


Descriptive Statistics
Selection Guide

Nature of Variable

Unordered Qualitative Ordered Qualitative Quantitative
Variable Variable Variable

Central tendency Mode (Mo) 3.2* Mode (Mo) 3.2 Mode (Mo) 3.2

(or measure of Mean ( ) 3.3
location) Median (Mdn) 3.4

Weighted mean ( ) 3.7
Percentile rank (PR) 4.2
Quartiles (Q1 and Q3) 4.2
Standard score (z) 9.3

Dispersion Index of dispersion (D) 4.2 Index of dispersion (D) 4.2 Range (R) 4.2
Semi-interquartile range (Q) 4.2
Standard deviation (S) 4.2
Standard error of estimate

( ) 6.3

Skewness Skewness (Sk) 4.6

Kurtosis Kurtosis (Kur) 4.6

Association and/or Cramér’s coefficient Spearman’s coefficient Pearson’s coefficient (r) 5.3

prediction ( ) 17.4 (rs) 5.7 Coefficient of determination
(r2) 5.4

Regression ( ) 6.2
Coefficient of multiple 

determination 6.5
Multiple correlation 

6.5
Multiple regression ( ) 6.5

Miscellaneous Frequency (f) 2.2 Frequency ( f ) 2.2 Frequency ( f ) 2.2
Percent (%) 2.2 Percent (%) 2.2 Percent (%) 2.2
Proportion (p) 2.2 Proportion (p) 2.2 Proportion (p) 2.2

Effect magnitude (d ) 10.4, (g)
(11.3), (13.2), (13.4), r
(11.3), (15.7), (16.3),
(16.4), (17.3)

*Section where statistic is described.
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Inferential Statistics
Selection Guide

Nature of Variable

Unordered Qualitative Ordered Qualitative Quantitative
Variable Variable Variable

One sample z test for p, 12.2* z test for p, 12.2 t test for m, 10.2
z interval for p, 12.2 z interval for p, 12.2 t interval for m, 11.2

test for goodness of fit, 17.3 test for goodness of fit, 17.3 t test for r, 12.3
test for independence, 17.4 test for independence, 17.4 z interval for r, 12.3

Two independent z test for p1 – p2, 14.4 z test for p1 – p2, 14.4 t test for m1 – m2, 13.2
samples z interval for p1 – p2, 14.4 z interval for p1 – p2, 14.4 t interval for m1 – m2, 13.2

Mann-Whitney U test, 18.3 F test for s1
2 / s2

2, 14.2
F interval for s1

2 / s2
2, 14.2

Two dependent z test for p1 – p2, 14.5 z test for p1 – p2, 14.5 t test for m1 – m2, 13.4
samples z interval for p1 – p2, 14.5 z interval for p1 – p2, 14.5 t interval for m1 – m2, 13.4

Wilcoxon T test, 18.4 t test for s1
2/s2

2, 14.3
t interval for s1

2/s2
2, 14.3

Multiple test for equality of s, 17.5 test for equality of s, 17.5 Completely randomized
independent test for homogeneity of s, test for homogeneity of s, ANOVA design, 15.5
samples 17.5 17.5 Fisher-Hayter test for s,

15.6, 16.4
Scheffé’s test for s, 15.6,

16.4
Completely randomized

factorial ANOVA design,
16.4

Multiple Randomized block ANOVA
dependent design, 16.3
samples Fisher-Hayter test for s,

16.3
Scheffé’s test for s, 16.3

*Section where statistic is described.
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Preface

Statistics: An Introduction was written for students in the behavioral sciences, health
sciences, and education who are taking their first course in statistics. Its goals are
twofold: to provide a sound introduction to descriptive and inferential statistics and
to help students read and understand statistical presentations in their field.

The fifth edition of Statistics reflects more than four decades of experience teach-
ing introductory statistics to almost 5,000 students. During this time I have seen the
profound impact that advances in technology—computers, calculators, the Internet,
and multimedia classrooms—have had on the way I teach statistics and the way my
students learn statistics. The time-honored approach of teaching students to mechan-
ically follow cookbook formulas is no longer appropriate. Computers and calcula-
tors have taken the drudgery out of statistics and broadened the students’ statistical
horizons. Now students can compute the most complex statistics in a matter of sec-
onds. As a result, students need to understand the assumptions and limitations of the
procedures they use, they need guidelines to help them decide when to use various
procedures, and they need to understand the logic of the procedures. In addition,
they need a foundation for understanding statistical presentations in their field.
Statistics was written to meet these needs.

The fifth edition has been extensively revised in response to recommendations in
the 2001 Publication Manual of the American Psychological Association (APA).
The manual recommends that researchers provide sufficient descriptive statistics—
sample sizes, means, standard deviations, and correlations—so that readers can
understand the results being reported. The manual also recommends reporting con-
fidence intervals and measures of effect size. In keeping with this recommendation,
confidence intervals and measures of effect size are presented alongside traditional
null hypothesis significance tests. Because students do statistics on computers and
calculators, the focus throughout the text is on definitional formulas.

Other changes include (1) a greater emphasis on visual approaches to under-
standing data such as box plots and graphs of confidence intervals and (2) numerous
examples, interspersed throughout the text, of the way statistical results are pre-
sented in scientific publications. The examples follow APA publication guidelines.
In response to reviewers’ comments, I have simplified the discussion of probability
and selected advanced topics.

Students will find this edition easier to read. Feedback from students has enabled
me to identify and simplify the hard places. I remain convinced that clarity and read-
ability can be achieved without sacrificing accuracy and depth of coverage. In this

v



vi Preface

edition, I continue to rely on verbal rather than mathematical explanations. To be
sure, the student will encounter the usual formulas, but the level of mathematics is
very elementary. A familiarity with high school algebra is sufficient for understand-
ing the text. For those whose mathematical skills are rusty, Appendix A reviews ele-
mentary mathematics. Students can use the Test of Mathematical Skills in Appendix
A to identify those procedures that they need to review.

Statistics contains many features that should make learning statistics easier.
These features include (1) an overview of each chapter called “Looking Ahead:
What Is This Chapter About?” that includes a list of learning objectives, (2) an ex-
panded discussion in Chapter 1 of how to study statistics, (3) the use of color and
boldface type to emphasize new terms and definitions, (4) an extensive glossary of
statistical symbols (Appendix B), (5) “Check Your Understanding” exercises inter-
spersed throughout each chapter, (6) a review at the end of each chapter called
“Looking Back: What You Have Learned?” that highlights the most important ideas
in the chapter, and (7) comprehensive review exercises at the end of each chapter.
The exercises indicate which concepts and procedures are most important, present in-
teresting real-life examples from journal articles of the way statistics are used, and
provide practice in applying what has been learned. Answers are given in Appendix C
for all of the “Check Your Understanding” exercises.

The student database in Appendix E provides additional sources of exercises.
The database enables students to gain experience drawing random samples and
computing statistics using real data. Students will find that selecting an appropriate
statistic is easier with the help of the Selection Guide for descriptive and inferential
statistics on the front endpaper. The back endpaper provides a quick reference for
important formulas.

Students and professors will appreciate the Power Point transparencies and
SPSS programs that are available on the companion website at

http://www.thomsonedu.com/psychology/kirk

The transparencies provide an outline of my lectures and the computational ex-
amples that I use in my teaching. The website also contains learning objectives;
guides to new symbols, equations, and statistical tests; key terms; and more. An In-
structor’s Manual with Test Bank (available in paperback, as a download, or in the
ExamView computerized test bank format) provides sources of supplementary
teaching materials, multiple choice and essay questions for exams, and answers to
all chapter review exercises in the text. For instructors, electronic transparencies
provide most of the book’s figures and tables in PowerPoint® slides, and JoinIn on
Turning Point makes lectures interactive with in-class quizzing and polling.

It is a pleasure to express my appreciation to Dana Nelson, University of Wash-
ington; Charles Halcomb, Wichita State University; David Horner, California State
Polytechnic University; Ron Salazar, San Juan College; Joan Michael, North Car-
olina State University; Russell Uyeno, TIM School, University of Hawaii; Thomas
Nygren, Ohio State University; Jason Nier, Connecticut College; Mark Durn,
Athens State University for reading the manuscript and for their thoughtful com-
ments. Marcus Boggs, Erik Evans, Gina Kessler, Christina Ganim, Karin Sandberg,
Linda Yip, Vernon Boes, and Karol Jurado of Thomson Wadsworth and Crystal

http://www.thomsonedu.com/psychology/kirk
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Parenteau of Pre-Press Company also deserve special recognition for their efforts in
making this book a reality.

I am grateful to the literary executor of the late Sir Ronald A. Fisher, F. R. S., to
Frank Yates, F. R. S., and to Longman Group Ltd., London, for permission to reprint
Tables D.1, D.2, D.3, D.6, and D.7 from their book Statistical Tables for Biological,
Agricultural and Medical Research, sixth edition (1974).

I am also grateful to E. S. Pearson and H. O. Hartley, editors of Biometrika Tables
for Statisticians, Volume 1, and to the Biometrika trustees for permission to reprint
Tables D.5 and D.9.

I want to express my appreciation to my statistics classes for what I trust has been
a mutually rewarding learning experience. Comments about this edition and
suggestions for future editions are most welcome. My web page 

www.baylor.edu/~Psychology/Roger_Kirk/kirk.html 

contains a list of typographical errors that is updated as they are discovered.

Roger E. Kirk

Roger_Kirk@baylor.edu

www.baylor.edu/~Psychology/Roger_Kirk/kirk.html
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2 Introduction to Statistics

1.1 INTRODUCTION

Looking Ahead: What Is This Chapter About?

When a student came to me recently for help with statistics, I posed the question,
“What is the chapter about?” The student’s answer, “About 36 pages,” was not what
I had hoped to hear. To give you a heads up, I provide a brief overview at the begin-
ning of each chapter.

This chapter begins with a discussion of what statistics is and why you should
study it. I then share tips for studying statistics and define some basic concepts:
population, sample, and random sample. You will learn that there are two broad
categories of statistics: descriptive statistics and inferential statistics. The chapter
continues with a discussion of the way mathematicians classify variables and 
the rules psychologists and others use to assign numbers to characteristics of peo-
ple. For history buffs, I end the chapter with a brief description of the origins of
statistics.

After reading the chapter, you should know the following:

■ What statistics is
■ Why you should study it (although you might prefer almost any other form 

of torture)
■ How to study statistics
■ The meaning of basic concepts such as population, sample, and random sample
■ The two broad categories of statistics
■ The way mathematicians classify variables and the way psychologists measure

characteristics
■ The origins of statistics

Some Misconceptions

It is widely believed that statistics can be used to prove anything—which implies,
of course, that it can prove nothing. Furthermore, the word statistics conjures up
visions of numbers piled upon numbers, uninterpretable charts, and computers
cranking out gloomy predictions. To the ordinary person, besieged from all sides
by advertising claims, statistics is hocus-pocus with numbers. It was Benjamin Dis-
raeli who said, “There are three kinds of lies—lies, damned lies, and statistics.”1 In
primitive cultures, exaggeration was common. One writer, with tongue in cheek,
reasoned that because primitive people did not have a science of statistics, they
were forced to rely on exaggeration, which is a less effective form of deception.
Another writer remarked, “If all the statisticians in the world were laid end to
end—it would be a good thing.” Whatever its public image, statistics endures as a
required course, and my students continue to refer to it, affectionately no doubt, as
Sadistics 2402.

1 Three books indicate that Disraeli’s view of statistics is still with us: How to Tell the Liars from the Sta-
tisticians by Hooke and Liles, Misused Statistics: Straight Talk for Twisted Numbers by Jaffe and Spirer,
and Statistical Deception at Work by Mauro.
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What Is Statistics?

In spite of frequent misuse, statistics can be a powerful tool for making decisions in
the face of uncertainty. The word statistics comes from the Latin status, which is
also the root for our modern term state or political unit. Statistics was a necessary
tool of the state, because to levy a tax or to wage war a ruler had to know the number
of subjects in the state and the amount of their wealth. Gradually the meaning of the
term expanded to include any type of data.

Today the word statistics has four distinct meanings. Depending on the con-
text, it can mean (1) data; (2) functions of data, such as the mean and range; 
(3) techniques for collecting, analyzing, and interpreting data for subsequent
decision making; and (4) the science of creating and applying such techniques.

Why Study Statistics?

A knowledge of statistics yields more than the obvious benefits. For example, it gener-
ates new ways of thinking about questions and effective tools for answering them. It
takes only a cursory examination of the professional literature in your field to see the
inroads made by statistical techniques and ways of thinking. Statistics helps researchers
make sense of data and is an indispensable research tool, but its usefulness is not lim-
ited to research. In many fields, it is virtually impossible to read research articles and
keep up with new developments without an understanding of elementary statistics.
Also, statistics is an interesting subject—some people even find it fascinating.

In all likelihood, you are reading this book because it was assigned in your
required statistics course. You have been told that the study of statistics is necessary,
and there is a strong implication that it will be good for you. At this point you may be
skeptical. Just what can you expect to learn by studying statistics? A quick scan of
this book will give you an idea. You will acquire a new vocabulary, because in many
ways learning statistics is like learning a foreign language, and you will learn to ma-
nipulate numbers according to symbolic instructions. But more important, you will
learn when and how to apply statistics to research problems in the behavioral sciences,
health sciences, and education. Your study of statistics should enable you to read the
literature in your field with greater understanding and make you a more critical con-
sumer of statistical presentations in the mass media. And you should gain a greater
appreciation of the probabilistic nature of scientific knowledge. Statistics involves a
special way of thinking that can be used not only in research but also in one’s daily
life. I hope that you will add this way of thinking to your conceptual arsenal.

Kinds of Statisticians

Users of statistics fall into four categories: (1) those who must be able to read
and understand statistical presentations in their field; (2) those who select,
apply, and interpret statistical procedures in their work; (3) applied statisti-
cians; and (4) mathematical statisticians.
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This book addresses those in the first two categories, including psychologists,
educators, speech therapists, biologists, nurses, medical researchers, and physical
therapists, to mention only a few. In each case the person’s primary interest is in his
or her own field, be it counseling or physical therapy; he or she is interested in sta-
tistics because it is a useful tool for answering questions in that field. These people
are both consumers and users of statistics. Their knowledge of statistics can range
from meager to expert.

The applied statistician helps professionals in substantive areas to use statistics
effectively. He or she may work for industry or a government agency, engage in a
private consulting practice, or teach in a university. Unlike individuals in the first
two categories, an applied statistician usually has advanced degrees in statistics.

The mathematical statistician is primarily interested in pure (mathematical) sta-
tistics and probability theory rather than in the application of statistics to substantive
areas. Most likely this statistician teaches in a university and makes contributions to
the theoretical foundations of statistics that may ultimately be used by those with
applied interests.

1.2 STUDYING STATISTICS

Develop Effective Study Techniques

Psychologists say that learning is easier when you can integrate new information
into an existing knowledge base. Unfortunately, as you begin your study of statis-
tics, your statistical knowledge base is minimal. Building a knowledge base is easier
if you use effective study techniques. For example, always survey your reading
material by thumbing through the assigned pages and noting topic headings and
boldface terms. Try to get a sense of what the material is about. Your survey will
provide a general orientation to the material and help you fit facts together as you
develop your statistical knowledge base.

Before you begin reading a section in the text, turn the section heading into a
question. The question for this section might be, “What are some effective study
techniques?” After you have formed your question, look for the answer as you read
the section. Research on learning tells us that an active, searching attitude on the part
of the reader promotes better learning than does a passive attitude. After reading a
section, try to recall the main points of the section by reciting out loud. All of us
have had the experience of reading a paragraph and having no idea of what we have
just read. Knowing that we will attempt to recall what we are reading develops a
mental set to select and retain important facts.

Most forgetting takes place within the first 24 to 48 hours after learning. You can
minimize the forgetting process by reviewing your assignment a day or so after
reading it. Look at the major headings and boldface terms and see whether you can
recite the main points that were covered in the section and define each boldface
term. If the contents of some sections are hazy, reread these sections and see
whether you can then recall the main points.2

2 These study suggestions are based on the famous SQ3R study method developed by Francis P. Robinson
(1946). The letters SQ3R stand for Survey, Question, Read, Recite, and Review. 
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Plan to Read More Slowly

Statistics cannot be read like assignments in history, English, or political science.
Ideas and computational procedures in statistics are presented in a highly symbolic
form and use a specialized vocabulary that you must learn. Consequently, a 30-page
assignment may take three or four times as long to read as a comparable assignment
in history. You will understand many sections of this book on a first reading; others
will require two or more readings, lots of concentration, and perhaps some time be-
tween readings for the ideas to sink in.

Don’t Worry If You Weren’t an Ace in Math

If you’re concerned about the level of mathematics required to understand statistics,
stop worrying. Most statistical procedures in this book involve nothing more compli-
cated than addition, subtraction, multiplication, and division. Although this book
makes some use of high school algebra, the level is very elementary. For those whose
skills are rusty, the essential arithmetic and algebra are reviewed in Appendix A.

Appendix A also contains a diagnostic math test that you can take to assess your
math skills and see if you have forgotten anything. I encourage you to check out
your skill level by taking the test and grading your performance. I have provided a
table of norms based on the scores of my students over the past 10 years.

But don’t get too hung up on mathematics. Treat this course less like a math
course and more like a course in logic. You should focus on the concepts and the
logic underlying statistical procedures. Leave the mathematics and computations to
calculators and computers.

Resolve to Review Often

Unless you frequently review this material, it will slip away. Don’t skip the Check
Your Understanding exercises at the end of each section and the end-of-chapter
Review Exercises. They (1) provide feedback about what you know and what you
don’t, (2) indicate which concepts and computational procedures are the most
important, (3) offer numerous examples of how statistics are used, and (4) give you
practice in applying what you are learning. Answers to all of the Check Your
Understanding exercises are given in Appendix C. The “Looking Back: What Have
You Learned?” section at the end of each chapter also is useful for reviewing be-
cause it showcases the most important concepts and places the topics in perspective.

The best way to learn statistics is to do statistics. By doing the Check Your Under-
standing exercises “by hand” with the aid of a calculator you will gradually learn how
to follow the sequence of mathematical operations represented by a formula. Comput-
ing a statistic by hand helps to develop an intuitive understanding of the statistic. Once
you have an intuitive understanding, it is time to let a computer do the work.

Master Foundation Concepts before 
Going on to New Material

In statistics, as in mathematics or a foreign language, the material presented first is
the foundation for what follows. It is best to master each chapter before you go on



6 Introduction to Statistics

to the next. Fight the temptation to cram. Cramming can be effective for some sub-
jects, at least as far as tests are concerned. But in statistics, it inevitably results in a
superficial understanding of basic concepts and subsequent learning problems. Peri-
odic reviews require discipline, but they pay off.

Strive for Understanding

This book contains hundreds of formulas. I have not memorized all of them, and
neither should you. Some, such as the one for the arithmetic mean,
appear so often that you really can’t help learning them; the others aren’t worth the
effort. I decided a long time ago, when faced with my inability to remember tele-
phone numbers and addresses, that books are better repositories than my head for
such things. In all likelihood you will do most of your statistical calculations with
computers and calculators. These tools have phenomenal memories for formulas
and can spew out statistics at the press of a key.

Instead of memorizing formulas, strive to understand the logic underlying the
statistical procedures that you are learning, and think about ways that each new
statistic can be applied. In what situations is the statistic useful? How is the statistic
interpreted? What assumptions must be fulfilled to interpret the statistic? When you
read about an experiment in your field, consider how you would have designed it
and how you would have analyzed the data. And check out your ideas by talking
about them with your professor and other students. There is no better way to deepen
your understanding of a new concept than to explain it to a classmate.

1.3 BASIC CONCEPTS

Population and Sample Defined

Many statistical terms are a legacy from the time when statistics was concerned only
with the condition of the state. Population, for example, originally meant, and still
means, the total number of inhabitants of a state. Its meaning in statistics is broader.

A population is the collection of all people, objects, or events having one or
more specified characteristics.

The population is identified when you specify its common characteristics. All the
people listed in a telephone directory constitute a population, as does the number of
heads and tails obtained in tossing a coin for eternity.

A single person, object, or event is called an element of the population.

The population of telephone book listees contains a finite number of elements; the
population resulting from tossing the coin contains an infinite number.

A population is either concrete or conceptual. For example, the population of
telephone book listees is concrete—given sufficient time you could contact each
person because the number of elements is finite and the population is well defined.

X 5 gX>n,



1.3 Basic Concepts 7

The population of heads and tails is conceptual—try as you may, you cannot record
all the results of tossing a coin for eternity. This population exists as an idea rather
than as a material object.

A population could consist of all the students in a university (people), their cars
(objects), or their pep rallies (events).

The number or label used to represent an element of the population is called
an observation or datum.

It is a measurable characteristic of the elements. The observation for students in a
university might be their GPAs, their cars’ gas mileage, or the number attending pep
rallies. If 362 students attended the second pep rally, the observation for this event is
362 students. The selection of an appropriate population for an experiment is deter-
mined by the nature of the research questions that a researcher wants to answer as
well as by such practical matters as the availability of population elements.

A sample is a proper subset of a population.

That is, a sample can contain a single element or all but one of the population ele-
ments. For practical reasons—such as limited resources and time or because the
population is infinite in size—most research is carried out with samples rather than
with populations. It is assumed that the study of a sample will reveal something
about the population. This leap of faith often appears to be justified, as when a labo-
ratory technician analyzes a sample of a patient’s blood or when an automobile man-
ufacturer crash-tests a sample of bumpers. Occasionally, however, samples lead us
astray. Later you’ll see how and why.

Descriptive and Inferential Statistics

It is useful to divide statistical techniques into two broad categories: descriptive and
inferential.

Descriptive statistics are tools for depicting or summarizing data so that they
can be more readily comprehended.

When we say that a player’s lifetime batting average is .420 or when we determine
that 51% of voters favor a presidential candidate, we are using descriptive statistics.
A computer printout listing the Scholastic Aptitude Test (SAT) scores of all college
students in California would boggle our minds; however, a statement that their mean
SAT score is 1094 would not. Large masses of data are difficult to comprehend.
Descriptive statistics reduce data to some form, usually a number, that one can easily
comprehend. I discuss a variety of descriptive statistics in the first half of this book.

It is usually impossible for researchers to observe all the elements in a popula-
tion. Instead they observe a sample of elements and generalize from the sample to
all the elements—a process called induction in which the researcher reasons from
the particular facts or cases to draw general conclusions.
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Researchers are aided in this process by inferential statistics, which are tools
for inferring the properties of one or more populations by inspecting samples
drawn from the populations.

Inferential statistics were developed to improve decision making in cases where
successive observations exhibit some degree of variation although they are obtained
under conditions that appear to be identical. The variation may be due to (1) the
inherent variability in the phenomenon being observed or differences among partici-
pants, (2) errors of measurement, (3) undetected changes in conditions, or (4) a
combination of these factors. In the behavioral sciences, health sciences, and educa-
tion, differences in the past experiences and heredities of participants are the major
stumbling blocks to inferring the properties of populations from observing samples.

Inferential statistics are useful for answering questions such as the following. A
medical researcher wants to know whether a new drug will arrest the development
of cancer in humans. It is impossible to administer the drug to the population of all
cancer patients, but it is possible to administer the drug to a sample. The medical re-
searcher would probably attempt to control attitudinal and other extraneous factors
by administering an inert druglike substance, a placebo, to half the sample and the
new drug to the other half. Consider two possible outcomes of the experiment. In
one outcome, the remission of cancer occurs in 100% of the sample receiving the
new drug and in only 8% of those receiving the placebo. The difference, 100% ver-
sus 8%, between the drug and placebo samples is dramatic. The medical researcher
would probably conclude without the benefit of inferential statistics that if the drug
had been administered to the population of all cancer victims, the remission rate
would have been much higher than if the population had received the placebo. Con-
sider now a different outcome. What if the remission rate were only 12% for the
new drug and 8% for the placebo? Is the drug really more effective than the
placebo? I know from years of conducting experiments that chance factors can
produce a difference between two samples even though the samples are taken
from the same population and receive identical treatments. Is the difference, 12%
versus 8%, greater than would be expected by chance? Stated another way, if the
experiment were repeated many, many times, could the medical researcher predict
with confidence that over the long run the difference would favor the sample re-
ceiving the drug? This is the kind of question that can be answered using inferen-
tial statistics. I describe procedures for answering such questions in the second
half of the book.

Random Sampling

Some samples provide a sound basis for drawing conclusions about populations;
others do not. The difference lies in the method by which the samples are selected.

The method of drawing samples from a population such that every possible
sample of a particular size has an equal chance of being selected is called
random sampling, and the resulting samples are random samples.
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People, when left to their own devices, find it virtually impossible to produce
random samples. Consider the following experiment. One hundred people are asked
to write down a random sample of four numbers from the first 20 positive integers.
According to our definition of random sampling, samples containing the elements 1,
2, 3, 4 or 14, 16, 18, or 20, for example, should occur as frequently as any other sam-
ple of size four. It turns out that such samples are rarely produced. People avoid
writing down samples with consecutive or equally spaced integers and attempt to
produce samples that span the range from 1 to 20.

Sampling methods based on haphazard or purposeless choices, such as soliciting
volunteers, using students enrolled in introductory psychology, or selecting every
10th person in an alphabetical listing of names, produce nonrandom samples. Such
samples, unlike random samples, do not provide a sound basis for deducing the
properties of populations. Hence, in this book, sampling refers to random sampling.
A detailed discussion of random sampling in Chapter 8 must await the development
of other basic concepts. At this point, I will simply illustrate several characteristics
of random samples.

Consider a box containing 300 balls, each identified by a number stamped on its
surface. Of the balls, 200 are red (R) and 100 are black (B). If you did not know the
ratio of red to black balls, which is two to one (denoted by 2:1), you could estimate
the ratio by drawing a random sample of balls from the box. You close your eyes,
shake the box vigorously, reach in, withdraw a ball, note its color and number, and
replace it. You do this six times and obtain the following sample: R102, R75, B39, R62
B37, R50. The subscripts, 102, 75, and so on denote the numbers stamped on the balls.
From this sample you would infer that the box contains more red than black balls—
in fact, twice as many red balls. Suppose you drew four more samples, each time re-
placing the balls drawn, and obtained the following:

Sample 2 R154, B62, R35, R143, R4, R29

Sample 3 R104, B41, B21, R50, R192, R67

Sample 4 B28, B41, R150, B61, R88, R148

Sample 5 R152, R120, B88, R33, R36, B5

The results of the five random samples are summarized in Table 1.3-1.
This simple experiment illustrates several points about random samples. First,

the elements obtained (and the ratio of red to black balls) differ from sample to sam-
ple. This is referred to as sampling fluctuation or chance variability. Second, the

TABLE 1.3-1 Outcomes of Drawing Five Random Samples

Sample

Color of Balls 1 2 3 4 5

Number of red balls 4 5 4 3 4
Number of black balls 2 1 2 3 2

Ratio of red to black 2:1 5:1 2:1 1:1 2:1
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characteristics of a sample do not necessarily correspond to those in the population. It
turns out, however, that the larger a random sample, the more likely it is to resemble
closely the population. Hence, researchers prefer to work with large samples if it is
economically feasible. Although there is no guarantee that large random samples will
resemble the population, in the long run they are more likely to do so than small ones.

CHECK YOUR UNDERSTANDING OF SECTIONS 1.1 TO 1.33

1. Users of statistics fall into four categories.
a. List the categories.
b. Considering your vocational goals, into which category do you fall? Why?

2. For each of the following statements, indicate (a) the population, (b) the ele-
ment, and (c) the observation to be recorded.
a. At least 50% of white women students in this university are ambivalent

about having a career.
b. Tequila Tech students are involved in more automobile accidents than other

drivers in their age group.
c. At least 23% of the homes in Chickasha, Oklahoma, have high-definition

televisions.
d. Students at Ginebra University who hold outside jobs have higher grade

point averages than those who do not hold outside jobs.
e. According to a recent Centers for Disease Control report, 1 of every 92

American men between the ages of 27 and 39 has the AIDS virus.
f. According to the U.S. Department of Education, 49.5% of female high school

students have performed a community service during the past two years.
3. What are the lower and upper limits on the size of a sample?
4. Indicate whether each of the following procedures would produce a random

sample (R) or a nonrandom sample (NR) of students in an introductory psychol-
ogy class.
a. Write each student’s name on a slip of paper, place the slips in a hat, shake

the hat thoroughly, and draw out 10 names.
b. Place the blindfolded instructor in the middle of a circle made up of all 

the class members. Have the instructor point to 10 people around the circle.
The student nearest to where the instructor points becomes an element of the
sample.

c. For each student, flip a fair coin. If the coin lands heads, the student is in the
sample.

d. Line up the students from the tallest to the shortest. The 3rd, 5th, 7th, . . . ,
21st students become members of the sample.

3 Answers to the Check Your Understanding exercises are given in Appendix C. These exercises often
contain multiple questions about a particular concept. If you have a good grasp of the concept, answer-
ing three or four questions about it may not be an efficient use of your time. If, however, your answer to
a question is incorrect, reviewing the concept in the text and then answering several more questions
dealing with the concept is advisable. One of the purposes of these exercises is to provide feedback
about what you know and what you don’t know.
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5. Terms to remember:
a. Statistics b. Population
c. Element d. Observation (datum)
e. Sample f. Descriptive statistics
g. Induction h. Inferential statistics
i. Random sample j. Nonrandom sample
k. Sampling fluctuation (chance variability)

1.4 DESCRIBING CHARACTERISTICS BY NUMBERS

People, objects, and events have many distinguishable characteristics. Early in
the design of an experiment, the researcher must make two key decisions: What
characteristics should I measure? And how should I measure them? The answer
to the first question is determined by the researcher’s interests. Suppose a re-
searcher is interested in comparing the SAT scores of men and women college
students. College students differ in many ways: gender, age, SAT scores, major,
hair color, family income, and so forth, but only two characteristics are of inter-
est in this example: gender and SAT score. The researcher will measure these
characteristics and ignore the others. The second question, concerning how the
characteristics should be measured, is less straightforward. The issue here is how
to assign numbers to people, objects, or events so that the numbers accurately re-
flect the characteristic you want to measure. In the process of examining this is-
sue, I will discuss variables and constants and see how mathematicians classify
variables.

Variables and Constants

A variable is a characteristic that can take on different values. A variable also
is a symbol, often a letter toward the end of the alphabet, such as X or Y, that
is used to stand for an unspecified element of a set.

The set of elements for which the variable stands is called the range of the variable,
and each element of the range is called a value. When I assign to a variable one of
the elements in its range, I say that the variable “takes” this value. For example, the
variable of gender might take the value “women.”

A constant is a characteristic that does not vary. A constant also is a symbol,
often a letter toward the beginning of the alphabet, such as a, b, or c, whose
range consists of a single element.

The ratio of the circumference of a circle to its diameter, denoted by , is a constant
because its range consists of the single value 3.1415926536 . . . .

p
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Perspectives on Numbers

I noted that the selection of the characteristics to be measured is relatively straight-
forward and is determined by the researcher’s interests. The second key decision—
deciding how the characteristics should be measured or classified—is not as simple.
For example, you could measure or classify the scholastic aptitude of seniors at
Linden McKinley High by (1) assigning each student a label such as average, high
average, or superior, based on his or her SAT score; (2) ranking or ordering students’
SAT scores from highest to lowest and assigning each student the number of his or
her rank; or (3) assigning each student her or his actual SAT score. Depending on
the measuring scheme adopted, Jonathan Whiz would be designated, respectively,
superior, 3, or 1480. The variable of political preference can be classified by assign-
ing a unique symbol such as D or 1 to Democrats, I or 2 to independents, and R or 3
to Republicans.

The assignment of numbers or labels to characteristics of people, objects, or
events and the accuracy of the representation are central concerns of researchers.
This is not true for mathematicians. Mathematicians often manipulate symbols that
are totally devoid of empirical meaning. They are interested in the formal properties
of the systems they create; applications in the real world are often left to other spe-
cialists. Mathematicians and mathematical statisticians have laid the foundation for
a vast collection of statistical tools. The researcher who uses these tools must decide
whether a particular tool is appropriate for his or her research application and
whether the numbers assigned to variables accurately represent the characteristics
of interest. This division of interest between the developers and the users of statis-
tics has led to two ways of thinking about numbers.

Classification of Variables in Mathematics

Mathematicians classify variables as qualitative or quantitative.

A qualitative variable is a symbol whose range consists of attributes or
nonquantitative characteristics of people, objects, or events. For example, the
letter X could represent gender (men, women), Y could represent race
(Caucasian, African American, Asian, other), and Z could represent the grade
in a course (A, B, C, D, or F).

The categories of a qualitative variable are (1) mutually exclusive (nonoverlapping),
which implies that an element cannot be in more than one category, and (2) exhaus-
tive, which implies that an element must be in one of the categories. The categories
may or may not suggest an order or rank. For example, grades in a course—A, B, C,
D, or F—clearly order academic achievement from highest to lowest, but no order is
suggested by the categories for gender, race, religious preference, or blood type.
Course grade is an example of an ordered qualitative variable. Gender, race, reli-
gious preference, and blood type are examples of unordered qualitative variables.

A quantitative variable is a symbol whose range consists of a count or a
numerical measurement of a characteristic.



1.4 Describing Characterstics by Numbers 13

Quantitative variables can be discrete or continuous. A variable is discrete if its
range can assume only a finite number of values or an infinite number of values that
is countable. That is, the infinite number of values can be placed in a one-to-one cor-
respondence with the counting or natural numbers. Family size is an example of a
variable with a finite range. It can assume values 1, 2, 3, 4, and so on, but not 200,
8000, or any noninteger value such as 0.5 and 4.3. The rational numbers—numbers
that can be expressed as the ratio of two integers, for example, 2/2, �2/3, or 7/4—
illustrate countably infinite numbers. There is no largest number and no smallest
number, and between, say, 1 and 2, an infinite number of rationals can be inserted,
for example, 3/2, 4/3, 5/4. . . . Other examples of discrete quantitative variables are
the number of parking tickets received, the number of trials required to learn a list
of nonsense syllables, and one’s score on a standardized achievement test. In each
of these examples, the value assigned to the variable is obtained by counting, and
the counting units—family members, parking tickets, learning trials, or achievement
test items—are equivalent in arriving at the total count.

By contrast, a variable is continuous if its range is uncountably infinite. Such a
range can be likened to points on a line that have no interruptions or intervening
spaces between them. Examples of continuous variables are temperature in Bangor,
Maine, during January, length of fish caught off the Florida Keys, and speed of cars
on the New Jersey Turnpike. Although a variable is continuous, our measurement of
it is by necessity discrete because of limitations in the measuring instrument. For
example, the thermometer is usually calibrated in 1º steps, the ruler in 1/16 inch, and
the speedometer in 1 mile per hour. Consequently, our measurement of continuous
variables is always approximate. Discrete variables, on the other hand, can be mea-
sured exactly. A husband and wife with two children are a family of exactly four, but
a temperature of 80ºF can be any temperature between 79.5º and 80.5ºF.

The classification scheme for variables is summarized in Table 1.4-1. It is useful to
mathematicians and statisticians because the nature of the variable determines which
mathematical tools can be used to solve problems and do derivations and proofs.
Hence, the classification scheme is a convenience; it was not devised to mirror charac-
teristics in the real world. When you use statistical methods to answer real-world ques-
tions, you must remember that the methods were developed to analyze numbers as

TABLE 1.4-1 Mathematicians’ Classification of Variables

Type of Variable Characteristics

Qualitative variable Range consists of nonoverlapping and exhaustive categories that 
represent attributes or nonquantitative characteristics.

Unordered Categories do not suggest an order or rank.
Ordered Categories suggest an order or rank.

Quantitative variable Range consists of a count or a numerical measurement of a 
characteristic.

Discrete Range consists of only a finite number of values or an infinite 
number of values that is countable.

Continuous Range consists of an uncountably infinite number of values.
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numbers. If the numbers analyzed bear no relation to the characteristics in which you
are interested, the statistical methods will yield answers that are meaningless.

Measuring Operations in the Behavioral Sciences, 
Health Sciences, and Education

Numbers are used for a variety of purposes, three of which are of particular interest
to behavioral scientists, health scientists, and educators: (1) to serve as labels, (2) to
indicate rank in a series, and (3) to represent quantity. For example, a football player
is identified by the number 10 on his uniform, a team is ranked number two in the
UPI poll, and the winning touchdown play covered 20 yards. Without thinking, you
treat these numbers differently. It doesn’t take a football fan to know that player 30
is not three times player 10 and that the number two team is not necessarily twice as
good as the number four team, but a 20-yard touchdown play did indeed move the
ball twice as far down the field as a 10-yard play. You intuitively treat the numbers
differently because they involve different levels of measurement.

Measurement is the process of assigning numbers or labels to characteristics
of people, objects, or events according to a set of rules.

You will see that the rules used to assign the numbers or labels determine the level
of measurement. S. S. Stevens (1946), a behavioral scientist, identified four levels
of measurement: nominal, ordinal, interval, and ratio.

Nominal Measurement

Nominal measurement is the simplest of the four levels. It consists of assign-
ing elements to mutually exclusive and exhaustive equivalence classes so that
those in the same class are considered to be equivalent to one another, whereas
those in different classes are not equivalent. The classes are then denoted by a
set of distinct labels. The set of labels constitutes a nominal scale.

The assignment of men to one equivalence class called “men” and women to the
other called “women” is nominal measurement. The set of labels, “men” and
“women,” constitutes a nominal scale. Numbers can be used instead of words to iden-
tify the two classes, for example, 1 for women and 2 for men. Numbers used in this
way are simply alternative labels for the equivalence classes. You could just as well
have assigned the numbers 9 and 6, respectively, to women and men. The substitu-
tion of the number 9 for 1 and the number 6 for 2 is an example of a one-to-one
transformation.4 The numbers 9 and 6 are as useful for distinguishing between 
the equivalence classes as any other one-to-one transformation. The numbers in a

4 A one-to-one transformation associates with each element in one set one and only one element in a
second set and vice versa. For example, if one set is men’s names {Jim, Chuck, Keith} and the second
set is numbers {5, 12, 3}, each name can be paired with one and only one number. A one-to-one trans-
formation could result in substituting 12 for Jim, 3 for Chuck, and 5 for Keith. 
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nominal scale could be added, subtracted, averaged, and so on, but the resulting
numbers would tell us nothing about the equivalence classes represented by the num-
bers. For example, 1 � 2 � 3 and 9 � 6 � 15, but neither 3 nor 15 corresponds to
any characteristic of men or women. This follows because we did not utilize the prop-
erties of size and order of numbers when we assigned them to the classes. The only
property of numbers that we utilized is that 1 is distinct (different) from 2, 3. . . .Thus,
the labels assigned to equivalence classes in nominal measurement have the property
only of distinctness.

There are many examples of nominal scales in psychology and education, for
example, Eysenck’s four personality types (stable-extrovert, stable-introvert,
unstable-extrovert, unstable-introvert), the primary taste qualities (sweet, sour,
salty, bitter), and categories of psychoses (organic, functional). There is a corre-
spondence between a nominal scale and the range of one of the mathematician’s
types of variables. The nominal scale corresponds to the range of an unordered
qualitative variable.

Ordinal Measurement

Ordinal measurement consists of assigning elements to mutually exclusive
and exhaustive equivalence classes that are ranked or ordered with respect to
one another. The classes are then denoted by numbers or other ordered sym-
bols, such as letters of the alphabet, that reflect the rank of the classes. The
labels assigned to equivalence classes in ordinal measurement have the prop-
erties of distinctness and order. The set of labels constitutes an ordinal scale.

The labels used in ordinal measurement contain more information than those in
nominal scales: both distinctness and order.

The ranking of political candidates with respect to voter appeal is an example of
ordinal measurement. If candidate Jane is judged to have the greatest appeal, fol-
lowed by Keith, Lewis, and then Marvin, I could assign Jane the number 1; Keith, 2;
Lewis, 3; and Marvin, 4. I have no reason to believe that Keith, ranked second, is
half as appealing to voters as Jane, or that the difference in appeal between Jane and
Keith, 1 versus 2, is the same as the difference between Keith and Lewis, 2 versus 3.
The numbers indicate rank order but not magnitude or difference in magnitude be-
tween classes. The numbers assigned to the equivalence classes can be subjected to
any strictly increasing monotonic transformation. A strictly increasing monotonic
transformation permits one to replace the original set of numbers with new num-
bers as long as the new numbers have the same order as the original numbers. For
example, the set of ordered numbers 2, 16, 39, 40 would serve just as well as 1, 2, 3,
4 to rank the four candidates, because only the order and not the distance between
any two numbers is important. Alternatively, I could assign the ordered letters of the
alphabet to the candidates: A to Jane, B to Keith, C to Lewis, and D to Marvin. The
transformations that can be applied to ordinal scales are more restrictive than those
that can be applied to nominal scales. This follows because the labels in ordinal
scales contain more information that needs to be preserved—both distinctness and
order—than do the labels in nominal scales.
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Some characteristics, such as people’s heights, can be measured in several ways,
for example, ranking from tallest to shortest or recording actual feet and inches.
The latter procedure assigns numbers that represent the magnitudes of the equiva-
lence classes and therefore has several advantages over ordinal measurement, as
you shall see later. For the moment, simply note that ordinal measurement is most
often used when it is difficult or impossible to apply more refined measuring pro-
cedures. For example, it is difficult to precisely measure the tastiness of three piz-
zas or the leadership qualities of four political candidates. However, it is not too
difficult to rank-order pizzas with respect to tastiness or candidates with respect to
leadership qualities.

Numerous examples of ordinal scales can be found in the behavioral sciences,
health sciences, and education, for example, classification of mentally subnormal
children (borderline, educable, trainable, profoundly retarded) and professorial rank
(instructor, assistant professor, associate professor, professor). Such ordinal scales
correspond, in the language of the mathematician, to the range of an ordered quali-
tative variable.

Interval Measurement

The numbers assigned in interval measurement contain much more information than
the labels used in nominal and ordinal measurement.

In interval measurement, the numbers assigned to equivalence classes have
the properties of distinctness and order; in addition, equal differences between
numbers reflect equal magnitude differences between the corresponding
classes. The measurement procedure consists of defining a unit of measure-
ment, such as a calendar year or 1ºF, and determining the number of units re-
quired to represent the difference between equivalence classes. The set of
numbers assigned to the equivalence classes constitutes an interval scale.

In our measurement of calendar time, the same amount of time elapsed between
1970 and 1971 as between 1971 and 1972, and, similarly, the temperature difference
between 70º and 75ºF is the same as that between 80º and 85ºF. A given numerical
interval, say 1 year or 5ºF, represents the same difference in the characteristic mea-
sured, irrespective of the location of that interval along the measurement scale. In
other words, numerically equal distances along the measurement continuum repre-
sent empirically equal differences among the corresponding equivalence classes—
that is, the measured characteristic.

Because the units of measurement along interval scales are empirically equal, it
is meaningful to perform most arithmetic operations on the numbers. For example,
I can say that the difference between 80º and 60ºF is twice as great as that between
60º and 50ºF. That is, the ratio of intervals (80º � 60ºF)/(60º � 50ºF) � 2 has
meaning with respect to temperature. However, not all arithmetic operations are per-
missible because the starting point or origin of an interval scale is always arbitrarily
defined and does not correspond to an absence of the measured characteristic. In the
case of the Fahrenheit scale, 0ºF corresponds to the temperature produced by mixing
equal quantities by weight of snow and salt. This 0 does not indicate an absence of
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molecular action and hence an absence of heat. Therefore, although 80ºF/40ºF � 2,
I cannot say that 80ºF is twice as hot as 40ºF. The ratio 80ºF/40ºF � 2 is uninter-
pretable because the zero point on the scale, 0ºF, does not correspond to the absence
of temperature. The same interpretation problem occurs for calendar time, which is
measured from the birth of Christ, and altitude, which is measured from sea level.

The numbers in an interval scale can be subjected to any positive linear transforma-
tion. A positive linear transformation of a variable, say X, consists of multiplying X
by a positive constant b and adding a constant a to the product. That is, a transformed
value, X', is given by X' � a � bX. For example, degrees Fahrenheit, F, can be trans-
formed into degrees Celsius, C, by means of the positive linear transformation

where X' � C, a � 5⁄9 (�32), b � 5⁄9, and X � F. Although the variable represented
by an interval scale may be continuous, our measurement of it is always discrete
because measuring instruments are calibrated in discrete steps. Thus, in practice an
interval scale corresponds to the range of a discrete quantitative variable.

Ratio Measurement

The numbers assigned in ratio measurement contain the most information.

In ratio measurement, the numbers assigned to equivalence classes have the
properties of distinctness, order, and equivalence of intervals; in addition, the
origin of the scale represents the absence of the measured characteristic. The set
of numbers assigned to the equivalence classes constitutes a ratio scale.

Ratio scales have all the properties of interval scales plus an absolute zero. Most
scales in the physical sciences are ratio scales—height in inches, weight in pounds,
temperature on the Kelvin scale, and elapsed time such as the age of an object.

Not only is the difference between 5 and 6 inches the same distance as that be-
tween 10 and 11 inches, but also an object that is 10 inches long is twice as long as
an object that is 5 inches long. Ratio scales permit you to make meaningful state-
ments about the ratio of the numbers assigned to the two objects, for example,
10 inches/5 inches � 2; hence 10 inches is twice as long as 5 inches. The properties
of a ratio scale mentioned in the previous paragraph permit you to perform all arith-
metic operations on the numbers. However, the only transformation of a ratio scale
that preserves these properties is multiplication by a positive constant: bX � X',
where b is a positive number, X is the original value, and X' is the transformed value.
For example, I can transform inches into centimeters by multiplying inches by the
constant b � 2.54: 10 inches is equal to

(2.54)(10 in.) � 25.4 cm

and 5 inches is equal to

(2.54)(5 in.) � 12.7 cm

C 5
5
9

 s232d 1
5
9

 F,

Xr5 a 1 bX
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Ten inches is twice as long as 5 inches and, similarly, 25.4 centimeters is twice as
long as 12.7 centimeters. As I move from measurement in which the labels contain
the least information (nominal scales) to those containing more information
(ordinal, interval, and ratio scales), more and more constraints are placed on the
transformations that can be meaningfully applied. This occurs because the numbers
in ordinal, interval, and ratio scales contain more information that can be altered or
destroyed by a transformation. In practice, a ratio scale, like the interval scale, cor-
responds to the range of a discrete quantitative variable. The major characteristics of
the four scales are summarized in Table 1.4-2.

TABLE 1.4-2 Overview of Levels of Measurement

Level of
Measurement Characteristics

Nominal Symbols serve as labels for mutually exclusive and exhaustive
equivalence classes. The symbols have the property of distinctness.

Appropriate transformation: any one-to-one substitution.
Corresponds to: range of an unordered qualitative variable.
Examples: gender, eye color, racial origin, personality types, and 

primary taste qualities.

Ordinal Ordered symbols, usually numbers, indicate rank order of 
equivalence classes. The symbols have the properties of 
distinctness and order. The size of differences between ordered 
symbols provides no information about differences between 
equivalence classes.

Appropriate transformation: monotonic.
Corresponds to: range of an ordered qualitative variable.
Examples: military rank, classification of mentally retarded 

children, rank in high school, and a supervisor’s ranking of 
employees.

Intervala Equal differences among numbers reflect equal magnitude differences 
among equivalence classes, but the origin or starting point of the 
scale is arbitrarily determined. Numbers have the properties of 
distinctness, order, and equivalence of intervals.

Appropriate transformation: positive linear.
Corresponds to: range of a discrete quantitative variable.
Examples: Fahrenheit and Celsius temperature scales, calendar time,

and altitude.

Ratioa All the properties of interval scales apply, and, the origin of the scale 
reflects the absence of the measured characteristic.

Appropriate transformation: multiplication by a positive constant.
Corresponds to: range of a discrete quantitative variable.
Examples: height, weight, Kelvin temperature scale, and measures 

of elapsed time.

a These two levels are sometimes referred to collectively as metric measurement or numerical
measurement.
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Implications of the Two Ways of Thinking about Numbers

This chapter has described two ways of thinking about numbers: one reflects the
concerns of mathematicians, and the other reflects the concerns of behavioral scien-
tists, health scientists, and educators. We have developed statistical methods for an-
alyzing numbers as numbers, whether or not the numbers are true measures of some
characteristic. If the assumptions associated with the statistical methods are ful-
filled, they will produce answers that are formally correct as numbers. This is true
regardless of the degree of correspondence between the numbers and the character-
istic they represent. The problem comes in translating statistical results into state-
ments about the real world. If numbers representing a nominal scale are manipulated
arithmetically, the result will be numbers that are numerically correct but uninter-
pretable. If nonsense is put into the equation, nonsense indeed will come out.

Most researchers are very sensitive to the potential pitfalls associated with in-
terpreting numbers produced by statistical procedures—and rightfully so. Some
authors have even gone so far as to prescribe the statistical procedures that can be
used with each measurement scale.5 Except in the physical sciences, few scales
have equal intervals, so the number of statistical techniques on the approved list is
relatively small. However, this position fails to recognize that the measurement of
many variables in the behavioral sciences and education lies somewhere between
the ordinal and interval levels. The IQ scale is a good example. Most psycholo-
gists and educators agree that the 10-point difference between IQs of 100 and 110
represents a slightly smaller intellectual difference than the 10-point difference
between IQs of 130 and 140. Although the 10-point differences do not represent
identical intellectual differences, the intellectual differences are believed to be
similar. Hence, IQ scores contain more information than ordinal scales but less
than interval scales.

Another example of a measurement scale that is between the ordinal and interval
levels is the attitude rating scale: strongly disagree � �2, disagree � �1, neutral �
0, agree � 1, strongly agree � 2. The numbers �2, �1, 0, 1, 2 contain ordinal in-
formation. However, it is unlikely that the actual difference in attitudes between 0
and 1, for example, is identical to the difference between 1 and 2. But the difference
in attitudes between 0 and 1 is probably similar to the difference between 1 and 2.
Thus, the five numbers along the attitude scale do contain some information about
the magnitude differences in attitudes.

Should we avoid performing arithmetic operations on scores when the mea-
surement is between the ordinal and interval levels? Researchers have heatedly
debated this question. We cannot look to mathematicians and statisticians for an-
swers because the question is outside their province. The answer must come from
users of statistics who are acquainted with the problems of translating numerical
answers into statements about the real world. An examination of the professional
literature reveals that most experts in the behavioral sciences, health sciences, and
education do apply arithmetic operations to numbers even though the measure-
ment is somewhere between the ordinal and interval levels. Further, they interpret

5 Examples can be found in Senders (1958), Siegel (1956), and Stevens (1946, 1951).
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the results as if the size of a difference between the numbers reflects something
about the size of a difference in the measured characteristics. Apparently, experts
prefer to utilize whatever magnitude information the numbers contain, even
though differences among the numbers only approximate the true magnitude
differences.

If a researcher believes that any transformation of a set of numbers that pre-
serves the order of the original numbers adequately represents the equivalence
classes, the numbers contain no magnitude information, and they should not be
treated as though they do. In the final analysis, it is the researcher, the person
most familiar with the data, who must decide how much information the numbers
contain.

Some Subtle Problems in Interpreting Numbers

The preceding discussion has emphasized the importance of avoiding interpretation
errors by being sensitive to the degree of correspondence between a set of numbers
and the characteristic they represent. Consider now some not-so-obvious interpreta-
tion problems that occur when a test has an arbitrary zero point. Suppose that on a
standardized arithmetic-achievement test, Mortimer received a score of 0; Dude, a
score of 30; and Reginald, a score of 60. Can you conclude that Mortimer knows
nothing about arithmetic? Obviously not; a score of 0 means that he couldn’t answer
any questions on the test, but easier questions may exist that he could answer.
Achievement tests, as well as many other tests, have arbitrary rather than absolute
zero points and therefore fall short of ratio measurement. It follows that although
Reginald’s score of 60 is twice as high as Dude’s 30, Reginald’s arithmetic achieve-
ment isn’t necessarily twice Dude’s.

The interpretation problem that results from a lack of equal intervals is subtler.
Suppose I compare the effectiveness of two methods of teaching arithmetic. Stu-
dents in a class using method A gained an average of 10 points; those in a class
using method B gained an average of 7 points. The results seem straightforward—
on the average, students using method A gained more points than those using
method B. But suppose that at the beginning of the experiment the two classes were
not equal in arithmetic achievement. Let the average score for class A be 50 and the
average score for class B be 80. Is it possible that a 7-point change from 80 to 87
represents more improvement in arithmetic achievement than a 10-point change
from 50 to 60? Unless I know that, say, a 10-point change anywhere on the mea-
surement scale represents the same empirical change, the interpretation of the
experiment is equivocal. The greater the difference between the classes’ initial
average achievement scores, the greater the interpretation problem.

Consider finally the interpretation problem that occurs when a test does not have
enough difficult items to adequately differentiate among high-scoring participants.
Suppose that two individuals make the top score of 60. For one participant, this
may represent maximum capability, but the other person may be capable of a much
higher performance. The measuring instrument is simply incapable of showing it.
Because of the limitations of the measuring instrument, it would be incorrect to
conclude that the two individuals are equal in the characteristic measured.
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Because numbers do not always mean what they appear to mean, they must be
carefully scrutinized. The key principle that runs throughout this section is that a
researcher must be guided by two sets of rules. When the tools of statistics are used,
the mathematician’s and statistician’s rules must be followed. When the numbers are
interpreted as statements about the real world, the behavioral scientist’s measure-
ment rules must be followed.

CHECK YOUR UNDERSTANDING OF SECTION 1.4

6. Ignoring for the moment the limitations of measuring instruments, classify mea-
sures of the following according to the mathematician’s scheme (unordered
qualitative, U; ordered qualitative, O; discrete quantitative, D; continuous
quantitative, C).
a. Size of family
b. Race
c. Paper and pencil test of marital compatibility
d. Seeding of tennis players in a tournament

7. Because of the limitations of measuring instruments, measurement of some
variables is of necessity approximate. Classify the variables in Exercise 6
according to whether our measurement is exact (E) or approximate (A).

8. Reclassify the variables in Exercise 6 according to the mathematician’s scheme,
taking into account limitations in our ability to measure some of the variables.

9. Classify the variables in Exercise 6 with respect to the level of measurement,
taking into account limitations in our ability to measure some of the variables.

10. For each level of measurement, indicate the appropriate transformation that can
be performed on the numbers.

11. Four kinds of transformations are described in this section. For each level of
measurement, list all of the kinds of transformations that can be performed
without altering the information contained in the original measurements.

12. What level of measurement is most often achieved (a) in the physical sciences
and (b) in the behavioral sciences and education?

13. A score of 0 on an achievement test does not necessarily mean that the individ-
ual knows nothing about the subject. Explain.

14. Suppose that achievement test scores for a control group increased from 62 to
65, and those for the experimental group increased from 68 to 74. What must be
true to conclude unequivocally that the experimental group improved twice as
much as the control group?

15. Terms to remember:
a. Variable b. Range of variable
c. Value of variable d. Constant
e. Qualitative variable f. Quantitative variable
g. Discrete variable h. Continuous variable
i. Measurement j. Nominal scale
k. One-to-one transformation l. Ordinal scale
m. Monotonic transformation n. Interval scale
o. Positive linear transformation p. Ratio scale
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1.5 HISTORICAL DEVELOPMENT OF STATISTICS

National Statistics

The science of statistics grew out of an attempt to solve practical problems associ-
ated with raising taxes, producing insurance tables, and determining the odds in
games of chance. Its subject matter was shaped by three lines of development:
national statistics, probability theory, and experimental statistics. The oldest of these
three is national statistics, which was enumerative and descriptive in character; na-
tional statistics can be traced to the beginning of recorded history. David numbered
his people, and the Egyptians and Romans kept detailed records of taxes and other
state resources. Caesar Augustus simplified the enumerative process by ordering all
citizens to report to the nearest statistician, better known as the tax collector. The
descriptive use of statistics came of age in the work of English army captain John
Graunt (1620–1674), who in 1662 published a small book of birth and death statis-
tics for London that covered the years from 1604 to 1661. Unlike earlier works, such
as William the Conqueror’s Domesday Book, which simply contained data compiled
for purposes of taxation and military service, Graunt’s book summarized and inter-
preted the data. His was the first work to shed light on the regularity of social phe-
nomena. It marked the beginning of a theory of annuities and led to the founding of
insurance societies.

Probability Theory

A second and independent line of development in statistics is probability theory.
The earliest traces of probability, found in the Orient around 200 B.C., concerned
whether an expected child would be a boy or girl. However, the real impetus for the
development of probability came not from prospective parents but from gamblers
who wanted to know the odds of winning at various games of chance. Leading
mathematicians and scientists of the day—Pierre de Fermat (1601–1665), Blaise
Pascal (1623–1662), Christianus Huygens (1629–1695), and James Bernoulli
(1654–1705)—responded to the problem. Gradually they chiseled out the founda-
tion of a theory of probability. A milestone in this development was the discovery of
the normal curve of errors by Abraham de Moivre (1667–1754), a mathematics tu-
tor who supplemented a meager income by calculating odds for gamblers at the cof-
feehouses he frequented. Apparently, de Moivre did not appreciate the significance
of his discovery; it was published in 1733 only obscurely as a supplement written in
Latin to a limited reprinting of a book he had published three years earlier. There-
fore, it remained for others to demonstrate the pervasiveness of the normal distribu-
tion. For more than a century it was attributed to a later discoverer, Carl Friedrich
Gauss (1777–1855), one of the greatest mathematicians of all time. It also was dis-
covered independently by Pierre-Simon de Laplace (1749–1827), who forsook a
cleric’s robe for his lifework in celestial mechanics and probability. Both Laplace
and Gauss used the normal distribution in investigating errors of observation in
astronomy. Lambert Adolphe Jacques Quetelet (1796–1874), who is considered the
father of social science, saw that the normal distribution and probability theory
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could be applied to all observational sciences: astronomy, anthropology, physics, the
census, and the statistics of mental and moral traits. He used the normal curve, for
example, to predict the number and type of crimes committed. His work integrated
national statistics and probability theory and paved the way for the third line of
development—experimental statistics.

Experimental Statistics

The emerging interest in the sciences in the early 1800s created a need for new
statistical procedures and principles to guide the design of experiments. The re-
sult was experimental statistics. Its development was dominated by intellectual
giants such as Sir Francis Galton (1822–1911). Lewis Terman, the developer of
the Stanford-Binet intelligence test, estimated Galton’s IQ at about 200. Galton,
more than anyone before, used statistics in investigating problems of people and
nature. His major statistical contributions were regression and correlation proce-
dures (see Chapters 5 and 6), which he used to unravel mysteries of heredity. Karl
Pearson (1857–1936) refined the mathematical theory of regression and made an
astonishing number of additional contributions to statistical theory and practice.
Perhaps his greatest contribution was the development in 1900 of the chi-square
test for goodness of fit (see Chapter 17), which is used to test the significance of
differences between observed data and those expected on the basis of some
hypothesis.

The modern era in experimental statistics was ushered in by William Sealey
Gosset (1876–1937), who derived the t distribution (see Chapter 10) in 1908. Thus
began the development of exact inductive procedures appropriate for both large and
small samples. Heretofore researchers had relied on large-sample statistical proce-
dures. Gosset, who published under the pseudonym “Student,” was a brewer for
Messrs. Guinness. His discovery, like others in statistics, resulted from a practical
need—in this case, the need for inductive procedures appropriate for small samples.
He was involved in brewing research, where variable materials and susceptibility to
temperature changes precluded the use of large samples.

The modern era matured in the work of Sir Ronald A. Fisher (1890–1962), whose
contributions to statistics are legion. He is best remembered for his derivation of the
F distribution, contributions to the design and analysis of experiments, and heated
exchanges about statistical theory with Jerzy Neyman (1894–1981) and Egon Pear-
son (1895–1981). Fisher’s work was a unique blend of the rigor of the mathemati-
cian with a commonsense approach; the latter was undoubtedly due to his applied
work in agriculture, biology, and genetics.

Neyman and Pearson carefully consolidated the work of Fisher and others while
developing their own theory of statistical inference. The bulk of the statistical arse-
nal of today’s researcher can be traced to Fisher, Neyman, and Pearson. But in
response to changing research needs, there have been many new developments. The
computer has made possible the solution of problems that were heretofore in-
tractable and has sparked new lines of inquiry. It seems unlikely, however, that a new
era could be dominated to the extent that Fisher, Neyman, and Pearson dominated
the one from 1920 to the present.
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CHECK YOUR UNDERSTANDING OF SECTION 1.5

16. What three lines of development shaped the subject matter of contemporary
statistics?

17. Briefly summarize the major characteristics of the three lines of development
that shaped the subject matter of contemporary statistics.

18. What distinguishes the modern era in experimental statistics from the previous
period?

19. Terms to remember:
a. National statistics b. Probability theory
c. Experimental statistics

1.6 LOOKING BACK: WHAT HAVE YOU LEARNED?

Statistics is an indispensable tool for making sense out of data and for communicat-
ing the results of research. The word statistics has several meanings. For example, it
can refer to characteristics of data such as the mean and range and to techniques for
collecting, analyzing, and interpreting data. Your study of statistics will help you to
(1) read the professional literature in your field and keep up with new developments,
(2) design and analyze simple experiments, and (3) detect statistical fallacies in the
mass media and research reports. In addition, you should learn new, more critical
and analytical ways of thinking.

Research questions usually concern characteristics of populations. For example,
what do people of voting age think about an issue? Is one teaching approach for fifth
graders more effective than another? Do 21-year-old women prefer smaller families
than men of the same age? The populations are, respectively, the attitudes of voters
on the issue, the achievement scores of fifth graders, and the preferred family sizes
of 21-year-old women and men. The term population generally refers to all the
inhabitants of a city, state, or country. In statistics it refers to the collection of all
people, objects, or events having one or more specified characteristics. It is rarely
possible to observe all the elements of a population, either for practical reasons or
because the population is infinite in size. Instead, we conduct research on a sample
of elements. A sample can contain a single element or all but one of the population
elements. If every sample of a particular size has an equal chance of being selected
from the population, the sampling process is said to be random.

Statistics can be applied to data from samples or from populations to obtain a
clearer understanding of their characteristics. If you obtained a random sample of
21-year-old women and men, you might find that on the average they prefer, respec-
tively, 2.2 and 2.4 children. In addition, you might learn that the range for women
was 0 to 9 and that for men was 0 to 7. The numbers 2.2 and 2.4 and the ranges 0 to
9 and 0 to 7 are descriptive statistics; they summarize characteristics of the two
samples. Description is one important application of statistics. A second important
application is inferring characteristics of a population by observing a sample. The
sample statistics for preferred family size, for example, provide our best guess about
the corresponding population values. Furthermore, inferential statistics can be used
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to decide whether the populations from which the samples of women and men were
obtained differ in preferred family size. These two uses of statistics—description
and inference—are discussed in the first and second halves of this book.

Once a researcher has identified the population of interest and the characteristic
to be observed, he or she must decide how the characteristic should be measured.
Mathematicians and statisticians have historically classified variables as qualitative
(unordered or ordered) or quantitative (discrete or continuous). This scheme evolved
because different mathematical tools are used in derivations and proofs for the two
kinds of variables.

Behavioral scientists, on the other hand, developed a classification scheme that
reflected their concern with the degree to which numbers mirror the characteristics
they represent. A four-level classification of measurement resulted: nominal, ordi-
nal, interval, and ratio. Today we recognize that the measurement of many variables
in the behavioral sciences and education lies somewhere between the ordinal and
interval levels.

Modern statistics is the culmination of three historical lines of development:
national statistics, probability theory, and experimental statistics. The origins of sta-
tistics are in antiquity, yet most of the material in this book is the product of the 20th
century. You can expect to see an acceleration in the development of new statistical
tools and theory—an acceleration made possible, in part, by the advent of the com-
puter with its phenomenal capacity for information processing and storage.

REVIEW EXERCISES FOR CHAPTER 16

1. The word statistics has four distinct meanings. List them.
2. The chapter mentions several benefits of studying statistics. List at least three

benefits.
3. How does the original meaning of the term population differ from today’s sta-

tistical definition?
4. For each of the following statements, indicate (a) the population, (b) the ele-

ment, and (c) the observation to be recorded.
a. In the previous presidential election, 36% of 18- to 24-year-olds voted.
b. Approximately 16% of all children under 18 are members of families whose

incomes are below the poverty level.
c. Approximately 42% of all prison inmates are 21 to 26 years old.
d. Approximately 32% of all high school graduates 18 to 24 years old are en-

rolled in college.
e. Four out of 10 Americans are under 25 years old.
f. According to a recent Centers for Disease Control report, one of every 1,667

American white women between the ages of 27 and 39 has the AIDS virus.
g. According to the U.S. Department of Education, 38.4% of male high

school students have performed a community service during the past two
years.

6 Answers to the Review Exercises are given in the Instructor’s Manual.
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5. (a) Why is most research conducted on samples rather than populations? 
(b) How is sample size related to the resemblance between a random sample
and the population?

6. Distinguish between descriptive and inferential statistics.
7. Mathematicians and behavioral scientists have somewhat different interests in

numbers. Discuss these differences.
8. Ignoring for the moment the limitations of measuring instruments, classify

measures of the following variables according to the mathematician’s scheme
(unordered qualitative, U; ordered qualitative, O; discrete quantitative, D;
continuous quantitative, C).
a. Employee production on an assembly line
b. Paper-and-pencil test of creativity
c. Political party affiliation
d. Final standing of football teams in the Big 12 Conference
e. Weight loss after jogging 3 miles
f. Number of reported suicides in 2003
g. Major in college
h. Religious preference
i. Grading scale in school (A, B, C, D, F)
j. Amount of rainfall
k. Sexual orientation (heterosexual, lesbian, gay man, bisexual woman or man)

9. Because of the limitations of measuring instruments, the measurement of some
variables is of necessity approximate. Classify the variables in Exercise 8 ac-
cording to whether our measurement is exact (E) or approximate (A).

10. Reclassify the variables in Exercise 8 according to the mathematician’s
scheme, taking into account limitations in our ability to measure some of the
variables.

11. (a) In what three ways do behavioral scientists use numbers in measurement?
(b) Give three examples of each use.

12. Classify the variables in Exercise 8 with respect to level of measurement, taking
into account limitations in our ability to measure some of the variables.

13. For each level of measurement, list the properties that characterize the numbers
assigned to the equivalence classes.

14. Who is in the best position to determine the degree of correspondence between
a set of numbers and the corresponding equivalence classes and hence to deter-
mine the arithmetic operations that can meaningfully be applied?

15. What does a score of 0 on an achievement test mean?
16. Suppose that a group of inner-city students improved their arithmetic achieve-

ment test scores by an average of 8 points, whereas a group of students from
an affluent neighborhood improved their scores only by an average of 
6 points. Explain how it is possible that the 6-point increase might actually
represent a greater increase in arithmetic achievement than the 8-point
increase.
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17. List at least one major contribution that each of the following men made to
statistics.
a. Abraham de Moivre (1667–1754)
b. Lambert Adolphe Jacques Quetelet (1796–1874)
c. Francis Galton (1822–1911)
d. Karl Pearson (1857–1936)
e. William Sealey Gosset (1876–1937)
f. Ronald A. Fisher (1890–1962)
g. Jerzy Neyman (1894–1981)
h. Egon Pearson (1895–1981)
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2.1 INTRODUCTION

Looking Ahead: What Is This Chapter About?

This chapter describes two kinds of procedures for depicting and summarizing data:
frequency distributions and graphs. The procedures for constructing frequency distri-
butions for quantitative variables differ slightly from those used to construct fre-
quency distributions for qualitative variables. Also, different kinds of graphs are used
to depict the two kinds of variables. The chapter ends with a description of some
commonly encountered distributions and some ways that graphs can mislead you.

After reading the chapter, you should know the following:

■ How to construct frequency distributions for quantitative and qualitative
variables

■ The merits of relative frequency distributions and cumulative frequency
distributions

■ How to construct bar graphs and pie charts for qualitative variables
■ How to construct histograms, frequency polygons, cumulative polygons, and

stem-and-leaf displays for quantitative variables
■ The names of commonly encountered distributions and four important proper-

ties of distributions
■ How you can be mislead by graphs

Need to Depict and Summarize Data

No two people respond exactly the same way in a situation. Even responses that
have been overlearned exhibit some variability from time to time. On occasion,
quarterbacks fumble the exchange from center, pianists play wrong notes, and ac-
tors muff their lines. It seems that variation in the behavior of people is inevitable.
This lack of consistency is more troublesome in the behavioral sciences, health sci-
ences, and education than in the physical sciences. A chemist can be confident that
different samples of H2O will react with another substance the same way under con-
trolled tests. But this kind of consistency where people are involved is rare. The vari-
ability problem is usually handled by observing many people or by making many
observations of the same people. The presumption is that if the researcher observes
enough people or observes the same person enough times, errors due to variability
will average out. This research strategy produces mountains of data and calls for
procedures for depicting and summarizing the data so that they can be more readily
comprehended. Two kinds of descriptive tools are used for this purpose: graphical
methods and numerical methods. This chapter is devoted to graphical methods; nu-
merical methods are described in Chapters 3 through 6.

2.2 FREQUENCY DISTRIBUTIONS

The first step in summarizing data is to construct a frequency distribution. This
involves defining two or more equivalence classes and counting the number of ob-
servations in each class.
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An equivalence class can be (1) a single score value (for example, Yale
students with a 4-point GPA), (2) a collection of score values (Yale students
with from five to nine traffic tickets), (3) or a qualitative category (Yale
students with blue eyes). A table showing the equivalence classes and the
frequency with which their score values occur is called a frequency
distribution.

The equivalence classes of a frequency distribution are called class intervals. If
each of the class intervals is a single score value, the frequency distribution is said
to be ungrouped. If each class interval spans two or more score values, for exam-
ple, Yale students with five to nine traffic tickets, the frequency distribution is
grouped.

Ungrouped Frequency Distribution 
for Quantitative Variables

Suppose you administered a test of leadership aptitude to all high school football
coaches in Punt County, Iowa. Their test scores are shown in Table 2.2-1. If you ex-
amine the table carefully, you see that the smallest score is 30 and the largest is 68
and that most of the scores are in the high 40s and low 50s. You can extract the same
information more easily from the ungrouped frequency distribution in Table 2.2-2,
which associates with each score value, X, the frequency of its occurrence, f. In con-
structing the frequency distribution, I followed the convention of putting the largest
score at the upper left of the table. In addition, each number between the largest and
the smallest scores is listed in the distribution so that every possible score can be tal-
lied and the gaps between scores easily detected.

The frequency distribution is an effective organizing device, but some informa-
tion is lost. I cannot tell from Table 2.2-2 which coach made the highest score,
which coach made the lowest score, or that one of the coaches is a woman. I must
refer to the original data for this information.

TABLE 2.2-1 Leadership Aptitude Scores

Coach Score Coach Score Coach Score

John Granados 55 Tom Pennington 39 Frank Sanford 45
Jamie Brooks 46 David Lilley 68 Dave Abbott 33
Gary Tsang 52 Bill Reynolds 52 William Scott 50
Charlie Keele 51 William Tubbs 54 Ron Smith 51
Jim Bohannon 48 Tom May 48 Charles Dilday 54
John Mills 50 Mike Bratcher 46 James Lamb 59
Ed Massey 30 John Achor 47 William Tobin 49
David Weaver 53 Joseph Vardaman 44 Roger Sloan 42
Jack Patton 57 Alden Daniel 49 Robert Frish 56
Jane Benedict 62 Robert Stanford 50 Michael Rowatt 53
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Grouped Frequency Distribution for Quantitative Variables

If the spread of scores for a quantitative variable is large, as in Table 2.2-2, it is
useful to construct a grouped frequency distribution in which each class interval
spans two or more score values. A grouped frequency distribution for the leadership
aptitude data is shown in Table 2.2-3. This table is much easier to interpret than the
ungrouped frequency distribution in Table 2.2-2.

Class intervals for a quantitative variable have a nominal lower limit and a
nominal upper limit; for the class interval 66–68 they are, respectively, 66 and 68.
However, the interval 66–68 actually includes any number equal to or greater than
65.5 and less than 68.5. The numbers 65.5 and 68.5 are called the real limits of the

TABLE 2.2-2 Ungrouped Frequency Distribution for Leadership 
Aptitude Scores from Table 2.2-1

Score Frequency Score Frequency Score Frequency Score Frequency
X f X f X f X f

68 | 58 0 48 || 38 0
67 0 57 | 47 | 37 0
66 0 56 | 46 || 36 0
65 0 55 | 45 | 35 0
64 0 54 || 44 | 34 0
63 0 53 || 43 0 33 |
62 | 52 || 42 | 32 0
61 0 51 || 41 0 31 0
60 0 50 ||| 40 0 30 |
59 | 49 || 39 |

TABLE 2.2-3 Grouped Frequency Distribution for Leadership 
Aptitude Scores from Table 2.2-1

Class Interval Frequency, f

66–68 1
63–65 0
60–62 1
57–59 2
54–56 4
51–53 6
48–50 7
45–47 4
42–44 2
39–41 1
36–38 0
33–35 1
30–32 1

na � 30

a n denotes the total number of scores in the frequency distribution.
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interval. They extend 0.5 below the nominal lower limit and approximately 0.5
above the nominal upper limit.1 The nominal limits are used to represent each class
interval. The real limits show that there are no gaps between the class intervals. For
example, there is no gap between the class intervals 63–65 and 66–68 because

63–65 includes any number � 62.5 and � 65.5
66–68 includes any number � 65.5 and � 68.5.

The real limits are used to compute the class interval size. The size of a class inter-
val, denoted by i, is given by

For example, the size of the class interval 66–68, where the real lower limit � 65.5
and the real upper limit 68.5, is

as illustrated in the following figure:2

i � 68.5 � 65.5 � 3,

>

i 5 Real upper limit 2 Real lower limit.

1 If my measurements were accurate to the nearest tenth, so that I had class intervals such as 6.6–6.8, the
class interval nominal limits would be 6.6 and 6.8 and the real limits would be 6.55 and 6.85. These
values are obtained by adding and subtracting 0.05 instead of 0.5 from the nominal limits. Similarly, if
the class interval were 0.66–0.68 and my measurements were accurate to the nearest hundredth, the
nominal limits would be 0.66 and 0.68 and the real limits would be 0.655 and 0.685, which differ from
the nominal limits by �0.005.

2 The symbol means “approximately equal.”
3 Some variables do not follow this convention. A common example is age. If a person is 21, this means

that the 21st birthday has passed but the 22nd has not. The real limits for the age 21 are 21.0 and 21.999.

>

real lower
limit � 65.5

nominal
lower
limit � 66

real upper
limit �∼ 68.5

class interval
size � 3

nominal
upper
limit � 68

65 66 67 68 69

real lower
limit � 67.5

real upper
limit �∼ 68.5

class 
interval
size � 1

67 68 69

The concepts of real limits and class interval size also apply to the class intervals in
ungrouped frequency distributions such as the one in Table 2.2-2. For the class
interval 68, for example, the real limits are 67.5 and 68.5.3 The class interval size is

as illustrated in the following figure:

i � 68.5 � 67.5 � 1,
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Several conventions are followed in constructing a frequency distribution. They
are not inviolate rules; instead, think of them as guidelines for constructing easily
interpreted tables.

1. The class intervals should be mutually exclusive—that is, the class intervals
should be chosen so that a score belongs in one and only one interval.

2. For quantitative variables, there should be no gaps between the class intervals.
For completeness, class intervals whose frequencies equal zero are included
in the distribution (see class intervals 36–38 and 63–65 in Table 2.2-3).

3. All quantitative class intervals should have the same width or size.4

4. The distribution should have 10 to 20 class intervals unless the number of
scores is very small, in which case it may be desirable to use fewer class
intervals. For qualitative variables, the number of class intervals is usually
dictated by the nature of the variable. For example, if the variable is gender,
there may be three class intervals: men, women, and unknown.

5. For quantitative variables, one of the preferred class interval sizes should be
used; these class intervals are 1, 2, 3, 5, 10, 15, 20, 25. . . .

6. The nominal lower limit of each quantitative class interval should be equal to
the size of the class interval multiplied by an integer. For such cases, the nom-
inal lower limit of a class interval is said to be an integer multiple of the class
interval size. In Table 2.2-3, for example, the nominal lower limit of the class
interval 30–32 is 30 and is equal to 3 � 10, where 3 is the class interval size
and 10 is the integer multiplier. If the smallest score had been 31 instead of
30, the class interval still would be 30–32 and not 31–33 because 31 is not an
integer multiple of 10.

7. For quantitative variables, opinion is divided as to whether the class interval
containing the largest score should be at the top (top left) of the table or at the
bottom (bottom left) of the table. My own preference is to put the class inter-
val containing the largest score value at the top left as in Table 2.2-2 and at the
top as in Table 2.2-3. However, many computer statistical packages put the
class interval containing the largest score value at the bottom of the table. For
qualitative variables, the order of the class intervals should reflect the order
inherent in the variable. If the variable is unordered and logic does not sug-
gest an order, the class intervals can be ordered alphabetically.

Determining the Number and Size of Class 
Intervals for a Quantitative Variable

The conventions for constructing a grouped frequency distribution provide general
guidelines for the number and size of class intervals. You know that there should be
10 to 20 class intervals (unless there are only a few scores) and that one of the

4 Sometimes this is not possible or desirable. Suppose that one participant was unable to learn a list of
nonsense syllables in the usual number of trials, 6 to 10, required by most participants. After the 20th
trial, the participant was still unable to meet the learning criterion and gave up. This participant cannot
be given an exact score; he or she falls into the top class interval “20 or more.” This interval is open
because its real upper limit can not be specified. Or suppose that the class intervals represent family
income. It might be desirable to make the bottom and top class intervals open to include the few fami-
lies with extremely small or extremely large incomes.
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preferred class interval sizes, 1, 2, 3, 5, 10, 15, 20, 25, . . . , should be used. With
these guidelines in mind, you can estimate the number and the size of class intervals
in a trial-and-error fashion using the following formula:

where the range is equal to the real upper limit of the largest score minus the real lower
limit of the smallest score. A preferred class interval size (i � 1 or 2 or 3 or . . .) is
selected by trial and error so that the formula yields between 10 and 20 class intervals.
To illustrate, the largest and smallest scores in Table 2.2-1 are 68 and 30. The range
is 68.5 � 29.5 � 39. If a class interval size of 2 is tried in the formula, there will be
39/2 20 class intervals. Because there are only 30 scores, a smaller number of
class intervals would be preferable. If a class interval size of 3 is tried, the formula
yields 39/3 � 13 class intervals, the number used in Table 2.2-3. A class interval size
of 5 should not be used because it would give only 39/5 8 class intervals. For most
sets of data, there will be no more than two class interval sizes that give the desired
10 to 20 class intervals. As a general rule, when the number of scores is small, use
fewer than 15 class intervals; when the number is large, use 15 to 20 class intervals.

Suppose that I have administered a test of reading readiness to 26 children en-
rolled in the first grade. The largest and smallest scores on the test are 132 and 73;
the range is 132.5 � 72.5 � 60. How many class intervals should the frequency dis-
tribution have and what should their size be? By trial and error and the formula

I see that two grouping schemes are possible: the class interval size, i, can be either
3 or 5 because both class interval sizes yield between 10 and 20 class intervals

The one in which i � 5 is preferred because there are only 26 scores. The smallest
class interval, following convention 6 given earlier, would be 70–74 because 70 is
an integer multiple of i � 5—that is, 5 � 14 � 70. The largest class interval would
be 130–134 because 130 is an integer multiple of i � 5—that is, 5 � 26 � 130. This
grouping scheme actually results in 13 instead of 12 class intervals. The formula for
estimating the number of class intervals has underestimated the required number be-
cause the smallest score (73) does not fall at or close to the real lower limit of its
class interval (69.5) nor does the largest score (132) fall at or close to the real upper
limit of its class interval (134.5). If the extreme scores had been 134 and 70 instead
of 132 and 73, the formula for estimating the number of class intervals would have
given 13 intervals—the number actually used.

Suppose that I had tested 221 children instead of 26 in the example given earlier.
In this case, I would have used a class interval size of 3. The smallest and largest
class intervals would be 72–74 and 132–134 because 72 and 132 are integer multi-
ples of i � 3: 3 � 24 � 72 and 3 � 44 � 132. Even though the use of i � 3 results
in 21 class intervals, it is preferred to i � 5 because of the large number of scores.
The purpose of graphical methods is to make data easier to comprehend, and some-
times the best way to do this is to depart from the conventions.

60
3

5 20  and  60
5

5 12

Range
Preferred i

5 A number between 10 to 20 class intervals

>

>

Range
Preferred i

5 A number between 10 to 20 class intervals
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The Pros and Cons of Grouping Data

Grouping scores into class intervals where i � 1 results in the loss of some infor-
mation. For example, I know from Table 2.2-3 that four scores occur in the class
interval 54–56, but I do not know their individual values. One must weigh this dis-
advantage against the simplicity achieved by grouping. If the spread of scores is
large, a grouped frequency distribution is more easily interpreted.

Relative Frequency Distributions

To help users interpret a frequency distribution, it is often beneficial to express
each frequency as either a proportion or a percentage of the total number of
scores. The formulas for proportionate frequency (Prop f ) and percentage
frequency (% f ) are

where f is the frequency of a class interval, and n is the total number of scores.

A distribution that shows the Prop f or %f for each class interval is called a
relative frequency distribution.

The frequency associated with each class interval also can be shown along with
either Prop f or % f. For purposes of illustration, a relative frequency distribution
that includes f, Prop f, and % f is shown in Table 2.2-4.

Prop f 5
f
n
  and    %f 5

f
n

3 100

TABLE 2.2-4 Relative Frequency Distributions for Leadership 
Aptitude Scores from Table 2.2-1

Class Interval f Prop f % f

66–68 1 .03 3
63–65 0 0 0
60–62 1 .03 3
57–59 2 .07 7
54–56 4 .13 13
51–53 6 .20 20
48–50 7 .23 23
45–47 4 .13 13
42–44 2 .07 7
39–41 1 .03 3
36–38 0 0 0
33–35 1 .03 3
30–32 1 .03 3

n � 30 Sum � .98a Sum � 98a

a Due to errors introduced by rounding numbers, the sums do not equal 1.00 and 100.
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The transformation (conversion) of frequencies into Prop f ’s or % f ’s converts
each frequency into a relative frequency in which the possible range of values is,
respectively, 0 to 1 or 0 to 100. Relative frequencies indicate whether a frequency
is “relatively large” rather than whether it is “absolutely large.” For example, the
class interval 48–50 in Table 2.2-4 contains only seven scores, but this is a rela-
tively large proportion (Prop f � .23, almost one-fourth) of the total number of
scores. Relative frequencies are particularly useful in comparing two frequency
distributions with different n’s. Consider the history achievement scores shown in
Table 2.2-5 for high school students taught by two methods. Because of the great
difference in n’s, a comparison of percentage frequencies is more meaningful than
a comparison of frequencies. You can see from the two %f columns that method B
resulted in a higher percentage of high achievement scores than method A. The su-
periority of method B is not obvious from an inspection of the two f columns.

Cumulative Frequency Distributions

A cumulative frequency distribution shows the number, proportion, or per-
centage of scores that occur below the real upper limit of each class interval.

Such a distribution helps in answering the following kinds of questions. If Susan’s
score is 62, how many students did better and how many did worse? Or, what score
divides the bottom 25% of students from the remainder of the class?

TABLE 2.2-5 History Achievement Scores for Classes 
Taught by Different Methods

Method A Method B
Achievement 

Scores f % f f % f

150–154 1 1 1 3
145–149 0 0 2 6
140–144 2 3 2 6
135–139 4 5 4 12
130–134 6 8 6 19
125–129 8 11 8 25
120–124 9 12 5 16
115–119 10 14 2 6
110–114 8 11 1 3
105–109 8 11 0 0
100–104 6 8 1 3

95–99 5 7 0 0
90–94 3 4 0 0
85–89 2 3 0 0
80–84 1 1 0 0

n � 73 Sum � 99a n � 32 Sum � 99a

a Due to errors introduced by rounding numbers, the sums do not equal 100.
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To construct a cumulative frequency distribution, you begin with a frequency dis-
tribution like the one in columns 1 and 2 of Table 2.2-6. A given cumulative frequency,
denoted by Cum f, is obtained by adding the frequency in column 2 for the class inter-
val to the cumulative frequency recorded in column 3 for the class interval below it.
For example, in the class interval 30–32, f � 1, and there are no scores below, so the
Cum f for that class interval is 1 � 0 � 1. For the class interval 33–35, f � 1, which,
added to the Cum f below, yields a Cum f of 1 � 1 � 2. The cumulative frequency
recorded for the top class interval should equal the total number of scores, n.

Cumulative frequencies can be transformed into Cum Prop f and Cum % f by the
formulas

Cum Prop f � (Cum f )/n

and

Cum % f � [(Cum f /n)] � 100

These relative frequencies are shown in columns 4 and 5 of Table 2.2-6.

Frequency Distributions for Qualitative Variables

Constructing frequency distributions for qualitative variables is simple because no
decisions about size and number of class intervals have to be made—the equivalence
classes of the variable become the class intervals. Consider the unordered qualita-
tive variable of political party affiliation: Democrat, Independent, Republican, and
unspecified or other. If I obtained a random sample of college students at Ohio State
University and determined their political affiliation, I could construct a frequency

TABLE 2.2-6 Cumulative Frequency Distributions for Leadership
Aptitude Scores from Table 2.2-1

(1) (2) (3) (4)a (5)b

Class Interval f Cum f Cum Prop f Cum % f

66–68 1 1 � 29 � 30 1.00 100
63–65 0 0 � 29 � 29 .97 97
60–62 1 1 � 28 � 29 .97 97
57–59 2 2 � 26 � 28 .93 93
54–56 4 4 � 22 � 26 .87 87
51–53 6 6 � 16 � 22 .73 73
48–50 7 7 � 9 � 16 .53 53
45–47 4 4 � 5 � 9 .30 30
42–44 2 2 � 3 � 5 .17 17
39–41 1 1 � 2 � 3 .10 10
36–38 0 0 � 2 � 2 .07 7
33–35 1 1 � 1 � 2 .07 7
30–32 1 1 � 0 � 1 .03 3

n � 30

a Column 4 is obtained by dividing each Cum f in column 3 by n � 30.
b Column 5 is obtained by multiplying column 4 by 100.
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distribution like the one in columns 1 and 2 of Table 2.2-7. The equivalence classes
are ordered alphabetically for lack of a more logical sequence. For ordered qualita-
tive variables, class intervals should preserve the order inherent in the original
equivalence classes.

The frequencies in column 2 of Table 2.2-7 are converted to Prop f in column 3
and % f in column 4. Cumulative frequencies are not shown; they are not meaning-
ful because the order of the class intervals was arbitrarily determined.

CHECK YOUR UNDERSTANDING OF SECTION 2.2

1. A marriage counselor asked his clients to keep a record of the number of
arguments they had during the week. The following data for 23 couples were
obtained. Construct an ungrouped frequency distribution for these data.

2 5 4 9 6
4 3 3 5 10
5 0 13 4 2
1 7 6 3
4 5 4 4

2. Assembly-line workers were asked to complete a job-satisfaction questionnaire.
Construct an ungrouped frequency distribution for the following scores, where
large scores correspond to high satisfaction.

7 8 4 25 9 8 4 15 11 9
6 9 7 7 10 17 5 10 5 8
3 7 11 8 13 22 7 8 7 6

10 6 7 9 4 8 6 6 8 11
15 21 5 11 6 9 5 12 10 8

3. List the guidelines for constructing an ungrouped frequency distribution.
4. For the following nominal class intervals, give the real limits and the class

interval size.
a. 50–54 b. 74 c. 18.0–19.9

TABLE 2.2-7 Political Affiliation of Students at Ohio State University

(1) (2) (3)a (4)b

Political Affiliation f Prop f % f

Democrat 92 .42 42
Independent 33 .15 15
Republican 85 .38 38
Unspecified or other 11 .05 5

n � 221 Sum � 1.00 Sum � 100

a Column 3 is obtained by dividing each f in column 2 by n � 221.
b Column 4 is obtained by multiplying column 3 by 100.
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5. For each of the following, give (a) the number of class intervals, (b) the size of
the class interval, and (c) the nominal limits of the class interval containing the
smallest score.

Largest Score Smallest Score Number of Scores

a. 68 22 53
b. 260 106 21
c. 254 92 91

6. A test of mechanical aptitude was given to seniors at Middlecenter High School.
Construct a grouped frequency distribution for the following data.

80 73 51 81 46 85 84
75 44 84 77 95 48 88
50 35 52 93 43 59 63
47 66 55 58 62 51 75
86 82 89 51 77 73 59

7. In a traffic safety project, the reaction time of 27 participants to the onset of a
light was measured in milliseconds. For the following data, (a) construct two
grouped frequency distributions having different i’s, and (b) discuss the relative
merits of the two grouping schemes.

186 187 211 185 196 193
184 185 191 188 192 190
188 190 202 199 189
193 186 180 205 187
189 195 184 198 202

8. For the data in Exercise 6, construct a relative frequency distribution using Prop f.
9. Thirty-two college students participated in a paired-associates learning experi-

ment in which they were shown 12 nouns written in hiragana (a Japanese writ-
ing system) and asked to learn the corresponding English words. The number of
trials each participant needed to be able to correctly anticipate the 12 English
words on two consecutive trials is shown here. Construct a cumulative fre-
quency distribution for the data.

10 9 11 12 6 14 10 12
11 10 12 10 9 11 16 8
9 7 8 11 10 8 12 12

13 10 10 9 11 13 7 11

10. For the data in Exercise 1, construct a cumulative proportionate frequency
distribution.

11. Researchers asked a random sample of 29 students from each of the following clas-
sifications—freshman, sophomore, junior, senior, and graduate student—whether
they believed in extrasensory perception (ESP). The classifications of students who
believed in ESP are listed here. Construct a frequency distribution for these data.

junior senior junior sophomore junior
freshman junior freshman junior sophomore
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sophomore senior senior senior junior
graduate sophomore junior freshman senior
freshman junior junior senior sophomore
junior senior sophomore senior

12. Under what condition is it meaningless to construct a cumulative frequency dis-
tribution for a qualitative variable?

13. Terms to remember:
a. Equivalence class b. Frequency distribution
c. Class interval d. Ungrouped frequency distribution
e. Grouped frequency distribution f. Nominal limits
d. Real limits e. Class interval size
f. Proportionate frequency g. Percentage frequency
h. Relative frequency distribution i. Cumulative frequency distribution

2.3 INTRODUCTION TO GRAPHS

Frequency distributions present the main features of data succinctly, but they are still
abstract numerical representations and require effort to interpret. Graphs can impart
the same information and speak to us more directly. Their ease of interpretation
makes them particularly useful when you want to present data to the general public.

There are many ways to graph data. In fact, whole books have been devoted to
the subject.5 My presentation is limited to the six most common graphs: bar graphs,
pie charts, histograms, frequency polygons, cumulative polygons, and stem-and-leaf
displays. Qualitative variables are usually represented by bar graphs and pie charts.
Quantitative variables are usually represented by histograms, frequency polygons,
cumulative polygons, and stem-and-leaf displays.

2.4 GRAPHS FOR QUALITATIVE VARIABLES

Bar Graph

Once a frequency distribution has been made, most of the work of constructing a
bar graph has been done. The only step remaining is to represent the data in a two-
dimensional figure, as illustrated in Figure 2.4-1 for the data in Table. 2.2-7. Class
intervals are represented along the horizontal axis (abscissa, or X axis), and fre-
quencies are represented along the vertical axis (ordinate, or Y axis). The zero point
or origin of the vertical axis is located at the X and Y intercept—the point where the
two axes cross. A vertical bar is erected over each class interval such that its height
corresponds to the number of scores in the interval. The bars can be any width, but
they should not touch. A space between the bars emphasizes the discrete, qualitative
character of the class intervals. By convention, the height of the graph should be
66% to 75% of its width. This results in a rectangular figure whose proportions
according to the ancient Greeks are the most aesthetically pleasing. Also, the X and

5 Several examples are Arken and Colton (1938), Cleveland (1985), and Tufte (1983).
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Y axes of the graph should be labeled and a figure caption provided to help the
reader interpret the graph.

The Y axis also can be used to represent proportionate frequency or percentage
frequency, depending on the questions of interest to the researcher. You saw in
Section 2.2 that these transformations are useful in determining whether a frequency
is large in a relative rather than an absolute sense and in comparing frequency distri-
butions with different total numbers of scores.

Pie Chart

Perhaps the most easily interpreted graph is a pie chart, which is merely a
circle divided into sectors representing the proportionate frequency or percent-
age frequency of the class intervals.

A pie chart is illustrated in Figure 2.4-2 for the data in Table 2.2-7. To construct a pie
chart, think of the pie chart as a circle that has 60 minutes like the face of a clock. To
determine the size of a pie sector corresponding to one of the class intervals, convert
its Prop f or % f into minutes. This is accomplished using the following formulas:

Prop f � 60 or (% f /100) � 60

For Figure 2.4-2, the minutes corresponding to the four percentage frequencies are
as follows:

Democrat (42%/100) 60 � 25.2 min
Independent (15%/100) 60 � 9.0 min
Republican (38%/100) 60 � 22.8 min
Unspecified or other (5%/100) 60 � 3.0 min

Thus, 42% corresponds to 25.2 minutes after 12 o’clock; the next 15% corresponds
to 25.2 � 9.0 � 34.2 minutes after 12 o’clock; the next 38% corresponds to 
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Figure 2.4-1. Political affiliation of a random sample of n � 221 students at Ohio
State University. (Data from Table 2.2-7.)
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25.2 � 9.0 � 22.8 � 57 minutes; and the final 5% corresponds to 25.2 � 9.0 �
22.8 � 3.0 � 60 minutes or 12 o’clock. By visualizing the face of a clock, you can
mark off the four pie sectors on the pie chart. The last steps in constructing the pie
chart are to label the sectors and provide an appropriate figure caption.

CHECK YOUR UNDERSTANDING OF SECTION 2.4

14. College students were asked to name their favorite leisure-time activity. The
five most commonly mentioned activities were rapping with friends (RF), read-
ing (R), watching television (TV), participating in a sport (PS), and drinking
(D). Construct a bar graph for the following data.

RF PS D RF R TV RF D PS
RF RF R TV RF D TV RF TV
D TV RF RF D RF R R RF
R R TV D TV D D RF TV
TV RF PS TV RF TV TV D
D D TV RF PS RF RF D

15. A study was conducted in an Arizona nursing school to determine whether stu-
dents would have a positive attitude toward research after conducting a re-
search project of their own. After completing a required research course and
project, students were asked to indicate which one of four statements best rep-
resented their attitude. Of the 230 student nurses who responded, 31 checked
the statement that said they would like to be involved in research after gradua-
tion. Seventy-three checked the statement that said nurses should understand
research as a part of their professional responsibility. Sixty checked the state-
ment that said they felt confident in their ability to evaluate research in nursing.
Sixty-six checked the statement that said the required project was responsible
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Figure 2.4-2. Political affiliation in percentage frequency of a random sample of 
n � 221 students at Ohio State University. (Data from Table 2.2-7.)
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for their improved understanding of the research process. Construct a bar graph
for these data. (Suggested by Van Bree, Nancee S. [1981]. Undergraduate re-
search. Nursing Outlook, 29, 39–41.)

16. Construct a pie chart for the data in Exercise 14.
17. Construct a pie chart for the data in Exercise 15.
18. Terms to remember:

a. Bar graph b. Abscissa c. X axis
d. Ordinate e. Y axis f. Intercept
g. Pie chart

2.5 GRAPHS FOR QUANTITATIVE VARIABLES

Histogram

A histogram is similar in appearance and construction to a bar graph, but it is
used for quantitative variables rather than qualitative variables. It is con-
structed by erecting vertical bars over the real limits of each class interval,
with the height of each bar corresponding to the number of scores in the
interval. The bars of adjacent class intervals should touch, leaving no space
between the bars; this emphasizes the continuous, quantitative character of the
class intervals.

Except for these differences, histograms and bar graphs are constructed in the same
manner: (1) The class intervals are represented along the horizontal axis, and fre-
quency is represented along the vertical axis; (2) the zero point or origin of each axis
is located at the X and Y intercept; (3) the height of the graph is 66% to 75% of its
width; and (4) the two axes are labeled appropriately, and a figure caption is given
to help the reader interpret the graph.

A histogram for the data in Table 2.2-3 is shown in Figure 2.5-1. Note that the
sides of the bars are located at the real limits of the class intervals rather than at the
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Figure 2.5-1. Histogram for leadership aptitude scores for n � 30 football
coaches. (Data from Table 2.2-3.)
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nominal limits, for example, 29.5–32.5 and not 30–32. Either frequency or relative
frequency can be represented along the vertical axis. The transformation of frequen-
cies to relative frequencies is discussed in Section 2.2.

Frequency Polygon

To construct a frequency polygon from a frequency distribution, you begin as
though you were making a histogram. The horizontal axis is marked off into class
intervals, and the vertical axis is marked off into numbers representing frequencies.
However, the frequency of a class interval is not represented by a vertical bar but by
a dot placed at the proper height over the midpoint of the class interval. The
midpoint of a class interval is given by

For example, the midpoint of the class interval 30–32 is (32 � 30)/2 � 31. Finally,
adjacent dots are joined by straight lines. At each end of the graph, two additional
class intervals containing no scores are identified and lines are dropped to their mid-
points so as to anchor the graph to the horizontal axis. A frequency polygon for the
data in Table 2.2-3 is shown in Figure 2.5-2. Frequency polygons and histograms im-
part the same information; the choice between them is largely a matter of personal
preference. The histogram is probably a little easier for the general public to inter-
pret, but the stepwise bars tend to obscure the shape of the distribution. The
frequency polygon is preferred when two or more sets of data are represented in the
same graph because superimposed histograms often overlap and obscure one another.

Cumulative Polygon

Section 2.2 showed that a cumulative frequency distribution could be used to show
the number, proportion, or percentage of scores that lie below the real upper limit 
of each class interval. This same information can be presented graphically by a
cumulative polygon. Instead of placing dots over the midpoints of class intervals,
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Figure 2.5-2. Frequency polygon for leadership aptitude scores for n � 30
football coaches. (Data from Table 2.2-3.)
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you place them over the real upper limits. The vertical axis can represent Cum f,
Cum Prop f, or Cum % f. A cumulative percentage frequency polygon for the data in
Table 2.2-6 is shown in Figure 2.5-3. As is usually the case in the behavioral sciences
and education, the cumulative polygon has the characteristic S shape. The S shape oc-
curs whenever there are more scores in the middle of the frequency distribution than at
the extremes. Graphs that are S shaped are called ogives (pronounced “oh jives”).

Stem-and-Leaf Display

Another useful graphic procedure is the stem-and-leaf display.6 It resembles a
histogram that has been turned on its side. A stem-and-leaf display is illustrated in
Table 2.5-1 for the data in Table 2.2-1. The first step in constructing the display is
to specify class intervals following the procedures in Section 2.2. The class inter-
vals become the stems of the display. A score is represented by its class interval,
the stem, and by its trailing digit, the leaf. For example, the score 30 in Table 2.2-1
falls in the class interval 30–32, and its trailing digit is 0. This score of 30 is rep-
resented in Table 2.5-1 by the leaf 0 on the stem 30–32. The appearance of the dis-
play can be improved by ordering the leaves on a stem from the smallest to the
largest. It is customary to put the smallest class interval at the top of the display
and the largest class interval at the bottom and to place a vertical line between the
leaves and stems, as shown in Table 2.5-1. If these conventions are followed and
the display is rotated 90° counterclockwise, the display looks like a histogram in
which the vertical bars have been replaced by columns of numbers.

An important advantage of a stem-and-leaf display over a histogram is that the
stem-and-leaf display provides all of the information that is contained in a histogram
and preserves the value of the individual scores. For example, in Table 2.5-1, you
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Figure 2.5-3. Cumulative percentage frequency polygon for leadership aptitude
scores for n � 30 football coaches. (Data from Table 2.2-6.)

6 The procedure was popularized by John Tukey (1977).
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know the value of the four scores in the class interval 54–56. They are 54, 54, 55,
and 56. If desired, the stem-and-leaf display can be supplemented with a frequency
distribution, as in column 3 of Table 2.5-1. Also, two sets of data can be presented
in the same table by placing one set on the left side of the stems and the other set on
the right side, as in Table 2.5-2. This back-to-back stem-and-leaf display makes it
easy to compare the two distributions.

TABLE 2.5-1 Stem-and-Leaf Display for Data from Table 2.2-1

(1) (2) (3)
Stem Leaf Frequency

(Class Interval) (Trailing Digit) (f)

30–32 0 1
33–35 3 1
36–38 0
39–41 9 1
42–44 2 4 2
45–47 5 6 6 7 4
48–50 8 8 9 9 0 0 0 7
51–53 1 1 2 2 3 3 6
54–56 4 4 5 6 4
57–59 7 9 2
60–62 2 1
63–65 0
66–68 8 1

n � 30

TABLE 2.5-2 Stem-and-Leaf Display for Job Satisfaction of First-Line
Supervisors and Assembly-Line Workers (Data from Exercise 2
in Section 2.2 and Exercise 4 in Review Exercises for Chapter 2)

Leaf Stem Leaf 
First-Line Supervisors Assembly-Line Workers

2–3 3
4–5 4 4 4 5 5 5 5

6 6–7 6 6 6 6 6 6 7 7 7 7 7 7 7
8–9 8 8 8 8 8 8 8 8 9 9 9 9 9

10–11 0 0 0 0 1 1 1 1
2 12–13 2 3
4 5 14–15 5 5
6 7 16–17 7
8 8 9 18–19
0 0 1 1 20–21 1
2 3 22–23 2
4 5 24–25 5
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A stem-and-leaf display can be simplified by using only the first or leading
digit(s) of a stem (class interval). For example, the class interval 10–19 can be rep-
resented by the stem 1, the class interval 20–29 by the stem 2, the class interval
150–159 by the stem 15, and so on. Most statistical packages use this abbreviated
representation of stems.

CHECK YOUR UNDERSTANDING OF SECTION 2.5

19. The following data represent the number of cigarettes smoked per day by moth-
ers whose first babies were stillborn. Construct a histogram for these data.

27 25 31 22 3 16 15
21 32 29 30 12 14 26
9 27 25 27 30 28 31

30 18 0 23 20 21 19
28 16 10 19 13

20. Rats were shown three illuminated symbols; their task was to press the lever be-
low the symbol that differed from the other two. The dependent measure was
the number of trials required before the rat could make eight consecutive cor-
rect responses. Construct a histogram for these data.

52 34 57 47 54 56 46
60 63 42 20 50 81 41
43 51 36 73 56 77 59
50 42 58 65 42 58 63
66 55 53 63 53 54 61

21. Determine the midpoints of the following class intervals.
a. 20–24 b. 8–11 c. 132–133 d. 15–29

22. Construct a frequency polygon for the data in Exercise 19.
23. Construct a frequency polygon for the data in Exercise 20.
24. (a) Construct a cumulative polygon for the data in Exercise 19; plot Cum % f on

the ordinate. (b) Estimate the score above which 50% of the cases fall.
25. How can you tell from a frequency distribution whether a cumulative polygon

for the data would have an S shape?
26. Construct a stem-and-leaf display for the data in Exercise 19.
27. Terms to remember:

a. Histogram b. Frequency polygon
c. Class interval midpoint d. Cumulative polygon
e. Ogive f. Stem-and-leaf display

2.6 SHAPES OF DISTRIBUTIONS

Graphs come in many different shapes. Some shapes occur with enough regularity
that they have been given special names. These shapes are shown in Figure 2.6-1.
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Bell-Shaped Distributions

Figure 2.6-1(a) approximates the shape of the normal distribution, which is dis-
cussed in Chapter 9. This important distribution is symmetrical—that is, the right half
is the mirror image of the left half—and it has a particular degree of peakedness.

The property of being peaked, flat, or somewhere in between is referred to as
kurtosis.

The normal distribution is mesokurtic; meso- means intermediate. Distributions
that are flatter than the normal distribution are called platykurtic; platy- means flat
or broad. Those that are more peaked are called leptokurtic; lepto- meaning slender
or narrow. Examples of these distributions are shown in Figure 2.6-1(b) and (c).
These distributions and the one in (a) all center on the same test score, 50. The point

50
Test score

Bell shaped and mesokurtic
a.

Fr
eq

ue
nc

y

50
Test score

Bell shaped and platykurtic
b.

Fr
eq

ue
nc

y

50
Test score

Bell shaped and leptokurtic
c.

Fr
eq

ue
nc

y
210 3 4 5

Number of
passengers in car

J shaped
g.

Pr
ob

ab
ili

ty
 o

f 
ca

r 
co

m
in

g 
to

 a
 

co
m

pl
et

e 
st

op
 a

t
a 

st
op

 s
ig

n

MedLowVery
low

High Very
high

Level of motivation

U shaped
h.

Fr
eq

ue
nc

y

Test scores expressed
as percentages

Rectangular
i.

Fr
eq

ue
nc

y

Test score

Negatively skewed
d.

Fr
eq

ue
nc

y

Test score

Fr
eq

ue
nc

y

Test score

Fr
eq

ue
nc

y

Positively skewed
e.

Bimodal
f.

Figure 2.6-1. Common distributions in behavioral and educational research.
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on which a distribution centers is an important characteristic of the distribution and
is referred to as its central tendency. Another important characteristic of a distribu-
tion is its dispersion—the extent to which scores are spread out around a central
point. The scores in Figure 2.6-1(c), for example, have less dispersion or scatter than
those in (a) and (b).

Skewed Distributions

Distributions are either symmetrical or asymmetrical.

If the right half of a distribution is the mirror image of the left half, the distrib-
ution is symmetrical. If the longer tail of an asymmetrical distribution ex-
tends toward the X and Y intercept, as in Figure 2.6-1(d), the distribution is
negatively skewed. If the longer tail extends away from the intercept, as in
Figure 2.6-1(e), the distribution is positively skewed.

A negatively skewed distribution results, for example, if the participants are given a
very easy test. Because most of the participants score high and only a few score low,
the longer tail trails off toward the X and Y intercept. A positively skewed distribu-
tion results if the test is very hard.

Bimodal Distributions

A distribution is bimodal if it has two humps, each with the same maximum
frequency.

Bimodal distributions often result when two distinct samples are represented on a
single graph. For example, a graph like that shown in Figure 2.6-1(f) would result if
you plotted the masculinity scores of 50 men and 50 women.

A graph with three or more humps, each with the same maximum frequency,
is multimodal.

Technically, a distribution is bimodal or multimodal only if its humps have the same
frequency. Nevertheless, distributions with pronounced but slightly unequal humps
are commonly described as bimodal or multimodal.

J, U, and Rectangular Distributions

J and U distributions are so named because their shapes resemble those
letters.

A J-shaped curve like the one in Figure 2.6-1(g) is obtained, for example, if the
probability of coming to a complete stop at a stop sign is plotted on the vertical axis
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and the number of passengers in the car is plotted on the horizontal axis. A reversed
J curve is obtained if the number of people arriving for church is plotted on the ver-
tical axis and the number of minutes that they are late is plotted on the horizontal
axis. Similar results are obtained in most studies of conforming social behavior—
most people conform to social conventions and laws, so fewer and fewer people
exhibit larger degrees of nonconformity.

An inverted U curve like the one in Figure 2.6-1(h) is obtained, for example, if
performance on a difficult task is plotted on the vertical axis and level of motivation
of the participants is plotted on the horizontal axis.

A rectangular or uniform distribution is one in which each class interval has
the same frequency.

A rectangular distribution is produced when test scores are converted to percentiles
(see Section 4.2) and the number of scores in the class intervals 0–10th percentile,
10th–20th percentile, . . . , 90th–100th percentile is graphed. It follows that the
resulting graph will be rectangular because each of the 10 class intervals by defini-
tion must contain 10% of the scores.

This section described some common distributions, and in the process introduced
four important characteristics of distributions: (1) central tendency, (2) dispersion,
(3) symmetry or lack of symmetry (skewness), and (4) kurtosis. In Chapters 3 and 4
you will learn how to compute numbers that represent each of these important
characteristics.

CHECK YOUR UNDERSTANDING OF SECTION 2.6

28. Indicate whether the following statements are true or false.
a. A normal distribution is symmetrical and mesokurtic.
b. If the upper half of a distribution is not the mirror image of the lower half,

the distribution is asymmetrical.
c. A distribution that is more peaked than the normal distribution is called

platykurtic.
d. The tail of a positively skewed distribution extends away from the X and Y

intercept.
e. A distribution with two maximum humps, each with the same frequency, is

said to be multimodal.
29. Draw the shape of a frequency polygon that would occur in each of the follow-

ing experiments. Identify each distribution.
a. Miss America contestants take a masculinity test.
b. An intelligence test is given to a large sample of sixth-grade children.
c. Students at Curtis Institute of Music take a test of musical aptitude.
d. Students are surprised with a pop quiz immediately after the Christmas

vacation.
30. Terms to remember:

a. Normal distribution b. Kurtosis
c. Mesokurtic d. Platykurtic
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e. Leptokurtic f. Central tendency
g. Dispersion h. Symmetrical distribution
i. Skewness (negative and positive) j. Bimodal
k. Multimodal l. J distribution
m. U distribution n. Rectangular (uniform) distribution

2.7 MISLEADING GRAPHS

Graphs should be constructed so that they accurately portray the essential character-
istics of data. Not all graphs do this—some even defy correct interpretation. Two
graphs of the same data can convey entirely different impressions, as shown in
Figures 2.7-1(a) and (b), which report crime statistics for three similar neighbor-
hoods. In neighborhood A, cruising patrol cars were eliminated during a three-
month trial period; neighborhood B had five cruising cars during the period; and C
was flooded with 15 cars. Your conclusions about the effects of patrol cars would
probably depend on which graph you saw. Figure 2.7-1(a) gives the impression that
the presence or absence of patrol cars is associated with a dramatic difference in
crime rate. Note, however, that the largest difference—1000 versus 970—is only
3%. Such a small difference could just as easily be attributed to chance factors or to
differences in crime reporting procedures. The graph is misleading because it vio-
lates the 66% to 75% height-width rule mentioned in Section 2.4 and because the 
Y axis begins with a frequency of 960 crimes instead of 0 crimes.7 The use of such
misleading graphing procedures is contrary to the aim of statistics, which is to help
the user make sense out of data.
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Figure 2.7-1. Number of reported crimes in three similar neighborhoods during a
three-month test period. Note how graph (a) gives the false impression of a great
difference in crime rate across the three conditions.

7 Huff (1954) and Tufte (1983) illustrate other misleading techniques and provide examples of outstand-
ing graphs.
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A more subtle form of misrepresentation can occur in pictograms.

A pictogram represents quantity by presenting pictures of the objects being
compared.

Pictograms are often used in the mass media in place of bar graphs and histograms
to enliven a presentation. Consider Figure 2.7-2, in which sales for three brands of
computers are represented by two types of pictograms. Figure 2.7-2(a) is inherently
misleading because our perception of the sales of the three brands is influenced not
only by the heights of the pictures but also by their areas, and area is an irrelevant
dimension. For example, sales for brand C are approximately twice those for brand
B, but the area of brand C’s picture is 4.3 times larger than that of brand B. The pic-
togram is Figure 2.7-2(b) provides a more realistic representation of sales.

CHECK YOUR UNDERSTANDING OF SECTION 2.7

31. Prepare two bar graphs for the following data. Design one to deliberately sug-
gest that government spending has been stable, the other to suggest a dramatic
increase in government spending.

Month Spending Month Spending

June $29,400,000 October $29,500,000
July 29,200,000 November 29,600,000
August 29,300,000 December 29,800,000
September 29,600,000 January 30,200,000

32. Term to remember:
a. Pictogram
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Figure 2.7-2. Pictograms representing sales of three popular computers.
Pictogram (a) is misleading because our perception of sales is influenced by the
heights of the pictures and by their areas, and area is an irrelevant dimension.
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2.8 LOOKING BACK: WHAT HAVE YOU LEARNED?

You have learned about two descriptive devices that make data easier to compre-
hend: frequency distributions and graphs. A frequency distribution is a first and
sometimes final step in summarizing data. It organizes data into a number of equiv-
alence classes called class intervals and shows the number of observations that fall
into each class interval. The distribution is ungrouped if each class interval is a sin-
gle score value; if the classes contain two or more score values, the distribution is
grouped. Grouping simplifies the interpretation of data by assigning scores to a lim-
ited number of class intervals, usually between 10 and 20.

A graph is a pictorial representation of a frequency distribution and hence is eas-
ier to interpret. The most common graphs for qualitative variables are bar graphs and
pie charts. Histograms, frequency polygons, cumulative polygons, and stem-and-
leaf displays are used to represent quantitative variables.

A graph should present data accurately, unambiguously, and in such a way that
its main characteristics can be seen at a glance. To achieve this end, certain conven-
tions are followed: (1) frequency is plotted on the Y axis, and equivalence classes
are plotted on the X axis; (2) the zero point (or origin) of the Y axis is placed at the X
and Y intercept; (3) the height of the graph is 66% to 75% of its width; (4) the X and
Y axes are labeled; and (5) a figure caption is provided.

REVIEW EXERCISES FOR CHAPTER 2

1. Construct an ungrouped frequency distribution for the ages of study-abroad
candidates at their most recent birthday. The data are as follows.

18 20 19 20
20 19 19 19
23 18 20 21
17 20 18 20

2. For the following nominal class intervals, give the real limits and the class in-
terval size.
a. 16 b. 60–69 c. 18.00–19.99
d. 12.0–14.9 e. 0–0.4 f. 1.50–1.74

3. For each of the following, give (i) the number of class intervals, (ii) the size of
the class interval, and (iii) the nominal limits of the class interval containing the
smallest score.

Largest Score Smallest Score Number of Scores

a. 37 8 106
b. 62 23 273
c. 164 126 29
d. 52 0 22
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4. First-line supervisors were asked to complete a job-satisfaction questionnaire.
Construct a grouped frequency distribution for the following data.

25 23 18 24 14
21 17 12 19
15 6 22 16
20 20 21 18

5. What are the advantages and disadvantages of grouped and ungrouped
frequency distributions?

6. For the job-satisfaction data in Exercise 4, construct a relative frequency distri-
bution using % f.

7. Construct a relative frequency distribution for comparing the job satisfaction
of assembly-line workers in Exercise 2 in “Check Your Understanding of
Section 2.2” with that of first-line supervisors in Exercise 4.

8. Under what conditions is a relative frequency distribution more informative
than an ordinary frequency distribution?

9. For the data in Exercise 6 in “Check Your Understanding of Section 2.2,”
construct a cumulative frequency distribution.

10. For the first-line supervisors’ data in Exercise 4, construct a cumulative percent-
age frequency distribution.

11. a. Students enrolling in Introductory Sociology were randomly assigned to one
of three classes: traditional lecture (TL), guided reading (GR), or lecture with
multimedia supplements (LM). Following are the class assignments of the
students who scored in the top 30 on the final examination; construct a fre-
quency distribution for these data.

b. What does your distribution tell you about the relative effectiveness of the
classes?

LM GR LM TL GR LM
LM TL GR LM LM GR
TL TL TL LM LM LM
GR LM LM LM TL TL
LM LM TL GR LM LM

12. Twenty-five physicians were asked what they felt was the main health threat to
male executives. The most common responses were occupational stress (OS),
obesity (OB), smoking (S), lack of exercise (LE), and other (O). Construct a fre-
quency distribution for these data.

OB OS S OB LE
S OB OB OS O
LE S OS S OB
O LE O LE LE
OB LE O O OB

13. Toss a die 30 times and construct a frequency distribution showing the number
of times each die face occurred.
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14. Contrast the procedures for constructing frequency distributions for qualitative
variables with those for quantitative variables.

15. Information from a biographical inventory was used to compute a socioeco-
nomic index for students in a university marching band. Scores above 72 were
classified as very high (VH); scores from 61 to 72, as high (H); scores from 43
to 60, as middle (M); and scores below 43, as low (L). Construct a bar graph for
the following data.

H H H H M VH VH H M
M L H M VH H H H VH
H M M H H VH H M
VH H H M M VH M L
H VH VH H H M VH M
M M VH L M H H VH

16. The value of psychoeducational programs as a means of preventing and relieving
problems of daily living is gaining acceptance in the medical community. 
A health maintenance organization used a questionnaire to survey the health
needs of its members. The following table shows the number of respondents who
selected one of nine popular programs as the one in which they were most inter-
ested. Construct a bar graph for these data. (Suggested by Burnell, George M.,
and Taylor, Peter H. [1982]. Psychoeducational programs for problems in living.
Health and Social Work, 7(1), 7–13.)

Program Number Indicating Primary Interest

Weight reduction 154
Fatigue 101
Marital and sex problems 92
Coping with physical problems 71
Stress 65
Heart disease prevention 61
Assertiveness 60
Stop smoking 48
Headaches 47

17. Research was conducted to investigate “citizen contacting,” in which an indi-
vidual approaches government officials or other powerful persons to obtain
help for themselves and others. Among the countries surveyed were Austria,
the Netherlands, and the United States. The citizens initiating the contacts
during the preceding two years were classified according to level of educa-
tional achievement. (a) Construct a bar graph for each country for the follow-
ing data. (b) What conclusions can you draw from your graphs? (Suggested
by Zuckerman, A. S., and West, D. M. [1985]. The political bases of citizen
contacting: A cross-national analysis. The American Political Science Review,
79, 117–131.)
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Proportion Making Contact by Level of Education 
Level of Education

Country 1 (low) 2 3 4 5 6 (high)

Austria .03 .07 .07 .13 .12 .25
Netherlands .04 .09 .11 .21 .25 .23
United States .11 .15 .21 .30 .37 .51

18. Construct a bar graph for the Introductory Sociology data in Exercise 11.
19. Construct a bar graph for the physician data in Exercise 12; plot percentage fre-

quency on the Y axis.
20. Describe the procedure for constructing a bar graph from a frequency distribution.
21. Construct a pie chart for the Introductory Sociology data in Exercise 11.
22. Construct a pie chart for the socioeconomic data in Exercise 15.
23. Describe the procedure for constructing a pie chart from a frequency distribution.
24. Construct a histogram for the first-line supervisors’ data in Exercise 4. Plot per-

centage frequency on the ordinate.
25. Construct a histogram for the reaction-time data in Exercise 7 in “Check Your

Understanding of Section 2.2.” Plot proportionate frequency on the ordinate.
26. How does the construction of histograms and bar graphs differ?
27. Determine the midpoints of the following class intervals.

a. 1.50–1.74 b. 100–104 c. 0–2 d. 60–69
28. A study was undertaken to determine how well psychological crises resulting

from traumatic events are resolved over time. The participants included 15 female
cancer patients who underwent breast surgery for the first time, 15 female patients
who underwent less-serious surgery (gall bladder removal, hernia repair, and so
forth), and 15 physically healthy (nonsurgery) women. Each patient took the
Halpern Crisis Scale at intervals of 0, 3, 7, 11, and 15 weeks. The 0 interval repre-
sented the night before surgery. The sample of healthy control participants also
took the scale at the same time intervals. The following data, based on the number
of women with a Halpern Crisis Scale score over 72, were obtained. A score
above 72 is considered a high crisis score. (Suggested by Gottesman, David, and
Lewis, Marc S. [1982]. Differences in crisis reactions among cancer and surgery
patients. Journal of Consulting and Clinical Psychology, 50, 381–388.)

Group Week Number
0 3 7 11 15

Cancer surgery 11 12 14 12 14
Other surgery 8 11 12 10 8
Nonsurgery 4 5 5 6 5

(a) Construct a frequency polygon for these data. Plot the data for each group
on the same graph; do not anchor the polygon to the horizontal axis. (b) Write a
short paragraph giving your interpretation of these data.

29. Construct a frequency polygon for the first-line supervisors’ data in Exercise 4.
Plot percentage frequency on the ordinate.
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30. What are the relative merits of histograms and frequency polygons?
31. Construct a cumulative polygon for the reaction-time data in Exercise 7 in

“Check Your Understanding of Section 2.2.”
32. (a) Construct a cumulative polygon for the data in Exercise 20 in Section 2.5;

plot Cum prop f on the ordinate. (b) Estimate the score below which 50% of the
cases fall and the score below which 20% of the cases fall.

33. Data on the prevalence of prostate carcinoma by age range were collected. 
(a) Construct a relative frequency polygon for the data listed in the following
table. (b) Use your polygon to estimate the age at which 50% of men could be
expected to have prostrate cancer. (c) One cannot construct a cumulative fre-
quency polygon for these data. Explain. (Suggested by Stamey, T. A. [1982].
Cancer of the prostate: An analysis of some important contributions and dilem-
mas. Monographs in Urology, 3, 65–94.)

Age Group Percent with Disease

90–99 61.3
80–89 38.0
70–79 29.8
60–69 20.5
50–59 11.8
40–49 6.9
30–39 2.1

34. Construct a stem-and-leaf display for the lever-pressing data in Exercise 20 in
“Check Your Understanding of Section 2.5.”

35. Indicate whether the following statements are true or false.
a. A distribution that is flatter than the normal distribution is called mesokurtic.
b. Lepto in leptokurtic means slender or narrow.
c. The tail of a negatively skewed distribution extends away from the X and Y

intercept.
d. A distribution with three maximum humps, each with the same frequency, is

bimodal.
36. Draw the shape of a frequency polygon that would occur in each of the follow-

ing experiments. Identify each distribution.
a. Students at Juilliard School of Music take a test of musical aptitude.
b. Students are surprised with a pop quiz immediately after the Easter vacation.
c. Participants attempt to solve 20 complex puzzles under five levels of moti-

vation: very low, low, medium, high, and very high.
d. Number of crimes per 1,000 inhabitants is determined for the population of

five cities; it turns out that the cities have the same crime rate.
e. The scores for 30 engineering majors and 30 business majors on a test of

mechanical aptitude are plotted.
f. Strength of grip is measured for 20 young boys, 20 men in their early 20s,

and 20 men over age 65.
g. Arrival time is recorded for people who are late for a concert.
h. The number of persons contracting polio in the United States from 1940 to

1970 is determined from hospital records.
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37. The following data are sales figures for vacuum cleaner salespeople. Prepare
graphs that suggest that (a) all the salespeople are producing at a uniformly high
level, (b) Chapman should be fired, and (c) they should all be fired.

Chapman $66,000 Hillis $68,200
Hays $67,300 Schmeltekopf $71,000
Daniel $69,900 Lilley $71,100

38. Use a statistical software package to obtain a histogram for the data on first-line
supervisors in Exercise 4.

39. Use a statistical software package to obtain a bar graph for the data on physi-
cians in Exercise 12.

40. Use a statistical software package to obtain a bar graph for the socioeconomic
data in Exercise 15.

41. Use a statistical software package to obtain a histogram for the mechanical-
aptitude data in Exercise 6 in “Check Your Understanding of Section 2.2.”

42. Use a statistical software package to obtain a histogram for the reaction-time
data in Exercise 7 in “Check Your Understanding of Section 2.2.”

43. Use a statistical software package to obtain a stem-and-leaf display for the
learning data in Exercise 9 in “Check Your Understanding of Section 2.2.”

44. Use a statistical software package to obtain a stem-and-leaf display for the data
on first-line supervisors in Exercise 4.
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3.1 INTRODUCTION

Looking Ahead: What Is This Chapter About?

This chapter describes three statistics for summarizing data. In the previous chapter,
you learned how to use frequency distributions and graphs to summarize data.
Sometimes it is desirable to summarize further by using numbers to describe inter-
esting properties of the data. The most important property of data is usually its
central tendency, the score value on which a distribution centers. This value is pop-
ularly called the average; it connotes what is typical, usual, representative, or ex-
pected. Because of these different connotations, statisticians prefer to use the more
precise terms of mode, mean, and median in referring to the central tendency of a
distribution. As you will see, these terms refer to three distinct conceptions of cen-
tral tendency.

After reading the chapter, you should know the following:

■ How to compute and interpret the mode, mean, and median
■ How to represent the sum of two or more numbers using the summation sym-

bol, (Greek capital sigma)
■ The advantages of the three measures of central tendency and when to use each
■ The relative position of the mode, mean, and median in symmetrical and asym-

metrical distributions
■ How to compute the mean of several means

Other Important Characteristics of Data

Central tendency is arguably the most interesting and important characteristic of
data. Close behind central tendency in importance is dispersion, which is the
extent to which scores differ from one another—that is, their scatter or hetero-
geneity. Several ways of describing dispersion are discussed in Chapter 4. Chapter
4 also discusses two other important properties of data: skewness and kurtosis.
Measures of skewness tell you whether a distribution is symmetrical or asymmet-
rical; measures of kurtosis tell you whether a distribution is peaked or flat.
Numbers representing these four properties of data—central tendency, dispersion,
skewness, and kurtosis—provide a relatively complete summary of the informa-
tion contained in frequency distributions and graphs. In many cases, a knowledge
of only two of these, central tendency and dispersion, is sufficient for your
purposes.

3.2 MODE

The simplest of the three conceptions of central tendency is the mode, denoted by Mo.

The mode is the score or qualitative category that occurs with the greatest
frequency.

g
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Consider the following scores that represent the number of times in September that
11 college students called their parents long distance:

0 0 0 1 1 1 1 2 2 3 9.

Note that 0 occurs three times; 1, four times; 2, twice; and 3 and 9, once. The mode is
1, because it occurs with the greatest frequency. If data are tabulated in an ungrouped
frequency distribution (a distribution that has a class interval size of one), you can
determine the mode at a glance. This can be seen for the distribution of family size of
college professors shown in Table 3.2-1. The largest frequency, 10, is associated with
a family size of 4; hence, the mode is 4. This tells you that the most typical family
size for this sample is 4, an easy-to-understand concept. As these examples show, the
mode is determined by inspection rather than by computation. The mode can be used
to describe the central tendency of both qualitative and quantitative variables, but it is
most often used for qualitative variables. You will see why this is true when I com-
pare the relative merits of the three measures of central tendency in Section 3.5.

The mode should be computed from an ungrouped frequency distribution if pos-
sible. If only a grouped frequency distribution (a distribution that has a class interval
size greater than one) is available, the midpoint of the class interval with the great-
est frequency is designated as the mode. The mode in this case is imprecise because
a different grouping scheme would give different class interval midpoints and hence
a different mode.

As a measure of central tendency, the mode has a particularly serious limitation—
it may not exist. You saw in Section 2.6 that a distribution can have two nonadjacent
scores (or class intervals) with the same maximum frequency. Such distributions are
called bimodal and cannot be described by a mode. It is customary in such cases to
mention that the distribution is bimodal and to report the scores (or class interval mid-
points) associated with the two maximum frequencies. A mode cannot be determined
because there is no most typical score.

TABLE 3.2-1 Frequency Distribution of Family Size of College Professors

X f

11 1
10 0

9 0
8 1
7 1
6 2
5 4
4 10
3 8
2 8
1 5

n � 40
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CHECK YOUR UNDERSTANDING OF SECTION 3.2

1. The behavior of members of the university wine-tasting club was rated follow-
ing their biweekly learn-by-doing meeting. The following scale was used: N �
no change in behavior, S � slight change in verbal or emotional expressions,
M � marked change in verbal or emotional expressions, C � clumsiness in
locomotion, and G � gross intoxication. (a) Determine the mode for the follow-
ing data: N, S, S, G, M, N, S, M, M, C, G, N, S, M, C, S, S, M, S, S. (b) What type
of variable do the data represent?

2. The ruling structures of 11 emerging nations were classified as 1 � premobi-
lized authoritarian, 2 � conservative authoritarian, and 3 � premobilized
democratic. (a) Determine the mode for the following data: 1, 3, 1, 1, 2, 3, 1, 3,
3, 1, 3. (b) What type of variable do the data represent?

3. Why should the mode be computed from ungrouped rather than grouped data
whenever possible?

3.3 MEAN

The most widely used and familiar measure of central tendency is the
arithmetic mean—the sum of scores divided by the number of scores.

The mean1 is commonly known as the average. The usual symbol for a sample mean
is and is read “X bar.”2 The letter X identifies the variable that has been measured;
the bar above X indicates the mean of the X variable. Other letters toward the end of
the English alphabet—for example, Y and Z—also are used as symbols for variables,
and the corresponding means are denoted by and .

It is customary to denote characteristics of samples by English letters and charac-
teristics of populations by lowercase Greek letters. As you have seen, the mean of a
sample is usually denoted by . The mean of a population is denoted by , the
Greek letter mu, and is pronounced “mew.” When it is necessary to distinguish
among several sample means or several population means, number or letter sub-
scripts can be used, for example, and , and , and 1 and 2. The dis-
tinction between samples and populations appears in another way—a descriptive
measure for a sample is called a statistic; a descriptive measure for a population is
called a parameter. Thus, is a statistic, but is a parameter.

Summation Notation for the Mean

The mean of a sample is obtained by dividing the sum of the scores by the number
of scores. At this point, I will describe a useful notation for the sum of scores.

mX

mmXBXAX2X1

mX

ZY

X

1 There are several kinds of means, but this book discusses only the arithmetic mean.
2 Research journals that follow the guidelines in the Publication Manual (2001) of the American Psycho-

logical Association denote the sample mean by M. The use of to denote the mean is recommended by
the American Statistical Association (Halperin, Hartley, & Hoel, 1965).

X
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Suppose that I am interested in the frequency of movie attendance of college
students. I can denote this variable by the capital letter X and individual values of
the variable by X and a subscript: X1, X2, . . . , Xi , . . . , Xn. According to this nota-
tion, X1 is the frequency of movie attendance for student 1, X2 is the frequency for
student 2, and Xn denotes the frequency for the nth or last student in the sample. 
I will let i be a general subscript that designates an unspecified one of the i � 1, . . . , n
students (read “i equals one through n students”). The i in Xi can be replaced by any
integer between 1 and n inclusive.3 Suppose that we obtained the following values
of Xi for frequency of movie attendance: X1 � 3, X2 � 1, X3 � 4, and X4 � 2. The
mean of these n � 4 scores is given by

When there is a large number of scores, this formula for is tedious to write. In
this case it is customary to write the formula using the summation symbol , the
Greek capital sigma. The symbol , like �, indicates that you should perform the
operation of addition. However, � indicates the addition of only two numbers,

whereas , which is also written as , means to perform addition until all i �

1, . . . , n numbers have been added.4 The expression is equivalent to X1 �

X2 � . . . � Xn. The expression says to let the first value of Xi be X1; add to
this the second value, X2; and continue until the Xnth value has been added. In the
notation , i is called the index of summation, 1 is the initial value of i, and n
is its terminal value. Using summation notation, the formula for the mean movie
attendance of four students is written

which is equivalent to

The general formula for a sample mean is written as

where Xi denotes the variable of interest, says to sum over the i � 1, . . . , n
scores, and n is the number of scores.

gn
i51

X 5

a
n

i51
Xi

n

X 5
X1 1 X2 1 X3 1 X4

4

X 5

a
4

i51
Xi

4

gn
i51

gn
i51Xi

gn
i51Xi

gn
i51g

n

i51

g
g

X

X 5
X1 1 X2 1 X3 1 X4

n
 5  

3 1 1 1 4 1 2
4

5
10
4

5 2.5

3 The letter i also is used to denote the size of a class interval; this use is discussed in Section 2.2. Because
there are only 26 letters in the alphabet, it is not surprising that a letter often has multiple meanings.

4 Rules of summation are described in Section 3.8.
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When the initial and terminal values for the summation are clearly understood, the
formula can be simplified to

Computing the Mean from a Frequency Distribution

The formula is appropriate for data in their original unordered state.

If the data have been ordered in a frequency distribution, the mean can be
computed from

where Xj denotes the midpoint of the jth class interval, fj is the frequency of

scores in the jth class interval, says to sum over the j � 1, . . . , k class

intervals, and n is the number of scores.

The use of this formula is illustrated in Table 3.3-1. The data are scores on the Wake-
field Self-Assessment Depression Inventory for a sample of 20 men facing ex-
ploratory cancer surgery.

Two formulas for computing the mean have been described:

where i � 1, . . . , n (n is the number of scores) and

where j � 1, . . . , k (k is the number of class intervals). In the first formula, Xi
denotes the value of the ith score. To compute the mean, the scores are summed and
then divided by n, the number of scores. In the second formula, Xj denotes the mid-
point of the jth class interval, and fj , the frequency of scores in that class interval. To
compute the mean, you first obtain fj Xj for each class interval. Next you sum these
products, and finally you divide the sum by n, the number of scores.

CHECK YOUR UNDERSTANDING OF SECTION 3.3

4. Identify the following.
a. X1 b. Xi c. 1 d. Xjm

X 5

a
k

j51
fjXj

n

X 5

a
n

i51
Xi

n

gk
j51

X 5

a
k

j51
fjXj

n

X 5 gn
i51 Xi >n

X 5
gXi

n
      or      X 5

gX
n
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5. Write out the following, listing individual values of the variable.

a. b. c.

6. The socioeconomic level of white families in a predominantly black neighbor-
hood was rated on the basis of income, educational attainment, physical condi-
tion of dwelling, and number of home appliances. Compute the mean using

for the following socioeconomic scores.

5 4 9 5 3 4
4 6 7 5 3 2
6 2 5 1 7

gn
i51Xi>n

a
4

i51
i23

Zi>na
k

j51
fjXj>na

n

i51
Xi

TABLE 3.3-1 Depression Scores of Males Facing Exploratory 
Cancer Surgery (A Score of 25 or above Indicates 
Extremely High Depression)

(i) Data (Xj denotes the value of the jth class interval, fj is the frequency 
in the jth class interval, j � 1, . . . , k, and n is the number of scores)

Xj fj fj Xj

28 1 (1) (28) � 28
27 0 (0) (27) � 0
26 1 (1) (26) � 26
25 2 (2) (25) � 50
24 3 (3) (24) � 72
23 4 (4) (23) � 92
22 3 (3) (22) � 66
21 0 (0) (21) � 0
20 1 (1) (20) � 20
19 2 (2) (19) � 38
18 1 (1) (18) � 18
17 0 (0) (17) � 0
16 1 (1) (16) � 16
15 0 (0) (15) � 0
14 1 (1) (14) � 14

n � 20

(ii) Computation of from an ungrouped frequency distribution

X 5

a
k

j51
fjXj

n
5

440
20

5 22

X

a
k

j51
fjXj 5 440
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7. The following data represent the number of suicides per 10,000 inhabitants
in predominantly rural prefectures in Japan. Compute the mean using

22 10 12 2 10 9 16 11 8
14 11 8 13 10 9 12 0 10
12 8 11 5 7 10 7 9 9
9 8 7 8 5 14 3 10 11

8. For the data in Exercise 6, construct an ungrouped frequency distribution and
compute the mean using 

9. For the data in Exercise 7, construct an ungrouped frequency distribution and
compute the mean using 

10. Terms to remember:
a. Mu b. Statistic
c. Parameter d. Summation symbol,
e. Index of summation f. Initial value of i
g. Terminal value of i

3.4 MEDIAN

The median is the point in a distribution that divides the data into two groups
having equal frequency.

The median is denoted by Mdn. As its name suggests, the median is the middle score
when scores have been arranged in order of size and n, the number of scores, is odd.
When n is even, the median is the midway point between the two middle scores. The
procedure for determining the median is slightly different, depending on whether n
is odd or even and whether a frequency distribution has been constructed for the
data. If the number of scores is small, the median can be determined by inspection.
Consider the case in which n is odd, and the scores are 2, 3, 5, 8, 9, 11, 12. When the
scores are ordered from smallest to largest along the number line, as in Figure 3.4-1,
it is immediately apparent that the median is 8. This follows because there are three
scores below the median of 8 and three scores above 8.

g

X 5 gk
j51 

fjXj>n.

X 5 gk
j51 

fjXj>n.

gn
i51 

Xi>n.

Real limits of score

1 2 3 4 5 6 7 8 9 10 11 12

Mdn � 8

Figure 3.4-1. Determination of the median when n is odd.
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Rules for determining the median are as follows:

If n is odd

Mdn is the (n � 1)/2th score from either end of the number line.

If n is even

Mdn is the midway point between the n/2th score and the (n/2) � 1th score
from either end of the number line.

Consider Figure 3.4-1 again. Because n is odd, the median is the (n � 1)/2th score
from either end of the number line. For example, (n � 1)/2 � (7 � 1)/2 � 4; hence,
the median is the fourth score counting from either end. Figure 3.4-2 illustrates the
location of the median along the line when n is even and the scores are 3, 5, 8, 9, 11,
12. Any point along the number line larger than 8 and less than 9 would qualify as
the median. By convention, the median is taken as the midway point between the
n/2th score and the (n/2) � 1th score. For example, 6/2 � 3 and (6/2) � 1 � 4. The
midway point between the third score (8) and the fourth score (9), counting from the
left, is (8 � 9)/2 � 8.5, which is the median.

Frequencies greater than 1 at the middle score value may present special prob-
lems. The median for Figure 3.4-3(a) is obviously 8, but what about Figure 3.4-3(b)?
According to my definition, the median should be the (n � 1)/2 � (7 � 1)/2 � 4th
score from either end. This score is 8, but below 8 there are three scores and
above 8, only two scores. The problem is resolved by dividing the interval
7.5–8.5 into two smaller subintervals, 7.5–8 and 8–8.5. This is shown in the
upper part of Figure 3.4-3(b). Going four scores from the lower end of the num-
ber line, I reach the score defined by 7.5–8, which has a midpoint at (7.5 � 8)/2
� 7.75; similarly, four scores from the upper end also is the score defined by
7.5–8. Thus, the median is 7.75, the midpoint of the score defined by the subin-
terval 7.5–8. Now consider the scores in Figure 3.4-4. Again I can subdivide the
interval—assigning a third of the interval 7.5–8.5 to each score. This results in
three smaller subintervals—7.500–7.833, 7.833–8.167, 8.167–8.500—as shown
in the upper part of the figure. Because n is even, the median is the score value
that is midway between the n/2 � 4th and the (n/2) � 1 � 5th scores. These
scores are defined by the subintervals 7.500–7.833 and 7.833–8.167,
respectively. The midpoints of these subintervals are 7.667 and 8.000; the median
is (7.667 � 8.000)/2 � 7.833.

Mdn � 8.5

2 3 4 5 6 7 8 9 10 11 12

Figure 3.4-2. Determination of the median when n is even.
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Mdn � 7.75

1 2 3 4 5 6 7 8 9

7.75
7.50 8.00 8.50

8.25

10 11 12

Mdn � 8a.

b.

1 2 3 4 5 6 7 8 9 10 11 12

Figure 3.4-3. Determination of the median when the frequency of the middle
score value is greater than 1.

Mdn � 7.833

1 2 3 4 5 6 7 8 9

7.667
7.500 7.833 8.167 8.500

8 8.333

10 11 12

Figure 3.4-4. Determination of the median when the frequency of the middle
score value is greater than 1.
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Computing the Median from a Frequency Distribution

I determined the median in Figures 3.4-3 and 3.4-4 by interpolating—dividing the
class interval containing the median into subintervals and finding the point that
represented the (n � 1)/2th score or the point that was midway between the n/2th
and (n/2) � 1th scores. When data have been ordered in a frequency distribution, the
interpolation can be accomplished by means of a formula. The computation is illus-
trated in Table 3.4-1 for the data in Figure 3.4-4. The meaning of the terms in the
formula as well as instructions for using the formula are given in parts (ii) and (iii),
respectively, of Table 3.4-1.

TABLE 3.4-1 Procedure for Computing the Median from 
a Frequency Distribution

(i) Data and computational formula

Xj fj Cum f a

11 1 8

10 0 7

9 1 7

8 3 6

7 0 3

6 0 3

5 1 3

4 0 2

3 1 2

2 1 1 � 7.5 � 0.33 � 7.83

n 5 8

(ii) Definition of terms

Xj 5 value of jth class interval

fj 5 frequency of jth class interval

Xll � real lower limit of class interval containing the median

i � class interval size

n � number of scores

� number of scores below Xll

fi � number of scores in the class interval containing the median

g
  
fb

5 7.5 1 1a4>2 2 3

3
b

5 7.5 1 1a8>2 2 3

3
b

Mdn 5 Xll 1 ian>2 2 g  fb

fi
b

(continued)



72 Measures of Central Tendency

CHECK YOUR UNDERSTANDING OF SECTION 3.4

11. Determine the median for the following scores.
a. 9, 3, 16, 5, 21
b. 16, 19, 17, 31
c. 3, 1, 3, 4, 5
d. 3, 4, 4, 2, 8

12. For the data in Exercise 7 in “Check Your Understanding of Section 3.3,”
construct an ungrouped frequency distribution and compute the median 
using

13. The computational procedure for the median illustrated in Table 3.4-1 calculates
the median from below—that is, by coming halfway through the scores, starting
from the lowest class interval. Alternatively, the median can be computed by
coming down halfway from above—that is, from the highest class interval. The
computational formula is

By analogy with the definitions in Table 3.4-1, define each of the symbols in the
alternative formula.

14. For the data in Table 3.4-1, compute the median by coming down halfway from
above—from the highest class interval. The computational formula is

Mdn 5 Xul 2 ian>2 2 g  fa

fi
b

Mdn 5 Xul 2 ian>2 2 g  fa

fi
b

Mdn 5 Xll 1 ian>2 2 g  fb

fi
b

TABLE 3.4-1 (continued)

(iii) Computational sequence

1. Compute n/2 � 8/2 � 4.
2. Locate the class interval containing the n/2 � 4th score in the Cum f column. 

The median will fall somewhere in this class interval. The fourth score occurs in 
the class interval 8. This class interval contains the fourth, fifth, and sixth scores; 
Xll for this class interval is 7.5.

3. Compute i: i � (Real upper limit of class interval – Real lower limit of class interval), for
example, i � 8.5 – 7.5 � 1.

4. Determine , the number of scores below Xll � 7.5.
5. Determine fi, the number of scores in the class interval containing 

the median.

a Cumulative frequency is discussed in Section 2.2.

g
  
fb
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3.5 RELATIVE MERITS OF THE MEAN, 
MEDIAN, AND MODE

Computation of each of the measures of central tendency is fairly simple. Which one
should a researcher use for a given problem? The choice should be based on (1) the
shape of the distribution, (2) the intended uses of the statistic, (3) the nature of the
variable, and (4) the mathematical properties and merits of the mean, median, and
mode.

Although they all are measures of central tendency, the mean, median, and mode
impart somewhat different information. Consider the scores in Figure 3.5-1. By
inspection, you see that the mode is 3. The median is the (n � 1)/2 � 3rd score from
either end of the number line. This score falls in the interval with real limits 2.5–3.5.
When the interval is divided in half, the real limits of the third score are 3–3.5 and its
midpoint is 3.25; hence, the median is 3.25. The mean is � (2 � 3 � . . . �
8)/5 � 4. These three numbers—3, 3.25, and 4—represent different conceptions of
the point around which the scores cluster. For a unimodal set of data plotted as a
histogram,

1. the mode is the score value with the largest frequency—the most typical
score;

2. the median is the score point that divides the ordered scores into two samples
of equal size;

3. the mean is the score point at which the distribution balances—its center of
gravity.

If a distribution is asymmetrical, as in Figure 3.5-1, the mean and the median are un-
equal; the value of the mode may or may not differ from the values of those for the
mean and the median. If a distribution is symmetrical, the mean and the median are
equal; if, in addition, the distribution is unimodal, all three measures are equal.

Merits of the Mean

The mean has a number of mathematical properties that make it the preferred
measure of central tendency for relatively symmetrical distributions and for

X

X = 4

Mdn = 3.25Mo = 3

1 2 3 4 5 6 7 8

Figure 3.5-1. Comparison of the , Mdn, and Mo in a unimodal distribution. The
number line can be thought of as a teeter-totter whose balance point is the mean.

X
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quantitative variables. One of these properties is its sampling stability. Suppose
that from an extremely large population I repeatedly drew random samples of size
n. If I computed the mean for each sample, I would expect the means to be similar
but not identical. Suppose that I also computed the median and the mode for each
sample. The variability from sample to sample of these statistics would be great-
est for the mode and least for the mean. The better sampling stability of the mean
is an important advantage, especially when one uses inferential statistics to draw
conclusions about the central tendency of a population by observing a single
sample.

Another advantage of the mean is that it is amenable to arithmetic and alge-
braic manipulations in ways that the median and mode are not. In other words,
the mean is mathematically tractable. Therefore, if further statistical computa-
tions are to be performed, the mean is usually the measure of choice. This prop-
erty accounts for the appearance of the mean in the formulas for many important
statistics.

The mean is the only one of the three measures that reflects the value of each
score. Recall that the mean is computed from the sum of all the scores, Xi. The
median, on the other hand, is independent of the value of each score (other than the
median value itself) as long as the number of scores above and below the median is
not altered. If, for example, the score of 8 in Figure 3.5-1 is changed to 5, the values
of the median and the mode are unchanged; the value of the mean, however, is
changed from 4 to 3.4.

It is no accident that the balance point of the scores in Figure 3.5-1 coincides with
the mean. This fulcrum property of the mean follows from the mathematical statement

, the sum of the deviation of the mean from each score is equal to
zero. In Figure 3.5-1, for example, � (2 – 4) � (3 – 4) � . . . �
(8 – 4) � 0, and this will be true for any distribution. If you think of the deviation

as a distance, the mean is the point from which the sum of the distances to
all the scores is zero. For a proof of this property, see Section 3.8.

There are three situations in which the mean is not the preferred measure of cen-
tral tendency: when the distribution is very skewed, when the data are qualitative in
character, and when the distribution is open-ended—that is, when the values of ex-
treme scores are unknown. I will discuss the first two situations here and the third in
the following section on the median.

Suppose that the following data were obtained for the number of minutes re-
quired to solve math problems: 10.1, 10.3, 10.5, 10.6, 10.7, 10.9, 56.9. The mean is
120/7 � 17.1; the median is 10.6. Which number best represents the central ten-
dency of the seven scores? Most readers would agree that it is 10.6, the median.
The mean is unduly affected by the lone extreme score of 56.9. Any time a distrib-
ution is extremely asymmetrical, the mean is strongly affected by the extreme
scores and, as a result, falls farther away from what would be considered the distri-
bution’s central area.

The mean cannot be computed when the data are qualitative in character. Sup-
pose that the dependent variable is eye color and I collect the following data: blue,
brown, brown, gray, blue, brown. There is no meaningful way to represent these data
by a mean. I could, however, compute the mode and say that the most typical eye
color is brown.

sXi 2 Xd

gn
i51sXi 2 Xd

gn
i51sXi 2 Xd 5 0

g
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Merits of the Median

Although the mean is usually the preferred measure of central tendency, there are
several situations in which the median is preferred. As I mentioned earlier, the
median is not sensitive to the values of the scores above and below it—only to the
number of such scores. Unlike the mean, it is not affected by extreme scores, and
thus it is a more representative measure of central tendency for very skewed distrib-
utions. Also, it can be computed when the values of the extreme scores are
unknown. Suppose, for example, that I recorded the number of trials required to
learn a list of paired adjectives and Japanese kana (writing) symbols. The data are as
follows: 12, 17, 17, 18, 21, 24, � 41. After the 41st trial, the poorest learner was still
unable to learn the list and gave up; his score is some number greater than 41. The
distribution is open-ended because the value of the extreme score is unknown.
Although the exact value of one of the scores is unknown, the median can be com-
puted for these data. Notice that three scores are above 18 (21, 24, � 41) and three
are below (12, 17, 17); hence, the median is 18. The mean cannot be computed be-
cause the value of the extreme score is unknown.

The median has the added advantage of being easy to compute; when the number
of scores is small, it can be determined by inspection.

The principal disadvantages of the median relative to the mean are (1) its poorer
sampling stability and (2) its poorer mathematical tractability. For these and other
reasons, the median is not used as frequently as the mean in advanced descriptive
and inferential statistical procedures.

Merits of the Mode

The mode is the only measure of central tendency that can be used with un-
ordered qualitative variables such as eye color, blood type, race, and political
party affiliation. For quantitative variables that are inherently discrete, such as
family size, it is sometimes a more meaningful measure of central tendency than
the mean or the median. Who ever heard of an average family with 3.7 members?
It makes more sense to say that the most typical family size is 3, the mode. Other
than these two applications, the mode has little to recommend it except its ease
of estimation.

Let us consider why the mode is called the most typical score. Because the mode
is the score that occurs most frequently, the number of scores not equal to the mode
is as small as it possibly can be. In Figure 3.5-1, for example, three scores differ
from the mode; they are 2, 4, and 8. However, four scores differ from the mean 
(2, 3, 3, and 8), and five scores differ from the median (2, 3, 3, 4, and 8). Hence, the
mode is the most typical score.

The mode has a number of limitations. Its sampling stability is much poorer than
that of the mean and the median, and it also is less mathematically tractable. There-
fore, it is rarely used in advanced descriptive and inferential statistics. However, the
mode, like the median, can be computed for an open-ended distribution if the distri-
bution is known to be unimodal and if the unknown scores do not have the greatest
frequency. However, because of the median’s superior mathematical properties, it is
preferred for this application.
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Consider another limitation of the mode. A mode may not exist for a set of data,
as when the distribution is bi- or multimodal. In such cases, it is customary to report
the two or more scores with the same maximum frequency. Because many variables in
the behavioral sciences are approximately normally distributed, the existence of two
scores with the same maximum frequency suggests the presence of two underlying
distributions. This would occur if I administered a test of masculinity to a sample
containing an equal number of men and women. To report a mean or a median for such
data would be misleading without also reporting that the distribution is bimodal and
the values of the maximum scores.

Summary of the Properties of the Mean, 
Median, and Mode

The mean is

1. the balance point of a distribution, the point for which ;
2. the preferred measure for relatively symmetrical distributions and quantitative

variables;
3. the measure with the best sampling stability;
4. widely used in advanced statistical procedures;
5. mathematically tractable;
6. the only measure whose value is dependent on the value of every core in the

distribution;
7. more sensitive to extreme scores than the median and the mode and, hence, is

not recommended for markedly skewed distributions;
8. not appropriate for qualitative data; and
9. not appropriate for open-ended distributions.

The median is

1. the point that divides the ordered scores into two samples of equal size;
2. second to the mean in usefulness;
3. widely used for markedly skewed distributions because it is sensitive only to

the number rather than to the values of scores above and below it;
4. the most stable measure that can be used with open-ended distributions;
5. more subject to sampling fluctuation than the mean;
6. less mathematically tractable than the mean; and
7. less often used in advanced statistical procedures.

The mode is

1. the score that occurs most often and, therefore, the most typical value;
2. the only measure appropriate for unordered qualitative variables;
3. more appropriate than the mean or the median for quantitative variables that

are inherently discrete;
4. the easiest measure to compute;
5. much more subject to sampling fluctuation than the mean and the median;
6. less mathematically tractable than the mean and the median;
7. not necessarily existent, as when a distribution has two or more scores with

the same maximum frequency; and
8. rarely used in advanced statistical procedures.
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CHECK YOUR UNDERSTANDING OF SECTION 3.5

15. For the following sets of data, what measures of central tendency would you
compute? Justify your choices.
a. 9, 6, 5, 7, 1, 6, 7, 8, 10, 6, 5, 4, 3, 6, 9, 7, 4, 5, 6, 8, 3, 2
b. 6, 5, 9, 6, 7, 5, 6, 8, 3, 4, 5, 7, 5, 4, 8, 5
c. 3, 5, 8, 5, 7, 9, 4, 2, 5, 6, 6, 23

16. Rank the three measures of central tendency with respect to the following char-
acteristics; let 1 � most and 3 � least.
a. Sampling stability
b. Appropriateness for qualitative variables

17. Terms to remember:
a. Sampling stability
b. Mathematically tractable
c. Open-ended distribution

3.6 LOCATION OF THE MEAN, MEDIAN, 
AND MODE IN A DISTRIBUTION

If a distribution is unimodal and symmetrical, the mean, median, and mode have the
same value. If the distribution is unimodal but skewed, usually the three measures
will be arranged in a predictable order. This order is illustrated in Figure 3.6-1. In
both examples, the mean is on the side of the distribution that has the longest tail,
and the median falls about one-third of the distance from the mean to the mode. To
remember the order—mean, median, mode—note that it is alphabetical, starting
from the longer tail. This order occurs because the mean is affected by the value of
extreme scores. The median is affected by the presence of extreme scores but not by
their value. The mode, however, is not affected by extreme scores unless they

10
9
8
7
6
5
4
3
2
1

a. Negatively skewed

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

f

Mo
MdnX

10
9
8
7
6
5
4
3
2
1

b. Positively skewed

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

f

Mo
XMdn

Figure 3.6-1. Location of the , Mdn, and Mo for skewed distributions.X
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happen to have the greatest frequency of occurrence. This ordering of the mean,
median, and mode holds for most unimodal distributions.

The relative location of the mean and median can be used to determine whether a
distribution is positively or negatively skewed. For negatively skewed distributions, it
is virtually always true that Mdn � ; for positively skewed distributions, � Mdn.
If, for example, you know that the median is 25 and the mean is 20, you would
strongly suspect that the distribution is negatively skewed. The greater the discrep-
ancy between the two values, the greater the departure from symmetry.5

A knowledge of the relative location of the mean, median, and mode in asymmet-
rical distributions can be used to intentionally distort the interpretation of data and
mislead consumers of statistics. If you were to graph the wages of workers in one of
the construction industries, you would probably obtain a positively skewed distribu-
tion. If you were negotiating a new contract for the workers, you would want to
report the modal salary, a lower figure than the median or mean, in defending your
request for a wage increase. However, if you were on the other side of the negotiat-
ing table, you would cite the mean, a higher figure, in arguing against the need for
an increase. Even though both the mean and the mode are correct as measures of
central tendency, they are misleading when the distribution is markedly skewed. The
more appropriate measure for such a distribution is the median. This example illus-
trates one of the classic ways in which statistics can be used to mislead the unwary.

CHECK YOUR UNDERSTANDING OF SECTION 3.6

18. Determine the shape—for example, symmetrical, positively skewed, and so
on—of each distribution from the following measures of central tendency.

a. � 16, Mdn � 10 b. � Mdn

c. � 34, Mdn � 34, Mo1 � 28, d. � 46, Mdn � 46, Mo � 46
Mo2 � 40

e. Mo � 19, Mdn � 12 f. � 23, Mdn � 23, Mo1 � 20,
Mo2 � 23, Mo3 � 27

3.7 MEAN OF TWO OR MORE MEANS

Suppose that two introductory sociology classes obtained the following mean scores
on a departmental examination: 80 and 90. What is the mean of the two means? If
each class had the same number of students, you could compute the mean of the
means If, as is more likely, the classes con-
tain different numbers of students, you must weight the means proportional to their
respective sample sizes. Assume that and n1 � 20 and that � 90 and 
n2 � 40. The weighted mean, , is given by

X 5
n1X1 1 n2X2 1 . . . 1 nnXn

n1 1 n2 1 . . . 1 nn
5

20s80d 1 40s90d
20 1 40

5 86.7

XW

X2X1 5 80

X 5 sX1 1 X2d>2 5 s80 1 90d>2 5 85.

X

XX
XX

XX

5 A more sophisticated measure of skewness is described in Section 4.6.
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The weighted mean is closer to 90 than to 80; this reflects the larger n2 associated
with � 90.

CHECK YOUR UNDERSTANDING OF SECTION 3.7

19. For the following data, compute weighted means.
a. � 30, n1� 10; � 50, n2 � 20

b. � 20, n1� 10; � 25, n2 � 10; � 30, n3 � 20
20. Term to remember:

a. Weighted mean

3.8 MORE ABOUT THE SUMMATION OPERATOR

Section 3.3 introduced the summation operator, . You learned that the symbol
tells you to perform an operation, namely, add the terms corresponding to i

equals 1 through n. Many proofs6 in statistics involve rules for using the summation
operator with variables and constants. This section describes four of these rules and
illustrates their use in proving that the sum of the deviation of the mean from each
score is equal to zero. Other proofs involving the summation operator are used in
Exercise 23 of “Check Your Understanding of Section 3.8” and in Exercise 21 of the
Review Exercises for Chapter 3.

Summation Rules

The following summation rules are widely used in statistical proofs and derivations.
An understanding of these rules will go far toward taking derivations out of the
realm of magic.

Rule 3.8-1. The Sum of a Constant Let c be a constant; the sum over i � 1, . . . , n
of the constant can be written as the product of the upper limit of the summation, n,
and c. That is,

For example, let c � 2 and i � 1, . . . , 3; then

3 terms

a
3

i51
2 5 2 1 2 1 2 5 3s2d 5 6

n terms
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i51
c 5 c 1 c 1 . . . 1 c 5 nc
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X3X2X1
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⎫ ⎬ ⎭

⎫ ⎬ ⎭

6 A proof is a process that is used to show that a particular statement follows logically from other ac-
cepted statements. Once a statement has been proved, it becomes a theorem and can be used to prove
other statements. 
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Thus, anytime you see you can write it as nc. Similarly, can be writ-
ten as kc.

Rule 3.8-2.7 The Sum of a Variable Let Vi be a variable with values V1, V2, . . . ,
Vn; the sum over i � 1, . . . , n of the variable is

For example, let V1 � 2, V2 � 3, and V3 � 4; then

Rule 3.8-3. The Sum of the Product of a Constant, c, and a Variable, Vi
The expression can be written as the product of the constant and the sum
of the variable—that is,

For example, let c � 2, V1 � 2, V2 � 3, and V3 � 4; then

Similarly, the sum of a variable, Vi, divided by a constant, c,

can be written as the reciprocal of the constant times the sum of the variable—that is,

For example, let c � 2, V1 � 2, V2 � 3, and V3 � 4; then

Rule 3.8-4. Distribution of Summation If the only operation to be performed
before summation is addition or subtraction, the summation sign can be distributed
among the separate terms of the sum. Let V and W be two variables; then
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7 This rule was introduced in Section 3.3.



3.8 More About the Summation Operator 81

For example, let V1 � 2, V2 � 3, V3 � 4, W1 � 5, W2 � 6, and W3 � 7; then

This rule applies to any number of terms. For example, let Vi, Wi, and Xi be vari-
ables and a, b, and c be constants; then, according to Rules 3.8–1, 3.8–2, and 3.8–4,

Proof That the Mean Is a Balance Point

In Section 3.5 I said that the mean is the point such that I can con-
struct a simple proof of this assertion using Rules 3.8-1, 3.8-2, and 3.8-4. In the expres-
sion , Xi is a variable; but for any set of scores, is a constant. Hence,

Rules 3.8-4 and 3.8-2

Rule 3.8-1 (Note that for
any set of data, is a
constant.)

By definition, . It follows that .
Substituting for in gives

I have just shown that Consider the following scores where 
X1 5 2, X2 5 3, X3 5 4, and then 

 5 21 1 0 1 1 5 0
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CHECK YOUR UNDERSTANDING OF SECTION 3.8

21. Write the following expressions as the sum of individual values of the variables
X and Y or the constant a; for example,

a. b. c.

d. e. f.

22. Let X and Y denote variables and let a and b denote constants. Assume that the
values of the variables and the constants are as follows.

X3 5 4 Y4 5 9 a 5 2
X2 5 3 Y3 5 4 b 5 3
X1 5 2 Y2 5 2

Y1 5 1

Determine the values of the following expressions.

a. b. c.

d. e. f.

g. h. i.

23. The following proofs show the effect on the mean of adding a constant to each
score or multiplying each score by a constant. For each proof, identify the sum-
mation rules from Section 3.8 that were used.
a. Let be the mean of a distribution that has been altered by adding a

constant c to each score—that is, X1 � c, X2 � c, . . . , Xn � c. Then

Thus, the effect of adding a constant c to each score is to change , the
mean of the original scores, to Similarly, it can be shown that the
effect of subtracting a constant from each score is to change to – c.

b. Let be the mean of a distribution that has been altered by multiplying
each score by a constant c—that is, cX1, cX2, . . . , cXn. Then
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Thus, the effect of multiplying each score by a constant c is to change , the
mean of the original scores, to c . Similarly, it can be shown that the effect
of dividing each score by a constant is to change to /c.

3.9 LOOKING BACK: WHAT HAVE YOU LEARNED?

Three measures of central tendency are described in this chapter: the mean, median,
and mode. The different measures result from different ways of conceptualizing the
point around which scores cluster. The mean is the point on which the distribution
balances—its center of gravity; the median is the point that divides the ordered
scores into two samples of equal size; and the mode is the score value with the great-
est frequency—the most typical score.

The mean is the most widely used of the measures, partly because of its superior
sampling stability and partly because many advanced statistical procedures are
based on it. The median and the mode, by contrast, are terminal statistics; their
usefulness in advanced descriptive and inferential procedures is limited.

There are three situations in which the mean is not the preferred measure of cen-
tral tendency: when the distribution is markedly skewed, when the variable is quali-
tative in character, and when the distribution is open-ended. For markedly skewed
distributions, the median is preferred because it is not as sensitive as the mean to the
presence of extreme scores. For unordered qualitative variables, the mode is used
because it is the only one of the three measures that can be computed. In addition,
the mode may be more meaningful for inherently discrete ordered qualitative vari-
ables such as family size.

You learned how to use the operator symbol to represent the sum of several
scores. You also learned four rules involving the sum of a constant, sum of a variable,
sum of the product of a constant and variable, and sum of terms in parentheses.

REVIEW EXERCISES FOR CHAPTER 3

1. In a paired-associates learning experiment, data representing the number of trials
necessary to reach the criterion of three consecutive errorless trials were 10, 6,
11, 10, 9, 8, 10, 11, 14, 12, 10, 9, 11, 10, 12, 9, 8, 9. (a) Determine the mode. 
(b) What type of variable do the data represent?

2. The electoral systems of 11 emerging nations were classified as N � noncompet-
itive, P � partially competitive, and C � competitive. (a) Determine the mode
for the following data: N, P, N, C, N, P, P, N, N, C, N. (b) What type of variable
do the data represent?

3. The mode may not exist; explain why this is so.
4. Identify

a. b. mZ c. Y2

d. e. Yj f. Zk
g. Yn h. n i. fj

j. k k. Z3

Y
X

g

XX
X

X
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5. Write out the following, listing individual values of the variable.

a. b. c.

d.

6. The socioeconomic level of black families in a predominantly black neighbor-
hood was rated on  the basis of income, educational attainment, physical condi-
tion of dwelling, and number of home appliances. Compute the mean using

.

5 6 4 5 10 6 3 5 7 6
3 4 5 8 5 4 7 1 6 7

7. The following data represent the number of suicides per 10,000 inhabitants in
predominantly urban prefectures in Japan. Compute the mean using 

.

23 24 21 19 23 24 25 22 21 27
24 23 23 22 20 23 26 25 24 22
20 17 26 23 21 25 14 21 23 24
26 24 23 22 25 23 25 28

8. For the socioeconomic data in Exercise 6, construct an ungrouped frequency
distribution and compute the mean using .

9. For the suicide data in Exercise 7, construct an ungrouped frequency distribu-
tion and compute the mean using .

10. For a small number of scores, how is the median determined when (a) n is odd
and (b) n is even?

11. Determine the median for the following scores.
a. 2, 8, 11, 19, 3, 26, 28
b. 3, 1, 3, 4
c. 3, 5, 5, 4, 8
d. 3, 5, 5, 4, 8, 5

12. For the suicide data in Exercise 7, construct an ungrouped frequency distribu-
tion and compute the median using

13. For the suicide data in Exercise 7, construct an ungrouped frequency distribu-
tion and compute the median by coming down halfway from above—from the
highest class interval. The computational formula is

The symbols Xul and fa denote, respectively, the real upper limit of the class in-
terval containing the median and the number of scores above Xul.

Mdn 5 Xul 2 ian>2 2 g  fa

fi
b

Mdn 5 Xll 1 ian>2 2 g  fb

fi
b

X 5 gk
j51fjXj>n
X 5 gk

j51fjXj>n

gn
i51Xi>n

X 5

gn
i51Xi>n

a
n

i51
sniXid>ni

a
4

j51
j22

  fjZja
6

j51
 fjYj>na

5

i51
 Yi>n



3.9 Looking Back: What Have You Learned? 85

14. For the following sets of data, what measures of central tendency would you
compute? Justify your choices.
a. 4, 3, 7, 5, 4, 2, 12, 6, 5, 4, 3, 3, 2, 7, 1, 6, 4, 5, 3, 5
b. Eye color: blue, brown, brown, blue, green, brown, gray, brown, blue
c. 7, 8, 6, 7, 8, 9, 1, 6, 5, 3, 7, 8, 7, 6, 7, 8, 5, 7
d. Family size: 4, 3, 5, 4, 1, 2, 4, 6, 5

15. Rank the three measures of central tendency with respect to the following char-
acteristics; let 1 � most or hardest and 3 � least or easiest.
a. Suitability for advanced applications
b. Mathematical tractability
c. Sensitivity to value of each score
d. Ease of computation

16. For each of the following distributions, indicate on the X axis the approximate
location of , Mdn, and Mo.X

X

a.

f

X

b.

f

X

c.

f

X

d.

f

17. Determine the shape, for example, symmetrical, positively skewed, and so on,
of each distribution from the following measures of central tendency. Assume a
distribution similar to those in Exercise 16.
a. � 21, Mdn � 21, Mo � 21 b. Mdn � 109, � 116
c. � 73, Mdn � 84 d. � Mdn � Mo
e. � Mdn 	 Mo

18. For the following data, compute weighted means.
a. � 50, n1 � 20; � 100, n2 � 30

b. � 8, n1 � 10; � 12, n2 � 30; � 18, n3 � 20

c. � 100, n1 � 20; � 200, n2 � 20
19. Write the following expressions as the sum of individual values of the variables

X and Y or the constant a; for example,

a. b. c.
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20. Let X and Y denote variables, and let a and b denote constants. Assume that the
values of the variables and the constants are as follows:

X3 � 4 Y4 � 9 a � 2
X2 � 3 Y3 � 4 b � 3
X1 � 2 Y2 � 2

Y1 � 1

Determine the values of the following expressions:

a. b. c.

d. e. f.

21. The following proofs show the effect on the mean of subtracting a constant from
each score or dividing each score by a constant. For each proof, identify the
summation rules from Section 3.8 that were used.
a. Let be the mean of a distribution that has been altered by subtracting

a constant c from each score—that is, X1 – c, X2 – c, . . . , Xn – c. Then

Thus, the effect of subtracting a constant c from each score is to change ,
the mean of the original scores, to .

b. Let be the mean of a distribution that has been altered by dividing each
score by a constant c—that is, X1/c, X2/c, . . . , Xn/c. Then

Thus, the effect of dividing each score by a constant c is to change , the
mean of the original scores, to .

22. Use a statistical software package to obtain a histogram and compute the mean
and median for the socioeconomic data in Exercise 6.
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23. Use a statistical software package to obtain a histogram and compute the mean
and median for the suicide data for urban prefectures in Exercise 7.

24. Use a statistical software package to obtain a histogram and compute the mean
and median for the socioeconomic data for white families in Exercise 6 in
“Check Your Understanding of Section 3.3.”

25. Use a statistical software package to obtain a histogram and compute the mean
and median for the suicide data for rural prefectures in Exercise 7 in “Check
Your Understanding of Section 3.3.”
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Skewness, and Kurtosis

4.1 Introduction
Looking Ahead: What 

Is This Chapter 
About?

What Measures of
Dispersion Tell You

4.2 Four Measures 
of Dispersion
Range
Semi-Interquartile 

Range
Standard Deviation
Index of Dispersion
Check Your Understanding

of Section 4.2

4.3 Relative Merits of
the Measures of
Dispersion
Standard Deviation
Semi-Interquartile 

Range
Range
Index of Dispersion
Summary of the Properties

of the Measures of
Dispersion

Check Your Understanding
of Section 4.3

4.4 Dispersion and the
Normal Distribution
Check Your Understanding

of Section 4.4

4.5 Detecting Outliers
Detecting Outliers with a

Box Plot
Check Your Understanding

of Section 4.5

4.6 Skewness and Kurtosis
Skewness
Kurtosis
Check Your Understanding

of Section 4.6

4.7 Looking Back: What
Have You Learned?
Review Exercises for

Chapter 4



90 Measures of Dispersion, Skewness, and Kurtosis

4.1 INTRODUCTION

Looking Ahead: What Is This Chapter About?

In the previous chapter, you learned when and how to compute several measures of cen-
tral tendency. This chapter explores three other important properties of data: dispersion,
skewness, and kurtosis. Measures of dispersion represent the spread or scatter of scores
around a central point or the distinguishability of scores. Four measures of this impor-
tant property are described: range, semi-interquartile range, standard deviation, and in-
dex of dispersion. You will learn when and how to compute each of the measures.

Measures of skewness and kurtosis represent, respectively, the asymmetry and
peakedness of data. Knowledge of these two characteristics, along with knowledge of
central tendency and dispersion, provide a fairly complete description of one’s data.

By now you have probably discovered how easy it is to enter wrong numbers in
your calculator or transpose numbers when you read the calculator display. Such er-
rors are a fact of life. Some errors are obvious; others are more difficult to detect.
You will learn several statistical procedures for detecting scores that differ suffi-
ciently from the main body of data as to raise questions about their accuracy.

After reading the chapter, you should know the following:

■ How to compute and interpret the range, semi-interquartile range, standard
deviation, and index of dispersion

■ The advantages of the four measures of dispersion and when to use each
■ How to detect scores whose accuracy is questionable
■ How to compute and interpret a measure of skewness
■ How to compute and interpret a measure of kurtosis

What Measures of Dispersion Tell You

Mr. Jacques and Mrs. Booker are taking a well-deserved break in the teachers’
lounge. The conversation turns to Mrs. Booker’s third-grade class. “I’ve got a bunch
of little monsters this year. I can’t seem to keep their interest for more than 10 min-
utes. I had to discipline Emerson twice this morning for flying paper airplanes dur-
ing arithmetic, and Waldo is still picking fights. I just can’t understand it; this class
has the same average IQ as my class last year, and you remember how good those
kids were.” As Mrs. Booker contemplates her options—face the class for seven more
months, resign and start a family, or go back to college and work on a master’s de-
gree in computer science—we wonder what makes one class a joy and the other a
disaster. The frequency polygon in Figure 4.1-1 provides the answer. Although the
two classes have almost identical mean IQs, this year’s class is much more hetero-
geneous in learning aptitude. Last year, for example, there were no children with
IQs below 90; this year there are two. That’s Waldo in the class interval 75–79—
moderately retarded. At the other end of the distribution in the 140–144 class inter-
val is our paper-plane thrower—a potential genius. It is small wonder that this year’s
class, with its wide range of aptitude, is giving Mrs. Booker problems.

Information about central tendency is important, but central tendency tells only
part of the story; the heterogeneity or dispersion of scores is often just as informative.
The measures of central tendency described in Chapter 3 represent points on which a
distribution centers. As you will see, the most widely used measures of dispersion
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represent the spread or scatter of scores around a central point and are expressed in
terms of distance along a distribution’s horizontal, or X, axis. Many measures of dis-
persion have been proposed. I describe the four most useful measures in the behav-
ioral sciences, health sciences, and education.

4.2 FOUR MEASURES OF DISPERSION

Range

Intuitively, the simplest measure of dispersion is the range—the distance
between the largest and smallest scores. The range is denoted by R and is
computed from the formula

R � Xul (largest score) � Xll (smallest score)

where Xul is the real upper limit of the largest score and Xll is the real lower
limit of the smallest score. Alternatively, the range can be computed from

R � Xj(largest score) � Xj(smallest score)

where Xj(largest score) is the midpoint of the largest score and Xj(smallest score) is the
midpoint of the smallest score.

The first formula is sometimes called the inclusive range; I will use it throughout
the book. The second formula for the noninclusive range is often used in computer
packages.

Consider this year’s class in Figure 4.1-1. If Emerson’s 144 is the highest IQ and
Waldo’s 76 is the lowest, the range is 144.5 � 75.5 � 69. The range of 69 IQ points
is a distance along the X or horizontal axis that includes 100% of the scores. In
general, the larger the range, the greater the spread or scatter of scores.
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Figure 4.1-1. Frequency polygons for two third-grade classes with the same
central tendency but different dispersions.
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In spite of its simplicity, the range is not widely used. For one thing, its value is
determined by the two most extreme scores, so its sampling stability—that is, its
variability from one random sample to the next—is quite poor. Also, the range can-
not be manipulated arithmetically and algebraically, which is another way of saying
that it is not mathematically tractable. Furthermore, the range is not meaningful for
unordered qualitative data. These and other disadvantages discussed in Section 4.3
limit its usefulness as a measure of dispersion.

As you will see, each measure of dispersion is typically reported with a particu-
lar measure of central tendency. For quantitative data, the range can be reported with
the mode, thereby giving a more complete picture of data. However, because the
mode often is used with unordered qualitative data, a different measure of disper-
sion is needed. The index of dispersion described later fills this need.

Semi-Interquartile Range

You have seen that the sampling stability of R is poor because it is computed from
the two most extreme scores in a distribution. A second measure of dispersion, the
semi-interquartile range, is based on two scores closer to the center of the distribu-
tion. Hence, it is considerably more stable than R.

The semi-interquartile range, denoted by Q, is defined as one-half the dis-
tance between the first quartile point, Q1, and the third quartile point, Q3.
These points and the median are shown in Figure 4.2-1. The formula for Q is

The computation of Q1 and Q3 is similar to that for the median and is illustrated
in Table 4.2-1. The data are IQ scores from Mrs. Booker’s current class. The

Q 5
Q3 2 Q1

2

f (X )

Q1

Q3 � Q1

2
Q �

Mdn Q3

25% 25%

X
25% 25%

Figure 4.2-1. Q1 is a point below which 25% of the scores fall and above 
which 75% fall; Q3 is a point below which 75% fall and above which 25% fall.
The median is sometimes referred to as Q2, because it is a point that divides the
distribution of scores into two equal size subsamples. The semi-interquartile 
range, Q, is half the distance from Q1 to Q3.
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TABLE 4.2-1 Computational Procedures for Q1, Q3, and Q
(Data from Figure 4.1-1, This Year’s Class)

(i) Data and computational formulas

aXj fj Cum f  

144 1

134 1

131 1

128 1

125 1

122 3

118 1 26

117 3 25

111 6 22

109 2 16

105 3 14

101 5 11

99 2 6

96 1 4

94 1 3

87 1 2

76 1 1

n 5 34

(ii) Definition of terms

Xj 5 value of jth class interval

fj 5 frequency of jth class interval

Xll 5 real lower limit of class interval containing Q1 or Q3

i 5 class interval size

n 5 number of scores

5 number of scores below Xll

fi 5 number of scores in class interval containing Q1 or Q3

g
  
fb

(continued)

5
118.0 2 101.0

2
5 8.5

Q 5
Q3 2 Q1

2

5 117.5 1 0.5 5 118.0

5 117.5 1 1a25.5 2 25
1

b

Q3 5 Xll 1 ian3>4 2 g  fb

fi
b

5 100.5 1 0.5 5 101.0

5 100.5 1 1a8.5 2 6
5

b

Q1 5 Xll 1 ian>4 2 g  fb

fi
b
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semi-interquartile range for these data is 8.5. The larger the value of Q, the
greater the distance between Q1 and Q3, and, in general, the greater the spread or
scatter of scores.

The semi-interquartile range is often reported along with the median to give a
more complete description of data. For a symmetrical distribution, the median
plus or minus the semi-interquartile range, Mdn � Q, gives two points on the X
or horizontal axis such that the interval between the points contains 50% of
scores, as illustrated in Figure 4.2-1. For the data in Table 4.2-1, the Mdn plus or
minus Q, 110.7 � 8.5, gives the interval 102.2–119.2. The interval 102.2–119.2,
however, does not contain exactly 50% of the scores because the distribution is
not symmetrical.

The semi-interquartile range, like the median, is a terminal statistic; by this I mean
that its usefulness in advanced descriptive and inferential procedures is very limited.
The semi-interquartile range shares both the advantages and the disadvantages of the
median because it is computed from “medianlike” descriptive statistics, Q1 and Q3.
I will now digress for a moment to describe another medianlike statistic—the
percentile.

A percentile point, also called a percentile or centile and denoted by P%, is a
point on the X or horizontal axis below which a specified percentage of scores
falls. The term percentile rank, denoted by PR, refers to the percentage of
scores that falls below the percentile point.

Procedures for computing percentile points corresponding to the 25th, 50th, and
75th percentile ranks already have been described because these points correspond,
respectively, to Q1, Mdn, and Q3. Percentiles corresponding to other percentile ranks
can be computed using a modification of the Q1 formula as follows:

P% 5 Xll 1 iansPR>100d 2 gfb

fi
b

TABLE 4.2-1 (continued)

(iii) Computational sequence illustrated for Q1

1. Compute n/4 5 34/4 5 8.5.
2. Locate the class interval containing the n/4 5 8.5th score in the Cum f column; 

the 8.5th score occurs in the class interval 101. For this class interval, Xll is 100.5.
3. Compute i: i 5 Real upper limit of class interval – Real lower limit of class 

interval 5 101.5 2 100.5 5 1.
4. Determine .
5. Determine fi 5 5.

a To conserve space, class intervals with fj 5 0 have been omitted.

g
  
fb 5 6
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where P% identifies a percentile point and PR, a percentile rank. The other
symbols—Xll, i, n, fb, and fi—are defined in Table 4.2-1; replace Q1 with P%.

Suppose that you wanted to determine the percentile point corresponding to the
60th percentile rank. To determine P60 for the data in Table 4.2-1, first compute
n(PR /100) � 34(60/100) � 20.4. By following the computational sequence illus-
trated in part (iii) of Table 4.2-1 and substituting n(PR /100) � 20.4 for n/4 � 8.5, you
obtain

This tells you that the IQ score of 111.2 represents a point below which 60% of the
scores in this year’s class fall.

Sometimes you have a score in mind and want to determine the percentile rank
of the score. This situation is the reverse of that just described, where you had the
60th percentile rank in mind and wanted to determine the corresponding percentile
point. Suppose that for the data in Table 4.2-1 you wanted to know the percentile
rank of the IQ score of 105.3. The percentile rank of IQ � 105.3 can be determined
by using the following formula:

The first step in computing the percentile rank is to locate the class interval in
Table 4.2-1 that contains the IQ score 105.3. This score falls in the class interval
105; the real limits of this class interval are 104.5 and 105.5. Thus, the lower limit
of the class interval containing the score 105.3 is Xll � 104.5. Note that there are 
fi � 3 scores in this class interval and that there are fb � 11 scores below this
class interval. Inserting these values in the formula and solving for the percentile
rank gives 39.4. You know from this result that 39.4% of the scores in this year’s
class fall below an IQ score of 105.3.

Percentiles and percentile ranks are widely used in reporting the performance of
individuals on psychological tests. I will return to percentiles in Chapter 9.

Standard Deviation

The standard deviation, denoted by S for a sample and by for a population,
is the most important and most widely used measure of dispersion. The
formulas for S and s are, respectively,

s

S

 PR 5
100
34

c11 1
3s105.3 2 104.5d

1
d 5 39.4

 PR 5
100
n

c gfb 1
fisP% 2 Xlld

i
d

 5 110.5 1 0.7 5 111.2

 P60 5 110.5 1 1a34s60>100d 2 16

6
b 5 110.5 1 1a20.4 2 16

6
b

g
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and

where and m denote the sample and population means, respectively.1

You can develop an intuitive understanding of the standard deviation by examining
the formula for S. First note that, unlike R and Q, S is computed from every score in
a distribution; second, each score is expressed as a deviation from the mean,

third, each deviation is squared; and fourth, the squared deviations are
summed. What would happen if you did not square the deviations? You know from
Chapter 3 that for any distribution,2

so squaring or some other operation on the deviations is necessary for the sum to
equal a value other than zero. Finally, note that the sum of the squared deviations is
divided by n, which gives us the mean squared distance by which the scores deviate
from the mean. To convert back into deviations expressed in the
original unit of measurement, you take its square root.3

To summarize, the standard deviation is a number that (1) is based on every score
in a distribution and (2) represents the square root of the mean squared distance of
scores from the mean. In general, the larger the value of S, the greater is the spread
or scatter of scores. Because the standard deviation is based on every score in the
distribution, its sampling stability is much better than that of other measures of dis-
persion. For this reason and because it is mathematically tractable, the standard de-
viation is widely used in advanced descriptive and inferential statistics.

g sXi 2 Xd2>n

a sXi 2 Xd 5 0

sXi 2 Xd;

X

s 5ã
a

n

i51
sXi 2 md2

n
S 5ã

a
n

i51
sXi 2 Xd2

n

1 When the population standard deviation, s, is estimated from sample data, a better estimator is given by

and is denoted by . This statistic is used with inferential statistics in Chapters 10 to 16 .
2 For a proof, see Section 3.8.
3 The square of standard deviations—S2, 
2, and 2—is another measure of dispersion and is called vari-

ance. The formulas for the three variances are

The measures S2 and 
2 are, respectively, the  sample variance and the population variance. The measure
2

is an estimator of the population variance and is widely used in inferential statistics. I will return to
2

in Chapter 14 and in Chapters 15 and 16, when I discuss the analysis of variance.ŝ

ŝ

 ŝ2 5 g sXi 2 Xd2> sn 2 1d

 s2 5 g sXi 2 md2>n,   and

  S2 5 g sXi 2 Xd2>n,

ŝ

ŝ

ŝ 5ã
a

n

i51
sXi 2 Xd2

n 2 1
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As you saw earlier, each measure of dispersion is typically reported with a particu-
lar measure of central tendency—R with Mo and Q with Mdn. The standard deviation
is reported with the mean. One special type of distribution, called the normal distribu-
tion, is often approximated by behavioral science data such as IQs (see Section 2.6 and
Chapter 9). For this distribution, the mean plus and minus the standard deviation 
( � S) is an interval that contains 68.27% of scores, as Figure 4.2-2 illustrates. The
other two dispersion measures are shown in the figure for comparison.

Computation of the standard deviation is illustrated in Table 4.2-2. The data
represent ratings of the socioeconomic level of white families in a predominantly
black neighborhood. For these data, � 5 and S � 2.3. If you compute � S, you
obtain 5 � 2.3, or the interval 2.7–7.3. It can be shown,4 using the formula for a per-
centile rank presented earlier, that the interval 2.7–7.3 contains only 63.34% of the
scores. This percentage, 63.34%, is reasonably close to the 68.27% that would be
obtained for a normal distribution. The slight discrepancy occurs because the data in
Table 4.2-1 contain only 12 scores and the distribution deviates appreciably from
the normal distribution.

The formula for S just illustrated is called the deviation formula because the for-
mula involves computing deviations—(Xi – )—and squaring the deviations. If is
not an integer, the rounding error in can lead to a small error in the standard devia-
tion. The problem can be avoided by carrying the computation of to several more
decimal places than the final answer for the standard deviation.5 The simplest way to
compute the standard deviation is to enter the scores in a calculator that has a standard

X
X

XX

XX

X

Figure 4.2-2. A region that contains 68.27% of the area of the normal distribution
is marked off by � S; Mdn � Q contains 50% of the area, and the R contains
100% of the area.

X

f(X)

R

Mdn � Q

X � S X � S

Mdn � Q

X

100%

50%

68.27%

X
Mdn

4 To show that the interval � S = 2.7–7.3 contains only 63.34% of the socioeconomic level ratings of
the white families, I can use the formula for the percentile rank to find the percentiles corresponding to
2.7 and 7.3. The corresponding percentiles are 18.33 and 81.67. Between these two percentiles are
63.34% of the scores (81.67 � 18.33 � 63.34). 

5 In the precomputer era, the standard deviation was often computed using a raw score formula that did
not introduce a rounding error. Calculators and computers have virtually eliminated the need for raw
score formulas. 

X
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deviation key. After all the scores have been entered, the standard deviation is obtained
with the press of a key.6

The standard deviation also can be computed from an ungrouped frequency dis-
tribution, a distribution that has a class interval size of one. For this case, the for-
mula for S is modified as follows:

S 5ã
a

k

j51
fjsXj 2 Xd2

n

TABLE 4.2-2 Computation of the Standard Deviation

(i) Data

(1) (2) (3)
Xi Xi – (Xi – )2

5 5 – 5 � 0 0
9 9 – 5 � 4 16
2 2 – 5 � –3 9
8 8 – 5 � 3 9
6 6 – 5 � 1 1
5 5 – 5 � 0 0
4 4 – 5 � –1 1
7 7 – 5 � 2 4
4 4 – 5 � –1 1
3 3 – 5 � –2 4
1 1 – 5 � –4 16
6 6 – 5 � 1 1

(ii) Computation of S

S 5ã
a

n

i51
sXi 2 Xd2

n
5Å

62
12

5 2.3

X 5

a
n

i51
Xi

n
5

60
12

5 5

a
n

i51
sXi 2 Xd2 5 62a

n

i51
Xi 5 60

XX

6 Many statistical calculators have two keys for computing a standard deviation: one labeled and
another labeled . The standard deviations produced by the two keys are defined by the formulas,
respectively,

ŝ 5Å
g sXi 2 Xd2

n 2 1
            and           S 5Å

g sXi 2 Xd2

n

sn

sn21
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where Xj is the value of the j th class interval, fj is the frequency of scores in the jth
class interval, and summation is performed over the j � 1, . . . , k class intervals. Com-
putation of the standard deviation using this formula is illustrated in Table 4.2-3 for
the socioeconomic data in Table 4.2-2. The results of the computation in Table 4-2-3
agree with those in Table 4.2-2.

Index of Dispersion

The three measures of dispersion discussed thus far—R, Q, and S—are distance
measures and are commonly used with quantitative variables. If data do not contain
distance information, as is the case for unordered qualitative variables such as gen-
der and major in college, how can you describe dispersion? One approach is to think
of dispersion as the distinguishability of observations—more precisely, as the
number of pairs of observations actually distinguishable relative to the maximum
possible number. Consider the example in Figure 4.2-3(a) in which there are two

TABLE 4.2-3 Computation of the Standard Deviation for an Ungrouped
Frequency Distribution (Data from Table 4.2-2)

(i) Data

(1) (2) (3) (4)
Xj fj fj Xj fj (Xj – )2

9 1 (1)(9) � 9 (1)(9 – 5)2 � 16
8 1 (1)(8) � 8 (1)(8 – 5)2 � 9
7 1 (1)(7) � 7 (1)(7 – 5)2 � 4
6 2 (2)(6) � 12 (2)(6 – 5)2 � 2
5 2 (2)(5) � 10 (2)(5 – 5)2 � 0
4 2 (2)(4) � 8 (2)(4 – 5)2 � 2
3 1 (1)(3) � 3 (1)(3 – 5)2 � 4
2 1 (1)(2) � 2 (1)(2 – 5)2 � 9
1 1 (1)(1) � 1 (1)(1 – 5)2 � 16

n � 12

(ii) Computation of S

S 5ã
a

k

j51
fjsXj 2 Xd2

n
5Å

62
12

5 2.3

X 5

a
k 

j51
fjXi

n
5

60
12

5 5

a
k

j51
fjsXj 2 Xd2 5 62a

k

j51
fjXj 5 60

X
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qualitative categories called A and B that contain a total of six elements. Suppose
that the elements in the A and B categories, denoted by ai and bj, represent men and
women students in a coed dorm who slept through breakfast yesterday. The two ele-
ments in A are indistinguishable in the sense that they are both men who missed
breakfast; likewise, the four elements in B (women who also missed breakfast) are
indistinguishable. However, the elements in A can be distinguished from the ele-
ments in B. Thus, among the six elements there are eight distinguishable pairs of el-
ements: a1b1, a1b2, a1b3, a1b4, a2b1, a2b2, a2b3, and a2b4. I denote the observed num-
ber of distinguishable pairs by DP. In this example, DP is equal to 8. The minimum
value of DP, which represents minimum dispersion, is zero. A value of zero occurs
when all the elements are in one category and hence are indistinguishable. The max-
imum possible number of distinguishable pairs is denoted by DPmax and occurs
when the elements are evenly divided among the categories, as in Figure 4.2-3(b). It
can be determined from Figure 4.2-3(b) that the maximum possible number of dis-
tinguishable pairs for c � 2 categories and n � 6 observations is nine (DPmax � 9):
a1b1, a1b2, a1b3, a2b1, a2b2, a2b3, a3b1, a3b2, and a3b3.

The ratio DP/DPmax—the number of distinguishable pairs to the maximum
possible number of distinguishable pairs—is called the index of dispersion
and is denoted by D.7

For the data in Figure 4.2-3(a), you have seen that DP � 8 and that DPmax � 9. Hence,

which means that the observed dispersion is .89 as large as its maximum possible
value.

D 5
DP

DPmax
5

8
9

5 .89

Category A

a.

Category B 

a1
b1 b2

b3 b4

a2

Category A

b.

Category B

a1 b1 b2

b3

a2

a3

Figure 4.2-3. In figure a, elements are assigned to c = 2 qualitative categories
such that those within a category are indistinguishable with respect to some 
characteristic. Figure b illustrates the case in which the number of distinguishable
pairs (a1b1, a1b2, . . . , a3b3) is maximal. The maximum number of distinguishable
pairs occurs when the elements are evenly divided among the categories, for 
example, three in category A and three in B.

7 This index also is called the index of qualitative variation.
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To summarize, the minimum value of D � DP/DPmax is 0 and occurs when DP �
0, which indicates that all the elements are in one category. The maximum value of D
is 1 and occurs when DP � DPmax, which indicates that the elements are evenly di-
vided among the c categories. Thus, D ranges over values 0–1; the larger D, the larger
the observed number of distinguishable pairs of elements relative to the maximum
number and, hence, the greater the dispersion.

When the number of observations n is large, it is tedious to determine DP and
DPmax by enumerating or listing all of the possible aibj pairs. A simple alternative
formula for D that does not require an enumeration of the aibj pairs is

where c is the number of categories, n is the number of observations, and nj is
the number of observations in each of the j � 1, . . . , c categories.8 For the data in
Figure 4.2-3(a),

the same value obtained previously.
The index of dispersion is particularly useful for comparing the dispersions of

several distributions based on the same set of c categories. Suppose that I have asked
married women with either a high school or a college education to rate their marital
happiness. The results of the survey along with the mode and the index of disper-
sion are shown in Table 4.2-4. Although the modes are identical, the dispersion of
the college graduates’ distribution (DCG � .88) is smaller than that for the high
school graduates (DHG � .96). It is evident from Table 4.2-4 that college grads are
more likely to rate their marriage as moderately happy and less likely to use other
rating categories such as very unhappy.

For unordered qualitative data, the only appropriate measure of central ten-
dency is the mode. For such data, the appropriate measure of dispersion to report
with the mode is the index of dispersion. The index of dispersion has two disad-
vantages: (1) it is a terminal statistic (its usefulness in advanced descriptive and
inferential statistics is limited), and (2) it is less familiar than R, Q, and S, which
are based on the concept of distance rather than on the number of distinguishable
pairs of observations.

CHECK YOUR UNDERSTANDING OF SECTION 4.2

1. Compute the range for the following sets of numbers.
a. 11, 6, 5, 2, 9, 14, 17, 4 b. 7, 1, 6, 6, 6, 7, 7, 16
c. 12, 8, 15, 9, 7, 6, 7 d. 11, –2, 3, 7, 6, 8

D 5
23 s6d2 2 s2d2 2 s4d24

s6d2s2 2 1d
5 .89

D 5

can2 2 a
c

j51
n2

jb
n2sc 2 1d

8 The derivation of the formula is given by Kirk (1978, pp. 91–93).
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2. The ranges in Exercises 1a and 1b are identical, although the first set of numbers
appears to be more heterogeneous than the second. Why doesn’t the range reflect
this difference?

3. Data representing the length of time required to notice the onset of a warning
light during the performance of a simulated driving test are listed in the follow-
ing table. (a) Compute the median and the semi-interquartile range for these data.
(b) Compute P10 and P90. (c) Construct a histogram.

Xj , Time (Seconds) fj Xj , Time (Seconds) fj

32 1 26 3
31 1 25 2
30 2 24 1
29 3 23 0
28 4 22 0
27 6 21 1

4. For the data in Exercise 3, compute the percentile rank for X � 30. For these
data, note that i � 1 and that the real limits of a score, say 27, are 26.5 and 27.5.

TABLE 4.2-4 Marital Happiness Ratings of Women with Either a High
School or a College Education

(i) Data

nj , High School nj , College
Rating Graduate Graduate

Very happy 15 12
Moderately happy 28 39
Neutral 16 30
Unhappy 13 12
Very unhappy 8 3

n � 80 n � 96
Mo � Moderately happy Mo � Moderately happy

DHG � .96 DCG � .88

(ii) Computation of D

 DCG 5
53s96d2 2 s12d2 2 s39d2 2 s30d2 2 s12d2 2 s3d24

s96d2s5 2 1d
5

32,490
36,864

5 .88

 DHG 5
53s80d2 2 s15d2 2 s28d2 2 s16d2 2 s13d2 2 s8d24

s80d2s5 2 1d
5

24,510
25,600

5 .96

 D 5

can2 2 a
c

j51
n2

jb
n2sc 2 1d
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5. Preschool children, particularly those who are very intelligent, often create
imaginary companions. The following data represent the number of compan-
ions created by 15 children.

4 2 5 3 1
3 2 1 2 3
2 4 3 2 0

(a) Compute the mean and the standard deviation using the formulas 

and S � (b) If you have a calcula-
tor with a standard deviation key, compute the standard deviation with your
calculator.

6. The effects of a terrorist attack in the Middle East on attitudes about work were
investigated for a large multinational manufacturer. Job satisfaction data for a
small branch office in India are as follows.

46 54 65 43 54
53 64 46 56 44
45 43 57 61 32

(a) Compute the mean and the standard deviation using the formulas 
and S � (b) If you have a calcu-

lator with a standard deviation key, compute the standard deviation using
your calculator.

7. Researchers surveyed the attitudes of a random sample of white women college
students toward having a career. (a) For the data in the table, compute the mode
and the index of dispersion. (b) Construct a bar graph.

Category f

Strongly desire career 16
Moderately desire career 23
Undecided about career 19
Don’t want career 10

8. The following proofs show the effect on the standard deviation of adding a con-
stant to each score or multiplying each score by a constant. For each proof,
identify the summation operations and the number of the summation rules from
Section 3.8 that were used.
a. Let SX � c be the standard deviation of a distribution that has been altered by

adding a constant c to each score Xi—that is, X1 � c, X2 � c, . . . , Xn � c. 
To determine the effect on S of adding a constant, I replace Xi by (Xi � c)  

and by in the formula as

follows.

 SX1c 5ã
a

n

i51
c sXi 1 cd 2 a

n

i51
sXi 1 cd>n d 2

n

S 5"gn
i51sXi 2 Xd2>n,gn

i51sXi 1 cd>nX

"gk
j51fjsXj 2 Xd2>n.X 5 gk

j51fjXj>n

"gn
i51sXi 2 Xd2>n.X 5 gn

i51Xi>n
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Because SX � c � S, you know that adding a constant c to each score does not
affect the value of the standard deviation. Similarly, it can be shown that sub-
tracting a constant also does not affect the value of the standard deviation.

b. Let ScX be the standard deviation of a distribution that has been altered by multi-
plying each score X by a positive constant c—that is, cX1, cX2, . . . , cXn. The
effect of this alteration can be shown by replacing Xi by cXi and by 

in the formula as follows.

 5ã
c2
a

n

i51
sXi 2 Xd2

n

 5ã
a

n

i51
c2sXi 2 Xd2

n

 5ã
a

n

i51
scXi 2 cXd2

n

 5ã
a

n

i51
acXi 2 ca

n

i51
Xi>nb2

n

 ScX 5ã
a

n

i51
acXi 2 a

n

i51
cXi>nb2

n

S 5"gn
i51sXi 2 Xd2>n,gn

i51 cXi>n
X

 5 S

 5ã
a

n

i51
sXi 2 Xd2

n

 5ã
a

n

i51
sXi 1 c 2 X 2 cd2

n

  5ã
a

n

i51
aXi 1 c 2 a

n

i51
Xi>n 2 nc>nb2
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Because SCX � cS, you know that the effect of multiplying each score by a pos-
itive constant c is to change S, the standard deviation of the original scores, to
cS. Similarly, it can be shown that the effect of dividing each score by a positive
constant c is to change S to S/c.

If c is a negative constant, SCX �| c |S. The use of | c | ensures that | c |S is pos-
itive and is consistent with the definition of the standard deviation as the posi-
tive square root of 

9. Interpret the following: (a) � 100, S � 15, and the distribution is approxi-
mately normal, (b) Mdn � 70, Q � 12, (c) Mo � 16, R � 4, (d) Mo � Category
of Pizza Inn pizza, D � .25.

10. Terms to remember:
a. Inclusive range b. Noninclusive range
c. Semi-interquartile range d. Percentile point
e. Percentile rank f. Standard deviation
g. Deviation formula for S h. Index of dispersion

4.3 RELATIVE MERITS OF THE MEASURES 
OF DISPERSION

Standard Deviation

The standard deviation, which is typically reported with the mean, is the most impor-
tant and most widely used measure of dispersion for quantitative variables whose dis-
tributions are relatively symmetrical. Its popularity is due largely to its superior sam-
pling stability and its mathematical tractability. There are two situations, however, in
which the standard deviation is neither a preferred nor an appropriate measure of dis-
persion: when a distribution is very skewed and when the data are qualitative.

Consider the case of a skewed distribution. The value of the standard deviation is
computed by squaring the deviation of each score from the mean. The squaring op-
eration gives undue weight to extreme scores in the longer tail of the distribution and
results in a much larger standard deviation than would have been obtained in the ab-
sence of extreme scores. This is a disadvantage. For example, suppose that you
wished to compare the dispersion of two distributions that are similar except that
one contains several very extreme scores in the longer tail. In spite of the similarity
of the two distributions, their standard deviations would be quite different, and the
comparison would be misleading. A few extreme scores exert an influence that is
disproportionate to their number.

Consider next the case of a qualitative variable. If the variable is ordered, the
magnitude of differences between numbers on the measurement scale does not con-
tain meaningful information about the variable. If the variable is unordered, the

X
gn

i51sXi 2 Xd2>n.

 5 cS

 5 cã
a

n

i51
sXi 2 Xd2

n



106 Measures of Dispersion, Skewness, and Kurtosis

magnitude of differences between numbers on the measurement scale contains no
information about the variable. In either case, the standard deviation is not an appro-
priate measure of dispersion because the measuring scale does not contain useful
distance information.

Semi-Interquartile Range

The semi-interquartile range, which is reported with the median, is computed from
the medianlike statistics Q1 and Q3 and shares many of the median’s advantages and
disadvantages. For example, the semi-interquartile range is limited to descriptive ap-
plications with quantitative variables and is relatively intractable mathematically.
Nevertheless, it is preferred over the standard deviation in two situations that I will
now describe.

You learned in Section 3.5 that the median can be computed for open-ended dis-
tributions. This also is true of the semi-interquartile range if the unknown scores lie
above Q3 or below Q1. Thus, the semi-interquartile range can be computed when the
value of one or more extreme scores is unknown. The standard deviation also can be
computed when there are unknown scores, but none of the procedures for doing so
is entirely satisfactory.

The semi-interquartile range also is preferred over the standard deviation for
skewed distributions. Recall that the semi-interquartile range is sensitive to the
number but not to the value of scores lying above Q3 and below Q1. As a result, the
semi-interquartile range is less influenced by the extreme scores in the longer tail of
a distribution than is the standard deviation. In summary, there are only two situa-
tions in which the semi-interquartile range is preferred over the standard deviation:
when a distribution is markedly skewed or when it is open-ended.

Range

The range is used for quantitative variables and may be reported with the mode. The
great advantage of the range is its simplicity—it is easy to understand and to com-
pute. As a result, it is used widely as a preliminary measure of dispersion. It also is
used in deciding how to group data in a frequency distribution, an application that
was described in Section 2.2.

The major deficiency of the range is its poor sampling stability. The value of the
range is determined by only two scores (the largest and the smallest), which means
that it is not sensitive to most of the score values.

Another deficiency is its dependency on sample size. If scores are randomly sam-
pled from a population, the range will tend to be larger for larger samples because
large samples are more likely to include extreme scores. These deficiencies, plus its
poor mathematical tractability, limit the range to descriptive applications.

Index of Dispersion

The index of dispersion, which is reported with the mode, is the only measure of dis-
persion that is appropriate for unordered qualitative variables. Unlike other disper-
sion measures, it represents not distance but the number of distinguishable pairs of
observations relative to the maximum possible number. The main disadvantages of
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the index of dispersion are that it is less familiar than the other measures of disper-
sion and that it is rarely used in advanced statistical procedures.

Summary of the Properties of the Measures 
of Dispersion

The standard deviation is

1. a distance measure—the square root of the squared distance by which scores
deviate from the mean;

2. the preferred measure for quantitative variables whose distributions are rela-
tively symmetrical;

3. often reported with the mean—for a normal distribution, � S is an interval
that contains 68.27% of scores;

4. the measure with the best sampling stability;
5. widely used, implicitly or explicitly, in advanced statistics;
6. mathematically tractable;
7. the only widely used measure of dispersion whose value is affected by the

value of every score in the distribution;
8. fairly sensitive to extreme scores, so it is not recommended for markedly

skewed distributions; and
9. not appropriate for qualitative variables.

The semi-interquartile range is

1. a distance measure—one-half the distance between the first and the third
quartiles;

2. often reported with the median for quantitative variables;
3. closely related to the median, because both are defined in terms of quartile

points;
4. sensitive only to the number and not to the value of scores above Q3 and

below Q1; hence, it often is used for markedly skewed distributions;
5. the only relatively stable measure of dispersion that is appropriate for open-

ended distributions;
6. more subject to sampling fluctuation than the standard deviation;
7. less mathematically tractable than the standard deviation; and
8. rarely used in advanced statistical procedures.

The range is

1. a distance measure—the distance between the largest and the smallest scores;
2. often reported with the mode for quantitative variables;
3. the simplest measure of dispersion to compute and interpret;
4. used in deciding how to group data in a frequency distribution;
5. much more subject to sampling fluctuation than the other measures of dispersion;
6. dependent on sample size—the larger the sample size, the larger, on the aver-

age, the range;
7. less mathematically tractable than the standard deviation; and
8. rarely used in advanced statistical procedures.

X
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The index of dispersion is

1. a measure of the distinguishability of observations—that is, the number of
distinguishable pairs of observations relative to the number possible. The
index is 0 when all observations are in one qualitative category (minimum
dispersion), and it has its maximum value of 1 when the observations are
evenly distributed over the categories (maximum dispersion);

2. the only measure of dispersion appropriate for unordered qualitative variables;
3. reported with the mode;
4. rarely used in advanced statistical procedures; and
5. less familiar than the standard deviation, range, and semi-interquartile range,

which are based on the concept of distance.

CHECK YOUR UNDERSTANDING OF SECTION 4.3

11. What measure of central tendency and dispersion would you compute for the
following data? Defend your choice.
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4.4 DISPERSION AND THE NORMAL 
DISTRIBUTION

The distribution of many variables in the behavioral sciences, health sciences, and
education resembles the bell-shaped normal distribution. Because this distribution is
so important, its properties have been studied extensively by mathematicians. You
saw in Section 4.2 that for a normal distribution, the interval � S includes
68.27% of scores. Suppose that you are interested in the interval � 2S or � 3S.
The percentage of scores included in these intervals is shown in Figure 4.4-1. It can
be seen that an interval of six standard deviations includes almost all of the scores,
99.73%. Also, � S gives the two scores that mark the inflection points of the
normal distribution—that is, the points where the curve changes from convex to
concave or the reverse.

CHECK YOUR UNDERSTANDING OF SECTION 4.4

12. For a normal distribution, what percentage of the scores falls (a) below � S?
(b) between – 3S and � 3S? (c) above – 2S? (d) below – S?

13. Term to remember:
a. Inflection point

4.5 DETECTING OUTLIERS

In collecting data, there are many opportunities for mistakes to occur. People mis-
read instruments, transpose numbers, record data in the wrong place, present the
wrong experimental condition or instructions, and fail to notice that equipment has

XXXX
X

X

XX
X

f (X )

X � S X � S
X

99.73%

68.27%
95.45%

50% 50%

X X � 2SX � 2S

X � 3S X � 3S

Figure 4.4-1. Percentage of scores contained in selected intervals around the
mean for a normal distribution.
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malfunctioned. Often these mistakes produce scores that are indistinguishable from
correct data and go undetected. However, when you find that John’s IQ is 1100 and
Susan’s height is 56 feet, you know that something is wrong.

Scores that are unusually large or small relative to other scores are called
outliers.

Outliers can seriously affect the integrity of data and result in biased or distorted
sample statistics and faulty conclusions. Some outliers are obvious, such as an IQ of
1100 or a height of 56 feet, but not all outliers are so obvious. There are gray areas.
A number of criteria have been suggested for identifying obvious and not-so-
obvious outliers. According to one criterion, an outlier is any score that falls outside
of the interval given by

Mdn � 2(Q3 – Q1)

Another criterion identifies an outlier as any score that falls outside of the interval

� 2.5S

For the IQ scores in Table 4.2-1, the two criteria give the following intervals:

Mdn � 2(Q3 � Q1) � 110.7 � 2(118.0 � 101.0) � 76.7 to 144.7

and

� 2.5S � 110.35 � 2.5(13.53) � 76.5 to 144.2

Both criteria identify one outlier—Waldo’s score of 76. Of the two criteria, Mdn � 2
(Q3 – Q1) is preferred because the Mdn, Q3, and Q1 are less influenced by extreme
scores than are the and S. A widely used rule for detecting outliers is based on a box
plot, which is described in the next section.

Outliers should be carefully examined. Their presence suggests the possibility of
some form of data contamination. Data that are obviously erroneous must be either
corrected or discarded. For example, an examination of the records might reveal that
John’s IQ is 110 rather than 1100 and that Susan is only 5.6 feet tall, not 56 feet.
However, school records might confirm that Waldo’s score of 76 is correct. Outliers
should be discarded if they are impossible—for example, an IQ of 1100—or if there
is ample evidence that they have resulted from some form of data contamination—
for example a participant recorded his answers in the wrong column of an answer
sheet or the equipment malfunctioned.

Detecting Outliers with a Box Plot

Chapter 2 showed that graphs are effective ways to present data. John Tukey, who
introduced the stem-and-leaf display, developed another innovative display called a
box-and-whiskers plot or simply box plot (Tukey, 1977). A box plot presents im-
portant features of data and identifies outliers if they are present. There are several
versions of this popular display; a simplified version for the IQ data in Table 4.2-1

X

X

X
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is shown in Figure 4.5-1. The box plot in Figure 4.5-1 provides the following
information:

1. Median (Mdn � 110.7). This point is represented by the vertical line in the
central area of the box.

2. First quartile (Q1 � 101.0) and third quartile (Q3 � 118.0). These two points
are represented by the ends of the box.

3. Lines, called whiskers. The two whiskers extend from each end of the box to
the outermost data points that fall within the distances computed as

Q1 � 1.5(Q3 � Q1) � 101.0 � 1.5(118.0 � 101.0) � 75.5

and

Q3 � 1.5(Q3 � Q1) � 118.0 � 1.5(118.0 � 101.0) � 143.5

The left whisker extends from Q1 � 101.0 down to 76, the smallest score that
is greater than or equal to Q1 – 1.5(Q3 – Q1) � 75.5. The right whisker extends
from Q3 � 118.0 up to 134, the largest score that is less than or equal to 
Q3 � 1.5(Q3 – Q1) � 143.5.

4. Outliers, which are represented by asterisks, are scores that fall outside the
whiskers. One score, 144, falls above the right whisker.

The box plot identified one outlier, 144. Furthermore, it is evident that the
distribution is negatively skewed because the left whisker is longer than the right
whisker and the distance from Q1 to the Mdn is greater than the distance from the
Mdn to Q3. The two criteria described earlier for detecting outliers identified a dif-
ferent outlier, 76. Because the distribution is skewed, the box plot rather than the
other criteria should be used to identify outliers.

Box plots provide a lot of information at a glance. I will use them in later chap-
ters to summarize the central tendency and dispersion of data and identify outliers.
They are especially useful for comparing two or more sets of data. For this purpose,
box plots are stacked, one above another, or turned 90º and placed side by side.

70

*

80 90 100 110 120 130 140 150

Figure 4.5-1. Box plot for the IQ data in Table 4.2-1. The vertical line in the center
of the box denotes the median. The lower and upper ends of the box denote the first
and third quartiles, respectively. The whiskers are lines that extend from each end 
of the box to the outermost data points that fall within the distances computed as 
Q1 – 1.5(Q3 – Q1) � 75.5 and Q3 � 1.5(Q3 – Q1) � 143.5. The outermost data points
that fall within these distances are 76 and 134. Data points outside the whiskers are
outliers and are represented by an *. One data point, 144, is identified as an outlier.



112 Measures of Dispersion, Skewness, and Kurtosis

CHECK YOUR UNDERSTANDING OF SECTION 4.5

14. a. Use the criterion Mdn � 2(Q3 – Q1) to determine whether there is reason to
believe that outliers exist in the data presented in Table 4.2-2.

b. Construct a box plot for these data. Compare the results with those obtained
in (a).

15. a. Use the criterion Mdn � 2(Q3 – Q1) to determine whether there is reason to
believe that outliers exist in the reaction-time data presented in Exercise 3 in
“Check Your Understanding of Section 4.2.”

b. Does the use of the criterion � 2.5S lead to the same decision as Mdn �

2(Q3 – Q1)?
c. Construct a box plot. Compare the results with those obtained in (a) and (b).

16. Terms to remember:
a. Outlier b. Box-and-whisker plot
c. Whisker

4.6 SKEWNESS AND KURTOSIS

To complete my description of a distribution, I need two more statistics: indexes of
skewness and kurtosis. You learned in Section 2.6 that skewness refers to the asym-
metry of a distribution and kurtosis, to its peakedness or flatness.

Skewness

A number of indexes of skewness have been developed; the most widely used
one is

where S denotes the standard deviation (see Section 4.2).9 If a distribution is
symmetrical, Sk � 0; if it is positively skewed, Sk � 0; and if it is negatively
skewed, Sk � 0.

Computation of Sk is illustrated in Table 4.6-1. For these data, Sk � –0.7, which in-
dicates that the distribution is negatively skewed, as Figure 4.6-1 shows.

Sk 5

g sXi 2 Xd3

n
S3 ,

X

9 This index, developed by Karl Pearson, is sometimes denoted by and sometimes by g1."b1
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The value of Sk can be used to compare the type and the degree of skewness of
two distributions independent of any differences in central tendency and dispersion.
However, in practice, Sk is rarely computed because it is easy to detect asymmetry
by looking at a frequency distribution or a graph of the data.

TABLE 4.6-1 Example Illustrating Computation of Measures of Skewness
and Kurtosis

(i) Data

Xi (Xi – ) (Xi – )2 (Xi – )3 (Xi –  )4

6 2 4 8 16
5 1 1 1 1
5 1 1 1 1
5 1 1 1 1
5 1 1 1 1
4 0 0 0 0
3 –1 1 –1 1
2 –2 4 –8 16
1 –3 9 –27 81

(ii) Computation of Sk

(iii) Computation of Kur

 Kur 5

a
n

i51
sXi 2 Xd4

n
S4 2 3 5

118
9

s1.563d4 2 3 5
13.111
5.968

2 3 5 2 0.8
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Kurtosis

The most common index of kurtosis is

where S is the standard deviation (see Section 4.2).10 If a distribution is flatter
(has a broader hump and thicker tails) than the normal distribution, it is called
platykurtic, and Kur � 0. If its peakedness is the same as that of the normal
distribution, it is mesokurtic, and Kur � 0. If it is more peaked (has a nar-
rower hump and thinner tails) than the normal distribution, it is leptokurtic,
and Kur � 0.

Computation of Kur is illustrated in Table 4.6-1.
A graph for these data and one for a perfectly symmetrical bimodal distribution

are given in Figure 4.6-1. In Figure 4.6-1(a), Kur � –0.8, and in Figure 4.6-1(b),
Kur � –2. Unfortunately, the interpretation of Kur is not as straightforward
as that of Sk. It turns out that the value of Kur is dependent not only on the
central peak of a distribution, but also on the fullness of its tails. Therefore,
for distributions that deviate appreciably from the normal form, like those in
Figure 4.6-1, the interpretation of Kur is ambiguous. For such distributions, it is
doubtful whether any single statistic can adequately measure the quality of
peakedness.

Kur 5

g sXi 2 Xd4

n

S4 2 3

Figure 4.6-1. (a) Frequency polygon for data in Table 4.6-1; Sk � –0.7 and 
Kur � –0.8. (b) Histogram for a perfectly symmetrical bimodal distribution; Sk � 0
and Kur � –2.
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10 This index is also denoted by g2. As originally developed by Karl Pearson, the index was equal to 
Kur � 3 and was denoted by 2.b
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CHECK YOUR UNDERSTANDING OF SECTION 4.6

17. Age at onset of Parkinson’s disease, a degenerative brain disorder, was deter-
mined for a sample of adults between 60 and 70 years old. (a) Determine the
type and degree of skewness for these data. (b) Construct a histogram. (c) Does
the histogram support your decision based on Sk?

67 68 60 64 68 63
68 70 63 70 68 69
70 69 69 69 69 68
62 70 70 64 66 66
66 69 67 67 70 67

18. One theory predicts that the distribution of reaction times in a paired-associates
learning task will be leptokurtic. (a) Do the following learning data support the
prediction? (b) Determine the type and degree of skewness for these data.

28 28 27 29 29
29 31 32 28 30
27 28 30 31 25
24 27 28 25 27
28 24 32 27 28
29 28 27 28 29

19. Determine the type and the degree of kurtosis for the Parkinson’s-disease data
in Exercise 17.

20. Terms to remember:
a. Symmetrical distribution b. Positively and negatively skewed
c. Kurtosis d. Platykurtic
e. Mesokurtic f. Leptokurtic

4.7 LOOKING BACK: WHAT HAVE YOU LEARNED?

Measures of dispersion summarize the extent to which scores differ from one an-
other, either quantitatively in terms of the spread or scatter of scores or qualitatively
in terms of their distinguishability.

Of the four measures of dispersion discussed in this chapter, three are based on
the concept of distance and are appropriate for variables that contain distance infor-
mation. They are the range, the semi-interquartile range, and the standard deviation.
The most important and widely used of the three is the standard deviation, which is
typically reported with the mean.

The index of dispersion, which is reported with the mode, describes the distin-
guishability of observations. Specifically, it indicates the number of distinguishable
pairs of observations relative to the maximum possible number of distinguishable
pairs. The lower bound of the index, 0, occurs when all observations are in one cate-
gory; its upper bound, 1, occurs when the observations are evenly distributed over
the categories. The index of dispersion is the only one of the dispersion measures
that is appropriate for unordered qualitative variables.
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Dispersion and central tendency are generally the most important characteristics
of a distribution, and they completely describe a normal distribution, which is by
definition symmetrical and mesokurtic. For nonnormal distributions, Sk and Kur
provide interesting but somewhat less important information about skewness (asym-
metry) and kurtosis (peakedness), respectively.

REVIEW EXERCISES FOR CHAPTER 4

1. Compute the range for the following sets of numbers.
a. 3, 9, 5, 6, 5, 4, 5 b. 26, 18, 30, 24, 23, 24
c. 52, 49, 34, 53, 69, 50, 62 d. 3, –4, 5, 2, 1, 2

2. For what kind of variable can you compute the mode but not the range?
3. Researchers measured the emotional stability of a random sample of en-

counter-group participants at Nelase Institute. (a) Compute the median and
the semi-interquartile range for the emotional stability scores listed in the
table. (b) Compute P20. (c) Construct a histogram.

Xj , Emotional Stability fj Xj , Emotional Stability fj

30 1 18 3
27 1 17 3
25 2 16 3
23 2 15 4
22 2 13 2
21 2 12 2
20 3 10 2
19 4 8 1

4. For the data in Exercise 3, compute the percentile rank for (a) X � 13, (b) X � 19,
and (c) X � 25.

5. Describe the nature of the distance represented by the standard deviation.
6. Infants are not as passive and undiscriminating about stimulation as we once

thought; they show distinct preferences when given an opportunity to control
stimuli presented to them. The following data are the number of trials required
for infants to learn to control visual stimuli by varying their sucking responses.
(a) Compute the mean and the standard deviation for these data using the 

formulas and S � . If you have a calcula-
tor with a standard deviation key, compute the standard deviation using your
calculator. (b) Construct a frequency polygon.

81 73 75 72 76 74
77 72 71 74 72 73
73 70 78 73 71 69
75 74 68 70 69 73
72 70 66 71 75 72
76 74 73 77

"gn
i51sXi 2 Xd2>nX 5 gn

i51Xi>n



4.7 Looking Back: What Have You Learned? 117

7. In a concept-learning experiment, chimpanzees were taught to recognize a
triangle in different orientations. Compute the mean and the standard 

deviation for these data using the formulas and S �

. If you have a calculator with a standard deviation key,

compute the standard deviation using your calculator.

Xj , Number of Trials fj Xj , Number of Trials fj

50 1 45 6
49 3 44 4
48 4 43 2
47 6 42 1
46 8 41 1

8. For the emotional-stability data in Exercise 3, (a) compute the mean 
and the standard deviation using the formulas and S �

If you have a calculator with a standard deviation key,
compute the standard deviation using your calculator. (b) Construct a frequency
polygon.

9. Researchers surveyed the attitudes of a random sample of black female high
school students toward having a career. (a) For the data in the table, compute
the mode and the index of dispersion. (b) Construct a bar graph.

Category f

Strongly desire career 38
Moderately desire career 19
Undecided about career 5
Do not want career 17

10. More than a million college-bound high school seniors participated in the College
Board’s Admissions Testing Program for the 2003–2004 year. The responses of
men and women to the question “What is the highest level of education you plan
to complete beyond high school?” are as follows. (Suggested by Profiles, College-
Bound Seniors, 2004. [2005]. New York: College Entrance Examination Board.)

Category fmen fwomen

Two-year training program 13,510 15,609
Associate in arts degree 6,101 15,122
B.A. or B.S. degree 133,795 160,484
M.A. or M.S. degree 116,362 118,046
M.D., Ph.D., other professional degree 83,240 77,559
Undecided 82,805 100,973

n � 435,813 n � 487,793

a. Compute the mode and the index of dispersion for the men and the women.
b. Is the magnitude of the dispersion of educational plans for men and women

appreciably different?

"gk
j51fjsXj 2 Xd>n.

X 5 gk
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11. The following proofs show the effect on the standard deviation of subtracting a
constant from each score or dividing each score by a constant. For each proof,
identify the summation operations from Section 3.8 that were used.
a. Let be the standard deviation of a distribution that has been altered by

subtracting a constant c from each score Xi—that is, X1 – c, X2 – c, . . . , Xn – c.
To determine the effect on S of subtracting a constant, I replace Xi by (Xi – c)  

and by in the formula , as
follows.

Because , you know that subtracting a constant c from each score
does not affect the value of the standard deviation. Similarly, it can be shown
that adding a constant also does not affect the value of the standard deviation.

b. Let be the standard deviation of a distribution that has been altered by
dividing each score X by a positive constant c—that is, X1/c, X2 /c, . . . , Xn /c. 

The effect of this alteration can be shown by replacing Xi by Xi /c and by 

in the formula as follows.
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Because � S/c, you know that the effect of dividing each score by a posi-
tive constant c is to change S, the standard deviation of the original scores, to
S/c. Similarly, it can be shown that the effect of multiplying each score by a pos-
itive constant c is to change S to cS. If c is a negative constant, � S/| c |.
The use of | c | ensures that S/| c | is positive and is consistent with the definition
of the standard deviation as the positive square root of 

12. Interpret the following: (a) Mdn � 50, Q � 8, (b) Mo � 30, R � 5, (c) � 70,
S � 10, and the distribution is approximately normal, (d) Mo � Category of
Ford cars, D � .20.

13. What measure of central tendency and dispersion would you compute for the
following data? Defend your choice.
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14. For a normal distribution, what percentage of the scores falls (a) above – 3S?
(b) above � 2S? (c) between – 2S and � 2S? (d) below – S?

15. a. Use the criterion Mdn � 2(Q3 – Q1) to determine whether there is reason to
believe that outliers exist in the emotional-stability data presented in Exercise 3.

b. Construct a box plot for these data. Compare the results with those obtained
in (a).

16. a. Use the criterion Mdn � 2(Q3 – Q1) to determine whether there is reason to
believe that outliers exist in the sucking-response data presented in Exercise 6.

b. Does the use of the criterion � 2.5S lead to the same decision as Mdn �

2(Q3 – Q1)?
c. Construct a box plot. Compare the results with those obtained in (a) and (b).

17. Researchers measured the reading readiness of preschool children in two
neighborhoods. (a) Determine the type and the degree of skewness for these
data. (b) Which set of data has the greatest skewness? (c) Construct a histogram
for each neighborhood. (d) Do the histograms support your decision based 
on Sk?

Neighborhood A Neighborhood B

30 33 32 31 35 33 29 32 28 29 29
32 29 33 30 32 28 30 31 26 30 28
31 31 29 31 26 30 28 29 29 34 30
32 30 33 32 27 32 29 27 30 31 35

18. Determine which set of data in Exercise 17 deviates most from the normal
distribution in terms of kurtosis.

19. Why is Kur not an entirely satisfactory measure of peakedness?
20. Use a statistical software package to obtain a box plot and compute the mean

and standard deviation for the emotional-stability data in Exercise 3. Determine
whether the software package computed S or .ŝ
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21. Use a statistical software package to obtain a box plot and compute the mean
and standard deviation for the sucking-response data in Exercise 6. Determine
whether the software package computed S or .

22. Use a statistical software package to obtain a box plot and compute the mean
and standard deviation for the learning data in Exercise 7. Determine whether
the software package computed S or .ŝ

ŝ
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5.1 INTRODUCTION TO CORRELATION

Looking Ahead: What Is This Chapter About?

Correlation, which is described in this chapter, and regression, which is described in
the next, are procedures for examining the relationship between two variables. Both
procedures involve two variables where the scores for one variable are paired with
the scores for the other variable. The paired scores could represent salary and job
satisfaction of college graduates, SAT scores and freshmen GPAs, and incidence of
breast cancer and amount of radiation exposure from cell phones. In each case, you
are interested in predicting a score for one variable from a score for the other vari-
able or in knowing the strength of the relationship between the two variables.

After reading this chapter, you should know the following:

■ The similarities and differences between correlation and regression
■ How to compute and interpret the Pearson and Spearman correlation coefficients
■ Common errors in interpreting correlation coefficients
■ Factors that affect the size of correlation coefficients

Correlation and Regression Distinguished

It should be apparent that correlation and regression procedures have some features
in common and as a result are often confused. Perhaps the simplest way to distin-
guish between them is by means of examples. The classic regression situation
involves one dependent variable and one or more independent variables. The inde-
pendent variable is the variable that is controlled or manipulated by a researcher so
that its effect on a dependent variable can be determined. Suppose a researcher
performs an experiment in which different dosages of amphetamine, the indepen-
dent variable, denoted by X, are administered to children suffering from hyperkine-
sis, a behavioral disorder characterized by restlessness, inattention, and disruptive
behavior. The children are randomly assigned to, say, seven dosage levels. Follow-
ing administration of the drug, changes in frequency of hyperkinetic behavior, the
dependent variable, denoted by Y, are recorded. For each child the researcher has
paired X and Y scores representing, respectively, dosage and behavior change. The
researcher is interested in knowing whether the two variables are related and, if so,
in predicting Y from a knowledge of X. This information would enable the
researcher to identify effective dosages of amphetamine. This experiment illustrates
the key features of a problem in regression. First, there is a clearly defined indepen-
dent variable—amount of amphetamine. Second, the children are randomly assigned
to the preselected dosage levels of amphetamine. Third, the value of the dependent
variable for a given dosage was not selected in advance—it is free to vary. This is in
contrast to the independent variable, whose seven values were selected in advance.
Finally, the researcher is interested in predicting Y from a knowledge of X.

Contrast this experiment with one in which tests of reading readiness and intelli-
gence are administered to a sample of children, yielding paired X and Y scores, re-
spectively, for each child. The researcher is interested in knowing whether reading
readiness and intelligence are related and, if so, in the strength of the association. In
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addition, the researcher might want to predict either variable from a knowledge of
the other. This experiment illustrates a classic correlation situation. How does it
differ from the regression situation? First, there is no obvious independent variable.
Second, because the researcher did not preselect the values of either X or Y in ad-
vance, both X and Y are free to vary. Finally, the researcher is interested in assessing
the strength of the association between X and Y and possibly in predicting either
variable from a knowledge of the other.

To summarize, both correlation and regression procedures are concerned with
assessing the relationship between two variables where the scores for one vari-
able are paired with the scores for the other variable. They differ with respect to
(1) the nature of the variables (the presence or absence of an independent vari-
able), (2) use of random assignment of participants to the experimental condi-
tions, (3) the researcher’s principle interest (predicting Y from X or assessing the
strength of relationship), and, (4) to some extent, the kinds of conclusions that
can be drawn. In practice, the distinction between regression and correlation situ-
ations often is not as clearly drawn as has been described. For example, it is com-
mon in a regression situation to assess the strength of the association between X
and Y. However, it is important to be able to distinguish between the two situa-
tions because the assumptions underlying the use of regression and correlation
procedures differ.

A Bit of History

The concepts of correlation and regression were developed by Sir Francis Galton
during his investigations of the genetic transmission of natural characteristics. He
was intrigued by the question “How is it possible for a whole population to re-
main alike in its features during many successive generations if the average pro-
duce of each couple resembles the parents? ” Data from one of his studies on the
inheritance of stature are reproduced in Table 5.1-1. Parents’ height is plotted on
the horizontal, or X, axis and offspring’s height on the vertical, or Y, axis. It is
customary in such presentations to make the lengths of the X and Y axes approxi-
mately equal. This representation of the joint frequency of two variables is called
a bivariate frequency distribution or scatterplot (scatter diagram, scatter-
gram). Consider the entry in the cell at the intersection of column 68.5 and row
69.2; the frequency is 48. This means that for parents whose height was 68–69
inches, there were 48 offspring whose height was 68.7–69.7 inches. The circles
in Table 5.1-1 identify the class intervals containing the median of each column
as calculated by Galton. We see, as did Galton, that the relationship between
height of offspring and height of parents is approximately linear—that is, the set
of circled numbers approximates a straight line. Galton developed a procedure
for finding the “straight line of best fit,” thereby laying the foundation for corre-
lation and regression.

A straight line provides a reasonably good fit for many relationships found in be-
havioral, health, and educational research. Even relationships that are nonlinear are
often approximately linear over some portion of their range. But let us return to the
question that sparked Galton’s interest. How is it that a population remains alike?
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TABLE 5.1-1 Scatterplot of Midparent Height and Height of Adult
Offspringa (Female Heights Multiplied by 1.08)

Midparent Height (inches)b

Height of Adult Offspring �64 64.5 65.5 66.5 67.5 68.5 69.5 70.5 71.5 72.5 �73

�73.7 5 3 2 4
73.2 3 4 3 2 2 3
72.2 1 4 4 11 4 9 7 1
71.2 2 11 18 20 7 4 2
70.2 5 4 19 21 25 14 10 1
69.2 1 2 7 13 38 48 33 18 5 2
68.2 1 7 14 28 34 20 12 3 1
67.2 2 5 11 17 38 31 27 3 4
66.2 2 5 11 17 36 25 17 1 3
65.2 1 1 7 2 15 16 4 1 1
64.2 4 4 5 5 14 11 16
63.2 2 4 9 3 5 7 1
62.2 1 3 3

�61.7 1 1 1 1 1

a Galton (1889, p. 208). I am grateful to Edward W. Minium for bringing these data to my attention.
b A circle marks the class interval containing the median of each column.
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Median height of offspringMidparent height

Figure 5.1-1. Arrows relate height (in inches) of parents to median height of
offspring. Tall parents tend to have slightly shorter offspring, and short parents tend 
to have slightly taller offspring. Galton referred to this as reversion toward the mean.

The answer is in the trend represented by the circled numbers in Table 5.1-1. Galton
saw that on the average, short parents have offspring who tend to be slightly taller
than they are, whereas tall parents have offspring who tend to be slightly shorter
than they. This is shown more clearly in Figure 5.1-1. Galton referred to this ten-
dency as regression or reversion toward the mean; he called the best-fitting
straight line in a scatterplot the regression or reversion line.
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In the discussion that follows, I’ll focus on variables like those in Table 5.1-1 that
appear to be linearly related.1 Many relationships of interest in the behavioral sci-
ences, health sciences, and education fall into this category.

CHECK YOUR UNDERSTANDING OF SECTION 5.1

1. A speech therapist who was interested in the relationship between two tests of
articulation disorders administered the tests to 26 children. (a) Construct a scat-
terplot like Table 5.1-1 for the data in the following table. (b) Does the relation-
ship appear to be linear or nonlinear?

Participant Test A Test B Participant Test A Test B

1 26 36 14 33 39
2 28 35 15 22 33
3 25 34 16 24 32
4 21 32 17 27 35
5 25 33 18 29 36
6 26 32 19 32 39
7 26 34 20 28 36
8 31 37 21 25 36
9 27 34 22 24 34

10 20 30 23 25 34
11 23 32 24 27 36
12 30 38 25 26 34
13 29 37 26 26 35

2. Discuss the meaning of the term regression toward the mean.
3. Terms to remember:

a. Independent variable b. Dependent variable
c. Regression d. Correlation
e. Bivariate frequency distribution f. Scatterplot
g. Linear relationship h. Regression line

5.2 A NUMERICAL INDEX OF CORRELATION

The degree of association or strength of relationship between two variables is
represented by a number called a correlation coefficient. The Pearson
product-moment correlation coefficient is a measure of the linear relationship
between two variables, X and Y, and is denoted by rXY or simply r. The popu-
lation correlation coefficient is denoted by the Greek letter � (rho).2

1 The nonlinear case is treated in advanced texts such as Kirk (1995, pp. 197–198).
2 The letter r from the word reversion was originally used by Sir Francis Galton to denote the slope of the

best-fitting straight line. This line is defined in Section 6.2.
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The value of a correlation coefficient can range from �1 to �1. A value of �1
denotes a perfect positive relationship; this is depicted in the scatterplot in 
Figure 5.2-1(a). For this case, all the data points fall on a straight line such that high
scores on one variable are paired with high scores on the other, and low scores are
paired with low scores. A coefficient of �1 denotes a perfect negative or inverse
relationship. For this case, the data points also fall on a straight line, but high
scores on one variable are paired with low scores on the other and vice versa, re-
sulting in a line that slopes down instead of up. This is shown in Figure 5.2-1(b).
If there is no linear association between the variables, r is equal to 0. In this case,
the data points tend to fall in a circle, as shown in Figure 5.2-1(c). Intermediate
degrees of association are represented by coefficients less than 0 (–1 � r � 0) or
by coefficients greater than 0 (0 � r � 1). Some examples of intermediate de-
grees of association for normally distributed X and Y variables are depicted in
Figures 5.2-1(d) through (f ). As shown in the figures, the data points for interme-
diate values of r tend to form an ellipse; the lower the degree of association, the
more the ellipse resembles a circle.

CHECK YOUR UNDERSTANDING OF SECTION 5.2

4. Match the r values 1, �1, 0, .4, and �.9 with the scatterplots shown here.
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Figure 5.2-1. Scatterplots illustrating various degrees of correlation.
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5. Would you expect the correlation between the following to be positive, nega-
tive, or essentially zero?
a. Masculinity of fathers and sons
b. Reaction time and number of lights in a visual discrimination task
c. Mechanical aptitude and mother’s height
d. Verbal intelligence and percentage of words filled in on crossword puzzles

6. Terms to remember:
a. Correlation coefficient b. Positive relationship
c. Negative relationship

5.3 PEARSON PRODUCT-MOMENT CORRELATION
COEFFICIENT

The most widely used index of correlation is called the Pearson product-moment
correlation coefficient, after Karl Pearson (1857–1936), who contributed so much
to its development. The coefficient is appropriate for describing the linear relation-
ship between two quantitative variables.

The deviation or definitional formula for Pearson’s r is
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The calculation of r is illustrated in Table 5.3-1. The data are 20 paired scores of fa-
thers and sons on a test of authoritarianism, which measures rigidity, dependency,
and ethnocentrism. The coefficient is equal to .85. This tells you two things about

TABLE 5.3-1 Computation of r for Fathers’ and Sons’ 
Authoritarianism Scores

(i) Data

Father’s Son’s
Family Score, Xi Score, Yi

1 25 28 17.2225 0.5625 3.1125
2 32 31 8.1225 5.0625 6.4125
3 40 41 117.7225 150.0625 132.9125
4 29 33 0.0225 18.0625 �0.6375
5 31 25 3.4225 14.0625 �6.9375
6 16 18 172.9225 115.5625 141.3625
7 28 26 1.3225 7.5625 3.1625
8 36 38 46.9225 85.5625 63.3625
9 33 34 14.8225 27.5625 20.2125

10 29 36 0.0225 52.5625 �1.0875
11 23 20 37.8225 76.5625 53.8125
12 27 28 4.6225 0.5625 1.6125
13 37 30 61.6225 1.5625 9.8125
14 30 26 0.7225 7.5625 �2.3375
15 27 22 4.6225 45.5625 14.5125
16 20 23 83.7225 33.0625 52.6125
17 28 29 1.3225 0.0625 �0.2875
18 38 36 78.3225 52.5625 64.1625
19 35 32 34.2225 10.5625 19.0125
20 19 19 103.0225 95.0625 98.9625

583 575 792.5500 799.7500 673.7500

(ii) Computational procedure
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the relationship: (1) its strength, represented by the extent to which the value of r
differs from zero, and (2) the direction (positive or negative) of the relationship, rep-
resented by the sign of r. In the following discussion, you will see why r reflects this
information. I will say more about interpreting r in Section 5.4.

Information Contained in the Cross Product

The formula for Pearson’s r looks complicated. You are probably wondering how r
reflects both the nature of the relationship between two variables and the strength of
the relationship. As you will see, a careful examination of the formula provides the
answer. In the formula for r, a person’s scores on the two variables, X and Y, are ex-
pressed as deviations from their respective means as follows: (Xi – ) and (Yi – ).
The product of the two deviations, (Xi – )(Yi – ), is called the cross product. If a
person is above the mean on both variables, the algebraic sign of (Xi – )(Yi – ) is
positive, and the associated data point falls in quadrant 1 of Figure 5.3-1(a). If a per-
son is below the mean on both variables, the sign of (Xi – )(Yi – ) also is positive
because it is the product of two negative numbers, but the corresponding data point
falls in quadrant 3 of Figure 5.3-1(a). If a person is above the mean on one variable
but below the mean on the other, the sign of (Xi – )(Yi – ) is negative, and the
data point falls in either quadrant 2 or quadrant 4.

In Figure 5.3-1(a), most of the data points are in quadrants 1 and 3; hence the
algebraic sign of the sum (Xi � )(Yi � ) is positive. When this sum is posi-
tive, the two variables are said to be positively related—that is, an increase in one
variable is accompanied by an increase in the other. If an inverse relationship exists
between X and Y, most of the data points fall in quadrants 2 and 4, and the sign of
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Figure 5.3-1. All cross products, ; in quadrants 1 and 3 are positive; those in
quadrants 2 and 4 are negative. For simplicity, examples (a) and (b) use data whose X and Y disper-
sions are equal. Such equality is rarely observed for real data.
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(Xi � )(Yi � ) is negative. From the foregoing discussion, it follows that the
algebraic sign of (Xi � )(Yi � ) in the numerator of

indicates whether X and Y are positively or inversely related—the nature of the
relationship. As you will see next, the numerator also indicates the strength of the
relationship.

The greater the strength of the relationship between X and Y, the larger is the ab-
solute value of the sum of the cross products, (Xi � )(Yi � ). Consider Figure
5.1-1(b) where r � 1. For this case, the sum of the cross products is as large as it can
be because the largest (Xi – ) is paired with the largest (Yi – ), the second largest
(Xi – ) with the second largest (Yi – ), and so on. A much smaller sum of cross
products occurs when some large (Xi – )’s are paired with small (Yi – )’s and vice
versa as in Figure 5.3-1(a) where r �.65. If the r in Figure 5.3-1(a) were equal to 0,
the data points would fall within the area of a circle instead of an ellipse. In this
case, positive (Xi – )’s are as likely to be paired with negative (Yi – )’s as with
positive (Yi – )’s, resulting in a sum of cross products that is equal to 0. In sum-
mary, the sign of (Xi � )(Yi � ) indicates whether the relationship is positive
or negative. The size of the absolute value of (Xi � )(Yi � ) indicates the
strength of the association.

On reflection, it also is apparent that the value of (Xi � )(Yi � ) is affected
by the number of paired X and Y scores: For correlations not equal to zero, the larger
the number of pairs of scores, the larger the absolute value of (Xi � )(Yi � ).
To obtain a measure of strength of association that is independent of the number of
pairs of scores, you compute the mean of the cross product sum:

where n is the number of paired X and Y scores. This mean is called the covariance
of X and Y and is denoted by SXY. If you divide the covariance by the standard devia-
tions of X and Y, SX and SY, you obtain a measure of strength of association that also
is independent of the size of the dispersions of the X and Y variables. The resulting
statistic,

was defined earlier as the Pearson product-moment correlation coefficient.

r 5
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To summarize, the heart of the correlation formula is the cross product sum 
(Xi � )(Yi � ). This sum reflects both the nature of the relationship between

X and Y (positive versus inverse) and the magnitude of the relationship. The cross
product sum is divided by n to free it of dependence on the number of paired X
and Y scores; it is divided by SX SY to free it of dependence on the size of the dis-
persions of the X and Y variables. Because of these operations and because X and
Y are expressed as deviations from their respective means, the r statistic is a di-
mensionless index of a linear relationship. This means that the value of r does not
depend on the unit of measurement of either the X or Y variables or on the value that
is designated as the zero point or origin of either measuring scale. To put it another
way, multiplying X or Y by a positive constant or adding a constant (a positive linear
transformation) does not affect the value of r. As stated earlier, r ranges over the in-
terval �1 to �1.

The following section examines ways to interpret r, but first I will make one
more comment about it. If the dispersion of either X or Y is equal to zero (SX or 
SY � 0), the correlation coefficient is undefined. On reflection, this seems reason-
able because r � SXY /SX SY and division by SXSY � 0 is undefined. In words, this
means that the concept of strength of association is meaningless when X or Y is a
constant.

CHECK YOUR UNDERSTANDING OF SECTION 5.3

7. Researchers administered a reading test and an intelligence test to a random
sample of first-grade children and obtained the following data. Compute r using
the deviation formula or a calculator with a correlation routine.

Reading Reading
Readiness IQ Readiness IQ

Child Score Score Child Score Score

1 45 102 11 43 104
2 40 100 12 50 108
3 48 106 13 42 96
4 45 101 14 40 99
5 38 98 15 41 96
6 43 100 16 48 102
7 36 92 17 47 104
8 41 102 18 37 94
9 42 102 19 42 98

10 50 110 20 45 100

8. Studies have shown that music can affect mood, emotion, task performance,
and cognition. It was hypothesized that the tempo of country-western music
played in bars was related to the consumption of alcohol. Observers visited
three bars featuring recorded country-western music on three Friday nights.
They obtained permission to tape-record the music and to observe patrons at

YXg
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selected tables. When the music began, the observers recorded the rate at
which each patron sipped an alcoholic beverage. The investigators analyzed
the music tapes for the tempo (beats per minute) of each song and determined
the mean number of sips during each song. They obtained the following data.
(Suggested by Bach, Paul J., and Schaefer, James M. [1979]. The tempo of
country music and the rate of drinking in bars. Journal of Studies on Alcohol,
40, 1058–1059.)

Mean Number Mean Number
Tempo of Sips Tempo of Sips

35 1.150 80 0.900
38 1.150 85 0.725
44 0.400 91 0.725
48 1.075 93 0.875
51 0.950 100 0.525
64 0.975 102 0.800
68 0.950 108 0.775
68 0.925 112 0.750
72 0.875 118 0.625

a. Construct a scatterplot for these data and decide whether the data appear to
be linearly related.

b. Compute r using the deviation formula or a calculator with a correlation
routine.

c. What does the r tell you about the relationship between tempo and sips per
minute.

9. If you have a calculator with a correlation routine, use it to compute r for the
data in “Check Your Understanding of Section 5.1,” Exercise 1.

10. Calculate (Xi � )(Yi � ) for the following data points. In which quadrants
of Figure 5.3-1 would the majority of the data points fall? Are the variables re-
lated, and, if so, is the relationship positive or negative?

a. b. c. d.

X Y X Y X Y X Y

9 14 9 14 9 13 6 12
11 17 11 14 10 18 9 16
13 17 11 16 12 9 14 15

7 12 9 16 9 20 11 17

11. For the data in Exercise 10, make figures like Figure 5.3-1.
12. For the data in Exercise 10, calculate r.
13. a. What does (Xi � )(Yi � ) tell you about the relationship between X

and Y?
b. In computing r, why is (Xi � )(Yi � ) divided by n?

14. For a set of data with SX � 6 and SY � 5, what is the largest possible value that
SXY can be? (Hint: The maximum value of r � �1 and r � SXY /SX SY.)

YXg

YXg

YXg
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15. a. If n � 2 and SX SY does not equal zero, what are the possible values of r?
(Hint: Consider where the two data points for a linear relationship could fall
in a scatterplot like Figure 5.3-1.)

b. Make a scatterplot that supports your answer.
16. The correlation coefficient for the following data is undefined. Why is this

statement true?

X Y

8 4
8 6
8 3
8 7
8 5

17. Terms to remember:
a. Pearson product-moment correlation coefficient b. Cross product
c. Covariance

5.4 INTERPRETATION OF CORRELATION COEFFICIENT:
EXPLAINED AND UNEXPLAINED VARIATION

As you have seen, a Pearson product-moment correlation coefficient reflects the
nature and the strength of the linear association between two variables. However,
two other statistics, both functions of r, are more useful for getting an intuitive feel
for the strength of association represented by r. These statistics are the coefficient
of determination, r2, which is equal to the square of the correlation coefficient, and
the coefficient of nondetermination, k2, which is equal to 1 – r2.

If you examine the authoritarianism scores in Table 5.3-1, you see that there is
variation among the fathers’ X scores and among the sons’ Y scores. What accounts
for this variability? One reason why the sons’ Y scores differ is that their fathers’ X
scores differ. Because X and Y are correlated (r � .85), a father who has a high score
is likely to have a son who also has a high score. Thus, because of the linear rela-
tionship between X and Y, some of the variation among the Y scores can be
accounted for or explained by variation among the X scores. However, not all the
variation can be explained in this way because some fathers who have the same
authoritarianism score (X) have sons with different authoritarianism scores (Y ).
Consider, for example, families 4 and 10 where X denotes the father’s scores and Y
denotes the son’s scores: X4 � X10 � 29, but Y4 � 33 and Y10 � 36.

For a given linear relationship between X and Y, you would like to know how
much of the Y-score variability is accounted for by the X-score variability and how
much is not accounted for. This information is given, respectively, by r2 and k2. I will
denote the variability of the X and Y scores by SX

2 and SY
2, respectively. Recall from

Section 4.2 that SX
2 and SY

2 are sample variances and that variance is measure of the
dispersion of scores. If I divide SX

2 by itself and SY
2 by itself, I change both variances
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into proportions with values equal to 1. Each of these proportions can be partitioned
into two components, as follows:

� r2 � k2

� � 

� r2 � k2

� �

Thus, the total variance expressed as a proportion is equal to the coefficient of deter-
mination, r2, plus the coefficient of nondetermination, k2. To compute r2 you square
the correlation coefficient; k2 is computed from k2 � 1 – r2.

For the authoritarianism data in Table 5.3-1, r2 � (.85)2 � .72 and k2 � 1 
– .72 � .28. This means that .72 (or .72 � 100 � 72%) of the variance of the Y
scores can be explained by the linear relationship with the X scores, but .28 of
the variance of the Y scores is not explained. The converse also is true; for ex-
ample, 72% of the variance of the X scores can be explained by the linear rela-
tionship with the Y scores. The linear relationship between the fathers’ and
sons’ scores enables me to account for much of the variance in the sons’ or the
fathers’ authoritarianism scores (72%); however, 28% of the variance is not
accounted for. In all likelihood I could find other variables, such as the sons’ or
fathers’ levels of education, that would enable me to reduce the percentage of
unaccounted-for variance. The index k2 is a measure of how much of the vari-
ance remains to be accounted for.

A visual representation of the proportion of explained and unexplained variance
is shown in Figure 5.4-1, where the proportions SY

2/SY
2 � 1 and SX

2/SX
2 � 1 are rep-

resented by the areas of circles. The area in which the circles overlap corresponds to
r2; the nonoverlap areas correspond to k2. If r is equal to �1 or �1, the circles com-
pletely overlap, as shown in Figure 5.4-1(c), and all the variance of one variable is
explained by that of the other variable. If r is equal to 0, the circles do not overlap,
as shown in Figure 5.4-1(d), and none of the variance of either variable is explained
by that of the other variable.

Most variables of interest to behavioral scientists, health scientists, and educators
are affected by a multiplicity of factors. School performance, for example, is
affected by academic aptitude, scholastic motivation, health, and parental support
for achievement, to name only a few. A correlation between performance and acade-
mic aptitude of .30, for example, tells you that you have accounted for (.30)2 � .09
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of performance variance and that you have to look to other variables to account for
the remaining 1 � .09 � .91 of the variance. Note that because r2 � | r |, values of
| r | close to 1 are required to account for an appreciable proportion of variance. Not
until r � .71 does r2 � .50.

CHECK YOUR UNDERSTANDING OF SECTION 5.4

18. For the following experiments, compute r2 and k2 and interpret them verbally
and by means of diagrams like those in Figure 5.4-1.
a. The correlation between freshman English grades and grades in a physical

education bowling class was .22.
b. The correlation between a self-report instrument measuring family cohesion

and men’s marital satisfaction was .56.
c. The correlation between the last two digits of students’ Social Security num-

bers and total fiber (vegetable, fruit, and cereal) consumed per week was .03.
19. Terms to remember:

a. Coefficient of determination b. Coefficient of nondetermination

k 2 � .28 r 2 � .72 k 2 � .28

a.  r � .85

c.  r � 1

Variance in Y

Variance in Y 
Variance in X

Variance in X

r 2 � 1
k 2 � 0

d.  r � 0

Variance in Y Variance in X

k 2 � 1 k 2 � 1r 2 � 0

k 2 � .84 r 2 � .16 k 2 � .84

b.  r � .40

Variance in Y Variance in X

Figure 5.4-1. Visual representation of r2, the proportion of variance of one vari-
able that is explained by the variance of the other variable, and k2, the proportion
that is not explained by the variance of the other variable.
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5.5 SOME COMMON ERRORS IN INTERPRETING 
A CORRELATION COEFFICIENT

Error: Interpreting r in Direct Proportion to Its Size

Correlation coefficients are often incorrectly interpreted. A common error is to in-
terpret r as the percentage of association between two variables. For example, it is
incorrect to say that an r of .60 means that there is a 60% association between the
variables. Such a statement is meaningless. Does it mean that 60% of the elements
are associated? The value of r does not indicate the percentage of association but
rather is a measure of strength of association on a scale of �1 to �1.

A related error is concluding, for example, that an r of .80 represents twice the
relationship indicated by an r of .40 or that an increase in correlation from .10 to .20
represents the same increase as that from .60 to .70. The error in such interpretations
becomes apparent when you consider that an r equal to .80 accounts for 64% of the
variance, whereas an r equal to .40 accounts for only 16% of the variance and that
64% is four times larger than 16%.

Error: Interpreting r in Terms of 
Arbitrary Descriptive Labels

Various schemes have been suggested to help students interpret correlation coeffi-
cients. A common but misleading scheme is the classification of certain r values as
“very high” (for example, r � .90), “high” (r � .70–.89), “medium” (r � .30–.69),
or “low” (r � .30). The problem with these classifications is that what constitutes a
high or low correlation depends on what is being correlated with what and on the
use to be made of r once it has been computed. This will be illustrated for the con-
cepts of reliability and validity, two desirable characteristics of psychological tests.
One type of reliability, called test-retest reliability, is determined by administer-
ing a test to a group of participants, waiting a suitable period of time, and then
readministering the test to the same participants. The test’s reliability, or consis-
tency of measurement, is the correlation between the two sets of scores. Reliability
coefficients of .90 or higher are common for tests of intellectual aptitude. A test-
retest reliability coefficient below .80 would raise serious questions about the relia-
bility of an intelligence test; however, the scheme for interpreting r described
earlier would classify r � .80 as high. Equally misleading designations result when
this classification scheme is used to interpret validity coefficients. The validity of a
test is the degree to which it measures what it is supposed to measure. To assess the
validity of, say, a college aptitude test, students’ aptitude scores can be correlated
with their grade-point averages. The best aptitude tests rarely have validity coeffi-
cients above .60. It is misleading to label a validity coefficient of .60 as medium
when higher coefficients are seldom, if ever, obtained. An r � .60 is an extremely
high validity coefficient but a very, very low reliability coefficient. As these exam-
ples illustrate, no single classification scheme for interpreting r is applicable to all
situations.
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Error: Inferring Causation from Correlation

Another common error in interpreting a correlation coefficient is to infer that
because two variables are correlated, one causes the other.

A nonzero correlation coefficient simply means that there is a concomitant
relationship between X and Y—that is, variation in one variable is associated
in some way with variation in the other.

It is true that if X causes Y, there must be a correlation between the variables.
However, the converse of this statement is not true. A concomitant relationship is
necessary but not sufficient for inferring causality. A concomitant relationship often
exists because both variables are caused by a third variable. For example, it does not
necessarily follow from the positive correlation between Sunday school attendance
and honesty that attending Sunday school causes honesty. In all likelihood, both
variables are caused by a third variable—parental reinforcement and modeling prac-
tices in the home.

It is easy to fall into the trap of inferring causality from correlation, especially
when one variable occurs before the other. Consider the well-publicized positive
correlation between years of formal education and income. Does such a correlation
mean that going to college causes one to earn more money? Before giving an affir-
mative answer you would have to know how much college graduates would have
earned if they had not gone to college. A causal relationship may in fact exist, but
this cannot be ascertained from the correlation. Some or all of the correlation be-
tween education and income might be explained in terms of other causal variables.
For example, colleges attract two kinds of students—the bright and the rich. We
know that bright individuals tend to rise to better paying jobs whether or not they
have gone to college and that few children of rich parents end up poor.

CHECK YOUR UNDERSTANDING OF SECTION 5.5

20. Which of the following are incorrect interpretations of a correlation coefficient
and why?
a. The strength of association between two forms (L and M) of a psychological

test is .96.
b. There is a medium correlation, r � .67, between the age at which babies can

roll over and the age at which they can sit up alone.
c. The correlation between women’s scores on the Beck Depression Inventory

and a self-report questionnaire measuring marital discord is .30; this correla-
tion is twice as high as that for men, which is r � .15.

d. We can conclude from the high correlation between risk for sexual assault
and alcohol consumption by female victims that victimization is caused at
least in part by consuming alcohol.

21. In an attempt to help children with low IQs improve their school performance, a
special perceptual awareness program was instituted. Suppose that the program
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was completely ineffective. The group’s mean IQ before the program was 72.
Would you expect it to change after the special program, and if so, in what direc-
tion? (Hint: If you don’t see the issue, reread “A Bit of History” in Section 5.1.)

22. Terms to remember:
a. Test-retest reliability b. Validity
c. Concomitant relationship

5.6 FACTORS THAT AFFECT THE SIZE 
OF A CORRELATION COEFFICIENT

Nature of the Relationship Between X and Y

There are many ways in which two variables can be related. It is sufficient for our
purposes to classify them as a linear (straight line) relationship, or a nonlinear
(curved line) relationship. Three examples showing the straight or curved lines of
best fit for paired scores are presented in Figure 5.6-1. In general, the more closely
data points cluster around the line of best fit, whether it is a straight or a curved line,
the higher the correlation. You saw in Section 5.2 that when r is equal to �1 or �1,
the data points fall on a straight line. If X and Y are normally distributed and have
equal variances, as the absolute value of r decreases, the points form fatter and fatter
ellipses until finally, when r is equal to 0, they tend to fall in a circle. The Pearson
product-moment correlation always fits data points by a straight line. This works
fine if the relationship is linear but not so well if the relationship is nonlinear, as in
Figure 5.6-1(c). If a nonlinear relationship is fitted by a straight line, the data points
will not cluster around the line as closely as they would an appropriate curved line;
consequently, r underestimates the strength of association. In fact, an r equal to 0
can be obtained even though X and Y are highly correlated.

A different correlation measure called the correlation ratio or eta squared,
2, has been developed for determining the strength of association between

nonlinearly related variables.
h

a.

Y

X

b.

Y

X

c.

Y

X

Figure 5.6-1. Parts a and b illustrate linear relationships; part c illustrates a non-
linear relationship. The higher the correlation, the closer the data points cluster
around the line of best fit.
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Eta squared fits data points by whatever line is appropriate. If the relationship is
linear, a straight line is used, and 2 � r2. For nonlinear relationships in which the
correlation is not equal to zero, 2 fits the points by a curved line, and its value is al-
ways larger than that for r2. A discussion of the correlation ratio can be found in
more advanced texts.

How can you determine whether the relationship between X and Y is linear or
nonlinear and hence whether to use r or 2? You can use statistical tests;3 however,
the simplest method is to examine the scatterplot for evidence of nonlinearity—the
so-called eyeball test. Usually, visual inspection is adequate to detect cases in which
r would underestimate strength of association.

In summary, r is a measure of the linear relationship between two quantitative vari-
ables. If the relationship is not linear, r underestimates the strength of association.

Truncated Range

The size of the Pearson product-moment correlation coefficient is affected by the
range of the X and Y variables. If the range of either variable is truncated—that is,
restricted—the size of r will be reduced. Suppose that I have administered an aptitude
test to assembly-line job applicants at a new factory. Because of the large number of
jobs to be filled, all the applicants were hired regardless of their scores. Six months
later I construct a scatterplot like the one in Figure 5.6-2, compute the correlation be-
tween aptitude scores and employee productivity, and find that r is equal to .55. This
is a respectable validity coefficient. In the future if I had a surplus of applicants,
I could improve productivity by hiring only those applicants with high aptitude scores.
Suppose that instead of hiring all the applicants when the plant opened, I had
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Figure 5.6-2. Scatterplot illustrating the effect on r of restricting the range of X to
scores of 70 or above. The r for the unrestricted range is .55; that for the restricted
range is .06.

3 See, for example, Hays (1994, pp. 774–778).
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artificially restricted the range of aptitude scores by hiring only applicants with scores
of 70 or above. For this case, the correlation between aptitude and productivity would
have been .06 instead of .55, and I would have incorrectly concluded that the test is of
little value in selecting employees. The reason the restriction or truncation of the range
of the X variable results in a misleadingly low correlation coefficient can be seen from
Figure 5.6-2. The effect would have been the same had the range of the Y variable been
truncated.

The truncated range problem is common in behavioral and education research be-
cause such research is often conducted with college students who have been care-
fully screened for intelligence and related variables and, consequently, constitute a
relatively homogeneous population. It is not surprising that college aptitude scores
do not correlate highly with grades because admission offices truncate the range by
admitting only students with medium to high aptitude scores.

Spurious Effects Due to Subgroups with 
Different Means or Standard Deviations

A substantial correlation between X and Y can occur because the sample of partici-
pants contains two or more subgroups with means that differ for both variables.
Suppose that I am interested in the correlation between school achievement (Y) and
anxiety level (X ) as measured by the Taylor Manifest Anxiety Scale, and I obtain
random samples of students from lower- and middle-class families. The correlation
coefficient computed for the combined samples will be much higher than that for
either sample taken alone. This occurs because the means for the two subgroups dif-
fer with respect to both X and Y. The participants from middle-class families tend to
perform better in school and to be somewhat more anxious than children from
lower-class families. When the subgroups are combined, the correlation between
achievement and anxiety is misleadingly high because of the differing means. The
reason for this is evident from Figure 5.6-3(a), where the letters L and M denote data
points for children from lower- and middle-class families, respectively. Figure 5.6-3(b)
illustrates a situation in which the means of two subgroups, A and B, differ only on X.
The correlation coefficient computed from the combined samples is lower than that
for either sample taken alone.

A spurious correlation can occur when the standard deviations of the subgroups
but not their means differ for one or both variables. This situation is depicted in Fig-
ure 5.6-3(c) and (d), where the letters A and B denote the subgroups. Figures 5.6–3(e)
and (f) depict other ways in which subgroups can produce spurious correlations.

From the foregoing discussion it is apparent that the inclusion of subgroups with
different means or standard deviations on X and Y can affect the size and the sign of r.
Unfortunately, you are not always aware that the sample contains distinct subgroups.
Your first clue may come when you construct a scatterplot and note in retrospect that
the scores that cluster together tend to come from participants who have a common
distinguishing attribute.

Sometimes a researcher intentionally conducts research with extreme groups—
groups at opposite ends of a continuum. The use of introverts and extraverts, high



5.6 Factors That Affect the Size of a Correlation Coefficient 143

YM

a.  Combined r is spuriously high

L
L

L

L
L

L
L L

M

M

M
M

M
M

M
M

Anxiety

X

Y

YL
Sc

ho
ol

 a
ch

ie
ve

m
en

t

XMXL

b.  Combined r is spuriously low

A
A

A
A

A

A A

A
B

A

AA
B

B

B
B

B B
B

B

B
B

X

Y

YA YB

XBXA

XBXA

YA

e.

X

Y
r � �

r � �

r combined � �

YB

c.  Combined r is spuriously 
     high for B and low for A

A
A

AA A

A A A

A
A

A A
AAA

AB

B
B

B B
B

X

Y

d.  Combined r is spuriously low

A

A
A A

A

A
A

A

A

A

A

A

A

A
A

B
B

B
B

B
BB

B
B
B

B

B
B

B

X

Y

XBXA

YA

f.

X

Y

r � �

r � �

r combined � �

YB

Figure 5.6-3. Scatterplots illustrating the effects on r of subsamples with means
that differ on both variables (parts a, e, and f) or on only one variable (b). Parts (c)
and (d) illustrate the effects of heterogeneous standard deviations. Parts (e) and (f)
show that the sign of the coefficient for the combined samples may differ from that
for one or both of the subsamples.
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Figure 5.6-4. Scatterplot illustrating the effects on r of using extreme 
groups. The data are taken from Table 5.3-1, with the eight data points
representing the four highest and the four lowest authoritarianism scores 
based on the father’s data.

and low achievers, or normals and neurotics enhances the likelihood of detecting
other variables on which the groups differ. This is a useful research strategy, but it
may lead to spuriously high correlation coefficients. Frequently, the means of the
groups differ on both X and Y, and the data points have the shape illustrated in
Figure 5.6-4. The data were selected from Table 5.3-1 so as to contain two extreme
groups: the four fathers with the highest authoritarianism scores and the four with
the lowest scores. The correlation for all 20 father-son pairs in Table 5.3-1 is .85; the
correlation based on the two extreme groups is .94.

Extreme groups constitute one type of discontinuous distribution. A discon-
tinuous distribution also results when you restrict your sample to a relatively
small number of points along a continuum or when your sample contains one 
or more outliers. As discussed in Section 4.5, outliers should be carefully exam-
ined. Their presence suggests errors in data recording, an equipment malfunction,
or other sources of data contamination. It follows from this discussion that corre-
lation coefficients involving discontinuous distributions should be carefully
examined.

Non-normality and Heterogeneity 
of Array Variances

If the distributions of X and Y are markedly skewed, the value of r will be less than
if the variables are approximately normally distributed. The reason for this is
revealed in Figure 5.6-5, which shows various combinations of skewed X and Y
distributions.
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The presence of skewed X and Y distributions is often accompanied by an
unequal dispersion of the Y scores for different values of X and a similarly
unequal dispersion of the X scores for different values of Y. This condition is
called heterogeneity of array (row or column) variances or heteroscedasticity.

Heteroscedasticity is illustrated in Figures 5.6-6(a) and (b). Figures 5.6-6(c) and (d)
illustrate the case in which the dispersions for X and for Y are uniform—a condition
called homogeneity of array variances or homoscedasticity. Earlier, you learned
that r reflects the average degree to which scores cluster around the line of best fit.
If the dispersion around the line differs at different values along the X and Y mea-
surement scales, the correlation coefficient will not have the same meaning as when
the array variances are homogeneous. For example, in Figures 5.6-6(a) and (b), the
correlation coefficient will underestimate the magnitude of association for low X
scores and overestimate it for high X scores.

The use of r as a descriptive measure of association requires no assumptions re-
garding the shape of the X and Y distributions. As you have seen, however, if X and
Y are markedly skewed, the value of r will be closer to zero than if the distributions
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Figure 5.6-5. Effects of markedly skewed X and Y distributions on the distribution
of data points in a scatterplot.
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are approximately normal. Furthermore, under these conditions, the interpretation
of r is altered because r no longer reflects the average degree to which the data
points cluster around the line of best fit. Finally, the presence of skewed X and Y dis-
tributions is often accompanied by a nonlinear relationship between the variables.
This condition calls for the computation of instead of r.

It is apparent from this discussion that the interpretation of r as a descriptive mea-
sure is simplified if X and Y are approximately normally distributed. I emphasize,
however, that normality is not required for purely descriptive purposes because
whatever the shapes of the X and Y distributions, r reflects the degree to which data
points cluster around a straight line of best fit. You will learn in Chapter 12 that nor-
mality is required when the sample correlation is used in making inferences about
the population correlation.

The factors that affect the size of r are summarized in Table 5.6-1.

h2

X

a.

Y

X

b.

Y

X

c.

Y

X

d.

Y

Figure 5.6-6. Parts a and b illustrate the heterogeneity of column and row disper-
sion, respectively; parts c and d illustrate the homogeneity of dispersion.

TABLE 5.6-1 Factors That Affect the Size of r

r Underestimates Magnitude r Overestimates Magnitude 
of Relationship When of Relationship When

1. The relationship between X and Y is nonlinear 1. The sample contains subgroups
2. The range of either X or Y is truncated with means that differ for both variables
3. The distributions of X and Y are skewed 2. The sample is composed of extreme groups
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CHECK YOUR UNDERSTANDING OF SECTION 5.6

23. What effects do the following factors have on r as a measure of strength of
association? Draw figures like Figures 5.6-1 through 5.6-5 to represent the data.
a. The relationship between X and Y looks like an inverted U. Assume that r is

positive.
b. The sample contains subgroups a and b with equal standard deviations and

means a � 16, b � 22, a � 31, and b � 37. Assume that r is positive
for both a and b.

c. The sample contains subgroups a and b with equal means and standard devi-
ations � 13, � 22, � 22, and � 13. Assume that r is positive
for both a and b.

d. The distribution of the X variable is negatively skewed; that for the Y vari-
able is positively skewed. Assume that r is negative.

e. The distributions of the X and Y variables are positively skewed. Assume that
r is positive.

f. The sample contains subgroups a and b with equal means and standard devi-
ations � 9, � 9, � 13, and � 21. Assume that r is positive
for both a and b.

g. The sample contains subgroups a and b with equal standard deviations and
means a � 12, b � 18, a � 38, and b � 27. Assume that r is positive
for both a and b.

h. The range of X is reduced by deleting participants with scores above .
Assume that r is positive.

24. The correlation between IQ and ratings of the creativity of 50 highly creative
individuals was .18. Can you conclude that IQ is a relatively unimportant factor
in creativity? Discuss.

25. Terms to remember:
a. Linear relationship b. Nonlinear relationship
c. Correlation ratio d. Eta squared
e. Truncated range f. Extreme groups
g. Discontinuous distribution h. Heterogeneity of array variance
i. Heteroscedasticity j. Homogeneity of array variance
k. Homoscedasticity

5.7 SPEARMAN RANK CORRELATION

The Spearman rank correlation coefficient, denoted by rs, is used to describe
the degree of agreement between paired data that are in the form of ranks.4

Such data may occur as a result of ranking scores, as when students’ grade-point av-
erages are converted to ranks in a graduating class, or because rank data are obtained
in the original instance, as when freshman English themes are ranked from the most

X
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SYb
SYa

SXb
SXa

YYXX

4 This coefficient was first used by Sir Francis Galton but was named for the British psychologist Charles
Spearman, who made more extensive use of it.
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to the least creative. Ranking is often used when it is difficult or impossible to apply
more refined measuring procedures, as in assessing characteristics such as creativ-
ity, attractiveness, or tastiness.

The formula for rs is

where is the difference between the ith person’s ranks on X and Y
and n is the number of pairs of ranks.

The computation of rs is illustrated in Table 5.7-1, where 14 graduate school appli-
cants have been ranked by tenured faculty ( ) and nontenured faculty ( ).

The index rs is a measure of the agreement between two sets of ranks and is
interpreted in much the same way as the Pearson product-moment coefficient. The
range of rs is from �1 to �1. Values of rs greater than 0 indicate that large RX’s tend
to be paired with large RY’s. Values less than 0 indicate that large RX’s are paired

RYi
RXi

RXi
2 RYi

rs 5 12
6g sRXi

2 RYi
d2

nsn2 2 1d

TABLE 5.7-1 Computation of rs for Ranks Assigned to Applicants 
by Tenured Faculty ( ) and Nontenured Faculty ( )

(i) Data

Rank, Rank,
Applicant – ( – )2

1 6 8 �2 4
2 3 2 1 1
3 4 5 �1 1
4 12 11 1 1
5 10 9 1 1
6 1 1 0 0
7 5 4 1 1
8 7 7 0 0
9 14 14 0 0

10 2 3 �1 1
11 8 10 �2 4
12 11 12 �1 1
13 9 6 3 9
14 13 13 0 0

(ii) Computational procedure

rs 5 1 2

6a
n

i51
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2 RYi
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5 1 2

6s24d
143 s14d2 2 14 5 1 2

144
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with small RY’s, and so on. The coefficient is equal to 1 if and only if each person’s
X and Y ranks are equal. It can be shown that the formula for rs is equivalent to that
for r when two sets of consecutive untied ranks 1, . . . , n are substituted for Xi and Yi
in the Pearson formula.5 However, the use of ranks in place of scores alters the
meaning of the correlation coefficient. This point is examined next.

Earlier you learned that r is a measure of the linear relationship between two
quantitative variables; rs is a measure of the monotonic relationship between two
sets of ranks.

A function Y � f(X) is said to be strictly monotonic increasing if an increase
in the value of X is always accompanied by an increase in Y.6 A strictly
monotonic decreasing function is one in which an increase in X is accompa-
nied by a decrease in Y.

Monotonic functions include linear functions (Y � a � bX) as well as a number of
other functions that are nonlinear (Y � X3; Y � logX). Thus, Spearman’s rank corre-
lation coefficient does not necessarily reflect the linear relationship between two
sets of ranks. It does reflect the strength of the monotonic relationship, a more gen-
eral relationship. If rs is equal to zero, either the variables represented by ranks are
not related or the form of the relationship is nonmonotonic.

The Problem of Tied Ranks

Occasionally, two or more objects or individuals are assigned the same rank, which
results in tied ranks. The usual practice is to give them the mean of the ranks they
would have received collectively if they had been distinguishable. For example, if
Jane, Elaine, and Bill are considered equally gregarious, each is given the mean of
the ranks they would have occupied, say, (1 � 2 � 3)/3 � 2. Thus, Jane, Elaine, and
Bill each are assigned the same mean rank of 2. Unfortunately, the presence of tied
ranks violates the assumptions underlying the derivation of the computational
formula for rs. A correction for ties can be incorporated in the formula, but the com-
putation is tedious. The most desirable solution is to force those making ratings to
discern differences among the objects or individuals, thereby eliminating tied ranks.
If this is done, the uncorrected formula can be used. If raters persist in assigning tied
ranks, the next best solution is to treat the sets of ranks as though they were scores
and to compute a Pearson product-moment correlation coefficient. The result can be
regarded as a Spearman rank correlation coefficient that has been corrected for ties.

CHECK YOUR UNDERSTANDING OF SECTION 5.7

26. A random sample of freshman psychology majors ranked various fields of psy-
chology according to vocational attractiveness. The students again ranked the
fields when they were seniors. Compute the correlation between their freshman
and senior rankings.

5 The derivation is given by Kirk (1978, pp. 122–124).
6 A strictly monotonic transformation preserves the order inherent in the original scores; it does not

preserve information concerning the magnitude of differences among the original scores.
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Field Freshman Rank Senior Rank

Social 5 2
Experimental 7 6
Human factors 6 7
Clinical 1 1
Statistics and measurement 8 8
Industrial 3 3
Educational 4 4
Counseling 2 5

27. The debate format can be a useful adjunct to traditional teaching methodologies
for presenting complex issues. Graduate student nurses were exposed to a
debate on the issue of third-party reimbursement. Researchers used a question-
naire to evaluate pre- and postdebate knowledge of 13 affirmative and negative
arguments concerning the issue. The results are listed in the following table; a
rank of 1 was assigned to the argument known by the most student nurses. Com-
pute the correlation between the two sets of ranks. (Suggested by Archold,
Patricia G., and Hoeffer, Beverly. [1981]. Reframing the issue: A debate on
third-party reimbursement. Nursing Outlook, 423–427.)

Pretest Posttest
Argument Rank Rank

Legitimize role and service of nurses 1 7
Increase health care cost 2 7
Increase access of consumer to nursing 

services 3 4.5
Nursing services are undefined and dependent 

on physicians 4 12.5
Decrease health care cost 6 4.5
Provide equal opportunity in a free-market system 6 11
Support health-care delivery system not 

based on need 6 7
Cumbersome process for individual nurses 8 12.5
Increase accountability of nurses for their services 9 9.5
Increase power and autonomy of nursing to 

influence health care delivery system 11.5 2
Support inequitable/discriminatory health-care 

delivery system 11.5 1
Elitist/divisive to nursing 11.5 3
No increase in accessibility 11.5 9.5

28. Which of the following are strictly monotonic functions?
a. Y � 1 � 2X b. Y � X2

c. Y � 2 � X3 d. Y � 1/(X � 4)
29. Terms to remember:

a. Spearman rank correlation coefficient
b. Strictly monotonic increasing and decreasing functions
c. Tied ranks
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5.8 OTHER KINDS OF CORRELATION COEFFICIENTS

Three correlation coefficients have been mentioned thus far: r, 2, and rs. An exten-
sion of r to the case in which there are three or more variables is discussed in
Section 6.7. This coefficient is called a multiple correlation coefficient. A fifth coef-
ficient, Cramér’s V, that is appropriate for unordered qualitative variables is dis-
cussed in Section 17.4. Other coefficients also are available, but they are beyond the
scope of this book.

5.9 LOOKING BACK: WHAT HAVE YOU LEARNED?

The term correlation refers to the association or concomitance between two or more
quantitative or ordered qualitative variables. A correlation coefficient is a measure
of the degree of association. The presence of an association does not imply causal-
ity; it does, however, imply that as one variable changes, the other variable changes.

The two most widely used correlation coefficients in the behavioral sciences and
education are the Pearson product-moment correlation coefficient, r, and the Spear-
man rank correlation coefficient, rs. Pearson’s r reflects the strength and the direc-
tion of the linear relationship between two quantitative variables. It is a number that
varies between �1 and 1, with 0 indicating the absence of a linear relationship.
Negative values indicate an inverse relationship between the variables; positive val-
ues indicate a positive or direct relationship. Spearman’s rs measures the strength
and the direction of the monotonic relationship between two ordered qualitative
variables—that is, ranked data. It, like r, varies between �1 and 1, with 0 indicating
the absence of a monotonic relationship.

Two statistics, both functions of r, are useful in interpreting a particular r value: the
coefficient of determination, r2, and the coefficient of nondetermination, k2 � 1 – r2.
For a given linear relationship between X and Y, r2 reflects the proportion of the X-
score variance that can be explained by the Y-score variance and vice versa; k2 reflects
the proportion that cannot be explained. If, for example, r is equal to .50, you know
that, based on the linear relationship between the variables, 25% of the variance of one
variable can be explained by the variance of the other variable, and 75% remains to be
explained.

The Pearson product-moment correlation coefficient is appropriate for linearly re-
lated quantitative variables. For descriptive purposes, no other assumptions regarding
the variables are required. However, in interpreting r, keep in mind that the size of r
can be affected by such factors as the shape of the X and Y distributions, the presence
of a truncated X or Y range, the presence of subgroups with standard deviations or
means that differ for both variables, and the presence of a discontinuous distribution
for X or Y or both.

REVIEW EXERCISES FOR CHAPTER 5

1. A job-satisfaction questionnaire was administered to a random sample of 36 men
between the ages of 29 and 34. The researcher was interested in the relationship
between number of years of formal education and job satisfaction. (a) Construct

h
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a scatterplot for the data in the following table. (b) Does the relationship appear
to be linear or nonlinear?

Years of Job Years of Job
Participant Education Satisfaction Participant Education Satisfaction

1 14 36 19 12 43
2 11 38 20 11 46
3 10 36 21 18 53
4 15 51 22 8 30
5 7 30 23 9 35
6 8 37 24 12 40
7 12 40 25 13 40
8 13 43 26 13 41
9 16 47 27 10 32

10 12 44 28 14 50
11 12 37 29 12 33
12 11 40 30 14 47
13 9 32 31 10 38 
14 12 42 32 11 37
15 13 45 33 12 40
16 11 38 34 14 50
17 12 42 35 13 42
18 11 37 36 13 45

2. Distinguish between r and �.
3. Match the r values 1, �1, 0, .3, and �.8 with the scatterplots shown here.

X

a.

Y

X

b.

Y

X

d.

Y

X

e.

Y

X

c.

Y
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4. Would you expect the correlation between the following to be positive,
negative, or essentially zero?
a. Mechanical aptitude and birth order
b. Verbal intelligence and number of trials to learn a 

list of nonsense syllables
c. Grades in college and annual income 10 years 

after graduation
d. Number of letters in last name and musical aptitude

5. The Alcohol Dependence Scale was developed to assist the World Health Orga-
nization in the classification of alcoholism. Fifteen alcoholics seeking counsel-
ing for alcohol-related disabilities took this scale and the Michigan Alcoholism
Screening Test, which yields an index of problems related to drinking. The in-
vestigators obtained the following data. (Suggested by Skinner, Harvey A., and
Allen, Barbara A. [1982]. Alcohol dependence syndrome: Measurement and
validation. Journal of Abnormal Psychology, 91, 199–209.)

Alcohol Michigan Alcoholism
Counselee Dependence Scale Screening Test

1 89 78
2 48 57
3 74 65
4 97 86
5 59 58
6 65 75
7 46 57
8 84 95
9 78 69

10 77 86
11 67 78
12 36 47
13 83 74
14 68 77
15 96 87

a. Construct a scatterplot for these data and decide whether the data appear to
be linearly related.

b. Use the deviation formula or a calculator to compute r for these data.

6. Researchers have reported that lonely people often describe themselves as
shy. To investigate the strength of the relationship between the two variables,
investigators gave a modified version of the Stanford Shyness Survey and the
UCLA Loneliness Scale to 20 male and 20 female college students. The
order of administration of the instruments was randomized independently for
each student. The researchers obtained the following data for the male stu-
dents. (Experiment suggested by Maroldo, Georgetter K. [1981]. Shyness
and loneliness among college men and women. Psychological Reports, 48,
885–886.)
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Stanford UCLA Stanford UCLA
Shyness Loneliness Shyness Loneliness

Student Survey Scale Student Survey Scale

1 36 51 11 30 29
2 39 52 12 30 40
3 30 33 13 33 45
4 23 35 14 32 30
5 28 55 15 28 42
6 41 52 16 34 45
7 29 32 17 21 35
8 27 38 18 41 35
9 28 40 19 23 30

10 28 33 20 39 51

a. Construct a scatterplot for these data and decide whether the data appear to
be linearly related.

b. Use the deviation formula or a calculator to compute r for these data.

7. Use the deviation formula or a calculator to compute r for the education and job
data in Exercise 1.

8. Calculate for the following data. In which quadrants
of Figure 5.3-1 would the majority of the data points fall? Are the variables lin-
early related, and if so, is the relationship positive or negative?

a. b. c. d.

X Y X Y X Y X Y

14 18 10 17 9 17 9 17
6 11 10 15 11 14 11 17

10 15 12 15 13 10 13 13
10 16 8 13 7 19 7 13

9. For the data in Exercise 8, make figures like Figure 5.3-1.
10. For the data in Exercise 8, calculate the Pearson product-moment correlation

coefficient using the deviation formula or a calculator.
11. What does covariance, SXY, tell you about the relationship between X and Y? In

computing r, why is SXY divided by SXSY?
12. For a set of data with SX � 4 and SY � 5, what is the largest possible value that

SXY can be? (Hint: The maximum value of r � �1 and r � SXY /SXSY.)
13. The correlation coefficient for the following data is undefined. Why is this state-

ment true?

X Y

13 16
16 16
11 16
17 16
12 16

gn
i51sXi 2 Xd sYi 2 Yd
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14. What do r2 and k2 tell you about the relationship between X and Y?
15. For the following experiments, compute r2 and k2 and interpret them verbally

and by means of diagrams like those in Figure 5.34-1.
a. The correlation between grades in introductory psychology and introductory

statistics was .32.
b. The correlation between the number of hours that rats had been deprived of

food and the time to traverse a maze with sunflower seeds in the goal box
was .80.

c. The correlation between the last two digits of students’ Social Security num-
bers and the number of trials to learn nonsense syllables was .02.

16. Which of the following are incorrect interpretations of a correlation coefficient,
and why?
a. The strength of association between scores on the Attitudes Toward Disabled

Persons Scale and amount of exposure to persons with disabilities is .56.
b. The correlation between height and weight at age 6 is .40; this correlation is

twice as high as that at age 16, when r � .20.
c. The correlation between reaction time and number of automobile accidents

is .20; 96% of the variance in frequency of accidents is unaccounted for.
d. You can conclude from the high correlation between level of motivation and

number of elective offices sought that office-seeking behavior is caused at
least in part by motivation.

17. What is wrong with interpreting r
a. in direct proportion to its size?
b. in terms of arbitrary descriptive labels?
c. as indicating causality?

18. Employees with the highest accident rates were required to complete a safety
course. Following the course, the employees had fewer accidents. Can you con-
clude that the course was effective? What controls could be used in the experi-
ment to make the outcome easier to interpret?

19. What effects do the following factors have on r as a measure of strength of as-
sociation? Draw figures like Figures 5.6-1 through 5.6-5 to represent the data.
a. The relationship between X and Y looks like a U. Assume that r is positive.
b. The range of X is reduced by deleting participants with scores below .
c. The sample contains subgroups a and b with equal standard deviations and

means a � 16, b � 22, a � 42, and b � 31. Assume that r is positive
for both a and b.

d. The sample contains subgroups a and b with equal standard deviations and
means a � 20, b � 26, a � 35, and b � 41. Assume that r is positive
for both a and b.

e. The sample contains subgroups a and b with equal means and standard
deviations � 15, � 24, � 24, and � 15. Assume that r is
positive for both a and b.

f. The sample contains subgroups a and b with equal means and standard devi-
ations � 18, � 18, � 26, and � 34. Assume that r is posi-
tive for both a and b.
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SXb
SXa

SYb
SYa

SXb
SXa

YYXX

YYXX

X
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g. The distribution of the X variable is positively skewed; that for the Y variable
is negatively skewed. Assume that r is positive.

h. The distributions of the X and Y variables are negatively skewed.
20. How can you detect cases in which should be used instead of r?
21. What are the potential advantages and disadvantages of using extreme groups

in research?
22. The correlation between IQ and grade-point average (GPA) for high school se-

niors was .63. For seniors who went on to college, the correlation between IQ
and college GPA was .51. Explain why this correlation is lower.

23. List the similarities and differences between r and rs.
24. A psychiatric social worker and an occupational therapist ranked 11 Veterans

Administration patients with respect to extent of recovery following 3 months
of therapy. Compute the Spearman rank correlation between the two sets of
rankings.

Patient Social Worker Occupational Therapist

1 7 7
2 2 1
3 1 2
4 3 5
5 8 9
6 10 10
7 4 3
8 9 8
9 11 11

10 6 6
11 5 4

25. Participants rated the attractiveness of one set of geometric shapes before smok-
ing marijuana and a similar set after smoking marijuana. One shape in the two
sets was the same. The following data are the ratings for that shape. A rating of
1 means very attractive; a rating of 20 means very unattractive. Transform the
ratings to ranks, and compute the Spearman rank correlation between the two
sets of ranks.

Participant Smoking After Smoking

1 6 3
2 8 7
3 14 16
4 7 2
5 10 12
6 9 15
7 5 1
8 15 20
9 12 17

h2
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26. Suppose that for the data in Exercise 25, participant 6 had assigned a rating of
12 instead of 15 to the geometric shape after smoking marijuana. This rating re-
sults in tied ranks. How would this affect the computational procedure for the
correlation coefficient?

27. Which of the following are strictly monotonic functions?
a. Y � 3 � 3X b. Y � 1 � X2

c. Y � X3 d. Y � 1/X
28. Use a statistical software package to compute the Pearson product-moment cor-

relation between for the variables of number of years of formal education and
job satisfaction in Exercise 1.

29. Use a statistical software package to compute the Pearson product-moment cor-
relation between the Alcohol Dependence Scale data and the Michigan Alco-
holism Screening Test data in Exercise 5.

30. Use a statistical software package to compute the Pearson product-moment cor-
relation between the modified version of the Stanford Shyness Survey data and
the UCLA Loneliness Scale data in Exercise 6.
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6.1 INTRODUCTION TO REGRESSION

Looking Ahead: What Is This Chapter About?

This chapter is about making predictions. Consider Jean who wants to do well in law
school. Her score on the Law School Aptitude Test (LSAT) is 69. She wonders what
grade-point average she can expect to make in law school? Bertha is on a 750-calorie
diet. How many pounds should she be able to lose in a month? Because the variables
in each case are correlated, Jean can predict her GPA from her 69 LSAT score and
Bertha can predict her weight loss from her 750-calorie diet with better than chance
accuracy. As you will learn, the higher the correlation between the independent and
dependent variables, the more accurate the prediction.

For r equal to �1 or �1, the dependent variable, denoted by Y, can be predicted
from the independent variable, X, with perfect accuracy. If, however, r is equal to
zero, a knowledge of X is useless in predicting Y. Although a correlation coefficient
is indicative of our ability to predict, the actual prediction is made using regression
analysis, the subject of this chapter.

Strictly speaking, regression analysis applies to paired data (Xi, Yi), where X
is the independent variable with values Xi that are selected in advance, and Y
is the dependent variable with values Yi that are free to vary. However, regres-
sion procedures also are applicable when both X and Y are free to vary, as they
are in correlation.

Often one’s prediction can be improved by using more than one predictor. For ex-
ample, Bertha could more accurately predict her weight loss by taking into account
the amount of exercise she gets each day in addition to her calorie intake. The simul-
taneous use of two or more predictors in predicting a dependent variable is called
multiple regression.

After reading the chapter, you should know the following:

■ How to predict one variable from another
■ How to determine the line of best fit
■ The relationship between r and the slopes of the best-fitting regression lines
■ What the standard error of estimate is and how to interpret it
■ How to interpret multiple regression and multiple correlation

An Overview of the Prediction Process

George, who is taking statistics, copies down the grades from last semester’s class
and constructs the scatterplot shown in Figure 6.1-1. He finds that the correlation
between the midterm and the final exam was .80. His midterm grade was 82, and
he wonders how he’ll do on the final. According to the scatterplot, two students in
last semester’s class made 82; the mean of their grades—and hence George’s pre-
dicted grade, assuming that the two classes are comparable—is (74 � 84)/2 � 79.

Although this prediction method works, it has a serious disadvantage. The predic-
tion is based on only the two Y scores corresponding to Xi � 82; the other 10 paired
scores are ignored. Predictions based on such small samples tend to be unstable—that
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is, they tend to vary markedly from sample to sample. Prediction can be improved by
utilizing all the data rather than a small subset. George notes that the relationship be-
tween the midterm and final grades appears to be linear, so he determines the best-
fitting linear regression line. It is shown as a dashed line in Figure 6.1-1. To predict his
final grade George draws a vertical line from Xi � 82 up to the regression line and then
a horizontal line over to the Y axis. His predicted grade is 78.

Predictions based on the regression line take into account all the sample data and
hence are more stable than those based on only the mean of the Y scores correspond-
ing to a given X score. Both procedures presuppose that the population represented
by the current sample (George’s statistics class) does not differ from that represented
by the earlier sample (last semester’s class). Obviously, if this assumption isn’t ten-
able, George can have little faith in the prediction. The regression approach also pre-
supposes that the data points have been fitted by the correct regression equation—in
this example, the equation for a straight line. Fortunately, one can easily check the
tenability of this assumption by looking at the scatterplot.

6.2 CRITERION FOR THE LINE OF BEST FIT

Predicting Y from X

Earlier I referred to the best-fitting linear regression line without defining it. What is
the best-fitting line for a set of data points? Best fit can be defined in a number of
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Figure 6.1-1. Scatterplot for paired midterm and final exam grades.
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ways. It seems reasonable that the best-fitting line should minimize some function
of the error in predicting Yi from Xi.

A prediction error or residual, ei, is defined as the difference between the ith
person’s actual score, Yi, and the score predicted for that person, —that is,
ei � Yi – .

Prediction errors are illustrated in Figure 6.2-1 and are represented as vertical dis-
tances along the Y axis. One definition of best fit widely used by mathematicians is
based on the principle of least squares and is as follows:

The line of best fit is the one that minimizes the sum of the squared predic-
tion errors—that is, the line for which is as small as it
can be.

I will limit my discussion to linearly related data. For this case, the predicted values
fall on a straight line called the regression line. The equation for a straight line is

where 

is the predicted value,

is the point at which the line crosses the Y axis,aY?X

Yri

Yri 5 aY?X 1 bY?XXi

ge2
i 5 g sYi 2 Yrid2

Yri
Yri

X

Y

Y7

Y7

e7

e3

e1

e5

e6

e2

e4

Figure 6.2-1. A prediction error, ei, is the discrepancy between Yi, the actual
observed score for person i, and , the predicted score based on the regression
line—for example, e7 � Y7 – Yr7

Yri
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is the slope of the line, and

Xi is a value of the independent variable.

The subscript Y . X is read “Y given X” and indicates that I am predicting Y from X.
According to the least squares criterion, I want values of the constants aY . X and bY . X
such that

is as small as it can be.
The values for and that make as small as it can be are given by

and

In the formula for , SXY is the covariance of X and Y that was discussed in Sec-
tion 5.3, and is the variance of X that was discussed in Section 5.4. An example
showing the computation of and is given in Table 6.2-1 for the data in
Figure 6.1-1. The values of the constants from part ii of the table are �
12.1868 and � 0.8026. Hence, the linear equation that minimizes the sum of
the squared prediction errors is 

According to the equation, the line crosses the Y axis at 12.1868 (see Figure 6.2-2).
In other words, when Xi � 0, the predicted value is � 12.1868. The slope of the
line is 0.8026, which means that as X increases 1 unit, Y increases 0.8026 unit (see
Figure 6.2-2). Furthermore, the regression line goes through the point corresponding
to the mean of X and the mean of Y, which is (82, 78); see the circle in Figure 6.2-3.
If the regression line does not go through this point, the line is incorrect.

To determine the predicted Y value for, say, Xi � 82, I enter the Xi value in the re-
gression equation and solve for as follows:

The predicted value is 78. Alternatively, I can determine predicted values by graphic
means, as George did in Figure 6.1-1. The first step is to draw the line of best fit. Be-
cause a straight line is defined by two points, I begin by solving for when Xi is
equal to 72 and when it is equal to 94 (the smallest and largest X scores, respec-
tively). The corresponding values are, respectively, 69.97 and 87.63. Once I draw
a line connecting the (Xi, Yi) points (72, 69.97 and 94, 87.63), I can use it to obtain

Yri

Yri

Yri 5 12.1868 1 0.8026s82d 5 78

 Yri 5 aY?X 1 bY?X Xi

Yri

Yri

 5 12.1868 1 0.8026 Xi

 Yri 5 aY?X 1 bY?X Xi

bY?X

aY?X

bY?XaY?X

S2
X

bY?X

bY?X 5
SXY

S2
X

5

g sXi 2 Xd sYi 2 Yd
n

g sXi 2 Xd2

n

5
g sXi 2 Xd sYi 2 Yd

g sXi 2 Xd2

aY?X 5 Y 2 bY?XX

ge2
ibY?XaY?X

ge2
i 5 g sYi 2 Yri d2 5 g 3Yi 2 saY?X 1 bY?XXid 42

bY?X
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TABLE 6.2-1 Computation of Least Squares Values of Constants in a Linear
Equation (Data from Figure 6.1-1)

(i) Data

Xi Yi (Xi � ) (Yi � ) (Xi � ) (Yi � ) (Xi � )2 (Yi � )2

72 70 �10 �8 80 100 64
75 74 �7 �4 28 49 16
76 70 �6 �8 48 36 64
78 72 �4 �6 24 16 36
78 78 �4 0 0 16 0
82 74 0 �4 0 0 16
82 84 0 6 0 0 36
84 76 2 �2 �4 4 4
86 86 4 8 32 16 64
88 78 6 0 0 36 0
89 88 7 10 70 49 100
94 86 12 8 96 144 64

Xi � 984 Yi � 936 (Xi � ) (Yi � ) � 374 (Xi � )2 � 466 (Yi � )2 � 464

(ii) Computation of and 

(iii) Computation of and 

aX?Y 5 X 2 bX?YY 5 82 2 0.8060s78d 5 19.1320

bX?Y 5
g sXi 2 Xd sYi 2 Yd

g sYi 2 Yd2
5

374
464

5 0.8060

bX?Y aX?Y

aY?X 5 Y 2 bY?XX 5 78 2 0.8026s82d 5 12.1868

bY?X 5
g sXi 2 Xd sYi 2 Yd

g sXi 2 Xd2
5

374
466

5 0.8026

bY?XaY?X

Y 5 936>12 5 78X 5 984>12 5 82

YgXgYXggg

YXYXYX

for other values of Xi. The two sets of points (72, 69.97 and 94, 87.63) are repre-
sented by squares in Figure 6.2-3.

A word of caution is in order here. I should restrict my prediction of Y to the
range of X values for which I have paired data points. In this example, the small-
est and largest X scores are, respectively, 72 and 94. Within this range of X
scores, I know that the relationship between X and Y is linear. However, I have no

Yri
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way of knowing from the data in Figure 6.2-3 whether or not the linear regres-
sion equation is appropriate for X scores outside the interval from 72 to 94. In the
absence of such information, it is prudent to restrict the predictions to X scores
between 72 and 94.
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Figure 6.2-3. To obtain the line of best fit for predicting Y from X, the smallest
and largest X values (72 and 94) were inserted in the equation � 12.1868 �
0.8026Xi to obtain the predicted values 70.0 and 87.6 (see the squares). A line
drawn through these two points also passes through the mean of X and Y, which 
is represented by the circle.

Yri

13
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11
10 2

Change in Y

Change in Y � 0.8026

Change in X � 1

Y

X

0.8026
Change in X 1

bY�X �

aY�X � 12.1868

� 0.8026�

Figure 6.2-2. Illustration of , the point at which the regression line crosses
the Y axis, and , the slope of the regression line. The slope of the regression
line is the ratio of the change in Y divided by the change in X.

bY?X
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Predicting X from Y

Prediction can go both ways. I have just shown how to predict the value of Yi from
Xi. Alternatively, I can predict the value of Xi from Yi using the following equation:

The subscript indicates that X is predicted from Y. As you will see, is dif-
ferent from , and is different from , because they apply to different
regression lines. The constants of the linear equation for predicting X from Y are
given by

and

The formulas for and were derived so as to minimize the sum of the
squared prediction errors defined by . These prediction errors
are illustrated in Figure 6.2-4 and are represented as horizontal distances along the
X axis. The computation of and is illustrated in Table 6.2-1. The regres-
sion equation is 

 5 19.1320 1 0.8060 Yi

 Xri 5 aX?Y 1 bX?Y Yi

bX?YaX?Y

ge2
i 5 g sXi 2 Xrid2

bX?YaX?Y

bX?Y 5
SXY

S2
Y

5

g sXi 2 Xd sYi 2 Yd
n

g sYi 2 Yd2

n

5
g sXi 2 Xd sYi 2 Yd

g sYi 2 Yd2

aX?Y 5 X 2 bX?YY

bY?XbX?YaY?X

aX?YX ? Y

 Xri 5 aX?Y 1 bX?Y Yi

X

Y

Y7 Y7

e7

e3

e1

e2

e5
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e4

Figure 6.2-4. The error in predicting Xi from Yi is the discrepancy between Xi, the
actual observed value for person i, and , the predicted value based on the regres-
sion line—for example, e7 � X7 – .Xr7

Xr1
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According to the equation, the line crosses the X axis at 19.1320. In other words,
when Yi � 0, the predicted value is � 19.1320. The slope of the line is 0.8060,
which means that as Y increases 1 unit, X increases 0.8060 unit.

To summarize, for any set of paired data points, I can compute two regression
lines—the regression of Y on X, given by � aY . X � Xi, and the regression
of X on Y, given by � � Yi. The two lines are shown in Figure 6.2-5
for the data in Table 6.2-1. There are two lines because in predicting Y from X I want
to minimize one set of errors, (Yi – )2, but in predicting X from Y I minimize a
different set of errors, (Xi – )2.

Relationship between r and the Slopes 
of the Regression Lines

There are a number of interesting relationships between r and the two regression co-
efficients and . For example, it is a simple matter to show that

 6"bY?X bX?Y 5 r

 r sSX>SYd 5 bX?Y

 r sSY>SXd 5 bY?X

bX?YbX?Y

Xrig
Yrig

bX?YaX?YXri
bY?XYri
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Figure 6.2-5. Regression line for predicting Yi from Xi and Xi from Yi (data 
from Table 6.2-1). Each regression line goes through the point defined by the X
and Y means. In this example, that point is � 82 and � 78. The equation for
predicting crosses the Y axis at Yi � 12.1868. The equation for predicting 
crosses the X axis at Xi � 19.1320. These points are not shown in the figure be-
cause the X and Y axes have been shortened to save space.
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For the latter relationship, r is positive when and are positive and negative
when both coefficients are negative; and always have the same sign.

Because � r(SY /SX), the linear equation for predicting Yi from Xi can be
rewritten using r(SY /SX) in place of as follows:

In this form you can see what happens when r � 0; you obtain

This means that when r is equal to zero, the predicted value of Y is the mean of the
Y scores regardless of the X value used to predict Y. In other words, knowing Xi does
not help in predicting Yi if r is equal to zero, because in every case the predicted Y
value is .

CHECK YOUR UNDERSTANDING OF SECTIONS 6.1 AND 6.2

1. In one sentence, state the primary purpose of a regression analysis.
2. If Y increases 2 units for every 4-unit increase in X, what is the slope of the

regression line of Y on X?
3. In an experiment on gender-typed behavior, a random sample of boys ages 5 to

8 was given choices among such toys as a football, a doll carriage, a dump
truck, and dishes. The number of gender-appropriate choices for boys at each
age is listed in the table.

Number of Appropriate Number of Appropriate
Age, X Choices, Y Age, X Choices, Y

7.5 18 7.5 15
7.0 13 5.0 7
5.5 11 5.5 8
8.0 20 6.0 12
6.5 13 8.0 17
6.0 14 7.0 14
5.0 9 6.5 12
8.0 18 5.5 10
6.5 14 5.0 8
6.0 10 7.0 16
7.5 19

Y

 5 Y

 Yri 5 Y 1 0
SY

SX
 sXi 2 Xd

 5 Y1r
SY

SX
sXi 2 Xd

 Yri 5 Y2r
SY

SX
X 1r

SY

SX
Xi

bY?X

bY?X

bX?YbY?X

bX?YbY?X

⎫ ⎬ ⎭ ⎫ ⎬ ⎭

aY?X bY?XXi
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a. Construct a scatterplot and decide whether the data appear to be linearly
related.

b. Compute the values of and for the line of best fit, write the equa-
tion for predicting Y from X, and draw the line in the scatterplot. Compute r
using the relationship r � (SX /SY).

c. Compute the values of and for the line of best fit, write the equa-
tion for predicting X from Y, and draw the line of best fit in the scatterplot.
Which slope, or , is the steepest? Compute r using the relationship
r � (SY /SX).

d. Compute r using the relationship . Does your answer
agree with the values you computed in parts b and c?

e. For a six-year-old boy, estimate Y using both the regression equation and the
line of best fit in the scatterplot.

4. In what sense is the regression line for predicting Y from X in Exercise 3 a best-
fitting line?

5. For any set of data, there are two regression lines. Under what condition are the
two lines identical?

6. If r is equal to zero, what value of Y should you predict for each value of X?
7. If � Yi for all i, what do you know about r?
8. Terms to remember:

a. Regression analysis b. Prediction error (residual)
c. Principle of least squares d. Line of best fit
e. Regression line f. Slope of line

6.3 ANOTHER MEASURE OF ABILITY TO PREDICT: 
THE STANDARD ERROR OF ESTIMATE

Your ability to predict Y from X is a function of the degree of correlation between
the two variables. The higher the correlation, the more closely the data points clus-
ter around the regression line and the smaller the prediction error. A measure of the
size of the prediction error is given by the standard error of estimate, which is de-
noted by . Do not confuse with covariance, which is denoted by SXY. The
standard error of estimate is a kind of standard deviation. For comparison purposes,
the formulas for the standard error of estimate and standard deviation are given here:

and

In computing SY . X, the deviation (Yi – ) is from the predicted value or regression
line, whereas for SY the deviation (Yi – ) is from the mean of Y. The two deviations
are illustrated in Figure 6.3-1.

Let’s look at SY . X more closely. The regression line denoted by can be thought
of as a kind of mean—a “running mean,” which gives the predicted value of Y for a
particular value of X. Whereas is the mean of all the Y’s, is the mean of Y for a
particular value of X. Viewed in this light, , like SY, is computed from the sumSY?X

 YrY

 Yr

Y
Yri

SY 5Å
g sYi 2 Yd2

n
SY?X 5Å

g sYi 2 Yrid2

n

SY?XSY?X

Yri

r 5 6"bY?XbX?Y

bX?Y

bX?YbY?X

bX?YaX?Y

bY?X

bY?XaY?X
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of squared deviations from means and hence is a standard deviation. However,
is the standard deviation of scores around the regression line, whereas SY is the stan-
dard deviation of scores around the mean. As you will see, can be interpreted
in much the same way as a regular standard deviation.

An Alternative Formula for SY . X

The formula for the standard error of estimate described above is not a convenient
one to use. An equivalent formula1 for the sample standard error of estimate that is
much easier to use is

This formula has the added advantage of enabling you to easily determine the maxi-
mum and minimum possible values of . The maximum value of occurs
when r is equal to 0, in which case is equal to SY. I can show this as follows:

Thus, if r is equal to 0, the dispersion of Y scores around the regression line is as
large as the standard deviation of Y. In this case, knowing the X score does not re-
duce your error in predicting Y. The minimum value of occurs when r is equal
to 1, in which case is equal to 0. I can show this as follows:

Thus, if r is equal to 1, there is no dispersion around the regression line and no error
in predicting Y from X.

SY?X 5 SY"1 2 s1d2 5 SY"0 5 0

SY?X

SY?X

SY?X 5 SY"1 2 s0d2 5 SY"1 5 SY

SY?X

SY?XSY?X

SY?X 5 SY "1 2 r2

SY?X

SY?X

Y i �
 Y i

Yi � YY

X

Y

a.

Y

X

Y

b.

Figure 6.3-1. Comparison of the deviation Yi – used to compute the standard
error of estimate (part a) and the deviation Yi – used to compute the standard
deviation (part b).

Y
Yri

1 When the population standard error of estimate is estimated from sample data, a better estimator is

ŝY?X 5Å
g sYi 2 Yrid2

n 2 2
5 SYÅ
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n 2 2
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To summarize, the maximum value of is SY and occurs when r is equal to 0;
the minimum value of is 0 and occurs when r is equal to 1. Thus, the standard
error of estimate can assume a value between 0 and SY.

Descriptive Application of SY . X

As you have seen, the larger , the greater the dispersion of Y scores around the
regression line and hence the larger the average prediction error. If the distribution
of Y scores at every X score is approximately normal and if all the Y-score distribu-
tions have the same dispersion, 68.3% of the Y scores will fall within the interval
given by Y � . This information is illustrated in Figure 6.3-2. Similarly, 95.4%
of the Y scores will fall within the interval given by Y  � 2 , and 99.7% will
fall within the interval given by Y  � 3 . These percentages are based on the
normal distribution; see Figure 4.4-1 in Chapter 4.

Although the standard error of estimate is most often used in inferential statis-
tics, I will briefly mention a descriptive application. Suppose an experiment was
conducted to determine the relationship between Y, the length of time (measured in
hundredths of a second) necessary to reach a decision, and X, the number of alterna-
tive choices presented. The following data were obtained: SX � 1.5, SY � 12.5,

� 4.5, � 46, r � .78, and n � 100. Assume that the distribution of Y scores
for every X score is approximately normal and that all the Y-score distributions have
the same dispersion. The predicted reaction time for a person presented with a
choice from among, say, three alternatives is given by the regression equation

 Yr5 Y 1 r 
SY

SX
sXi 2 Xd

YX

SY?X

SY?X

SY?X

SY?X

SY?X

SY?X

�SY�X

�SY�X

X

Y

Figure 6.3-2. Illustration of the standard error of estimate. Approximately 68.3%
of the Y scores fall within the interval given by if the distribution of Y
scores at every X score is approximately normally distributed and all the Y-score
distributions have the same dispersion.

6 SX?YYri
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The use here of the regression equation � � r (SY /SX)(Xi – ) is convenient
because of the statistics that are available. I would have arrived at the same predicted
reaction time if I had used the equivalent equation Y � a � bXi. The standard error
of estimate is

I can conclude that approximately 68.3% of the participants in the three-choice con-
dition had reaction times between 44.07 and 28.43, as I see from

Similarly, approximately 95.4% had reaction times between

The percentages 68.3 and 95.4 are based on the proportion of the normal distribu-
tion that lies in the interval from – S to � S and from – 2S to � 2S,
respectively, as shown in Figure 4.4-1.

6.4 ASSUMPTIONS ASSOCIATED WITH REGRESSION
AND THE STANDARD ERROR OF ESTIMATE

When you make predictions using the regression equation � a � bXi, you
assume only that the relationship between X and Y is linear. If the assumption is
tenable, the principle of least squares ensures that � a � bXi provides the best
possible prediction line for the data. For prediction purposes, you do not have to
make any assumptions regarding the shape of the X and Y distributions.

The use of the standard error of estimate involves more stringent assumptions. In
addition to the linearity assumption, you must also assume that (1) for any value of
X, the associated Y scores are approximately normally distributed and (2) the disper-
sions of the Y scores for different values of X are equal. The latter assumption is
referred to as the homoscedasticity assumption. The converse situation, het-
eroscedasticity, in which the dispersions of the Y scores for different values of X are
unequal, was discussed in Section 5.6.

In predicting X from Y the same assumptions are required, but they must be
rephrased to reflect the reversed roles of X and Y.

Yri

Yri

XXXX

Yr6 2SY?X 5 36.25 6 2s7.82d 5 51.89 and 20.61

Yr6 SY?X 5 36.25 6 7.82 5 44.07 and 28.43

 5 7.82

 5 12.5s.6258d

 5 12.5"1 2 s.78d2

  SY?X 5 SY"1 2 r2

XY Yr

 5 36.25

 5 46 1 6.5s2 1.5d

 Yr5 46 1 .78
12.5
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CHECK YOUR UNDERSTANDING OF SECTIONS 6.3 AND 6.4

9. Chimpanzees were exposed to white noise eight hours a day for three months to
determine whether the noise affected their hearing. Ten animals were randomly
assigned to the following noise levels: 75 dBA, 85 dBA, 95 dBA, 105 dBA, and
115 dBA.

Hearing Hearing 
Noise Level Loss (dBA at Noise Level Loss (dBA at

Animal (dBA), X 1000 Hz), Y Animal (dBA), X 1000 Hz), Y

1 105 11 6 85 9
2 85 6 7 105 13
3 95 10 8 115 11
4 115 15 9 75 5
5 75 7 10 95 8

a. Compute using the formula 
b. Assuming a large sample in which the distribution of Y scores for every X

score is approximately normal and all the distributions have the same disper-
sion, compute the interval that will contain 68.3% of the scores for a noise
level of 115 dBA.

c. Compute the value of for r � 0 and r � 1. Is the for these data
relatively large, relatively small, or somewhere in between?

10. How is related to the magnitude of the prediction error? For the gender-
typed data in Exercise 3 in “Check Your Understanding of Sections 6.1 and 6.2,”
what are the minimum and maximum values of ?

11. Term to remember:
a. Standard error of estimate

6.5 MULTIPLE REGRESSION AND MULTIPLE
CORRELATION

Multiple Regression

At the beginning of the chapter I talked about Jean, who wanted to predict her grade-
point average in law school based on her LSAT score. There are other variables that
Jean might use to predict her GPA, such as her undergraduate GPA and her level of
motivation for having a law career. It turns out that Jean could improve her predic-
tion by using not just one, but several predictor variables.

The simultaneous use of two or more independent variables in predicting a
dependent variable is called multiple regression.

In Section 6.2 you learned that when there is one independent variable or predictor,
the regression equation for predicting Y from X is

Yri 5 a 1 bXi

SY?X

SY?X

SY?XSY?X

SY?X 5 SY"1 2 r2.SY?X
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When there are two independent variables,

where

is the predicted value,

a is the Y intercept,

b1 is the expected change in Y when X1 changes one unit and X2 remains
constant,

X1 is the value of the first independent variable,

b2 is the expected change in Y when X2 changes one unit and X1 remains
constant, and

X2 is the value of the second independent variable.

The equation for two independent variables can be extended to any number of
independent variables, say, k, as follows:

� a � b1Xi1 � b2Xi2 � b3Xi3�
. . . � bkXik

The simplest possible regression equation has one independent variable. For this
equation, the line of best fit for predicting Y is a straight line such that the sum of
the squared prediction errors, , is as small as it possibly can be.
For the one-independent variable case, the relationship between X and Y can be rep-
resented by a two-dimensional scatterplot, where Y is plotted on the vertical axis and
X on the horizontal axis. When there are two independent variables, the scatterplot
requires three dimensions: one for Y, one for X1, and one for X2. For this case, the
predicted values of Y fall on a regression plane or surface rather than a regression
line. Furthermore, the orientation or slope of the plane is determined so that the sum
of the squared prediction errors from the plane is as small as it possibly can be.

Perhaps an example will help to clarify the slope of a plane and prediction errors
around this plane. Consider the data in Table 6.5-1(i), where there are two indepen-
dent variables. As the data in the table shows, an observed score, Yi, is equal to its
predicted score, , plus its prediction error or residual, ei,—that is,

For example, the observed score for participant 1 is

The multiple regression equation is shown in part (ii) of the table. Formulas for
computing a, b1, and b2 are complex and will not be given here because the values
are usually computed with a computer.2 The data in columns 2, 3, and 4 are plotted
in the three-dimensional scatterplot in Figure 6.5-1(a). The predicted values of Y are

 3 5 3.90 1 s290d

  Y1 5 Yr1 1 e1

Yi 5 Yri 1 ei

Yri

ge2
i 5 g sYi 2 Yrd2

Yri

Yri

Yri 5 a 1 b1Xi1 1 b2Xi2

2 The values in Table 6.5-1 were computed using the SPSS software package.
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TABLE 6.5-1 Data for Multiple Regression with Two Independent Variables

(i) Data

(1) (2) (3) (4) (5)
Observed Predictor Predictor Predicted Prediction

Participant score, Y No. One, X1 No. Two, X2 Score, error, ei

1 3 4 3 3.90 �0.90
2 1 2 6 1.02 �0.02
3 2 1 4 1.70 0.30
4 4 6 5 3.75 0.25
5 6 5 1 5.63 0.37

(ii) Multiple regression equation

where

 b2 5 2 0.60

 b1 5 0.53
 a 5 3.58

 Yri 5 3.58 1 0.53 Xi1 1 s20.60dXi2

 Yri 5 a 1 b1 Xi1 1 b2 Xi2
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Figure 6.5-1. (a) The five predicted Y scores in the figure on the left fall on 
the surface of a plane. The coefficient for X1 is positive (b1 � 0.53), hence the
surface of the plane slopes up relative to the X1 axis; the coefficient for X2 is negative 
(b2 � �0.60), hence the plane slopes down relative to the X2 axis. (b) Prediction
errors in the figure on the right are plotted as deviations from the plane. Recall that
prediction errors are deviations of the observed scores from the predicted scores.

shown as five solid circles on a sloped plane. In part (b) of the figure, prediction
errors (see column 5 of Table 6.5-1) are shown as deviations above or below the
sloped plane. The prediction errors appear to deviate little from the plane; conse-
quently, Y can be predicted from X1 and X2 with considerable accuracy. A measure
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of just how well Y can be predicted from a knowledge of X1 and X2 is given by the
coefficient of multiple determination, which is discussed in the next section.

Multiple Correlation

The correlation between Y and the combined predictors X1, X2, . . . , Xk is
called the coefficient of multiple correlation and is denoted by , . . . ,
Xk, or simply R.

The dot after Y in the notation separates the dependent variable, Y, from the inde-
pendent variables, X1, X2, . . . , Xk. For the two predictor case, is given by

where , , and are correlation coefficients for the respective variables.
The multiple regression coefficient can assume values from 0 to 1, where 0 indicates
the absence of a linear multiple correlation between Y and the independent variables
and 1 indicates a perfect linear multiple correlation in which all of the observed Y’s
fall on the regression plane.

The proportion of variance in Y accounted for by the combined predictors X1,
X2, . . . , Xk is obtained by squaring the multiple correlation coefficient and is
called the coefficient of multiple determination, R2. This coefficient is an
extension of the coefficient of determination for one predictor, r2, which was
discussed in Section 5.4.

A comparison of the value of R2 with that for r2 indicates the improvement in pre-
dicting Y that can be achieved by using a multiple regression equation instead of a
one-predictor regression equation. For the data in Table 6.5-1, the correlation be-
tween Y and X1, Y and X2, and X1 and X2 is given in Table 6.5-2. This form of pre-
senting correlation coefficients is called a correlation matrix. According to Table
6.5-2, predictor variable X2 has the highest correlation with Y ( � �.797). This
variable accounts for of the variance in Y. The multiple cor-
relation coefficient that reflects the contributions of both X1 and X2 is

RY?X1X2
5Å

s.777d2 1 s2.797d2 2 23 s.777d s2.797d s2.338d 4
1 2 s 2 .338d2 5 .962

r2
YX2

5 s 2 .797d2 5 .64
rYX2

rX1X2
rYX2

rYX1

RY?X1X2
5Å

r2
YX1

1 r2
YX2

2 2rYX1
rYX2

rX1 X2

1 2 r2
X1X2

RY?X1X2

RY?X1X2

TABLE 6.5-2 Intercorrelations among the Variables

Variable

Variable Y X1 X2

Y 1.000 .777 �.797
X1 1.000 �.338
X2 1.000
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The coefficient of multiple determination is Thus, the
inclusion of a second predictor, X1, in the regression equation enables me to account
for an additional of the variance in Y over and
above the variance accounted for by the best predictor, X2. The proportion of variance
in Y that is unaccounted for by X1 and X2 is given by 1 – 

The coefficient of multiple determination will be relatively large when the corre-
lation of each of the predictors with Y is large and the correlations among the pre-
dictors are 0 or very small. In fact, if the independent variables are uncorrelated,

If correlations exist among some or all 
of the independent variables, it is usually the case that �

The presence of nonzero correlations among the independent
variables is referred to as multicollinearity. Extreme multicollinearity occurs when
one independent variable is a linear function of other independent variables; for
example, X2 might equal 3X1, or X3 might equal X1 � X2. In the latter case, the
inclusion of X3 in the regression equation would not account for any variance in Y
not already accounted for by X1 and X2. Ideally, you would like to have predictors
that have high correlations with the dependent variable and zero correlations with
each other. Unfortunately in the behavioral sciences, health sciences, and education,
it is difficult to find predictors that meet these criteria. Once you have found three or
four good predictors, it is often difficult to find additional predictors that are not
highly correlated with at least one of the original predictors.

CHECK YOUR UNDERSTANDING OF SECTION 6.5

12. a. For each of the following correlation matrices, compute the coefficient of
multiple determination.

(i) Y X1 X2 (ii) Y X1 X2 (iii) Y X1 X2

Y 1.00 .20 .30 1.00 .60 .50 1.00 .60 –.50
X1 1.00 .60 1.00 .30 1.00 –.10
X2 1.00 1.00 1.00

b. For these correlation matrices, determine the improvement in prediction that
can be achieved by using a multiple regression equation instead of a one-
predictor regression equation.

13. Data were obtained for 46 college students who were enrolled in an intensive
French language course. The course enables students to fulfill their foreign lan-
guage degree requirement (14 semester hours) in one eight-week summer ses-
sion. The purpose of the research was to develop a regression equation that
would assist the professor in selecting and admitting only those students most
likely to succeed in the rigorous course. The dependent variable was the
student’s grade for the intensive course. The following grading scale was used:
A � 4.0, B� � 3.5, B � 3.0, C� � 2.5, C � 2.0, D � 1.0, and F � 0. The
three most useful independent variables were found to be grade-point average,
X1; professor’s rating, based on an interview with the student, of his or her

r2
YX2

1 . . . 1  r2
YXk

.
R2

Y?X1X2, . . . , Xk 
, r2

YX1

R2
Y?X1X2, . . . , Xk

5 r2
YX1

1 r2
YX2

1 . . . 1 r2
YXk

.

R2
Y?X1X2

5 1 2 .93 5 .07.

R2
Y?X1X2

2 r2
YX2

5 .93 2 .64 5 .29

R2
Y?X1X2

5 s.962d2 5 .93.
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probable success in the course, X2; and whether the student had previously taken
a French course, X3. The correlation matrix for these variables is as follows:

Y X1 X2 X3

Y 1.00 .773 .681 .289
X1 1.00 .544 .065
X2 1.00 .083
X3 1.00

The coefficient of multiple determination for these data is 
The regression equation for predicting a student’s course grade is

� 1.069 � 0.742Xi1 � 0.496Xi2 � 0.323Xi3.

(Suggested by Currall, S. C., and Kirk, R. E. [1986]. Predicting success in
intensive foreign language courses. Modern Language Journal, 70, 107–113.)
a. Three two-predictor coefficients of multiple correlation can be computed for

these data: , , and . How much does the addition of a
third predictor improve the prediction of Y relative to the use of the best two-
predictor multiple regression equation?

b. Data for participants 3, 16, 21, and 34 are as shown in the following table.
Determine the predicted letter grade for these participants. Use the follow-
ing scale; � 3.75 � A, 3.25–3.74 � B�, 2.75–3.24 � B, 2.25–2.74 � C�,
1.75–2.24 � C, 0.75–1.74 � D, and � 0.75 � F).

Participants X1 X2 X3

3 3.6 0 0
16 2.8 1 1
21 3.1 1 0
34 2.3 1 0

14. Terms to remember:
a. Multiple regression b. Coefficient of multiple correlation
c. Coefficient of multiple d. Regression plane

determination f. Multicollinearity
e. Correlation matrix

6.6 LOOKING BACK: WHAT HAVE YOU LEARNED?

This chapter is about making predictions using one or more predictors. You learned
in Chapter 5 that Sir Francis Galton laid the foundation for regression and correla-
tion in his classic studies on regression. He used the term regression to refer to the
tendency for short parents to have offspring who are slightly taller than they and for
tall parents to have offspring who are slightly shorter than they. Today the term has
a broader meaning. It refers to any analysis of paired data (X1, Y1), (X2, Y2), . . . ,
(Xn, Yn), where X is the independent variable and Y is the dependent variable.

In simple linear regression analysis, the line of best fit, called the regression line,
is used to predict Y from a knowledge of X. The line of best fit according to the least
squares principle is the one for which the sum of the squared prediction errors, the

RY?X2X3
RY?X1X3

RY?X1X2

Yri

s.862d2 5 .743.
R2

Y?X1X2X3
5
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discrepancy between the observed value of Yi and the predicted value, is as small as
it can be.

If r is equal to 1 or �1, the value of Yi can be predicted perfectly from the equa-
tion � a � bXi . If the value of r is between �1 and 1, there is likely to be some
discrepancy between the observed value of Yi and the predicted value of . The
discrepancy Yi � is called a prediction error or residual. A measure of the magni-
tude of the prediction error is given by the standard error of estimate, , which is
a kind of standard deviation of errors around the regression line. The maximum
value of is equal to the standard deviation of Y, SY, and it occurs when r is
equal to 0. The minimum value of is 0, and it occurs when r is equal to 1.

In predicting Y from X, you assume only that the relationship between the vari-
ables is linear. Interpretations involving also assume that the distribution of the
Y scores at every X score is approximately normal and that all the Y-score distribu-
tions have the same dispersion. When prediction involves different samples, as when
the performance of one group of students is predicted from that of another, you also
must assume that the populations represented by the two samples are identical with
respect to the relevant characteristics. Of course, you should restrict your prediction
of Y to the range of X values for which you have paired data points unless you are
certain that the regression equation is appropriate for the additional X values.

The concepts in simple linear regression can be extended to data where there are two
or more independent variables. The simultaneous use of two or more independent vari-
ables in predicting a dependent variable is called multiple regression. There is an im-
portant advantage in using multiple predictors instead of a single predictor—more
accurate prediction. Prediction is most accurate when the predictors have high correla-
tions with the dependent variable and zero correlations with each other. Unfortunately,
good predictors are often highly correlated, a condition called multicollinearity. Because
of multicollinearity, there is a point of diminishing returns after which adding new pre-
dictors to a multiple regression equation contributes little to the accuracy of prediction.

REVIEW EXERCISES FOR CHAPTER 6

1. If Y decreases five units for every two-unit increase in X, what is the slope of the
regression line of Y on X?

2. In an experiment on gender-typed behavior, a random sample of girls ages 5 to 8
was given choices among such toys as a football, a doll carriage, a dump truck,
and dishes. The number of gender-appropriate choices for girls at each age is
listed in the table.

Number of Appropriate Number of Appropriate
Age, X Choices, Y Age, X Choices, Y

7.5 10 8.0 14
6.0 11 7.0 11
5.5 10 7.5 13
8.0 15 6.5 9
7.5 14 6.5 11
5.0 6 6.0 10
6.0 8 5.5 8

SY?X

SY?X

SY?X

SY?X

Yri
Yri

Yri

(table continued on the following page)
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Number of Appropriate Number of Appropriate
Age, X Choices, Y Age, X Choices, Y

7.0 12 7.0 10
8.0 12 6.5 13
5.0 7 5.0 9
5.5 9

a. Construct a scatterplot and decide whether the data appear to be linearly related.
b. Compute the values of and for the line of best fit, write the equa-

tion for predicting Y from X, and draw the line in the scatterplot. Compute r
using the relationship r � (SX /SY).

c. Compute the values of and for the line of best fit, write the equa-
tion for predicting X from Y, and draw the line of best fit in the scatter plot.
Which slope, or , is the steepest? Compute r using the relationship
r � (SY /SX).

d. Compute r using the relationship Does your answer
agree with the values you computed in parts b and c?

e. Estimate Y for a six-year-old girl and X for a girl who made 11 “appropriate”
choices using the lines of best fit in the scatter diagram.

3. In what sense are the regression lines in Exercise 2 best-fitting lines?
4. For any set of data, there are two regression lines. Explain.
5. What characteristics of the line of best fit do and describe?
6. Distinguish between and .
7. In one sentence, describe a residual or prediction error. Under what conditions

are all residuals equal to zero?
8. If r is equal to zero, the predicted Y score for all participants is the mean of Y.

Draw a scatter diagram that illustrates this point.
9. a. If � a � bXi for all i and a � � b , prove that Hint:

Replace a with � b and take the sum of both sides of the equation—that
is,

b. In words, what does it mean that ?
10. Researchers investigated the relationship between birth order and participation

in dangerous sports such as hang gliding, auto racing, and boxing. They screened
college records to find four men who were first-born, four who were second-
born, and so on. They then obtained the data in the following table.

Number of Number of
Dangerous Dangerous

Participant Birth Order, X Sports, Y Participant Birth Order, X Sports, Y

1 4 1 11 1 0
2 3 1 12 2 0
3 2 0 13 3 2
4 4 2 14 5 1
5 1 0 15 3 1
6 5 2 16 2 1
7 1 0 17 5 2
8 4 1 18 1 1
9 2 1 19 3 1

10 5 3 20 4 2

gYri 5 gYi

gYri 5 g sY 2 bX 1 bXid.
XY

gYri 5 gYi.XYYr

bX?YbY?X

bY?XaY?X

r 5 6"bY?XbX?Y.
bX?Y

bX?YbY?X

bX?YaX?Y

bY?X

bY?XaY?X
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a. Compute using the formula 
b. Assuming a large sample in which the distribution of Y scores for every X score

is approximately normal and all the distributions have the same dispersion,
compute the limits that will contain 68.3% of the scores for fourth-born men.

c. Compute the value of for r � 0 and r � 1. Is relatively large, rel-
atively small, or somewhere in between?

11. In what sense is a mean?
12. How is related to the magnitude of prediction error? For the gender-typed

data in Exercise 2, what are the minimum and maximum values of ?
13. Describe the effect of changes in r on the value of .
14. Compare the assumptions associated with predictions using r, Y, and .
15. a. For each of the following correlation matrices, compute the coefficient of

multiple determination.

(i) Y X1 X2 (ii) Y X1 X2 (iii) Y X1 X2

Y 1.00 .55 .35 1.00 .80 .70 1.00 .60 –.50

X1 1.00 .15 1.00 .90 1.00 –.20

X2 1.00 1.00 1.00

b. For these correlation matrices, determine the improvement in prediction that
can be achieved by using a multiple regression equation instead of a one-
predictor regression equation.

16. Researchers hypothesized that there is a relationship among men’s marital sat-
isfaction and measures of gender role conflict and family environment. They
obtained data for 70 married men who completed self-report instruments mea-
suring marital satisfaction, the dependent variable, and restrictive emotionality
(X1), conflict between work or school and family relations (X2), and family co-
hesion (X3). The following correlation matrix reflects these variables.

Y X1 X2 X3

Y 1.00 –.35 –.37 .56
X1 1.00 .19 –.28
X2 1.00 –.20
X3 1.00

The coefficient of multiple determination for these data is �
(Exercise suggested by Campbell, J. L., and Snow, B. M. [1992]. Gender

role conflict and family environment as predictors of men’s marital satisfaction.
Journal of Family Psychology, 6, 84–87.)
a. Compute the three two-predictor coefficients of multiple correlation that can

be computed for these data: , , and .
b. How much does the addition of a third predictor improve the prediction of Y

relative to the use of the best two-predictor multiple regression equation?
17. Use a statistical software package to obtain a scatterplot, regression equation,

and coefficient of determination for the gender-typed data in Exercise 2.
18. Use a statistical software package to obtain a scatterplot, regression equation,

and coefficient of determination for the birth-order and dangerous-sports data
in Exercise 10.
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7.1 INTRODUCTION TO PROBABILITY

Looking Ahead: What Is This Chapter About?

Everyone has some intuitive notion of what probability is. However, its definition is
a topic for continuing debate among mathematicians. This chapter describes three
views of probability: (1) the subjective-personalistic view, (2) the classical, or logi-
cal, view, and (3) the empirical relative-frequency view. Fortunately, the three views
supplement one another.

You will learn how to compute the probability of combined events using the
addition and multiplication rules and be introduced to the concept of statistical
independence. The chapter ends with a description of several rules for counting the
number of outcomes of simple experiments.

This focus on probability is motivated by practical considerations. You will dis-
cover that probability theory provides a set of tools for dealing with situations in-
volving uncertainty, and that includes most research in the behavioral sciences,
health sciences, and education. Probability theory also provides the foundation for
statistical inference, the subject of the second half of this book. This chapter on
probability and the two that follow on random variables and sampling distributions
introduce ideas that you will use throughout your study of statistical inference.

After reading the chapter, you should know the following:

■ How to compute the probability for the outcomes of simple experiments
■ When to use the addition and multiplication rules of probability
■ The meaning of statistical independence
■ When and how to use different counting rules to determine the number of out-

comes of simple experiments

The Subjective-Personalistic View of Probability

According to the subjective-personalistic view, probability is a measure of
the strength of one’s expectation that an event will occur.

For example, you might assert, “Chances are I’ll pass statistics” or “I think I’ll go
home this weekend.” Such assertions express a degree of belief concerning an event
whose outcome is at the moment uncertain. Subjective probabilities affect our lives
because they enter into our decision-making process. For most of us, the subjective
probability of being struck by a car while crossing the street is low, so we proceed
as if the event won’t happen. But if our subjective probability of, say, being invited
to a New Year’s party is high enough, we will make all suitable preparations for the
event’s occurrence.

Although our behavior is influenced by subjective probability, there are difficulties
in incorporating it into a formal decision-making process. Equally knowledgeable in-
dividuals often disagree on the probability that should be assigned to an event. We find
that some people’s subjective probabilities follow closely the rules of probability
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described later, but other people’s do not. Hence, a subjective probability cannot be
considered apart from the person holding it. The measurement of subjective probabil-
ity poses another problem, although behavioral scientists are beginning to find solu-
tions to this problem. Despite the problems, a formal approach to decision making that
utilizes subjective probability has been developed. It is popular in economics and busi-
ness management and is beginning to find acceptance in behavioral research. This
approach, called Bayesian inference,1 enables a researcher to make decisions about
some true state of affairs using not only sample data but also any prior information that
is available, either from previous samples or simply in the form of informed opinions
or beliefs. You may encounter this approach again when you take advanced statistics
courses.

The Classical, or Logical, View of Probability

Suppose that you want to know the probability of rolling a 2 with a fair die. You rea-
son that because a fair die is symmetrical and dynamically balanced, all six faces are
equally likely to appear. Of the six possible events, only one is a 2, and therefore the
probability of rolling a 2, denoted by p(2), is 1/6.

According to the classical, or logical, view, the probability of an event, say, A,
is given by the number of events favoring A, denoted by nA, divided by the to-
tal number of equally likely events, nS.

2 Thus, p(A) � nA/nS.

The value of p(A) is always a number between 0 and 1 inclusive, because the number
of events favoring A can never exceed the total number of events—that is, nA � nS.

The classical view of probability is based on logical analysis. You reason, for
example, that when a fair coin is tossed, there are two possible outcomes—a head or
a tail—and that the outcomes are equally likely. It follows that the probability of a
head is p(H) � nH /nS � 1/2. The probabilities 1/2 for a head and 1/6 for a 2 in the die
example were arrived at by logical analyses of these very simple experiments. In ef-
fect, you developed a mathematical model of the experiments based on a postulate
and logic. You postulated that certain events are equally likely and deduced the con-
sequences. If your logic is correct, the deductions p(H) � 1/2 and p(2) � 1/6 are
formally correct. However, your deductions may not correspond to the empirical
results of actually tossing a coin or rolling a die because for any particular coin or
die the postulate that the outcomes are equally likely may be incorrect. For example,
the coin may not be fair, or the die may be loaded. However, for fairly simple exper-
iments such as coin tossing and die rolling, where the equally likely postulate is
tenable, experience has demonstrated that the classical view generates probability
estimates that closely approximate empirical probabilities. Consequently, the classi-
cal view of probability is useful for practical problems.

1 Bayesian inference is named for the early 18th-century English clergyman Reverend Thomas Bayes
(1702–1761), whose theorem laid the groundwork for the approach.

2 The letter S, which denotes a sample space, is defined in Section 7.2.
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The Empirical Relative-Frequency View of Probability

A third view of probability can be adopted for experiments that can be repeated
without changing their characteristics, such as coin tossing and die rolling.
Probability according to this view is estimated from experience—by performing an
experiment and determining the ratio of the number of events of interest to the total
number of events. This leads to my final definition of probability.

According to the empirical relative-frequency view, the probability of event
A, p(A), is a number approached by the ratio nA/n as the total number of obser-
vations, n, approaches infinity.

For example, in a simple experiment such as tossing a coin, the probability of a head
can be estimated by making many tosses of the coin and recording the outcomes. If
a head is obtained 12 times in 20 tosses, your best estimate of the probability of
heads is nA/n � 12/20 � .6. If a head is obtained 120 times in 200 tosses, your confi-
dence in the estimate 120/200 � .6 is even greater. As n gets larger and larger, you
assume that the sample estimate nA/n moves closer and closer to some “true proba-
bility” and thus you have greater confidence in larger samples.

Although on any particular coin toss, the outcome is uncertain until you have
examined the result, a pattern of outcomes emerges in many repetitions of the toss.
Many phenomena like coin tosses are random. However, the probabilities of their
outcomes seem to approach fixed values in the long run over many tosses. Probabil-
ities that are based on experience, empirical probabilities, are always approxima-
tions because they are based on a finite as opposed to an infinite number of trials.

The empirical view of probability is useful and intuitively simple, but it, too, has
certain difficulties. It is meaningful to speak of the probability of rain tomorrow or
the probability of getting an A on Tuesday’s quiz; however, there is only one tomor-
row and only one such quiz. The interpretation of probability as the number
approached by nA/n as the number of tomorrows approaches infinity is unconvincing.

In conclusion, none of the views of probability is completely adequate. Because
they are all useful and they are not incompatible, they coexist amicably in the math-
ematician’s bag of conceptual tools. The discussion that follows relies most on the
classical and empirical views.

CHECK YOUR UNDERSTANDING OF SECTION 7.1

1. (a) According to the classical view, what is the probability of observing an odd
number on the toss of a die? (b) What assumptions were required to arrive at the
answer?

2. (a) What is the probability of drawing the queen of spades from a well-shuffled
deck of 52 cards? (b) What assumptions were required to arrive at the answer?

3. (a) According to the relative-frequency view, what is the probability that a head
will occur on the next toss of a fair coin if a head appeared on 52 of the last 100
tosses? (b) According to the classical view, what is the probability that a head
will occur?
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4. The English statistician Karl Pearson is reported to have tossed a coin 24,000
times and obtained 12,012 heads. (a) According to the relative-frequency view,
what is the probability of a head? (b) What is the probability of a tail?

7.2 BASIC CONCEPTS

For behavioral scientists, health scientists, and educators, probability theory is a
means to an end. It is a tool for making inferences about the characteristics of popu-
lations by observing samples drawn from the populations. Sample data are obtained
by observing events in nature or performing experiments under controlled conditions.
I will denote either procedure by the term experiment. In particular, I will focus on
experiments whose outcomes cannot be predicted with certainty. For example, will
desensitization therapy result in more symptom relief than symbolic modeling ther-
apy? Will one cell phone advertisement produce more customers than another?

Simple and Compound Events

One of the simplest experiments you can perform is tossing a die and observing the
number that appears on the upper face. Some of the possible outcomes are the
following:

Event E1—observe a 1

Event E2—observe a 2

Event E3—observe a 3

Event E4—observe a 4

Event E5—observe a 5

Event E6—observe a 6

Event A—observe an odd number

Event B—observe an even number

Event C—observe a number less than 4

An event is an observable happening. Events A, B, and C are called compound
events because they can be decomposed into simpler events. For example, event A
(an odd number) is the occurrence of one of the simple events E1, E3, or E5. Events
E1, . . . , E6 are called simple events because they cannot be decomposed. A list of
simple events provides a breakdown of all possible outcomes of the experiment.

Graphing Simple and Compound Events

It is convenient to represent the simple events in an experiment by a graph called an
Euler diagram.3 An Euler diagram representing the simple events for the die-tossing

3 The diagram was developed by Leonhard Euler (1707–1783), a Swiss mathematician.
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experiment is shown in Figure 7.2-1. In the figure, each simple event is assigned a
point called a sample point. The symbol Ei identifies the ith simple event.

The set of all sample points is called the sample space and is denoted by the
letter S.

A compound event is represented in the diagram by encircling the sample points
for that event. For example, earlier I defined event A as observing an odd number
on the toss of a die and event C as a number less than 4. The two events are repre-
sented in Figure 7.2-2 by two subsets of the sample points. The probability of event
A according to the classical view is p(A) � nA/nS � 3/6; the probability of event C is
p(C) � nC /nS � 3/6.

By examining the sample space, you also can determine the probability for com-
bined events. What is the probability that when a die is tossed the outcome will be
an odd number, event A, and a number less than 4, event C? This probability is de-
noted by p(A and C ). You could observe an odd number and a number less than 4 if
either E1 or E3 occurred—two of the six simple events in Figure 7.2-2. Hence, the
probability that the outcome will represent both events A and C is 2/6 � 1/3.

You could observe an odd number or a number less than 4, event A or C or both
A and C, in four ways: if E1, E2, E3, or E5 occurred—four of the simple events in
Figure 7.2-2. Hence, the probability of A or C or both A and C is 4/6 � 2/3. This

E1

E2 E4

E3 E5

S

E6

Figure 7.2-1. Euler diagram for the die-tossing experiment. The set of all sample
points E1, . . . , E6 defines the sample space S of the experiment.    

E1

E2 E4

E3 E5

A

C 

E6

Figure 7.2-2. Euler diagram for event A, observing an odd number, and event C,
observing a number less than 4.
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probability is denoted by p(A or C). You have arrived at probabilities for the
combined events p(A and C) and p(A or C) by a process of deduction. Section 7.3
describes several rules for computing the probabilities of combined events, but first
I examine three properties of probabilities.

Formal Properties of Probability

Probability theory can be thought of as a system of definitions and operations pertain-
ing to a sample space. According to the classical view described in Section 7.1, the
probability of event A is the ratio of the number of sample points that are examples of
A to the total number of sample points, provided all sample points are equally likely.
For the die-tossing experiment represented in Figure 7.2-1, p(E1) � p(E2) �

. . . �
p(E6) �

1/6. This follows from the assumption that all six faces are equally likely and
the fact that there are six sample points in the sample space—that is, nS � 6. To each
event defined on the sample space, I can assign a number called the probability of Ei
such that

1. 0 � p(Ei) � 1 for all i,
2. and
3. p(S) � 1.

In words, these three properties of probability state that (1) the probability assigned
to an event is a number greater than or equal to 0 and less than or equal to 1, (2) the
sum of the probabilities over the sample space equals 1, and (3) the probability of
the sure event, one of the events in S, is always 1.

CHECK YOUR UNDERSTANDING OF SECTION 7.2

5. An experiment consists of tossing three fair coins. (a) Represent the sample
space by an Euler diagram, and encircle the sample points corresponding 
to observing two heads, event A, and observing at least one head, event B. 
(b) What is the probability of event A? (c) What is the probability of event B?

6. A class contains six psychology (P) majors, one sociology (S) major, and three
history (H) majors. Assume that no students have double majors. (a) Represent
the sample space by an Euler diagram. (b) If a student is selected at random,
what is the probability that the student will be a psychology major? (c) What is
the probability that the student will be a psychology or a sociology major?

7. Determine (a) the probability that a man chosen randomly from a group of 10
men is a psychologist if the group contains three psychologists and (b) the proba-
bility that you will win a car if you buy 6 raffle tickets and 10,000 tickets are sold.

8. Your package of M&Ms contains the following distribution of colored choco-
late candies: four green (G), five red (R), six brown (Br), one orange (O), two
blue (B), and seven yellow (Y). (a) Represent the sample space of the 25 events
by an Euler diagram and encircle events G and B. (b) What is the probability of
reaching into the M&M bag and drawing a green or blue candy?

9. Terms to remember:
a. Subjective-personalistic view of probability
b. Classical or logical view of probability

gn
i51psEid 5 1,
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c. Empirical-relative frequency view of probability
d. Experiment
e. Simple and compound events
f. Euler diagram
g. Sample point
h. Sample space

7.3 PROBABILITY OF COMBINED EVENTS

This section describes rules for determining the probabilities of combined events.
For example, you might want to know the probability that the outcome of an experi-
ment will be event A or event B or both A and B. As noted earlier, I denote this prob-
ability by p(A or B).4 Alternatively, you might want to know the probability that the
outcome will be both A and B. I denote this probability by p(A and B).5

The union of two events A and B is the set of elements that belong to A or to
B or to both A and B. As you will see, the probability of the union of two
events, p(A or B), is computed by using the addition rule of probability. The
intersection of two events A and B is the set of elements that belong to both 
A and B. You will see that the probability of the intersection of two events,
p(A and B), is computed by using the multiplication rule.

Addition Rule of Probability

The addition rule states that the probability of the union of two events A and B,
p(A or B), is equal to

For example, let event A be an even number when a die is tossed and event B, a num-
ber less than 5. The events are represented in Figure 7.3-1. Their probabilities are
determined by counting sample points: p(A) � nA/nS � 3/6; p(B) � nB/nS � 4/6. The
probability of event A and B is the ratio of the number of sample points that are exam-
ples of both A and B to the total number of sample points. In symbols, p(A and B) �
nA and B/nS � 2/6 because there are two simple events in both A and B and six in the sam-
ple space. Given this information,

 5
3
6

1
4
6

2
2
6

5
5
6

 psA or Bd 5 psAd 1 psBd 2 psA and Bd

psA or Bd 5 psAd 1 psBd 2 psA and Bd

4 Some books use the Boolean algebraic symbol in place of or.
5 Some books use the Boolean algebraic symbol in place of and.d

c
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Thus, the probability of observing an even number or a number less than 5 is 5/6. In
computing p(A or B), the value p(A and B) � 2/6 is subtracted from p(A) � p(B) to
avoid counting the simple events E2 and E4 twice, because they are contained in
event A and in event B.

The information contained in Figure 7.3-1 is presented in Table 7.3-1. This mode of
presentation is easier to interpret, especially when the number of events exceeds two.

The addition rule leads to another important rule: the complement rule.

For any event A, the event that A does not occur is called the complement of
A and is written Not A. The probability that A does not occur, denoted by
p(Not A), is given by

p(Not A) � 1 � p(A)

For the sample space in Figure 7.3-1, the probability of not observing an even
number, event A, or a number less than five, event B, is

p3Not sA or Bd 4 5 1 2 psA or Bd 5 1 2 5>6 5 1>6

E1 E3 E5

Event A and B � {E2, E4 }

Event B � {E1, E2, E3, E4 }

Event A � {E2, E4, E6 }

E6

E2
E4

Figure 7.3-1. Euler diagram for event A, observing an even number, and event B,
observing a number less than 5. The intersection of A and B is the shaded area.

TABLE 7.3-1 Tabular Presentation of Information in Figure 7.3-1

Event
A Not A

B A and B = {E2, E4} Not A and B = {E1, E3} B = {E1, E2, E3, E4}

Not B A and Not B = {E6} Not A and Not B = {E5} Not B = {E5, E6}

A = {E2, E4, E6} Not A = {E1, E3, E5}

Event
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Addition Rule for Mutually Exclusive Events

Two events may contain no sample points in common, in which case the events are
said to be mutually exclusive or disjoint. For example, consider the following events:
observe an even number on the toss of a die, event A, and observe an odd number,
event B. An Euler diagram depicting the two events is shown in Figure 7.3-2. Because
the intersection A and B contains no sample points, A and B are mutually exclusive.

For mutually exclusive events, the addition rule can be simplified because for this
case, p(A and B) � 0. The addition rule p(A or B) � p(A) � p(B) � p(A and B)
becomes

p(A or B) � p(A) � p(B)

The probability of observing an even number or an odd number in tossing a die is
p(A or B) � 3/6 � 3/6 � 1. Because the probability is 1, we know that when a die is
tossed, one of the events must occur.

Events for which the probability of their union equals 1 are called collectively
exhaustive or simply exhaustive.

Multiplication Rule of Probability

The multiplication rule is used to compute the probability of the joint occurrence, or
intersection, of two or more events. For example, suppose that 100 psychology
majors have been classified according to gender and class level. The number of stu-
dents in each category is given in Table 7.3-2. If a student is selected by lottery, what
is the probability that the student will be both a woman and a lowerclassman? As
you will see, the multiplication rule lets you determine the probability that the stu-
dent selected will be in the intersection woman and lowerclassman—that is, both a
woman and a lowerclassman. This information differs from that given by the
addition rule, which tells you the probability that the student selected will be a
woman or a lowerclassman or a woman lowerclassman.

E1

E2 E4

E3 E5

Event A

Event B

E6

Figure 7.3-2. Euler diagram for event A, observing an even number, and event B,
observing an odd number. Because the intersection A and B contains no sample
points, the events are mutually exclusive.
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Before presenting the multiplication rule, I need to discuss the concept of condi-
tional probability. Two events often are related so that the probability of one event
depends on whether the other has or has not occurred. Consider these events: Your
roommate reports that she feels bad, event A, and her temperature is 103, event B.
The two events are obviously related because the probability of an elevated temper-
ature, p(B), is much higher if a person feels bad than if the person feels good. This
type of relationship is a conditional probability.

The conditional probability of B given that A has occurred is denoted by
p(B | A) and is equal to

The vertical line “ | ” in (A | B) is read “given,” or “given that.” Similarly, the
conditional probability of A given that B has occurred is

The calculation of conditional probability will be illustrated using information in
Table 7.3-2. The probability that a student selected by a lottery is a woman, given
that you know the student is a lowerclassman, is

You may find it helpful to realize that conditional probability always reduces the
sample space of interest to a subspace of the original sample space. For example,

psW k Ld 5
nW and L

nL
5

10
50

5 .20

psA k Bd 5 psA and Bd>psBd 5 anA and B

nS
b^anB

nS
b 5

nA and B

nB

psB k Ad 5 psA and Bd>psAd 5 anA and B

nS
b^anA

nS
b 5

nA and B

nA

TABLE 7.3-2 Number of Psychology Majors by Gender and Class Level

Lowerclassman, L Upperclassman, U Marginal total

Women, W 10 20 nW = 30
p(W and L) = nW and L / nS p(W) = nW / nS

= 10 / 100 = 30 / 100
= .10 = .30

Men, M 40 30 nM = 70
p(M) = nM / nS

= 70 / 100
= .70

Marginal total nL = 50 nU = 50 nS = 100
p(L) = nL / nS p(U) = nU / nS

= 50 / 100 = 50 / 100
= .50 = .50
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the condition of being a lowerclassman reduces the sample space of interest to the
left column of Table 7.3-2, which is a smaller sample space of size nL � 50. The
probability of selecting a woman is a subset of this smaller sample space, namely,
10 events out of 50. Thus, the probability of selecting a woman if you know that the
student is a lowerclassman is 10/50 � .20. However, the probability of selecting a
woman in the absence of information about class level is p(W) � 30/100 � .30 (see
Table 7.3-2). The events W and L are related because a knowledge of one event,
class level, affects the probability of the other event, selecting a woman. In this
example, p(W | L) � .20, but p(W) � .30.

The multiplication rule can be stated now. Given two events A and B, the
probability of obtaining both A and B jointly is the product of the probability
of obtaining one event, say A, times the conditional probability of the other
event, B, given that A has occurred. In other words, the probability of the
intersection of the events A and B, p(A and B), is given by

p(A and B) � p(A)p(B | A)

� p(B)p(A | B)

For the events defined in Table 7.3-2, the probability of selecting a student who is
both a woman and a lowerclassman is

The multiplication rule may seem unnecessarily complicated because if nW and L and
nS are known, p(W and L) � nW and L / nS. Sometimes only a marginal probability,
p(A) or p(B), and a conditional probability, p(A | B) or p(B | A), are known. For exam-
ple, suppose that you want to know the probability of drawing two aces from a 52-card
deck that has been well shuffled. On the first draw, the probability of drawing an ace is
p(ace on first draw) � 4/52. If an ace is drawn on the first draw and is not replaced in
the deck, the conditional probability of drawing an ace on the second draw is p(ace on
second draw | ace on first draw) � 3/51. The probability of drawing two aces on two
draws without replacement is

p(two aces) � p(ace on first draw) � p(ace on second draw | ace on first draw)

5 a 4
52

b a 3
51

b > 0.0045

 5 a 50
100

b a10
50

b 5 .10

 5 psLdpsW k Ld 5 anL

nS
b anW and L

nL
b

 5 a 30
100

b a10
30

b 5 .10

 psW and Ld 5 psWdpsL k Wd 5 anW

nS
b anW and L

nW
b
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Multiplication Rule for Statistically Independent Events

Two events A and B are statistically independent if the probability of one
event’s occurring is unaffected by the occurrence of the other. In other words,
A and B are statistically independent if and only if p(A | B) � p(A). Further-
more, if p(A | B) � p(A), it also must be true that p(B | A) � p(B).

The events p(W) and p(L) in Table 7.3-2 are not statistically independent because
p(W | L) is not equal to p(W) as the following computations show.

is not equal to

I can easily construct an example in which the events are independent. Consider an
experiment in which a fair coin is tossed and a fair die is rolled. Because the coin
can land in one of two ways, H or T, and the die, in one of six ways, 1, . . . , 6, the
possible outcomes are H1, T1, H2, T2, . . . , H6, T6. The sample space for the exper-
iment is shown in Figure 7.3-3. Let event A be a head and B a 5. The probabilities
required to demonstrate independence of A and B are

and

Because p(A) � p(A | B) � 1/2, the events are statistically independent; this agrees
with our intuition that what happens on the roll of a die can in no way affect the
outcome of tossing a coin.

psA k Bd 5
nA and B

nB
5

1
2

psAd 5
nA

nS
5

6
12

5
1
2

psWd 5
nW

nS
5

30
100

5 30

psW k Ld 5 psW and Ld>psLd 5
nW and L

nL
5

10
50

5 .20

H1 H2 H3 H4 H5 H6

T1 T2 T3 T4 T5 T6

nB � 2

nA and B � 1nS � 12

nA � 6

Figure 7.3-3. Euler diagram for event A, observing a head, and event B, observing
a 5, when a coin and die are tossed.
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For statistically independent events, the multiplication rule can be simplified
because

p(A | B) � p(A) and p(B | A) � p(B)

The multiplication rule
p(A and B) � p(A)p(B | A)

� p(B)p(A | B)

becomes
p(A and B) � p(A)p(B)

As you just saw, the probability of observing a head and a 5 are independent; hence,
the probability of their joint occurrence is

Common Errors in Applying the 
Rules of Probability

The probability rules described in this section often are used incorrectly. Some of
the more common errors are the following:

1. Using the addition rule for mutually exclusive events, p(A or B) � p(A) �
p(B), when the events are not mutually exclusive. For example, let event A
be the classification “psychology major” and event B, “biology major.” If
p(A) � .20 and p(B) � .15, you might conclude that the probability that a
student is either a psychology major or a biology major is p(A or B) � .20 �
.15 � .35. This is incorrect because some students have a double major, and
these students have been counted twice—once in computing p(A) and again
in computing p(B). Assume that p(A and B) � .03; the correct probability is
given by p(A or B) � p(A) � p(B) – p(A and B) � .20 � .15 – .03 � .32.

2. Using the addition rule when the multiplication rule should be used and vice
versa. For example, on the toss of a die the probability of observing a 3, event
A, or a 5, event B, is given by p(A or B) � p(A) � p(B) � 1/6 � 1/6� 2/6 and
not by p(A and B) � p(A)p(B) � (1/6)(1/6) � 1/36.

3. Using the multiplication rule for statistically independent events, p(A and B) �
p(A)p(B), when the events are not statistically independent. Suppose the prob-
ability of seeing an advertisement for a product, event A, is .40 and the proba-
bility of buying the product, event B, is .30. If the dependency between A and
B is ignored, the incorrect probability of both seeing an advertisement and
buying the product is p(A and B) � (.40)(.30) � .12. The correct probability
takes in to account the conditional probability of buying the product given that
the ad has been seen, p(B | A) � .50, so that p(A and B) � p(A)p(B | A) �
(.40)(.50) � .20.

psA and Bd 5 anA

nS
b anB

nS
b 5 a 6

12
b a 2

12
b 5

1
12
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CHECK YOUR UNDERSTANDING OF SECTION 7.3

10. A standard deck of cards contains 52 cards: 10 number cards of each suit
(counting the ace as a 1) and three face cards of each suit. If someone draws a
card from the deck at random, what is the probability that it will be (a) an ace,
(b) a heart, (c) an ace or a heart or both, (d) a heart or a spade, (e) a face card,
(f) a card less than 5, or (g) not an ace?

11. Events A and B are independent; p(A) � .6 and p(B) � .8. What is the probabil-
ity that (a) both will occur? (b) Neither will occur? (c) One or the other or both
will occur?

12. Highway accident statistics show that 10% of all automobile accidents and half
of all fatal automobile accidents are caused by drunken drivers. Four in 1,000
reported accidents are fatal. (a) Fill in the table with the appropriate probabili-
ties. (b) What is the joint probability that a fatal accident is caused by a drunken
driver?

Fatal, F Nonfatal, Not F

Drunken Driver, D p(D and F) � p(D and Not F) � p(D) �

Other Cause, O p(O and F) � p(O and Not F) � p(O) �

p(F) � p(Not F) �

13. You ask your roommate to mail a letter. The probability that she will mail it is
.98. The probability that the post office will fail to deliver it, given that it was
mailed, is .15. What is the probability that the letter will be mailed and the post
office will fail to deliver it?

14. Exercise 8 in “Check Your Understanding of Section 7.2” described the color of
the candies in a package of M&Ms. If you draw a candy at random from the
package, what is the probability that it will be (a) green, (b) red or yellow, (c)
not green, and (d) colorless? After eating the first candy, you draw another from
the package. What is the probability that you have (e) eaten a blue candy and
drawn an orange candy, (f) eaten a blue candy and drawn an orange or brown
candy?

15. Terms to remember:
a. Union b. Intersection
c. Addition rule d. Addition rule for mutually 
e. Complement rule exclusive events
f. Mutually exclusive events g. Disjoint events
h. Exhaustive events i. Conditional probability
j. Multiplication rule k. Marginal probability
l. Statistical independence m. Multiplication rule for mutually
n. Sampling with (without) exclusive events

replacement
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7.4 COUNTING SIMPLE EVENTS

Listing all the simple events in an experiment can be tedious. Even a small experi-
ment, such as recording the outcome of tossing three dice, has a large sample space,
in this case 6 � 6 � 6 � 216 sample points. Fortunately, it is not necessary to list
all of the simple events to compute probabilities. The required information can be
determined using the counting rules discussed in this section.

Fundamental Counting Rule6

Suppose that an event can occur in n1 ways and a second event can occur in n2
ways and that each of the first event’s n1 ways can be followed by any of the
second’s n2 ways. Then, according to the fundamental counting rule, event 1
followed by event 2 can occur in n1n2 ways.

To illustrate, suppose that you toss a coin and then a die. The number of possible
outcomes of the experiment is

n1n2 � (2)(6) � 12

because a coin can land heads or tails (n1 � 2) and a die has six faces (n2 � 6). The
simple events are shown in the tree diagram of Figure 7.4-1.

The fundamental counting rule can be extended to k > 2 events. If there are k
events (event 1 having n1 outcomes, followed by event 2 having n2 outcomes, and so

Stage 1
n1 � {H, T}

Stage 2
n2 � {1, 2, 3, 4, 5, 6}

H
T

H1 
H2
H3
H4
H5

H6

T1 
T2
T3
T4
T5

T6

Figure 7.4-1. Tree diagram of possible outcomes of tossing a coin and then a die.

6 Also called the multiplication principle.
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forth), the outcome can occur in n1n2 . . . nk ways. For example, the number of pos-
sible outcomes of tossing three dice and a coin is 6 � 6 � 6 � 2 � 432.

Permutation of n Objects Taken n at a Time, nPn

Suppose that you have three distinct objects, and you want to find the number of dif-
ferent ordered sequences in which the objects can be arranged. For example, in how
many ordered sequences can the letters A, B, and C be arranged? The answer is six:
ABC, ACB, BAC, BCA, CAB, and CBA. Arranging n objects in an ordered sequence
is equivalent to putting them into a long box with n ordered compartments. The first 

1 2 3 . . . n

n ways n – 1 ways n – 2 ways 1 way

compartment can be filled in any of n ways, which uses up one of the objects; the
second compartment can be filled in any of n – 1 ways, . . . , and the last compart-
ment, in only one way. Applying the fundamental counting rule, the number of or-
dered arrangements of n objects is the product n(n – 1)(n – 2) . . . 1. The quantity
n(n – 1)(n – 2) . . . 1 is denoted by the symbol n!, which is read “n factorial.”

An ordered sequence of n distinct objects taken all together is called a permu-
tation of the objects. The total number of such permutations, denoted by nPn, is
given by

The symbol nPn is read “the permutation of n objects taken n at a time.”
Suppose that I am doing a taste preference experiment in which a panel of 10 ex-

perts rates five nondairy coffee creamers. I want to control for sequence effects—
the effects of presenting the five coffee creamers in a particular order. One way to
control for sequence effects is to present the five coffee creamers in all possible se-
quences to each judge. In how many ordered sequences can coffee prepared with the
five creamers be presented? The answer is 5! � 5 (4)(3)(2)(1) � 120. Finding 10
experts willing to sit through the 120 tasting sequences is probably impossible. I
need to consider alternative designs for my experiment. Another and more practical
way to control for sequence effects is to present the coffee creamers in 12 of the 120
sequences to one expert, in 12 different sequences to another expert, and so on. Fol-
lowing this procedure, all 120 of the sequences would be used, but each of the 10
expert judges would receive only 12 sequences.

Permutation of n Objects Taken r at a Time, nPr

I illustrated the computation of nPn with an example in which I put n objects in a box
with n ordered compartments. Suppose that the box only has r ordered compart-
ments, where r � n.

nPn 5 n! 5 nsn 2 1d sn 2 2d . . . 1
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The number of permutations of n distinct objects taken r at a time, where r � n,
is denoted by nPr

7 and is equal to n(n – 1)(n – 2) . . . (n – r � 1).

For example, the number of ordered sequences of five letters, A, B, C, D, and E,
taken three at a time, is 5P3 � 5(5 – 1)(5 – 3 � 1) � (5)(4)(3) � 60. The rationale
behind the formula is as follows. Consider the box

1 2 3

n ways n – 1 ways n – (r – 1) ways

with r � 3 ordered compartments. The first compartment can be filled in any of n � 5
ways and the second, in n – 1 � 4 ways. When you come to the r � 3rd compart-
ment, you have used r – 1 � 2 of the n letters so that n – (r – 1) � n – r � 1 � 3
letters are left to fill the last compartment. According to the fundamental counting
rule, the number of ordered sequences is the product n(n – 1) . . . (n – r � 1).
Therefore, the number of ordered sequences of the five letters taken three at a time
is (5)(4)(3) � 60.

An equivalent formula for computing nPr, is 8

To illustrate, the permutations of five distinct objects taken three at a time is

This answer agrees with that obtained using nPr � n(n – 1)(n – 2) . . . (n – r � 1).
The taste-preference experiment described earlier could be performed using the

method of paired comparisons. In this method, an expert sips first one and then a
second cup of coffee prepared with two of the creamers and indicates a preference.
The procedure is repeated until each creamer has been compared twice with every
other creamer, once in the first cup sipped and once in the second cup. In how many
ordered sequences can five creamers be presented two at a time? The answer is
given by

or

The method of paired comparisons would require each expert to make a total of 20
judgments—10 judgments in which a particular creamer in a pair is in the first cup
sipped and 10 in which the creamer is in the second cup sipped.

5P2 5
5!

s5 2 2d!
5

s5d s4d s3d s2d s1d
s3d s2d s1d

5
120
6

5 20

5P2 5 5s5 2 2 1 1d 5 5s4d 5 20

5P3 5
5!

s5 2 3d!
5

s5d s4d s2d s1d
s2d s1d

5
120
2

5 60

nPr 5
n!

sn 2 rd!

7 Also denoted by P(n, r), and (n)r.
8 In computations involving n!, remember that 1! = 1 and that by definition 0! = 1.

Pn
r,
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Combination of n Objects Taken r at a Time, nCr

Sometimes you are not interested in the number of ordered sequences or
permutations of n objects taken r at a time, but instead in the number of differ-
ent combinations of r objects that can be selected from n distinct objects when
order is ignored. This is referred to as the combination of n objects taken r at
a time and is denoted by nCr.

9 The formula for nCr is

The rationale for the formula is as follows. Consider four letters A, B, C, and D
taken two at a time. The number of ordered sequences is 4P2 � 4!/(4 � 2)! � 12.
But suppose that you do not want to distinguish AB from BA, BC from CB, and so
on. You note that any sequence of r � 2 objects can be permuted in r! � 2 (1) � 2
ways. If you want to ignore the order of the r objects in nPr, you can divide nPr by
r!, which gives

The number of different sets of r � 2 letters that can be selected from n � 4 letters,
A, B, C, D, is

The six sets are as follows: AB, AC, AD, BC, BD, and CD. Because the order of let-
ters in a pair is of no interest, the six could just as well have been written BA, CA,
AD, CB, BD, and CD.

The combination of n objects taken r at a time will be used in Chapter 8 to de-
velop the binomial distribution, which describes the possible outcomes of a particu-
lar kind of experiment.

CHECK YOUR UNDERSTANDING OF SECTION 7.4

16. Determine the number of possible outcomes for the following: (a) Three coins
are tossed. (b) Four dice are rolled. (c) A coin and a die are tossed.

17. If there are three candidates for governor and five for mayor, in how many ways
can the two offices be filled?

18. The four Russian novels War and Peace, Anna Karenina, Crime and Punish-
ment, and The Brothers Karamazov are to be placed on a shelf. In how many or-
dered sequences can the books be arranged?

4C2 5
4!

2!s4 2 2d!
5

4s3d s2d s1d
2s1d 32s1d 4 5 6

nCr 5
nPr

r!
5 °

n!
sn 2 rd!

r!
¢ 5

n!
r!sn 2 rd!

nCr 5
n!

r!sn 2 rd!

9 Also denoted by , C(n, r), and .sr
ndCn

r
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19. How many different ways can 10 people be seated four at a time on a bench
with only four seats?

20. Given nine areas from which to choose, in how many ways can a student select
(a) a major-minor area? (b) a major and first and second minors? (c) a major and
two minors if it is not necessary to designate the order of the minors?

21. Terms to remember:
a. Fundamental counting rule b. Permutation
c. n factorial d. Combination

7.5 LOOKING BACK: WHAT HAVE YOU LEARNED?

Probability is an abstract mathematical concept that can be defined in a number of
ways. The three most useful views of probability are the subjective-personalistic
view; the classical, or logical view; and the empirical relative-frequency view.

My interest in probability is pragmatic: I want to make statements about the likeli-
hood of observing various outcomes in experiments. An experiment is any well-defined
act or process that leads to an outcome. An outcome is either a compound event that
can be decomposed into simple events, such as observing an even number on the toss
of a die, or a simple event that cannot be decomposed. If I assign to each simple event a
point called a sample point, the possible outcomes of an experiment can be represented
by an Euler diagram. The set of all sample points is called the sample space, S.

Whatever one’s view, probability is based on a system of definitions and opera-
tions pertaining to a sample space. If S is the sample space for an experiment and nS
is the number of sample points in S, I can associate with each event Ei a real number
called the probability of Ei, p(Ei), satisfying the following properties:

1. 0 � p(Ei) � 1, for all i

2.

3. p(S) � 1

These properties describe probabilities, but they do not tell you how to compute
them. If you adopt the classical view, the probability of an event A is computed from
the formula p(A) � nA/nS, where nA is the number of events favoring A and nS is the
total number of equally likely events in the sample space S. This view of probability
is based on logical analysis. You reason that an experiment has nS possible out-
comes, the outcomes are equally likely, and nA of the outcomes favor A. If your rea-
soning is correct, the value you compute for p(A) will agree closely with that based
on the relative-frequency view.

According to the relative-frequency view, the probability of event A is the num-
ber approached by nA/n as the total number of observations, n, approaches infinity.
The estimate nA/n is based on experience because it is computed for a sample from
the population of possible experiments. On average, the larger the sample, the closer
the estimate is to the true probability.

Probabilities for combined events can be computed by the addition rule and the
multiplication rule. The addition rule states that the probability that an event will be
A or B or both is

psA or Bd 5 psAd 1 psBd 2 psA and Bd

gns
i 5 1psEid 5 1
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For mutually exclusive events, p(A and B) � 0, and the rule simplifies to

The multiplication rule states that the probability that an event will be both A and B is

For statistically independent events, p(B | A) � p(B) and p(A | B) � p(A), and the
rule simplifies to

The number of simple events in an experiment can be determined either by enu-
meration, which is the hard way, or by using counting rules, which is the easy way.
The key rules are as follows:

1. Fundamental counting rule. If there are k events, event 1 followed by 
event 2, . . . , followed by the kth event, the outcome can occur in n1n2

. . . nk
ways.

2. Permutation of n objects taken n at a time. The number of ordered sequences
of n distinct objects taken all together is nPn � n! � n(n – 1)(n – 2) . . . 1.

3. Permutation of n objects taken r at a time. The number of ordered sequences
of n distinct objects taken r at a time is nPr � n!/(n – r)!.

4. Combination of n objects taken r at a time. The number of different combina-
tions of r objects that can be selected from n distinct objects when order is ig-
nored is nCr � n!/[r! (n � r)!].

REVIEW EXERCISES FOR CHAPTER 7

1. Why is subjective probability difficult to incorporate into a formal decision-
making process?

2. To use the classical approach to probability, what information do you need to
know?

3. (a) According to the classical view, what is the probability of observing a num-
ber less than 5 on the toss of a die? (b) What assumptions are required to arrive
at the answer?

4. (a) According to the classical view, what is the probability of drawing the king
of hearts from a well-shuffled deck of 52 cards? (b) What assumptions are re-
quired to arrive at the answer?

5. (a) According to the relative-frequency view, what is the probability that a head
will occur on the next toss of a fair coin if a head appeared on 54 of the last 100
tosses? (b) According to the classical view, what is the probability that a head
will occur?

6. An experiment consists of tossing two dice, one green and one red, and record-
ing the outcome. (a) Represent the sample space by an Euler diagram, and en-
circle the sample points corresponding to observing a 7 as the sum of the dice.
(b) What is the probability that the sum of two dice is 7? (c) What is the proba-
bility that the sum of two dice is less than 5?

psA and Bd 5 psAdpsBd

psA and Bd 5 psAdpsA k Bd

psA or Bd 5 psAd 1 psBd
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7. A fair die is rolled once. You win $5 if the outcome is even, event A, or if it is
divisible by 3, event B. (a) Represent the sample space by an Euler diagram and
encircle events A and B. (b) What is the probability of winning the $5?

8. The following are properties of probabilities. In your own words, state what each
property means. (a) 0 � p(Ei) � 1, for all i. (b) . (c) p(S) � 1.

9. Events A, B, C, and D are mutually exclusive and exhaustive, each having a
probability of 1/4. Determine the following.
a. p(A or C) c. p[Not(A or C)]
b. p(A or B or C or D) d. p[Not(A or B or C)]

10. For the data in the table, determine whether the events “attend college” and
“man” are statistically independent.

Attend college
Yes No

Man .30 .20 .50

Woman .10 .40 .50

.40 .60 1.00

11. Data were obtained on the incidence of rheumatic disease and the presence of gri-
macing in schizophrenic patients. In a sample of 1942 patients, 6% had a known
history of rheumatic disease, 21.8% grimaced, and 1.8% had a history of both
rheumatic disease and grimacing. (a) Fill in the table with the appropriate proba-
bilities. (b) What is the probability of grimacing, given a history of rheumatic dis-
ease? (c) Are grimacing and rheumatic disease statistically independent?

Grimacing, G No grimacing, No G

History of
rheumatic disease, D

No history of
rheumatic disease, No D

12. A smoker has 10 pipes, three of which are meerschaums. Of his six curved-stem
pipes, two are meerschaums. He asks his son to bring him a curved-stem meer-
schaum. Because the boy does not know a meerschaum from other curved-stem
pipes, he picks up a curved-stem pipe at random. (a) Fill in the table with the
appropriate probabilities. (b) What is the probability that the son picked the
right pipe?

Other Kind
Meerschaum, M of Pipe, O

Curved Stem, C p(C and M) � p(C and O) � p(C) �

Straight Stem, S p(S and M) � p(S and O) � p(S) �

p(M) � p(O) �

gn
i51psEid 5 1
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13. One hundred students are enrolled in a university course. Fifty are men (M) and
50 are women (W). Of the 100 students, 60 are undergraduates (U) and 40 are
graduate students (G). Of these 100 students, 20 are both men and undergradu-
ates. For a student selected at random from the class, compute the following
probabilities. (Hint: p(U) � p(M and U) � p(W and U). It is helpful to con-
struct a 2 � 2 table and fill in the information that is known.)
a. p(W and U) d. p(M | U)
b. p(W and G) e. p(W | G)
c. p(M and G)

14. A statistician who worked in operations research for the British Bomber Com-
mand during World War II determined that the probability that a member of a
bomber crew sent on night raids over Germany would complete a standard tour
of duty (30 missions) was equal to .30. (Suggested by Dyson, F. [1981]. Dis-
turbing the universe. New York: Harper & Row.)
a. What is the probability of a crewman not surviving (p(Not S)) a standard tour

of duty?
b. If successive tours of duty are treated as independent events, what is the

probability of surviving two tours of duty?
c. If successive tours of duty are treated as independent events, what is the

probability of surviving the first tour of duty but not the second?
d. If successive tours of duty are treated as independent events, what is the

probability of not surviving three tours of duty?
15. In a survey of 100 couples who had recently had marital counseling, 80 of the

couples reported that their relationship had improved (I ). Sixty of the couples
in the improved group had children (C). Assume that a couple is selected at ran-
dom from the sample. Compute the following probabilities for that couple.
a. p(C | I )
b. p(Not C | I )
c. Find two probabilities whose product gives p(C and I ).

16. The Greasy Spoon menu offers a choice of five appetizers, four salads, eight en-
trees, seven vegetables, and nine desserts. If a meal consists of one from each
category, in how many ways can you select a dinner?

17. Two different psychology books, four different statistics books, and three dif-
ferent sociology books are to be arranged on a shelf. (a) In how many ordered
sequences can the books be arranged? (b) If the books in each subject must be
kept together, how many ordered sequences are possible?

18. In how many different ways can eight people be seated four at a time on a bench
with only four seats?

19. On a statistics examination consisting of 12 questions, a student may omit five.
In how many ways can the student select the problems to answer?

20. (a) In how many ways can six people be seated in a row at the head banquet
table? (b) Suppose the people are to be seated in pairs at separate tables; in how
many ways can they be seated if we consider the arrangement AB to be differ-
ent from BA? (c) In how many ways if you consider AB to be equivalent to BA?

21. How many different committees of three men and four women can be formed
from eight men and six women?
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8.1 INTRODUCTION

Looking Ahead: What Is This Chapter About?

You learned in Chapter 1 that a random sample is often used in research when it is
not possible to observe all of the elements in the population. This chapter discusses
how to draw a random sample. You also will learn about several important concepts
that are used in inferential statistics: random variable, probability distribution, and
sampling distribution. In the simplest terms, a random variable is the numerical out-
come of an experiment. For example, the random variable could be the number of
heads when I toss a coin once. The value of the random variable, number of heads,
is either 0 or 1. A table showing the probability associated with the possible out-
comes, 0 and 1, is called a probability distribution. If I toss a coin two or more
times, I can count the number of heads on the n � 2 trials. Now the random variable
is a statistic (count) based on the outcome of the n trials. A table showing the
probability associated with each of the possible outcomes is called a sampling
distribution. In this chapter you will learn how to describe the central tendency and
dispersion of sampling distributions.

After reading this chapter, you should know the following:

■ How to draw a random sample using a table of random numbers
■ How to compute the expected value and standard deviation of discrete random

variables
■ The characteristics of a Bernoulli trial
■ How a binomial random variable is obtained from n Bernoulli trials

8.2 RANDOM SAMPLING

Inferential statistics are used in reasoning from a sample to the population—that is,
determining the characteristics of a population by observing a sample from the pop-
ulation. Some samples provide a sound basis for this process; others do not. The dif-
ference lies in the method by which the samples are selected.

The method of drawing samples from a population so that every possible sam-
ple of a particular size has the same probability of being selected is called
random sampling, and the resulting sample is called a random sample.

As the definition indicates, randomness is a property of the procedure rather than of
the particular sample obtained. The term random sample simply refers to a sample
produced by a random sampling procedure. Other sampling methods based on hap-
hazard or purposeless choices such as enlisting volunteers, students enrolled in a
psychology course, or every 10th name in an alphabetical list is called nonrandom
sampling. The resulting samples, unlike random samples, do not provide a sound
basis for determining the properties of populations.

As you will see, the inferential procedures described in subsequent chapters assume
either random sampling from a population or random assignment of participants to the
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various conditions of an experiment.1 If random sampling is used, there is no guaran-
tee that a particular random sample will resemble the population, but in the long run,
random samples are more likely to do so than nonrandom samples. Random assign-
ment of participants to experimental conditions helps to ensure that systematic bias is
not introduced, as it would be, for example, if the best participants were unwittingly
assigned to the experimental conditions that are expected to be superior.

Defining the Population

The first step in drawing a random sample is to identify the population. A popula-
tion was defined in Chapter 1 as the collection of all people, objects, events, or
observations having one or more specified characteristics. The population is identi-
fied when you specify the common characteristics, for example, this year’s
freshmen at Oregon State University or the outcomes of tossing a die for eternity.
A single person, object, event, or observation is called an element of the popula-
tion. The elements of the population can be finite2 (limited) in number, as in this
year’s freshmen at Oregon State, or infinite in number, as in the outcomes of toss-
ing a die for eternity.

In practice, it is difficult to obtain a random sample from large populations like
residents of a city or students at a university. There are two obstacles: obtaining an
accurate list of the population elements and securing their participation once they
have been selected. Some cities have lists of their residents, but unfortunately the
information is not updated frequently. Telephone directories are more current but
exclude certain segments of society more often than others. The use of either list in-
troduces systematic bias into an experiment. A researcher faced with the choice
between the two lists might prefer to redefine the population to fit the more current
list. Instead of all city residents, the population is defined as all households in the
telephone directory.

Sampling with or without Replacement

After identifying the population, one must decide whether to sample with re-
placement or without replacement. In sampling with replacement, a sampled
element is returned to the population so that it is available to be drawn again;
in sampling without replacement, the element is not replaced and hence can
be drawn only once.3

1 Random assignment is discussed in Section 13.2.
2 The probability of drawing a particular sample from a finite population is given by 1/(nCr) (see Section 7.4),

where r denotes the sample size and n denotes the population size. For example, the probability for r � 2
and n � 100 is 1/{100!/[2!(100 � 2)!]} � 1/4,950 .0002.

3 The number of different samples of size r that can be drawn without replacement from a population of
size n is given by nCr. The number of different samples with replacement is given by n1n2 . . . nr.

>
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Sampling with replacement is rarely appropriate for the kinds of problems investi-
gated in the behavioral and medical sciences and education because the sampled
elements may be significantly and permanently altered by participating in the exper-
iment. For example, once a child has learned an arithmetic unit, that child is no
longer a naïve learner with respect to the unit; once tissue has been surgically
removed, it cannot be removed again should the organism happen to be sampled a
second time.

Random Sampling Procedures

A variety of procedures can be used to draw a random sample. If the population is
finite, each element can be identified on a slip of paper and the slips placed in a con-
tainer, thoroughly mixed, and then drawn blindly from the container. If sampling
with replacement is used, the identity of a selected element is noted and the slip is
returned to the container; it is then available to be drawn again. The blind drawing-
of-slips procedure seems simple enough, but in practice it is not always random—
witness the December 1969 draft lottery for the Vietnam War. More slips containing
birth dates in the later months of the year were drawn, much to the dismay of men
with birthdays in September, October, November, and December who were sent off
to fight an unpopular war. The problem with the sampling procedure was attributed
to placing the slips in the bowl in chronological order and failing to shake the bowl
thoroughly. Slips for the later months were the last ones in the bowl and the first
ones drawn.

Another technique for drawing a random sample is to flip a coin or spin a roulette
wheel, with the outcome of the random device determining whether an element is or
is not included in the sample. This procedure is practical for selecting a small sam-
ple but becomes tedious for larger ones.

Most researchers prefer to use a table of random numbers to draw their samples.
Random number tables like the one in Appendix Table D.1 were prepared so that
integers from 0 to 9 occur with about equal frequency and appear in the table in a
random order. The digits in Appendix Table D.1 are in groups of two to make them
easier to read, but the grouping has no other significance.

Using a Table of Random Numbers

Suppose that I want a random sample of 30 speech-therapy majors. A printout list-
ing 273 majors constituting the population is obtained from the computer center, and
the students are numbered serially from 001 to 273. I turn to Appendix Table D.1
and note that it has two pages with 50 rows and 25 columns each. To decide where
to begin in the table I close my eyes and drop my pencil on the table. Suppose the
pencil lands on the second page with the point closest to the first number in row 21
and column 13. The numbers reading from left to right are 22 00 20 35 55 . . . . I let
the first number, 2, identify the table page on which I will begin (I had numbered
the pages 1 and 2, so I was looking for a one-digit number between 1 and 2); the
next two digits, 20, identify the row in which I will begin (in this case I was looking
for a two-digit number between 1 and 50); and the next two digits, 02, the column
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(here I was looking for a two-digit number between 1 and 25). Because I previously
decided to read the numbers from left to right, although any sequence can be used,
I proceed to draw my sample. I begin on page 2, row 20, and column 2 and read
numbers in groups of three until I obtain 30 unique numbers between 001 and 273,
inclusive. The first eight numbers from the table are 644, 359, 989, 877, 876, 807,
915, and 167. I ignore the first seven numbers because they are not between 001 and
273 and take as my first sample element the student identified as 167. To sample
without replacement, I ignore numbers after their first appearance. The students cor-
responding to the 30 numbers between 001 and 273, inclusive, compose the sample.

In sampling from a list with many pages, such as a telephone directory or a stu-
dent directory, it is not necessary to number each population element if the number
of names on each page is about the same. Instead of numbering each name, you
number each page and each position on the page. To select a sample element, pairs
of numbers are drawn from a random number table; the first number identifies the
directory page, and the second number identifies the position of the element on the
page. Another procedure, called systematic sampling, is sometimes used to sample
from a list. It involves sampling every nth element, say every 20th person, in the list.
Despite the simplicity of this procedure, it cannot be recommended because it does
not satisfy the definition of random sampling.

CHECK YOUR UNDERSTANDING OF SECTION 8.2

1. List the steps involved in drawing a random sample.
2. Drawing a random sample from a large population is difficult. What are the

problems?
3. (a) How many different samples of size 5 can be drawn without replacement

from a population of size 50? (b) How many different samples of size 5 can be
drawn with replacement from a population of size 50?

4. A sample of four supermarkets is to be selected from a total of eight in a small
town. (a) How many different random samples without replacement can be
drawn? (b) What is the probability that a given sample will be selected? (c) How
many different random samples with replacement can be drawn?

5. (a) Use the table of random numbers in Appendix D to draw two random sam-
ples of 10 students from the following population. For one sample use sampling
with replacement; for the other use sampling without replacement. (b) Describe
in detail how you used the table.

Helen Gary Keith Brad Joe Jim
Mike Betty Judy Kris JoAnn Jack
Chuck Matthew Tom Jaime Wade Rita

6. Terms to remember:
a. Random and nonrandom sampling b. Population
c. Element d. Sampling with or without 
e. Random number table replacement
f. Systematic sampling
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8.3 RANDOM VARIABLES AND THEIR DISTRIBUTIONS

Random Variables

In rolling a pair of dice you can observe the total number of dots; in tossing a coin
two times you can observe the total number of heads; in observing a naïve rat in a
three-choice T maze you can view the total number of incorrect turns. The vari-
able, number of dots or number of heads or number of incorrect turns, is called a
random variable because it is quantitative and its value for a particular experi-
ment is determined by chance. In the dice example, the random variable, number
of dots, can assume values of 2, . . . , 12; in the coin example, the random variable
can assume values of 0, 1, or 2 heads; in the T-maze example, the random variable
can assume values of 0, 1, 2, or 3 errors. Random variables usually are denoted by
a capital letter toward the end of the alphabet, for example X, Y, or Z. It helps to
think of a random variable as the name for the number associated with the out-
come of a random experiment before the experiment is performed. Performing the
experiment converts the random variable into a specific number.

You may be wondering, why the fancy name? How does a random variable differ
from just a plain old variable? I can contrast the two kinds of variables as follows:

1. The variable X is the name for any one of a set of permissible values.
2. The random variable X is the name for any one of a set of permissible numer-

ical values of a random experiment.

Let’s pursue the meaning of a random variable a bit further. In Section 7.2 you saw
that all the possible outcomes of a random experiment can be represented by points
in a sample space. A random variable associates one and only one numerical value
with each point; hence, in the language of the mathematician, a random variable is a
function. To understand this idea, recall from your algebra course that a function
consists of two sets of elements and a rule that assigns to each element in the first
set one and only one element in the second set. The definition of a function is quite
general; {(a, 1), (b, 5), (c, 6)} is a function, as are {(Mike, tall), (Chuck, medium),
(Jim, short)} and {(no errors, 0), (one error, 1), (two errors, 2), (three errors, 3)}.
More simply stated, a function is a set of ordered pairs of elements, no two of which
have the same first element. If the second element of a pair is a number, the function
is said to be numerically valued. A random variable associates one and only one
number with each point in a sample space. This discussion leads to the following
formal definition of a random variable:

A random variable is a numerically valued function defined over a sample
space.

Most readers will find the following definition easier to remember: A random vari-
able is a numerical quantity whose value is determined by the outcome of a random
experiment.

Random variables are classified according to the nature of the numbers they can
assume.
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A random variable is discrete if its range can assume only a finite number of
values or an infinite number of values that is countable—for example, family
size, number of dates per week, or scores on a test. A random variable is
continuous if its range is uncountably infinite—for example, temperature in
Chicago, duration of a kiss, or height.

It is important to distinguish between the values the random variable can assume and
those yielded by your measuring instruments. A thermometer is usually calibrated
in 1° steps, a stop watch in 0.1 second, and a ruler in 1/16 inch. Consequently, your
measurement of continuous random variables is always approximate.

Distribution of a Discrete Random Variable

You learned in Chapter 2 that a frequency distribution associates a frequency with
each value or class interval of a variable.

A similar representation that associates a probability with each value of a
random variable is called a probability distribution.

A probability distribution for an experiment of tossing a die is shown in Table 8.3-1,
and a graph of the distribution is shown in Figure 8.3-1. In the table, p(X � r) denotes
the probability that the random variable X is equal to the value r. The distribution in

TABLE 8.3-1 Probability Distribution for Outcome of Tossing a Die

Possible Values, r, of
the Random Variable X p(X � r)

1 1/6
2 1/6
3 1/6
4 1/6
5 1/6
6 1/6

1/6

1 2 3 4 5 6
Outcome of tossing a die
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ty

Figure 8.3-1. Histogram for probability distribution in Table 8.3-1.
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Figure 8.3-1 is said to be uniform because each value of the random variable has the
same probability. Notice that the probabilities sum to 1 because the events X � 1, . . . ,
6 are mutually exclusive and collectively exhaustive.

Consider next the three-choice T-maze experiment mentioned earlier. Suppose
that the correct series of turns is right, left, right (R, L, R). You know from the funda-
mental counting rule in Section 7.4 that a rat can traverse the maze in 2 � 2 � 2 � 8
ways because three right-left choices must be made. The eight ways and the number
of errors associated with each are listed in the table.

Number of Errors, X

R, L, R 0
R, R, R 1
R, L, L 1
L, L, R 1
R, R, L 2
L, R, R 2
L, L, L 2
L, R, L 3

The probability of making 0, 1, 2, or 3 errors—the random variable—can be com-
puted by p(X � r) � nr/ns, where nr is the number of maze routes favoring r errors
and ns is the number of possible maze routes. For example, the probability of one
error is 3⁄8 � .375 because there are three ways that a rat can make one error and there
are eight possible maze routes. The probability distribution is given in Table 8.3-2
and a graph of the distribution, in Figure 8.3-2. The table and figure can be used to
answer questions about the probability associated with the random variable—for in-
stance, the probability that X is odd: p(X � 1 or 3) � .375 � .125 � .5, or the prob-
ability that X is less than 3: p(X � 3) � .125 � .375 � .375 � .875.

A probability distribution is similar to a frequency distribution. The probability dis-
tribution associates a probability with each value of a random variable; the frequency
distribution associates a frequency with each value of a variable. A probability distrib-
ution describes data that might be observed under certain well-specified conditions;
hence, it is hypothetical or theoretical. A frequency distribution describes data that ac-
tually have been observed; it is empirical. You saw in Chapter 3 that the arithmetic
mean often is used to describe the central tendency of a frequency distribution. A sim-

TABLE 8.3-2 Probability Distribution for Number of 
Errors in a Three-Choice T Maze

Possible Values, r, of
the Random Variable X p(X � r)

0 .125
1 .375
2 .375
3 .125
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ilar index of the central tendency of a probability distribution is called the expected
value.4 Let’s now turn to the subject of how to compute expected values.

Expected Value of a Discrete Random Variable

If an extremely large number of naïve rats were to run the three-choice T maze, how
many errors on the average would you expect them to make? Stated more formally,
what is the expected value of the random variable?

If X is a discrete random variable that assumes values X1, X2, . . . , Xn with
probabilities p(X1), p(X2), . . . , p(Xn), then the expected value of X denoted by
E(X) is defined as5

E(X) � p(X1)X1 � p(X2)X2 � . . . � p(Xn)Xn

where p(X1) � p(X2) �
. . . � p(Xn) � 1.

For the T-maze example, E(X) for the values in Table 8.3-2 is

E(X) = .125(0) � .375(1) � .375(2) � .125(3) � 1.5

where p(X1) � .125, p(X2) � .375, p(X3) � .375, and p(X4) � .125. Based on this
computation, you would expect a rat to make on the average 1.5 errors in the maze.
Note the similarity between the formula for E(X) and that for the mean of an un-
grouped frequency distribution:

X 5
f1

n
X1 1

f2

n
X2 1 . . . 1

fk

n
Xk
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Figure 8.3-2. Histogram for probability distribution in Table 8.3-2.

4 The terms expected value and expectation are synonymous.
5 This definition of E(X) does not commit one to a particular view of probability because the p(Xi)’s can

be subjective, classical, or empirical.
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Here, X is a discrete variable that assumes values X1, X2, . . . , Xk with frequencies
f1, f2, . . . , fk, where f1 � f2 � . . . � fk � n. The statistic and the parameter
E(X) differ in that is the mean of a sample defined by its frequency distribu-
tion; E(X) is the mean of a theoretical population defined by its probability distri-
bution. The latter mean also is denoted by m (Greek mu, pronounced “mew”).

Originally, the expected value concept was used in games of chance to tell a player
what the long-run average loss or gain per play would be. Consider the popular casino
game of roulette. A player places a bet, the roulette wheel is spun, and the ball is set
in motion. The ball can drop into one of 38 slots. Thirty-six slots are numbered from
1 to 36, with half red and half black. Two green slots are numbered 0 and 00. Suppose
a player places $1 on number 7. If the ball drops into the 7 slot, the player receives a
$35 payoff; otherwise the player loses the $1 bet. I can calculate the player’s ex-
pected winnings as shown in Table 8.3-3. According to the table, a player who
makes $1 bets indefinitely will lose an average of 5.3 per bet. On any given gam-
ble, the player stands to either win $35 or lose $1. What the player may choose to
ignore is that on the average $35 is won in only 1 out of 38 gambles, whereas $1 is
lost in 37 out of 38.

The term expected value is misleading in one sense because E(X) is often not one
of the possible outcomes of an experiment. In the T-maze example, E(X) � 1.5, but
the possible values of the random variable are 0, 1, 2, or 3 errors. Similarly, the gam-
bler can win $35 or lose $1 on any given play, although E(X) � �5.3 . In both
examples, E(X) is an average result, and in this respect it is like a sample mean, .

Expected Value of a Continuous Random Variable

Computing the expected value of a discrete random variable is fairly simple because
you need only multiply random variable values, Xi, by probabilities, p(Xi), and sum
the products—that is, . The continuous random variable case
is more complicated because the variable can assume an infinite number of values.
The probability that a continuous random variable X has a particular value is zero.6

EsXd 5 gn
i51psXidXi

X
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X
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TABLE 8.3-3 Expected Value of a Bet

Possible Winnings, Xi p(Xi) p(Xi)Xi

� $35

� $1

EsXd 5 a
n

i51
psXidXi 5 2 $

2
38
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s2$1d 5 2 $
37
38

37
38

1
38

s$35d 5 $
35
38

1
38

6 This is not obvious. For the rare student who wants an explanation, see Hays (1994, pp. 107�110).
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Consequently, instead of referring to the probability that X has a particular value, I
refer to the probability that X lies in an interval between two values of the random
variable. This notion is illustrated in Figure 8.3-3. The expected value of a continu-
ous random variable X is the sum of the products formed by multiplying each value
that X can assume by the height of the probability distribution curve above that value
of X. Because X can assume an infinite number of values, its expected value is not
computed by actually physically multiplying each X by the height of the curve at X
but instead by means of the integral calculus.7 As you will discover, tables for most
random variables of interest have been prepared; these tables simplify the calcula-
tion of the probability that X lies in an interval.

Standard Deviation of a Discrete Random Variable

In Chapter 4 you learned that the standard deviation is a useful measure of disper-
sion. One formula for computing a sample standard deviation is

A similar formula for computing the standard deviation of a discrete probability
distribution is

Note from the formula on the left that s is the square root of the expected value of a
squared deviation, [X � E(X)]2. I compute this expected value in the same way we
did for E(X), where I multiplied each value of Xi by its probability. To compute 
E{[X � E(X)]2}, I multiply each [X � E(X)]2 by its probability p(Xi) and sum the

s 5"E53X 2 EsXd 426 5"gpsXid 3Xi 2 EsXid 42

S 5"gfjsXj 2 Xd2>n

Figure 8.3-3. The probability that X will assume a value between a and b is equal
to the area under the curve between those two points. For many random variables,
tables are available that simplify the method for determining the area between two
points (see Section 9.2).

a b
X

f(
X

)

7 For those familiar with the calculus, the expected value is where Xmin is the

smallest value of X and Xmax is the largest value.

EsXd 5 1
Xmax
Xmin xfsxddx,
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products. The computation of s is illustrated for the T-maze data in Table 8.3-2; for
these data, E(X) � 1.5. The standard deviation is

The symbol s is used instead of S because this standard deviation is a population
parameter. The value s � 0.866 together with E(X) � 1.5 provides a useful sum-
mary of the theoretical population of errors in the three-choice T maze.

CHECK YOUR UNDERSTANDING OF SECTION 8.3

7. (a) Construct a probability distribution for a four-choice T maze. Assume that
the correct series of turns is right, right, left, right. (b) Graph the probability
distribution.

8. Let the random variable X be the number of cars per household. Suppose that 
in Waco, Texas, X has the probability distribution listed in the table. 

X 0 1 2 3 4 5

f (X) .16 .54 .23 .05 .01 .01

For a household selected at random, compute the following.
a. p(X � 2) b. p(X � 3) c. p(1 � X � 2)
d. E(X) e. s

9. What is the maximum you should be willing to pay to enter a game in which
you can win $30 with probability .6 and $10 with probability .4? (Hint: Com-
pute E(X).)

10. The random variable X has the probability distribution listed in the table.

X 0 1 2 3 4

f (X) 0

a. Compute E(X). b. Compute s.

11. Suppose that a fraternal organization plans to sell 1,000 lottery tickets for $1
each. The prize is a $750 DVD recorder. (a) If you purchase a ticket, what is the
probability that you will win? (b) What is your expected gain? Remember to
subtract the cost of the ticket from the value of the prize. (c) Does it make eco-
nomic sense to purchase a ticket? (d) What is the maximum that you should be
willing to pay for a ticket? (Hint: The maximum you should be willing to pay
for a ticket is that amount for which E(X) � 0,—that is, the amount for which

1
5

1
5

1
5

2
5

 5 0.866

 s 5  ".125s0 2 1.5d2 1 .375s1 2 1.5d2 1 .375s2 2 1.5d2 1 .125s3 2 1.5d2
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there is no gain or loss over the long run. This amount, denoted by T, can be
determined from

p(win)(gain value) � p(lose)(loss value) � 0

where the gain value is equal to [750 � (�T)] and the loss value is equal to �T.)
12. Terms to remember:

a. Discrete random variable b. Continuous random variable
c. Probability distribution d. Expected value

8.4 BINOMIAL DISTRIBUTION

Bernoulli Trial

Many experiments have only two possible outcomes: a new drug is effective or it is
not, an animal takes the correct turn or the wrong turn in a maze, a job is given to an
applicant or it is not. These experiments have much in common with tossing a coin.
In each case, the random variable is discrete and can assume only two values, often
denoted “success” and “failure.” Flipping a coin once and noting whether it landed
heads or tails or randomly sampling one person from a population of former stu-
dents and noting whether he or she graduated is called a Bernoulli trial or
Bernoulli experiment.8 The probability of observing a success on any given trial is
denoted by p and the probability of a failure, by q. Because the two outcomes, suc-
cess and failure, are mutually exclusive and exhaustive, p � q � 1. The characteris-
tics of a Bernoulli trial can be summarized as follows:

1. A trial can result in one of two outcomes.
2. The probability of a success remains constant from trial to trial.
3. The outcomes of successive trials are independent.

Few real-life situations perfectly satisfy the requirements. Strictly speaking, the last
two are satisfied only when sampling is done with replacement or from an infinite
population. In most research, sampling is done without replacement from a finite
population. This practical departure from the ideal is of little consequence as long as
the population is large relative to the sample size.

I am usually interested in the outcome of several Bernoulli trials. I toss a coin n
times and note the number of heads, or I randomly sample n persons and note the
number of graduates. When there are n Bernoulli trials, the random variable of in-
terest is the number of successes; its value can range from 0 to n.

The following section describes a binomial distribution in which the random vari-
able is a sum—the number of successes observed on n greater than or equal to two
Bernoulli trials. A binomial distribution is a relatively simple example of an important
class of theoretical distributions or models that are referred to as sampling distributions.

8 Both terms were named after James Bernoulli (1654�1705), who discussed such trials in his Ars
Conjectandi (1713).
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The term sampling distribution is the special name given to a probability
distribution where the random variable is a statistic based on the results of
more than one trial.

For convenience, I will examine a simple binomial distribution here and defer dis-
cussion of the special properties of sampling distributions to Chapter 9.

The binomial distribution will be encountered repeatedly in subsequent chapters.
It is the theoretical model for a variety of statistics, as you will see in Sections 12.3,
14.4, 14.5, 17.3, 17.4, and 17.5.

Binomial Distribution

The number of successes observed on n � 2 identical Bernoulli trials is called a
binomial random variable, and its probability distribution is called a binomial
distribution.9 Suppose you toss a fair coin five times. The probability of observ-
ing exactly r heads (successes) in n tosses is given by the function rule

p(X � r) � nCr prqn � r

where p(X � r) is the probability that the random variable X equals r heads,

nCr is the combination of n objects taken r at a time,10 p is the probability of
success (a head), and q � 1 – p.

For example, the probability that the random variable X equals four heads is

The complete probability distribution is given in Table 8.4-1 and a graph of the dis-
tribution, in Figure 8.4-1. The probability that X equals or exceeds some value or
that it lies in a given interval can be obtained by combining probabilities from the
table or figure. For example, the probability of obtaining four or more heads in five
tosses of a fair coin is
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9 The term was so named because the probabilities associated with the distribution can be obtained by
raising a binomial (an algebraic expression containing two terms) to the nth power. For example,

where p is the probability of success, q � 1 � p, and n is the number of Bernoulli trials. The first term, pn,
gives the probability of n successes; the second term, npn � 1q, the probability of n � 1 successes, and so on.

10 The combination of n objects taken r at a time is discussed in Section 7.4.
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The sampling (probability) distribution of a binomial random variable is
completely specified by n, the number of trials, and the parameter p, the probabil-
ity of success. When p is less than .5, a graph of the probability distribution is pos-
itively skewed; for p equal to .5, it is symmetrical, and for p greater than .5, it is
negatively skewed. As n increases, the shape of the distribution approaches more
and more closely that of the normal bell-shaped distribution. The binomial distrib-
ution is actually a family of distributions, one for each set of p and n values. 
The thread that binds the distributions into a family is their common function rule,
p(X � r) � nCr pr q n�r.11 The following example illustrates another member of the
binomial family.

Suppose that I am interested in the probability that more than half of a random
sample of six patients will show improvement following treatment. Let the proba-
bility of improvement, p, for any patient equal .7. The probability of observing ex-
actly r � 6 successes in n � 6 patients is given by

psX 5 rd 5 nCrprqn2r 5 6C6s.7d6s.3d0 5
6!

6!s6 2 6d!
s.7d6s.3d0 5 .118

Figure 8.4-1. Histogram for the binomial distribution in Table 8.4-1.
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TABLE 8.4-1 Binomial Distribution for n 5 5 and p 5 1⁄2

Number of Heads, r 0 1 2 3 4 5

(X � r)
1

32
5
32

10
32

10
32

5
32

1
32

11 Other examples of families of discrete probability distributions are the uniform distribution, multinomial
distribution, hypergeometric distribution, Poisson distribution, and negative binomial distribution. The
first three distributions are briefly discussed in this text.
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The complete probability distribution is given in Table 8.4-2 and graphed in 
Figure 8.4-2.

The probability that in a random sample of six patients more than half will show
improvement is given by

p(X � 4) � p(X � 4) � p(X � 5) � p(X � 6) �.324 � .302 � .118 � .744

Expected Value and Standard Deviation 
of Binomial Distribution

The expected value of a discrete random variable always can be computed from
. For a binomial random variable, there is a simpler formula

for computing the expected value of X (number of successes):

E(X) � np

where n is the number of trials and p is the probability of a success on any trial. For

the probability distribution in Table 8.4-2, the expected number of patients showing
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Figure 8.4-2. Histogram for the probability that patients will show improvement
following treatment.

TABLE 8.4-2 Distribution Showing Probability of Improvement 
Following Treatment

Number Improved, r 0 1 2 3 4 5 6

p(X � r) .001 .008 .059 .185 .324 .302 .118
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improvement is E(X) � 6(.7) � 4.2. The same result is obtained using the longer

formula .

The standard deviation of a binomial distribution is given by . For the

probability distribution in Table 8.4-2, the standard deviation is

As you have seen, the binomial distribution is the appropriate model for a
random variable when (1) there are n trials involving a population whose ele-
ments belong to one of two classes, (2) the probability of obtaining an element in
a class remains constant from trial to trial, as when sampling with replacement or
from an infinite population, and (3) the outcomes of successive trials are inde-
pendent. When one or more of these conditions are not satisfied, two other
models may be appropriate. These models, which are used in advanced statistical
procedures, are the multinomial and the hypergeometric distributions. The
multinomial distribution12 represents an extension of the binomial distribution
for the case in which a trial can result in an outcome from one of k � 2 classes
and the probabilities associated with the classes remain constant as in sampling
with replacement or sampling from an infinite population. The hypergeometric
distribution applies to the case in which a trial also results in an outcome from
one of k � 2 classes but the probabilities associated with the classes do not re-
main constant as in sampling without replacement from a finite population. Much
research in the behavioral and medical sciences and education fits the latter set
of conditions. Another model that describes the distribution of many random
variables of interest to psychologists is the normal distribution. This important
distribution is described in the next chapter.

CHECK YOUR UNDERSTANDING OF SECTION 8.4

13. Interpret the statement p(X � 3) � .2.
14. What are the three characteristics of a Bernoulli trial?
15. Let the random variable X be the number of men in a random sample of size 2

taken from a population that contains 60% men and 40% women. (a) Determine
the probability of the sample’s containing 0, 1, or 2 men. (b) Graph the proba-
bility distribution. (c) Compute E(X) and s.

16. Thirty percent of elementary students in a school system have a reading ability
below the national standard for their grade level. (a) If 10 children are selected
at random, what is the probability that no more than 1 will be functioning below
grade level? (b) Compute E(X) and s.

s 5"6s.7d s.3d 5 1.12

s 5"npq
EsXd 5 g6

i50 psXidXi 5 .001s0d 1 .008s1d 1c1 .118s6d 5 4.2

12 So named because the probabilities associated with the distribution can be obtained by raising a multi-
nomial (an algebraic expression containing three or more terms) to the nth power.
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17. Of 800 families with five children each, how many would you expect to have
(a) three girls? (b) Five boys? (c) Either two or three girls? Assume equal prob-
abilities for girls and boys.

18. Terms to remember:
a. Bernoulli trial
b. Binomial random variable
c. Multinomial experiment
d. Hypergeometric experiment

8.5 LOOKING BACK: WHAT HAVE YOU LEARNED?

Some kind of random procedure should be a part of all research in which samples
are used to learn about populations. Most often the procedure takes the form of ran-
dom sampling from a population or random assignment of participants to experi-
mental conditions. Randomness is a property of a procedure rather than of a sample.
Any procedure for drawing samples from a population so that every possible sample
of a particular size has the same probability of being selected is called random sam-
pling, and the resulting sample is called a random sample.

A random variable is a numerical quantity whose values are determined by the
outcomes of a random experiment. A table showing the possible values of a random
variable and the associated probabilities is called a probability distribution.
Probability distributions and the frequency distributions discussed in Chapter 2 are
similar—each associates a number with the possible values of a variable. However,
for a frequency distribution, the number is a frequency; for a probability distribu-
tion, it is a probability. This reflects a fundamental difference between them. A fre-
quency distribution describes a set of data that has been observed; it is empirical.
A probability distribution describes data that might be observed under certain well-
specified conditions; hence, it is hypothetical or theoretical. Probability distributions
are used in inferential statistics as models of how random variables are expected to
be distributed. If empirical data deviate appreciably from the predictions of a model,
doubt is cast on the correctness of the model or its assumptions. For example, if you
toss five coins and if the coins are fair, according to the binomial model you should
observe five heads on the average once in every 32 trials. If instead of observing five
heads once, you observe five heads in 10 of 32 tosses, you would probably question
the assumption that the coin is fair.

The central tendency of a theoretical population defined by its probability distri-
bution can be described in the same way as the central tendency of a sample—by a
mean. The mean of a theoretical population is called an expected value and is given
by .

An experiment is called a Bernoulli trial if (1) its random variable has only two
possible outcomes, denoted “success” and “failure,” (2) the probability of a success
remains constant from trial to trial, and (3) the outcomes of successive trials are in-
dependent. The probability distribution of a Bernoulli random variable could hardly
be simpler because it represents the possible outcomes of a single trial. The number
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of successes in a series of n identical Bernoulli trials is a discrete random variable
that can assume integer values from zero to n. The distribution of the number of suc-
cesses in n identical Bernoulli trials is called a binomial distribution. The binomial
distribution is one of the more useful models of how a discrete random variable
should behave. Two other useful models, the multinomial distribution and the
hypergeometric distribution, can be thought of as special extensions of the bino-
mial distribution. The multinomial distribution applies to experiments in which a
trial results in an outcome from one of k � 2 classes and sampling is done with re-
placement or from an infinite population. The hypergeometric distribution applies
to experiments in which a trial also results in an outcome from one of k � 2 classes
but sampling is done without replacement from a finite population. The latter con-
ditions more closely approximate research in the behavioral and medical sciences
and education.

REVIEW EXERCISES FOR CHAPTER 8

1. What advantages do random samples have over nonrandom samples?
2. (a) How many different samples of size 4 can be drawn without replacement

from a population of size 30? (b) How many different samples of size 4 can be
drawn with replacement from a population of size 30?

3. The probability of drawing a particular sample from a finite population is given
by 1/(nCr). What is the probability of drawing a particular sample of size r � 3
from a population of size n � 50?

4. A sample of 5 students is to be selected from a class of 10. (a) How many dif-
ferent random samples without replacement can be drawn? (b) What is the
probability that a given sample will be selected? (c) How many different ran-
dom samples with replacement can be drawn?

5. (a) Use the table of random numbers in Appendix D to draw two random
samples of 10 students from the following population. For one sample, use
sampling with replacement; for the other, use sampling without replacement.
(b) Describe in detail how you used the table.
Don Sonja Jimmy Dick Bob Gary
Herb Wallace Martha Clyde Sylvia Ruben
Henry Bill Mike Chuck Richard Milton

6. Use the table of random numbers in Appendix D to draw a random sample with-
out replacement of 30 students from the Student Database in Appendix E.
(a) List the ID No., Stat Grade, and GPA for each person in your sample. Com-
pute the mean of the variables labeled Stat Grade and GPA. (b) Compute the
correlation between Stat Grade and GPA. (c) Develop a regression equation to
predict Stat Grade from a knowledge of GPA. (d) If you have access to a com-
puter and suitable software, develop a multiple regression equation for predict-
ing Stat Grade from GPA and Math Test. How much does the addition of Math
Test improve the prediction of Stat Grade?

7. Distinguish between a variable and a random variable.
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8. Let the random variable X be the number of children in a family. Suppose that X
has the probability distribution listed in the table.

X 0 1 2 3 4 5 6 7

f (X) .40 .18 .15 .11 .09 .05 .01 .01

For a family selected at random, compute the following.
a. p(X � 0) b. p(X � 4) c. p(X � 3)
d. p(2 � X � 5) e. E(X) f. s

9. How does an expected value differ from the mean of a frequency distribution?
10. What is the maximum you should be willing to pay to enter a game in which

you can win $20 with probability .7 and $10 with probability .5? (Hint: Com-
pute E(X).)

11. If it rains, a fortuneteller loses $12 per day; if it is fair, she earns $110 per day.
Assume that the probability of rain is .3. What are her expected earnings per
day?

12. The random variable X has the probability distribution listed in the table.

X 0 1 2 3 4

f (X)

a. Compute E(X). b. Compute s.

13. Suppose that the Lions Club plans to sell 2,000 lottery tickets for $5 each. The
prize is a $4,000 trip for two to Cancun. (a) If you purchase a ticket, what is the
probability that you will win? (b) What is your expected gain? Remember to
subtract the cost of the ticket from the value of the prize. (c) Does it make eco-
nomic sense to purchase a ticket? (d) What is the maximum that you should be
willing to pay for a ticket? (Hint: The maximum you should be willing to pay
for a ticket is that amount for which E(X) � 0—that is, the amount for which
there is no gain or loss over the long run. This amount, denoted by T, can be de-
termined from

p(win)(gain value) � p(lose)(loss value) = 0,

where the gain value is equal to [4,000 � (�T )] and the loss value is equal 
to �T.)

14. Interpret the statement p(X � 5) � .4.
15. Compare a Bernoulli random variable with a binomial random variable.
16. Suppose that 20% of eligible voters in a given city voted in the last election. A

random sample of 10 eligible voters is obtained to investigate reasons for the
poor turnout. (a) If X is the number of people who did not vote, determine the
probability distribution for X. (b) Compute E(X ) and s.
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17. Ten percent of patients fail to improve after being placed on medication. (a) If
five patients are selected at random, what is the probability that two or more
will not show improvement? (b) Compute E(X) and s.

18. What is the probability of guessing correctly at least 6 of 10 answers on a true-
false examination?
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9.1 INTRODUCTION

Looking Ahead: What Is This Chapter About?

In previous chapters, you learned about a number of different kinds of distributions.
Some distributions, such as the sample distribution, describe data that have been ob-
served. Other distributions, such as probability and sampling distributions, describe
data that might be observed if an experiment is performed. They are hypothetical or
theoretical in the sense that they do not represent the outcome of an actual experi-
ment. These distributions are used in inferential statistics as models of the results
that a researcher should expect if certain assumptions are tenable. For example, in
the previous chapter the binomial distribution was used to describe the possible out-
comes of tossing a coin five times under the assumption that the coin is fair. In this
chapter, you will see how another important model, the normal distribution, is used
to describe the possible outcomes of an experiment. In addition, several important
new statistics are described: standard score, standard error, and test statistic.

After reading this chapter, you should know the following:

■ How to convert scores to standard scores (z scores)
■ How to use standard scores to find the size of areas under the normal distribu-

tion
■ Three characteristics of the sampling distribution of the mean
■ Two properties of good estimators
■ The difference between sample statistics and test statistics

9.2 THE NORMAL DISTRIBUTION

Thus far you have seen numerous references to the normal distribution—and with
good reason. The normal distribution is the most important probability distribution
in statistics. One reason for the importance of the normal distribution is that many
variables in science and nature have probability distributions that closely resemble
it. Hence, it can serve as a model for such distributions. For example, people’s
heights and weights are approximately normally distributed, as are intelligence, me-
chanical aptitude, introversion, and most other psychological attributes. The normal
distribution also is important because it is a convenient model for estimating proba-
bilities for other theoretical distributions. You will see that it provides an excellent
approximation to the binomial distribution when the number of trials is large.

Granted, the normal distribution is a useful model, but this hardly accounts for its
preeminent position in statistical theory. To understand why it occupies this posi-
tion, we must consider the distribution of a sample statistic such as the mean. Sup-
pose that from a population you drew 100 random samples of size n (where n is
fairly large), computed the mean of each sample, and constructed a histogram of the
sample means. You would find that the resulting graph closely resembles the normal
distribution. This might not surprise you if the sampled population was normally
distributed, but the striking aspect is that if n is sufficiently large, the resemblance
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holds regardless of the population’s shape. The tendency for the distribution of a
sample statistic to approximate a normal distribution as n (the number of observa-
tions in each random sample) increases plays a key role in inferential statistics. You
will learn more about this tendency when I describe the central limit theorem in
Section 9.4.

Serendipity—accidentally making discoveries—has produced many break-
throughs in science, and one of them is the normal distribution. Abraham de Moivre
(1667–1754), a mathematics tutor, was searching for a shortcut method for comput-
ing probabilities for binomial random variables. In the process he derived the func-
tion rule for the ubiquitous normal distribution. If I toss 10 coins, it doesn’t take too
much effort to compute the probability of observing zero heads, one head, and so
on. But suppose I toss 100 coins. The amount of work necessary to calculate the
probabilities associated with 0 through 100 heads is significant. You will see, as 
de Moivre discovered over 270 years ago, that the task is greatly simplified by using
the normal distribution.

Consider the graph of the probability distribution for tossing 16 fair coins in
Figure 9.2-1. If I superimpose the graph of a normal distribution on the histogram, it
provides a fairly good fit. The fit would be even better if I had graphed the distribu-
tion for tossing 50 coins. If the number of coins were increased indefinitely, the
number of bars in the histogram would increase, and their outline would eventually
coincide with that of the normal distribution. De Moivre derived the function rule
for determining the height of the normal distribution, denoted by f(X), for any value
of the random variable X.

Characteristics of the Normal Distribution

A random variable X is said to be normally distributed if its probability distribution
is given by the function rule for the normal distribution.

Figure 9.2-1. Comparison of the histogram for the probability distribution for
tossing 16 fair coins and the normal curve.
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The function rule for the normal distribution is

where f (X) is the height of the distribution at X, p is approximately 3.142,
e (the base of the system of natural logarithms) is approximately 2.718, and 
m and s identify the mean and standard deviation of a particular normal dis-
tribution in the family of normal distributions.

Fortunately, you don’t have to use the rule to determine the size of areas under the
distribution between various values of X. As you will see, the size of areas can be
determined from Appendix Table D.2.

The normal distribution is shaped like a bell. Because it is unimodal and sym-
metrical, its mean, median, and mode have the same value, and that value corre-
sponds to the highest point on the curve. The mean plus or minus the standard de-
viation, as shown in Figure 9.2-2, defines the inflection points of the curve—that
is, the points at which the curve changes from being concave to convex or vice
versa. Although not shown in the figure, the tails of the curve extend indefinitely in
both directions, never quite touching the horizontal axis. The total area under the
curve is equal to 1.

Converting Scores to Standard Scores

There are as many normal distributions as there are possible values of m and s, the
parameters that identify a particular distribution. To avoid having to develop an infi-
nite number of tables, statisticians have made one particular normal distribution the
standard. It has a mean equal to 0 and a standard deviation equal to 1 (m � 0 and 
s � 1) and is called the standard normal distribution. This is the distribution
whose areas are tabulated in Appendix Table D.2. Random variable values for this
distribution are called standard scores and are denoted by z.

fsXd 5
1

s"2p
e2sX2md2>s2s2d

Figure 9.2-2. Graph of the normal distribution. The inflection points where the
curve changes from being concave to convex and vice versa occur at m � s

and m � s.
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If as is usually the case the random variable you are interested in doesn’t have a
mean of 0 and standard deviation of 1, the random variable must be transformed into
a standard score to use the standard normal distribution table in Appendix D.2. The
transformation is accomplished by the formula

where X is a random variable value, is the sample mean, and S is the sample stan-
dard deviation.

If you apply this z-score transformation to each X in a distribution, will the
resulting distribution of standard scores have a mean of 0, , and a standard
deviation of 1, Sz� 1? The answer is yes. The reason is given in Supplementary
Note 9.6.

The transformation of X scores into z scores is simple. Suppose that the mean of
a random variable you are interested in is 100 and its standard deviation is 15. The z
score corresponding to an X score of 130 is 
A z score transformation alters the mean and standard deviation of the transformed
random variable but not the relative location of scores in the distribution. For exam-
ple, the X score of 130 is two standard deviations above the mean of 100 because

. Similarly, the corresponding z score of 2 is also
two standard deviations above its mean of zero because ,
where denotes the mean of the z scores and Sz denotes the standard deviation of
the z scores. If you were to graph the distribution of the X scores and the distribution
of the z scores, you would find that they are identical in shape although they differ
in central tendency and dispersion. Transforming scores to standard scores does not
change the shape of the distribution or the relative position of scores, only the mean
and the standard deviation. As Section 9.3 will show, standard scores are particu-
larly useful for comparing the performance of individuals on psychological tests
having different means or standard deviations.

For distributions that are approximately normal, most z scores are between �3
and �3. This follows from a fact you learned in Chapter 4, namely that 99.73% 
of the area under the normal distribution lies within �3 standard deviations of
the mean.

Finding Areas under the Normal Distribution

If a random variable is approximately normally distributed, the standard normal dis-
tribution in Appendix Table D.2 can be used to find the proportion of the total area
falling between any two scores. The areas tabulated in Appendix Table D.2 are
shown in Figures 9.2-3(a) and (b).

1. Area between m and a score above it [area A in Figure 9.2-3(a)]. Suppose that
the distribution of college students’ IQs is approximately normal with m � 115
and s � 15 and you want to know the proportion of students with IQs between
m � 115 and X � 130. The first step is to convert X � 130 into a standard
score: z � (X – m)/s � (130 – 115)/15 � 1. According to Appendix Table D.2,
the proportion of the area from m to z � 1 is .3413; thus, approximately 34%

z
z 1 2sSzd 5 0 1 2s1d 5 2

X 1 2sSd 5 100 1 2s15d 5 130

z 5 sX 2 Xd>S 5 s130 2 100d>15 5 2.

z 5 0

X

z 5
X 2 X
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of students have IQs between m � 115 and X � 130. This area is shown as area
A in Figure 9.2-3(a).

2. Smaller area in the tail [area B in Figure 9.2-3(b)]. The proportion of stu-
dents with IQs above 130, which corresponds to a standard score of 1, is
shown as area B in Figure 9.2-3 (b). This area is equal to .1587.

Standard scores are sometimes denoted by z and a subscript a that indicates
the proportion of the normal distribution that lies to the right of (above) the z
score. The symbol z

a
denotes the standard score above which a proportion of

the normal distribution falls. For example, the standard score of 1 is denoted
by z.1587 because .1587 of the area falls to the right of z � 1.

Figure 9.2-3. Illustration of the areas of the standard normal distribution. Areas A
and B are given in Appendix Table D.2. A standard score is denoted by z

a
, where a

indicates the proportion of the standard normal distribution that falls above the
score. In considering area D, recall that the mean divides the total area in half, so
that .5 falls above the mean and .5 falls below the mean.
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3. Area between m and a score below it [area C in Figure 9.2-3(c)]. To determine
the proportion of the total area from m to a score below the mean, say, a score
of 100 using m � 115 and s � 15 from example 1, you first convert the score
to a z score: z � (100 � 115)/15 � �1. Appendix table D.2 gives areas only
for positive z scores, but because the distribution is symmetrical, the size of the
area from m to z � �1 is the same as that from m to z � �1. Thus, area C is
obtained by ignoring the negative sign and looking up the z score in area A. The
area from m to z � �1 is .3413, and is it shown as area C in Figure 9.2-3(c).

4. Larger area including the left half of the distribution [area D in Figure 9.2-3(d)].
To find area D for a score of, say, 130 (z score equals 1), you find area A and add
.5 (the area below m) to it. For example, area D � .3413 � .5 � .8413. A student
with an IQ of 130 has a score above approximately 84% of college students.

5. Area between scores on opposite sides of the mean [area E in Figure 9.2-3(e)].
To find the proportion of the total area between two scores on opposite sides of
the mean, add areas A and C. For example, if the scores are 130 and 100, the z
scores are 1 and �1. The sum of areas A and C is .3413 � .3413 � .6826.

6. Area between scores on the same side of the mean [area F in Figure 9.2-3(f)].
Suppose that you want to determine the proportion of the total area between
scores of 130 and 139. You first transform the scores to z scores: (130 � 115)/
15 � 1 and (139 � 115)/15 � 1.6. Area A for z � 1 is .3413 and area A for z �
1.6 is .4452. Area F is the difference between these two areas and is given by
(area m to z � 1.6) � (area m to z � 1) � .4452 � .3413 � .1039.

Finding Scores When the Area Is Known

A different kind of problem arises when you have a percentile rank in mind or know
the relative size of the area above or below a point in a distribution and you want to
determine the untransformed score corresponding to that rank or point. If you know
the size of the area, you can determine from Appendix Table D.2 the z score that
marks the boundary of the area. In the previous examples, you knew X, m, and s and
solved for z using the formula z � (X � m)/s. If you know z, m, and s, it is a simple
matter to solve for X. A little algebra is all that is needed to express the formula in
the desired form:

Suppose that you want to know the IQ score corresponding to the 80th percentile
rank. You know that .80 of the area under the normal curve falls below the z score
and that .20 of the area falls above the z score. To find the z score, you look in col-
umn 3 of Appendix Table D.2 until you locate .20. The corresponding z score is
approximately 0.84. Knowing that z.20 � 0.84, m � 115 and s � 15, you have all
the information necessary to solve for X in the formula X � m � sz. Substituting in
the formula, you obtain X � 115 � 15(0.84) � 127.6. Thus, a score of 127.6 corre-
sponds to the 80th percentile rank.

 X 5 m 1 sz

 sz 5 X 2 m

 z 5
X 2 m

s
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To take one more example, suppose that you want to know the IQ score corre-
sponding to the 40th percentile rank. You know that the score is below the mean
and that .40 of the area lies to the left of (below) the score and .60 lies above. To
find the z score corresponding to the area below .40, you look in column 3 of
Appendix Table D.2 until you locate .40 and find that �z.60 �0.25. Remember
that the sign of z scores below the mean is negative and that the subscript, .60,
denotes the area above the z. Substituting in the formula X � m � sz gives X �
115 � 15(�0.25) � 111.25, the IQ score corresponding to the 40th percentile
rank.

Normal Approximation to the Binomial Distribution

The normal distribution function rule was originally derived by de Moivre to esti-
mate binomial distribution probabilities when the number of trials, n, is large. As
you will see, the approximation is excellent even when n is small.

Consider an experiment in which a fair coin is tossed five times. The random
variable of interest is the number of heads. A graph of the distribution for n � 5
and p � .5 is given in Figure 9.2-4. A normal distribution has been superimposed
on the graph. The probability of observing four or more heads can be computed
from the binomial distribution in Chapter 8, Table 8.4-1: p(X � 4) � 5⁄32 � 1⁄32 �
6⁄32 � .1875.

The probability of observing four or more heads can be estimated using the nor-
mal distribution table by finding the area including and to the right of four heads.
Because you are using the continuous normal distribution to estimate a discrete
random variable, you must think of four heads as occupying the interval from 3.5 to
4.5; the lower limit of the interval is 3.5 (see Figure 9.2-4). To find the area above
the lower limit of four heads, you first convert the lower limit of four heads, 3.5, to a
z score. Recall from Section 8.3 that the mean and standard deviation of a binomial
distribution are given by, respectively, E(X) � np and . For the example,s 5"npq

>

Figure 9.2-4. Histogram for binomial distribution with n � 5 and p � .5. 
A normal distribution is superimposed over the histogram. The normal 
distribution area corresponding to the probability of observing four or more 
heads is represented by the shaded area.
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E(X) � 5(.5) � 2.5 and The z score corresponding to
observing four or more heads is

According to Appendix Table D.2, the area above z � 0.894 is .1857, which is close
to the exact value of .1875 computed from the binomial distribution. So you see that
although the normal distribution approximation was not intended to be used for such
a small n, it yielded a value quite close to the exact probability.

CHECK YOUR UNDERSTANDING OF SECTION 9.2

1. How does a standard normal distribution differ from other normal distributions?
2. Which of the following variables do you think approximate the normal distri-

bution? For those that you do not think are normal, sketch the form of the dis-
tribution you would expect. (a) Amount of coffee per cup dispensed by a
vending machine. (b) Extraversion scores of college students. (c) Incomes of
families in the United States. (d) Time spent looking at a painting in a mu-
seum. (e) Ages of residents in Normal, Ohio. (f) The time at which students
arrive for an 11 o’clock class.

3. A set of scores has a mean of 20 and a standard deviation of 5. Transform the
following to z scores.
a. 30 b. 12 c. 15 d. 27 e. 20

4. If z is a normally distributed random variable with m � 0 and s � 1, determine
the percentage of the area under the standard normal curve for the following.
a. Above z � 1.5 b. Below z � �2
c. From m to z � 3 d. Between z � 1 and z � 2
e. Between z � 1 and z � � 3 f. Between z � �1 and z � �3

5. Determine the percentage of the area of the standard normal distribution that
falls between m � ks and m � ks, where k is equal to the following.
a. 1.0 b. 1.645 c. 1.96 d. 2.58 e. 3.30

6. Compute the untransformed score corresponding to each of the following z
scores. Assume that the original distribution had a mean of 150 and a standard
deviation of 20.
a. 2.0 b. �1.5 c. 3.1 d. 0 e. 0.5

7. Find the z score such that at least the following proportion of the area under the
standard normal distribution falls above it.
a. .50 b. .05 c. .40 d. .70 e. .95

8. Junior college grade-point averages (GPAs) have m � 2.8 and s � 0.24. A uni-
versity is considering raising its minimum entrance score from 2.2 to 2.5. If
GPA is normally distributed, how will the proposed change affect the percent-
age of students eligible to enter the university from junior colleges?

9. Use the normal approximation to the binomial distribution to determine the
probability of guessing correctly (a) at least 12 of 20 answers on a true-false
examination and (b) at least 24 of 40 answers.

z 5
X 2 EsXd
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10. Suppose that 10% of physicians’ diagnoses at a clinic are incorrect. Use the nor-
mal approximation to the binomial distribution to determine the probability that
of 400 diagnoses (a) at most 30 will be incorrect, (b) between 30 and 50 will be
incorrect, (c) more than 50 will be incorrect.

11. Terms to remember:
a. Standard normal curve b. Standard score (z)

9.3 INTERPRETING SCORES IN TERMS OF Z SCORES
AND PERCENTILE RANKS

Your roommate announces that she got a 62 on the midterm. Not knowing whether
to rejoice with her or to sympathize, you ask, “What was the class average?” “Forty-
one,” she replies. You press further: “What was the range?” The lowest score was 22
and the highest was 62. A celebration is in order.

This example illustrates a problem in interpreting scores. A score by itself is un-
interpretable; you need a frame of reference to know whether a score is good or bad.
The frame of reference in the example was provided by the central tendency of the
distribution and its range. The score became interpretable when it was related to the
performance of other students.

Standard Score

It would be convenient to have one number that provides all the information nec-
essary to interpret a score instead of having to relate it to the mean and a disper-
sion measure such as the range or the standard deviation. I have already discussed
two such numbers that can be used to interpret a score: standard score and
percentile.

A standard score is a number that expresses the value of a score relative to
the mean and the standard deviation of its distribution.

Suppose that a distribution has a and S � 10. A score of 70 corresponds to a
z score of

which is two standard deviations above the mean. A standard score tells us the loca-
tion of a score in standard deviation units relative to the mean. Furthermore, if the
distribution of X is normally distributed, Appendix Table D.2 tells us that 0.4772 �
0.5000 � 0.9772 of the scores fall below X � 70.

Percentile Rank

The second kind of number that can be used to interpret a score is percentile rank,
which is discussed in Chapter 4.
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The percentile rank of a score indicates the percentage of the scores of the
distribution that falls below that score. For example, if a score has a percentile
rank of 80, you know that 80% of scores fall below it and 20% fall above.

The range of the transformed scale is from the 0th percentile rank to the 100th
percentile rank. The median is the 50th percentile rank. Transforming a score to a
percentile rank locates the score on a scale from 0 to 100 and indicates the percent-
age of scores below. Thus, as in the case of a standard score, a single number, the
percentile rank, is sufficient for interpreting a score.

Because percentile ranks are familiar to most people, they are used widely in pre-
senting psychological test scores. Standard scores, on the other hand, are less famil-
iar but, as you will see, possess a number of advantages over percentiles.

Relative Advantages of z Scores and Percentile Ranks

Consider the distribution of IQ scores in Figure 9.3-1 (a); it is slightly negatively
skewed. A graph of the percentile ranks corresponding to scores in Figure 9.3-1 (a)
is shown in part (b) of the figure. The percentile rank graph has a rectangular shape.

Figure 9.3-1. (a) Graph of distribution of IQ scores. (b) Graph of distribution of
percentile ranks. The transformation of scores to percentile ranks alters the shape of
the distribution.
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You can see from the figure that the transformation of scores to percentile ranks has
altered four characteristics of the distribution: (1) central tendency (for example, the
transformed mean is 50), (2) dispersion, (3) skewness (the percentile graph is sym-
metrical), and (4) kurtosis. The only characteristic that is not changed by the trans-
formation is the rank order of scores within the distribution. In addition, you see that
the 10-point difference between, for example, the 50th and 60th percentiles corre-
sponds to a relatively small difference between IQ scores, but a 10-point difference
between the 80th and 90th percentiles corresponds to a larger difference between
IQs. To put it another way, there is a greater difference in intellectual functioning
between two individuals at the 80th and 90th percentiles than between individuals at
the 50th and 60th percentiles. Thus, the interpretation of a 10-point difference be-
tween percentile ranks depends on where the difference is on the 0 to 100 scale. This
problem does not occur with standard scores.

As you have seen, transforming scores to percentile ranks alters four characteris-
tics of the distribution; a standard score transformation alters only two characteris-
tics—central tendency and dispersion. Standard scores have the added advantage
that they can be manipulated arithmetically. For these reasons, psychologists and ed-
ucators who use or develop psychological tests prefer standard scores over per-
centile ranks even though they are less familiar to the average person.

Other Kinds of Standard Scores

The standard scores I have described range approximately from �3 to �3 and have
a mean of 0 and a standard deviation of 1. It is a minor inconvenience to have to deal
with negative scores, and fortunately this inconvenience can be avoided. If a suffi-
ciently large constant is added to each z score, all the z scores will be positive, with
a new mean equal to the constant. Similarly, if each z score is multiplied by a con-
stant, the standard deviation is changed from one to the value of the constant. The
formula

is used to change the mean and standard deviation of z scores to any desired values,
where is the transformed standard score, is the value of the desired standard
deviation, and is the value of the desired mean.

A surprising number of psychological test scores are actually transformed z
scores. Many IQ tests, for example, yield scores that are actually z scores that have
been multiplied by 15 and then had 100 added to the product. The resulting trans-
formed scores have a mean equal to 100 and a standard deviation equal to 15.
Other examples of transformed standard scores are shown in Figure 9.3-2.

Comparing Performance on Different Tests

Randy got a raw score of 68 in arithmetic and a 42 in English. He seems to be doing
better in arithmetic than in English, but is he really? His teacher converts the class’s
arithmetic and English scores to standard scores with a mean of 50 and a standard
deviation of 10. A different picture of Randy’s performance emerges; his arithmetic
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z score is 40, one standard deviation below the class mean, but his English score is
65, one and a half standard deviations above the mean. So Randy is doing much
better in English than in arithmetic, relative to others in his class. As this example il-
lustrates, z scores are useful for determining an individual’s strengths and weak-
nesses—that is, for making intraindividual comparisons. z scores permit you to
compare performance on different tasks that are measured on different scales, as
were Randy’s arithmetic and English tests. However, for the comparisons to be
meaningful, the z scores for both variables should be based on the same or equiva-
lent reference groups. Reference groups are equivalent with respect to a variable
if their distributions have essentially the same mean, standard deviation, and shape. It
would not have been possible to compare Randy’s arithmetic and English z scores if
he had been in an accelerated arithmetic class and a remedial English class. In this
case, the references groups, accelerated arithmetic class and remedial English class,
clearly would not be equivalent.

Figure 9.3-2. Comparison of percentiles and widely used systems of standard
scores.
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CHECK YOUR UNDERSTANDING OF SECTION 9.3

12. Suppose that three tests were given in your statistics course. The class means,
standard deviations, and your scores are listed in the table.

Test m s Your Scores

1 60 11 72
2 44 17 61
3 53 8 63

On which test did you do your best, and on which did you do your worst?
13. Your statistics professor returned the midterm exam and said that the mean was

82 and the standard deviation was 14. The top 15% of the test scores received
an A. Assume that the distribution is normally distributed and that your score
was 99. Did you get an A?

14. Suppose that the mean of a test was 22 and the standard deviation was 5. Trans-
form a score of 18 to standard scores with the following means and standard
deviations:
a. � 100, S � 15 b. � 50, S � 10 c. � 10, S � 2

9.4 SAMPLING DISTRIBUTIONS

Looking Ahead to Inferential Statistics

So far you have covered descriptive statistics, probability, and probability distrib-
utions. These topics provide the necessary background for moving on to inferen-
tial statistics, the subject of the second half of this book. Inferential statistics are
procedures for using sample data to make inferences about one or more popula-
tion parameters. Two kinds of procedures are categorized under inferential statis-
tics: estimation and hypothesis testing.

The term estimation is used in statistics in much the same way as it is used in
everyday language. A student might estimate that the mean grade-point average of
members of his sailing club is 2.9 or that it is between 2.7 and 3.1. The first type of
estimate is called a point estimate because the one number representing the esti-
mate can be associated with a point on the real number line (a straight line in which
points are identified with real numbers). The second type, involving two numbers,
is called an interval estimate because the two numbers and associated points de-
fine an interval on the real number line.

An estimator is a rule, usually in the form of a formula such as Xi /n, that
tells you how to calculate an estimate of a population parameter using sample
information. The estimate is the numerical value that results from applying the
rule to a sample.
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The value of a point estimate varies from one random sample to the next; hence, the
value for a particular sample is likely to differ from the population parameter. As
you will see in Chapters 11 through 14, interval estimation is used in conjunction
with point estimation to specify an interval on the real number line that has a high
likelihood of containing the parameter of interest. In subsequent chapters, I will call
this interval a confidence interval.

The other approach to statistical inference, hypothesis testing, is similar in many
respects to the scientific method. A scientist observes nature, formulates a hypothe-
sis, and then proceeds to test the hypothesis by comparing its predictions with data.
Similarly, hypothesis testing begins with a question about nature that leads to a hy-
pothesis regarding the value of one or more population parameters. The researcher
obtains a sample from the population and compares the sample value with the hy-
pothesized value of the population parameter. If the sample value is inconsistent
with the hypothesized value, the hypothesis is rejected; otherwise, it is not rejected.
These procedures are discussed in Chapters 10 and 12 through 14.

In summary, estimation is concerned with getting a reasonable idea of the value
of a parameter. Hypothesis testing is concerned with deciding whether a hypothesis
about a parameter is or is not tenable. In estimation, the result is a number or an in-
terval bounded by two numbers. In hypothesis testing, the result is a decision about
a hypothesis.

Before turning to hypothesis testing and confidence intervals, which are intro-
duced in Chapters 10 and 11, respectively, I will lay a little more groundwork for
statistical inference.

Sampling Distributions

As you have learned, inferential statistics are used to reason from a sample to the
population—from the particular to the general. Such reasoning is based on a knowl-
edge of the sample-to-sample variability of a statistic—that is, on its sampling be-
havior. Before data have been collected, you can speak of a sample statistic such as

in terms of probability. Its value is yet to be determined and will depend on which
score values happen to be randomly selected from the population. Thus, at this stage
of research, a sample statistic is a random variable because it will be computed from
two or more score values obtained by random sampling.

Like any random variable, a sample statistic has a probability distribution that
gives the probability associated with each value of the statistic over all possi-
ble samples of the same size that could be drawn from the population. The
probability distribution of a statistic is called a sampling distribution to dis-
tinguish it from a probability distribution for, say, a score value.

Sampling distributions play a key role in statistical inference because they describe
the sample-to-sample variability of statistics computed from random samples. In sub-
sequent chapters, you will use sampling distributions to (1) determine the tenability
of the hypothesis that a population parameter is equal to a particular value and
(2) specify a range of values that has a high likelihood of including the parameter.

X
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Sampling Distribution of the Mean

Some of the important characteristics of a sampling distribution will be introduced
by an example that, though obviously unrealistic, has the virtue of allowing a con-
crete approach to the topic. This discussion focuses on the sampling distribution of
the mean, but the ideas developed apply to any sampling distribution. Suppose that I
have a discrete, uniform (rectangular) population consisting of N � 4 scores: 1, 2, 3,
and 4. A graph of the population is shown in Figure 9.4-1. The mean of the
population is

and its standard deviation is

If I draw all possible samples of size n � 2 with replacement, k � 16 different sam-
ples can be drawn (see Table 9.4-1). This follows from the fundamental counting
rule (see Section 7.4) because the first element can be drawn in any one of four ways
and the second, in any one of four ways, making a total of 4 � 4 � 16 samples. The
probability of drawing a particular sample is, according to the multiplication rule for
independent events, (1⁄4)(1⁄4) � 1⁄16. The 16 equally likely samples and their means are
given in Table 9.4-1. As shown in the table, the population mean of the 16 means,
denoted by , is equal to 2.5; the population standard deviation of the means, de-
noted by , is equal to 0.791. A chart depicting the sampling procedure along withsX
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a graph of the sampling distribution of the mean is presented in Figure 9.4-2. The
figure also gives concrete examples of three kinds of distributions that are often
confused: population distribution, sample distribution, and sampling distribution.
A population distribution is shown at the top of Figure 9.4-2—it contains all the
score values in the population. Examples of sample distributions are shown in the
middle of the figure—each sample distribution contains n � 2 score values from the
population. A sampling distribution is shown at the bottom of Figure 9.4-2—it con-
tains the 16 sample means that can be computed from random samples of size n � 2
from the population. A sampling distribution is the distribution of a statistic such as
the mean. Population and sample distributions are distributions of score values.

Three characteristics of the sampling distribution are especially important:

1. The distribution of the sample means does not resemble the original popula-
tion, which in this example was rectangular, but instead resembles the normal
distribution. I could show that if the sample size was increased from n � 2 to
n � 3, the number of possible j values would increase and the distribution
of the j’s would resemble more closely the normal distribution.

2. The population mean of the 16 sample means, , equals the mean of
the four score values in the population, m � 2.5.

mX 5 2.5
X

X

TABLE 9.4-1 Listing of All Possible Samples of Size Two from 
the Population in Figure 9.4-1

(i) Data (the sample mean for each of the j � 1, . . . , k samples is given by ,
where k � 16 and n � 2)

Sample Sample Sample Sample
Number Values j Number Values j

1 1, 1 1.0 9 2, 3 2.5
2 1, 2 1.5 10 3, 2 2.5
3 2, 1 1.5 11 2, 4 3.0
4 1, 3 2.0 12 4, 2 3.0
5 3, 1 2.0 13 3, 3 3.0
6 1, 4 2.5 14 3, 4 3.5
7 4, 1 2.5 15 4, 3 3.5
8 2, 2 2.0 16 4, 4 4.0

(ii) Mean and standard deviation of the means
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Figure 9.4-2. Graph of the sampling procedure used to construct a sampling distribution for samples of size

n � 2 from a discrete, uniform population. Note that and that �
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3. The population standard deviation of the 16 sample means, ,
equals the standard deviation of the four scores in the population divided 
by the square root of the sample size—that is,

Several implications of the third point are easily overlooked. It says in effect that
you can compute the standard deviation of sample means in two ways—from 

or from . Because in practical situations 
the distribution of sample means is not available, you will rely on a knowledge of,
or an estimate of, the population standard deviation, s, and the formula in 
computing . The formula also gives you a reason for having greater 
confidence in large samples. You know that the standard deviation of the population,
s, is a constant. Therefore, it follows from that as n (the sample size)
increases, (the dispersion of sample means) decreases, and hence the closer a
randomly selected sample mean is likely to be to m. In other words, the larger the
sample size, the more probable it is that the sample mean comes arbitrarily close to
the population mean. This fact, referred to as the law of large numbers, is one jus-
tification for using random samples to learn about populations. If the sample is large
enough, the sample information is likely to be very accurate.

Central Limit Theorem

The three characteristics of the sampling distribution of the mean just described are
succinctly stated in the central limit theorem, one of the most important theorems in
statistics.

In one form, the central limit theorem states that if random samples are
selected from a population with mean m and finite standard deviation s, as the
sample size n increases, the distribution of approaches a normal distribu-
tion with mean m and standard deviation .

Probably the most significant point is that regardless of the shape of the sampled pop-
ulation, the means of sufficiently large samples will be nearly normally distributed.
Just how large is sufficiently large? This depends on the shape of the sampled popula-
tion; the more a population departs from the normal form, the larger n must be. For
most populations encountered in the behavioral sciences and education, a sample size
of 100 is sufficient to produce a nearly normal sampling distribution of . The ten-
dency for the sampling distributions of statistics to approach the normal distribution as
n increases helps to explain why the normal distribution is so important in statistics.

Standard Error of a Statistic

The term standard deviation has been used here to refer to a measure of dispersion,
both for scores in a frequency distribution and statistics in a sampling distribution.
To avoid confusion, in the future, I will use the term standard error to denote the
latter measure. The symbol for a standard error always includes a subscript indicat-
ing the statistic to which it applies—for example, (standard error of a mean),sX

X

s>"n
X

sX

sX 5 s>"n

sX 5 s>"nsX

s>"n

sX 5 s>"nsX 5"gk
j51sXj 2 mXd2>k

"2 5 0.791.
sX 5 s>"n 5 1.118>

sX 5 0.791



248 Normal Distribution and Sampling Distributions

sMdn (standard error of a median), and sr (standard error of a correlation coeffi-
cient). There are as many standard errors as there are sample statistics, but they are
all interpreted analogously to a standard deviation.

In the future, whenever you encounter a standard error, think of it simply as a
measure of the sample-to-sample variability of the values of a statistic computed
from a large number of random samples. The standard error reflects the dispersion
of the values of a statistic computed from many samples; a standard deviation re-
flects the dispersion of scores computed from a sample.

Two Properties of Good Estimators

As I have discussed, the value of sample statistics varies from one random sample to
the next. Consequently, it is unlikely that a given statistic will equal the population
parameter it is used to estimate. This is a little frustrating, but it is something you
have to live with. However, you can require that the mean of the distribution of esti-
mates yielded by an estimator equals the parameter it estimates and that the esti-
mates vary from one random sample to the next as little as possible. Statistics that
satisfy these two intuitively reasonable requirements are said to be unbiased estima-
tors and minimum variance estimators, respectively.

More formally, an estimator is an unbiased estimator of the parameter if
E( ) � . An estimator is a minimum variance estimator of the parameter

if the variance of , denoted by Var( ), is smaller than that for any other un-
biased estimator of .

The sample mean is a good estimator of m because it satisfies both these require-
ments: and Var( ) is a minimum—that is, the expected value of the
sample mean equals the population mean and the variance of sample means is as
small as it can be.

It can be shown that the sample median of normally distributed populations also
is an unbiased estimator of m, but it is not a minimum variance estimator. This can
be seen by comparing the variance error (the square of the standard error) of the
median with that for the mean. The variance of the median, Var(Mdn), is equal to
1.57s2/n. This variance is larger than the variance of the mean, Var( ), which is
equal to s2/n. This confirms what you learned in Section 3.5, namely that the sam-
ple mean is more stable than the sample median—the mean varies less from sample
to sample than the median.

Some statistics are biased estimators. One example is the sample variance S2. Its
expected value, E(S2), does not equal s2. When you want to estimate s2 you should
use because E( 2) � s2. A demonstration showing that

2 is an unbiased estimator but S2 is a biased estimator is given in Supplementary
Note 9.6.

Test Statistics

The statistics presented thus far— , Mdn, and so on—are useful for describing
samples. If they are computed from a random sample, they also can be used to esti-
mate population parameters, although, as you have seen, some are better for this
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purpose than others. Subsequent chapters describe in detail a different kind of statis-
tic that is used to test hypotheses about the values of population parameters. These
statistics are called test statistics. Consider a z test statistic that is used to test the
hypothesis that the population mean, m, is equal to some value denoted by m0. The
formula for z is

where is the mean of a random sample that is used to estimate the unknown pop-
ulation mean, m0 is the hypothesized value of the population mean, is the stan-
dard error of the mean, s is the population standard deviation, and n is the size of
the random sample. If the sampled population is normal or the sample size is suffi-
ciently large and if you know the population standard deviation, it is possible to
specify the sampling distribution of the z test statistic—it is the standard normal dis-
tribution whose m is 0 and s is 1. There is a marked similarity in appearance be-
tween this z test statistic ( and a z score ( . In
both cases, z has the form

In words, the z’s are obtained by subtracting the sample mean from a statistic,
, or the hypothesized mean from a statistic, , and dividing the differ-

ence by a standard deviation—S in the case of X and in the case of .
Other test statistics that will be introduced in later chapters include

(also used to test a hypothesis about a population mean)
and F � 2

1 / 2
2 (used to test the hypothesis that two population variances are

equal).

CHECK YOUR UNDERSTANDING OF SECTION 9.4

15. A population consists of N � 4 scores: 0, 1, 2, and 3. (a) List the (4)(4) � 16
samples of size n � 2 that can be drawn with replacement from the population.
(b) Compute the mean and standard error of the mean using the formulas 

and , where . (c) Com-
pute the mean and standard error of the mean using the formulas 

and (d) Compare the results ob-

tained in parts (b) and (c).
16. For the population in Exercise 15, (a) list the 4C2 � 6 distinct samples of size

two that can be drawn without replacement. (b) Compute the mean and standard
error of the mean using the formulas and , where 

(c) Compute the mean and standard error of the mean 

using the formulas and . The
means computed from the two formulas should be equal, but the standard error
computed from overestimates the true value because it assumes ansX 5 s>"n
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infinite population or sampling with replacement. A correction for a finite pop-
ulation or when you are sampling without replacement can be made:

where N is the number of scores in the population and n is the number in the sam-

ple. (d) Apply the correction to and compare the value with that obtained 

using . (e) One rule of thumb states that the finite
population correction can be ignored when n/N � .05. Use an example to show
why this rule is reasonable.

17. How is the dispersion of the sampling distribution of related to s and n?
18. A sample of size n is to be drawn from a population with a mean of 100 and a

standard deviation of 10. Complete the table.

n n

a. 2 b. 4
c. 8 d. 16

19. The registrar claims that the mean IQ of students at a university (m0) is 120,
with a standard deviation (s) of 10. You obtain a random sample of 25 students
and find that their mean ( ) is 115. What is the probability of obtaining a mean
of 115 or lower if the true mean is 120? (Hint: Transform to a z statistic, and
use the standard normal distribution to find the area below 115.)

20. Terms to remember:
a. Point estimate b. Interval estimate
c. Estimator d. Confidence interval
e. Sampling distribution f. Law of large numbers
g. Central limit theorem h. Standard error
i. Unbiased estimator j. Minimum variance estimator
k. Test statistic

9.5 LOOKING BACK: WHAT HAVE YOU LEARNED?

This chapter described two theoretical distributions that provide a bridge between
descriptive and inferential statistics: a probability distribution and its close relative,
a sampling distribution. A probability distribution associates a probability with each
value of a random variable where the random variable is a single population ele-
ment. A sampling distribution associates a probability with each value of a random
variable where the random variable is some function of two or more population ele-
ments, say, a mean, a sum, or a standard deviation.

The normal distribution is the most widely applicable theoretical model in statis-
tics. It provides an excellent approximation to the binomial distribution and to other
theoretical distributions whose probabilities are laborious to calculate when n is
large. In addition, it serves as a model for the many variables in science and nature
that are approximately normally distributed. But its most important use is as a model
for the sampling distribution of statistics based on large n’s. According to the central
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limit theorem, as the sample size n increases, the distribution of ’s from random
samples approaches a normal distribution, with mean m and standard deviation

, whatever the shape of the original population.
The normal distribution is actually a family of distributions, one for each possi-

ble combination of m and s. The distribution with m � 0 and s � 1 is called the
standard normal distribution; it is the distribution whose areas are given in Appen-
dix Table D.2. To use the standard normal distribution table, a score is transformed
into a standard score (z score) by the formula /S. The transformation
does not affect the shape of the original distribution but does change its mean and
standard deviation to 0 and 1, respectively. Standard scores are widely used for re-
porting psychological test scores because one number contains all the information
necessary to interpret a score.

An important new measure of dispersion was introduced in this chapter—the
standard error, which is the standard deviation of a statistic. It is the dispersion of a
random variable that has been computed from two or more population elements. The
standard error describes the dispersion of a statistic over all possible samples of the
same size. It is denoted by s, with a subscript identifying the statistic; for example,

denotes the standard error of the mean. The following chapters describe how the
elements—standard error, sampling distribution, and test statistic—are used in in-
ferential statistics.

REVIEW EXERCISES FOR CHAPTER 9

1. Why is the normal distribution so important in statistics?
2. A set of scores has a mean of 50 and a standard deviation of 15. Transform the

following to z scores.
a. 65 b. 35 c. 50 d. 80 e. 45 f. 5

3. If z is a normally distributed random variable with m � 0 and s � 1, determine
the percentage of the area under the standard normal curve for the following.
a. Above z � 2 b. Below z � �3
c. From m to z � 2.5 d. Between z � 0.5 and z � 1
e. Between z � 1 and z � �2 f. Between z � �2 and z � �3
g. From m to z � �1 h. Between z � �1 and z � 1.5

4. Determine the percentage of the area of the standard normal distribution that
falls between m�ks and m �ks, where k is equal to the following.
a. 0.5 b. 2.0 c. .67 d. 3.0 e. 2.33

5 Compute the score corresponding to each of the following z scores. Assume that
the original distribution had a mean of 150 and a standard deviation of 20.
a. 3.3 b. 2.5 c. �1.0 d. 1.8 e. 1.645

6. Find the z score such that at least the following proportion of the area under the
standard normal distribution falls above it.
a. .01 b. .16 c. .025 d. .84 e. .99

7. In the general population, Stanford-Binet IQs are nearly normally distributed,
with a mean of 100 and a standard deviation of 16. (a) What is the probability
that a randomly selected person will have an IQ between 100 and 124? (b) What
proportion of the population will have IQs above 132?
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8. Grading on the curve means assigning grades according to the normal distribu-
tion. The mean of a test is 50, with a standard deviation of 10. If 10% of the
class receives A’s, what is the lowest score that receives an A?

9. The time from conception to birth in humans is approximately normally distrib-
uted, with a mean of 280.5 days and a standard deviation of 8.4 days. In a pater-
nity case it was proved that the time from the alleged conception to the birth of a
6.5-pound baby was at least 306 days. (a) Compute the proportion of women hav-
ing this or a longer gestation time. (b) Discuss the significance of the evidence.

10. Suppose that 64% of stocks recommended by a broker increase in value within
six months. Use the normal approximation to the binomial distribution to deter-
mine the probability that of 372 recommendations, (a) at least 225 will increase
in value and (b) more than 250 will increase in value.

11. The statement “Jane got a 29 on the quiz” is uninterpretable. Discuss.
12. Compare the relative merits of standard scores and percentile ranks for inter-

preting scores.
13. On a mechanical aptitude test, Bill scored 110 and Elaine scored 85. The popu-

lation mean for men is 104, with a standard deviation of 20. The comparable
norms for women are 70 and 30. Which of the two did better, considering the
norms for their genders?

14. Suppose that the mean of a test was 30 and the standard deviation was 8.
Transform a score of 18 to standard scores with the following means and stan-
dard deviations.
a. � 100, S � 10 b. , S � 100 c. , S � 10

15. Distinguish a sampling distribution from a sample (frequency) distribution.
16. A population consists of N � 5 scores: 0, 1, 2, 3, and 4. (a) List the (5)(5) � 25

samples of size two that can be drawn with replacement from the population.
(b) Compute the mean and standard error of the mean using the formulas

and , where . (c) Com-
pute the mean and standard error of the mean using the formulas

and . (d) Compare the results ob-
tained in parts (b) and (c).

17. For the population in Exercise 16, (a) list the 5C2 � 10 distinct samples of size
two that can be drawn without replacement. (b) Compute the mean and standard
error of the mean using the formulas and , where 

. (c) Compute the mean and standard error of the mean 

using the formulas and . The
means computed from the two formulas should be equal, but the standard error
computed from overestimates the true value because it assumes an
infinite population or sampling with replacement. A correction for a finite pop-
ulation or when you are sampling without replacement can be made:

where N is the number of scores in the population and n is the number in the
sample. (d) Apply the correction to and compare the value with
that obtained using . (e) One rule of thumb statessX 5"gk
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that the finite population correction can be ignored when n/N � .05. Use an ex-
ample to show why this rule is reasonable.

18. Distinguish a standard error from a standard deviation.
19. A sample of size n is to be drawn from a population with a mean of 63 and a

standard deviation of 15. Complete the table.

n n

a. 3 b. 9
c. 27 d. 81

20. An elevator has a maximum safe load of 1638 pounds. If men’s weights are ap-
proximately normally distributed with a mean of 165 pounds and a standard de-
viation of 15 pounds, what is the probability that nine men (whose weights can
be assumed to be independent) will overload the elevator?

9.6 SUPPLEMENTARY NOTES

Explanation of Why the Mean of a Distribution 
of z Scores Is Zero and the Standard Deviation Is One

Information from Chapters 3 and 4 can be used to show that if a distribution of X
scores is transformed into z scores, , the distribution of z scores has
a mean of 0 and standard deviation of 1. To show this, use two facts that were
mentioned in Chapters 3 and 4. Review Exercise 21 in Chapter 3 showed that if a
constant c is subtracted from each score in a distribution, Xi � c, the mean of the
transformed distribution is equal to the original mean minus the constant—that is,

. Hence, if is subtracted from each score, the
mean of the transformed scores will equal 0 because 

. Also, Review Exercise 11b in Chapter 4 showed that if each ( ) is

divided by a positive constant c, the standard deviation of the transformed ( )’s
is equal to the original standard deviation divided by the constant, that is, Stransformed �
Soriginal /c. Hence, if each ( ) is divided by c � Soriginal, the transformed
standard deviation of the ( )’s will equal 1 because Stransformed � Soriginal/
Soriginal � 1. Thus, applying the transformation ( ) to each X score
results in a new variable called a standard score, whose mean is 0 and whose stan-
dard deviation is 1.

Demonstration Showing That and Are Unbiased
Estimators but S2 Is a Biased Estimator

Section 9.4 drew all possible samples of size two with replacement from a finite popu-

lation to show that the standard error of the mean, , is equal to the standard deviationsX
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of the population divided by the square root of the sample size—that is .

This supplementary note uses the same sampling procedure and data to show that

E( ) � and , which means that is an unbiased estimator of the para-

meter s2 but S2 is a biased estimator. The values of and S are shown in Table 9.6-1

and are based on the population in Figure 9.4-1 and the random samples in Table 9.4-1.

For the moment, ignore in column 6 of Table 9.6-1. Because is a discrete 
random variable that assumes values , , . . . , with probabilities p( ),
p( ), . . . , p( ), the expected value of is given by 2) ) . Simi-
larly, the expected value of S2 is given by . You can see from the
computations in Table 9.6-1 (part ii) that is an unbiased estimator of s2 because 
E( ) . However, , which means that S2 is a biased
estimator of s2. Thus, dividing by n � 1 instead of by n provides an
unbiased estimator of the population variance.

A second unbiased estimator of the population variance is , where
is divided by n. According to Table 9.6-1 (part ii), E ( ) � 1.25 �2
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2ŝ

2
1ŝ2
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TABLE 9.6-1 Computation of , S2, and for All Possible 
Samples of Size Two from the Population in Figure 9.4-1 
(for This Population, m 5 2.5 and s2 5 1.25)

(i) Data (the three variance estimators, , Sj
2, and are each computed from i � 1, . . . ,

n scores, where n � 2. There are j � 1, . . . , k variance estimates, where k � 16).

(1) (2) (3) (4) (5) (6)

1 1,1 1.0 0.0 0.00 2.25
2 1,2 1.5 0.5 0.25 1.25
3 2,1 1.5 0.5 0.25 1.25
4 1,3 2.0 2.0 1.00 1.25
5 3,1 2.0 2.0 1.00 1.25
6 1,4 2.5 4.5 2.25 2.25
7 4,1 2.5 4.5 2.25 2.25
8 2,2 2.0 0.0 0.00 0.25
9 2,3 2.5 0.5 0.25 0.25

10 3,2 2.5 0.5 0.25 0.25
11 2,4 3.0 2.0 1.00 1.25
12 4,2 3.0 2.0 1.00 1.25
13 3,3 3.0 0.0 0.00 0.25
14 3,4 3.5 0.5 0.25 1.25
15 4,3 3.5 0.5 0.25 1.25
16 4,4 4.0 0.0 0.00 2.25
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s2, which means that s , like , is an unbiased estimator. It is also a better
estimator of than is because varies less from sample to sample. This is
shown in part iii of the table: Var( ) � 0.5000 � Var( ) � 2.0625. It turns out
that is a minimum variance estimator.

To compute , I need to know m, one of the parameters of the population. Be-
cause m is rarely known in real-life situations, I rely instead on . In computing ,
I used to estimate the unknown population parameter m. As a consequence,

must be divided by n � 1 (1 is the number of parameters estimated
in the computation) instead of by n to obtain an unbiased estimator of s2.

In summary, I have just demonstrated that and are unbiased estimators of
the population variance and that S2 is a biased estimator. Furthermore, is a mini-
mum variance estimator. Unfortunately, cannot be used in practice because it
requires a knowledge of the population mean, m. Consequently, I use to estimate

. As you have just seen, has the desirable property of being unbiased, although
it is not a minimum variance estimator.
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2
estŝ
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TABLE 9.6-1 (continued)

(ii) Computation of expected value

(iii) Computation of variance
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est 1dŝ2
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10.1 INTRODUCTION TO HYPOTHESIS TESTING

Looking Ahead: What Is This Chapter About?

Evaluating the effectiveness of a new teaching technology or assessing attitudes to-
ward violence on TV involves making a decision on the basis of incomplete informa-
tion. The researcher’s information is usually incomplete because it is impossible or
impractical to observe all the people in the population of interest—for example, all
schoolchildren or all TV viewers. Fortunately, there are procedures for making
rational decisions about populations that use a sample containing only a small por-
tion of the elements in the population. These procedures, called statistical inference,
are the subject of this and subsequent chapters.

Several approaches to making decisions about a population use information from
a sample, but I will limit my discussion to classical statistical inference, which
evolved from the work of Ronald A. Fisher and, more directly, Jerzy Neyman and
Egon Pearson. Two complementary topics fall under classical statistical inference:
null hypothesis significance testing, the subject of this chapter, and confidence in-
terval estimation, which is described in the next chapter. I will examine hypothesis
testing first because the procedure is so widely used in the behavioral sciences,
health sciences, and education.

In this chapter you will learn about a new sampling distribution called the t dis-
tribution. You also will learn how to use a t statistic to test a hypothesis about the
mean of a population. You will use the concepts that you learn in this chapter
throughout the remainder of the book.

After reading this chapter, you should know the following:

■ The difference between scientific hypotheses and statistical hypotheses
■ The five steps used to test a statistical hypothesis
■ How to use a t statistic to test a statistical hypothesis about a population mean
■ The relative advantages of one- and two-tailed tests
■ The two kinds of errors that can occur in testing a statistical hypothesis
■ How to specify an appropriate sample size, n

Scientific Hypotheses

People are by nature inquisitive. We ask questions, develop hunches, and sometimes
put our hunches to the test. Over the years, a formalized procedure for testing
hunches has evolved—the scientific method. It involves (1) observing nature, (2)
asking questions, (3) formulating hypotheses, (4) conducting experiments, and (5)
developing theories and laws. Let’s examine in detail the third characteristic, formu-
lating hypotheses.

A scientific hypothesis is a testable supposition that is tentatively adopted to
account for certain facts and to guide in the investigation of others. It is a
statement about nature that requires verification.
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Consider the following examples of scientific hypotheses: The child-rearing
practices of parents affect the personalities of their offspring. Cognitive-behavioral
therapy is an effective treatment for girls who are anorexic. Cigarette smoking is
associated with high blood pressure. Children who feel insecure engage in overt
aggression more frequently than do children who feel secure. These hypotheses
have three characteristics in common with all scientific hypotheses: (1) they are in-
telligent, informed guesses about phenomena of interest; (2) they can be stated in
the if-then form of an implication—for example, “if John smokes, then he will
show signs of high blood pressure”; (3) their truth or falsity can be determined by
observation and experimentation.

Many interesting hypotheses do not qualify as scientific hypotheses because
they are not testable by recourse to experience. Questions such as “Can three or
more angels dance on the head of a pin?” and “Does life exist in more than one
galaxy in the universe?” cannot be investigated because no procedures presently
exist for observing angels or life on other galaxies. This does not mean that the
question concerning the existence of life in other galaxies can never be investi-
gated. Indeed, with continuing advances in space science, it is likely that this ques-
tion eventually will be answered.

Why Statistical Inference?

I have said that statistical inference is a form of reasoning whereby rational deci-
sions about states of nature can be made on the basis of incomplete information.
Rational decisions often can be made without resorting to statistical inference, as
when a scientific hypothesis concerns some limited phenomenon that is directly
observable—for example, “This rat will run under condition X.” The truth or falsity
of the hypothesis can be determined by observing the rat under condition X.

Many scientific hypotheses, on the other hand, refer to phenomena that cannot
be directly observed. The population elements are so numerous that viewing all of
them is impossible or impractical, for example, “All rats run under condition X.”
It is impossible to observe the entire population of rats under condition X. Like-
wise, it is impossible to observe all parents rearing their children, all anorexic
girls, all smokers, or all insecure children. If a scientific hypothesis cannot be
evaluated directly by observing all members of a population, it may be possible to
evaluate the hypothesis indirectly by statistical inference. Statistical inference,
which involves observing a sample from the population of interest, enables a re-
searcher to make a rational decision concerning the probable truth or falsity of the
scientific hypothesis.

Statistical Hypotheses

Scientific hypotheses are statements about phenomena of nature and humankind and
are usually stated in fairly general terms—at least in the initial stages of an inquiry.
Consider the scientific hypothesis that a new class registration procedure at Idle-
on-in College will reduce the time required for students to register. Over the past
several years, the dean of students has found that the mean time required to register
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using the current procedure is 3.10 hours. The dean’s scientific hypothesis that the
new procedure is better than the old procedure can be expressed in the form of a
statistical hypothesis.

A statistical hypothesis is a statement about one or more parameters of a
population distribution that requires verification.

The statistical hypothesis corresponding to the dean’s scientific hypothesis is m �
3.10, where m is the unknown mean for the new registration procedure and 3.10 is
the mean registration time for the current procedure. This statistical hypothesis
states that the population mean, denoted by m, is less than 3.10. It is possible that
the new procedure is no better than the current procedure or that it is worse than the
current procedure. Thus, another statistical hypothesis can be formulated that states
that the mean for the new procedure is greater than or equal to 3.10—that is, m �
3.10. These two hypotheses, m � 3.10 and m � 3.10, are mutually exclusive and ex-
haustive; if one is true, the other must be false. They are examples, respectively, of
the null hypothesis, denoted by H0, and the alternative hypothesis, denoted by H1.
The null hypothesis, H0: m � 3.10, is the one whose tenability is actually tested. If on
the basis of this test the null hypothesis is rejected, only the alternative hypothesis,
H1: m � 3.10, remains tenable. According to convention, the alternative hypothesis is
always formulated so that it corresponds to the researcher’s scientific hypothesis. The
process of choosing between the null and alternative hypotheses is called hypothesis
testing.

The mean time required to register using the current procedure is 3.10; this mean
is denoted by m0. The dean doesn’t know the population mean, m, or the population
standard deviation, s, for the new procedure. However, these population parameters
can be estimated by conducting an experiment. The dean can have a random sample
of n undergraduate students register using the new procedure. The sample statistics

and from the experiment are used to estimate the unknown m and s.
To summarize, the null hypothesis, H0: m � 3.10, is contrary to what the dean

believes to be true. The dean has followed the convention of equating the alterna-
tive hypothesis, H1: m � 3.10, with the situation she believes to be true—that the
new procedure is better than the old procedure. The scientific hypothesis and its
negation are expressed as two mutually exclusive and exhaustive statistical hy-
potheses concerning the value of m, the unknown population mean for the new pro-
cedure. The two statistical hypotheses cannot both be true. If the sample mean that
is obtained in the experiment would be highly unlikely if the null hypothesis is true,
the null hypothesis that m � 3.10 is a poor prediction of the population mean and
should be rejected. In this case, only the alternative hypothesis remains credible.

Hypothesis Testing and the Method 
of Indirect Proof

You may marvel at the roundabout procedure whereby a researcher tests a null
hypothesis that is believed to be untrue in the hope of rejecting it and thereby
accepting the alternative hypothesis that is believed to be true. On reflection, you

ŝX
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may recall a similar procedure taught in plane geometry and algebra—the method
of indirect proof. This method consists of listing all possible answers or solutions
to a problem and showing that all but one are contrary to known fact or lead to an
absurdity. By a process of elimination, the one that is not contrary to known fact
or absurd must be true. The success of the method of indirect proof depends on
listing all possibilities and finding a contradiction for all but one. The comparable
procedure in testing a null hypothesis consists of formulating the null and alterna-
tive hypotheses so that they exhaust all the possibilities concerning a population
parameter. A sample is obtained from the population, and appropriate statistics,
such as the sample mean and standard deviation, are computed. If it is highly im-
probable that the obtained value of the sample mean would have occurred if the
null hypothesis were true, then the null hypothesis must be considered a poor pre-
diction of the population mean and should be rejected in favor of the alternative
hypothesis.

There is one important difference between the method of indirect proof and null
hypothesis testing. In indirect proof, a possibility is rejected only if it is found to
lead to a contradiction to known fact or is absurd. In hypothesis testing, the null hy-
pothesis is rejected if the obtained value of a sample mean is very unlikely if the null
hypothesis is indeed true. It follows that null hypothesis testing, unlike the method
of indirect proof, does not provide incontrovertible proof because the null hypothe-
sis is rejected because of the occurrence of an event that is improbable but not im-
possible.

Rejection or Nonrejection of H0: What Does It Mean?

If the null hypothesis is not rejected, what conclusion can the researcher draw? Is
the null hypothesis true? Not necessarily; there are always alternative reasons for
why the null hypothesis is not rejected.

1. The null hypothesis is true and should not be rejected.
2. The null hypothesis is false and should be rejected, but the particular sample

that was used to estimate m and s is not representative of the population.
3. The null hypothesis is false and should be rejected, but the experimental

methodology is not sufficiently sensitive to detect the true situation.

An experimental methodology can lack sensitivity for a variety of reasons: the size
of the sample is too small, the procedure used to measure the dependent variable is
subject to large random or systematic errors, and so on.

Sometimes a random sampling procedure will produce a random sample that is
not representative of the population and one that is consistent with the false null
hypothesis. You know, for example, that a fair coin will, on occasion, produce 10 or
even 20 or more consecutive heads. If the null hypothesis is not rejected, the
researcher has two options: state that he or she failed to reject the null hypothesis, in
which case it remains credible, or suspend judgment about the null and scientific hy-
potheses pending completion of a new, improved experiment.

On the other hand, if the null hypothesis is rejected, what does it mean? The re-
searcher can conclude that the alternative hypothesis is probably true. Here, too, the
possibility always exists that one’s sample is not representative, but, as you will see
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later, the probability of erroneously rejecting a true null hypothesis is determined by
the researcher and can be made as small as desired.

The Role of Logic in Evaluating a Scientific Hypothesis

I have just described the evaluation of statistical hypotheses. Let’s now turn to the
researcher’s ultimate objective—evaluating a scientific hypothesis. This evaluation
involves a chain of deductive and inductive logic that begins and ends with the
scientific hypothesis. The chain is diagrammed in Figure 10.1-1. First, by means of
deductive logic, the scientific hypothesis and its negation are expressed as two mu-
tually exclusive and exhaustive statistical hypotheses that make predictions concern-
ing a population parameter. These predictions, denoted by H0 and H1, are made
about the population mean, median, variance, correlation, and so on. If, as is usually
the case, all the elements in the population cannot be observed, a random sample is
obtained from the population. The sample provides an estimate of the unknown pop-
ulation parameters.

The process of deciding whether to reject the null hypothesis is called a
statistical test. The decision is based on (1) a test statistic computed for a
random sample from the population, (2) hypothesis testing conventions, and
(3) a decision rule.

These three items are described in subsequent sections. The outcome of the statisti-
cal test is the basis for the final link in the chain shown in Figure 10.1-1: an induc-
tive inference concerning the probable truth or falsity of the scientific hypothesis.
Logic therefore plays a key role in hypothesis testing. It is the basis for arriving at
both the statistical hypothesis that is tested and the final decision regarding the sci-
entific hypothesis. If errors occur in the deductive or inductive links in the chain of
logic, the statistical hypothesis that is tested may have little or no bearing on the
original scientific hypothesis, or the inference concerning the scientific hypothesis

Random sampling
and estimation of

population parameter

Statistical
hypotheses

Statistical
test

Scientific
hypothesis

Inductive
inference

Deductive inference

Figure 10.1-1. The evaluation of a scientific hypothesis using deductive and
inductive logic.
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may be incorrect, or both. Both creativity and deductive skill are required to formu-
late relevant statistical hypotheses.

CHECK YOUR UNDERSTANDING OF SECTION 10.1

1. Which of the following are scientific hypotheses?
a. Right-handed people tend to be taller than left-handed people.
b. Behavior therapy is more effective than hypnosis in helping smokers kick

the habit.
c. Most clairvoyant people are able to communicate with beings from outer

space.
d. Rats are likely to fixate an incorrect response if it is followed by an intense

noxious stimulus.
2. Which of the following are examples of statistical hypotheses?

a. H0: m � 100 b. H0: S2 � 50
c. H1: r 	 0 d. H0: � 100
e. H1: s2 � 0 f. H1: � 15
g. H0: r � 0 h. H0: m � 60
i. H0: s2 � 225 j. H0: r � 0

3. a. According to convention, which statistical hypothesis corresponds to the re-
searcher’s scientific hunch?

b. Which is the hypothesis that actually is tested?
4. Assume that a researcher has a hunch that insecure children engage in overt

aggression more frequently than do children who feel secure. Let m and m0
denote the mean daily number of aggressive acts, respectively, of insecure
and secure children, where it is known that m0 � 8. State H0 and H1 for the
research.

5. It was hypothesized that a sample of 139 women seeking treatment for marital
discord at the University Marital Therapy Clinic would have a score above 14
on the Beck Depression Inventory (BDI). A score of 14 indicates depressive
symptomatology or dysphoria. Let m denote the BDI mean for women seeking
treatment and let m0 represent the criterion for depressive symptomatology.
State H0 and H1 for the research.

6. Terms to remember:
a. Statistical inference b. Scientific hypothesis
c. Statistical hypothesis d. Null hypothesis
e. Alternative hypothesis f. Hypothesis testing
g. Statistical test

10.2 HYPOTHESIS TESTING

I will now describe the procedures for testing statistical hypotheses. For the sake of
clarity, I have organized these procedures around five steps and a decision rule. This
should not suggest that hypothesis testing is a formal or a rigid procedure—it isn’t.

X
X
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However, as a researcher makes plans for doing research, each of the items in the
following five steps must be considered. After I list the five steps and decision rule,
I will discuss each in detail.

Step 1. State the null and alternative hypotheses.

Step 2. Specify the test statistic based on the hypothesis to be tested,
information that is known about the population, and assumptions
about the population that appear to be tenable.

Step 3. Specify the size of the sample, n, to be obtained and make
assumptions that permit specification of the sampling distribution of
the test statistic, given that H0 is true.

Step 4. Specify an acceptable risk of rejecting the null hypothesis when it is
true—that is, making a decision error.

Step 5. Obtain a random sample of size n from the population, compute the
test statistic, and make a decision about the null and alternative
hypotheses and an inductive inference about the scientific hypothesis.

Decision rule:

Reject the null hypothesis if the test statistic falls in the specified
region of the sampling distribution of the test statistic; otherwise, do
not reject the null hypothesis. Rejecting the null hypothesis leads you
to infer that the scientific hypothesis is true.

You may find it helpful to read the following discussion of the five steps and deci-
sion rule a number of times.

Step 1: Stating the Statistical Hypotheses

Let’s return to the registration example mentioned earlier. Recall that the dean is in-
terested in testing the scientific hypothesis that a new registration procedure will en-
able students to register in less time than with the old procedure. The corresponding
statistical hypothesis is H1: m � m0, where m denotes the unknown population mean
for the new procedure and m0 denotes the population mean of the current procedure.
The latter mean is known to equal 3.10—that is, m0 � 3.10. The null and alternative
hypotheses are

H0: m � 3.10

H1: m � 3.10

where m0 has been replaced by 3.10, the known mean for the current procedure. As
written, the null hypothesis is inexact because it states a range of possible values for
the population mean—all values greater than or equal to 3.10. However, one exact
value is specified, m � 3.10, and that is the value actually tested. If the null hypoth-
esis m � 3.10 can be rejected, then the hypothesis m � 3.10 is rejected automati-
cally. Obviously, if m � 3.10 is considered improbable because the mean of the new
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registration procedure is less than 3.10, any population mean whose value is greater
than 3.10 would be considered even less probable.

Step 2: Specifying the Test Statistic

Two test statistics can be used to evaluate hypotheses about a population mean. They
are denoted by t and z. A test statistic is called a t statistic if its sampling distribution
is the t distribution; a test statistic is called a z statistic if its sampling distribution is
the standard normal distribution. As you will see, the choice of a test statistic is de-
termined by (1) the hypothesis to be tested, (2) the information that is known about
the population, and (3) the assumptions about the population that appear to be ten-
able. Which of the two test statistics should be used to test the hypothesis H0: m �
3.10? Because the hypothesis concerns the mean of a single population, the popula-
tion standard deviation is unknown, and the population is assumed to be normally
distributed; the appropriate test statistic is

where � Xi /n is used to estimate the unknown population mean for the new reg-
istration procedure, is used to estimate the unknown
population standard deviation, n is the size of the random sample used to estimate m
and s, and is a sample estimate the standard error of the mean.

The use of the t statistic to test the hypothesis about the new registration proce-
dure is appropriate if the population of registration times is normally distributed.
I should say approximately normal, because random variables in experiments do not
range from � to and, hence, they are never normally distributed. For simplicity,
I often omit the qualifier “approximately.” The tenability of the normality assump-
tion can be checked by visually inspecting the distribution of one’s random sample.
Fortunately, the t test gives satisfactory results even when the distribution of X de-
parts somewhat from a normal distribution. This is another way of saying that the
t statistic is robust with respect to violation the normality assumption. If the sample
distribution appears fairly symmetrical, it is probably safe to use the t statistic.1

Earlier, I mentioned that another test statistic, the z statistic, also can be used to
test a hypothesis about the mean of a single population. To use this statistic, the pop-
ulation standard deviation, s, must be known and the population must be assumed to
be approximately normal or the sample size must be quite large. The z test statistic is

z 5
X 2 m0

sX
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5"g sXi 2 Xd2> sn 2 1dŝ
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1 You should always examine a plot of your sample distribution for signs that the population might be
markedly non-normal. Research by Micceri (1989) suggests that extreme non-normality in behavioral
science data is more common than was once thought. Wilcox (1996) provides an excellent discussion of
procedures for dealing with normality.
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At first glance, the t and z test statistics look alike, but a difference can be seen on
close inspection:

The z statistic is the ratio of a random variable to a constant; t is the ratio of two ran-
dom variables. This follows because when n is less than , both and in the t
statistic vary from sample to sample and hence are random variables. The difference
in the nature of the z and t denominators has an important ramification that I will
examine in the following step. I will have little more to say about this particular z
statistic. It is rarely ever used because researchers generally do not know the popu-
lation standard deviation.

Step 3: Specifying n and the Sampling Distribution

A number of factors enter into the specification of a sample size, n. I have developed
a table that simplifies the task of choosing n; it is Appendix Table D.8. Before I can
describe how to use the table, I need to introduce several new concepts. For the mo-
ment, I will simply specify that the sample size in the registration example should
be n � 27. I will return to the topic of specifying a sample size in Section 10.4.

The sampling distribution of the t statistic was derived by William Sealey Gos-
sett, an employee of the Guiness Brewing Company in Dublin, Ireland. Gossett
published under the pseudonym Student; hence, the distribution is often referred to
as Student’s t distribution. The t sampling distribution—or, more simply, the
t distribution—is symmetrical and centered over a mean of zero. In these respects,
it is like the standard normal distribution described in the previous chapter. How-
ever, the dispersion of the t distribution—that is, the variance of t—depends on
sample size or, more specifically, degrees of freedom. Before going any further,
I need to discuss the concept of degrees of freedom, abbreviated df, and also de-
noted by n (Greek nu, pronounced “new”). The term comes from the physical sci-
ences, where it refers to the number of planes or directions in which an object is
free to move.

In statistics, the term degrees of freedom refers to the number of scores
whose values are free to vary.

To clarify, consider a sample of size n � 3, with mean � 5—that is, � (X1 � X2 �
X3)/3 � 5. If I arbitrarily specify that X1 � 4 and X2 � 5, then X3 must equal 6,
because (4 � 5 � 6)/3 � 15/3 � 5. Given the statement that � 5, I am free to
assign any values to n � 1 � 2 of the scores, but having done so, the value of the
remaining score is determined. Thus, the number of degrees of freedom associ-
ated with is n � 1. Let us consider another example, one that is particularly
relevant to the t statistic. The number of degrees of freedom associated with 
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X
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is n � 1. This follows because once n � 1 of the n de-
viations (Xi � ) have been arbitrarily specified, the remaining deviation is not free
to vary because (Xi� ) must equal 0 as shown in Section 3.8 under “Proof That
the Mean Is a Balance Point.” The number of degrees of freedom for the t statistic in
our registration example is n � 1, which is the number of degrees of freedom of 
in the denominator of t.

Now that I have introduced the concept of degrees of freedom, I can describe the
dispersion of the t sampling distribution and compare its dispersion with that of the
z sampling distribution. It can be shown that when n is greater than 3, the variance
of the t distribution is

where n, the degrees of freedom, is equal to n � 1. According to the formula, if ran-
dom samples of size n � 5 are obtained from a population, the variance of the re-
sulting t distribution is

When n is equal to 5, the variance of the t distribution is 2, which is twice as large
as the variance of the standard normal z distribution. Recall from Section 9.2 that
the variance of the z distribution is equal to 1. As the number of degrees of freedom
increases, the variance of the t distribution approaches more and more closely that
of z. For example, when n is equal to 30,

which differs only slightly from the variance of z. When n is equal to , the two
sampling distributions are identical. Because the two sampling distributions are so
similar for samples equal to or larger than 30, an n of 30 is often taken as the divid-
ing point between large and small samples.

The t distribution is actually a family of distributions whose shapes depend on
the associated number of degrees of freedom. Figure 10.2-1 compares three mem-
bers of the t family and the z distribution. As this figure illustrates, the t and z sam-
pling distributions are alike in that both have a mean of 0, are symmetrical, and are
unimodal. The distributions differ when n is less than —the t distribution is more
leptokurtic and has a larger variance.

An advantage of the t statistic relative to the z statistic is that the t statistic can be
computed when the researcher does not know the population standard deviation.
However, for the t statistic to be distributed as the t sampling distribution when the
null hypothesis is true, it is necessary to assume that the population distribution of X
is normal. The normality assumption serves two purposes. First, it permits a
researcher to specify the sampling distribution of the numerator of the t statistic with-
out regard to sample size: it is the normal distribution. This follows from the discus-
sion of the central limit theorem and the sampling distribution of in Section 9.4.
Second, the normality assumption is a necessary condition for the numerator and
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ŝ

Xg
X

5"g sXi 2 Xd2> sn 2 1dŝ
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denominator (both random variables) of the t statistic to be statistically independent,
which means that the information contained in does not affect the value of and
vice versa. Independence was a simplifying assumption that Gossett made when he
derived the sampling distribution of t. If the numerator and denominator of the t sta-
tistic are not independent, specifying the exact sampling distribution of t is extremely
difficult. This problem does not occur with the z test statistic because its denominator
is a constant rather than a random variable. According to the central limit theorem,
the sampling distribution of the z test statistic is the standard normal distribution
regardless of the shape of the population distribution of X if n is sufficiently large.
Hence, the normality assumption plays a more important role in the derivation and
use of t than in z.

Step 4: Specifying the Significance Level, a

In the registration example, the dean might decide that m � 3.10 when in fact 
m � 3.10. In this case, she would have made a decision error. The fourth step is to
specify an acceptable risk of making this kind of error—that is, rejecting the null
hypothesis when it is true. I will touch on this subject here and return to it later.
Considering the sample-to-sample variability of random variables, I would not ex-
pect the mean, , of a single random sample to exactly equal the predicted value,
m0, even though m � m0. I would be willing to attribute a small discrepancy
between and m0 to chance. However, if the discrepancy is large enough, I would
be inclined to believe that m0 is incorrect and that the null hypothesis should be
rejected. According to hypothesis-testing conventions, a discrepancy between 
and m0 that would be expected to occur five or fewer times in 100 replications of
the experiment is considered to be large enough to warrant rejecting the hypothesis
m � m0. Stated another way, the null hypothesis m � m0 should be rejected if the
probability is equal to or less than .05 of observing a discrepancy between and
m0 as large as or larger than that observed.
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Figure 10.2-1. Graph of the distribution of t for 4, 12, and degrees of freedom.
When n � , the t distribution is identical to the z distribution.`
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By convention a probability of .05 is the largest risk a researcher should be will-
ing to take of rejecting a true null hypothesis—declaring, for example, that m � 3.10
when in fact m � 3.10. Such a probability, called a significance level, is denoted by
the lowercase Greek letter alpha, a. For a � .05 and H1: m � 3.10, the region for re-
jecting H0, called the critical region, is shown in Figure 10.2-2. The location and
size of the critical region are determined, respectively, by H1 and a.

A decision to adopt the .05 level of significance in experiments is based on hy-
pothesis-testing conventions that have evolved since the 1920s. These conventions
are so well entrenched that editors of scientific journals rarely publish articles that
fail to meet the .05 significance criterion. In Section 10.4, I will return to the prob-
lem of selecting a significance level.

Step 5: Making a Decision

The fifth step in testing a statistical hypothesis is to obtain a random sample from
the population of interest, compute the test statistic, and make a decision.

The decision rule is as follows: Reject the null hypothesis if the test statistic
falls in the critical region; otherwise, do not reject the null hypothesis.

Critical region 
for a � .05 

Critical 
value � �1.706 

f(
t)

 

0 1 3 �1 �2 �3 

2.926 2.984 3.042 3.100 3.158 3.216 3.274 

t 
2 

Reject 
H0 

Donít reject H0 

�
X 

Figure 10.2-2. Sampling distribution of t given that H0 is true. The lower scale
gives the corresponding values of the sample means. The critical region, which
corresponds in this example to the lower .05 portion of the sampling distribution,
defines values of t and that are improbable if the null hypothesis H0: m � 3.1 
is true. Hence, if the t test statistic falls in the critical region, the null hypothesis
should be rejected. The value of t that cuts off the lower .05 portion of the sampling
distribution is called the critical value. This value can be found in the table of
Student’s t distribution in Appendix Table D.3 and is �t.05, 26 � �1.706. It can be
shown that the sample mean corresponding to �t.05, 26 � �1.706 is

X.05 5 m0 2 t.05.26ŝ>"n 5 3.100 2 1.706s0.3013d>"27 5 3.001

X
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The value of t that cuts off the critical region of the sampling distribution of t is called
the critical value (see Figure 10.2-2). The critical value of t that cuts off the upper a
region (upper tail) of the t distribution for n degrees of freedom is given in Appendix
Table D.3 and is denoted by t

a, n
. Because the t distribution is symmetrical, critical

values in the lower tail of the t distribution are obtained by putting a negative sign in
front of the upper tail values. For the registration example, the critical value of t is
obtained from the row in Appendix Table D.3 labeled “Level of Significance for a
One-Tailed Test” with a � .05 and n � 27 � 1 � 26 and is �t.05, 26 � �1.706.
According to the decision rule, the null hypothesis is rejected if the observed t test
statistic is less than or equal to the critical value, �t.05, 26 � �1.706. Otherwise, the
null hypothesis is not rejected.

If the null hypothesis is rejected, a researcher can conclude that the scientific hy-
pothesis is probably true. But what if the null hypothesis is not rejected? A nonre-
jection can occur for a variety of reasons. For example, the null hypothesis may be
true and should not be rejected. Alternatively, the null hypothesis may be false but
the researcher’s sample was not representative of the population or the experiment
may have lacked adequate sensitivity to reject the null hypothesis because the sam-
ple was too small. Hence, a nonrejection should not be taken as evidence that the
null hypothesis is true. Faced with a nonrejection, the researcher can either conclude
that the evidence does not support the original scientific hypothesis or suspend judg-
ment pending the completion of a new, improved experiment.

CHECK YOUR UNDERSTANDING OF SECTION 10.2

7. For the past several years, the mean arithmetic-achievement score for a popula-
tion of ninth-grade students has been m0 � 45. After participating in an experi-
mental teaching program, a random sample of 121 students had a mean score of

� 50 with a standard deviation of � 15. (a) List the five steps you would fol-
low to test the hypothesis that the new program leads to better arithmetic achieve-
ment than the old program, and supply the required information. Let a � .05. 
(b) State the decision rule.

8. For the data in Exercise 7, draw the sampling distribution associated with the
null hypothesis and indicate the regions that lead to rejection and nonrejection
of the null hypothesis.

9. a. Which of the following statistical hypotheses actually is tested?

H0: m � 15

H1: m � 15

b. Which hypothesis corresponds to the researcher’s scientific hypothesis?
10. List similarities and differences between the t and z sampling distributions.
11. What determines the size of the critical region and its location?
12. Use Appendix Table D.3 to determine the critical value for the following.

Assume in each case that the null hypothesis is H0: m � m0, which means that
the significance level is in the row labeled “one-tailed test.”
a. n � 12, a � .05 b. n � 12, a � .01
c. n � 25, a � .05 d. n � 17, a � .05

ŝX
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13. Use Appendix Table D.3 to determine the critical value for the following.
Assume in each case that the null hypothesis is H0: m � m0, which means that
the significance level is in the row labeled “one-tailed test.”
a. n � 12, a � .05 b. n � 12, a � .01
c. n � 31, a � .05 d. n � 61, a � .05

14. Terms to remember:
a. Student’s t distribution b. Degrees of freedom
c. Significance level d. Critical region
e. Decision rule f. Critical value

10.3 ONE-SAMPLE t TEST FOR A MEAN

I will now illustrate the use of the t statistic,

in testing a hypothesis about a population mean. Recall that is the mean of a ran-
dom sample from the population of interest, m0 is the mean specified in the null hy-
pothesis, is the standard deviation of a random sample from the population, and n
is the size of the sample used to compute and .

Again, consider the registration example at Idle-on-in College. Over the past sev-
eral years, the mean time required to register has been 3.10 hours. The dean plans to
do a trial run to test the new procedure using a random sample of n � 27 undergrad-
uates. The steps she will follow in testing the null hypothesis and the decision rule
are as follows.

Step 1. State the statistical hypotheses: H0: m $ 3.10
H1: m , 3.10

Step 2. Specify the test statistic: because 
she wants to test m $ 3.10, s is 
unknown, the sample is random,
and she assumes the population 
distribution of X is approximately
normal. 

Step 3. Specify the sample size: n 5 27
and the sampling distribution: t distribution with n 5 n 21 5 26,

because s is unknown and must be 
estimated, and she assumes the 
population distribution of X is 
approximately normal. 

Step 4. Specify the significance level: a 5 .05

Step 5. Obtain a random sample of 
size n, compute t, and make 
a decision.

t 5 sX 2 m0d> sŝ>!nd
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Decision rule:

Reject the null hypothesis if t falls in the lower 5% of the sampling
distribution of t; otherwise, do not reject the null hypothesis. If the null
hypothesis is rejected, conclude that the new class registration
procedure reduces the time required to register; if the null hypothesis
is not rejected, do not draw this conclusion.

The data for the trial run with a random sample of 27 undergraduate students are
shown in Table 10.3-1. The mean registration time for the new procedure is � 2.90.X

TABLE 10.3-1 Registration-Time Data

(i) Data

Registration Registration
Time, Xi Time, Xi

Student (Hours) Student (Hours)

1 2.9 0 15 3.0 .01
2 2.7 .04 16 2.8 .01
3 2.4 .25 17 2.3 .36
4 3.0 .01 18 2.5 .16
5 2.6 .09 19 2.5 .16
6 2.9 0 20 3.2 .09
7 3.1 .04 21 3.2 .09
8 2.9 0 22 2.8 .01
9 3.0 .01 23 3.3 .16

10 2.7 .04 24 3.0 .01
11 2.9 0 25 3.2 .09
12 3.3 .16 26 3.5 .36
13 3.1 .04 27 2.5 .16
14 3.0 .01

(ii) Computation
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This sample mean is consistent with the dean’s scientific hypothesis. The value of the
t statistic is t(26) � �3.449. In reporting the value of the t statistic, I have followed
the convention of giving the degrees of freedom, 26, in parentheses immediately
after t. Does the t statistic fall in the critical region? According to Appendix Table
D.3, a t of �1.706 with n � 1 � 26 degrees of freedom cuts off the lower .05 region
of the sampling distribution—that is, �t.05,26 is equal to �1.706. Because the com-
puted t(26) � �3.449 in Table 10.3-1 is less than the critical value, �t.05,26 � �1.706,
the null hypothesis is rejected. The dean and other school administrators conclude that
the new procedure is better than the old procedure.

Some Experimental Design Considerations

I will digress for a moment and explore some experimental design issues concern-
ing the registration experiment at Idle-on-in College. The dean and other school ad-
ministrators would like to believe that the new registration procedure is efficient
and, if adopted for all students, would shorten the registration time. But consider
some alternative explanations for the apparent greater efficiency of the new proce-
dure. Because the 27 students were selected for the trial run, they may have felt that
they should make a special effort to complete registration quickly—an effort they
would not make once the new procedure was adopted and they were no longer un-
der scrutiny. It also is possible that the personnel assisting in registration were more
alert and tried to expedite the registration because they, too, were under scrutiny
and because the procedure was a break from the usual routine. It is common for
people to put forth special effort when they know that they are under scrutiny. The
phenomenon even has a name—it is called the John Henry effect in honor of the
steel driver who, when he learned that his performance was being compared with
that of a steam drill, worked so hard that he outperformed the drill and died of
overexertion.

Other explanations for the apparent greater efficiency of the new procedure could
be advanced, and unless these explanations can be ruled out, the administrators may
be disappointed if they adopt the new procedure. Once the novelty wears off, the
new procedure may be no better, or may be even poorer, than the old one.

Designing an experiment whose outcome can be unambiguously interpreted re-
quires careful planning.

It is customary in behavioral science research to use one or more control
groups. These groups contain participants who do not receive the treatment.
The purpose of control groups is to provide data on the effects of extraneous
variables that affect the interpretation of the experiment.

For example, the design of the registration experiment could be improved by draw-
ing a sample of 50 students, with half the students randomly assigned to use the new
procedure and the other half assigned to the old procedure. This change in the de-
sign of the experiment would provide data on the effects of being specially selected
to participate in the trial run. If this design modification were adopted, the appropri-
ate test statistic is the two-sample t statistic for independent samples discussed in
Section 13.2.
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CHECK YOUR UNDERSTANDING OF SECTION 10.3

15. Assume that the Pd (Psychopathic deviate) scale of the Minnesota Multiphasic
Personality Inventory has been given to a random sample of 30 men classified
as habitual criminals. The researcher wants to test the hypothesis that habitual
criminals have higher Pd scores than noncriminals. The latter population is
known to be normally distributed, with mean and standard deviation equal to 50
and 10, respectively. (a) List the five steps you would follow in testing the sci-
entific hypothesis. Let a � .05. (b) State the decision rule.

16. Assume that the data in the following table have been obtained for the habitual
criminals in Exercise 15. (a) Compute a t statistic for these data. (b) What con-
clusion can be drawn about the scientific hypothesis in Exercise 15?

Participant Pd Score Participant Pd Score

1 50 16 55
2 51 17 56
3 54 18 48
4 55 19 45
5 25 20 41
6 61 21 82
7 64 22 65
8 55 23 67
9 55 24 75

10 52 25 40
11 71 26 61
12 57 27 35
13 59 28 56
14 54 29 56
15 55 30 55

17. If a � .005 in Exercise 16, what conclusion would have been drawn about the
scientific hypothesis?

18. One of the prison guards confessed that for a lark he filled out the Pd scale and
used a prisoner’s name, participant number 22. (a) Recompute the t statistic for
the data in Exercise 16, eliminating participant 22’s score. (b) What conclusion
can be drawn about the scientific hypothesis?

19. Term to remember:
a. John Henry effect

10.4 MORE ABOUT HYPOTHESIS TESTING

I described the steps used in testing a hypothesis in Section 10. 2, and these steps
were illustrated in Section 10.3 by means of the one-sample t test. I now turn to sev-
eral additional concepts that round out my discussion of null hypothesis significance
testing.
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One- and Two-Tailed Tests

A statistical test for which the critical region is in either the upper tail or the
lower tail of the sampling distribution is called a one-tailed test. If the critical
region is in both the upper and lower tails of the sampling distribution, the sta-
tistical test is called a two-tailed test.

A one-tailed test is used whenever the researcher makes a directional prediction
concerning the phenomenon of interest—for example, that the new registration pro-
cedure takes less time than the current procedure. You know from Section 10.3 that
the statistical hypotheses corresponding to this scientific hypothesis are

H0: m � m0

H1: m � m0

These hypotheses are called directional or one-sided hypotheses. The region for
rejecting the null hypothesis is shown in Figure 10.2-2. If the scientific hypothesis
stated that the mean registration time for the new procedure is longer than the cur-
rent procedure, the following statistical hypotheses would be appropriate:

H0: m � m0

H1: m � m0

The region for rejecting this null hypothesis is shown in Figure 10.4-1(a). To be sta-
tistically significant, an observed t statistic would have to be greater than or equal to
the critical value t.05, 26 � 1.706.

Often, researchers do not have sufficient information to make a directional pre-
diction about a population parameter; they simply believe that the parameter is not
equal to the value specified by the null hypothesis. For example, the dean may sim-
ply believe that the mean registration time for the new procedure is different from
that for the current procedure. This situation calls for a two-tailed test. The statisti-
cal hypotheses for a two-tailed test have the following form:

H0: m � m0

H1: m 	 m0

These hypotheses are called nondirectional or two-sided hypotheses. For a two-
tailed test, the region for rejecting the null hypothesis lies in both the upper and lower
tails of the sampling distribution. Half of the significance level, a/2 � .025, is as-
signed to the upper tail and half to the lower tail. The two critical regions are shown
in Figure 10.4-1(b). To reject the null hypothesis at the .05 level of significance for
a two-tailed test, the value of the t statistic in Table 10.3-1, t(26) � �3.449, must
be greater than or equal to the two-tailed critical value t.05/2,26 � 2.056 or less than
or equal to �t.05/2,26 � �2.056. The notation “.05/2” in t.05/2,26 indicates that half of
the .05 critical region has been assigned to the upper tail of the sampling distribu-
tion of t and half to the lower tail. Note that the two-tailed null and alternative
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hypotheses also are mutually exclusive and exhaustive—if one is true, the other
must be false.

In summary, a one-sided, or directional, hypothesis is called for when the
researcher’s original hunch is expressed in such terms as “more than,” “less than,”
“increased,” or “decreased.” Such a hunch indicates that the researcher has quite a
bit of knowledge about the research area. The knowledge could come from previous
research, a pilot study, or perhaps theory. If the researcher is interested in determin-
ing only whether there is a difference, without specifying the direction of the differ-
ence, a two-tailed test should be used. Generally, significance tests in the behavioral
sciences are two tailed, because most researchers lack the information necessary to
formulate directional hypotheses.

How does the choice of a one- or two-tailed test affect the probability of reject-
ing a false null hypothesis? A researcher is more likely to reject a false null hypoth-
esis with a one-tailed test than with a two-tailed test if the critical region has been
placed in the correct tail. A one-tailed test places all of the a area, say .05, in one
tail of the sampling distribution. A two-tailed test divides the a � .05 area between
the two tails with .025 in one tail and .025 in the other tail. In the registration exam-
ple, the critical value of t that cuts off the lower .05 region for a one-tailed test is

2
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Figure 10.4-1. (a) Critical region for one-tailed test; H0: m � m0; H1: m � m0; 
a � .05. (b) Critical regions for two-tailed test; H0: m � m0; H1: m 	 m0; 
a � .025 � .025 � .05.
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�t.05,26 � �1.706. The critical values of t that cut off the lower and upper .05/2 �
.025 regions for a two-tailed test are �t.05/2,26 � �2.056 and t.05/2,26 � 2.056, re-
spectively. The critical regions and critical values for the two cases are shown in
Figure 10.4-1(a and b). An inspection of this figure shows that the size of the dif-
ference � m0 necessary to reach the critical region for a two-tailed test is larger
than that required for a one-tailed test. Consequently, a researcher is less likely to
reject a false null hypothesis with a two-tailed test than with a one-tailed test.

The term power refers to the probability of rejecting a false null hypothesis.
A one-tailed test is more powerful than a two-tailed test if the researcher’s hunch
about the true difference m � m0 is correct—that is, if the alternative hypothesis
places the critical region in the correct tail of the sampling distribution. If the direc-
tional hunch is incorrect, the rejection region will be in the wrong tail, and the
researcher will most certainly fail to reject the null hypothesis, even though it is
false. A researcher is rewarded for making a correct directional prediction and is pe-
nalized for making an incorrect directional prediction. In the absence of sufficient
information for using a one-tailed test, the researcher should play it safe and use a
two-tailed test.

Type I and Type II Errors

When the null hypothesis is tested, a researcher’s decision will be either correct or
incorrect.

A researcher can arrive of an incorrect decision in two ways. The researcher
can reject the null hypothesis when it is true; this is called a Type I error. Or
the researcher can fail to reject the null hypothesis when it is false; this is
called a Type II error. Likewise, a correct decision can be made in two ways.
If the null hypothesis is true and the researcher does not reject it, a correct
acceptance has been made. If the null hypothesis is false and the researcher
rejects it, a correct rejection has been made.

The two kinds of correct decisions and the two kinds of errors are summarized in
Table 10.4-1.

X

TABLE 10.4-1 Decision Outcomes Categorized

True Situation

H0 true H0 false

Correct acceptance Type II error 
Probability � 1 � a Probability � b

Type I error Correct rejection 
Probability � a Probability � 1 � b

Fail to reject H0

Researcher’s 
Decision

Reject H0
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The probability of making a Type I error is determined by the researcher when
the significance level, a, is specified. If a is specified as .05, the probability of
making a Type I error is .05. The significance level also determines the probabil-
ity of a correct acceptance of a true null hypothesis because this probability is
equal to 1 – a.

The probability of making a Type II error, denoted by b, and the probability of
making a correct rejection, denoted by 1 � b, are determined by a number of vari-
ables: (1) the significance level adopted, (2) the size of the sample, (3) the size of
the population standard deviation, (4) the magnitude of the difference between m
and m0, and (5) whether a one- or two-tailed test is used.

The probability of making a correct rejection, 1 � b, is called the power of
the statistical test.

To compute the probability of making a Type II error (b) and power (1 � b), it is
necessary to know (1) m, the true population mean, or to specify a value of m that is
sufficiently different from m0 to be worth detecting and (2) the population standard
deviation. Researchers rarely know the population standard deviation, but, as you
have seen, the parameter can be estimated from sample data. Also, researchers do
not know the population mean, but they often are able to specify a population mean
that is sufficiently different from m0 to be of interest to detect. I will denote such a
mean by . If the new registration procedure reduced the mean registration time
by only three minutes (.05 hour), the dean probably would conclude that the time
savings is not worth changing to the new procedure. However, if the new procedure
reduced the mean time from m0 � 3.10 to � 2.95 hours, the dean might be in-
clined to adopt the procedure. The difference 3.10 � 2.95 � 0.15 corresponds to
nine minutes. Nine minutes is the smallest difference that the dean would be inter-
ested in detecting if the new procedure is actually better than the current procedure.
I will illustrate the computation of power for this difference. Figure 10.4-2 shows two
sampling distributions, one associated with the null hypothesis where m0 � 3.10 and
the other associated with the alternative hypothesis where � 2.95. Recall from the
registration example that a � .05, t.05, 26 � 1.706, � 0.3013, and n � 27. To com-
pute an estimate of power, I need one more bit of information—the value of that
cuts off the lower .05 region of the null hypothesis sampling distribution. I’ll denote
this mean by . I can estimate by rearranging the terms in the formula 

as follows:

Thus, a mean of 3.001 cuts off the lower .05 region of the null hypothesis sampling
distribution. In Figure 10.4-2, falls on the boundary between the reject
and nonreject regions. An estimate of the size of the region corresponding to a Type
II error (labeled in Figure 10.4-2) can be determined by computing a t statistic forb̂
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the difference . The t statistic for determining the size of
the area is

According to Appendix Table D.3, the area above t � 0.880, which is the size of the
region, is .19. Thus, if the mean time to register using the new procedure is

, the dean’s estimate of the probability of making a Type II error ( ) is .19,
and her estimate of the probability of making a correct rejection (power) is

. Figure 10.4-2 shows the regions corresponding to these two
probabilities. The procedure for estimating power may seem complicated. Take
heart; the Web contains numerous easy-to-use programs for computing power. The
purpose of this example is to show that and represent areas under the1 2 b̂b̂

1 2 b̂ 5 1 2 .19 5 .81

b̂mr5 2.95
b̂

t 5
X.05 2 mr

ŝ>"n
5

3.001 2 2.95

0.3013>"27
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0.051
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Figure 10.4-2. Regions corresponding to probabilities of making a Type I error
(a) and a Type II error ( ). The mean that cuts off the lower .05 region of the sam-
pling distribution under H0 is denoted by and is equal to 3.001. The statistic

along with the t table (Appendix Table D.3) is used to determine the size of the
region corresponding to a Type II error. The area that lies above t � 0.880 is .19.

The size and location of the region corresponding to a Type I error are determined
by a and H1, respectively. If the size of the a region is made smaller, say .01, the size
of the region increases. In other words, as the probability of a Type I error
decreases, the probability of a Type II error increases.

b̂
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sampling distribution of just as a and 1 � a represent areas under the sampling
distribution of m0. The t statistic enables us to estimate the size of these areas.

A power of .81 in the registration example just exceeds the minimum power that
by convention is considered acceptable, which is .80. When the power is .80, the
probability of a Type II error is .20. The selection of .80 as the minimum acceptable
power is a convenient rule of thumb and reflects the view that Type I errors are more
serious than Type II errors. For example, when b � .20 and a � .05, the probability
of making a Type II error is .20/.05 � 4 times larger than the probability of making
a Type I error.

Table 10.4-2 summarizes the probabilities associated with the possible decision
outcomes when m0 � 3.10 and . In this example, the probability of making a
correct decision is larger when the null hypothesis is true (Probability � 1 � a � .95)
than when the null hypothesis is false (Probability ). It also is appar-
ent that the probability of making a Type I error (a � .05) is much smaller than the
probability of making a Type II error . In most research situations, the
researcher follows the convention of setting a equal to either .05 or .01. As the prob-
ability of a Type I error is made smaller and smaller, the probability of a Type II
error increases and vice versa. We can see this result by examining Figure 10.4-2. If
the vertical line cutting off the lower a region is moved to the left or to the right in
the figure, the region designated is made, respectively, larger or smaller.

More about Type I and Type II Errors

In many research situations, the cost of committing a Type I error can be large rela-
tive to that of a Type II error. For example, falsely deciding that a new medication is
more effective than conventional therapies in halting the production of cancer cells
and therefore can be used in place of conventional medical procedures—a Type I
error—is a serious matter. On the other hand, falsely deciding that the new medica-
tion is not more effective—a Type II error—would result in withholding the med-
ication from the public and further research. Eventually, after enough research, the
effectiveness of the new medication would be demonstrated. In this example, a Type
I error is more costly than a Type II error and is the error to be avoided. The probabil-
ity of making a Type I error can be reduced by using the .01, .005, or even the .001

b̂

sb̂ 5 .19d

5 1 2 b̂ 5 .81

mr5 2,95

mr

TABLE 10.4-2 Probabilities Associated with the Decision Process

True Situation

m�3.10 � 2.95
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level of significance. However, in research situations that do not involve life and
death, a Type I error may be less costly than a Type II error. For example, a re-
searcher who makes a Type II error may discontinue a promising line of research,
whereas a Type I error would lead to further exploration into a blind alley. Faced with
these two alternatives, many researchers would adopt the .05 or even .10 level of sig-
nificance, preferring to make a Type I error rather than a Type II error.

It is apparent that the costs and benefits associated with Type I and Type II errors
must be known before one can make a rational choice of a. Unfortunately, re-
searchers in the behavioral sciences, health sciences, and education generally are
unable to specify the costs and benefits associated with the two kinds of errors, and
therein lies the problem. The problem is resolved by using the conventional but ar-
bitrary .05 or .01 level of significance.

I hope that this discussion has dispelled the magical aura that surrounds the .05
and .01 levels of significance—their use in hypothesis testing is simply a conven-
tion. A statistical test at the .05 level of significance addresses the question “Is
chance a likely explanation for the results that have been obtained?” A null hypothe-
sis significance test does not address the question “Are the results important, useful,
or practically significant?” The researcher is probably the person best equipped to
decide whether a statistically significant result is of any practical significance.
Throughout the remainder of the book I will describe various guidelines for assess-
ing the practical significance of research results.

Determining the n Required to Achieve 
an Acceptable �, 1 2 �, and � 2 �0

Until now I have not said much about specifying sample size, n, except that it should
be large enough—but not too large. There is a rational way to specify sample size.
The factors discussed in connection with power are
interrelated. Values for can be entered into a formula to es-
timate n, but the procedure is complicated (Kirk, 1995, pp. 62–65). Fortunately, it is
not necessary to use the formula. I have developed a table, Appendix Table D.8,
which simplifies the determination of an appropriate sample size. To use the table,
we have to specify the value of a measure popularized by Jack Cohen called an
effect size (1988, pp. 20–27).

Cohen’s effect size, denoted by d, expresses the magnitude of the absolute dif-
ference m– m0 one wants to detect in units of the population standard devia-
tion. The formula is

d � | m � m0 | /s

Cohen assigned labels to three values of d as follows:

d � 0.2 is a small effect

d � 0.5 is a medium effect

d � 0.8 is a large effect

a, 1 2 b, ŝ, and m 2 m0

sa, 1 2 b, ŝ, n, and m 2 m0d



282 Statistical Inference: One-Sample Hypothesis Test

According to Cohen (1992), a medium effect of 0.5 is visible to the naked eye of a
careful observer. A small effect of 0.2 is noticeably smaller than medium but not so
small as to be trivial. Only an expert would be able to detect a small effect. A large ef-
fect of 0.8 is the same distance above medium as small is below it. A large effect
would be obvious to anyone. Several surveys have found that 0.5 approximates the av-
erage size of observed effects in a number of fields including psychology. By assign-
ing the labels small, medium, and large to the numbers 0.2, 0.5, and 0.8, respectively,
Cohen provided researchers with guidelines for interpreting the size of differences be-
tween means.

To estimate an appropriate sample size using Appendix Table D.8, a researcher
needs to specify the following:

1. An effect size: d � 0.2, 0.5, or 0.8
2. A significance level: a � .05 or .01
3. An acceptable power: 1 – b � .80, .90, or .95
4. Type of statistical hypothesis: one-tailed or two-tailed
5. Type of test: one- or two-sample test

In the registration example, suppose that the dean was only interested in adopting
the new registration procedure if the difference between it and the current procedure
was at least a medium size effect (d � 0.5). Suppose, also, that she adopted a � .05
and 1 – b � .80, and that she advanced a one-sided null hypothesis and planned to
use a one-sample t statistic. According to Appendix Table D.8, the sample size nec-
essary to detect a medium size effect for these conditions is n � 27. Since 27 is the
size of the sample the dean used in the trial run, she obviously had consulted Appen-
dix Table D.8. If the dean had been interested in detecting a large effect, according
to the table she would have needed only n � 12 undergraduates for the trial run. The
smaller sample size required to detect a large effect is consistent with our intuition—
it is much easier to detect large differences than small differences.

It is obvious that one’s sample can be too small, resulting in insufficient power.
But n also can be too large, resulting in wasted time and resources. A researcher can
avoid these problems by using Appendix Table D.8 to make a rational choice of sam-
ple size. This procedure has two other less obvious benefits: it focuses attention on
the interrelationships among n, a, 1 – b, s, and m – m0; and it forces the researcher to
think about the size of the effect or difference that would be worth detecting.

It is important to distinguish between statistical significance that is
concerned with whether a result is due to chance or sampling variability and
practical significance that is concerned with whether the result is useful in
the real world.

By estimating the n required to detect a useful result, a researcher increases the
chances of obtaining both statistical significance and practical significance.

Reporting p Values

Most research reports and computer printouts contain a statistic called a probability
value or, simply, a p value.
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A p value is the probability of obtaining a value of the test statistic equal to or
more extreme than that observed, given that the null hypothesis is true.

Students often confuse p values with significance levels. A significance level is the
probability a researcher has specified an acceptable level of falsely rejecting a null
hypothesis. This probability is the probability of making a Type I error and is
commonly set at a � .05 or .01. The other kind of probability, a p value, refers to
the probability of obtaining a test statistic as extreme as or more extreme than 
the one that has been obtained, assuming that the null hypothesis is true. p values
are usually obtained with the aid of a statistical calculator or computer. Alternatively,
the tables in Appendix D can be used to approximate some p values. However, the
range of test-statistic values available in the tables is limited. Microsoft’s Excel pro-
gram, which is installed on most computers, also can be used to obtain p values for a
variety of sampling distributions. For example, to obtain p values for the t sampling
distribution, you use the Excel TDIST function. To access this function, select “Insert”
in Excel’s menu bar and then the menu command “Function.” You then can select the
TDIST function from the list of functions. After you access the TDIST function,

TDIST(x,deg_freedom,tails),

replace “x” with the absolute value of the t statistic, “deg_freedom” with the degrees
of freedom for the t statistic, and “tails” with 1 for a one-tailed test and 2 for a two-
tailed test. To illustrate, the p value for the one-tailed t statistic in Table 10.3-1 where
t(26) � –3.449 and n � 26 is given by

TDIST(3.449,26,1)

and is equal to .001.
In presenting the results of null hypothesis significance tests in the text portion

of publications, it is good statistical practice to report, in order, the test statistic that
was used, say t, followed by the degrees of freedom in parentheses, the value of the
test statistic, and finally the p value. For example, in describing the results of the
registration experiment, the dean could report that “the mean difference between
the current procedure and the new procedure was –0.15 hours. The difference was
statistically significant, t(26) � �3.449, p � .001.” If the results of a statistical test
are presented in a table, the p value is usually reported as a table footnote—for ex-
ample, “*p � .001.” It is common practice to round p values to the next larger value
of .001, .005, .01, .05, .10, .15, .20, and so on. The Excel TDIST function actually
gave the p value for | t(26) | � | �3.449 | as p � .0009652; the dean rounded the p
value to .001. It also is good statistical practice to provide descriptive statistics for
the data such as the sample size, mean, and standard deviation. This information is
often reported in a table as follows:

Descriptive Statistics for the Registration-Time Data

Sample Size Mean Standard Deviation

27 2.90 0.30
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In Section 10.1, I formulated a hypothesis-testing decision rule in terms of a test
statistic and the critical region: Reject the null hypothesis if the test statistic falls in
the critical region—that is, if t � t

a, n
; otherwise, do not reject the null hypothesis. A

decision rule also can be formulated in terms of the p value and significance level.
The rule is as follows: Reject the null hypothesis if the p value is less than or equal
to the preselected significance level—that is, if p � a; otherwise, do not reject the
null hypothesis. The inclusion of a p value in a research report provides useful in-
formation because it enables a reader to discern those significance levels for which
the null hypothesis could have been rejected.

The p values provided in some computer printouts are appropriate for two-sided
null hypotheses. If your null hypothesis is directional, the two-tailed p value in the
computer printout should be divided by 2. For example, a computer gave a p value
of .0001930 for the data in Table 10.3-1. Because the null hypothesis is directional,
the correct value is .0019304/2 � .0009652. Before leaving the subject of p values,
remember that a p value is related to statistical significance; it says nothing about
the practical significance of results.

CHECK YOUR UNDERSTANDING OF SECTION 10.4

20. For each of the following statistical hypotheses, sketch the t sampling distribu-
tion, designate the critical region(s), indicate their size, and determine the criti-
cal value.
a. H0: m � 60 b. H0: m � 100

H1: m 	 60 H1: m � 100
a � .01 a � .05
n � 31 n � 17

c. H0: m � 25
H1: m � 25
a � .005
n � 22

21. Which of the null hypotheses in Exercise 20 are directional?
22. Indicate the type of error or correct decision for each of the following.

a. A true null hypothesis was rejected.
b. The researcher failed to reject a false null hypothesis.
c. The null hypothesis is false and the researcher rejected it.
d. The researcher did not reject a true null hypothesis.
e. A false null hypothesis was rejected.
f. The researcher rejected the null hypothesis when he or she should have

failed to reject it.
23. The calculation of power was illustrated using the registration example. The

dean was considering adopting the new procedure if the population mean, ,
was equal to 2.95. Recall that . If the
mean was 2.95, the estimate of the probability of correctly rejecting the null
hypothesis was .81. If was 2.93 instead of 2.95, what would the power have
been?

24. Prepare a table that summarizes the probabilities associated with the four possi-
ble decision outcomes in Exercise 23 for � 2.93 and m0 � 3.10.mr

mr

X.05 5 3.001, ŝ 5 0.3013, and n 5 27
mr
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25. For the following conditions, use Appendix Table D.8 to determine the appro-
priate sample size.
a. d � 0.20, a � .05, 1 � b � .80 b. d � 0.5, a � .01, 1 � b � .80
c. d � 0.80, a � .01, 1 � b � .80 d. d � 0.5, a � .05, 1 � b � .80

26. Distinguish between statistical significance and practical significance.
27. For each of the following, determine the p value using (i) Appendix Table D.3

and (ii) the Microsoft Excel TDIST function.
a. t(16) � 2.231, two-tailed test b. t(29) � 2.498, one-tailed test
c. t(40) � 1.782, one-tailed test d. t(19) � 2.916, two-tailed test

28. Terms to remember:
a. One-tailed test b. Two-tailed test
c. One-sided (directional) hypothesis d. Two-sided (nondirectional) 
e. Type I error (a) hypothesis
g. Correct acceptance (1 � a) f. Type II error (b)
i. Power (1 � b) h. Correct rejection
k. Statistical significance j. Effect size
m. p value l. Practical significance

10.5 LOOKING BACK: WHAT HAVE YOU LEARNED?

Hypothesis-testing procedures, one form of statistical inference, use sample data to
make a decision about a scientific hypothesis when it is impossible or impractical to
observe all the elements in the population. The main features of hypothesis testing
are as follows. A researcher formulates from a scientific hypothesis two mutually
exclusive and exhaustive statistical hypotheses—the null hypothesis, H0, and the al-
ternative hypothesis, H1—that make predictions about one or more parameters of a
population distribution. The alternative hypothesis is formulated so that it agrees
with the researcher’s scientific hypothesis. The null hypothesis is contrary to the re-
searcher’s scientific hypothesis. A test of the null hypothesis consists of determining
whether the obtained value of a sample statistic would be improbable if the null hy-
pothesis is true. If the value would be improbable, then the null hypothesis is a poor
prediction and should be rejected in favor of the alternative hypothesis.

The null hypothesis is tested using a test statistic. It is a simple matter to
transform a sample mean into a t test statistic using the formula 

. The criterion for what constitutes improbable values of the t statistic is
expressed in terms of a probability called a significance level and denoted by a. By
convention, a researcher usually sets this probability equal to or less than .05. The sig-
nificance level along with the alternative hypothesis identifies a range of values of the
test statistic that would be improbable if the null hypothesis is true. This range of
improbable values is called the critical region. If a test statistic falls in the critical re-
gion, the test statistic is said to be statistically significant, in which case the researcher
rejects the null hypothesis and concludes that the scientific hypothesis is probably true.
If a test statistic does not fall in the critical region, the null hypothesis remains tenable.

How does one determine whether a t statistic falls in the critical region? This can
be determined with the aid of Appendix Table D.3 that gives values of the t statistic
that cut off various regions of the t sampling distribution. For example, the value of t
that cuts off the upper critical region of size a for n degrees of freedom is called a

sŝ>"nd
t 5 sX 2 m0d>
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critical value and is denoted by t
a, n

. Now to answer the question posed a moment
ago. You can determine whether the t test statistic falls in the critical region by de-
termining whether your obtained t is greater than or equal to the critical value—that
is whether t � t

a, n
. Alternatively, if a statistical software package is used to obtain

the value of the t statistic, the p value provided by the package can be compared with
the researcher’s significance level. If the p value is less than or equal to the signifi-
cance level, p � a, the t statistic falls in the critical region.

It is helpful to think of hypothesis testing as a series of steps that culminate in a
decision about the scientific hypothesis. The steps can be summarized as follows:

Step 1. State the null and alternative hypotheses.

Step 2. Specify the test statistic based on the hypothesis to be tested,
information that is known about the population, and assumptions
about the population that appear to be tenable.

Step 3. Specify the size n of the sample to be obtained and make assumptions
that permit specification of the sampling distribution of the test
statistic, given that the null hypothesis is true.

Step 4. Specify an acceptable risk, denoted by a, of rejecting the null
hypothesis when it is true.

Step 5. Obtain a random sample of size n from the population, compute the
test statistic, and make a decision about the null and alternative
hypotheses and an inductive inference about the scientific hypothesis.

Decision rule:

Reject the null hypothesis if the test statistic falls in the critical region
of the sampling distribution of the test statistic; otherwise, do not reject
the null hypothesis. Rejection of the null hypothesis leads to the
inductive inference that the scientific hypothesis is true, in which case
the statistic is said to be statistically significant.

There is a tendency among researchers to impart surplus meaning to the term
statistical significance. All the term really means is that a result has been obtained
that is improbable if the null hypothesis is true. Statistical significance does not con-
note importance or usefulness, and it should not be confused with practical signifi-
cance. In the simplest terms, a statistically significant result is one for which chance
is an unlikely explanation.

REVIEW EXERCISES FOR CHAPTER 10

1. Which of the following are scientific hypotheses?
a. Wives in unhappy marriages have lower problem-solving ability than wives

in happy marriages.
b. Officer workers who listen to music with iPods while working exhibit lower

job turnover.
c. Dominant chimpanzees in a colony have a better self-image than chim-

panzees who are less dominant.
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d. Mice prefer the music of Mozart to that of Schönberg because Mozart’s
music is less dissonant.

2. Why is it often necessary to use the techniques of statistical inference in evalu-
ating a scientific hypothesis?

3. Which of the following are examples of null hypotheses?
a. m � 22 b. r � 0
c. r � 0 d. m � 50
e. s2 � 0 f. � 15
g. m � 60 h. S2 � 16
i. s2 � 100 j. r � .30

4. Why might a researcher fail to reject a null hypothesis?
5. If a null hypothesis is correctly rejected, what does this imply about the experi-

mental methodology?
6. Under what conditions is the sampling distribution of 

the same as Student’s t distribution?
7. Use Appendix Table D.3 to determine the t critical value for the following.

a. m � 61, n � 10, a � .05 b. m � 35, n � 18, a � .01
c. m � 12, n � 31, a � .05 d. m � 121, n � 17, a � .05
e. m � 12, n � 17, a � .05 f. m � 28, n � 27, a � .005

8. Researchers hypothesized that a random sample of 28 drug abusers who were
clients of the Narcotics Service Council in St. Louis would rate the credibility
of drug information provided by social workers below that of ex-addicts. Let

denote the mean rating of social workers. The known rating of ex-addicts is
m0 � 72.8. The population standard deviation is not known. (a) List the five
steps you would follow to test the hypothesis that the credibility rating of so-
cial workers is lower than that of ex-addicts, and supply the required informa-
tion. Let a � .05. (b) State the decision rule.

9. For the data in Exercise 8, sketch the sampling distribution associated with the
null hypothesis, and indicate the region(s) that lead to rejection and nonrejec-
tion of the null hypothesis.

10. For the data in Exercise 8, suppose that the mean credibility rating of social
workers is � 58.2 and the sample standard deviation is � 18. (a) Compute
a t statistic for these data. (b) What conclusion can be drawn about the scientific
hypothesis?

11. If a � .01 in Exercise 8, what conclusion would have been drawn about the sci-
entific hypothesis?

12. Can you think of some reasons why a researcher should always specify H0, H1, a,
and n before collecting data?

13. For each of the following statistical hypotheses, sketch the t sampling distribu-
tion associated with the null hypothesis, designate the critical region(s), and in-
dicate their size.
a. H0: m � 50 b. H0: m � 20

H1: m � 50 H1: m	 20
a � .05 a � .01

c. H0: m � 65
H1: m � 65
a � .005

14. Which of the null hypotheses in Exercise 13 are directional?

ŝX

X
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15. Under what condition is a one-tailed test less powerful than a two-tailed test?
16. Suppose that several first-grade teachers have complained that their classes this

year are unusually slow in learning to read. The school principal has asked you
to determine if the children are below average in intelligence—that is, have a
mean IQ below 100. Because there are 362 first-grade children, giving each of
them an individual intelligence test is not feasible. Instead, you administer the
Wechsler Intelligence Scale for Children–Revised (WISC–R) to a random sam-
ple of 16 children. Assume that the data in the following table have been
obtained. Let a � .05.
a. List the steps you would follow in testing the scientific hypothesis.
b. Compute a t statistic for these data and make a decision about the scientific

hypothesis.
c. Use Appendix Table D.8 to estimate the sample size needed to detect a large

effect for a � .05 and 1 – b � .80.
d. Determine the p value of the t statistic using (i) Appendix Table D.3 and

(ii) the Microsoft Excel TDIST function.
e. Construct a box plot for the data. Do the data contain outliers? Does the

sample distribution appear to be relatively symmetrical?

Child IQ Child IQ

1 89 9 86
2 96 10 88
3 86 11 92
4 92 12 101
5 78 13 87
6 110 14 93
7 82 15 97
8 69 16 74

17. (a) Make a frequency distribution for the data in Exercise 16. Use 10 class in-
tervals, with a class interval size of five. (b) From a visual inspection of the fre-
quency distribution, is it reasonable to assume that the population distribution is
normal in form?

18. Use the table of random numbers in Appendix Table D.1 to draw a random sam-
ple without replacement of 31 students from the Student Database in Appendix E.
a. List the steps you would follow in testing the scientific hypothesis that the

population mean of the variable labeled GPA is different from that for the
previous year where m0 � 2.7. Let a � .05.

b. List the Participant Number and GPA for each person in your sample. Com-
pute the mean and standard deviation of the variable labeled GPA.

c. Test the null hypothesis that m � 2.7, where 2.7 is the mean population GPA
of students who enrolled in the statistics course last year.

d. Use Appendix Table D.8 to estimate the sample size needed to detect a large
effect for a � .05 and 1 � b � .80.

e. Determine the p value of the t statistic using (i) Appendix Table D.3 and
(ii) the Microsoft Excel TDIST function.

f. Construct a box plot for the data. Do the data contain outliers? Does the
sample distribution appear to be relatively symmetrical?
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19. Indicate the type of error or correct decision for each of the following:
a. A false null hypothesis was rejected.
b. The researcher did not reject a true null hypothesis.
c. The null hypothesis is false and the researcher failed to reject it.
d. The researcher rejected a true null hypothesis.
e. A false null hypothesis was not rejected.
f. The researcher rejected the null hypothesis when he or she should have

rejected it.
20. The calculation of power was illustrated in Section 10.4 for the registration

example. The dean was considering adopting the new procedure if the population
mean, , was equal to 2.95. Recall that . 
If the mean was 2.95, an estimate of the probability of correctly rejecting the null
hypothesis was .81. If was 2.90 instead of 2.95, what would the power have
been?

21. Prepare a table that summarizes the probabilities associated with the four possi-
ble decision outcomes in Exercise 20 for and m0 � 3.10.

22. For the credibility data in Review Exercises 8 and 10, suppose that the popula-
tion mean credibility rating of social workers is really m � 60.1. (a) Compute the
power of the t test. (b) How large a sample of drug abusers would be required to
detect a large effect and have a power of .80?

23. Prepare a table that summarizes the probabilities associated with the four possi-
ble decision outcomes in Exercise 22.

24. A random sample of 65 freshman college students was selected to participate in
a new look-say teaching program designed to increase reading speed in French.
The final exam consisted of a French passage that the students translated. The
time required for each student to complete the translation was recorded. The
sample statistics were sec and sec. According to departmental
records, the mean for students in conventional classes was 320 sec. Let a � .05.
a. List the steps you would use in testing the scientific hypothesis that the look-

say program resulted in a decrease in time required to translate the French
passage.

b. Compute a t statistic and make a decision about the scientific hypothesis.
c. Determine the p value of the t statistic using (i) Appendix Table D.3 and

(ii) the Microsoft Excel TDIST function.
d. How could the design of the experiment be improved?
e. Use Appendix Table D.8 to determine whether the sample size is adequate to

detect a medium-size effect if a power of .95 is desired.
25. List the ways in which a researcher can increase the power of an experimental

methodology. What are their relative merits?
26. Use the table of random numbers in Appendix D.1 to draw a random sample

without replacement of 25 men from the student database in Appendix E.
(a) List the Subject Number and Stat Grade for each man in your sample.
(b) Compute the mean of the variable labeled Statistics Grade. (c) Test the null
hypothesis that m � 2.662. Let a � .05.

ŝ 5 56X 5 302

mr5 2.90

mr

X.05 5 3.001, ŝ5 0.3013, and n 5 27mr
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11.1 INTRODUCTION

Looking Ahead: What Is This Chapter About?

A sample mean is often used to estimate a population mean when it is not possible to
observe all of the elements in the population. Unfortunately, sample means vary from
one random sample to the next. Hence, the mean of a particular sample is unlikely to
equal the population mean. In this chapter you will learn how to find a range of values
called a confidence interval that is likely to include the unknown population mean. 

Confidence intervals are not used as much as null hypothesis significance tests in
the behavioral sciences, health sciences, and education. This is true even though
confidence intervals are more informative. The American Psychological Association
(2001, p. 22) recommends that researchers make greater use of confidence interval
procedures. Because of this recommendation, the use of confidence intervals in psy-
chology will likely increase.

After reading this chapter, you should know the following:

■ Four common criticisms of null hypothesis significance testing
■ How to use the t sampling distribution to construct a confidence interval for a

population mean
■ When and how to use one- and two-sided confidence intervals
■ How Hedges’s g statistic can help you assess practical significance
■ The advantages of confidence intervals over null hypothesis significance tests

Criticisms of Null Hypothesis Significance Testing

Since the 1920s, null hypothesis significance testing has been the dominant
approach to statistical inference. There is a growing awareness among researchers
that this approach has some shortcomings. As you have seen, a null hypothesis sig-
nificance test addresses the question “Is chance a likely explanation for the results
that have been obtained?” The test does not address the question “Are the results
important or useful?” There are other criticisms. For example, null hypothesis
significance testing and scientific inference address different questions. In scientific
inference, what you want to know is the conditional probability that the null hypoth-
esis (H0) is true, given that you have obtained a set of data (D)—that is, Prob(H0|D).
What null hypothesis significance testing tells you is the conditional probability of
obtaining these data or more extreme data if the null hypothesis is true, Prob(D|H0).
Unfortunately, obtaining data for which Prob(D|H0) is low does not imply that
Prob(H0|D) also is low.

A third criticism of null hypothesis significance testing is that it is a trivial exer-
cise. John Tukey (1991) observed that “It is foolish to ask ‘Are the effects of A and
B different?’ They are always different—for some decimal place (p. 100).” Hence,
because all null hypotheses are false, Type I errors cannot occur and statistically sig-
nificant results are assured if large enough samples are used. Bruce Thompson
(1998) captured the essence of this view when he wrote, “Statistical testing becomes
a tautological search for enough participants to achieve statistical significance. If we
fail to reject, it is only because we’ve been too lazy to drag in enough participants
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(p. 799).” Because the null hypothesis is always false, a decision to reject it simply
indicates that the research methodology had adequate power to detect a true state of
affairs, which may or may not be a large effect or even a useful effect.

A fourth criticism of null hypothesis significance testing is that by adopting a
fixed significance level such as a � .05, a researcher turns a continuum of uncer-
tainty into a dichotomous reject-do-not-reject decision. Researchers ordinarily react
to a p value of .06 with disappointment and even dismay, but not p values of .05 or
smaller. Rosnow and Rosenthal’s (1989) comment is pertinent: “Surely, God loves
the .06 nearly as much as the .05 (p. 1277).” Many psychologists believe that an em-
phasis on null hypothesis significance tests and p values distracts researchers from
the main business of science—understanding and interpreting the outcomes of re-
search. The next section describes an alternative approach to statistical inference.

11.2 CONFIDENCE INTERVAL FOR m

Section 10.1 noted that two complementary topics are subsumed under classical
statistical inference: null hypothesis significance testing and confidence interval
estimation. In many investigations, a researcher’s primary interest is to obtain an
estimate of some population parameter such as the mean. Because sample means
vary from sample to sample, it is unlikely that any given sample mean will equal the
population mean.

Although a researcher can never know the value of a population mean except
by measuring all the elements in the population, the researcher can use a ran-
dom sample to specify a segment or interval on the number line1 such that the
population mean has a high probability of lying on the segment. The segment
is called a confidence interval.

The previous chapter introduced one- and two-tailed null hypotheses. A one-
tailed hypothesis is adopted when the researcher has made a directional prediction
about the population mean; otherwise the researcher adopts a two-tailed hypothesis.

Confidence intervals can be either one or two sided. A one-sided confidence
interval is constructed when the researcher has made a directional prediction
about the population mean; otherwise the researcher constructs a two-sided
interval.

Let’s now construct a two-sided confidence interval for a population mean, m, so
that the interval has a probability equal to 1 – a of containing m. The probability
(1 � a), which is usually equal to (1 � .05) � .95, is called a confidence coefficient
and, like the significance level, a, is specified by the researcher. This section
describes the logic underlying the construction of a confidence interval in some
detail. By following the logic, you will gain a better understanding of this

1 A number line is a straight line on which points on the line are identified with real numbers, for 
example: .

1   2
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important approach to statistical inference. Consider the sampling distribution of
shown in Figure 11.2-1. Suppose I randomly sampled one

t statistic from this population of t’s. The probability is 1 � .05 � .95 that the t
statistic I obtained will come from the interval from �t.05/2, n

to t.05/2, n
. This seems

reasonable because .95 of the t’s are in the interval from �t.05/2, n
to t.05/2, n

. I can
state this as follows:

Next, I can replace the t in the probability statement with its formula, t �

. This gives

Multiply each term in the inequalities by to obtain2

Subtracting from each term in the inequalities, I obtain

and multiplying by �1, which reverses the direction of the inequalities and the signs
of the terms, gives

ProbaX 1
t.05>2, n ŝ

"n
. m . 1 X 2

t.05>2, n ŝ

"n
b 5 .95

Proba 2 X 2
t.05>2, n ŝ

"n
, 2m , 2 X 1

t.05>2, n ŝ

"n
b 5 .95

X

Proba2t.05>2, n ŝ

"n
, X 2 m ,

t.05>2, n ŝ

"n
b 5 .95

ŝ>"n

Proba2t.05>2, n ,
X 2 m

ŝ>"n
, t.05>2, nb 5 .95

sX 2 md> sŝ>"nd

Probs2t.05>2, n , t , t.05>2, nd 5 1 2 .05 5 .95

t 5 sX 2 md> sŝ>"nd

Figure 11.2-1. Sampling distribution of . If one t statistic
is randomly sampled from this population of t’s, the probability is .95 that the
obtained t will come from the interval from �t.05/2, n

to t.05/2, n.

t 5 sX 2 m0d> sŝ>"nd

a/2 � .05/2 a/2 � .05/2

1 � a � .95

f(
t)

t

�t.05/2, � t.05/2, �

0

2 A review of inequalities is given in Appendix A, Section A.6.
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For convenience, I can rearrange the terms in the inequality to form the confidence
statement

In words, this statement says that the probability is .95 that the interval from

to

contains the parameter m. The values and are
the lower and upper endpoints, respectively, of the confidence interval. The end-
points also are called confidence limits and are denoted by L1 and L2, respectively.
The value of the confidence coefficient, .95, reflects the degree of my confidence
that m does indeed lie in the specified interval.

The general form of a two-sided 100(1 � a)% confidence interval for m is

where t
a/2, n

is the value that cuts off the upper a/2 region of the t sampling dis-
tribution for n degrees for freedom.

In using the t statistic and t sampling distribution to construct a confidence interval,
it is assumed that (1) a random sample of n observations is obtained from the popu-
lation of interest, (2) the population is normally distributed, and (3) the population
standard deviation is unknown. These are the same assumptions that are made in
performing a null hypothesis significance test using the t statistic.

To summarize, it is impossible to know the value of a parameter such as m without
measuring all the elements in the population. However, it is possible to find two func-
tions denoted by L1 and L2 of a random sample such that the probability that the
interval between L1 and L2 will contain the parameter is equal to 1 � a. That is, I can
be 100(1 � a)% confident that the interval contains the unknown parameter. The con-
fidence interval tells me the margin of error associated with my sample estimate of m.

Computation of a Two-Sided Confidence Interval for 

Sections 10.3 and 10.4 of the previous chapter described an experiment used to de-
termine whether a new registration procedure was better than the current procedure
at Idle-on-in College. I will use the registration data to illustrate the computation of a
100(1 � .05)% � 95% two-sided confidence interval for m. According to Table 10.3-1,
the mean of a random sample of n � 27 student who used the new registration proce-
dure in a trial run was , and an estimate of the population standard devia-
tion was . A 95% two-sided confidence interval for m is given by

X 2
t.05>2,26 ŝ

"n
, m , X 1

t.05>2,26 ŝ

"n

ŝ 5 0.3013
X 5 2.90

m

X 2
ta>2, n ŝ

"n
, m , X 1

ta>2, n ŝ

"n

X 1 t.05>2, n  ŝ>"nX 2 t.05>2, n ŝ>"n

X 1 t.05>2, n ŝ>"nX 2 t.05>2, n ŝ>"n

ProbaX 2
t.05>2, n ŝ

"n
, m , X 1

t.05>2, n ŝ

"n
b 5 .95
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2.90 � 0.119 � m � 2.90 � 0.119

2.78 � m � 3.02

In words, this says that a 95% confidence interval for m is from 2.78 to 3.02. You
may find it helpful to visualize a confidence interval as a segment of the number
line. In the following figure, the darkened segment corresponds to the 95% confi-
dence interval for m.

2.90 2
2.056s0.3013d

"27
, m , 2.90 1

2.056s0.3013d

"27

m

L1 � 2.78

2.6 2.7 2.8 2.9 3.0 3.1 3.2

L2 � 3.02

L1 5 2.78

2.6 2.7 2.8

95% confidence interval for m 99% confidence interval for m

2.9 3.0 3.1 3.2

L2 5 3.02 L1 5 2.74

2.6 2.7 2.8 2.9 3.0 3.1 3.2

L2 5 3.06

The confidence interval 2.78�m�3.02 is called an open interval as opposed to a
closed interval because neither endpoint, 2.78 nor 3.02, is included in the interval.3

The dean can feel quite confident that the value of m is greater than L1 � 2.78 and
less than L2 � 3.02. The measure of the dean’s confidence that the confidence inter-
val does in fact contain m is .95. If the dean wants to feel even more confident that
she has specified L1 and L2 so that they contain m, she can compute a 100(1 � .01)%
� 99% confidence interval. This is accomplished by substituting t.01/2,26 � 2.779 for
t.05/2,26 � 2.056. The 99% confidence interval is given by

2.90 � 0.161 � m � 2.90 � 0.161

2.74 � m � 3.06

Notice that as the dean’s confidence that she has captured m increases, so does the
size of the interval from L1 to L2. This is illustrated in the following figures.

2.90 2
2.779s0.3013d

"27
, m , 2.90 1

2.779s0.3013d

"27

X 2
t.01>2,26 ŝ

"n
, m , X 1

t.01>2,26 ŝ

"n

3 An interval in which the endpoints are included; for example, 2.78 � m � 3.02, is called a closed interval.

Interpretation of a Confidence Interval

When I developed the formula for the confidence interval for m, I said that the proba-
bility is .95 that the interval from to contains m.X 1 t.05>2, n ŝ>"nX 2 t.05>2, n ŝ>"n
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When I computed the confidence interval for the registration data, I said that a 95%
confidence interval for m is from 2.78 to 3.02. I did not say that the probability is .95
that the interval from 2.78 to 3.02 contains m. The latter statement would be incor-
rect, as I will now show. The probability statement

refers to the infinite set of confidence intervals that I could compute for m. Ninety-
five percent of these intervals will contain m and 5% will not. The probability that a
randomly selected interval from this infinite set will contain m is .95. However, once
I obtain a sample mean and construct a confidence interval for that mean, either the
interval I compute does or does not contain m. In other words, the probability is
either 0 or 1, not .95. Hence, in describing a confidence interval you can say, for
example, that a 95% confidence interval for m is from 2.78 to 3.02, or that the de-
gree of your confidence that m lies in the open interval from 2.78 to 3.02 is .95, or,
more simply, “You are 95% confident that m is greater than 2.78 and less than 3.02.”

Computation of a One-Sided Confidence Interval for 

The confidence interval, 2.78 � m � 3.02, is two-sided. Such an interval is used
when the researcher is interested in the possibility, for example, that the new regis-
tration procedure is worse than or better than the current procedure. In a sense, this
interval is analogous to the two-sided statistical hypotheses:

H0: m � 3.10

H1: m 3.10

In the registration example, the dean was only interested in the possibility that the
new procedure was better than the current procedure. The corresponding statistical
hypotheses are

H0: m � 3.10

H1: m � 3.10

The analogous one-sided confidence limit, L2, for these hypotheses with a confi-
dence coefficient equal to 100(1 � .05)% � 95% is

m � 2.90 � 0.099

m � 3.00

where t.05, 26 � 1.706 is the value of t that cuts off the upper a � .05 region instead of
the .025 region of the t sampling distribution. The dean can be fairly confident that

m , 2.90 1
1.706s0.3013d

"27

m , X 1
t.05, 26 ŝ

"n

2

m

ProbsX 2 t.05>2, n ŝ>"n , m , X 1 t.05>2, n ŝ>"nd 5 .95
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m is less than 3.00. This confidence interval corresponds to the darker segment of the
real number line in the following figure:

2.6 2.7 2.8 2.9 3.0 3.1 3.2

L2 � 3.00

m

2.6 2.7 2.8 2.9 3.0 3.1 3.2

L1 � 2.80

m

If the dean were only interested in the possibility that the new procedure is worse
than the current procedure, she could construct the following one-sided confidence
limit, L1, with confidence coefficient equal to 100(1 � .05)% � .95%:

2.90 � 0.099 � m

2.80 � m

This confidence interval corresponds to the darker segment of the real number line
in the following figure:

2.90 2
1.706s0.3013d

"27
, m 

X 1
t.05, 26 ŝ

"n
, m

Interval Estimation versus Hypothesis Testing

In Section 10.3, the dean used a one-sample t statistic to test the null hypothesis H0:
m � 3.10. Recall that the hypothesis was rejected. The dean concluded that the al-
ternative hypothesis was tenable—that is, m � 3.10. The dean’s best guess regard-
ing the value of m for the new procedure is that it is equal to the sample mean

obtained in the trial run. But sample means vary from sample to sample.
Hence, it is unlikely that population mean is equal to . Because the null hy-
pothesis was rejected, the dean concluded that the population means was less than
3.10. The confidence interval for m provides the dean with more precise informa-
tion. Based on the one-sided 95% confidence interval, m � 3.00, the dean can be
fairly confident that m is less than 3.00. The confidence interval has enabled the dean
to narrow the range of possible values for m.

A two-sided confidence interval brackets the possible values for a population mean.
Suppose that the dean had advanced the following two-sided statistical hypotheses:

H0: m � 3.10

H1: m 3.10

Rejection of this null hypothesis would not be informative. The dean would know
simply that the population mean for the new procedure is not equal to 3.10. A 95%

2

X 5 2.90
X 5 2.90
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two-sided confidence interval for m is 2.78 � m � 3.02. This confidence interval
would enable the dean to bracket the likely value of m. She could be fairly confident
that the population mean is greater than 2.78 and less than 3.02. It is apparent that
the confidence interval provides more information than the null hypothesis signifi-
cance test.

A confidence interval has another advantage. It can be used to test any null hy-
pothesis for m simply by looking at the interval. Consider the 100(1 � .05)% � 95%
two-sided confidence interval 2.78 � m � 3.02. Without doing a significance test, it
is apparent from this interval that the null hypothesis H0: m � 3.10 should be re-
jected at the .05 level of significance. This follows because 3.10 is not included in
the interval from 2.78 to 3.02. However, the null hypothesis H0: m � 2.99 would not
be rejected because 2.99 is included in the 95% confidence interval.

The Publication Manual of the American Psychological Association strongly
recommends the use of confidence intervals. The manual says, “Because confidence
intervals combine information on location and precision and can be used to infer
significance levels, they are, in general the best reporting strategy” (American Psy-
chological Association, 2001, p. 22). Considering the advantages of confidence
intervals and the APA recommendation, you may wonder why null hypothesis
significance tests are given a prominent place in this and most other introductory
statistics books. There are two reasons. Since the 1920s, null hypothesis significance
testing has been the dominant approach to statistical inference. Hence, an under-
standing of this approach is necessary to read the literature in the behavioral sci-
ences, health sciences, and education. Second, some statistical inference questions
cannot be addressed using confidence intervals. In such cases, a researcher must re-
sort to null hypothesis significance tests.

To summarize, a sample mean and confidence interval provide an estimate of the
population parameter and a range of values—the error variation—qualifying the es-
timate. A 100(1 � a)% confidence interval for m contains all the values of m0 for
which the null hypothesis would not be rejected at a level of significance. All values
of m0 outside the confidence interval would be rejected.

11.3 PRACTICAL SIGNIFICANCE

As noted repeatedly, statistically significant results are not necessarily important,
large, or even useful. What researchers need is a measure of the practical signifi-
cance of results. Unfortunately, such a measure does not exist. However, effect
magnitude statistics can assist a researcher in deciding whether results are practi-
cally significant (Kirk, 1996). Most effect magnitude statistics fall into one of two
categories: measures of effect size and measures of strength of association.4 A sam-
ple estimator of Cohen’s (1988) effect size, d, is described here. A measure of
strength of association for experiments with three or more samples is described in
Chapter 15. According to the Publication Manual of the American Psychological

4 In an article titled “Effect Size Measures, ” I summarize more than 70 measures of effect magnitude
that have been used in psychology and education journals (Kirk, 2005b).
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Association (2001, pp. 25–26), researchers should always supplement reports of
null hypothesis significance tests and confidence intervals with a measure of effect
magnitude.

Cohen’s effect size parameter, d, was introduced in Section 10.4. A estimator of
the parameter has been described by Hedges and is denoted by g.5 Hedges’s estima-
tor of d is

g represents the size of the effect that a researcher has obtained in units of the sam-
ple standard deviation. The g statistic is interpreted the same as Cohen’s d: g � 0.2
is a small effect, g � 0.5 is a medium effect, and g � 0.8 is a large effect.

For the registration data in Sections 10.3 and 10.4, the dean found that the new
procedure reduced the registration time from m0 � 3.10 hours to hours.
The difference 2.90 � 3.10 corresponds to a mean time savings of 12 minutes.
Hedges’s g for this difference is

This g just exceeds 0.5, which is Cohen’s criterion for a medium effect size. Small
and large effects correspond to registration times of 3.04 and 2.86 hours, respec-
tively, as the following computations show:

Small and large effects correspond to a time savings, respectively, of 3.6 and 14.4
minutes. Most students would probably consider a savings of only 3.6 minutes to be
a small effect, whereas a savings of 14.4 minutes would be viewed differently.

The practice of reporting a measure of effect size in research reports is far from
universal. If a publication does not report an effect size, it is easy to compute the ef-
fect size if the t statistic and sample size are reported. The formula for computing g
from a one-sample t statistic is

As you just saw, the effect size for the registration experiment is g � 0.66. The same
value can be obtained using the t statistic and sample size in Table 10.3-1 as follows:

g 5
t

"n
5

3.449

"27
5 0.66

g 5 t>"n

g 5
| 2.86 2 3.10 |

0.3013
5 0.8

g 5
| 3.04 2 3.10  |

0.3013
5 0.2

g 5
| 2.90 2 3.10 |

0.3013
5 0.66

X 5 2.90

g 5
|X 2 m0 

|

ŝ

5 Some authors use the letter d for both the parameter m � m0 /s and the statistic . To avoid
confusion, here I use g to denote the statistic.

ŝ| X 2 m0  
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Researchers routinely report null hypothesis significance test results and p values
in their publications. Researchers are also encouraged to report confidence intervals
and measures of effect magnitude. I recommend reporting measures of effect mag-
nitude even when the null hypothesis tests are not significant. The availability of ef-
fect magnitude statistics in publications is especially useful to those who do sec-
ondary analyses of research literature. The availability of effect magnitude statistics
enables a researcher to aggregate the results of many studies in procedure called
meta-analysis. In addition, publications should contain descriptive statistics such as
means, standard deviations, and sample sizes, and, where appropriate, graphs such
as box plots.

CHECK YOUR UNDERSTANDING OF SECTIONS 11.2 AND 11.3

1. What assumptions are associated with the following statement?

2. What are the advantages of confidence-interval procedures over null hypothesis-
testing procedures?

3. a. A soft-drink machine is designed to dispense a measured amount of a popular
drink. Construct a two-sided 99% confidence interval for m if a random sam-
ple of 29 drinks has ounces. Assume that the distribution is approxi-
mately normal, with ounces. Locate the confidence interval on the
real number line.

b. Machines of the same design are supposed to have a mean of 8 ounces. Does
this machine need to be repaired?

c. Compute Hedges’s g and interpret.
4. If 23 � m � 36 is a 95% confidence interval for m, indicate which of the follow-

ing statements are correct (C) and which are incorrect (I).
a. The probability is .95 that the open interval from 23 to 36 contains the popula-

tion mean.
b. The probability that the open interval contains m is .95.
c. Prob(23 � m � 36) is .95.
d. A researcher can be 95% confident that the open interval from 23 to 36

contains m.
e. A 95% confidence interval for m is 23 to 36.

f. Prob , where � 29.5 and 

� 6.1.
5. How is the size of a confidence interval related to the following?

a. Size of population standard deviation
b. Sample size
c. Confidence coefficient

6. Researchers investigated the effectiveness of a school and community-based
violence prevention program for at-risk eighth-grade students in three public
schools in Florida. The treatment group showed a significantly smaller number

ŝ

XsX 2 2.12ŝ"n , m , X 1 2.12ŝ"nd 5 .95

X 6 1.99ŝ"n
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X 5 7.2
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of in-school suspensions relative to the population mean for the three schools,
t(57) � 2.86, p � .006. Compute Hedges’s g, and interpret the result.

7. Terms to remember:
a. Confidence interval b. Confidence coefficient
c. Lower and upper endpoints d. Confidence limits
e. Open interval f. One-sided confidence limit
g. Effect magnitude

11.4 LOOKING BACK: WHAT HAVE YOU LEARNED?

In many research situations, researchers want to know the value of a population
mean. If, as is usually the case, it is not possible to observe all of the population ele-
ments, a researcher must resort to obtaining a random sample and computing the
sample mean. The sample mean is the best guess that a researcher can make con-
cerning the value of the population mean. Because of sampling variability, it is un-
likely that the sample mean will equal the population mean. This is frustrating, but
it is possible to find two functions, L1 and L2, of the sample data such that before the
sample is drawn, the probability that the open interval from L1 to L2 will contain m
is equal to 1 – a. The open interval from L1 to L2 is called a confidence interval for
m with a confidence coefficient equal to 1 – a. The researcher can be 100(1 � a)%
confident that m is contained in the confidence limits from L1 and L2. Confidence in-
tervals represent an alternative approach to statistical inference. They provide much
more information about one’s data than the more widely used null hypothesis sig-
nificance tests.

The size of a confidence interval is determined by (1) the confidence coefficient
that the researcher specifies, (2) the size of the sample, (3) the size of the sample es-
timate of the population standard deviation, and (4) whether the interval is one sided
or two sided. The construction of a confidence interval involves the same assump-
tions as those of a null hypothesis significance test. However, a confidence interval
has some important advantages over a significance test: (1) it provides a range of
values that are likely to contain the population mean, and (2) any null hypothesis can
be tested by looking at the confidence interval. By comparison, a null hypothesis
significance test is less informative. Rejection of a null hypothesis, for example, in-
dicates that m is probably not equal to m0; nonrejection of the hypothesis indicates
that m0 remains as a possible value of m.

Regardless of which statistical inference approach one uses, it also is important
to assess the practical significance of one’s results. Although a measure of practical
significance does not exist, several statistics can help a researcher make this kind of
assessment. The statistics are called measures of effect magnitude. The one de-
scribed in this chapter is Hedges’s . Cohen’s effect-size guidelines
are helpful for interpreting g: 0.2 is a small effect, 0.5 is a medium effect, and 0.8 is
a large effect. However, the determination of practical significance should not be rit-
ualized. Ultimately, the researcher who collected and analyzed a set of data is in the

g 5 |X 2 m0|>ŝ
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best position to decide whether the results are small or large and whether the results
are insignificant or important.

REVIEW EXERCISES FOR CHAPTER 11

1. List four criticisms of null hypothesis significance tests.
2. A random sample of 18 elementary schoolteachers in northeastern Ohio read a

background profile of a seven-year-old boy who exhibited symptoms of inatten-
tion and hyperactivity. Each teacher assigned a rating on a 7-point scale of the
likelihood of referring the child for an attention deficit hyperactivity disorder
(ADHD) evaluation: 1 � definitely would not refer, 7 � definitely would refer.
The following data were obtained. (Experiment suggested by Sciutto, M. J.,
Nolfi, C. J., and Bluhm, C. [2004]. Effects of child gender and symptom type
on referrals for ADHD by elementary school teachers. Journal of Emotional
and Behavioral Disorders, 14, 247–253.)

Teacher Ratings

1. 6 7. 5 13. 2
2. 4 8. 5 14. 7
3. 3 9. 3 15. 7
4. 6 10. 4 16. 2
5. 7 11. 5 17. 3
6. 6 12. 6 18. 4

a. Construct a two-sided 95% confidence interval for m.
b. Locate the confidence interval on the real number line.
c. Based on the confidence interval, list all the null hypotheses that could be

rejected at the .05 level of significance.
d. The population mean teacher rating for a seven-year-old girl whose back-

ground profile was identical to that of the seven-year-old boy was m � 3.79.
Based on these data, do teachers treat boys differently from girls who exhibit
the same background profile? Explain?

e. Use Hedges’s g to assess the effect size of the boy-girl rating difference and
interpret the result.

3. Which of the following statements about a confidence interval are correct and
which are incorrect? If a statement is incorrect, specify what is wrong with the
statement.
a. Prob(5.6 � m � 8.9) � .95.
b. I am 95% confident that m lies in the open interval from 5.6 to 8.9.
c. The degree of my confidence that m is in the open interval from 5.6 to 8.9 is .95.
d. The probability is .95 that m lies in the open interval from 5.6 to 8.9.

4. Students desiring to enter graduate school at Kandykane Technical Institute
(KTI) are required to submit Graduate Record Examination (GRE) scores with
their applications. The verbal scores for the first 20 applications received this
year are given in the table.
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GRE Scores for Verbal Section of Test

402 390 429 391
381 407 410 403
430 413 406 398
376 424 382 410
395 360 410 404

a. If the first 20 applicants can be considered a random sample of applicants
who will apply, what is the best estimate of the population mean for this
year’s applicants?

b. Construct a two-sided 95% confidence interval for m. Locate the confidence
interval on the real number line.

c. Based on the confidence interval, list all the null hypotheses that could be
rejected.

d. Last year, the mean GRE verbal score of all KTI applicants was 428. Is the
mean verbal aptitude for this year’s applicants different from that for last
year?

e. Use Hedges’s g to assess the effect size of the difference between this year’s
and last year’s scores and interpret the result.

f. Construct a box plot for the data. Do the data contain outliers?
5. A random sample of 65 junior college students was selected to participate in a

new total immersion program designed to increase comprehension of spoken
Spanish. The final exam consisted of a Spanish passage that the students tran-
scribed. The number of words correctly transcribed by each student was
recorded. The sample statistics were words transcribed with .
According to departmental records, the mean for students in conventional
classes was 320 words transcribed.
a. Construct a one-sided 95% confidence interval for m for these data. Locate

the confidence interval on the real number line.
b. Based on the confidence interval, list all null hypotheses that could be

rejected.
c. Compute Hedges’s g and interpret.
d. How could the design of the experiment be improved to remove the effects

of potential confounding variables? (Hint: See Section 10.3, “Some Experi-
mental Design Considerations.”)

6. Use the table of random numbers in Appendix D.1 to draw a random sample
without replacement of 25 women from the student database in Appendix E.
a. List the Subject Number and Stat Grade for each woman in your sample.
b. Compute the mean of the variable labeled Stat Grade.
c. Summarize the data by means of a box plot. Do the data contain outliers?
d. Construct a two-sided 95% confidence interval for m. Is it reasonable to be-

lieve that the population mean is 2.805?
7. Use the table of random numbers in Appendix D.1 to draw a random sample

without replacement of 25 men from the student database in Appendix E.
a. List the Subject Number and Stat Grade for each man in your sample.
b. Compute the mean of the variable labeled Stat Grade.

ŝ 5 56X 5 302



11.4 Looking Back: What Have You Learned? 305

c. Summarize the data by means of a box plot. Do the data contain outliers?
d. Construct a two-sided 95% confidence interval for m. Is it reasonable to

believe that the population mean is 2.662?
8. Researchers investigated the relation between fraternity/sorority (Greek) mem-

bership and heavy alcohol use. They obtained self-report data regarding alcohol
use for a random sample of 126 fraternity/sorority members at the University of
Virginia. The sample data were compared with the population mean for non-
Greeks. The survey found that throughout the college years, Greeks drank more
heavily than non-Greeks, t(125) � 3.028, p � .003. Compute Hedges’s g, and
interpert the result.
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12.1 INTRODUCTION TO OTHER ONE-SAMPLE 
TEST STATISTICS

Looking Ahead: What Is This Chapter About?

This chapter could be titled “Theme with Variations”—it applies the five-step null
hypothesis-testing format and the confidence-interval procedures introduced in
Chapters 10 and 11 to a sample proportion and correlation. Chapters 10 and 11
described procedures for using a sample mean to make decisions about a population
mean. As you will discover, the same procedures, with slight modifications, are used
to make decisions about a population proportion and a population correlation.

After reading this chapter, you should know the following:

■ How to test a hypothesis and construct a confidence interval for a population
proportion

■ How to determine the sample n needed to estimate a population proportion and
have an acceptable margin of error

■ How to test a hypothesis and construct a confidence interval for a population
correlation

12.2 ONE-SAMPLE z TEST AND CONFIDENCE INTERVAL
FOR A PROPORTION

Researchers are often interested in testing a hypothesis about a population propor-
tion. For example, an opinion pollster may want to know whether a majority of the
voters favor a certain candidate, an automobile manufacturer may want to know
whether at least .70 of new car buyers are willing to pay $150 for a safety device, or
the United States Marine Corps may want to know whether at least .35 of its volun-
teers plan to reenlist.

Each of the examples has a large number of occasions, or independent trials, in
which one of two outcomes can occur, and the probabilities associated with the two out-
comes remain constant from trial to trial. For convenience, the outcomes are designated
“success” and “failure,” with probabilities p and 1 � p, respectively.1 What I have just
described are the characteristics of a Bernoulli trial, which is discussed in Section 8.4.
The number of successes on n � 2 Bernoulli trials is a binomial random variable.

In Section 9.2 you learned that the normal distribution can be used to approxi-
mate binomial probabilities. The approximation is excellent if n is large and p is
equal to .5; as n becomes smaller or as p approaches either 0 or 1, the approxima-
tion becomes poorer. As a rule of thumb, the normal approximation is satisfactory if
(1) the population is at least 10 times larger than the sample and (2) np0 (the sample
size multiplied by the value of the population proportion specified in the null hy-
pothesis) and n(1 � p0) are both greater than 15.2

1 This p denotes a population proportion and is not related to a p value. The meaning of p should be clear
from the context in which it is used.

2 In previous editions I used the number 5 instead of 15. Research by Brown, Cai, and DasGupta (2001)
indicates that the number should be 15.
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A z statistic for testing a null hypothesis about a population proportion is

where is the sample estimator of the population proportion and is given by

p0 is the value of the population proportion specified in the null hypothesis,
and n is the size of the random sample used to compute .

The z statistic can be used to test null hypotheses of the form

H0: p � p0 H0: p � p0 H0: p � p0
H1: p p0 H1: p � p0 H1: p � p0

Here, p denotes the unknown population proportion. The assumptions associated
with using the z statistic to test these hypotheses are (1) random sampling from the
population of interest, (2) binomial population, (3) np0 and n(1 � p0) are both
greater than 15, and (4) the population is at least 10 times larger than the sample.
A null hypothesis is rejected if the z statistic falls in the critical region of the sam-
pling distribution of the standard normal distribution given in Appendix Table D.2.
The values of z that cut off the upper and lower critical regions for a two-sided null
hypothesis are denoted by z

a/2 and �z
a/2, respectively. For a one-sided null hypothe-

sis, the critical regions are denoted by z
a

and �z
a
.

Computational Example for z Test for a Proportion

Suppose that the Committee for Better Student Housing has conducted a survey to
determine whether the proportion of substandard apartments near the university
campus has changed since the last survey five years ago. At that time, .30 of the
apartments were classified as substandard. A random sample of 900 apartments was
surveyed, and .34 were found to be substandard. Has the proportion changed since
the last survey? The steps to be followed in testing the null hypothesis that the popu-
lation proportion is equal to .30 are as follows:

Step 1. State the statistical hypotheses: H0: p � .30
H1: p .30

Step 2. Specify the test statistic: because the 

committee wants to test p � .30,
the sample is random, and both
np0 � (900)(.30) � 270 and 
n(1 � p0) � (900)(1 � .30) �
630 are greater than 15.

z 5
p̂ 2 p0

"p0sp0 2 1d>n

2

2

p̂

p̂ 5
number of successes in the random sample

number of observations in the random sample

p̂

z 5
p̂ 2 p0

"p0sp0 2 1d>n
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Step 3. Specify the sample size: n � 900
and the sampling distribution: standard normal distribution.

Step 4. Specify the significance level: a � .05

Step 5. Obtain a random sample of size n,
compute z, and make a decision.

Decision rule:

Reject the null hypothesis if z falls in either the lower 2.5% or the upper
2.5% of the sampling distribution of z; otherwise, do not reject the null
hypothesis. If the null hypothesis is rejected, conclude that the proportion
of substandard apartments has changed since the last survey; if the null
hypothesis is not rejected, do not draw this conclusion.

For � .34, the sample proportion of substandard apartments in the recent sur-
vey, the z statistic is

According to Appendix Table D.2, z.05/2 � 1.96 and �z.05/2 � �1.96, respectively,
cut off the upper and lower .025 regions of the sampling distribution. Because the
computed z � 2.62 is greater than z.05/2 � 1.96, the null hypothesis is rejected. The
students can conclude that the proportion of substandard apartments near the uni-
versity campus has changed. In fact, data for the recent survey, � .34, suggest that
the housing situation has deteriorated.

In reporting the results of the null hypothesis significance test in the text portion
of a publication, the students might say, “It appears from a survey of 900 randomly
sampled apartments near the university campus that the population proportion of
substandard apartments is greater than it was five years ago. The sample proportion
in the recent survey was .34; the proportion five years ago was .30. The z test was
statistically significant, z � 2.62, p � .01.” The p value, (2)(.0044) � .0088, was
obtained from Appendix Table D.2. The students multiplied the value in the table by 2
because the null hypothesis was nondirectional. The value was rounded up to .01.

Confidence Interval for a Proportion

A two-sided 100(1 � a)% confidence interval for p is given by

where is an estimator of the population proportion, n is the number of ele-
ments in a random sample used to compute , and z

a/2 is the value of the stan-
dard normal distribution that cuts off the upper a/2 region.

p̂
p̂

p̂ 2 za>2Å
p̂s1 2 p̂d

n
, p , p̂ 1 za>2Å

p̂s1 2 p̂d
n

p̂

z 5
p̂ 2 p0

"p0s1 2 p0d>n 5
.34 2 .30

"s.30d s1 2 .30d>900
5

.04
0.0153

5 2.62

p̂
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Lower and upper one-sided 100(1 � a)% confidence intervals for p are
given by, respectively,

where z
a

is the value of the standard normal distribution that cuts off the upper
a region.

The assumptions associated with these interval are (1) random sampling from the
population of interest, (2) binomial population, (3) n and n(1 � ) are both greater
than 15, and (4) the population is at least ten times larger than the sample.

Notice that the formulas for estimating the standard error of a proportion,

where p is the unknown population proportion, are different for the z statistic and
the confidence interval. The two formulas given earlier are

The z statistic uses the null hypothesis value, p0, in estimating sp under the assump-
tion that the null hypothesis is true—that is, H0: p � p0. The confidence interval as-
sumes that the sample proportion, , provides the best estimate of p.

Computational Example for Confidence 
Interval for a Proportion

To illustrate the construction of a confidence interval for p, I will use the Committee
for Better Student Housing data described earlier. Recall that the sample proportion
of substandard apartments near the university campus was � .34 and n � 900.
The statistical hypotheses were

H0: p � .30

H1: p .30

An analogous two-sided 100(1 � .05)% � 95% confidence interval for these data is

.31 , p , .37

.34 2 .031 , p , .34 1 .031

.34 2 1.96Å
s.34d s1 2 .34d

900
, p , .34 1 1.96Å

s.34d s1 2 .34d
900

p̂ 2 z.05>2Å
p̂s1 2 p̂d

n
, p , p̂ 1 z.05>2Å

p̂s1 2 p̂d
n

2

p̂

p̂

ŝp 5Å
p0s1 2 p0d

n
            ŝp 5Å

p̂s1 2 p̂d
n

sp 5Å
ps1 2 pd

n

p̂p̂

p̂ 2 zaÅ
p̂s1 2 p̂d

n
,  p     and     p , p̂ 1 zaÅ

p̂s1 2 p̂d
n
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This confidence interval corresponds to the darkened portion of the real number line
as follows:

.30 .32 .34
p

.36 .38

L2 � .37L1 � .31

The students can be 95% confident that p is greater than .31 and less than 37. The
margin of error in the students’ estimate of p is � .031. The mar-
gin of error indicates how precisely a researcher can estimate the population propor-
tion. Researchers often want the margin of error to be between .02 and .04.

Choosing a Sample Size

The Committee for Better Student Housing survey examined a random sample of 
n � 900 apartments. Could the students have used a smaller sample to estimate the
population proportion of substandard dwelling units? To make a rational choice of
sample size, you need to specify three things. First, you must decide on an acceptable
margin of error, denoted by m*, in estimating p. In other words, how close do you
want your sample proportion to be to the population proportion? As mentioned
earlier, investigators often use m* values between .02 and .04. Second, you need to
select a confidence level and associated z value from Appendix Table D.2. In prac-
tice, the 95% confidence level is commonly used. Finally, you need to make an
educated guess about the likely value of p. I will denote this educated guess by the
symbol p*.

The formula for estimating the sample size is

where z
a/2 is the two-sided standard normal distribution value corresponding

to a 100%(1 � a) confidence coefficient, m* is the acceptable margin of error
in estimating the population proportion, and p* is the guessed value of the
population proportion.

Suppose that in the housing survey, the students wanted to construct a 95% con-
fidence interval for p with a margin of error equal to m* � .03. The best guess that
the students can make about the value of the population proportion is that p* � .30.
This guess is based on the earlier survey of apartments where was found to be .30.
For these conditions, the required sample size is

Rounding up, the required n is 897. This n is very close the sample size actually
used, n � 900. In all likelihood, the students used the formula to estimate the 
required n.

n 5 a1.96
.30

b2

s.30d s1 2 .30d 5 896.4

p̂

n 5 aza>2
m*

b2

 p*sp* 2 1d

z.05>2"p̂s1 2 p̂d>n
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To achieve a smaller margin of error, the students would have to use a much
larger sample size. For example, if the students wanted the margin of error to only
be m* � .02, the required sample size would be n � 2,017, as the following compu-
tations show:

Sometimes, you may have no idea what value to guess for p. In such cases, you
can obtain a conservative estimate of the sample size by assuming that the product
p* � (1 � p*) is as large as it could possible be. It can be shown that this occurs when
p* � .50. Hence, a conservative n for a 95% confidence interval with a margin of er-
ror equal to m* � .03 is

In the worst-case scenario where the population proportion is equal to .50, you need
n � 1,068 units. If you have a basis for guessing that p* � .30 and your guess is
fairly close to the true population proportion, you need only n � 897 housing units.

CHECK YOUR UNDERSTANDING OF SECTION 12.2

1. If you want to use a z statistic to test a hypothesis about p, and p0 is equal 
to .20, how large should n be to use the normal approximation to the binomial
distribution?

2. The election is only days away and the latest Giddyup poll gives Mr. Jerry
Mander 55% of the vote. Between periods of euphoria Mr. Mander ponders the
question, should he or should he not cancel the expensive political advertise-
ment planned for election eve? Is it possible that he does not have a majority,
although the highly respected poll of n � 1000 randomly selected potential vot-
ers says he will win? Now, Mr. Mander is no statistician, but he knows that polls
are subject to sampling error. With anxiety mounting, he decides to forego a
vacation to Hawaii and use the campaign funds for their intended purpose.
a. List the steps you would follow to test the scientific hypothesis that the pop-

ulation proportion is not equal to .50. Let a �.01.
b. Test the null hypothesis that p � .50.
c. What does the use of the .01 instead of the .05 level of significance tell you

about the relative importance that Mr. Mander assigned to Type I and II
errors?

d. What is the p value of the z statistic?
e. Compute a 100(1 � .01)% � 99% confidence interval for p. Locate the con-

fidence interval on the real number line. Was Mr. Mander’s decision to
forego the Hawaii vacation a good one?

f. Specify all the null hypotheses that could be rejected.
g. What was the margin of error for the confidence interval?
h. How large should n be for the margin of error of a 99% confidence interval

to equal .02 if p* � .50?

n 5 a1.96
.03

b2

s.50d s1 2 .50d 5 1,067.1

n 5 a1.96
.02

b2

s.30d s1 2 .30d 5 2,016.8
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3. Suppose that you are interested in testing babies’ color preferences. On each of
n � 30 trials, you offer a baby a choice between two balls—one red and one
green. The baby chooses a red ball on 12 of the 20 trials.
a. List the steps you would follow in testing the scientific hypothesis that the

babies have a preference for one of the two colors. Let a �.05.
b. Can you conclude that the babies have a color preference?
c. What is the p value of the test statistic?
d. Compute a 100(1 � .05)% � 95% confidence interval for p. Locate the con-

fidence interval on the real number line.
e. Specify all the null hypotheses that could be rejected.
f. What was the margin of error for the confidence interval?
g. How large should n be for the margin of error of a 95% confidence interval

to equal .04 if p* � .50?
4. A national survey of 300 unmarried women between the ages of 15 and 19

found that 46% of the 19-year-olds had experienced sexual intercourse.
a. List the steps you would follow in testing the scientific hypothesis that the

population proportion has changed from an earlier survey in which � .37.
Let a � .01.

b. Test the null hypothesis that p � .37.
c. What is the p value of the z statistic?
d. Compute a 100(1 � .01)% � 99% confidence interval for p. Locate the con-

fidence interval on the real number line.
e. Specify all the null hypotheses that could be rejected.
f. What was the margin of error for the confidence interval?
g. How large should n be for the margin of error of a 99% confidence interval

to equal .03 if p* � .37?
h. In a paragraph, report the results of your analyses; follow good statistical

practice.
5. Two hundred men who had suffered one heart attack participated in a super-

vised physical fitness program. Only sixteen of the men had a second attack
during the 12 months after beginning the program. According to national statis-
tics, the chances of a man having a second heart attack are 1 in 10 each year af-
ter the first seizure.
a. List the steps you would follow in testing the scientific hypothesis that the

supervised physical fitness program affected the chances of a man having a
second heart attack. Let a � .05.

b. Test the null hypothesis. Was the physical fitness program effective? Why?
c. What is the p value of the z statistic?
d. Compute a 100(1 � .05)% � 95% confidence interval for p. Locate the con-

fidence interval on the real number line.
e. Specify all the null hypotheses that could be rejected.
f. What was the margin of error for the confidence interval?
g. How large should n be for the margin of error of a 95% confidence interval

to equal .03 if p* � .10?
6. Term to remember:

a. Standard error of a proportion

p̂
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12.3 ONE-SAMPLE t TEST AND z CONFIDENCE
INTERVAL FOR A CORRELATION

Test of the Hypothesis That a Population 
Correlation Is Equal to Zero

Many research questions are concerned with whether two variables, say X and Y, are
correlated. If the variables are not correlated, the population correlation coefficient
is equal to 0. If the variables are correlated, the coefficient is not equal to zero. The
hypotheses of interest to a researcher are

H0: r � 0

H1: r 0

where r denotes the population correlation between the variables. A sample correla-
tion coefficient, r, can differ from 0 due to chance sampling variability even though
r � 0. Fortunately, the sample correlation coefficient can be used to determine
whether the hypothesis H0: r � 0 is or is not tenable.

Because the hypothesis H0: r � 0 occurs so often in the behavioral sciences,
health sciences, and education, a table has been developed that simplifies testing the
hypothesis.3 Appendix Table D.6 gives the values of Pearson’s sample correlation
coefficient, r, that are statistically significant for various significance levels and de-
grees of freedom. You enter the table with degrees freedom equal to � � n � 2,
where n is the number of paired X and Y scores. The table tells you the minimum r
that leads to rejecting H0: r � 0 for either a one- or two-tailed test at various signifi-
cance levels. If the absolute value of your sample r, | r |, is greater than or equal to
the r value in the table, the hypothesis that r is equal to 0 is rejected.

The test of the null hypothesis, H0: r � 0, assumes (1) random sampling, (2) the
population distributions of X and Y are approximately normal, (3) the relationship
between X and Y is linear, and (4) the distribution of Y for any value of X is normal
with variance that does not depend on the X value selected (this is the homoscedas-
ticity assumption discussed in Section 5.6) and vice versa. Under these conditions
the sampling distribution of r is approximately normally distributed.

Computational Example for Test of r 5 0

Suppose that a researcher wanted to determine whether a linear correlation exists
between college grades and income 10 years after graduation. Assume that the
researcher has obtained college grade-point averages and income for a random sam-
ple of 62 male graduates of Florida State University. The product-moment correla-
tion between grade-point average and income for this sample is .28. Is it likely that a

2

3 The table is based on the t sampling distribution and t statistic,

with � � n � 2 degrees of freedom.

t 5
r"n 2 2

"1 2 r2
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sample correlation coefficient of this size would have been obtained if the correlation
between income and grades really is equal to 0? Assume that the researcher wants to
perform a two-tailed test at a � .05 level of significance. According to Appendix
Table D.6, the minimum value of | r | that is significant for � � 62 – 2 � 60 degrees
of freedom is .25. Because | r | � .28 exceeds .25, the researcher concluded that the
population correlation is not equal to zero.

In reporting the results of the null hypothesis significance test in the text portion
of a publication, the researcher might say, “the linear correlation between college
grade-point average and income for a random sample of 62 male graduates of Florida
State University was .28. The correlation was statistically significant, p � .05.”

Confidence Interval for a Correlation

When r � 0, the sampling distribution of r can be regarded as approximately nor-
mal. However, when r differs appreciably from zero, the sampling distribution of r
becomes very skewed. The skewness occurs because the possible values of r are
constrained—r cannot exceed �1 or �1.

As you saw earlier, Appendix Table D.6 can be used only when the sampling dis-
tribution of r is approximately normal. A procedure developed by Ronald A. Fisher
does not have this limitation. Fisher’s procedure can be used to construct confidence
intervals for any value of r that is not too close to �1. The procedure uses a special
function of r, rather than r. The function is called the Fisher r-to-Z' transformation.
The Z' statistic does not have the same constraints as r; Z' can exceed �1 or –1. The
transformation of r into Z' is easily accomplished by means of Appendix Table D.7.
This table gives for each value of r the corresponding Z' statistic. For example, if r
is equal to .50, the value of Z' from Table D.7 is 0.549. If r � .85, Z' � 1.256.
Fisher showed that the sampling distribution of Z' is approximately normal if r is
not too close to 1 or –1 and the sample n is greater than 10.

To construct a confidence interval for r, you begin by converting your sample r
into Z' using Table D.7. You then construct a confidence interval for the population
Z', denoted by Z'Pop. Once you have obtained the interval for Z'Pop, use Table D.7 to
convert the lower and upper limits of the interval into a confidence interval for r.

A two-sided 100(1 � a)% confidence interval for Z'Pop is given by

where Z' is the transformed sample r, z
a/2 is the value of z from Appendix

Table D.2 that cuts off the upper a/2 region of the sampling distribution of z,
and n is the size of the sample used to compute r.

Lower and upper one-sided 100(1 � a)% confidence intervals for Z'Pop are
given by, respectively,

where z
a

is the value of z that cuts off the upper a region of the sampling dis-
tribution of z.

Zr2 zaÅ
1

n 2 3
, ZrPop     and     ZrPop , Zr1 zaÅ

1
n 2 3

Zr2 za>2Å
1

n 2 3
, ZrPop , Zr1 za>2Å

1
n 2 3
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A confidence interval for r is obtained by converting the lower and upper limits for
Z'Pop into correlation coefficients using the Z'-to-r conversion in Appendix Table
D.7. The confidence intervals assume (1) random sampling, (2) r is not too close
to 1 or –1, (3) the population distributions of X and Y are approximately normal,
(4) the relationship between X and Y is linear, (5) the distribution of Y for any value
of X is normal with variance that does not depend on the X value that is selected
and vice versa, and (6) the sample n is greater than 10.

Computational Example for Confidence 
Interval for a Correlation

Earlier, I used Appendix Table D.6 to test the null hypothesis that the correlation be-
tween college grades and income 10 years after graduation for a random sample of
62 graduates of Florida State University is equal to 0. The sample estimate of the
population correlation coefficient was .28. I will use these data to construct a confi-
dence interval for the population correlation coefficient. According to Appendix
Table D. 7, the value of Z' that corresponds to r � .28 is Z' � 0.288. A two-sided
100(1 � .05)% � 95% confidence interval for Z'Pop is given by

Transforming the lower and upper limits of Z'Pop into correlation coefficients yields
the 95% confidence interval for r which is .03 � r � .61. Because the confidence
interval does not include 0, a test of the null hypothesis that r is equal to 0 or any
other null hypothesis in which r0 is less than or equal to .03 or greater than or equal
to 61 could be rejected. The confidence interval corresponds to the darkened portion
of the real number line as follows:

0.033 , ZrPop , 0.543

0.288 2 0.255 , ZrPop , 0.288 1 0.255

0.288 2 1.96Å
1

62 2 3
, ZrPop , 0.288 1 1.96Å

1
62 2 3

Zr2 z.05>2Å
1

n 2 3
, ZrPop , Zr1 z.05>2Å

1
n 2 3

L1 � .03 L2 � .61

�
0 .20 .40 .60

The researcher’s best guess concerning the value of r is that it is equal to .28—the
value of the sample correlation coefficient. The researcher can be 95% confident
that r is greater than .03 and less than 61.

Practical Significance of a Correlation

As discussed in Section 11.3, most measures of effect magnitude fall into one of two
categories: measures of effect size such as d and measures of strength of association.
Cohen (1988, pp. 77–83) has suggested using r, a measure of the linear strength of
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association between two variables, to assess effect magnitude. According to Cohen,
r � .10 is a small strength of association, r � .30 is a medium strength of association,
and r � .50 is a large strength of association. He has shown that the strengths of asso-
ciation represented by .10, .30, and .50 are roughly equivalent to the effect sizes repre-
sented by d values of .2, .5, and .8, respectively. Hence, the terms small, medium, and
large mean about the same thing whether we are talking about strength of association
or effect size.

Using Cohen’s guidelines, the correlation (r � .28) between college grades and
income 10 years after graduation represents a small strength of association.

CHECK YOUR UNDERSTANDING OF SECTION 12.3

7. Convert r into Z'.
a. r � .46 b. r � –.23
c. r � –.96 d. r � .15

8. Convert Z' into r.
a. Z' � 0.549 b. Z' � –0.192
c. Z' � 0.245 d. Z' � –1.256

9. Researchers hypothesized that the correlation between the scores of truck dri-
vers on the realistic and artistic scales of the Career Assessment Inventory
(CAI) is negligible. Assume that r � .09 has been computed for a random sam-
ple of 26 drivers.
a. Test the null hypothesis H0: r � 0 using the critical value from Appendix

Table D.6. Let a � .05.
b. Compute a 100(1 � .05)% � 95% confidence interval for r. Locate the con-

fidence interval on the real number line.
c. Specify all the null hypotheses that could be rejected.
d. Interpret the effect size.

10. The correlation between scores on the TAC (a college entrance test) and grade-
point averages for a random sample of n � 100 freshmen was .54. Last year, the
correlation for the freshman class was .61.
a. Compute a 100(1 � .05)% � 95% confidence interval for r. Locate the con-

fidence interval on the real number line.
b. Specify all the null hypotheses that could be rejected.
c. Is the correlation between scores on the TAC and grade-point averages for

this year’s freshmen different from that for last year’s freshmen?
d. Interpret the effect size.

11. Term to remember:
a. Fisher r-to-Z' transformation

12.4 LOOKING BACK: WHAT HAVE YOU LEARNED?

I have covered much ground in Chapters 10 through 12: the basic concepts of statis-
tical inference and a variety of null hypothesis significance tests and confidence
intervals for the one-sample case. Although the null hypothesis test statistics have
different formulas and are used to test hypotheses about different parameters, they
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all use the same five-step format in arriving at a decision about a hypothesis. Simi-
larly, the construction of confidence intervals follows the same pattern regardless of
the parameter of interest. You will see that the logic underlying null hypothesis sig-
nificance tests and confidence intervals described in Chapters 10 through 12 gener-
alizes to the two-sample case and to more complex decision-making situations.

The test statistics and confidence intervals for the one-sample case are summa-
rized in Tables 12.4-1 and 12.4-2, respectively. As the tables show, the assumptions
of the test statistics and analogous confidence intervals are the same.

TABLE 12.4-1 Summary of One-Sample Test Statistics

Chapter Statistical
Section Hypotheses Test Statistic Assumptions

10.3 H0: m 5 m0

H1: m m0 n 5 n 2 1

10.3 H0: m 5 m0

H1: m m0

12.2 H0: p 5 p0

12.3 H0: p 5 p0 Table D.6 based on
H0: p p0 the t statistic

.

n 5 n 2 2

t 5
r"n 2 2

"1 2 r2

2

z 5  
p̂ 2 p0

!p0s1 2 p0d>n

2

z 5
X 2 m0

s>!n

2

t 5
X 2 m0

ŝ>!n
1. Random sampling
2. Normality
3. Standard deviation is unknown

1. Random sampling
2. Normality or large sample
3. Standard deviation is known

1. Random sampling
2. Binomial distribution
3. np0 . 15, n(1 2 p0) . 15
4. Population is at least 10 times

larger than the sample

1. Random sampling
2. X and Y are normally

distributed
3. Relationship between X and Y

is linear
4. Homoscedasticity

TABLE 12.4-2 Summary of One-Sample Confidence Intervals

Chapter Confidence 
Section Parameter Interval Assumptions

11.2 m X 2
ta>2,  n ŝ

"n
, m , X 1

ta>2,  n  ŝ

"n

1. Random sampling
2. Normality
3. Standard deviation is unknown

(continued)
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REVIEW EXERCISES FOR CHAPTER 12

1. If you want to use a z statistic to test a hypothesis about p, and p0 is equal 
to .40, how large should n be to use the normal approximation to the binomial
distribution?

2. The probability of recovery for schizophrenic patients after receiving 6 months
of conventional therapy at Happyfarm Hospital was .60. A token economy pro-
gram was introduced for a random sample of 40 schizophrenic patients. At the
end of the six-month trial period, 28 patients had improved.
a. List the steps you would follow to test the scientific hypothesis that if the to-

ken economy program were used for all patients, the improvement probabil-
ity would be higher than that for the conventional therapy. Let a � .05.

b. Can you conclude that the token economy program would result in a higher
improvement probability than the conventional therapy?

c. What is the p value of the test statistic?
d. Compute a 100(1 � .05)% � 95% confidence interval for p. Locate the con-

fidence interval on the real number line.
e. Specify all the null hypotheses that could be rejected.
f. What was the margin of error for the confidence interval?
g. How large should n be for the margin of error of a 95% confidence interval

to equal .04 if p* � .65?
3. Sketch the sampling distribution for z in Review Exercise 2 and label the criti-

cal region.
4. In a random sample of 100 homes in Junction City, Oklahoma, researchers

found that 84 have digital cameras.

TABLE 12.4-2 (continued)

Chapter Confidence 
Section Parameter Interval Assumptions

12.2 p

12.3 r Zr2 za>2Å
1

n 2 3
, ZrPop , Zr1 za>2Å

1
n 2 3

p̂ 2 za>2Å
p̂s1 2 p̂d

n
, p , p̂ 1 za>2Å

p̂s1 2 p̂d
n

1. Random sampling
2. Binomial distribution
3. n . 15, n(1 2 ) . 15
4. Population is at least 10 times

larger than the sample

1. Random sampling
2. r is not too close to �1 or �1
3. X and Y are normally distributed
4. Relationship between X and Y

is linear
5. Homoscedasticity
6. Sample n � 10

p̂p̂



12.4 Looking Back: What Have You Learned? 321

a. List the steps you would follow to test the scientific hypothesis that the pro-
portion in Junction City differs from that in a nearby community where the
proportion of homes with digital cameras is known to be .71. Let a � .05.

b. Test the null hypothesis. Does the proportion in Junction City differ from the
other community?

c. What is the p value of the z statistic?
d. Compute a 100(1 � .05)% � 95% confidence interval for p. Locate the con-

fidence interval on the real number line.
e. Specify all the null hypotheses that could be rejected.
f. What was the margin of error for the confidence interval?
g. How large should n be for the margin of error of a 95% confidence interval

to equal .04 if p* � .71?
5. Convert r into Z'.

a. r � .39 b. r � �.19
c. r � �.84 d. r � .11

6. Convert Z' into r.
a. Z' � 0.576 b. Z' � �0.198
c. Z' � 0.250 d. Z' � �1.499

7. Researchers hypothesized that the correlation between the scores of accountants
on the learning strategy and discriminability factors of the California Verbal
Learning Test (CVLT) is negligible. Assume that r � .12 has been computed for
a random sample of 29 accountants.
a. Test the null hypothesis, H0: r � 0, using the critical value from Appendix

Table D.6. Let a � .05.
b. Compute a 100(1 � .05)% � 95% confidence interval for r. Locate the con-

fidence interval on the real number line.
c. Specify all the null hypotheses that could be rejected.
d. Interpret the effect size.

8. Psychological Associates, a consulting firm, has revised a test that is used to
select managers for a large chain of hamburger restaurants. The researcher be-
lieved that the revised test is better than the current test. The revised test was
given to a random sample of 170 managers. The correlation between their test
scores and a measure of their stores’ net incomes was .31. The correlation for
the old test was .19.
a. Compute a one-sided 100(1 � .05)% � 95% confidence interval for r.

Locate the confidence interval on the real number line.
b. Specify all the null hypotheses that could be rejected.
c. Should the revised test be used in selecting future managers for the chain?

Why?
d. Interpret the effect size.

9. The correlation between the recreational interests of a random sample of n � 67
pairs of husbands and wives who had contacted a large travel agency was .52.
a. Compute a 100(1 � .01)% � 99% confidence interval for r. Locate the con-

fidence interval on the real number line.
b. Specify all the null hypotheses that could be rejected.
c. Interpret the effect size.

10. The sampling distribution of r is not likely to be normal when r deviates appre-
ciably from 0. From what you know about r, why is this true?
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13.1 INTRODUCTION TO HYPOTHESIS TESTS 
FOR TWO SAMPLES

Looking Ahead: What Is This Chapter About?

Are men able to withstand weightlessness better than women? Do disadvantaged
children learn more quickly in a contingency management classroom than in a tra-
ditional classroom? Do people who jog have fewer heart attacks than those who
don’t? Is one antilitter slogan more effective than another? Each of these questions
involves a comparison of two population distributions. Population distributions
can differ in central tendency, dispersion, skewness, and kurtosis. Most questions
in the behavioral sciences, health sciences, and education are concerned with
central tendency and, more specifically, with whether the means of two popula-
tions differ.

You learned in Chapter 10 that scientific hypotheses often involve (1) predictions
about populations whose elements are so numerous that viewing them all is impossi-
ble (all men and women in a weightless environment, all disadvantaged school
children, all joggers and nonjoggers) or (2) predictions about phenomena that cannot
be directly observed (the effectiveness of two antilitter slogans). In such cases you
can use random samples from the populations to make inferences as to whether
the means, variances, and so on of the populations differ. The inferences are based
on null hypothesis testing and confidence-interval procedures that are straightfor-
ward extensions of those for the one-sample case described in Chapters 10 through 12.

After reading this chapter, you should know the following:

■ How to use a t statistic to test a statistical hypothesis about two population
means

■ How to use the t sampling distribution to construct a confidence interval for the
difference between two population means

■ The relative advantages of random sampling and random assignment
■ The power advantage of using dependent samples over independent samples
■ How Hedges’s g statistic can help you assess the practical significance of the

difference between two means

13.2 TWO-SAMPLE t TEST AND CONFIDENCE INTERVAL
FOR m1 2 m2 USING INDEPENDENT SAMPLES

A t test statistic is used to test a hypothesis about the means, m1 and m2, of two pop-
ulations. The statistic can be used to test any of the following null hypotheses:

H0: m1 � m2 � d0 H0: m1 � m2 � d0 H0: m1 � m2 � d0

H1: m1 � m2 d0 H1: m1 � m2 � d0 H1: m1 � m2 � d0,

where, d0 (Greek lowercase delta) is the hypothesized difference between the popu-
lation means. Usually, a researcher is interested in testing the hypothesis that the
population means are equal, in which case d0 is equal to 0.

2
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The t test statistic is given by

where d0 is the hypothesized difference between the population means and

If d0 � 0, the t formula simplifies to

The denominator, , of the t statistic is an estimator of the standard error
of the difference between two population means.

The number of degrees of freedom, n, for the t statistic is equal to n1� n2 � 2.
Sample 1 contributes n1 � 1 degrees of freedom, the number of degrees of freedom
associated with , and, likewise, sample 2 contributes n2 � 1 degrees of freedom,
the number of degrees of freedom associated with . The null hypothesis is rejected
if the observed t statistic exceeds or equals the critical value of t given in Appendix
Table D.3. Recall from Section 10.2 that one- and two-tailed critical values for t are
denoted by, respectively, t

a, n
and t

a/2, n
.

In using the t statistic, it is assumed that two random samples of size n1 and n2
have been obtained from the populations of interest or that participants have been
randomly assigned to two groups often called experimental and control groups.
These sampling procedures produce independent samples in which the selection of
elements in one sample is not affected by the selection of elements in the other. The
use of random sampling or random assignment helps to ensure that the samples are
statistically independent. Random assignment also helps to distribute the unique,
idiosyncratic characteristics of the participants equally to the two groups. Finally, it
is assumed that the two populations are normally distributed and that the variances
of the populations, and , are unknown but are assumed to be equal.

The pooled variance, , in the t formula requires a word of explanation.
Pooled sample variances are used whenever it is reasonable to assume that the un-
known population variances, and , are equal. If the equality assumption is ten-
able, the sample variances, and , are both estimators of the same population
variance, 2. Whenever two independent estimators of s2 are available, a pooled es-
timator is likely to provide a better estimate of the unknown population variance
than either of the sample estimators taken alone. The pooled variance is simply a
weighted mean of and where the weights are the respective degrees of free-
dom. This can be seen from the formula

ŝ2
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sn1 2 1dŝ2
1 1 sn2 2 1dŝ2
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The assumption that the variances of populations 1 and 2 are equal, called the
homogeneity of variance assumption, is often reasonable. Researchers frequently
begin an experiment with two groups of participants who are equivalent and then ex-
pose one group to an experimental treatment that is expected to raise or lower their
scores by a constant amount. I showed in Section 4.2, Exercise 8, and Section 4.7,
Exercise 11, that adding or subtracting a constant—the treatment effect—does not
affect the standard deviation (or variance) of the scores.

But what if the variances of populations 1 and 2 are unequal? It has been shown
that the two-sample t test for independent samples is robust with respect to viola-
tion of the assumption of equal population variances, provided that n1 � n2. This
means that if the sample n’s are equal, the t test gives fairly accurate p values even
though the population variances are not equal. This is a good reason for always
using equal sample sizes. However, if the population variances are unequal and
the sample n’s are unequal, the sample variances should not be pooled in comput-
ing a t statistic. A modified t statistic for this case is described later in the section
called “Two-Sample t ' Test for m1 � m2 with Unequal Variances (Independent
Samples).”

The t statistic also is robust with respect to violation of the assumption that the
two populations are normally distributed. If the two sample sizes are equal, the t test
gives fairly accurate p values for a broad range of population distributions provided
that the populations have similar shapes, are unimodal, and there are no outliers.
This is true for sample sizes as small as n1 � n2 � 5. The tenability of the normality
assumption can be checked by visually inspecting the two samples. Box plots are
useful for detecting outliers. If the sample distributions appear to be fairly symmet-
rical and unimodal and there are no outliers, it is probably appropriate to use the t
statistic. When n1 and n2 are both greater than 30, the normality assumption is no
longer important because of the central limit theorem discussed in Section 9.4.

Computational Example for t Test for m1 2 m2
(Independent Samples)

Let’s suppose that a student in an experimental psychology course is investigating
the hypothesis that distributed practice is superior to massed practice in developing
skill on a mirror-tracing task. The task requires participants to trace a star pattern on
a sheet of paper with their nonpreferred hand; they can see themselves tracing the
pattern only by looking in a mirror. Forty students from an introductory psychology
class are randomly assigned to the two practice conditions with the restriction that
an equal number of students are assigned to each condition. Participants in the dis-
tributed condition have a three-minute rest period at the end of each practice trial.
Participants in the massed condition have only a five-second pause at the end of each
trial—just long enough to permit the researcher to place a new sheet of paper in the
tracing apparatus. Both groups receive 15 practice trials. Because the groups may
differ in amount of fatigue at the conclusion of practice, the dependent variable is
measured the following day. The participants are given two warmup trials; the de-
pendent variable is the time required to trace the star pattern on the next three trials.
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The decision rule and the steps to be followed in testing the null hypothesis are as
follows:

Step 1. State the statistical hypotheses: H0: m1 � m2 � 0
H1: m1 � m2 � 0,
where m1 and m2 denote the
population means, respectively,
for the distributed and massed
conditions.

Step 2. Specify the test statistic: because
the researcher wants to test 
m1 � m2 � 0, and are
unknown, the samples are
independent, random assignment
is used, and the researcher
assumes that the population
distributions of X1 and X2 are
approximately normal.

Step 3. Specify the sample sizes:1 n1 � 20 and n2 � 20;
and the sampling distribution: t distribution, because the popu-

lation variances are estimated
from sample data, the X1 and X2
populations are approximately
normal, and there is no reason to
believe that does not equal .

Step 4. Specify the significance level: a � .05.

Step 5. Obtain random samples of size 
n1 and n2, compute t, and make 
a decision.

Decision rule:

Reject the null hypothesis if t falls in the lower .05 portion of the
sampling distribution of t; otherwise, do not reject the null hypothesis.
If the null hypothesis is rejected, conclude that distributed practice is
superior to massed practice in developing skill on a mirror-tracing
task; if the null hypothesis is not rejected, do not draw this conclusion.

The data for the experiment are shown in the top portion of Table 13.2-1. Before
testing the null hypothesis, it is good statistical practice to examine the sample data
for evidence of nonnormality, heterogeneity of variance, and outliers. It is apparent
from part (ii) of Table 13.2-1 that the variances are very similar. Furthermore, the
stacked box plots in Figure 13.2-1 indicate that the sample distributions are slightly
positively skewed and that there are no outliers. The t test is robust to this small de-
parture from symmetry, especially because the sample sizes are equal.

s2
2s2

1

s2
2s2

1

t 5 sX1 2 X2d>ŝX12X2

1 The use of Appendix Table D.8 to estimate the required sample sizes is discussed later in this section.
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TABLE 13.2-1 Mirror-Tracing Data

(i) Data

Distributed Practice Massed Practice
Time, Xi1 Time, Xi2

Student (Seconds) Student (Seconds)

1 16 1 21 18 1
2 17 0 22 19 0
3 20 9 23 17 4
4 16 1 24 19 0
5 22 25 25 25 36
6 15 4 26 18 1
7 15 4 27 17 4
8 24 49 28 26 49
9 23 36 29 23 16

10 21 16 30 24 25
11 18 1 31 16 9
12 13 16 32 12 49
13 11 36 33 13 36
14 19 4 34 22 9
15 18 1 35 20 1
16 17 0 36 22 9
17 17 0 37 19 0
18 12 25 38 14 25
19 9 64 39 16 9
20 17 0 40 20 1

n1 � 20 n2 � 20

(ii) Computation of variances

� 15.3684 � 14.9474

� 15.1579

 ŝ2
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sn1 2 1dŝ2
1 1 sn2 2 1dŝ2
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sn1 2 1d 1  sn2 2 1d
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s20 2 1d 1 s20 2 1d
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 ŝ2

1 5
g sXi1 2 X1d2

n1 2 1

X2 5
gXi2

n2
5

380
20

5 19X1 5
gXi1

n1
5

340
20

5 17

g sXi2 2 X2d2 5 284gXi2 5 380g sXi1 2 X1d2 5 292gXi1 5 340

sXi2 2 X2d2sXi1 2 X1d2

(continued)
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The next step in analyzing the data is to compute a t statistic as shown in part (iii) of
Table 13.2-1. The t statistic is t(38) � �1.624. According to Appendix Table D.3, the
critical value that cuts off the lower .05 region of the t sampling distribution for 38 de-
grees of freedom is �t.05, 38 � �1.686. Because the computed t(38) � �1.624 is not
less than or equal to t.05, 38 � �1.686, the student in the experimental psychology course
did not reject the null hypothesis. The test does not warrant the inference that distrib-
uted practice leads to better performance on the tracing task than massed practice.

The student would have reached the same conclusion about the two practice con-
ditions if she had compared the p value of the t statistic with her preselected level of
significance (a � .05). The p value of t(38) � �1.624 can be determined using
Microsoft’s Excel TDIST function. After accessing the Excel TDIST function

TDIST(x,deg_freedom,tails)

you replace x with the absolute value of t � �1.624, deg_freedom with 38 and re-
place tails with 1 as follows

TDIST(1.624,38,1)

The p value, rounded to two places, is .06. Because p � .06 is larger than a � .05,
the null hypothesis cannot be rejected.

(iii) Computation of t

�t.05,38 � �1.686

 n 5 sn1 2 1d 1  sn2 2 1d 5 19 1 19 5 38

 5
22

1.2312
5 21.624

 t 5
X1 2 X2

"ŝ2
Pooleds1>n1 1 1>n2d

5
17 2 19

"15.1579s1>20 1 1>20d

8 10 12 14 16

Mirror-tracing data

Distributed practice

Massed practice

18 20 22 24 26

Figure 13.2-1. Stacked box plots for the mirror-tracing data in Table 13.2-1. The
lower and upper ends of each box identify the first and third quartiles, respectively.
The vertical centerline is the median.
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Two-Sample t’ Test for m1 2 m2 with Unequal Variances
(Independent Samples)

Sometimes you obtain data for which the sample variances differ enough to make
you suspect that the population variances are not equal. If the sample sizes also are
not equal, a modified t statistic should be used to test hypotheses about the popula-
tion means. The modified statistic, denoted by t ' , is

with degrees of freedom given by

Notice that the denominator of the t ' statistic does not use pooled sample variances.
Pooling is only appropriate if it can be assumed that the two population variances
are equal.

If both sample sizes are 5 or more, the t critical values in Appendix Table D.3 pro-
vide excellent approximations to the critical values of t ' . The degrees of freedom for
t ' generally is not a whole number. Because Appendix Table D.3 does not provide
fractional degrees of freedom, n ' can be truncated to the next smaller whole number.

The formula for n ' looks a little intimidating. The degrees of freedom for t ' is
bounded by the smaller of n1 � 1 and n2 � 1 at one extreme and by n1�n2 � 2 at
the other—that is,

n ' � Minimum of n1 � 1 and n2 � 1

and

n ' � (n1� n2 � 2)

This suggests a testing strategy that can eliminate the need to compute n ' .  Appendix
Table D.3 reveals that the critical value for t ' decreases as n ' increases. The testing
strategy is as follows. You begin by determining the critical value for t ' as if n ' is at its
minimum—the smaller of n1 � 1 and n2 � 1. If t ' is significant for this degrees of free-
dom, it will certainly be significant for the larger correct value of n ' . If t ' is not signifi-
cant, you then determine the critical value as if n ' is at its maximum—n1 � n2 � 2. If t '
is not significant at this point, you know that it would not be significant for the smaller
correct value of n ' . Using this testing strategy, the only time that you need to compute
n ' is when t ' is not significant using the smaller of n1 � 1 and n2 � 1 degrees of free-
dom but is significant using the larger n1 � n2 � 2 degrees of freedom.

Many computer packages provide two t tests for m1 � m2. One test uses the t sta-
tistic illustrated in Table 13.2-1 in which the two sample variances are pooled. The
other test uses the t ' statistic in which it is assumed that the population variances are
not equal and should not be pooled. The latter procedure is often referred to as the
Welch or the Welch-Satterwaite procedure.
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Two-Sample z Test for m1 2 m2 (Independent Samples)

Some textbooks describe a z statistic,

for testing a hypothesis about two population means. The critical value for this z sta-
tistic for a level of significance is obtained from the standard normal distribution
table in Appendix Table D.2. To use the z statistic, you need to know the values of
the two population variances, and . In practice, the values of the two variances
are rarely ever know. Hence, the statistic cannot be computed. For this reason, I will
say no more about this particular z statistic.

Practical Significance

Section 11.3 describes a one-sample estimator of Cohen’s d effect size parameter.
Hedges’s has popularized a two-sample, d-like measure of effect size. The statistic
can help a researcher decide whether research results are practically significant. The
statistic is

where

Hedges’s g is interpreted like Cohen’s d: g � 0.2 is a small effect, g � 0.5 is a
medium effect, and g � 0.8 is a large effect.

I will illustrate the computation of g using the mirror-tracing data in Table 13.2-1.
The effect size for the mirror-tracing data is

where

According to Cohen’s guidelines, the difference in tracing time between the distrib-
uted and massed practice conditions is a medium-size effect.

If the assumption that the population variances are equal is not tenable, the vari-
ances should not be pooled in computing g. For this situation, I recommend that the
sample standard deviation of the control group, , or the standard deviation of the
group that is used as the baseline, , be used in place of . The resulting mea-
sure is interpreted like Hedges’s g.
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ŝPooled
5

|17 2 19|
3.8933

5 0.51
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If a research report does not provide a measure of effect size for the difference
between two means, often you can compute Hedges’s g from information in the re-
port. The information you need is the value of the t statistic and the sizes of the two
samples. The formulas for computing g from a two-sample t statistic where n1 � n2
or n1 n2 are, respectively,

and

where denotes the absolute value of the t statistic and n � n1 � n2. The effect size
for the mirror tracing experiment is g � 0.51. The same value can be obtained using
the absolute value of the t statistic, � 1.624, and sample sizes in Table 13.2-1 as fol-
lows:

Determining the Required Sample Sizes 
(Independent Samples)

In Section 10.4, you learned how to use Appendix Table D.8 to make a rational
choice of sample size for the one-sample t test. Appendix Table D.8 also can be used
to select sample sizes for the two-sample t test. To estimate the required sample
sizes, it is necessary to specify a, 1 � b, and Cohen’s d. Remember from Section
10.4 that d � 0.2 is a small effect, d � 0.5 is a medium effect, and d � 0.8 is a large
effect. Consider the mirror-tracing experiment described earlier. Suppose that the
researcher wanted to detect a medium-size effect (d � 0.5) and she wanted a to
equal .05 and 1 � b to equal .80. According to Appendix Table D.8, the researcher
should use 50 participants in each sample. The sample sizes actually used were only
20. Because the sample sizes were too small, it is likely that the t test lacked ade-
quate power to reject the null hypothesis.

t Confidence Interval for m1 2 m2 (Independent Samples)

The confidence-interval procedures for the one-sample case described in Chapter 11
generalize to the two-sample case.

A two-sided 100(1 � a)% confidence interval for m1 � m2 for independent
samples is

where t
a/2, n

is the value that cuts off the upper a/2 region of the t sampling
distribution for n � (n1 � 1) � (n2 � 1) and
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Lower and upper one-sided 100(1 � a)% confidence intervals for m1 � m2
for independent samples are given by, respectively,

and

where t
a, n

is the value that cuts off the upper a region of the t sampling distri-
bution for n � (n1 � 1) � (n2 � 1).

Earlier, I discussed the assumptions that underlie the use of the t statistic for 
m1 � m2. The same assumptions apply to confidence intervals.

Let’s use the data in Table 13.2-1 ( � 17, � 19, � 15.1579, and
n1 � n2 � 20) to illustrate a one-sided confidence interval. The researcher’s
hypotheses for the mirror-tracing experiment were directional:

H0: m1 � m2 � 0

H1: m1 � m2 � 0

An analogous one-sided 100(1 � .05)% � .95% confidence interval for the differ-
ence m1 � m2 is

This 95% confidence interval corresponds to the darkened portion of the real num-
ber line as follows:
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The researcher hypothesized that the population mean for the distributed practice
condition would be less than that for the massed condition—that is, m1 � m2.
However, it is apparent from the confidence interval that the population mean for
the distributed practice condition, m1, could be less than that for the massed practice
condition, m2, or it could be equal to it or even larger.



334 Statistical Inference: Two Samples

Confidence Interval for m1 2 m2 with Unequal Variances
(Independent Samples)

Earlier you learned that the two-sample t test for independent samples is robust with
respect to violation of the homogeneity of variance assumption provided that the
sample sizes are equal. If your sample sizes are unequal and an examination of your
sample variances leads you to suspect that the population variances are unequal, you 

should construct a confidence interval for m1 � m2 using from 
the statistic.

A two-sided 100(1 � a)% confidence interval for m1 � m2 for independent
samples is

where t
a/2, n' is the value that cuts off the upper a/2 region of the t sampling

distribution with degrees of freedom given by

The variances for sample 1 and sample 2 are computed using

where j � 1 or 2.
Lower and upper one-sided 100(1 � a)% confidence intervals for m1 � m2

for independent samples are given by, respectively,

and

where t
a, n

is the value that cuts off the upper a region of the t sampling
distribution for n' degrees of freedom.
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CHECK YOUR UNDERSTANDING OF SECTION 13.2

1. The null hypothesis is sometimes written H0: m1 � m2. What does this indicate
about d0?

2. Under what condition is it appropriate to pool and in estimating ?
3. A researcher is interested in testing the hypothesis that members of fraternities

have higher GPAs than nonmembers. Random samples of n1 � 50 members and
n2 � 52 nonmembers are obtained from the respective populations. It is as-
sumed that the populations are normally distributed. The sample standard devi-
ations are � 0.4 and � 0.5. List the five steps you would follow to test
the null hypothesis and state the decision rule. Let a � .05.

4. a. Suppose that in Exercise 3, � 2.91 and � 2.72. Compute a t test sta-
tistic and make a decision.

b. Determine the p value of the test statistic using Appendix Table D.3 and
Excel’s TDIST function.

c. Compute Hedges’s measure of effect size and interpret the measure.
d. Use Appendix Table D.8 to determine if the sample size is adequate to de-

tect a large-size effect if a power of .80 is desired. What is the minimum
number of participants required?

e. Compute a 100(1 � .05)% � 95% confidence interval for m1 � m2; assume
that t.05, 100 � 1.660. Locate the confidence interval on the real number line.

f. Specify all the null hypotheses that could be rejected.
5. It has been reported that employment interviewers spend more time talking to

applicants who are hired than to applicants who are rejected. To determine
whether this is true for college students seeking summer employment through a
university placement center, a researcher posing as an applicant accompanied a
random sample of referees to their job interviews and recorded the duration and
outcome of n � 49 interviews.

Duration of Interview (Minutes)
Hired Rejected

30 23 19 17
21 24 18 18
24 26 22 19
25 27 13 22
29 24 15 15
24 22 18 19
23 25 17 17
24 26 20 20
28 23 18 18
25 24 19 17
24 27 23
19 26 12
25 25 18

a. Construct box plots for the hired and rejected applicants and stack the plots
one above the other. Do the data contain outliers? Do the sample distribu-
tions appear to be relatively symmetrical?
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b. List the five steps you would follow to test the null hypothesis, and state the
decision rule. Let a � .05.

c. Compute a test statistic and make a decision about the researcher’s hypothe-
sis. Explain why the degrees of freedom is equal to � n2 � 1 � 22.

d. Compute Hedges’s measure of effect size using the hired students as the
baseline group and interpret the measure.

e. Use Appendix Table D.8 to determine if the sample size is adequate to de-
tect a large-size effect if a power of .80 is desired. What is the minimum
number of participants required?

f. Compute a 100(1 � .05)% � 95% confidence interval for m1 � m2. Assume
that for � 44, t.05, 44 � 1.680. Locate the confidence interval on the real
number line.

g. Specify all the null hypotheses that could be rejected.
6. Researchers investigated the effect of early language experience on the discrimina-

tion of speech sounds. Twenty-eight 6- to 8-month-old infants raised in English- or
Spanish-speaking homes were trained to turn their heads when they detected a
change in a sound stimulus. Following the discrimination training, Spanish conso-
nants involving a tapped and a trilled “r” were presented. The dependent measure
was the number of head turns to stimuli involving a change minus the number of
head turns on control trials divided by the number of experimental trials. The fol-
lowing data were obtained. (Suggested by Eilers, Rebecca E., Gavin, William J.,
and Oller, D. Kimbrough [1981]. Cross-linguistic perception in infancy: Early ef-
fects of linguistic experience. Journal of Child Language, 9, 289–302.)

English-Speaking Home Spanish-Speaking Home

.0421 .1081

.0941 .0986

.1064 .1566

.0242 .1961

.1331 .1125

.0773 .1942

.0243 .1079

.0815 .1021

.1186 .1583

.0356 .1673

.0728 .1675

.0999 .1856

.0614 .1688

.0479 .1512

a. Construct box plots for English-speaking and Spanish-speaking homes and
stack the plots one above the other. Assume that for the English-speaking
homes Mdn � 0.07285, Q1 � 0.0421, and Q3 � 0.0999. Assume that for the
Spanish-speaking homes Mdn � 0.15665, Q1 � 0.1081, and Q3 � 0.1688.
Do the data contain outliers? Do the sample distributions appear to be rela-
tively symmetrical?

b. List the five steps you would follow to test the null hypothesis that m1 �
m2 � 0, where m1 and m2 denote, respectively, the population means for
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infants raised in English- and Spanish-speaking homes. State the decision
rule. Let a � .001.

c. Use a t statistic to test the null hypothesis. What decision should the
researcher make?

d. Determine the p value of the test statistic using Appendix Table D.3 and Ex-
cel’s TDIST function.

e. Compute Hedges’s measure of effect size and interpret the measure.
f. Compute a 100(1 � .001)% � 99.9% confidence interval for m1 � m2; assume

that t.001/2, 26 � 3.707. Locate the confidence interval on the real number line.
g. Specify all the null hypotheses that could be rejected.

7. Use the table of random numbers in Appendix Table D.1 to draw random sam-
ples without replacement of 25 men and 25 women from the Student Database
in Appendix E.
a. List the participant number, gender, and stat grade for each person in your

sample. For each gender, construct a box plot and stack the plots one above
the other. Do the data contain outliers? Do the sample distributions appear to
be relatively symmetrical?

b. List the five steps you would follow to test the null hypothesis that the mean
stat grades for the two populations are equal and state the decision rule. Let
a � .05.

c. Test the null hypothesis that m1 � m2 � 0, where m1 and m2 denote, respec-
tively, the population mean of men’s and women’s stat grade.

d. Determine the p value of the test statistic using Appendix Table D.3 and
Microsoft’s Excel TDIST function.

e. Compute a measure of effect size and interpret the measure.
f. Use Appendix Table D.8 to determine if the sample size is adequate to detect

a large-size effect if a power of .80 is desired.
g. What is the minimum number of participants that is required?
h. Compute a 100(1 � .05)% � 95% confidence interval for m1 � m2. Locate

the confidence interval on the real number line.
i. Specify all the null hypotheses that could be rejected.
j. Write a paragraph summarizing your results and conclusions.

8. Terms to remember:
a. Standard error of the difference between two means ( )
b. Independent samples
c. Homogeneity of variance assumption

13.3 TWO RANDOMIZATION STRATEGIES:
RANDOM SAMPLING AND RANDOM ASSIGNMENT

Two randomization strategies can be used in investigating scientific hypothe-
ses. A researcher can obtain random samples from two existing populations of
interest or randomly assign elements of a sample to experimental and control
conditions. In rare cases, the two methods can be combined—that is, the
researcher can obtain a random sample and randomly assign the sample ele-
ments to the experimental and control conditions.

ŝX12X2
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The choice of a randomization strategy affects a researcher’s conclusions, as you
will now see.

The Strategy of Random Sampling

Consider the scientific hypothesis that men who jog have fewer heart attacks than
those who do not. The statistical hypotheses are

H0: m1 � m2 � 0

H1: m1 � m2 � 0

where m1 and m2 denote the mean number of heart attacks of the populations of
joggers and nonjoggers, respectively. The alternative hypothesis, which corre-
sponds to the researcher’s hunch, states that the mean number of heart attacks is
smaller for joggers than for nonjoggers. To test the null hypothesis, a researcher
could obtain a random sample of 70-year-old men who have jogged regularly
since they were 40 and a second random sample of men the same age who have
never jogged. Suppose that the mean number of heart attacks is 0.2 for the jog-
gers and 1.1 for the nonjoggers and that the difference between the means,
0.2 � 1.1 � �0.9, is significant at the .01 level. It can be concluded that the
population of joggers has fewer heart attacks than the nonjoggers, and hence the
scientific hypothesis is supported.

Can the researcher conclude that the difference between population means is due
to jogging per se? Unfortunately, the answer is no because in all likelihood the two
populations of men differ in other ways besides jogging. More than likely, men who
jog are concerned about their health and about staying in good physical shape.
Joggers are probably less obese, have better muscle tone, and have more healthful
diets than nonjoggers. If our researcher had obtained random samples from popula-
tions of obese and nonobese men, or from men with good and poor muscle tone, or
from men who are and are not diet conscious, the researcher probably also would
have found a significant difference in the mean number of heart attacks.

The Strategy of Random Assignment

Suppose that a population of 40-year-old prisoners at Oops Penitentiary is available
and that it is possible to exercise some control over their lives for a period of
30 years. The prisoners are randomly assigned to one of two groups, which we will
call the experimental and control groups. Those assigned to the experimental group
participate in a jogging program for 30 years; those in the control group do not
participate in the jogging program. Suppose that at the end of 30 years the mean
numbers of heart attacks for those in the experimental and control groups are,
respectively, 0.3 and 1.4 and that the difference, 0.3 � 1.4 � � 1.1, is significant at
the .01 level. As in the previous experiment, the scientific hypothesis is supported.

Can the researcher conclude that the difference between the experimental and
control groups is due to jogging per se? Again the answer is no. What have we
accomplished by using random assignment? Random assignment helps to make



13.3 Two Randomization Strategies: Random Sampling and Random Assignment 339

the experimental and control groups comparable on all extraneous variables at the
beginning of the experiment, because before the experiment begins the two groups
should differ no more than would be expected by chance. If at the conclusion of
the experiment a significant difference exists between the groups in the incidence
of heart attacks, the researcher can be confident that the difference is due to events
that occurred after the experiment began rather than to unique characteristics of
the participants that existed before the experiment. And if during the experiment
all conditions except the independent variable of jogging are held constant, differ-
ences between the groups in number of heart attacks must be due to jogging per
se. Unfortunately, in a 30-year experiment, it is unlikely that all conditions except
the independent variable have been held constant.

Advantages and Disadvantages 
of the Two Research Strategies

Many experiments in the behavioral sciences and education are designed to
establish casual relationships rather than concomitant relationships. To es-
tablish that an independent variable X causes an effect Y, it is necessary to
demonstrate that X is both necessary and sufficient for the occurrence of Y. To
establish a concomitant relationship, it is only necessary to demonstrate that
the occurrence or nonoccurrence of one event is accompanied by the occur-
rence or nonoccurrence of the other event.

Neither the random-sampling nor the random-assignment experiments just de-
scribed have established that jogging per se results in fewer heart attacks—a causal
relationship—but they have established that men who jog have, on the average,
fewer heart attacks than nonjoggers—a concomitant relationship.

The strategy of drawing random samples from two existing populations that are
known to differ in X cannot be used to establish causality, because the two popula-
tions also may differ on other variables. One or more of the other variables could be
responsible for the observed difference. A researcher obtains random samples from
two existing populations so that conclusions can be generalized to the populations.
In many research situations, most notably opinion polling, the discovery of a con-
comitant relationship is sufficient for the researcher’s purposes.

In the behavioral sciences, health sciences, and education, most researchers have
neither the time nor the resources to obtain random samples. In the rare cases in
which random samples are obtained, the populations are often so narrowly defined
that they are of little interest. For example, human participants frequently are ran-
domly sampled from a population of students enrolled in a college course, or from
volunteers, and so forth. And researchers who work with animal subjects rarely
attempt to obtain random samples.

The second strategy of randomly assigning participants to the experimental and
control conditions can be used to establish the existence of a causal relationship if all
conditions except the independent variable can be held constant. This is a big if, be-
cause the requirement is difficult to satisfy in nonlaboratory settings. An advantage



340 Statistical Inference: Two Samples

of conducting experiments in a laboratory is that it is possible to exercise a high
degree of control over extraneous variables. Hence, laboratory experiments are well
suited to establishing causal relationships.

If a researcher wants to generalize findings to some population and also to obtain
experimental and control groups that are comparable, the two research strategies can
be combined. The researcher can obtain a random sample of participants from the
population of interest and then randomly assign the participants to the two condi-
tions. This combined strategy obviously cannot be used when a researcher samples
from two populations that differ with respect to the independent variable, for exam-
ple, populations of joggers and nonjoggers. Such populations are referred to as
intact populations.

A final point: If a researcher wants to use statistical inference, the experimental
design must include some form of randomization. Which randomization procedure
is appropriate will depend on the objectives of the experiment.

CHECK YOUR UNDERSTANDING OF SECTION 13.3

9. Researchers investigated the effects of iPod use among office workers in a
large retail organization on measures of employee performance and job satis-
faction. Two hundred fifty-six employees were assigned to iPod and noniPod
groups on the basis of their stated preference for using an iPod at work. The
researchers found that the iPod group exhibited significant improvements in
performance, organizational satisfaction, and mood states relative to the
noniPod group. All of the t tests were significant beyond the .001 level. The
researchers recommended that all employees be required to use iPods.
(a) Comment on the appropriateness of the researchers’ conclusion. (b) List
some alternative explanations for the observed difference in performance and
job satisfaction.

10. In Exercise 9, what does the fact that the test statistic was significant at the .001
level tell you about the magnitude of the difference between the population
means?

11. What condition in the random assignment strategy must be satisfied to establish
a causal relationship between the independent and dependent variables?

12. For each of the following research topics, indicate the research strategy—
random sampling or random assignment—that seems most appropriate. Justify
your choice.
a. Relative resistance to extinction of a bar-pressing response acquired by rats

under 100% reinforcement versus 50% reinforcement
b. Difference between adult men and women in the incidence of alcohol use
c. Relationship between grades in college and number of hours studied per

week
d. Difference in reaction time to the onset of a light versus the onset of a tone

13. Terms to remember:
a. Concomitant relationship b. Causal relationship
c. Intact populations
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13.4 TWO-SAMPLE t TEST AND CONFIDENCE 
INTERVAL FOR m1 2 m2 USING DEPENDENT
SAMPLES

Introduction to Dependent Samples

The significance tests and confidence intervals described earlier require the use of
independent samples in which the selection of elements in one sample is not
affected by the selection of elements in the other. Samples are independent if, for
example, a researcher samples randomly from two populations or uses a random
procedure to assign elements to two samples. In this section, you will learn that the
use of dependent samples rather than independent samples almost always results in
more powerful tests of false null hypotheses and to shorter confidence intervals.

Dependent samples can be obtained by any of the following research
procedures:

1. Observing participants under both the experimental condition and the control
condition—that is, obtaining repeated measures on each of the participants.

2. Forming pairs of participants who are similar with respect to a variable that is
positively correlated with the dependent variable. This is called participant
matching. One member of the pair is randomly assigned to the experimental
condition and the other member to the control condition.

3. Obtaining sets of identical twins or litter mates and assigning one member of
the pair randomly to the experimental condition and the other member to the
control condition.

4. Obtaining pairs of participants who are matched by mutual selection, for ex-
ample, husband-and-wife pairs or business partners. One member of the pair
is randomly assigned to the experimental condition and the other member to
the control condition.

Let us consider these procedures in more detail. The first procedure, observing a
set of participants under both the experimental and control conditions, only can be
used with independent variables that have relatively short-duration effects. The na-
ture of the independent variable should be such that the effects of one condition dis-
sipate before the participant is observed under the other condition. Otherwise, the
second dependent measure will reflect the cumulative effects of two conditions
rather than the effects of only the second condition. There is no such restriction, of
course, when carryover effects such as learning or fatigue are the researcher’s prin-
cipal interest. The order of presentation of the two conditions should be randomized
independently for each participant if possible. It is customary to randomize with the
restriction that half the participants receive one condition first, whereas the other
half receive the other condition first.

The remaining three procedures for obtaining dependent samples involve
forming pairs of participants who are matched on some basis. In participant
matching, a matching variable is used to pair up otherwise unrelated participants;
the matching variable should be positively correlated with the dependent
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variable. For example, IQ and ability to learn verbal material are highly corre-
lated; hence, participants can be assigned to pairs so that members of each pair
have similar IQs and therefore similar verbal learning abilities. The higher the
positive correlation between the matching variable and the dependent variable,
the more effective the matching.

If identical twins or littermates are used, it can be assumed that participants
within a pair are matched with respect to genetic characteristics. The aptitudes and
abilities of identical twins, fraternal twins to some extent, and even siblings are more
similar than those of unrelated participants.

When participants are matched by mutual selection, the researcher always must
ascertain that the participants within pairs are in fact more similar with respect to
the dependent variable than are unmatched participants. Knowing a husband’s
attitudes about abortion and legalization of marijuana, for example, may provide
considerable information about his wife’s attitudes on the issues and vice versa.
However, knowing the husband’s mechanical aptitude is not likely to provide infor-
mation about his wife’s mechanical aptitude.

t Test for m1 2 m2 (Dependent Samples)

You probably wonder what difference it makes whether samples are dependent or
independent. If the same participants are observed twice or if participants in one
sample are paired with participants in another sample, the outcomes of X1 and X2 for
each pair are not statistically independent. This does not affect the expectation of
the difference between sample means; the expectation of is equal to
m1 � m2. However, dependence within pairs affects the standard error of the differ-
ence between means. Section 13.2 defined the standard error of the difference be-
tween means for independent samples as

If the samples are dependent, the standard error the difference between means is

where r12 is the Pearson product-moment correlation between the two samples. An
examination of the formula reveals that the larger the positive correlation, r12, the
smaller the dependent samples standard error, . Hence, if r12 is greater than
0, the t statistic for dependent samples will be larger than that for independent sam-
ples. You can see this by comparing the formulas for the independent and dependent
samples t statistics:
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Dependent samples:

The important point is that the t formula for dependent samples provides a more
powerful test of a false null hypothesis. This helps to explain why researchers like to
use dependent samples.

The dependent samples t formula looks pretty complicated. Fortunately, a
simpler alternative formula is available, one that does not require the computation
of a correlation coefficient, r12. The formula is simpler because it replaces each pair
of scores X1 and X2 with one difference score Di, where Di � Xi1 � Xi2, for each of
the i � 1, . . . , n pairs of scores. In effect this converts the two-sample t formula for
m1 and m2 into a one-sample t formula. Instead of testing one of the following null
hypotheses,

H0: m1 � m2 � d0 H0: m1 � m2 � d0 H0: m1 � m2 � d0

you test an equivalent null hypothesis,

H0: mD � d0 H0: mD � d0 H0: mD � d0

where mD is the population mean of difference scores.

The t test statistic for dependent samples using the difference-score approach is

where is the sample mean of the difference scores, Di is equal to Xi1 � Xi2
for the ith pair of scores, is the standard deviation of the difference scores,
and n is the number of pairs of scores. The denominator of the t statistic, ,
is an estimator of the standard error of the mean of the population of differ-
ence scores.

The number of degrees of freedom, n, for this test statistic is equal to n � 1, the
degrees of freedom associated with .

In using the t statistic, it is assumed that the population of differences, Di �
Xi1 � Xi2, is normally distributed. These differences will be normally distributed if X1
and X2 are normally distributed. It also is assumed that the standard error of the mean
of the difference scores, , is unknown and must be estimated from sample data. ŝXD
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If repeated measures are obtained, it is assumed that the participants are a random
sample from the population of interest. The order in which the conditions are pre-
sented should be randomized for each participant if the nature of the independent vari-
able permits it. If pairs of matched participants are used, the participants in each pair
should be randomly assigned to the experimental and control conditions. The follow-
ing example should help to clarify the meaning of the terms in the t statistic formula.

Computational Example for t Test 
for m1 2 m2 (Dependent Samples)

The scientific hypothesis that the population mean for the distributed practice condition
is smaller than that for the massed condition for the mirror-tracing task described in
Section 13.2 could have been investigated using matched participants. Suppose that
participants are tested on the mirror-tracing task using their preferred hand. The time
required to trace the star pattern on the last three of five trials is used to form pairs of
participants having comparable tracing times and hence similar motor skills. The
participants in each pair are randomly assigned to the distributed and massed practice
conditions. Then the experiment is carried out as described previously. Data for the ex-
periment are shown in Table 13.4-1. According to Appendix Table D.3, a t of �1.729
with n � 20 � 1 � 19 cuts off the lower .05 region of the sampling distribution—
that is, �t.05, 19 � �1.729. The computed t(19) � �4.021 in Table 13.5-1 is less than
� t.05, 19 � �1.729. Hence, the researcher rejected the null hypothesis and concluded
that distributed practice led to better performance on the task than massed practice. Of
course, this inference applies only to the population represented by the participants in
the experiment and to the particular practice conditions and task that were used.

In reporting the results of the research in the text portion of a publication, the
researcher might say, “The mean mirror-tracing time for the distributed practice
condition was shorter than that for the massed practice condition, t(19) � �4.021,
p �.0004.”

Has the researcher gained anything by using matched participants? To answer
this question, I can compare the results in Table 13.4-1 with those obtained using in-
dependent samples in Table 13.2-1. The data in the two tables are identical; only the
analysis procedures differ. The null hypothesis is rejected for the dependent-samples
analysis, t(19) � �4.021, p � .0004, but not for the independent-samples analysis,
t(38) � �1.624, p � .06. Clearly, the use of matched participants has resulted in a
more powerful test of the false null hypothesis.

An examination of the data for the two practice conditions suggests that they are
positively correlated; the Pearson product-moment correlation coefficient, r, is
actually .84. This example illustrates an important principle: whenever the correla-
tion between the samples is positive, the t statistic for dependent samples will be
larger than the t for independent samples. As noted earlier, the use of dependent
samples results in a more powerful test of a false null hypothesis. This statement
must be qualified. The number of degrees of freedom for the independent t statistic,
(n1 � 1) � (n2 � 1) � 38, is larger than that for the dependent t statistic, n � 1 �
19. The values of t that cut off the critical region for the independent and depen-
dent samples are, respectively, �t.05, 38 � �1.686 and �t.05, 19 � �1.729. Now for
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TABLE 13.4-1 Mirror-Tracing Data (Dependent Samples)

(i) Data

Distributed Practice Massed Practice
Time, Xi1 Time, Xi2 Difference Score

Student Pair (Seconds) (Seconds) Di � Xi1 � Xi2

1 16 18 �2 0
2 17 19 �2 0
3 20 17 3 25
4 16 19 �3 1
5 22 25 �3 1
6 15 18 �3 1
7 15 17 �2 0
8 24 26 �2 0
9 23 23 0 4

10 21 24 �3 1
11 18 16 2 16
12 13 12 1 9
13 11 13 �2 0
14 19 22 �3 1
15 18 20 �2 0
16 17 22 �5 9
17 17 19 �2 0
18 12 14 �2 0
19 9 16 �7 25
20 17 20 �3 1

n � 20

Computational check:

(ii) Computation of and t

n � n � 1 � 20 � 1 � 19

�t.05, 19 � � 1.729
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the qualification: For a t test with dependent samples to be more powerful than a t
test with independent samples, the correlation between the dependent samples must
be large enough to more than compensate for the smaller degrees of freedom and
for the larger absolute value of t required for significance.

Practical Significance

In Section 13.2, I described Hedges’s g statistic that is useful in assessing the practi-
cal significance of research results. The same formula and data are used to compute
g for the dependent samples case:

where

If a research report does not provide an effect size measure for the dependent sam-
ples case, you may be able to compute Hedges’s g from information in the report. You
need the following information: value of the dependent samples t statistic, sample es-
timators of the two population variances, and the sample estimator of the variance of
the difference scores, . The latter variance for the data in Table 13.4-1 is given by

The dependent samples t statistic from Table 13.4-1 is t � �4.021; the sample esti-
mators of the two population variances from Table 13.2-1 are and

. Hedges’s effect size for the dependent samples case is

which is identical to that for the independent samples case in Section 13.2-1.

Determining the Required Sample Size 
(Dependent Samples)

I have repeatedly emphasized the importance of making a rational choice of sample
size. Researchers do not want to use samples that are too small and possibly fail to
reject a false null hypothesis because of low power. Alternatively, researchers do not
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2ŝ2

D

nsŝ2
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ŝ2
2 5 14.9474

ŝ2
1 5 15.1579

 5
94

20 2 1
5 4.9474

 ŝ2
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want to use samples that are too large and waste the time of participants and other
research resources. Appendix Table D.8 can be used to make a rational choice of
sample sizes for the two-sample t test with dependent samples. To estimate the num-
ber of pairs of participants, n, it is necessary to specify a, 1 � b, Cohen’s d, and r,
the correlation between the two populations. Because r is rarely known, its estima-
tion must be based on previous research or informed judgment. Consider the mirror-
tracing task with repeated measures on each participant described in this section.
Suppose that the researcher wanted to detect a medium-size effect (d � 0.5) and she
wanted a to equal .05 and 1 � b to equal .80. If she estimates that the population
correlation between the distributed and massed practice times is at least .70, the re-
quired n according to Appendix Table D.8 is 16.

If researchers are not confident of their estimates of r, they can use a conserva-
tive estimate. For example, a researcher might believe that the population correla-
tion is not less than .60. According to Appendix Table D.8, the required sample size
for this correlation is 21 participants. The actual sample correlation between the dis-
tributed and massed practice times in Table 13.5-1 is .84. This sample correlation
suggests the matching variable, mirror-tracing time for the last three of five trials,
was an excellent choice.

t Confidence Interval for m1 2 m2 (Dependent Samples)

A two-sided 100(1 � a)% confidence interval for m1 � m2 for dependent
samples is

where is the value that cuts off the upper a/2 region of
the sampling distribution of t for n � n � 1, and

Lower and upper one-sided 100(1 � a)% confidence intervals for m1 � m2
are given by, respectively,

where t
a, n

is the value that cuts off the upper a region of the sampling distrib-
ution of t for n � n � 1.

I will use the data in Table 13.4-1 ( � �2, � 0.4974, and n � 20) to
illustrate a one-sided confidence interval. The researcher’s hypotheses for the
mirror-tracing experiment were directional:
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ŝXD
5

ã
a

n

i51
sDi 2 XDd2

n 2 1

"n

XD 5 gn
i51Di>n, ta>2, n

XD 2 ta>2, n ŝXD
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An analogous one-sided 100(1 � .05)% � 95% confidence interval for the differ-
ence m1 � m2 is

This 95% confidence interval corresponds to the darkened portion of the real num-
ber line as follows:

m1 2 m2 , 21.14

 m1 2 m2 , 22 1 s1.729d s0.4974d

 m1 2 m2 , XD 1 t.05,19 ŝXD

L2 � �1.14

m1 � m2

�2 �1 0 1

L2 � 0.08

m1 � m2

�2 �1 0 1

The researcher can be 95% confident that the difference m1 � m2 is less than �1.14,
which is consistent with the scientific hypothesis. Furthermore, it is reasonable 
to conclude that the medium-size effect,

, is not attributable to chance (see “Practical Significance” in this sec-
tion for the computation). The confidence interval for dependent samples is shorter
than that for the case in which independent samples were used. For comparison pur-
poses, the confidence interval for the independent samples case is shown as follows:

3.8933 5 .51
g 5 |X1 2 X2|>ŝPooled 5 |17 2 19|>

Group Matching: A Research Strategy to Be Avoided

A procedure called group matching is sometimes seen in the literature. It
involves matching samples on one or more relevant characteristics so that the
means and the standard deviations of the samples are approximately equal. No
attempt is made to match individuals in one sample with those in another sample.

Group matching instead of individual matching is often used in ex post facto ex-
periments. In an ex post facto experiment, the independent variable has occurred
prior to the experiment. Thus, the independent variable is not under a researcher’s
control; rather, records or other information are used to construct two samples that
differ with respect to the independent variable. For example, a researcher might be
interested in determining whether the amount of community service (the dependent
variable) of women who participated in Girl Scouts is greater than that for women
who did not participate (participation-nonparticipation is the independent variable).
Scout records can be used to identify those women who were Girl Scouts. In all like-
lihood the samples of former scouts and nonscouts differ on a variety of variables
besides the independent variable. Group matching consists of adjusting the
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membership of each sample so that the samples’ means and standard deviations are
identical on a select set of extraneous variables. For example, high school records
could be used to adjust the composition of the samples so as to equate the sample
means and standard deviations on school achievement, number of extracurricular
activities, and socioeconomic background.

You might expect that the use of group matching would result in a more powerful
test than the use independent samples. This in not the case. Unfortunately, there are
several problems inherent in using group matching. Although the procedure results
in dependent samples, the t statistic for dependent samples cannot be used because
individual participants are not matched. The data have to be analyzed using the t
statistic for independent samples. This is not a good research strategy because
(1) group matching restricts the ordinary variation between sample means that is
expected on the basis of random sampling and (2) the denominator of the t statistic
for independent samples overestimates the standard error of the mean of difference
scores when the samples are dependent. Hence, the t statistic for independent sam-
ples gives a less powerful test than would have been obtained if group matching had
not been used. An important experimental design principle emerges from this dis-
cussion—the sampling, randomization, and control procedures used in an experi-
ment must be reflected in the statistical analysis and interpretation of data. If this is
not possible, presumed refinements such as group matching should not be used.

CHECK YOUR UNDERSTANDING OF SECTION 13.4

14. If repeated measures are obtained, what restriction customarily is placed on the
order of presentation of the conditions in the experiment?

15. (a) How is the size of the correlation between dependent samples related to the
size of the standard error of the mean of difference scores? (b) How is the size
of the correlation between dependent samples related to the probability of re-
jecting a false null hypothesis?

16. Before and after seeing a film about marijuana, 16 participants completed a
questionnaire designed to assess their attitudes toward legalization of the drug.
Researchers obtained the following data.

Favorableness of Attitude

Participant Before After Participant Before After

1 13 16 9 19 20
2 16 18 10 16 18
3 10 12 11 15 18
4 14 18 12 14 15
5 15 18 13 12 12
6 12 15 14 13 17
7 11 12 15 14 16
8 18 20 16 15 17

a. Construct box plots for the before and after attitudes and stack the plots one
above the other. Do the data contain outliers? Do the sample distributions
appear to be relatively symmetrical?
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b. List the five steps you would follow in testing the null hypothesis that m1 �
m2 � 0, where m1 and m2 denote, respectively, the population means for the
before and after attitudes. State the decision rule. Let a � .05.

c. Use a t statistic to test the null hypothesis. What decision should the re-
searcher make?

d. Determine the p value of the test statistic using Appendix Table D.3 and
Microsoft’s Excel TDIST function.

e. Compute Hedges’s measure of effect size and interpret the measure.
f. Use Appendix Table D.8 to determine if the sample size is adequate to de-

tect a large-size effect for a � .05, 1 � b � .95, and r � .70. What is the
minimum number of participants required?

g. Compute a 100(1 � .05)% � 95% confidence interval for m1 � m2. Locate
the confidence interval on the real number line.

h. Specify all the null hypotheses that could be rejected.
17. Expanding technology and the growth of knowledge in medicine require that

nurses continually upgrade their skills. One way to accomplish this upgrading is
through continuing-education workshops. The present study investigated the im-
pact of a 60-hour workshop on a measure of the participants’ cognitive knowl-
edge. Twenty-two staff nurses took a paper-and-pencil pretest to evaluate their
basic knowledge of cancer and cancer nursing prior to the 10-day workshop. The
following data were obtained. (Suggested by Donovan, Marilee, Wolpert, Patri-
cia, and Yasko, Joyce [1981]. Gaps and contracts. Nursing Outlook, 467–471.)

Knowledge Score

Participant Pretest Score Posttest Score

1 29 35
2 20 41
3 24 33
4 32 41
5 33 39
6 19 20
7 17 29
8 32 42
9 16 36

10 28 37
11 35 36
12 19 27
13 31 50
14 28 33
15 23 23
16 18 35
17 24 34
18 25 30
19 28 39
20 32 45
21 25 36
22 27 29
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a. Construct box plots for the pretest and posttest scores and stack the plots one
above the other. Do the data contain outliers? Do the sample distributions
appear to be relatively symmetrical?

b. List the five steps you would follow in testing the null hypothesis that m1 �
m2 � 0, where m1 and m2 denote, respectively, the population means for the
pretest and posttest scores. State the decision rule. Let a � .01.

c. Use a t statistic to test the null hypothesis. What decision should the re-
searcher make?

d. Determine the p value of the test statistic using Appendix Table D.3 and
Microsoft’s Excel TDIST function.

e. Compute Hedges’s measure of effect size and interpret the measure.
f. Use Appendix Table D.8 to determine if the sample size is adequate to detect

a large-size effect for a � .01, 1 � b � .80, and r � .50. What is the mini-
mum number of participants required?

g. Compute a 100(1 � .01)% � 99% confidence interval for m1 � m2. Locate
the confidence interval on the real number line.

h. Specify all the null hypotheses that could be rejected.
i. For purposes of comparison, compute a t statistic for independent samples.

Compare the result with the t statistic for dependent samples. Was the use of
repeated measures an effective experimental design strategy?

j. In this experiment, the order of presentation of the pretest and the posttest
obviously could not be randomized. Describe how a control group could be
used in the experiment. How could the use of a control group help to clarify
the interpretation of the results of the experiment?

18. Assume that a t statistic will be used to test the following null hypotheses. For
(a), (b), and (c), estimate the total number of participants required; for (d),
(e), and (f), estimate the number of pairs of dependent participants required.
a. H0: m1 � m2 � 0 b. H0: m1 � m2 � 0 c. H0: m1 � m2 � 0

a � .05 a � .01 a � .05
1 � b � .80 1 � b � .90 1 � b � .95

d � 0.5 d � 0.2 d � 0.8
d. H0: m1 � m2 � 0 e. H0: m1 � m2 � 0 f. H0: m1 � m2 � 0

a � .05 a � .01 a � .05
1 � b � .80 1 � b � .90 1 � b � .95

d � 0.5 d � 0.2 d � 0.8
r � .6 r � .7 r � .5

19. Terms to remember:
a. Dependent samples b. Repeated measures
c. Participant matching d. Group matching
e. Ex post facto experiment

13.5 LOOKING BACK: WHAT HAVE YOU LEARNED?

In this chapter, you have learned how to apply the hypothesis testing and confi-
dence interval procedures for the one-sample case to the two-sample case for
means. The tests are presented within the now familiar five-step hypothesis-testing
format.
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Two important topics related to the design of experiments also are discussed. The
first concerns the relative merits of two randomization strategies: random sampling
of participants from two populations versus random assignment of participants to
experimental and control conditions. A researcher’s research objectives determine
whether one or the other procedure is sufficient or if both procedures are required.
Remember that an experiment should contain some randomization procedure to jus-
tify using statistical inferential procedures.

The other topic related to the design of experiments concerns the use of indepen-
dent samples versus dependent samples. It is advantageous to use dependent sam-
ples whenever the nature of the independent variable permits it. Matching partici-
pants on some variable that correlates positively with the dependent variable or
observing the same participants under both the experimental and control conditions
results in a more powerful test of a false null hypothesis than using independent
samples. However, the use of group matching instead of individual matching is not
recommended because the presumed refinement cannot be taken into account in the
statistical analysis. This suggests an important general principle—the sampling, ran-
domization, and control procedures used in an experiment must be reflected in the
statistical analysis and interpretation.

The test statistics and confidence intervals that I have described in this chapter
are summarized in Tables 13.5-1 and 13.5-2, respectively. As shown in the tables,
the assumptions of the test statistics and analogous confidence intervals are the
same.

TABLE 13.5-1 Summary of Two-Sample Test Statistics

Chapter Statistical
Section Hypotheses Test Statistic Assumptions

13.2 H0: m1 � m2 � d0

H1: m1 � m2 d0 n � (n1 � 1) � (n2 � 1)
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(continued)
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REVIEW EXERCISES FOR CHAPTER 13

1. A researcher is interested in testing the hypothesis that college freshmen who
are on probation have lower academic aptitude scores than those not on proba-
tion. Random samples of n1 � 50 probationers and n2 � 50 nonprobationers are
obtained from the respective populations. The populations are assumed to be
normally distributed. Sample estimates of the standard deviations are � 15.1
and � 15.3. List the five steps you would follow to test the null hypothesis
and state the decision rule. Let a � .05.

2. (a) Suppose that in Exercise 1, � 112, � 116, and a has been set at .05.
Compute the test statistic and make a decision; assume that t.05, 98 � 1.661.
(b) Determine the p value of the test statistic using Appendix Table D.3 and
Microsoft’s Excel TDIST function.
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1. Random sampling or
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and correlation are unknown
4. Dependent samples

1. Random sampling or
random assignment
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TABLE 13.5-2 Summary of Two-Sample Confidence Intervals

Chapter Confidence
Section Parameters Interval Assumptions
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TABLE 13.5-1 (continued)
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3. Discuss the statement “The absolute magnitude of the t test statistic is indica-
tive of the importance or practical significance of the difference between two
sample means.”

4. A researcher in Conception, Iowa, wished to determine whether there is a rela-
tionship between children’s IQs and their mothers’ ages when they were born.
Using school records, a list was compiled of 10-year-olds whose mothers were
over 35 at parturition, and a second list was compiled of 10-year-olds whose moth-
ers were 20 or under at parturition. The researcher randomly sampled 50 children
from each list and administered the Stanford-Binet intelligence test to them. The
IQs were found to be considerably higher for the children of older mothers, and the
difference was significant beyond the .001 level. The researcher concluded that a
woman should postpone childbearing until later in life to ensure a high IQ for her
offspring. (a) Comment on the appropriateness of the researcher’s conclusion. (b)
List some alternative explanations for the observed difference in IQs.

5. a. In Exercise 4, which sampling strategy did the researcher use?
b. Would this strategy enable the researcher to establish a causal relationship

between the IQs of children and the ages of their mothers at parturition?
6. In Exercise 4, what does the fact that the test statistic was significant at the .001

level tell you about the magnitude of the difference between the population
means?

7. What are the advantages and disadvantages of random sampling and random as-
signment?

8. For each of the following research topics, indicate the research strategy that
seems most appropriate. Justify your choice.
a. Effects of two levels of feedback in acquiring a complex motor skill
b. Classical music preferences of teenage boys and girls
c. Relationship between the grades of college freshmen and the size of their

high school graduation class
d. Effects of 12 and 24 hours of food deprivation on the problem-solving skills

of chimpanzees
9. A college dean believed that car ownership among students leads to lower

grades. To test this hypothesis, she obtained a random sample of student car own-
ers and nonowners and looked up their GPAs. She obtained the following data.

Grade Point Averages

Students Owning Cars Students Not Owning Cars

2.6 2.5 2.4 2.7 2.9 3.0
2.4 2.6 2.5 2.9 2.5 2.9
2.9 2.8 2.8 2.6 3.1 2.7
2.6 2.7 2.6 2.8 2.8 3.2
2.7 3.0 2.5 3.0 2.9 2.9
2.2 2.3 2.6 2.8 3.0 3.0

a. Construct box plots for car owners and nonowners and stack the plots one
above the other. Do the data contain outliers? Do the sample distributions
appear to be relatively symmetrical?

b. List the five steps you would follow in testing the null hypothesis and state
the decision rule. Let a � .05.
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c. Compute a t test statistic and make a decision about the researcher’s
hypothesis.

d. Determine the p value of the test statistic using Appendix Table D.3 and
Microsoft’s Excel TDIST function.

e. Compute Hedges’s measure of effect size and interpret the measure.
f. Use Appendix Table D.8 to determine if the sample size is adequate to detect

a large-size effect if a power of .80 is desired. What is the minimum number
of participants required?

g. Construct a 100(1 � .05)% � 95% confidence interval for m1 � m2; assume
that t.05, 34 � 1.691. Locate the confidence interval on the real number line.

h. Specify all the null hypotheses that could be rejected.
10. In Exercise 9, the dean decided to prohibit freshmen from bringing cars to cam-

pus. (a) Do you think this action was justified by the data? (b) What other kinds
of data about car owners and nonowners would be useful in helping the dean ar-
rive at a rational car policy?

11. For children having problems in school, it was hypothesized that the mean
IQ of those diagnosed as being depressed would be different from the IQ of
those not diagnosed as being depressed. IQ data for 25 children who were
referred to an educational diagnostic center because of problems in school
are as follows. (Suggested by Brumback, R. A., Jackson, M. K., and Wein-
berg, W. A. [1980]. Relation of intelligence to childhood depression in chil-
dren referred to an educational diagnostic center. Perceptual and Motor
Skills, 50, 11–17.)

Full-Scale IQ

Depressed Nondepressed
Children Children

117 110 106
102 112 85
104 100 105

89 97 106
84 106 105

128 92
107 127
102 121

98 108
92 108

a. Construct box plots for the depressed and nondepressed children and stack
the plots one above the other. Do the data contain outliers? Do the sample
distributions appear to be relatively symmetrical?

b. List the five steps you would follow to test the null hypothesis and state the
decision rule. Let a � .05.

c. Use a statistic to test the null hypothesis that m1 � m2 � 0, where m1 and
m2 denote, respectively, the population means for depressed and nonde-
pressed children. What decision should the researcher make?

d. Compute Hedges’s measure of effect size using the nondepressed children
as the baseline group and interpret the measure.

tr
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12. Use the table of random numbers in Appendix D.1 to draw random samples
without replacement of 25 men and 25 women from the student database in
Appendix E.
a. List the participant number, gender, and math test score for each person in

your sample. For each gender, construct a box plot and stack the plots one
above the other. Do the data contain outliers? Do the sample distributions
appear to be relatively symmetrical?

b. List the five steps you would follow in testing the null hypothesis that m1 �
m2 � 0 and state the decision rule. Let a � .05.

c. Test the null hypothesis that m1 � m2 � 0, where m1 and m2 denote, respec-
tively, the population mean of men’s and women’s math test scores.

d. Determine the p value of the test statistic using Appendix Table D.3 and
Microsoft’s Excel TDIST function.

e. Compute a measure of effect size and interpret the measure.
f. Use Appendix Table D.8 to determine if the sample size is adequate to de-

tect a large-size effect if a power of .80 is desired. What is the minimum
number of participants required?

g. Compute a 100(1 � .05)% � 95% confidence interval for m1 � m2. Locate
the confidence interval on the real number line.

h. Specify all the null hypotheses that could be rejected.
i. Write a paragraph summarizing your results and conclusions.

13. (a) List three matching variables that you believe could be used to form pairs of
participants in a learning experiment using nonsense syllables. (b) Which
matching variable do you think would have the highest correlation with number
of trials required to learn nonsense syllables?

14. It is well known that increasing room illumination up to some level increases
reading speed. A random sample of 14 sixth-grade students read standardized
passages under two levels of ambient room illumination: 5 foot-candles and 15
foot-candles. The order in which the conditions were presented was randomized
independently for each participant, with the restriction that the conditions were
presented first or second equally often. The reading sessions were separated by
an interval of 2 hours.

Reading Speed (Words/Minute)

5 Foot- 15 Foot- 5 Foot- 15 Foot-
Participant Candles Candles Participant Candles Candles

1 88 92 8 90 92
2 92 91 9 84 88
3 86 88 10 82 88
4 84 89 11 86 84
5 90 95 12 84 87
6 86 86 13 86 89
7 88 95 14 86 87

a. Construct box plots for the 5- and 15-foot candle conditions and stack the
plots one above the other. Do the data contain outliers? Do the sample distri-
butions appear to be relatively symmetrical?



13.5 Looking Back: What Have You Learned? 357

b. List the five steps you would follow to test the null hypothesis that 
m1 � m2 � 0, where m1 and m2 denote, respectively, the population means
for the 5- and 15-foot-candle conditions. State the decision rule. Let a � .05.

c. Use a t statistic to test the null hypothesis. What decision should the re-
searcher make?

d. Determine the p value of the test statistic using Appendix Table D.3 and Mi-
crosoft’s Excel TDIST function.

e. Compute Hedges’s measure of effect size and interpret the measure.
f. Use Appendix Table D.8 to determine if the sample size is adequate to de-

tect a large-size effect for a � .05, 1 � b � .80, and r � .60. What is the
minimum number of participants required?

g. Compute a 100(1 � .05)% � 95% confidence interval for m1 � m2. Locate
the confidence interval on the real number line.

h. Specify all the null hypotheses that could be rejected.
15. Researchers investigated the effect of a curriculum designed to develop chil-

dren’s critical viewing attitudes toward television programs. Eighteen second-
grade children participated in the curriculum that dealt with such topics as the
portrayal of violence on TV, commercials, stereotypes about gender and race,
and the comprehension of magical effects on TV. The curriculum was presented
in six 30- to 45-minute lessons and used brief videotape excerpts, class play
activities, and homework assignments. A specially developed TV comprehen-
sion test was administered prior to the introduction of the curriculum and at its
conclusion. The following data on the “impossible” characters subtest were
obtained. (Suggested by Rapaczynski, Wanda, and Singer, Dorothy G. [1982].
Teaching television: A curriculum for young children. Journal of Communica-
tion, 32 (2), 46–55.)

Score on “Impossible” Characters Subtest

Participant Pretest Score Posttest Score

1 1 1
2 3 3
3 0 3
4 2 4
5 1 2
6 2 4
7 3 3
8 3 2
9 2 4

10 2 3
11 1 4
12 3 3
13 1 2
14 2 2
15 3 4
16 3 4
17 1 2
18 2 4
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a. Construct box plots for the pretest and posttest scores and stack the plots one
above the other. Do the data contain outliers? Do the sample distributions
appear to be relatively symmetrical?

b. List the five steps you would follow in testing the null hypothesis that m1 �
m2 � 0, where m1 and m2 denote, respectively, the population means for the
pretest and posttest scores. State the decision rule. Let a � .01.

c. Use a t statistic to test the null hypothesis. What decision should the re-
searcher make?

d. Determine the p value of the test statistic using Appendix Table D.3 and
Microsoft’s Excel TDIST function.

e. Compute Hedges’s measure of effect size and interpret the measure.
f. Use Appendix Table D.8 to determine if the sample is adequate to detect a

large effect for a � .01, 1 � b � .80, and r � .40. What is the minimum
number of participants required?

g. Compute a 100(1 � .01)% � 99% confidence interval for m1 � m2. Locate
the confidence interval on the real number line.

h. Specify all the null hypotheses that could be rejected.
i. For purposes of comparison, compute a t statistic for independent samples.

Compare the result with the t statistic for dependent samples. Was the use of
repeated measures an effective experimental design strategy?

16. Assume that a t statistic will be used to test the following null hypotheses. For
(a), (b), and (c), estimate the total number of participants required; for (d), (e),
and (f), estimate the number of pairs of dependent participants required.
a. H0: m1 � m2 � 0 b. H0: m1 � m2 � 0 c. H0: m1 � m2 � 0

a � .05 a � .01 a � .05
1 � b � .90 1 � b � .80 1 � b � .80

d � 0.5 d � 0.2 d � 0.8
d. H0: m1 � m2 � 0 e. H0: m1 � m2 � 0 f. H0: m1 � m2 � 0

a � .05 a � .01 a � .05
1 � b � .90 1 � b � .80 1 � b � .80

d � 0.5 d � 0.2 d � 0.8
r � .6 r � .7 r � .5

17. If the correlation between matched samples equals 0, the t test for dependent
samples will be less powerful than the t test for independent samples. Explain
why this assertion is true.

18. Use the table of random numbers in Appendix D.1 to draw random samples
without replacement of 25 men and 25 women students from the student data-
base in Appendix E. Use the variable of GPA to form 25 man-woman pairs of
matched participants. The GPAs of men and women in a matched pair do not
have to be equal, but the GPAs should be similar.
a. List the participant number, gender, and math test score for each matched

pair in your sample. For each gender, construct a box plot and stack the plots
one above the other. Do the data contain outliers? Do the sample distribu-
tions appear to be relatively symmetrical?

b. List the five steps you would follow in testing the null hypothesis that 
m1 � m2 � 0, where m1 and m2 denote, respectively, the population mean of
men’s and women’s math test scores. State the decision rule. Let a � .05.

c. Test the null hypothesis. What decision should the researcher make?
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d. Determine the p value of the test statistic using Appendix Table D.3 and
Microsoft’s Excel TDIST function.

e. Compute Hedges’s measure of effect size and interpret the measure.
f. Use Appendix Table D.8 to determine if the sample size is adequate to

detect a large-size effect if r � .70 and a power of .80 is desired. What is the
minimum number of participants required?

g. Compute a 100(1 � .05)% � 95% confidence interval for m1 � m2. Locate
the confidence interval on the real number line. Specify all the null hypothe-
ses that could be rejected.

h. Write a paragraph summarizing your results and conclusions.
i. If you did Exercise 12 in the Review Exercises for Chapter 13, compare the t

statistic for independent samples with the t statistic for dependent samples.
Was GPA an effective matching variable? Compute the correlation between
the math test score and the GPA. Does the correlation shed any light on why
the use of the dependent samples t statistic was or was not an effective
research strategy?

19. Use the table of random numbers in Appendix D.1 to draw random samples
without replacement of 30 men and 30 women students from the student data-
base in Appendix E. Use the variable of GPA to form 30 man-woman pairs of
matched participants. The GPAs of men and women in a matched pair do not
have to be equal, but the GPAs should be similar.
a. List the participant number, gender, and number of math courses for each

matched pair in your sample. For each gender, construct a box plot and stack
th plots one above the other. Do the data contain outliers? Do the sample dis-
tributions appear to be relatively symmetrical?

b. List the five steps you would follow in testing the null hypothesis that 
m1 � m2 � 0, where m1 and m2 denote, respectively, the population mean of
men’s and women’s No. of Math Courses variable. State the decision rule.
Let a � .05.

c. Test the null hypothesis that m1 � m2 � 0. What decision should the re-
searcher make?

d. Determine the p value of the test statistic using Appendix Table D.3 and
Microsoft’s Excel TDIST function.

e. Compute Hedges’s measure of effect size and interpret the measure.
f. Use Appendix Table D.8 to determine if the sample size is adequate to

detect a large-size effect if r � .40 and a power of .80 is desired. What is the
minimum number of participants required?

g. Compute a 100(1 � .05)% � 95% confidence interval for m1 � m2. Locate
the confidence interval on the real number line. Specify all the null hypothe-
ses that could be rejected.

h. Write a paragraph summarizing your results and conclusions.
i. Analyze the data using a t statistic for independent samples. Compare the

results with the t statistic for dependent samples. Was GPA an effective match-
ing variable? Compute the correlation between the No. of Math Courses vari-
able and the GPA. Does the correlation shed any light on why the use of the
dependent samples t statistic was or was not an effective research strategy?

20. Why should group matching be avoided?
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14.1 INTRODUCTION

Looking Ahead: What Is This Chapter About?

Two populations can differ in a variety of ways, such as central tendency, dispersion,
skewness, and kurtosis. Often a researcher is primarily interested in whether the
populations differ in central tendency. However, the researcher also may be inter-
ested in knowing whether the populations differ in dispersion. In this chapter you
will learn about an F statistic and F sampling distribution that are used to test
hypotheses about two variances. You also will learn how to use a z statistic to test
hypotheses about two population proportions.

After reading this chapter, you should know the following:

■ How to use an F statistic and independent samples to test a statistical hypothe-
sis or construct a confidence interval for two population variances

■ How to use a t statistic and dependent samples to test a statistical hypothesis or
construct a confidence interval for two population variances

■ How to use a z statistic and independent samples to test a statistical hypothesis
or construct a confidence interval for two population proportions

■ How to use a z statistic and dependent samples to test a statistical hypothesis
or construct a confidence interval for two population proportions

14.2 TWO-SAMPLE F TEST AND CONFIDENCE
INTERVAL FOR VARIANCES USING 
INDEPENDENT SAMPLES

F Test for Two Variances (Independent Samples)

Sometimes a researcher is interested in determining whether two populations differ
in dispersion. For example, a researcher might want to know if placing disadvan-
taged children in a contingency management classroom results in less variability in
the group’s English-achievement scores than does placing them in a traditional
classroom. Or the researcher might want to test one of the assumptions of the t test
for independent samples—that two unknown population variances are equal.1

An F statistic for testing the following null hypotheses:

H1: s1
2 . s2

2H1: s1
2 , s2

2 H1: s1
2
2s2

2 

H0: s1
2 # s2

2H0: s1
2 $ s2

2 H0: s1
2 5 s2

2 

1 Some books recommend always testing the assumption of equality of variances before performing a
t test for m1 � m2 � d0. Those who follow this advice should note that the t test is robust with respect to
violation of the assumption of normalcy. However, the F test for described in this section is
almost as sensitive to non-normality as it is to nonequality of variances. Hence, a researcher may be dis-
suaded from using a t test when it is actually appropriate.

s1
2 5 s2

2
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is

where and denote, respectively, the larger and smaller sample vari-
ance and each sample variance is computed using .
The degrees of freedom for the numerator and denominator are, respectively,

and 

The sampling distribution of the F statistic was derived by R. A. Fisher in 1924 and
given the name F in his honor by G. W. Snedecor. The F distribution, like the t distrib-
ution, is actually a family of distributions whose shape depends on its degrees of
freedom. Unlike the z and t distributions that are symmetrical, the F distribution is pos-
itively skewed. The shape of the F distribution approaches the normal distribution for
very large values of n1 and n2. Because F is a ratio of non-negative numbers, it can take
values only from 0 to . F values around 1 are expected if the null hypothesis that

is true. The assumptions associated with using the F statistic to test a null
hypothesis are (1) the samples are independent, (2) the populations are normally dis-
tributed, and (3) the participants are random samples from the populations of interest
or the participants have been randomly assigned to the conditions in the experiment.

The F test, unlike the t test, is not robust with respect to violation of the normal-
ity assumption. Hence, unless the normality assumption is fulfilled, the probability
of making a Type I error will not equal the preselected value of a. Unfortunately, the
lack of robustness of the F test does not improve in large samples. In summary, the
F test should not be used unless you have good reason for believing that the popula-
tion distributions of the two variables X1 and X2 are normal.

The critical value of F that cuts off the upper a region of the sampling distribu-
tion for n1 and n2 degrees of freedom is given in Appendix Table D.5 and is denoted
by . The first n in denotes the numerator degrees of freedom of the F
ratio; the second n denotes the denominator degrees of freedom. To use Table D.5,
you locate the column corresponding to the numerator degrees of freedom along
the top of the table and the row corresponding to the denominator degrees of free-
dom along the side. The column-row intersection gives the critical values of F for
a � .25, .10, .05, and .01. The critical value that cuts off the lower a region (lower
tail of the distribution) is denoted by . Critical values for the lower tail are
not given in the table.2 By placing the larger sample variance in the numerator and
the smaller sample variance in the denominator of the F statistic—that is,

—you avoid the need to know the lower tail critical values. This
follows because is always in the upper tail. Of course, in testing
directional hypotheses you must verify that the sizes of the sample variances are
consistent with your alternative hypothesis.

F 5 ŝlarger
2 >ŝsmaller

2
F 5 ŝlarger

2 >ŝsmaller
2

F12a; n1, n2

Fa; n1, n2
Fa; n1, n2
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2
`

n2 5 nsmaller ŝ22 1.n1 5 nlarger ŝ2 2 1

ŝ2 5 SsXi 2 Xd2> sn 2 1d
ŝsmaller

2ŝlarger
2

F 5
ŝlarger

2

ŝsmaller
2

2 The critical value of F in the lower tail of the F distribution can be found by computing the reciprocal
of the corresponding critical value in the upper tail with the degrees of freedom for numerator and de-
nominator reversed—that is, . For example, the lower tail critical value for a � .05,
�1 � 24, and �2 � 20 is � 1/2.03 � 0.49.F12.05; 24, 20 5 1>F.05; 20, 24

F12a; n1, n2
5 1>Fa; n2, n1
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The one-sided null hypotheses

are rejected if is greater than or equal to and the sizes of
the sample variances are consistent with the alternative hypothesis. The critical re-
gion for rejecting the null hypothesis is shown in Figure 14.2-1.

The two-sided null hypothesis

in which a is divided equally between the two tails of the F distribution is rejected
if F � is greater than or equal to . The F table in Appendix
D.5 does not contain upper-tail values for .05/2 � .025. You can obtain the two-
tailed critical value for, say, F.05/2; 24, 20 by using Microsoft’s Excel program that is
installed on most computers. After accessing the Excel FINV function,

FINV(probability,deg_freedom1,deg_freedom2)

you replace the terms in parentheses as follows: FINV(.025,24,20). The two-tailed
critical value is F � 2.408.

Computational Example for F Test for Two Variances
(Independent Samples)

Suppose that 46 disadvantaged children were randomly assigned to contingency
management and traditional classrooms: 25 children were placed in the contingency
management classroom and 21 in the traditional classroom. At the end of the school
year, an English-achievement test was administered to the two samples. The
researcher believed that the children in the contingency management classroom
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Figure 14.2-1. Sampling distribution of F. For , the critical
region is in the upper tail of the sampling distribution.
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would be more homogeneous in English achievement than the children in the
traditional classroom. The steps in testing the null hypothesis are as follows:

Step 1. State the statistical hypotheses:

,

where and denote 
the population variances,
respectively, for the contingency
management and traditional
classrooms.

Step 2. Specify the test statistic: because 
the researcher wants to test

, the samples are
random and independent, and
the researcher assumes that the
populations are approximately
normal.

Step 3. Specify the sample sizes: n1 � 25 and n2 � 21;
and the sampling distribution: F distribution.

Step 4. Specify the significance level: a � .05.

Step 5. Obtain random samples of size n1
and n2, compute F, and make a 
decision.

Decision rule:

Reject the null hypothesis if F falls in the upper .05 portion of the
sampling distribution of F; otherwise, do not reject the null hypothesis.
If the null hypothesis is rejected and the sizes of the sample variances
are consistent with the alternative hypothesis, conclude that the
dispersion of English-achievement test scores is smaller for the
population of children in the contingency management classroom than
for children in the traditional classroom; if the null hypothesis is not
rejected, do not draw this conclusion.

Assume that unbiased estimates of the population variances are  � 64 and 
� 196 where and are computed from

The F test statistic is
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The degrees of freedom are � n2 � 1 � 20 and � n1 � 1 � 24.
The null hypothesis is rejected because F � 3.062 exceeds the critical value
F.05; 20, 24 � 2.03, and the sizes of the sample variances are consistent with the alterna-
tive hypothesis. The researcher concluded that placing disadvantaged children in a con-
tingency management classroom resulted in smaller variance in English-achievement
scores than placing them in a traditional classroom.

In reporting the results of the research in the text portion of a publication, the re-
searcher might say, “The dispersion of English-achievement test scores was smaller
for the population of children in the contingency management classroom than for
children in the traditional classroom, F(20, 24) � 3.062, p � .005.”

The F table in Appendix D.5 is not very useful for determining p values. I used
Microsoft’s Excel FDIST function to obtain the p value for the English-achievement
experiment. After accessing the Excel FDIST function,

FDIST(x,deg_freedom1,deg_freedom2)

I replaced “x” with the value of the F statistic (3.062), “deg_freedom1” with 20 and
“deg_freedom2” with 24. To illustrate, the p value is given by

FDIST(3.062,20,24)

and is equal to .005.

F Confidence Interval for Two Variances 
(Independent Samples)

Let and be sample variances from independent, normal populations. Critical
values for the F sampling distribution can be used to construct a confidence interval
for the ratio .

A two-sided 100(1 � a)% confidence interval for for independent
samples is

where and are the values of F that cut off the upper a/2
region of the sampling distribution of F for n1 � n1 � 1 and n2 � n2 � 1. To
find the critical value of in Appendix Table D.5, the roles of n1 and
n2 are reversed: n2 is the numerator degrees of freedom and n1 is the denomi-
nator degrees of freedom.

Lower and upper one-sided 100(1 � a)% confidence intervals for 
are given by, respectively,

where and are the values that cut off the upper a region of the
sampling distribution of F.
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The assumptions associated with constructing confidence intervals using the F
distribution are the same as those described earlier for testing null hypotheses with
the F statistic.

Computational Example of Confidence Interval 
for Two Variances (Independent Samples)

I will illustrate the computation of a one-sided confidence interval using the
English-achievement test data of the 46 children who were randomly assigned to
contingency management and traditional classrooms. Recall that � 64 was the
sample variance of the 25 children in the contingency management classroom and

� 196 was the sample variance of the 21 children in the traditional classroom.
The statistical hypotheses were

An analogous one-sided 100(1 � .05)% � .95 confidence interval for the data where
n1 � n1 � 1 � 24 and n2 � n2 � 1 � 20 is

This confidence interval corresponds to the darkened portion of the real number line
as follows:
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Because the interval does not include 1, the researcher can be confident that is
less than . The best guess the researcher can make regarding the ratio is that
it is equal to � 64/196 � 0.33. The researcher can be 95% confident that the
ratio is less than L2 � 0.66.

CHECK YOUR UNDERSTANDING OF SECTION 14.2

1. Can be used to test hypotheses of the form where 
d0 0? Explain.

2. In testing the tenability of the assumption prior to using the t statistic
to test H0: m1 � m2 � d0, it is common practice to set a � .15 or .20. What
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justification for this practice can you offer? (Hint: Consider how the size of a
affects the power of the test.)

3. Exercise 5 in “Check Your Understanding of Section 13.2” described a study to
determine whether interviewers spent more time talking to applicants who were
hired than to applicants who were rejected. The data from the study are repro-
duced in the following table.

Duration of Interview (Minutes)

Hired Rejected

30 23 19 17
21 24 18 18
24 26 22 19
25 27 13 22
29 24 15 15
24 22 18 19
23 25 17 17
24 26 20 20
28 23 18 18
25 24 19 17
24 27 23
19 26 12
25 25 18

a. Construct box plots for the hired and rejected applicants and stack the plots
one above the other. Do the data contain outliers? Do the sample distribu-
tions appear to be relatively symmetrical?

b. Test the null hypothesis using the statistic . 

Let a � .05. Assume that F.05/2; 22, 25 � 2.269. The F table in Appendix
D.5 does not contain upper-tail values for a � .025. I obtained the F two-
tailed critical value, F.05/2; 22, 25 � 2.269, using Microsoft’s Excel FINV
function,

FINV(probability,deg_freedom1,deg_freedom2)

I replaced the terms in parentheses as follows: FINV(.025,22,25).
c. Determine the p value of the F statistic using Microsoft’s Excel FDIST

function.
d. Compute a 100(1 � .05)% � 95% confidence interval for . Assume

that F.05/2; 22, 25 � 2.269 and F.05/2; 25, 22 � 2.320. Locate the confidence inter-
val on the real number line.

e. Is the confidence interval consistent with the null hypothesis significance
test? Why?

4. Exercise 6 in “Check Your Understanding of Section 13.2” presented data on
the discrimination of speech sounds for infants raised in English- or Spanish-
speaking homes. The dependent measure was the number of head turns to stim-
uli involving a change minus the number of head turns on control trials divided

s2
2>s1

2
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by the number of experimental trials. The data from the study are reproduced in
the following table.

English-Speaking Home Spanish-Speaking Home

.0421 .1081

.0941 .0986

.1064 .1566

.0242 .1961

.1331 .1125

.0773 .1942

.0243 .1079

.0815 .1021

.1186 .1583

.0356 .1673

.0728 .1675

.0999 .1856

.0614 .1688

.0479 .1512

a. Construct box plots for English-speaking (sample 1) and Spanish-speaking
(sample 2) homes and stack the plots one above the other. Assume that for the
English-speaking homes Mdn � 0.07285, Q1 � 0.0421, and Q3 � 0.0999.
Assume that for the Spanish-speaking homes Mdn � 0.15665, Q1 � 0.1081,
and Q3 � 0.1688. Do the data contain outliers? Do the sample distributions
appear to be relatively symmetrical?

b. Test the null hypothesis using the statistic  .
Let a � .05. Assume that F.05; 13, 13 � 2.577.

c. Determine the p value of the F statistic using Microsoft’s Excel FDIST
function.

d. Compute a 100(1 � .05)% � 95% confidence interval for . Locate the
confidence interval on the real number line.

e. Is the interval consistent with the null hypothesis significance test? Why?
5. The nicotine content of random samples of two brands of cigarettes denoted

by 1 and 2 was measured. The following data were obtained:
milligrams, milligrams, , , n1 � 38, and n2 � 35.
a. Test the null hypothesis using the statistic .

Let a � .05. Assume that F.05/2; 37, 34 � 1.962.
b. Determine the p value of the F statistic using Microsoft’s Excel FDIST

function.
c. Compute a 100(1 � .05)% � 95% confidence interval for . Assume

that F.05/2; 37, 34 � 1.962 and F.05/2; 34, 37 � 1.943. Locate the confidence inter-
val on the real number line.

d. Is the confidence interval consistent with the null hypothesis significance
test? Why?

e. Specify all the null hypotheses that could be rejected.
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14.3 TWO-SAMPLE t TEST AND CONFIDENCE
INTERVAL FOR VARIANCES USING DEPENDENT
SAMPLES

t Test for Two Variances (Dependent Samples)

When the variances to be compared arise from dependent samples, for example, par-
ticipants who are matched or observed on occasions 1 and 2, the appropriate statis-
tic for testing a null hypothesis about and is t rather than F.

The t statistic is

with degrees of freedom equal to n � 2, where n is the number of pairs of
scores and r12 is the Pearson-product moment correlation coefficient for vari-
ables 1 and 2.

The assumptions associated with using the t statistic to test a null hypothesis are
(1) the samples are dependent, (2) the populations are normally distributed, and
(3) the dependent participants are a random sample from the population of interest or
the dependent participants have been randomly assigned to the conditions in the
experiment.

To illustrate the t test, suppose that 32 college freshmen who are enrolled in a
psychology course titled Effective Personal Adjustment took the College Life Ad-
justment and Stress Survey. The survey is an interactive, computerized inventory de-
signed to assess situation-specific stress, psychological distress, and satisfaction
with support from family and friends. The test was administered on the first and last
day of the class. Assume that the sample of students enrolled in the course is repre-
sentative of the population of freshmen at the college. The college administrators
want to know among other things if taking the course would affect the freshman
population dispersion of scores on the support from family and friends scale.
Suppose that the researchers obtained the following data for students enrolled in the
course: pretest dispersion , posttest dispersion , r12 � .60, and 
n � 32. A test of the null hypothesis

is given by
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2

"34ŝ1
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with n � 32 – 2 � 30. According to Appendix Table D.3, a t of 2.042 cuts off the
upper .025 region of the sampling distribution—that is, t.05/2, 30 � 2.042. The computed
t(30) � 2.626 is greater than t.05/2, 30 � 2.042. Hence, the null hypothesis is rejected.
The college administrators conclude that the dispersion of freshman scores on the sup-
port scale would be smaller if all freshmen at the college took the psychology course.

t Confidence Interval for Two Variances 
(Dependent Samples)

A two-sided 100(1 � a)% confidence interval for for dependent
samples is

where t
a/2, n

is the value that cuts off the upper a/2 region of the sampling dis-
tribution of t for n � n � 2.

Lower and upper one-sided 100(1 � a)% confidence intervals for 
are given by, respectively,

and

where t
a, n

is the value that cuts off the upper a region of the sampling distrib-
ution of t for n � n � 2.

The assumptions associated with constructing confidence intervals using the t distri-
bution are the same as those described earlier for testing null hypotheses with the 
t statistic.

I will use the data from the psychology class described earlier to illustrate the
confidence interval. The college administrator’s hypotheses for these data were
nondirectional:

An analogous two-sided 100(1 � .05)% � 95% confidence interval for the differ-
ence is
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2ŝ2
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This 95% confidence interval corresponds to the darkened portion of the real num-
ber line as follows:
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2 , 135 1 104.9851
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L1 � 30.01 L2 � 239.99

Because the interval does not include 0, the researcher can be confident that is
greater than . The best guess the college administrators can make regarding the dif-
ference is that it is equal to . The administrators can be 95%
confident that the difference is greater than L1 � 30.01 and less than L2 � 239.99.
The margin of error, m, associated with the difference is

CHECK YOUR UNDERSTANDING OF SECTION 14.3

6. Exercise 16 in “Check Your Understanding of Section 13.4” described a study to
determine the effect of seeing a film about marijuana on attitudes toward legal-
ization of the drug. The participants’ attitudes were measured before and after
seeing the film. The data from the study are reproduced in the following table.

Favorableness of Attitude

Participant Before After Participant Before After

1 13 16 9 19 20
2 16 18 10 16 18
3 10 12 11 15 18
4 14 18 12 14 15
5 15 18 13 12 12
6 12 15 14 13 17
7 11 12 15 14 16
8 18 20 16 15 17

a. Construct box plots for the before and after attitudes and stack the plots one
above the other. Do the data contain outliers? Do the sample distributions
appear to be relatively symmetrical?
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b. Test the null hypothesis that the population variances are equal versus the
alternative that they are not equal. Let a � .05.

c. Determine the p value of the t statistic using Appendix Table D.3 and
Microsoft’s Excel TDIST function.

d. Compute a 100(1 � .05)% � 95% confidence interval for . Locate
the confidence interval on the real number line.

e. Is the confidence interval consistent with the null hypothesis significance
test? Why?

7. Exercise 17 in “Check Your Understanding of Section 13.4” described a study
to investigate the impact of a 60-hour workshop on nurses’ knowledge of
cancer and cancer nursing. The data from the study are reproduced in the fol-
lowing table.

Knowledge Score

Participant Pretest Score Posttest Score

1 29 35
2 20 41
3 24 33
4 32 41
5 33 39
6 19 20
7 17 29
8 32 42
9 16 36

10 28 37
11 35 36
12 19 27
13 31 50
14 28 33
15 23 23
16 18 35
17 24 34
18 25 30
19 28 39
20 32 45
21 25 36
22 27 29

a. Construct box plots for the pretest and posttest scores and stack the plots one
above the other. Do the data contain outliers? Do the sample distributions
appear to be relatively symmetrical?

b. Test the null hypothesis that , where and denote the pretest and
posttest population variances, respectively. Let a � .05.

c. Determine the p value of the t statistic using Appendix Table D.3 and
Microsoft’s Excel TDIST function.

d. Compute a 100(1 � .05)% � 95% confidence interval for . Locate
the confidence interval on the real number line.

e. Is the confidence interval consistent with the null hypothesis significance
test? Why?
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14.4 TWO-SAMPLE Z TEST AND CONFIDENCE
INTERVAL FOR PROPORTIONS USING
INDEPENDENT SAMPLES

z Test for Two Proportions (Independent Samples)

Many variables in the behavioral sciences, health sciences, and education have two
nonoverlapping and exhaustive classes and are qualitative in character, for example,
men or women, cigarette smokers or nonsmokers, and pass or fail. In such cases p,
the proportion in one class, and 1 � p, the proportion in the other class, are useful
descriptive measures. In Section 12.2, I described a z statistic for testing hypotheses
about a single population proportion, p. The procedures described there can be mod-
ified to test any of the following null hypotheses about two independent population
proportions, p1 and p2.

H0: p1 � p2 H0: p1 � p2 H0: p1 � p2

H1: p1 p2 H1: p1 � p2 H1: p1 � p2

The z statistic for testing a null hypothesis is

and are the sample estimators of the population proportions p1 and p2,
respectively; n1 and n2 are the sizes of the samples used to estimate the
population proportions; and is a pooled estimator,

When both samples are large, the distribution of is approximately normal,
and the difference between the sample proportions is an unbiased estimator of the
difference between the population proportions. The denominator of the z statistic is
an estimator of

which is the standard error of the difference between two population proportions.
The sampling distribution of the z statistic approaches a normal distribution if

all the products n1 , n1(1 � ), n2 , and n2(1 � ) are greater than 5 and both
populations are at least 10 times larger than their respective samples. The critical
values of z for a and a/2 levels of significance are obtained from Appendix
Table D.2.

The use of a pooled estimator, , in the z statistic requires a word of expla-
nation. If the null hypothesis is true, the two population proportions are equal.
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Hence, the two sample proportions, and , are both estimators of the same
population proportion. Whenever two independent estimators of a population
proportion are available, a pooled estimator is likely to provide a better estimate than
either sample proportion taken alone. The use of a pooled estimator is not new.
Recall from Section 13.2 that a pooled estimator also was used to estimate a popula-
tion variance in the formula for the independent samples t statistic.

Computational Example of z Test for Two Proportions
(Independent Samples)

I will illustrate the z test with data from the landmark study of the effects of aspirin
on the incidence of heart attacks in men. In the five-year study conducted at the
Harvard Medical School, 22,071 men physicians took either an aspirin tablet or a
placebo tablet every other day. The participants were randomly assigned to the two
conditions: an aspirin group (n1 � 11,037) and a placebo group (n2 � 11,034). Nei-
ther the participants nor those who evaluated the results knew which tablet the par-
ticipants took. This type of experiment is called a double-blind study. One hun-
dred thirty-nine of the participants in the aspirin group suffered one or more heart
attacks during the study, � 139/11,037 � .01259. Two hundred thirty-nine in
the placebo group suffered one or more heart attacks, � 239/11,034 � .0217.
The steps in testing the null hypothesis that the population proportions are equal
are as follows:

Step 1. State the statistical hypotheses: H0: p1 � p2

H1: p1 p2

where p1 and p2 denote the
population proportions,
respectively, for the aspirin and
placebo groups.

Step 2. Specify the test statistic: z statistic because the
researchers wanted to test 
H0: p1 � p2; the samples were
random and independent; n1 ,
n1(1 � ), n2 , and n2(1 � )
were greater than 5; and both
populations were at least 10 times
larger than their respective
samples.

Step 3. Specify the sample sizes: n1 � 11,037 and n2 � 11,034; 
and the sampling distribution: normal distribution.

Step 4. Specify the significance level: a � .05.

Step 5. Obtain random samples of size 
n1 and n2, compute z, and make 
a decision.
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Decision rule:

Reject the null hypothesis if z falls in the lower or upper .05/2 � .025
portion of the standard normal distribution; otherwise, do not reject the
null hypothesis. If the null hypothesis is rejected, conclude that the
population proportion of participants in the aspirin group who suffered
one or more heart attacks is not equal to that for the placebo group; if
the null hypothesis is not rejected, do not draw this conclusion.

The z statistic for the Harvard Medical School data is

where

and z
a/2 � 1.96. Because | z | � 5.19 � z

a/2 � 1.96, the null hypothesis that p1 � p2
is rejected. Participants who took the aspirin tablets had 0.91% fewer heart attacks
than those who took the placebo. The researchers terminated the aspirin-placebo
portion of the experiment prematurely. The reason given for the unusual termination
was that “a statistically extreme beneficial effect” of the aspirin had been found. The
difference, 0.91%, may appear to be a negligible, but the use of aspirin projected
over a population of 100 million men in the United States could result in almost one
million fewer heart attacks over a five-year period. The size of treatment effects al-
ways has to be interpreted in terms of the potential benefits.

z Confidence Interval for Two Proportions 
(Independent Samples)

A two-sided 100(1 � a)% confidence interval for p1 � p2 for independent
samples is
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where z
a/2 is the value that cuts off the upper a/2 region of the sampling

distribution of z.
Lower and upper one-sided 100(1 � a)% confidence intervals for p1 � p2

are given by, respectively,

and

where z
a

is the value that cuts off the upper a region of the sampling distribu-
tion of z.

The confidence intervals are approximate because the standard error of the differ-
ence between two proportions depends on a knowledge of the parameters p1 and p2.
Because p1 and p2 are unknown, sample estimates of the parameters are used in the
confidence interval. The use of and in place of p1 and p2 is satisfactory if all
the products n1 , n1(1 � ), n2 , and n2(1 � ) are greater than 10 and both pop-
ulations are at least 10 times larger than their respective samples. The statistic

in the confidence interval is an estimator of the unknown standard error of the dif-
ference between two population proportions. Notice that the confidence interval
does not use a pooled estimator as was done for the null hypothesis z test where

The null hypothesis z test assumes that the two population proportions are equal.
This assumption is not made for the confidence interval. Hence, pooling is not
appropriate.

Computational Example of Confidence Interval for Two
Proportions (Independent Samples)

I will use the Harvard Medical School data described earlier to illustrate the compu-
tation of a confidence interval for p1 � p2. Recall that for the n1 � 11,037 partici-
pants in the aspirin group, the proportion who had one or more heart attacks was 

� .01259. For the n2 � 11,034 participants in the placebo group, the proportion
was � .01712. A two-sided 100(1 � .05)% confidence interval for p1 � p2 is
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This confidence interval corresponds to the darkened portion of the real number line
as follows:

2.012 , p1 2 p2 , 2.006

2.00907 2 .00342 , p1 2 p2 , 2.00907 1 .00342

, s.01259 2 .02166d 1 1.96Å
s.01259d s1 2 .01259d

11,037
1

s.02166d s1 2 .02166d
11,034

The researchers can be 95% confidant that the difference between the two popula-
tion proportions is between �.012 and �.006. The margin of error, m, associated
with the sample difference � � .0091 is .0034, as the following computations
show:

CHECK YOUR UNDERSTANDING OF SECTION 14.4

8. In a 2006 Shuffle Poll of n2 � 500 Americans over 18 years old, 29% said they
had smoked pot. In 1996, the figure for a sample of n1 � 600 was 22%.
a. Test the hypothesis H0: p1 � p2. Let a � .05.
b. Use Appendix Table D.2 to determine the p value of the z statistic.
c. Compute a 100(1 � .05)% � 95% confidence interval for p1 � p2. Locate

the confidence interval on the real number line.
d. Is the confidence interval consistent with the null hypothesis significance

test? Why?
e. Specify all the null hypotheses that could be rejected.

9. In the 2006 survey cited in Exercise 8, 76% of the interviewees opposed legal-
ization of marijuana. The figure in 1996 was 84%.
a. Test the hypothesis H0: p1 � p2. Let a � .05.
b. Use Appendix Table D.2 to determine the p value of the z statistic.
c. Compute a 100(1 � .05)% � 95% confidence interval for p1 � p2. Locate

the confidence interval on the real number line.
d. Is the confidence interval consistent with the null hypothesis significance

test? Why?
e. Specify all the null hypotheses that could be rejected.
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10. In a 2005 survey of 16-to 24-year-olds, 11% of the n1 � 300 men and 8% of the
n2 � 200 women reported that they had tried marijuana.
a. Test the null hypothesis that H0: p1 � p2. Let a � .05.
b. Use Appendix Table D.2 to determine the p value of the z statistic.
c. Compute a 100(1 � .05)% � 95% confidence interval for the difference

between the proportion of pot smokers among men and women in 2004.
Locate the confidence interval on the real number line.

d. Is the confidence interval consistent with the null hypothesis significance
test? Why?

11. Term to remember:
a. Double-blind study

14.5 TWO-SAMPLE z TEST AND CONFIDENCE
INTERVAL FOR PROPORTIONS USING 
DEPENDENT SAMPLES

z Test for Two Proportions (Dependent Samples)

If two samples are dependent, a statistic developed by McNemar (1947) can be used
to test any of the following null hypotheses:

H0: p1 � p2 H0: p1 � p2 H0: p1 � p2

H1: p1 p2 H1: p1 � p2 H1: p1 � p2

To test one of these hypotheses, the data are placed into a 2 � 2 table as follows:

2

Sample 2

Category 0 Category 1

Sample 1
Category 1 a b a � b

Category 0 c d c � d

a � c b � d n

The cell entry a denotes the number of elements classified in category 1 for sample 1
and in category 0 for sample 2; b denotes the number of elements that is classified in
category 1 for both samples, and so on. The number of elements in each sample is n.

An estimator of the population proportion of individuals in category 1 for sample
1 is � (a � b)/n. Similarly, the proportion in category 1 for sample 2 is � (b �
d)/n. The difference between the two populations can be expressed either as a pro-
portion, p1 � p2, or as a frequency, a � d. It is easy to show that n( ) � a � d:

by definitionp̂1 2 p̂2 5
a 1 b

n
2

b 1 d
n

p̂1 2 p̂2

p̂2p̂1
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The use of frequencies instead of proportions results in a simpler z test statistic.
If the null hypothesis is true, the z test statistic

is approximately distributed as the standard normal distribution, provided that 
(a � d) � 10 for a two-tailed test and � 30 for a one-tailed test.

Computational Example for z Test for Two Proportions
(Dependent Samples)

Suppose that a researcher polls a random sample of 200 students at Thanatos Uni-
versity about whether they approve or disapprove of capital punishment. Following
the survey, the students are shown a film depicting the effects of crime and acts of
violence on the victims and their families. The researcher again polls the 200 stu-
dents about capital punishment and hypothesizes that the proportion of students who
approve of capital punishment will be higher after seeing the film than before. The
statistical hypotheses are

H0: p1 � p2

H1: p1 � p2

where p1 and p2 denote, respectively, the before and after population proportions.
The data, number of students who approve or disapprove of capital punishment be-
fore and after seeing the film, are shown in Table 14.5-1. It is apparent that the dif-
ference a � d � �25 is consistent with the alternative hypothesis. The two sample
proportions are � .15 and � .28. According to Appendix Table D.2, z.05 �
1.645 cuts of the upper .05 region of the sampling distribution. Because | z | �
| �4.226 | is greater than z.05 � 1.645, the null hypothesis is rejected. The researcher
concludes that for the population of students at Thanatos University a higher propor-
tion would approve of capital punishment after seeing the film.

z Confidence Interval for Two Proportions 
(Dependent Samples)

A two-sided 100(1 � a) confidence interval for p1 � p2 for dependent
samples is

a 2 d
n

2 za>2Å
sa 1 dd sb 1 cd 1 4ad

n3 , p1 2 p2

p̂2p̂1

z 5
a 2 d

"a 1 d

 nsp̂1 2 p̂2d 5 a 2 d

 5
1
n

sa 1 b 2 b 2 dd
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where a, b, c, and d denote cell frequencies as defined in Table 14.5-1, n is the
number of elements in each sample, and z

a/2 is the value that cuts off the upper
a/2 region of the sampling distribution of z.

Lower and upper one-sided 100(1 � a)% confidence intervals for p1 � p2
are given by, respectively,

and

where z
a

is the value that cuts off the upper a region of the sampling distribu-
tion of z.

p1 2 p2 ,
a 2 d

n
1 zaÅ

sa 1 dd sb 1 cd 1 4ad
n3

a 2 d
n

2 zaÅ
sa 1 dd sb 1 cd 1 4ad

n3 , p1 2 p2

,
a 2 d

n
1 za>2Å

sa 1 dd sb 1 cd 1 4ad
n3

TABLE 14.5-1 Capital Punishment Data

(i) Data

(ii) Computation

 p̂2 5
b 1 d

n
5

55
200

5 .28

 p̂1 5
a 1 b

n
5

30
200

5 .15

 z.05 5 1.645

 z 5
a 2 d

"a 1 d
5

5 2 30

"5 1 30
5

225
5.916

5 24.226

Sample 2

Disapprove Approve

Sample 1
Approve a � 5 b � 25 a � b � 30

Disapprove c � 140 d � 30 c � d � 170

a � c � 145 b � d � 55 n � 200
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These confidence intervals like those for the independent samples case are approxi-
mate. The approximation is satisfactory if (a � d) � 30.

Computational Example of Confidence Interval 
for Two Proportions (Dependent Samples)

I will use the experiment on attitudes toward capital punishment of Thanatos Uni-
versity students to illustrate the dependent-samples confidence interval for p1 � p2.
The researcher’s hypotheses were

H0: p1 � p2

H1: p1 � p2

An analogous one-sided 100(1 � .05)% � 95% confidence interval is

The 95% confidence interval corresponds to the darkened portion of the real num-
ber line as follows:

 p1 2 p2 , 20.079

 p1 2 p2 , 20.125 1 0.046

 p1 2 p2 ,
5 2 30

200
1 1.645Å

s5 1 30d s24 1 140d 1 4s5d s30d
s100d3

 p1 2 p2 ,
a 2 d

n
1 zaÅ

sa 1 dd sb 1 cd 1 4ad
n3

2.15 2.10 2.05 0 .05

L2 5 2.079

p1 2 p2

The researcher can be 95% confident that p1 � p2 is less than �.079. Although the
difference between p1 and p2 could be quite small, it is reasonable to believe that the
population proportion of students who favor capital punishment would be larger af-
ter seeing the film. The best guess the researcher can make regarding the difference
between p1 � p2 is that it is equal to � � .15 �.28 � �.13. The margin of er-
ror, m, associated with the sample difference � �.13 is .046, as the follow-
ing computations show:

 5 1.645Å
s5 1 30d s24 1 140d 1 4s5d s30d

s100d3 5 .046

 m 5 zaÅ
sa 1 dd sb 1 cd 1 4ad

n3

p̂1 2 p̂2

p̂2p̂1
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CHECK YOUR UNDERSTANDING OF SECTION 14.5

12. Attitudes of a sample of college students toward taking a required course in
music appreciation were measured prior to taking the course and after complet-
ing the course. The following data were obtained:

Postcourse Attitude

Unfavorable Favorable

Favorable 13 24 37

Unfavorable 19 27 46

32 51 83

a. Compute p1 and p2, where the subscripts 1 and 2 denote, respectively, the
pre- and postcourse attitudes.

b. Test the hypothesis H0: p1 � p2. Let a � .05.
c. Use Appendix Table D.2 to determine the p value of the z statistic.
d. Compute a 100(1 � .01)% � 95% confidence interval for p1 � p2. Locate

the confidence interval on the real number line.
e. Is the confidence interval consistent with the null hypothesis significance

test? Why?
f. Specify all the null hypotheses that could be rejected.

14.6 LOOKING BACK: WHAT HAVE YOU LEARNED?

In this chapter you learned how to test null hypotheses and construct confidence in-
tervals for two variances and two proportions. You also were introduced to the im-
portant F statistic and its sampling distribution.

The z, t, and F statistics presented in Chapters 10 through 14 have a number of
common characteristics that you might overlook because the formulas for the statis-
tics are so different. Each statistic (1) assumes random sampling or random assign-
ment of participants, (2) is used to test null hypotheses or construct confidence
intervals for one or two parameters of the sampled populations, and (3) assumes,
with the exception of the z statistic that is used with proportions, that the sampled
population(s) is normally distributed. The z statistic assumes that the sampled popu-
lation(s) is binomially distributed.

The test statistics and confidence intervals are summarized in Tables 14.6-1 and
14.6-2, respectively. As the tables show, the assumptions of the test statistics and
analogous confidence intervals are similar.

Precourse
Attitude
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TABLE 14.6-2 Summary of Two-Sample Confidence Intervals

Chapter Confidence 
Section Parameters Interval Assumptions

14.2

n1 � n1 � 1, n2 � n2 � 1

ŝ1
2

ŝ2
2
 

1
Fa>2; n1, n2

,
s1

2

s2
2 ,

ŝ1
2

ŝ2
2
Fa>2; n2, n1

s1
2

s2
2

TABLE 14.6-1 Summary of Two-Sample Test Statistics

Chapter Statistical 
Section Hypotheses Test Statistic Assumptions

14.2 H0:

H1:

14.3 H0:

H1: n � n � 2

14.4 H0: p1 � p2

H1: p1 p2

14.5 H0: p1 � p2

H1: p1 p22

z 5
a 2 d

"a 1 d

z 5
p̂1 2 p̂2

Åp̂Pooleds1 2 p̂Pooledd a 1
n1

1
1
n2
b

2

s1
2
2s2

2

t 5
ŝ1

2 2 ŝ2
2

"34ŝ1
2ŝ2

2> sn 2 2d 4 s1 2 r12
2 d

s1
2 5 s2

2

n2 5 nsmaller ŝ2 2 1

n1 5 nlarger ŝ2 2 1s1
2
2s2

2

F 5
ŝlarger

2

ŝsmaller
2

s1
2 5 s2

2 1. Random sampling
or random assignment

2. Normality
3. Independent Samples

1. Random sampling or random
assignment

2. Normality
3. Dependent samples

1. Random sampling or
random assignment

2. Binomial distributions
3. Independent samples
4.

5. Both populations are at least 
10 times larger than their
respective samples

1. Random sampling or
random assignment

2. Binomial distributions
3. Dependent samples
4. a � d � 10 for two-tailed 

test and � 30 for one-tailed 
test 

n2 p̂2, s1 2 n2 p̂2d . 5

n1 p̂1, s1 2 n1 p̂1d,

1. Random sampling or
random assignment

2. Normality
3. Independent samples

(continued)
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REVIEW EXERCISES FOR CHAPTER 14

1. What are the main factors a researcher should keep in mind when using an F test
to determine the tenability of the assumption � prior to using a t statistic
to test H0: m1 � m2 � d0?

2. A 95% confidence interval for is 0.6 to 2.7. Do you think that the popu-
lation variances are unequal? Why?

3 An experiment was performed to compare disjunctive and simple reaction
times. In the latter condition, a participant responded to a single light by press-
ing a button below the light; the disjunctive condition required a participant to
press the right button if the right light was illuminated and the left button if the
left light was illuminated. The two conditions were randomly assigned to 24
participants with the restriction that an equal number of participants participated
under each condition. One participant in the simple reaction condition became
ill during the experiment and had to withdraw. This reduced the sample size
from 12 to 11.

s1
2>s2

2

s2
2s1

2

TABLE 14.6-2 (continued )

14.3

14.4 p1 � p2

� p1 � p2

14.5 p1 � p2

,  
a 2 d

n
1 za>2Å

sa 1 dd sb 1 cd 1 4ad
n3

 
a 2 d

n
2 za>2Å

sa 1 dd sb 1 cd 1 4ad
n3 , p1 2 p2

, sp̂1 2 p̂2d 1 za>2Å
p̂1s1 2 p̂1d

n1
1

p̂2s1 2 p̂2d
n2

sp̂1 2 p̂2d 2 za>2Å
p̂1s1 2 p̂1d

n1
1

p̂2s1 2 p̂2d
n2

, aŝ1
2 2 ŝ2

2b 1 ta>2, nÅa4ŝ1
2ŝ2

2

n 2 2
b a1 2 r12

2 b
, s1

2 2 s2
2

sŝ1
2 2 ŝ2

2d 2 ta>2, nÅa4ŝ1
2ŝ2

2

n 2 2
b s1 2 r12

2 ds1
2 2 s2

2 1. Random sampling or
random assignment

2. Normality
3. Dependent samples

1. Random sampling or
random assignment

2. Binomial distributions
3. Independent samples
4. ,

5. Both populations are at least
10 times larger than their
respective samples

1. Random sampling or
random assignment

2. Binomial distributions
3. Dependent samples
4. a � d � 10 for two-

tailed test and � 30 
for one-tailed test

n2p̂2, s1 2 n2p̂2d . 10
n1p̂1, s1 2 n1p̂1d
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Reaction Time (Hundredths of a Second)

Disjunctive Simple

27 34 35 24 24 24
31 32 31 27 26 22
28 30 32 23 24 25
37 30 31 25 23

a. Construct box plots for the disjunctive and simple reaction time (RT) data
and stack the plots one above the other. Do the data contain outliers? Do the
sample distributions appear to be relatively symmetrical? Is it reasonable to
believe that the populations are normally distributed?

b. Test the hypothesis H0: � using the statistic F � . Let 
a � .05. Assume that F.05/2; 11, 10 � 3.665. The F table in Appendix D.5 does
not contain upper-tail values for a � .025. I obtained the F two-tailed criti-
cal value, F.05/2;11, 10 � 3.665, using Microsoft’s Excel FINV function,

FINV(probability, deg_freedom1, deg_freedom2)

I replaced the terms in parentheses as follows: FINV(.025,11,10).
c. Determine the p value of the F statistic using Microsoft’s Excel FDIST

function.
d. Compute a 100(1 � .05)% � 95% confidence interval for . Locate the

confidence interval on the real number line. Assume that F.05/2;11, 10 � 3.665
and F.05/2; 10, 11 � 3.526.

e. Is the confidence interval consistent with the null hypothesis significance
test? Why?

f. Specify all the null hypotheses that could be rejected.
4. Use the table of random numbers in Appendix Table D.1 to draw random sam-

ples without replacement of 31 men (sample 1) and 41 women (sample 2) from
the Student Database in Appendix E.
a. List the participant number, gender, and stat grade for each person in your

sample. For each gender, construct a box plot and stack the plots one above
the other. Do the data contain outliers? Do the sample distributions appear to
be relatively symmetrical?

b. Test the hypothesis H0: � , where and denote, respectively, the
population variances of men’s and women’s stat grade. Let a � .05. Assume
that F.05/2; 30, 40 � 1.943 and F.05/2; 40, 30 � 2.009.

c. Compute a 100(1 � .05)% � 95% confidence interval for . Locate the
confidence interval on the real number line.

d. Is the confidence interval consistent with the null hypothesis significance
test? Why?

e. Write a paragraph summarizing your results and conclusions.
5. (a) For the data in Chapter 13, Table 13.2-1, test the tenability of the t test

assumption that � . Let a � .20. (b) Explain why a researcher would use
a � .20 for this test instead of, say, a � .05. (Hint: Consider how the size of a
affects the power of the test.)

s2
2s1

2

s1
2>s2

2

s2
2s1

2s2
2s1

2
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2>s2
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6. It is reasonable to expect 13-year-old boys to exceed 12-year-old boys in
strength of grip. In all likelihood, the dispersion of strength of grip is greater for
13-year-olds than for 12-year-olds. To test this hypothesis, strength of grip was
measured by means of a hand dynamometer for a random sample of 42 boys
who had just turned 12. One year later, the same boys were remeasured. The
variances for the first and second sets of measurements are 196 and 289, respec-
tively. The correlation between the two sets of measurements is .83.
a. Test the hypothesis H0: � . Let a � .05.
b. Determine the p value of the t statistic using Appendix Table D.3 and

Microsoft’s Excel TDIST function.
c. Compute a 100(1 � .05)% � 95% confidence interval for . Locate

the confidence interval on the real number line.
d. Is the confidence interval consistent with the null hypothesis significance

test? Why?
e. Specify all the null hypotheses that could be rejected.

7. Use the table of random numbers in Appendix Table D.1 to draw random sam-
ples without replacement of 32 men and 32 women students from the student
database in Appendix E. Use the variable of GPA to form 32 men-women pairs
of matched participants. The GPAs of men and women in a matched pair do not
have to be equal, but the GPAs should be similar.
a. List the participant number, gender, and stat grade for each matched pair in

your sample. For each gender, construct a box plot and stack the plots one
above the other. Do the data contain outliers? Do the sample distributions
appear to be relatively symmetrical?

b. Test the hypothesis H0: , where and denote, respectively, the
population variances of men’s and women’s stat grade. Let a � .05.

c. Compute a 100(1 � .05)% � 95% confidence interval for . Locate
the confidence interval on the real number line.

d. Is the confidence interval consistent with the null hypothesis significance
test? Why?

e. Write a paragraph summarizing your results and conclusions.
f. Compute the correlation between stat grade and GPA. Was GPA an effective

matching variable? Does the correlation shed any light on why the use of the
dependent samples t statistic was or was not an effective research strategy?

8. A national survey of 3,000 college and university students conducted by the
American Council of Day-Care Centers found that 78% of West Coast freshmen
return to college for their second year. The comparable figure for freshmen at
southern schools is 85%. The percentages are based on n1 � 1,800 and n2 �
1,200 students, respectively.
a. Test the hypothesis H0: p1 � p2. Let a � .001.
b. Determine the p value of the z statistic using Appendix Table D.2.
c. Compute a 100(1 � .001)% � 99.9% confidence interval for p1 � p2. 

Locate the confidence interval on the real number line.
d. Is the confidence interval consistent with the null hypothesis significance

test? Why?
e. Specify all the null hypotheses that could be rejected.

s1
2 2 s2

2
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2s1

2s1
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9. A national survey of 1,000 unmarried women between the ages of 15 and 19
found that 46% of 19-year-olds and 26.6% of 17-year-olds had experienced sex-
ual intercourse. The sample contained n1 � 200 19-year-olds and n1 � 150 17-
year-olds.
a. Test the hypothesis H0: p1 � p2. Let a � .01.
b. Determine the p value of the z statistic using Appendix Table D.2.
c. Compute a 100(1 � .01)% � 99% confidence interval for p1 � p2. Locate

the confidence interval on the real number line.
d. Is the confidence interval consistent with the null hypothesis significance

test? Why?
e. Specify all the null hypotheses that could be rejected.

10. A test comparing the detectability of two hues of stoplights under simulated fog
conditions found that the relative frequencies of detection for red and yellow
lights were p1 � .56 and p2 � .62, respectively. The participants were randomly
assigned to view one or the other condition: 321 viewed the red light, and 315
viewed the yellow light.
a. Test the hypothesis H0: p1 � p2. Let a � .05.
b. Determine the p value of the z statistic using Appendix Table D.2.
c. Compute a 100(1 � .01)% � 95% confidence interval for p1 � p2. Locate

the confidence interval on the real number line.
d. Is the confidence interval consistent with the null hypothesis significance

test? Why?
11. Learning one task often enhances the learning of a similar task; this phenome-

non is called learning to learn. To investigate this phenomenon, a researcher
asked students to learn 20 lists of nonsense syllables. For the data in the table,
test the hypothesis that p1, the population proportion corresponding to students
who learned lists 2 to 6 in less than 25 trials, and p2, the population proportion
corresponding to students who learned lists 16 to 20 in less than 25 trials, are
equal. Let a � .05. (b) What is the p value of the test statistic?

Number of Students Who
Learned Lists 16 to 20

In 25 Trials In Fewer 
or More Than 25  

Trials

3 7 10

13 13 26

16 20 36

Number of 
Students Who 
Learned Lists 
2 to 6

In Fewer Than 
25  Trials

In 25 Trials or
More
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a. Compute p1 and p2, where the subscripts 1 and 2 denote, respectively, the
students who learned lists 2 to 6 and lists 16 to 20.

b. Test the hypothesis H0: p1 � p2. Let a � .05.
c. Determine the p value of the z statistic using Appendix Table D.2.
d. Compute a 100(1 � .01)% � 95% confidence interval for p1 � p2. Locate

the confidence interval on the real number line.
e. Is the confidence interval consistent with the null hypothesis significance

test? Why?
f. Specify all the null hypotheses that could be rejected.
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15.1 INTRODUCTION

Looking Ahead: What Is This Chapter About?

In this chapter, you will learn about one of the most frequently used statistical pro-
cedures in the behavioral sciences, health sciences, and education: the analysis of
variance. The procedure was developed by R. A. Fisher in the early 1920s to test the
null hypothesis that p � 2 population means are equal. All of the statistical proce-
dures that you have learned up to now have involved either one or two population
parameters. With analysis of variance, your statistical horizons are broadened—you
can test hypotheses about any number of population means. The analysis of variance
design described in this chapter, a completely randomized design, involves ran-
domly assigning participants to two or more treatment conditions. The design has
much in common with the two-sample t test for independent samples.

In this chapter you will learn about two multiple comparison statistics that are
used to test hypotheses about differences among population means. You also will
learn how to use a new measure of strength of association to assess the practical sig-
nificance of the results of an analysis of variance.

After reading this chapter, you should know the following:

■ How to use a completely randomized analysis of variance design to test the
null hypothesis H0: m1 � m2 � · · · � mp

■ The distinction between pairwise and nonpairwise contrasts
■ Which multiple comparison procedure to use in testing hypotheses about

contrasts
■ How to assess the practical significance of research results using a measure of

strength of association

15.2 PURPOSE OF ANALYSIS OF VARIANCE

The Omnibus Null Hypothesis

Analysis of variance, often referred to as ANOVA (pronounced an-noh-va), is used
to test null hypotheses of the form

H0: m1 � m2 � · · · � mp

where m1, m2, . . . , mp denote the means of p � 2 populations. If the null hypothesis
is rejected, the alternative hypothesis is tenable. The alternative hypothesis is

where the subscripts j and j' denote two different populations. If the null hypothe-
sis is rejected, you know that at least two of the population means are not equal.
Rejection of the null hypothesis does not mean that all of the population means
are different—only two of the means may differ. If the null hypothesis is not re-
jected, it remains tenable. I like to think of the null hypothesis as an omnibus or
overall hypothesis because it states that all of the j � 1, . . . , p population means
are equal.

H1: mj2mjr
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Analysis of Variance versus Doing Multiple t Tests

In Chapter 13 you learned how to use a t statistic to test a null hypothesis for two
population means, H0: m1 � m2. You may wonder why researchers don’t test the
ANOVA null hypothesis, say,

H0: m1 � m2 � m3

by performing three t tests of the following null hypotheses:

H0: m1 � m2 H0: m1 � m3 H0: m2 � m3

If m1 � m2, m1 � m3, and m2 � m3, then it must be true that m1 � m2 � m3. Although
this research strategy seems reasonable, it has a serious flaw. If the researcher uses a
t statistic to test each of the three null hypotheses at a � .05 level of significance,
the probability of making one or more Type I errors is close to .14. This probability
is computed as follows:

Prob. of one or more Type I errors � [1 � (1 � a)C] � [1 � (1 � .05)3] � .14

where C � 3 is the number of t tests. A probability of making one or more Type I
errors that is close to .14 is unacceptable. In most research situations, you want the
probability to not exceed a � .05. Notice from the formula 1 � (1 � a)C that as the
number of t tests, C, increases, the probability of making Type I errors also in-
creases. Suppose your null hypothesis involves four means:

H0: m1 � m2 � m3 � m4

You could use a t statistic to perform six t tests each at a � .05 level of significance:

H0: m1 � m2, H0: m1 � m3, H0: m1 � m4, H0: m2 � m3, H0: m2 � m4, H0: m3 � m4

In this case, the probability of making one or more type one errors would be close
to .26. The probability is given by

Prob. of one or more Type I errors � [1 � (1 � a)C] � [1 � (1 � .05)6] � .26

Although you test each null hypothesis at a � .05 level of significance, the probability
of making a Type I error increases dramatically as the number, C, of hypotheses that
are tested increases. The advantage of using analysis of variance to test the omnibus
null hypothesis, H0: m1 � m2 � · · · � mp, is that whatever the number of population
means, the probability of making a Type I error is equal to a. For the special case in
which an experiment contains only two experimental conditions and the null hypothe-
sis is H0: m1 � m2, the ANOVA and t approaches have the same probability of making
a Type I error. The probability is the same because only one t test is performed.

CHECK YOUR UNDERSTANDING OF SECTION 15.2

1. Suppose that five methods of teaching foreign language vocabulary are
compared in an experiment. The dependent variable is performance on a 
25-item vocabulary test. (a) State the null hypothesis. (b) How many t tests
would be required to test hypotheses of the form H0: mj � mj? (c) If a � .01,
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what is the probability of making one or more Type I errors using ANOVA?
What is the probability when multiple t tests are performed? (d) If the omnibus
null hypothesis is rejected by means of an ANOVA F test, what does this tell the
researcher?

2. For experiments in which the number of experimental conditions is greater
than two, what advantage does the ANOVA approach have over the multiple
t approach?

15.3 BASIC CONCEPTS IN ANOVA

The material in this section provides a glimpse of some of the basic concepts associ-
ated with a completely randomized ANOVA, the simplest of all the ANOVA designs.
The rationale underlying ANOVA is somewhat involved. The computations are
straightforward but tedious. Fortunately, software packages are available that will
do the computations for you. You may find it helpful to review this section after
working through one of the ANOVA problems in Section 15.4.

The Composite Nature of a Score

The value of a score in an experiment is determined by a variety of variables. I will
now examine this idea in some detail. A score can be thought of as a composite,
reflecting, for example, the effects of the (1) independent variable, (2) individual
characteristics of the participant or experimental unit, (3) chance fluctuations in the
participant’s performance, and (4) environmental and other uncontrolled variables.
Similarly, the variability among the scores in an experiment also is a composite that
reflects the effects of the same variables.

ANOVA is a procedure for determining how much of the total variability
among scores to attribute to various sources of variation and for testing
hypotheses concerning some of the sources.

I will illustrate the composite nature of a score with an example. Consider an
experiment to determine the effectiveness of three diets for obese teenage girls. Thirty
girls who want to lose weight are randomly assigned to the three diets with the restric-
tion that 10 girls are assigned to each diet. The independent variable is type of diet; the
dependent variable is weight loss in pounds after being on a diet for one month.

For notational convenience, the diets are called treatment A. The levels of treat-
ment A, corresponding to the specific diets, are denoted by the lowercase letter
a and numeric subscripts—a1, a2, and a3. A particular but unspecified score is
denoted by Xij, where the first subscript designates one of the i � 1, . . . , n
participants in a treatment level and the second subscript designates one of the
j � 1, . . . , p levels of treatment A.

Let X72 denote Bella’s weight-loss score in the diet experiment. The subscripts of X72
tell you that she is participant seven and that she used diet a2. What factors have
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affected the value of her score? If she stuck to her diet, one major factor is the effec-
tiveness of diet a2. Other factors are her degree of obesity, day-to-day fluctuations in
her eating and exercise habits, time of day that her weight loss was measured, and so
on. In summary, Bella’s weight loss score, X72, reflects (1) the effect of treatment level
a2, (2) effects unique to her, (3) effects attributable to chance fluctuations in her be-
havior, and (4) effects attributable to environmental and other uncontrolled variables.

I can formulate a model equation that reflects the various factors that affect
Bella’s score. In the following section, I will present the results of the weight-loss
experiment and illustrate the model equation that underlies Bella’s score.

Model Equation for a Score

Suppose that the data in Table 15.3-1 have been obtained in the diet experiment.
Notice that two subscripts are used to denote each score, Xij, in the table. The first
subscript denotes one of the i � 1, . . . , n participants in a treatment level. The
second subscript denotes one of the j � 1, . . . , p levels of treatment A. The treat-
ment means, , , , and the grand mean, , in Table 15.3-1 also have twoX??X?3X?2X?1

Table 15.3-1 One-Month Weight Losses Measured to the Nearest Pound

(i) Data and notation (Xij denotes a score for participant i in treatment level j; i � 1, . . . , n
participants; j � 1, . . . , p levels of treatment A)

Treatment Levels (Diets)

a1 a2 a3

7 10 12

9 13 11

8 9 15

12 11 7

8 5 14

7 9 10

4 8 12

10 10 12

9 8 13

6 7 14

Sum of all scores ]

Grand mean ] X?? 5 9.67S

X?3 5 12X?2 5 9X?1 5 8S

a
p

j51
a

n

i51
Xij 5 290S

a
n

i51
Xi3 5 120a

n

i51
Xi2 5 90a

n

i51
Xi1 5 80S

Sum of i �
1, . . . , n scores
in each treatment
level

Mean of each
treatment level
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subscripts. The dot in the subscript of indicates that the mean was obtained by
averaging over the i � 1, . . . , n scores, Xi1. For example, the three treatment means
are obtained as follows:

Notice that in computing each treatment mean, I averaged over the first subscript, i.
That is the subscript that I replaced with a dot. The grand mean is obtained by aver-
aging all the np scores:

The grand mean subscript has two dots because I averaged over both i and j.
Earlier I mentioned that each score is a composite. I will use the data in Table

15.3-1 to show that each score is composed of the following:

Grand mean � The mean of all of the np scores, .

Treatment effect � The effect of the independent variable, � —for ex-
ample, the effect of diet a2 on Bella’s weight loss.

Error effect � The effects unique to participant i who received treatment level
aj and any other uncontrolled variables that affected the score, . For
example, Bella’s error effect includes her degree of obesity, day-to-day fluctua-
tions in her eating and exercise habits, and the time of day that her weight loss
was measured.

The sample model equation for a score can be written as

Score Grand Treatment Error
Mean Effect Effect

The statistics in the sample model equation are unbiased estimators of three model
parameters: population grand mean, m; population treatment effect, mj � m; and
population error effect, Xij � mj:

Model equation  Xij 5 m   1     smj 2 md      1   sXij 2 mjd

 Xij 5 X?? 1 sX?j 2 X??d 1 sXij 2 X?jd

Xij    5    X??  1   sX.j 2 X??d   1   sXij 2 X?jd

Xij 2 X?j

XX?j

X?

X?? 5

a
p

j51
a

n

i51
Xij

np
5

X11 1 X21 1 X31 1 # # # 1 X10, 3

np
5

7 1 9 1 # # # 1 14
s10d s3d

5 9.67

X?3 5

a
n

i51
Xi3

n
5

X13 1 X23 1 X33 1 # # # 1 X10, 3

n
5

12 1 11 1 # # # 1 14
10

5
120
10

5 12

X?2 5

a
n

i51
Xi2

n
5

X12 1 X22 1 X32 1 # # # 1 X10, 2

n
5

10 1 13 1 # # # 1 7
10

5
90
10

5 9

X?1 5

a
n

i51
Xi1

n
5

X11 1 X21 1 X31 1 # # # 1 X10, 1

n
5

7 1 9 1 # # # 1 6
10

5
80
10

5 8

X?1
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Perhaps an example using Bella’s score, X72, will clarify the meaning of the
terms in the sample model equation. According to Table 15.3-1, Bella lost 
8 pounds (X72 � 8), which is 1.67 pounds less than the average weight loss for the
30 girls ( ). Her weight loss can be expressed as follows:

8 � 9.67 � (9 � 9.67) � (8 � 9)

8 � 9.67   � (�0.67) � (�1)

Bella’s Grand a2 Treatment Bella’s Error
Score Mean Effect Effect

This model equation gives us a bit more insight into why Bella’s weight loss,
X72 � 8 pounds, was 1.67 pounds less than the average weight loss. She used a
less effective diet, pound, and, in addition, the diet
was not as effective for her as it was for the average of the 10 girls who used it,

pound.
To summarize, the sample data allow you to compute three statistics that account

for Bella’s weight loss: (1) the average weight loss of all the girls, given by
pounds, (2) the effect of diet a2, given by , and (3)

the error effect that is unique to Bella and the testing conditions, given by
.

The name error effect is an apt one because an error effect represents all of the
effects not attributable to the grand mean and the treatment effect. In other words,
Bella’s error effect, , reflects characteristics that are peculiar to her,
such as her degree of obesity and day-to-day fluctuations in her eating and exercise
habits. Her error effect also reflects characteristics that are peculiar to the testing
conditions, such as the time of day that Bella’s weight loss was measured.

Partition of the Total Sum of Squares

Earlier, you saw that a score, Xij, is a composite. The total variability among scores
in the diet experiment,

called the total sum of squares (SSTO), also is a composite. It can be shown (see
“Check Your Understanding of Section 15.3,” Exercise 5) that the total sum of
squares can be partitioned into two parts: variability between the treatment levels,
called the between-groups sum of squares (SSBG),

and variability within the treatment levels, called the within-groups sum of squares
(SSWG),

SSWG 5 a
p

j51
a

n

i51
sXij 2 X.jd2

SSBG 5 na
p

j51
sX.j 2 X??d2

SSTO 5 a
p

j51
a

n

i51
sXij 2 X??d2

X72 2 X?2 5 21

X72 2 X?2 5 21

X?2 2 X?? 5 20.67X?? 5 9.67

X72 2 X?2 5 8 2 9 5 21

X?2 2 X?? 5 9 2 9.67 5 20.67

X72   5   X??   1   sX?2 2 X??d   1   sX72 2 X?2d

X?? 5 9.67
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That is,

SSTO � SSBG � SSWG

Notice that SSBG is computed from the treatment effects, , in an experi-
ment. SSWG is computed from the error effects, , in an experiment.

Now I need to show what SSBG and SSWG have to do with testing the hypothe-
sis that H0: m1 � m2 � · · · � mp. But before I can do this, I must discuss the degrees
of freedom associated with each of the sums of squares.

Degrees of Freedom

The term degrees of freedom refers to the number of observations whose values can
be assigned arbitrarily, as you saw in Section 10.2. I now will determine the de-
grees of freedom associated with SSBG, SSWG, and SSTO. Consider SSBG �

and let n be the same for each of the sample means. If I have,

say, p � 3 sample means, they are related to the grand mean by the equation

If and I arbitrarily specify that and , then must equal 4,
because (6 � 8 � 4)/3 � 6. Alternatively, if I specify that and , then

must equal 6, because (5 � 7 � 6)/3 � 6. Given the value of the grand mean, I
am free to assign any values to two of the three treatment means, but having done
so, the third mean is determined.

Hence, the number of degrees of freedom associated with SSBG is p � 1, one
less than the number of treatment means.

The number of degrees of freedom associated with SSWG is p(n � 1).

To see why this is true, consider SSWG � and let p � 3 and
n � 8. The eight scores in the jth treatment level, are related to the jth mean by

Seven of the scores can take any value, but the eighth is determined because the sum
of the scores divided by eight must equal . Hence, there are n � 1 � 8 � 1 � 7
degrees of freedom associated with the jth treatment level, and this is true for each
of the j � 3 treatment levels. Thus, there are p(n � 1) � 3(8 � 1) � 21 degrees of
freedom associated with SSWG. If the nj’s are not equal, the degrees of freedom for

X?j

X1j 1 X2j 1 # # # 1 X8j

8
5 X?j

gp
j51g

p
i51sXij 2 X.jd2

X?3

X?2 5 7X?1 5 5
X?3X?2 5 8X?1 5 6X?? 5 6

X?1 1 X?2 1 X?3

3
5 X..

ngp
j51sX?j 2 X??d2

Xij 2 X.j

X?j 2 X??

a
p

j51
a

n

i51
sXij 2 X??d2 5 na

p

j51
sX?j 2 X??d2 1 a

p

j51
a

n

i51
sXij 2 X?jd2
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SSWG are (n1 � 1) � (n2 � 1) � · · · � (np � 1) � N � p, where N is the total
number of scores, N � n1 � n2 � · · · � np.

The same line of reasoning can be used to show that when n1 � n2 � · · · � np,
the total sum of squares has np � 1 degrees of freedom. If the nj’s are not equal,
the number of degrees of freedom is (n1 � n2 � · · · � np) � 1 � N � 1.

This follows, because the np � 8(3) � 24 scores are related to the grand mean by

Hence, np � 1 � 23 of the scores can take any value, but the 24th score must be as-
signed so that the mean of the scores equals .

Mean Squares and the F Statistic

The term mean square (MS) is new, but the concept is not; mean square is simply
another name for a sample variance, .

A mean square (MS) is obtained by dividing a sum of squares (SS) by its
degrees of freedom (df). Thus,

MSTO � SSTO/(np � 1) or SSTO/(N � 1)

MSBG � SSBG/(p � 1)

MSWG � SSWG/ [p(n � 1)] or SSWG/(N � p)

I introduced the F statistic and F sampling distribution in Section 14.2. You learned
that the F statistic, which is the ratio of two sample variances ( ),
can be used to test the null hypothesis that two population variances are equal. As
you have just seen, MSBG and MSWG also are sample variances. Hence,

is an F statistic.

The null hypothesis H0: m1 � m2 � · · · � mp in analysis of variance is tested
by means of an F statistic that is the ratio of the between-groups variance to 
the within-groups variance:

The degrees of freedom for the numerator and denominator of the F statistic
are, respectively, v1 � p � 1 and v2 � p(n � 1).

The F statistic is referred to the sampling distribution of F, which is tabled in
Appendix Table D.5. If the F statistic is greater than or equal to the critical value,

, the null hypothesis is rejected.Fa; n1, n2

F 5
MSBG
MSWG

F 5 MSBG>MSWG

F 5 ŝ2
larger>ŝ2

smaller

ŝ2

X??

X11 1 X21 1 # # # 1 X83

24
5 X??
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The Nature of MSBG and MSWG

It may seem paradoxical to test a hypothesis about population means by using the
ratio of two sample variances, F � MSBG/MSWG. To show that this procedure is
reasonable, I will describe the nature of the population variances estimated by
MSWG and MSBG when the null hypothesis is true and when it is false.

You learned in Section 8.3 that . In words this says that if you draw
many, many random samples from a population and compute a mean for each sam-
ple, the long-run average of the sample means is equal to the population mean, m.
I call m the expected value of , that is . It can be shown for a completely
randomized analysis of variance design that if the p population means are equal, the
expected value of both MSBG and MSWG is —that is,

where is the population error variance. When the p population means are equal,
the F statistic is the ratio of two independent, sample error variances,

The F statistic should be close to 1 because both sample mean squares estimate the
same population error variance. An F statistic close to 1 provides support for the null
hypothesis that all of the population means are equal. When two or more of the pop-
ulation means are not equal, the expected values of MSWG and MSBG differ:

but

Notice that the expected value of MSBG includes a function of population treatment
effects, . Hence, when two or more of population means are unequal, the F
statistic,

should be larger than 1 because MSBG estimates plus treatment effects but
MSWG estimates only . F statistics larger than 1 provide evidence against the null
hypothesis and support for believing that the treatment effects are not all equal to
zero.

How much larger than one should F � MSBG/MSWG be for a researcher to feel
confident in rejecting the null hypothesis H0: m1 � m2 � · · · � mp? The usual prac-
tice is to reject the null hypothesis if F falls in the upper a � .05 region of the sam-
pling distribution of F.

Before concluding this section, let me reexamine the nature of MSWG and MSBG
from a different perspective. It would be nice if you came away from this discussion
with an intuitive feel for the sources of variation that are being measured by the two
mean squares. An examination of the MSWG formula sXij 2 X.jd2>gp

j51g
n
i51

s2
e

s2
e

F 5
MSBG
MSWG

5
ŝ2

e

ŝ2
e

1 a function of the treatment effects

mj 2 m

 EsMSBGd 5 s2
e 1 ng smj 2 md2> sp 2 1d

 EsMSWGd 5 s2
e

F 5
MSBG
MSWG

5
ŝ2

e

ŝ2
e

s2
e

EsMSBGd 5 EsMSWGd 5 s2
e

s2
e

EsXd 5 mX

EsXd 5 m



15.3 Basic Concepts in ANOVA 401

and Figure 15.3-1 suggests that MSWG estimates the variation among
participants who have been treated alike. This follows because the deviations of the
scores in each treatment level are taken from their respective treatment means. All of
the girls in, say, a1 used the same diet. Hence, they were treated alike. On the other
hand, MSBG estimates the variation among girls who were treated differently—that is,
assigned to different treatment levels. This follows because the deviations of the treat-
ment means in the formula are taken from the grand
mean. If, in Figure 15.3-1, the three treatment conditions really had no effect on the de-
pendent variable, the variation among the treatment means reflects nothing more than
chance variation and should be about the same size as the variation among the scores
within each treatment condition. In this case, the F statistic should be close to 1. If,

ngp
j51sX.j 2 X..d2> sp 2 1d

3psn 2 1d 4

30

25

20

15

10

5

0
a1 a2

X.. �

a3

Treatment Levels

X
.1 �

 10

X
.2 �

 15

X
.3 �

 20

X

V
ariation am

ong
scores in a

1

V
ariation am

ong
scores in a

2

V
ariation am

ong
scores in a

3

Figure 15.3-1. As shown in the figure, there is variation among the scores,
denoted by • and among the three sample means. The within-groups mean 
square, MSWG � /[p(n � 1)], reflects only the variation 
among the scores of participants who have been treated the same. For example,
all participants in a1 receive the same treatment condition. The between-groups
mean square, MSBG � /(p � 1), reflects the variation among the
means of participants who have been treated differently. If the three treatment
conditions have no effect on the dependent variable, the amount of variation among
the three means should be about the same as the variation of participants who have
been treated the same. In this case, F � MSBG/MSWG should be close to 1. If,
however, one or more of the treatment conditions affects the dependent variable,
F � MSBG/MSWG should be greater than 1.

ng sX?j 2 X??d2

gg sXij 2 X?jd2
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however, the treatment conditions do affect the dependent variable, the variation among
the treatment means should be larger than the variation among the scores within each
treatment condition. In this case, the F statistic should be larger than 1. The labels
“within groups” and “between groups” are appropriate because they describe the devia-
tions that are used to compute the two means squares.

CHECK YOUR UNDERSTANDING OF SECTION 15.3

3. Suppose that an experiment has been performed over a period of six months to
evaluate the effectiveness of three exercise programs denoted by a1, a2, and a3
for developing muscle mass. Sixty 21-year-old men have been randomly as-
signed to the three programs with 20 in each program. Let X42 denote the change
in muscle mass of participant 4 who was assigned to exercise program a2. What
specific factors do you think affected the value of his score?

4. Identify the following.
a. a2 b. X24

c. X16,1 d.
e. f.
g. h.

5. The total sum of squares, , can be partitioned into sum
of squares between groups, , and sum of squares within
groups, . For equations that are preceded by (a) through
(f), describe in words the operation that was performed. I begin the derivation
with the sample model equation for the completely randomized design.

a.

b.

c.

d.

e.

f.

SSTO � SSBG � SSWG

a
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n

i51
sXij 2 X??d2 5 na
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p
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6. For the following alternative hypotheses in ANOVA, indicate whether the
hypothesis is correctly or incorrectly stated.
a. for some j and j'
b. m1 m2 m3

7. Express the following scores in terms of the ANOVA model equation: (a) X83,
(b) X52 , (c) X24.

8. Calculate the degrees of freedom for MSTO, MSBG, and MSWG for the follow-
ing conditions.
a. p � 4, n � 21
b. p � 5, n � 11
c. p � 4, n � 8
d. p � 3, n1 � 6, n2 � 5, n3 � 6
e. p � 4, n1 � 10, n2 � 10, n3 � 9, n4 � 8.

9. a. Under what conditions do both MSBG and MSWG estimate only the popula-
tion error variance, ?
b. Under what condition would you expect MSBG to be bigger than MSWG?

10. Terms to remember:
a. ANOVA b. Treatment A
c. Grand mean d. Treatment effect
e. Error effect f. Model equation
g. Total sum of squares h. Between-groups sum of squares
i. Within-groups sum of squares j. Mean square
k. Population error variance

15.4 COMPLETELY RANDOMIZED DESIGN

This section presents the computational procedures associated with the simplest of
all ANOVA designs—the completely randomized design. Here you will see how
nicely some of the complex ideas presented previously fit together to produce a de-
cision about the null hypothesis. In fact, after pondering over the three tables in this
section, you will see that the computational procedures for ANOVA are tedious but
not difficult to carry out. Fortunately, computer packages are available for doing the
number crunching.

The completely randomized design is appropriate for experiments with one treat-
ment (independent variable) with p � 2 treatment levels. The N � n1 � n2 � · · · � np
participants in an experiment should be randomly assigned to the p treatment levels.
As you will see, it is desirable but not necessary to assign the same number of par-
ticipants to each treatment level.

The completely randomized design is so named because the assignment of
participants to the treatment levels is completely random. Each participant is
assigned to only one level. For convenience the design is referred to as a 
CR-p design, where p denotes the number of levels of treatment A.

A CR-p design with more than two treatment levels can be thought of as an exten-
sion of a t test for independent samples. For both designs, N participants are ran-
domly assigned to the treatment conditions. A comparison of the layouts for a t test

s2
e

22

mj 2 mjr20



404 Introduction to the Analysis of Variance

and a CR-3 design is shown in Figure 15.4-1. When a CR-p design has two treat-
ment levels, the layouts are identical. For this case, it can be shown that the value of
the t statistic is equal to for the CR-p design.

Computational Procedures for a CR-3 Design

I will use the data from the diet experiment to illustrate the computational proce-
dures associated with a completely randomized design. You will recall that 30 girls
were randomly assigned to three diets, with the restriction that 10 girls were as-
signed each diet. The amount of weight loss for each girl was measured one month
after going on a diet. The steps to follow in testing the null hypothesis and the deci-
sion rule are as follows.

Step 1. State the statistical hypotheses: H0: m1 � m2 � m3
for some j and j'.

Step 2. Specify the test statistic: F � MSBG/MSWG because the
researcher wants to test H0: m1 �
m2 � m3, random assignment
was used, and the researcher
assumes that the three
populations are approximately
normally distributed with equal
variances.

H1: mj2mjr

"F

Layout for independent

samples t-test design

Participant1
Participant2

Participant10

a1
a1

a1

Treat.
level

Group1 X.1

X.2
…
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Participant12
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a2
a2

a2

Group2
…

…
…

Layout for

CR-3 design

Participant1
Participant2
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a1
a1

a1

Treat.
level

Group1 X.1

X.2

…

Participant11
Participant12

Participant20
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a2

a2

Group2

…

…

Participant21
Participant22

Participant30

a3
a3

a3

Group3 X.3

… …
…

Figure 15.4-1. Comparison of layouts for a t-test design for independent 
samples shown on the left and a completely randomized ANOVA design on the
right. For the t-test design, 20 participants were randomly assigned to the two 
levels of treatment A; for the CR-3 design, 30 participants were randomly 
assigned to the three levels of treatment A.
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Step 3. Specify the sample size:1 np � 30;
and the sampling distribution: F distribution with v1 � p � 1

and v2 � p(n � 1).

Step 4. Specify the significance level: a � .05.

Step 5. Obtain a random sample of
np participants or randomly
assign np participants to p
treatment levels, compute F,
and make a decision.

Decision rule:

Reject the null hypothesis if F falls in the upper 5% of the sampling
distribution of F; otherwise, do not reject the null hypothesis. If the
null hypothesis is rejected, conclude that the weight loss population
means for the three diets are not equal; if the null hypothesis is not
rejected, do not draw this conclusion.

Before testing the null hypothesis, it is good statistical practice to first compute
descriptive statistics for one’s data. The stacked box plots in Figure 15.4-2 indicate
that the weight-loss data do not contain outliers and are relatively symmetrical. The
symmetry of the sample distributions suggests that the populations also are probably
symmetrical. This is useful information because, as you will see in Section 15.5, the
ANOVA F test is robust to non-normality if the populations are relatively symmetri-
cal. The sample means and standard deviations for the weight-loss data are shown in
Table 15.4-1. These descriptive statistics should be included in reports of the results

1 A discussion of procedures for making a rational specification of sample size for a completely random-
ized design is beyond the scope of this book. The interested reader should consult Cohen (1988, chap. 8)
and Kirk (1995, pp. 182–188).

4 6 8

a1

a2

a3

10

One-month weight loss

12 14 16

Figure 15.4-2. Stacked box plots for the weight-loss data in Table 15.2-1. The
sample distributions are relatively symmetrical and have about the same amount of
dispersion. There are no outliers.
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of your experiment. It appears that there are sizable differences among several of the
weight-loss sample means. For example, diet a3 resulted in a much greater weight
loss than the other two diets. If the differences are statistically significance—that is,
cannot be attributed to chance—they would be practically significant. If the three
sample means had been 8.00, 8.16, and 8.25, there would be little point in testing the
null hypothesis because a weight-loss difference of only 0.25 pounds after one month
of dieting is of no practical value. I also note from Table 15.4-1 that the three sample
standard deviations are similar. The researcher can conclude that the population vari-
ances are probably homogeneous. Homogeneity of population variances is one of the
assumptions of ANOVA discussed in Section 15.5. After examining Figure 15.4-1
and Table 15.4-1, a researcher would probably feel comfortable proceeding to test the
ANOVA null hypothesis.

Table 15.4-2 presents the details of the computational procedures. In Section
15.3, I introduced formulas for computing SSTO, SSBG, and SSWG. These formulas
are useful for understanding the nature of the three sums of squares, but they are not
the most convenient for computational purposes. More convenient formulas are
illustrated in Table 15.4-2.

The results of the analysis are summarized in the ANOVA table shown in Table
15.4-3. The sums of squares (SS) in Table 15.4-3 were obtained from Table 15.4-2.
The mean squares (MS) were obtained by dividing the sums of squares by their re-
spective degrees of freedom. The F statistic was obtained by dividing MSBG in row
1 by MSWG in row 2; this operation is indicated in the table by the symbol .

Appendix Table D.5 does not contain F critical values for n1 � 2 and n 2 � 27 de-
grees of freedom. I obtained F.05; 2, 27 � 3.35 using Microsoft’s Excel FINV function,

FINV(probability,deg_freedom1,deg_freedom2)

I replaced the terms in parentheses as follows: FINV(.05,2,27). Because the com-
puted F(2, 27) � 8.60 is greater than F.05; 2, 27 � 3.35, the null hypothesis is rejected
and the researcher concludes that at least two of the diets are not equally effective.

The results of the F test can be presented either by means of a table as in Table
15.4-3 or as a statement in the text portion of a publication. Using the latter
method of presentation, the researcher might say, “I conclude from the analysis of
variance that the weight-loss population means for the three diets are not all equal,
F(2, 27) � 8.60, p � .002.”2 When the results are presented in the text, it is

3124

Table 15.4-1 Descriptive Statistics for Weight-Loss Data

Diet

a1 a2 a3

8.00 9.00 12.00

2.21 2.21 2.31ŝj

X.j

2 I obtained the p value using Microsoft’s Excel FDIST function,

FDIST(x,deg_freedom1,deg_freedom2)

I replaced the terms in parentheses with the value of the F statistic and degrees of freedom as follows:
FDIST(8.60,2,27). The p value, .001299, was rounded up to .002.
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Table 15.4-2 Computational Procedures for a CR-3 Design

(i) Data and notation [Xij denotes a score for participant i in treatment level j; i � 1, . . . , n
participants (si); j � 1, . . . , p treatment levels (aj)]

AS Summary Tablea

a1 a2 a3

7 10 12

9 13 11

8 9 15

12 11 7

8 5 14

7 9 10

4 8 12

10 10 12

9 8 13

6 7 14

90 120

9 12

(ii) Computational symbolsb

(iii) Computational formulas

SSTO � [AS] � [X] � 3026.000 � 2803.333 � 222.667

SSBG � [A] � [X] � 2890.000 � 2803.333 � 86.667

SSWG � [AS] � [A] � 3026.000 � 2890.000 � 136.000

a A denotes treatment A, and S denotes subjects; the table is so named because it reflects variation attrib-
utable to treatment levels (A) and subjects (S).

b The symbols [AS], [X], and [A] are used to simplify the computational formulas in part (iii).

a
p

j51

aa
n

i51
Xijb2

n
5 3A4 5 s80d2

10
1 # # # 1

s120d2

10
5 2890.000

aa
p

j51
a

n

i51
Xijb2

np
5 3X4 5 s290d2

s3d s10d
5 2803.333

a
p

j51
a

n

i51
Xij

2 5 3AS4 5 s7d2 1 s9d2 1 s8d2 1 # # # 1 s14d2 5 3026.000

a
p

j51
a

n

i51
Xij 5 7 1 9 1 8 1 # # # 1 14 5 290.000

X?j 5 8

a
n

i51
Xij 5 80
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customary to provide (1) the value of the F statistic, (2) degrees of freedom (in
parentheses) associated with the F statistic, and (3) p value. A decision to reject
the null hypothesis should always be based on the researcher’s preselected level of
significance, a � .05 in our example. The inclusion of the p value in the text or in
a footnote to the ANOVA table permits a reader to, in effect, set his or her own
level of significance.

In addition to providing information about the F test, the text portion of a publi-
cation of your results also should include a descriptive summary of the data like
Table 15.4-1, the results of multiple comparison tests (see Section 15.6), and an as-
sessment of the practical significance of your results (see Section 15.7).

If the omnibus null hypothesis H0: m1 � m2 � · · · � mp is rejected in ANOVA,
the researcher knows that at least one difference among the population means is not
equal to 0. The next question is “Which difference(s) isn’t equal to 0?” Procedures
for answering this question are described in Section 15.6. Before turning to that
topic, I will examine the assumptions underlying the F test for a completely random-
ized design.

CHECK YOUR UNDERSTANDING OF SECTION 15.4

11. a. Fill in the blanks in the following ANOVA table.

Source SS df MS F

Between groups 168.000 ( ) ( ) ( )
Within groups ( ) 76 ( )

Total 1,384.000 79

b. Determine the p value of the F statistic using Microsoft’s Excel FDIST
function.

12. An experiment was performed to investigate the effects of meaningfulness, or as-
sociation value, of nonsense syllables on learning. Thirty-two participants were
randomly assigned to four treatment levels with the restriction that 8 were as-
signed to each level. The nonsense syllables were selected from the list compiled
by C. E. Noble. The association values of the lists were 25% for a1, 50% for a2,
75% for a3, and 100% for a4. The dependent variable was time (in minutes)

Table 15.4-3 ANOVA Table for a CR-3 Design

Source SS df MS F

1. Between groups (BG) 86.667 p � 1 � 3 � 1 � 2 43.334 8.60*

(three diets)

2. Within groups (WG) 136.000 p (n � 1) � 3 (10 � 1) � 27 5.037

3. Total 222.667 n p � 1 � (3)(10) � 1 � 29

indicates that F was obtained by dividing the value of the MS in row 1 by the value of the MS in row 2.
*p � .002
3124

3124
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needed to learn the list well enough to recite it correctly twice. The researcher
obtained the following data.

a1 a2 a3 a4

22 22 18 18
21 20 20 17
20 18 17 16
21 21 16 18
22 20 18 19
24 19 19 15
22 21 18 16
23 19 17 17

a. Construct stacked box plots for the data. Are the sample distributions rela-
tively symmetrical? Do the data contain outliers?

b. Compute descriptive statistics, ’s and ’s, for the data and construct a
table similar to Table 15.4-1.

c. Are the sample data consistent with the researcher’s alternative hypothesis
for some j and j'?

d. Test the null hypothesis H0: m1 � m2 � m3 � m4. Let a � .05. Construct an
ANOVA summary table. Determine the p value of the F statistic using
Microsoft’s Excel FDIST function.

e. Summarize the results of the ANOVA in a sentence or two.
13. List the steps used to test the null hypothesis in Exercise 12, and state the

decision rule.
14. A researcher investigated the reaction time to red, green, and yellow instrument-

panel warning lights. Thirty-one participants were randomly assigned to the
three colors of warning lights. The participants pressed a microswitch as soon
as they noticed the onset of the warning light. The dependent variable was reac-
tion time in hundredths of a second. The researcher obtained the following data;
decimal points have been omitted.

a1 (Yellow) a2 (Red) a3 (Green)

20 23 21
20 20 21
21 21 20
22 21 23
21 23 22
20 22 20
19 22 21
21 21 22
19 22 22
20 22 20

19

a. Construct stacked box plots for the data. Are the sample distributions rela-
tively symmetrical? Do the data contain outliers?

b. Compute descriptive statistics, ’s and ’s, for the data and construct a
table similar to Table 15.4-1.

ŝjX.j

H1 5 mj2mjr

ŝjX?j
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c. Are the sample data consistent with the researcher’s alternative hypothesis
H1: mj mj' for some j and j'?

d. Test the null hypothesis H0: m1 � m2 � m3. Let a � .05. Construct an
ANOVA summary table. Determine the p value of the F statistic using
Microsoft’s Excel FDIST function.

e. Summarize the results of the ANOVA in a sentence or two.
15. List the steps used to test the null hypothesis in Exercise 14, and state the deci-

sion rule.

15.5 ASSUMPTIONS ASSOCIATED WITH A CR-p DESIGN

As with all statistical tests, the F test of the omnibus null hypothesis in analysis of
variance involves assumptions. I will list the assumptions and then describe the ef-
fects of violating them.

1. The model equation Xij � m � (mj � m) � (Xij � mj) reflects all the sources
of variation that affect Xij.

2. Participants are random samples from the respective populations or the partic-
ipants have been randomly assigned to the treatment levels.

3. The j � 1, . . . , p populations are normally distributed.
4. The variances of the j � 1, . . . , p populations are equal.

At the outset, note that for real data some of the assumptions will always be vio-
lated. For example, the underlying populations from which samples are drawn are
never exactly normally distributed. The important question then is not whether the
assumptions are violated but rather whether minor violations seriously affect the sig-
nificance level and power of the F test. Fortunately, the F test in ANOVA is robust
with respect to violation of a number of assumptions—that is, the test is not very
sensitive to departures from some of its assumptions. Unfortunately, the F test is not
as robust to violation of certain assumptions as was once thought.

Assumption That the Model Equation 
Xij m (mj m) (Xij mj) Reflects All 
the Sources of Variation That Affect Xij

Assumption 1 states that a score, Xij, is the sum of three components: the grand
mean, the effect of treatment j, and the error effect associated with participant i. The
latter effect includes all effects not attributable to treatment level j, such as chance
fluctuations in the participant’s behavior, variations in the administration of the
treatment condition, and any other conditions that are not held constant.

A completely randomized design is appropriate for experiments with one treatment
in which the participants are randomly assigned to only one treatment level. If, for
example, an experiment contains two or more treatments—say, treatment A with
p levels and treatment B with q levels—or if a researcher wants to observe the par-
ticipants under more than one treatment level, the researcher must choose a differ-
ent ANOVA design. Designs appropriate for these situations are described in

21215

2
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Chapter 16. The choice of an incorrect design can seriously affect the probability of
a Type I error and the power of the F test.

Assumption of Random Sampling or Random Assignment

Assumption 2 states that the participants in an experiment have been randomly
sampled from populations of interest or have been randomly assigned to treatment
levels. This is an important assumption. The use of random sampling or random as-
signment helps to distribute the unique characteristics of participants randomly over
the treatment levels so that the characteristics do not selectively bias the outcome of
an experiment.3 In the absence of randomization, there is always the possibility that
some variable other than the treatment produced the observed differences among the
sample means. Hence, the interpretation of the results of experiments that do not use
randomization involves some ambiguity.

Assumption of Normally Distributed Populations

Assumption 3 states that the populations are normally distributed. In the real world,
this assumption is never satisfied because, for example, observations do not take val-
ues from � to � . Fortunately, the F test in ANOVA, like the t test, is robust with
respect to departures from normality. This is especially true when the populations
are symmetrical and the samples sizes are equal and greater than 12 (Clinch and
Keselman, 1982; Tan, 1982). Studies indicate that even if the treatment populations
are asymmetrical or are flatter or more peaked than normal, the actual probability of
making a Type I error will be fairly close to the nominal or specified probability if
all of the populations have the same shape.

A rough check on the normality assumption can be made by constructing a fre-
quency distribution for the scores in each treatment level and inspecting the distrib-
utions for evidence of skewness and kurtosis. Box plots also are useful for detecting
marked departures from symmetry. Marked departures from normality in the sam-
ples raise questions concerning normality of the populations.

Assumption of Homogeneity of Variance

Assumption 4 states that the j � 1, . . . , p population variances are equal to —
that is, � � . . . � � . This assumption is referred to as the homo-
geneity of variance assumption.

Box (1954) reported that the ANOVA F test is robust with respect to violation of the
homogeneity of variance assumption provided (1) there is an equal number of
observations in each of the treatment levels, (2) the populations are normal, and (3)

s2
eŝ2

pŝ2
2ŝ2

1

s2
e

``

3 Sometimes factors beyond the researcher’s control preclude the random assignment of participants to
treatment levels and the control of important extraneous variables. Cook and Campbell (1979) referred
to such experiments as “quasi-experimental designs.”
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the ratio of the largest variance to the smallest variance does not exceed 3.
Considering these restrictions and the fact that it is not unusual for the ratio of
the largest to smallest sample variance to exceed 3, it seems prudent to question
the reputed robustness of ANOVA with respect to unequal (heterogeneous) vari-
ances. Indeed, numerous investigators have shown that even when sample sizes
are equal, the ANOVA F test is not robust with respect to the variance hetero-
geneity often encountered in behavioral and educational research. In the face of
this evidence, it is clear that researchers should not ignore violations of the ho-
mogeneity of variance assumption. Fortunately, there are robust alternatives to
the ANOVA F test statistic that can be used when heterogeneous population vari-
ances are suspected. These procedures are described by Clinch and Keselman
(1982) and Wilcox (1996).

CHECK YOUR UNDERSTANDING OF SECTION 15.5

16. Qualify the statement “The F test in ANOVA is robust with respect to depar-
tures from normality.”

17. A rough but adequate check on the tenability of the normality assumption con-
sists of making a frequency distribution of the scores in each treatment level and
inspecting them for evidence of skewness and kurtosis. Decide on the tenability
of this assumption for the data in (a) Exercises 12 and (b) Exercise 14 of “Check
Your Understanding of Section 15.4.”

18. In words, what is the assumption of homogeneity of variance?
19. Term to remember:

a. Homogeneity of variance

15.6 MULTIPLE COMPARISON PROCEDURES

As you have seen, the ANOVA F test is used to determine the tenability of the om-
nibus null hypothesis H0: m1 � m2 � · · · � mp. If this hypothesis is rejected, usually
the next question is, which population means are not equal? A number of test statis-
tics have been developed for answering this question—that is, for ferreting out sig-
nificant differences among population means, or, as it is often called, data snooping
Because the tests are performed after observing one’s sample data, the tests also are
referred to as a posteriori or post hoc tests. Statisticians have developed a variety
of statistics called multiple-comparison statistics for performing such tests. In the
following paragraphs, I will describe two especially useful multiple-comparison
statistics. But first I will define a contrast among means.

Contrasts among Means

A contrast or comparison among means is a difference among the means, with
appropriate algebraic signs. I use the symbols i and to denote, respectively, thecˆc
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ith contrast among population means and a sample estimate of the ith contrast. For
example, the population contrast m1 � m2 is denoted by the symbol 1; the sample
contrast , by . If an experiment contains p � 3 means, contrasts involv-
ing two and three population means may be of interest, for example,

The contrasts on the left involve a difference between two means. Those on the right in-
volve the average of two means versus a third mean. Contrast ,
for example, could represent the average of two experimental-group means, m1 and m2,
versus a control-group mean, m3.

All contrasts have a set of underlying coefficients, denoted by c1, c2, . . . , cp, that
define the contrast. Consider an experiment with three treatment levels. The coeffi-
cients for contrast 1 � m1 � m2 are c1 � 1, c2 � �1, and c3 � 0:

The coefficients for contrast 4 � (m1 � m2)/2 � m3 are c1 � 1/2, c2 � 1/2, and 
c3 � �1:

Ordinarily, researchers do not bother to write the coefficients unless they are num-
bers other than 1, �1, and 0. Notice that I needed the coefficients c1 � c2 � 1/2 to
define contrast 4.

The difference (m1 � m2)/2 � m3 is a contrast, but (m1 � m2) � m3 is not. Why?
For a difference among means to be a contrast, the coefficients must satisfy the fol-
lowing condition.

The coefficients of a contrast, c1, c2, . . . , cp, must be numbers such that the
coefficients sum to 0—that is, .

The coefficients of the difference (m1 � m2)/2 � m3 sum to zero: 1/2 �
1/2 �(�1) � 0. Hence, this difference is a contrast. However, the difference 

gp
i51cj 5 c1 1 c2 1 # # # 1 cp 5 0

 c4 5 s1>2dm1 1 s1>2dm2 1 s21dm3 5
m1 1 m2

2
2 m3

 c4 5 sc1dm1   
1   sc2dm2 1 sc3dm3
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(m1 � m2) � m3 is not a contrast because the coefficients do not sum to zero:
1 � 1 � (�1) � 1.

For convenience, coefficients of contrasts usually are chosen so that the sum of
their absolute values is equal to 2—that is,

where indicates that the sign of cj is always taken to be positive. All six of the
contrasts described earlier satisfy this property. For example, the sums of the ab-
solute value of the coefficients for 1 and 4 are, respectively,

and

Contrasts for which � 2 are expressed on the same scale or metric and can
be compared with one another.

When all of the coefficients of a contrast except two are equal to 0, the contrast is
called a pairwise contrast. Otherwise, the contrast is a nonpairwise contrast. For
example, contrast

1 � (1)m1 � (�1)m2 � (0)m3 � m1 � m2

is a pairwise contrast. However, contrast

4 � ( )m1 � ( )m2 � (�1)m3 � � m3

is a nonpairwise contrast.

Fisher-Hayter Multiple Comparison Test

A variety of multiple comparison procedures have been developed to test null
hypotheses about contrasts. I will describe two multiple comparison tests: the
Fisher-Hayter test and Scheffé’s (pronounced Shef-fay) test. The Fisher-Hayter
test is appropriate for testing all pairwise contrasts among p means.4 Scheffé’s test
can be used for making pairwise and nonpairwise tests. Both tests control the
probability of making one or more Type I errors for the collection of tests at or
less than a.

The Fisher-Hayter multiple comparison test is a two-step procedure. The first
step consists of using the ANOVA F statistic to test the omnibus null hypothesis,
H0: m1 � m2 � · · · � mp, at a level of significance. If the ANOVA F test is not sig-
nificant, the omnibus null hypothesis is not rejected and it is concluded that none of
the pairwise contrasts differ from 0. If the omnibus null hypothesis is rejected, each
of the pairwise contrasts is tested using the Fisher-Hayter test statistic.

m1 1 m2

2
1>2

1>2c

c

gp
i51|cj|

 |c1| 1 |c2| 1 |c3| 5 | 
1>2  | 1 | 

1>2  | 1 | 2 1| 5 1>2 1 1>2 1 1 5 2

 |c1| 1 |c2| 1 |c3| 5 |1| 1 | 2 1| 1 |0| 5 1 1 1 1 0 5 2

cc

|cj|

a
p

j51
|cj| 5 2

4 Tukey’s HSD test is widely used for testing pairwise contrasts. I do not discuss Tukey’s test here be-
cause the Fisher-Hayter test is more powerful and can be used when the various sample n’ are not equal
(Kirk, 1994).



15.6 Multiple Comparison Procedures 415

The formula for the Fisher-Hayter test statistic, denoted by qFH, is

where and are two sample means, MSWG is the denominator of the
ANOVA F statistic, and nj and nj are the sizes of the samples used to compute
the sample means.

A pairwise, nondirectional null hypothesis, H0: mj � mj, is rejected if the absolute value
of the Fisher-Hayter qFH statistic exceeds or equals the critical value q

a; p�1, n, where 
q

a; p�1, n is obtained from the distribution of the studentized range in Appendix Table
D.9. Notice that Appendix Table D.9 is entered for p � 1 means instead of the actual
number of means in the experiment. The meaning of the other subscripts in q

a; p�1, n is
as follows: a is the two-tailed probability of making one or more Type I errors for the
collection of all possible pairwise contrasts, and n is the degrees of freedom associated
with MSWG, which is equal to p(n � 1) for the completely randomized ANOVA
design. Ordinarily, I would use a/2 instead of a to denote a two-tailed probability in
q

a; p�1, n. It is common to depart from this convention when a statistic is only appropri-
ate for performing two-tailed tests. Neither the Fisher-Hayter test nor Scheffé’s test is
appropriate for one-tailed tests because the tests are performed after examining the data.

I will use the weight-loss data in Tables 15.4-2 and 15.4-3 to illustrate the computa-
tional procedures for the Fisher-Hayter test. The sample means in Table 15.4-2 are 
� 8.00, � 9.00, and � 12.00; MSWG � 5.037 from Table 15.4-3, and n � 10.
The .05 level of significance is adopted. Hence, the probability of making one or more
Type I errors for the collection of all pairwise contrasts will not exceed .05.

The first step is to test the omnibus null hypothesis using an ANOVA F test. The
F test is summarized in Table 15.4-3 and is significant. Because the F test is signifi-
cant, the next step is to compute

for each pairwise contrast.
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To reject a null hypothesis, the absolute value |qFH| must exceed or equal q.05; 3 � 1, 27
2.90. Because |qFH(27)| � 5.64 for contrast 2 and 4.23 for contrast 3 are greater

than q.05; 3 � 1, 27 2.90, the null hypotheses for H0: m1 � m3 and H0: m2 � m3 are re-
jected. The researcher can conclude from the sample means that for the population
of girls represented in the experiment, diet a3 would produce a greater weight loss
than diets a1 and a2. Based on the data, the researcher’s best guess is that a person
following diet a3 would lose 4 more pounds than would a person following diet a1
and 3 more pounds than would a person following diet a2.

The assumptions associated with the Fisher-Hayter statistic are as follows:

1. Random sampling or random assignment of participants to the treatment levels.
2. The j � 1, . . . , p populations are normally distributed.
3. The variances of the j � 1, . . . , p populations are equal.

Scheffé’s Multiple Comparison 
Test and Confidence Interval

I turn now to Scheffé’s test—one of the more versatile multiple comparison tests.
The test should be used if any of the researcher’s null hypotheses involves a non-
pairwise contrasts—that is, a contrast of the form

i � c1m1 � c2m2 � · · · � cpmp

where three or more of the cj coefficients are not 0. If a researcher is only interested
in hypotheses involving pairwise contrasts, the Fisher-Hayter test should be used be-
cause of its greater power.

After examining the weight-loss data in Table 15.3-1, a researcher might be
interested in the following nondirectional null hypotheses: H0: m1 � m3 � 0, H0: m2 �
m3 � 0, and H0: (m1 � m2)/2 � m3 � 0.

The formula for Scheffé’s test statistic, denoted by FS, is

where c1, c2, . . . , cp are coefficients that define a contrast; , , . . . ,
are sample means; MSWG is the denominator of the ANOVA F statistic; and
n1, n2, . . . , np are the sizes of the samples used to compute the sample
means.

Scheffé’s test, unlike the Fisher-Hayter test, does not have to be preceded by a test of
the omnibus null hypothesis. However, if the omnibus null hypothesis is not rejected,
Scheffé’s test will not find any significant pairwise or nonpairwise contrasts. A nondi-
rectional null hypothesis for i � c1m1 � c2m2 � · · · � cpmp is rejected if the absolutec
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value of Scheffé’s FS statistic exceeds or equals the critical value ,
where p is the number of means in the experiment and is obtained
from Appendix Table D.5. The meaning of the subscripts in is as fol-
lows: a is the value that cuts off the upper a region from Appendix Table D.5, n1 is
equal to p � 1, and n2 � p(n � 1).

The Scheffé FS statistics for the weight-loss data in Tables 15.4-2 and 15.4-3 are
as follows:

To reject a null hypothesis, the value of FS must exceed or equal (3 � 1)F.05: 2, 27 �
(2)(3.35) � 6.70. Because FS � 15.88, 8.93, and 16.21 for contrasts 1 through 3 are
greater than 6.70, the null hypotheses H0: m1 � m3, H0: m2 � m3, and H0: (m1 � m2)/
2 � m3 can be rejected.

Scheffé’s statistic also can be used to construct confidence intervals for all con-
trasts of interest.

A two-sided 100(1 � a)% confidence interval for i � c1m1 � c2m2 � · · · �
cpmp is given by

where � c1 � c2 � . . . � cp ; c1, c2, . . . , cp are coefficients that 

define a contrast; , , . . . , are sample means; p is the number of
means in the experiment; is the value that cuts off the upper a region 
from Appendix Table D.5; n1 � p � 1; n2 � p(n � 1); MSWG is the denomi-
nator of the ANOVA F statistic; and n1, n2, . . . , np are the sizes of the samples
used to compute the sample means.

I will use the data from the diet experiment to illustrate a two-sided 100(1 � .05)% �
95% confidence interval for � (1⁄2)m1 � (1⁄2)m2 � (�1)m3. Recall that the weight-lossc
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means were � 8.0, � 9.0, � 12.0; MSWG � 5.037, (3 � 1)F.05; 2, 27 �

(2)(3.35) � 6.70, and n1 � n2 � n3 � 10:

Because the 95% confidence interval does not include 0, a test of the null hypothe-
sis that the contrast � (m1 � m2)/2 � m3 is equal to 0 would be rejected. For the
population of girls represented in the experiment, the researcher can be 95% confi-
dent that the mean weight loss for girls who use diets a1 and a2 versus the mean for
those who use a3 is between �5.46 and �1.55 pounds. The 95% confidence interval
corresponds to the darkened portion of the real number line as follows:

c

25.45 , c , 21.55

1"s2d s3.35dÅ s5.037d c s1>2d2 1 s1>2d2 1 s21d2

10 1 10 1 10
d
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d , c

3s1>2d8.0 1 s1>2d9.0 1 s21d12.04

X.3X.2X.1

26 25 24 23 22 21 0

– m3

m1 1 m2

2

L1 5 25.45 L2 5 21.55

The assumptions associated with Scheffé’s statistic and confidence interval are
as follows:

1. Random sampling or random assignment of participants to the treatment levels.
2. The j � 1, . . . , p populations are normally distributed.
3. The variances of each of the j � 1, . . . , p populations are equal.

A robust alternative test that can be used when the population variances are unequal
(assumption 3) is described by Kirk (1995, p. 155).

Comparison of the Multiple Comparison Tests

I have described two multiple comparison tests. Each of the tests controls the proba-
bility of making one or more Type I errors at or less than a for a collection of tests,
but they differ in the nature of the collection.

1. The Fisher-Hayter test controls the Type I error for the collection of all pair-
wise contrasts.

2. Scheffé’s test controls the Type I error for the collection of all pairwise and
nonpairwise contrasts.
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Other similarities and differences between the tests are summarized in Table 15.6-1.
As noted earlier, the tests differ in power. The Fisher-Hayter test is more powerful
than Scheffé’s test. However, Scheffé’s test can be used to test nonpairwise contrasts.

15.7 PRACTICAL SIGNIFICANCE

In Section 11.3, I observed that most measures of effect magnitude fall into one of
two categories: measures of effect size and measures of strength of association. A
measure of strength of association that is used with the ANOVA F test is omega
squared, denoted by . The formula for is

Omega squared estimates the proportion of the population variance in the dependent
variable that is accounted for by the p treatments levels. Omega squared is similar to
the coefficient of determination, r2, that is described in Section 5.4. The latter statis-
tic describes the proportion of the sample variance in, say, variable Y, that is ac-
counted for by variable, X.

Cohen (1988, pp. 284–288) has suggested the following guidelines for interpret-
ing strength of association:

� .010 is a small association.

� .059 is a medium association.

� .138 or larger is a large association.

For the diet data in Table 15.4-3, an estimate of the proportion of the population
weight-loss variance accounted for by the three diets is

v̂ 2 5
sp 2 1d sF 2 1d

sp 2 1d sF 2 1d 1 np
5

s3 2 1d s8.60 2 1d
s3 2 1d s8.60 2 1d 1 s10d s3d

5 .34
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5
sp 2 1d sF 2 1d

sp 2 1d sF 2 1d 1 np
v̂2

v̂ 2v̂ 2

Table 15.6-1 Comparison of Multiple-Comparison Tests

Fisher-Hayter Scheffé

Type of contrast Pairwise Pairwise and nonpairwise
Confidence intervals available No Yes
Two-tailed test only Yes Yes
Requires equal n’s No No
Assumes random sampling or 

random assignment, normal 
populations, and equal 
variances Yes Yes
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According to Cohen’s guidelines, the strength of association between the diets and
weight loss is large—34% of the variance in weight loss is associated with the diets;
100% � 34% � 66% is associated with factors other than the diets.

Some researchers do not follow the recommended practice of always reporting
omega squared in their publications along with F and p values. If omega squared is
not given in a publication, you can compute it if the value of F, p (number of treat-
ment levels), and N or np (total number of participants) are reported.

Hedges’s g statistic, described in Section 13.2, can be used to determine the
effect size of contrasts among the diets. The g statistic is

where

For the weight-loss data in Tables 15.4-2 and 15.4-3, the researcher used the Fisher-
Hayter statistic to test three pairwise contrasts. The effect sizes for these contrasts
are as follows:

where . According to Cohen’s guidelines 
for interpreting d-like measures of effect size in Section 10.4, the two contrasts
that  were significant, and , represent large effects. This suggests that the dif-
ference between diets a1 and a3 and between diets a2 and a3 is large enough to be
of practical value. Indeed, what dieter wouldn’t want to use diet a3, which pro-
duced a one-month weight loss of 4 pounds more than diet a1 and 3 pounds more
than diet a2?

CHECK YOUR UNDERSTANDING OF SECTIONS 15.6 AND 15.7

20. For an experiment with p � 4 treatment levels, list the coefficients, cj, for the
following population contrasts.
a. m1 versus m2
b. m2 versus m4
c. m1 versus the mean of m2 and m3
d. m1 versus the mean of m2, m3, and m4
e. mean of m1 and m2 versus the mean of m3 and m4
f. m1 versus the weighted mean of m2 and m3, where m2 is weighted twice as

much as m3
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21. Which of the following are contrasts?
a. m1 � m2
b. 2m1 � m2 � m3

c.
d.
e. (3)m1 � (�3)m2 � (0)m3

f.

22. Which of the sets of means in Exercise 21 satisfy |c1| � |c2| � · · · � |cp| � 2?
23. Determine the value of q

a; p�1, n for the Fisher-Hayter test for (a) p � 4, n � 11,
a � .01; (b) p � 5, n � 13, a � .05; and (c) p � 3, n � 6, a � .05.

24. Determine the value of for Scheffé’s test for (a) p � 4, n � 11, a �

.01; (b) p � 5, n � 13, a � .05; and (c) p � 3, n1 � 6, n2 � 7, n3 � 8, a � .05.
25. Researchers investigated the effects of three dosages of ethylene glycol on the

reaction time of chimpanzees. The animals were randomly assigned to the
dosage levels so that five animals received 2 cc of the drug, treatment level a1;
five received 4 cc, a2; and five received 6cc, a3. The sample means were 

� 0.29 sec, � 0.31 sec, and � 0.39 sec; MSWG � .002 and v2 �
3(5 � 1) � 12. The hypothesis H0: m1 � m2 � m3 was rejected at the .05 level
of significance using a CR-3 design.
a. Perform all pairwise contrasts using the Fisher-Hayter test.
b. Use Hedges’s g statistic to determine the effect size of the contrasts. Inter-

pret g for those tests that were significant.
26. A researcher investigated the effectiveness of three approaches to drug educa-

tion in junior high school. The approaches were scare tactics, treatment level a1;
providing objective scientific information about physiological and psychologi-
cal effects, a2; and examining the psychology of drug use, a3. Forty-one stu-
dents who did not use drugs were randomly assigned to each treatment level. At
the conclusion of an educational program, the students evaluated its effective-
ness; a high score signified effectiveness. The sample means were � 23.1,

� 23.8, and � 26.7; MSWG � 16.4 and v2 � 3(41 � 1) � 120.
a. After examining the data, the researcher decided to use Scheffé’s statistic to

determine which of the following contrasts are not equal to 0: 1 � m1 � m2,

2 � m1 � m3, 3 � m2 � m3, and 4 � (m1 � m2)/2 � m3. Test the null hy-
potheses for these contrasts; let a � .01.

b. Construct confidence intervals for each of the contrasts and locate the confi-
dence intervals on the real number line.

c. Use Hedges’s g statistic to determine the effect size of the contrasts. Inter-
pret g for those confidence intervals that do not include 0.

27. Exercise 12 in “Check Your Understanding of Section 15.4” described an
experiment to investigate the effects of meaningfulness of nonsense syllables
on learning.
a. Estimate the proportion of the population variance in the dependent variable

that is accounted for by the four treatments levels and interpret the result.
b. Use the Fisher-Hayter test to determine which pairwise contrasts among

means are not equal to zero. Let a � .05.
c. Use Hedges’s g statistic to determine the effect size of the contrasts. Inter-

pret g for those tests that were significant.
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28. Terms to remember:
a. Data snooping b. A posteriori (post hoc) tests
c. Multiple-comparison statistic d. Contrast (comparison)
e. Coefficients of a contrast f. Pairwise contrast
g. Nonpairwise contrast h. Fisher-Hayter test statistic
i. Scheffé’s test statistic j. Omega squared

15.8 LOOKING BACK: WHAT HAVE YOU LEARNED?

Analysis of variance, ANOVA, is a statistical procedure for (1) determining how
much of the total variability among scores to attribute to each source of variation in
an experiment and for (2) testing hypotheses about some of these sources. The prin-
cipal application of ANOVA is testing the omnibus null hypothesis that two or more
population means are equal. This chapter describes a completely randomized design
(CR-p), the simplest ANOVA design. It is appropriate for experiments that meet the
following conditions:

1. One treatment or independent variable with two or more treatment levels.
2. Random assignment of participants to treatment levels, with each participant

designated to receive only one level; alternatively, the treatments can be com-
posed of participants obtained by random sampling.

Although ANOVA appears to be a complicated procedure, the basic notions are rel-
atively simple. A score Xij in a completely randomized design is a composite. Simi-
larly, the total variation among the scores, designated by SSTO, is a composite and
can be partitioned into two parts: the sum of squares between groups, SSBG, and the
sum of squares within groups, SSWG. A variance, or mean square, is obtained by
dividing a sum of squares by its degrees of freedom, for example, SSBG/dfBG �
MSBG and SSWG/dfWG � MSWG. The statistic for testing the omnibus null hypothe-
sis, H0: m1 � m2 � · · · � mp, is F � MSBG/MSWG. To use the ratio of two variances
to test a hypothesis about means may seem a bit strange. It does make sense if you
consider the expected values of MSBG and MSWG for the case in which the null
hypothesis is true and the case in which it is false. If the null hypothesis is true, all
the population treatment means are equal, in which case

If the null hypothesis is false, at least two of the population treatment means are not
equal, in which case

The larger the ratio F � MSBG/MSWG, the more likely it is that two or more popu-
lation means are not equal. How large should the F statistic be to reject the null
hypothesis? According to hypothesis-testing conventions, the null hypothesis is re-
jected if F falls in at least the upper 5% region of the F sampling distribution.
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If the omnibus null hypothesis is rejected, the researcher must still decide which
population means are not equal. Multiple comparison tests are used for this purpose.
Two particularly useful multiple comparison tests are the Fisher-Hayter test and the
Scheffé test. The Fisher-Hayter test is used for testing hypotheses about all pairwise
contrasts. Scheffé’s test is used for testing hypotheses about contrasts when at least
one of the contrasts is a nonpairwise contrast.

Both multiple comparison tests control the probability of making one or more
Type I errors at or less than a for a collection of tests. When these multiple compar-
ison tests are used, the probability of erroneously rejecting one or more null
hypotheses does not increase as a function of the number of hypotheses tested,
which is a problem with Student’s t test.

It is not enough to perform a null hypothesis significance test or construct a con-
fidence interval. Researchers should routinely assess the practical significance of
their data. Such a measure for the ANOVA omnibus null hypothesis is omega
squared. Omega squared estimates the proportion of variance in the dependent vari-
able that is accounted for by the independent variable. If multiple comparisons have
been performed, Hedges’s g can help a researcher decide whether statistically sig-
nificant contrasts are practically significant.

REVIEW EXERCISES FOR CHAPTER 15

1. A researcher compared five colors of warning lights on an automobile instru-
ment panel. The dependent measure was reaction time to the onset of a light.
(a) State the null hypothesis. (b) How many t tests would be required to test
hypotheses of the form H1: mj � mj? (c) If a � .01, what is the probability of
making one or more Type I errors using ANOVA? What is the probability of
making one or more Type I errors when performing multiple t tests? (d) If the
overall null hypothesis is rejected, what does this tell the researcher?

2. Under what conditions do the ANOVA and t approaches lead to the same proba-
bility of making a Type I error?

3. (a) Give two examples of independent variables for which the ANOVA and mul-
tiple t approaches would lead to identical conclusions. (b) What characteristic
do the examples have in common?

4. Identify the following.
a. a3 b. X44

c. X12,2 d.
e. (X61 � ) f. X42 � m � (m2 � m) � (X42 � m2)
g. h.

5. For the following null hypotheses, indicate whether the hypothesis is correctly
or incorrectly stated.
a. mj 0 for all j and j
b. m1 m2 m3

6. Express the following scores in terms of an ANOVA model equation: (a) X31,
(b) X35, (c) X11, 4.
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7. Calculate the degrees of freedom for MSTO, MSBG, and MSWG for the follow-
ing conditions.
a. p � 5, n � 15
b. p � 4, n � 22
c. p � 3, n � 24
d. p � 4, n1 � 8, n2 � 8, n3 � 6, n4 � 6

8. Under what conditions does F � MSBG/MSWG tend to be larger than 1?
9. Under what conditions is a completely randomized design appropriate?

10. a. Fill in the blanks in the following ANOVA table.

Source SS df MS F

Between groups 36.000 3 ( ) ( )
Within groups ( ) ( ) ( )

Total 164.000 35

b. Determine the p value of the F statistic using Microsoft’s Excel FDIST
function.

11. The learning of one task enhances the learning of different but similar tasks. To
investigate this phenomenon (called learning to learn), 30 participants were
randomly assigned to three conditions subject to the restriction that an equal
number were assigned to each condition. Participants in condition a1 learned
2 lists of nonsense syllables, those in a2 learned 8 lists, and those in a3 learned
14 lists. The next day all the participants learned another list. The dependent
variable was the number of trials required to learn this list. The investigator ob-
tained the following data.

a1 a2 a3

7 6 3
9 5 2
5 7 3
7 3 6
8 4 3
7 5 4
6 6 5
8 5 5
7 4 4
6 5 4

a. Construct stacked box plots for the data. Are the sample distributions rela-
tively symmetrical? Do the data contain outliers?

b. Compute descriptive statistics, ’s and ’s, for the data and construct a
table similar to Table 15.4-1.

c. Are the sample data consistent with the researcher’s hypothesis that H1: mj
mj for some j and j'?

2

ŝjX.j
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d. Test the null hypothesis H0: m1 � m2 � m3. Let a � .05. Construct an
ANOVA summary table. Determine the p value of the F statistic using Mi-
crosoft’s Excel FDIST function.

e. Summarize the results of the ANOVA in a sentence or two.
12. List the steps used in testing the null hypothesis in Exercise 11, and state the de-

cision rule.
13. Presidents of companies employing between 5,000 and 8,000 employees were

randomly sampled from five geographic areas: a1 � southeast, a2 � east, a3 �
midwest, a4 � southwest, and a5 � west. Use ANOVA to test the null hypothe-
sis that mean income for the presidents is the same in different areas of the
country. The investigator obtained the following data, representing thousands of
dollars.

a1 a2 a3 a4 a5

40 42 37 36 46
31 40 46 40 40
32 46 45 34 45
35 45 42 34 48
37 37 42 33 46
38 43 43 39 47
35 43 40 38
33 44 39 37
35 42 34
37 39

a. Construct stacked box plots for the data. Are the sample distributions rela-
tively symmetrical? Do the data contain outliers?

b. Compute descriptive statistics, ’s and ’s, for the data and construct a
table similar to Table 15.4-1.

c. Are the sample data consistent with the researcher’s hypothesis that H1: mj
mj for some j and j'?

d. Test the null hypothesis H0: m1 � m2 � m3 � m4 � m5. Let a � .05. Con-
struct an ANOVA summary table. Determine the p value of the F statistic us-
ing Microsoft’s Excel FDIST function.

e. Summarize the results of the ANOVA in a sentence or two.
14. List the steps used in testing the null hypothesis in Exercise 13, and state the de-

cision rule.
15. What does the use of random sampling or random assignment in an experiment

accomplish?
16. A rough but adequate check on the tenability of the normality assumption con-

sists of making a frequency distribution of the scores in each treatment level
and inspecting them for evidence of skewness and kurtosis. Decide on the ten-
ability of this assumption for the data in Exercise 11 of “Review Exercises for
Chapter 15.”

17. Comment on the statement “The F test in ANOVA is robust with respect to het-
erogeneity of variance.”
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18. For an experiment with p � 5 treatment levels, list the coefficients, cj, for the
following population contrasts:
a. m1 versus m2
b. m1 versus m3
c. m2 versus m3
d. m1 versus the mean of m2 and m4
e. mean of m1 and m2 versus the mean of m3, m4, and m5
f. the weighted mean of m1 and m2 versus the weighted mean of m3 and m4,

where m1 and m3 are weighted twice as much as m2 and m4.
19. Which of the following are contrasts?

a. (2)m1 � (�1)m2 � (0)m3
b. (5)m1 � (�2)m2 � (�3)m3

c. ( )m1 � (�1)m2 � ( )m3

d. ( )m1 � (� )m2 � (� )m3
e. (2)m1 � (0)m2 � (0)m3

f. ( )m1 � ( )m2 � (� )m3 � (� )m4
20. Which of the sets of means in Exercise 19 satisfy |c1| � |c2 | � . . . � |cp | � 2?
21. Determine the value of q

a; p�1, n for the Fisher-Hayter test for (a) p � 3, n � 9,
a � .05; (b) p � 6, n � 11, a � .05; (c) p � 4, n � 6, a � .01.

22. Determine the value of (p � 1) for Scheffé’s test for (a) p � 3, n � 7, a �

.01; (b) p � 5, n � 25, a � .05; (c) p � 4, n1 � 5, n2 � 5, n3 � 6, n4 � 8, a � .05.
23. Exercise 11 described an experiment to investigate the phenomenon called

learning to learn.
a. Estimate the proportion of the population variance in the dependent variable

that is accounted for by the three treatments levels.
b. Use the Fisher-Hayter test to determine which pairwise contrasts among

means are not equal to zero. Let a � .05.
c. Use Hedges’s g statistic to determine the effect size of the contrasts. Inter-

pret g for those tests that were significant.
24. Exercise 13 described an experiment to investigate mean income of company

presidents from five geographic areas.
a. Estimate the proportion of the population variance in the dependent variable

that is accounted for by the five treatments levels.
b. Use the Scheffé statistic to test the following null hypotheses: 1 � m1 �

m4 � 0, 2 � m3 � m4 � 0, and 3 � (m2 � m5) � (m1 � m4) � 0. Let a � .05.
c. Use Hedges’s g statistic to determine the effect size of the contrasts. Inter-

pret g for those tests that were significant.
d. Construct confidence intervals for each of the contrasts and locate the confi-

dence intervals on the real number line.
25. A researcher sought to investigate the religious dogmatism of four church de-

nominations in a large Midwestern city. A random sample of 31 members from
each denomination took a paper-and-pencil test of dogmatism. The sample
means were � 64, � 73, � 61, and � 49; MSWG � 120 and
v2 � 4(31 � 1) � 120.
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a. Use Scheffé’s test to evaluate the following hypotheses at the .05 level of
significance.
H0: m2 � m3 � 0

b. Use Hedges’s g statistic to determine the effect size of those contrasts for
which the null hypothesis was rejected and interpret the results.

c. Construct confidence intervals for each of the contrasts and locate the confi-
dence intervals on the real number line.

26. List the requirements for using the Fisher-Hayter and Scheffé multiple compar-
ison tests.

H0: s
1
2dm1 1 s1

2dm3 1 s21dm4 5 0
H0: s1dm2 1 s2

1
2dm1 1 s2

1
2dm3 5 0
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16.1 INTRODUCTION

Looking Ahead: What Is This Chapter About?

In this chapter you will learn about three approaches to controlling or minimizing
undesired sources of variation in experiments. You also will learn about two more
analysis of variance designs: a randomized block design and a completely randomized
factorial design. The randomized block design is appropriate for experiments with one
treatment and one block variable. The design uses the blocking procedure introduced
in connection with a t test for dependent samples to isolate an undesired source of vari-
ation in an experiment. The completely randomized factorial design enables you to
test hypotheses about two or more treatments and the interaction between the treat-
ments. The latter hypothesis about interactions is unique to factorial designs.

After reading this chapter, you should know the following:

■ The relative merits of three approaches to controlling or minimizing undesired
sources of variation in experiments

■ How to lay out and analyze data using a randomized block design
■ How to lay out and analyze data using a completely randomized factorial design
■ How to interpret an interaction between two treatments
■ How to compute and interpret partial omega squared

16.2 BASIC EXPERIMENTAL DESIGN CONCEPTS

Definition of Experimental Design

The term experimental design refers to a randomization plan for assigning
participants to experimental conditions and the statistical analysis associated
with the plan.

The simplest experimental design is the randomization and analysis plan that is used
with a t test for independent samples. I discussed this plan in Section 13.2. A t test
for dependent samples uses a more complex randomization plan, but the added com-
plexity is usually accompanied by greater power, as I noted in Section 13.4. The
next level of design complexity is the randomization and analysis plan that is used
with a completely randomized ANOVA design (CR-p design). As discussed in
Chapter 15, this design is appropriate for an experiment that has one treatment with
p � 2 levels. As you will see, the randomized block design and the completely ran-
domized factorial design described in this chapter utilize features of the designs dis-
cussed earlier. Before describing the randomized block and completely randomized
factorial designs, I will discuss several ways to control nuisance variables.

Controlling Nuisance Variables

In the behavioral sciences, health sciences, and education, differences among partic-
ipants or experimental units can make a significant contribution to error variance,
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. Recall from Section 15.3 that if the null hypothesis for a completely randomized
design is false, the F statistic is the ratio of the following sample variances:

A large error variance, , can mask or obscure the effects of a treatment. Hence, in
designing an experiment, you want to minimize variables that contribute to error
variance. Other variables that can contribute to error variance include administering
the levels of a treatment under different environmental conditions—say, at different
times of the day or locations—and having different researchers administer the treat-
ment levels. Variation in the dependent variable that is attributable to such sources is
called nuisance variation. Three approaches to controlling or minimizing these
undesired sources of variation are as follows:

1. Hold the nuisance variables constant—for example, use only 19-year-old
women participants—and have the same researcher administer the treatment
levels at the same time of day and in the same research facility.

2. Assign the participants randomly to the treatment levels so that known and
unsuspected sources of variation among the participants are distributed over
the entire experiment and thus do not affect just one or a limited number of
treatment levels. If the treatment levels must be administered at different
times of the day or in different locations, randomize the assignment of treat-
ment levels to times and locations. This research strategy, along with the strat-
egy of holding some variables constant, is used in the completely randomized
design.

3. Include the nuisance variable as one of the factors in the experiment. The ran-
domized block design uses this research strategy in conjunction with the two
just described.

To include a nuisance variable as one of the factors in an experiment, it is neces-
sary to form blocks of participants so that the participants within a block are more
homogeneous with respect to the nuisance variable than those in different blocks.
Perhaps an example will help to clarify the procedure. In Chapter 15, I described an
experiment to determine the effectiveness of three diets for obese teenage girls. In
that example, 30 girls who wanted to lose weight were randomly assigned to three
diets with the restriction that 10 girls were assigned to each diet. Because of random
assignment, one would expect that nuisance variables such as the average initial
weight of the girls assigned to each diet would be approximately the same. Initial
weight is an important nuisance variable because it is positively correlated with the
dependent variable of weight loss. The more overweight a girl is, the easier it is for
her to lose weight.

When samples are small as in the diet experiment, random assignment of partici-
pants to treatment levels does not always distribute the nuisance variables evenly
over the levels. For example, one treatment level may have a disproportionately
large number of very obese girls. A researcher can minimize the likelihood of this
occurring by assigning participants to blocks so that those assigned to the same
block are similar with respect to the nuisance variable. A simple way to form the
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2 1 a function of treatment effects
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blocks is to rank the girls from heaviest to lightest. The three heaviest girls become
block 1, the next three heaviest girls become block 2, and so on. The matching
procedure continues until all 30 girls have been assigned to one of 10 blocks. The
three girls within a block are then randomly assigned to the diets. The layout for this
randomized block design is shown in Figure 16.2-1(a). For comparison purposes,
the layout for the completely randomized design described in Chapter 15 also is
shown. An advantage of the randomized block design, as you will see, is that it re-
moves the effects of the nuisance variable from the denominator of the F statistic.
This results in a more powerful test of a false null hypothesis.

Another approach to minimizing the effect of nuisance variables that was
mentioned earlier is to hold them constant. For example, measure each girl’s weight
loss using the same weight scale and at the same time of day. Some variables are not
easy to hold constant, such as genetic predisposition to obesity and amount of daily
exercise. These and other unsuspected nuisance variables are usually controlled by

a. Layout for randomized block design (RB – 3 design)

b. Layout for completely randomized design (CR – 3 design)
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Figure 16.2-1. Comparison of layouts for RB-3 and CR-3 designs. In the RB-3
design, each of the 10 blocks contains three matched participants who are randomly
assigned the treatment levels within a block. In the CR-3 design, 30 participants are
randomly assigned to the three treatment levels.
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random assignment. The larger the sample, the more confident a researcher can be
that the effects of nuisance variables have been evenly distributed across the
treatment conditions. The randomized block design enables a researcher to use all
three strategies for controlling nuisance variables.

Procedures for Forming Blocks

Any variable that is positively correlated with the dependent variable other
than the independent variable is a candidate for becoming a blocking
variable.

In forming blocks it is important to assign participants to blocks so that those in a
given block are as similar as possible with respect to a variable that is positively cor-
related with the dependent variable. Participants in different blocks should be less
similar. Any one of the four procedures described in Section 13.4 for obtaining
dependent samples can be used to form blocks. These procedures are as follows:

1. Observing participants under all of the conditions in the experiment—that is,
obtaining repeated measures on each participant.

2. Forming blocks of participants who are similar with respect to a nuisance
variable that is positively correlated with the dependent variable. This is
called participant matching.

3. Forming blocks that are composed of identical twins or littermates and assign-
ing members of a pair or a litter randomly to the conditions in the experiment.

4. Forming blocks of participants who are matched by mutual selection such as
husband and wife couples or business partners.

In the diet experiment, the use of participant matching appears to be the most appro-
priate blocking strategy for controlling the nuisance variable of initial weight. In
general, however, participant matching is used less often than obtaining repeated
measures on each participant. If each block consists of one participant who is
observed p times, it is desirable if possible to randomize the order in which the p
treatment levels are administered. The effects of some treatments such as a medica-
tion for an illness remain in a participant’s system for some time. In such cases, it is
necessary to provide a “washout period” between administrations of the medications
to allow the effects of the previous medication to dissipate.

When researchers consider potential blocking variables, they often overlook
characteristics of the environmental setting such as time of day. For example, if an
experiment has three treatment levels and the researcher plans to test participants
between the hours of 1 P.M. and 6 P.M., the blocks might represent the following
afternoon time periods:

Block 1 1:00–1:10 1:15–1:25 1:30–1:40 
Block 2 1:45–1:55 2:00–2:10 2:15–2:25 

Block 8 5:15–5:25 5:30–5:40 5:45–5:55 
((((
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The time periods within a block are randomly assigned to the three treatment levels.
This blocking procedure ensures that the administration of treatment levels is evenly
distributed over the testing period from 1 P.M. to 6 P.M. Time of day is a particularly
effective blocking variable because it can isolate a number of additional sources of
variability: fluctuation in daily body cycles, fatigue, changes in weather conditions,
and drifts in the calibration of electronic equipment, to mention only a few. The use
of time of day or other blocking variables such as day of the week, season, room lo-
cation, and experimental apparatus can significantly decrease error variance (also
called variance of the error effects).

CHECK YOUR UNDERSTANDING OF SECTION 16.2

1. Describe the nature of nuisance variables and three ways to control or minimize
them.

2. In selecting a blocking variable, what should a researcher look for?
3. A researcher investigated the effects of three kinds of instruction on first-grade

students’ tendency to help another child. Forty-two boys were randomly as-
signed to one of three kinds of instructions, denoted by a1, a2, and a3, with the
restriction that 14 boys were assigned to each kind of instruction. Boys in the
a1 group (indirect responsibility group) were told that there was another boy
alone in an adjoining room who had been told not to climb on a chair. Boys in
the a2 group were told the same story and in addition were told that they were
being left in charge and to take care of anything that happened (direct
responsibility group 1). All of the boys were given a simple task to perform.
Shortly after the researcher left the room, there was a loud crash in the adjoin-
ing room followed by a minute of crying and sobbing. Boys in the a3 group
were given the same instructions as those in group a2, but the sounds from the
adjoining room included calls for help (direct responsibility group 2). The
researcher observed the boys from behind a one-way mirror and rated their
behavior in terms of the amount of help offered: 1 � no help to 5 � went to the
adjoining room. (Experiment suggested by Staub, E. [1970]. A child in distress:
The effect of focusing of responsibility on children on their attempts to help.
Developmental Psychology, 2, 152�153.)
a. Identify the independent and dependent variables.
b. Identify nuisance variables that were held constant.
c. Can you think of some nuisance variables that were controlled by random-

ization?
d. Suppose that scores on the Conforming-Compulsive scale of the Millon

Clinical Multiaxial Inventory are available for each of the 42 children and
that the scale is known to be positively correlated with the dependent vari-
able. Describe in detail how you could use this information.

4. Terms to remember:
a. Experimental design b. Nuisance variation
c. Block d. Variance of error effects (error variance)
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16.3 RANDOMIZED BLOCK DESIGN

A randomized block design with p treatment levels, denoted by the letters RB-
p, uses the blocking procedure to reduce the variance of the error effects and
thereby obtain a more powerful test of a false null hypothesis. Recall from Sec-
tion 15.3 that error effects include effects that are unique to a participant, effects
attributable to chance fluctuations in the participant’s performance, and effects
attributable to environmental and other uncontrolled conditions. One of the goals
of blocking in a randomized block design is to minimize the variance of error
effects.

Every ANOVA design has a unique model equation. The model equation for a
randomized block design is described next.

Model Equation for a Score

A score, , in a randomized block design is a composite that reflects all of the
sources of variation that affect the score. You saw in Section 15.3 that a score for a
completely randomized ANOVA design is the sum of three terms in the sample
model equation: � � ( � ) � (Xij � ). In a randomized block de-
sign, a score is equal to the sum of four terms. The sample model equation is

� � ( � ) � ( � ) � ( � � � )

Score Grand Treatment Block Error
Mean Effect Effect Effect (Residual)

Notice that the sample model equation contains one more effect than the model
equation for a completely randomized design—the block effect. The statistics in the
sample model equation are unbiased estimators of four model parameters: popula-
tion grand mean, m; population treatment effect, � m; population block effect,

� m; and population error effect, Xij � � � The correspondence be-
tween the statistics and the parameters that they estimate is as follows:

A randomized block design has j � 1, . . . , p levels of treatment A and i � 1, . . . , n
blocks. The total sum of squares and total degrees of freedom for the design can be
partitioned into three parts as follows:

dfTO � dfA � dfBL � dfRES

np � 1 � p � 1 � n � 1 � (n � 1)(p � 1)
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A test of the null hypothesis that the population means for treatment A are
equal,

H0: � � · · · �

H1: m.j

is given by

The degrees of freedom for the numerator and denominator of the F statistic
are, respectively, n1 � p � 1 and n2 � (n � 1)(p � 1).

The F statistic is referred to the sampling distribution of F, which is tabled in
Appendix Table D.5. If F is greater than or equal to the critical value , the
null hypothesis is rejected.

A test of the null hypothesis that the population means for blocks, BL, are
equal is given by

The degrees of freedom for the numerator and denominator of the F statistic
are, respectively, n1 � n � 1 and n2 � (n � 1)(p � 1).

The null hypothesis that the block population means are equal is rejected if
. Ordinarily, a test of the null hypothesis for blocks is of little interest

because the blocks represent a nuisance variable whose means are expected to dif-
fer. In the following section, you will see how to compute the required mean squares
and F statistics.

Computational Procedures for RB-3 Design

For purposes of comparison, I will reanalyze the weight-loss data in Table 15.4-2 as
if the randomization plan appropriate for a randomized block design had been used.
I want to form 10 blocks of girls who are matched in terms of initial weight. Earlier,
I described a simple way to accomplish this. The 30 girls are ranked from heaviest
to lightest. The three heaviest girls become block 1, the next three heaviest girls be-
come block 2, and so on. The matching procedure continues until all 30 girls have
been assigned to one of 10 blocks. The three girls in each block are then randomly
assigned to the three diets. Assume that the 30 girls in the diet experiment have been
assigned to 10 blocks following this procedure. The data are shown in Table 16.3-1.
The data in Table 16.3-1 for the RB-3 design and the data in Table 15.4-2 for the
CR-3 design contain the same numbers. This will allow me to compare the results
of the two designs.

F $ Fa; n1, n2

F 5
SSBL> sn 2 1d

SSRES> 3 sn 2 1d sp 2 1d 4 5
MSBL

MSRES

Fa; n1, n2

F 5
SSA> sp 2 1d
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TABLE 16.3-1 Computational Procedures for RB-3 Design

(i) Data and notation [Xij denotes a score for the participant in block i and treatment level j;
i � 1, . . . , n blocks (si); j � 1, . . . , p treatment levels (aj)]

AS Summary Tablea

a1 a2 a3

s1 7 13 14 34
s2 9 9 10 28
s3 10 10 12 32
s4 12 10 12 34
s5 8 9 15 32
s6 7 8 14 29
s7 9 11 13 33
s8 8 8 12 28
s9 4 7 7 18
s10 6 5 11 22

90 120

(ii) Computational symbolsb

(iii) Computational formulas

SSTO � [AS] � [X] � 3026.000 � 2803.333 � 222.667

SSA � [A] � [X] � 2890.000 � 2803.333 � 86.667
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As discussed in Section 15.4, it is good statistical practice to compute descriptive
statistics for one’s data prior to testing an omnibus null hypothesis. A descriptive sum-
mary in the form of stacked box plots and a table of means and standard deviations for
the weight-loss data are given in Figure 15.4-2 and Table 15.4-1 of the previous chap-
ter. As discussed in Section 15.4, there was nothing in the descriptive summary that
dissuaded the researcher from proceeding to test the omnibus null hypothesis.

The data and computational procedures for the randomized block design are
shown in Table 16.3-1. The formulas in Table 16.3-1 are more convenient for com-
puting the sums of squares than those given earlier. The .05 level of significance is
adopted for the two F tests. According to Table 16.3-2, the null hypotheses for treat-
ment A and blocks can be rejected.

You are probably wondering “What, if anything, has been gained by using a ran-
domized block design instead of a completely randomized design?” The answer is
greater power. A comparison of Tables 15.4-3 and 16.3-2 shows that the F statistics
for testing the null hypothesis for the three diets are

5
MSA

MSRES
5

43.334
2.815

5 15.39Randomized block design F

 Completely randomized design  ˛F 5
MSBG
MSWG

5
43.334
5.037

5 8.60

TABLE 16.3-1 (continued)

SSBL � [S] � [X] � 2888.667 � 2803.333 � 85.333

SSRES � [AS] � [A] � [S] � [X] � 3026.000 � 2890.000 � 2888.667 � 2803.333

� 50.667

a A denotes treatment A, and S denotes subjects or blocks; the table is so named because it reflects
variation attributable to treatment levels (A) and subjects (S).

b The symbols [AS], [X], [A], and [S] are used to simplify the computational formulas.

TABLE 16.3-2 ANOVA Table for RB-3 Design

Source SS df MS F

1. Treatment A 86.667 p � 1 � 2 43.334 15.39**

(three diets)
2. Blocks 85.333 n � 1 � 9 9.481 3.37*

(initial weight)
3. Residual 50.667 (n � 1)(p � 1) � 18 2.815

4. Total 222.667 npq � 1 � 29

*p � .02.
**p � .0002.

indicates that the F statistic was obtained by dividing MSA in row 1 by MSRES in row 3; Whereas 
indicates that the F statistic was obtained by dividing MSBL in row 2 by MSRES in row 3.

32343134

3234
3134
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The F statistic for the randomized block design is larger because its denominator
(MSRES � 2.815) is about half as large as the denominator for the completely
randomized design (MSWG � 5.037). The reduction in the F denominator has been
accomplished by isolating the nuisance variable of the girls’ initial weight (MS
Blocks). Consequently, this nuisance variable does not contribute to MSRES for the
randomized block design. This point is graphically illustrated in Figure 16.3-1
where the partition of the total sum of squares for the two designs is shown. As this
figure suggests, all sources of variation not specifically identified in the model equa-
tion contribute to the F denominator.

The effectiveness of the blocking procedure is determined by how well
participants in each block are matched. The better the matching, the higher
the mean correlation between all pairs of treatment levels and the more
powerful the randomized block design relative to a completely randomized
design.

Let’s use the weight-loss data in Table 16.3-1 to illustrate what I mean. For these
data, the Pearson product-moment correlations among the three treatment levels are

SSA
    � 86.667

df � 2

SS BLOCKS
    � 85.333

df � 9

SS RESIDUAL
    � 50.667

df � 18

SSBG
    � 86.667

df � 2

SSWG
    � 136.000

df � 27

SS TOTAL
    � 222.667

df � 29

CR-3 design

RB-3 design

Figure 16.3-1. Partition of the total sum of squares and degrees of freedom 
for a CR-3 design and an RB-3 design. The sum of squares that appears in the
denominator of the F statistic for each design is indicated by the rectangle with 
the thicker lines. Notice that for the RB-3 design, the nuisance variable of blocks
has been isolated and removed from the F denominator. In other words,

SS RESIDUAL � SSWG � SS BLOCKS
50.667 � 136.000 � 85.333
dfResidual � dfWG � dfBlocks

18 � 27 � 9
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r12 � .477 for a1 and a2, r13 � .370 for a1 and a3, and r23 � .479 for a2 and a3. The
mean correlation, , is

The F denominator for the randomized block design, MSRES, is equal to

MSRES � MSWG(1 � )

where MSWG is the F denominator for a completely randomized design. The value
of MSWG from Table 15.4-3 is 5.037. For the weight-loss data, MSRES is, within
rounding error, equal to

An examination of the equation MSRES � MSWG(1 � ) reveals that the larger the
mean correlation among the treatment levels, , the smaller is MSRES relative to
MSWG. What this means is that by carefully matching the participants in each of the
block, a researcher can greatly increase the power of the randomized block design
relative to that of a completely randomized design.

Multiple Comparison Procedures

After rejecting the omnibus null hypothesis for treatment A in a randomized block
design, a researcher would probably want to determine which contrasts among the
population means are significant. The Fisher-Hayter and Scheffé multiple compari-
son procedures described in Section 15.6 can be used for this purpose. The Scheffé
procedure also can be used to construct confidence intervals.

The Fisher-Hayter and Scheffé formulas for a randomized block design are
slightly different than those for a completely randomized design.

The formula for the Fisher-Hayter test statistic is

where and are sample means for treatment A, MSREG is the denomi-
nator of the F statistic for the randomized block design, and n is the number
of blocks.

The formula for the Scheffé test statistic is

where c1, c2, . . . , cp are coefficients that define a contrast for treatment A, ,
, . . . , are sample means for treatment A, MSREG is the denominator of

the F statistic for the randomized block design, and n is the number of blocks.

The Fisher-Hayter test is a two-step procedure. The first step consists of using the
ANOVA F statistic to test the omnibus null hypothesis for treatment A at a level of

X.pX.2

X.1

FS 5
sc1X.1 1 c2X.2 1 # # # 1 cpX.pd2

MSREGac1
2

n
1

c2
2

n
1 # # # 1

cp
2

n
b

X?jrX?j

qFH 5
X.j 2 X.jr

Å
MSREG

n

r
r

MSRES 5 MSWGs1 2 rd 5 5.037s1 2 .442d 5 2.811

r

r 5
.477 1 .370 1 .479

3
5 .442

r



16.3 Randomized Block Design 441

significance. If the ANOVA F test is not significant, the omnibus null hypothesis is
not rejected and it is concluded that none of the pairwise contrasts for treatment A
differ from 0. If the omnibus null hypothesis is rejected, each of the pairwise con-
trasts is tested using the Fisher-Hayter statistic. The null hypothesis, H0: � ,
is rejected if the absolute value of qFH exceeds or equals the critical value q

a; p � 1, n,
where q

a; p � 1, n
is obtained from the distribution of the Studentized range in

Appendix Table D.9. The table is entered for p � 1 means, where p is the number of
treatment A means in the experiment.

The Scheffé test for a treatment A contrast, H0: c1 � c2 � · · · � cp � 0,
is rejected if the absolute value of FS exceeds or equals the critical value

, where p is the number of treatment A means in the experiment and
is obtained from Appendix Table D.5.

Scheffé’s statistic also can be used to construct confidence intervals for all con-
trasts of interest.

A two-sided 100(1 � a)% confidence interval for the treatment A contrast,

i � c1 � c2 � · · · � cp , is given by

where ; c1, c2, · · · , cp are coefficients that
define a contrast for treatment A; , , . . . , are sample means; p is the
number of treatment A means in the experiment; is the value that cuts
off the upper a region from Appendix Table D.5; n1 � p � 1, n2 � (n � 1)
(p � 1); MSRES is the denominator of the F statistic for a randomized block
design; and n is the number of blocks.

Computational Example for the Fisher-Hayter 
Multiple Comparison Procedure

The omnibus null hypothesis for the weight-loss data in Tables 16.3-1 and 16.3-2
was rejected. After examining the sample means, the researcher decided to use the
Fisher-Hayter multiple comparison statistic to test the following null hypotheses:

H0: m�1 � m�2 H0: m�1 � m�3 H0: m�2 � m�3

The weight-loss sample means are � 8.00, � 9.00, � 12.00; MSRES
� 2.815; and n � 10. Because the ANOVA F test was significant, the next step is to
test the three pairwise contrasts using
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The test statistics are

To reject a null hypothesis, the absolute value |qFH | must exceed or equal q
a; p � 1, v �

q.05; 3 � 1, 18 � 2.97, where v � (n � 1)(p � 1). Because |qFH(18)| � 7.54 and 
5.65 are greater than q.05; 3�1, 18 � 2.97, the null hypotheses for H0: m1 � m3 and 
H0: m2 � m3 are rejected. The researcher can conclude that for the population of girls
represented in the experiment, diet a3 would produce a greater weight loss than diets
a1 and a2. Based on the sample data, the researcher’s best guess is that the use of diet
a3 would result in losing 4 more pounds than diet a1 and 3 more than diet a2.

Practical Significance

In Section 15.7, I described omega squared, a measure of strength of association
that is reported with the ANOVA F test. Omega squared estimates the proportion
of variance in the dependent variable that is accounted for by the p treatments
levels. For a randomized block design, a researcher wants to estimate the propor-
tion of variance in the dependent variable that is accounted for by the p treat-
ments levels while ignoring the nuisance variable of blocks. The appropriate
measure of strength of association between the dependent variable X and treat-
ment A is partial omega squared, denoted by . The subscript X| A·BL
indicates that the association is between the dependent variable X and treatment
A; the dot indicates that the effects of blocks are ignored. The formula for

is

where FA is the F statistic for treatment A (FA � MSA/MSRES). For the weight-loss
data in Table 16.3-2, an estimate of the proportion of the population weight-loss
variance accounted for by the three diets is

v̂ 2
X|A?BL 5

s3 2 1d s15.394 2 1d
s3 2 1d s15.394 2 1d 1 s10d s3d

5 .49

v̂2
X|A?BL 5

sp 2 1d sFA 2 1d
sp 2 1d sFA 2 1d 1 np

v̂X | A?BL
2

v̂X | A?BL
2

sĉ3 5 X.2 2 X.3dqFH 5
9.00 2 12.00

Å
2.815

10

5 25.65 

sĉ2 5 X.1 2 X.3dqFH 5
8.00 2 12.00

Å
2.815

10

5 27.54 

sĉ1 5 X.1 2 X.2dqFH 5
8.00 2 9.00

Å
2.815

10

5 21.88 
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According to Cohen’s guidelines for interpreting omega squared in Section 15.7,
the strength of association between the diets and weight loss is large—49% of the
variance in weight loss is associated with the diets; 100% � 49% � 51% is associ-
ated with factors other than the diets.

Hedges’s g statistic, described in Sections 13.2 and 15.7, can be used to assess
the effect size of contrasts among the diet means. The g statistic is

where

For a randomized block design, a simpler formula for computing is

where SSBL and SSRES are obtained from a randomized block ANOVA table. For
the weight-loss data in Tables 16.3-1 and 16.3-2, the effect sizes for , , and 
are, respectively,

where

The Fisher-Hayter multiple comparison procedure identified two significant pair-
wise contrast: � m1 � m3 and � m2 � m3. According to Cohen’s guidelines for
interpreting d-like measures of effect size in Section 10.4, and represent large
effects. This suggests that the weight-loss difference between diets a1 and a3 and
between diets a2 and a3 is large enough to be of practical value. This conclusion is
consistent with our intuition—what girl wouldn’t want to use a diet that results in
losing 3 or 4 more pounds per month than less effective diets?

ĉ3ĉ2

ĉ3ĉ2

ŝPooled 5Å
85.333 1 50.667

3s10 2 1d
5 2.244

sĉ3 5 X?2 2 X?3dg 5
|9 2 12|
2.244

5 1.3

sĉ2 5 X?1 2 X?3dg 5
|8 2 12|
2.244

5 1.8

sĉ1 5 X?1 2 X?2dg 5
|8 2 9|
2.244

5 0.45

g 5
|X?j 2 X?jr|

ŝPooled

ĉ3ĉ2ĉ1

ŝPooled 5Å
SSBL 1 SSRES

psn 2 1d

ŝPooled

ŝPooled 5Å
sn1 2 1dŝ1

2 1 sn2 2 1dŝ2
2 1 # # # 1 snp 2 1dŝp

2

sn1 2 1d 1 sn2 2 1d 1 # # # 1 snp 2 1d

g 5
|X.j 2 X.jr|
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Assumptions Associated with 
a Randomized Block Design

The assumptions for the simplest ANOVA design, the completely randomized de-
sign, were described in detail in Section 15.5. The randomized block design shares
several of the assumptions, as the following list shows:

1. The model equation Xij � m � ( � m) � ( � m) � (Xij � � � m)
reflects all the sources of variation that affect Xij.

2. The blocks represent a random sample from a population of blocks. The pop-
ulation block effects within each block population are normally distributed,
and the variances of the block populations are homogeneous. Furthermore,
the block effects are independent of each other and other effects in the model
equation.

3. The population variances of differences for all pairs of treatment levels,
, are homogeneous; is the covariance (see Section 5.3)

of treatment levels aj and aj'.
4. The population error effects are normally distributed and the variances of the

error effects, , are homogeneous. Furthermore, the error effects are inde-
pendent of each other and other effects in the model equation.

Assumptions 1 and 4 are discussed in Section 15.5 in connection with a com-
pletely randomized design; assumptions 2 and 3 are new. Assumption 2 states,
among other things, that the blocks in an experiment are a random sample from a
population of blocks. In many experiments, a researcher does not actually obtain a
random sample of block. In such cases, the conclusions from the experiment are re-
stricted to the population represented by the blocks in the experiment. Recall that
blocks represent a nuisance variable whose effects a researcher wants to control. In
the weight-loss experiment, the blocks represented 10 levels of initial obesity and
were not randomly sampled from a population of levels of initial obesity. Instead,
30 volunteers who wanted to lose weight were recruited. The levels of initial obesity
were determined by the initial weights of the 30 girls. The researcher was not inter-
ested in the specific levels of obesity but instead focused on controlling for the
effects of initial obesity. Although a random sample of blocks was not obtained, a
population of girls must exist that would have produced the blocks in the experiment
if a random sample had been obtained. The results of the experiment apply to this
hypothetical population of blocks. To the extent that the blocks in an experiment are
representative of a population of interest, the results may generalize to that popula-
tion. However, in the absence of random sampling, generalizations to other block
populations involve a leap of faith.

Assumption 3 states that the population variances of differences between all pairs
of treatment levels are homogeneous. For the weight-loss data, this means that

Violation of this assumption, which is called the sphericity condition, can seriously
affect the probability of making a Type I error and the power of the F test. Procedures
for testing the assumption and adjustments to compensate for observed violations are

sa1

2 1 sa2

2 2 2sa1a2
5 sa1

2 1 sa3

2 2 2sa1a3
5 sa2

2 1 sa3

2 2 2sa2a3

se
2

sajajr
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complicated and beyond the scope of this book. The interested reader is referred to
Kirk (1995, pp. 274–282).

The model equation and associated assumptions that have been described are called
a mixed model and underlie most randomized block designs. For a discussion of other
models, the reader can consult Howell (2002, p. 442) and Kirk (1995, pp. 265–268).

CHECK YOUR UNDERSTANDING OF SECTION 16.3

5. Fill in the missing values in the following table. Use Microsoft’s Excel FDIST
function to determine the p value of the F statistics.

Source SS df MS F

1. Treatment A 51.765 3 (   ) (   )*

2. Blocks (   ) 20 (   ) (   )**

3. Residual 271.500 (   ) (   )

4. Total 484.765 (   )

* p � (   ).
** p � (   ).

6. Brain-damaged patients are expected to score lower on the Willner Unusual
Meanings Vocabulary Test (WUMV), which measures knowledge of unusual
meanings of familiar words, and the Willner-Sheerer Analogy Test (WSA) than
on the vocabulary items of the Wechsler Adult Intelligence Scale (WAIS). A ran-
dom sample of 12 brain-damaged patients took all three tests. The order of
administration of the tests was randomized independently for each patient. The
dependent variable was the participant’s standard score on each test. According
to the test manual, all three tests have a mean of 10 and a standard deviation of 3.
The following data were obtained. (Experiment suggested by Willner, W. [1965].
Impairment of knowledge of unusual meanings of familiar words in brain dam-
age and schizophrenia. Journal of Abnormal Psychology, 70, 405–411.)

a1 a2 a3
WAIS WUMV WSA

s1 15 12 11
s2 10 11 8
s3 6 4 3
s4 7 7 5
s5 9 6 6
s6 16 14 10
s7 11 10 7
s8 13 9 4
s9 12 10 8
s10 10 8 7
s11 11 9 9
s12 14 11 10

3234
3134
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a. Construct stacked box plots for the data. Are the sample distributions rela-
tively symmetrical? Do the data contain outliers?

b. Compute descriptive statistics, ’s and ’s, for the data and construct a
table similar to Table 15.4-1.

c. What do the descriptive statistics in (b) tell you?
d. Test the null hypothesis H0: � � . Let a � .05. Determine the p

value of the F statistics for treatment A and Blocks using Microsoft’s Excel
FDIST function.

e. Estimate the proportion of the population variance in the dependent variable
that is accounted for by treatment A and interpret the result.

f. Use the Fisher-Hayter statistic to determine which population means differ.
g. Use Hedges’s g statistic to measure the effect size for the three pairwise con-

trasts and interpret the results.
h. Summarize the results of the ANOVA in a sentence or two.
i. Ignore the blocking variable and analyze the data as if the randomization plan

for a CR-3 design had been used. Compare the results of the two analyses by
constructing a figure similar to Figure 16.3-1. Was the blocking procedure ef-
fective? Explain.

7. Terms to remember:
a. Randomized block design b. Partial omega squared

16.4 COMPLETELY RANDOMIZED FACTORIAL DESIGN

Introduction to Factorial Designs

The two ANOVA designs discussed thus far involve one treatment, but often a
researcher wants to test hypotheses about two or more treatments. This can be
accomplished by performing two or more separate experiments, but this is ineffi-
cient. An alternative approach is to use a factorial ANOVA design to simultaneously
test hypotheses about two or more treatments in a single experiment.

A factorial design is distinguished from other ANOVA designs in that it has
two or more treatments and the levels of each treatment are investigated in
combination with those of other treatments.

For example, a participant’s performance on a learning task might be observed
for the combined conditions of large monetary reward for good performance (one
level of treatment A) and absence of distractions in the learning environment (one
level of treatment B). A participant in a factorial design is always simultaneously
exposed to one level each of two or more treatments. The combination of condi-
tions to which a participant is simultaneously exposed is called a treatment
combination. The number of observations in each treatment combination, n,
must be the same for each combination. Special procedures can be used when the
treatment combination n’s are unequal, but the procedures are beyond the scope
of this book.

m?3m?2m?1

ŝjX.j
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The levels of the treatments in a factorial design are completely crossed, mean-
ing that each level of one treatment occurs once with each level of the other treat-
ments and vice versa. I will describe a completely randomized factorial design
with two treatments: treatment A and treatment B. The design is designated by the
letters CRF-pq, where p denotes the number of levels of treatment A, and q denotes
the number of levels of treatment B.1 Perhaps the following example will clarify the
main features of a CRF-pq design.

Consider an experiment to investigate the effects of treatments A and B on read-
ing speed. Suppose that treatment A consists of two levels of room illumination: a1
is 15 foot-candles and a2 is 30 foot-candles. Treatment B consists of three levels of
type size: b1 is 6-point type, b2 is 12-point type, and b3 is 18-point type. Each level
of A is combined with all levels of B to form 2 � 3 � 6 treatment combinations:
a1b1, a1b2, a1b3, . . . , a2b3. The layout for this CRF-23 design with five participants
in each treatment combination is shown in Figure 16.4-1.

The randomization plan for the design is as follows. Thirty participants are ran-
domly assigned to p � q � 2 � 3 � 6 treatment combinations with the restriction

Figure 16.4-1. Layout for a CRF-23 design. Thirty participants were randomly
assigned to the 2 � 3 � 6 combinations of treatments A and B.

Participant1

Participant5

a1b1

a1b1

Treat.
Comb.

Group1 X.11…

Participant6

Participant10

Group2 …

Participant11

Participant15

Group3 …

Participant16

Participant20

Group4 …

Participant21

Participant25

Group5 …

Participant26

Participant30

Group6 …

…

a1b2

a1b2

X.12…

a1b3

a1b3

X.13…

a2b1

a2b1

X.21…

a2b2

a2b2

X.22…

a2b3

a2b3

X.23…

1 Some writers refer to this design as a two-way or two-factor ANOVA. Unfortunately, these designations
are imprecise because they could refer to any one of 10 different kinds of factorial designs. Kirk
discusses this point (2005a, pp. 66–83).
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that five participants are assigned to each combination. Before presenting the compu-
tational procedures for this design, I will describe the model equation for a CRF-pq
design.

Model Equation for a Score

A participant’s score in a CRF-pq design is represented by Xijk, where i denotes one
of the n participants, j denotes one of the p levels of treatment A, and k denotes one
of the q levels of treatment B. As in all ANOVA designs, the score Xijk is composite.
It is equal to the sum of five terms. The sample model equation is

Score Grand A Treatment B Treatment AB Interaction Within Cell
Mean Effect Effect Effect Error Effect

The statistics in the sample model equation are unbiased estimators of five model
parameters: population grand mean, m; population A treatment effect, mj� � m; pop-
ulation B treatment effect, m�k � m; population AB interaction effect, mjk � mj� � m�k
� m; and population error effect, Xijk � mjk. The correspondence between the statis-
tics and the parameters that they estimate is as follows:

The sample model equation allows a researcher to partition the total sum of
squares and total degrees of freedom (npq � 1) into four parts as follows:

SS Total � SS A Treatment � SS B Treatment � SS AB Interaction � SS Within Cell

dfTO � dfA � dfB � dfAB � dfWCELL

npq � 1� p � 1 � q � 1 � (p � 1)(q � 1) � pq(n � 1)

The following null hypotheses can be tested in this two-treatment factorial design:

H0: � � · · · � (Treatment A population means are

equal)

H0: � � · · · � (Treatment B population means are

equal)

H0: mjk � mj' k � mjk' � � 0 for all j, j', k, k' (Treatments A and B do not

interact)

The first two null hypotheses are familiar; the third null hypothesis is new. I will
have more to say about the interaction hypothesis later.

Computational Procedures for CRF-23 Design

Descriptive summaries of the data for the reading-speed experiment are presented in
Figure 16.4-2 and Table 16.4-1. Mean reading speed appears to be fastest for the
30 foot-candle condition and the larger type sizes. The standard deviations appear to

mjrkr

m?qm?2m?1

mp?m2?m1?

Xijk 5 m  1   smj? 2 md  1   sm?k 2 md  1  smjk 2 mj? 2 m?k 1 md  1    sXijk 2 mjkd

Xijk 5 X??? 1  sX?j? 2 X???d  1  sX??k 2 X???d  1  sX?jk 2 X?j? 2 X??k 1 X???d  1  sXijk 2 X?jkd

Xijk 5 X??? 1 sX?j? 2 X???d 1 sX??k 2 X???d 1 sX?jk 2 X?j? 2 X??k 1 X???d 1 sXijk 2 X?jkd
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Figure 16.4-2. Treatment A is illumination level: a1 � 15 ft-c, a2 � 30 ft-c.
Treatment B is type size: b1 � 6 pt, b2 � 12 pt, b3 � 18 pt. With the exception of
treatment combination a2b3, the distributions are relatively symmetrical. The data
do not contain outliers.

500450400350300
Words per minute

a1b1

a1b2

a1b3

a2b1

a2b2

a2b3

TABLE 16.4-1 Descriptive Summary of the Reading-Speed Data. Means and
Standard Deviations Are Expressed in Words per Minute

Illumination Type Size
Level b1 � 6-pt b2 � 12-pt b3 � 18-pt

� 382 423 436

a1 � 15 ft-c 413.7 35.1
� 28.2 29.1 26.2

� 423 442 441

a2 � 30 ft-c 435.3 27.8
� 28.4 29.6 27.0

� 402.5 432.5 438.5

� 34.3 29.4 25.2ŝ?k

X??k

ŝjk

X?jk

ŝjk

X?jk

ŝj?X?j?

be fairly homogeneous. Researchers should always examine a descriptive summary
of their data before proceeding to compute inferential statistics. The examination
may uncover suspicious outliers, unexpected promising lines of investigation, or
assumptions of the design that do not appear to be tenable.
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TABLE 16.4-2 Computational Procedures for CRF-23 Design

(i) Data and notation [Xijk denotes a score for participant i in treatment 
combination jk; i � 1, . . . , n participants (si); j � 1, . . . , p levels of 
treatment A (aj); k � 1, . . . , q levels of treatment B (bk)]

ABS Summary Tablea

Table entry is Xijk

a1 a1 a1 a2 a2 a2
b1 b2 b3 b1 b2 b3

378 454 432 415 439 426
408 394 411 396 467 428
357 452 466 451 477 464
353 396 411 455 410 412
414 419 460 398 417 475

1910 2115 2180 2115 2210 2205

AB Summary Table

Table entry is 

b1 b2 b3

a1 1910 2115 2180 6205
a2 2115 2210 2205 6530

4025 4325 4385

(ii) Computational symbols

 a
p

j51

aa
n

i51
a

q

j51
Xijkb2

nq
5 3A4 5 s6,205d2

s5d s3d
1

s6,530d2

s5d s3d
5 5,409,528.333

 

aa
n

i51
a

p

j51
a

q

k51
Xijkb2

npq
5 3X4 5 s12,735d2

s5d s2d s3d
5 5,406,007.500

 a
n

i51
a

p

j51
a

q

k51
X2

ijk 5 3ABS4 5 s378d2 1 s408d2 1 # # # 1 s475d2 5 5,437,581.000

 a
n

i51
a

p

j51
a

q

k51
Xijk 5 378 1 408 1 # # # 1 475 5 12,735.000

a
n

i51
a

p

j51
Xijk 5

a
n

i51
a

q

k51
Xijk

a
n

i51
Xijk

a
n

i51
Xijk 5

(continued)
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TABLE 16.4-2 (continued)

(iii) Computational formulas

SSTO � [ABS] � [X] � 5,437,581.000 � 5,406,007.500 � 31,573.500

SSA � [A] � [X] � 5,409,528.333 � 5,406,007.500 � 3,520.833

SSB � [B] � [X] � 5,413,447.500 � 5,406,007.500 � 7,440.000

SSAB � [AB] � [A] � [B] � [X]

� 5,418,615.000 � 5,409,528.333 � 5,413,447.500 � 5,406,007.500

� 1,646.667

SSWCELL � [ABS] � [AB] � 5,437,581.000 � 5,418,615.000 � 18,966.000

a A denotes treatment A, B denotes treatment B, and S denotes subjects or participants; the table is so
named because it reflects variation attributable to treatments A and B and subjects (S).

a
p

j51
a

q

k51

aa
n

i51
Xijkb2

n
5 3AB4 5 s1,910d2

s5d
1 # # # 1

s2,205d2

s5d
5 5,418,615.000

a
q

k51

aa
n

i51
a

p

j51
Xijkb2

np
5 3B4 5 s4,025d2

s5d s2d
1 # # # 1

s4,385d2

s5d s2d
5 5,413,447.500

TABLE 16.4-3 ANOVA Table for CRF-23 Design

Source SS df MS F

1. Treatment A 3520.833 p � 1 � 1 3520.833 4.46*

(illumination level)
2. Treatment B 7440.000 q � 1 � 2 3720.000 4.71*

(size of type)
3. AB Interaction 1646.667 (p � 1)(q � 1) � 2 823.334 1.04

4. Within Cell 18966.000 pq(n � 1) � 24 790.250

5. Total 31573.500 npq � 1 � 29

*p � .05; indicates that the F was obtained by dividing MSA in row 1 by MSWCELL in row 4,
and so on.

3144

3344
3244
3144

The computational procedures for the two-treatment completely randomized facto-
rial design are shown in Table 16.4-2. The .05 level of significance is adopted for each
of the tests. The results of the analysis are summarized in Table 16.4-3. It is apparent
from Table 16.4-3 that the null hypotheses for treatments A and B can be rejected. I
know from the significant test of treatment A and the means in Table 16.4-1 that
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reading speed is faster under 30 foot-candles of illumination than under 15 foot-
candles. A researcher probably would be interested in determining which type-size
means are unequal. Before addressing this question using the Fisher-Hayter multiple
comparison procedure, I will describe the nature and interpretation of an interaction.

Interpreting Interactions

The test of the AB interaction in Table 16.4-3 is not significant. This tells you that
there is no reason for believing that the difference between the population means for
treatment A is unequal across the three levels of treatment B. Similarly, there is no
reason for believing that the differences among the population means for treatment
B are not the same at each level of treatment A. To put it another way, if you graphed
the population means for a1 and a2 at each level of treatment B, lines connecting the
means would be parallel. Consider the graph of the sample means in Figure 16.4-3.
The lines for the sample data are not parallel. The nonsignificant interaction, how-
ever, tells you that the departure from parallelism in Figure 16.4-3 is not greater than
would be expected by chance.

An interaction test is unique to factorial designs. Two treatments are said to
interact if differences in performance under the levels of one treatment are
different at two or more levels of the other treatment.

A significant interaction is always a signal that the interpretation of tests of treat-
ments A and B must be qualified. Consider the population means in Table 16.4-4.
The means for the two levels of treatment A are equal, as are those for treatment B.
An analysis of variance performed on sample data from these populations undoubt-
edly would support this conclusion and also detect the interaction between the two
treatments. A graph of the interaction is shown in Figure 16.4-4(a). As expected,

460 
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Figure 16.4-3. Graph of the interaction between treatment A (level of 
illumination) and treatment B (size of type) for the data in Table 16.4-1.
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Figure 16.4-4. Part (a) illustrates the interaction between treatment A and treatment
B for the data in Table 14.4-4. Part (b) illustrates interaction between treatment A and
treatment B for a hypothetical set of data. Notice that a significant interaction does not
mean that all lines throughout their length are nonparallel. A significant interaction
does mean that there are at least two nonparallel lines between at least two levels of
the other treatment.

TABLE 16.4-4 Population Means for Treatments A and B

Treatment B

b1 b2

a1 10 20 15
Treatment A

a2 20 10 15

� 15 15m?k

mj?

the lines connecting the means are anything but parallel. Also, you can see how
misleading are the nonsignificant tests for treatments A and B. Clearly, there is a
difference between the A means at b1 as well as at b2, and between the B means at
a1 as well as at a2.

If an F test indicates that two treatments interact, a graph like those in Figures
16.4-3 and 16.4-4 is helpful for interpreting the interaction. You know that the graph
will reveal at least two nonparallel lines between at least two levels of a treatment. A
significant interaction does not mean that all lines throughout their length are
nonparallel. Such a case is shown in Figure 16.4-4(b). In this figure, the value of the
contrast between a1 and a2 at b1 (30 � 12 � 18) is different from its value at b2
(25 � 21 � 4), but the value of the contrast is the same at b2 (25 � 21 � 4) and b3
(25 � 21 � 4). To put it another way, the lines are nonparallel over only a portion of
their length. Before leaving the topic of interactions, two points should be empha-
sized: (1) the presence of an interaction is a signal that the interpretation of tests of
the associated treatments is usually misleading and hence of little interest and
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(2) one of the most useful procedures for understanding and interpreting an interaction
is to graph it.2

The ability to test interactions is an important feature of a factorial design. But
the design has other features that help to account for its wide use. Before describing
these features, I will illustrate the use of the Fisher-Hayter multiple-comparison pro-
cedure to determine which population means for treatment B differ.

Multiple Comparison Procedures

Section 15.6 describes two multiple comparison tests: the Fisher-Hayter test and the
Scheffé test. The Fisher-Hayter test can be used to test hypotheses involving
pairwise contrasts; Scheffé’s test can be used to test hypotheses involving both
pairwise and nonpairwise contrasts.

The Fisher-Hayter statistics for testing contrasts for treatments A and B are,
respectively,

and ,

where , , , and are sample means, MSWCELL is the denom-
inator of the F statistic for the completely randomized factorial design, and n
is the number of participants in each treatment combination.

The Scheffé statistics for testing contrasts for treatments A and B are,
respectively,

and

where c1, c2, . . . , cp are coefficients that define a contrast for treatment A and
c1, c2, . . . , cq are coefficients that define a contrast for treatment B.

The Fisher-Hayter test is only performed if the omnibus ANOVA null hypothe-
sis, H0: m1 � m2 � · · · � mp, is rejected. The null hypothesis for a treatment A
contrast is rejected if the absolute value of qFH exceeds or equals the critical value

, where is obtained from the distribution of the Studentized rangeqa; p21, nqa; p21, n
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2 Kirk (1995, pp. 377–389) discussed more advanced techniques for interpreting interactions.
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in Appendix Table D.9, and n � pq(n � 1). The table is entered for p � 1 means,
where p is the number of treatment A means in the experiment. The null hypothesis
for a treatment B contrast is rejected if the absolute value of qFH exceeds or equals
the critical value . The table is entered for q � 1 means, where q is the num-
ber of treatment B means in the experiment.

For the Scheffé test, the null hypothesis for a treatment A contrast is rejected if
the absolute value of FS exceeds or equals , where p is the number
of treatment A means in the experiment, n1 � p � 1, n2 � pq(n � 1), and 
is obtained from Appendix Table D.5. The null hypothesis for a treatment B con-
trast is rejected if the absolute value of FS exceeds or equals , where
q is the number of treatment B means in the experiment, n1 � q � 1, and n2 �
pq(n � 1).

Scheffé’s statistic can be used to construct confidence intervals for all treatment
A and treatment B contrasts.

A two-sided 100(1 � a)% confidence interval for a treatment A contrast,
, is given by

where are coefficients that
define a contrast; , , . . . , are treatment A sample means; p is the
number of treatment A means in the experiment; is the value that cuts
off the upper a region from Appendix Table D.5; n1 � p � 1; n2 � pq(n � 1);
MSWCELL is the denominator of the F statistic for a completely randomized
factorial design; n is the number of participants in each treatment combina-
tion; and q is the number of levels of treatment B.

A two-sided 100(1 � a)% confidence interval for a treatment B contrast,
, is given by

where are coefficients that
define a contrast; , , . . . , are treatment B sample means; q is the
number of treatment B means in the experiment; is the value that cuts off
the upper a region from Appendix Table D.5; n1 � q � 1; and n2 � pq(n � 1).
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1"sq 2 1dFa; n1, n2ÅMSWCELLa  
q

k51

c2
k

 np
, ĉi
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Computational Example for the Fisher-Hayter 
Multiple Comparison Procedure

The null hypotheses for the reading-speed data for treatments A and B were rejected.
After examining the three sample means for treatment B, the researcher might want to
test the following null hypotheses: H0: � , H0: � , and H0: � . The
reading-speed sample means are � 402.50, � 432.50, � 438.50;
MSWCELL � 790.250, p � 2, q � 3, and n � 5. Because the ANOVA F test for treat-
ment B was significant, the next step in understanding the data is to test the three
pairwise contrasts using

The test statistics are

( )

( )

( )

To reject a null hypothesis, the absolute value |qFH| must exceed or equal 
q

a; q � 1, n
� q.05; 3 � 1, 24 � 2.92, where q denotes the number of levels of treatment

B and n � pq(n � 1). Because |qFH | � 3.37 and 4.05 are greater than q.05; 3 � 1, 24
� 2.92, the null hypotheses for H0: � and H0: � are rejected. The
researcher can conclude that for the population of participants represented in 
the experiment and the levels of illumination employed, the use of 12- and 18-point
type sizes (treatment levels b2 and b3) results in faster reading speeds than the 
6-point type (treatment level b1). Based on the sample data given in Table 16.4-1,
the researcher’s best guess is that the use of 12-point type would result in reading
30 more words per minute than the use of 6-point type. The use of 18-point type
would result in reading 36 more words per minute than the use of 6-point type.

Practical Significance

You can use partial omega squared, as described in Section 16.3, to estimate the pro-
portion of variance in the dependent variable for a CRF-pq design that is accounted
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for by each of the treatments and interaction. An estimate of the strength of associa-
tion between the dependent variable X and treatment A while ignoring treatment B
and the AB interaction is given by

where FA denotes the value of the F statistic for treatment A. An estimate of the
strength of association between the dependent variable X and treatment B while ig-
noring treatment A and the AB interaction is given by

where FB denotes the value of the F statistic for treatment B. Treatment B accounts
for more of the variance in reading speed than treatment A. According to Cohen’s
guidelines in Section 15.7 for interpreting omega squared, treatment A is a medium-
size association; treatment B is a large association. The strength of the association
between the dependent variable X and the AB interaction while ignoring treatments
A and B is given by

where FAB denotes the value of the F statistic for the AB interaction. The strength of
association is clearly negligible.

Hedges’s g statistic, described in Section 11.3, can be used to measure the effect
size of contrasts among the means for treatments A and B. The g statistic for the
treatment A contrast, � � , is

where .
The g statistic for the treatment B contrasts is
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The effect sizes for the treatment B contrasts are

( )

( )

( )

According to Cohen’s guidelines for interpreting d-like measures of effect size in
Section 10.4, the contrast for treatment A is a medium-size effect; those for the first
two treatment B contrasts are both large effects. These results are consistent with our
intuition that the mean reading-rate difference of 21.7 words per minute for the
treatment A contrast is large enough to be of interest. Furthermore, the treatment B
reading-rate contrasts of � 30 and � 36 words per minute are quite large.
The third contrast for treatment B, words per minute is too
small to be of interest.

Relative Merits of Factorial Designs

A two-treatment, completely randomized factorial design is the simplest of the
factorial designs.3 It also is one of the more widely used designs. There are good
reasons for its popularity. First, the design permits a researcher to test hypotheses
about interactions, as you have just seen. Second, the design makes efficient use
of participants. For example, the CRF-23 design described previously uses all 30
participants simultaneously in evaluating the effects of treatments A and B. If
treatment A were evaluated by using of a CR-2 design and treatment B, by a sepa-
rate CR-3 design, 60 participants—30 in each experiment—would be required to
achieve the power of the CRF-23 design. In view of these two advantages, it is
easy to understand the popularity of factorial designs. But the design has some
disadvantages:

1. If numerous treatments are included in an experiment, the number of partici-
pants required may be prohibitive. For example, a four-treatment CRF-2433 de-
sign has 2 � 4 � 3 � 3 � 72 treatment combinations. If each combination were
assigned to only two participants, the experiment would require 72 � 2 � 144
participants.

2. The interpretation of the analysis is not straightforward if the test of the inter-
action is significant. The presence of significant interaction effects always
calls for some qualification of the test of the associated treatments.
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ĉ ?2ĉ ?1

5 X??2 2 X??3ĉ?3g 5
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3 A completely randomized factorial design can be used for designs with more than two treatments. A
discussion of the analysis procedures for designs with three or more treatments is beyond the scope of
this book. The interested reader should consult books by Howell (2002), Hays (1994), Kirk (1995), and
Maxwell and Delaney (2004).
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3. The use of a factorial design commits a researcher to a relatively large experi-
ment. Small one-treatment exploratory experiments may indicate much more
promising lines of investigation than those originally envisioned. Relatively
small experiments permit greater freedom in the pursuit of serendipity.

Assumptions Associated with a Completely 
Randomized Factorial Design

The assumptions for a two-treatment completely randomized factorial design repre-
sent extensions of the assumptions for a completely randomized design. These as-
sumptions, which are discussed in Section 15.5, can be summarized as follows:

1. The model equation Xijk � m � (mj� � m) � (m�k � m) � (mjk � mj� � m�k �
m) � (Xijk � mjk) reflects all the sources of variation that affect Xijk.

2. Participants are random samples from the respective populations or the partic-
ipants have been randomly assigned to the treatment combinations.

3. The population for each of the pq treatment combinations is normally
distributed.

4. The variances of each of the pq treatment combinations are equal.

As discussed in Section 15.5, the F test is robust with respect to violation of
assumption 3. However, violation of the other assumptions can undermine the
interpretation of the results of an experiment and seriously affect the probability of
making Type I and II errors. For more information about the effects of violating the
assumptions, see Section 15.5.

CHECK YOUR UNDERSTANDING OF SECTION 16.4

8. List the treatment combinations for the following completely randomized facto-
rial designs.
a. CRF-22 design b. CRF-32 design c. CRF-33 design

9. How many participants are required for the following completely randomized
factorial designs? Assume that n is equal to 4.
a. CRF-24 design b. CRF-43 design c. CRF-33 design

10. Fill in the missing values in the following table. Use Microsoft’s Excel FDIST
function to determine the p value of the F statistics.

Source SS df MS F

1. Treatment A 273.000 4 (   ) (   )**

2. Treatment B 263.550 2 (   ) (   )***

3. AB Interaction 302.400 (   ) (   ) (   )*

4. Within Cell (   ) (   ) (   )

5. Total 2413.950 74

* p � (   ).
** p � (   ).
*** p � (   ).

3344
3244
3144
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11. Researchers hypothesized that people who are required to evaluate someone
they have just hurt tend to denigrate the victim as a means of justifying the
harmful act. To investigate this hypothesis, white male college students were
required to give a series of either painful or mild electric shocks (treatment A)
as feedback for errors made by a confederate who was learning a task in an-
other room. Shocks were not actually delivered to the confederate, but he
acted as if he were being shocked. The participants were told that the confed-
erate was either white or black (treatment B). Each participant had a brief tele-
phone conversation with the confederate at the start of the experiment. Before
and after administering the shocks, the participants rated the confederate in
terms of likeability, intelligence, and personal adjustment. The dependent
variable was the change in ratings from the pretest to the posttest. The four
treatment combinations were randomly assigned to random subsamples of
five participants each. The researchers obtained the following data. The con-
stant 20 has been added to each score to avoid negative numbers. (Experiment
suggested by Katz, I., Glass, D.C., and Cohn, S. [1973]. Ambivalence, guilt,
and the scapegoating of minority group victims. Journal of Experimental
Social Psychology, 9, 423–436.)

a1 a1 a2 a2
b1 b2 b1 b2

34 20 14 29
30 12 18 13
22 16 10 25
18 28 2 21
26 24 6 17

a1 � Mild shock
a2 � Strong shock
b1 � Black confederate
b2 � White confederate

a. Construct stacked box plots for the four treatment combinations. Are the
sample distributions relatively symmetrical? Do the data contain outliers?

b. Prepare descriptive statistics, means, and standard deviations for the data
and construct a table similar to Table 16.4-1.

c. What do the descriptive statistics in part (b) tell you?
d. Test the following null hypotheses: H0: � , H0: � , and H0:

mjk � mj'k � mjk' � mj'k' � 0 for all j, j', k, k'. Let a � .05. Determine the p
value of each of the significant F statistics using Microsoft’s Excel FDIST
function.

e. Graph the AB interaction. Is the graph consistent with the test of the AB in-
teraction?

f. Estimate the proportion of variance in the dependent variable that is ac-
counted for by the AB interaction and interpret the result.

g. Analyze the data for treatments A and B separately as if the randomization
plan for a CR-2 design had been used. In analyzing treatment A, each level
of A will have 10 participants instead of 5; the same is true for treatment B.

m?2m?1m2?m1?
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The analysis of treatment A, for example, ignores the levels of treatment B.
Compare the results of the two CR-2 designs with the CRF-22 design.
Which of the designs is preferable? Explain.

12. What are the main advantages and disadvantages of a completely randomized
factorial design?

13. Terms to remember:
a. Factorial design b. Treatment combination
c. Completely crossed treatments d. Completely randomized factorial design
e. Interaction

16.5 LOOKING BACK: WHAT HAVE YOU LEARNED?

The simplest experimental design involves a single treatment with two treatment
levels. If participants are randomly assigned to the treatment levels, the data can be
analyzed using a t statistic for independent samples. Alternatively, blocks of two
matched participants can be formed. The participants in each block are then ran-
domly assigned to the treatment levels. The data for this design can be analyzed us-
ing a dependent-samples t test. These two simple t-test designs have ANOVA
analogs—they are the completely randomized design and the randomized block de-
sign, respectively.

A randomized block design uses the blocking procedure to analyze data for
experiments having one treatment with two or more levels. The blocking proce-
dure isolates the effects of a nuisance variable and typically results in a more pow-
erful test of a false null hypothesis than a completely randomized design. The
effectiveness of the blocking procedure is determined by the size of the mean cor-
relation between the treatment levels. The higher the mean correlation, the greater
the power.

A completely randomized factorial design enables a researcher to test hypotheses
about two or more treatments and associated interactions in a single experiment. For
example, instead of testing hypotheses about treatments A and B in two separate
experiments—a CR-3 design and a CR-4 design—a researcher can use one CRF-34
design. An interaction test is unique to factorial designs. Two treatments are said to
interact if differences in performance under the levels of one treatment are different
at two or more levels of the other treatment. The presence of significant interaction
effects is a clear indication that the interpretation of tests of the treatments must be
qualified. Inevitably such tests are misleading. A good way to understand an inter-
action is to graph it.

Throughout my discussion of analysis of variance designs, I have emphasized
two ideas: (1) each ANOVA design involves a unique randomization plan and statis-
tical analysis and (2) each score is a composite that reflects all of the effects that
affect the score. I formalized the latter idea by expressing a score as the sum of the
statistics of a model equation. Associated with each model equation is a set of
assumptions. As you saw, ANOVA is robust with respect to violation of some as-
sumptions. However, research suggests that ANOVA is not as robust with respect to
violations of other assumptions such as the homogeneity of variance assumption as
was once thought. Violation of these assumptions can seriously affect the probability
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of making a Type I error and the power of the F test. Fortunately, there are robust
alternatives that can be used when the tenability of the assumptions is suspect.4

REVIEW EXERCISES FOR CHAPTER 16

1. In a study to investigate the effects of three student-teacher ratios on reading
performance of second-grade students, the researcher wanted to control the nui-
sance variable of IQ. Describe the simplest way to accomplish this. Assume that
IQ scores are available for all of the children in the study.

2. Fill in the missing values in the following table. Determine the p value of the F
statistics for treatment A and blocks using Microsofts’s Excel FDIST function.

Source SS df MS F

1. Treatment A (  ) 4 (  ) 4.12**

2. Blocks (  ) 7 41.053 (  )*

3. Residual (  ) (  ) 16.825

4. Total (  ) (  )

**p � (  ).
*p � (  ).

3. Researchers investigated the effect of strenuous to exhaustive physical exercise
on the performance of a discrimination task. Seven men performed a line-
matching task while jogging at various speeds on a motor-driven treadmill. A
new set of lines was presented immediately following the participant’s re-
sponse, making the task self-paced. The dependent variable was the number of
responses made during a 3-minute period. The periods consisted of a pretest
resting stage (level a1), 2.5 mph exercise at 12% grade (level a2), 3.4 mph exer-
cise at 14% grade (level a3), 4.2 mph exercise at 16% grade (level a4), 5.0 mph
exercise at 18% grade (level a5), and a posttest resting stage (level a6 ). The
order of administration of the conditions, with the exception of the pretest and
posttest conditions, was randomized independently for each participant. The
following data were obtained. (Experiment suggested by McGlynn, G. H.,
Laughlin, N. T., and Bender, V. L. [1977]. Effect of strenuous to exhaustive ex-
ercise on a discrimination task. Perceptual and Motor Skills, 44, 1139–1147.)

a1 a2 a3 a4 a5 a6
Pretest 2.5 mph 3.4 mph 4.2 mph 5.0 mph Posttest

s1 45 47 48 50 51 44
s2 48 50 58 54 61 51
s3 46 54 51 57 56 48
s4 40 37 44 40 45 34
s5 34 41 38 48 41 38
s6 42 45 46 43 48 41
s7 55 58 54 60 57 55

3234
3134

4 Wilcox (1996) describes many of these procedures.
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a. Construct stacked box plots for the data. Are the sample distributions
relatively symmetrical? Do the data contain outliers?

b. Compute descriptive statistics, ’s and ’s, for the data and construct a
table similar to Table 15.4-1.

c. What do the descriptive statistics in (b) tell you?
d. Test the null hypothesis H0: m�1 � m�2 � · · · � m�6. Let a � .05. Determine

the p value of the F statistics using Microsoft’s Excel FDIST function.
e. Use the Fisher-Hayter statistic to determine which population means differ.
f. Use Hedges’s g statistic to determine the effect size of the contrasts. Inter-

pret the effect sizes for the statistically significant contrasts.
g. Summarize the results of the ANOVA in a sentence or two.
h. Ignore the blocking variable and analyze the data as if the randomization

plan for a CR-6 design had been used. Compare the results of the two analy-
ses by constructing a figure similar to Figure 16.3-1. Was the blocking pro-
cedure effective? Explain.

4. List the treatment combinations for the following completely randomized facto-
rial designs.
a. CRF-23 design b. CRF-42 design c. CRF-24 design

5. How many participants are required for the following completely randomized
factorial designs? Assume that n is equal to 5.
a. CRF-34 design b. CRF-35 design c. CRF-44 design

6. Fill in the missing values in the following table.

Source SS df MS F

1. Treatment A (  ) (  ) 22.100 (  )**

2. Treatment B (  ) 3 (  ) 3.30*

3. AB Interaction (  ) 6 (  ) 3.20**

4. Within Cell (  ) (  ) 4.250

5. Total (  ) 71

*p � (  ).
**p � (  ).

7. Researchers hypothesized that focusing on helping others versus focusing on
accomplishing a task (treatment A) and instructions designed to vary the
perceived need to hurry (treatment B) would affect the likelihood of a person
behaving as a Good Samaritan. To test this hypothesis, 30 seminary students
were asked to prepare and record a short message describing their work and the
satisfactions of their profession. Half of the students, the task-relevant group,
received no other instructions. The other half, the helping-relevant group, was
given the same instructions and, in addition, had their attention directed to the
parable of the Good Samaritan from the Revised Standard Version of the Bible
(Luke 10:29–37). In the process of telling the students how to get to the record-
ing studio that was in another building, one-third were told to hurry because
they were running late, one-third were told to go right on over to the studio, and
one-third were told that it would be a few minutes until the recording session
but they might as well go on to the studio. The seminary students were

3344
3244
3144

ŝjX?j
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randomly assigned to the six treatment combinations with five students in each
combination. On the way to the recording studio, the students passed the “vic-
tim” sitting in a doorway, head down, coughing and groaning. If a student of-
fered help, the victim mumbled a prepared statement about pills, a condition,
and resting. The dependent variable was the victim’s rating of the helping
behavior that was offered: 0 � failed to notice, . . . , 5 � stopped to render aid
and refused to leave the victim or offered to take him to the infirmary. The re-
searchers obtained the following data. (Experiment suggested by Darley, J. M.,
and Batson, C. D. [1973]. From Jerusalem to Jerico: A study of situational and
dispositional variables in helping behavior. Journal of Personality and Social
Psychology, 27, 100–108.)

a1 a1 a1 a2 a2 a2
b1 b2 b3 b1 b2 b3

4 1 0 0 1 0
4 5 0 4 0 0
5 1 4 1 2 0
1 0 0 1 5 2
5 2 2 4 1 0

a1 � helping-relevant group
a2 � task-relevant group
b1 � no rush instruction
b2 � go-on-over instruction
b3 � hurry instruction

a. Visually inspect the treatment-combination distributions. Do they appear to
be symmetrical?

b. Prepare descriptive statistics, means and standard deviations, for the data
and construct a table similar to Table 16.4-1.

c. What do the descriptive statistics in (b) tell you?
d. Test the following null hypotheses: H0: m1� � m2�, H0: m�1 � m�2 � m�3, and

H0: mjk � mj'k � mjk' � mj'k' � 0 for all j, j', k, k'. Let a � .05. Determine the
p value of the F statistics using Microsoft’s Excel FDIST function.

e. Graph the AB interaction. Is the graph consistent with the test of the AB
interaction?

f. Estimate the proportion of variance in the dependent variable that is
accounted for by treatment B and interpret the result.

g. Use the Fisher-Hayter statistic to determine which population means for
treatment B differ.

h. Use Hedges’s g statistic to determine the effect size of the contrasts. Inter-
pret the effect sizes for which the Fisher-Hayter statistic is significant.

i. Summarize the results of the ANOVA in a sentence or two.
j. Analyze the data for treatments A and B separately as if the randomization

plan for a CR-2 design and a CR-3 design had been used. In analyzing
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treatment A, each level of A will have 15 participants instead of 5; in analyzing
treatment B, each level of B will have 10 participants. The analysis of treat-
ment A, for example, ignores the levels of treatment B. Compare the results of
the two CR-p designs with the CRF-23 design. Which of the designs is prefer-
able? Explain.
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17.1 INTRODUCTION

Looking Ahead: What Is This Chapter About?

Some variables of interest to psychologist are difficult to measure. For example, it is
difficult to measure an act of kindness, the unpleasantness of a purge episode, or the
severity of a marital conflict. However, it is easy to count acts of kindness, purge
episodes, and marital conflicts. The test statistics described in previous chapters are
appropriate for measured characteristics such as IQ, reaction time, blood pressure,
and time to learn a list of nonsense syllables. When the dependent variable is a
frequency count, investigators use different test statistics. The test statistic described
in this chapter was developed by the British statistician Karl Pearson in 1900. The
statistic is called Pearson’s chi-square statistic and is denoted by x2 (Greek lower-
case chi). The statistic is approximately distributed as the chi-square sampling
distribution. As you will learn, the statistic can be used to test three distinct null
hypotheses.

After reading this chapter, you should know the following:

■ How to use the chi-square statistic to test the hypothesis that a set of observed
frequencies in k � 2 categories is equal to a set of expected frequencies

■ How to use the chi-square statistic to test the hypothesis that two variables are
statistically independent

■ How to use the chi-square statistic to test the hypothesis that the proportions in
each of c � 2 populations are equal

■ How to compute and interpret Cramér’s correlation coefficient
■ How to compute and interpret Cohen’s effect size measure

17.2 THREE APPLICATIONS OF PEARSON’S 
CHI-SQUARE STATISTIC

Pearson’s chi-square statistic is very versatile. I will describe three applications of
the statistic: testing goodness of fit, testing independence, and testing the equality of
c population proportions. The three applications are often confused because they all
use the same Pearson test statistic and involve similar statistical analyses. However,
once you know what to look for, it is easy to distinguish the experimental designs
for the three applications—each application involves a distinct randomization plan.
The major features of the three applications are as follows.

1. Testing goodness of fit. Pearson’s chi-square statistic can be used to determine
whether the population distribution estimated by a single random sample
containing n independent observations is identical to some hypothesized or
expected population distribution. Depending on the researcher’s interests,
expectations may be based on one of the theoretical distributions (such as the
normal distribution) or on the results of an earlier empirical investigation. Pear-
son’s chi-square statistic is used to test the null hypothesis that the observed fre-
quencies O1, O2, . . . , Ok in k mutually exclusive categories of a population are
equal to a set of expected frequencies E1, E2, . . . , Ek. The randomization plan

ŵ



17.2 Three Applications of Pearson’s Chi-Square Statistic 469

consists of obtaining one random sample of n elements and classifying each
element in terms of membership in one of the k mutually exclusive categories.

2. Testing independence. Another use of Pearson’s chi-square statistic is in
determining whether two variables are statistically independent. This is
accomplished by classifying each of n independent observations for a single
random sample in terms of two variables, denoted by A and B. Recall from
Section 7.3 that A and B are statistically independent if the conditional prob-
ability of A given B, p(A | B), is equal to the probability of A, p(A). For
example, variable A might represent a person’s gender and variable B, his or
her political affiliation (Democrat, Republican, independent, or other). The
variables are independent if p(Man | Democrat) � p(Man), p(Man | Repub-
lican) � p(Man), and so on, which means that a knowledge of political
affiliation tells you nothing about the individual’s gender and vice versa.
The randomization plan for testing independence consists of obtaining one
random sample of n elements and classifying each element in terms of two
variables, where each variable has two or more categories.

3. Testing equality of c � 2 population proportions. A final use of Pearson’s chi-
square statistic is to test the null hypothesis that c population proportions are
equal—that is, H0: p1 � p2 � · · · � pc.

1 The randomization plan consists of
obtaining c random samples from c populations where c � 2 and for each
sample classifying the elements in terms of membership in one of r � 2 mu-
tually exclusive categories. When r, the number of categories, is greater than
2, the test is referred to as a test of homogeneity of proportions.

The distinguishing characteristics of the three applications of Pearson’s chi-square
statistic are summarized in Table 17.2-1.

TABLE 17.2-1 Comparison of Tests That Use Pearson’s Chi-Square Statistic

Purpose Null Hypothesis Randomization Plan

1. Testing goodness H0: OPop 1 � EPop 1, OPop 2 � One random sample of 
of fit EPop 2, . . . , OPop k � EPop k n elements; each element

is classified in terms of 
membership in one of k
mutually exclusive 
categories.

2. Testing independence H0: p(A and B) � p(A)p(B) One random sample of n
elements; each element 
is classified in terms of 
two variables, denoted 
by A and B, where each 
variable has two or more 
categories.

(continued)

1 The letter p is used to denote a proportion as well as a probability. The meaning of the letter will be
stated if it is not clear from the context.
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17.3 TESTING GOODNESS OF FIT

Tests of the three null hypotheses just described all use the chi-square sampling dis-
tribution. This sampling distribution was derived by F. R. Helmert in 1876. Karl
Pearson first used the distribution to test hypotheses in 1900. The chi-square distrib-
ution, like the t and F distributions, is actually a family of distributions whose shape
depends on its degrees of freedom, n. The chi-square distribution like the F distribu-
tion is positively skewed, but as n increases, the distribution approaches a normal
distribution with mean and variance, respectively,

Because x2 is a squared quantity, it can range over only non-negative numbers,
zero to positive infinity, whereas t and z can range over all real numbers. The chi-
square distributions for several different degrees of freedom are shown in Figure
17.3-1. The three applications of Pearson’s chi-square statistic described here use
the upper a region of the chi-square sampling distribution. The critical value of x2

for n degrees of freedom is given in Appendix Table D.4 and is denoted by .
A null hypothesis is rejected if x2 is greater than or equal to .

The goodness-of-fit test was developed to test the hypothesis that a population
distribution estimated by a random sample is identical to a hypothesized or ex-
pected distribution. Let O1, O2, . . . , Ok represent observed sample frequen-
cies and E1, E2, . . . , Ek represent expected frequencies. The null hypothesis is
rejected if Pearson’s statistic,

exceeds or equals the critical value of chi square, , at a level of signifi-
cance for n � k � 1 degrees of freedom.

xa, n
2

x2 5 a
k

j51

sOj 2 Ejd2

Ej

xa, n
2

xa, n
2

Esxn
2d 5 n      and      Varsxn

2d 5 2n

TABLE 17.2-1 (continued)

Purpose Null Hypothesis Randomization Plan

3a. Testing equality  H0: p1 � p2 � · · · � pc c random samples, where 
of proportions c � 2; for each sample, the

elements are classified in
terms of membership in
one of r � 2 mutually
exclusive categories.

3b. Testing homogeneity c random samples, where 
of proportions c � 2; for each sample, the

elements are classified in
terms of membership in
one of r � 2 mutually
exclusive categories.

H0: 5 ≥
pa1|b1

5 pa1|b2
5c5 pa1|bc

pa2|b1
5 pa2|b2

5c5 pa2|bc

 (
par|b1

5 par|b2
5c5 par|bc

¥
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The three chi-square tests are approximate tests because they use the continuous
chi-square distribution to estimate a probability for a discrete sampling distribution.
If the expected frequencies are sufficiently large, the approximate test is quite
accurate. An alternative exact test also can be used. When k is equal to 2, the exact
test is based on the binomial distribution; when k is greater than 2, the exact test is
based on the multinomial distribution. Exact tests usually require a prohibitive
amount of computation and should be performed with a computer.

Computational Example

Suppose that the director of the clinical psychology program wants to know whether
the distribution of the Graduate Record Examination (GRE) scores for this year’s
graduate school applicants differs from that for past years. The director classified
this year’s n � 200 applicants into one of j � 1, . . . , k categories, denoted by Oj, as
shown in column 2 of Table 17.3-1. The table also shows the proportions for the pre-
vious years’ applicants, denoted by . In column 4, these proportions are converted
into expected frequencies by multiplying each of the previous years’ proportions by
n � 200. For example, the Ej for previous years’ applicants in the 1400–1499 cate-
gory is given by Ej � � 200(.04) � 8. The statistical hypotheses for Pearson’s
test are as follows:

H0: OPop 1 � EPop 1, OPop 2 � EPop 2, . . . , OPop k � EPop k

H1: OPop j EPop j for one or more of the j � 1, . . . , k categories

The null hypothesis states that the observed population frequency in category 
j � 1, . . . , k equals the expected frequency in category j. The null hypothesis also
can be stated in terms of proportions because frequencies are readily converted
into proportions and vice versa. An observed population proportion in the jth

2

nprj

prj

df � 1

df � 2 df � 6

df � 10

f ( )2

2

Figure 17.3-1. Chi-square distributions for different degrees of freedom. The
critical region for rejecting a null hypothesis is in the upper tail of the distribution.
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category, denoted by pj, can be computed from an observed population frequency
by pj � OPop j./n. Using proportions instead of frequencies, the statistical hypothe-
ses are as follows:

where pj and denote, respectively, the population observed and expected propor-
tions in the jth category.

The director wants to know whether the proportions in the six categories for the
population represented by the sample differ from the proportions for the population
of previous applicants. The director is faced with a minor interpretation problem—
this year’s applicants were not obtained by random sampling. The director circum-
vents the problem by assuming that there is a population for which random sampling
could have produced the sample she obtained. Conclusions about equality of the
proportions apply to this population.

The computation of Pearson’s statistic is illustrated in column 6 of Table 17.3-1.
The degrees of freedom is equal to one less than the number of categories, k � 1 � 6
� 1 � 5. The director adopted the .05 level of significance; the critical value of 
is 11.070. This critical value is found in Appendix Table D.4. Although the null
hypothesis is nondirectional, the critical region always lies in the upper tail of the
sampling distribution of x2. According to Table 17.3-2, the computed chi-square sta-
tistic with 5 degrees of freedom and n � 200 independent observations, x2

(5, n � 200) � 12.484, exceeds the critical value, � 11.070. Hence, the null
hypothesis is rejected.

x.05, 5
2

x.05, 5
2

prj

 H1: pj2pjr for one or more of the j 5  1, . . . , k categories

 H0: p1 5 pr1, p2 5 pr2, . . . , pj 5 prj

TABLE 17.3-1 Computation of Pearson’s Chi-Square Statistic for n � 200
Graduate School Applicants

(1) (2) (3) a (4) (5) (6)

GRE Score Oj n � Ej Oj � Ej

1400–1499 13 .04 200(.04)a� 8 5 3.125
1300–1399 35 .14 200(.14) � 28 7 1.750
1200–1299 49 .20 200(.20) � 40 9 2.025
1100–1199 57 .32 200(.32) � 64 �7 0.766
1000–1099 38 .22 200(.22) � 44 �6 0.818
900–999 8 .08 200(.08) � 16 �8 4.000

0b x2(5, n � 200) � 12.484*

� 11.070

a denotes the proportions for previous year’s applicants.
b Computational check: should equal 0.
*p � .03.

SsOj 2 Ejd
pj r

x.05, 5
2
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The chi-square test is an omnibus or overall test. It tells you that one or more of
the observed frequencies differs from the corresponding expected frequency. If the
omnibus test is significant, it is useful to examine the data to determine where the
discrepancies occurred. You can do this by comparing observed and expected
frequencies—which categories have more or fewer observed frequencies than
expected. You also can look to see which categories contributed most to the chi-
square statistic. The program director would be pleased to note from Table 17.3-1
that there were more observed than expected applicants in the GRE categories of
1200–1299 and above. Furthermore, the category that contributed most to the chi-
square statistic, 900–999 with � 4.00, had fewer applicants than
expected: 8 observed versus 16 expected. Such observations about the data must be
regarded as tentative—they are not based on the outcome of significance tests.

In reporting the results to her department chairperson, the program director could
say, “The population distribution of GRE scores for this year’s applicants differs
from the distribution of applicants from previous years, x2(5, n � 200) � 12.484,
p � .03. Furthermore, the data suggest that a higher proportion of this year’s appli-
cants have GRE scores above 1200 than previous applicants.” The program
director’s description of the results follows the recommendations in the Publication
Manual of the American Psychological Association (2001). The manual says to
(1) provide the value of the test statistic, (2) enclose both the degrees of freedom and
sample size in parentheses, and (3) provide the p value (APA, 2001, pp. 22, 139).

Appendix Table D.4 can be used to approximate some p values. However, the
range of test-statistic values and degrees of freedom in the table is limited.
Microsoft’s Excel program, which is available on most computers, can be used to
obtain p values for any combination of x2 test statistics and degrees of freedom. To
obtain p values for the chi-square sampling distribution, you use the Excel CHIDIST
function. To access this function, select “Insert” in Excel’s menu bar and then the
menu command “Function.” You then can select the CHIDIST function from the list
of functions. After you access the CHIDIST function,

CHIDIST(x,deg_freedom)

you replace “x” with the value of the x2 statistic and “deg_freedom” with the de-
grees of freedom for the x2 statistic. The function gives the size of the area, p value,
above the x2 statistic. For the data in Table 17.3-1, the x2 statistic is 12.484 with n
� 5. The CHIDIST function gives

CHIDIST(12.484,5) � .029

In reporting the p value, the program director rounded .029 up to .03.

Characteristics of Pearson’s Statistic

An examination of the formula for Pearson’s statistic reveals the
following:

1. The statistic is never negative, because all Oj � Ej discrepancies are
squared. Because the statistic makes no distinction between positive and
negative discrepancies, the hypothesis tested is nondirectional. This is true

gk
j51sOj 2 Ejd2>Ej

sO1 2 E1d2>E1
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even though the critical region of the sampling distribution of x2 is always
in the upper tail.

2. The only way the statistic can equal 0 is for each observed frequency to equal
the corresponding expected frequency.

3. The larger the Oj � Ej discrepancies, the larger x2. Large values of x2 are evi-
dence against the null hypothesis because they indicate that the observed fre-
quencies are far from what you would expect if the null hypothesis were true.
However, the contribution of a discrepancy to x2 is affected by the size of Ej,
because (Oj � Ej)

2 is divided by Ej. This seems reasonable. If I tossed 10 coins
and observed 9 heads where the expected number is 5, the discrepancy of 4
heads would lead me to question the fairness of the coins. If the discrepancy
of 4 heads occurred when I tossed 100 coins, where the expected frequency is
50, I wouldn’t be surprised. A discrepancy of 4 heads is viewed one way when
E is equal to 5 and a different way when E is equal to 50. The formula takes
this into account by expressing the size of the discrepancy relative to the mag-
nitude of the expected frequency.

4. The larger the number of categories, the larger the degrees of freedom and the
computed x2. As the number of degrees of freedom increases, the chi-square
value required for significance also increases. Thus, the test procedure takes
the number of categories into account.

Degrees of Freedom when Ej’s Are Based 
on a Theoretical Distribution

A modification of the goodness-of-fit test is required if parameters of a theoretical
distribution must be estimated in computing the expected frequencies. In the previ-
ous example, the expected frequencies, Ej’s, were computed from actual data—
previous years’ GRE scores. Hence, no distribution parameters were estimated. For
this case, n � k � 1, where k is the number of categories. Suppose, however, that the
program director compared a set of observed frequencies with those predicted by,
say, the normal distribution. The director would have to use sample data to estimate
two parameters of the normal distribution, m and s, in order to compute the expected
frequencies. For each parameter estimated from sample data, the degrees of freedom
are reduced by one. The formula for degrees of freedom is n � k � 1 � e, where e is
the number of distribution parameters estimated from sample data. Except for this
modification, the test procedure is the same as that described previously.

Practical Significance

As with any null hypothesis significance test, it is important to know if the result is
practically significant. Cohen (1988, p. 216) has described a statistic that can help a
researcher or consumer of statistics make this judgment. The statistic, which is an
effect size measure, is
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where is the observed proportion in the jth category and is the expected
proportion for that category. When each of the observed proportions equals its
expected proportion, the effect size is zero. It is apparent from the formula that the
contribution of a discrepancy to is expressed relative to its expected
proportion. A simpler equivalent formula for is

Cohen has suggested the following guidelines for interpreting w, the population
effect size:

0.1 is a small effect.

0.3 is a medium effect.

0.5 is a large effect.

The computation of for the graduate school data in Table 17.3-1 is

According to Cohen’s guidelines, 0.25 is a small effect. Thus, although the differ-
ence between this year’s applicants for graduate school and previous applicants is
statistically significant, p � .03, the effect is small, � 0.25. A comparison of the
observed and expected frequencies in Table 17.3-2 supports this conclusion.

Assumptions of the Goodness-of-Fit Test

The goodness-of-fit test can be used to compare observed frequencies with expected
frequencies for any population distribution, provided the distribution is discrete or
can be grouped into a manageable number of categories. The assumptions of the test
are minimal: (1) every sample observation must fall in one and only one category,
(2) the observations must be independent, and (3) the sample n must be large.

How large is large? This is difficult to specify because the adequacy of Pearson’s
chi-square statistic in approximating the exact multinomial probability (see Section
8.4) depends on (1) n, (2) the true proportion in the k categories, and (3) the number
of degrees of freedom, among other things. Furthermore, Pearson’s statistic is not
exactly distributed as the chi-square distribution unless n is infinitely large. A
conservative rule of thumb states that the approximation to the exact multinomial
probability is satisfactory if, when the degrees of freedom equal 1, each expected
frequency is at least 10. When the degrees of freedom are greater than 1, each
expected frequency should be at least 5. One remedy if k is greater than 2 and
expected frequencies are below the minimum is to combine categories where it is
reasonable to do so until all expected frequencies are at least 5.2

ŵ
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2 An alternative approach is to use the Kolmogorov-Smirnov goodness-of-fit test. This test, which has
greater power than Pearson’s test, is discussed by Hays (1994, pp. 854�855).
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When the test has one degree of freedom, Yates’ correction for continuity3 can
be applied to make the sampling distribution of the test statistic, which is discrete,
more consistent with the chi-square distribution, which is continuous. Recall from
Section 1.4 that a continuous variable can assume any value in an interval. Such is
not the case for a discrete variable. For example, the number of children in a family
can assume only one value in the interval 2.5–3.5, namely 3; values such as 2.5, 2.7,
or 3.2 are not possible. The continuity problem arises whenever a researcher uses a
continuous distribution to obtain probabilities for a discrete distribution. The conti-
nuity correction for the chi-square goodness of fit statistic consists of reducing the
absolute value of each difference Oj � Ej by 0.5. The correction can be included in
the test statistic as follows:

It is good practice to apply the correction when the degrees of freedom equal 1 and
any expected frequency is not appreciably greater than 10.

CHECK YOUR UNDERSTANDING OF SECTIONS 17.2 AND 17.3

1. What are the distinguishing features of the tests for goodness of fit, indepen-
dence, and equality of proportions?

2. If the critical value for a test for goodness of fit in which socioeconomic indices
for this year are compared with those for last year is � 12.592, how many
mutually exclusive categories were used?

3. A random sample of students was asked if they favor a change from the semes-
ter system to the quarter system. Thirty-three said yes; 17 said no.
a. List the steps you would follow to test the null hypothesis that opinion is

equally divided on the issue. Let a � .05.
b. Do the data suggest that opinion is not equally divided on this issue?
c. Determine the p value of the x2 statistic using Microsoft’s Excel CHIDIST

function.
d. Compute the size of the effect. If x2 was significant, interpret the effect size.

4. According to the most recent public opinion poll in Johnson County, 71 eligi-
ble voters were Democrats, 52 were Republicans, and 33 belonged to other
parties. Traditionally, the ratio of Democrats to Republicans to others has
been 4: 3: 2.
a. Does the poll suggest a change in party affiliation? Let a � .05.
b. Determine the p value of the x2 statistic using Microsoft’s Excel CHIDIST

function.
c. Compute the size of the effect. If x2 was significant, interpret the effect size.

5. A student in a statistics class tossed a die 300 times and obtained the results
shown in the table. The outcome denotes the number of dots, 1 through 6,
shown on the upper face of the die.

x.05, 6
2

x2 5 a
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3 Proposed by Frank Yates, a British statistician.
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Outcome 1 2 3 4 5 6

Frequency 53 41 60 47 38 61

a. Is the die fair? Let a � .05.
b. Determine the p value of the x2 statistic using Microsoft’s Excel CHIDIST

function.
c. Compute the size of the effect and interpret the result.

6. Terms to remember:
a. Approximate and exact tests
b. Yates’ correction for continuity

17.4 TESTING INDEPENDENCE

Pearson’s statistic,

can be used to obtain an approximate test of the null hypothesis that two vari-
ables, say; A and B, are statistically independent. Recall from Section 7.3 that
A and B are statistically independent if the probability of, say, A occurring is
unaffected by the occurrence of B. The first step in computing Pearson’s chi-
square statistic is to classify each of n independent observations for a single
random sample in terms of variable A with i � 1, . . . , r rows and variable B
with j � 1, . . . , c columns.

Computational Example

Suppose that a random sample of 200 engineering students has been obtained and
that each student has been classified in terms of gender, variable A, and whether
they reported frequently feeling or not feeling stressed, variable B. A table repre-
senting the classification of each of n elements in terms of two or more variables is
called a contingency table. A contingency table for the 200 students has i � 2 rows
for variable A and j � 2 columns for variable B. A partial summary of the gender
and stress data is given in Table 17.4-1. If the two variables in the population are
independent, what frequencies should be in the cells of the contingency table? You
know from Section 7.3 that if two variables are independent, p(A | B) � p(A), in
which case p(A and B) � p(A)p(B). Typically, the population proportions are un-
known, but you can use the sample marginal proportions, p(a1), p(a2), and so on, in
Table 17.4-1 to estimate the expected cell frequencies, denoted by . Using
the relationship

Eai and bj
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you can estimate each of the expected cell values, as follows:

These are the cell frequencies you would expect if variables A and B were indepen-
dent. The expected cell frequencies also can be computed directly from the marginal
frequencies by the formula

because

For example, � (40)(72)/200 � 14.4. The expected cell frequencies, along
with the observed cell frequencies, are given in Table 17.4-2. The computation of
the chi-square statistic is illustrated in the table.4

The advisability of using Yates’ correction for a 2 � 2 contingency table is the
subject of continuing debate among statisticians (Conover, 1974a, 1974b; Grizzle,
1967; Mantel, 1974; Miettinen, 1974; Plackett, 1964; Starmer, Grizzle, & Sen, 1974)

Ea1 and b1

Eai and bj
5 npsaidpsbjd 5 nanai

n
b anbj

n
b 5

nai
nbj

n

Eai and bj
5

nai
nbj

n

 Ea2 and b2
5 npsa2dpsb2d 5 200s.80d s.64d 5 102.4

 Ea2 and b1
5 npsa2dpsb1d 5 200s.80d s.36d 5 57.6 and

 Ea1 and b2
5 npsa1dpsb2d 5 200s.20d s.64d 5 25.6

 Ea1 and b1
5 npsa1dpsb1d 5 200s.20d s.36d 5 14.4

TABLE 17.4-1 Partial Summary of Gender and Feeling-Stressed Data

Stressed, b1 Not Stressed, b2

Woman, a1 ;

Man, a2 ;

� .36 � .64

psb2d 5
128
200

psb1d 5
72

200

n 5 200nb2
5 128nb1

5 72

psa2d 5
160
200

5 .80na2
5 160

psa1d 5
40

200
5 .20na1

5 40

4 Supplementary Note 17.7-1 presents a simpler computational formula for a 2 � 2 contingency table.
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and therefore is not illustrated in Table 17.4-2. If the correction is desired, it can be
incorporated in the chi-square formula as follows:

Degrees of Freedom for a Contingency Table

How many degrees of freedom are associated with the chi-square statistic for testing
independence? For the goodness-of-fit test, you saw that the degrees of freedom are
k � 1 � e, where e is the number of distribution parameters that is estimated from
sample data. A 2 � 2 table is a special case of an r � c contingency table where r
and c equal 2. I will develop the degrees-of-freedom formula for the more general
case in which r or c is greater than 2.

If I denote the number of rows by r and the number of columns by c, an r � c
contingency table has k � rc categories. Because there are r categories for variable
A, I must estimate r � 1 of the expected row frequencies for this variable. Once
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TABLE 17.4-2 Gender and Feeling-Stressed Data

(i) Data (Oij and Eij denote observed and expected frequencies for the i � 1, . . . , r rows of
variable A and j � 1, . . . , c columns of variable B)

Stressed, b1 Not Stressed, b2

O11 � 8 O12 � 32
Woman, a1 E11 � 14.4 E12 � 25.6

O21 � 64 O22 � 96
Man, a2 E21 � 57.6 E22 � 102.4

n � 200

(ii) Computation of chi-square statistic

Oij Eij Oij � Eij

8 14.4 �6.4 2.844
64 57.6 6.4 0.711
32 25.6 6.4 1.600
96 102.4 �6.4 0.400

0a x2(1, n � 200) � 5.555*

� 3.841

a Computational check: should equal 0.
*p � .02.
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I have estimated r � 1 of the expected row frequencies, the remaining one can be
obtained by subtracting the r � 1 expected frequencies from n, the total number of
frequencies. This follows because the sum of the r expected row frequencies must
equal n. By the same line of reasoning it follows that I must estimate c � 1 expected
column frequencies for variable B. In all, I must make e � (r � 1) � (c � 1) esti-
mates. Thus, the number of degrees of freedom for an r � c contingency table is

df � k � 1 � e
� rc � 1 � [(r � 1) � (c � 1)]
� rc � 1 � r � 1 � c � 1
� rc � r � c � 1
� (r � 1)(c � 1)

Hence, for a 2 � 2 contingency table, the degrees of freedom are (2 �1)(2 � 1) � 1.

Statistical Hypotheses

The statistical hypotheses for the data in Table 17.4-2 are

H0: p(A and B) � p(A)p(B)

H1: p(A and B) p(A)p(B)

The hypothesis of statistical independence is rejected if the computed x2 exceeds or
equals the critical value at a level of significance for n � (r � 1)(c � 1) degrees of
freedom. For the data in Table 17.4-2, the computed chi-square with 1 degree of
freedom, x2(1, n � 200) � 5.555, exceeds the critical value, � 3.841. Hence,
the null hypothesis is rejected, and the researcher concludes that gender and fre-
quently feeling or not feeling stressed are not independent. An examination of the
data suggests that the men reported frequently feeling stressed more than expected;
the opposite is true for the women.

A chi-square test tells you how strong the evidence is that an association between
variables A and B exists in the population. The test does not tell you the strength of
the association or whether the association is practically significant. Earlier you
learned how to compute Cohen’s , a measure of effect size. Before describing an
index of strength of association, I will show how to apply a test of independence to
contingency tables with more than two rows or columns.

Contingency Tables with Three or More Rows or Columns

The test for independence can be extended to the case in which the row variable, A,
has r � 2 mutually exclusive categories, a1, a2, . . . , ai, . . . , ar, and the column vari-
able, B, has c � 2 mutually exclusive categories, b1, b2, . . . , bj, . . . , bc.

Suppose you want to know if a college graduate’s starting salary is independent
of the size of the university from which he or she graduated. Data for a random sam-
ple of 200 graduates are given in Table 17.4-3. The expected frequencies are com-
puted from

Eai and bj
5

nai
nbj

n

ŵ

x.05, 1
2

2
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The degrees of freedom are (r � 1)(c � 1) � (3 � 1)(3 � 1) � 4. For a test at the .05
level of significance, the value of is 9.488. Because the x2(4, n � 200) � 17.978
in Table 17.4-3 is greater than � 9.488, the null hypothesis is rejected. You con-
clude that starting salary and university size are not independent.

Finding a significant x2 often is just the first step in understanding your data. It is
helpful to look for large discrepancies between observed and expected frequencies
in the contingency table and to examine the contribution of each cell to the chi-
square statistic. An inspection of Table 17.4-3 suggests that graduates of large uni-
versities are less likely than expected to have starting salaries over $30,000, whereas
the converse is true for those from medium and small universities. The largest

x.05, 4
2
x.05, 4

2

TABLE 17.4-3 University Size and Starting Salaries of Graduates

(i) Data (Oij and Eij denote observed and expected frequencies for the i � 1, . . . , r rows 
of variable A and j � 1, . . . , c columns of variable B)

Less Than $20,000�30,000 Greater Than
$20,000, b1 b2 $30,000, b3

Small O11 � 13 O12 � 28 O13� 15
University, a1 E11 � 10.08 E12 � 34.44 E13 � 11.48

Medium-size O21 � 11 O22 � 40 O23� 22
University, a2 E21 � 13.14 E22 � 44.90 E23 � 14.96

Large O31 � 12 O32 � 55 O33� 4
University, a3 E31 � 12.78 E32 � 43.66 E33 � 14.56

n � 200

(ii) Computation of chi-square statistic

Oij Eij Oij � Eij

13 10.08 2.92 0.846
11 13.14 �2.14 0.349
12 12.78 �0.78 0.048
28 34.44 �6.44 1.204
40 44.09 �4.90 0.535
55 43.66 11.34 2.945
15 11.48 3.52 1.079
22 14.96 7.04 3.313
4 14.56 �10.56 7.659

0a x2(4, n � 200) � 17.978*

� 9.488

a Computational check: should equal 0.
*p � .002.

g sOij 2 Eijd

x.05, 4
2
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contribution to the chi-square statistic come from cell a3 and b3,
E33� 7.659. This also suggests that graduates of large universities are less likely
than expected to have starting salaries over $30,000. Inferences such as these must
be regarded as tentative because they are not based on the outcome of significance
tests. The significant chi-square test statistic applies to the data taken as a whole and
provides no clue as to which cells are responsible for significance.

In the following section, I describe several statistics that can help a researcher as-
sess the practical significance of an association between row and column variables.

Practical Significance

If the null hypothesis p(A and B) � p(A)p(B) is rejected, you know that the vari-
ables are correlated. Several correlation coefficients were discussed in Chapter 5
(r, rs, and 2), but none of them is appropriate for unordered qualitative variables.
One coefficient that is appropriate is Cramér’s measure of association, denoted
by V.

The formula for computing an estimate, , of Cramér’s measure of association is

where s is the smaller of the number of rows and columns.5

Cramér’s statistic is a relative measure, because it is the ratio of an observed statistic,
, to its maximum possible value, . The statistic

can range from 0 (indicating complete independence) to 1 (indicating complete
dependence, or perfect correlation).

Cramér’s statistic is computed when the chi-square test is significant. A nonsignif-
icant chi-square test suggests that any greater than 0 could be due to chance. Put
another way, a test of the null hypothesis H0: p(A and B) � p(A)p(B) is equivalent to
a test of the null hypothesis H0: V � 0. Unfortunately, Cramér’s statistic does not
have a simple, intuitively useful interpretation as, say, the proportion of explained
variance between two variables. It should be thought of as reflecting magnitude of
association on a scale of 0 to 1; the larger the number, the stronger the association.
Cramér’s statistic for the data in Tables 17.4-2 and 17.4-3 are, respectively,

Both correlations fall in the lower range of Cramér’s .V̂

V̂ 5Å
5.555

200s2 2 1d
5 .17     and     V̂ 5Å

17.978
200s3 2 1d

5 .21

V̂

f̂ maximum 5"s 2 1f̂ observed 5"x2>n

V̂ 5
f̂ observed

f̂ maximum
5

"x2>n
"s 2 1

5Å
x2

nss 2 1d

V̂

h

sO33 2 E33d2>

5 For a 2 � 2 contingency table, , because � 1. In this special case, is
identical to another measure of strength of association called the phi coefficient, . Both and are
related to the Pearson product-moment correlation coefficient. Suppose that the two categories of vari-
ables A and B are considered to be ordered and are assigned scores of 0 and 1, where 1 is assigned to
the higher category. Under these conditions, the formula for r is algebraically equivalent to that for 
and (Hays, 1994, pp. 866–869).f̂

V̂

f̂V̂f̂

V̂"s 2 1 5"2 2 15"x2>nV̂
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You know from Tables 17.4-2 and 17.4-3 that the chi-square statistics for the
feeling-stressed data and the salary data are both statistically significant, but are they
practically significant? Cohen’s , which was introduced in Section 17.3, can help a
researcher make this assessment.

The statistic can be computed using the formulas

where is the observed proportion in the ijth cell and is the expected
proportion. For data in a contingency table, also can be computed from

where is an estimate of Cramér’s V and s is the smaller of the number of
rows and columns in the contingency table.

Cohen’s for the data in Tables 17.4-2 and 17.4-3 is, respectively,

Recall from Section 17.3 that w � .1 is a small effect, w � .3 is a medium effect,
and w � .5 is a large effect. Thus, the effect size for the gender and feeling-
stressed data is small. The effect size for the university size and starting salaries
data is medium. These examples illustrate the maxim that statistical significance
and practical significance address different questions. The chi-square test statistic
for the variables of university size and starting salaries of graduates, for example,
is large enough to be significant beyond the .002 level. However, the effect size is
barely medium ( � .30). The point cannot be made too often that statistical sig-
nificance only means that chance is an unlikely explanation for an observed result.
Other procedures must be used to assess the usefulness or practical significance of
the result.

Assumptions of the Independence Test

The assumptions associated with the test for independence and the estimation of
strength of association and effect size are as follows. (1) Every observation must fall
in one and only one cell of the contingency table. (2) The observations must be in-
dependent. One situation in which the second assumption is likely to be violated oc-
curs when an individual is represented more than once in a cell or in more than one
cell. (3) The sample n should be large enough so that every expected frequency is at
least 10 when there is one degree of freedom and at least 5 when there is more than
one degree of freedom.6

ŵ
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ŵ

ŵ

6 Fisher’s exact test for a 2 � 2 contingency table can be used to test independence when n is small and
expected cell frequencies are less than 10. The test is described by Hays (1994, pp. 863–865).
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CHECK YOUR UNDERSTANDING OF SECTION 17.4

7. List the similarities and differences between Pearson’s product-moment corre-
lation coefficient and Cramér’s measure of association.

8. Two hundred women between the ages of 19 and 25 were asked if they favored
the use of the morning-after pills (plan B). The women were classified accord-
ing to attitude and religious preference.

Protestants Roman Catholic Non-Christians Sum

Favor 58 30 28 116
Oppose 8 23 5 36
Undecided 10 15 23 48

Sum 76 68 56 200

a. For the data in the table, list the steps you would use in testing the null hy-
pothesis. Let a � .001.

b. What is your decision concerning the null hypothesis?
c. Determine the p value of the x2 statistic using Microsoft’s Excel CHIDIST

function.
d. If the null hypothesis is rejected, compute Cramér’s statistic.
e. Compute the size of the effect. If x2 was significant, interpret the effect size.

9. A random sample of 200 college students was classified according to class year
and political conservatism as follows.

Conservative Neutral Liberal Sum

Freshman 38 22 6 66
Sophomore 22 24 5 51
Junior 11 12 19 42
Senior 7 13 21 41

Sum 78 71 51 200

a. Are the variables independent? Let a � .05.
b. Determine the p value of the x2 statistic using Microsoft’s Excel CHIDIST

function.
c. If the null hypothesis is rejected, compute Cramér’s statistic.
d. Compute the size of the effect. If x2 was significant, interpret the effect size.

10. Use the table of random numbers in Appendix D to draw a random sample with-
out replacement of 40 students from the student database in Appendix E.
a. List the participant number, gender, and course grade for each participant in

your sample.
b. For the variables of gender (A) and course grade (B), construct a contingency

table.
c. Test the hypothesis that the two variables are independent. Let a � .05.
d. Determine the p value of the x2 statistic using Microsoft’s Excel CHIDIST

function.
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e. If the null hypothesis is rejected, compute Cramér’s .
f. Compute the size of the effect. If x2 was significant, interpret the effect size.
g. Write a paragraph summarizing the results of your analyses and your con-

clusions.
11. Terms to remember:

a. Contingency table
b. Cramér’s measure of association

17.5 TESTING EQUALITY OF c 2 PROPORTIONS

The last application of Pearson’s chi-square statistic that I will describe is testing the
equality of c � 2 population proportions.

If a random sample is obtained from each of j � 1, . . . , c binomially
distributed populations, the sample proportions can be used to
test the null hypothesis

H0: p1 � p2 � . . . � pc

versus
H1: pj pj' for some j and j', where j j'

The null hypothesis is rejected if exceeds or
equals the critical value, , at a level of significance for n � c � 1 degrees
of freedom.

Rejection of the null hypothesis means that some population proportions are not
equal. It does not mean that they are all unequal; perhaps only one is discrepant.
This test, like the two described earlier, is approximate, because the continuous
chi-square distribution is used to estimate a probability for a discrete sampling
distribution. The sample proportions , , . . . , , which may be based on un-
equal sample sizes, are assumed to represent independent observations for c inde-
pendent binomially distributed random variables. Like all binomial experiments,
each trial must result in one of two outcomes. Later, you will see that the test can
be extended to the multinomial case in which each trial can result in one of three
or more outcomes.

Computational Example

Suppose a researcher surveyed older people living in public housing in Borbo-
rygme, Texas, to determine whether satisfaction with living conditions is related to
age heterogeneity of people in their neighborhood. Neighborhoods were catego-
rized as high, medium, or low in heterogeneity of residents’ ages. Random samples
of nj � 100 elderly women from each category were interviewed (equal sample nj’s
are not required) and asked, among other things, “Are you satisfied with your liv-
ing conditions?” The answers were classified as “satisfied” or “not satisfied.” It was

p̂cp̂2p̂1

xa, n
2

x2 5 gr
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c
j51sOij 2 Eijd2>Eij
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anticipated that satisfaction would be different for the three neighborhood cate-
gories. Responses to the question are given in Table 17.5-1, which includes the
computation of Pearson’s chi-square statistic. The procedure is identical to that for
an r � c contingency table for testing independence (see Section 17.4). The
degrees of freedom are equal to c � 1 � 2, the number of age-heterogeneity cate-
gories minus one. Alternatively, the degrees of freedom can be computed from 
(r � 1)(c � 1) � (2 � 1)(3 � 1) � 2. For a test at the .05 level of significance, the 
critical value of is 5.991. This value is obtained from Table D.4. The com-
puted chi-square with two degrees of freedom, x2(2, n � 300) � 9.708, exceeds 
the critical value, � 5.991. Hence, the null hypothesis is rejected. The re-
searcher can conclude that at least two of the population proportions are not equal.7

x.05, 2
2

x.05, 2
2

TABLE 17.5-1 Satisfaction and Age Heterogeneity

(i) Data (Oij and Eij denote observed and expected frequencies for the i � 1, . . . , r rows of
variable A and j � 1, . . . , c columns of variable B)

Age Heterogeneity

Low, b1 Medium, b2 High, b3

Satisfied, a1

O11 � 56 O12 � 58 O13 � 38
E11 � 50.67 E12 � 50.67 E13 � 50.67

Not Satisfied, a2

O21 � 44 O22 � 42 O23 � 62
E21 � 49.33 E22 � 49.33 E23 � 49.33

n � 300

(ii) Computation of chi-square statistic

Oij Eij Oij � Eij

56 50.67 5.33 0.561
44 49.33 �5.33 0.576
58 50.67 7.33 1.060
42 49.33 �7.33 1.089
38 50.67 �12.67 3.168
62 49.33 12.67 3.254

0a x2(2, n � 200) � 9.708*

� 5.991

a Computational check: should equal 0.
*p � .008.
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7 Marascuilo and McSweeney (1977, pp. 141–147) described a procedure for determining which population
proportions are unequal. The procedure is based on Scheffé’s method, which is described in Section 15.6.
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The effect size for the c sample proportions can be computed using Cohen’s ,

For the satisfaction and age data in Table 17.5-1, the effect size is

According to Cohen’s guidelines, this is a small effect.

Comparison of Designs for Testing Independence 
and Equality of Proportions

The experimental design for the test of equality of c � 2 proportions and the
experimental design for the test of independence use the same Pearson test statis-
tic and the same formula for computing degrees of freedom, and both are approxi-
mately distributed as the chi-square distribution. It is not surprising then that the
two designs are often confused. There is no reason for confusion if you know what
to look for.

The key differences between the two designs are the randomization plan and
the way the sample elements are classified. In the design for testing indepen-
dence, (1) a single random sample is obtained from a population and (2) the
elements are classified in terms of two variables, where each variable has two or
more categories. In the design for testing equality of proportions, (1) c random
samples are obtained and (2) for each sample, the elements are classified in terms
of membership in one of r � 2 mutually exclusive categories such as satisfied
versus not satisfied. The important distinction is that each element’s status with
respect to the second variable—say, degree of neighborhood heterogeneity—has
been predetermined by sampling from the appropriate population. In the design
for testing independence, the status of the sample elements is not predetermined
for either variable. Because of differences in the randomization plans and classi-
fication procedures, the hypotheses tested by the two designs are different—H0:
p(A and B) � p(A)p(B) for the test of independence and H0: p1 � p2 � · · · � pc
for the test of equality of proportions.

Extension of the Test of Equality to More Than 
Two Response Categories

The test illustrated in Table 17.5-1 can be extended to the case in which vari-
able A has r greater than two row categories: for example, very satisfied,
somewhat satisfied, somewhat dissatisfied, very dissatisfied. When the number
of rows is greater than 2, the test is referred to as a test of homogeneity of propor-
tions. A proportion in row i and column j, denoted by , is assumed to repre-
sent an observation for an independent multinomial random variable instead of a

pai  | bj 
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binomial random variable. The statistical hypotheses can be expressed as
follows:

in at least one row for columns j and j '.

In words, the null hypothesis states that the proportions in the first row are equal
across the c columns, the proportions in the second row are equal across the c
columns, and so on. If the null hypothesis is rejected, you know that at least two pro-
portions in at least one row are not equal. That is, there is some row for which the
jth and j' th proportions are not equal. Ordinarily, numerical values are not specified
in the null hypothesis; but if they were, a null hypothesis for i � 1, . . . , 4 rows and j
� 1, . . . , 3 columns might look like

At the risk of telling you more than you wanted to know about writing null hypothe-
ses, let me contrast the preceding hypotheses for the multinomial case with that for
a test of equality of proportions for the binomial case. If variable A has only two cat-
egories, the null hypothesis can be written as

or simply

H0: p1 � p2 � · · · � pc

For this binomial case, the null hypothesis does not need a second row of propor-
tions because q, the proportion in the second category, is equal to 1 � p. It follows
that if p1 � p2 � · · · � pc, then q1 � q2 � · · · � qc.

The computation of Pearson’s statistic for testing homogeneity of proportions is
the same as that for testing equality of proportions. The number of degrees of free-
dom for the homogeneity test is equal to (r � 1)(c � 1). The general assumptions
discussed in connection with an r � c contingency table apply as well to the homo-
geneity test.

CHECK YOUR UNDERSTANDING OF SECTION 17.5

12. Company executives were classified as smokers or nonsmokers. Investigators
gathered random samples from the two populations and tested for the presence
of lung cancer. They obtained the following data.

H0: pa1|b1
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Smoker Nonsmoker Sun

Cancer present 16 5 21
Cancer absent 14 25 39

Sum 30 30 60

a. State the statistical hypotheses.
b. Test the null hypothesis. Let a � .01.
c. Determine the p value of the x2 statistic using Microsoft’s Excel CHIDIST

function.
d. Compute the size of the effect. If x2 was significant, interpret the effect size.

13. State in words the meaning of the hypothesis

14. New employees on an assembly line were randomly assigned to one of four
groups and given different amounts of training. After two weeks on the job,
their supervisor rated their performance as follows.

Amount of Training (Days)

Rating 1 2 5 10 Sum

Excellent 4 4 6 6 20
Good 5 3 10 11 29
Fair 9 9 5 8 31
Poor 7 9 4 0 20

Sum 25 25 25 25 100

a. State the statistical hypotheses.
b. Test the null hypothesis. Let a � .05.
c. Determine the p value of the x2 statistic using Microsoft’s Excel CHIDIST

function.
d. Compute the size of the effect. If x2 was significant, interpret the effect size.

15. A program of home-care services designed to enable the elderly to postpone
the need for long-term institutional care is available to all residents of Mani-
toba, Canada. Researchers used a structured interview to investigate differ-
ences in terms of perceived health between the elderly in Manitoba who use
these services and those who do not. They obtained a random sample of 400
community residents aged 65 or older from each of the populations. A por-
tion of the data is as follows. (Experiment suggested by Chappell, N. L.
[1985]. Social support and the receipt of home-care services. The Gerontolo-
gist, 25, 47–54.)

H0: £
.30 5 .30 5 .30
.60 5 .60 5 .60
.10 5 .10 5 .10

§
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Perceived Health Home-Care User Non-Home-Care User Sum

High 26 112 138
Medium 129 187 316
Low 233 97 330

Sum 388* 396* 784

*Numbers do not equal 400 because of missing data.

a. State the statistical hypotheses.
b. Test the null hypothesis. Let a � .05.
c. Determine the p value of the x2 statistic using Microsoft’s Excel CHIDIST

function.
d. Compute the size of the effect. If x2 was significant, interpret the effect size.

16. Use the table of random numbers in Appendix Table D.1 to draw a random sam-
ple without replacement of 20 men and 20 women students from the student
database in Appendix E.
a. List the participant number, gender, and stat grade (use only letter grades 

A � 4, B� � 3.5, B � 3, . . . , F � 0) for each participant in your sample.
b. For the variables of gender (A) and stat grade (B), construct a contingency

table.
c. State the statistical hypotheses.
d. Test the hypothesis that the proportion of A’s, B’s, and so on in the popula-

tion are equal for men and women. Let a � .05.
e. Determine the p value of the x2 statistic using Microsoft’s Excel CHIDIST

function.
f. Compute the size of the effect. If x2 was significant, interpret the effect size.
g. Write a paragraph summarizing the results of your analysis and your

conclusions.

17.6 LOOKING BACK: WHAT HAVE YOU LEARNED?

Pearson’s chi-square test statistic is appropriate for frequency data. It provides an
approximate test when an exact test based on the binomial or multinomial distribu-
tions would require a prohibitive amount of computation. The statistic is versatile.
The three applications I have described are testing goodness of fit, independence,
and equality of proportions. These applications are summarized in Table 17.6-1. In
each application, a set of observed frequencies is compared with a set of expected
frequencies. However, the apparent simplicity of the statistic S(O � E)2/E is decep-
tive. Its use involves important assumptions that novice researchers often overlook
or misunderstand. The problem is compounded because all three applications use
the same statistic for testing different hypotheses. The main points to consider in us-
ing Pearson’s chi-square statistic are the following:

1. A single random sample is used to test goodness of fit and independence; more
than one random sample is used to test equality of population proportions.
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2. Each observation must be assigned to one and only one category or one cell
of a contingency table.

3. Each participant or observational element should be represented only once.
Multiple observations on the same participant almost always result in viola-
tion of the assumption of independence of observations.

TABLE 17.6-1 Applications of Pearson’s Chi-Square Statistic

Degrees of
Purpose Null hypothesis freedom Requirements

1. Testing H0: p1 � , . . . , pk � k � 1 � e 1. One random sample.
goodness or OPop 1 � EPop 1, OPop 2 � 2. If n � 1, every expected 
of fit EPop 2, . . . , OPop k � EPop k frequency should exceed 10. 

If n � 1, every expected 
frequency should exceed 5.

3. Random variable is binomially 
distributed for k � 2 and 
multinomially distributed 
for k � 2.

2. Testing H0: p(A and B) � p(A)p(B) (r � 1)(c � 1) 1. One random sample.
independence 2. If n � 1, every expected 

frequency should exceed 10. 
If n � 1, every expected 
frequency should exceed 5.

3. Random variable is binomially 
distributed when A and B
have two categories and is 
multinomially distributed 
otherwise.

3a. Testing H0: p1 � p2 � · · · � pc c � 1 1. c � 2 random samples.
equality of 2. If n � 1, every expected 
proportions proportions frequency 

should exceed 10. If v � 1,
every expected frequency 
should exceed 5.

3. Random variable is 
binomially distributed.

3b. Testing (r � 1)(c � 1) 1. c random samples, where 
homogeneity c � 2; for each sample, the 
of proportions elements are classified in 

terms of one of r � 2 mutually
exclusive categories.

2. Every expected frequency 
should exceed 5.

3. Random variable is 
multinomially distributed.
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4. The Pearson chi-square approximation to exact binomial or multinomial
probabilities is generally unsatisfactory for very small samples. As a conserv-
ative rule of thumb, if the degrees of freedom are equal to 1, all expected fre-
quencies should be at least 10; if the degrees of freedom are greater than 1, all
expected frequencies should be at least 5.

5. A nonsignificant chi-square test of independence suggests that a greater

than 0 for the data could be due to chance.
6. The hypothesis tested by Pearson’s statistic is nondirectional even though the

region for rejection always lies in the upper tail of the sampling distribution.

REVIEW EXERCISES FOR CHAPTER 17

1. Why is the hypothesis tested by Pearson’s statistic always nondirectional?
2. College students (n � 197) voted at a student-center booth for a beauty queen

from among six photographs equivalent in physical attractiveness as determined
by rankings of 35 students at a nearby university. The pictures were randomly
assigned names that the 35 students had previously judged to be desirable
(Kathy, Jennifer, Christine) or undesirable (Ethel, Harriet, Gertrude). The total
number of votes for the photographs having the desirable names was 158; the
number for the photographs having the undesirable names was 39. (Experiment
suggested by Garwood, S. C., Cox, L., Kaplan, V., Wasserman, N., and Sulzer,
Jefferson L. [1980]. Beauty is only “name” deep: The effect of first-name on
ratings of physical attraction. Journal of Applied Social Psychology, 10,
431–435.)
a. List the steps you would follow to test the null hypothesis that for the popu-

lation represented by the sample of students who voted, the number of votes
is evenly divided between the photographs assigned the attractive and unat-
tractive names. Let a � .01.

b. Is it necessary to apply Yates’ correction? Why?
c. Perform the test and make a decision.
d. Determine the p value of the x2 statistic using Microsoft’s Excel CHIDIST

function.
e. Compute the size of the effect. If x2 was significant, interpret the effect size.

3. The dean believes that students in M–W–F classes are more likely to be absent
on Monday and Friday than on Wednesday. A random sample of 200 students
revealed that 68 were absent on Monday, 48 on Wednesday, and 84 on Friday.
a. List the steps you would follow to test the hypothesis that the ratio of

absences is M: W: F � 3: 2: 3. Let a � .05.
b. Perform the test and make a decision.
c. Determine the p value of the x2 statistic using Microsoft’s Excel CHIDIST

function.
e. Compute the size of the effect. If x2 was significant, interpret the effect size.

4. A random sample of 300 music majors took a test of creativity. Their scores and
the expected number of scores based on the normal distribution are as follows.

V̂
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Test Score Oj Ej

140 and above 0 5.0
130–139 32 20.2
120–129 48 54.2
110–119 76 83.8
100–109 90 78.4
90–99 36 42.4
80–89 18 13.4
Less than 80 0 2.7

a. Test the hypothesis that the scores are normally distributed. Let a � .01. The
Ej column in the table presents expected frequencies, given that the null hy-
pothesis is true; the Oj column presents the observed frequencies.

b. How many degrees of freedom does the test have?
c. Determine the p value of the x2 statistic using Microsoft’s Excel CHIDIST

function.
d. Compute the size of the effect. If x2 was significant, interpret the effect size.

5. What is Yates’ correction and why is it used?
6. State in your own words the meaning of the null hypothesis H0: p(A and B) �

p(A)p(B). If the null hypothesis is rejected, what do you know about the
variables?

7. Why is Cramér’s measure of association only computed when the null hypothe-
sis p(A and B) � p(A)p(B) is rejected?

8. Three hundred divorced men were classified by age at time of first marriage and
duration of first marriage as follows.

Duration of Marriage (Years)
Age at

Mariage �5 5–9 10–14 �15 Sum

�19 41 31 15 15 102
19–24 30 27 22 21 100
25–34 11 7 16 16 50

�35 13 14 9 12 48

Sum 95 79 62 64 300

a. List the steps you would use to test the null hypothesis that the two variables
are independent. Let a � .05.

b. Perform the test and make a decision.
c. Determine the p value of the x2 statistic using Microsoft’s Excel CHIDIST

function.
d. If the null hypothesis is rejected, compute Cramér’s statistic.
e. Compute the size of the effect. If x2 was significant, interpret the effect size.

9. Hip fractures in elderly patients are known to be associated with a high inci-
dence of mortality. Researchers collected data for 225 elderly patients who had
undergone hip surgery and measured the following variables: mortality,
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number of previous hip injuries (antecedents), and patient’s age. (Experiment
suggested by Banna, S. E., Raynal, L., and Gerebzof, A. [1984]. Fractures of
the hip and medico-social considerations. Archives of Gerontology and
Geriatrics, 3, 311–319.)

Medical Antecedents Died Survived Sum

No antecedent 8 27 35
1 antecedent 20 62 82
2 antecedents 21 25 46
3 antecedents 13 23 36
� 4 antecedents 20 5 25

Sum 82 142 224a

Age Died Survived Sum

56–65 2 12 14
66–75 10 32 42
76–85 40 64 104
86–95 30 20 50

Sum 82 128 210a

an does not equal 225 because of missing data.

a. For the data in the table, test the hypotheses that mortality is independent of
the number of antecedents and age. Let a � .05.

b. Determine the p value of the x2 statistics using Microsoft’s Excel CHIDIST
function.

c. If the null hypothesis is rejected, compute Cramér’s statistic.
d. Compute the size of the effect for number of antecedents and age. If either

x2 was significant, interpret the effect size.
10. Investigators performed an analysis on federal court cases in which a com-

plainant charged that the Age Discrimination in Employment Act of 1967 and
subsequent amendments had been violated. They examined data for 120 cases
in terms of the outcome of the discrimination suit and the gender of the com-
plainant. (Experiment suggested by Schuster, M., and Miller, C. S. [1984]. An
empirical assessment of the age discrimination in employment act. Industrial
and Labor Relations Review, 38, 64�74).

Outcome of Suit
Gender Won Lost Sum

Man 19 15 34
Woman 21 65 86

Sum 40 80 120

a. Test the null hypothesis that the variables of gender and suit outcome are in-
dependent. Let a � .05.
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b. If the null hypothesis is rejected, compute Cramér’s statistic.
c. Determine the p value of the x2 statistic using Microsoft’s Excel CHIDIST

function.
d. Compute the size of the effect. If x2 was significant, interpret the effect size.

11. The equality of proportions chi-square test and the independence chi-square test
are applicable to an r � c contingency table, and both use the same test statis-
tic. How do they differ?

12. Students were given a choice of writing or not writing a paper for extra credit.
Half of the students, selected randomly, were made to feel coerced; the other
half were not pressured. The number who chose to write or not to write a paper
is as follows.

Coerced Not Coerced Sum

Wrote paper 13 9 22
Did not write paper 17 21 38

Sum 30 30 60

a. List the steps you would use to test the null hypothesis. Let a � .05.
b. Test the null hypothesis that the variables of paper writing and coercion are

independent.
c. Determine the p value of the x2 statistic using Microsoft’s Excel CHIDIST

function.
d. Did the conditions affect paper writing?
e. Compute the size of the effect. If x2 was significant, interpret the effect size.

13. State in words the meaning of the hypothesis

14. Random samples of seventh-, eighth-, and ninth-grade students were inter-
viewed following one year of busing. They were asked, “Did black and white
students mix more than, the same as, or less than last year?” The following data
were obtained.

Grade
Response 7 8 9 Sum

More 26 12 4 42
Same 18 25 35 78
Less 6 13 11 30

Sum 50 50 50 150

a. State the statistical hypotheses.
b. Test the null hypothesis. Let a � .05.

H0: £
.20 5 .20 5 .20
.30 5 .30 5 .30
.50 5 .50 5 .50

§
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c. Determine the p value of the x2 statistic using Microsoft’s Excel CHIDIST
function.

d. Compute the size of the effect. If x2 was significant, interpret the effect size.
15. Use the table of random numbers in Appendix Table D.1 to draw a random sam-

ple without replacement of 20 men and 20 women students from the Student
Database in Appendix E.
a. List the participant number, gender, and math test score for each participant

in your sample.
b. For the variables of gender (A) and math test score (B), construct a contin-

gency table. Assign the math test scores to one of the following class inter-
vals: 0–9, 10–19, 20–29, 30–39, and 40–48.

c. Test the hypothesis that the population proportion in each of the five
class intervals is equal for men and women. Let a � .05.

d. Write the null and alternative hypotheses.
e. Compute the size of the effect. If x2 was significant, interpret the effect size.
f. Write a paragraph summarizing the results of your analysis and your

conclusions.

†17.7 SUPPLEMENTARY NOTE

Special Computational Procedure 
for a 2 2 Contingency Table

A simpler procedure for computing Pearson’s chi-square statistic can be used when
a contingency table has 2 rows and 2 columns—a 2 � 2 contingency table. This pro-
cedure has the advantage of not requiring the computation of expected frequencies.
Consider the following 2 � 2 table in which observed frequencies are denoted by 

Variable 2

Variable 1
a b a � b

c d c � d

a � c b � d

the letters a, b, c, and d. The formula for Pearson’s statistic using only observed cell
frequencies is

x2 5
nsad 2 bcd2

sa 1 bd sc 1 dd sa 1 cd sb 1 dd

3

† This supplementary note can be omitted without loss of continuity.
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For the data in Table 17.4-2, the formula yields

which is identical to the answer obtained using the conventional formula. If desired,
Yates’ correction for continuity can be included in the formula as follows:

x2 5
ns|ad 2 bc| 2 n>2d2

sa 1 bd sc 1 dd sa 1 cd sb 1 dd

x2 5
2003 s8d s96d 2 s32d s64d 42

s8 1 32d s64 1 96d s8 1 64d s32 1 96d
5 5.555
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18.1 INTRODUCTION

Looking Ahead: What Is This Chapter About?

This chapter describes two test statistics that are appropriate for testing hypotheses
about the equality of populations where the data are in the form of ranks or can be
converted to ranks. Some variables such as physical attractiveness, progress of
group therapy participants, and tastiness of pizzas are difficult to measure, but they
are easy to rank. The variables are difficult to measure because each is determined
by numerous factors. For example, the tastiness of a pizza is determined by, among
other things, the quality of the cheese, the crust, and the toppings. In spite of this,
you and I have little difficulty ranking pizzas.

An advantage of tests in which the datum is a rank is that the tests make fewer
assumptions about the underlying population distributions than do the test described
in Chapters 10 through 16. For example, the two test statistics in this chapter do not
assume that the populations are normally distributed and have equal variances.

After reading this chapter, you should know the following:

■ How to use the Mann-Whitney U statistic and independent samples to test the
hypothesis that two population distributions are identical

■ How to use the Wilcoxon T statistic and dependent samples to test the hypoth-
esis that two population distributions are identical

■ The advantages and disadvantages of tests based on ranks

18.2 ASSUMPTION-FREER TESTS

So far I have presented procedures for testing hypotheses about a variety of popu-
lation parameters. In most cases it was necessary to assume that the sampled
population had a probability distribution of a particular shape—usually normal or
binomial. For many variables, such an assumption seems warranted. For other vari-
ables, however, a researcher may not know the shape of the underlying population
distribution and may be unwilling to make an assumption about it. The procedures
I presented in Chapters 10–16 also require other assumptions. For example, the
independent-samples t statistic for testing the null hypothesis H0: m1 � m2 � 0
assumes that the population variances are equal. To avoid having to make such
assumptions, nonparametric and distribution-free tests have been developed that
are assumption freer—that is, they require less stringent assumptions. Before
describing the tests, let me review the three kinds of distributions about which as-
sumptions are made: (1) the sampled population (for example, the population of the
observation statistic X), (2) the sampling distribution of the descriptive statistic
used in the test (for example, ), and (3) the sampling distribution of the test sta-
tistic (for example, t). Nonparametric and distribution-free tests are assumption
freer with respect to the distribution of the sampled population.

X



18.2 Assumption-Freer Tests 501

A statistical test is nonparametric if it does not test a hypothesis about one of
the parameters of the sampled population. It is distribution-free if it makes
no assumptions about the shape of the sampled population.

Most distribution-free tests, however, do assume that the sampled population is con-
tinuous. Although the distinction between nonparametric and distribution-free tests
seems clear enough, in practice the distinction is frequently blurred. Consequently,
many statisticians use the terms interchangeably. I will follow Ury’s (1967) lead and
denote both kinds of tests by the more descriptive label assumption-freer tests.

Several assumption-freer tests have already been described. The chi-square tests
in Chapter 17, for example, are assumption-freer tests for frequency data. The two
tests to be described in this chapter are assumption-freer tests for ranked data
(ordered qualitative variables).

Assumption-freer tests differ from parametric tests in a number of important
respects. I will mention one difference now and defer a complete discussion until
Section 18.5. Parametric tests utilize the magnitude information contained in obser-
vations (scores), but assumption-freer tests ignore this information. Instead, assump-
tion-freer tests use either the frequency with which observations occur, as in the case
of the chi-square tests in Chapter 17, or their rank (ordinal position), as in the case
of the tests in this chapter. One advantage of focusing on either the categorical or
ordinal information contained in observations has already been mentioned: a re-
searcher can avoid having to make assumptions regarding the shape of the sampled
population. But as you will see, this freedom is bought at a price. Assumption-freer
tests tend to be less efficient than parametric tests when the assumptions of the para-
metric tests are fulfilled.

Another advantage of assumption-freer tests is that they require less sophisticated
measurement procedures. One of the simplest measurement procedures is ranking
people or objects with respect to some characteristic. You observe, for example, that
John is a better quarterback than Fred, who is better than Elmer; this piece of pie
looks better than that one; or Jane is more resourceful than Dennis. It is convenient
to use numbers to denote rank order. For example, John is 1; Fred is 2; and Elmer is
3. However, the numbers do not reflect the magnitude of differences in quarterback-
ing skill or whether the difference between John and Fred is the same as that
between Fred and Elmer. Presumably, measuring instruments could be devised that
would assign numbers that reflect the magnitude of differences in quarterbacking
skill, pie attractiveness, and resourcefulness. This has been done in the area of
intellectual assessment: the measuring instrument is an intelligence test. But such
instruments are difficult to develop, which is why researchers frequently resort to
counting or ranking.

Two test statistics that utilize only the ordinal information contained in observa-
tions are described in Sections 18.3 and 18.4. They are regarded as assumption-freer
alternatives to the independent and dependent two-sample t tests for means. There
are many other assumption-freer tests. The interested reader is referred to Siegel and
Castellan (1988).
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18.3 MANN-WHITNEY U TEST FOR TWO 
INDEPENDENT SAMPLES

The Mann-Whitney U test is used to test the hypothesis that two population distrib-
utions are identical.1 The test assumes that the populations are continuous and that
random samples have been drawn from the respective populations or the participants
have been randomly assigned to two conditions. The test statistic is based on the
ranks of observations rather than on their numerical values, and hence it is appropri-
ate for most data in the behavioral sciences and education. Because of the U test’s
modest assumptions, it is widely used as an assumption-freer alternative to the two-
sample t test for independent samples.

Computational Procedure for Small Samples

The computational procedures described here for the Mann-Whitney U statistic can
be used when both sample sizes, n1 and n2, are 20 or less. When either of the sam-
ples contains more than 20 scores, a z statistic described later can be used.

Suppose an experiment was performed to determine whether the amount of ag-
gressive behavior exhibited by children is affected by observing aggression on TV.
A sample of n � 21 six-year-old girls was randomly assigned to one of two condi-
tions: viewing a television program containing numerous aggressive acts, the exper-
imental condition, and viewing a program without aggression, the control condition.
Following the television viewing, each girl was observed at play, and her aggressive
acts were counted.

The data for the experiment are given in Table 18.3-1 along with the computa-
tional procedures for the U statistic. The first step in the analysis is to rank-order
the scores. In assigning ranks to the scores, the data for the experimental and con-
trol groups are treated as one sample. The scores, frequency of aggressive acts for
each girl, are ordered from the smallest to the largest. The first n positive integers
are then substituted for the scores, with the smallest score receiving a rank of 1
and the largest receiving a rank of n. For example, one of the girls exhibited 0 ag-
gressive act, which is the fewest number. This 0 is assigned the rank of 1. Another
girl exhibited 1 aggressive act, the next fewest number. This 1 is assigned the rank
of 2, and so on. If two or more observations have the same value (tied scores), they
are assigned the mean of the ranks they would have occupied. For example, two
girls exhibited 13 aggressive acts. These two 13’s would occupy ranks 12 and 13.
So each 13 is assigned the mean of ranks 12 and 13, which is 12.5. The ranks as-
sociated with the experimental and control groups are added separately. The
Mann-Whitney test statistic, U, is based on the sum of ranks as indicated in part
(ii) of Table 18.3-1.

No assumptions regarding the shape of the populations are required because the
test statistic is based not on scores but on ranks. The null hypothesis states that the

1 The test was originally developed by Frank Wilcoxon in 1945 and called the Wilcoxon rank-sum test.
Since then, various forms of the test have appeared: a form, by Festinger in 1946, the Mann-Whitney
form in 1947, and a form by White in 1952. The Wilcoxon rank-sum test should not be confused with
the Wilcoxon matched-pairs signed ranks test discussed in Section 18.4.
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TABLE 18.3-1 Computational Procedure for Mann-Whitney U test

(i) Data (n � 21 girls were randomly assigned to two conditions. The two samples were
treated as one combined sample, and the scores were ranked from 1 to n, with the smallest
score receiving a rank of 1 and the largest, a rank of 21. Two or more scores with the same
value [tied scores] were assigned the mean of the ranks they would have received. For
example, the two scores of 13 would have received ranks of 12 and 13; instead, they both
received the mean rank of 12.5.)

Number of Number of
Aggressive Acts Rank, Aggressive Acts Rank,

for Experimental Group R1 for Control Group R2

2 3 8 8
19 17 1 2
13 12.5 0 1

9 9 10 10
17 15 20 18
18 16 5 6
24 21 11 11
15 14 7 7
22 20 3 4
21 19 13 12.5

4 5

n1 � 10 R1 � 146.5 n2 �11 R2 � 84.5

(ii) Computational check

(iii) Computation of U

To be significant at a level of significance, the computed U(10, 11) must be less than or
equal to the critical value in Table D.12. This value is U.05/2; 10, 11 � 26. Because
U(10, 11) � 18.5 is less than U.05/2; 10, 11 � 26, the null hypothesis is rejected.

Ua>2; n1, n2

Us10, 11d 5 Smaller of ≥
s10d s11d 1

10s10 1 1d
2

2 146.5 5 18.5

s10d s11d 1
11s11 1 1d

2
2 84.5 5 91.5

¥ 5 18.5

Usn1, n2d 5 Smaller of ≥
n1n2 1

n1sn1 1 1d
2

2 gR1

n1n2 1
n2sn2 1 1d

2
2 gR2

¥

 146.5 1 84.5 5 231 
21s21 1 1d

2
5 231

 gR1 1 gR2 5
NsN 1 1d

2
  where N 5 n1 1 n2

gg
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distribution of aggressive acts for girls in the experimental population is identical to
that for girls in the control population. The statistical hypotheses are as follows:2

H0: Population distributions for the experimental and control groups are identical.

H1: Population distributions are not identical.

The .05 level of significance is adopted. To be significant at the .05 level, the computed
value of the test statistic, U(n1, n2), must be less than or equal to the critical value,

, obtained from Appendix Table D.10. For the data in Table 18.3-1, the 
computed value of the Mann-Whitney statistic, U(10, 11) � 18.5, is less than the criti-
cal value, U.05/2; 10, 11 � 26. Hence, the researcher can conclude that the two populations
are not identical. Inspection of the data indicates that the girls who watched a television
program containing aggression engaged in more aggressive acts than those who did not.

The Mann-Whitney U test also can be used to test directional hypotheses if the
population distributions are symmetrical. The U test statistic is computed as before.
However U must be less than or equal to the one-tailed critical value from Table D.10.
In addition, the relative position of the sample distributions must be consistent with
the alternative hypothesis. For example, if the alternative hypothesis states that the
population distribution for the experimental group is displaced (shifted) above that for
the control group, the sample distributions must exhibit a similar displacement.

Computational Procedures When One 
or Both n’s Exceed 20

Table D.10 in Appendix D provides critical values of U for n1 and n2 from 3 to 20.
When either of the samples contains more than 20 scores, a z statistic that is approx-
imately normally distributed can be used. The approximate procedure is satisfactory
if both n’s are greater than 10. The z test statistic is

where U is defined in Table 18.3-1 and n1 and n2 are the two sample sizes. The c
term in the formula is a correction for continuity and is equal to 0.5. The decision
rule for the z test is as follows: Reject the null hypothesis if z falls in the critical re-
gion of the normal distribution; otherwise, do not reject the null hypothesis. Because
of the way U is defined, the computed value of z will always be negative regardless
of whether the test is one tailed or two tailed. To be significant, the absolute value of
the z test statistic must be greater than or equal to z

a/2 for a two-tailed test or greater
than or equal to z

a
for a one-tailed test.

As noted earlier, if two or more observations have the same value (tied scores),
they are assigned the mean of the ranks they would have occupied. The denomina-
tor, sU, of the z statistic can be corrected for ties; the corrected formula is

sU 5Å
sn1n2d sn1 1 n2 1 1d

12
c1 2

g st3
i 2 tid

sn1 1 n2d3 2 sn1 1 n2d
d

z 5
sU 1 cd 2 EsUd

sU
5

sU 1 cd 2 n1n2>2
"sn1n2d sn1 1 n2 1 1d > 12

U.05>2; n1, n2

2 If it can be assumed that the two population distributions are symmetrical, the Mann-Whitney U test is
a test of the hypothesis that the population medians are equal.
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where ti is the number of tied observations in a particular set. The term ( � ti) is com-
puted for each set and then is summed for the sets. In Table 18.3-1, there is one set of
two tied scores. The two tied scores are 13 and 13. For this set, � 23 � 2 � 6. If
n1 � n2 is large and the number of ties is small, the correction can be ignored.

The computation of the z statistic will be shown using the data in Table 18.3-1.
The test statistic is

The critical value of z for a two-tailed test at the a � .05 level of significance is 
z.05/2 � 1.96. Because the absolute value of the computed test statistic, | z | � 2.54, is
greater than the critical value, z.05/2 � 1.96, the null hypothesis is rejected. The
absolute value of the z test statistic is large enough to be significant at the .02 level.
A similar conclusion would be reached using the small-sample exact test procedure.
As expected, the correction for ties, which is , has virtually no effect on the
test. The uncorrected z statistic is 2.5363 versus 2.5350 for the corrected statistic.

Earlier, I mentioned that assumption-freer tests tend to be less efficient than para-
metric tests when the assumptions of the parametric tests are fulfilled. Several
statistics can be used to compare the relative efficiency of two tests. A simple rela-
tive index called power efficiency is described next.

Measures of Relative Efficiency

You saw in Section 10.4 that power is determined by four factors: (1) level of signifi-
cance, (2) sample size, (3) population dispersion, and (4) magnitude of the difference
between the true and hypothesized parameters. Furthermore, any desired power can
be achieved for a given significance level and true alternative hypothesis by obtain-
ing a sufficiently large sample. If one test statistic requires a smaller sample size to
achieve a desired power than does another statistic, it is said to be more efficient.

One index for comparing the efficiency of two test statistics when both are
used to test the same null hypothesis at a significance level against the same
alternative hypothesis is called power efficiency. It is given by

where nL is the sample size required by test L to equal the power of the more
efficient test S, based on nS observations.

Power efficiency 5
100snSd

nL

"0.999

 5
236.00

"201.667s0.999d
5 22.54

 5
s18.5 1 0.5d 2 s10d s11d>2

Å
s10d s11d s10 1 11 1 1d

12
c1 2

23 2 2
s10 1 11d3 2 s10 1 11d

d

 z 5
sU 1 cd 2 nh1n2>2

Å
sn1n2d sn1 1 n2 1 1d

12
c1 2

g st3
i 2 tid

sn1 1 n2d3 2 sn1 1 n2d
d

t3
i 2 ti
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Suppose, for example, that test S requires 40 participants to reject the null hypothesis
in favor of the alternative hypothesis at a significance level with power equal to .90,
and that test L requires 80 participants. The power efficiency, PE, of test L relative
to S is

The PE index has a drawback. Its value is determined by the particular values of
a, power, H0, H1, and the sample size of the more efficient comparison test statistic.
Statisticians prefer another index called asymptotic relative efficiency, or ARE,
that does not depend on qualifying conditions that vary from one situation to the
next. A description of the index is beyond the scope of this book. It turns out that
when the two indexes, PE and ARE, are used to rank-order various test statistics in
terms of efficiency, the results are almost identical.

Relative Efficiency of the Mann-Whitney U Test

In general, when the assumptions of parametric tests are met, they are more efficient
than assumption-freer tests. This is true for the two-sample t test for independent
samples when compared with the Mann-Whitney U test. The two provide tests of
the same hypothesis if observations are randomly sampled from a normal popula-
tion, because in that case the population mean is equal to the population median. Re-
call from footnote 2 that when the populations are symmetrical, the Mann-Whitney
U test is a test of the hypothesis that the population medians are identical. The power
efficiency of the U test relative to that for the t test is 95.5%. When the distribution
assumptions of the t test are violated, the relative efficiency of the U test can exceed
that for t. Thus, the U test is an excellent alternative to the t test. It has two impor-
tant advantages: it is applicable to ranked data and it assumes only random assign-
ment or random sampling from continuous populations.

CHECK YOUR UNDERSTANDING OF SECTIONS 18.2 AND 18.3

1. Compare the assumptions of the Mann-Whitney U test with those for the two-
sample t test for independent samples. What are the relative merits of the tests?

2. Researchers investigated the effect of administering a noxious stimulus (an
electric shock) at random intervals on the exploratory behavior of gerbils dur-
ing infancy. They randomly assigned animals to the experimental condition
(shock) or the control condition (nonshock) and measured the dependent vari-
able (duration in minutes of exploratory behavior during one day) when the ani-
mals were six months old. For the data in the table, test the hypothesis that the
experimental and control populations are identical. Let a � .05.

Control Group Experimental Group

40 42 25 30 32 26 30
33 31 34 16 24 20

PE 5
100s40d

80
5 50%
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3. The effect on motor skill development of playing with educational toys for six
months was investigated. The participants were four- and five-year-olds. Half of
the participants were randomly assigned to the play group; the remaining half
did not play with the toys. For the following data, test the hypothesis that the
two populations are identical. Let a � .01. Perform the test with and without a
correction for ties.

Motor Skill Scores for Motor Skill Scores for
Play Group Control Group

28 22 19 15 27 18 17 13
26 21 18 14 25 18 17 10
25 20 18 12 23 18 16 8
24 19 17 11 21 17 16 7
23 19 16 9 20 17 16 6

4. What are the qualifying conditions associated with the PE index?
5. Under what conditions can the z test be used instead of the U test to test the null

hypothesis that two population distributions are identical?
6. Suppose that the two-sample t test required 82 participants to reject the nondi-

rectional null hypothesis at the .01 level of significance with power equal to .80,
and the Mann-Whitney U test required 86 participants. (a) What is the PE of the
Mann-Whitney test? (b) What are the qualifying conditions associated with
your estimate?

7. Terms to remember:
a. Nonparametric tests b. Distribution-free tests
c. Assumption-freer tests d. Power efficiency
e. Asymptotic relative efficiency

18.4 WILCOXON T TEST FOR DEPENDENT SAMPLES

The Wilcoxon matched-pairs signed-ranks test is used to test the hypothesis that two
population distributions are identical. It is appropriate for dependent samples. Such
samples can result from (1) obtaining repeated measures on the same participants,
(2) using participants matched on a variable that is known to be correlated with the
dependent variable, (3) using identical twins or littermates, or (4) obtaining pairs of
participants who are matched by mutual selection.3 The Wilcoxon test assumes that
the populations are continuous and that a random sample of paired elements has
been obtained or that the paired elements have been randomly assigned to the condi-
tions. The test’s power efficiency relative to that of the two-sample t test for depen-
dent samples is 95.5% when the latter test’s assumptions are met. When the t test’s
assumptions are not met, Wilcoxon’s relative efficiency can equal or exceed that for
the t test. Thus, Wilcoxon’s test is an excellent alternative to the t test for dependent
samples.

3 Procedures for obtaining dependent samples are discussed in Section 13.4.
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The Wilcoxon test statistic, denoted by T, is based on the rank of the absolute dif-
ference between paired observations rather than on the numerical value of the dif-
ference. Consequently, the test is appropriate for observations that represent ordinal
information.

Computational Procedure for Small Samples

The computational procedure described here for the Wilcoxon T statistic can be used
when the sample contains 50 or fewer pairs of scores. When the sample contains
more than 50 pairs of scores, a z statistic described later can be used.

Suppose that a test of assertiveness was administered to women college students
and the scores were used to form 16 pairs of women matched on assertiveness. One
woman in each pair was randomly assigned to participate in an assertiveness-
training group; the other member of the pair participated in a psychology seminar,
the control condition. It was hypothesized that women in the assertiveness-training
group would become more assertive relative to those in the control group. The sta-
tistical hypotheses are as follows:

H0: The population distributions of assertiveness scores are identical for the 
two groups.

H1: The population distribution of scores for women in the training group is
displaced (shifted) above that for the control group.

The alternative hypothesis calls for a one-tailed test in which the sample distribution
for the training group is displaced above that for the control group. The .05 level of
significance is adopted. The data are given in Table 18.4-1, along with the computa-
tional procedures.

The computations in Table 18.4-1 for Wilcoxon’s T test are easy to perform. First,
the magnitude of the difference between each pair of observations is determined (see
column 4). These differences are rank-ordered in column 5 in terms of their absolute
size—that is, their signs are ignored. The smallest difference receives a rank of 1;
the largest, a rank of n. Finally, two columns, 6 and 7, containing the ranks, respec-
tively, for the positive and negative differences are formed. The T test statistic is the
smaller of the sum of the positive ranks and the absolute value of the sum of the neg-
ative ranks.

The presence of zero differences requires a computational adjustment. If the
number of zero differences is even, each zero difference is assigned the average
rank for the set, and then half are arbitrarily given a positive sign and half 
are given a negative sign. If an odd number of zero differences occurs, one ran-
domly selected difference is discarded, and the procedure for an even number of
zero differences is followed. When a score is discarded, the sample size, n, is
reduced by one.

To be significant, the computed T(n) for the data in Table 18.4-1 must be less
than or equal to the one-tailed critical value T

a, n in Appendix Table D.11. The n in
T(n) is the number of pairs of observations. For this one-tailed test, the training
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TABLE 18.4-1 Computational Procedure for Wilcoxon T Test

(i) Data (n � 16 pairs of women matched on assertiveness were formed. The women in each matched pair
were randomly assigned to the training and control groups.)

(6) (7)
(5) Rank Rank

Rank of Associated Associated
(2) (3) Difference, with Positive with Negative

(1) Training Control (4) Ignoring Difference, Difference,
Pair Group Group Difference Sign R� R�

1 34 32 2 6.5 6.5
2 36 26 10 16.0 16.0
3 31 28 3 8.5 8.5
4 42 41 1 4.0 4.0
5 47 47 0 1.5 �1.5a

6 32 33 �1 4.0 �4.0
7 33 29 4 10.0 10.0
8 39 41 �2 6.5 �6.5
9 31 26 5 11.0 11.0

10 34 28 6 12.0 12.0
11 32 29 3 8.5 8.5
12 41 41 0 1.5 1.5
13 35 28 7 13.0 13.0
14 45 44 1 4.0 4.0
15 31 23 8 14.0 14.0
16 33 24 9 15.0 15.0

XT � 576 XC � 520 R� � 124.0 | R�| � 12.0

(ii) Computational check

(iii) Test statistic

T(16) � (Smaller of R� and | R�|) � 12.0

To be significant at a � .05 level of significance, the computed T(16) must be less than or equal to the one-
tailed critical value, T.05, 16, in Appendix Table D.13 and the training group must be displaced above the
control group. Because T(16) � 12.0 � T.05, 16 � 36 and the training group is displaced above the control
group, the null hypothesis is rejected.

a See the text for an explanation of why this zero difference is assigned a negative sign.
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group must be displaced above the control group. Inspection of the data indicates
that the latter condition is satisfied. The computed value of the Wilcoxon statistic in
Table 18.4-1, T(16) � 12, is less than the critical value, T.05, 16 � 35. Hence, the
researcher can conclude that the two populations are not identical; the training group
is displaced above the control group.

Computational Procedures When n Is Greater Than 50

Table D.11 in Appendix D provides critical values of Wilcoxon’s T for n from 5 to
50. When the sample n is greater than 50, a z statistic that is approximately normally
distributed can be used. The approximate procedure is satisfactory for n’s as small
as 10. The z statistic is

where T is defined in Table 18.4-1 and n is the number of pairs of scores. The c term
in the formula is a correction for continuity and is equal to 0.5. The decision rule for
the z test is as follows: Reject the null hypothesis if the absolute value of z is greater
than or equal to z

a
; otherwise, do not reject the hypothesis. Because of the way T is

defined, the computed value of z will always be negative, whether the test is one
tailed or two tailed.

If two or more ranks have the same value, they are assigned the mean of the ranks
they would have occupied. The denominator, sT, of the z statistic can be corrected
for ties; the formula with the correction is

where ti is the number of tied observations in a particular set. The term ( � ti) is
computed for each set and then summed for the sets. If n is large and the number of
ties is small, the correction can be ignored.

The z test will be illustrated using the data in Table 18.4-1. The procedure pro-
vides a satisfactory approximation when n is greater than or equal to 10. The test
statistic is

 5
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The critical value of z for a one-tailed test at a � .05 level of significance is 1.645.
Because | z | � 2.87 is greater than z.05 � 1.645 and the training group is displaced
above the control group, the null hypothesis is rejected. The absolute value of the z
test statistic is large enough to be significant at the .003 level. The table of critical
values for T does not have significance levels beyond .005, but the computed T is
small enough to be significant at the .003 level.

CHECK YOUR UNDERSTANDING OF SECTION 18.4

8. Researchers investigated the effect on one’s sense of well-being of participating
in a transactional analysis group. Participants completed a questionnaire before
and after participating in the group. For the data in the table, test the hypothesis
that the two populations are identical. Let a � .05. The higher the score, the
higher the individual’s sense of well-being.

Score Score Score Score
before after before after

Participant Participation Participation Participant Participation Participation

1 50 56 8 36 40
2 46 50 9 35 34
3 45 50 10 35 34
4 43 48 11 34 34
5 40 44 12 34 32
6 37 40 13 33 33
7 36 38 14 31 31

9. A researcher investigated the absolute threshold for a 1000-Hertz tone under the
effects of a hallucinogen, hashish, and a placebo. The order of administration of
the conditions was randomized independently for each participant. For the data
in the table, test the hypothesis that the two populations are identical versus the
alternative that the placebo population is displaced above the hallucinogen pop-
ulation. Let a � .05. Scores are dB re. 0.0002 dyne/cm2.

Participant Hashish Placebo Participant Hashish Placebo

1 4 6 9 0 0
2 0 0 10 5 8
3 1 1 11 �1 �2
4 0 �1 12 6 7
5 0 1 13 2 2
6 1 2 14 1 1
7 3 3 15 4 5
8 �1 0 16 2 4

10. It has been claimed that the grades of college students improve following mar-
riage. To test the hypothesis, the variables of college aptitude, gender, and size
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of high school attended were used to form matched pairs of students: one stu-
dent of a pair had been married for at least two semesters and the other was un-
married. For the data in the table, test the hypothesis that the populations are
identical versus the alternative that the married population is displaced above
the unmarried population. Use the z statistic to analyze the data. Let a � .05.
Do not use the correction for ties. 

Pair Married Unmarried Pair Married Unmarried

1 3.7 3.8 19 3.1 3.1
2 3.4 3.2 20 3.8 3.6
3 2.9 3.1 21 3.6 3.3
4 2.9 2.7 22 3.6 3.8
5 3.0 2.8 23 3.5 3.1
6 2.2 2.3 24 3.1 3.0
7 3.1 2.7 25 2.8 2.9
8 3.2 2.7 26 2.6 2.8
9 3.4 3.4 27 2.5 2.3

10 3.5 3.4 28 3.6 3.4
11 3.3 2.6 29 3.5 3.0
12 2.7 3.1 30 3.4 3.5
13 3.2 3.1 31 3.3 3.6
14 1.8 2.3 32 3.2 3.0
15 3.4 3.0 33 3.5 2.2
16 3.9 3.4 34 3.4 2.6
17 3.3 3.2 35 2.0 2.4
18 3.2 2.6

11. Use the z statistic to analyze the data in Exercise 9. Use the correction for ties.
Let a � .05.

12. Suppose the two-sample t test required 122 participants to reject the nondirec-
tional null hypothesis at the .01 level of significance with power equal to .95,
and the Wilcoxon T test required 128 participants. (a) What is the power effi-
ciency (PE) of the Wilcoxon test? (b) What qualifying conditions are associated
with your estimate?

18.5 COMPARISON OF PARAMETRIC TESTS AND
ASSUMPTION-FREER TESTS FOR RANKED DATA

When assumption-freer tests first appeared, they were regarded as no more than
quick and dirty substitutes for parametric tests because their power efficiency was
thought to be inferior. Now researchers have a clearer understanding of the differ-
ences between the two kinds of tests, which mainly involve (1) their assumptions,
(2) the level of mathematics necessary to understand their rationale, (3) their com-
putational simplicity, and (4) the nature of the hypothesis they test. I will now exam-
ine these differences.
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Most parametric test statistics assume that (1) the population elements are
randomly sampled or that the elements are randomly assigned to experimental con-
ditions and (2) the population is normally distributed. Some test statistics require a
third assumption if the null hypothesis concerns two or more populations—that the
population variances are equal.

Assumption-freer test statistics make fewer assumptions and hence can be used
in situations for which parametric methods are not appropriate. Most assumption-
freer procedures assume that (1) the population elements are randomly sampled or
that the elements are randomly assigned to experimental conditions and (2) the
sampled population is continuous, which implies that no two population elements
have the same value (that is, no tied values).4 It is relatively easy to determine
whether the assumptions of assumption-freer tests are satisfied. For example, a
sampling procedure is under a researcher’s control—the researcher knows whether
it is random. And one can decide on logical grounds whether or not the population
is continuous.

On the other hand, the parametric assumptions of normality and equal variances
are more difficult to check because in any practical situation the population is not
available for examination. Statistical tests can be applied to sample data to test these
assumptions. However, for the small samples typically used in the behavioral sci-
ences, health sciences, and education, the tests may lack the power necessary to de-
tect departures from normality and equal variances.

If all the assumptions of parametric tests are met, these tests are more efficient
than or as efficient as their assumption-freer counterparts. If, however, the assump-
tions of parametric tests are not met, they do not provide as precise control of the
probability of making a Type I error as do assumption-freer tests. When their
assumptions are not met, parametric tests are only approximate and the probability
of making a Type I error can be considerably larger than a. Fortunately, some para-
metric tests are relatively insensitive to violation of some of their assumptions.5

Nevertheless, one may prefer to use an assumption-freer test for which the proba-
bility of making a Type I error is known rather than relying on an inexact paramet-
ric test.

The second major way in which parametric and assumption-freer tests differ is in
the level of mathematics necessary to understand their rationale. The derivation of
parametric tests involves mathematics beyond the training of most researchers in the
behavioral sciences and education. Many assumption-freer tests, however, can be
derived using high-school algebra and elementary probability and counting rules.
This is a real plus because most researchers want to understand the rationale for the
procedures they use rather than having to accept their validity and appropriateness
on faith.

Third, assumption-freer tests differ from parametric tests in being easier to apply.
For example, the chi-square tests discussed in Chapter 17 use the simplest kind of

4 This follows because the probability of randomly drawing the same value twice in a finite sample from
a continuous population is 0. However, even if the population is continuous, the same sample value
may occur more than once because the measuring instrument is calibrated in discrete units.

5 This point is discussed in Sections 10.2, 13.2, 15.5, and 16.4.
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measurement—counting the number of observations in categories—and a test statistic
that is easy to compute. The tests in this chapter also use a simple measuring proce-
dure—ranking—and statistics that are easy to compute.

The fourth difference is in the nature of the hypothesis tested. Two-sample para-
metric procedures, for example, test hypotheses about particular population parame-
ters; most assumption-freer methods test hypotheses about equality of population
distributions. As you have seen, populations can differ in a number of ways, such as
central tendency, dispersion, skewness, and kurtosis. To test the null hypothesis H0:
m1 � m2 � 0 using a t statistic, you must assume that the populations have equal
variances and are symmetrical and mesokurtic. Thus, to test a hypothesis about one
population parameter, you must be willing to make assumptions about other para-
meters. Assumption-freer tests do not require such assumptions and, accordingly,
are much less specific in what they tell you.

CHECK YOUR UNDERSTANDING OF SECTION 18.5

13. Summarize the differences between assumption-freer tests and parametric tests.
14. What assumptions do most assumption-freer tests make? How do these assump-

tions differ from those for parametric tests?

18.6 LOOKING BACK: WHAT HAVE YOU LEARNED?

Test statistics are often classified according to whether they are parametric, nonpara-
metric, or distribution-free. The classification scheme is not entirely satisfactory
because some tests fall into more than one category. A test is parametric if it tests a
hypothesis concerning one of the parameters of the sampled population and if it re-
quires stringent assumptions regarding the shape of the sampled population; if not,
it is nonparametric. A test is distribution-free if it makes no assumptions about the
shape of the sampled population. The Mann-Whitney U test and the Wilcoxon T test
fit into both categories, because they do not require assumptions about the shape of
the sampled population nor do they test hypotheses about parameters of the sampled
population. Certainly, a classification scheme is less useful if its categories are not
mutually exclusive. Even the parametric–distribution-free distinction becomes
blurred under some conditions. For example, many parametric tests that assume that
the sampled population is normally distributed are approximately distribution-free
for very, very large samples. Little is gained by trying to distinguish between non-
parametric and distribution-free tests; it is more useful to label the two categories
collectively as assumption freer.

The Mann-Whitney U test is used to test the hypothesis that two population dis-
tributions are identical. It is an excellent alternative to the two-sample t test for inde-
pendent samples, because its power efficiency is 95.5%. The Wilcoxon T test often
is used in place of the two-sample t test for dependent samples when the assump-
tions of the latter are not tenable. Although it involves less stringent assumptions,
Wilcoxon’s T is nearly as efficient as the two-sample t—its power efficiency is
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95.5%. Like the U test, it tests the hypothesis that two population distributions are
identical.

The major differences between assumption-freer and parametric tests can be
summarized as follows: The assumption-freer methods based on ranks (1) require
less-stringent assumptions, (2) involve assumptions that are easier to verify, (3) are
usually less powerful when the assumptions of corresponding parametric tests are
satisfied, (4) are easier to compute, (5) require simpler mathematical procedures for
their derivation and understanding, (6) usually test hypotheses about population dis-
tributions instead of parameters, and (7) utilize information regarding rank order in-
stead of the numerical value of individual observations.

REVIEW EXERCISES FOR CHAPTER 18

1. Recognizing that in practice the distinction between nonparametric and
distribution-free tests is often blurred, indicate the principle differences between
them. How do these tests differ from parametric tests?

2. A paired-associates learning task is one in which participants are presented
with stimulus-response paired items and must learn to give the second item in
each pair when the first is presented. Researchers investigated the effect
on learning of having as the stimulus item a dirty word versus a neutral word.
Participants were randomly assigned to the conditions. For the recall scores
listed in the table, test the hypothesis that the populations are identical. Let 
a � .05.

Dirty Stimulus Item Neutral Stimulus Item

12 14 16 13 11 10 7 5
10 18 19 8 13 9

3. Researchers investigated the effect on motor skill development of playing with
educational toys for six months. The participants were eight- and nine-year-
olds. Half of the participants were randomly assigned to the play group; the re-
maining half did not play with the educational toys. For the data in the table,
test the hypothesis that the two populations are identical. Let a � .05. Perform
the test with and without a correction for ties.

Motor Skill Scores for Motor Skill Scores for
Play Group Control Group

47 36 43 32 36 23 26 16
46 35 39 31 34 21 25 15
44 34 37 30 32 20 25 14
45 33 37 29 29 19 24 11
44 32 26 27 27 18 24 12
48
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4. To measure the effect of time of day on test performance, a multiple-choice gen-
eral knowledge test was administered to a sample of 24 college students. Half
of the students was tested at 7:30 A.M. on Saturday; the other half was tested at
4:00 P.M. on the same day. The participants were randomly assigned to the two
testing times, with the restriction that the number of students assigned to each
time was equal. Investigators obtained the following data representing number
of correct answers on the test. (Suggested by Hughey, Arron Wilson. [1982]. Ef-
fects of scheduling test administration on the academic performance of college
students. Psychological Reports, 50, 1346.)

7:30 A.M. Group 4:00 P.M. Group

90 80 89 94 88 91 85 80
90 97 92 95 96 88 86 77
93 82 87 83 84 79 81 78

a. Compute the medians for the two samples.
b. Use the Mann-Whitney U statistic to test the hypothesis that the two popula-

tion medians are equal. Let a � .05.
c. What assumption must be tenable to use the Mann-Whitney U statistic to

test the hypothesis of equal medians? Does the assumption appear to be
tenable?

5. Suppose the two-sample t test required 101 participants to reject the nondirec-
tional null hypothesis at the .05 level of significance with power equal to .90,
and the Mann-Whitney U test required 106 participants. (a) What is the PE of
the Mann-Whitney test? (b) What are the qualifying conditions associated with
your estimate?

6. Compare the assumptions of the Wilcoxon T test with those for the two-sample
t test for dependent samples. What are the relative merits of the tests?

7. An experiment was performed to determine the effects of sustained physical ac-
tivity on hand steadiness. For the data in the table, test the hypothesis that the
two populations are identical. Let a � .01.

Steadiness Steadiness Steadiness Steadiness
before after before after

Participant Activity Activity Participant Activity Activity

1 14 12 9 13 9
2 12 11 10 11 10
3 16 13 11 14 12
4 6 6 12 13 11
5 13 14 13 9 6
6 15 10 14 11 9
7 14 10 15 13 12
8 12 12

8. Use the z statistic to analyze the data in Exercise 7. Use the correction for ties.
Let a � .01.
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9. Suppose the two-sample t test required 57 participants to reject the nondirec-
tional null hypothesis at the .05 level of significance with power equal to .80,
and the Wilcoxon T test required 60 participants. (a) What is the PE of the
Wilcoxon test? (b) What qualifying conditions are associated with your
estimate?

10. Briefly describe the four major ways in which assumption-freer tests differ from
parametric tests.
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A P P E N D I X  A

Review of Basic 
Mathematics

This appendix provides a brief review of selected arithmetic and algebraic concepts.
You have, no doubt, been exposed to this material in the past, but chances are you
have forgotten some of it. If so, this review should refresh your memory.

The following test is designed to appraise your knowledge of basic mathematics
and help you pinpoint concepts that you should review. Answers are given at the end
of the test, along with references to relevant review sections. A table of test norms in
Section A.3 lets you compare your performance with that of students, mostly psy-
chology majors, at Baylor University.

A.1 TEST OF MATHEMATICAL SKILLS

Round the following numbers to three digits.

1. 2.576_____________ 2. 100.4_____________

3. 1.645_____________ 4. 2.328_____________

5. 15.35_____________ 6. 16.25_____________

Perform the following basic operations.

7. | �3 | � | 3 | � _____________

8. �5 � 2 � _____________

9. 3 � 2 � 4 � 8 � _____________

10. �6 � 3 � _____________

11. 5 � (�1) � _____________

12. �9 � (�4) � _____________

519
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13. (�2)(�6) � _____________

14. 10/(�2) � _____________

15. 0/6 � _____________

16. 9/0 � _____________

17. (a/b)(n/n) � _____________

18. (a/b)2 � _____________

19. (2/5)(3/6) � _____________

20. (3⁄4)/ 2 � _____________

21. 3/(4⁄2) � _____________

22. 20 � _____________

23. (X)(X2) � _____________

24. (X2)3 � _____________

25. 2�1 � ( )/( )

26. 3�2 � ( )/( )
( )

27. 32/34 � ( )
( )

28. �

29. Factor X2 � 2XY � Y2 � _____________

30. Factor pn � p � _____________

31. 3! � _____________

32. 0! � _____________

Remove the parentheses.

33. X � (Y � Z) _____________ 34. X � (Y � C ) ______________

35. nS(1 � R2) _____________ 36. (X � Y)S � M ______________

"s       d15       3"15
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Solve the equations and inequalities.

37. 3X � 6 � 12 X � 38. 2 a/3 � 6 a �

39. a � 40. z � (X � Y)/S X �

41. Y � a � bX X � 42. R �

43. b � 44. X � [(n � 1)S]/b S �

45. 2X � 1 � 3 X � 46. � X �

47. � M �

48. [(n � 1)S]/b � X b �

A.2 ANSWERS TO TEST OF MATHEMATICAL SKILLS

The answers to the skills test follow. The numbers in parentheses refer to the review
sections that discuss the principle involved.

Principles discussed in Section A.4 (Rounding Numbers)

1. 2.58 (1) 2. 100 (2) 3. 1.64 (3)
4. 2.33 (1) 5. 15.4 (3) 6. 16.2 (3)

Principles discussed in Section A.5 (Basic Operations)

7. 6 (5b, 6a) 8. �3 (6b) 9. �3 (6c)
10. �9 (7) 11. 6 (7) 12. �5 (7)
13. 12 (8) 14. �5 (8) 15. 0 (9c)
16. Undefined (9d) 17. a/b (10c-iii) 18. a2/b2 (10c-iv)
19. (10c-i) 20. (10d-i) 21. (10d-ii)
22. 1 (11d) 23. X3 (11b-i) 24. X6 (11b-ii)
25. or 0.5 (11c-i) 26. 1/32 (11c-i) 27. 3�2 (11c-iv)

28. (12c) 29. (X � Y)2 (13) 30. p(n � 1) (13)
31. 6 (14a) 32. 1 (14b)

Principles discussed in Section A.6 (Order of Performing Operations)

33. X � Y � Z (17a) 34. X � Y � C (17b)
35. nS � nSR2 (17c) 36. XS � YS � M (17c)
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Principles discussed in Section A.7 (Equations)

37. 6 (19c, 20, 21, 22) 38. 9 (19c, 20, 22)
39. nX � b (19c, 20, 21, 22) 40. zS � Y (19c, 20, 21, 22)
41. (Y � a)/b (19c, 20, 21, 22) 42. (19c, 20, 22)

43. (19c, 20, 21, 22) 44. Xb/(n � 1) (19c, 20, 22)

Principles discussed in Section A.8 (Inequalities)

45. 2 (25) 46. �19 � X � 37 (25, 26)
47. X � z S � M � X � z S (25, 26) 48. [(n � 1)S]/X (25, 27)

A.3 HOW DID YOU DO ON THE TEST?

Table A.3-1 provides norms for the Test of Mathematical Skills based on approxi-
mately 2000 students who have taken my introductory statistics course since the 
mid-1990s.

"1 2 S2>d2

S"2n

TABLE A.3-1 Norms for the Test of Mathematical Skills

Percentile Percentile
Test Score Rank Test Score Rank

48 100.0 30 24.2
47 97.1 29 21.8
46 94.1 28 18.7
45 89.4 27 16.7
44 84.6 26 14.9
43 80.3 25 13.4
42 75.3 24 12.2
41 70.2 23 10.7
40 65.0 22 9.1
39 59.2 21 7.8
38 53.4 20 6.6
37 48.9 19 5.4
36 45.0 18 4.3
35 40.7 17 3.4
34 36.7 16 2.7
33 33.3 15 2.2
32 30.5 14 1.5
31 27.3 13 1.1  

A.4 ROUNDING NUMBERS

The number of significant digits in a number (all digits except 0 when it is used
only to position the decimal point) should reflect the precision of a measurement.
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Therefore, numbers should be rounded to give a correct impression of the
measurement precision actually achieved. Rounding involves dropping digits if
they are to the right of the decimal or replacing them with 0 if they are to the left
of the decimal.

1. When the digit to be dropped is greater than 5 or is a 5 with nonzero digits to
the right, the digit to the left of it is increased by 1.

Examples 246.36 rounded to four significant digits becomes 246.4
386 rounded to two significant digits becomes 390
0.0068 rounded to one significant digit becomes 0.007
6.51 rounded to one significant digit becomes 7

2. When the digit to be dropped is less than 5, no change is made in the digit to the
left of it.

Examples 246.31 rounded to four significant digits becomes 246.3
384 rounded to two significant digits becomes 380
0.0063 rounded to one significant digit becomes 0.006

3. When the digit to be dropped is 5 or is 5 with only zeros to the right, the digit to
the left of 5 is increased by 1 if it is odd and is not changed if it is even. (Not all
calculators follow this convention; some always increase the digit to the left of 5.)

Examples 75 rounded to one significant digit becomes 80
935.35 rounded to four significant digits becomes 935.4
674.5 rounded to three significant digits becomes 674
912.5 rounded to three significant digits becomes 912

4. If the final result of a computation is to be rounded to s digits to the right of the
decimal, at least s � 1 digits to the right should be retained in intermediate
computational steps.

Example � � � 1.82

A.5 BASIC OPERATIONS

5. Numbers
a. A signed number—for example, 4, �2, 9, �11—indicates (1) direction and

(2) size. The sign, � or �, indicates the direction of movement away from a
starting point, 0. Zero has no direction. The number part of the signed num-
ber indicates the extent or size of movement away from 0.

Example The size and direction of movement for �2 and 4 are shown here.

5>2.7465> s14>5.099ds115 2 110d> s14>"26d

�4 �3 �2 �1 0 1 2 3 4

4
�2
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b. The absolute value of a number, denoted by |    |, indicates size but not di-
rection. The absolute value is always positive for nonzero numbers. The
general rule is

The second part of the rule appears contradictory but isn’t. If a is less than 0,
it is a negative number, and a minus sign in front of a negative number makes
it positive.

Examples | 3 | � 3; | �3 | � 3; | 0 | � 0; | �1.96 | � 1.96;
| X | � X if X is a positive number, and | X | � �X if X is a 
negative number.

6. Addition
a. Two numbers of like sign: add the absolute values of the numbers and attach

the common sign to the sum.

Examples 3 � 2 � 5; �3 � (�2) � �5

b. Two numbers of unlike sign: determine the difference between their absolute
values and attach the sign of the larger number.

Examples 3 � (�2) � 1; �3 � 2 � �1

c. More than two numbers with unlike signs: add the absolute values of the pos-
itive numbers, as in Rule 6a, and do the same for the negative numbers; then
determine the difference between their absolute values and attach the sign of
the larger of the two, as in Rule 6b.

Example 3 � 2 � (�5) � (�3) � (�1) � 5 � (�9) � �4

7. Subtraction
To subtract one number from another, change the sign of the number to be sub-
tracted and proceed as in addition.

Examples 3 � (2) � 3 � (�2) � 1
3 � (�2) � 3 � 2 � 5
�3 � (2) � �3 � (�2) � �5

�3 � (�2) � �3 � 2 � �1

8. Multiplication and division
Multiplying two numbers results in another number called a product; dividing
one number by another results in another number called a quotient. When two
numbers have like signs, their product and quotient are positive; when they have
unlike signs, their product and quotient are negative.

Examples (6)(3) � 18 6/3 � 2
(6)(�3) � �18 6/�3 � �2
(�6)(3) � �18 �6/3 � �2
(�6)(�3) � 18 �6/�3 � 2

| a |  5 e        a if a $ 0
2 a if a , 0
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9. Operations with zero
a. If 0 is added to or subtracted from any number, the result is the number itself. 

Examples 3 � 0 � 3; 9 – 0 � 9

b. The product of 0 and any other number is equal to 0.

Examples (3)(0) � 0; (2)(3)(0) � 0

c. 0/a � 0 for all nonzero values of a.

Examples � 0; � 0

d. The use of 0 as a divisor results in a fraction that cannot be evaluated.

Example is undefined.

10. Fractions
a. A fraction, for example, 6/2 or a/b, is the result of dividing one number or

expression by another. The upper part of the fraction is called the numerator;
the lower part (the divisor) is called the denominator.

b. Addition and subtraction
i. To add or subtract fractions with the same denominator, perform the indi-

cated operation on the numerator and leave the denominator unchanged.

Examples � ; � ; � ; �

ii. To add or subtract fractions with different denominators, find a common
denominator, change all fractions accordingly, and proceed as in part i.
Some multiple of all the original denominators is selected as the common
denominator; each new numerator is formed by multiplying the original
numerator by the number of times the original denominator divides into
the common denominator.

Examples � � ; � �

iii. In general, if the same quantity is added to or subtracted from both the
numerator and the denominator, the value of the fraction is changed.

Examples unless a � b or n � 0;

�

c. Multiplication
i. To multiply two or more fractions, multiply their numerators together and

their denominators together to obtain, respectively, the numerator and the
denominator of the product.

5
6

3
4
2

3 1 2
4 1 2

a
b
2

a 1 n
b 1 n

10
8

4
8

1
6
8

1
2

1
3
4

ad 1 bc
bd

ad
bd

1
bc
bd

a
b

1
c
d

2 2
3

2
3

2
4
3

6
3

2
3

1
4
3

a 2 b
c

a
c

2
b
c

a 1 b
c

a
c

1
b
c

5
0

0
7

0
3
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Examples � ; � �

ii. Multiplying anything by 1 leaves its value unchanged.

Examples ;

iii. Multiplying both the numerator and the denominator of a fraction by the
same quantity other than 0 does not change its value.

Examples ;

iv. In general, squaring a fraction or taking its square root changes its value.

Examples and unless a � b;

and

d. Division
i. To divide a fraction by a quantity, multiply the denominator of the frac-

tion by that quantity.

Examples ;

ii. To divide a quantity by a fraction, invert the fraction and multiply.

Examples ;

iii. To divide a fraction by another fraction, invert the second fraction and
multiply.

Examples ;

iv. Any quantity (other than 0) divided by itself equals 1.

Examples a/a � 1 if a 	 0; 3/3 � 1

v. Dividing any quantity by 1 leaves its value unchanged.

Examples ;

11. Exponents
a. The number of times a number, the base, is multiplied by itself is denoted by

a superscript, the exponent.

Examples a1 � a; a2 � (a)(a); a3 � (a)(a)(a)

3>2
1

5
3
2

a>b
1

5
a
b

2>3
4>5 5 a2

3
b a5

4
b 5

10
12

a>b
c>d 5 aa

b
b ad

c
b 5

ad
bc

2
3>4 5 2a4

3
b 5

8
3

a
b>c 5 a 

c
b

5
ac
b

2>3
4

5
2

s3d s4d
 5  

2
12

a>b
c

5
a
bc

4
9
2

"4

"9
 5  

2
3

4
9
2 a4

9
b2

5  
16
81

a
b
2

"a

"b

a
b
2 aa

b
b2

a3
4
b a2

2
b  5  

s3d s2d
s4d s2d

 5  
3
4

aa
b
b an

n
b  5  

an
bn

 5  
a
b

3
2

s1d  5  
3
2

a
b

s1d  5  
a
b

6
12

s2d s3d
s3d s4d

a2
3
b a3

4
bac

bd
aa

b
b a c

d
b
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b. Laws of positive exponents
i. an am � an � m Example (2)2(2)3 � 22 � 3 � 25

ii. (an)m � anm Example (22)3 � 2(2)(3) � 26

iii. an bn � (ab)n Example (2)2(4)2 � [(2)(4)]2 � 82

c. Laws of negative exponents and mixed exponents

i. Example

Example

ii. (an)�1 � (a�1)n � a(�1)(n) � a�n

Examples (23)�1 � 2(3)(�1) � 2�3

iii.

Example

iv.

Example

d. A number not equal to 0 with a 0 exponent, a0, is equal to 1. This follows,
because according to 11c-iv, an/an � an – n � a0, and according to 10d-iv,
an/an � 1; therefore a0 � 1.

Examples a0 � 1 for a 	 0; 20 � 1, 50 � 1

e. Do not confuse exponents and coefficients. When multiplying terms with co-
efficients and exponents, add exponents and multiply coefficients.

Examples (3X2)(2X3) � 6X5; (3X)(5X2) � 15X3

12. Radicals
a. A radical is used to indicate a specific root of a quantity, as, for example, in

the expression ; b is said to be the nth root of a, is a radical sign,
n is the index of the radical, and a is the radicand. If n is not specified, it is
understood to equal 2, in which case is called the square root of a.

b. To multiply two radicals with the same index where both radicands are posi-
tive, multiply their radicands under one radical. Similarly, to divide one
radical by another, divide (under one radical) the radicand of the first by the
radicand of the second.

Examples ;

; "2>"3 5  "2>3"a>"b 5  "a>b
"2"3 5  "s2d s3d"a"b 5  "ab

b 5"a

" b 5"n
a

s2d2

s2d3 5 2223 5 221

an

bm 5 ana2m 5 an2m

a2
4
b2

5
s2d2

s4d2

aa
b
bn

5 ana1
b
bn

5 ansb21dn 5 anb2n 5
an

bn

a2n 5
1
an

222 5
1
22a22 5

1
a2

221 5
1
2

a21 5
1
a
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c. To multiply or divide a radical of the nth order by a number a not equal to 0,
place the number raised to the nth power under the radical and multiply or
divide the radicand by it.

Examples ; ;

;

d. Note that the nth root of a sum is not equal to the sum of the respective nth
roots.

Examples ;

13. Factoring
Factoring an expression consists of dividing it into smaller terms or expressions
that, when multiplied, will yield the original expression.

Examples ab � a � a(b � 1);
a2 � b2 � (a � b)(a � b);
a2 � 5a � 6 � (a � 1)(a �6);
a2 � 5a � 6 � (a � 2)(a � 3)

14. Factorials
a. The product of the first n natural numbers (positive integers) is called n fac-

torial and is denoted by n!, which equals n (n � 1)(n � 2) · · · (3)(2)(1).

Example 4! � 4(4 � 1)(4 � 2)(4 � 3) � (4)(3)(2)(1) � 24

b. For n � 0, 0! is defined as 1.

A.6 ORDER OF PERFORMING OPERATIONS

15. The order in which numbers are added does not affect the result.

Examples a � b � b � a; 2 � 3 � 3 � 2 � 5;
(a � b) � c � a � (b � c); (2 � 3) � 5 � 2 � (3 � 5) � 10
a � b � b � a illustrates the commutative law of addition.
(a � b) � c � a � (b � c) illustrates the associative law of addition.

16. The order in which numbers are multiplied does not affect the result.

Example ab � ba; (2)(3) � (3)(2) � 6; (ab)c � a(bc);
[(2)(3)]5 � 2[(3)(5)] � 30
ab � ba illustrates the commutative law of multiplication.
(a b)c � a(bc) illustrates the associative law of multiplication.

17. Parentheses (   ), braces{   }, brackets [   ], and the radical sign indicate that the
enclosed expression is to be treated as a single number. The bar of a fraction has a
similar effect: the numerator and the denominator are treated as single numbers.

Examples 10(16 � 14) � 10(2) � 20; (3 � 1)4.21 � (2)4.21 � 8.42

2 1 4
3 2 1

5
6
2

5 3

" 

"32 1    42 5 52   "32 1"42 5  7"a2 1    b2
2"a2 1"b2

"3>2 5  "3>22"a>c 5  "a>c2

2 3"3 5
3"23s3d2"3 5  "22s3da"b 5  "a2b
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a. When a plus sign (�) precedes parentheses, the parentheses may be removed
without changing the signs of terms within the parentheses.

Examples a � (b � c) � a � b � c; 2 � (3 � 5) � 2 � 3 � 5 � 10

b. If a minus sign (�) precedes parentheses and the parentheses are removed,
the sign of every term within the parentheses must be changed.

Examples (a � b) � (c � d) � a � b � c � d; 2 � (3 � 5) �
2 � 3 � 5 � �6

c. When a quantity within parenthesis is to be multiplied by a number, each
term within the parentheses must be so multiplied.

Examples a(b � c) � ab � ac;

10(16 � 14) � 10(16) � 10(14) � 160 � 140 � 20;

a(b � c) � ab � ac illustrates the distributive law.

18. Unless specifically altered (for example, by parentheses) the order for perform-
ing operations is as follows: first, exponentiation (raising a number to a power);
next, multiplication and division; and last, addition and subtraction.

Examples

;

A.7 EQUATIONS

19. An equation is a statement asserting that what is on the left side of the equal
sign is equal to what is on the right.

Examples 2 � 4 � 6 is an example of an arithmetic equation, because it
contains only numbers.

2X � 5 � 7 is an example of an algebraic equation, because it
contains a symbol.

a. An equation in which both sides have the same numerical value or one that
is true for all values of the variables employed is called an identity.

Examples 2 � 4 � 6; 3a � 4a � 7a

 F 5
320> s3 2 1d

1350> 33s10d 2 34 5
320>2

1350>27
5

160
50

5 3.2

 S 5Å
10s32d 2 s16d2

s10d2 5Å
320 2 256

100
5Å

64
100

5 0.8

 5 44.5 1 10a1
3
b 5 44.5 1 3.33 5 47.8;

 Mdn 5 44.5 1 10a30>2 2 14

3
b 5 44.5 1 10a15 2 14

3
b

10a 1
20

1
6

24
b 5

10
20

1
60
24

5
1
2

1
5
2

5 3
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One that is true only when certain values are substituted for variables is called a
conditional equation.

Examples 2X � 6; 3X � 4 � X � 6

b. To solve for an unknown in an algebraic equation, find the set of values
(called roots) that, when substituted for the unknown, makes the two sides of
the equation numerically equal. For 2X – 5 � 7, the root is 6, because 2(6) –
5 � 7, that is, 7 � 7.

c. To find the roots of an equation, perform a series of manipulations that place
the unknown alone on the left side (see Rules 20–23).

Example 2X � 5 � 7

2X � 5 � 5 � 7 � 5 Add 5 to both sides (see Rule 21)

Divide both sides by 2 (see Rule 22)

X � 6

20. An operation performed on one side of an equation must also be performed on
the other. The condition of equality is not affected by the following:
a. Adding the same quantity to both sides
b. Subtracting the same quantity from both sides
c. Multiplying both sides by the same quantity
d. Dividing both sides by the same nonzero quantity
e. Raising both sides to the same power if both sides have the same sign
f. Taking the same root of both sides if both sides have the same sign

21. Any term on one side of an equation may be transposed to the other side by
changing its sign. In essence, the term to be transposed is either added to or sub-
tracted from both sides of the equation.

Example Solving for a:

a � b � c
a � b � b � c � b

a � c � b

22. A quantity that multiplies one side of an equation may be transposed to divide
the other side or vice versa. In essence, both sides of the equation are subjected
to the same operation—either multiplication or division.

Examples Solving for a: Solving for X:

ab � c

 aX 2 a
S

bb 5 z 2 c
ab
b

5
c
b

 aX 2 a
S

bb 1 c 5 z

X 5
12
2

2X
2

5
7 1 5

2
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23. When each side of an equation consists of a fraction, the fractions can be
removed by cross-multiplying.

Example

ad � bc

A.8 INEQUALITIES

24. Two or more expressions connected by one of the ordering symbols �, �, �,
or � is an inequality.

Examples a � b; �1.96 � t � 1.96; z � 2.576

25. The solutions to an inequality are not affected by the following operations:
a. Adding the same quantity to both sides
b. Subtracting the same quantity from both sides
c. Multiplying both sides by a positive quantity
d. Dividing both sides by a positive quantity

Example 4X � 2 � 10

4X � 10 � 2

X � 2

26. If both sides of an inequality are multiplied or divided by the same negative num-
ber, a new inequality is formed, with direction opposite to that of the original.

Examples �a � b �3 � 2

�1 (�a � b) �1 (�3 � 2)

a � �b 3 � �2

Find m if .

�3(5) � 2 �m � 8(5) Multiply each member by 5

�15 � 2 � �m� 40 � 2 Subtract 2 from each member

�1(�17 � �m � 38) Multiply by �1

2 3 #
2 2 m

5
# 8

a
b

5
c
d

 X 5 az 2 c
b

bS 1 a

 X 2 a 5 az 2 c
b

bS

 
X 2 a

S
5

z 2 c
b

a 5
c
b
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17 � m � �38

�38 � m � 17 Rearrange terms

27. Taking the reciprocal of, or inverting, all expressions in an inequality results in
a new inequality with direction opposite to that of the original.

Examples a � b implies that if ab � 0;

implies that

if a times � 0 and times d � 0
sn 2 1db

c
sn 2 1db

c

1
a

.
c

sn 2 1db
.

1
d

a ,
sn 2 1db

c
, d

1
a

,
1
b
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Glossary of Symbols

MATHEMATICAL SYMBOLS

Symbol Example Meaning1

� X � Y X and Y are added (A.5)
� X � Y Y is subtracted from X (A.5)
( )( ), � (X)(Y), X � Y, or XY X and Y are multiplied (A.5)
/, � X / Y or X ÷ Y X is divided by Y (A.5)
� X � Y X is equal to Y (A.7)
	 X 	 Y X is not equal to Y
� X � Y X is approximately equal to Y (2.2)
� X � Y X is greater than Y (A.8)
� X � Y X is greater than or equal to Y (A.8)
� X � Y X is less than Y (A.8)
� X � Y X is less than or equal to Y (A.8)
� � W � X � Y X is greater than W and less than Y

(A.8)
� � W � X � Y X is greater than or equal to W

and less than or equal to Y (A.8)
Sum of Xi, letting i equal 1, . . . , n

(3.3, 3.8)
. . . 1, 2, 3, . . . , 6 Continue the pattern—that is,

1, 2, 3, 4, 5, 6 in this case
| | | X | Absolute value of X; for X = 0, | X | = 0,

and for X 	 0, | X | is equal to the 
positive member of the couple 
X, �X (A.5)

Square root of X (A.5)
! n! n factorial, n(n � 1)(n � 2) · · · 

(3)(2)(1) (A.5)

"X" 

a
n

i51
Xia

n

i51

533

1 The letter or number in parentheses refers to the section in which the symbol is discussed. The letter A
denotes Appendix A.
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GREEK LETTERS

Symbol Meaning

a (alpha) Probability of a Type I error (10.4); significance level 
(10.2)

b (beta) Probability of a Type II error (10.4)
d0 (delta) Value of the difference between two population

parameters specified by the null hypothesis (13.2)
h2 (eta squared) Correlation ratio (5.6)
u (theta) Population parameter (9.4); a caret over the symbol, ,

denotes an estimator of (9.4)
m (mu) Population mean (3.3)
mj, mj' Means for populations j and j', j j' (15.2)
m0 Value of the population mean specified by the null

hypothesis (9.4)
Mean of means (9.4)
Population mean of interest (10.4)

n (nu) Degrees of freedom (10.2)
Degrees of freedom for t' (13.2)

p (pi) Ratio of the circumference of a circle to the diameter,
approximately 3.1416 (9.2)

r (rho) Pearson product-moment population correlation
parameter (5.2)

Summation (3.3)
Number of scores above the upper limit of the class

interval that contains the median (3.4)
Number of scores below the lower limit of the class

interval that contains the median (3.4)
R1 and R2 Sum of ranks, respectively, for variables 1 and 2 (18.3)
R� and R� Sum, respectively, of positive and negative ranks (18.4)

s (sigma) Population standard deviation (4.2); a caret over the
symbol, , denotes an estimator of s (4.2)

sr Standard error of a correlation coefficient (9.4)
sT Standard error of T (18.4)
sU Standard error of U (18.3)

Standard error of a mean (9.4); a caret over the symbol,
, denotes an estimator of (10.2)

Estimator of the standard error of the mean of difference
scores (13.4)

Standard error of the difference between means (13.2); a
caret over the symbol, , denotes an estimator of

(13.2)
Estimator of the population standard error of estimate (6.3)

s2 Population variance (4.2); a caret over the symbol, ,
denotes an estimator of s2 (4.2)

ŝ2
ŝY?X

sX12X2

ŝX12X2

sX12X2

ŝXD

sXsX

sX

ŝ

gg
gg

gfb

gfa

g ssigmad

nr

mr
mX

2

u

û
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Population error variance (15.3)
Estimator of the population variance (9.6)
Larger sample variance (14.2)
Weighted estimator of the population variance (13.2)
Smaller sample variance (14.2)

f9 (phi) Cramér’s measure of association; also denoted by V
(17.4); a caret over the symbol, , denotes an estimator
of (17.4)

x2 (chi) Pearson’s chi-square statistic (17.3)
Value that cuts off the upper a region of the sampling

distribution of x2 for n degrees of freedom (17.3)
c (psi) Contrast among population means (15.6); a caret over the

symbol, , denotes an estimator of c (15.6)
(omega squared) Strength of association for the ANOVA F test (15.7)

Partial omega squared (16.3)

ENGLISH LETTERS

Letter Meaning

ANOVA Analysis of variance (15.2)
ARE Asymptotic relative efficiency (18.3)
aj Level j of treatment A (15.4)
aY · X Y intercept of a line (6.2)
bk Level k of treatment B (16.4)
bY · X Sample slope coefficient of linear regression of Y

on X (6.2)
b1 Expected change in Y when X1 changes one unit and X2

remains constant (6.5); level 1 of treatment B
b2 Expected change in Y when X2 changes one unit and X1

remains constant (6.5); level 2 of treatment B
C Number of t tests performed among p � 2 means (15.2)
CR-p Completely randomized ANOVA design (15.4)
CRF-pq Completely randomized factorial ANOVA design (16.4)
Cum f Cumulative frequency (2.2)
Cum prop. f Cumulative proportionate frequency (2.2)
Cum % f Cumulative percentage frequency (2.2)

nCr Combination of n objects taken r at a time (7.4)
c A constant (3.8); number of qualitative categories 

(4.2, 17.5); correction for continuity (18.3)
cj Coefficient of a linear contrast (15.6)
D Index of dispersion (4.2)
DP Number of distinguishable pairs (4.2)
DPmax Number of distinguishable pairs when observations are

equally divided among categories (4.2)

v̂2
X|A?BL

v̂2
ĉ

x2
a, n

fr
frˆ

ŝ2
smaller

ŝ2
Pooled

ŝ2
larger

ŝ2
est

s2
e
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Di Difference between scores for the ith pair of 
elements (13.4)

d Cohen’s effect size (10.4)
df Degrees of freedom; also denoted by n (10.2)
E(MSBG) and E(MSWG) Expected value of MSBG and 

MSWG (15.3)
E(S2) Expected value of S2 (9.6)
E(T) Expected value of T in the Wilcoxon T statistic (18.4)
E(U) Expected value of U in the Mann-Whitney U

statistic (18.3)
E(X) Expected value of X (8.3)
Ei ith event (7.2); sample point for the ith event (7.2)
Ej Expected frequency in the jth category (17.3)
E( ) Expected value of an estimator (9.4)
E( ) Expected value of (9.6)
E( ) Expected value of a chi-square statistic (17.3)
e Base of the system of natural logarithms, approximately

2.7183 (9.2); number of distribution parameters
estimated (17.3)

ei Prediction error for the ith element; difference between
the observed and predicted scores (6.2)

F F statistic (14.2)
FS Scheffé’s multiple comparison test statistic (15.6)

Values that cut off, respectively, the upper and lower a
regions of the sampling distribution of F (14.2)

fa and fb Number of scores, respectively, above the real upper
limit of a class interval and below the real lower limit
of a class interval (3.4)

f, fj Frequency of a measurement or event class (2.2);
frequency of scores in the jth class interval (3.3);
number of scores in the class interval containing the
median (3.4)

fi Number of scores in the class interval containing a
particular statistic such as the median (3.4)

g Hedges’s effect size (11.3)
H0 Null hypothesis (10.1)
H1 Alternative hypothesis (10.1)
i Class interval size (2.2); index of summation (3.3); an

unspecified level of blocks (16.3)
j An unspecified level of treatment A (15.3)
Kur Kurtosis index (4.6)
k Number of class intervals in a frequency distribution

(3.3); an unspecified level of treatment B (16.4)
k2 Coefficient of nondetermination (5.4)
L1 and L2 Lower and upper endpoints, respectively, of a

confidence interval (11.2)
MSA, MSB Treatment A (16.3) or treatment B (16.4) mean squares

Fa; n1, n2
 and F12a; n1, n2

x2
n

ŝ2ŝ2
û
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MSBG Between-groups mean squares (15.3)
MSBL Blocks mean squares (16.3)
MSRES Residual mean squares (16.3)
MSWCELL Within-cell mean squares (16.4)
MSWG Within-groups mean squares (15.3)
Mdn Sample median (3.4)
Mo Sample mode (3.2)
m* Acceptable margin of error (12.2)
N Total number of scores (15.3)
n Number of observations in a sample (2.2); number of

trials in a binomial experiment (8.4); terminal value
of summation (3.3)

n! n factorial (7.4)
nA Number of equally likely events favoring A (7.1)
nL and nS Sample size of tests L and S (18.3)
nS Total number of equally likely events (7.1)
Oj Number of observations in the jth category (17.3)
%f Percentage frequency (2.2)
PE Power efficiency (18.3)
Prop f Proportionate frequency (2.2)
PR Percentile rank (4.2)
P% Percentile point (4.2)

nPn Permutation of n objects taken n at a time (7.4)

nPr Permutation of n objects taken r at a time (7.4)
p Probability of a success (8.4); population proportion

(12.2); a caret over the symbol, , denotes an
estimator of p (12.2); number of levels of 
treatment A (15.3)

p* Guessed value of the population proportion (12.2)
pj Population proportion of observations in the jth

category (17.3); a caret over the symbol, , denotes
an estimator of pj (17.3)

Value of the population proportion specified by the null
hypothesis (17.3)

p0 Value of the population proportion specified by the null
hypothesis (12.2)

Weighted mean of two population proportion 
estimators (14.4)

p(A) Probability of event A (7.1)
p(A|B) Conditional probability of A given B (7.3)
p(A and B) Probability of the intersection of events A and B (7.3)
p(A or B) Probability of the union of events A and B (7.3)
p(Ei) Probability of event Ei (7.2)
p(Not A) Probability of the complement of A (7.3)
p(X � r) Probability that X is equal to r (8.4)
Q Semi-interquartile range (4.2)
Q1, Q2, Q3 First, second, and third quartile points, respectively (4.2)

p̂Pooled

prj

p̂j

p̂
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q Probability of a failure (8.4); number of levels of
treatment B (16.4)

qFH Fisher-Hayter multiple comparison test statistic (15.6)
q

a; p � 1, n
Value that cuts off the a/2 region of the sampling

distribution of q for p treatment levels and n degrees
of freedom (15.6)

R Sample range (4.2)
RB-p Randomized block ANOVA design (16.3)

Coefficient of multiple correlation (6.5)
RX and RY Ranks, respectively, for variables X and Y (5.7)

Coefficient of multiple determination (6.5)
r Sample Pearson product-moment correlation 

coefficient (5.2); number of successes in a 
binomial experiment (8.4)

rs Spearman rank correlation coefficient for a sample (5.7)
r2 Sample coefficient of determination (5.4)
S Sample standard deviation (4.2)
S2 Sample variance (4.2)
S9 Desired sample standard deviation (9.3)
SSA, SSB Treatment A (16.3) or treatment B (16.4) sum of squares
SSBG Between-groups sum of squares (15.3)
SSBL Blocks sum of squares (16.3)
SSRES Residual sum of squares (16.3)
SSTO Total sum of squares (15.3)
SSWCELL Within-cell sum of squares (16.4)
SSWG Within-groups sum of squares (15.3)
ScX Standard deviation that has been altered by multiplying

each score by a constant (4.2)
SX and SY Sample standard deviations, respectively, of X and Y

(5.3)
and Sample variances, respectively, of X and Y (5.4)

SX � c Standard deviation that has been altered by adding a
constant to each score (4.2)

SXY Sample covariance (5.3)
SY · X Standard error of estimate for predicting Y from X (6.3)
Sk Skewness index (4.6)
si ith block (16.3)
T Wilcoxon’s T statistic (18.4)
T

a, n and T
a/2, n Values that cut off, respectively, the a and a/2 regions

of the sampling distribution of Wilcoxon’s T for n
pairs of observations (18.4)

t Student’s t statistic (10.2)
ti Number of tied observations in a set (18.3)
t
a, n

and t
a/2, n

Values that cut off, respectively, the a and a/2 regions
of the sampling distribution of t for n degrees of
freedom (10.2)

S2
YS2

X

R2
Y?X1X2, . . . , Xk

RY?X1X2, . . . , Xk
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Modified t statistic (13.2)
U Mann-Whitney U statistic (18.3)

Values that cut off, respectively, the a and a/2 regions
of the sampling distribution of U for n1 and n2
observations in samples 1 and 2 (18.3)

V A variable (3.8); Cramér’s measure of association, also
denoted by (17.4); a caret over the symbol, ,
denotes an estimator of V (17.4)

Var(Mdn) Variance of sample medians (9.4)
Var( ) Variance of sample means (9.4)
Var(t) Variance of Student’s t statistic (10.2)
Var( ) Variance of a chi-square statistic (17.3)
Var( ) Variance of (9.6)
Var( ) Variance of (9.6)
W A variable (3.8)

Cohen’s effect size (17.3)
X A score (1.4); the independent variable in an

experiment (5.1)
Xi A score for the ith measurement or event class (3.3);

value of independent variable (6.2)
Xn A score for the nth measurement or event class (3.3)
Xij A score for the ith subject in the jth treatment 

condition (15.3)
Xijk A score for the ith subject in the jkth treatment

combination (16.4)
Xj Value of the jth class interval (3.3)
Xll Real lower limit of a score (4.2) or class interval (3.4)
Xul Real upper limit of a score (4.2) or class interval (3.4)

A predicted X score (6.2)
Sample arithmetic mean (3.3)
Mean of difference scores (13.4)
Desired sample mean (9.3)
Arithmetic mean of the ith level of blocks (16.3)

and Arithmetic mean of all scores, grand mean 
(15.3, 16.4)

and Arithmetic mean of the jth level of treatment A
(15.3, 16.4)

Arithmetic mean of the kth level of treatment B (16.4)
Arithmetic mean of the jkth treatment combination (16.4)

Weighted mean of two or more sample means (3.7)
Y A score (1.4); the dependent variable in an 

experiment (5.1)
Value of predicted Y score (6.2)
Sample arithmetic mean (3.3)

Z9 Fisher’s transformation of r (12.3)
Y
Yri

XW

X?jk

X??k

X?j?X?j

X???X??

Xi?

Xr
XD

X
Xrj

ŵ

ŝ2
estŝ2

est

ŝ2ŝ2
x2

n

X

V̂fr

Ua; n1, n2
 and Ua>2; n1, n2

tr
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Value of population Z9 specified by the null 
hypothesis (12.3)

z Standard score (9.2); z statistic (10.2)
z

a
and z

a/2 Values that cut off, respectively, the upper a and a/2
regions of the sampling distribution of z (12.2)

Zr0



A P P E N D I X  C

Answers to Check Your
Understanding

CHAPTER 1

1. a. those who must be able to understand statistical presentations in their fields;
those who select, apply, and interpret statistical procedures in their work; ap-
plied statisticians; and mathematical statisticians

2. a. white women who are students in this university, a woman student, a mea-
sure of career ambivalence

b. all drivers in Tequila Tech students’ age group, a driver in that age group, the
number of automobile accidents for that driver

c. homes in Chickasha, Oklahoma; a home in Chickasha, Oklahoma; presence
or absence of a high-definition TV in the home

d. students at Ginebra University, a student at Ginebra University, grade-point
average of that student

e. American men between the ages of 27 and 39, an American man, presence
or absence of the AIDS virus

f. female high school students, a female high school student, whether or not the
student performed a community service in the past two years

3. One is the lower limit. All but one of the population elements is the upper limit.
4. a. R b. NR c. R d. NR
5. See Sections 1.1–1.3 for the meaning of the terms.
6. a. D b. U c. C d. O
7. a. E b. E c. A d. E
8. a. D b. U c. D d. O
9. a. ratio b. nominal c. between ordinal and interval d. ordinal

10. nominal: one-to-one substitution; ordinal: monotonic; interval: positive linear;
ratio: multiplication by a positive constant

11. nominal: one-to-one substitution, monotonic, positive linear, multiplication by
a positive constant; ordinal: monotonic, positive linear, multiplication by a pos-
itive constant; interval: positive linear, multiplication by a positive constant;
ratio: multiplication by a positive constant

12. a. ratio b. between ordinal and interval
13. Although the person could not answer any questions on the test, easier items

may exist that the individual could answer, which would indicate that the indi-
vidual does know something about the subject.

541
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14. A change of 3 points on the measurement scale represents the same empirical
change from 62 to 65 as from 68 to 71 and from 71 to 74.

15. See Section 1.4 for the meaning of the terms.
16. national statistics, probability theory, and experimental statistics
17. national statistics: enumerative in character; probability theory: developing

rules for determining the probability associated with events; experimental sta-
tistics: determining how to design and analyze experiments

18. The modern era uses exact inductive procedures appropriate for both large and
small samples; the previous period relied on large-sample procedures.

19. See Section 1.5 for the meaning of the terms.

CHAPTER 2

1. 2.

3. See the list in Section 2.2.
4. a. 49.5–54.5, 5 b. 73.5–74.5, 1 c. 17.95–19.95, 2
5. a. 16, 3, 21–23 b. 11, 15, 105–119 c. 17, 10, 90–99

6.

X f X f

95–99 1 60–64 2
90–94 1 55–59 4
85–89 4 50–54 5
80–84 5 45–49 3
75–79 4 40–44 2
70–74 2 35–39 1
65–69 1

n � 35

X f X f

25 1 13 1
24 0 12 1
23 0 11 4
22 1 10 4
21 1 9 5
20 0 8 8
19 0 7 7
18 0 6 6
17 1 5 4
16 0 4 3
15 2 3 1
14 0

n � 50

X f X f

13 1 6 2
12 0 5 4
11 0 4 6
10 1 3 3
9 1 2 2
8 0 1 1
7 1 0 1

n � 23
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7. a.

b. The distribution with i � 3 is better than the one with i � 2. The larger class
interval size provides a clearer picture of the distribution of scores because
the number of scores is relatively small.

8.

X Prop f X Prop f 9. X f Cum f X f Cum f

95–99 .03 60–64 .06 16 1 32 10 7 17
90–94 .03 55–59 .11 15 0 31 9 4 10
85–89 .11 50–54 .14 14 1 31 8 3 6
80–84 .14 45–49 .09 13 2 30 7 2 3
75–79 .11 40–44 .06 12 5 28 6 1 1
70–74 .06 35–39 .03 11 6 23
65–69 .03   

n � 32 

10.

X f Cum f Cum Prop f X f Cum f Cum Prop f

13 1 23 1.00 6 2 19 .83
12 0 22 .96 5 4 17 .74
11 0 22 .96 4 6 13 .57
10 1 22 .96 3 3 7 .30
9 1 21 .91 2 2 4 .17
8 0 20 .87 1 1 2 .09
7 1 20 .87 0 1 1 .04

n � 23
11.

X f

Graduate 1
Senior 8
Junior 10
Sophomore 6
Freshman 4

n � 29

X f X f

210–211 1 194–195 1
208–209 0 192–193 3
206–207 0 190–191 3
204–205 1 188–189 4
202–203 2 186–187 4
200–201 0 184–185 4
198–199 2 182–183 0
196–197 1 180–181 1

n � 27

X f X f

210–212 1 192–194 3
207–209 0 189–191 5
204–206 1 186–188 6
201–203 2 183–185 4
198–200 2 180–182 1
195–197 2

n � 27
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12. When the order of the class intervals is arbitrarily determined, it is meaningless
to construct a cumulative frequency distribution.

13. See Section 2.2 for the meaning of the terms.
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to evaluate
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Like
involvement
in research
after
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Attitudes toward research

Project
resulted in
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understanding
of research 
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Nurses
should
understand
research

f

RF 33%

R 12%

Favorite leisure time activity of college students

TV 25%

PS 8%

D 23%

14.

15.

16.
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18. See Section 2.4 for the meaning of the terms.

CE 
26%

CE � Feel confident to
evaluate research

Like involvement in
research after graduation

Project resulted in improved
understanding of research process

LI �

IU �

UR � 

LI 
13%

Attitudes toward research

IU 
29%

UR 
32%

Nurses should understand
research

6

5
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3

2

1

0
0

Number of cigarettes

f

3 6 9 12 15 18 21 24 27 30 33

9
8
7
6
5
4
3
2
1
0

Number of trials to criterion

f

20 30 40 50 60 70 80 90

17.

19.

20.

Histogram for number of cigarettes smoked per day by mothers whose first
babies were stillborn.

Histogram for number of trials required by rats to reach the criterion of eight
consecutive correct responses.

21. a. 22 b. 9.5 c. 132.5 d. 22
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Frequency polygon for number of cigarettes smoked by mothers whose first 
babies were stillborn.
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22.

23.

Frequency polygon for number of trials required by rats to reach the criterion of
eight consecutive correct responses.
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Cumulative percentage frequency polygon for number of cigarettes smoked per
day by mothers whose first babies were stillborn.

25. A cumulative polygon will have an S shape if there are more scores in the mid-
dle of the corresponding frequency distribution than at the extremes.

26.

Stems Leaves
(Class Intervals) (Scores)

0–2 0
3–5 3
6–8

9–11 9 0
12–14 2 3 4
15–17 5 6 6
18–20 8 9 9 0
21–23 1 1 2 3
24–26 5 5 6
27–29 7 7 7 8 8 9
30–32 0 0 0 1 1 2

27. See Section 2.5 for the meaning of the terms.
28. a. true b. true c. false d. true e. false

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

0
0 3 6 9 12 15 18 21 24 27 30 33

Number of cigarettes 

C
um

ul
at

iv
e 

pe
rc

en
ta

ge
 f

24.



548 Appendix C

30. See Section 2.6 for the meaning of the terms.

Positively skewed distribution

Test score

 f

Approximately normal distribution

Test score

 f

Negatively skewed
distribution

Musical aptitude score

 f

Positively skewed
distribution

Quiz grade

 f

29. a.

b.

c.

d.
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32. See Section 2.7 for the meaning of the term.

CHAPTER 3

1. a. Mo � S b. ordered qualitative variable
2. a. the distribution is bimodal; the maximum values occur at 1 and 3

b. unordered qualitative variable
3. The value of the mode computed from a grouped frequency distribution de-

pends on the scheme used to group the data.
4. a. X score for element one b. X score for element i

c. mean of population one d. X score for element j
5. a. X1 � X2 � · · · � Xn b. ( f1X1 � f2X2 � · · · � fk Xk)/n

c. (Z1 � Z2 � Z4)/3

6.
7. � 340/36 � 9.44
8.

Xj fj fj Xj

9 1 9
8 0 0
7 2 14
6 2 12
5 4 20
4 3 12
3 2 6
2 2 4
1 1 1

n � 17

X 5 78>17 5 4.59

a
k

j51
fjXj 5 78

X
X 5 78>17 5 4.59
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9.

Xj fj fj Xj

22 1 22
21 0 0
20 0 0
19 0 0
18 0 0
17 0 0
16 1 16
15 0 0
14 2 28
13 1 13
12 3 36
11 4 44
10 6 60
9 5 45
8 5 40
7 3 21
6 0 0
5 2 10
4 0 0
3 1 3
2 1 2
1 0 0
0 1 0

n � 36

10. See Section 3.3 for the meaning of the terms.
11. a. 9 b. 18 c. 3.25 d. 3.75

12.

Xj fj Cum f

22 1 36
21 0 35
20 0 35
19 0 35
18 0 35

X 5 340>36 5 9.44

a
k

j51
fjXj 5 340

(Continued)
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Xj fj Cum f

17 0 35
16 1 35
15 0 34
14 2 34
13 1 32
12 3 31
11 4 28
10 6 24
9 5 18
8 5 13
7 3 8
6 0 5
5 2 5
4 0 3
3 1 3
2 1 2
1 0 1
0 1 1

n � 36
Mdn � 8.5 � 1[(18 � 13)/5] � 9.5

13. Xul � real upper limit of class interval containing the median, i � class interval
size, n � number of scores, fa � number of scores above Xul, fi � number of
scores in the class interval containing the median.

14. Mdn � 8.5 � 1[(4 � 2)/3] � 7.83
15. a. Compute the mean because the data are quantitative and the distribution is

relatively symmetrical.
b. Compute the mean because the data are quantitative and the distribution is

relatively symmetrical.
c. Compute the median because the data contain an extreme score, X � 23.

16. a. , Mdn � 2, Mo � 3 b. Only the Mo is appropriate.
17. See Section 3.5 for the meaning of the terms.
18. a. positively skewed b. positively skewed c. bimodal

d. symmetrical e. negatively skewed f. multimodal
19. a. 43.33 b. 26.25
20. See Section 3.7 for the meaning of the term.
21. a. X1 � X2 � X3 b. Y1 � Y2 � Y3 � Y4

c. f1X1 � f2 X2 � f3X3 d. f1X1 � f2X2 � · · · � fkXk

e. a X1 � aX2 � aX3 � a(X1 � X2 � X3)
f. (X1 � a) � (X2 � a) � · · · � (Xn � a) � (X1 � X2 � · · · � Xn) � na

X 5 1

g
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CHAPTER 4

1. a. 16 b. 16 c. 10 d. 14
2. The range is determined only by the two most extreme scores.
3. a. Mdn � 27.33, Q � 1.33 b. P10 � 24.70, P90 � 30.30

7 

6 

5 

4 

3 

2 

1 

0

Time in seconds

f

21 23 25 27 29 31 33

Time in seconds required to notice the onset of a warning light during the
performance of a simulated driving test.

4. PR � 87.50

5. a. , S � 1.26
b. The calculator should give the same value for S.

6. a. , S � 8.84
b. The calculator should give the same value for S.

7. a. Mo � moderately desire career, D � .97

X 5 50.8667

X 5 2.4667

c.

22. a. 3(2) � 6 b. 4(3) � 12 c. 9
d. 16 e. 5 f. 2(2 � 3 � 4) � 18
g. (2 � 3 � 4) � 3(2) � 15 h. (1 � 2 � 4 � 9) � 4(2) � 4(3) � 12
i. (2 � 3) � 2(2) � 9

23. a. � Rules 3.8-4 and 3.8-2

� Rule 3.8-1

b. � Rule 3.8-3ca
n

i51

Xia
n

i51

scXid
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8. a. Rule 3.8-4

Rule 3.8-1

b. Rule 3.8-3

Rule 3.8-3

9. a. Approximately 68% of the scores fall between 85 and 115.
b. Approximately 50% of the scores fall between 58 and 82.
c. A range of four includes all of the scores; the most frequent score is 16.
d. The number of distinguishable pairs of categories is 25% of the maximum

number; the most frequent category is Pizza Inn pizza.
10. See Section 4.2 for the meaning of the terms.
11. a. Compute the mean and the standard deviation because the variable is quanti-

tative and the distribution is relatively symmetrical.
b. Compute the median and the semi-interquartile range because the distribu-

tion is skewed.
c. Compute the mode and the index of dispersion because the variable is

qualitative.
d. Compute the mode and index of dispersion because the variable is qualitative.

a
n

i51

c2sXi 2 Xd2 5 c2
a

n

i51

sXi 2 Xd2

a
n

i51

cXi>n 5 ca
n

i51

Xi>n
a

n

i51

c>n 5 nc>n
a

n

i51

sXi 1 cd>n 5 a
n

i51

Xi>n 1 a
n

i51

c>n
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The two criteria lead to the same conclusion that the data do not contain
outliers.

20 22 24

*

26 28 30 32 34

15. a. Mdn � 2(Q3 � Q1) � 27.33 � 2(28.83 � 26.17) � 32.6 and 22.0. There is
reason to believe that X � 21 is an outlier.

b. � 2.5S � 27.375 � 2.5(2.306) � 33.1 and 21.6. This criterion leads to
the same decision as the criterion in (a).

c. Mdn � 27.33
Q1 � 1.5(Q3 � Q1) � 26.17 � 1.5(28.83 � 26.17) � 22.18
Q3 � 1.5(Q3 � Q1) � 28.83 � 1.5(28.83 � 26.17) � 32.82

X

12. a. 84.13% b. 99.73% c. 97.72 d. 15.87
13. See Section 4.4 for the meaning of the term.
14. a. Mdn � 2(Q3 � Q1) � 5.0 � 2(6.5 � 3.5) � 5.0 � 6.0 � 0 and 11. Note that

a socioeconomic score cannot be negative and is set equal to zero. There is
no reason to believe that the data contain outliers.

b. Mdn � 5.0
Q1 � 1.5(Q3 � Q1) � 3.5 � 1.5(6.5 � 3.5) � 0. Note that the value cannot
be negative and is set equal to zero.
Q3 � 1.5(Q3 � Q1) � 6.5 � 1.5(6.5 � 3.5) � 11.0

0 1 2 3 4 5 6 7 8 9 10

All of the criteria lead to the same conclusion: X � 21 is an outlier.

16. See Section 4.5 for the meaning of the terms.
17. a. Sk � �1.02; distribution is negatively skewed.
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c. yes
18. a. Because Kur � �0.04, the data do not support the prediction.

b. The data are slightly negatively skewed; Sk � �0.09.
19. Kur � 0.23; distribution is leptokurtic.
20. See Section 4.6 for the meaning of the terms.

CHAPTER 5

1. a.

Test A Test B

30 31 32 33 34 35 36 37 38 39

33 1
32 1
31 1
30 1
29 1 1
28 1 1
27 1 1 1
26 1 2 1 1
25 1 2 1
24 1 1
23 1
22 1
21 1
20 1

b. linear
2. The term means that extreme scores for one variable—that is, scores that differ

considerably from their mean—are likely to be paired with less extreme scores
for the other variable.

6 

5 

4 

3 

2 

1 

0

Age at onset of Parkinson’s disease

f

59 60 61 62 63 64 65 66 67 68 69 70 71

b.
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3. See Section 5.1 for the meaning of the terms.
4. a. 1 b. 0 c. �1 d. .4 e. �.9
5. a. positive b. positive c. zero d. positive
6. See Section 5.2 for the meaning of the terms.
7. r � .86
8. a. Data appear to be linearly related. b. r � �.53

c. The faster the music tempo, the slower the rate of sipping.
9. r � .90

10. a. , quadrants 1 and 3, variables are positively
related.

b. , quadrants 1, 2, 3, and 4, variables are not
related.

c. , quadrants 2 and 4, variables are inversely
related.

d. , quadrants 1 and 3, variables are positively
related.

11.

gn
i51sXi 2 Xd sYi 2 Yd 5 13

gn
i51sXi 2 Xd sYi 2 Yd 5 215

gn
i51sXi 2 Xd sYi 2 Yd 5 0

gn
i51sXi 2 Xd sYi 2 Yd 5 18

6

4

2

0

�2

�4

�6

X
Variable X

�4�6 �2 0

Quadrant 2
a. b.

c. d.

Quadrant 1

Quadrant 3 Quadrant 4

2 4 6
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V
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e 
Y
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X
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�4�6 �2 0
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12. a. r � .95 b. r � .0 c. r � �.71 d. r � .60
13. a. The cross product reflects both the nature and the degree of relationship

between X and Y.



Appendix C 557

b. By dividing the cross product by n, you obtain a measure that is independent
of the number of pairs of scores.

14. The largest possible value of SX Y is 30.
15. a. The possible values of r are 1 and �1. If both scores are equal to the mean

of either X or Y, the correlation coefficient is undefined because SX SY � 0.

X
X

Y

Y

X
X

Y

Yb.

16. The value of SX is equal to zero, hence the denominator of r � SXY /SXSY is equal
to zero and the ratio is undefined.

17. See Section 5.3 for the meaning of the terms.
18. a. The proportion of variance in English grades explained by variation in phys-

ical education grades is .048; the proportion that is not explained is .952.

Variance in
English grades

Variance in
physical ed.

grades

r 2 � .048
k 2 � .952 k 2 � .952

Variance in
family cohesion

Variance in
men’s marital
satisfaction

r 2 � .314
k 2 � .686 k 2 � .686

b. The proportion of variance in family cohesion explained by men’s marital
satisfaction is .314; the proportion that is not explained is .686.
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c. The proportion of variance in Social Security numbers explained by total
fiber consumed is .001; the proportion that is not explained is .999.

Variance in
Social Security

numbers

Variance in
fiber

consumed

r2 � .001
k2 � .999 k2 � .999

Y

X

Y

X

b

a

19. See Section 5.4 for the meaning of the terms.
20. a. This is the correct interpretation.

b. This interpretation is incorrect because it uses an arbitrary descriptive label,
medium, to denote r’s between .30 and .69.

c. This interpretation is incorrect because a .15 unit increase from 0 to .15 does
not represent the same increase in correlation as that from .15 to .30.

d. This interpretation is incorrect because a nonzero correlation indicates a con-
comitant relationship but not a causal relationship.

21. The mean IQ should increase because of regression toward the mean.
22. See Section 5.5 for the meaning of the terms.
23. a. r underestimates the magnitude of the relationship.

b. The combined r overestimates the magnitude of the relationship for either
group.
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c. The combined r underestimates the magnitude of the relationship for either
group.

d. r underestimates the magnitude of the relationship for small values of X
and large values of Y; the converse is true for large values of X and small
values of Y.

e. r underestimates the magnitude of the relationship for large values of X
and Y; the converse is true for small values of X and Y.

Y

X

Y

X

Y

X

b

a
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f. The combined r overestimates the magnitude of the relationship for a and
underestimates the magnitude of the relationship for b.

g. The combined r is negative although the r for both a and b is positive.

h. r underestimates the value of the relationship.

24. The correlation between IQ and creativity for the sample of highly creative in-
dividuals may be misleadingly low because the range of creativity is truncated.

25. See Section 5.6 for the meaning of the terms.
26. rs � .76
27. An estimate of rs using the Pearson product-moment correlation formula is �.30.
28. a. strictly monotonic b. nonmonotonic

c. strictly monotonic d. strictly monotonic
29. See Section 5.7 for the meaning of the terms.

Y

X
X

Y

X

b

a

Y

X

b

a
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CHAPTER 6

1. The primary purpose of a regression analysis is to predict the value of a depen-
dent variable from the value of an independent variable.

2. a. bY · X � 2/4 � 0.5

20 

18 

16 

14 

12 

10 

8 

6
5.0

Y

X

Y � �9.357 � 3.476Xii

X � 3.188 � 0.250Yii

5.5 6.0 6.5 7.0 7.5 8.0

The data appear to be linearly related.
b. aY · X � �9.357 bY · X � 3.476 � �9.357 � 3.476Xi

r � 3.476(1.000/3.728) � .93
c. aX · Y � 3.188 bX · Y � 0.250 � 3.188 � 0.250Yi

The slope bY · X � 3.476 is steepest. r � 0.250(3.728/1.000) � .93

d.
e. Estimate based on the regression equation is 11.5; estimate based on the line

of best fit is 11.5.
4. It is a best fitting line in the sense that it minimizes the sum of the squared pre-

diction errors.
5. The regression lines are identical when | r | is equal to one.
6. Predict that Yi � for all i.
7. You know that r is equal to 1 or �1.
8. See Sections 6.1 and 6.2 for the meaning of the terms.
9. a. SY · X � 1.42

b. 13.2 � 1.42 � 11.78 and 14.62
c. For r � 0, the maximum value of SY · X � 2.97; for r � 1, the minimum value

of SY · X � 0. The observed value of SY · X � 1.42 is somewhere in between.
10. The larger SY · X, the larger the average prediction error. The minimum value of

SY · X is 0; the maximum value of SY is 3.728.
11. See Sections 6.3 and 6.4 for the meaning of the term.

Y

r 5"s3.476d s0.250d 5 .93; yes

Xri

Yri

3. a.
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12. a. (i)

(ii)

(iii)

b. (i)

(ii)

(iii)

13. a.

b. � 1.069 � 0.742(3.6) � 0.496(0) � 0.323(0) � 3.74; the predicted letter
grade is B�.

1.069 � 0.742(2.8) � 0.496(1) � 0.323(1) � 3.97; the predicted letter
grade is A.

1.069 � 0.742(3.1) � 0.496(1) � 0.323(0) � 3.87, the predicted letter
grade is A.

1.069 � 0.742(2.3) � 0.496(1) � 0.323(0) � 3.27, the predicted letter
grade is B.

14. See Section 6.5 for the meaning of the terms.

CHAPTER 7

1. a. p(odd number) � �
b. It is assumed that there are six possible outcomes, they are equally likely,

and the number of outcomes favoring an odd number is three.
2. a. p(queen of spades) �

b. It is assumed that there are 52 possible outcomes, they are equally likely, and
only one of them is a queen of spades.

3. a. p(head) � 52/100 � .52 b. p(head) � .5
4. a. p(H) � .5005 b. p(T ) � 1 � p(H) � 1 � .5005 � .4995

1>52

1>2
3>6

Yr34 5

Yr21 5

Yr16 5

Yr3

R2
Y?X1X2X3

2 R2
Y?X1X2

5 .743 2 .694 5 .049

R2
Y?X2X3

5
s.681d2 1 s.289d2 2 2s.681d s.289d s.083d

1 2 s.083d2 5 .518

R2
Y?X1X3

5
s.773d2 1 s.289d2 2 2s.773d s.289d s.065d

1 2 s.065d2 5 .655

R2
Y?X1X2

5
s.773d2 1 s.681d2 2 2s.773d s.681d s.544d

1 2 s.544d2 5 .694

R2
Y?X1X2

2 r2
YX1

5 .556 2 .360 5 .196

R2
Y?X1X2

2 r2
YX1

5 .473 2 .360 5 .113

R2
Y?X1X2

2 r2
YX2

5 .091 2 .090 5 .001

R2
Y?X1X2

5
s.60d2 1 s2.50d2 2 2s.60d s2.50d s2.10d

1 2 s2.10d2 5 .556

R2
Y?X1X2

5
s.60d2 1 s.50d2 2 2s.60d s.50d s.30d

1 2 s.30d2 5 .473

R2
Y?X1X2

5
s.20d2 1 s.30d2 2 2s.20d s.30d s.60d

1 2 s.60d2 5 .091
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5. a.

b. p(A) � 3/8 c. p(B) � 7/8
6. a.

b. p(psychology major) � 6/10
c. p(psychology or sociology major) � 7/10

7. a. p(psychologist) � 3/10 b. p(win a car) � 6/10,000
8. a.

b. 6/25
9. See Section 7.2 for the meaning of the terms.

10. a. p(ace) � 4/52 � 1/13 b. p(heart) � 13/52
c. p(ace or heart) � 16/52 � 4/13 d. p(heart or spade) � 26/52 � 1/2
e. p( face card) � 12/52 � 3/13 f. p(card � 5) � 16/52 � 4/13
g. p(not ace) � 1 � 4/52 � 48/52 � 12/13

EG1
EG2

EG3
EG4

ER1
ER2

ER3
ER4

ER5

EB1
EB2

EBr1
EBr2

EBr3
EBr4

EBr5
EBr6

EO1

EY1
EY2

EY3
EY4

EY5
EY6

EY 7

EP1
EP2

EP3

ES EH1
EH2

EH3

EP4
EP5

EP6

EHHH
EHHT EHTH ETHH A

B

ETTH ETHT EHTT ETTT
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11. a. p(A and B) � p(A) p(B) � (.6)(.8) � .48
b. p(Not A and Not B) � [1 � p(A)][1 � p(B)] � (1 � .6)(1 � .8) � (.4)(.2) � .08
c. p(A or B) � p(A) � p(B) � p(A and B) � .6 � .8 � .48 � .92

12. a. Fatal, F Nonfatal, Not F

Drunken driver, D p(D and F) � .002 p(D and Not F) � .098 p(D) � .100

Other cause, O p(O and F) � .002 p(O and Not F) � .898 p(O) � .900

p(F) = .004 p(Not F) � .996
b. p(D and F) � .002

13. p(M) � .98, p(Not D | M) � .15; p(M and Not D) � (.98)(.15) � .147
14. a. p(G) � 4/25 b. p(R or Y) � 12/25 c. p(Not G) � 1 � 4/25 � 21/25

d. p(Not(G or R or Br or O or B or Y) � 1 � 25/25 � 0
e. p(B and O) � (2/25)(1/24) � 2/600 � 1/300
f. p[B and (O or Br)] � (2/25)(7/24) � 14/600 � 7/300

15. See Section 7.3 for the meaning of the terms.
16. a. n1n2n3 � (2)(2)(2) � 8 b. n1n2n3n4 � (6)(6)(6)(6) � 1296

c. n1n2 � (2)(6) � 12
17. n1n2 � (3)(5) � 15
18. n! � 4! � (4)(3)(2)(1) � 24
19. 10P4 � 10!/(10 � 4)! � 5040
20. a. n1n2 � (9)(8) � 72 b. n �8P2 � 9[8!/(8 � 2)!] � 504

c. n �8C2 � 9{8!/[2!(8 � 2)!]} � 252
21. See Section 7.4 for the meaning of the terms.

CHAPTER 8

1. Identify the population, decide whether to sample with or without replacement,
and select elements using a random sampling procedure.

2. The two problems are obtaining an accurate list of the population elements and
securing their participation once they have been selected.

3. a. 50C5 � 50!/[5!(50 � 5)!] � 2,118,760 b. nr � (50)5 � 312,500,000
4. a. 8C4 � 8!/[4!(8 � 4)!] � 70 b. 1/8C4 � 1/{8!/[4! (8 � 4)!]} �.0143

c. nr � (8)4 � 4096
5. See the section titled “Using a Table of Random Numbers” for a description of

how to use the table.
6. See Section 8.2 for the meaning of the terms.
7. a.

r p(X � r)

0 .0625
1 .2500
2 .3750
3 .2500
4 .0625
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8. a. p(X � 2) � .93 b. p(X � 3) � .07 c. p(1 � X � 2) � .77
d. E(X) � .16(0) � .54(1) � · · · � .01(5) � 1.24

e.
9. E(X) � .6(30) � .4(10) � 22. The maximum you should be willing to pay is $22.

10. a. E(X) � 0(0) � 2/5(1) � · · · � 1/5(4) � 2.20

b.
11. a. p(W) � 1/1000

b. E(X) � (1/1000)[750 � (�1.00)] � (999/1000)(�1.00) � �.25
c. no
d. The maximum you should be willing to pay for a ticket is an amount such

that the expected value is equal to zero—that is,

E(X) � (1/1000)[750 � (�T)] � (999/1000)(�T) � 0

Solving for T gives

T � .75

12. See Section 8.3 for the meaning of the terms.
13. The probability is .2 that the value of X is equal to 3.
14. A trial can result in one of three outcomes. The probability of success remains

constant from trial to trial. The outcomes of successive trials are independent.
15. a. p(X � 0) � .16, p(X � 1) � .48, p(X � 2) � .36

b.

.75 2
T

1000
2

999 T

1000
5 0

s 5"0s0 2 2.2d2 1 2>5s1 2 2.2d2 1c1 1>5s4 2 2.2d2 5 1.17

s 5".16s0 2 1.24d2 1 .54s1 2 1.24d2 1c1 .01s5 2 1.24d2 5 0.88

.4 

.3 

.2 

.1

Number of errors

p

0 1 2 3 4

.5 

.4 

.3 

.2 

.1

Number of males

p(
X

)

0 1 2

c. E(X) � np � 2(.6) � 1.2, s 5"npq 5"2s.6d s.4d 5 0.693

b.
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16. a. p(X � 1) � 10C0(.3)0(.7)10 � 10C1(.3)1(.7)9 � .028 � .121 � .149

b. E(X) � np � 10(.3) � 3,
17. a. p(3 girls) � 5C3(.5)3(.5)2 � .3125. The number of families with three girls is

.3125(800) � 250.
b. p(5 boys) � 5C0(.5)0(.5)5 � .0312. The number of families with five boys is

.0312 (800) � 25.
c. p(2 girls) � 5C2(.5)2(.5)3 � .3125; p(2 or 3 girls) � .3125 � .3125 � .625.

The number of families with two or three girls is .625(800) � 500.
18. See Section 8.4 for the meaning of the terms.

CHAPTER 9

1. The standard normal distribution has a m � 0 and s � 1; this is not necessarily
true for other normal distributions.

2. a. normal b. normal c. d. normal

e. f. 

3. a. 2 b. �1.6 c. �1 d. 1.4 e. 0
4. a. .0668 b. .0228 c. .4987 d. .1359 e. .8400

f. .1574
5. a. .6826 b. .9000 c. .9500 d. .9902 e. .9990
6. a. 190 b. 120 c. 212 d. 150 e. 160
7. a. 0 b. 1.645 c. 0.25 d. �0.53 e. �1.645
8. z � (2.2 � 2.8)/0.24 � �2.50, z � (2.5 � 2.8)/0.24 � �1.25. The area

between z’s of �2.50 and �1.25 is .0994. If the university raises its minimum
entrance GPA to 2.5, the percentage of eligible junior college students will
decrease by 9.94%.

9. a. E(X) � np � 20(.5) � 10, . z � (11.5 �
10)/2.24 � .67; the area beyond z � .67 is approximately .25.

b. E(X) � np � 40(.5) � 20, . z � (23.5 �
20)/3.16 � 1.11; the area beyond z � 1.11 is approximately .13.

s 5"npq 5"40s.5d s.5d 5 3.16

s 5"npq 5"20s.5d s.5d 5 2.24

f

Arrival time

f

Age

f

Income

s 5"npq 5"10s.3d s.7d 5 1.45
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10. a. E(X) � np � 400(.1) � 40, , z � (30.5 �
40)/6.0 � �1.58; the area beyond z � �1.58 is approximately .06.

b. z � (29.5 � 40)/6.0 � �1.75, z � (50.5 � 40)/6.0 � 1.75; the area between
the two z’s is approximately .92.

c. z � (49.5 � 40)/6.0 � 1.58; the area beyond z � 1.58 is approximately .06.
11. See Section 9.2 for the meaning of the terms.
12. z1 � (72 � 60)/11 � 1.09, z2 � (61 � 44)/17 � 1.0, z3 � (63 � 53)/8 � 1.25.

Performance on test 3 was best, and performance on test 2 was poorest.
13. z � (99 � 82)/14 � 1.21; the area beyond z � 1.21 is .11. A score of 99 is in

the top 11.3% of test scores, hence you get an A.
14. a. z � [(18 � 22)/5]15 � 100 � 88 b. z � [(18 � 22)/5]10 � 50 � 42

c. z � [(18 � 22)/5]2 � 10 � 8.4
15. a.

Sample Sample Sample Sample
No. Values No. Values

1 0, 0 0.0 9 2, 0 1.0
2 0, 1 0.5 10 2, 1 1.5
3 0, 2 1.0 11 2, 2 2.0
4 0, 3 1.5 12 2, 3 2.5
5 1, 0 0.5 13 3, 0 1.5
6 1, 1 1.0 14 3, 1 2.0
7 1, 2 1.5 15 3, 2 2.5
8 1, 3 2.0 16 3, 3 3.0

b. ,

c.
d. The results are the same.

16. a.

Sample Sample
No. Values

1 0, 1 0.5
2 0, 2 1.0
3 0, 3 1.5
4 1, 2 1.5
5 1, 3 2.0
6 2, 3 2.5

b.

c.

d. . The
results are the same.

e. Consider a population with N � 340. A sample of n � 17 yields 17/340 � .05.
The correction for a finite population is .
Applying this correction would have little effect on .sX

"s340 2 17d> s340 2 1d 5 .9761

sX 5 s>"n"sN 2 nd> sN 2 1d 5 .7906"s4 2 2d> s4 2 1d 5 0.6455

mX 5 gk
j51Xj>k 5 9>6 5 1.5, sX 5"gk

j51sXj 2 mXd2>k 5 0.6455

m 5 gN
i51Xi>N 5 6>4 5 1.5, sX 5 s>"n 5 1.11803>"2 5 0.7906

Xj

mX 5 gk
j51Xj>k 5 24>16 5 1.5, sX 5"gk

j51sXj 2 mXd2>k 5 0.7906
sX 5 s>"n 5 1.11803>"2 5 0.7906m 5 gN

i51Xi>N 5 6>4 5 1.5

XjXj

s 5"npq 5"400s.1d s.9d 5 6.0
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17. The larger the value of s and the smaller the value of n, the greater is the
dispersion of a sampling distribution.

18. a. b.
c. d.

19. ; the probability of obtaining a mean of 115 or
lower if the mean is really 120 is .0062.

20. See Section 9.4 for the meaning of the terms.

CHAPTER 10

1. a. scientific hypothesis b. scientific hypothesis c. not a scientific hypothesis
d. scientific hypothesis

2. a. yes b. no c. yes d. no e. yes f. no
g. no h. yes i. yes j. yes

3. a. alternative hypothesis b. null hypothesis
4. H0: m � 8, H1: m � 8
5. H0: m � 14, H1: m � 14
6. See Section 10.1 for the meaning of the terms.
7. a. State the null and alternative hypotheses: H0: m � 45, H1: m � 45.

Specify the test statistic:
because the researcher wants 
to test m � 45, s is unknown,
and the researcher assumes the
population distribution of X is
approximately normal.

Specify the sample size: n � 121,
and the sampling distribution: t distribution with n � 120 

degrees of freedom because 
s is unknown and must be
estimated and the researcher
assumes the population
distribution of X is approxi-
mately normal.

Specify the level of significance: a � .05.
Obtain a random sample of size n,
compute t, and make a decision.

b. Reject the null hypothesis if t falls in the upper 5% of the sampling distribu-
tion of t; otherwise do not reject the null hypothesis. If the null hypothesis is
rejected, conclude that the new program is superior to the old program; if the
null hypothesis is not rejected, do not draw this conclusion.

t 5 sX 2 m0d> sŝ>"nd

s115 2 120d> s10>"25d 5 22.5
sX 5 10>"16 5 2.50sX 5 10>"8 5 3.54
sX 5 10>"4 5 5.00sX 5 10>"2 5 7.07
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9. a. H0: m � 15 b. H1: m � 15
10. Similarities: the sampling distributions of t and z have a mean of zero, are sym-

metrical, and are unimodal. Differences: the sampling distribution of t is more
leptokurtic and has a larger variance than that for z when n is less than .

11. H1 determines the location of the critical region and a determines its size.
12. a. t.05, 11 � 1.796 b. t.01, 11 � 2.718 c. t.05, 24 � 1.711

d. t.05, 16 � 1.746
13. a. �t.05, 11 � �1.796 b. �t.01, 11 � �2.718 c. �t.05, 30 � �1.697

d. �t.05, 60 � �1.671
14. See Section 10.2 for the meaning of the terms.
15. a. State the null and alternative hypotheses: H0: m � 50, H1: m � 50.

Specify the test statistic: be-
cause the researcher wants to
test m � 50, s is unknown,
and the researcher assumes the
population distribution of X is
approximately normal.

Specify the sample size: n � 30,
and the sampling distribution: t distribution with n � n � 1 �

29 because s is unknown 
and must be estimated and 
the researcher assumes the 
population distribution of X is
approximately normal.

Specify the level of significance: a � .05.
Obtain a random sample of size n,
compute t, and make a decision.

b. Reject the null hypothesis if t falls in the upper 5% of the sampling distribu-
tion of t; otherwise do not reject the null hypothesis. If the null hypothesis is
rejected, conclude that habitual criminals have higher Pd scores than non-
criminals; if the null hypothesis is not rejected, do not draw this conclusion.

t 5 sX 2 m0d> sŝ>"nd

`

f (z)

Don’t reject H0 Reject H0

Critical region
a � .05

z

8.
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16. a.
b. Because t � 2.497 � t.05, 29 � 1.699, the null hypothesis is rejected.

Conclude that habitual criminals have higher Pd scores than noncriminals.
17. The null hypothesis would not have been rejected because t � 2.497 �

t.005, 29 � 2.756. Do not conclude that habitual criminals have higher Pd scores
than noncriminals.

18. a.
b. Because t � 2.284 � t.005, 28 � 1.701, the null hypothesis is rejected.

Conclude that habitual criminals have higher Pd scores than noncriminals.
19. See Section 10.3 for the meaning of the terms.
20.

t 5 s54.8276 2 50d> s11.3800>"29d 5 2.284

t 5 s55.1667 2 50d> s11.3353>"30d 5 2.497

f (t)

t.01/2, 30 � 2.750

t.05, 16 � 1.746

�t.01/2, 30 � �2.750
0

0

Critical region
a/2 � .005

Critical region
a/2 � .005

t

f (t)

�t.005, 21 � �2.831
0

Critical region
a � .005

t

f (t) Critical region
a � .05

t

a.

b.

c.
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21. a. nondirectional b. directional
c. directional

22. a. Type I error b. Type II error
c. correct rejection d. correct acceptance
e. correct rejection f. Type I error

23. ; power is equal to 1 � � 1 �
.116 � .884.

24.
True Situation

m = 3.10 = 2.93

m � 3.10 Correct acceptance Type II error 
1 � a = .95

m � 3.10 Type I error Correct rejection 
a = .05 1 �

25. a. n � 156 b. n � 43 c. n � 19 d. n � 27
26. Statistical significance is concerned with whether a result is due to chance or

sampling variability; practical significance is concerned with whether the result
is useful in the real world.

27. a. (i) p � .05 (ii) p � .0403
b. (i) p � .01 (ii) p � .0092
c. (i) p � .05 (ii) p � .0412
d. (i) p � .01 (ii) p � .0089

28. See Section 10.4 for the meaning of the terms.

CHAPTER 11

1. The assumptions are random sampling, normal population, and the population
standard deviation is unknown.

2. A confidence interval specifies an estimate of the population parameter and the
error variation qualifying that estimate. Any null hypothesis can be tested by ex-
amining the confidence interval.

3. a.

7.0 � m � 7.4

7.2 2 2.763s0.42d>"29 , m , 7.2 1 2.763s0.42d>"29

b̂ 5 .88

b̂ 5 .12

mr

b̂t 5 s3.001 2 2.93d> s0.3013>"27d 5 1.224

Researcher’s
Decision

6.8 7.0

L2 = 7.4L1 = 7.0

7.2
m

7.4 7.6

b. Yes
c. . According to Cohen’s guidelines, the effect is

large.
4. a. I b. C c. I d. C e. C f. I
5. a. The larger s, the larger the interval.

b. The larger n, the smaller the interval.
c. The larger 1 � a, the larger the interval.

g 5 s7.2 2 8.0d>0.42 5 1.9
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6. . According to Cohen’s guidelines, the effect is small.
7. See Sections 11.2 and 11.3 for the meaning of the terms.

CHAPTER 12

1. The n should be at least 75 because then both n(.20) and n(1 � .20) are equal to
or greater than 15.

2. a. State the statistical hypotheses—H0: p � .50, H1: p .50. Specify the test 

statistic— because you want to test p � .50,
the sample is random, and both np0 and n(1 � p0) are greater than 15. Specify
the sample size—n � 1,000—and the sampling distribution—z distribution.
Specify the significance level—a � .01. Obtain a random sample of size
1,000, compute z, and make a decision. Reject the null hypothesis if z falls in
the lower 0.5% or the upper 0.5% of the sampling distribution of z; otherwise
do not reject the null hypothesis. If the null hypothesis is rejected, conclude
that the population proportion is not equal to .50; if the null hypothesis is not
rejected, do not draw this conclusion.

b. z � (.55 � .50)/ � 3.16. Reject the null hypothesis be-
cause z � 3.16 � z.01/2 � 2.576.

c. Mr. Mander wanted to avoid making a Type I error.
d. p � .0016.
e.

.51 � p � .59

.55 2 2.576"s.55d s.45d>1000 , p , .55 1 2.576"s.55d s.45d>1000

"s.50d s.50d>1000

z 5 sp̂ 2 p0d>"p0s1 2 p0d>nd
2

g 5 2.86>"28 5 0.38

.50 .52 .54 .56 .58 .60
p

L1 � .51 L2 � .59

Mr. Mander’s decision to forego the Hawaii vacation was not a good one.

f. H0: p � .51 or p � .59

g.

h.
3. a. State the statistical hypotheses—H0: p � .50, H1: p .50. Specify the test 

statistic— because you want to test p � .50,
the sample is random, and both np0 and n(1 � p0) are equal to 15. Specify the
sample size—n � 30—and the sampling distribution—z distribution. Specify
the significance level—a � .05. Obtain a random sample of size 30, compute z,
and make a decision. Reject the null hypothesis if z falls in the lower 2.5% or
the upper 2.5% of the sampling distribution of z; otherwise do not reject the null
hypothesis. If the null hypothesis is rejected, conclude that babies have a color
preference; if the null hypothesis is not rejected, do not draw this conclusion.

b. Do not reject the null hypothesis
because z � 1.095 � z.05/2 � 1.96. There is no reason to believe that the
babies have a color preference.

c. p � .2735.

z 5 s.60 2 .50d>"s.50d s.50d>30 5 1.095.

z 5 sp̂ 2 p0d>"p0s1 2 p0d>nd
2

n 5 s.50d s.50d s2.576d2> s.02d2 5 4,148

m 5 2.576"s.55d s.45d>1000 5 .041



Appendix C 573

d.

.42 � p � .78

.60 2 1.96"s.60d s.40d>30 , p , .60 1 1.96"s.60d s.40d>30

L2 � .78L1 � .42

p
.30 .40 .50 .60 .70 .80 .90

e. H0: p � .42 or p � .78

f.

g.
4. a. State the statistical hypotheses—H0: p � .37, H1: p .37. Specify the test 

statistic— because we want to test p � .37,
the sample is random, and both np0 and n(1 � p0) are greater than 15. Spec-
ify the sample size—n � 300—and the sampling distribution—z distribu-
tion. Specify the significance level—a � .01. Obtain a random sample of
size 300, compute z, and make a decision. Reject the null hypothesis if z falls
in the lower 0.5% or the upper 0.5% of the sampling distribution of z;
otherwise do not reject the null hypothesis. If the null hypothesis is rejected,
conclude that the population proportion is not equal to .37; if the null hy-
pothesis is not rejected, do not draw this conclusion.

b. z � (.46 � .37)/ � 3.23. Reject the null hypothesis
because z � 3.23 � z.01/2 � 2.576.

c. p � .0012.
d.

.39 � p � .53

.46 2 2.576"s.46d s.54d>300 , p , .46 1 2.576"s.46d s.54d>300

"s.37d s.63d>300

z 5 sp̂ 2 p0d>"p0s1 2 p0d>nd
2

n 5 s.50d s.50d s1.96d2> s.04d2 5 601
m 5 1.96"s.60d s.40d>30 5 .18

L1 � .39 L2 � .53

.30 .40 .50

p

.60

e. H0: p � .39 or p � .53

f.

g.
h. On the basis of a national survey of 300 unmarried old women between the

ages of 15 and 19, it appears that the population proportion of 19-year-old
women who had experienced sexual intercourse was higher than that for an
earlier survey. The proportion who had experienced sexual intercourse in the
more recent survey was .49; the proportion in the earlier survey was .37. The z
test was statistically significant, z � 3.23, p � 0012. A 99% confidence inter-
val for the population proportion in the recent survey was .39 � p � .53.

5. a. State the statistical hypotheses—H0: p .10, H1: p .10. Specify the test 

statistic— because we want to test p � .10,
the sample is random, and both np0 and n(1 � p0) are greater than 15. Specify
the sample size—n � 200—and the sampling distribution—z distribution.
Specify the significance level—a � .05. Obtain a random sample of size 200,

z 5 sp̂ 2 p0d>"p0s1 2 p0d>nd
25

n 5 s.37d s.63d s2.576d2> s.04d2 5 967
m 5 2.576"s.46d s.54d>300 5 .074



574 Appendix C

compute z, and make a decision. Reject the null hypothesis if z falls in the
lower 2.5% or the upper 2.5% of the sampling distribution of z; otherwise do
not reject the null hypothesis. If the null hypothesis is rejected, conclude that
the proportion of men who had a second heart attack after participating in the
supervised physical fitness program is not equal to that for men who did not
participate; if the null hypothesis is not rejected, do not draw this conclusion.

b. Do not reject the null hypoth-

esis because | z | � 0.943 � z.05/2 � 1.96. There is no reason to believe that
the supervised physical fitness program affected the chances of a man hav-
ing a second heart attack.

c. p � .346.

d.

.042 � p � .118

, .08 1 1.96"s.08d s.92d>150.08 2 1.96"s.08d s.92d>200 , p

z 5 s.08 2 .10d>"s.10d s.90d>200 5 20.943.

L2 � .118L1 � .042

p

0 .05 .10 .15

e. H0: p � .042 or p � .118

f.

g.

6. See Section 12.2 for the meaning of the term.
7. a. 0.497 b. �0.234

c. �1.946 d. .151
8. a. .500 b. �.190

c. .240 d. �.850
9. a. According to Appendix Table D.6, a correlation of .374 is required to reject

the null hypothesis that r � 0.

b.

�.319 � � .499

�.31 � r � .46

ZrPop

.09 2 1.96"1> s26 2 3d , ZrPop , .09 1 1.96"1> s26 2 3d

n 5 s.10d s.90d s1.96d2> s.04d2 5 217
m 5 1.96"s.08d s.92d>200 5 .038

�.40 �.20 0 .20 .40 .60
r

L1 � �.31 L2 � .46

c. H0: r � �.31 or r � .46
d. The effect size, r � .09, is just below Cohen’s criterion of a small effect.

10.
a.

.405 � � .803

.38 � r � .67

ZrPop

.604 2 1.96"1> s100 2 3d , ZrPop , .604 1 1.96"1> s100 2 3d
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b. H0: r � .38 or r � .67
c. No. Based on the confidence interval, there is no reason to believe that the

correlation for this year’s freshmen differs from the correlation for last year’s
freshmen.

d. The effect size, r � .54, is a large effect.
11. See Section 12.3 for the meaning of the term.

CHAPTER 13

1. When the null hypothesis is stated as m1 � m2, it indicates that d0 � 0.
2. Pooling and is appropriate when it is reasonable to believe that the popu-

lation variances are equal.
3. State the statistical hypotheses—H0: m1 � m2 � 0, H1: m1 � m2 � 0. Specify

the test statistic—t � ( because the researcher wants to test
m1 � m2 � 0, and are unknown, the samples are random, and the 
researcher assumes that the population distributions of X1 and X2 are normally
distributed. Specify the sample sizes—n1= 50 and n2 � 52—and the sampling
distribution—t distribution. Specify the level of significance—a � .05.
Obtain random samples of size n1 � 50 and n2 � 52, compute t, and make a
decision. Reject the null hypothesis if t falls in the upper 5% of the sampling
distribution of t; otherwise do not reject the null hypothesis. If the null
hypothesis is rejected, conclude that fraternity members have higher GPAs
than nonmembers; if the null hypothesis is not rejected, do not draw this
conclusion.

4. a. t(100) � 2.135 � t.05,100 �

1.660. Reject the null hypothesis.

b. p � .025; p � .018.

c. ; the effect is small.
d. The sample size is adequate. The minimum sample size is 21 � 21 � 42.
e. 0.042 � m1 � m2

5 0.42g 5 | 2.91 2 2.72 | >0.4493

t 5 s2.91 2 2.72d>Å0.2019a 1
50

1
1

52
b 5 2.135

s2
2s2

1

X1 2 X2d>ŝX12X2

ŝ2
2ŝ2

1

0 .20 .40
r

.60 .80

L2 � .67L1 � .38

L1 = 0.042

0 0.02 0.04 0.06

m1 − m2

f. H0: m1 � m2 � 0.042
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Duration of Interview

Rejected Applicants

Hired Applicants

22 24 26 28 30

*

**
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576 Appendix C

5. a.

The data for the hired and rejected applicants contain outliers. The sample
distributions appear to be relatively symmetrical.

b. State the statistical hypotheses—H0: m1 � m2 � 0, H1: m1 � m2 � 0. Specify 
the test statistic—t � ( )/ because the researcher wants to test 
m1 � m2 � 0, and are unknown, the samples are random, and the
researcher assumes that the population distributions of X1 and X2 are nor-
mally distributed. Specify the sample sizes—n1 � 26 and n2 � 23—and the
sampling distribution—t distribution. Specify the level of significance—a �
.05. Obtain random samples of size n1 � 26 and n2 � 23, compute t, and
make a decision. Reject the null hypothesis if t falls in the upper 5% of the
sampling distribution of t; otherwise do not reject the null hypothesis. If the
null hypothesis is rejected, conclude that employment interviewers spend
more time talking to applicants who are hired than to applicants who are re-
jected; if the null hypothesis is not rejected, do not draw this conclusion.

c. t' � (24.731 � 18.000)/0.7172 � 9.335; t' (22) � 9.335 � t.05,22 � 1.717.
The data support the researcher’s scientific hypothesis. Because t' was sig-
nificant using the smaller of n1 � 1 and n2 � 1, you know that it would be
significant using the larger correct value of n' that is equal to 44.

d. ; the effect is large.
e. The sample size is adequate. The minimum sample size is 21 � 21 � 42.
f. 5.53 � m1 � m2

g 5 |24.7308 2 18.000|>2.3589 5 2.9

s2
2s2

1

ŝX12X2
X1 2 X2

L1 � 5.53

4 5 6 7
m1 � m2

.02 .04 .06 .08 .10 .12

Dependent Variable

English-Speaking Home

Spanish-Speaking Home

.18.14 .16 .20

g. H0: m1 � m2 � 5.53
6. a.
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Neither distribution contains outliers. The sample distribution for infants
raised in the Spanish-speaking homes is negatively skewed, the distribution
for English-speaking homes is relatively symmetrical.

b. State the statistical hypotheses—H0: m1 � m2 � 0, H1: m1 � m2 0. Specify
the test statistic—t � ( )/ because the researcher wants to 
test m1 � m2 � 0, and are unknown, the samples are random, and the 
researcher assumes that the population distributions of X1 and X2 are
normally distributed. Specify the sample sizes—n1= 14 and n2 � 14—and
the sampling distribution—t distribution. Specify the level of significance—
a � .001. Obtain random samples of size n1 � 14 and n2 � 14, compute t,
and make a decision. Reject the null hypothesis if t falls in the upper or lower
0.1% of the sampling distribution of t; otherwise do not reject the null
hypothesis. If the null hypothesis is rejected, conclude that early language
experience affected the discrimination of speech sounds; if the null hypothe-
sis is not rejected, do not draw this conclusion.

c. t � (0.0728 � 0.1482)/0.0133 � �5.669; | t(26) | � | �5.669 � t.001/2,26 �
3.707. Reject the null hypothesis and conclude that early language experi-
ence in Spanish-speaking homes resulted in better discrimination of the
Spanish contrasts.

d. p � .0001; p � .000006.
e. g � | 0.0728 � 0.1482 | /0.0352 � 2.1; the effect is large.
f. �0.125 � m1 � m2 � �0.026

s2
2s2

1

ŝX12X2
X1 2 X2

2

�0.15 �0.10 �0.05
m1 � m2

0

L1 � �0.125 L2 � �0.026

g. H0: m1 � m2 � �0.125 or H0: m1 � m2 � �0.026
7. b. State the statistical hypotheses—H0: m1 � m2 � 0, H1: m1 � m2 0. Specify

the test statistic—t � ( )/ because the researcher wants to 
test  m1 � m2 � 0, and are unknown, the samples are random, and the 
researcher assumes that the population distributions of X1 and X2 are normally
distributed. Specify the sample sizes—n1 � 25 and n2 � 25—and the sam-
pling distribution—t distribution. Specify the level of significance—a � .05.
Obtain random samples of size n1 � 25 and n2 � 25, compute t, and make a
decision. Reject the null hypothesis if t falls in the upper or lower 2.5% of
the sampling distribution of t; otherwise do not reject the null hypothesis. If
the null hypothesis is rejected, conclude that population mean of men’s and
women’s stat grades are not equal; if the null hypothesis is not rejected, do
not draw this conclusion.

8. See Section 13.2 for the meaning of the term.
9. a. The researchers’ recommendation is not appropriate.

b. The researchers did not randomly assign the workers to the two conditions.
It is possible that the workers who opted to use the iPod player would have
had higher scores on the dependent measures if they had not used the player.
Also, it is possible that the attention associated with receiving the player

s2
2s2

1

ŝX12X2
X1 2 X2

2
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created a positive attitude toward the company. As a result, the workers were
motivated to perform better and the improvement was not related to listening
to the music. It also is possible that the workers who did not receive the
players felt shortchanged and expressed these feelings by lowering their per-
formance level.

10. You know nothing about the size of the difference, only that chance is an un-
likely explanation for the difference.

11. All conditions except the independent variable must be held constant.
12. a. random assignment b. random sampling

c. random sampling d. random assignment
13. See Section 13.3 for the meaning of the terms.
14. The order of presentation of the conditions should be randomized indepen-

dently for each participant.
15. a. The larger the positive correlation between samples, the smaller is the stan-

dard error of the difference between means.
b. The larger the positive correlation, the higher is the probability of rejecting a

false null hypothesis.
16. a.

8 10 12 14 16 18

Favorableness of Attitude

Before Attitude

After Attitude

20 22

The data do not contain outliers. The “before attitudes” appear to be nega-
tively skewed. The “after attitudes” are fairly symmetrical.

b. State the statistical hypotheses—H0: m1 � m2 � 0, H1: m1 � m2 � 0. Specify
the test statistic—t � ( )/ because the researcher wants to 
test m1 � m2 � 0, and are unknown, the samples are random, and the 
researcher assumes that the population distributions of X1 and X2 are
normally distributed. Specify the sample size—n � 16—and the sampling
distribution—t distribution. Specify the level of significance—a � .05.
Obtain a random sample of size n � 16, compute t, and make a decision.
Reject the null hypothesis if t falls in the lower 5% of the sampling distribu-
tion of t; otherwise do not reject the null hypothesis. If the null hypothesis is
rejected, conclude that attitudes toward legalization of the drug were more
favorable after seeing the film; if the null hypothesis is not rejected, do not
draw this conclusion.

c. t � �2.1875/0.2772 � �7.891; t(15) � �7.891 � �t.05,15 � �1.753.
Reject the null hypothesis; viewing the film does result in more favorable
attitudes toward legalization of marijuana.

d. p � .0005; p � .0000006

s2
2s2

1

ŝX12X2
X1 2 X2
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e. g � | 14.1875 � 16.3750 | /2.5046 � 0 87; the effect is large.
f. The sample size is adequate. The minimum sample size is 11.
g. m1 � m2 � �1.70

�3 �2 �1
m1 � m2

0

L2 � �1.70

�15 �10 �5
m1 � m2

0

L1 � �12.97 L2 � �5.66

15 20 25 30 35 40

Knowledge Score

Pretest Score

Posttest Score

45 50

h. H0: m1 � m2 � �1.70
17. a.

The data do not contain outliers. The pretest scores are relatively symmetri-
cal; the posttest scores are negatively skewed.

b. State the statistical hypotheses—H0: m1 � m2 � 0, H1: m1 � m2 0. Specify
the test statistic— because the researcher wants to
test m1 � m2 � 0, and are unknown, the samples are random, and the 
researcher assumes that the population distributions of X1 and X2 are
normally distributed. Specify the sample size—n � 22—and the sampling
distribution—t distribution. Specify the level of significance—a � .01.
Obtain a random sample of size n � 22, compute t, and make a decision.
Reject the null hypothesis if t falls in the upper or lower 0.5% of the sam-
pling distribution of t; otherwise do not reject the null hypothesis. If the null
hypothesis is rejected, conclude that the mean pretest and posttest cognitive
knowledge scores are not equal; if the null hypothesis is not rejected, do not
draw this conclusion.

c. t � �9.3182/1.2916 � �7.214; | t(21) | � | �7.214 | > t.01/2,21 � 2.831.
Reject the null hypothesis.

d. p � .001; p � .0000005
e. g � | 25.6818 � 35.0000 | /6.3710 � 1.5; the effect is large.
f. The sample size is adequate. The minimum sample size is 20.
g. �12.97 � m1 � m2 � �5.66

s2
2s2

1

t 5 sX1 2 X2d>ŝX12X2

2
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h. H0: m1 � m2 � �12.97 or H0: m1 � m2 � �5.66
i. For independent samples, t � �9.3182/1.9209 � �4.851; | t(42) | �

| �4.851 | > t.01/2,42 � 2.698. Reject the null hypothesis. The use of repeated
measures was an effective experimental design strategy because the absolute
value of the dependent samples t statistic is approximately 2.5 times larger
than the critical value; the independent samples t statistic is only 1.8 times
larger than the critical value.

j. In the present experiment the difference � reflects the effects of the
10-day workshop as well as other effects, such as (1) improved test-taking
skills due to taking the pretest, (2) increased sensitivity during the workshop
to the kinds of material on the test due to taking the pretest, and (3) acquisi-
tion of cancer knowledge from sources other than the workshop such as
professional journals and colleagues. The following design, with participants
randomly divided into experimental and control groups, would enable the
researcher to measure the effects of the workshop and acquisition of course
knowledge from other sources.

Pretest Workshop Posttest

Experimental group X W X
Control group X X

The use of two experimental and two control groups as follows would enable
the researcher to measure the effects of the workshop and the effects 1, 2,
and 3 described earlier.

Pretest Workshop Posttest

Experimental group 1 X W X
Experimental group 2 W X
Control group 1 X X
Control group 2 X

18. a. n1 � n2 � 100 b. n1 � n2 � 1492 c. n1 � n2 � 84
d. n � 21 e. n � 225 f. n � 22

19. See Section 13.4 for the meaning of the terms.

CHAPTER 14

1. No, the form of the test statistic is a ratio that does not provide for values other
than 1.

2. Because you want to detect situations in which the t test is not appropriate, the
use of a � .15 or .20 provides greater power for the F test. In such situations, a
Type II error is considered to be more serious than a Type I error.

X2X1
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The data for the hired and rejected applicants contain outliers. The sample
distributions appear to be relatively symmetrical.

b. F(22, 25) � 1.11 � F.05/2; 22, 25 � 2.269. Do not reject the null hypothesis.
c. p � .40
d. 0.49 � s2

2>s2
1 , 2.58

10 12 14 16 18 20

Duration of Interview

Rejected Applicants

Hired Applicants

22 24 26 28 30

*

**

**

0 1 2
s2 / s1

2 2
3

L1 � 0.49 L2 � 2.58

e. Because the confidence interval includes 1, it is consistent with the null
hypothesis significance test.

4. a.

.02 .04 .06 .08 .10 .12

Dependent Variable

English-Speaking Home

Spanish-Speaking Home

.14 .16 .18 .20

L2 � 2.63

0 1 2 3

s
2
1 / s

2
2

Neither distribution contains outliers. The sample distribution for infants
raised in the Spanish-speaking homes is negatively skewed, the distribution
for English-speaking homes is relatively symmetrical.

b. F(13, 13) � 1.02 � F .05; 13, 13 � 2.577. Do not reject the null hypothesis.
c. p � 1 � .49 � .51.
d. s2

1>s2
2 , 2.63

3. a.

e. Because the confidence interval includes 1, it is consistent with the null
hypothesis significance test.
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5. a. F(37, 34) � 2.172 � F.05/2; 37, 34 � 1.962. Reject the null hypothesis.
b. p � .02
c. 1.11 � s2

1>s2
2 , 4.22

d. Because the confidence interval does not include 1, it is consistent with the
null hypothesis significance test.

e. H0: and H0:
6. a.

s2
1>s2

2 $ 4.22s2
1>s2

2 # 1.11

1 2 3
s 2 / s 2

1 2

4 5

L2 � 4.22L1 � 1.11

s1 � s2

�6 �4 �2 0 2 4

L1 � �4.071 L2 � 2.029

2 2

8 10 12 14 16 18

Favorableness of Attitude

Before Attitude

After Attitude

20 22

The data do not contain outliers. The before attitudes appear to be negatively
skewed. The after attitudes are fairly symmetrical.

b. t(14) � �0.718; | t(14) | � 0.718 � t.05/2, 14 � 2.145. Do not reject the null
hypothesis.

c. p � .50; p � .49.
d. �4.071 �s2

1 2 s2
2 , 2.029

15 20 25 30 35 40

Knowledge Score

Pretest Score

Posttest Score

45 50

e. Because the confidence interval includes 0, it is consistent with the null hy-
pothesis significance test.

7. a.
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The data do not contain outliers. Both sample distributions are fairly
symmetrical.

b. t(20) � �1.109 � �t.05, 20 � �1.725. Do not reject the null hypothesis.
c. p � .15; p � .15.
d. s2

1 2 s2
2 , 9.082

�20 �10 0
s 2 � s 2

1 2

10 20

L2 � 9.082

�.15 �.10 �.05 0

L2 � �.018L1 � �.122

p1 � p2

0 .05 .10 .15

L2 � .127L1 � .033

p1 � p2

L1 � �.026 L2 � .086

p1 � p2

�.05 0 .05 .10

e. Because the confidence interval includes 0, it is consistent with the null
hypothesis significance test.

8. a. z � �2.66; | z | � 2.66 � z.05/2 � 1.96. Reject the null hypothesis.
b. p � 2(.0039) � .0076
c. �.122 � p1 � p2 � �.018

d. Because the confidence interval does not include 0, it is consistent with the
null hypothesis significance test.

e. H0: p1 � p2 � �.122 and H0: p1 � p2 � �.018
9. a. z � 3.33 � z.05/2 � 1.96. Reject the null hypothesis.

b. p � 2(.00043) � .0009
c. .033 � p1 � p2 � .127

d. Because the confidence interval does not include 0, it is consistent with the
null hypothesis significance test.

e. H0: p1 � p2 � .033 and H0: p1 � p2 � .127
10. a. z � �1.105; | z | � 1.105 � z.05/2 � 1.96. Do not reject the null hypothesis.

b. p � 2(.1346) � .27
c. �.026 � p1 � p2 � .086

d. Because the confidence interval includes 0, it is consistent with the null
hypothesis significance test.
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11. See Section 14.4 for the meaning of the term.
12. a. p1 � .446, p2 � .614

b. z � �2.21; | z | � 2.21 � z.05/2 � 1.96. Reject the null hypothesis.
c. p � 2(.0136) � .0272
d. �.314 � p1 � p2 � �.024

e. Because the confidence interval does not include 0, it is consistent with the
null hypothesis significance test.

f. H0: p1 � p2 � �.314 and H0: p1 � p2 � �.024

CHAPTER 15

1. a. H0: m1 � m2 � m3 � m4
b. p(p � 1)/2 � 4(4 � 1)/2 � 6
c. Probability of a Type I error using ANOVA is .01; probability using multiple

t tests is less than 1 � (1 � .01)6 � .06.
d. The researcher knows that at least two population means are not equal.

2. The advantage of ANOVA is that it controls the probability of a Type I error at
a for the omnibus null hypothesis. The multiple t approach allows the probabil-
ity of a Type I error to exceed a for the collection of tests.

3. Factors that might affect the score include the effectiveness of the a2 exercise
program, diet during the preceding month, time of day that the measurement
was made, and variation in the measurement procedures.

4. a. treatment level 2
b. score for participant 2 in treatment level 4
c. score for participant 16 in treatment level 1
d. mean of treatment level 4
e. grand mean
f. sample model equation for participant 7 in treatment level 3
g. a2 treatment effect
h. error effect for participant 1 in treatment level 3

5. a. subtract from both sides of the equation
b. square both sides of the equation
c. sum the squared deviations for j � 1, . . . , p and i � i, . . . , n
d. perform the square of the term on the right side of the equation
e. distribute the summation operators
f. delete the middle term on the right because � 0 (see

Section 3.8)
6. a. correct b. incorrect

c. incorrect d. incorrect
e. correct

a
n

i51
sXij 2 X?jd

X??

�.40 �.30 �.20
p1 � p2

�.10 0

L2 � �.024L1 � �.314
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7. a.
b.
c.

8. a. dfTO � 83, dfBG � 3, dfWG � 80 b. dfTO � 54, dfBG � 4, dfWG � 50
c. dfTO � 31, dfBG � 3, dfWG � 28 d. dfTO � 16, dfBG � 2, dfWG � 14

9. a. Both MSBG and MSWG estimate when random samples are drawn from
normally distributed populations having equal means and equal variances.

b. MSBG should be bigger than MSWG when any of the treatment effects,
, are not equal to 0.

10. See Section 15.3 for the meaning of the terms.
11. a.

Source SS df MS F

Between groups 168.000 3 56.000 3.50
Within groups 1216.000 76 16.000

Total 1384.000 79

b. p � .02

12. a.

mj 2 m

s2
e

X24 5 m 1 sm4 2 md 1 sX24 2 m4d
X52 5 m 1 sm2 2 md 1 sX52 2 m2d
X83 5 m 1 sm3 2 md 1 sX83 2 m3d

14 16 18 20 22 24

Time in Minutes

a4

a3

a2

a1

26

The sample distributions are relatively symmetrical. The data do not contain
outliers.

b. Descriptive Statistics for Time Required to Learn
Nonsense Syllables

Association Value of Nonsense Syllables

25% 50% 75% 100%
a1 a2 a3 a4

21.875 20.000 17.875 17.000
1.246 1.309 1.246 1.309ŝj

X?j
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c. Yes
d. Analysis of Variance Table for Time Required to Learn Nonsense Syllables

Source SS df MS F

1 Between groups 115.1250 3 38.3750 23.49*
(association value)

2 Within groups 45.7500 28 1.6339

3 Total 160.8750 31

*p � .0000001.
Reject the null hypothesis.

e. According to the ANOVA and descriptive statistics, the learning-time
population means for the four levels of association value are not all equal,
F(3, 28) � 23.49, p � .0000001. It appears that there is an inverse relation-
ship between association value and time required to learn nonsense syllables.

13. State the statistical hypotheses—H0: m1 � m2 � m3 � m4, H1: mj mj', for some
j and j'. Specify the test statistic—F � MSBG/MSWG because the researcher
wants to test m1 � m2 � m3 � m4, random assignment was used, and the
researcher assumed that the four populations are approximately normally
distributed with equal variances. Specify the sample size—np � 32—and the
sampling distribution—F distribution with n1 � 3 and n2 � 28 because the
researcher assumes that the three populations are approximately normally
distributed. Specify the level of significance—a � .05. Obtain a sample of 32 par-
ticipants, randomly assign the participants to the p treatment levels with the restric-
tion that n participants are assigned to each level, compute F, and make a decision.
Reject the null hypothesis if F � 2.95. If the null hypothesis is rejected, conclude
that the time to learn the lists of nonsense syllables is not the same for the four as-
sociation values; if the null hypothesis is not rejected, do not draw this conclusion.

14. a.

2

3124

19 20 21 22 23

Reaction Time (Hundredths of a Second)

a1

a2

a3

24

The sample distributions are relatively symmetrical. The data do not contain
outliers.
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b. Descriptive Statistics for Reaction Time in 
Hundredths of a Seconds to Three Colors of
Warning Lights

Color of Warning Light

Yellow Red Green
a1 a2 a3

20.300 21.700 21.000
0.949 0.949 1.183

c. yes
d. Analysis of Variance Table for Reaction Time to Warning Lights

Source SS df MS F

Between groups 9.8000 2 4.9000 4.54*

(color of light)
Within groups 30.2000 28 1.0786

Total 40.0000 30

*p � .02
Reject the null hypothesis.

e. According to the ANOVA, the reaction-time population means for the three
colors of instrument panel warning lights are not equal, F(2, 28) � 4.54,
p � .02.

15. State the statistical hypotheses—H0: m1 � m2 � m3, H1: mj mj ' , for some j and
j'. Specify the test statistic—F � MSBG/MSWG because the researcher wants
to test m1 � m2 � m3, random assignment was used, and the researcher assumes
that the three populations are approximately normally distributed with equal
variances. Specify the sample size—n1 � n2 � n3 � 31—and the sampling
distribution—F distribution with n1 � 2 and n2 � 28 because the researcher
assumes that the three populations are approximately normally distributed.
Specify the level of significance—a � .05. Obtain a sample of 31 participants,
randomly assign the participants to the p treatment levels with the restriction
that approximately the same number of participants receives each level, com-
pute F, and make a decision. Reject the null hypothesis if F � 3.34. If the null
hypothesis is rejected, conclude that reaction time is not the same for the three
colors of instrument-panel warning lights; if the null hypothesis is not rejected,
do not draw this conclusion.

16. The F test is robust if the treatment populations all have the same shape, for ex-
ample all positively skewed or all leptokurtic.

2

3124

ŝj

X?j
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17. a.

a1 a2 a3 a4
f f f f

24 |
23 |
22 | | | |
21 | | | |
20 | | | |
19 | | | |
18 | | | | | |
17 | | | |
16 | | |
15 |

The distributions are relatively symmetrical. There is no reason to believe
that the populations are not symmetrical.

b.

a1 a2 a3
X f f f

23 | | |
22 | | | | | | | |
21 | | | | | | | | |
20 | | | | | | |
19 | | |

The distributions are relatively symmetrical. There is no reason to believe
that the populations are not symmetrical.

18. This assumption states that the j � 1, . . . , p population variances are equal to .
19. See Section 15.5 for the meaning of the term.
20. a. 1, �1, 0, 0 b. 0, 1, 0, �1 c. 1, � , � , 0

d. 1, � , � , � e. , , � , � f. 1, � , � , 0

21. a. contrast b. contrast c. not a contrast
d. contrast e. contrast f. contrast

22. a. satisfies b. does not satisfy c. does not satisfy
d. does not satisfy e. does not satisfy f. satisfies

23. a. � 4.45 b. c.

24. a. (4 � 1) � (4 � 1)4.31 � 12.93

b. (5 � 1) � (5 � 1)2.53 � 10.12

c. (3 � 1) � (3 � 1)3.55 � 7.10

25. a. qFH � �0.02/0.02 � �1.00, qFH � �0.10/0.02 � �5.00*, qFH �

�0.08/0.02 � �4.00*; . Reject the null hypothesis for c2

� m1 � m3 and c3 � m2 � m3.
q.05;  321,  12 5 3.08

F.05;  2,  18

F.05;  4,  60

F.01;  3,  40

q.05;  321,  15 5 3.01q.05;  521,  60 5 3.74q.01;  421,  40

1
3

2
3

1
2

1
2

1
2

1
2

1
3

1
3

1
3

1
2

1
2

s2
e



Appendix C 589

b. For , g � 0.45 For , g � 2.24 For , g � 1.79
The effect sizes for and are large.

26. a. FS � 0.49/0.80 � 0.61, FS � 12.96/0.80 � 16.20*, FS � 8.41/0.80 � 10.51*,
FS � 10.56/0.60 � 17.60*; (3 � 1) . Reject the null hypothe-
sis for c2 � m1 � m3, c3 � m2 � m3, and c4 � (m1 � m2)/2 �m3.

b. �3.47 � c1 � 2.07
�6.37 � c2 � �0.83
�5.67 � c3 � �0.13
�5.65 � c4 � �0.85

F.01;  2, 120 5 9.58

ĉ3ĉ2

ĉ3ĉ2ĉ1

c. For , g � 0.17 For , g � 0.89 For , g � 0 .72 For , g � 0.80
The effect sizes for , , and are large.

27. a.

The strength of association is large; the independent variable accounts for
68% of the variance in the dependent variable.

b. For c1 � m1 � m2, qFH � 4.15* For c2 � m1 �m3, qFH � 8.85*
For c3 � m1 � m4, qFH � 10.79* For c4 � m2 � m3, qFH � 4.70*
For c5 � m2 � m4, qFH � 6.63* For c6 � m3 � m4, qFH � 1.94

; reject the null hypothesis for all contrasts except c6.
c. For , g � 1.47 For , g � 3.13 For , g � 3.81

For , g � 1.66 For , g � 2.35 For , g � 0.68
The effect sizes for , , , , and are large.

28. See Sections 15.6 and 15.7 for the meaning of the terms.

CHAPTER 16

1. Nuisance variables are undesired sources of variation that increase the variance
of the error effects. They can be controlled or minimized by holding them con-
stant, assigning experimental units randomly to the treatment levels, and includ-
ing the nuisance variable as one of the factors in the experiment.

2. Any variable that is positively correlated with the dependent variable is a poten-
tial blocking variable.

3. a. The independent variable is a kind of instruction; the dependent variable is a
rating of the amount of help offered.

ĉ5ĉ4ĉ3ĉ2ĉ1

ĉ6ĉ5ĉ4

ĉ3ĉ2ĉ1

qFH.05;  421,  28 5 3.50

v̂2 5
110.223
162.509

5 0.68

ĉ4ĉ3ĉ2

ĉ4ĉ3ĉ2ĉ1

�10 �5 0
m1 � m2

5

L1 � �3.47 L2 � 2.07

�10 �5 0
m1 � m3

5

L1 � �6.37 L2 � �0.83

�10 �5 0
m2 � m3

5

L1 � �5.67 L2 � �0.13

�10 �5 0
(m1 � m2) � m3

5

L1 � �5.65 L2 � �0.85
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b. Nuisance variables that were held constant included the student’s grade (first
grade) and the student’s gender (boy).

c. Idiosyncratic characteristics of the boys such as shyness, aggressiveness, and
so forth.

d. The test scores could be used to form 16 blocks of three boys each, such that
the boys in a block are matched with respect to their conforming-compulsive
scores.

4. See Section 16.2 for the meaning of the terms.
5. Analysis of Variance Table

Source SS df MS F

1. Treatment A 51.765 3 17.255 3.81**

2. Blocks 161.500 20 8.075 1.78*
3. Residual 271.500 60 4.525

4. Total 484.765 83

*p � .05

** p � .02

6. a.

3234
3134

2 4 6 8 10

Standard Score

a1

a2

a3

12 14 16

The a2 and a3 sample distributions are relatively symmetrical; the a1 distribu-
tion is slightly positively skewed. The data do not contain outliers.

b. Means and Standard Deviations for Three
Psychological Tests

a1 a2 a3

WAIS WUMV WSA

11.17 9.25 7.33
3.04 2.73 2.50

c. The means are consistent with the researcher’s expectations—that is, the
means for the WUMV and WSA tests are lower than the mean for the WAIS
test. The WAIS standard deviation is close to the national norm value of 3;

ŝj

X?j
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the WUMV and WSA standard deviations are smaller than the national norm
values. The standard deviations are quite homogeneous.

d. Analysis of Variance Table for Psychological Test Data

Source SS df MS F

1. Treatment A 88.1667 2 44.0834 31.80*

(tests)
2. Blocks 222.0833 11 20.1894 14.56**

3. Residual 30.5000 22 1.3864*

4. Total 340.7500 35

*p � .0000004 **p � .0000002

Reject the null hypothesis that the population means for the three tests are
equal.

e. . The strength of association is large. Treatment A accounts
for 63% of the variance in the dependent variable.

f. qFH � 1.9167/0.3399 � 5.64* for m1 versus m2, qFH � 3.8334/0.3399 �
11.28* for m1 versus m3, and qFH � 1.9167/0.3399 � 5.64* for m2 versus m3;
q.05; 3 � 1, 22 � 2.94. Reject the null hypothesis for all pairwise contrasts
among the three population means.

g. g � 0.69 The effect size for m1 versus m2 is a medium size effect.
g � 1.39 The effect size for m1 versus m3 is a large size effect.
g � 0.69 The effect size for m2 versus m3 is a medium size effect.

h. According to the ANOVA, the population means for the WUMV, WSA, and
WAIS tests are not equal, F � 31.80 (2, 22), p � .0000004.

i.

v̂2
X|A?BL 5 0.63

3234
3134

SSA
    � 86.1667 

df � 2

SSBLOCKS
    � 222.0833 

df � 11

SSRESIDUAL
    � 30.5000 

df � 22

SSBG
    � 88.1667 

df � 2

SSWG 
    � 252.5833 

df � 33

SSTOTAL
    � 340.7500 

df � 35

CR-3
Design

RB-3
Design

The blocking procedure was effective. When the block source of variation is
removed from SSWG, a much smaller mean square (MS RESIDUAL) results.
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The F statistic for the CR-3 design is (88.1667/2)/(252.5833/33) � 5.81; the
F statistic for the RB-3 design is (88.1667/2)/(30.5000/22) � 31.80.

7. See Section 16.3 for the meaning of the terms.
8. a. a1b1, a1b2, a2b1, a2b2

b. a1b1, a1b2, a2b1, a2b2, a3b1, a3b2
c. a1b1, a1b2, a1b3, a2b1, a2b2, a2b3, a3b1, a3b2, a3b3

9. a. N � 32 b. N � 48 c. N � 36
10. Analysis of Variance Table

Source SS df MS F

1. Treatment A 273.000 4 68 250 2.60**

2. Treatment B 263.550 2 131.775 5.02***

3. AB interaction 302.400 8 37.800 1.44*

4. Within cell 1575.000 60 26.250

5. Total 2413.950 74

*p � .20 **p � .05 ***p � .01

11. a.

3344
3244
3144

0 5 10 15 20

Rating

a1b1

a1b2

a2b1

a2b2

25 30 35

The sample distributions are symmetrical. The data do not contain outliers.
b. Means and Standard Deviations for Ratings Data

Race of Confederate
b1 � black b2 � white

� 26.00 20.00
a1 � mild shock 23.00 6.75

� 6.32 6.32

� 10.0 21.00
a2 � strong shock 15.50 8.32

� 6.32 6.32

� 18.00 20.50
� 10.33 5.99ŝ?k

X??k

ŝ2k

X?2k

ŝ1k

X?1k

ŝj?X?j?
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c. The participants assigned to the mild shock condition rated the confederate
higher in likability, intelligence, and personal adjustment than did the partic-
ipants assigned to the strong shock condition. The cell means are such as to
suggest that shock level interacts with the race of the confederate. The cell
standard deviations are homogeneous.

d. Analysis of Variance Table for Ratings Data

Source SS df MS F

1. Treatment A 281.250 1 281.250 7.03*

(shock level)
2. Treatment B 31.250 1 31.250 0.78

(race of confederate)
3. AB Interaction 361.250 1 361.250 9.03**

4. Within cell 640.000 16 40.000

5. Total 1313.750 19

*p � .02 **p � .009

Reject the null hypothesis for treatment A and the AB interaction.
e.

3344
3244
3144

The graph is consistent with the AB interaction test.
f. . The strength of association is large. The AB interaction ac-

counts for 29% of the variance in the dependent variable.
g. Analysis of Variance Table for Treatment A and Treatment B

Source SS df MS F

Treatment A

1. Treatment A 281.2500 1 281.250 4.90*

(shock level)
2. Within cell 1,032.5000 18 57.3611

3. Total 1,313.7500 19

3124

v̂2
Y|AB?A, B 5 0.29

30 

25 

20 

15 

10 

5
b1 

Black

a1 (mild shock)

a2 (strong shock)

b2 
White

M
ea

n 
ch

an
ge

 in
 r

at
in

g

Race of confederate

(continued)
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Source SS df MS F

Treatment B

4. Treatment B 31.2500 1 31.2500 0.44
(race of confederate)

5. Within cell 1,282.5000 18 71.2500

6. Total 1,313.7500 19
*p � .05

The CRF-22 design is preferable because it provides more powerful tests of
treatments A and B than do the separate CR-2 designs. This occurs because
sources of variation not specifically identified and isolated in the analysis are
included in the denominator of the F statistic. For example, the error sum of
squares for testing treatment A, SSWG � 1,032.5000, is equal to SSB �
SSAB � SSWCELL � 31.250 � 361.250 � 640.000 � 1,032.500 from the
ANOVA table in part (d). The CRF-22 design also is preferable because it
enables a researcher to determine if the two treatments interact.

12. Advantages: the design permits a researcher to test hypotheses about interactions
and makes efficient use of participants. Disadvantages: if numerous treatments
are included in an experiment, the number of participants required may be pro-
hibitive, the interpretation of the analysis is not straightforward if the test of the
interaction is significant, and the use of a factorial design commits a researcher
to a relatively large experiment. Small one-treatment exploratory experiments
may indicate much more promising lines of investigation than those originally
envisioned.

13. See Section 16.4 for the meaning of the terms.

CHAPTER 17

1. The tests for goodness of fit and independence both use one random sample.
However, the test for goodness of fit classifies the elements of the sample into k
mutually exclusive categories. The test for independence classifies each ele-
ments in terms of two variables. The test for equality uses c random samples
and classifies each element in term of one of two mutually exclusive categories.

2. Seven mutually exclusive socioeconomic categories were used.
3. a. State the statistical hypotheses—H0: p1 � .50, H1: p1 .50. Specify the test

statistic—x2 � �(Oj � Ej)
2/Ej. Specify the sample size—n � 50—and the

sampling distribution—chi-square distribution. Specify the level of signifi-
cance—a � .05. Obtain a random sample of size 50, compute x2, and make a
decision.

b. x2 � (33 � 25)2/25 � (17 � 25)2/25 � 5.12; x2(1, n � 50) � 5.12 �
. Reject the null hypothesis; the data suggest that opinion is not

equally divided on the issue.
c. p � .03
d. . The effect size is medium.5"5.12>50 5 0.32ŵ

x2
.05,  1 5 3.841

2

3454
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4. a. x2 � (71 � 69.3333)2/69.3333 � (52 � 52)2/52 � (33 � 34.6667)2/34.6667
� 0.120; x2(2, n � 156) � 0.120 � . The data do not suggest
that there has been a change in party affiliation.

b. p � .95

c. . The effect size is negligible.

5. a. x2 � (53 � 50)2/50 � (41 � 50)2/50 � · · · � (61 � 50)2/50 � 9.280; x2

(5, n � 300) � 9.280 � . The data do not suggest that the die
is not fair.

b. p � .10

c. . The effect size is small, and the nonsignificant test
statistic suggests that it may be a chance effect.

6. See Sections 17.2 and 17.3 for the meaning of the terms.
7. Both r and are measures of association, but, unlike r, is appropriate for un-

ordered qualitative variables and ranges over the values 0 to 1. Furthermore,
does not have a simple interpretation in terms of proportion of explained variance.

8. a. State the statistical hypotheses—H0: p(A and B) � p(A)p(B), H1: p(A and B) 
p(A)p(B). Specify the test statistic—x2 � ��(Oij � Eij)

2/Eij. Specify the sam-
ple size—n � 200—and the sampling distribution—chi-square distribution.
Specify the level of significance—a � .001. Obtain a random sample of size
200, compute x2 and make a decision.

b. x2 � (58 � 44.08)2/44.08 � (30 � 39.44)2/39.44 � · · · � (23 �
13.44)2/13.44 � 32.28; x2(4, n � 200) � 32.28 � . Reject
the null hypothesis; the variables are not independent.

c. p � .000002

d.

e. . The effect size is medium.

9. a. x2 � (38 � 25.740)2/25.740 � · · · � (21 � 10.455)2/10.455 � 44.574;
x2(6, n � 200) � 44.574 � . Reject the null hypothesis; the
variables are not independent.

b. p � .00000006

c.

d. . The effect size is large.
11. See Section 17.4 for the meaning of the term.
12. a. H0: p1 � p2, H1: p1 p2

b. x2 � (16 � 10.5)2/10.5 � · · · � (25 � 19.5)2/19.5 � 8.864; x2(1, n � 60) �
8.864 � . Reject the null hypothesis.

c. p � .003

d. . The effect size is medium.
13. The population proportions in the three categories of variable A (.30, .60, .10)

are equal across the three categories of variable B.
14. a.

H1: in at least one row for some j and j'pai|bj
2pai|bjr

H0: ≥
pa1|b1

5 pa1|b2
5 pa1|b3

5 pa1|b4

pa2|b1
5 pa2|b2

5 pa2|b3
5 pa2|b4

pa3|b1
5 pa3|b2

5 pa3|b3
5 pa3|b4

pa4|b1
5 pa4|b2

5 pa4|b3
5 pa4|b4

¥

5"8.864>60 5 0.38ŵ

x2
.01,  1 5 6.635

2

5"44.574>200 5 0.47ŵ

5"44.574> 3200s3 2 1d 4 5 .334V̂

x2
.05,  6 5 12.592

5"32.28>200 5 0.40ŵ

5"32.28> 3200s3 2 1d 4 5 .284V̂

x2
.001,  4 5 18.467

2

V̂
V̂V̂

5"9.280>300 5 0.18ŵ

x2
.05,  5 5 11.070

5"0.120>156 5 0.03ŵ

x2
.05,  2 5 5.991
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b. x2 � (4 � 5)2/5 � · · · � (0 � 5)2/5 � 17.560; x2(9, n � 100) � 17.560 �
. Reject the null hypothesis.

c. p � .05

d. . The effect size is medium.
15. a.

H1: in at least one row for some j and j'

b. x2 � (26 � 68.295918)2/68.295918 � . . . � (97 � 166.683674)2/
166.683674 � 120.219; x2(2, n � 784) � 120.219 � . Reject
the null hypothesis.

c. p � 7.8483 � 10�27

d. . The effect size is medium.
16. c.

H1: in at least one row

CHAPTER 18

1. The Mann-Whitney U test assumes that the populations are continuous, the
samples are independent, and either random sampling or random assignment
has been used. The t test assumes random sampling or random assignment, nor-
mality, equal variances, and independent samples. The Mann-Whitney U test
can be used with rank data and is almost as efficient as the t test.

2. U(7, 6) � 42 � 28 � 64.5 � 5.5; U(7, 6) � 5.5 � U.05/2; 7, 6 � 6. Reject the null
hypothesis that the populations are identical.

3. Without the correction for ties,

| z | � 1.3796 � z.01/2 � 2.576. Do not reject the null hypothesis.
With the correction,

| z | � 1.3826 � z.01/2 � 2.576. Do not reject the null hypothesis.

z 5
s148.5 1 0.5d 2 200

Å
400
12

s41d s1 2 0.0044d

5
251

36.8869
5 21.3826

z 5
s148.5 1 0.5d 2 200

Å
400
12

s41d

5
251

36.9685
5 21.3796

pai|b1
2pai|b2

H0: G
pa1|b1

5 pa1|b2

pa2|b1
5 pa2|b2

pa3|b1
5 pa3|b2

pa4|b1
5 pa4|b2

pa5|b1
5 pa5|b2

pa6|b1
5 pa6|b2

pa7|b1
5 pa7|b2

W
5"120.219>784 5 0.39ŵ

x2
.05,  2 5 5.991

pai|bj
2pai|bjr

H0: £
pa1|b1

5 pa1|b2
5 pa1|b3

pa2|b1
5 pa2|b2

5 pa2|b3

pa3|b1
5 pa3|b2

5 pa3|b3

§
5"17.560>100 5 0.42ŵ

x2
.05,  9 5 16.919
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4. The value of PE is dependent on a, 1 � �, H0, and H1, and the sample size of
the more efficient comparison test statistic.

5. The approximate z test can be used when either n1 or n2 is greater that 20. The
test is satisfactory if both n’s are greater than 10.

6. a. 95%
b. a � .01, 1 � b � .80, H0 and H1 are nondirectional, and nS � 82.

7. See Sections 17.1 and 17.2 for the meaning of the terms.
8. T(13) � 17.5 � T.05/2, 13 � 17; do not reject the null hypothesis.
9. T(16) � 30.5 � T.05, 16 � 35; reject the null hypothesis.

10. ;

| z | � 2.285 � z.05 � 1.645. Reject the null hypothesis.

11.

;

| z | � 1.943 � z.05 � 1.645. Reject the null hypothesis.
12. a. 95%

b. a � .01, 1 � b � .95, H0 and H1 are nondirectional, and nS � 122.
13. The differences between assumption-freer tests and parametric tests involve

(a) their assumptions, (b) the level of mathematics necessary to understand their
rationale, (c) their computational simplicity, and (d) the nature of the hypothe-
sis they test.

14. Most assumption-freer procedures assume that (a) the population elements are
randomly sampled or that the elements are randomly assigned to experimental
conditions, (b) the sampled population is continuous, which implies that no two
population elements have the same value (that is, no tied values), and (c) the
null hypothesis is true. Most parametric test statistics assume that (a) the popu-
lation elements are randomly sampled or that the elements are randomly as-
signed to experimental conditions, (b) the population is normally distributed,
and (c) the null hypothesis is true. A fourth assumption is required by some test
statistics if the null hypothesis concerns two or more populations—that the pop-
ulation variances are equal.

5
237.0000
19.0394

5 21.943

z 5
s30.5 1 0.5d 2 16s16 1 1d>4

Å
16s16 1 1d 32s16d 1 14

24
2

s63 2 6d 1 s73 2 7d 1 s23 2 2d
48

z 5
s175 1 0.5d 2 35s35 1 1d>4
Å

35s35 1 1d 32s35d 1 14
24

5 22.285
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TABLE D.1 Random Numbersa

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 10 27 53 96 23 71 50 54 36 23 54 31 04 82 98 04 14 12 15 09 26 78 25 47 47
2 28 41 50 61 88 64 85 27 20 18 83 36 36 05 56 39 71 65 09 62 94 76 62 11 89
3 34 21 42 57 02 59 19 18 97 48 80 30 03 30 98 05 24 67 70 07 84 97 50 87 46
4 61 81 77 23 23 82 82 11 54 08 53 28 70 58 96 44 07 39 55 43 42 34 43 39 28
5 61 15 18 13 54 16 86 20 26 88 90 74 80 55 09 14 53 90 51 17 52 01 63 01 59

6 91 76 21 64 64 44 91 13 32 97 75 31 62 66 54 84 80 32 75 77 56 08 25 70 29
7 00 97 79 08 06 37 30 28 59 85 53 56 68 53 40 01 74 39 59 73 30 19 99 85 48
8 36 46 18 34 94 75 20 80 27 77 78 91 69 16 00 08 43 18 73 68 67 69 61 34 25
9 88 98 99 60 50 65 95 79 42 94 93 62 40 89 96 43 56 47 71 66 46 76 29 67 02

10 04 37 59 87 21 05 02 03 24 17 47 97 81 56 51 92 34 86 01 82 55 51 33 12 91

11 63 62 06 34 41 94 21 78 55 09 72 76 45 16 94 29 95 81 83 83 79 88 01 97 30
12 78 47 23 53 90 34 41 92 45 71 09 23 70 70 07 12 38 92 79 43 14 85 11 47 23
13 87 68 62 15 43 53 14 36 59 25 54 47 33 70 15 59 24 48 40 35 50 03 42 99 36
14 47 60 92 10 77 88 59 53 11 52 66 25 69 07 04 48 68 64 71 06 61 65 70 22 12
15 56 88 87 59 41 65 28 04 67 53 95 79 88 37 31 50 41 06 94 76 81 83 17 16 33

16 02 57 45 86 67 73 43 07 34 48 44 26 87 93 29 77 09 61 67 84 06 69 44 77 75
17 31 54 14 13 17 48 62 11 90 60 68 12 93 64 28 46 24 79 16 76 14 60 25 51 01
18 28 50 16 43 36 28 97 85 58 99 67 22 52 76 23 24 70 36 54 54 59 28 61 71 96
19 63 29 62 66 50 02 63 45 52 38 67 63 47 54 75 83 24 78 43 20 92 63 13 47 48
20 45 65 58 26 51 76 96 59 38 72 86 57 45 71 46 44 67 76 14 55 44 88 01 62 12

21 39 65 36 63 70 77 45 85 50 51 74 13 39 35 22 30 53 36 02 95 49 34 88 73 61
22 73 71 98 16 04 29 18 94 51 23 76 51 94 84 86 79 93 96 38 63 08 58 25 58 94
23 72 20 56 20 11 72 65 71 08 86 79 57 95 13 91 97 48 72 66 48 09 71 17 24 89
24 75 17 26 99 76 89 37 20 70 01 77 31 61 95 46 26 97 05 73 51 53 33 18 72 87
25 37 48 60 82 29 81 30 15 39 14 48 38 75 93 29 06 87 37 78 48 45 56 00 84 47

26 68 08 02 80 72 83 71 46 30 49 89 17 95 88 29 02 39 56 03 46 97 74 06 56 17
27 14 23 98 61 67 70 52 85 01 50 01 84 02 78 43 10 62 98 19 41 18 83 99 47 99
28 49 08 96 21 44 25 27 99 41 28 07 41 08 34 66 19 42 74 39 91 41 96 53 78 72
29 78 37 06 08 43 63 61 62 42 29 39 68 95 10 96 09 24 23 00 62 56 12 80 73 16
30 37 21 34 17 68 68 96 83 23 56 32 84 60 15 31 44 73 67 34 77 91 15 79 74 58

31 14 29 09 34 04 87 83 07 55 07 76 58 30 83 64 87 29 25 58 84 86 50 60 00 25
32 58 43 28 06 36 49 52 83 51 14 47 56 91 29 34 05 87 31 06 95 12 45 57 09 09
33 10 43 67 29 70 80 62 80 03 42 10 80 21 38 84 90 56 35 03 09 43 12 74 49 14
34 44 38 88 39 54 86 97 37 44 22 00 95 01 31 76 17 16 29 56 63 38 78 94 49 81
35 90 69 59 19 51 85 39 52 85 13 07 28 37 07 61 11 16 36 27 03 78 86 72 04 95

36 47 47 10 25 62 97 05 31 03 61 20 26 36 31 62 68 69 86 95 44 84 95 48 46 45
37 91 94 14 63 19 75 89 11 47 11 31 56 34 19 09 79 57 92 36 59 14 93 87 81 40
38 80 06 54 18 66 09 18 94 06 19 98 40 07 17 81 22 45 44 84 11 24 62 20 42 31
39 67 72 77 63 48 84 08 31 55 58 24 33 45 77 58 80 45 67 93 82 75 70 16 08 24
40 59 40 24 13 27 79 26 88 86 30 01 31 60 10 39 53 58 47 70 93 85 81 56 39 38

41 05 90 35 89 95 01 61 16 96 94 50 78 13 69 36 37 68 53 37 31 71 26 35 03 71
42 44 43 80 69 98 46 68 05 14 82 90 78 50 05 62 77 79 13 57 44 59 60 10 39 66
43 61 81 31 96 82 00 57 25 60 59 46 72 60 18 77 55 66 12 62 11 08 99 55 64 57
44 42 88 07 10 05 24 98 65 63 21 47 21 61 88 32 27 80 30 21 60 10 92 35 36 12
45 77 94 30 05 39 28 10 99 00 27 12 73 73 99 12 49 99 57 94 82 96 88 57 17 91

46 78 83 19 76 16 94 11 68 84 26 23 54 20 86 85 23 86 66 99 07 36 37 34 92 09
47 87 76 59 61 81 43 63 64 61 61 65 76 36 95 90 18 48 27 45 68 27 23 65 30 72
48 91 43 05 96 47 55 78 99 95 24 37 55 85 78 78 01 48 41 19 10 35 19 54 07 73
49 84 97 77 72 73 09 62 06 65 72 87 12 49 03 60 41 15 20 76 27 50 47 02 29 16
50 87 41 60 76 83 44 88 96 07 80 83 05 83 38 96 73 70 66 81 90 30 56 10 48 59

From Table XXXIII of Statistical Tables for Biological, Agricultural and Medical Research 6e, by R.A. Fisher and F. Yates, Pearson Ed-
ucation Limited. Reproduced by permission of Pearson Education Limited.
a Discussed in Section 8.2.
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TABLE D.1 (continued)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 22 17 68 65 84 68 95 23 92 35 87 02 22 57 51 61 09 43 95 06 58 24 82 03 47
2 19 36 27 59 46 13 79 93 37 55 39 77 32 77 09 85 52 05 30 62 47 83 51 62 74
3 16 77 23 02 77 09 61 87 25 21 28 06 24 25 93 16 71 13 59 78 23 05 47 47 25
4 78 43 76 71 61 20 44 90 32 64 97 67 63 99 61 46 38 03 93 22 69 81 21 99 21
5 03 28 28 26 08 73 37 32 04 05 69 30 16 09 05 88 69 58 28 99 35 07 44 75 47

6 93 22 53 64 39 07 10 63 76 35 87 03 04 79 88 08 13 13 85 51 55 34 57 72 69
7 78 76 58 54 74 92 38 70 96 92 52 06 79 79 45 82 63 18 27 44 49 66 92 19 09
8 23 68 35 26 00 99 53 93 61 28 52 70 05 48 34 56 63 05 61 86 90 92 10 70 80
9 15 39 25 70 99 93 86 52 77 65 15 33 59 05 28 22 87 26 07 47 86 96 98 29 06

10 58 71 96 30 24 18 46 23 34 27 85 13 99 24 44 49 18 09 79 49 74 16 32 23 02

11 57 35 27 33 72 24 53 63 94 09 41 10 76 47 91 44 04 95 49 66 39 60 04 59 81
12 48 50 86 54 48 22 06 34 72 52 82 21 15 65 20 33 29 94 71 11 15 91 29 12 03
13 61 96 48 95 03 07 16 39 33 66 98 56 10 56 79 77 21 30 27 12 90 49 22 23 62
14 36 93 89 41 26 29 70 83 63 51 99 74 20 52 36 87 09 41 15 09 98 60 16 03 03
15 18 87 00 42 31 57 90 12 02 07 23 47 37 17 31 54 08 01 88 63 39 41 88 92 10

16 88 56 53 27 59 33 35 72 67 47 77 34 55 45 70 08 18 27 38 90 16 95 86 70 75
17 09 72 95 84 29 49 41 31 06 70 42 38 06 45 18 64 84 73 31 65 52 53 37 97 15
18 12 96 88 17 31 65 19 69 02 83 60 75 86 90 68 24 64 19 35 51 56 61 87 39 12
19 85 94 57 24 16 92 09 84 38 76 22 00 27 69 85 29 81 94 78 70 21 94 47 90 12
20 38 64 43 59 98 98 77 87 68 07 91 51 67 62 44 40 98 05 93 78 23 32 65 41 18

21 53 44 09 42 72 00 41 86 79 79 68 47 22 00 20 35 55 31 51 51 00 83 63 22 55
22 40 76 66 26 84 57 99 99 90 37 36 63 32 08 58 37 40 13 68 97 87 64 81 07 83
23 02 17 79 18 05 12 59 52 57 02 22 07 90 47 03 28 14 11 30 79 20 69 22 40 98
24 95 17 82 06 53 31 51 10 96 46 92 06 88 07 77 56 11 50 81 69 40 23 72 51 39
25 35 76 22 42 92 96 11 83 44 80 34 68 35 48 77 33 42 40 90 60 73 96 53 97 86

26 26 29 13 56 41 85 47 04 66 08 34 72 57 59 13 82 43 80 46 15 38 26 61 70 04
27 77 80 20 75 82 72 82 32 99 90 63 95 73 76 63 89 73 44 99 05 48 67 26 43 18
28 46 40 66 44 52 91 36 74 43 53 30 82 13 54 00 78 45 63 98 35 55 03 36 67 68
29 37 56 08 18 09 77 53 84 46 47 31 91 18 95 58 24 16 74 11 53 44 10 13 85 57
30 61 65 61 68 66 37 27 47 39 19 84 83 70 07 48 53 21 40 06 71 95 06 79 88 54

31 93 43 69 64 07 34 18 04 52 35 56 27 09 24 86 61 85 53 83 45 19 90 70 99 00
32 21 96 60 12 99 11 20 99 45 18 48 13 93 55 34 18 37 79 49 90 65 97 38 20 46
33 95 20 47 97 97 27 37 83 28 71 00 06 41 41 74 45 89 09 39 84 51 67 11 52 49
34 97 86 21 78 73 10 65 81 92 59 58 76 17 14 97 04 76 62 16 17 17 95 70 45 80
35 69 92 06 34 13 59 71 74 17 32 27 55 10 24 19 23 71 82 13 74 63 52 52 01 41

36 04 31 17 21 56 33 73 99 19 87 26 72 39 27 67 53 77 57 68 93 60 61 97 22 61
37 61 06 98 03 91 87 14 77 43 96 43 00 65 98 50 45 60 33 01 07 98 99 46 50 47
38 85 93 85 86 88 72 87 08 62 40 16 06 10 89 20 23 21 34 74 97 76 38 03 29 63
39 21 74 32 47 45 73 96 07 94 52 09 65 90 77 47 25 76 16 19 33 53 05 70 53 30
40 15 69 53 82 80 79 96 23 53 10 65 39 07 16 29 45 33 02 43 70 02 87 40 41 45

41 02 89 08 04 49 20 21 14 68 86 87 63 93 95 17 11 29 01 95 80 35 14 97 35 33
42 87 18 15 89 79 85 43 01 72 73 08 61 74 51 69 89 74 39 82 15 94 51 33 41 67
43 98 83 71 94 22 59 97 50 99 52 08 52 85 08 40 87 80 61 65 31 91 51 80 32 44
44 10 08 58 21 66 72 68 49 29 31 89 85 84 46 06 59 73 19 85 23 65 09 29 75 63
45 47 90 56 10 08 88 02 84 27 83 42 29 72 23 19 66 56 45 65 79 20 71 53 20 25

46 22 85 61 68 90 49 64 92 85 44 16 40 12 89 88 50 14 49 81 06 01 82 77 45 12
47 67 80 43 79 33 12 83 11 41 16 25 58 19 68 70 77 02 54 00 52 53 43 37 15 26
48 27 62 50 96 72 79 44 61 40 15 14 53 40 65 39 27 31 58 50 28 11 39 03 34 23
49 33 78 80 87 15 38 30 06 38 21 14 47 47 07 26 54 96 87 53 32 40 36 40 96 76
50 13 13 92 66 99 47 24 49 57 74 32 25 43 62 17 10 97 11 69 84 99 63 22 32 98
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TABLE D.2 Areas under the Standard Normal Distributiona

0 za

Area (column 2)

Area (column 3)

(1) (2) (3) (1) (2) (3) (1) (2) (3)
Area Between Area Area Between Area Area Between Area

Mean and Above Mean and Above Mean and Above
z

a
z

a
z

a
z

a
z

a
z

a
z

a
z

a
z

a

0.00 0.0000 0.5000 0.30 0.1179 0.3821 0.60 0.2257 0.2743
0.01 0.0040 0.4960 0.31 0.1217 0.3783 0.61 0.2291 0.2709
0.02 0.0080 0.4920 0.32 0.1255 0.3745 0.62 0.2324 0.2676
0.03 0.0120 0.4880 0.33 0.1293 0.3707 0.63 0.2357 0.2643
0.04 0.0160 0.4840 0.34 0.1331 0.3669 0.64 0.2389 0.2611

0.05 0.0199 0.4801 0.35 0.1368 0.3632 0.65 0.2422 0.2578
0.06 0.0239 0.4761 0.36 0.1406 0.3594 0.66 0.2454 0.2546
0.07 0.0279 0.4721 0.37 0.1443 0.3557 0.67 0.2486 0.2514
0.08 0.0319 0.4681 0.38 0.1480 0.3520 0.68 0.2517 0.2483
0.09 0.0359 0.4641 0.39 0.1517 0.3483 0.69 0.2549 0.2451

0.10 0.0398 0.4602 0.40 0.1554 0.3446 0.70 0.2580 0.2420
0.11 0.0438 0.4562 0.41 0.1591 0.3409 0.71 0.2611 0.2389
0.12 0.0478 0.4522 0.42 0.1628 0.3372 0.72 0.2642 0.2358
0.13 0.0517 0.4483 0.43 0.1664 0.3336 0.73 0.2673 0.2327
0.14 0.0557 0.4443 0.44 0.1700 0.3300 0.74 0.2704 0.2296

0.15 0.0596 0.4404 0.45 0.1736 0.3264 0.75 0.2734 0.2266
0.16 0.0636 0.4364 0.46 0.1772 0.3228 0.76 0.2764 0.2236
0.17 0.0675 0.4325 0.47 0.1808 0.3192 0.77 0.2794 0.2206
0.18 0.0714 0.4286 0.48 0.1844 0.3156 0.78 0.2823 0.2177
0.19 0.0753 0.4247 0.49 0.1879 0.3121 0.79 0.2852 0.2148

0.20 0.0793 0.4207 0.50 0.1915 0.3085 0.80 0.2881 0.2119
0.21 0.0832 0.4168 0.51 0.1950 0.3050 0.81 0.2910 0.2090
0.22 0.0871 0.4129 0.52 0.1985 0.3015 0.82 0.2939 0.2061
0.23 0.0910 0.4090 0.53 0.2019 0.2981 0.83 0.2967 0.2033
0.24 0.0948 0.4052 0.54 0.2054 0.2946 0.84 0.2995 0.2005

0.25 0.0987 0.4013 0.55 0.2088 0.2912 0.85 0.3023 0.1977
0.26 0.1026 0.3974 0.56 0.2123 0.2877 0.86 0.3051 0.1949
0.27 0.1064 0.3936 0.57 0.2157 0.2843 0.87 0.3078 0.1922
0.28 0.1103 0.3897 0.58 0.2190 0.2810 0.88 0.3106 0.1894
0.29 0.1141 0.3859 0.59 0.2224 0.2776 0.89 0.3133 0.1867

From Table IIi of Statistical Tables for Biological, Agricultural and Medical Research 6e, by R.A. Fisher and F. Yates, Pearson Educa-
tion Limited. Reproduced by permission of Pearson Education Limited.
a Discussed in Section 9.2.
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TABLE D.2 (continued)

(1) (2) (3) (1) (2) (3) (1) (2) (3)
Area Between Area Area Between Area Area Between Area

Mean and Above Mean and Above Mean and Above
z

a
z

a
z

a
z

a
z

a
z

a
z

a
z

a
z

a

0.90 0.3159 0.1841 1.30 0.4032 0.0968 1.70 0.4554 0.0446
0.91 0.3186 0.1814 1.31 0.4049 0.0951 1.71 0.4564 0.0436
0.92 0.3212 0.1788 1.32 0.4066 0.0934 1.72 0.4573 0.0427
0.93 0.3238 0.1762 1.33 0.4082 0.0918 1.73 0.4582 0.0418
0.94 0.3264 0.1736 1.34 0.4099 0.0901 1.74 0.4591 0.0409

0.95 0.3289 0.1711 1.35 0.4115 0.0885 1.75 0.4599 0.0401
0.96 0.3315 0.1685 1.36 0.4131 0.0869 1.76 0.4608 0.0392
0.97 0.3340 0.1660 1.37 0.4147 0.0853 1.77 0.4616 0.0384
0.98 0.3365 0.1635 1.38 0.4162 0.0838 1.78 0.4625 0.0375
0.99 0.3389 0.1611 1.39 0.4177 0.0823 1.79 0.4633 0.0367

1.00 0.3413 0.1587 1.40 0.4192 0.0808 1.80 0.4641 0.0359
1.01 0.3438 0.1562 1.41 0.4207 0.0793 1.81 0.4649 0.0351
1.02 0.3461 0.1539 1.42 0.4222 0.0778 1.82 0.4656 0.0344
1.03 0.3485 0.1515 1.43 0.4236 0.0764 1.83 0.4664 0.0336
1.04 0.3508 0.1492 1.44 0.4251 0.0749 1.84 0.4671 0.0329

1.05 0.3531 0.1469 1.45 0.4265 0.0735 1.85 0.4678 0.0322
1.06 0.3554 0.1446 1.46 0.4279 0.0721 1.86 0.4686 0.0314
1.07 0.3577 0.1423 1.47 0.4292 0.0708 1.87 0.4693 0.0307
1.08 0.3599 0.1401 1.48 0.4306 0.0694 1.88 0.4699 0.0301
1.09 0.3621 0.1379 1.49 0.4319 0.0681 1.89 0.4706 0.0294

1.10 0.3643 0.1357 1.50 0.4332 0.0668 1.90 0.4713 0.0287
1.11 0.3665 0.1335 1.51 0.4345 0.0655 1.91 0.4719 0.0281
1.12 0.3686 0.1314 1.52 0.4357 0.0643 1.92 0.4726 0.0274
1.13 0.3708 0.1292 1.53 0.4370 0.0630 1.93 0.4732 0.0268
1.14 0.3729 0.1271 1.54 0.4382 0.0618 1.94 0.4738 0.0262

1.15 0.3749 0.1251 1.55 0.4394 0.0606 1.95 0.4744 0.0256
1.16 0.3770 0.1230 1.56 0.4406 0.0594 1.96 0.4750 0.0250
1.17 0.3790 0.1210 1.57 0.4418 0.0582 1.97 0.4756 0.0244
1.18 0.3810 0.1190 1.58 0.4429 0.0571 1.98 0.4761 0.0239
1.19 0.3830 0.1170 1.59 0.4441 0.0559 1.99 0.4767 0.0233

1.20 0.3849 0.1151 1.60 0.4452 0.0548 2.00 0.4772 0.0228
1.21 0.3869 0.1131 1.61 0.4463 0.0537 2.01 0.4778 0.0222
1.22 0.3888 0.1112 1.62 0.4474 0.0526 2.02 0.4783 0.0217
1.23 0.3907 0.1093 1.63 0.4484 0.0516 2.03 0.4788 0.0212
1.24 0.3925 0.1075 1.64 0.4495 0.0505 2.04 0.4793 0.0207

1.645 0.4500 0.0500
1.25 0.3944 0.1056 1.65 0.4505 0.0495 2.05 0.4798 0.0202
1.26 0.3962 0.1038 1.66 0.4515 0.0485 2.06 0.4803 0.0197
1.27 0.3980 0.1020 1.67 0.4525 0.0475 2.07 0.4808 0.0192
1.28 0.3997 0.1003 1.68 0.4535 0.0465 2.08 0.4812 0.0188
1.29 0.4015 0.0985 1.69 0.4545 0.0455 2.09 0.4817 0.0183
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TABLE D.2 (continued)

(1) (2) (3) (1) (2) (3) (1) (2) (3)
Area Between Area Area Between Area Area Between Area

Mean and Above Mean and Above Mean and Above
z

a
z

a
z

a
z

a
z

a
z

a
z

a
z

a
z

a

2.10 0.4821 0.0179 2.45 0.4929 0.0071 2.80 0.4974 0.0026
2.11 0.4826 0.0174 2.46 0.4931 0.0069 2.81 0.4975 0.0025
2.12 0.4830 0.0170 2.47 0.4932 0.0068 2.82 0.4976 0.0024
2.13 0.4834 0.0166 2.48 0.4934 0.0066 2.83 0.4977 0.0023
2.14 0.4838 0.0162 2.49 0.4936 0.0064 2.84 0.4977 0.0023

2.15 0.4842 0.0158 2.50 0.4938 0.0062 2.85 0.4978 0.0022
2.16 0.4846 0.0154 2.51 0.4940 0.0060 2.86 0.4979 0.0021
2.17 0.4850 0.0150 2.52 0.4941 0.0059 2.87 0.4979 0.0021
2.18 0.4854 0.0146 2.53 0.4943 0.0057 2.88 0.4980 0.0020
2.19 0.4857 0.0143 2.54 0.4945 0.0055 2.89 0.4981 0.0019

2.20 0.4861 0.0139 2.55 0.4946 0.0054 2.90 0.4981 0.0019
2.21 0.4864 0.0136 2.56 0.4948 0.0052 2.91 0.4982 0.0018
2.22 0.4868 0.0132 2.57 0.4949 0.0051 2.92 0.4982 0.0018
2.23 0.4871 0.0129 2.576 0.4950 0.0050 2.93 0.4983 0.0017
2.24 0.4875 0.0125 2.58 0.4951 0.0049 2.94 0.4984 0.0016

2.59 0.4952 0.0048
2.25 0.4878 0.0122 2.60 0.4953 0.0047 2.95 0.4984 0.0016
2.26 0.4881 0.0119 2.61 0.4955 0.0045 2.96 0.4985 0.0015
2.27 0.4884 0.0116 2.62 0.4956 0.0044 2.97 0.4985 0.0015
2.28 0.4887 0.0113 2.63 0.4957 0.0043 2.98 0.4986 0.0014
2.29 0.4890 0.0110 2.64 0.4959 0.0041 2.99 0.4986 0.0014

2.30 0.4893 0.0107 2.65 0.4960 0.0040 3.00 0.4987 0.0013
2.31 0.4896 0.0104 2.66 0.4961 0.0039 3.01 0.4987 0.0013
2.32 0.4898 0.0102 2.67 0.4962 0.0038 3.02 0.4987 0.0013
2.33 0.4901 0.0099 2.68 0.4963 0.0037 3.03 0.4988 0.0012
2.34 0.4904 0.0096 2.69 0.4964 0.0036 3.04 0.4988 0.0012

2.35 0.4906 0.0094 2.70 0.4965 0.0035 3.05 0.4989 0.0011
2.36 0.4909 0.0091 2.71 0.4966 0.0034 3.06 0.4989 0.0011
2.37 0.4911 0.0089 2.72 0.4967 0.0033 3.07 0.4989 0.0011
2.38 0.4913 0.0087 2.73 0.4968 0.0032 3.08 0.4990 0.0010
2.39 0.4916 0.0084 2.74 0.4969 0.0031 3.09 0.4990 0.0010

2.40 0.4918 0.0082 2.75 0.4970 0.0030 3.10 0.4990 0.0010
2.41 0.4920 0.0080 2.76 0.4971 0.0029 3.11 0.4991 0.0009
2.42 0.4922 0.0078 2.77 0.4972 0.0028 3.12 0.4991 0.0009
2.43 0.4925 0.0075 2.78 0.4973 0.0027 3.13 0.4991 0.0009
2.44 0.4927 0.0073 2.79 0.4974 0.0026 3.14 0.4992 0.0008
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TABLE D.2 (continued)

(1) (2) (3) (1) (2) (3)
Area Between Area Area Between Area

Mean and Above Mean and Above
z

a
z

a
z

a
z

a
z

a
z

a

3.15 0.4992 0.0008 3.25 0.4994 0.0006
3.16 0.4992 0.0008 3.30 0.4995 0.0005
3.17 0.4992 0.0008 3.35 0.4996 0.0004
3.18 0.4993 0.0007 3.40 0.4997 0.0003
3.19 0.4993 0.0007 3.45 0.4997 0.0003

3.20 0.4993 0.0007 3.50 0.4998 0.0002
3.21 0.4993 0.0007 3.60 0.4998 0.0002
3.22 0.4994 0.0006 3.70 0.4999 0.0001
3.23 0.4994 0.0006 3.80 0.4999 0.0001
3.24 0.4994 0.0006 3.90 0.49995 0.00005

4.00 0.49997 0.00003
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TABLE D.3 Percentage Points of Student’s t Distributiona

0 ta�ta

aa

Level of Significance for a One-Tailed Test

Degrees of 
.25 .20 .15 .10 .05 .025 .01 .005 .0005

Freedom, v Level of Significance for a Two-Tailed Test
.50 .40 .30 .20 .10 .05 .02 .01 .001

1 1.000 1.376 1.963 3.078 6.314 12.706 31.821 63.657 636.619
2 .816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 31.598
3 .765 .978 1.250 1.638 2.353 3.182 4.541 5.841 12.924
4 .741 .941 1.190 1.533 2.132 2.776 3.747 4.604 8.610
5 .727 .920 1.156 1.476 2.015 2.571 3.365 4.032 6.869

6 .718 .906 1.134 1.440 1.943 2.447 3.143 3.707 5.959
7 .711 .896 1.119 1.415 1.895 2.365 2.998 3.499 5.408
8 .706 .889 1.108 1.397 1.860 2.306 2.896 3.355 5.041
9 .703 .883 1.100 1.383 1.833 2.262 2.821 3.250 4.781

10 .700 .879 1.093 1.372 1.812 2.228 2.764 3.169 4.587

11 .697 .876 1.088 1.363 1.796 2.201 2.718 3.106 4.437
12 .695 .873 1.083 1.356 1.782 2.179 2.681 3.055 4.318
13 .694 .870 1.079 1.350 1.771 2.160 2.650 3.012 4.221
14 .692 .868 1.076 1.345 1.761 2.145 2.624 2.977 4.140
15 .691 .866 1.074 1.341 1.753 2.131 2.602 2.947 4.073

16 .690 .865 1.071 1.337 1.746 2.120 2.583 2.921 4.015
17 .689 .863 1.069 1.333 1.740 2.110 2.567 2.898 3.965
18 .688 .862 1.067 1.330 1.734 2.101 2.552 2.878 3.922
19 .688 .861 1.066 1.328 1.729 2.093 2.539 2.861 3.883
20 .687 .860 1.064 1.325 1.725 2.086 2.528 2.845 3.850

21 .686 .859 1.063 1.323 1.721 2.080 2.518 2.831 3.819
22 .686 .858 1.061 1.321 1.717 2.074 2.508 2.819 3.792
23 .685 .858 1.060 1.319 1.714 2.069 2.500 2.807 3.767
24 .685 .857 1.059 1.318 1.711 2.064 2.492 2.797 3.745
25 .684 .856 1.058 1.316 1.708 2.060 2.485 2.787 3.725

26 .684 .856 1.058 1.315 1.706 2.056 2.479 2.779 3.707
27 .684 .855 1.057 1.314 1.703 2.052 2.473 2.771 3.690
28 .683 .855 1.056 1.313 1.701 2.048 2.467 2.763 3.674
29 .683 .854 1.055 1.311 1.699 2.045 2.462 2.756 3.659
30 .683 .854 1.055 1.310 1.697 2.042 2.457 2.750 3.646

40 .681 .851 1.050 1.303 1.684 2.021 2.423 2.704 3.551
60 .679 .848 1.046 1.296 1.671 2.000 2.390 2.660 3.460

120 .677 .845 1.041 1.289 1.658 1.980 2.358 2.617 3.373
` .674 .842 1.036 1.282 1.645 1.960 2.326 2.576 3.291

From Table III of Statistical Tables for Biological, Agricultural and Medical Research 6e, by R.A. Fisher and F. Yates, Pearson
Education Limited. Reproduced by permission of Pearson Education Limited.
a Discussed in Section 10.2.
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TABLE D.4 Upper Percentage Points of the Chi-Square Distributiona

n 99 .975 .95 .90 .80 .70 .50 .30 .20 .10 .05 .025 .01 .005

1 .03157 .03982 .00393 .0158 .0642 .148 .455 1.074 1.642 2.706 3.841 5.024 6.635 7.879
2 .0201 .0506 .103 .211 .446 .713 1.386 2.408 3.219 4.605 5.991 7.378 9.210 10.597
3 .115 .216 .352 .584 1.005 1.424 2.366 3.665 4.642 6.251 7.815 9.348 11.345 12.838
4 .297 .484 .711 1.064 1.649 2.195 3.357 4.878 5.989 7.779 9.488 11.143 13.277 14.860
5 .554 .831 1.145 1.610 2.343 3.000 4.351 6.064 7.289 9.236 11.070 12.832 15.086 16.750

6 .872 1.237 1.635 2.204 3.070 3.828 5.348 7.231 8.558 10.645 12.592 14.449 16.812 18.548
7 1.239 1.690 2.167 2.833 3.822 4.671 6.346 8.383 9.803 12.017 14.067 16.013 18.475 20.278
8 1.646 2.180 2.733 3.490 4.594 5.527 7.344 9.524 11.030 13.362 15.507 17.535 20.090 21.955
9 2.088 2.700 3.325 4.168 5.380 6.393 8.343 10.656 12.242 14.684 16.919 19.023 21.666 23.589

10 2.558 3.247 3.940 4.865 6.179 7.267 9.342 11.781 13.442 15.987 18.307 20.483 23.209 25.188

11 3.053 3.816 4.575 5.578 6.989 8.148 10.341 12.899 14.631 17.275 19.675 21.920 24.725 26.757
12 3.571 4.404 5.226 6.304 7.807 9.034 11.340 14.011 15.812 18.549 21.026 23.337 26.217 28.300
13 4.107 5.009 5.892 7.042 8.634 9.926 12.340 15.119 16.985 19.812 22.362 24.736 27.688 29.819
14 4.660 5.629 6.571 7.790 9.467 10.821 13.339 16.222 18.151 21.064 23.685 26.119 29.141 31.319
15 5.229 6.262 7.261 8.547 10.307 11.721 14.339 17.322 19.311 22.307 24.996 27.488 30.578 32.801

16 5.812 6.908 7.962 9.312 11.152 12.624 15.338 18.418 20.465 23.542 26.296 28.845 32.000 34.267
17 6.408 7.564 8.672 10.085 12.002 13.531 16.338 19.511 21.615 24.769 27.587 30.191 33.409 35.718
18 7.015 8.231 9.390 10.865 12.857 14.440 17.338 20.601 22.760 25.989 28.869 31.526 34.805 37.156
19 7.633 8.907 10.117 11.651 13.716 15.352 18.338 21.689 23.900 27.204 30.144 32.852 36.191 38.582
20 8.260 9.591 10.851 12.443 14.578 16.266 19.337 22.775 25.038 28.412 31.410 34.170 37.566 39.997

0 �2
a

1 � a

a
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21 8.897 10.283 11.591 13.240 15.445 17.182 20.337 23.858 26.171 29.615 32.671 35.479 38.932 41.401
22 9.542 10.982 12.338 14.041 16.314 18.101 21.337 24.939 27.301 30.813 33.924 36.781 40.289 42.796
23 10.196 11.689 13.091 14.848 17.187 19.021 22.337 26.018 28.429 32.007 35.172 38.076 41.638 44.181
24 10.856 12.401 13.848 15.659 18.062 19.943 23.337 27.096 29.553 33.196 36.415 39.364 42.980 45.558
25 11.524 13.120 14.611 16.473 18.940 20.867 24.337 28.172 30.675 34.382 37.652 40.646 44.314 46.928

26 12.198 13.844 15.379 17.292 19.820 21.792 25.336 29.246 31.795 35.563 38.885 41.923 45.642 48.290
27 12.879 14.573 16.151 18.114 20.703 22.719 26.336 30.319 32.912 36.741 40.113 43.195 46.963 49.645
28 13.565 15.308 16.928 18.939 21.588 23.647 27.336 31.391 34.027 37.916 41.337 44.461 43.278 50.994
29 14.256 16.047 17.708 19.768 22.475 24.577 28.336 32.461 35.139 39.087 42.557 45.722 49.588 52.335
30 14.953 16.791 18.493 20.599 23.364 25.508 29.336 33.530 36.250 40.256 43.773 46.979 50.892 53.672

31 15.655 17.539 19.281 21.434 24.255 26.440 30.336 34.598 37.359 41.422 44.985 48.232 52.191 55.002
32 16.362 18.291 20.072 22.271 25.148 27.373 31.336 35.665 38.466 42.585 46.194 49.480 53.486 56.328
34 17.789 19.806 21.664 23.952 26.938 29.242 33.336 37.795 40.676 44.903 48.602 51.966 56.061 58.964
36 19.233 21.336 23.269 25.643 28.735 31.115 35.336 39.922 42.879 47.212 50.998 54.437 58.619 61.581
38 20.691 22.878 24.884 27.343 30.537 32.992 37.335 42.045 45.076 49.513 53.384 56.895 61.162 64.181

40 22.164 24.433 26.509 29.051 32.345 34.872 39.335 44.165 47.269 51.805 55.758 59.342 63.691 66.766
42 23.650 25.999 28.144 30.765 34.157 36.755 41.335 46.282 49.456 54.090 58.124 61.777 66.206 69.336
44 25.148 27.575 29.787 32.487 35.974 38.641 43.335 48.396 51.639 56.369 60.481 64.201 68.710 71.892
47 27.416 29.956 32.268 35.081 38.708 41.474 46.335 51.562 54.906 59.774 64.001 67.821 72.443 75.704
50 29.707 32.357 34.764 37.689 41.449 44.313 49.335 54.723 58.164 63.167 67.505 71.420 76.154 79.490

a Discussed in Section 17.3.
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TABLE D.6 Critical Values of the Pearson ra

Level of Significance for a One-Tailed Test
.05 .025 .01 .005

Degrees of 
Freedom, Level of Significance for a Two-Tailed Test

n = n � 2b .10 .05 .02 .01

1 0.988 0.997 0.9995 0.9999
2 0.900 0.950 0.980 0.990
3 0.805 0.878 0.934 0.959
4 0.729 0.811 0.882 0.917
5 0.669 0.754 0.833 0.874

6 0.622 0.707 0.789 0.834
7 0.582 0.666 0.750 0.798
8 0.549 0.632 0.716 0.765
9 0.521 0.602 0.685 0.735

10 0.497 0.576 0.658 0.708

11 0.476 0.553 0.634 0.684
12 0.458 0.532 0.612 0.661
13 0.441 0.514 0.592 0.641
14 0.426 0.497 0.574 0.623
15 0.412 0.482 0.558 0.606

16 0.400 0.468 0.542 0.590
17 0.389 0.456 0.528 0.575
18 0.378 0.444 0.516 0.561
19 0.369 0.433 0.503 0.549
20 0.360 0.423 0.492 0.537

21 0.352 0.413 0.482 0.526
22 0.344 0.404 0.472 0.515
23 0.337 0.396 0.462 0.505
24 0.330 0.388 0.453 0.496
25 0.323 0.381 0.445 0.487

26 0.317 0.374 0.437 0.479
27 0.311 0.367 0.430 0.471
28 0.306 0.361 0.423 0.463
29 0.301 0.355 0.416 0.456
30 0.296 0.349 0.409 0.449

35 0.275 0.325 0.381 0.418
40 0.257 0.304 0.358 0.393
45 0.243 0.288 0.338 0.372
50 0.231 0.273 0.322 0.354
60 0.211 0.250 0.295 0.325

70 0.195 0.232 0.274 0.302
80 0.183 0.217 0.256 0.283
90 0.173 0.205 0.242 0.267

100 0.164 0.195 0.230 0.254
120 0.150 0.178 0.210 0.232

150 0.134 0.159 0.189 0.208
200 0.116 0.138 0.164 0.181
300 0.095 0.113 0.134 0.148
400 0.082 0.098 0.116 0.128
500 0.073 0.088 0.104 0.115

From Table VII of Statistical Tables for Biological, Agricultural and Medical Research 6e, by R.A. Fisher and F. Yates, Pearson
Education Limited. Reproduced by permission of Pearson Education Limited.
a Discussed in Section 12.3.
b n is the number of paired X and Y scores.
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TABLE D.7 Transformation of r to Z a

r r r r r

0.000 0.000 0.200 0.203 0.400 0.424 0.600 0.693 0.800 1.099
0.005 0.005 0.205 0.208 0.405 0.430 0.605 0.701 0.805 1.113
0.010 0.010 0.210 0.213 0.410 0.436 0.610 0.709 0.810 1.127
0.015 0.015 0.215 0.218 0.415 0.442 0.615 0.717 0.815 1.142
0.020 0.020 0.220 0.224 0.420 0.448 0.620 0.725 0.820 1.157

0.025 0.025 0.225 0.229 0.425 0.454 0.625 0.733 0.825 1.172
0.030 0.030 0.230 0.234 0.430 0.460 0.630 0.741 0.830 1.188
0.035 0.035 0.235 0.239 0.435 0.466 0.635 0.750 0.835 1.204
0.040 0.040 0.240 0.245 0.440 0.472 0.640 0.758 0.840 1.221
0.045 0.045 0.245 0.250 0.445 0.478 0.645 0.767 0.845 1.238

0.050 0.050 0.250 0.255 0.450 0.485 0.650 0.775 0.850 1.256
0.055 0.055 0.255 0.261 0.455 0.491 0.655 0.784 0.855 1.274
0.060 0.060 0.260 0.266 0.460 0.497 0.660 0.793 0.860 1.293
0.065 0.065 0.265 0.271 0.465 0.504 0.665 0.802 0.865 1.313
0.070 0.070 0.270 0.277 0.470 0.510 0.670 0.811 0.870 1.333

0.075 0.075 0.275 0.282 0.475 0.517 0.675 0.820 0.875 1.354
0.080 0.080 0.280 0.288 0.480 0.523 0.680 0.829 0.880 1.376
0.085 0.085 0.285 0.293 0.485 0.530 0.685 0.838 0.885 1.398
0.090 0.090 0.290 0.299 0.490 0.536 0.690 0.848 0.890 1.422
0.095 0.095 0.295 0.304 0.495 0.543 0.695 0.858 0.895 1.447

0.100 0.100 0.300 0.310 0.500 0.549 0.700 0.867 0.900 1.472
0.105 0.105 0.305 0.315 0.505 0.556 0.705 0.877 0.905 1.499
0.110 0.110 0.310 0.321 0.510 0.563 0.710 0.887 0.910 1.528
0.115 0.116 0.315 0.326 0.515 0.570 0.715 0.897 0.915 1.557
0.120 0.121 0.320 0.332 0.520 0.576 0.720 0.908 0.920 1.589

0.125 0.126 0.325 0.337 0.525 0.583 0.725 0.918 0.925 1.623
0.130 0.131 0.330 0.343 0.530 0.590 0.730 0.929 0.930 1.658
0.135 0.136 0.335 0.348 0.535 0.597 0.735 0.940 0.935 1.697
0.140 0.141 0.340 0.354 0.540 0.604 0.740 0.950 0.940 1.738
0.145 0.146 0.345 0.360 0.545 0.611 0.745 0.962 0.945 1.783

0.150 0.151 0.350 0.365 0.550 0.618 0.750 0.973 0.950 1.832
0.155 0.156 0.355 0.371 0.555 0.626 0.755 0.984 0.955 1.886
0.160 0.161 0.360 0.377 0.560 0.633 0.760 0.996 0.960 1.946
0.165 0.167 0.365 0.383 0.565 0.640 0.765 1.008 0.965 2.014
0.170 0.172 0.370 0.388 0.570 0.648 0.770 1.020 0.970 2.092

0.175 0.177 0.375 0.394 0.575 0.655 0.775 1.033 0.975 2.185
0.180 0.182 0.380 0.400 0.580 0.662 0.780 1.045 0.980 2.298
0.185 0.187 0.385 0.406 0.585 0.670 0.785 1.058 0.985 2.443
0.190 0.192 0.390 0.412 0.590 0.678 0.790 1.071 0.990 2.647
0.195 0.198 0.395 0.418 0.595 0.685 0.795 1.085 0.995 2.994

From Table VIIi of Statistical Tables for Biological, Agricultural and Medical Research 6e, by R.A. Fisher and F. Yates, Pearson Educa-
tion Limited. Reproduced by permission of Pearson Education Limited.
aDiscussed in Section 12.3.
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TABLE D.8 Approximate n Required for Testing 
Hypotheses about Meansa

One-Sample Test

One-Sided Two-Sided
Hypothesis, Hypothesis,

1 � b 1�b

Effect Size,
d a .80 .90 .95 .80 .90 .95

0.2 .05 156 215 272 198 264 326
.01 253 328 396 294 374 447

0.5 .05 27 36 45 34 44 54
.01 43 55 66 51 63 75

0.8 .05 12 15 19 15 19 22
.01 19 24 28 22 27 32

Effect Size, Two-Sample Test (Independent Samples)
d a

0.2 .05 310 429 542 393 526 651
.01 503 652 790 586 746 892

0.5 .05 50 69 87 64 85 105
.01 82 105 128 95 120 144

0.8 .05 21 27 35 26 34 42
.01 33 42 51 38 48 57

Effect Size, Two-Sample Test (Dependent Samples)
d a

r

0.2 .05 0.4 187 258 326 237 317 391
0.5 156 215 272 198 264 326
0.6 125 172 218 159 212 261
0.7 94 130 164 119 159 197
0.8 63 87 109 80 107 131
0.9 32 44 55 41 54 66

aDiscussed in Sections 10.4, 13.2, and 13.4. Table D. 8 was prepared by Roger E. Kirk. For the two-sample test (independent samples), it
is assumed that and n1 � n2; the values in the table are for each of the samples. If dependent samples are used, the values in the
table are for the number of pairs of dependent elements.

s1
2 5 s2

2
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Two-Sample Test (Dependent Samples)

One-Sided Two-Sided
Hypothesis, Hypothesis,

1 � b 1�b

Effect Size,
d a .80 .90 .95 .80 .90 .95

r

0.2 .01 0.4 303 393 475 353 449 537
0.5 253 328 396 294 374 447
0.6 203 262 317 236 300 358
0.7 153 197 239 177 225 269
0.8 102 132 160 119 151 180
0.9 52 67 81 60 76 91

0.5 .05 0.4 31 42 53 39 52 63
0.5 26 35 44 33 44 53
0.6 21 29 36 27 35 43
0.7 16 22 27 20 27 33
0.8 11 15 19 14 18 22
0.9 6 8 10 8 10 12

.01 0.4 50 65 78 58 73 88
0.5 42 54 65 49 62 73
0.6 34 44 52 39 50 59
0.7 26 33 40 30 38 45
0.8 18 23 27 21 26 31
0.9 10 12 15 11 14 16

0.8 .05 0.4 13 17 21 16 21 26
0.5 11 15 18 13 18 22
0.6 9 12 15 11 15 18
0.7 7 9 11 9 11 14
0.8 5 7 8 6 8 10
0.9 3 4 5 4 5 6

.01 0.4 21 26 32 24 30 35
0.5 18 22 27 20 25 30
0.6 15 18 22 17 21 24
0.7 11 14 17 13 16 19
0.8 8 10 12 9 11 13
0.9 5 6 7 6 7 8
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TABLE D.10 Critical Values of the Mann-Whitney U Statistica

For a one-tailed test at a � .01 (roman type) and a � .005 (boldface type) and for a two-tailed test at a � .02 
(roman type) and a � .01 (boldface type)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 —b — — — — — — — — — — — — — — — — — — —

2 — — — — — — — — — — — — 0 0 0 0 0 0 1 1
— — — — — — 0 0

3 — — — — — — 0 0 1 1 1 2 2 2 3 3 4 4 4 5
— — 0 0 0 1 1 1 2 2 2 2 3 3

4 — — — — 0 1 1 2 3 3 4 5 5 6 7 7 8 9 9 10
— 0 0 1 1 2 2 3 3 4 5 5 6 6 7 8

5 — — — 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
— 0 1 1 2 3 4 5 6 7 7 8 9 10 11 12 13

6 — — — 1 2 3 4 6 7 8 9 11 12 13 15 16 18 19 20 22
0 1 2 3 4 5 6 7 9 10 11 12 13 15 16 17 18

7 — — 0 1 3 4 6 7 9 11 12 14 16 17 19 21 23 24 26 28
— 0 1 3 4 6 7 9 10 12 13 15 16 18 19 21 22 24

8 — — 0 2 4 6 7 9 11 13 15 17 20 22 24 26 28 30 32 34
— 1 2 4 6 7 9 11 13 15 17 18 20 22 24 26 28 30

9 — — 1 3 5 7 9 11 14 16 18 21 23 26 28 31 33 36 38 40
0 1 3 5 7 9 11 13 16 18 20 22 24 27 29 31 33 36

10 — — 1 3 6 8 11 13 16 19 22 24 27 30 33 36 38 41 44 47
0 2 4 6 9 11 13 16 18 21 24 26 29 31 34 37 39 42

11 — — 1 4 7 9 12 15 18 22 25 28 31 34 37 41 44 47 50 53
0 2 5 7 10 13 16 18 21 24 27 30 33 36 39 42 45 48

12 — — 2 5 8 11 14 17 21 24 28 31 35 38 42 46 49 53 56 60
1 3 6 9 12 15 18 21 24 27 31 34 37 41 44 47 51 54

13 — 0 2 5 9 12 16 20 23 27 31 35 39 43 47 51 55 59 63 67
— 1 3 7 10 13 17 20 24 27 31 34 38 42 45 49 53 56 60

14 — 0 2 6 10 13 17 22 26 30 34 38 43 47 51 56 60 65 69 73
— 1 4 7 11 15 18 22 26 30 34 38 42 46 50 54 58 63 67

15 — 0 3 7 11 15 19 24 28 33 37 42 47 51 56 61 66 70 75 80
— 2 5 8 12 16 20 24 29 33 37 42 46 51 55 60 64 69 73

16 — 0 3 7 12 16 21 26 31 36 41 46 51 56 61 66 71 76 82 87
— 2 5 9 13 18 22 27 31 36 41 45 50 55 60 65 70 74 79

17 — 0 4 8 13 18 23 28 33 38 44 49 55 60 66 71 77 82 88 93
— 2 6 10 15 19 24 29 34 39 44 49 54 60 65 70 75 81 86

18 — 0 4 9 14 19 24 30 36 41 47 53 59 65 70 76 82 88 94 100
— 2 6 11 16 21 26 31 37 42 47 53 58 64 70 75 81 87 92

19 — 1 4 9 15 20 26 32 38 44 50 56 63 69 75 82 88 94 101 107
0 3 7 12 17 22 28 33 39 45 51 56 63 69 74 81 87 93 99

20 — 1 5 10 16 22 28 34 40 47 53 60 67 73 80 87 93 100 107 114
0 3 8 13 18 24 30 36 42 48 54 60 67 73 79 86 92 99 105

a Discussed in Section 18.3.Table D.10 was prepared by Roger E. Kirk. To be significant for any given n1and n2 , the observed U must be
equal to or less than the value shown in the table.

b Dashes in the body of the table indicate that no decision is possible at the stated level of significance.

n1

n2
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Critical values for a one-tailed test at a � .05 (roman type) and a � .025 (boldface type) and for a two-tailed
test at a � .10 (roman type) and a � .05 (boldface type)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 — — — — — — — — — — — — — — — — — — 0 0
— —

2 — — — — 0 0 0 1 1 1 1 2 2 2 3 3 3 4 4 4
— — — 0 0 0 0 1 1 1 1 1 2 2 2 2

3 — — 0 0 1 2 2 3 3 4 5 5 6 7 7 8 9 9 10 11
— — — — 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8

4 — — 0 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18
— — — 0 1 2 3 4 4 5 6 7 8 9 10 11 11 12 13 13

5 — 0 1 2 4 5 6 8 9 11 12 13 15 16 18 19 20 22 23 25
— — 0 1 2 3 5 6 7 8 9 11 12 13 14 15 17 18 19 20

6 — 0 2 3 5 7 8 10 12 14 16 17 19 21 23 25 26 28 30 32
— — 1 2 3 5 6 8 10 11 13 14 16 17 19 21 22 24 25 27

7 — 0 2 4 6 8 11 13 15 17 19 21 24 26 28 30 33 35 37 39
— — 1 3 5 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

8 — 1 3 5 8 10 13 15 18 20 23 26 28 31 33 36 39 41 44 47
— 0 2 4 6 8 10 13 15 17 19 22 24 26 29 31 34 36 38 41

9 — 1 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54
— 0 2 4 7 10 12 15 17 20 23 26 28 31 34 37 39 42 45 48

10 — 1 4 7 11 14 17 20 24 27 31 34 37 41 44 48 51 55 58 62
— 0 3 5 8 11 14 17 20 23 26 29 33 36 39 42 45 48 52 55

11 — 1 5 8 12 16 19 23 27 31 34 38 42 46 50 54 57 61 65 69
— 0 3 6 9 13 16 19 23 26 30 33 37 40 44 47 51 55 58 62

12 — 2 5 9 13 17 21 26 30 34 38 42 47 51 55 60 64 68 72 77
— 1 4 7 11 14 18 22 26 29 33 37 41 45 49 53 57 61 65 69

13 — 2 6 10 15 19 24 28 33 37 42 47 51 56 61 65 70 75 80 84
— 1 4 8 12 16 20 24 28 33 37 41 45 50 54 59 63 67 72 76

14 — 2 7 11 16 21 26 31 36 41 46 51 56 61 66 71 77 82 87 92
— 1 5 9 13 17 22 26 31 36 40 45 50 55 59 64 67 74 78 83

15 — 3 7 12 18 23 28 33 39 44 50 55 61 66 72 77 83 88 94 100
— 1 5 10 14 19 24 29 34 39 44 49 54 59 64 70 75 80 85 90

16 — 3 8 14 19 25 30 36 42 48 54 60 65 71 77 83 89 95 101 107
— 1 6 11 15 21 26 31 37 42 47 53 59 64 70 75 81 86 92 98

17 — 3 9 15 20 26 33 39 45 51 57 64 70 77 83 89 96 102 109 115
— 2 6 11 17 22 28 34 39 45 51 57 63 67 75 81 87 93 99 105

18 — 4 9 16 22 28 35 41 48 55 61 68 75 82 88 95 102 109 116 123
— 2 7 12 18 24 30 36 42 48 55 61 67 74 80 86 93 99 106 112

19 0 4 10 17 23 30 37 44 51 58 65 72 80 87 94 101 109 116 123 130
— 2 7 13 19 25 32 38 45 52 58 65 72 78 85 92 99 106 113 119

20 0 4 11 18 25 32 39 47 54 62 69 77 84 92 100 107 115 123 130 138
— 2 8 13 20 27 34 41 48 55 62 69 76 83 90 98 105 112 119 127

n1

n2



626 Appendix D

TABLE D.11 Critical Values of the Wilcoxon T Statistica

Level of Significance for a Level of Significance for a
One-Tailed Test One-Tailed Test

.05 .025 .01 .005 .05 .025 .01 .005

Level of Significance for a Level of Significance for a
Two-Tailed Test Two-Tailed Test

n .10 .05 .02 .01 n .10 .05 .02 .01

5 0 — — — 28 130 116 101 91
6 2 0 — — 29 140 126 110 100
7 3 2 0 — 30 151 137 120 109
8 5 3 1 0 31 163 147 130 118
9 8 5 3 1 32 175 159 140 128

10 10 8 5 3 33 187 170 151 138
11 13 10 7 5 34 200 182 162 148
12 17 13 9 7 35 213 195 173 159
13 21 17 12 9 36 227 208 185 171
14 25 21 15 12 37 241 221 198 182
15 30 25 19 15 38 256 235 211 194
16 35 29 23 19 39 271 249 224 207
17 41 34 27 23 40 286 264 238 220
18 47 40 32 27 41 302 279 252 233
19 53 46 37 32 42 319 294 266 247
20 60 52 43 37 43 336 310 281 261
21 67 58 49 42 44 353 327 296 276
22 75 65 55 48 45 371 343 312 291
23 83 73 62 54 46 389 361 328 307
24 91 81 69 61 47 407 378 345 322
25 100 89 76 68 48 426 396 362 339
26 110 98 84 75 49 446 415 379 355
27 119 107 92 83 50 466 434 397 373

a Discussed in Section 18.4. The symbol T denotes the smaller of the sums of ranks associated with differences that are all of the same
sign. For any given n (number of ranked differences), the obtained T is significant at a given level if it is equal to or less than the value
shown in the table.



A P P E N D I X  E

Student Database

DESCRIPTION OF DATABASE

Over the years I have collected data about students who enroll in my introductory
statistics course. These data have been organized so that they can be updated from
semester to semester and analyzed in a variety of ways. Such an organization of data
is called a database. A portion of this database is reproduced in Table E.1. The fol-
lowing information is contained in the table:

Column 1: Student identification number (ID No.)
Range � 1–461

Column 2: Student identification number by gender (ID No. by Gen)
Men � l–180 Women�l81–461

Column 3: Student’s gender (Gender)
M �Man W �Woman

Column 4: Major in college (Major)
BIO � Biology CHE � Chemistry
CSI � Computer science ENG � English
HIS � History LAW � Prelaw
MATH � Mathematics MED � Premedicine
NURS � Nursing OPT � Preoptometry
PSY � Psychology PT � Physical therapy
REL � Religion SPATH � Speech pathology
UNDE � Undecided

Column 5: Number of previous psychology courses (No. Psy)
Range � 0–13

Column 6: Number of previous mathematics courses (No. Math)
Range � 0–6

Column 7: Overall grade point average (GPA)

Column 8: Score on the Test of Mathematical Skills in Appendix A (Math Test)

Column 9: Grade in introductory statistics course (Stat Grade)
4 � A 3.5 � B� 3 � B
2.5 � C� 2 � C 1�D
0 � F I � Incomplete W � Withdrew

Missing information is indicated by a period.

627
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TABLE E.1 Student Database

(1) (2) (3) (4) (5) (6) (7) (8) (9)
ID ID No. No. No. Math Stat
No. by Gen Gender Major Psy Math GPA Test Grade

1 1 M PSY 3 2 2.84 29 2
2 2 M PSY 6 1 3.30 17 2
3 3 M PSY 1 2 3.46 37 4
4 4 M PSY 3 3 3.34 45 2
5 5 M PSY 2 1 3.22 25 3
6 6 M PSY 4 3 2.35 16 2
7 7 M PSY 3 3 2.04 34 W
8 8 M PSY 8 2 3.38 39 3
9 9 M PSY 1 1 3.33 20 3.5

10 10 M PSY 4 2 2.41 31 2
11 11 M MED 1 3 3.42 39 3
12 12 M MATH 1 4 2.66 38 3
13 13 M PSY 4 1 2.01 25 1
14 14 M PSY 3 3 2.42 38 2
15 15 M PSY 3 2 3.22 36 2.5
16 16 M PSY 2 2 2.29 41 I
17 17 M PSY 4 3 3.32 38 4
18 18 M PSY 1 2 2.72 41 3
19 19 M MED 2 2 3.76 37 4
20 20 M PT 3 1 3.23 34 2.5
21 21 M PSY 11 1 3.40 30 0
22 22 M PSY 1 1 3.75 37 4
23 23 M MED 1 2 3.26 35 3.5
24 24 M PSY 4 1 3.76 40 4
25 25 M PSY 4 1 3.23 26 2.5
26 26 M PSY 1 3 3.87 39 4
27 27 M PSY 5 1 2.32 26 2
28 28 M PSY 7 3 2.79 41 2
29 29 M PSY 8 1 3.13 37 3
30 30 M PT 2 2 3.68 30 4
31 31 M PSY 4 1 2.65 26 1
32 32 M PSY 1 1 2.91 42 3
33 33 M PSY 4 2 2.27 17 I
34 34 M PSY 8 1 2.53 35 I
35 35 M PSY 5 4 2.72 40 2
36 36 M PSY 3 1 3.32 29 3.5
37 37 M PSY 3 2 3.73 43 4
38 38 M PSY 5 2 3.24 26 3
39 39 M MED 2 4 3.72 41 3.5
40 40 M PSY 2 2 3.01 34 3
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TABLE E.1 (continued)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
ID ID No. No. No. Math Stat
No. by Gen Gender Major Psy Math GPA Test Grade

41 41 M . 2 5 3.74 44 4
42 42 M PSY 4 1 3.27 31 4
43 43 M PSY . . 2.82 22 2
44 44 M PSY 1 2 3.52 29 3
45 45 M PSY 1 2 3.79 40 4
46 46 M PSY . . 3.71 32 3.5
47 47 M PSY 3 1 2.31 28 2
48 48 M PSY 5 1 2.25 16 1
49 49 M PSY 4 1 3.06 27 3
50 50 M MED 2 4 3.79 43 4
51 51 M PSY 4 1 3.65 18 4
52 52 M PSY 2 1 3.04 35 2.5
53 53 M PSY 6 1 2.16 31 1
54 54 M PSY 1 2 3.01 25 4
55 55 M PSY 5 1 2.70 17 2
56 56 M PSY 3 . 2.91 31 2
57 57 M PSY 8 3 3.35 39 3
58 58 M PSY 7 2 3.23 37 4
59 59 M MED 1 1 2.94 35 3
60 60 M PSY 1 5 3.79 40 4
61 61 M PSY 5 4 2.32 34 2
62 62 M PSY 2 1 2.96 29 2
63 63 M PSY . 1 2.51 37 3
64 64 M . 2 2 2.42 43 2
65 65 M PSY 1 1 4.00 40 4
66 66 M PSY 4 2 1.01 17 0
67 67 M PSY 1 4 2.71 45 W
68 68 M . 1 2 2.86 37 3
69 69 M BIO 2 2 3.71 39 3.5
70 70 M PSY 2 3 2.94 35 I
71 71 M PSY 3 1 2.80 18 2
72 72 M PSY 1 1 2.55 25 2
73 73 M LAW 3 1 2.29 39 2
74 74 M PSY 2 2 3.44 40 3
75 75 M PSY 4 2 2.26 37 2
76 76 M PSY 2 2 2.89 33 2
77 77 M PSY 2 0 2.95 14 2
78 78 M PSY 2 2 3.31 39 3
79 79 M PSY 2 2 2.32 31 3
80 80 M PSY 3 2 3.11 45 2
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TABLE E.1 (continued)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
ID ID No. No. No. Math Stat
No. by Gen Gender Major Psy Math GPA Test Grade

81 81 M PSY 1 2 3.02 37 4
82 82 M PSY 2 0 2.16 25 0
83 83 M PSY 4 4 3.87 43 4
84 84 M PSY 2 3 3.03 34 3
85 85 M PSY 3 3 3.21 36 4
86 86 M CSI 1 1 1.00 37 I
87 87 M PSY 4 2 3.39 29 3
88 88 M PSY 3 1 3.42 18 4
89 89 M PSY 8 0 3.21 20 2
90 90 M PSY 1 3 3.24 31 3.5
91 91 M PSY 4 2 3.60 38 4
92 92 M PT 7 2 2.13 34 1
93 93 M PSY 5 0 2.22 14 1
94 94 M PSY 7 2 2.81 23 2
95 95 M PSY 4 1 3.25 28 4
96 96 M PSY 5 2 2.32 24 1
97 97 M MED 2 4 2.82 42 2.5
98 98 M MED 1 4 2.93 40 3.5
99 99 M PSY 6 2 3.36 24 4

100 100 M PSY 3 1 3.45 40 4
101 101 M PT 3 1 2.51 25 2
102 102 M PSY 6 3 2.65 45 1
103 103 M PSY 2 1 3.24 19 4
104 104 M PSY 8 1 2.60 19 1
105 105 M PSY 6 0 2.37 19 0
106 106 M PSY 0 1 2.24 25 2
107 107 M PSY 2 2 2.72 38 3
108 108 M PSY . 1 2.24 25 W
109 109 M PSY 2 2 3.14 44 3
110 110 M PSY 4 2 2.43 33 1
111 111 M PSY 2 2 3.35 30 3
112 112 M PSY 5 1 2.90 41 2
113 113 M PSY 3 3 3.95 43 4
114 114 M BIO 2 3 3.71 42 3
115 115 M PSY 4 1 2.65 41 2
116 116 M PSY 3 3 3.00 35 4
117 117 M PSY 2 1 2.51 23 2
118 118 M OPT . 1 3.32 39 4
119 119 M PSY 2 1 2.62 31 1
120 120 M PSY 3 2 2.97 38 3
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TABLE E.1 (continued)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
ID ID No. No. No. Math Stat
No. by Gen Gender Major Psy Math GPA Test Grade

121 121 M PSY 3 2 2.83 41 3
122 122 M PSY 1 2 2.99 25 3
123 123 M PSY 1 3 3.21 39 4
124 124 M PSY 2 1 2.32 26 2
125 125 M PSY 7 3 2.79 41 2
126 126 M PT 1 1 2.85 24 2
127 127 M PSY 3 1 2.65 45 1
128 128 M PSY 3 1 3.24 19 2
129 129 M PSY 8 1 2.60 19 1
130 130 M PSY 6 0 2.36 19 0
131 131 M PSY 0 1 2.24 25 2
132 132 M PSY 1 3 2.73 37 3
133 133 M PSY 8 1 3.13 37 3
134 134 M PT 1 2 3.87 31 4
135 135 M PSY 1 2 2.29 41 I
136 136 M PSY 4 3 3.32 38 4
137 137 M PSY 1 3 2.72 43 3
138 138 M MED 2 2 3.76 37 4
139 139 M PT 3 1 2.76 34 2.5
140 140 M PSY 1 3 2.37 15 2
141 141 M PSY 4 2 2.04 34 W
142 142 M PSY 8 2 3.38 39 3
143 143 M PSY 3 2 3.31 23 3.5
144 144 M PSY 1 1 2.51 30 2
145 145 M PSY 1 1 2.09 28 2
146 146 M PSY 1 3 2.30 41 2
147 147 M PSY 4 1 3.31 28 2
148 148 M PSY 8 2 2.90 44 . 
149 149 M MED 6 3 1.93 24 2
150 150 M PSY 6 4 2.08 33 2
151 151 M PSY 3 0 2.66 16 2
152 152 M PSY 3 1 2.78 34 3
153 153 M PSY 4 0 2.42 23 2
154 154 M PSY 4 2 2.13 42 2
155 155 M PSY 4 1 2.51 24 2
156 156 M LAW 3 2 3.07 39 3
157 157 M MED 2 2 3.90 46 4
158 158 M PSY 3 0 2.55 27 2
159 159 M MED 2 1 2.44 34 2
160 160 M PSY 2 0 2.81 24 1
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TABLE E.1 (continued)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
ID ID No. No. No. Math Stat
No. by Gen Gender Major Psy Math GPA Test Grade

161 161 M PSY 5 1 2.39 30 2
162 162 M PSY 7 3 3.39 43 4
163 163 M PSY 4 1 2.17 27 0
164 164 M PSY 3 1 3.77 37 4
165 165 M PSY 3 4 3.42 29 3
166 166 M PSY 2 1 3.11 32 3.5
167 167 M PSY 4 2 2.92 34 2.5
168 168 M PSY 1 3 2.14 41 3
169 169 M PSY 6 2 3.46 38 W
170 170 M PSY 7 2 2.59 21 2
171 171 M PSY 2 2 3.36 42 3.5
172 172 M PSY 2 1 3.69 39 3.5
173 173 M PSY 2 1 2.26 25 W
174 174 M PSY 1 3 3.24 36 2.5
175 175 M PSY 4 3 3.45 39 3
176 176 M PSY 2 0 2.56 16 2
177 177 M PSY 4 2 3.44 36 4
178 178 M MED 5 2 3.00 33 4
179 179 M PSY 2 1 3.47 31 3
180 180 M CHE 1 3 3.10 44 3.5
181 1 W PSY 2 1 3.23 26 2
182 2 W PSY 1 4 2.85 39 4
183 3 W PT 2 1 3.02 40 3
184 4 W BIO 2 3 3.66 41 3
185 5 W PSY 5 2 3.16 42 3
186 6 W PT 1 2 3.46 34 2.5
187 7 W BIO 1 2 3.51 45 4
188 8 W PSY 1 1 2.83 17 3
189 9 W PSY 3 4 3.31 45 4
190 10 W PT 2 2 2.67 38 3
191 11 W NURS 1 0 2.75 10 2
192 12 W PSY 2 1 2.96 35 2.5
193 13 W MED 3 2 3.07 33 W
194 14 W PSY 3 2 3.84 42 4
195 15 W PSY 4 3 2.97 30 3
196 16 W PSY 6 2 3.18 37 3.5
197 17 W MED 3 1 2.44 38 2
198 18 W PSY 2 4 3.40 38 3
199 19 W PSY 4 2 2.11 33 2
200 20 W PSY 2 1 2.97 10 2
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TABLE E.1 (continued)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
ID ID No. No. No. Math Stat
No. by Gen Gender Major Psy Math GPA Test Grade

201 21 W PSY 4 0 2.02 23 0
202 22 W ENG 2 1 3.44 24 3
203 23 W MED 2 3 3.16 38 3.5
204 24 W PSY 2 0 3.93 10 4
205 25 W PT 2 2 3.07 34 2
206 26 W PSY . . 2.82 29 2
207 27 W PSY 5 0 2.67 18 2
208 28 W PSY 10 1 2.82 20 2
209 29 W PSY 4 3 3.31 40 3
210 30 W PSY 4 1 3.10 33 2
211 31 W PSY 3 2 3.26 43 4
212 32 W PSY 3 1 2.64 21 2
213 33 W PSY 2 2 2.93 43 4
214 34 W PSY 3 6 2.81 39 3
215 35 W NURS 2 1 3.19 27 2
216 36 W PSY 3 3 3.37 30 4
217 37 W PT 3 2 3.31 28 1
218 38 W PT 4 2 2.90 28 2
219 39 W PSY 4 0 1.90 19 0
220 40 W PSY 4 4 3.10 34 3
221 41 W PSY . . 3.19 42 2.5
222 42 W PSY 2 . 3.58 38 3.5
223 43 W PSY 2 4 3.66 38 4
224 44 W PSY 4 1 2.61 30 2
225 45 W PT 1 1 3.09 37 2
226 46 W PSY 6 1 2.48 18 2
227 47 W PT 3 1 3.57 44 4
228 48 W PSY 4 1 3.33 35 4
229 49 W PSY 7 1 3.78 42 4
230 50 W PSY . 1 3.40 21 3
231 51 W PT 1 1 2.64 43 2.5
232 52 W PSY 3 1 3.09 38 3
233 53 W PSY . 1 2.93 39 2
234 54 W PT 4 2 2.92 29 2
235 55 W . 2 3 3.47 43 4
236 56 W PSY 10 0 3.47 8 3
237 57 W PSY 4 0 1.88 17 0
238 58 W PSY 3 0 2.01 . 1
239 59 W PSY 2 3 3.67 32 4
240 60 W PSY 3 3 3.75 39 4
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TABLE E.1 (continued)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
ID ID No. No. No. Math Stat
No. by Gen Gender Major Psy Math GPA Test Grade

241 61 W PSY 4 1 2.90 35 2
242 62 W PSY 6 0 3.38 32 4
243 63 W BIO 2 2 3.42 41 2
244 64 W PSY 2 1 3.40 34 3
245 65 W PSY 3 1 2.35 20 2
246 66 W PSY 4 1 2.68 12 I
247 67 W SPATH 2 1 3.89 26 4
248 68 W PSY 2 1 2.33 30 W
249 69 W PT 2 3 2.95 44 4
250 70 W PSY 7 0 2.69 35 2
251 71 W PSY 2 1 3.26 27 2
252 72 W . 4 2 3.39 40 2
253 73 W BIO 2 2 3.39 42 2
254 74 W PSY 5 1 2.39 35 2
255 75 W PSY 3 1 3.71 35 4
256 76 W PSY 2 4 3.81 41 3.5
257 77 W PSY 4 0 2.77 16 2
258 78 W MED 3 2 3.65 41 4
259 79 W PSY 10 1 2.47 36 4
260 80 W PSY 3 3 3.32 40 4
261 81 W PSY 2 3 3.68 31 4
262 82 W PSY 4 2 3.41 23 3
263 83 W PSY 2 1 2.90 8 3
264 84 W PSY 8 1 3.72 32 4
265 85 W UNDE 2 2 2.34 23 2.5
266 86 W HIS 3 2 2.87 30 4
267 87 W BIO 2 3 3.01 40 2
268 88 W PT 1 1 2.75 39 3
269 89 W PSY 2 3 3.58 33 3
270 90 W PT 2 1 3.54 34 3
271 91 W PT 1 1 3.64 39 4
272 92 W PSY 2 3 3.33 42 3.5
273 93 W PSY 2 2 2.83 41 2.5
274 94 W MED 3 3 3.30 35 4
275 95 W PSY 2 4 3.71 35 3
276 96 W PSY 5 1 2.66 31 1
277 97 W PSY 2 3 3.63 31 4
278 98 W SPATH 4 2 3.45 20 2
279 99 W PSY 4 1 2.31 37 2
280 100 W PSY 4 2 3.54 35 4
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TABLE E.1 (continued)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
ID ID No. No. No. Math Stat
No. by Gen Gender Major Psy Math GPA Test Grade

281 101 W PSY 3 2 3.38 44 4
282 102 W PSY 5 2 2.70 45 3
283 103 W PSY 3 3 3.62 39 4
284 104 W PSY 2 2 2.42 25 2
285 105 W PSY 5 3 2.53 37 2
286 106 W PT 1 1 2.74 31 2
287 107 W PSY 3 0 3.58 41 4
288 108 W PSY 4 2 2.63 25 2
289 109 W . 3 4 4.00 43 4
290 110 W PSY 3 1 2.54 30 1
291 111 W PSY 3 1 3.86 30 4
292 112 W PT 4 1 3.75 37 4
293 113 W PSY 7 1 2.28 21 1
294 114 W BIO 3 3 2.91 42 3
295 115 W PSY 5 1 2.43 28 2
296 116 W NURS 4 2 2.16 36 2.5
297 117 W PSY 2 4 3.22 43 4
298 118 W PSY 2 1 3.89 34 3.5
299 119 W PSY 1 1 2.62 42 2
300 120 W PSY 2 2 2.95 27 I
301 121 W PT 2 1 3.54 37 3.5
302 122 W PSY 4 2 3.71 38 3
303 123 W NURS 2 0 2.95 34 2
304 124 W PSY 2 3 2.89 34 3
305 125 W PT . . 3.84 40 4
306 126 W PT 1 2 3.48 39 3.5
307 127 W PSY . . 2.13 18 .
308 128 W PSY 3 3 3.66 43 4
309 129 W MED 3 1 2.55 33 2.5
310 130 W PSY 5 2 2.01 30 2
311 131 W PT 1 1 2.35 43 2
312 132 W PSY 4 1 2.28 20 2
313 133 W . 4 1 3.18 29 2
314 134 W PSY 3 1 3.01 33 2
315 135 W PSY 4 0 3.83 43 4
316 136 W PSY 2 4 3.87 36 4
317 137 W PSY 4 1 3.21 17 3
318 138 W NURS 2 2 3.10 20 4
319 139 W PSY 2 4 2.96 40 3
320 140 W PSY 3 2 3.49 27 4
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TABLE E.1 (continued)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
ID ID No. No. No. Math Stat
No. by Gen Gender Major Psy Math GPA Test Grade

321 141 W PSY 4 3 3.21 41 2.5
322 142 W PT 2 2 3.75 43 4
323 143 W PSY 2 5 3.60 41 4
324 144 W PSY 6 1 3.08 43 2.5
325 145 W PT 1 1 3.49 30 4
326 146 W PSY 1 1 2.64 37 4
327 147 W PSY 6 4 3.08 39 3
328 148 W PSY 4 1 3.54 42 4
329 149 W PSY 5 1 3.23 41 3
330 150 W MED 3 3 3.65 39 4
331 151 W PSY 4 3 3.44 45 4
332 152 W PT 4 1 3.43 41 4
333 153 W PSY 4 0 4.00 16 4
334 154 W . 4 0 2.54 21 2
335 155 W PT 2 4 3.82 33 4
336 156 W PSY 3 1 3.58 30 4
337 157 W PSY 6 1 3.32 27 3
338 158 W PSY 1 . 2.88 31 2.5
339 159 W PSY 3 3 3.38 40 2
340 160 W PSY 4 1 2.91 23 2
341 161 W PSY 3 2 2.51 36 2
342 162 W PSY 4 1 3.48 28 W
343 163 W PSY 2 1 3.43 33 3
344 164 W PSY 1 0 2.38 22 3
345 165 W PSY 2 0 3.84 35 4
346 166 W PSY 1 1 2.73 30 2
347 167 W PSY 4 2 2.29 21 1
348 168 W PSY 1 3 3.98 38 4
349 169 W PSY 5 1 2.63 28 3
350 170 W PT 3 2 2.61 40 3
351 171 W PSY 2 1 3.23 26 2
352 172 W PSY 2 3 2.85 39 4
353 173 W PT 2 1 3.02 40 3
354 174 W BIO 2 2 3.66 41 3
355 175 W PSY 5 2 3.16 42 3
356 176 W PT 1 2 3.46 34 2.5
357 177 W PSY 5 0 2.02 23 0
358 178 W ENG 1 2 3.44 24 3
359 179 W MED 2 3 3.16 38 3.5
360 180 W PSY 2 0 3.93 10 4
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TABLE E.1 (continued)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
ID ID No. No. No. Math Stat
No. by Gen Gender Major Psy Math GPA Test Grade

361 181 W PSY 3 1 3.19 42 2.5
362 182 W PSY 1 . 3.58 38 3.5
363 183 W PSY 2 3 3.75 39 4
364 184 W PSY 4 2 2.90 35 2
365 185 W PSY 6 0 3.38 32 4
366 186 W MED 3 3 3.65 39 4
367 187 W PSY 4 3 3.44 45 4
368 188 W PT 4 1 3.43 41 4
369 189 W PSY 5 0 4.00 16 4
370 190 W PSY 4 2 2.54 21 .
371 191 W PSY 4 2 2.40 26 2
372 192 W PSY 3 1 3.40 34 3
373 193 W PSY 5 3 3.66 38 4
374 194 W PSY 4 1 2.91 23 2
375 195 W PSY 4 2 2.51 36 2
376 196 W PSY 3 1 3.48 28 W
377 197 W PSY 4 2 3.43 33 3
378 198 W PSY 1 0 2.38 22 3
379 199 W PSY 5 1 2.61 30 2
380 200 W MED 2 2 2.34 38 2
381 201 W PT 2 2 3.50 46 3
382 202 W PSY 5 1 2.58 21 2
383 203 W PSY 2 2 2.79 40 2
384 204 W MED 2 2 2.03 26 2
385 205 W PT 1 1 3.80 36 4
386 206 W PSY 3 2 3.51 41 3.5
387 207 W MED 2 2 3.04 38 3
388 208 W PSY 3 2 2.48 34 2
389 209 W PSY 3 3 3.55 42 4
390 210 W PSY 2 1 2.45 33 2
391 211 W PSY 3 0 . 28 W
392 212 W PSY 2 2 2.71 43 2
393 213 W PSY 1 0 2.03 34 W
394 214 W PSY 3 1 3.18 38 2
395 215 W PSY 3 3 3.50 39 3.5
396 216 W PSY 2 0 2.40 14 0
397 217 W PSY 2 1 3.52 39 3
398 218 W PSY 3 1 3.46 27 W
399 219 W LAW 2 2 2.31 40 2.5
400 220 W PSY 2 1 2.42 29 2
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TABLE E.1 (continued)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
ID ID No. No. No. Math Stat
No. by Gen Gender Major Psy Math GPA Test Grade

401 221 W REL 3 1 2.92 21 2
402 222 W PSY 3 1 2.88 36 2
403 223 W PSY 2 0 3.26 26 2
404 224 W PSY 1 1 3.13 34 2
405 225 W PSY 6 0 1.81 15 0
406 226 W PSY 2 1 3.62 43 4
407 227 W PSY 8 1 3.04 30 4
408 228 W PSY 2 0 2.36 13 1
409 229 W PT 2 2 3.37 39 4
410 230 W MATH 1 1 3.91 47 4
411 231 W PSY 2 1 2.44 40 1
412 232 W PSY 2 1 2.64 36 2
413 233 W PSY 2 1 2.49 33 2
414 234 W LAW 2 1 3.75 41 4
415 235 W PSY 3 1 3.33 35 2
416 236 W MED 2 2 2.51 30 2
417 237 W BIO 1 1 3.68 47 4
418 238 W PSY 1 2 3.40 23 4
419 239 W PSY 3 2 3.21 28 2
420 240 W PSY 2 0 3.06 22 2.5
421 241 W PSY 3 1 3.49 28 3
422 242 W PSY 1 1 2.96 16 2
423 243 W PSY 1 0 3.25 27 2
424 244 W PSY 2 5 2.19 37 2
425 245 W PT 1 1 3.56 44 4
426 246 W PSY 4 0 2.98 20 2
427 247 W BIO 1 4 3.38 45 4
428 248 W PSY 1 0 3.23 45 3.5
429 249 W PSY 1 1 1.20 30 1
430 250 W PSY 5 2 3.78 38 4
431 251 W PSY 1 3 2.80 38 3
432 252 W PSY 6 1 3.10 22 2
433 253 W PSY 1 0 3.44 44 2
434 254 W PSY 2 1 2.64 40 2
435 255 W PSY 2 1 1.83 32 0
436 256 W PSY 4 1 3.68 27 3.5
437 257 W PSY 2 1 2.87 33 3.5
438 258 W MED 2 2 2.99 33 2.5
439 259 W PSY 3 2 3.50 38 4
440 260 W PSY 2 1 2.73 32 2
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TABLE E.1 (continued)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
ID ID No. No. No. Math Stat
No. by Gen Gender Major Psy Math GPA Test Grade

441 261 W PSY 2 2 2.12 38 I
442 262 W PSY 3 0 2.27 18 1
443 263 W PSY 5 1 3.45 22 2
444 264 W PSY 6 1 2.98 32 4
445 265 W PSY 5 1 2.96 30 2
446 266 W PSY 3 1 1.82 15 0
447 267 W PSY 2 1 2.89 30 3
448 268 W PSY 3 2 3.66 46 4
449 269 W PSY 2 0 3.49 45 3.5
450 270 W PSY 2 1 2.62 35 2
451 271 W MED 4 2 3.78 40 3
452 272 W PSY 3 1 2.88 34 2
453 273 W PSY 1 1 3.30 40 2
454 274 W PSY 2 1 3.01 40 2
455 275 W PSY 2 1 3.14 36 2
456 276 W PSY 2 0 3.52 22 3.5
457 277 W PSY 4 1 2.61 30 2
458 278 W PSY 1 0 2.70 27 I
459 279 W PSY 13 1 3.63 34 3.5
460 280 W PSY 4 2 2.66 35 I
461 281 W PSY 3 2 2.83 33 2
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Index

A posteriori tests, 412
Abscissa, 41
Absolute value, 524
Addition rule of probability, 190
Alpha, specifying, 268–269, 280–281
Alternative hypothesis (see Hypothesis)
Analysis of variance:

assumptions of completely 
randomized design, 410–412

assumptions of completely 
randomized factorial design, 459

assumptions of randomized block 
design, 444–445

basic concepts, 394–402
completely randomized design,

403–408
completely randomized factorial design,

446–452
degrees of freedom, 398–399
expectations of mean squares, 400–402
factorial design, 446–447
interaction in, 452–454
model equation, 396–397
partition of total sum of squares,

397–398
purpose, 392–393
randomized block design, 435–440

ANOVA, 392 (see also Analysis of 
variance)

Arithmetic mean (see Mean)
Association, measures of (see Correlation)
Associative law, 528
Assumption-freer tests:

comparison with parametric tests,
512–514

introduction to, 500–501
Asymptotic relative efficiency, 506

Bar graph, 41–42
Bayesian inference, 185
Bernoulli, J., 22, 219
Bernoulli trial, 219
Bimodal distribution, 50
Binomial distribution, 220–222

expected value, 222–223
standard deviation, 223

Bivariate frequency distribution, 125
Blocking, 433–434
Box plot, 110–111

Casual relationship, 139, 339–340
Centile, 94
Central limit theorem, 247
Central tendency, measures of (see Mean;

Median; Mode)
Chi-square distribution, 470
Chi-square test for frequency data 

(see Pearson’s chi-square statistic)
Class interval, 31

midpoint, 45
nominal limits, 32
open-ended, 74
preferred number, 34
preferred size, 34
real limits, 32–33
size, 33

Coefficient of determination, 135–137
Coefficient of multiple determination,

176–177
Coefficient of nondetermination,

135–137
Cohen’s d, 281–282, 300
Cohen’s , 474–475, 483
Combination (nCr), 201
Commutative law, 528
Comparison among means (see Multiple

comparisons among means)
Complement of events, 191
Completely randomized design, 403–408
Completely randomized factorial design,

446–454
Concomitant relationship, 139, 339–340
Conditional probability, 193
Confidence coefficient, 293
Confidence interval, 243, 293–295

comparison with hypothesis testing,
298–299

interpretation, 296–297
one-sided, 297–298
for p, 310–311
for p1 – p2, 376–377, 380–382
for m, 293–295
for m1 – m2, 332–334, 347–348
for r, 316–317
for , 366–367, 371–372

Confidence limits, 295
Constant, 11
Contingency table, 477
Continuity, correction for, 476, 504, 510

s1
2>s2

2

ŵ

normal approximation for 
Mann-Whitney U, 504

normal approximation for Wilcoxon T,
510

Pearson’s chi-square test, 476,
478–479, 497

Contrast (see Multiple comparisons among
means)

Control group, 273
Correlation:

and causality, 139
coefficient, 127
Cramér’s measure of association, 151,

482
cross product, information in,

131–133
distinguished from regression,

124–125
eta squared, 140
multiple, 176–177
Pearson product-moment correlation

coefficient, 127, 129–131
interpretation, 135–137
errors in interpreting, 138–139
factors that affect size, 140–146
and truncated range, 141–142

phi coefficient, 482
ratio, 140
Spearman rank correlation coefficient,

147–149
and tied ranks, 149

Correlation matrix, 176
Covariance, 132
Cramér’s measure of association,

151, 482
Critical region, 269
Critical value, 270
Cross product, 131
Cumulative polygon, 45–46

Data snooping, 412
Database, 627
Datum, 7
Decision rule, 269
Degrees of freedom, 266 (see also

specific test, such as Pearson’s
Chi-square, F, and t)

Denominator, 525
Dependent samples, 341–342
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Descriptive statistics, nature of, 7
Dispersion, measures of (see Index of 

dispersion; Range; Semi-
interquartile range; Standard 
deviation)

Distribution:
asymmetrical, 50
bell-shaped, 49–50
bimodal, 50
binomial, 220–222
bivariate, 125
chi-square sampling, 470
cumulative frequency, 37–38
discontinuous, 144
F sampling, 363
frequency (see Frequency distribution)
hypergeometric, 223
J, 50–51
leptokurtic, 49, 114
mesokurtic, 49, 114
multimodal, 50
multinomial, 223
negatively skewed, 50
normal, 231–232

history of, 22, 231
inflection points, 109, 232

open-ended, 74
platykurtic, 49, 114
positively skewed, 50
probability, 213
rectangular, 51
relative frequency, 36–37
sampling, 220, 243
skewed, 50
standard normal, 232
symmetrical, 50
t sampling, 266–268
U, 50–51
uniform, 51

Distribution-free tests, 501
Distributive law, 529
Double-blind study, 375

Effect magnitude, 299–301
Effect size, 281–282, 299–301
Equation:

algebraic, 529
arithmetic, 529
conditional, 530
identity, 529
permissible operations, 530–531
roots of, 530

Equivalence class, 14, 30
Error effect, 396–397
Error variance, 400
Estimate:

interval, 242
point, 242

Estimation, 242
Estimator, 242

minimum variance, 248
properties of good estimators, 248
unbiased, 248

Gauss, C. F., 22
Goodness of fit, test for, 470–473 

(see also Pearson’s chi-square 
statistic)

Gosset, W. S., 23, 266
Graph:

bar, 41–42
cumulative polygon, 45–46
frequency polygon, 45
histogram, 44–45
misleading, 52–53
pictogram, 53
pie chart, 42–43
for qualitative variables, 41–43
for quantitative variables, 44–48
stem-and-leaf display, 46–48

Graunt, J., 22
Group matching, 348–349

Hedges’s g statistic (see g statistic)
Helmert, F. R., 470
Heteroscedasticity, 145
Histogram, 44–45
History of statistics, 22–24, 125–127,

230–231
Homogeneity of variance, 326, 411
Homoscedasticity, 145, 172
Huygens, C., 22
Hypergeometric distribution, 223
Hypothesis:

alternative, 260
directional, 275
nondirectional, 275–276
null, 260
omnibus, 392
one-sided, 275
scientific, 258
statistical, 260
two-sided, 275–276

Hypothesis testing, 243, 260
comparison with confidence interval,

298–299
criticisms of, 292–293
and method of indirect proof, 260–261
role of logic in, 262–263
steps, 263–270
types of errors in, 277, 280–281

Identity, 529
Independence, statistical, 195

Pearson’s chi-square test for, 477–482
(see also Pearson’s chi-square 
statistic)

Independent samples, 325
Index of dispersion, 99–101

properties, 108
relative merits, 106–107

Index of summation, 65
Inequality:

defined, 531
permissible operations, 531–532

Inferential statistics, nature of, 8
Interaction, 452–454

Eta squared, 140
Euler, Leonhard, 187
Euler diagram, 187–188
Events:

complement of, 191
compound, 187
disjoint, 192
exhaustive, 192
intersection of, 190
mutually exclusive, 192
simple, 187

graph of, 187–189
statistically independent, 195
union of, 190

Expected value:
binomial distribution, 222–223
continuous random variable, 216–217
discrete random variable, 215–216

Experiment, 187
Experimental design, 430

controlling nuisance variables, 430–433
Exponents, operation with, 526–527
Ex post facto experiment, 348

F distribution, 363–364
F test for , 362–364

assumptions, 363
degrees of freedom, 363

Factorial design, 446
advantages and disadvantages, 458–459

Factoring, 528
Fermat, P. de, 22
Fisher, R. A., 23, 363, 392
Fisher-Hayter test, 412–414
Fisher’s r-to-Z' transformation, 316
Formula:

deviation, 97
raw score, 97

Fractions, operations with, 525–526
Frequency distribution, 31

bivariate, 125
cumulative, 37–38
grouped, 31, 32–35

advantages and disadvantages, 36
for qualitative variables, 38–39
for quantitative variables, 31–34
relative, 36–37
rules for constructing, 34
ungrouped, 31–32

Frequency polygon, 45
function, 212
Fundamental counting rule, 198

g statistic:
for contrasts in completely randomized

design, 420
for contrasts in completely randomized

factorial design, 457–458
for contrasts in randomized block de-

sign, 443
for one-sample t statistic, 300
for two-sample t statistic, 331–332, 346

Galton, F., 23, 125–126

s1
2 5 s2

2
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Intercept, 41
Intersection of events, 190
Interval estimate, 242
Interval measurement, 16

J distribution, 50–51
John Henry effect, 273

Kurtosis, 49, 114

Laplace, P. S. de, 22
Law of large numbers, 247
Least squares, principle of, 162
Leptokurtic distribution, 49, 114
Levels of measurement (see Measurement)
Linear relationship, 125, 140

Mann-Whitney U test, 502–505
assumptions, 502
efficiency, 506
normal distribution approximation,

504–505
Margin of error, 312
Marginal probability, 194
Mathematics, review of, 519–532
Mean, 64–67

grand, 396
merits, 73–74
properties, 76
of several means, 78–79
weighted, 78–79

Mean square, 399
Measurement, 14

interval, 16
levels, 18
metric (numeric), 18
nominal, 14
ordinal, 15
ratio, 17

Median, 68–72
merits, 75
properties, 76

Mesokurtic distribution, 49, 114
Midpoint of class interval, 45
Mode, 62–63

merits, 75–76
properties, 76

Model equation:
completely randomized design,

396–397
completely randomized factorial design,

448
randomized block design, 435

Moivre, A. de, 22, 231
Monotonic relationship, 149
Multicollinearity, 177
Multimodal distribution, 50
Multinomial distribution, 223
Multiple comparisons among means:

a posteriori tests, 412
in completely randomized factorial 

design, 454–456
contrast (comparison), 412–416

Percentile point, 94
Percentile rank, 94

interpreting scores in terms of, 238–239
Permutation:

, 199
, 199–200

Pictogram, 53
Pie chart, 42–43
Placebo, 8
Platykurtic distribution, 49, 114
Point estimate, 242
Population, 6, 209

conceptual, 7
concrete, 6
element, 6, 209
finite, 6, 209
identifying the, 209
infinite, 6, 209
intact, 340

Power, 277, 278
calculation, 278–280

Power efficiency, 505–506
Practical significance, 282, 299–301

completely randomized design,
419–420

completely randomized factorial design,
456–457

for , 299–301
for – , 331–332
Pearson correlation, 317–318
randomized block design, 442–443
test of goodness of fit, 474–475
test of independence, 482–483

Prediction error, 162
and standard error of estimate, 169–170

Probability:
addition rule, 190
classical, or logical, view, 185
of combined events, 190–196
common errors in applying, 196
conditional, 193
empirical relative-frequency view, 186
history of, 22–23
marginal, 194
multiplication rule, 194
properties of, 189
subjective-personalistic view, 184–185
value, 282

Probability distribution, 213
Product of two numbers, 524
Proportionate frequency, 36–37
Proportions, test for equality, 485–488 

(see also z test for p1 � p2; 
Pearson’s chi-square statistic)

p-value, 282–284

Qualitative variable, 12
Quantitative variable, 12
Quartile point:

first, 92
third, 92

Quetelet, L. A. J., 23
Quotient, 524

X2X1

X

nPr

nPn

Fisher-Hayter test, 414–416
pairwise, 414
in randomized block design, 440–442
Scheffé’s test and confidence interval,

416–418
Multiple correlation, 176–177
Multiple regression, 173–176
Multiplication principle, 198
Multiplication rule of probability, 194

Neyman, J., 23
n factorial, 199, 528
Nominal measurement, 14
Nonparametric test, 501
Nonrandom sample, 9
Nonrandom sampling, 9, 208
Normal distribution, 231–232 (see also

Distribution, normal)
approximation to binomial distribution,

236–237
finding area under, 233–235
history of, 22, 231

Nuisance variable, 430–433
Null hypothesis (see Hypothesis)
Numerator, 525

Observation, 7
Ogive, 47
Omega squared, 419,
One-sided hypothesis, 275
One-tailed test, 275
Ordinal measurement, 15
Ordinate, 41
Outlier, 109–111

Parameter, 64
Parametric tests, comparison with 

assumption-freer tests, 512–514
Partial omega squared, 442–443, 456–457
Participant matching, 341
Pascal, B., 22
Pearson, E., 23
Pearson, K., 23, 129, 468
Pearson’s chi-square statistic:

applications, 468–470
characteristics of test statistic, 473–474
for equality of proportions, 485–488

degrees of freedom, 486
with more than two response cate-

gories, 487–488
for goodness of fit, 470–473

assumptions, 475–476
degrees of freedom, 470, 474
Yates’ correction, 476

for independence, 477–482
assumptions, 483
Cramér’s measure of association,

482
degrees of freedom, 479–480

Pearson’s product-moment correlation 
coefficient, 127, 129–131 
(see also Correlation)

Percentage frequency, 36–37
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Radicals, operations with, 527–528
Random assignment, 337–339
Random numbers, 210
Random sample, 8, 208
Random sampling, 8, 208, 337–338

procedures, 210–211
versus random assignment, 337–340

Random variable, 212–213
continuous, 213
discrete, 213
expected value, 215–217
probability distribution, 213

Randomized block design, 435–440
Range, 91–92

inclusive, 91
noninclusive, 91
properties, 107
relative merits, 106

Rank correlation, 147–149
Ratio measurement, 17
Rectangular distribution, 51
Regression, 160–167

distinguished from correlation, 124–125
line, 162

assumptions, 172
of best fit, 162
predicting X from Y, 166–167
predicting Y from X, 161–165
slope of, 163, 165

multiple, 173–176
plane, 174

Regression toward the mean, 125–126
Relationship:

causal, 139, 339–340
concomitant, 139, 339–340
linear, 125, 140
monotonic, 149
nonlinear, 140–141

Relative efficiency, 505–506
Reliability, test-retest, 138
Residual, 162
Reversion, 126
Robustness:

of ANOVA, 410–412
of F test for , 363
of t test for m, 265, 267–268
of t test for m1 – m2, 326

Roots of equation, 530
Rounding numbers, 522–523
r to Z' transformation (see Fisher’s r-to-Z'

transformation)

Sample, 7
nonrandom, 9, 208
point, 188
random, 8, 208
space, 188

Sample size, determining:
for one-sample t statistic for m,

281–282
for one-sample z statistic for p,

312–313

s1
2 >s2

2

Statistical significance versus practical 
significance, 282

Statistical test, 262
Statisticians, types, 3–4
Statistics, 3

descriptive, 7
experimental, 23–24
history of, 22–24, 125–127, 231
how to study, 4–6
inferential, 8
national, 22
terminal, 83

Stem-and-leaf display, 46–48
Student, 23, 266
Summation, 64–65

index, 65
rules, 79–81

Sum of squares, 397–398
Symmetrical distribution, 50

t test for m, 271–273
assumptions, 265, 267–268
comparison with z, 265–266
degrees of freedom, 266–267
estimating sample size, 281–282
sampling distribution, 266–268

t test for m1 – m2:
dependent samples, 342–344

degrees of freedom, 343
estimating sample sizes,

346–347
independent samples, 324–326

degrees of freedom, 325
estimating sample sizes, 332

t test for r, 315
assumptions, 315
degrees of freedom, 315

t test for , 370–371
t' test for m1 � m2, 330
Test statistic, 248–249

specifying the, 265–266
Transformation:

Fisher’s r-to-Z', 316
monotonic, 15
multiplication by positive constant,

17
one-to-one, 14
percentage frequency, 36–37
positive linear, 17
proportionate frequency, 36–37
z score, 232–233

Treatment, 394
combination, 446
effect, 396
level, 394

Truncated range, 141–142
Two-sided hypothesis, 275–276
Two-tailed test, 275
Type I and II errors, 277, 280–281

U distribution, 50–51
Unbiased estimator, 248

s1
2 5 s2

2

for two-sample t statistic for m1 – m2,
332, 346–347

Sampling:
distribution, 220, 243

of the mean, 244–247
under H0 and under H1,

278–280
of t test statistic, 266–268

fluctuation, 9
stability, 74
systematic, 211
with replacement, 209
without replacement, 209

Scale of measurement:
interval, 16
nominal, 14
ordinal, 15
ratio, 17

Scatterplot (Scatter diagram), 125
Scheffé’s test and confidence interval,

416–418
Scientific hypothesis (see Hypothesis)
Semi-interquartile range, 92–94

properties, 107
relative merits, 106

Significance level, 269
Skewness, 50, 112–113
Slope of regression line, 163–165
Snedecor, G. W., 363
Spearman’s rank correlation coefficient,

147–149
SQ3R study method, 4
Standard deviation, 95–99

of binomial distribution, 223
deviation formula, 97
of discrete random variable,

217–218
population, 95–96
properties, 107
raw score formula, 97
relative merits, 105
sample, 95

Standard error:
defined, 247
of the difference between two 

means, 325
of one-sample t statistic, 265
of a proportion, 311
of two-sample t statistic, 325,

342–343
Standard error of estimate, 169–172

assumptions in, 172
Standard normal distribution, 232
Standard score, 232–233, 238

advantages over percentile rank,
239–240

kinds, 240
Statistic, 64
Statistical hypothesis (see Hypothesis)
Statistical independence (see Indepen-

dence, statistical)
Statistical inference, 259
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Uniform distribution, 51
Union of events, 190

Validity, 138
Variable, 11

continuous, 13
dependent, 124
discrete, 13
independent, 124
nuisance, 430–433
qualitative, 12

ordered, 12
unordered, 121

quantitative, 12
continuous, 13
discrete, 13

random, 212–213 (see also Random
variable)

Yates’ correction for continuity, 476, 478
(see also Continuity, correction
for)

Y axis, 41

z score (see Standard score)
z test for p, 308–309

assumptions, 309
estimating sample size, 312–313

z test for p1 � p2:
dependent samples, 379–380
independent samples, 374–375

Zero, operations with, 525

range of, 11
value of, 11

Variance, 96
error, 400
of chi-square distribution, 470
homogeneity of, 326, 411
of t distribution, 267

Variability, chance, 9

statistic, 474–475, 483
Wilcoxon rank-sum test, 502
Wilcoxon T test, 507–512

assumptions, 507
efficiency, 507
normal distribution approximation,

510–511

X axis, 41
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Descriptive Statistics 
Quick Reference

*2.2 Proportionate frequency, Prop 

2.2 Percentage frequency,

3.3 Mean,

3.4 Median,

3.7 Weighted mean,

4.2 Range, R � Xul(largest score) � Xll(smallest score)

4.2 Semi-interquartile range,

4.2 Percentile point,

4.2 Percentile rank,

4.2 Standard deviation,

4.2 Index of dispersion,

4.6 Skewness,

4.6 Kurtosis,

5.3 Pearson correlation,

5.7 Spearman correlation,

6.2 Regression,

6.3 Standard error of estimate,

6.5 Multiple correlation,

7.1 Probability of A, p(A) � nA/nS

7.3 Prob of A or B, p(A or B) 
� p(A) � p(B) � p(A and B)

7.3 Prob of A and B, p(A and B) = p(A)p(B | A)

7.4 Permutation, nPn � n ! � n(n � 1)(n � 2) . . . (1)

7.4 Permutation,

7.4 Combination,

8.3 Expected value, E(X) � p(Xi) Xi

9.2 z score, z � (X � )/S

10.4 Cohen’s effect size,

11.3 Hedges’ effect size,

15.7 Omega squared,

17.3 Cohen’s effect size,

17.4 Cramér’s correlation, V̂ 5Å
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Inferential Statistics 
Quick Reference

*10.2 t for m,

11.2 t for m,

12.2 z for p,

12.3 t for r,

12.3 z for r,

13.2 t for m1 � m2,

13.4 t for mD,

14.2 F for ,

14.3 t for ,

14.4 z for p1 � p2,

14.5 z for p1 – p2,

15.3 F for means,

15.6 Fisher–Hayter for means,

15.6 Scheffé for means,

17.3 for frequency data,

18.3 Mann-Whitney U for rank data,

18.4 Wilcoxon T for rank data,
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