

C#

Programming Basics for Absolute
Beginners

Nathan Clark

Table of Contents

Introduction
The Basics of C#
Variables and Data Types
Working on the Operators
Conditional Statements Used
Creating and Using Objects
Defining Classes in C#
Conclusion
About the Author

© Copyright 2016 by Nathan Clark - All rights reserved.

This document is presented with the desire to provide reliable, quality
information about the topic in question and the facts discussed within. This
eBook is sold under the assumption that neither the author nor the publisher
should be asked to provide the services discussed within. If any discussion,
professional or legal, is otherwise required a proper professional should be
consulted.
This Declaration was held acceptable and equally approved by the Committee
of Publishers and Associations as well as the American Bar Association.
The reproduction, duplication or transmission of any of the included
information is considered illegal whether done in print or electronically.
Creating a recorded copy or a secondary copy of this work is also prohibited
unless the action of doing so is first cleared through the Publisher and
condoned in writing. All rights reserved.
Any information contained in the following pages is considered accurate and
truthful and that any liability through inattention or by any use or misuse of the
topics discussed within falls solely on the reader. There are no cases in which
the Publisher of this work can be held responsible or be asked to provide
reparations for any loss of monetary gain or other damages which may be
caused by following the presented information in any way shape or form.
The following information is presented purely for informative purposes and is
therefore considered universal. The information presented within is done so
without a contract or any other type of assurance as to its quality or validity.
Any trademarks which are used are done so without consent and any use of the
same does not imply consent or permission was gained from the owner. Any
trademarks or brands found within are purely used for clarification purposes
and no owners are in anyway affiliated with this work.

Introduction

Congratulations on purchasing C#: Programming Basics for Absolute
Beginners and thank you for doing so.
The following chapters will discuss how to get started with the C#
programming language and how you are going to be able to use this for your
own personal programming needs. Many people are worried about being able
to use a programming language in their own lives. It may look complicated or
they feel that all the rules and moving things around will just make it too hard
to handle. But C# is a great option because it is simple to use, works with
Windows devices, as well as several others, and you won’t look at the rules
and feel confused right from the start.
This guidebook is going to take the time to look at some of the different aspects
of C# programming and even go through creating a few different codes so that
you can get some practice. Sometimes getting into the coding process and
giving it a try while learning, can make things so much easier to understand and
avoids all the confusion and worry in the process. C# is a very easy program
to use and you are going to love how easy it is to get started with.
In addition to learning how this code works, you will learn all the other basics
that come with using C# programming language. We will talk about variables,
constants, comments, and so much more. Whether you just want to get a bit of
experience with the programming world or you are ready to increase your
computer programming knowledge and learn something new, C# is a great
option to get started with and you are going to love how easy it is to use. This
guidebook will give you all the tips that you need to understand this language
and to get started right away.
There are plenty of books on this subject on the market, thanks again for
choosing this one! Every effort was made to ensure it is full of as much useful
information as possible, please enjoy!

The Basics of C#

When it comes to getting started with programming languages, many people run
away in fear. Programming is hard and difficult for some people to understand
and unless you have some experience or have worked with computers before,
it is difficult to always understand what is going on in the instructions. This
chapter will start with some of the basics that you need to get down in order to
really learn about C# and how to use this great programming language.

Why Use the C# Language?
There are a number of programming languages that you can use to make your
own codes from home. All of them have benefits and negatives that will
determine whether you want to use them or not. Sometimes it is a matter of
how clean the code looks and other times it may be based on the type of
computer you are using or the program that you want to design.
In this guidebook, we are going to spend some time looking at C# and showing
all the great things that you can do with this programming language. Even as a
beginner, there are things that you can learn with this program that will make
the process easy while still providing some of the bells and whistles.
So why would you choose to go with the C# program compared to going with
some of the other choices such as Java, C++ and Python? Here are some of the
benefits that you should consider:

Have lots of functions in the library—if you are just getting started and
want to learn how to write out functions, there are a ton of them inside
of the C# library so you will be able to use whenever you need some
help. You can place these inside the code if you need it, or even make
changes to have it work in your particular code.
Automatic disposal of functions—most programming languages will
require you to go through and manually delete any item that you don’t
want there. This can take a lot of time and will waste space on your
memory if you don’t take care of it enough. But with C#, you will find
that the program will delete the functions and objects that don’t have a
value attached to them. This will help you to clear out the memory on
your computer and saves a lot of time and space on your computer.
Easy to work with—C# is one of the easiest programs for you to work
with. While it may not be as simple of a language as Python, it is on the
easier side and you will find that the code is not clunky and you will be
able to read through it pretty easily once the code is done. There are
also options for writing comments so you will be able to leave some
clarification in the code if someone else needs to use it later.
Does well with Windows computers as well as others—this
programming language was originally used in order to work with
Windows computers and help you to design a program for them. But it

also works well with some other systems such as Mac, Linux, and more
as long as you download .NET on it. Windows has some great products
that are easy to use, especially for beginners, so you are sure to get great
results when you get started.
Works with .NET which helps make it easy—this is a program that
already comes with the Windows computers, but you can add it to some
of the other systems in order to make C# accessible on these computers
as well.
Similar to C and C++. This makes it really easy to work with this
program and learn the basics before going on to these other programs.
Even if you choose to stick with this programming language, you are
going to find that it is powerful enough to do most of the coding that you
want without all the hassle of some of the other programs.

While you have a lot of choices to make when it comes to picking out a coding
language that will help you to make some great programs while still being
simple enough to learn as a beginner, the C# is one of the best ones that you can
choose from for all the great benefits and things that you can do with it.

What You Need
Let’s start out with some of the things that you will need in order to use this
programming language. First, the computer you are using should have a “.NET”
framework as well as the development kit that is used for Windows computers.
Most of the modern operating systems from Windows, with those starting on
Windows Vista and above, will have this framework already on the computer
so you won’t have to install anything new on your computer.
If you are working on a computer that doesn’t have the .NET framework, you
are able to download it for free. You just need to go visit www.microsoft.com
and then search for the framework to get started.
One thing to note is that if you plan to use a Linux, UNIX, or Mac computer,
you will need to choose Mono Project rather than the .NET framework. This
kit will help you to create programs with C# on these computers. You can go to
www.monoproject.com to get this proper framework.

http://www.microsoft.com
http://www.monoproject.com

Learning the C# Language
When it comes to using a Windows computer, C# is one of the best
programming languages that you can find. It is compatible with the .NET
framework that is on most modern Windows computers and this language is
simple, flexible, and still has a lot of power with it. If you are new to
programming and like the simplicity of using Windows products, then the C#
language is the right one for you.
Just like working with the Java language, C# isn’t going to support any code
pointers or even multiple inheritances. Rather, it is going to offer type checking
and memory collection. It also has some of the powerful features that
programmers like from C++, such as overloading, enumerations, and
preprocessor directives so you can get the simplicity and the power that you
are looking for out of this program.

Trying Out Your First Program with C#
The best way to learn some about programming with C# is to try writing some
of the programs. So let’s dive in and get started writing a simple program with
this language to help you get your feet wet and learn a bit more about this
option:

Launch the text editor of your choice. If you are on a Windows computer,
Notepad is a great option. If you are on Linux, vim or vi are good
options to try out.
Type the following code:

class FirstProgram
{
 static void Main()
 {
 Console.WriteLine(“Using C# is fun.”);
 }
}

Now you can access the command prompt and type:

csc FirstProgram.cs

After you issue this command, the compiler for C# will process this file and
then create a .exe file in the same location as your code. For example, if you
saved the original file on the desktop, you should see a new program come up
called “FirstProgram.ee.” right in the same place. If there is an error in the
code that you wrote, you will see an error message come up.
Now you can run this application by entering “FirstProgram.exe.” into the
command prompt. If everything was done correctly, you should see that the

command prompt will display the message: “Using C# is fun.”

Analyzing This Program
As you can see, creating a program on this language is not too complicated.
You will need to go through a few steps, but you can make the message and the
results as simple or as complicated as you want. Now that you have had a
chance to great your C# program, it is time to go over what you just did (if you
notice there were quite a few lines there for just writing out the simple
statement) so that you can understand this program later.

The first line—this is the line that will consist of the keyword and the
identifier. The keyword is going to be a word that will have special
functions inside the language. With the keyword above, you are creating
a class for the program. The identifier is going to help you to identify the
method, variable, and class that you want in the program.
“FirstProgram” is the name of the class you are creating in this situation.
In the third line, you are defining the method. Main() will act as the
starting point for any application on the computer. Programs will start
executing on the Main() method, no matter where they are placed inside
the code. There are usually two words that will go before the method,
mainly void and static. In this case, static is going to inform the language
compiler that the method will not create an object within the class.
When using void, you are telling the compiler that Main() won’t return a
value.
In the fifth line, you will see the final part of the code. This is the line
where you will write your message. The method known as WriteLine()
captured the combination of characters (or the sentence) and will then
print it on the screen when you request.

In addition, you probably also noticed that there were braces in place that
were used to tell the computer that there are code blocks throughout the code to
help separate things out. Keep in mind that C# will use a semicolon (as noted
in the code above) just like Java and C.

C# Comments
This programming language will allow you to leave some comments within the
code. This is going to be a line that will provide some more information
regarding the code that you added. The compiler is going to ignore the lines so
your comments will have no bearing on what comes out on the computer. But
this can be a great way to remember what you were trying to do in the code or
to show other programmers what you are working on.
C# will allow for two types of comments. The first one is the single line
comment. This kind will start with two forward slashes. The amount of words
that you say should be pretty small so you can keep them on a single line. If you
go over to more than one line, you will notice that the program sends you an
error message. A good way to write this out is:

static void Main()
{//I have a pet.}

You can also use multi-line comments. Sometimes you can’t keep the comment
to just one line and you will need to add in something different to allow the
code to go over two or more lines. Luckily, C# does allow you to write these
kinds of comments, as long as you begin it with the symbols /* and end it with
*/. An example of this is:

static void Main()
{
/*The C# compiler should ignore this line.*/
}

This makes it easier to write a longer piece of comment, in order to explain
things in more detail, without having it come up on the screen in your code or
having an error sign come up when you are working on the code.

Comments can be your best friend when it comes to working on the code. It is
going to help others know what they are supposed to do with the code, such as
letting them know what they should put within the brackets at a particular part,
explain what you are working on with that code, and more. You should be
careful with the comments and not necessarily put them after each line of the
code, but using them when needed can make things easier.

Things to Remember With C#
Some of the things that you should remember when it comes to creating a C#
program include:

All C# programs will exist inside of a class.
You should start all of the executions that you want inside the program
using Main().
This programming language will be case sensitive. This means that class
and CLASS will have different meanings to the program.
The compiler is going to ignore the white spaces that you create. This
includes spaces, tabs, and new lines. You can use this whitespace as
much as you like to help make the program look a little easier to read.
C# will allow you to choose any name that you want for the programs.
You don’t need to have the program’s name and the class identifier be
the same.
You can use Main() more than once within the program.
When defining the boundaries of a method or a class, make sure to use
the curly brackets.
You can use two types of comments within C# to help explain things
better. Multi-line and single line are fine, as long as you use the right
features of each.
You can always add in an argument or a string to your Main() method.

Using C# is one of the best programming languages that you can choose. It is
great to use with most Windows computer, and it works great with other
computers as well. It has all the great features that you have come to know and
love with Java and C++, but it is much easier to use and can work for
beginners without all the experience!

Variables and Data Types

With a first glance at using C#, you can see that this language is not too scary.
While some of the other options are meant for more advanced users and can be
a bit complicated, you will find that this is not always the case when using C#.
So now that you have gotten your feet a bit wet with C#, it is time to delve in
deeper and learn a few more things to make it more fun.

Data Types
Those who have used C# often will choose to divide the programming
language into two parts; reference types and value types. When you are
working with a value type, you are going to pass the data over to whichever
method you are using. On the other hand, when working with a reference type,
you should just add the reference in with the method as the value will be
placed somewhere else. Some of the data types that you will find when using
the C# program include:

Ulong
Double
Long
Float
Uint
Int
Ushort
Sbyte
Short
Byte
Bool—when you use this type, the values that you are allowed to store
can only be two. The values are going to be false and true so it is good
for conditional statements and logical expressions.
Decimal
Char—this is a data type that is only allowed to have one single
character. When you are writing the char value, you must include it with
single quotes such as writing out ‘t’ ‘b’ and so on.

Variables
When you are doing an execution, the computer program is going to store all
the data for a short amount of time. Programmers will often use the word
“variables” when they are referring to the locations of memory that will hold
this stored data. Thus, the variable will have a data type and corresponding
value. When you are working in the C# language, you are able to create a
variable using this syntax:

<data_type> <name_of_variable>

The line above will save a part of your computers’ memory in order to hold
onto the char value. The programmer will then be able to access this variable
using the identifier it was given. For example, if you had listed the above
formula as char x, you could find the variable by going to x.
C# also allows you to initialize the variables during declaration. This term
refers to the process of giving a value to your variable when you are creating
it. You just need to use your assignment operator, which is =, and then indicate
the value that you are trying to assign here. Some examples of this could be:

int year=2015
bool isItDelicious = false
char sample = ‘4’’

You can also declare a few variables for one statement as long as they are of
the same data type, you just need to separate each of the entries using a comma.
An example of this is:

char ant = ‘a’, bull=’b’, cat=’c’

Just like with other programming languages, C# will require you to declare

your variables before you are able to assess them again. C# is also going to
implement a new rule called definite assignment. This means that you will
need to initialize the local variable before you are able to use it. You basically
need to assign the initial value of a local variable during the declaration
process.
Something to keep in mind: variables are named this way because the values
that they are going to store will change every time that the program runs. The
values are going to change based on what you place into them.

Constants
Next on the list to understand are constants. These are variable types that will
prevent the program from changing the initial value. This means that the value
is going to stay constant, no matter what the user is inputting in the process.
You will need to use “const” when you want to declare this constant. An
example of this is:

const char LETTER=x;

Before you state one of these constants, you need to make sure that you really
want it that way. The program will not be able to change the value of a constant
if you’ve already put it in place. This means that you must assign the initial
value to it right at the variable declaration. For example, you will get an error
message if you put in the following command:

const bool ANSWER;

One thing to keep in mind about constants is that most are going to use
uppercase letters when they are declaring this. Knowing this information can
help you to read through C# code a bit easier and will make it easier to create
your own in a manner that others will be able to read and understand.

Creating Your Identifier
If you look through the suggestions from Microsoft, you will find that they
recommend that you use a Camel notation when you are working with
variables and a Pascal notation when working with methods. When you are
doing a Camel notation, you will see that the first letter of the word is lower
case. If you are dealing with a compound word, the first letter in your second
word will start with an uppercase letter. Some examples of this include:

payment completePayment
mathematics firstClass

The Pascal notation will take things a bit differently. This notation style is
going to ask you to start the first word using an uppercase letter. The first letter
in all of the other words in the sequence should also be done in uppercase as
well. Some examples of using the Pascal notation include:

WriteLine() ReadLine()
Start() Main()

It is also possible to use underscore characters and numbers as well when you
are creating an identifier. But, you are not allowed to start the identifier using a
number. You can write fiveBooks as an identifier, but you are not allowed to
write 5Books.
While these notations aren’t mandatory, you are often advised to use them
when you are writing statements with C#. This can help you to keep the code
pretty clean and makes it easier for others to be able to go through and read
your source codes later on if they need to.
C# has made creating a code pretty easy. You don’t need to worry about a lot
of complicated rules that come with some of the other codes and yet you are
still going to get a lot of the power that you are looking for. The good news is,
we have already looked at some of the most important parts that come with

using C#, and so far you have even written a code. So now let’s take this
knowledge and move into some more of the things that you are able to do with
this great programming language.

Working on the Operators

The next thing that we will learn about are the operators. The operators are
going to help your created programs learn how to perform tasks and handle
values. Without this part of the formula, your computer programs can’t do much
and will become useless so knowing how to write operators and how they
work will make a big difference in how your program works for you.
Just like with other programming languages that you may work with, C# has
operators that will belong in different categories. Let’s take a look at each of
the categories and how you will handle the operators in each one.

Arithmetic Operators
These are the operators that will tell your computer program to do an
arithmetic procedure. This can help the computer know when you need to add
things together, subtract them, and so much more. The computer can do some of
the basics for you while making the right signs to show the program what you
would like it to do. Some of the arithmetic operators that you can use in C#
are:

For these examples let’s assume that x=15 and y=10

“+” this is the addition operator. It is going to add two operands
together. So you would get x+y=25
“-“ this is the subtraction operator. It is going to allow you to subtract
the value of the right-hand operand from the left-hand operand. So you
would get y-x=-5.
“*” this is the one that will tell the computer to multiply the two
operands. So you could do x*y=150.
“/” this one is the operator that will tell the computer to divide the left-
hand operand with the right-hand operand. For example y/x.
“%” this is often called the remainder or the modulo operator. It is going
to divide the left-hand operand by the right operand and then returns the
remainder.
“++” this is the increment operator. It is going to increase the value of
the operand by one. So you would have ++x=16
“—“ programmers will often call this the decrement operator. It is going
to decrease the value of the operand by one. This means that you will
have –x=14.

One thing to note is that the decrement and the increment operators are
considered unary, which means that it can only be used on one operand. Also,
you can also add the operators together before or after using the increment and
decrement values.

Here is an example o a code that has arithmetic operators inside:

class Example
{
 // This basic program will show you how arithmetic operators work
 static void Main()
 {
 Int f =3, g = 4; // This line declares two variables, f and g.
 sampleSum = f+g; // This will give you 7.
 sampleDifference = g-f // This will give you 1.
 sampleProduct = f*g; // This will give you 1.3
 sampleModulo = g%f; // This will give you 1
 f++ //This will give you 3.
 }
}

Using arithmetic operators is pretty simple as it is just going to tell the
computer to put two numbers together. You have to set up the parameters for
what all the numbers will equal and the computer can do the rest.
Adding in the comments can help someone else who is looking at the program
figure out what you are doing, but you don’t have to add these in if they are
pretty basic numbers. Sometimes the numbers get a bit more complex so it is
good to get in the habit of using these comments even on the easy ones so that
other programmers, and even yourself, will be able to read through them.

Assignment Operators
Next on the list is assignment operators. This is an operator that will allow you
to assign a value to your variable. Some of the assignment operators that you
can choose from when using C# include:

“=” this operator will allow you to perform simple assignment
operations. It is going to assign the value to a variable that you are
working on at that time. For example, writing int sample = 100 will tell
the program that you want to assign 100 to the variable that is called
“sample”. It won’t perform any extra processes on this variable or on
the value involved.
“+=” this is the additive assignment operator. It is going to add up the
values of your two operands and then will assign the sum to your left-
hand operand.
“-=” programmers will often refer to this as the subtractive assignment
operator. It is going to subtract the value of the operand on the right side
from the one on the left side and then assign the difference to the left-
hand operand.
“*=” this operator will multiply the values of each operand and then
will assign the product to the left-hand operand.
“/=” this is when you will divide up the two variables and then take the
result and assign it to the variable on the left.

One thing to note is that when you use an assignment operator, you will need to
make sure that both operands do belong to the same type of data. If you find
that the operands are incompatible, the program may not work properly during
runtime and you will have to go back through and make the changes.

Relational Operators
These are the operators that will let you compare the values of your two
operands. Because of this, they are good when used for conditional statements.
Some of the relational operators that you may encounter when using the C#
language.

For these, let’s assume that d = 100 and e = 150

“==” this is the operator that you can use to check the equality of two
values. If the two values end up being equal, the operand will tell you it
is true. Otherwise, the operand will tell you it is false. For example,
saying the d == e would show up as false.
“!=” this operator allows you to test the inequality of two values. If the
values end up not being equal, it will tell you this is true. For example e
!= d would result in a true.
“>” this operator is used to check whether the operand on the left is
greater than the operand on the right. If it is, then the operator will tell
you it is true. For example, saying that e > d would be true.
“<” this is the less than operator, it will allow you to check whether the
operand on the left side is less than the operand on the right side. If it is,
you will get it to show up true, such as the formula d < e.
“>=” this is the operand that will say it is true if the value of the operand
on the left side is greater than, or equal to, the operand on the right side.
Otherwise it will tell you the statement is false. For example, saying that
e >=d evaluates as true.
“<=” with this operator, you will get a true if the operand on the left side
is less than or equal to the operand that is on the right side. For example
d <= e is true.

When you are using the relational operator, the result is to get a Boolean value
each time. This means that you want to get an answer that is either true or false
each time. You should also check to see if you are using two equal signs any
time that you are using the equality operator. If you get this mixed up with the

assignment operator, you are likely to get an error in the program or it just
won’t work right for you.

Logical Operators
Another option that you are able to use with operators is logical operators.
This is sometimes called a Boolean operator because it is going to accept two
Boolean values in order to produce a brand new Boolean value. Keep in mind
that C# will allow and support four types of logical operators.

For this we are going to assume that c = true, d = true, and e = false

“&&” this operator is called logical AND. It will only result in a true if
both operands are true. For example d && c will evaluate to true.
“||” this is the logical OR. This operator is going to give you a true if at
least one of your operands is true. For example, c || e will result in true.
“ ”̂ this operator is the Logical Exclusive OR and it will result in a true
if one of the operands is true. If both operands can be false or true, the
operator will give you a false.
“!” with this one, you will be able to reverse the value of your Boolean
variable. For example, if you type in !d, you will get a false.

Some programmers will refer to || and && as short circuit operators. This is
because these signs are able to give accurate results without checking the
whole expression. An example of this is &&, since it will require two trues, it
will result in a false if the first operand says false, no matter what the rest say
and it won’t even look at them. This can help to speed up the program a bit and
get the work done.

Bitwise Operators
This kind of operator is going to work pretty similarly to the logical operator.
The difference is that the bitwise operator will take binary values in order to
produce the Boolean result. Since this operator is going to work on binary
options, basically values that are composed of zeros and ones, they are going
to show their results with either a 0 or a 1 as the output. The C# language is
able to support the following bitwise operators.

For this, let’s assume that I = 0, h = 1, j =0 and g = 1

“&” this is the operator that is known as the Bitwise AND. It is going to
assign 1 to the positions where both of the operands have 1. For
example g & h will give you 1.
“|” this is the bitwise OR. It is going to assign 1 to the positions when
there is at least one of the operands with a 1. For instance, doing h | 1
will give you a result of 1.
“ ”̂ this is the exclusive OR that will work well for binary data. Just like
working with the logical values, this kind of operator is only going to
give you 1 in the areas that the operand has a 1. For example, if you do
g ĵ you will get a result of 1.

These operands may seem a little tricky to deal with in the beginning, but they
are going to make it so much easier to do some of the different operations that
you need when working in C#. They are simple to use and after a little bit of
practice, you will find that they are easier than ever to use and not quite so
complicated. Perhaps consider opening up your text reader and seeing how
well these work for you, experimenting a bit to get the results!

Conditional Statements Used

Conditional statements are another part of the C# language that can help you
and other programmers to create flexible and powerful applications. In fact,
this kind of testing has been considered a very important part of writing any
kind of computer program so that you can get the code right for others, as well
as yourself, to use correctly. If you want to be really effective and good at
using C# language, you need to have some mastery with conditional statements.

If
The first conditional statement that you can use is the if statement. This is one
of the most basic conditional statements that you can use in C# and it is going
to allow the computer to behave according to certain inputs that you place in.
the syntax of using the if statement includes:

If (The Boolean expression)
 {
 The statement/s you want to run
 }

As you can see, this is one of the simpler formulas that you can use and it will
be changed based on the length of the statement that you are trying to run as
well as the other conditions that you want to have in this expression. Some of
the main parts of the if statement includes:

The “if” keyword—this is the part that will tell your language compiler
that you are putting together an “if” statement.
The Boolean expression—this is the part of the syntax that will
determine if the program will run the body or not. You are not able to
use the char and int values for this kind of expression when using C#.
The statement you want to run—this is the body of the syntax and you are
allowed to have one or more statements put inside. The program will be
able to execute these statements if the Boolean expression results in a
true. If the result ends up being false, the program is going to ignore the
statements and will pass this control over to the other statements that you
have written out.

Don’t let this seem too confusing for you. Here is a good example of what all
of this means:

If (x > 0)
 {
 Console.Write(“The value is positive.”);
 }

With this example, the program is only going to print “The value is positive’
only if your value is higher than zero. If you find that the expression is false,
then the program will ignore the Console.Write part of the statement and will
move on to the next part of the program.

If Else
Building upon this is the if else clause and can allow you to do a lot of great
stuff with this program. A syntax that you should remember for the “if else”
statement includes:

If (the Boolean expression)
 {The statement/s you want to run if the result is true;
 }
 Else
 {The statement/s you want to run if the result is false;
 }

There are five parts that come with this kind of expression and it can really
enhance what you are able to do with the program, including the ability to have
two different classes of statements show up depending on what the answer is.
Some of the parts include:

The “if” keyword—with this keyword, you are telling the compiler that
you are going to make a conditional statement.
The Boolean expression—the expression that you are making should
result in a Boolean value. If the expression ends up being true, the
program is going to run the first statement that you listed.
The first body—this is the statement that you want to have run if the
Boolean expression ends up being true. You can add in a few statements
here, just make sure they all fit within the same bracket.
The “else” keyword—this is the keyword that will tell the compiler that
there is an “else” clause. This is the statement that is going to run if the
previous Boolean expression ends up being false.
The second body—this one is pretty similar to the first body. But if the
Boolean is false, this is the one that will run rather than the first one.
You can choose to have just one statement or several statements

depending on your needs.

As you can already see, the “if else” statement is going to come out more
powerful than the if statement. With the if statement, if the answer is false, you
aren’t going to have anything show up and the next command in the language is
going to be displayed. But with the “if else” you can pick which statement
comes up regardless of whether you get a true or false answer, making the code
much more powerful.

Let’s take a look at how the “if else” statement could work in real life.

If (x > 0)
 {
 Console.Write(“This value will be positive.”);
 }
 Else
 {
 Console.Write(“The value is less than or equal to zero.”)
 }

In this syntax, the “else” clause is going to remain hidden unless the Boolean
expression ends up being false. It is there if the process needs it or the value
comes out false, but if the value is true, the first statement is going to be used
and the second one will be ignored completely.
The “if else” clause is one that a lot of beginners won’t use. They think that it
is too complicated and won’t help them to get things done. They want to stick
with just the “if” clause and assume that it is the best option for getting things
done. But for those who want to have a lot of options with their statements, or
who want different options to show up depending on the answers that are
given, using the “if else” clause is going to be one of the best options that you

can use.
It isn’t that hard of one to understand. It just provides you some more options
than you will find with the other choices. After you get some time to
experiment with the “if” clauses, make sure that you work on getting used to the
“if else” clauses so that you can bring your new codes to a whole new level.

Nested Conditional Statements
When you are using the C# language, you will be able to write an “if”
statement inside of another “if” statement when it is necessary. This is a
process called nesting and it is used to help you to create complex programs
that rely on chained conditions. One of the things that you should keep in mind
when using this option is that you will run into syntax errors and compile time
if you make a mistake and do the writing part of the nested conditional
statements the wrong way.
Many experts in C# recommend that you should limit your nested statements to
just three levels. If you go above this amount, you could end up with a code
that is confusing and complex, making it hard for others to read and resulting in
more errors in the process.

A good example of a code that allows nesting for a conditional statement
includes:

Double r = 60;
Double s = 70;
If (r ==s)
{
 System.Console.WriteLine(“These numbers are equal.);
 }
 Else
 {
 If (r > s)
 System.Console.WriteLine(“The value of the first variable is greater
than that of the second one.”)’
 }
 Else

 {
 System.Console.WriteLine(The value of the second variable is
greater than that of the first one.”)’
 }
 }

With this option, you have a few different scenarios that come up using the “if
else” clause. This allows you to have a few different options just up for the
command so that the program knows what to read out. This can help you to do
so much more with the program than before, but be careful not to make it too
complex or you could end up with a mess.

Switch-Case
These switch-case statements will execute a code according to the
expressions’ results. Most programmers with C# will use integer values when
working on this kind of statement. To create one of these statements, it is
recommended to use the following syntax:

Switch (value_selector)
{
 Case integer1;
 The statements you want to execute;
 Break;
 Case integer2;
 The statements you want to execute;
 Break;
 //…
 Default:
 The statements you want to execute;
 Break’
}

There are a few parts that you will need to understand in order to really get the
most out of this syntax. These include:

The “switch” keyword—this is the keyword that will inform the
compiler that you want the program to perform a switch-case statement.
The value selector—this is the expression that will generate a value.
With the C#, the value should be compatible with your operators. Your
program is going to compare this value against the other cases that are
listed inside your statements.

The “case”—the case is going to be the label that used by your program
when it does comparisons. If the case ends up matching the value from
the selector, the statement will run. The program will check each case
until it is fund.
The executable statements—these are the different statements that you
will want to run based on the case that is appropriate. It can be a group
of statements or a single statement based on your needs.
Break keyword—this is the keyword that will terminate the body of a
switch structure. You will need to place this keyword after each
statement that you are trying to create.
The default clause—this is the mechanism that you need in order to end
the statement. It is going to run if the selector doesn’t match any of the
other labels that you put up there. This pretty much ensures that the
process shows up something if nothing else works out. You can make
sure that the program will put out an answer no matter what the inputs
are.

Working with conditional statements can sometimes be difficult for a beginner.
You will find that there are so many things that you are able to do with these
kinds of statements that it can seem a bit intimidating for a lot of people. But
when you see some of the syntax options and experiment with using these
options on occasion, you will find that it is easier than you can think to do
some great options with language programming.
The important thing to remember during this is to use the different sections that
are listed above. This will help you to ensure that you get all the right parts in
order to work on the conditional statement. Without the right options, you will
find that the program will bring out errors signals when you try to run it. When
you get through with all of these new aspects, you can write a great conditional
statement that will help you get your program up and running.

Cr eating and Using Objects

With this chapter, we are going to focus on two important programming
concepts, mainly classes and objects. You are going to learn how to access all
the classes that are present in the .NET programming framework as well and it
has some really valuable information that can make it easier than ever to help
you become a master of C# without all the hassle.

Classes and Objects
First, we are going to talk a bit about objects in this programming language.
Programming has had a lot of growth over the past few years and all this
growth has had a huge effect on how programmers are going to create their
new computer applications. Object Oriented Programming, or OOP, is one of
the newest and biggest ideas that has been developed in the IT world and we
are going to spend some time learning how OOP works so that you can use it to
your advantage to create some amazing programs with C#.

Object Oriented Programming
This kind of programming is a style that will rely on objects. OOP will
provide you with a model that is based on how things will work in the real
world. When you are able to work with objects rather than with abstract ideas,
it is easier to understand the language and get it to work for you. This approach
is going to help you to solve the problems that come up in programming using
your intuition and logic.

Objects
Programmers are going to use digital “objects” in order to represent physical
objects or abstract ideas. While using the OOP, you should remember that these
objects will have two characteristics including:

State—this is the characteristics that will define the object. These can
be general or specific.
Behavior—this is the characteristics that will declare all the actions that
an object is able to do.

Let’s take a look at the difference between these two characteristics by looking
at an actual object—a ball. The state of the ball is going to be the size, color,
and make of the ball. The behavior of the ball could be something like rolling
or bouncing.
With the OOP, you will be able to combine the information and the techniques
to process them into one thing. The programming object is going to correspond

to the actual one and will hold onto the information and the actions.

Classes
When using C# the classes will define the characteristics of your object. They
will give you a structure or a model for defining the nature of the object.
According to some programming experts, the classes are basically the
foundation of OOP and they will be linked closely with the objects. In
addition, each of the objects that you use will represent one particular class.
Let’s start with a class that is called “Toys” and the object that is “Ball.” In
this instance, the “Ball” is just one instance of the “Toy” class. But the “Toy”
class will define the behavior and the state of all the toys as well as of the ball.
Classes can add some simplicity to your computer programming. The
information they will hold onto should be meaningful for anyone who looks at
the program, not just professional programmers. For example, the class of
“Toys” can’t have HTTP as one of the characteristics since these can’t be
linked together.

Attributes and Behavior
Your classes are going to define the behavior of an object, such as the actions
that the object is able to perform, and the attributes, or the characteristics. The
attributes are going to appear as different variables in the body of the class
while the behavior is going to be defined by the different methods inside the
class.
Let’s apply these to the Toy class. When they are applied, you will get the
color and the size as attributes. For this you are going to use the methods stop()
and move().

Using Classes in a Program
At this point we have discussed a bit about classes and how they work, but we
need to get a bit more into how they are going to work within the program and
how they can make a difference in what you are trying to write out in the code.
With C#, you should define all of the classes using the keyword “class” to keep
things simple.
After you type in “class”. You will need to indicate the particular identifier
that you would like to use along with the variables and the methods that you
would like to place inside this new class. To keep things simple, the different
parts that you can add into the class in C# language include:

Fields—these are any of the variables that will belong to a particular
data type.
Methods—you can use these methods in order to manipulate the data
Properties—in this language, the properties are going to enhance how
well the fields work. The property will provide some extra management
abilities for the information and give it to the fields.

Below is an example of the different parts that we just discussed so that you
can get a good idea of how this would work in a programming language. We
are going to use “book” in the name of this class and give it two properties:
size and type.

Public class Book
{
 Private string bookType:
 Private string size;
 Public string BookType
 {
 Get
 {

 Return this. bookType;
 }
 Set
 {
 This.bookType = value’
 }
 }
 Public string Size
 {
 Get
 {
 Return this size;
 }
 Set
 {
 this.size = value;
 }
 }
 public Book()
 {
 this.bookType = “Dictionary”;
 this.size = “large”;
 }
 public book(string bookType, string size)
 {
 this.bookType = bookType;

 this.size = size;
 }
 public void Sample()
 {
 Console.WriteLine(“ Is this a {0}, bookType)
 }
}

With this example, the Book class is able to define two different properties, the
book type and the size. These properties are able to hide the values inside the
fields of the same names and the code snippet is going to declare two
constructors for generating on the Book class. This code also created a method
called Sample().
You will be able to use this for a number of different things, adding in more
characteristics if you would like, and it doesn’t have to be limited to books,
toys, vehicles, or anything else. You can mess around with your text editor a bit
to try out this formula and change it around with some other classes to make it
easier to get the program to work for you.

System Classes
The C# language already has a library that is built into the system. These are
going to include some default classes like Console, Math, and String. As you
use this language, you must keep in mind that this library is going to be
compatible with any of the .NET applications that you use.
The .NET framework is nice because it already has this preinstalled library
that will include various classes inside. The classes can be helpful for those
who are trying to do some basics in programming tasks, like text procession,
execution, and networking. They can be helpful for the beginner who is just
getting started or even someone who has been working in the programming
language for some time because they are simple and already written out.
Keep in mind that these classes are going to hide the logical implementation
inside. You should focus more on what the classes are able to do, not exactly
on how they are able to do it. For this reason, the built-in classes with C#
won’t be viewable to the programmer. Since you should worry more about the
principle of working on your code rather than all the abstract parts, it is
important to just use these codes for their general purposes rather than
worrying about how they work.

Creating and Using Objects
We have spent some time looking at classes so now it is time to work on
creating and then using objects in the language. Here are some of the basics
that can help you to get started:

Creating an object
To get started with creating an object inside an existing class, you will need to
create a new keyword. Usually, the programmer will assign the new object a
variable that will be of the same data type as the class of the object. Keep in
mind that doing this won’t copy the object to the variable, but it will just give
the variable a reference to the object that got assigned to it. Use the following
code to view how this would all work:

Book someBook = new Book();

This example is going to assign the instance of a Book class to the variable
called “someBook.” This will get the object to go to the right class that is
needed.

Setting the parameters for your new object
C# will allow you to assign some parameters for your newly created objects.
Let’s take the syntax that you did above and make the adjustments for this:

Book someBook = new Book(“Biography”, “large”)’;

This code is going to be good for creating a new object named someBook and
will assign the two different parameters to it as well. With this adjustment, the
object’s type is not Biography while the size is now large.
Whenever you are using the new keyword, the framework of .NET is going to
complete two things:

It will reserve some of the memory for this new object
It will initialize the object’s data members

This process is going to occur thanks to a method called constructor. For the
code above, the initial parameters are the parameters of the class constructor.
This will help the object to stay in the right place and give it the characteristics
that it needs.

Releasing the object
While some of the other programming languages that you can use will require
you to manually destroy objects, this is not a requirement with C#. This means
that you will be able to release any of the memory that is consumed by your
various objects without having to do manual deletions. The CLR system that
comes with your .NET framework will make all of this possible.
With the CLR system, the computer will automatically detect and then release
any objects that don’t already have a reference. The memory that was assigned
to these objects is not available and you can use it for other objects. Overall,
this makes the system easier to use and can prevent issues and bugs. If you
would like to release an object, you should take the time to destroy the
corresponding reference. A good example of this is:

someBook = null;

This process won’t delete the object, it is just going to remove the reference
from the object so that the CLR can then go through and perform an automated
deletion.

Accessing the object’s field
When you want to access the field of an object with C#, you will need to use
the dot operator or “.” You will simply need to indicate the name of the object,
place the dot, and then enter the field you are looking to access. However, you
won’t even need to add in the dot if the object you want to work with is just in

one class. You have to get into the object’s field if you want to assign a new
value or extract the value.
For those who are working with a property, you will need to use the keywords
get and set. The set keyword is going to allow you to assign the value of an
object while the get keyword is going to help you to extract the value out of the
object.
Here is an example of a code that uses this information to get an object’s
property. We are going to create an object called myBook and then assign the
bookType as “bible” to make it easier.

Class BookManipulation
{
 Static void Main()
 {
 Book myBook = new Book();
 myBook.bookType = “Bible”;
 System.Console.WriteLine(“This is a {0}.” myBook.bookType);
 }
 }

Calling an object’s method
You will need to use two operators including the invocation and the dot
operators. You will not need to use the dot operator if the object and the
method you choose to work with are in the same class, but the parentheses are
always going to be mandatory. To call out the method, you just need to indicate
the identifier and then follow it with the invocation operator. You can place the
parameters inside the parentheses or you can add in the arguments for the
method.
While you are writing your program in C#, you will be able to add in an
access modifier to the methods. There are four access modifiers that are
supported in C# including private, internal, protected, and public. These are

going to help you to restrict the calling abilities when you are working with
your method. While all of them are important, we are just going to focus on
public modifiers and how they will make the information, namely the objects,
publicly available.

The Constructors
Constructors are methods that will run any time that the programmer creates a
new object. The idea behind the constructor is to initialize the data of your new
object. You aren’t going to get anything value when using this method. Plus, the
constructor is going to use the same name as the class it belongs to, meaning
that it won’t have a random name for you to remember. You will also be able
to assign parameters to your constructors when using the C# language.

Parameters with your constructors
The constructors in C# will accept parameters just like the methods that you
would use in the language. You can set up several different constructors in the
classes, but you should check to make sure that the constructors have different
types and numbers of parameters; this basically makes sure that the constructor
is unique.
Remember that your constructor is going to run any time that you create your
objects inside the class. If you have a class that has several constructors inside
of it, you may be curious to figure out which constructor is running when you
create a new object. C# will be able to determine the right constructor for you
so you won’t need to worry about this and you won’t need to do anything
manually.
The language compiler is going to select the right constructor based on the
parameters that you set up in the beginning in a principle that is called “best
match.” This helps to keep things organized and can speed up the program
writing process.

A good example of using constructors include:

public class Device
{
 private string type;
 private string size;

 // A constructor without any parameter
 public Device()
 {
 this.type =”laptop”;
 this.type = “large”;
 }
 //A constructor with two parameters.
 {
 this.type = type;
 this.size = size;
 }
}

These parameters can help to tell the program what you want to do. It also
makes it easier for C# to figure out which constructor you want to show up
based on the work that you are doing at that moment.

Static Data Members
So far we have been working on indicating the state of objects that are being
used. These fields are going to be directly linked to objects that are inside a
specific class. In OOP, you will come across different special types of fields
and methods linked by class, but not with the object itself. This is called a
“static data member” because it won’t be affected by the objects. It can even
function inside your class without having any objects there.
When you are writing your program, you need to take the time to define the
static methods using the “static” keyword. You can place this in the method’s
value type or the field type. You can even use these to create static constructors
if you need to in C#. For this kind, you would place the “static” keyword right
before the name of your constructor.
Objects and classes are a big part of how C# works and they are going to help
you to really make the code that you are looking for. The topics above are just
some of the great things that you can do with your classes and objects in this
programming language and with a bit of experimenting, you will find that
almost anything is possible with this easy to use language!

Defining Classes in C#

We spent some time working on classes and objects in the past chapter, but
here we are going to work a bit more with classes and learn how you can
define these classes within the C# language. Let’s take a look and get started
with this part!

The Basics of Classes
In a programming language, the class is going to define the data and object
types that you are able to use in the program. The object is going to contain this
actual information that will define the state of its container. Classes are also
able to describe the behavior of the object. This is all the behaviors that the
object is able to perform. When doing OOP, you should use methods in order
to describe the behavior of the objects.

Components of Classes
There are a few different parts that come with each class including:

Declaration—this is the line that will declare the identifier of the class.
Body—just like with methods, the classes are going to have a single
body. You will need to define the body right after you make the
declaration. The body is the statement, or several statements, that are
found between the curly brackets. An example of this is:

class Example
{
//This is the body of the “Example” class.
}

Constructor—this is the part that will allow you to create a new object.
An example of this is:

Public Sample()
{
//Insert what you want to say here.
}

Fields—these are the variables that you will declare within your class.
The fields are going to contain the values that will represent the exact
state of the object they are trying to get to.
Properties—this part will describe the different attributes of the class.
Many programmers will write the class properties right inside the field
of their chosen object.
Methods—a method is basically a named block of code that is
executable. In is able to complete some tasks and then will allow

objects to attain the right behavior. It can also execute the right
algorithms that are present inside the codes.

The following example is going to show you the best way to create a class
using the C# language and it is going to include all of the pieces that we
discussed above as important to classes.

class ZooAnimals // This is the class declaration
{ // This bracket signals the start of the class’s body
 string animalType //This line declares a new field
 public ZooAnimals() // This line declares an empty constructor.
 {
 }
 public ZooAnimals(monkey animalType) // This line create
another constructor for the class.
 {
 this.animalType = animalType;
 }
 string ZooAnimals //Here, you are declaring a property.
 {
 get {return animalType;}
 set { animalType = value;}
 }
 Static void Animal() // This line declares a new method for the class.
 {
 System.Console.WriteLine(“This is a {0}.” animalType ??)’
}

Objects and Classes
Now that we know a bit more about how to create and use class objects, it is
time to learn a bit more about this technique and how it is going to work when
you are programming.

Custom classes
Before you start using a specific class, you will need to have an object inside
it. You can do this by starting with a new keyword and the constructors that are
present inside the class.
In the C# programming language, you are not going to be able to manipulate the
objects directly. This means that you will have to assign your object to a
variable before you are able to manipulate it. You can then access and use the
object through whichever variable you choose to assign the object too. Keep in
mind that in order to access the methods and the properties of the object, you
will need to indicate the identifier of the object and use the dot operator.

More about objects
Each of the objects in your .NET framework will have two parts, the reference
part and the actual part. The actual part is going to contain the information
about your object and it is stored inside a heap that is known as the dynamic
memory on the operating system of the computer. On the other hand, the
reference part of the .NET framework is going to exist in the execution stack of
the program, which is the part that will hold the method parameters and the
local variables.
If you want to create a new variable that isn’t associated with an object, you
need to make sure to give it a value of “null”. This keyword is going to tell the
language compiler that the variable doesn’t have a value at this time.

Organizing Your Classes
When you are saving in C#, there is just one rule that you will need to follow
and that is all the classes need to be saved as .cs files to make it easier to find
and to make the class work. Technically, you are able to save all of the classes
that you are creating into one file and the compiler will still work without any
errors, but in most cases it is best to save them in different files to help you
keep things organized. Sometimes it is hard to find the class that you want if
you save them all in just one file.

Using namespace
You are going to want to get familiar with using namespace with C#. This is a
set of classes that will be related in some logical manner. It can include
classes, interfaces, structures, and other kinds of information. You can combine
together a few classes into a namespace regardless of where they are located
in the memory.
If you would like to use a namespace on the codes that you are creating, make
sure that you add a “using” directive to make this easier. Most programmers
find that it is easiest to write these directives inside the first couple of lines in
the .cs files to make sure they don’t forget about it. After you insert the
directive, you can declare which namespace you wish to use.

Access Modifiers
C# is able to support four types of modifiers, protected, private, internal, and
public. These modifiers are going to allow you to have some control over the
visibility of the elements in your class. Let’s take some time to discuss each of
the modifiers in detail so you know which one is right for you.

Private—this modifier is going to place a restriction on the class. If it
tagged as a private element, it is not accessible by any of the other
classes. The C# will use this as the default for modifiers so if you don’t
decide what accessibility the element has, the system will make it
private.
Public—this is the modifier that you should choose if you want your
element to be accessible with the other classes. This means that you are
taking away all the limitations in regards to the visibility of the object.
Internal—if your element has this as the modifier, it is going to be
accessible just to the files that are in the same project.
Protected—this modifier is going to prevent a user from accessing the
element. However, it will all the descendant classes to access and use
the elements that are involved.

Each of these modifiers is going to work in a slightly different way based on
what you want it to do. If you want to keep it protected and ensure that it isn’t
accessed by the other classes, you will want to make sure that you use a
private setting. But if you would like other elements and classes access to it,
you will need to make it public. And of course, there are options that always
go in between to help you determine how much access other classes will have
to this main modifier.
You will need to determine which one is going to be right for your code. Most
of the time you will find that private is going to be the default option, but you
can always make the change to ensure that your modifiers are doing what they
should be within the program.

Declaring a Class
C# does have some strict rules when it comes to class declarations. You are
going to get runtime errors and compile time issues if you don’t do a good job
with declaring your classes. To ensure that you aren’t getting any errors, you
should use the following syntax:

<modifier> <class> <name_of_the_class?>

You need to write in the body of the class right after the identifier to keep
things easier. The body is going to be the part that will contain the executable
codes so just like with other languages for programming, you should write this
inside of your curly braces.

“This” Keyword
Another keyword that you should learn about is the “this” keyword. This is a
tool that will help you to access the contents of a class. Some examples of
using this keyword include:

this.sampleMethod(); //Use this syntax to run a method.
this.sampleField: //Use this syntax to access a particular field.
this(8, 9); // Use this syntax to trigger a constructor that contains
two parameters.

The Fields
The object is going to represent things that are in the physical world. To define
this object, you are going to spend your energy concentrating on the attributes,
which will then be linked to purposes of your program on the computer. You
will need to store the attributes into the class declaration with the help of
special variables. These will be called fields and they will define the various
statuses of the object you are working with.

Declaring a field
C# is going to require you to declare all of your fields right in the body of the
class. The following code will show a few examples of how you can declare
fields in your class:

class Example
{
 double salary;
 char favoriteLetter;
 string yourName:
}

The scope of a field
The scope of your field will begin from the part where you start writing it and
will continue until the body of the class is done. This allows for a lot of
chances to write out what you would like to say in the field.

Initializing your field
C# makes it easy to set the value of any fields that you create. The syntax that
you will use to set the value of the fields will be pretty similar to the syntax
that you use for ordinary variables. The syntax that you should use for these
fields looks like this:

<modifier> <type_of_field> <name_of_field> = <value>;

Something to take note of is that you should check that the initial value is going
to be compatible with the field that you are using. C# is kind of strict on the
rules regarding how compatible the data types need to be in order to avoid
issues with errors and runtime issues coming up on the screen. Take a look at
the following example:

class Sample
{
 int payment = 5000;
 char letter = ‘x’;
 string [] instruments = new string[] {“guitar”, “drums”};
 Vehicles myVehicle = new Vehicles()
 }

This is going to help you to put together the field that you would like in the
program. You can make changes that you would like to make this function work
the best with your chosen code.

Default Choices with the Field
Any time that you create your object inside a class, the system is going to set
aside some memory in order to hold the fields of the new object. The system
will be able to do this by setting an initial field or the value of every field. If
you don’t go through and set this default the way that you want it, the .NET
framework will work to set the values for you.
This is the main difference that occurs between the local variables and the
fields. The language compiler is going to send you an error message when the
local valuables don’t have the right value or any value at all. So you need to
make sure to go through this and get it set up with a value early on or you may
run into trouble with your project and you will have to go through and make the
right changes.

Customizing your default value
When you are working with the C# language, you will be allowed to set the
default values for any of your fields. This is a great feature that is going to
allow you to make the code easier to read and much cleaner compared to some
of the other programming languages that you will choose. Let’s take a look at
some of the fields that you saw earlier and see how we can make them
customized so they look better within the program:

class Sample
{
 int payment = 0;
 char letter = null;
 string [] instruments = null;
 Vehicles myVehicle = null;
}

Readability and cleanliness are two of the most important parts that come with

using the C# code so you need to find ways to work with the code, value,
classes, and other parts to compact them and make it look as nice as possible
without having too much work going on all the time. Working with setting your
default value can really help you to get this done right.
Working in programming can be intimidating to some of those who haven’t had
a chance to work in it, but perhaps they have visions of really complicated
codes that look like a mess and are too difficult to mess with. The C# code is a
great language to learn with because it is simple to use and has a lot of great
features that even a beginner is going to be able to learn about with ease.

Conclusion

Thank for making it through to the end of C#: Programming Basics for
Absolute Beginners, let’s hope it was informative and able to provide you
with all of the tools you need to achieve your goals whatever it may be.
The next step is to get started on using C# programming language in your own
life. This is a great product to use, a programming language that works on most
computers and is made to be simple to use and read for beginners. We have
walked you through some of the steps that you need to take to create a program
with C# and even discussed some of the most important parts of the C#
programming language so you can really get started on the right track.
While many other programming languages are great to use and can allow you to
do some powerful things, some of them are a bit confusing and can scare away
someone who is brand new to the whole process. But with C#, you will not
have this issue. You will be able to get started on your first program right away
(and we discuss some of the options of doing this inside the book) and you will
find that programming can be a lot of fun and really easy.
When you are ready to get started with programming and making it work for
your needs, make sure to check out this guidebook and learn just how easy it is
to work with C#.
Finally, if you found this book useful in any way, a review on Amazon is
always appreciated!

About the Author

Nathan Clark is an expert programmer with nearly 20 years of experience in
the software industry.
With a master’s degree from MIT, he has worked for some of the leading
software companies in the United States and built up extensive knowledge of
software design and development.
Nathan and his wife, Sarah, started their own development firm in 2009 to be
able to take on more challenging and creative projects. Today they assist high-
caliber clients from all over the world.
Nathan enjoys sharing his programming knowledge through his book series,
developing innovative software solutions for their clients and watching classic
sci-fi movies in his free time.
To learn programming from an expert, look out for more of Nathan’s books in
store and online.

	Introduction
	The Basics of C#
	Variables and Data Types
	Working on the Operators
	Conditional Statements Used
	Creating and Using Objects
	Defining Classes in C#
	Conclusion
	About the Author

