deal with my wife that I
would use money as the barometer for success — building enough of a runway so
that I could afford my creative addiction was the prize here.
Strangely enough, I never missed a single paycheck for seven years straight and
got really good at survival, which became a new reason for being. I gradually
became less interested in learning how to build complex products and more
interested in learning how to build successful products.

Up until now, I had built products in stealth, attempted building a platform,
dabbled with open sourcing, practiced “release early, release often,” embraced
“less is more,” and even tried “more is more.” This is also when I ran into
Customer Development, and from this I followed the trail to Lean Startups, which
completely changed my approach to vetting and building products.
With CloudFire, while I succeeded in discovering viable “customer problems” to
solve and even got pretty far in terms of validating the business model (with
positive cash flow), something was grossly missing: passion for customers and
their problems.
I had unknowingly tweaked my founding vision along the way from being
problem-based — “connecting everyone on this planet” — to being solution-based
— “a peer-to-web framework that blurs the boundaries between the desktop and
the Web.” I had become a company with a “solution looking for a problem” and
the viable customers and markets I found were unexpected.
Lesson 2: Making money is the first form of validation, but that may not be
enough.

3. Curse of Legacy: Artists Need to Constantly Reinvent Themselves
People form a startup for several reasons, many of which lead to successful
businesses (and/or exits). However, I had reached a stage where I was looking for
something more: purpose.
I was forced to confront my problem–passion disconnect and saw two options. I
could hire in the missing passion for these segments, or I could sell the company.
Legacy can be an advantage or a constraining disadvantage, and this wasn’t an
easy decision to make.
In the past two years, I had stumbled into new sets of problems, ones that struck a
chord on many levels. I had set up my blog as a way to hold myself publicly
accountable, but along the way I got swept into the world of Lean Startups and
joined in on the conversation. I was positively surprised by the reaction and
encouragement I received. I reluctantly started writing this book and even more
uncomfortably started running workshops.
When I saw enough dots connecting, I decided to hit the reset button. I called up
my first customer from Norway (Sverre Fjeldheim) and within two weeks we had
a deal for a sale. After a short period of company transition, I started laying the
groundwork for a new company: Spark59.
Lesson 3: Startups can consume years of your life, so pick a problem worth
solving.

A good hack for finding a problem worth solving (codified with the help of Patrick
Smith) is immersing yourself completely in a vertical (any vertical) you are passionate
about and surrounding yourself with other passionate people. People inevitably have
problems, and you (the entrepreneur) are wired to look for solutions.

Summary
Figure 14-2 captures the workflow we’ve followed throughout this book.

Figure 14-2. The Running Lean methodology

While this pattern applies to a wide range of products, I am frequently asked
how one might adapt it to two models in particular: a network effects product

and a multisided (marketplace) product.

Design Pattern for a Network Effects Product
A network effects product is a product whose value depends on the number
of people using it. The telephone is the classic example, and online services
like Twitter and Facebook also operate under this model.
The same meta-pattern we’ve covered so far can also be applied to these
types of products, with a few additional considerations:

Attention is a convertible asset.
As the value of the product grows with the number of users, there is
“some” convertible formula for valuing the number of active users as an
asset in lieu of “actual revenue” on the Revenue Streams section in the
canvas.
This formula can be hard to pin down, but current advertising rates and/or
valuations of similarly modeled products may be a place to start.
One challenge with these types of products is that the product typically has
to pass a certain tipping point for this valuation to kick in. Up until then,
the startup has to find a way to survive through very uncertain times.

Twitter started as a “fun” side-project likened to ice-cream, while Ev Williams was
working on his main company, Odeo, which had raised millions of dollars from
investors.

— Source: New York Times

When Zuckerberg moved out to Silicon Valley in his sophomore summer, he thought
that maybe one day he and his team would develop a startup, but didn’t think
Facebook was that startup.

— Source: TechCrunch

Retention is still king.
The first significant milestone still centers around building something
people want as measured by repeated usage or engagement (value metrics).
For more on this, see the sidebar, Validate Value Before Growth:
Facebook.

The engine of growth is viral.
Once your value metrics are validated at a micro scale, you need to race
toward your critical network tipping point using the viral engine of growth.

Once there, you can look to validate your attention currency through
means such as advertising (e.g., Facebook), premium memberships (e.g.,
LinkedIn), or something else.

NOTE
While one could argue that a network effects product with advertising is a form of a
multisided (marketplace) model, I tend to reserve that label for a service where both
sides actively work together to transact business. That is the topic of the next section.

VALIDATE VALUE BEFORE GROWTH: FACEBOOK

Facebook wasn’t the first social network, but it has grown to become the largest.
Something its founders did very differently was seeding their product in a preexisting
offline social network, the Harvard University campus. Rather than scaling the service to
everyone, they methodically validated their value assumptions first, from one college
campus to another, and ended up with both a high-value and a high-growth product.

Design Pattern for a Multisided (Marketplace) Product
A multisided product is a product that connects buyers and sellers and
provides value by reducing transaction friction. Classic examples here are
eBay, Expedia, and Priceline.
For some reason, I find a lot of entrepreneurs are drawn to this model. It’s
probably because this model appears to be the easiest to monetize. After all,
the purpose of a marketplace is to transact business. But these marketplaces
can be notoriously difficult to establish for the commonly cited “chicken and
egg problem”:
Buyers aren’t interested because you lack enough sellers, and vice versa.
Here are some thoughts on how to navigate this model:

Create canvases for both sides.
In a way, you are building two business models in one. You have to
understand who the sellers are, how you’ll reach them, and what unique
value you’ll provide them. Then do the same for the buyers. Creating
separate canvases for each is a great way to document these assumptions.

Validate value in a prototypical early adopter submarketplace.
As with the network effects product, your first job is to demonstrate value

at a micro scale. Rather than creating a new or large marketplace, identify
a prototypical preexisting “early adopter” marketplace where both the
motivation and the friction for transacting business is currently high.
For instance, if you’re building a marketplace that connects adventure tour
operators with service providers, home in on a specific activity like rock
climbing in your local area where you have direct access to both sides.
Similarly, if you’re looking to facilitate selling multiple categories of
products, pick a single niche category first.
Run separate Problem and Solution interviews to validate your
assumptions around pain level and motivations of both buyers and sellers.
Get commitments, build an MVP, and start connecting buyers with sellers.
For an example of this, see the sidebar, Reduce Marketplace Friction at a
Micro Scale First: Airbnb.

Don’t automate match making.
Matching buyers and sellers is a hard problem. Consider using a
“Concierge MVP” model (like the Food on the Table case study from
Chapter 5) to keep the quality level high while you learn what to automate.
The sidebar Learn Manually Before Automating: AngelList provides
another example of this.

Identify the right engine of growth for each side.
You can probably leverage early testimonials to enter neighboring
marketplaces. But be wary of recognizing that you may need to
simultaneously tune two separate engines of growth for each side of the
marketplace.

REDUCE MARKETPLACE FRICTION AT A MICRO SCALE FIRST:
AIRBNB

Airbnb is an online service that matches people seeking vacation rentals and other short-
term accommodations with people in those cities with rooms to rent. As of this writing,
Airbnb carries listings from more than 16,000 cities in 186 countries. But Airbnb didn’t
get this far without a lot of long, hard learning. In their first experiment, which launched
the product, the founders offered their place for rent during a sold-out, prominent design
conference. They ran two additional experiments — one during SXSW in Austin, Texas,
and the other during the Democratic National Convention in Denver — all the while
consulting on the side. They joined the Y Combinator program shortly after, where they
focused on the product full-time and systematically rolled it out from city to city.

LEARN MANUALLY BEFORE AUTOMATING: ANGELLIST

When AngelList first launched, founders Nivi and Naval relentlessly spent a lot of their
personal time vetting and coaching companies most likely to be funded, which they then
manually paired with high-quality investors through email introductions. This ensured a
high quality of deal flow evidenced by favorable testimonials from both investors and
entrepreneurs that helped fuel their growth. It also allowed them to learn parts of the
“manual process” that would most benefit from automation that they then built in to their
online solution.

[22] The term product/market fit was coined by Andy Rachleff, who cofounded the VC
firm Benchmark Capital.
[23] http://startup-marketing.com/using-survey-io/
[24] I consulted Sean Ellis on this and he agreed.

http://startup-marketing.com/using-survey-io/

Chapter 15. Conclusion
Congratulations! We’re done.

What’s Next?
I believe that the life of any startup can be divided into two parts: before
product/market fit (call this “BPMF”) and after product/market fit (“APMF”).

— Marc Andreessen, “The Pmarca Guide to Startups”

Life After Product/Market Fit
Getting to product/market fit is the first significant milestone of a startup. At
this stage, some level of success is almost guaranteed and your focus can now
shift from learning to scaling (see Figure 15-1).

Figure 15-1. After product/market fit

Along with continually tuning and resetting your engine of growth to meet
customer adoption challenges as you attempt to “cross the chasm” between
early adopters and mainstream customers,[25] you will inevitably also be
faced with new challenges as you grow your company.
Every process works well until you add people.
The key is to build a continuous learning culture of experimenters versus
specialists, where it’s everyone’s job to be accountable toward creating and
capturing customer value.

The Toyota style is not to create results by working hard. It is a system that says there
is no limit to people’s creativity. People don’t go to Toyota to “work,” they go there to
“think.”

— Taiichi Ohno

Did I Keep My Promise?
I started this book stating that no methodology can guarantee success, but I

promised a repeatable, actionable process for building products, one that
raises your odds for success by helping you identify your success metrics and
measure progress against those metrics.
I hope I delivered on that promise.
There is no better time than the present to start up, and the ideas in this book
will help you do just that. In fact, you’ll find that once you internalize the
core principles presented here, you’ll see applications for them all over the
place.

Keep In Touch
A book, like large software, is never finished — only released.
This book is only the beginning. I continue to share my learning on my blog
at http://ashmaurya.com and periodically teach workshops.
For even more tactical techniques, consider subscribing to my Running Lean
Mastery newsletter: http://blog.runningleanhq.com/mastery/.
Drop me a line anytime at ash@spark59.com.
Twitter: @ashmaurya
Skype: ashmaurya
Thanks for reading, and here’s to your success!

http://ashmaurya.com
http://blog.runningleanhq.com/mastery/
mailto:ash@spark59.com

Resources
Books

The Lean Startup by Eric Ries (Crown Business)
The Four Steps to the Epiphany by Steve Blank
(http://www.cafepress.com/kandsranch)
Business Model Generation by Alex Osterwalder (Wiley)
The Entrepreneur’s Guide to Customer Development by Brant Cooper and
Patrick Vlaskovits (Cooper-Vlaskovits)
Positioning: The Battle for Your Mind by Jack Trout and Al Ries (Warner
Books)
Don’t Just Roll the Dice by Neil Davidson (Red Gate Books)
Rocket Surgery Made Easy by Steve Krug (New Riders Press)
Inbound Marketing by Dharmesh Shah and Brian Halligan (Wiley)
The Principles of Product Development Flow by Donald Reinertsen
(Celeritas Publishing)
Lean Software Development: An Agile Toolkit by Mary Poppendieck and
Tom Poppendieck (Addison-Wesley Professional)
Toyota Production System by Taiichi Ohno (Productivity Press)

Blogs
Eric Ries, “Startup Lessons Learned” (http://startuplessonslearned.com)
Steve Blank (http://steveblank.com)
Jason Cohen, “A Smart Bear” (http://blog.asmartbear.com)
Venture Hacks (http://venturehacks.com)
Sean Ellis, “Startup Marketing” (http://startup-marketing.com)
Dharmesh Shah, “OnStartups” (http://onstartups.com)
David Skok, “For Entrepreneurs” (http://www.forentrepreneurs.com)
Ben Yoskovitz, “instigator blog” (http://www.instigatorblog.com)

Tools
Lean Canvas: business model validation software (http://leancanvas.com)
USERcycle: customer lifecycle management software
(http://usercycle.com)
User Testing: online usability testing (http://usertesting.com)
KISSmetrics: actionable web analytics software (http://kissmetrics.com)

http://www.cafepress.com/kandsranch
http://startuplessonslearned.com
http://steveblank.com
http://blog.asmartbear.com
http://venturehacks.com
http://startup-marketing.com
http://onstartups.com
http://www.forentrepreneurs.com
http://www.instigatorblog.com
http://leancanvas.com
http://usercycle.com
http://usertesting.com
http://kissmetrics.com

Mixpanel: real-time event tracking (http://mixpanel.com)
SnapEngage: online customer feedback tool (http://snapengage.com)
Heroku: Ruby Platform-as-a-Service infrastructure (http://heroku.com)

[25] Geoffrey Moore describes this chasm in his book, Crossing the Chasm: Marketing and
Selling High-Tech Products to Mainstream Customers (HarperBusiness).

http://mixpanel.com
http://snapengage.com
http://heroku.com

Appendix A. Bonus Material

How to Build a Low-Burn Startup
I’ve bootstrapped my company for the past seven years and learned a lot
about bootstrapping from Bijoy Goswami, founder of Bootstrap Austin. Bijoy
doesn’t limit the definition of bootstrapping to the more commonly held one
about building a company without external funding, but rather views
bootstrapping as a philosophy summarized as “Right action, right time.”
This mantra applies just as well to Lean Startups as it does to bootstrapped
startups:
At every stage of the startup, there are a set of actions that are “right” for
the startup, in that they maximize return on time, money, and effort. A
lean/bootstrapped entrepreneur ignores all else.
While bootstrapping and Lean Startup techniques are not just limited to
funding, funding is one of the first problems entrepreneurs tackle, which can
lead to waste.

Why Premature Fundraising Is a Form of Waste
There are several reasons why premature funding can lead to waste:

Getting funded is not validation.
Seed stage investors are just as bad at guessing what products will succeed
as you are. Without any product validation to rely on, they hedge their bets
against your team’s track record and storytelling ability. So, while getting
funded at this stage is a testament to your team-building and pitching
skills, it isn’t product validation.

Without validation, you have no leverage.
More important, without validation, you don’t have product/market
credibility, which typically comes at a price — reflected in lower
valuations and investor-favored term sheets.

Investors measure progress differently.
While validated learning is the measure of progress in a Lean Startup, most
investors measure progress through growth. Reconciling the two during the
early stages of a startup (when the hockey stick is largely flat) can be both
challenging and distracting.

Getting funded always takes longer than you think.
Time is more valuable than money. Would you rather spend months
pitching investors so that you can refine a story based on an untested
product, or spend time pitching customers so that you can tell a credible
story based on a tested product?

Too much money can actually hurt you.
Money is an accelerant, not a silver bullet. It lets you do more of what
you’re currently doing, but not necessarily do it better. For instance, more
money might tempt you to hire more people and build more features —
both of which may lead you off course and slow you down.
Constraints drive innovation, but more important, they force action.
With less money, you are forced to build less, get it out faster, and learn
faster.

What about all the advice and connections?
Raising funding is not the only way to get good advice. You can and

should start building a diverse board of advisors early. Many are happy just
to be asked; others might require a little equity to formalize a relationship.

How do I survive until product/market fit?
While the ideal time to raise external funding is after product/market fit,
you might need to raise a smaller round before then, or self-fund. The goal
is to get as close to product/market fit as possible.

The biggest reason for bootstrapping first is that it is easier than ever to start a
company, or more accurately test to see if you even have a company. You
don’t need much to start defining, building, and testing a minimum viable
product (MVP) toward product/market fit. With the right team (and skill set)
in place, you can validate problem/solution fit while keeping your day job,
and put an MVP in front of customers soon after that.
Here are some other tips to help you along the way:

Keep your day job.
The first stage, finding problem/solution fit, can really be done part-time
with very little burn. It typically has a lot of waiting time built in (e.g.,
contacting customers, scheduling interviews, collecting results). Until you
find a problem worth solving, it really doesn’t make sense to quit your day
job. The outcome of this stage should be a handful of features.
Build just those features, and nothing else.
While all this can usually be done in your spare time, I highly recommend
reviewing your company’s moonlighting clause.

NOTE
Disclaimer: I am not a lawyer. You should consult a lawyer before applying this to
your particular situation.

Conserve burn rate.
The biggest burn in a software business is people. Hardware is cheap.
Rent, don’t buy. Don’t scale until you have a scaling problem. Don’t hire
until it hurts.

Charge from day one.
Make a goal of first covering your hardware/hosting costs, and then your

people costs.

Sell other related stuff along the way.
It is very tempting to take on unrelated consulting to survive, but it
becomes very hard (if not outright impossible) to build a great product in
parallel. Instead, look for other related stuff that you can sell along the
way. License a piece of your technology, write a book (like this one), teach
workshops, get paid to speak, and so on. Not only are these things related
to your core business, but many of them also help you build up your online
reputation and brand, which pays off over time and could even lead to an
unfair advantage.

How to Achieve Flow in a Lean Startup
In a Lean Startup, eliminating waste is a fundamental principle.

Waste is any human activity which absorbs resources but creates no value.
— James P. Womak and Daniel T. Jones, Lean Thinking (Free

Press)

Of all resources, there is no resource more valuable than time. Time is more
valuable than money. While money can fluctuate up or down, time only
moves in one direction.

The Conflicting Pull for Time
Time, like any resource, has multiple pulls. In following customer
development, there is a basic pull for activities outside the building versus
inside the building. Steve Blank asserts that all the answers lie outside the
building and advocates the creation of a cross-functional customer
development team that must include the founders. What about work that
needs to get done inside the building? Who is going to implement the
solutions to problems uncovered outside the building?
Eric Ries’s answer is to create two teams that feed into each other: a problem
team and a solution team. The problem team focuses on customer
development, while the solution team focuses on product development.
However, if you are a founder, you need to be on both teams, and this is
where the fundamental scheduling tug-of-war problem lies.
The problem is further exacerbated if you are a technical founder (like me),
because time is utilized very differently when switching from product
development to customer development. Paul Graham wrote an excellent
essay[26] on the two types of schedules: manager’s schedule and maker’s
schedule.
Managers typically organize their day into one-hour blocks, and spend each
hour dealing with a different task. Makers, like programmers and writers,
need to organize their day into longer blocks of uninterrupted time. The cost
of context switching is low (and expected) in a manager’s schedule. It is high
(and a productivity killer) in a maker’s schedule.
Activities outside the building (customer interviews, usability testing,

customer support) tend to be on a manager’s schedule, while activities inside
the building (design, coding) are usually on a maker’s schedule.
Trying to find an equilibrium point between these two pulls is more art than
science, but there is a fundamental concept that must be present to maximize
productivity: flow.
There are two different definitions to what I mean by flow, and both apply
here.
The first comes from psychologist Mihály Csíkszentmihályi, who defines
flow as a mental state of operation when you are at your best. When you are
in flow, you are so totally immersed in an activity that nothing else matters.
You lose your self-consciousness and sense of time.
Activities that flow typically have the following attributes:

They have a clear objective.
They need your full concentration.
They lack interruptions and distractions.
They provide clear and immediate feedback on progress toward the
objective.
They offer a sense of challenge.

While flow can’t be triggered at will, you can arrange activities so that they
allow for flow, which, coincidently, is also the second definition of flow:

When we start thinking about the ways to line up essential steps to get a job done to
achieve a steady continuous flow with no wasted energy, batches, or queues, it
changes everything including how we collaborate and the tools we devise to get the job
done.

— Womak and Jones, Lean Thinking

What follows are specific work hacks I use to allow for flow.

Creating Daily Flow
I generally group my daily activities into three categories: planned maker
activities, planned manager activities, and unplanned maker/manager
activities.

Work Hack 1: Establish uninterruptible time blocks for maker work.
My planned maker activities are typically coding and writing tasks I’ve
previously identified. Because these activities need an uninterruptible

block of time, I schedule these very early in the morning (6:00 a.m.–8:00
a.m.). I usually schedule this task the night before, and it is the first and
only thing I do. I don’t check email or Twitter or look at anything else. No
one is calling at that hour, so distractions are at a minimum. I find two-
hour blocks work best for me.

Work Hack 2: Achieve maker goals as early in the day as possible.
I’ve tried both staying up late and waking up early, and I prefer the latter
as it isn’t interrupted by sleep, which allows the day’s activities to flow
better. I also find that accomplishing something tangible that early in the
day sets the tone for the rest of the day.
Depending on the day of the week, I might allocate more two-hour blocks
later in the morning or afternoon, but they aren’t as intense as the first one
and can be interrupted by something more urgent.

Work Hack 3: Schedule manager activities as late in the day as possible.
Planned manager activities, like customer meetings, are easier to schedule
because they are clearly time-boxed and calendar-driven. Unless there is an
unworkable schedule conflict, I prefer to schedule these for the afternoon
so as not to interrupt my morning flow.

Work Hack 4: Always be ready for unplanned activities like customer
support.

Unexpected interruptions can surface from anywhere throughout the day
— server issues, customer support calls, and so on. You have to be
prepared for interruptions, especially from customers. Both server alerts
and customer calls (1-800 number) are routed directly to my mobile phone.
This is also a good place to apply a Five Whys process to ensure that
unexpected incidents don’t become recurring incidents (I will discuss this
process in more detail shortly).

Creating Weekly Flow
Aside from organizing the day for flow, I also group certain activities of tasks
by day of the week:

Work Hack 5: Identify the best days for planned Customer Development.
For instance, Mondays and Fridays are usually bad days for initiating new
customer contact, as people are generally either recovering from the

weekend or getting ready for it. I plan these types of customer
development activities for Tuesday through Thursday.

Work Hack 6: Take advantage of customer downtime.
Since Mondays and Fridays are usually slower from a customer
perspective, I use these days for larger maker tasks, like writing blog posts.
My blog posts are usually identified on Friday, outlined over the weekend,
written/proofed on Monday, and published on Tuesday.

Work Hack 7: Balance face time with customers.
Not all customer development activities require face time. Beyond the
initial customer discovery stage, there is a strong tendency to rely more
heavily on asynchronous communication using tools like email, forums,
and online usability testing. While all these tools are great for lowering
real-time distractions and achieving scale, I find it important to still create
opportunities for face time with existing and new customers.
Unscripted conversations are the best way for learning about unscripted
problems.
I put our 1-800 number on all pages and encourage customers to pick up
the phone versus emailing whenever possible.

Eliminating Software Waste
Building software to specifications is hard enough that, when faced with a
startup environment where both problems and solutions are largely unknown,
it is optimal to iterate around less code and more learning.

Work Hack 8: Avoid overproduction by making customers pull for features.
Customer pull is another concept from “Lean,” and it requires that no
product or service be produced until a customer asks for it.
Eighty percent of your effort should be spent toward optimizing existing
features versus building new ones.
The whole point of Customer Development is to identify an MVP that
resonates with customers, and the whole point of customer validation is to
test whether that resonance will scale. If it doesn’t, the answer is not
adding features, but possibly pivoting and going back to Step 1: customer
discovery.

Work Hack 9: Iterate around only three to five actionable metrics.

A few actionable metrics are all you need to identify and prioritize the
most critical issues to tackle.

Work Hack 10: Build software to flow.
You might have noticed that I don’t have days or tasks identified for
building, testing, or releasing software. That is because I follow a
continuous deployment process (also popularized by Eric Ries) where
software is built, tested, and packaged automatically at the end of every
maker task, with no effort on my part other than checking in code. One
click, and the code is released to customers.
Manufacturing processes have traditionally been arranged around machine
time-breaking tasks into batches and queues. “Lean” challenges this
approach and calls for arranging around human time-organizing tasks so
that they flow.
Releasing software is not unlike manufacturing of physical products.
While it is somewhat easier to continuously deploy web-based software,
with a little discipline, desktop-based software also can be built to flow.

How to Set Pricing for a SaaS Product
The initial objective of a startup is learning, not optimization. The strategy
I’ve found that works is starting with a single “Free Trial” pricing plan.

Start with a single pricing plan.
Starting with multiple plans that cover everyone under the sun is a form of
waste. I’ve seen startups launch with plan options targeting one-person
startups to enterprises composed of more than a thousand people.
Not only does supporting multiple plans require you to write more code to
support plan/feature segmentation, but the return on learning is diluted
when you attempt to target multiple customer segments all at once. In the
example in the preceding paragraph, the business models and tactics vary
greatly when selling to startups as opposed to selling to enterprises.
The bigger point here, though, is that when you’re starting out, you don’t
yet have enough information to know how to correctly price or segment
the feature set into multiple plans.

Use a “Free Trial” plan.
Time-based trials help time-box your pricing experiments so that you can
force a conversion decision, which allows you to learn and iterate faster.

Pick a price to test.
Existing alternatives create “reference points” in the minds of customers
that they will use to rank your solution, so it’s important to understand and
position your price against them.
In the rare case that you are actually solving a brand-new problem or don’t
have clear reference points (more common in enterprise-based products),
you might have to pick a starting price out of thin air and refine from there.

Pricing is all about setting the right perception.
— Neil Davidson, Don’t Just Roll the Dice (Red Gate Books)

Take your costs into account.
The ultimate goal is to find a scalable business model, so it should go
without saying that you also need to keep an eye on what it would cost you
to deliver your solution and ensure that you have a healthy margin built in.
One rule of thumb for building a successful business (by way of David

Skok, Matrix Partners) is to ensure that the lifetime value of your
customers exceeds the cost of customer acquisition by at least a factor of
three.
It’s hard to accurately calculate these at this stage, so instead, do a back-of-
the-envelope calculation based on your people/hardware costs and
subscription revenue to find your break-even point.

What About Freemium?
Freemium is a popular model used by numerous web applications. It was first
popularized by Fred Wilson on his blog, where he described it as follows:

Give your service away for free, possibly ad supported but maybe not, acquire a lot of
customers very efficiently through word of mouth, referral networks, organic search
marketing, etc., then offer premium priced value added services or an enhanced
version of your service to your customer base.

— Fred Wilson, AVC blog

On the surface, freemium seems like the best of both worlds: get users to try
your service without having to worry about price, then up-sell them into the
right premium plan later. But the reality is quite different.
First, I believe that unless you are deriving monetary value from free users,
the freemium model is less of a business model and more of a marketing
tactic to fill your pipeline with potential prospects.
Second, I believe pricing is one of the riskiest (and most critical) parts of the
business model and should be tested early. Freemium delays this learning.

The Problems with Freemium
While I agree that freemium can be a highly effective model, I don’t advocate
starting with it for the following reasons:

Low or no conversions.
Many services make the mistake of giving away too much under their free
plans, which leads to very low or no conversions. One reason for this is
that creatives (artists, musicians, developers) are especially known to
undervalue their own work and are really bad at setting pricing.
Pricing should be set with the buyer in mind, not the seller.
But the main reason is something we covered in the preceding section. You
don’t yet have enough usage data to correctly define the free plan so that

users naturally outgrow it at some predictable time in the future.

Long validation cycle.
Even the best freemium services report conversion rates in the 0.5% to
5.0% range, which leads to long validation cycles. Time is the most
valuable resource for a startup, and you can’t afford such long learning
cycles on something as critical as price.

Focus shifts to the wrong metric.
Because “free” can be irrationally appealing, freemium has a tendency to
cause a premature shift in focus from user retention to user acquisition
(signups). Unless you have built the right product, getting more signups is
a form of waste. You don’t need a lot of traffic to build the right product
— just the right initial customers.
Your free users are not your customers (yet).

Low signal-to-noise ratio.
When you have a lot of free users, it’s hard to focus your attention on the
right feedback.
Given the opportunity, everyone can be a critic.

Free users aren’t “free.”
Even though the operational costs of carrying a free user may seem low,
they aren’t zero. In addition to server bandwidth/hosting costs, there are
support, feature, and learning costs (like the ones described earlier) that
need to be taken into account.
Lincoln Murphy described a quid pro quo test in his paper, “The Reality of
Freemium in SaaS,” for valuing free users. Unless free users are adding
participatory value (as found in services with high network effects like
LinkedIn, Facebook, and Twitter), they are an expense.
Jason Cohen, who writes the popular A Smart Bear blog, even advocates
accounting for free users as a “marketing expense” on your balance sheet,
much like you would an ad buy or trade show expense.

How to Approach Freemium
Here’s how I approach freemium:

Start with the premium part of freemium first.
Once you recognize freemium as a marketing tactic and make a conscious

decision to shorten the validation cycle, it makes sense to start with the
premium part of freemium first and use a single pricing plan your
customers will bear.
Since your eventual goal is to charge for your product anyway, why not
start there? Pick features and a plan based on what customers will pay for
today and sign them on as your first customers. Not only is this simpler to
build, but it’s also simpler to measure.
Then, once you have learned how your customers are using your product,
you can always offer a free plan if you want to. You would have collected
valuable usage data along the way, which puts you in the best position to
design multiple upstream and downstream plans.

What is a good free plan?
A good free plan should ideally behave similarly to a free trial. The
difference is that while a free trial is time-based, freemium is usage-based.
If you understand the usage pattern of your product, you should be able to
design the free plan so that a user naturally outgrows it at some point in the
future that you can reasonably predict.
At that point, the difference between freemium and free trial is the
perception of offering something free, which is a big enough difference to
warrant the use of freemium for certain types of products.

When should you use freemium versus free trials?
Once you’ve built the right product, freemium can be a powerful user
acquisition strategy for consumer-facing products that naturally tend to be
more “free” driven.
Businesses, on the other hand, have come to expect time-based trials, and
the added complexity of tracking and carrying free users may not be
warranted here.

BUILD A PROFITABLE BUSINESS FIRST: MAILCHIMP

MailChimp is frequently cited as one of the freemium model success stories, but too
often people fail to recognize that MailChimp didn’t start with a free plan. In fact, the
company spent years building a powerful, affordable (but not free), profitable product
first, with years of pricing experimentation, before backing into a free plan.

How to Build a Teaser Page
While there are a number of tactics for getting people to agree to an
interview, you eventually have to be able to attract unaware visitors and
convert them into interested prospects.
The number-one way to get a prospect (cold or warm) to agree to an
interview is to “nail his problem.”
One of the best exercises for crafting such a message involves spending an
afternoon writing a shorter version of a long-form sales letter — no matter
what type of business you’re building.
You will not be sending this letter to any prospects. The point of the exercise
is to get you to explain your product in narrative form, which will be helpful
when requesting interviews, when conducting interviews, and while building
a marketing landing page.

How to Write a Sales Letter
While there’s more that goes into a complete sales letter, I recommend
starting with just your unique value proposition (UVP), problem, and
solution.
All you need for this exercise is a text editor. You can use different fonts, but
avoid graphics at this stage and just focus on the copy.

Make a large promise (UVP).
This is a short headline that summarizes what your product will do for the
customer (i.e., the finished story benefit).
A good formula we used earlier (by way of Dane Maxwell) is:
Instant Clarity Headline = End Result Customer Wants + Specific Period
of Time + Address the Objections
Psychological principle in play: Attention through surprise, clarity, and
bold promise.

Connect with the customer (Problem).
This is a short paragraph that explains the problem from the customer’s
worldview. You want to visualize the customer nodding his head in
agreement. During your interviews, check for this.
Psychological principle in play: Empathy, by showing you understand

the customer.

Generate interest/desire (Solution).
Then, state what your product does in another short paragraph (i.e., how it
solves the problem) and list your top three features written as benefits.
Psychological principles in play: Interest and desire, by helping the
customer visualize the solution and see how it ties to the main problem.
Refine your sales letter so that it flows.
The purpose of each sentence should be to get the next one read.

CASE STUDY: CLOUDFIRE: SALES LETTER FOR PARENTS

Share all your photos and videos in less than five minutes.

Having kids creates a whole new appreciation for free time.

After kids, you probably find yourself taking a lot more photos and videos than before,
but sharing all this content is time-consuming and sometimes painful. You have to
organize, resize, and convert your files, and then babysit the upload process.

Like most other parents, you are probably sleep-deprived and don’t have as much free
time as before, and you would much rather spend your time doing other things.

CloudFire is a photo- and video-sharing service designed for parents by parents. It
simplifies the sharing process so that you can go back to the more important things in
your life.

Here are three reasons why you should use CloudFire:

Instant gratification: You’ll never have to wait on an upload again. Share your
photos and videos instantly right from iPhoto or your desktop folders.
Easy for you and your viewers: No registration or signup required to view your
galleries.
Safe, private, and secure: Password protection and 256-bit encryption keep prying
eyes out. No ads or spam. Ever.

How to Create a Teaser Landing Page
With your sales letter in hand, if your product will have a website, you are
now ready to put up a basic problem-focused teaser landing page. The main
purpose of this landing page is to start testing your UVP and build a list of
potential prospects you could interview.
Establishing a website early with the right keywords from your UVP will also
give you a head start in building your search engine optimization (SEO)

ranking. Don’t worry about giving away too much about your product. We’re
only going to mention the “Problem,” not the “Solution.”
The key here is to start simple. You’ll have ample time to refine this teaser
page into a full-fledged marketing website later.
Here’s how to get started:

Pick a product name.
This is probably the hardest part of this exercise, mostly because it is so
difficult to find .com domain names that aren’t already taken. That being
said, don’t get too worked up over finding the right name. There are many
examples of great companies with made-up names and vice versa.
Sometimes simply brainstorming key words for your UVP might reveal a
name that works:
Lean Canvas: Business Model Canvas + Lean Startup
USERcycle: User Lifecycle Management Software

Make sure the Twitter handle and Facebook page are available.
If you are able to register the .com domain, you will more than likely be in
the clear with everything else. Register them now, even if you don’t intend
to use them right away.

Keep it simple at first and just state your UVP.
Your UVP will be one of the most important elements of your finished
landing page, and it’s all you need to put on a teaser page. The objective
right now is to grab attention by articulating a problem that resonates with
your visitors, not pitching your product.

Follow basic SEO practices.
Make sure you also use your UVP in your title tag and place your
keywords (not your product name) early.
For example, use this:
Customer Lifecycle Management Software – USERcycle
not this:
USERcycle – Customer Lifecycle Management Software

Don’t fret over the logo yet.
If you already have a logo or you can pull one together in a day, use it.
Otherwise, skip it for now and use just your product name.

Collect email addresses.
Pick your favorite tool, like Campaign Monitor or MailChimp, to collect
email addresses using a “Notify Me” call-to-action button.

Measure your website.
Start with a free analytics tool like Google Analytics to track visitors on
your landing page.

How to Get Started with Continuous Deployment
Figure A-1 shows an overview of the continuous deployment cycle.

Figure A-1. Continuous deployment cycle

You probably already have (or should have) the pieces needed to put together
a basic continuous deployment system.
I’ll cover each stage of the continuous deployment cycle next.

Commit
One of the ways continuous deployment strives to reduce waste is by
reducing work-in-progress inventory (i.e., undeployed code). Having lots of
undeployed code increases inertia and reduces your ability to react quickly
(more integration, more coordination, more planning).
Here are two techniques that help you reduce your work-in-progress
inventory:

Code in smaller batches.
The basic idea here is to deploy less code but more frequently. The

definition of a small batch is relative, but strive to make it as small as
possible. I used to deploy code on a biweekly schedule with my last
product and eventually got my batch size down to the output of a two-hour
coding session. Sure, you won’t usually finish a full feature in two hours,
but you’ll get pretty good at building and deploying features incrementally.
The number of lines of code in my average batch went from several
hundred to about 25. A direct side effect of deploying fewer than 25 lines
of code versus hundreds is that troubleshooting unexpected production
issues immediately after a deployment becomes a whole lot easier, as does
fixing and releasing them.

Always be trunk-stable.
Another practice for reducing work-in-progress inventory is to not use any
branching in your source control tree. I know this sounds a little extreme
because branching and merging are among the most touted features in a
source control management system — they allow you to isolate big, risky
changes off the “stable” mainline trunk. But the longer you stay off the
trunk, the more integration debt you collect, which again inevitably leads
to more integration risk, coordination, and planning headaches.
It’s more efficient to train yourself to always be trunk-stable and build and
deploy your features incrementally. It’s important to point out that
deploying features incrementally doesn’t necessarily mean they are made
live to all users immediately. This allows you to incrementally roll out big
features and make them available to select users like your internal team
until you are ready to go live. I’ll cover how you do this using a feature
flipping system in the Deploy section.

Test
Taking the continuous deployment plunge is particularly scary because it
eliminates manual testing (QA), which typically has served as a safety net for
catching defects after development and before deployment.
Here are some guidelines for overcoming this fear:

Testing is everyone’s responsibility.
First, I don’t know of any two- or three-person startup that has a QA
department, which makes testing everyone’s responsibility. Second, having
long test cycles creates the same work-in-progress inventory problems we

discussed earlier. The solution is not creating a separate QA function, but
rolling it into the development process and investing more heavily in
automated testing.

Use a continuous integration server.
Set up a continuous integration server, like Hudson, to automatically
trigger a build (if you have compiled code) and run your application
against your test suite after every commit.

Do not tolerate any failing tests.
I’ve worked at places where developers train themselves to ignore failing
tests because they know they are outdated. In a continuous deployment
system, these tests serve as your last line of defense before pushing code
into production, and you cannot tolerate a single failing test, especially
since your ultimate goal is to automate deployment.

Prefer functional tests over unit tests.
I don’t advocate achieving “full test coverage.” On the contrary, I believe
writing unit tests for obscure edge cases is a form of waste and is not the
most optimal use of time when the focus is speed and learning. I instead
prefer creating functional tests over unit tests whenever possible. There are
several great options, like Selenium and Sauce Labs, for writing and
automating functional tests for web applications.

Start with your activation flow.
Building tests for features that your customers never get to is also a form
of waste. When building tests, use your customer lifecycle to prioritize
your tests. Start with the activation flow and then incrementally add other
functional tests over time.

Deploy
The deployment step pushes your tested code into your production
environment. As this can get quite sophisticated when you have a cluster of
machines, it is best to start early when you have just a few servers:

Outsource as much of your server infrastructure as possible.
Spending effort setting up and configuring your own servers at this stage is
a form of waste. You should instead pick a cloud or platform provider (like
Amazon or Heroku) and focus all your efforts on building your

application, not your infrastructure.
Many cloud providers offer free tiers to get you started.

Create a separate staging area if you are so inclined.
A separate staging area serves as an additional safety net before pushing
code to production and can be a good idea for building up confidence in
your deployment system. However, I’ve found staging areas to be of
limited use beyond basic spot checking, and at some point your continuous
integration server should be able to serve this function in a more repeatable
and automated fashion.

Build one-click push and rollback scripts.
The next step is to write a set of deploy scripts that can push your code to
your production server and roll back your code to the last release. The
rollback is used in the event you push a bad change. If you are deploying
small enough batches, you should never need to roll back beyond the last
release.
If you are on Heroku, one-click push and rollback is offered out of the box.

Deploy manually first, then automate.
It is usually a good idea to run the push script manually at first and audit
every deployment while you build up your confidence. If you are using
Hudson as your continuous integration tool, it is fairly easy to add a task to
automatically trigger your push script when you are ready for that.

Implement a simple feature flipper system.
You will inevitably be faced with having to deploy a new “big” feature
while maintaining the old ones, and you’ll need a mechanism in place to
isolate your users from these changes. A feature flipper system fits that
bill.
A feature flipper system uses flags in your code that allow you to
enable/disable features on a per-user basis.

Monitor
The job of your monitoring system is to enable you to automatically detect,
alert, and eventually even automatically recover from unexpected errors. An
example of recovering from an error might be automatically triggering your
rollback script in the event of a bad release. To be able to do this, your

monitoring system would have to get pretty sophisticated and not just
monitor your server health but also your application health (i.e., business
metrics).
The good news is that you don’t need to start there. It is actually a form of
waste to try to overbuild your monitoring system, because the Pareto
Principle rules here.

The Pareto Principle: Roughly 80% of the effects come from 20% of the
causes.

The continuous deployment cycle has a built-in feedback loop that helps you
build this monitoring incrementally.
Here’s how to get started:

Start with off-the-shelf monitoring.
There are numerous off-the-shelf monitoring and alerting applications,
including Ganglia, Nagios, and New Relic, that you can use to start
monitoring basic server health metrics.

Tolerate unexpected problems only once.
You build up your monitoring system by implementing a Five Whys root
cause analysis to every unexpected problem you encounter.

The Five Whys is a questions-asking method used to explore the cause/effect
relationships underlying a particular problem. Ultimately, the goal of applying the
Five Whys method is to determine a root cause of a defect or problem.

The following example demonstrates the basic process:
My car will not start. (the problem)
Why? – The battery is dead. (first why)
Why? – The alternator is not functioning. (second why)
Why? – The alternator belt has broken. (third why)
Why? – The alternator belt was well beyond its useful service life and has never
been replaced. (fourth why)
Why? – I have not been maintaining my car according to the recommended service
schedule. (fifth why, a root cause)
Why? – Replacement parts are not available because of the extreme age of my
vehicle. (sixth why, optional footnote)
I will start maintaining my car according to the recommended service schedule.
(solution)

— http://en.wikipedia.org/wiki/5_Whys

http://en.wikipedia.org/wiki/5_Whys

Applied to unexpected problems in your production environment, the
outcome of each Five Whys analysis should provide a slew of tests,
monitoring, and alerts that you then add to your existing suite.

How to Build a Conversion Dashboard
A key design principle is to decouple data collection from data visualization.
This lets you minimize waste by allowing you to build your conversion
dashboard incrementally.

How to Collect Data
Here’s how to get started with data collection:

Map metrics to events.
The first step is to identify all the key events (user actions) that map back
to your metrics. You should already have all your steps for your
acquisition and activation funnels clearly defined (see Figure A-2).

Figure A-2. Mapping metrics to events

It is helpful to also identify any key events for the other macro metrics (see
Figure A-3).

Figure A-3. Other macro metrics

Track raw events.
I recommend tracking your raw events in a separate events table/database
or using a third-party system like Google Analytics, KISSmetrics, or
Mixpanel. While logging data in your production tables might seem easy
and harmless enough, your production tables are probably not designed for
the kinds of queries you’ll need to run over time. You’ll end up either
spending a lot of time dumping tables and massaging the data, or taxing
your production system heavily for reports.

Log everything.
A good practice to complement tracking raw events is to log every
“potentially interesting” property along with each event. An example of a
property could be your user’s browser, operating system, or referrer. While
you may not use a particular property today (or think you’ll ever use it in
the future), it’s fairly inexpensive to log a few extra bytes of information
that could end up saving you time later, and more important, could provide
a treasure trove of historical data.

How to Visualize Your Conversion Dashboard
Now you’re ready to start visualizing your data:

Build a weekly cohort report.
The first report I use on my conversion dashboard is the weekly cohort
report by join date I showed earlier (see Figure A-4).

Figure A-4. Weekly cohort report

You’ll notice that I base my activation conversion rate off the number of
“acquired” users versus total visitors. This is because I like to measure my
activation rate (signup flow efficiency) independently from my acquisition
rate (marketing efficiency). This way, if you get a surge of unanticipated
PR traffic (like getting Digg’d or TechCrunch’d), unless these visitors truly
intend to use your service (i.e., click your signup link), they will not affect
your overall activation numbers.
The weekly cohort report serves like a canary in a coal mine. If you find
none of your numbers changing from week to week, you are simply
spinning your wheels and not really making progress. A change in the
numbers in a particular week lets you tie back those results to actions taken
in that week.

Be able to drill into your subfunnels.
You should be able to drill into your detailed subfunnels and visualize all
the steps, which is valuable for troubleshooting problems (see Figure A-5).

Figure A-5. Activation funnel

Be able to go behind the numbers.
At any given subfunnel event, you should be able to go behind the
numbers and get to the list of people (see Figure A-6).

Figure A-6. Going behind the numbers

How to Track Retention
Retention measures repeated activity over a period of time. So the first step is
to define what constitutes activity.

Define an active user.
There are many ways to define an active user. The most basic definition
measures activity simply in terms of logins (i.e., does the user come
back?).

A more representative definition for tracking activity for product/market fit
should measure not just usage but also “representative usage.” Every
product has a core set of user actions that track ongoing representative
usage. For example, writing blog posts is a key activity for a blogging
platform. Also note that your key activity for activation may not be the
same as your key activity for retention.
A more advanced approach to measuring representative engagement comes
from Dharmesh Shah, who coined the term “Customer Happiness Index,”
or CHI. The idea is to use a formula to grade activity on a scale of 1 to 100
that is calculated using frequency, breadth, and depth of feature usage.
At this stage, I recommend starting with the simplest formula. This
formula should measure representative engagement that centers around
your key activity.
You can tweak the formula for your product over time to get a more
graded CHI score that helps you segment your users into different buckets
and focus your marketing, troubleshooting, and customer development
activities.

CASE STUDY: CLOUDFIRE
The key activity in CloudFire that tracks ongoing usage is the sharing of content.
I would start by simply defining an active user as someone who shares at least one
photo album or movie during the trial period (30 days).
A more advanced approach might be to calculate a Customer Happiness Index using a
weighted formula similar to the following:

CHI = [(Number of days logged in)/(Desired number of logins)*0.2 + (At least
one key activity) *0.8)] * 100

Then define an active user as someone with a CHI > 80. While this yields the same
number of active users as before, it gives me a graded scale for segmenting my users
by activity.
Figure A-7 shows what four users with varying levels of activity over the trial period
would look like.

Figure A-7. Active users

Visualize retention in your conversion dashboard.
Now that you have a definition of an active user, you can visualize your
conversion dashboard to show what percentage of users were active during
your trial period (see Figure A-8).

Figure A-8. Visualizing retention

The retention rate is based on the number of “activated” users.

Provide a detailed view.
As with your other macro metrics, drilling into the retention macro should
provide a detailed view. However, in this case, instead of showing a
subfunnel, you would show the trending of your retention numbers over
time (see Figure A-9).

Figure A-9. Retention table

NOTE
You should ideally be able to change the time periods on both axes in Figure A-9,
allowing you to visualize this report by day, week, or month.

[26] “Maker’s Schedule, Manager’s Schedule,” by Paul Graham
(http://www.paulgraham.com/makersschedule.html).

http://www.paulgraham.com/makersschedule.html

Index

A NOTE ON THE DIGITAL INDEX

A link in an index entry is displayed as the section title in which that entry appears.
Because some sections have multiple index markers, it is not unusual for an entry to
have several links to the same section. Clicking on any link will take you directly to the
place in the text in which the marker appears.

Symbols

500 Startups, Your Product Is NOT “the Product”

80/20 rule (for features), Features Must Be Pulled, Not Pushed

A

About page, marketing website, The Anatomy of a Marketing Website

acquisition, Key Metrics

acquisition rate, How to Collect Data

acquisition subfunnel, marketing website, The Anatomy of a Marketing
Website

in customer trials, Acquisition and Activation

reducing user abandonment during, Make Feedback Easy

reinvesting customer revenues toward, Start by Identifying Your Key
Engine of Growth

action

call to action on pages of marketing website, The Anatomy of a Marketing
Website

getting from customer in Solution interview, The Solution Interview as
AIDA

actionable metrics, Get Ready to Measure

activation, Key Metrics

activation conversion rate, How to Collect Data

activation funnel, How to Visualize Your Conversion Dashboard

in MVP interview, Welcome (Set the Stage)

reducing user abandonment during, Make Feedback Easy

starting functional tests with activation flow, Test

activation flow, defining, Define your activation Flow

avoiding premature optimization, The Anatomy of an Activation Flow

having a back channel to customers, The Anatomy of an Activation Flow

steps in activation flow, Define your activation Flow

active users

defining, How to Visualize Your Conversion Dashboard

tracking, How to Track Retention

valuing as asset in lieu of actual revenue, Design Pattern for a Network
Effects Product

advantages, unfair (see unfair advantages)

advice, seeking after prioritizing business models, Seek External Advice

Advisor Paradox, Seek External Advice

advisors, recruiting visionary advisors, Seek External Advice

AIDA (Attention, Interest, Desire and Action), Don’t Lower Signup Friction,
Raise It

Airbnb, Design Pattern for a Multisided (Marketplace) Product

alternatives to your product, understanding after Problem interviews,
Document Results

analytics tools, Say Hello to the Cohort, How to Create a Teaser Landing
Page

anchoring, Don’t Lower Signup Friction, Raise It

Andreessen, Marc, Don’t Be a Feature Pusher, Measure Product/Market Fit,
Conclusion

Angelist, Design Pattern for a Multisided (Marketplace) Product

artists, curse of constantly reinventing themselves, Start by Identifying Your
Key Engine of Growth

artists, entrepreneurs as, Start by Identifying Your Key Engine of Growth

attention

as convertible asset, Design Pattern for a Network Effects Product

getting from customer with UVP, Don’t Lower Signup Friction, Raise It

Attention, Interest, Desire, and Action (AIDA), Don’t Lower Signup Friction,
Raise It

Austin, Texas, food trailers, Do the Smallest Thing Possible to Learn

automated channels, Inbound versus outbound

B

Backlog bucket (Kanban board), Constrain Your Features Pipeline

backlog queue for features, How to Track Features on a Kanban Board

benefits, finished story, focusing on in UVP, How to craft a unique value
proposition

best as enemy of the good, Maximize for Speed, Learning, and Focus

Blank, Steve, No Surveys or Focus Groups, Please, How to Achieve Flow in

a Lean Startup

bootstrapping, Where Does Funding Fit into All This?, Start by Identifying
Your Key Engine of Growth, How to Build a Low-Burn Startup

Brodsky, Norm, Cost structure

buffer lanes on Kanban board, How to Track Features on a Kanban Board

Build-Measure-Learn loop, What Is an Experiment?

Burlingham, Bo, Cost structure

Business Model Canvas, Capture Your Business Model Hypotheses

Business Model Generation, Capture Your Business Model Hypotheses

business models

business model as product of startup, Capture Your Business Model
Hypotheses

capturing business model hypotheses, There Is an “I” in Vision

ranking, What Is Risk?

running business model interviews, Seek External Advice

business plans, There Is an “I” in Vision

C

case studies (see CloudFire case study; Running Lean process)

cause/effect relationships underlying a particular problem, Monitor

channel testing, Define the Solution

channels, Solution

CloudFire case study, Retention before referral

early, characteristics of

direct versus automated channels, Inbound versus outbound

direct versus indirect channels, Inbound versus outbound

freer versus paid, Channels

inbound versus outbound, Channels

retention before referral, Inbound versus outbound

prioritizing for ease of reach, What Is Risk?

CHI (Customer Happiness Index), How to Track Retention

churn rate, Start by Identifying Your Key Engine of Growth

Cleland-Huang, Jane, Constrain Your Features Pipeline

CloudFire case study

back channel to customers, The Anatomy of an Activation Flow

channels, Retention before referral

demo of solution, Testing Your Solution

key metrics, Referral

learning from Solution interviews, What Are the Solution Interview Exit
Criteria?

measuring product/market fit, Start by Identifying Your Key Engine of
Growth

MVP interview, What You Need to Learn

MVP learning, What Are the Launch Criteria?

Pirate Metrics, Key Metrics

prioritizing where to start, Rank Your Business Models

problem and customer segments of Lean Canvas, Problem and Customer
Segments

Problem interview, Formulate Falsifiable Hypotheses

Problem interview experiments, Formulate Falsifiable Hypotheses

Problem interview learning, Do You Understand the Problem?

retention table, Foreword

revenue streams and cost structure, Cost structure

sales letter for parents, How to Write a Sales Letter

solutions segment of Lean Canvas, Solution

testable hypotheses for Solution interview, Formulate Testable Hypotheses

tracking active users, How to Track Retention

unfair advantage, Unfair Advantage

unique value proposition (UVP), Brainstorm Possible Customers

coding in smaller batches, How to Get Started with Continuous Deployment

Cohen, Jason, Unfair Advantage, Don’t Be a Feature Pusher, The Problems
with Freemium

cohorts, Simple Funnel Reports Aren’t Enough

cohorts, building weekly cohort report for conversion dashboard, How to
Collect Data

.com domain names, How to Create a Teaser Landing Page

Concierge MVP, Do the Smallest Thing Possible to Learn

continuous deployment process, Reduce your mVP

as massive and daunting undertaking, Get Started Deploying Continuously

Commit-Test-Deploy-Monitor cycle on Kanban board, How to Track
Features on a Kanban Board

feature requests, Process Feature Requests

getting started with, How to Get Started with Continuous Deployment

deployment step, Test

monitoring, Deploy

reducing work-in-progress inventory, How to Get Started with
Continuous Deployment

testing, Commit

quality concerns, Get Started Deploying Continuously

continuous integration server, Commit

conversion dashboard

building, Say Hello to the Cohort, Monitor

collecting data, How to Collect Data

tracking retention, How to Visualize Your Conversion Dashboard

visualizing conversion dashboard, How to Collect Data

visualizing retention, Foreword

conversions, freemium model and, The Problems with Freemium

cost structure, Revenue streams

CloudFire case study, Cost structure

price/gross margin, What Is Risk?

costs

hidden costs of features, Features Must Be Pulled, Not Pushed

of carrying a free user, The Problems with Freemium

creative addiction and entrepreneurs as artists, Start by Identifying Your Key
Engine of Growth

Csíkszentmihályi, Mihaly, The Conflicting Pull for Time

Customer Happiness Index (CHI), How to Track Retention

calculation in CloudFire case study, How to Track Retention

customer lifecycle management software (see USERcycle)

customer lifecycle, validating, Validate Customer Lifecycle

CloudFire case study, MVP learning, What Are the Launch Criteria?

determining if you’re ready to launch, Revenue

facilitating feedback, Validate Customer Lifecycle

troubleshooting customer trials, Make Feedback Easy

customer lifetime value (LTV), Start by Identifying Your Key Engine of
Growth

customer risk, Prioritize Where to Start

learning about, in CloudFire MVP interviews, 3, 2, 1 ... Launch!

tackling systematically, Applying the Iteration Meta-Pattern to Risks

customer trials, Make Feedback Easy

acquisition and activation, Acquisition and Activation

referrals, Revenue

retention, Retention

revenue, Retention

customer-pulled requests for features, The Process Steps Explained

customers

brainstorming possible customers, Create Your Lean Canvas

distinguishing between users and, Brainstorm Possible Customers

putting everyone on same canvas at first, Brainstorm Possible
Customers

sketching Lean Canvas for each customer segment, Brainstorm Possible
Customers

splitting broad customer segments into smaller ones, Brainstorm
Possible Customers

crossing chasm between early adopters and, Life After Product/Market Fit

desires of, features and, Features Must Be Pulled, Not Pushed

interviews with (see interviews)

learning about, product development interfering with, Get to Release 1.0

passion for customers and their problems, Start by Identifying Your Key
Engine of Growth

picking segment representing large enough market, What Is Risk?

prices defining customers, Revenue streams

prioritizing segments with most need for your product, What Is Risk?

problem and customer segments of Lean Canvas, Problem and Customer
Segments

telling (not asking) them what they’ll pay, Testing Your Pricing

D

dashboards

building conversion dashboard, Say Hello to the Cohort, Monitor

creating accessible dashboards, Validate Qualitatively, Verify
Quantitatively

Davidson, Neil, Revenue streams

demographics

collecting in Problem interviews, Welcome (Set the Stage)

collecting in Solution interviews, Welcome (Set the Stage)

demos

for product solutions, Testing Your Solution

testing solution in Solution interview, Tell a Story (Set Problem Context)

Denne, Mark, Constrain Your Features Pipeline

deployment, Test

(see also continuous deployment process)

design

team member for problem/solution team, The three must-haves:
development, design, and marketing

desire, triggering in Solution interview, The Solution Interview as AIDA

development, Reduce your mVP

(see also continuous deployment process)

interference with learning, Get to Release 1.0

team member for problem/solution team, Forget Traditional Departments

direct channels

automated channels versus, Inbound versus outbound

indirect channels versus, Inbound versus outbound

divide and conquer technique, Your Product Is NOT “the Product”

documentation

Plan A, Meta-Principles

results of MVP interviews, Wrapping Up (Keep Feedback Loop Open)

results of Problem interviews, Explore Customer’s Worldview (Test
Problem)

results of Solution interviews, Test Pricing (Revenue Streams)

domain names, .com, How to Create a Teaser Landing Page

Domino’s Pizza UVP, How to craft a unique value proposition

Done bucket (Kanan board), Constrain Your Features Pipeline

“Don’t Just Roll the Dice”, Revenue streams

drip marketing, Retention

Dropbox, Maximize for Speed, Learning, and Focus

E

early adopters

crossing chasm between mainstream customers and, Life After
Product/Market Fit

homing in on, after Problem interviews, Document Results

qualifying in Problem interviews, Welcome (Set the Stage)

targeting in UVP, How to craft a unique value proposition

early traction

exit criteria, Have You Built Something People Want?

iterating toward and determining if you’ve achieved it, Have You Built
Something People Want?

retention of 40% of activated users, Focus on the “Right” Macro

Sean Ellis test for determining, What Is Product/Market Fit?

80/20 rule, Features Must Be Pulled, Not Pushed

Ellis, Sean, What Is Product/Market Fit?

email addresses, collecting, How to Create a Teaser Landing Page

email reminders during customer trials, Retention

emotional hook, on CloudFire landing page, 3, 2, 1 ... Launch!

engines of growth

identifying key engine of growth, Start by Identifying Your Key Engine of
Growth

tuning and resetting, Life After Product/Market Fit

viral engine of growth, Design Pattern for a Network Effects Product

entrepreneurs as artists

creative addiction and, Start by Identifying Your Key Engine of Growth

curse of constantly reinventing themselves, Start by Identifying Your Key
Engine of Growth

errors, catching and reporting in customer trials, Acquisition and Activation

events (user actions), mapping metrics to, How to Collect Data

exit criteria

for Problem interviews, Do You Understand the Problem?

for Solution interviews, Do You Have a Problem Worth Solving?

experiments

CloudFire landing pages, 3, 2, 1 ... Launch!

CloudFire MVP interview, Conduct MVP Interviews

defined, Where Does Funding Fit into All This?

falsifiable hypotheses for Problem interviews, Formulate Falsifiable
Hypotheses

getting ready for, Get Ready to Experiment

applying iteration meta-pattern to risks, Applying the Iteration Meta-
Pattern to Risks

assembling problem/solution team, Get Ready to Experiment

communicating learning early and often, Validate Qualitatively, Verify
Quantitatively

correlating results to specific actions, Validate Qualitatively, Verify
Quantitatively

creating accessible dashboards, Validate Qualitatively, Verify
Quantitatively

doing smallest thing possible to learn, Maximize for Speed, Learning,
and Focus

formulating a falsifiable hypothesis, Do the Smallest Thing Possible to
Learn

identifying single key metric or goal, Maximize for Speed, Learning,
and Focus

maximizing for speed, learning, and focus, The three must-haves:
development, design, and marketing

validating qualitatively and verifying quantitatively, Formulate a
Falsifiable Hypothesis

iteration meta-pattern, What Is an Experiment?

systematic testing of business plan, Where Does Funding Fit into All This?

external funding, Pivot Before Product/Market Fit, Optimize After

F

Facebook, Summary, How to Create a Teaser Landing Page

beginnings of, Design Pattern for a Network Effects Product

validating value before growth, Design Pattern for a Network Effects

Product

features, Don’t Be a Feature Pusher

adding or killing after Solution interviews, Do You Have a Problem Worth
Solving?

building and deploying incrementally, Commit

constraining your features pipeline, Constrain Your Features Pipeline

implementing 80/20 rule for prioritizing focus, Features Must Be Pulled,
Not Pushed

lifecycle, The Feature Lifecycle

process steps, How to Track Features on a Kanban Board

tracking features on Kanban board, The Feature Lifecycle

minimal marketable features (MMFs), Constrain Your Features Pipeline

processing feature requests, Constrain Your Features Pipeline

pulled, not pushed, Don’t Be a Feature Pusher

feedback from customers, facilitating, Validate Customer Lifecycle

feedback, freemium users and, The Problems with Freemium

finished story benefits, How to craft a unique value proposition

first-mover advantage, Referral

Five Whys, questions to explore cause/effect relationships of a problem,
Monitor

flow

creating daily flow, The Conflicting Pull for Time

creating weekly flow, Creating Daily Flow

definitions of, The Conflicting Pull for Time

focus groups, Get Ready to Interview Customers

reasons not to substitute for customer interviews, No Surveys or Focus
Groups, Please

focus, maximizing experiments for, The three must-haves: development,
design, and marketing

food concepts, testing without a restaurant, Do the Smallest Thing Possible to
Learn

freemium, How to Set Pricing for a SaaS Product

how to approach, How to Approach Freemium

MailChimp success story, How to Approach Freemium

problems with, How to Set Pricing for a SaaS Product

functional tests, preference over unit tests, Test

funding, Pivot Before Product/Market Fit, Optimize After

and startup as survival, Start by Identifying Your Key Engine of Growth

premature fundraising as form of waste, How to Build a Low-Burn Startup

funnels

cohort analysis with, Simple Funnel Reports Aren’t Enough

simple funnel reports, Metrics Are People First

G

goals and priorities, listing at top of Kanban board, The Feature Lifecycle

Godin, Seth, Inbound versus outbound

Goswami, Bijoy, How to Build a Low-Burn Startup

Graham, Paul, The Sean Ellis Test

growth

accelerating, Stage 2: Product/Market Fit

identifying key engine of, Start by Identifying Your Key Engine of Growth

tuning and resetting engine of growth, Life After Product/Market Fit

validating value before growth, Facebook, Design Pattern for a Network
Effects Product

H

high-concept pitches, How to craft a unique value proposition

hill-climbing algorithm, Brainstorm Possible Customers

Houston, Drew, Maximize for Speed, Learning, and Focus

“How to Increase Your Luck Surface Area”, Start by Identifying Your Key
Engine of Growth

Hsieh, Tony, Unfair Advantage

hypotheses

formulating falsifiable hypotheses from Lean Canvas, Formulate
Falsifiable Hypotheses

formulating falsifiable hypothesis, Do the Smallest Thing Possible to
Learn

formulating testable hypotheses for Solution interview, The Solution
Interview as AIDA

testing using simplest procedure, Maximize for Speed, Learning, and
Focus

validating qualitatively, then quantitatively, Validate Qualitatively, Verify
Quantitatively

I

In-Progress bucket (Kanban board), Constrain Your Features Pipeline

inbound versus outbound channels, Channels

indirect channels versus direct channels, Inbound versus outbound

Innovation Accounting model, Validate Qualitatively, Verify Quantitatively

interest, capturing in Solution interview, The Solution Interview as AIDA

interest/desire, generating in sales letter, How to Build a Teaser Page

internal requests for features, The Process Steps Explained

interviews

as outbound channels, Inbound versus outbound

getting ready for customer interviews, Get Ready to Interview Customers

common objections to interviewing customers, Finding Prospects

finding prospects, But Talking to People Is Hard

guidelines for conducting interviews, But Talking to People Is Hard

talking to people is hard, No Surveys or Focus Groups, Please

MVP interview, The MVP Interview

CloudFire case study, What You Need to Learn

conducting, Conduct MVP Interviews

documenting results, Wrapping Up (Keep Feedback Loop Open)

following up with interviewees, Retention

learning from, CloudFire case study, What Are the Launch Criteria?

what you need to learn, The MVP Interview

Problem interview, The Problem Interview

collecting demographics, Welcome (Set the Stage)

documenting results, Explore Customer’s Worldview (Test Problem)

exit criteria, Do You Understand the Problem?

exploring customer’s worldview, Problem Ranking (Test Problem)

falsifiable hypotheses for, Formulate Falsifiable Hypotheses

learning from CloudFire interview, Do You Understand the Problem?

ranking problems, Problem Ranking (Test Problem)

refining understanding of problem, post-interview, Document Results

script structure, Formulate Falsifiable Hypotheses

telling a story to illustrate problem, Welcome (Set the Stage)

welcome, Welcome (Set the Stage)

what you need to learn, The Problem Interview

wrapping up, Explore Customer’s Worldview (Test Problem)

running business model interviews, Seek External Advice

Solution interviews, The Solution Interview

as AIDA, Don’t Lower Signup Friction, Raise It

determining if your problem is worth solving, Do You Have a Problem
Worth Solving?

guidelines for conducting, Conduct Solution Interviews

learning from, CloudFire case study, What Are the Solution Interview
Exit Criteria?

pitching versus, The Solution Interview as AIDA

testable hypotheses for, The Solution Interview as AIDA

testing pricing, Testing Your Pricing

using demo to test your solution, The Solution Interview

what you need to learn, The Solution Interview

invitation to learn more, on landing page, The Anatomy of a Marketing
Website

iteration meta-pattern, What Is an Experiment?

iteration meta-pattern, applying to risks, Applying the Iteration Meta-Pattern
to Risks

J

Jones, Daniel T., There Is an “I” in Vision, The Conflicting Pull for Time

K

Kagan, Noah, Maximize for Speed, Learning, and Focus

Kanban board, Constrain Your Features Pipeline

Kanban board, tracking features on, The Feature Lifecycle

key metrics, Cost structure

acquisition, Key Metrics

activation, Key Metrics

CloudFire case study, Referral

identifying single goal or metric for experiments, Maximize for Speed,
Learning, and Focus

retention, Activation

revenue, Activation

keywords for SEO, placing of, How to Create a Teaser Landing Page

keywords in UVP, How to craft a unique value proposition

Klaff, Oren, Don’t Lower Signup Friction, Raise It

Krug, Steve, Conduct MVP Interviews

L

landing page

CloudFire, What Are the Launch Criteria?

creating teaser landing page, How to Write a Sales Letter

elements of marketing website, The Anatomy of a Marketing Website

marketing website, The Anatomy of a Marketing Website

showing for product in MVP interview, Welcome (Set the Stage)

launch

criteria for, Revenue

determining if you’re ready for, Revenue

Lawrence, T. E., Meta-Principles

Lean Canvas, Capture Your Business Model Hypotheses, Verify
Quantitatively

CloudFire case study

Consumers, Rank Your Business Models

Parents, 3, 2, 1 ... Launch!

Photographers, Rank Your Business Models

Problem interview, Formulate Falsifiable Hypotheses

updated Parents canvas after Solution interviews, What Are the Solution
Interview Exit Criteria?

creating, Create Your Lean Canvas

brainstorming possible customers, Create Your Lean Canvas

channels, Solution

creating your own, Now It’s Your Turn

key metrics, Cost structure

problem and customer segments, Problem and Customer Segments

problem and customer segments for CloudFire, Problem and Customer
Segments

revenue streams and cost structure, Retention before referral

sketching a Lean Canvas, Sketching a Lean Canvas

solution, How to craft a unique value proposition

unfair advantage, Referral

unique value proposition (UVP), Unique Value Proposition

lean startups, bootstrapping and, Where Does Funding Fit into All This?

The Lean Startup, Preface, Validate Qualitatively, Verify Quantitatively,
Start by Identifying Your Key Engine of Growth

Lean Thinking, There Is an “I” in Vision, The Conflicting Pull for Time

learning

about customers, interference from product development, Get to Release
1.0

build-measure-learn loop, What Is an Experiment?

building continuous learning culture of experimenters, Life After
Product/Market Fit

communicating early and often, Validate Qualitatively, Verify
Quantitatively

direct sales as tool for, Inbound versus outbound

emphasizing over optimization in activation flow, Define your activation
Flow

from CloudFire Solution interviews, What Are the Solution Interview Exit
Criteria?

gained from CloudFire Problem interviews, Do You Understand the
Problem?

in initial customer interviews, But Talking to People Is Hard

invitation to learn more, on landing page, The Anatomy of a Marketing
Website

manual learning before automating, Design Pattern for a Multisided
(Marketplace) Product

maximizing before product/market fit, Pivot Before Product/Market Fit,
Optimize After

maximizing experiments for, The three must-haves: development, design,
and marketing

qualitative versus quantitative, CloudFire landing pages, 3, 2, 1 ... Launch!

tech support as tool for, Validate Customer Lifecycle

validated learning stage for features, Constrain Your Features Pipeline

lessons learned, communicating, Validate Qualitatively, Verify
Quantitatively

lifecycle marketing, Retention

A List Apart, Testing Your Solution

local maxima problem, hill-climbing algorithm and, Brainstorm Possible
Customers

logins, measuring active user by, How to Visualize Your Conversion
Dashboard

logos, How to Create a Teaser Landing Page

low-burn startups, Where Does Funding Fit into All This?, How to Build a
Low-Burn Startup

M

MailChimp, How to Approach Freemium

maket risk, Prioritize Where to Start

manager’s schedule and maker’s schedule, How to Achieve Flow in a Lean
Startup

margins, What Is Risk?

market risk

addressed in Solution interviews, The Solution Interview

learning about, in CloudFire MVP interviews, 3, 2, 1 ... Launch!

tackling systematically, Applying the Iteration Meta-Pattern to Risks

marketing

building marketing website, The Anatomy of an Activation Flow

drip and lifecycle marketing, Retention

landing page for website, The Anatomy of a Marketing Website

team member for problem/solution team, The three must-haves:
development, design, and marketing

tech support as, Make Feedback Easy

markets, Step 2: Identify the Riskiest Parts of Your Plan

(see also product/market fit)

automation not needed to validate, Do the Smallest Thing Possible to
Learn

customer segment for large enough market, What Is Risk?

design pattern for multisided product, Design Pattern for a Network Effects
Product

market in product/market fit, Have You Built Something People Want?

McClure, Dave, Your Product Is NOT “the Product”, Key Metrics

metrics, Get Ready to Measure

actionable versus vanity metrics, Get Ready to Measure

actionable, accessible, and auditable, What Is an Actionable Metric?

building conversion dashboard, Say Hello to the Cohort

focus on wrong metric with freemiums, The Problems with Freemium

funnel reports, simple, Metrics Are People First

funnels coupled with cohorts, Simple Funnel Reports Aren’t Enough

key metrics, Cost structure

acquisition, Key Metrics

activation, Key Metrics

CloudFire case study, Referral

Pirate Metrics, Key Metrics

referral, Activation

retention, Activation

revenue, Activation

mapping to key events (user actions), How to Collect Data

measuring product/market fit, The Sean Ellis Test

need for actionable metrics, Get Ready to Measure

people behind the numbers, What Is an Actionable Metric?, How to
Visualize Your Conversion Dashboard

micro-level funnels, Metrics Are People First

minimal marketable features (MMFs), Constrain Your Features Pipeline

minimum viable product (MVP), Step 2: Identify the Riskiest Parts of Your
Plan

Concierge MVP, Do the Smallest Thing Possible to Learn

dilution by adding features, Don’t Be a Feature Pusher

list of features for CloudFire, Solution

MVP interviews (see interviews)

pricing, Retention before referral

reducing scope of, Product Development Gets in the Way of Learning

monitoring system, Deploy

monitoring system, off-the-shelf monitoring and alerting applications,
Monitor

multisided products, Design Pattern for a Network Effects Product

Murphy, Lincoln, The Problems with Freemium

N

network effects product, design pattern for, Summary

O

off-the-shelf monitoring and alerting applications, Monitor

Ohno, Taiichi, Constrain Your Features Pipeline, Life After Product/Market
Fit

optimization

after product/market fit, Stage 2: Product/Market Fit

premature, avoiding, The Anatomy of an Activation Flow

Osterwalder, Alex, Capture Your Business Model Hypotheses, Sketching a
Lean Canvas

outbound versus inbound channels, Channels

outsourcing

avoiding for problem/solution team, The three must-haves: development,
design, and marketing

scheduling of customer interviews, But Talking to People Is Hard

server infrastructure, Test

P

paid engine of growth, Start by Identifying Your Key Engine of Growth

Pareto Principle, Deploy

Pirate Metrics, Key Metrics

Pitch Anything, Don’t Lower Signup Friction, Raise It

pitches, high-concept, How to craft a unique value proposition

pitching

learning versus, in customer interviews, But Talking to People Is Hard

Solution interview versus, The Solution Interview as AIDA

pivots, before product/market fit, Stage 2: Product/Market Fit

“The Pmarca Guide to Startups”, Don’t Be a Feature Pusher, Measure
Product/Market Fit, Conclusion

Porter, Joshua, Define your activation Flow

Positioning: The Battle for Your Mind, Unique Value Proposition

pricing

minimum viable product (MVP) and, Retention before referral

price/gross margin, What Is Risk?

reasons to price from early on, Revenue streams

refining after Solution interviews, Do You Have a Problem Worth
Solving?

setting for SaaS products, Eliminating Software Waste

setting initial pricing, Revenue streams

showing pricing page in MVP interview, Welcome (Set the Stage)

telling customers what they’ll pay in Solution interviews, Testing Your
Pricing

testing, Applying the Iteration Meta-Pattern to Risks

testing in CloudFire MVP interviews, 3, 2, 1 ... Launch!

testing in Solution interviews, Testing Your Pricing, Test Pricing (Revenue
Streams)

The Principles of Product Development Flow, Constrain Your Features
Pipeline

principles versus tactics, Meta-Principles

prioritization of where to start, Prioritize Where to Start

ranking your business models, What Is Risk?

risks, type of, Prioritize Where to Start

seeking external advice, Seek External Advice

Privacy Policy page, marketing website, The Anatomy of a Marketing

Website

prizing, Don’t Lower Signup Friction, Raise It

problem/solution fit, Step 2: Identify the Riskiest Parts of Your Plan

problem/solution fit, finding with iteration meta-pattern, The Iteration Meta-
Pattern

problem/solution team, assembling, Get Ready to Experiment

caution about oursourcing, The three must-haves: development, design,
and marketing

ignoring traditional departments and titles, Get Ready to Experiment

must-haves, development, design, and marketing, Forget Traditional
Departments

utilizing smallest team possible, Forget Traditional Departments

problems

customer pain level and need for your product, What Is Risk?

explaining problem in sales letter, How to Build a Teaser Page

finding a problem worth solving, Start by Identifying Your Key Engine of
Growth

identifying the problem, Your Product Is NOT “the Product”

monitoring and analyzing in production environment, Monitor

problem and customer segments of Lean Canvas, Problem and Customer
Segments

Problem interview (see interviews)

Problem team, Get Ready to Experiment

problem-based startups, Start by Identifying Your Key Engine of Growth

questions to identify problem worth solving, Step 2: Identify the Riskiest

Parts of Your Plan

refining after Problem interviews, Document Results

reviewing after Solution interviews, Do You Have a Problem Worth
Solving?

setting problem context in Solution interview, Welcome (Set the Stage)

understanding the problem, The Iteration Meta-Pattern, Understand the
Problem

product risk, Prioritize Where to Start

learning about, in MVP interview, The MVP Interview

tackling systematically, Applying the Iteration Meta-Pattern to Risks

product/market fit, Step 2: Identify the Riskiest Parts of Your Plan

big round of funding after, Pivot Before Product/Market Fit, Optimize
After

CloudFire case study, Start by Identifying Your Key Engine of Growth

description of, Measure Product/Market Fit

design pattern for multisided product, Design Pattern for a Network Effects
Product

design pattern for network effects product, Summary

finding with iteration meta-pattern, The Iteration Meta-Pattern

focusing on retention macro, The Sean Ellis Test

iterating toward early traction and deciding if you’ve achieved it, Have
You Built Something People Want?

life after, Conclusion

market in, Have You Built Something People Want?

measurement of, revenue and, Focus on the “Right” Macro

pivots before and optimizations after, Stage 2: Product/Market Fit

Sean Ellis test for, What Is Product/Market Fit?

tracking user activity for, How to Visualize Your Conversion Dashboard

products, Capture Your Business Model Hypotheses

demos for solution, Testing Your Solution

multisided, design pattern for, Design Pattern for a Network Effects
Product

network effects product, design pattern for, Summary

picking name for, How to Create a Teaser Landing Page

price as element of, Revenue streams

reducig scope of MVP, Product Development Gets in the Way of Learning

Q

QA (manual testing), elimination with Constant Deployment, Commit

quantitative metrics, sole reliance on, Finding Prospects

R

Rachleff, Andy, Measure Product/Market Fit

reaching out to users who dropped off, Acquisition and Activation

“The Reality of Freemium in SaaS”, The Problems with Freemium

referrals, Activation

getting from customer trials, Revenue

high, and viral engine of growth, Start by Identifying Your Key Engine of
Growth

retention before, Inbound versus outbound

Reinersten, Donald, Constrain Your Features Pipeline

releases

continuous release, 80/20 rule to prioritize focus, Features Must Be Pulled,
Not Pushed

getting to Release 1.0, Get to Release 1.0

building marketing website, The Anatomy of an Activation Flow

defining activation flow, Define your activation Flow

development interfering with learning, Get to Release 1.0

getting started deploying continuously, Reduce your mVP

reducing your MVP, Product Development Gets in the Way of Learning

retention, Activation, Design Pattern for a Network Effects Product

before referrals, Inbound versus outbound

in customer trials, Retention

measure of “building something people want”, The Sean Ellis Test

monitoring, Have You Built Something People Want?

providing detailed view of metrics, Foreword

sticky engine of growth and, Start by Identifying Your Key Engine of
Growth

tracking, How to Visualize Your Conversion Dashboard

visualizing in conversion dashboard, Foreword

revenue, Activation

and measurement of product/market fit, Focus on the “Right” Macro

getting paid in customer trials, Retention

money as first form of validation, Start by Identifying Your Key Engine of
Growth

reinvesting toward customer acquisition, Start by Identifying Your Key
Engine of Growth

revenue streams, Retention before referral

CloudFire case study, Cost structure

price/gross margin, What Is Risk?

reasons to charge from early on, Revenue streams

setting initial pricing, Revenue streams

testing pricing in Solution interview, Test Pricing (Revenue Streams)

valuing active users as asset in lieu of actual revenue, Design Pattern for a
Network Effects Product

Ries, Al, Unique Value Proposition

Ries, Eric, Preface, Finding Prospects, How to Achieve Flow in a Lean
Startup

Build-Measure-Learn loop, What Is an Experiment?

Innovation Accounting, Validate Qualitatively, Verify Quantitatively

on engines of growth, Start by Identifying Your Key Engine of Growth

on metrics, What Is an Actionable Metric?

“Right Action, Right Time” philosophy, How to Build a Low-Burn Startup

risks

applying iteration meta-pattern to, Applying the Iteration Meta-Pattern to
Risks

identifying riskiest part of your plan, Your Product Is NOT “the Product”,
Understand the Problem

prioritization of, Prioritize Where to Start

product risk, learning about in MVP interview, The MVP Interview

systematically eliminating risks, Applying the Iteration Meta-Pattern to
Risks

types addressed in Problem interview, The Problem Interview

types addressed in Solution interviews, The Solution Interview

Roberts, Jason, Start by Identifying Your Key Engine of Growth

Rocket Surgery Made Easy, Conduct MVP Interviews

Rosso, Manuel, Do the Smallest Thing Possible to Learn

Running Lean process

case study, writing this book, Running Lean Illustrated

deciding if book is finished, Verify Quantitatively

defining the solution, Understand the Problem

timeline for writing the book, Verify Quantitatively

understanding the problem, Understand the Problem

validating quantitatively, Define the Solution

verifying quantitatively, Validate Qualitatively

“Running Lean Mastery” newsletter, Life After Product/Market Fit

S

SaaS (Software as a Service) products

freemium in, The Problems with Freemium

pricing, Revenue streams, Eliminating Software Waste

sales letter, writing, How to Build a Teaser Page

CloudFire, sales letter for parents, How to Write a Sales Letter

Sanderson, Steve, Do the Smallest Thing Possible to Learn

scaling your business

premature focus on, Have You Built Something People Want?

scale stage of startup, Stage 2: Product/Market Fit

scarcity, Don’t Lower Signup Friction, Raise It

scripts

MVP interview, Conduct MVP Interviews

Problem interview, Formulate Falsifiable Hypotheses, Document Results

Solution interview, Conduct Solution Interviews, Do You Have a Problem
Worth Solving?

Sean Ellis Test, What Is Product/Market Fit?, Have You Built Something
People Want?

search engine optimization (SEO) rankings, How to craft a unique value
proposition, How to Write a Sales Letter

search engine optimization (SEO), following basic SEO practices, How to
Create a Teaser Landing Page

selling, Unique Value Proposition

server infrastructure, outsourcing, Test

Shah, Dharmesh, How to Track Retention

signup and activation in MVP interview, Welcome (Set the Stage)

signup friction

raising, not lowering, in Solution interviews, Don’t Lower Signup Friction,
Raise It

reducing, Define your activation Flow

small feature/bug fix, Constrain Your Features Pipeline, Process Feature
Requests

A Smart Bear (blog), Don’t Be a Feature Pusher, The Problems with
Freemium

social proof elements, on landing page, The Landing Page Deconstructed

software

continuous deployment, Reduce your mVP

demo for intended solution, Testing Your Solution

eliminating software waste, Creating Weekly Flow

testing without using code, Maximize for Speed, Learning, and Focus

Software as a Service products (see SaaS products)

Software by Numbers, Constrain Your Features Pipeline

solutions

CloudFire case study, Solution

defining for requested features, The Process Steps Explained

defining the solution in writing this book, Understand the Problem

describing in sales letter, How to Build a Teaser Page

Solution interviews (see interviews)

Solution team, Get Ready to Experiment

solution-based startups, Start by Identifying Your Key Engine of Growth

tackling in Lean Canvas, How to craft a unique value proposition

technical feasibility of, What Is Risk?

speed, maximizing experiments for, The three must-haves: development,
design, and marketing

split-tests for features, The Process Steps Explained

startups, stages of, Step 2: Identify the Riskiest Parts of Your Plan

sticky engine of growth, Start by Identifying Your Key Engine of Growth

stories, Welcome (Set the Stage)

stories in Solution interview, setting problem context, Welcome (Set the
Stage)

subfunnels

ability to drill into, How to Visualize Your Conversion Dashboard

acquisition and activation, exploring to find user drop-off, Acquisition and
Activation

surveys

reasons not to substitute for customer interviews, Get Ready to Interview
Customers

when to use, No Surveys or Focus Groups, Please

survival, startups and, Start by Identifying Your Key Engine of Growth

T

tactics versus principles, Meta-Principles

teaser page, building, How to Build a Teaser Page

creating teaser landing page, How to Write a Sales Letter

writing a sales letter, How to Build a Teaser Page

tech support, Validate Customer Lifecycle

technical feasibility of solution, What Is Risk?

Terms of Service page, marketing website, The Anatomy of a Marketing
Website

testing, Get to Release 1.0

continuous deployment and, Commit

of software product without using code, Maximize for Speed, Learning,
and Focus

testing case study, writing this book, Define the Solution

testing your plan systematically, Where Does Funding Fit into All This?

time, conflicting pull for, How to Achieve Flow in a Lean Startup

Tour page, marketing website, The Anatomy of a Marketing Website

Toyota, Life After Product/Market Fit

Toyota Production System, Constrain Your Features Pipeline

transaction friction, reduction of, Design Pattern for a Network Effects
Product

trials (see customer trials)

Trout, Jack, Unique Value Proposition

trunk-stable source control tree, Commit

Twitter, Summary

availability of handle, How to Create a Teaser Landing Page

beginnings of, Design Pattern for a Network Effects Product

U

unfair advantages, Referral

CloudFire case study, Unfair Advantage

examples of, Unfair Advantage

testing and, Applying the Iteration Meta-Pattern to Risks

unique value proposition (UVP), Pivot Before Product/Market Fit, Optimize
After

crafting, Unique Value Proposition

CloudFire UVP, How to craft a unique value proposition

formula for, How to craft a unique value proposition

studying other good UVPs, How to craft a unique value proposition

defined, Unique Value Proposition

delivering on, in activation flow, The Anatomy of an Activation Flow

dilution by adding features, Don’t Be a Feature Pusher

examples of, How to craft a unique value proposition

for this book, Understand the Problem

getting customer’s attention with, Don’t Lower Signup Friction, Raise It

in sales letter, How to Build a Teaser Page

on landing page of marketing website, The Anatomy of a Marketing
Website

right keywords in, to build SEO ranking, How to Write a Sales Letter

stating on teaser landing page, How to Create a Teaser Landing Page

validation in MVP interviews for CloudFire, What Are the Launch
Criteria?

unit tests, preferring functional tests over, Test

usability problems, documenting after MVP interviews, Wrapping Up (Keep
Feedback Loop Open)

usability testing, Conduct MVP Interviews

USERcycle, Verify Quantitatively, How to craft a unique value proposition

USERcycle example UVP, How to craft a unique value proposition

users

cohort analysis applied to, Say Hello to the Cohort

costs of free users, The Problems with Freemium

defining an active user, How to Visualize Your Conversion Dashboard

versus customers, Brainstorm Possible Customers

V

validation

funding and, How to Build a Low-Burn Startup

getting paid as first form of, Revenue streams

long cycle with freemiums, The Problems with Freemium

money/revenue as first form of, Start by Identifying Your Key Engine of
Growth

of markets, automation not needed for, Do the Smallest Thing Possible to
Learn

qualitative, Define the Solution

qualitative, for features, The Process Steps Explained

quantitative, for features, The Process Steps Explained

two-phase validation of features, How to Track Features on a Kanban
Board

validated learning stage, Constrain Your Features Pipeline

vanity metrics, Get Ready to Measure

Vaynerchuck, Gary, Revenue

verification of features, The Process Steps Explained

viral coefficient, Start by Identifying Your Key Engine of Growth

viral engine of growth, Start by Identifying Your Key Engine of Growth,
Design Pattern for a Network Effects Product

vision, Meta-Principles

visual, supporting UVP on landing page, The Anatomy of a Marketing
Website

Voltaire, Maximize for Speed, Learning, and Focus

voter-based feedback tools, Make Feedback Easy

W

waste

defined, There Is an “I” in Vision

eliminating software waste, Creating Weekly Flow

eliminating with continuous deployment, Get Started Deploying
Continuously

elimination in Lean Startups, How to Achieve Flow in a Lean Startup

premature fundraising as, How to Build a Low-Burn Startup

reducing with continuous deployment system, How to Get Started with
Continuous Deployment

selling business plan to investors before validation, Where Does Funding
Fit into All This?

solutions for problems no one cares about, Your Product Is NOT “the
Product”

website, tracking visitors to, How to Create a Teaser Landing Page

welcome segment

MVP interviews, Conduct MVP Interviews

Problem interview, Welcome (Set the Stage)

Solution interview, Welcome (Set the Stage)

what, who, and why questions in UVP, How to craft a unique value
proposition

why questions, Five Whys exploring cause/effect relationships of a problem,
Monitor

Wilson, Fred, How to Set Pricing for a SaaS Product

Womak, James P., There Is an “I” in Vision, The Conflicting Pull for Time

word hook, CloudFire landing page, 3, 2, 1 ... Launch!

work-in-progress inventory, decreasing, How to Get Started with Continuous
Deployment

work-in-progress limits on Kanban board, The Feature Lifecycle

workflow for feature requests, Process Feature Requests

wrapping up

in MVP interview, Wrapping Up (Keep Feedback Loop Open)

in Problem interview, Explore Customer’s Worldview (Test Problem)

in Solution interview, Test Pricing (Revenue Streams)

writing this book (case study) (see Running Lean process)

Z

Zappos, Unfair Advantage

Zeldman, Jeffrey, Testing Your Solution

Zuckerberg, Mark, Start by Identifying Your Key Engine of Growth

About the Author
Ash Maurya is the founder of USERcycle. Since bootstrapping his last
company seven years ago, he has launched five products and one peer-to-web
application framework. Throughout this time he has been in search of better,
faster ways for building successful products. Ash has more recently been
rigorously applying Customer Development and Lean Startup techniques to
his products.

Special Upgrade Offer
If you purchased this ebook from a retailer other than O’Reilly, you can
upgrade it for $4.99 at oreilly.com by clicking here.

http://opds.oreilly.com/buy/9781449311124.EBOOK?source=kindle

Running Lean: Iterate from Plan A to a Plan That Works
Ash Maurya
Editor
Mary Treseler

Copyright © 2012 Ash Maurya
Running Lean, Second Edition

by Ash Maurya

All rights reserved.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://my.safaribooksonline.com). For
more information, contact our corporate/institutional sales department: (800) 998-9938 or
corporate@oreilly.com.

Editor: Mary Treseler
Production Editor: Holly Bauer
Copyeditor: Audrey Doyle
Proofreader: Kiel Van Horn
Indexer: Ellen Troutman Zaig
Production Services: Octal Publishing, Inc.
Cover Designer: Mark Paglietti
Interior Designer: Ron Bilodeau
Illustrators: Robert Romano, Rebecca Demarest, and Emiliano Villarreal

February 2011: First Edition.

February 2012: Second Edition.

Revision History for the Second Edition:

2012-02-07 First release

See http://oreilly.com/catalog/errata.csp?isbn=0636920020141 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly Media, Inc. Running Lean and related trade dress are trademarks of
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and O’Reilly
Media, Inc., was aware of a trademark claim, the designations have been printed in caps or
initial caps.

Although the publisher and author have used reasonable care in preparing this book, the

http://my.safaribooksonline.com
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=0636920020141

information it contains is distributed “as is” and without warranties of any kind. This book
is not intended as legal or financial advice, and not all of the recommendations may be
suitable for your situation. Professional legal and financial advisors should be consulted, as
needed. Neither the publisher nor the author shall be liable for any costs, expenses, or
damages resulting from use of or reliance on the information contained in this book.

[CW]

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2014-07-25T06:31:16-07:00

Running Lean: Iterate from Plan A to a
Plan That Works
Table of Contents
Dedication
Special Upgrade Offer
Praise for Running Lean, Second Edition
Foreword
Preface
Safari® Books Online
We’d Like to Hear from You
Attributions and Permissions

Introduction
What Is Running Lean?
Why Are Startups Hard?
Is There a Better Way?
Customer Development
Lean Startup
Bootstrapping

What Will This Book Teach You?
Is This Book for You?
How Is This Book Organized?
Part 1: Roadmap
Part 2: Document Your Plan A
Part 3: Identify the Riskiest Parts of Your Plan
Part 4: Systematically Test Your Plan

About Me
Why This Book?
Field-Tested

Disclaimers

Practice Trumps Theory
There Are No Silver Bullets

I. Roadmap
1. Meta-Principles
Step 1: Document Your Plan A
There Is an “I” in Vision
Capture Your Business Model Hypotheses
Your Product Is NOT “the Product”

Step 2: Identify the Riskiest Parts of Your Plan
The Three Stages of a Startup
Stage 1: Problem/Solution Fit
Stage 2: Product/Market Fit
Stage 3: Scale

Pivot Before Product/Market Fit, Optimize After
Where Does Funding Fit into All This?

Step 3: Systematically Test Your Plan
What Is an Experiment?
The Iteration Meta-Pattern

2. Running Lean Illustrated
Case Study: How I Wrote Iterated This Book
Understand the Problem
Define the Solution
Validate Qualitatively
Verify Quantitatively
Is the Book Finished?

II. Document Your Plan A
3. Create Your Lean Canvas
Brainstorm Possible Customers
Sketching a Lean Canvas
Problem and Customer Segments
Unique Value Proposition

How to craft a unique value proposition
Solution
Channels
Freer versus paid
Inbound versus outbound
Direct versus automated
Direct versus indirect
Retention before referral

Revenue Streams and Cost Structure
Revenue streams
Cost structure

Key Metrics
Acquisition
Activation
Retention
Revenue
Referral

Unfair Advantage
Now It’s Your Turn

III. Identify the Riskiest Parts of Your Plan
4. Prioritize Where to Start
What Is Risk?
Rank Your Business Models
Seek External Advice

5. Get Ready to Experiment
Assemble a Problem/Solution Team
Forget Traditional Departments
Start with the Smallest Team Possible, but No Smaller
The three must-haves: development, design, and marketing

Be Wary of Outsourcing Your Problem/Solution Team
Running Effective Experiments

Maximize for Speed, Learning, and Focus
Identify a Single Key Metric or Goal
Do the Smallest Thing Possible to Learn
Formulate a Falsifiable Hypothesis
Validate Qualitatively, Verify Quantitatively
Make Sure You Can Correlate Results Back to Specific Actions
Create Accessible Dashboards
Communicate Learning Early and Often

Applying the Iteration Meta-Pattern to Risks
What About Unfair Advantage?

IV. Systematically Test Your Plan
6. Get Ready to Interview Customers
No Surveys or Focus Groups, Please
Are Surveys Good for Anything?

But Talking to People Is Hard
Finding Prospects
Preemptive Strikes and Other Objections (or Why I Don’t Need to
Interview Customers)

7. The Problem Interview
What You Need to Learn
Testing the Problem
Formulate Falsifiable Hypotheses
Conduct Problem Interviews
Welcome (Set the Stage)
Collect Demographics (Test Customer Segment)
Tell a Story (Set Problem Context)
Problem Ranking (Test Problem)
Explore Customer’s Worldview (Test Problem)
Wrapping Up (the Hook and Ask)
Document Results

Do You Understand the Problem?

What Are the Problem Interview Exit Criteria?
8. The Solution Interview
What You Need to Learn
Testing Your Solution
Testing Your Pricing
Don’t Ask Customers What They’ll Pay, Tell Them
Don’t Lower Signup Friction, Raise It
The Solution Interview as AIDA
How Is This Different from a Pitch?

Formulate Testable Hypotheses
Conduct Solution Interviews
Welcome (Set the Stage)
Collect Demographics (Test Customer Segment)
Tell a Story (Set Problem Context)
Demo (Test Solution)
Test Pricing (Revenue Streams)
Wrapping Up (the Ask)
Document Results

Do You Have a Problem Worth Solving?
What Are the Solution Interview Exit Criteria?

9. Get to Release 1.0
Product Development Gets in the Way of Learning
Reduce your mVP
Get Started Deploying Continuously
Define your activation Flow
The Anatomy of an Activation Flow

Build a Marketing Website
The Anatomy of a Marketing Website
The Landing Page Deconstructed

10. Get Ready to Measure
The Need for Actionable Metrics

What Is an Actionable Metric?
Metrics Are People First
Simple Funnel Reports Aren’t Enough
Say Hello to the Cohort
How to Build Your Conversion Dashboard

11. The MVP Interview
What You Need to Learn
Formulate Testable Hypotheses
Conduct MVP Interviews
Welcome (Set the Stage)
Show Landing Page (Test UVP)
Show Pricing Page (Test Pricing)
Signup and Activation (Test Solution)
Wrapping Up (Keep Feedback Loop Open)
Document Results

12. Validate Customer Lifecycle
Make Feedback Easy
Troubleshoot Customer Trials
Acquisition and Activation
Retention
Revenue
Referral

Are You Ready to Launch?
What Are the Launch Criteria?
3, 2, 1 ... Launch!

13. Don’t Be a Feature Pusher
Features Must Be Pulled, Not Pushed
Implement an 80/20 Rule
Constrain Your Features Pipeline
Process Feature Requests
The Feature Lifecycle

How to Track Features on a Kanban Board
The Process Steps Explained

14. Measure Product/Market Fit
What Is Product/Market Fit?
The Sean Ellis Test
Focus on the “Right” Macro
What About Revenue?
Have You Built Something People Want?
What Are the Early Traction Exit Criteria?

What About the Market in Product/Market Fit?
Start by Identifying Your Key Engine of Growth

Summary
Design Pattern for a Network Effects Product
Design Pattern for a Multisided (Marketplace) Product

15. Conclusion
What’s Next?
Life After Product/Market Fit
Did I Keep My Promise?
Keep In Touch

Resources
Books
Blogs
Tools

A. Bonus Material
How to Build a Low-Burn Startup
Why Premature Fundraising Is a Form of Waste
How to Achieve Flow in a Lean Startup
The Conflicting Pull for Time
Creating Daily Flow
Creating Weekly Flow
Eliminating Software Waste

How to Set Pricing for a SaaS Product
What About Freemium?
The Problems with Freemium
How to Approach Freemium

How to Build a Teaser Page
How to Write a Sales Letter
How to Create a Teaser Landing Page

How to Get Started with Continuous Deployment
Commit
Test
Deploy
Monitor

How to Build a Conversion Dashboard
How to Collect Data
How to Visualize Your Conversion Dashboard
How to Track Retention

Index
About the Author
Special Upgrade Offer
Copyright

	Running Lean: Iterate from Plan A to a Plan That Works
	Dedication
	Praise for Running Lean, Second Edition
	Foreword
	Preface
	Safari® Books Online
	We’d Like to Hear from You
	Attributions and Permissions

	Introduction
	What Is Running Lean?
	Why Are Startups Hard?
	Is There a Better Way?
	Customer Development
	Lean Startup
	Bootstrapping

	What Will This Book Teach You?
	Is This Book for You?
	How Is This Book Organized?
	Part 1: Roadmap
	Part 2: Document Your Plan A
	Part 3: Identify the Riskiest Parts of Your Plan
	Part 4: Systematically Test Your Plan

	About Me
	Why This Book?
	Field-Tested

	Disclaimers
	Practice Trumps Theory
	There Are No Silver Bullets

	I. Roadmap
	1. Meta-Principles
	Step 1: Document Your Plan A
	There Is an “I” in Vision
	Capture Your Business Model Hypotheses
	Your Product Is NOT “the Product”

	Step 2: Identify the Riskiest Parts of Your Plan
	The Three Stages of a Startup
	Stage 1: Problem/Solution Fit
	Stage 2: Product/Market Fit
	Stage 3: Scale

	Pivot Before Product/Market Fit, Optimize After
	Where Does Funding Fit into All This?

	Step 3: Systematically Test Your Plan
	What Is an Experiment?
	The Iteration Meta-Pattern

	2. Running Lean Illustrated
	Case Study: How I Wrote Iterated This Book
	Understand the Problem
	Define the Solution
	Validate Qualitatively
	Verify Quantitatively
	Is the Book Finished?

	II. Document Your Plan A
	3. Create Your Lean Canvas
	Brainstorm Possible Customers
	Sketching a Lean Canvas
	Problem and Customer Segments
	Unique Value Proposition
	How to craft a unique value proposition

	Solution
	Channels
	Freer versus paid
	Inbound versus outbound
	Direct versus automated
	Direct versus indirect
	Retention before referral

	Revenue Streams and Cost Structure
	Revenue streams
	Cost structure

	Key Metrics
	Acquisition
	Activation
	Retention
	Revenue
	Referral

	Unfair Advantage

	Now It’s Your Turn

	III. Identify the Riskiest Parts of Your Plan
	4. Prioritize Where to Start
	What Is Risk?
	Rank Your Business Models
	Seek External Advice

	5. Get Ready to Experiment
	Assemble a Problem/Solution Team
	Forget Traditional Departments
	Start with the Smallest Team Possible, but No Smaller
	The three must-haves: development, design, and marketing

	Be Wary of Outsourcing Your Problem/Solution Team

	Running Effective Experiments
	Maximize for Speed, Learning, and Focus
	Identify a Single Key Metric or Goal
	Do the Smallest Thing Possible to Learn
	Formulate a Falsifiable Hypothesis
	Validate Qualitatively, Verify Quantitatively
	Make Sure You Can Correlate Results Back to Specific Actions
	Create Accessible Dashboards
	Communicate Learning Early and Often

	Applying the Iteration Meta-Pattern to Risks
	What About Unfair Advantage?

	IV. Systematically Test Your Plan
	6. Get Ready to Interview Customers
	No Surveys or Focus Groups, Please
	Are Surveys Good for Anything?

	But Talking to People Is Hard
	Finding Prospects
	Preemptive Strikes and Other Objections (or Why I Don’t Need to Interview Customers)

	7. The Problem Interview
	What You Need to Learn
	Testing the Problem
	Formulate Falsifiable Hypotheses
	Conduct Problem Interviews
	Welcome (Set the Stage)
	Collect Demographics (Test Customer Segment)
	Tell a Story (Set Problem Context)
	Problem Ranking (Test Problem)
	Explore Customer’s Worldview (Test Problem)
	Wrapping Up (the Hook and Ask)
	Document Results

	Do You Understand the Problem?
	What Are the Problem Interview Exit Criteria?

	8. The Solution Interview
	What You Need to Learn
	Testing Your Solution
	Testing Your Pricing
	Don’t Ask Customers What They’ll Pay, Tell Them
	Don’t Lower Signup Friction, Raise It
	The Solution Interview as AIDA
	How Is This Different from a Pitch?

	Formulate Testable Hypotheses
	Conduct Solution Interviews
	Welcome (Set the Stage)
	Collect Demographics (Test Customer Segment)
	Tell a Story (Set Problem Context)
	Demo (Test Solution)
	Test Pricing (Revenue Streams)
	Wrapping Up (the Ask)
	Document Results

	Do You Have a Problem Worth Solving?
	What Are the Solution Interview Exit Criteria?

	9. Get to Release 1.0
	Product Development Gets in the Way of Learning
	Reduce your mVP
	Get Started Deploying Continuously
	Define your activation Flow
	The Anatomy of an Activation Flow

	Build a Marketing Website
	The Anatomy of a Marketing Website
	The Landing Page Deconstructed

	10. Get Ready to Measure
	The Need for Actionable Metrics
	What Is an Actionable Metric?

	Metrics Are People First
	Simple Funnel Reports Aren’t Enough
	Say Hello to the Cohort
	How to Build Your Conversion Dashboard

	11. The MVP Interview
	What You Need to Learn
	Formulate Testable Hypotheses
	Conduct MVP Interviews
	Welcome (Set the Stage)
	Show Landing Page (Test UVP)
	Show Pricing Page (Test Pricing)
	Signup and Activation (Test Solution)
	Wrapping Up (Keep Feedback Loop Open)
	Document Results

	12. Validate Customer Lifecycle
	Make Feedback Easy
	Troubleshoot Customer Trials
	Acquisition and Activation
	Retention
	Revenue
	Referral

	Are You Ready to Launch?
	What Are the Launch Criteria?
	3, 2, 1 ... Launch!

	13. Don’t Be a Feature Pusher
	Features Must Be Pulled, Not Pushed
	Implement an 80/20 Rule
	Constrain Your Features Pipeline
	Process Feature Requests
	The Feature Lifecycle
	How to Track Features on a Kanban Board
	The Process Steps Explained

	14. Measure Product/Market Fit
	What Is Product/Market Fit?
	The Sean Ellis Test
	Focus on the “Right” Macro
	What About Revenue?
	Have You Built Something People Want?
	What Are the Early Traction Exit Criteria?

	What About the Market in Product/Market Fit?
	Start by Identifying Your Key Engine of Growth

	Summary
	Design Pattern for a Network Effects Product
	Design Pattern for a Multisided (Marketplace) Product

	15. Conclusion
	What’s Next?
	Life After Product/Market Fit
	Did I Keep My Promise?
	Keep In Touch

	Resources
	Books
	Blogs
	Tools

	A. Bonus Material
	How to Build a Low-Burn Startup
	Why Premature Fundraising Is a Form of Waste
	How to Achieve Flow in a Lean Startup
	The Conflicting Pull for Time
	Creating Daily Flow
	Creating Weekly Flow
	Eliminating Software Waste

	How to Set Pricing for a SaaS Product
	What About Freemium?
	The Problems with Freemium
	How to Approach Freemium

	How to Build a Teaser Page
	How to Write a Sales Letter
	How to Create a Teaser Landing Page

	How to Get Started with Continuous Deployment
	Commit
	Test
	Deploy
	Monitor

	How to Build a Conversion Dashboard
	How to Collect Data
	How to Visualize Your Conversion Dashboard
	How to Track Retention

	Index
	About the Author
	Copyright

